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Abstract

This thesis contains five papers divided into two parts. In the first part,
Papers I–IV, we study polynomials within the field of combinatorics.
Here we study combinatorial properties as well as the zero distribution
of the polynomials in question. The second part consists of Paper V,
where we study correlating events in randomly oriented graphs.

In Paper I we give a new combinatorial interpretation of the station-
ary distribution of the partially asymmetric exclusion process in terms
of colored permutations and decorated alternative trees. We also find a
connection between the corresponding multivariate partition functions
and the multivariate Eulerian polynomials for r-colored permutations.

In Paper II we study a multivariate refinement of P -Eulerian poly-
nomials. We show that this refinement is stable (i.e., non-vanishing
whenever the imaginary parts of its variables are all positive) for a large
class of labeled posets.

In Paper III we use the technique of compatible polynomials to prove
that the local h-polynomial of the rth edgewise subdivision of the (n−1)-
dimensional simplex 2V has only real zeros. We generalize the result and
study matrices with interlacing preserving properties.

In Paper IV we introduce s-lecture hall partitions for labeled posets.
We provide generating functions as well as establish a connection be-
tween statistics on wreath products and statistics on lecture hall parti-
tions for posets.

In Paper V we prove that the events {s → a} (that there exists a
directed path from s to a) and {t → b} are positively correlated in a
random tournament for distinct vertices a, s, b, t ∈ Kn. We also discuss
the correlation between the same events in two random graphs with
random orientation.
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1. Introduction

This thesis contains five papers divided into two parts. The first part
consists of Papers I–IV which were supervised by Petter Bränden, KTH.
The second part consists of Paper V which was supervised by Svante
Linusson, KTH.

In the first part we study polynomials of combinatorial nature and
the geometry of zeros of polynomials. The second part consists of one
paper, Paper V, where we study correlating events in randomly oriented
graphs.

1.1 Overview of the thesis

In addition to the five research papers this thesis includes three initial
chapters. First, the present one (Chapter 1), which gives an overview of
the rest of the thesis and an introduction to the coming two chapters.

In Chapter 2 we start by giving an introduction to the topics relevant
to the first four papers. Papers I–IV all touch on different aspects of the
geometry of zeros of polynomials. We discuss real-rooted polynomials in
combinatorics and properties of sequences whose generating polynomials
are real-rooted. We also discuss a multivariate analog of real-rooted
polynomials, stable polynomials, i.e., polynomials that are non-vanishing
whenever all their variables have positive imaginary parts.

The Eulerian polynomials have been studied frequently in enumera-
tive combinatorics, especially within the combinatorics of permutations,
and are known to be real-rooted. This fact lays the foundation of the
work in the first part of this thesis. We let the Eulerian polynomi-
als act as examples through Chapter 2, as we introduce permutation
statistics, stable polynomials and stability preserving operators. Lin-
ear operators preserving non-vanishing properties have been studied for
centuries. We will discuss the characterization of all linear operators
preserving stability by Brändén and Borcea [7], which is a generaliza-
tion of the characterization for the univariate case by Pólya and Schur
from 1914 [34].

At the end of Chapter 2 we give a brief overview of the Papers I–IV.

7



In Paper I we present a new combinatorial interpretation of the station-
ary distribution of the partially asymmetric exclusion process. In Paper
II we study a multivariate refinement of P -Eulerian polynomials. In Pa-
per III we answer a question addressed by Athanasiadis [3], regarding
real-rootedness of polynomials in a certain family of polynomials. In
Paper IV we introduce and study s-lecture hall partitions for labeled
posets.

There are several surveys on the topics that will be discussed in
Chapter 2. I would like to refer to Brändén [13], Brenti [10], Stanley
[39] and Wagner [40].

In Chapter 3 we introduce the topics relevant for Paper V and sum-
marize the content in that paper. Let {s → a} denote the event that
there exists a directed path from s to a. We prove that the events
{s → a} and {t → b} are positively correlated for distinct vertices
a, s, b, t ∈ Kn, where every edge in Kn is oriented either way with the
same probability independently of each other. We also study this cor-
relation in two different random graph models. Paper V was inspired
by a previous paper by Alm and Linusson [1], where they studied the
correlation between similar events in a random tournament.
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2. Real-rooted and stable
polynomials in combinatorics

2.1 Real-rooted polynomials in combinatorics

The study of zeros of polynomials has a long and rich history. In com-
binatorics there are many examples of real-rooted polynomials. One
such example is the Eulerian polynomials [23], that we will discuss in
Section 2.3.

Let A = a0, . . . , an be a sequence of real numbers, then

• A is log-concave if ai−1ai+1 ≤ a2
i for all 1 ≤ i ≤ n− 1 and

• A is unimodal if there exists an index 0 ≤ i ≤ n such that
a0 ≤ · · · ≤ ai ≥ · · · ≥ an.

The corresponding generating polynomial

pA(x) :=
n∑
i=0

aix
i,

is said to be real-rooted if all its zeros are real. For convenience the zero
polynomial is treated as a real-rooted polynomial.

In combinatorics many important sequences are known to be log-
concave, unimodal or have a real-rooted generating polynomial [10; 13;
39]. Unimodal and log-concave sequences also arise often in algebra,
analysis, computer science and statistics.

Example 1. The polynomial

n∑
i=0

(
n

i

)
xi = (1 + x)n

is a real-rooted polynomial, in fact all its zeros are equal to −1. The
corresponding sequence {

(
n
i

)
}ni=0 is log-concave and unimodal.
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One of the reasons why real-rooted polynomials are of interest is the
connection between the zeros and the coefficients of a polynomial. If the
generating polynomial of a sequence has only real zeros it implies several
properties of the sequence. For example, if pA is a real-rooted polynomial
with nonnegative coefficients and n ≥ 2, the sequence a0, . . . , an is both
log-concave and unimodal. However, the converse is not true.

Example 2. The sequence 1, 1, 1 is log-concave but the polynomial 1 +
x+ x2 does not have any real zeros.

If pA is real-rooted, the sequence a0, . . . , an also satisfies Newton’s
inequalities, that is,

a2
k ≥

(
k + 1

k

)(
n− k + 1

n− k

)
ak−1ak+1, 1 ≤ k ≤ n− 1.

2.2 Statistics on permutations

Recall that the symmetric group, Sn, is the set of all permutations of
the set [n] = {1, . . . , n}. Let us use the one-line notation to denote a
permutation π ∈ Sn, that is π = π1 · · ·πn. We call position i a descent
in π if πi > πi+1, and an excedance if πi > i. The set of descents
and excedances of a permutation π = π1 · · ·πn ∈ Sn are defined as

D(π) = {i : πi > πi+1} and E(π) = {i : πi > i}, respectively.
A permutation statistic is a function f : Sn → N. We define the two

permutation statistics counting descents and excedances in a permuta-
tion by

des(π) =|D(π)|, and (2.1)

exc(π) =|E(π)|. (2.2)

Example 3. For the permutation π = 4152637 we have des(π) = 3 and
the descent set is D(π) = {1, 3, 5}.

It is well known that excedences and descents are equidistributed,
also the descent and excedance statistic are both examples of so called
Eulerian statistics since Eulerian polynomials may be defined as gener-
ating functions of descents (or excedances) over Sn, something that will
be discussed further in the next section.

Another well-studied Eulerian statistic is the ascent statistic, it may
be defined as

asc(π) = |{i : πi−1 < πi}|. (2.3)
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Statistics such as descents, ascents and excedances can also be ex-
tended to other sets of objects, such as set partitions, inversion sequences
and wreath products. For example, in Paper III, we study an ascent
statistic on restricted Smirnov words. Let r be a positive integer. The
wreath product of the symmetric group of order n with the cyclic group
of order r may be defined as

Zr oSn = {(κ, σ) : σ ∈ Sn and κ : [n]→ Zr}.

In Paper I we study a refined excedance statistic on wreath products
and in Paper IV we establish a connection between statistics on wreath
products and statistics on lecture hall partitions for posets.

The set of inversion sequences of length n is defined by

In = {(e1, . . . , en) ∈ Zn : 0 ≤ ei ≤ i− 1}.

For an inversion sequence e ∈ In define an ascent statistic as

ascI(e) = |
{
i ∈ {0, 1, . . . , n− 1}|ei

i
<

ei+1

i+ 1

}
|,

where e0 = 0. The ascent statistic over inversion sequences is another
example of an Eulerian statistic [37], that is∑

e∈In

xascI(e) =
∑
π∈Sn

xdes(π).

A statistic, f , is said to be Mahonian if the distribution over Sn is
the standard q-analogue of n!. That is if∑

π∈Sn

qf(π) = [n]!q,

where [n]q = 1 + q + · · · + qn−1 and [n]!q = [1]q[2]q · · · [n]q. An example
of a Mahonian statistic is the Major index defined as

maj(π) =
∑
i∈D(π)

i

The statistic maj was studied first by MacMahon [32], and will be dis-
cussed briefly in Paper IV.

Statistics such as descents, ascents and excedances may also be re-
fined over permutations, for example by their values or positions.

For a permutation π = π1π2 · · ·πn ∈ Sn, let

AB(π) := {πi ∈ [n] : πi < πi+1} and DB(π) := {πi ∈ [n] : πi−1 > πi},

where π0 = πn+1 := ∞, denote the set of ascent bottoms and descent
bottoms of π, respectively.
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Example 4. If π = 324156, then DB(π) = {1, 2, 3} and AB(π) =
{1, 2, 5, 6}.

2.3 Eulerian polynomials

The Eulerian polynomials first appeared in Euler’s work in 1736 [22], and
have been studied frequently in enumerative combinatorics ever since.
Eulerian polynomials are generating functions of permutation statistics
such as descents and excedances, also called Eulerian statistics, over Sn.

The Eulerian number, An,k, counts the number of permutations in
Sn with exactly k − 1 descents. The Eulerian numbers satisfies the
recurrence relation

An+1,k = kAn,k + (n+ 2− k)An,k−1, 0 ≤ k ≤ n.

This can be proved by observing what happens to the number of descents
of a permutation π ∈ Sn when n + 1 is inserted. If n + 1 is inserted
between πi and πi+1 where i is a descent or at the end of the permutation,
then the number of descents is unchanged. If n+ 1 is inserted between
πi and πi+1 where i is not a descent or at the beginning, then the new
permutation has one more descent than the original one.

The Eulerian polynomial, An(x), n ∈ N, may further be defined as
the generating polynomial for the descent statistic over the symmetric
group. We have:

An(x) =

n∑
i=1

An,ix
i =

∑
π∈Sn

xdes(π)+1.

As stated earlier, the Eulerian polynomials are known to be real-rooted.
This result has been generalized to various refinements of the Eulerian
polynomials and serves as a starting point for many of the results pre-
sented in the Papers I–IV.

For a positive integer n we denote by x the n-tuple (x1, x2, . . . , xn).
We will now introduce a multivariate refinement of the Eulerian polyno-
mials, An(x,y), that will be used as an example throughout this chapter.
We define

An(x,y) =
∑
π∈Sn

∏
i∈DB(π)

xi
∏

j∈AB(π)

yj .

In the next section we will discuss a multivariate analog to the prop-
erty of having only real zeros.
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2.4 Stable polynomials in combinatorics

Choe et al. [16], were pioneers in realizing the importance of multivari-
ate polynomials with zero restrictions in combinatorics. Over the past
decade methods using zeros of multivariate polynomials have been used
in various areas. For example, Gurvits’ proof and generalization of the
Van der Waerden conjecture [24], the proof of Johnson’s conjectures [8],
Speyer’s alternative proof of Horn’s problem using hyperbolic polyno-
mials [38], the proof of the existence of infinite families of Ramanujan
graphs [30], and the proof of the Kadison-Singer problem from 1959 [31],
see also [6; 12; 15].

In this section we discuss the theory of stable polynomials, a multi-
variate generalization of real-rooted polynomials. A multivariate poly-
nomial is said to be stable if it does not vanish whenever all the variables
have positive imaginary parts, that is, f ∈ C[x] is stable if Im(xi) > 0
for all 1 ≤ i ≤ n implies f(x) 6= 0. Observe that for a univariate poly-
nomial with real coefficients, stability is equivalent to the property of
having only real zeros.

Example 5. All monomials
∏n
i=1 xi and all linear polynomials

∑n
i=1 aixi

with positive coefficients ai are stable.

An important family of stable polynomials arise from determinants.

Example 6. Let A1, . . . , Am be positive semidefinite n×n matrices and
let B be a Hermitian n×n matrix. Then the determinantal polynomial

det

(
m∑
i=1

xiAi +B

)

is stable or identically zero [8].

There are other notions of stability for which the polynomial is re-
quired to be non-zero in another region of Cn. The definition of Ω-
stability follows. Let n ≥ 0 and Ω ⊂ Cn. Then f ∈ C[x] is said to be
Ω-stable if f(x) 6= 0 whenever x ∈ Ω. As an example, a polynomial is
said to be Hurwitz stable if it is non-vanishing in the open right half-
plane. A stable polynomial with real coefficients is called real stable.

Techniques to lift results concerning real-rooted univariate polyno-
mials to concern multivariate extensions of the polynomials have been
developed over the past decades [13; 15; 25]. Such refinements have many
benefits. For example the stability of a multivariate polynomial implies
the real-rootedness of the corresponding univariate polynomial. Another
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benefit is that the proofs of the multivariate statements are often sim-
pler. Most importantly multivariate stability implies several inequalities
among the coefficients, such as refined log-concavity and unimodality
[6; 40]. In Section 2.6 we also discuss the connection between stable
polynomials and negative dependence.

Many multivariate refinements of the Eulerian polynomials have been
studied. As stated before, the univariate Eulerian polynomials can be
seen as the generating polynomial for the descent statistic over the sym-
metric group. When we study multivariate refinements we study e.g.,
descents, ascents and excedances that are refined over permutations by
their values.

We will use the following multivariate notation. For a set S ⊆ [n] we
let xS =

∏
i∈S xi. The cardinality of a set S will be denoted by |S|.

The following result was observed by Brändén in 2010.

Theorem 1. The multivariate Eulerian polynomial

An(x,y) =
∑
π∈Sn

xDB(π)yAB(π)

is stable.

To prove Theorem 1 we need to introduce stability preserving opera-
tors. In the next section we introduce stability preserving operators and
give a brief discussion of what is known. The proof of Theorem 1 will
serve as an example of how this theory can be used. We will present the
idea for the proof of Theorem 1 and also see how real-rootedness of the
classical Eulerian polynomials follows as a corollary.

2.5 Stability preserving operators

In [34] Pólya and Schur characterized all diagonal operators preserving
real-rootedness of univariate real polynomials. Borcea and Brändén [7]
proved a generalization of this result and gave a characterization of all
linear operators preserving stability. This characterization is of major
importance since it provides a way of checking if an operator preserves
stability or not. Operators preserving stability are important tools which
are used to, for example, prove stability of sequences of polynomials that
satisfy a linear recursion.

We call a linear transformation T : V → W stability-preserving if
T (f(x)) is stable, or identically zero, whenever f(x) is stable and where
V and W are C– or R–linear spaces of polynomials. We start with giving
some simple examples of stability preserving operators.
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Lemma 2 (Lemma 2.4 in [40]). Let x = (x1, . . . , xn). The following
operations preserve stability of polynomials in C[x].

• Permutation. For any permutation σ ∈ Sn,

f 7→ f(xσ(1), . . . xσ(n)).

• Scaling. For c ∈ C and (a1, . . . , an) ∈ Rn with ai > 0 for 1 ≤ i ≤ n,

f 7→ cf(a1x1, . . . , anxn).

• Diagonalization. For 1 ≤ i < j ≤ n,

f 7→ f(x)|xi=xj .

• Specialization. For a ∈ {w ∈ C : Im(w) ≥ 0},

f 7→ f(a, x2, . . . , xn).

• Inversion. If r is the degree of x1 in f ,

f 7→ xr1f(−1/x1, x2, . . . , xn).

• Differentiation or contraction. For any 1 ≤ i ≤ n,

f 7→ ∂f(x)/∂xi.

A polynomial is said to be multiaffine if it has degree at most one
in each variable. We denote by C[x]ma the vector space of complex
polynomials with degree at most one in each variable. For a linear
operator T : C[x]ma → C[x] we define the symbol of T as

GT (x,y) = T
(

(x + y)[n]
)

=
∑
S⊆[n]

T (xS)y[n]\S ∈ C[x,y]

The following was proved in [7].

Proposition 3. Let T : C[x]ma → C[x] be a linear transformation.
Then T preserves stability if and only if either

(i) T (f) = η(f) · g for some linear functional η : C[x]ma → C and
stable polynomial g ∈ C[x], or

(ii) GT (x,y) is stable.
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We now have all the tools necessary to prove Theorem 1 and a uni-
variate corollary.

Proof of Theorem 1. The proof is by induction on n. For the base case,
clearly A1 = x1y1 is stable. First we observe what happens to the set of
descent bottoms and ascent bottoms if 1 is inserted into a permutation
π∗ = (π1 + 1)(π2 + 1) · · · (πn + 1) for a permutation π ∈ Sn. This
observation yields the recursion

An+1(x,y) = (x1 + y1)An(x∗,y∗) + x1y1

n+1∑
i=2

(
∂

∂xi
+

∂

∂yi

)
An(x∗,y∗),

where x∗ = (x2, . . . , xn+1) and y∗ = (y2, . . . , yn+1). Thus what remains
is to prove that the linear operator

T = (x1 + y1) + x1y1

n+1∑
i=2

(
∂

∂xi
+

∂

∂yi

)
preserves stability. By a simple calculation

GT = x1y1

(
1

x1
+

1

y1
+
n+1∑
i=2

(
1

xi + ui
+

1

yi + vi

))
(x∗+u∗)[n](y∗+v∗)[n].

Since all terms in the large parenthesis above have negative imaginary
parts when the variables have positive imaginary parts, we see that GT
is stable. The theorem follows by Proposition 3.

As a corollary to Theorem 1 we have the classical result for the
univariate Eulerian polynomials, namely that they have only real zeros.

Corollary 4. The Eulerian polynomial,

An(x) =
∑
π∈Sn

xdes(π)+1

has only real zeros.

Proof. First we use the specialization of a variable and set all yi = 1.
According to Lemma 2 this operation preserves stability. Applying the
same lemma again, diagonalizing x we find that∑

π∈Sn

x|DB(π)|,

has only real zeros. This is equivalent to∑
π∈Sn

xdes(π)+1

having only real zeros.
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2.6 Negative dependence

From random variables affecting each other in a consistent direction one
can obtain inequalities that are important in statistical physics, prob-
ability theory and combinatorics. Negative dependence in probability
theory models repelling particles. In [6] the class of strong Rayleigh
probability measures was introduced. The geometry of zeros was used
to develop a theory of negative dependence for measures on {0, 1}n and
to answer several conjectures regarding correlation inequalities in dis-
crete probability theory. In this section we give a brief introduction to
negative dependence and its connection to zeros of polynomials and refer
to [6; 13; 26; 33] for wider discussions.

Let 1 denote the vector of n ones. Multiaffine polynomials with
nonnegative coefficients may be viewed as discrete probability measures
as follows. Let

f(x) =
∑

η∈{0,1}n
a(η)xη

be a multiaffine polynomial in n variables with nonnegative coefficients
and with f(1) = 1. We define a discrete probability measure µf on
{0, 1}[n] by setting µf ({η}) = a(η).

Negative association is a very useful negative dependence. A discrete
probability measure µ on {0, 1}S is negatively associated if∫

fgdµ ≤
∫
fdµ

∫
gdµ,

whenever f, g : {0, 1}S → R are increasing functions depending on dis-
joint sets of variables.

Strong Rayleigh is a strong form of negative dependence. If the
generating polynomial of a discrete probability measure µ is stable then
we say that µ is strong Rayleigh [6]. It was proved in [6] that if µ is
strong Rayleigh then µ is negatively associated. Hence the geometry of
zeros of polynomials may be used to prove strong negative dependence
properties of discrete probability measures.

The symmetric exclusion process is a Markov process on {0, 1}S that
models particles jumping symmetrically on a countable set S. We think
of η ∈ {0, 1}S as a configuration of particles. This is briefly described
in Section 2.7 and is discussed further in Paper I, where we also discuss
negative dependence properties of the multivariate partition function
satisfied by the stationary distribution with certain parameters. It was
proved in [6] that the symmetric exclusion process preserves the strong
Rayleigh property.
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2.7 Overview of Paper I

In Paper I we study a multivariate extension of the Eulerian polynomials,
namely the one that refines the excedance statistic over permutations by
the set of excedances. These multivariate Eulerian polynomials appear
in statistical mechanics in connection with the (partially) asymmetric
exclusion process (ASEP) [18–20; 27]. The ASEP appears in various
contexts, such as computation biology and traffic flow.

The ASEP model describes a system of particles hopping left and
right on a set of n sites, labeled by [n] := {1, 2, . . . , n}. Given a nonneg-
ative matrix Q = (qij)

n
i,j=1 and vectors b = (bi)

n
i=1 and d = (di)

n
i=1 of

nonnegative numbers, define a continuous time Markov chain on {0, 1}n
by its transitions:

(J) a particle jumps from site i to site j at rate qij ,

(B) a particle is created at site i at rate bi, and

(D) a particle is annihilated at site i at rate di.

A configuration of particles is represented by a vector η ∈ {0, 1}n where
η(i) = 1 if site i is occupied, and η(i) = 0 if i is vacant.

Let µ be a discrete probability measure, then the multivariate parti-
tion function of µ on {0, 1}n is the polynomial

Zµ(x) =
∑

η∈{0,1}n
µ({η})xη :=

∑
η∈{0,1}n

µ({η})xη(1)
1 · · ·xη(n)

n .

In a series of papers [18–20], Corteel and Williams established an
important connection between permutation tableaux and a special case
of the ASEP model. They also proved that the stationary distribution
of the ASEP, with certain parameters, can be described in terms of
multivariate Eulerian polynomials. In Paper I we generalize this result
and prove that the stationary distribution, with other parameters, is a q-
analog of the Eulerian polynomials for r-colored permutations. We also
give a new combinatorial interpretation of the stationary distribution in
terms of alternating trees and decorated alternative trees by using the
matrix ansatz for the ASEP due to Liggett [27]. Towards the end of
the paper we also discuss correlation inequalities and stability for the
multivariate partition function.
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2.8 Overview of Paper II

In Paper II we study a multivariate version of the P -Eulerian polyno-
mials. A labeled poset on n elements is a poset P = ([n],�), where � is
the partial order and ≤ is the natural order on [n]. We denote by L (P )
the set of linear extensions of P , i.e., the Jordan-Hölder set of P :

L (P ) := {π ∈ Sn : for all i, j ∈ [n], if πi � πj , then i ≤ j}.

The univariate P -Eulerian polynomial is defined by

AP (x) :=
∑

π∈L (P )

xdes(π)+1.

The Neggers-Stanley conjecture stated the following.

Conjecture 5. For any labeled poset P , the polynomial AP (x) is real-
rooted.

The Neggers-Stanley conjecture was first proved for several classes
of posets [11; 41], before it was disproved in [14]. The conjecture is still
open for the class of naturally labeled graded posets, though efforts have
been made to both prove and disprove it. In Paper II we prove that a
multivariate P -Eulerian polynomial is stable for a large class of labeled
posets, for which the univariate polynomial is known to be real-rooted.

Let [n]′ := {i′ : i ∈ [n]} be a distinct copy of [n]. For a permutation
π ∈ Sn define a monomial in the variables z = {ze : e ∈ [n] ∪ [n]′}:

Aπ(z) :=
∏

e∈DB(π)

ze
∏

e∈AB(π)

ze′ =
∏

e∈B(π)

ze,

where B(π) = DB(π) ∪ {e′ : e ∈ AB(π)}. The multivariate P -Eulerian
polynomial is defined as

AP (z) :=
∑

π∈L (P )

Aπ(z),

We study the effect on these multivariate Eulerian polynomials upon
taking disjoint unions. The disjoint union of two labeled posets P =
([n],�P ) and Q = ([n],�Q) on ground sets [n] and [m] is the labeled
poset P tQ = ([n+m],�) whose set of relations is

{i � j : i, j ∈ [n] and i �P j}∪{(n+i) � (n+j) : i, j ∈ [m] and i �Q j}.

We prove that if AP (z) and AQ(z) are stable for two labeled posets P
and Q, then so is APtQ(z), using the algebra of free quasi-symmetric
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functions [21; 29]. We generalize the result and discuss applications for
a multivariate peak polynomial and naturally labeled decreasing forests.
In the process we identify a, to our knowledge, new algebra on Dyck
paths.

2.9 Overview of Paper III

In Paper III we answer the following question posed by Athanasiadis [3],
to the affirmative.

Question 1. Is the local h-polynomial of the rth edgewise subdivision of
the (n− 1)-dimensional simplex 2V , lV ((2V )〈r〉, x), real-rooted?

The rth edgewise subdivision of the (n− 1)-dimensional simplex 2V

can be expressed as the generating polynomial for the ascent statistic
over a restricted version of the Smirnov words [3]. Due to this result we
can use some already developed techniques to show that these polyno-
mials are indeed real-rooted.

Let SW(n, r) be the set of words (w0, w1, . . . , wn) ∈ {0, 1, . . . r −
1}n+1 such that wi 6= wi+1 for i = 0, 1, . . . , n − 1, and w0 = wn = 0.
The words in SW(n, r) are the Smirnov words with restrictions on the
first and last letters [28]. We use the same definition of ascents as for
permutations in the symmetric group. That is, an ascent is an index
i ∈ {0, 1, . . . , n − 1} such that wi < wi+1. Let asc(w) be the number of
ascents in w. The polynomial lV ((2V )〈r〉, x) can be expressed as

lV ((2V )〈r〉, x) =
∑

w∈SW(n,r)

xasc(w).

We consider the polynomials

Eir,n =
∑

w∈SW ′(n,r)

χ(wn = i)xasc(w), (2.4)

where χ(ϕ) is one if ϕ is true and zero if not, and where SW ′(n, r) is
defined as SW(n, r) but without the restriction of wn to be zero. Note
that E0

r,n = lV ((2V )〈r〉, x).

Let f1(x), . . . , fk(x) be polynomials over the real numbers. Then
they are said to be compatible if, for all real and positive c1, . . . , ck, the
polynomial

k∑
j=1

cjfj(x)
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has only real zeros.
We use some previous results and adapted techniques by Chudnovsky-

Seymour [17] and Savage-Visontai [36] on compatible polynomials to
prove the following theorem.

Theorem 6. For i = 0, . . . , r−1 the polynomial Eir,n has only real zeros.

We then further generalize the tool so that it can be used to prove
stability of polynomials in certain types of families of polynomials.

2.10 Overview of Paper IV

Let s = (s1, . . . , sn) be a sequence of positive integers. An s-lecture hall
partition is an integer sequence λ = (λ1, . . . , λn) satisfying

0 ≤ λ1

s1
≤ · · · ≤ λn

sn
.

These were studied in e.g., [35], and are generalizations of the original
lecture hall partitions, corresponding to the case s = (1, 2, . . . , n), see
[9].

Let P = ([p],�) be a labeled poset. A P -partition is a map f : P →
R such that

1. if x ≺ y, then f(x) ≤ f(y), and

2. if x ≺ y and x > y, then f(x) < f(y).

In Paper IV we generalize the concept of s-lecture hall partitions to
labeled posets. We introduce and study a lecture hall generalization of
P -partitions. Let P be a labeled poset and let s : P → Z+ = {1, 2, 3, . . .}
be an arbitrary map. We define a lecture hall (P, s)-partition to be a
map f : P → R such that

1. if x ≺ y, then f(x)/s(x) ≤ f(y)/s(y), and

2. if x ≺ y and x > y, then f(x)/s(x) < f(y)/s(y).

In Paper IV we derive formulas for the main generating functions
associated to lecture hall (P, s)-partitions. We discuss the connection
between lecture hall partitions and Ehrhart theory and acquire a reci-
procity theorem. We study special cases, such as when P is a naturally
labeled chain or an anti-chain and find that they automatically produce
results on lecture hall partitions and signed permutations, respectively.
We also discuss real-rootedness and unimodality of the (P, s)-Eulerian
polynomials.
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3. Correlating events in randomly
oriented graphs

3.1 Correlations in graphs

For a graph G = (V,E), with vertex set V and edge set E, consider a
model where each edge in E is oriented independently of all other edges
with probability 1/2 in each direction. This model, that will be referred
to as O, has been studied frequently in combinatorics and in the context
of edge percolation lately, see [1; 2; 4; 5].

Let a, b ∈ V be two distinct vertices and denote by {a → b} the
event that there exist a directed path from a to b. In the previous
mentioned papers correlations between different events of this form have
been studied. It has been proven that for three distinct vertices a, b, s ∈
V the events {s→ a} and {s→ b} are positively correlated, meaning

PO({s→ a})PO({s→ b}) ≤ PO({s→ a} ∩ {s→ b}).

In [1] the correlation between the events {a → s} and {s → b} was
proven to be positive for the complete graph Kn for n ≥ 5, negative
for n = 3 and zero for n = 4. The two events were also proven to be
negatively correlated if the graph, G, is a cycle or a tree.

3.2 Overview of Paper V

In Paper V we study the model O, and correlations in randomly ori-
ented graphs. For four different vertices a, b, s, t ∈ V (G), we study the
correlation between the events {s→ a} and {t→ b}. We prove that the
events {s → a} and {t → b} are positively correlated in the complete
graph.

We further investigate the two random graph models, G(n, p) and
G(n,m) and find that the events {s → a} and {t → b} are positively
correlated for fixed p > 0 and sufficiently large n. This situation can
be compared to the events, {s → a} and {b → s}, studied in [2] where
a critical value of p was found and the correlation was proven to be
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negative if p was below the critical value and positive if p was above the
critical value.
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Sammanfattning

Denna avhandling best̊ar av totalt fem artiklar uppdelade i tv̊a delar
samt tre inledande kapitel. I den första delen studeras polynom av kom-
binatorisk natur och polynomegenskapen att ha enbart reella nollställen.
Dit hör artikel I–IV. I den andra delen ing̊ar artikel V, där vi studerar
korrelerade händelser i slumpvis orienterade grafer.

Polynom med enbart reella nollställen har m̊anga intressanta egen-
skaper, exempelvis att koefficienterna är log-konkava och unimodala.
Inom kombinatoriken finns m̊anga exempel p̊a polynom med enbart
reella nollställen. Det mest klassiska exemplet är de Eulerska poly-
nomen, som kan beskrivas som genererande funktioner av fall över den
symmetriska gruppen. Detta är ett resultat som har generaliserats och
förfinats p̊a m̊anga olika sätt och ligger till grund för en stor del av den
forskning som presenteras i den här avhandlingen. I kapitel 2 introduc-
erar vi polynom med enbart reella nollställen och diskuterar egenskaper
för sekvenser vars genererande funktioner har enbart reella nollställen.
Vi l̊ater de Eulerska polynomen agera exempel genom kapitlet när vi
introducerar polynomstatistiker, stabila polynom (en generalisering av
polynom med enbart reella nollställen till flera variabler) och operationer
som bevarar stabilitet. Vi g̊ar även kort in p̊a negativt beroende. En
introduktion och översikt till var och en av artikel I–IV avslutar kapitlet.

ASEP är en modell som beskriver partiklar som hoppar mellan olika
tillst̊and p̊a ett lattice. I artikel I ger vi en ny kombinatorisk tolkning
av den stationära fördelningen av ASEP med hjälp av färgade permu-
tationer och dekorerade alternativa träd. Vi hittar ett samband mellan
motsvarande partitionsfunktion i flera variabler och ett generaliserat Eu-
lerskt polynom där överskott och deras värde behandlas över r-färgade
permutationer.

I artikel II studerar vi P -Eulerska polynom i flera variabler, en
utvidgning av de Eulerska polynomen till märkta pomängder. Vi visar
att denna förfining är stabil för en stor klass av märkta pomängder.

I artikel III använder vi oss av kompatibla polynom för att visa att
polynom i en speciell familj av polynom enbart har reella nollställen.
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Vi besvarar s̊aledes en öppen fr̊aga ställd av C. Athanasiadis [3]. Vi
generaliserar sedan tekniken s̊a att den kan användas för att kontrollera
om polynom i en viss typ av familjer av polynom har enbart reella noll-
ställen.

I artikel IV introducerar och studerar vi s-hörsalspartitioner för märkta
pomängder. Vi finner samband mellan statistiker p̊a kransprodukter och
statistiker p̊a hörsalspartitioner för märkta pomängder.

I kapitel 3 diskuterar vi korrelationer mellan olika händelser i turner-
ingar och sammanfattar resultaten i artikel V. I artikel V visar vi att
om alla kanter i den kompletta grafen Kn slumpvis riktas i en av de tv̊a
möjliga riktningarna oberoende av varandra s̊a är händelserna {s→ a}
och {t → b} positivt korrelerade om de fyra noderna a, s, b, t ∈ Kn är
olika. Vi undersöker ocks̊a korrelationen mellan dessa händelser i slump-
grafer med slumpmässig orientering.
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