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Preface

This PhD thesis was written under the supervision of Prof. Boris Shapiro.

I met him for the first time in the fall 2013, when he suggested me a problem

about invariants of plane curves. He also introduced me to the graphical alge-

bras defined in [34]. This project was my main reason to move to Stockholm

University and work under his supervision. I have completed 5 papers on this

topic [A1-A5] and it is the explanation of the second half of the subtitle From
Fröberg’s conjecture to zonotopal algebra. In the fall 2014, the problem solv-
ing seminar in commutative algebras organized by B. Shapiro and R. Fröberg

started at Stockholm University, where we discussed maximal rank properties,

Waring’s type problems and others. It was my first term in Stockholm and I

started to work on these problems. I wrote 4 papers on this topic; three of

them [B1-B3] are included in this thesis.

The structure of the PhD thesis is as follows: All definitions and results

from [A1-A5, B1-B3] are formulated in two chapters, which are written using

common notations. You need to read the actual papers if you want to undestand

the proofs of the formulated results. Papers [A1] and [A2] were included in

the licentiate thesis [28].
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Abstract

In this thesis we study power algebras, which are quotient of polynomial rings

by power ideals. By definition a power ideal is an ideal in a polynomial ring

generated by powers of linear forms, i.e., ideal I= 〈�di
i , i∈ [k]〉 ⊂K[x1, . . . ,xn],

where �i, i ∈ [k] are linear forms. We will study Hilbert series of such ideals

and their other properties. We consider two important special cases, namely,

zonotopal ideals (see § 1) and generic ideals (see § 2). Such ideals have a lot

combinatorial properties.

In chapter § 1 we study zonotopal ideals, which were defined and used in

several earlier publications. The most important works are [4] by F. Ardila and

A. Postnikov and [20] by O. Holtz and A. Ron. These papers originate from

different sources, the first source is homology theory, the second one is the

theory of box splines. We study quotient algebras by these ideals; these al-

gebras have a nice interpretation for their Hilbert series, as specializations of

their Tutte polynomials. There are two important subclasses of these algebras,

called unimodular and graphical (see § 1.2). The graphical algebras were de-

fined by A.Postnikov and B.Shapiro in [34]. In particular, the external algebra

of a complete graph is exactly the algebra generated by the Bott-Chern forms

of the corresponding complete flag variety (see [35]). In my opinion the most

important result of the thesis is a characterization of external algebras. In fact,

for the case of graphical and unimodular algebras we prove that external al-

gebras are in one-to-one correspondence with graphical and regular matroids,

respectively.

In chapter § 2 we study Hilbert series of generic ideals. By a generic ideal

we mean an ideal generated by forms from some class, whose coefficients

belong to a Zariski-open set. There are two main classes to consider: the first

class is when we fix the degrees of generators; the famous Fröberg’s conjecture

gives the expected Hilbert series of such ideals; the second class is when an

ideal is generated by powers of generic linear forms. There are a few partial

results on Fröberg’s conjecture, namely, when the number of variables is at

most 3 (see [3]). In both classes the Hilbert series is known in the case when

the number of generators is at most n+1 (see [39]). In both cases we construct

a lot of examples when the degree of generators are the same and the Hilbert

series is the expected one.



Sammanfattning

In denna avhandling studerar vi potensalgebror, dvs kvotringar av polynom-

ringar modulo potensideal. Per definition är ett potensideal ett ideal i en poly-

nomring som genereras av potenser av linjära former, dvs ideal I = 〈�di
i , i ∈

[k]〉 ⊂K[x1, . . . ,xn], där �i, i ∈ [k] är linjära former. Vi studerar Hilbertserierna

av dessa ideal samt en del andra egenskaper. Vi betrakta tvåviktiga speciella

fall, nämligen zonotopideal (se § 1) och generiska ideal (se § 2). Sådana ideal

har många intressanta kombinatoriska egenskaper.

I kapitel § 1 studerar vi zonotopideal som definierats och använts i en

rad tidigare publikationer. De mest relevanta arbetena är [4] av F. Ardila och

A. Postnikov samt [20] av O. Holtz och A. Ron. Dessa artiklar är motiverade

av olika källor; den första källan är homologiteorin och den andra är teorin

för box splines. Vi betraktar kvotalgebror modulo dessa ideal; det finns en

trevlig tolkning av dessa algebrors Hilberserier i termer av specialiseringar av

deras Tuttepolynom. Det finns tvånaturliga delklasser av dessa algebror som

kallas unimodala och grafiska (se § 1.2). De grafiska algebrorna definierades

av A. Postnikov och B. Shapiro i [34]. Speciellt sammanfaller den externa al-

gebran av den fullständiga grafen med algebran som genereras av Bott-Chern-

former påmångfalden av fullständiga flaggor (se [35]). I min mening är det

mest intressanta resultatet av denna avhandling en karakterisering av externa

algebror. Speciellt kommer vi att bevisa att i fallet av grafiska och unimodala

algebror finns det en 1-1-korrespondens mellan de respektive externa alge-

brorna och de grafiska och reguljära matroiderna.

I kapitel § 2 studerar vi Hilbertserierna av generiska ideal. Med ett gener-

iskt ideal menar vi ett ideal genererat av former tillhörande en viss klass vars

koefficienter ligger in en viss Zariskiöppen mängd. Det finns tvåviktiga delk-

lasser att betrakta. I första fallet fixerar vi grader av alla generatorer; i detta fall

ger den kända Fröbergförmodan den förväntade Hilbertserien av sådana ideal.

Den andra klassen består av ideal genererade av potenser av generiska linjära

former. Det finns enstaka partiella resultat angående Fröbergsförmodan som

gäller dåantalet variabler är högst 3 (se [3]). Utöver detta är Hilbertserien känd

för bägge klasserna om antalet generatorer är högst n+ 1 (se [39]). I bägge

dessa situationer konstruerar vi många exempel dåalla generatorer har samma

grad och den riktiga Hilbertserier sammanfaller med den förväntade.





1. Zonotopal algebras

In this chapter we discuss zonotopal algebras. There are three types of these

algebras: external, central, and internal. These algebras are defined either for

matrices or for graphs. Their Hilbert series are specializations of the corre-

sponding Tutte polynomials, see Theorem 1.1.

This topic of study has 2 different sources:

(i) The starting point are papers [36] and [35]. The first paper was written

by B. Shapiro and M. Shapiro, the second paper jointly with A. Postnikov. It

comes from homology theory and was motivated by the following problem

posed by V. I. Arnold, [6]:

Describe algebra Cn generated by the curvature forms of the tautological
Hermitian linear bundles over the type A complete flag variety Fln. Surpris-

ingly enough, it was observed and conjectured in [36] and proved in [35], that

dimCn is equal to the number of spanning forests of the complete graph Kn on

n labeled vertices.

Latter, in paper [34], A. Postnikov and B. Shapiro generalized this con-

struction to all graphs. They introduced two types of graphical algebras, whose

total dimensions are the number of spanning trees and forests respectively. (see

definition in § 1.2). The algebra counting spanning trees is related to the park-

ing ideal of a graph, they have complementing Hilbert series. This parking

ideal is generated by the stable configurations of the chip-firing game (other

names for the same object are the abelian sandpile model, the critical group

of the graph and etc.). In the papers [22; 34; 37] and [A1-A3] the study of

graphical algebras was continued

The culminating paper in this direction was [4] by F. Ardila and A. Postnikov.

They considered quotient algebras by zonotopal ideals. In fact, they introduced

a little bit more, but we will focus only on three types of ideals, namely ex-

ternal, central, and internal zonotopal ideals. In [4], the authors found their

Hilbert series, which are specializations of the Tutte polynomials. (See also

papers [8; 9].)

(ii) The culminating paper in this story was [20] by O. Holtz and A. Ron, where

they defined all three types of zonotopal algebras. They studied pairs of dual

spaces: an ideal and its kernel. The motivation comes from the box-splines

theory (see [2; 15]) and from the Dahmen-Micchelli spaces (see [13]). Unlike
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the first story, the central case is more natural here, it was considered in [16] by

N. Dyn and A. Ron. Box-splines of a zonotope correspond to the bases of its

matroid, therefore, zonotopal algebras are related to matroids (see [29]). The

other relations of zonotopal algebras is Ehrhart theory, in fact the dimensions

of unimodular zonotopal algebras count lattice points of the corresponding

zonotope, see Theorem 1.5. (See also papers [14; 21; 30; 31; 40].)

We work only with a field K of zero characteristic; it is fixed across the

whole thesis. The reader can assume that K = C or K = R. Below we study

the quotient algebras by zonotopal ideals. Almost all Hilbert series will be

specializations of the Tutte polynomials, see, for example, Theorem 1.1. The

total dimensions are values of the Tutte polynomials of certain points. In par-

ticular, for the graphical case, the total dimensions of the external and central

zonotopal algebras are the number of forests and trees, see Theorem 1.2.

The structure of this chapter is the following. In section § 1.1 we present

the definition of zonotopal ideals from [4; 20] and in section § 1.2 we present

the definition of zonotopal ideals for graphs and totally unimodular matrices.

§ 1.3 covers the original definition of external algebras from [35; 36], where

we generalize a result of [34] to all three types of unimodular zonotopal al-

gebras. Sections § 1.4 and §,1.5 describe two natural ways of generalizations

of our square-free definitions. In section § 1.6 we classify all external alge-

bras; furthermore, in section § 1.7 we considered “K-theoretic” filtration which

contains the information about the whole graph. In section § 1.8 we consider

definitions of trees and forests of hypergraphs, which can be used for the hy-

pergraphical matroid. Sections § 1.4, § 1.7, and § 1.8 were included in the

lincentiate thesis [28].

16



1.1 Definition of zonotopal algebras

Let A ∈ Kn×m be a matrix of rank n. Denote by y1, . . . ,ym ∈ Kn its columns.

For a matrix A, we define its zonotope

ZA :=
⊕
i∈[m]

[0,yi]⊂Kn

as the Minkovskii sum of the intervals [0,yi], i ∈ [m]. By F(A) we denote the

set of all facets of ZA. For any facet H ∈ F(A), we define m(H) as the number

of non-zero coordinates of vector ηHA∈Km, where ηH ∈Kn is a normal for H.

Let C
(k)
A be the quotient algebra

C
(k)
A :=K[x1, . . . ,xn]/I

(k)
A ,

where I
(k)
A is the zonotopal ideal generated by polynomials

p(k)H = (ηh · (x1, . . . ,xn))
m(H)+k, H ∈ F(A).

There are 3 main special cases, where k =±1 and 0; they were considered

in [4; 20].

• k = 1 : CEx
A := C

(1)
A is called the external zonotopal algebra for A;

• k = 0 : CC
A := C

(0)
A is called the central zonotopal algebra for A;

• k =−1 : CIn
A := C

(−1)
A is called the internal zonotopal algebra for A.

Remark 1.1 The case k > 1 is not "zonotopal", because the ideal Î(k)A gener-
ated by

ph = (h · (x1, . . . ,xn))
m(h)+k, h ∈Kn

is different from I(k). They coincide only when k ≤ 1.
In the case k <−4, Hilbert series is not a specialization of the correspond-

ing Tutte polynomial, see [4].

Theorem 1.1 (cf. [4; 8; 20; 30], External [35], Central for graphs [34]) For
a matrix A ∈ Kn×m of rank n, the Hilbert series of its zonotopal algebras are
given by

• HCEx
A
(t) = tm−nTA(1+ t, 1

t );

• HCC
A
(t) = tm−nTA(1,

1
t );

17



• HCIn
A
(t) = tm−nTA(0,

1
t ),

where TA is the Tutte polynomial of the vector configuration of columns of A
(i.e., vectors y1, . . . ,ym).

Let us recall the definitions of a matroid and of its Tutte polynomial. A matroid
M is a pair (E, I), where E is a ground set and I is a family of independent

subsets of E. Here a ground set is finite and independent subsets have the

following properties:

• The empty set is independent;

• Every subset of an independent set is independent;

• If A and B are two independent sets and |A| > |B|, then there exists an

element e in A such that B∪{e} is also independent.

For a graph G, the ground set of its graphical matroid is the set of all edges

of G; and spanning forests of G are independent subsets. We will mostly work

with vector matroids, where a ground set consists of vectors in Kn and indepen-

dent subsets are just linearly independent subsets of these vectors. (See more

information about matroids and their Tutte polynomials in e.g., [32], [11].)

Inside the thesis, for a matrix Kn×m, we define its matroid MA as the vector

matroid, whose elements are the columns of A.

To describe their Hilbert series, we need to recall the definition of the Tutte

polynomial of a matroid M. There are a lot of different definitions of the

Tutte polynomial; below we present the one using the Whitney rank generating

function. (See more information about this polynomial in any classic graph

theory book, for example, in Tutte’s book [41] or in [11].) For a matroid M,

define the Tutte polynomial of M as

TM(x,y) := ∑B⊂E(x−1)rk(E)−rk(B)(y−1)|B|−rk(B),

where rk(B) is the size of a maximal independent subset of B.

Example 1.1 Consider the following matrix

A :=

[−1 0 1 1

0 −1 −1 −1

]
.

In fact this matrix corresponds to the graphical case; the corresponding graph
and its zonotope ZA are shown in fig. 1.1.

Matroid MA is the vector matroid with elements y1 = (−1,0), y2 = (0,−1),
y3 = y4 = (1,−1). Its Tutte polynomial is given by

TA(x,y) = x+ y+ x2 + xy+ y2.

18



The zonotope ZA has 6 facets. We need the set of its normals (note that
parallel facets have the same normal up to a factor). There are 3 different
normals:

• η1 = (1,0);

• η2 = (0,1);

• η3 = (1,1).

It is easy to check that m(η1) = m(η2) = 3 and m(η3) = 2. Hence,

I
(k)
A = 〈x3+k

1 ,x3+k
2 ,(x1 + x2)

2+k〉.

Then

• HCEx
A
(t) = 1+2t +3t2 +3t3 + t4 and dim(CEx

A ) = 10;

• HCC
A
(t) = 1+2t +2t2 and dim(CC

A) = 5;

• HCIn
A
(t) = 1+ t and dim(CIn

A ) = 2.
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1.2 Graphical and unimodular zonotopal algebras

Both are special cases of a general definition. However, in both these cases we

present their square-free definitions see section § 1.3.

1.2.1 Graphical zonotopal algebras

In this subsection we will work with undirected graphs. A. Postnikov and

B. Shapiro [34] constructed algebras counting spanning forests (external) and

counting spanning trees (central) of a graph.

For a graph G on a vertex set V (G) = {0}∪ [n] and a subset of vertices

I ⊆ [n], we denote by dI the number of edges of G connecting I and V (G)\ I.

Let I
(k)
G be the ideal of K[x1, . . . ,xn] generated by

p(k)I =

(
∑
i∈I

xi

)dI+k

, I ⊆ [n].

Define C
(k)
G as the quotient algebra

C
(k)
G :=K[x1, . . . ,xn]/I

(k)
G .

Remark 1.2 This algebra is independent of the choice of the root (i.e., which
vertex has label 0).

Again we have three main cases (in paper [34] only the first two were

defined ).

• k = 1 : CEx
G = C

(1)
G is the external Zonotopal algebra for G or the

Postnikov-Shapiro algebra counting forests of G;

• k= 0 : CC
G =C

(0)
G is the central Zonotopal algebra for G or the Postnikov-

Shapiro algebra counting spanning trees of G;

• k =−1 : CIn
G = C

(−1)
G is the internal Zonotopal algebra for G.

To describe their Hilbert series in terms of graphs, we need to define external

activities of forests. Fix a linear order of edges of G. For a forest F ⊂ E(G), by

the external activity actG(F) denote the number of all externally active edges

of F , i.e., the number of edges e ∈ E(G)\F such that: (i) the subgraph F + e
has a cycle; (ii) e is the minimal edge in this cycle in the above linear order.

(Note that the external activity and external algebra are different notions, they

are not related to each other.)
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Theorem 1.2 (cf. [34]) Given a graph G, the total dimension of algebra CEx
G

(CIn
G ) is equal to the number of forests (trees) of G. The dimension of the k-

th graded component of the algebra equals the number of forests (trees) F ⊂
E(G) in G with external activity |E(G)|− |F |− k.

Note that external algebras are in one-to-one correspondence with graphi-

cal matroids, see Theorem 1.26, § 1.6.

These algebras are particular cases of zonotopal algebras. For a graph G,

we can form the following matrix. Consider any reference orientation G of

edges of G. We assume that

ci,e =

⎧⎪⎨⎪⎩
1, if�e = (i, j);
−1, if�e = ( j, i);
0, otherwise.

(1.1)

We define the matrix A0 = {ci,e, i ∈ [n], e ∈ E(G)}, and delete several rows

to get A, whose rank remains the same (i.e., rk(A0) = rk(A)) and it is equal to

number of rows of A.

Proposition 1.3 Given a graph G and its reference orientation G, their alge-
bras CEx

G and CEx
A are isomorphic. If G is a connected graph, then algebras CC

G
and CC

A are isomorphic and algebras CIn
G and CIn

A are isomorphic.

Remark 1.3 If G is disconnected, then by definition from [34], the algebra
CC

G should be trivial, i.e., equal to 0. But for the zonotopal definition, it is
non-trivial. So for all graphical algebras in the central and internal cases, we
always assume that G is connected.

In fact these algebras dependent only on the blocks of G. The induced

subgraph on a vertex set V ′ ⊂ V (G) is called a block, if it is connected and

remains connected after deleting of any vertex v ∈V ′.

Proposition 1.4 Given a graph G, the algebra C
(k)
G , k ∈ {±1,0} is the Carte-

sian product of algebras corresponding to all blocks of G.

Example 1.2 Let G be the graph on the vertex set {0,1,2} with 4 edges

(0,1),(0,2),(1,2), and (1,2),

see fig. 1.1 (left).
Let us orient all edges of G according to the increase of the corresponding

number. Consider the incidence matrix

A0 :=

⎡⎣ 1 1 0 0

−1 0 1 1

0 −1 −1 −1

⎤⎦ .
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Figure 1.1: A concrete graph and the corresponding zonotope.

After forgetting its 0-th row, we get exactly the matrix from Example 1.1. It is
easy to check that dimensions 10 and 5 are exactly the number of forests and
trees of G.

1.2.2 Unimodular zonotopal algebras

A matrix A ∈ Kn×m is called totally unimodular if all its minors are equal to

±1 or 0. If A is totally unimodular, we call algebras C
(k)
A unimodular zonotopal

algebras. All graphical algebras are particular cases of unimodular zonotopal

algebras. Similar to the the graphical case, O.Holtz and A.Ron [20] founded

combinatorial interpretation of their total dimensions.

Theorem 1.5 (cf. [20]) Given a totally unimodular matrix A ∈ Kn×m of rank
n, we get that

• the total dimension of CEx
A is equal to the number of lattice points of ZA;

• the total dimension of CC
A is equal to the volume of ZA;

• the total dimension of CIn
A is equal to the number of interior lattice points

of ZA.

Example 1.3 We observe that Example 1.1 present a graphical algebra. Thus
the matrix

A =

[−1 0 1 1

0 −1 −1 −1

]
is totally unimodular. The total dimensions 10, 5, and 2 are exactly the number
of lattice points, the area, and the number of interior lattice points of ZA resp.,
see fig. 1.1 (right).
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Furthermore similarly to the graphical case, we can define the algebras without

ZA. In the graphical case we have at most 2n relations and in the unimodular

case we have at most 3n relations.

Theorem 1.6 Given a totally unimodular matrix A ∈ Kn×m of rank n, the
zonotopal ideals I(k)A , k ∈ {±1,0} are generated by polynomials

p(k)s =

(
∑

j: si=1

xi − ∑
j: s j=1

x j

)|supp(s·A)|+1

, s ∈ {±1,0}n.

Furthermore, it is enough to consider only facets, for which (s ·A)∈ {±1,0}m.
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1.3 Square-free definitions

(based on [A3] and [A4])

The square-free definitions of the previous algebras come from homology the-

ory and these definitions were the original ones. The algebra CEx
Kn

is gener-

ated by the curvature forms of tautological Hermitian linear bundles over the

type A complete flag variety Fln. In paper [35] A.Postnikov, B.Shapiro, and

M.Shapiro generalized this construction to all vector configurations, which

gives a definition of external zonotopal algebras. In this definition external

zonotopal algebra was presented as a subalgebra of a square-free algebra.

In paper [34] they generalized to the case of central graphical algebras, in

papers [A3] and [A4] the author with A. N. Kirillov generalized it for all three

types of unimodular algebras.

In § 1.3.1 we present a definition from [35] for all external zonotopal alge-

bras. In § 1.3.2 we present definitions for all three cases of unimodular zono-

topal algberas.

1.3.1 Square-free definitions of external zonotopal algebras.

Let Φm be the square-free commutative algebra generated by φi, i ∈ [m], i.e.,

satisfying the relations

φiφ j = φ jφi, i, j ∈ [m] and φ 2
i = 0, i ∈ [m].

Theorem 1.7 (cf. [35]) Given a matrix A ∈Kn×m of rank n, the external alge-
bra CEx

A is isomorphic to the subalgebra of ΦEx
A := Φm generated by

Xi := ti · (φ1, . . . ,φm), i ∈ [n],

where ti ∈Km is the i-th row of A.

The proof of this theorem is clear in one direction. Namely, the constructed

subalgebra satisfies all the relations from CEx
A , because by the definition m(H)

is exactly the number of φ j, j ∈ m with non-zero coefficients in the sum ηH ·
(X1, . . . ,Xn). Hence, to prove the converse, it is enough to show that they have

the same total dimension, see [35].

Example 1.4 Consider again the matrix from Example 1.1

A =

[−1 0 1 1

0 −1 −1 −1

]
.
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We have
X1 =−φ1 +φ3 +φ4;

X2 =−φ2 −φ3 −φ4

implying the relations

X4
1 = X4

2 = (X1 +X2)
3 = 0.

Let us calculate the total dimension and the Hilbert series.

• The 0-th graded component is K; its dimension is 1.

• The 1-st graded component is span〈X1,X2〉; its dimension is 2.

• The 2-nd graded component is span〈X2
1 ,X

2
2 ,X1X2〉; its dimension is 3.

• The 3-rd graded component is the span of

X3
1 =−6φ1φ3φ4;

X3
2 =−6φ2φ3φ4;

X2
1 X2 = 4φ1φ3φ4 −2φ2φ3φ4 +2φ1φ2(φ3 +φ4);

X1X2
2 =−2φ1φ3φ4 +4φ2φ3φ4 −2φ1φ2(φ3 +φ4);

its dimension is 3.

• The 4-th graded component is K(φ1φ2φ3φ4); its dimension is 1.

Thus the Hilbert series and the total dimension are the same as in Example 1.1.

1.3.2 Square-free definitions of unimodular zonotopal algebras.

Let A ∈ Kn×m be a totally unimodular matrix of rank n. We say that s ∈
{±1,0}n is a cut-vector if s ·A ∈ {±1,0}m. We call a subset C ⊆ [m] a cut
if and only if there is a cut-vector s such that supp(s ·A) =C. They are related

to the usual cuts of a graph, where a set C ⊆ E(G) is a simple cut of G if G\C
is disconnected and C is a minimal.

Proposition 1.8 Let G be a graph and A be a matrix for G. Then C ⊆ [m] is a
cut of A if and only if there is a representation C =C1
C2
 . . .
Ck, where Ck
are simple cuts of G.
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Define the algebra ΦC
A as quotient algebra

ΦC
A := ΦEx

A /〈∏
e∈C

φe, C is a cut〉.

Theorem 1.9 Given a totally unimodular matrix A ∈Kn×m of rank n, the cen-
tral algebra CC

A is isomorphic to the subalgebra of ΦC
A generated by

Xi := ti · (φ1, . . . ,φm), i ∈ [n],

where ti ∈Km is the i-th row of A.

In the internal case we can define a derivative of a cut. Let s be a cut-vector;

define its derivative by the formula

δ (s) := (s ·A · (φ1, . . . ,φm)
t)|supp(s·A)|−1.

Define the algebra ΦIn
A as the quotient algebra

ΦIn
A := ΦEx

A /〈δ (s), s is a cut-vector〉.
Note that

δ (s) · (a ·A · (φ1, . . . ,φm)) = (s ·A · (φ1, . . . ,φm)
t)|supp(s·A)| =

= |supp(s ·A)|! ∏
i∈supp(s·A)

φi,

which means that ΦC
A is a bigger algebra than ΦIn

A .

Theorem 1.10 Given a totally unimodular matrix A ∈ Kn×m of rank n, the
internal algebra CIn

G is isomorphic to the subalgebra ΦIn
A generated by

Xi := ti · (φ1, . . . ,φm), i ∈ [n],

where ti ∈Km is the i-th row of A.

Example 1.5 Continuing our example

A =

[−1 0 1 1

0 −1 −1 −1

]
,

we see that it has 3 cuts

φ1φ3φ4, φ2φ3φ4, φ1φ2.

It is easy to check that these are exactly the cuts of the corresponding graph,
see fig. 1.1. Let us obtain the total dimension and the Hilbert series of the
subalgebra of ΦC

A.
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• The 0-th graded component is K; its dimension is 1.

• The 1-st graded component is span〈X1,X2〉; its dimension is 2.

• The 2-nd graded component is spanned by

X2
1 =−φ1(φ3 +φ4)+φ3φ4;

X2
2 = φ2(φ3 +φ4)+φ3φ4;

(X1 +X2)
2 = 2φ1φ2 = 0;

its dimension is 2.

Then the Hilbert series and the total dimension are the same as in Example 1.1.
Since we know that all relations from CC

A are satisfied, then this definition gives
the same algebra.

Now we will check a similar claim for ΦIn
A . It has 6 cut vectors, but we

need only half of them (the last three are minus the first three)

s1 = (1,0), s2 = (0,1), and s3 = (1,1).

Their derivatives are given by

δ (s1) = φ3φ4 −φ1(φ3 +φ4);

δ (s2) = φ3φ4 +φ2(φ3 +φ4);

δ (s3) =−φ1 −φ2.

Let us calculate the total dimension and the Hilbert series of the subalgebra of
ΦIn

A .

• The 0-th graded component is K; its dimension is 1.

• The 1-st graded component is span〈X1,X2〉, but

X1 +X2 = δ (s3) = 0,

then its dimension is 1.

• The 2-nd graded component is empty because X1+X2 = δ (s3) and X2
1 =

δ (s1).

Notice that the Hilbert series and the total dimension are the same as in Ex-
ample 1.1. Since we know that all relations from CIn

A are satisfied, then this
definition gives the same algebra.
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1.4 t-labelled algebras

(based on §3 of [A1])

In this section we substitute the square-free algebra ΦEx
G by the (t +1)-free al-

gebra ΦExt
G . In the case of trees we additionally change relations corresponding

to the cuts. Subalgebras of ΦExt
G and ΦCt

G have properties similar to C
(k)
G . They

enumerate the so-called t-labelled forests and trees resp.

Consider a finite labelling set {1,2, . . . , t} containing t different labels;

each label being a number from 1 to t. A forest/tree of G with a label from

{1,2, . . . , t} on each edge is called a t-labelled forest/tree. The weight of a

t-labelled forest F , denoted by ω(F), is the sum of the labels of all its edges.

The structure of this section is as follows: subsection § 1.4.1 discusses the

algebra CExt
G counting t-labelled forests and subsection § 1.4.2 discusses the

algebra CCt
G counting t-labelled spanning trees.

We can also define algebras CExt
G and CCt

G as quotient algebras, which is

a particular case of algebras introduced in paper [4]. In fact, the authors

of [4] consider algebras where each edge e is replaced by its ae clones and

their Hilbert series are specializations of the multivariate Tutte polynomial of

a graph (see definition in [38]). Also the Hilbert series of CExt
G and CTt

G were

calculated in [4; 30].

1.4.1 Algebras CExt
G , t ≥ 1

Let G be a graph without loops on the vertex set {0, ...,n} with fixed reference

orientation G. Let t > 0 be a positive integer.

Let ΦExt
G be the commutative algebra over K generated by {φe : e ∈ E(G)}

satisfying the relations

(φe)
t+1 = 0, for any edge e ∈ E(G).

Define CExt
G as the subalgebra of ΦExt

G generated by the elements

Xi = ∑
e∈G

ci,eφe,

for i = 1, ...,n, where ci,e are as in 1.1, § 1.2.1.

Similarly to the case of CEx
G , we have the following property.

Proposition 1.11 Given a graph G, the algebra CExt
G is the Cartesian product

of algebras corresponding to all blocks of G.
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We can again present CExt
G as a quotient algebra of a polynomial ring. Let

JExt
G be the ideal in the ring K[x1, · · · ,xn] generated by

pExt
I =

(
∑
i∈I

xi

)t·dI+1

,

where I ⊂ [n] and dI is the total number of edges between vertices in I and in

the complementary set Ī = [n]∪{0}\ I.

Theorem 1.12 For any graph G and a positive integer t, the algebra CExt
G is

isomorphic to
K[x1, . . . ,xn]/J

Ext
G .

Its total dimension over K is equal to the number of t-labelled forests in G.

In fact, these algebras are not completely new objects. Indeed, algebra

CExt
G is isomorphic to algebra CEx

Ĝ
, where Ĝ is the t-strength copy of G, i.e., the

graph Ĝ is constructed from G by replacing every edge by its t clones.

Theorem 1.13 For any graph G and a positive integer t, algebras CExt
G and

CEx
Ĝ

are isomorphic, where Ĝ is the t-strength copy of G.

Graphical matroids of G and of Ĝ uniquely restore each other. Since by

Theorem 1.25, we get that, for any positive t > 0, algebras CExt
G and CEx

G contain

the same information about G.

Corollary 1.14 Given two graphs G1, G2 and positive integer t > 0, algebras
CExt

G1
and CExt

G2
are isomorphic if and only if their graphical matroids are iso-

morphic.
Given two graphs G1, G2 and positive integers t1, t2 > 0, algebras C

Ext1
G1

and C
Ext1
G2

are isomorphic if and only if C
Ext2
G1

and C
Ext2
G2

are isomorphic.
(The algebraic isomorphism can be thought of either as graded or as non-

graded; the statement holds in both cases.)

Also we can get that the Hilbert series of CExt
G is a specialization of the

Tutte polynomial of G.

Corollary 1.15 Given a graph G, the Hilbert series of algebra CExt
G is given

by

H
C
Ext
G
(z) = TG

(
zt+1 −1

zt+1 − z
,

1

zt

)
· zt(|E(G)|−n−1+c(G)) ·

(
1− zt

1− z

)n+1−c(G)

,

where c(G) is the number of connected components of G.
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Furthermore, in this case we have one more interesting property. Namely,

it is possible to reconstruct the Tutte polynomial of G from the Hilbert series

of CExt
G for sufficiently large t; for an algorithm see the proof of the following

theorem in paper [A1].

Theorem 1.16 For any positive integer t ≥ n, it is possible to restore the Tutte
polynomial of any connected graph G on n vertices knowing only the dimen-
sions of each graded component of the algebra CExt

G .

1.4.2 Algebras CCt
G , t ≥ 1

Let G be a connected graph without loops on the vertex set {0, ...,n} and t > 0

be a positive integer. Let ΦCt
G be the commutative algebra over K generated by

{φe : e ∈ E(G)} satisfying the relations:

(φe)
t+1 = 0, for any edge e ∈ G;(

∏
e∈C

φe

)t

= 0, for any cut C ⊂ E(G).

Define CCt
G as the subalgebra of ΦCt

G generated by the elements

Xi = ∑
e∈G

ci,eφe,

for i = 1, ...,n, where ci,e are as in 1.1, § 1.2.1.

Similarly to the previous case, we have the following proposition.

Proposition 1.17 Given a connected graph G and positive t > 0, the algebra
CCt

G is the Cartesian product of algebras corresponding to all blocks of G.

We can also present CCt
G as a quotient algebra of a polynomial ring. Let JCt

G
be the ideal in the ring K[x1, · · · ,xn] generated by

pCt
I =

(
∑
i∈I

xi

)t·dI

,

where I ranges over all nonempty subsets of vertices and dI is the total number

of edges between vertices in I and in the complementary set Ī.

Similarly to the above,
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Theorem 1.18 For any graph G and a positive integer t, algebras CCt
G and CC

Ĝ
are isomorphic, where Ĝ is the t-strength copy of G. Furthermore, they are
isomorphic to K[x1, . . . ,xn]/J

Ct
G . Their total dimension over K is equal to the

number of t-labelled spanning trees in G.

As a consequence we can get that the Hilbert series of CCt
G is a specializa-

tion of the Tutte polynomial of G.

Corollary 1.19 Given a connected graph G, the Hilbert series of the algebra
CCt

G is given by

H
C

Ct
G
(z) = TG

(
z−1

zt+1 − z
,

1

zt

)
· zt(|E(G)|−n) ·

(
1− zt

1− z

)n

.

However, in this case it is impossible to restore the Tutte polynomial from

the Hilbert series of H
C

Ct
G

. The reason is that all spanning trees have the same

size and therefore HCCt
G

has the same information that HCC
G
.

For t > 1, the graph Ĝ has no bridges, thus its bridge-free matroid and its

graphical matroid coincide. Then these algebras have the following property.

Proposition 1.20 Given two connected graphs G1, G2 with isomorphic graph-
ical matroid and t > 1, algebras CCt

G1
and CCt

G2
are isomorphic as graded alge-

bra.

In fact, it is possible to prove the converse of Proposition 1.20 by using the

same idea as in the proof of the graphical case of Theorem 1.26 (see [A1])
with one additional change. For the element Xi corresponding to the ver-

tex i, d(Xi)
t is not the degree of the vertex i. However, for vertices i and j,[

d(Xi+aXj)−d(Xi+Xj)+1

t

]
is the number of edges between i and j. We do not

present the proof of the converse statement here or in paper [A1], because we

think that the most interesting problem is Conjecture 1.4, and the converse of

Proposition 1.20 is just its corollary.
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1.5 Hecke deformations of algebras

(based on [A4] and [A3])

In this case we consider deformations of the square-free definitions. It is based

on joint with A. N. Kirillov papers [A4] and [A3]. For this deformations it is

easier to find their total dimensions, than in the case of the original algebras.

As a corollary of these results we get a new definition of unimodular zonotopal

algebras, see section § 1.3.

1.5.1 External zonotopal algebras

Let Q = (qi ∈K : i ∈ [m]) be the set of parameters. Consider the commutative

algebra ΦEx
A,Q generated by ui, i ∈ [m] with relations

u2
i = qiui.

Let ΨEx
A,Q be the filtered subalgebra generated by

Xi = ti · (u1, . . . ,um), i ∈ [n]

with the filtered structure from Xi, i ∈ [n].

Example 1.6 (i) Let G be a graph with two vertices and two multiple edges a,
b. Consider the Hecke deformation of its CG, i.e., satisfying qa = qb = q.

The generators are X0 =−(a+b), X1 = a+b=−X0. One can easily check
that the filtered structure is given by

• F0 =<1>;

• F1 =<1, a+b>;

• F2 =<1, a+b, ab>.

The Hilbert polynomial H(t) of ΨEx
G,Q is given by

H(t) = 1+ t + t2.

The defining relation for X1 is given by

X1(X1 −q)(X1 −2q) = 0.

(ii) For the same graph as before, consider the case when Q = {qa,qb}, q2
a �=

q2
b.
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The generators are the same: X0 =−(a+b), X1 = a+b =−X0. Since

X3
1 = q2

aa+q2
bb+3(qa +qb)ab =

3(qa +qb)

2
X2

1 −
q2

a +3q2
b

2
a− 3q2

a +q2
b

2
b

=
3(qa +qb)

2
X2

1 −
3q2

a +q2
b

2
X1 +(q2

a −q2
b)a,

we have

• F0 =<1>;

• F1 =<1, a+b>;

• F2 =<1, a+b, qaa+qbb+2ab>;

• F3 =<1, a, b, ab>.

The Hilbert polynomial H(t) of ΨEx
G,Q is given by

H(t) = 1+ t + t2 + t3.

Observe that in this case the algebra ΨEx
G,Q coincides with the whole ΦEx

G,Q as a
linear space, but has a different filtration. The defining relation for X1 is given
by

X1(X1 −qa)(X1 −qb)(X1 −qa −qb) = 0.

If all coefficients are nonvanishing, then it is very easy to calculate the

dimension of such an algebra.

Theorem 1.21 Given a matrix A ∈ Kn×m of rank n and a set of non-zero pa-
rameters Q ∈ (K \ {0})m, the dimension of ΨEx

A,Q is equal to the number of
different sums of qiyi, i.e.,

dim
(

ΨEx
A,Q

)
= #{A · ((q1, . . . ,qm)◦χ(E))t ∈Kn : E ⊆ [m]},

where ◦ is the Hadamard product and χ(E) ∈ Km is the characteristic vector
of E ⊆ [m].

The above theorem gives a nice interpretation of the total dimension of

ΨEx
A,Q, but at the moment we can not find its Hilbert series.

Problem 1.1 Describe the Hilbert series of ΨEx
A,Q.

Problem 1.2 Describe all relations of ΨEx
A,Q.

Below we present solutions to these problems for the so-called Hecke defor-

mations of the unimodular zonotopal algebras.
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1.5.2 Unimodular zonotopal algebras

In this subsection we consider the special case, when all parameters coincide.

Given q = qi, i ∈ [m], we simply denote algebras by Ψ(k)
A,q and Ψ(k)

A,q resp. The

algebra Ψ(k)
A,q, k ∈ {±1,0} is called Hecke-deformations of zonotopal algebras.

In case of totally unimodular matrix, we can define Hecke deformations of the

central and internal zonotopal algebras and, furthermore, present all relations

between their generators.

Let A ∈Kn×m be a totally unimodular matrix. We want to find the relations

for ΦC
A,q and ΦIn

A,q. In both cases we will know relations for the cut-vectors, see

definition in section § 1.3. Let s be a cut-vector, define its relations as

σ(s,q) :=

(
∏

i∈supp+(s·A)
ui

)(
∏

i∈supp−(s·A)
(ui −q)

)
∈ ΦEx

A,q,

where supp+(s ·A)⊆ supp(s ·A) is the set of positive coordinates of s ·A (i.e.,

those equal to +1) and supp−(s ·A) ⊆ supp(s ·A) is the set of negative coor-

dinates of s ·A (i.e., those equal to −1). Note that σ(s,q) �= σ(−s,q).
Define the algebras ΦC

A,q and ΦIn
A,q as quotient algebras

ΦC
A,q := ΦEx

A,q/{σ(s), s is a cut-vector s.t. (s ·A)(2m,2m−1, . . . ,1)> 0};

ΦIn
A,q := ΦEx

A,q/{σ(s), s is a cut-vector}.

Define Hecke-deformations ΨC
A,q and ΨIn

A,q as the filtered subalgebras of ΦC
A,q

and ΦIn
A,q resp. generated by

Xi = ti · (u1, . . . ,um), i ∈ [n]

with the filtered structures coming from Xi, i ∈ [n].

To describe relations, we need the following two numbers associated to a

vector s ∈Kn

d+
s := max(s ·A ·χt

E : E ⊆ [m]),

and

d−
s := min(s ·A ·χt

E : E ⊆ [m]).

Theorem 1.22 Given a totally unimodular matrix A ∈ Kn×m of rank n and
0 �= q ∈K, the Hecke-deformations ΨEx

A,q, ΨC
A,q, and ΨIn

A,q are isomorphic to the

quotient algebra K[x1, . . . ,xn]/I
(k)
A,q, k = {1,0,−1} resp. Here
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• the ideal IEx
A,q is generated by

pEx
s,q =

d+
s

∏
i=d−

s

(s · (x1, . . . ,xn)−qi), s ∈ {0,±1}n;

• the ideal IC
A,q is generated by

pC
s,q =

d+
s −sign(s)

∏
i=d−

s −sign(s)+1

(s · (x1, . . . ,xn)−qi), s ∈ {0,±1}n,

where sign(s) is equal to 1 if scalar product (s ·A)(2m,2m−1, . . . ,1) is
positive and to 0 otherwise;

• the ideal IInA,q is generated by

pIns,q =
d+

s −1

∏
i=d−

s +1

(s · (x1, . . . ,xn)−qi), s ∈ {0,±1}n.

Furthermore, it is enough to only consider the relations corresponding to the
cut-vectors.

In graphical the case we can reformulate the above theorem. Namely, for

a subset I ⊂ V (G), we denote by in(I) (resp. out(I)) the number of incoming

(resp. outcoming) edges of I.

Theorem 1.23 Given a connected graph G on vertex set [n]∪{0} and its ref-
erence orientation G, the Hecke-deformations ΨEx

G,q, ΨC
G,q, and ΨIn

G,q are iso-

morphic to K[x1, . . . ,xn]/I
(k)
G,q, k = {1,0,−1} resp. Here

• the ideal IEx
G,q is generated by

pEx
I,q =

in(I)

∏
i=−out(I)

(s · (x1, . . . ,xn)−qi), I ⊆ [n];

• the ideal IC
G,q is generated by

pC
I,q =

in(I)

∏
i=−out(I)+1

(s · (x1, . . . ,xn)−qi), I ⊆ [n];
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• the ideal IInG,q is generated by

pInI,q =
in(I)−1

∏
i=−out(I)+1

(s · (x1, . . . ,xn)−qi), I ⊆ [n].

Their Hilbert series are independent on q (including the case q = 0).

Proposition 1.24 Given a totally unimodular matrix A ∈ Kn×m of rank n, for
k = {±1,0}, the filtrations of its Hecke deformation Ψ(k)

A,q induced by Xi and

induced from the algebra Φ(k)
A,q coincide.

Furthermore, the Hilbert series of the Hecke deformation Ψ(k)
A,q, k= {±1,0}

are given by

• HΨEx
A,q
(t) = tm−nTA(1+ t, 1

t );

• HΨC
A,q
(t) = tm−nTA(1,

1
t );

• HΨIn
A,q
(t) = tm−nTA(0,

1
t ).

Example 1.7 Continuing our example

A =

[−1 0 1 1

0 −1 −1 −1

]
,

we get that it has 3 cut-vectors, namely

(1,0), (0,1), and (1,1).

(By the definition it has also minus these as cut-vectors, but they give the same
relations.) For all these vectors (s ·A)(8,4,2,1) are negative and the Hecke-
deformations of the zonotopal ideals are given by

I
(1)
A = 〈

2

∏
i=−1

(x1 −qi),
0

∏
i=−3

(x2 −qi),
0

∏
i=−2

(x1 + x2 −qi)〉;

I
(0)
A = 〈

2

∏
i=0

(x1 −qi),
0

∏
i=−2

(x2 −qi),
0

∏
i=−1

(x1 + x2 −qi)〉;

I
(−1)
A = 〈

1

∏
i=0

(x1 −qi),
−1

∏
i=−2

(x2 −qi),
−1

∏
i=−1

(x1 + x2 −qi)〉.
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1.6 Classification of external algebras

(based on §2 of [A1] and [A5])

In this section we classify all external zonotopal algebras up to an isomor-

phism. In paper [A1] we did this for the graphical case, in paper [A5] we did

it for all external zonotopal algebras. For the unimodular zonotopal algebras,

it depends only on their matroids, see Theorem 1.26. For other matrices we

should define a zonotopal equivalency. At the end of section we formulate

some conjectures for the central case.

Definition 1.1 Given two linear spaces V1 ⊂ Km1 and V2 ⊂ Km2 , they are
called z-equivalent if m1 = m2 = m and there is an invertible diagonal ma-
trix D ∈Km×m and a permutation π ∈ Sm such that

V1 =V2(πD).

Matrices A1 ∈ Kn1×m1 of rank n1 and A2 ∈ Kn2×m2 of rank n2 are called
z-equivalent if the span of the rows of A1 is z-equivalent to the span of the rows
of A2.

Remark 1.4 It is easy to see that z-equivalence is an equivalence relation.
In the case when A1 does not have proportional columns and A2 does not

have proportional columns, we can say that A1 is equivalent to A2 if and only
if their zonotopes are equivalent (because in this case we can reconstruct a
“matrix” from its zonotope).

It is easy to check that CEx
A1

and CEx
A2

are isomorphic if A1 and A2 are z-

equivalent. The converse also holds.

Theorem 1.25 Let A1 ∈Kn1×m1 and A2 ∈Kn2×m2 be two matrices of ranks n1

and n2 resp., then the following statements are equivalent:

• CEx
A1

and CEx
A2

are isomorphic as non-graded algebras;

• CEx
A1

and CEx
A2

are isomorphic as graded algebras;

• A1 and A2 are z-equivalent.

The following theorem shows that unimodular external zonotopal algebras

are in one-to-one correspondence with regular matroids.

Theorem 1.26 Let A1 ∈Kn1×m1 and A2 ∈Kn2×m2 be two unimodular matrices
of ranks n1 and n2 resp., then the following statements are equivalent
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• CEx
A1

and CEx
A2

are isomorphic as non-graded algebras;

• CEx
A1

and CEx
A2

are isomorphic as graded algebras;

• A1 and A2 are z-equivalent.

• the matroids MA1
and MA2

are isomorphic.

Since, for graphs, we have that their matrices are totally unimodular, all graph-

ical matroids are regular, the converse is almost true. Every regular matroid

may be constructed by combining graphic matroids, co-graphic matroids, and

a certain ten-element matroid R10, see [33] or book [32].

In the graphical case, Theorem 1.26 means that algebra CEx
G contains a lot

of information about G. For example, if G is 3-connected (i.e. it remains

connected after deletion of any 2 vertices), then the algebra remembers the

whole graph. However if G is not 3-connected this is not always true. In fact,

it is true up to 2-isomorphisms of a graph.

Theorem 1.27 (Whitney’s 2-isomorphism theorem, see [42], [32])
Let G1 and G2 be two graphs. Then their graphical matroids are isomorphic if
and only if G1 can be transformed to a graph, which is isomorphic to G2 by a
sequence of operations of vertex identification, cleaving and twisting.

These three operations are defined below.

1a) Identification: Let v and v′ be vertices from different connected compo-

nents of the graph. We modify the graph by identifying v and v′ as a new

vertex v′′.
1b) Cleaving (the inverse of identification): A graph can only be cleft at a

cut-vertex.

2) Twisting: Suppose that the graph G is obtained from two disjoint graphs G1

and G2 by identifying vertices u1 of G1 and u2 of G2 as the vertex u of G and

additionally identifying vertices v1 of G1 and v2 of G2 as the vertex v of G. In

the twisting of G about the vertex pair {u,v}, we identify u1 with v2 and u2

with v1 to get a new graph G′.

Example 1.8 Consider the graphs G1 and G2, see Fig. 1.2. It is clear that
they have isomorphic matroids. It means that algebras CEx

G1
and CEx

G2
should be

isomorphic by Theorem 1.26. Let us check it.
Let K[x1,x2,x3] be the polynomial ring for G1. Then the ideal JEx

G1
is given

by

JEx
G1

= 〈x4
1, x4

2, x4
3, (x1 + x2)

5, (x2 + x3)
3, (x1 + x3)

7, (x1 + x2 + x3)
4〉=

〈x4
1, x4

2, x4
3, (x1 + x2)

5, (x2 + x3)
3, (x1 + x2 + x3)

4〉,
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Figure 1.2: Non-isomorphic graphs with isomorphic graphical matroids

because (x1 + x3)
7 ∈ 〈x4

1,x
4
2〉.

Let K[x̃1, x̃2, x̃3] be the polynomial ring for G2. Then the ideal JEx
G2

is given
by

JEx
G2

= 〈x̃5
1, x̃4

2, x̃3
3, (x̃1 + x̃2)

4, (x̃2 + x̃3)
4, (x̃1 + x̃3)

7, (x̃1 + x̃2 + x̃3)
4〉=

= 〈x̃5
1, x̃4

2, x̃3
3, (x̃1 + x̃2)

4, (x̃2 + x̃3)
4, (x̃1 + x̃2 + x̃3)

4〉,
because (x̃1 + x̃3)

7 ∈ 〈x̃5
1, x̃

3
2〉.

Consider the ring isomorphism ψ : K[x1,x2,x3] → K[x̃1, x̃2, x̃3], defined
by:

• ψ(x1) =−x̃1 − x̃2;

• ψ(x2) = x̃2;

• ψ(x3) =−x̃2 − x̃3.

The isomorphism ψ acts on the ideal JEx
G1

as follows:

ψ(JEx
G1
) = 〈(−x̃1− x̃2)

4, x̃4
2, (−x̃2− x̃3)

4, (−x̃1)
5, (−x̃3)

3, (−x̃1− x̃3)
4〉= JEx

G2
.

Then we get

ψ(CEx
G1
) = ψ

(
K[x1,x2,x3]/J

Ex
G1

)
=K[x̃1, x̃2, x̃3]/J

Ex
G2

= CEx
G2
,

hence, algebras CEx
G1

and CEx
G2

are isomorphic.

We conjecture that a similar statement holds in the central case. For a

matrix A, we say that its column is a bridge-column if after deleting it the rank

decreases.

Conjecture 1.3 Let A1 ∈ Kn1×m1 and A2 ∈ Kn2×m2 be two matrices of ranks
n1 and n2 resp. Then the following 3 statements are equivalent:
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• CC
A1

and CC
A2

are isomorphic as non-graded algebras;

• CC
A1

and CC
A2

are isomorphic as graded algebras;

• A′
1 and A′

2 are z-equivalent, where A′
i ∈ K(ni−ki)×(ni−ki) is a submatrix

of Ai obtained after deleting of all ki bridge-columns and some ki rows
such that rk(A′

i) = ni − ki.

Conjecture 1.4 Let A1 ∈ Kn1×m1 and A2 ∈ Kn2×m2 be two unimodular matri-
ces of ranks n1 and n2 resp. Then the following statements are equivalent:

• CC
A1

and CC
A2

are isomorphic as non-graded algebras;

• CC
A1

and CC
A2

are isomorphic as graded algebras;

• A′
1 and A′

2 are z-equivalent, where A′
i ∈ K(ni−ki)×(ni−ki) is a submatrix

of Ai obtained after deleting of all ki bridge-columns and some ki rows
such that rk(A′

i) = ni − ki;

• the bridge-free matroids MA′
1

and MA′
2

are isomorphic.
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1.7 “K-theoretic” filtration

(based on paper [A2])

This section deals with "K-theoretic" filtered algebras K
(k)
G , which was sug-

gested by A. N. Kirillov and B. Shapiro. The section is based on paper [A2],
which was written by the author jointly with B. Shapiro. Here we study a "K-

theoretical" filtration of algebras CEx
G and CC

G.

Generators of the algebra K
(k)
G are non-homogeneous. We can consider

its filtration K = F0 ⊂ F1 ⊂ . . .K
(k)
G , where Fk is the span of Fk−1 and of all

products of k-tuples of generators (not necessarily distinct). The Hilbert series

of the filtered algebra is just the Hilbert series of its associated graded algebra.

In other words,

H
K

(k)
G
= 1+(dim(F1)−1)t +(dim(F2)−dim(F1))t2 + . . . .

The algebra KEx
G contains the information about the whole graph G, see The-

orem 1.31; its total dimension is the number of forests of G. However, at the

moment we do not know the combinatorial meaning of its Hilbert series. In this

case the Hilbert series is not a specialization of the Tutte polynomial of G, see

Example 1.10. There is a similar problem for KC
G. Besides that we introduce

other filtered algebras, see their definitions and properties in paper [A2].

The structure of this section is as follows: Subsection § 1.7.1 deals with

the algebra KEx
G counting spanning forests and subsection § 1.7.2 deals with

the algebra KC
G counting spanning trees.

1.7.1 Algebra KEx
G

In notation of subsection § 1.3.2, our next object of consideration is the filtered

subalgebra KEx
G ⊂ ΦEx

G defined by the generators:

Yi = exp(Xi) = ∏
e∈G

(1+ ci,eφe), i = 0, . . . ,n.

Notice that the set of generators Yi −1, i ∈ {0,1, . . . ,n} gives the same filtered

structure of Yi and it is easier to work with them, because they are nilpotent. We

have one more generator than for CEx
G , since the sum (Y0 − 1)+ . . .+(Yn − 1)

is not always zero.

Furthermore, because Yi − 1 is a nilpotent and ln(1+(Yi − 1)) = Xi, then

algebras KEx
G and CEx

G coincide as non-filtered subalgebras of ΦEx
G , however we

interested in the filtered structure of KEx
G . Since Yi is obtained by exponentia-

tion of Xi, we call KEx
G the “K-theoretic" filtration of CEx

G .
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Theorem 1.28 For any graph G, algebras CEx
G and KEx

G are isomorphic as
(non-filtered) algebras. Their total dimension is equal to the number of forests
of G.

Example 1.9 Consider the complete graph K3 on vertices {0,1,2} and edges
{a,b,c}, see Fig 1.3. The generators of KEx

Δ are

�

�

�0

1

2

a b

c

Figure 1.3: graph K3

Y0 −1 = eX0 −1 = φa +φc +φaφc;

Y1 −1 = eX1 −1 =−φa +φb −φaφb;

Y2 −1 = eX2 −1 =−φb −φc +φbφc.

Then the filtered structure is

• F0 = span{1}, dim = 1;

• F1 = span{1, Y0, Y1, Y2}, dim(F1)−dim(F0) = 3;

• F2 = span{1, Y0, Y1, Y2, Y 2
0 , Y 2

1 , Y0Y1, . . .}, dim(F2)−dim(F1) = 3.

It is clear that Xi = (Yi − 1)− (Yi−1)2

2
in this example, implying that KEx

Δ and
CEx

Δ coincide as subalgebras of ΦEx
G .

Similarly to the algebra CEx
G , this filtered algebra is the Cartesian product

of filtered algebras corresponding to the connected components of G; however,

a stronger statement does not hold.

Proposition 1.29 Given a graph G, the filtered algebra KEx
G is the Cartesian

product of the filtered algebras corresponding to all connected components
of G.

Similarly to the case of algebra CEx
G , we can present KEx

G as a quotient

algebra.
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Theorem 1.30 For any graph G, the algebra KEx
G is isomorphic as a filtered

algebra to the quotient

KEx
G

∼=K[y0, . . . ,yn]/I
Ex
G ,

where the ideal IEx
G in K[y0,y1, . . . ,yn] is generated by the polynomials

qEx
I =

(
∏
i∈I

yi −1

)dI+1

, I ⊆V (G). (1.2)

The algebra KEx
G considered as a non-filtered algebra remembers the graph-

ical matroid of G and only it. However, as a filtered algebra it contains the

complete information about G.

Theorem 1.31 Given two graphs G1 and G2 without isolated vertices, KEx
G1

and KEx
G2

are isomorphic as filtered algebras if and only if G1 and G2 are iso-
morphic.

Example 1.10 Consider two graphs G1 and G2 presented in fig. 1.2. We know
that algebras CEx

G1
and CEx

G2
are isomorphic as graded algebras. However, by

Theorem 1.31, filtered algebras KEx
G1

and KEx
G2

should distinguish graphs. Fur-
thermore, in this case algebras KEx

G1
and KEx

G2
have different Hilbert series,

namely,
HKG1

(t) = 1+4t +10t2 +14t3 +3t4,

HKG2
(t) = 1+4t +10t2 +15t3 +2t4.

This means that they are not isomorphic as filtered algebras. It also means
that, in general, it is impossible to calculate the Hilbert series of KEx

G from the
Tutte polynomials of G, because in the above case G1 and G2 have the same
Tutte polynomial.

1.7.2 Algebra KC
G

In notation of subsection § 1.3.2, our next object is the filtered subalgebra

KC
G ⊂ ΦC

G defined by the generators:

Yi = exp(Xi) = ∏
e∈G

(1+ ci,eφe), i = 0, . . . ,n.

Here we usually have one more generator than in the case of the algebra CC
G.

As above in subsection § 1.7.1, KC
G and CC

G coincide as subalgebras of ΦC
G,

however, we are interested in the filtered structure of KC
G.
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Theorem 1.32 For any graph G, algebras CC
G and KC

G are isomorphic as (non-
filtered) algebras. Their total dimension is equal to the number of spanning
trees of G.

Example 1.11 Consider the complete graph K3 on vertices {0,1,2} and with
edges {a,b,c}, see fig 1.3. Generators of KC

Δ are

Y0 −1 = eX0 −1 = φa +φc;

Y1 −1 = eX1 −1 =−φa +φb;

Y2 −1 = eX2 −1 =−φb −φc.

Then the filtered structure is

• F0 = span{1}, dim = 1

• F1 = span{1, Y0, Y1, Y2}, dim(F1)−dim(F0) = 2

Then for K3, we have that CC
Δ and KC

Δ are isomorphic as filtered algebras (fil-
tered structure of CC

G coincides with its graded structure). In general CC
G and

KC
G are not isomorphic as filtered algebras.

The next statement is similar to Proposition 1.4.

Proposition 1.33 Given a connected graph G, the filtered algebra KC
G is the

Cartesian product of the filtered algebras corresponding to all 2-edge con-
nected components of G.

As it happens for algebras CEx
G and CC

G, we can present this algebra as a

quotient algebra.

Theorem 1.34 For any graph G, the algebra KC
G is isomorphic as a filtered

algebra to the quotient

KC
G
∼=K[y0, . . . ,yn]/I

C
G,

where the ideal IC
G in K[y0,y1, . . . ,yn] is generated by the polynomials

qC
I =

(
∏
i∈I

yi −1

)dI

, I ⊆V (G). (1.3)

Similarly to the case of CC
G, we get the following implication and the prob-

lem. Define the Δ-subgraph Ĝ ⊂ G as the subgraph obtained from G after

removal of all its bridges and produced isolated vertices.
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Proposition 1.35 Given connected graphs G1 and G2 with isomorphic Δ-sub-
graphs Ĝ1

∼= Ĝ2, algebras KC
G1

and KC
G2

are isomorphic as filtered algebras.

Problem 1.5 Is it true that if KC
G1

and KC
G2

are isomorphic, then their Δ-
subgraphs are also isomorphic? If not, then what is a criterium?

Example 1.12 Consider two graphs G1 and G2 presented in fig. 1.2. We know
that algebras CC

G1
and CC

G2
are isomorphic as graded algebras; however, in this

case filtered algebras KC
G1

and KC
G2

distinguish graphs. Furthermore, algebras
KC

G1
and KC

G2
have different Hilbert series, namely,

HKC
G1

(t) = 1+5t +3t2,

HKC
G2

(t) = 1+6t +2t2,

which means that they are not isomorphic as filtered algebras. This also means
that it is impossible to calculate the corresponding Hilbert series from their
Tutte polynomials, because they have the same Tutte polynomial.
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1.8 Hypergraphical matroid

(based on §4 of [A1])

There are many definitions of spanning trees of a hypergraph, for example:

a spanning cactus in [1]; a hypertree in [10] (also known as an arboreal hy-

pergraph in [7]). However, all these definitions allow trees to have different

number of edges, whence spanning trees of a usual graph should have the

same number of edges. We define spanning trees such that this property and

also other natural properties hold. Also we define the hypergraphical matroid

and the corresponding Tutte polynomial, whose points T (2,1) and T (1,1) cal-

culate the numbers of forests and of spanning trees, resp. A similar definition

of spanning trees and forests was presented in [24]; for that definition there

exists a corresponding Tutte polynomial for a hypergraph, however, there is no

matroid.

Let H be a hypergraph. Define C = {ci,e ∈ K : i ∈ [n], e ∈ H} as a set of
parameters of H s.t.

• ci,e = 0, for any edge e ∈ H and vertex i /∈ e;

• ∑n
i=1 ci,e = 0.

Our original motivation was to consider algebras CEx
C , which constitute a family

ĈEx
H of algebras determined by H. Note, that for a usual graph G almost all

algebras from ĈEx
G are isomorphic to CEx

G .

We define a hypergraphical matroid using the following definition of an

independent set of edges of a hypergraph.

Let H be a hypergraph on n vertices. A set F of its edges is called indepen-
dent if there is a set of parameters C of H, such that vectors corresponding to

edges from F are linearly independent. In other words, F is independent if, for

a generic set of parameters of H, vectors are linearly independent. Define the

hypergraphical matroid of H as the matroid with the ground set E(H). The

Tutte polynomial TH(x,y) of H is the Tutte polynomial of the corresponding

matroid. See Example 1.13.

There is a combinatorial definition of an independent set of edges. First

we need to define a cycle of H.

A subset of edges C ⊂ E is called a cycle if

• |C|= |∪e∈C e|

• There is no subset |C′ ⊂C|, such that the first property holds for C′.
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Theorem 1.36 A subset of edges X ⊂ E is dependent if and only if there is a
cycle C ⊂ X.

Now we can define trees and forests of a hypergraph.

A set of edges F is called a forest if F has no cycles. In other words, F is a

forest if and only if F is an independent set (by Theorem 1.36). A set of edges

T ⊂ H is called a spanning tree if it is a forest and T has exactly v(H)− 1

edges.

A hypergraph H is called strongly connected if it has at least one spanning

tree.

Proposition 1.37 Maximal forests of a hypergraph have the same number of
edges. In fact, if H = (V,E) is a strongly connected hypergraph, then for any
forest F ⊂ E there is a spanning tree T which contains F (i.e., F ⊂ T ⊂ E).

Clearly we have

• TH(2,1) is the number of forests of H;

• TH(1,1) is the number of maximal forests of H, which is the number of

trees for a strongly connected hypergraph.

Example 1.13 Let H be the hypergraph with the vertex set V = {v1,v2,v3}
and edges E = {(v1,v2),(v2,v3),(v1,v3),(v1,v2,v3)}, see Fig. 1.4.

�

�

�v1 v2

v3

e1

e2e3 e4

Figure 1.4

Vectors corresponding to edges are

• e1 : (x,−x,0) = x · (1,−1,0);

• e2 : (0,y,−y) = y · (0,1,−1);

• e3 : (−z,0,z) = z · (−1,0,1);

• e4 : (p,q,−p−q) = p · (1,0,−1)+q · (0,1,−1),
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where x,y,z, p and q are generic real numbers. It is easy to see that any three
edges are linearly dependent and any two are independent.

It is clear that any three edges form a cycle of H, i.e., they are linearly
dependent. So H has

(
4
2

)
+

(
4
1

)
+

(
4
0

)
= 11 forests and

(
4
2

)
= 6 of them are

trees.
The Tutte polynomial of the corresponding hypergraphical matroid is x2 +

y2 + 2x + 2y. We get TH(1,1) = 6 and TH(2,1) = 11. Thus TH(1,1) and
TH(2,1) are the number of trees and forests of H resp.

Proposition 1.38 Given a hypergraph H, let C be a generic set of parameters
for H. Then the Hilbert series are given by:

• HCEx
C
(t) = tm−nTH(1+ t, 1

t );

• HCC
C
(t) = tm−nTH(1,

1
t );

• HCIn
C
(t) = qm−nTH(0,

1
t ).

There is still another characterization of our forests/trees of H, which again

shows that our notion is a generalization of forests/trees of a usual graph.

Theorem 1.39 A subset of edges X ⊂ E is a forest (tree) if and only if there
is a map from the edges to pairs: ek → (i, j), where vi,v j ∈ ek, such that these
pairs form a forest (tree) in the complete graph Kn.

By the induced subgraph on vertices V ′ ⊂V , we mean a hypergraph (V ′,E ′),
where E ′ are all edges of E, which have vertices only from V ′ (i.e. e ∈ E ′ if

e ⊂ V ′). This definition works well with colorings of hypergraphs, because if

we want to color a hypergraph in such a way that there are no monochromatic

edges, then it is the same as splitting vertices into sets with empty induced

subgraphs. Also this definition works well with the standard notion of connec-

tivity.

Proposition 1.40 Let V1 and V2 be subsets of vertices such that the induced
subgraphs of H on Vj are strongly connected and V1∩V2 �= /0. Then the induced
subgraph of H on V1 ∪V2 is also strongly connected.
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2. Generic ideals

In this chapter we study Hilbert series of generic ideals. Let S :=K[x1, . . . ,xn]
be the polynomial ring in n variables, where K is a filed of zero characteristic.

Denote by Sd the d-th graded component of S, i.e., the linear space of all ho-

mogeneous polynomials of degree d in n variables. According to R.Stanley’s

result [39], the Hilbert series of generic ideals is known when the number of

generators is small.

Theorem 2.1 (cf. [39]) Given z≤ n+1 and positive integer numbers a1, . . . ,az,
let �1, . . . , �z be generic linear forms and I = 〈�a1

1 , . . . , �az
z 〉. The Hilbert series

of S/I is given by:

HS/I(t) =
[

∏z
i=1(1− tai)

(1− t)n

]
,

where [..] means that we truncate a real formal power series at its first negative
term.

In [17] R. Fröberg formulated the following general conjecture.

Conjecture 2.1 (Fröberg’s Conjecture) Let f1, . . . , fz be generic forms of de-
grees a1, . . . ,az respectively. Set I = 〈 f1, . . . , fz〉. The Hilbert series of S/I is
given by:

HS/I(t) =
[

∏z
i=1(1− tai)

(1− t)n

]
,

where [..] means that we truncate a real formal power series at its first negative
term.

R. Fröberg proved Conjecture 2.1 for 2 variables and noticed that the left-hand

side is bigger than or equal to the right-hand side in the lexicographic sense.

Theorem 2.1 implies that Fröberg’s Conjecture holds for z ≤ n+1. Later in [3]

D. J. Anick proved Conjecture 2.1 for 3 variables.

Theorem 2.2 (cf. [3]) For the number of variables n≤ 3, let f1, . . . , fz be gene-
ric forms of degrees a1, . . . ,az respectively. Set I = 〈 f1, . . . , fz〉. The Hilbert
series of S/I is given by:

HS/I(t) =
[

∏z
i=1(1− tai)

(1− t)n

]
.
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Anick’s proof is hard to read, below in section § 2.2 we present an outline

of our proof (which works in the case of 3 variables), where we work with a

stronger conjecture from [27].

There are some extra results in the case where all degrees a1 = . . .= az = d
are the same. In [19] M. Hochster and D. Laksov showed that the dimension

of d + 1-th graded component is the expected one. In section § 2.1 we show

that Fröberg’s Conjecture is true in many different cases; the percentage of

these cases compared to the total number of cases tends to 1 as d →+∞. Fur-

thermore the same is true when fi are linear forms raised to power d. (Notice

that in general Fröberg’s conjecture is not true for such type of ideals, see

Remark 2.2.)

There are other generalizations of Fröberg’s Conjecture. The most famous

is Fröberg-Iarrobino’s conjecture [12; 23]. See more problems in the recent

paper [18] of participants of the Problem solving seminar in commutative al-
gebra in Stockholm.

In the last section§ 2.3 we consider the first case, which is not covered by

Theorem 2.1, namely when all ai’s are equal to 2 and their number is z = n+2.

We prove the upper bound for the dimension of a quotient algebra, which is

very unusual, since, for generic algebras, it is easy to prove lower bounds.

Furthermore, this problem is related to generic ideals in exterior algebras.
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2.1 Infinite series of examples

(based on [B1])

Let Dd be any nonempty class of forms of degree d closed under the linear

changes of coordinates. For example: Dd = Sd or Dd = {�d : � ∈ S1}, i.e., the

set of all d-th powers of linear forms.

We will work with the Hilbert function of an ideal; it is easy to convert it

to the Hilbert function of the quotient algebra, because the sum of dimensions

of m-th graded components of S/I and of I is the dimension of Sm. For Dd
and z, denote by HF(Dd ,z)(m) the dimension of the m-th graded component

of an ideal generated by z generic forms from Dd ; denote by H(Dd ,z)(t) =
∑HF(Dd ,z)(m)tm the Hilbert series of this ideal. In [19] M. Hochster and

D. Laksov found the values of HF(Sd ,z)(d+1) for any d and z. Below we gen-

eralize their result for the (d+k)-th graded component, but we avoid 2ḋim(Sk)
possible values of z.

Theorem 2.3 Let d and k be positive integers. Then

• for z ≤ dim(Sd+k)
dim(Sk)

−dim(Sk), HF(Dd ,z)(d + k) = zḋim(Sk);

• for z ≥ dim(Sd+k)
dim(Sk)

+dim(Sk), HF(Dd ,z)(d + k) = dim(Sd+k).

Remark 2.1 The condition about zero characteristic of the ground field is im-
portant here. For example, if K is a field of characteristic 2, n = 3, d = 2 and
D2 is the set of squares of linear forms, then HF(D2,z)(3) ≤ dim(S3)− 1, be-
cause the form x1x2x3 does not belong to the 3rd graded component for any z.

In [5] M. Aubry obtained a result of the first type, but his result covers only a

very thin set of cases (d is larger than some complicated function of k and z).

In [25] J. Migliore and R. M. Mirós-Roig also formulated a similar result as a

consequence of Anick’s work [3]. However, their result holds only for small z.

As a consequence of Theorem 2.3 we get the following statement.

Proposition 2.4 Let d and z be positive integers. If there exists r such that

dim(Sd+r+1)

dim(Sr+1)
+dim(Sr+1)≤ z ≤ dim(Sd+r)

dim(Sr)
−dim(Sr),

then the Hilbert series of the ideal generated by z generic forms from Dd is
given by

H(Dd ,z) =
∞

∑
k=0

min(z ·dim(Sk),dim(Sd+k))td+k =
1

(1− t)n −
[
(1− td)z

(1− t)n

]
.
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Of course, all interesting cases correspond to z ≤ dim(Sd); otherwise

HF(Dd ,z)(m) = dim(Sm) for m ≥ d. Denote by

pd :=
#{z ≤ dim(Sd) satisfying Proposition 2.4}

dim(Sd)

the "probability" that a given z ≤ dim(Sd) is covered by Proposition 2.4.

Example 2.1 For n = 5 and d = 10, dim(Sd) = 1001;
dim(S1) = 5 and dim(Sd+1)

dim(S1)
= 273;

dim(S2) = 15 and dim(Sd+2)
dim(S2)

= 364
3

= 121 1
3
;

dim(S3) = 35 and dim(Sd+3)
dim(S3)

= 68.
Then the Hilbert series is given by Fröberg’s conjecture at least if the number
of generators z belongs to one of the following intervals:

• z ≥ 278;

• 268 ≥ z ≥ 137;

• 106 ≥ z ≥ 103.

In other words, the Hilbert series is the standard one except possibly for 141 =
9+30+102 cases. Thus

p10 = 1− 141

1001
= 0,859..

For larger d, we get p15 = 0,927..; p25 = 0,968..; p40 = 0,986..

Proposition 2.5 For any fixed number of variables, the probability pd tends
to 1 as d →+∞.

Proposition 2.5 means that Proposition 2.4 gives the criterion, which cov-

ers a huge number of nontrivial cases for large d. As a consequence, we get

that Fröberg’s conjecture is true for many previously unknown cases for large

d when the degrees of all forms are the same.

Remark 2.2 It is also gives the same result for power ideals, when Dd = {�d :

� ∈ S1}, but we can not formulate the same conjecture for power algebras.
Consider the case (n,d,z) = (5,2,7). Then

H(S5/〈�2
i , i ∈ [7]〉) = 1+5t +8t2 + t3,

where �i are generic linear forms, but

H(S5/〈 fi, i ∈ [7]〉) = 1+5t +8t2,

where fi are generic quadratic forms.
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2.2 Stronger conjecture

(based on [B2])

In this section we discuss Fröberg’s conjecture and present a stronger conjec-

ture and an idea of its proof which works in the case of 3 variables. At first we

should define a total order of monomials.

Let B be the set of monomials in X = {x1, . . . ,xn} and Bk ⊂ B be the set of

monomials of degree k. We consider the reverse lexicographic order on each

Bk:

xk
1 < xk−1

1 x2 < .. . < xk−1
1 xn < xk−2

1 x2
2 < .. . < xk

n−1 < xk−1
n−1xn < .. . < xk

n.

Also we need the majorization partial order: for α,β ∈ Bk, α � β if and only

if, for any 1≤ j ≤ n, ∑n
i= j deg(α)xi ≤∑n

i= j deg(β )xi . Note that this partial order

agrees with the total order, i.e.

α ≺ β ⇒ α < β .

For a linear space C ⊂ Sk, we define leading monomials lm(C) of C as the

minimal subset of Bk, such that, for any g ∈ C, the leading term of g belongs

to C. In other words, leading monomials of C are

lm(C) := {lm(g) : g ∈C},

where lm(g) is the leading monomial of form g.

It is clear that dim(C) = |lm(C)|, which implies that it is enough to study

leading monomials of graded components of ideals.

We fix the sequence a1,a2, . . . ,az, . . . of degrees of generators. Let mk,z be

the k-th coefficient of 1
(1−t)n −

[
∏z

i=1(1−tai )
(1−t)n

]
, in other words, mk,z is the expected

dimension of the k-th graded component of an ideal Iz generated by generic

forms f1, f2, . . . , fz of degrees d1,d2, . . . ,dz resp.

Now we construct the set Mk,z ⊆ Bk of monomials. We construct it by

induction

• M−1,z = M−2,z = . . .= /0,

• Mk,z = X ·Mk−1,z ∪ M̃k,z, where M̃k,z is the set of the first (mk,z − |X ·
Mk−1,z|) reverse lexicographic maximal monomials from Bk\(X ·Mk−1,z).

We think that it is exactly the set of leading monomials and formulate the

stronger conjecture.
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Conjecture 2.2 Let f1, . . . , fz be generic forms of degrees a1, . . . ,az respec-
tively. Set Ik,z = 〈 f1, . . . , fz〉k. Then the set lm(Ik,z) of leading monomials coin-
cides with Mk,z.

Since |Mk,z|= mk,z (which is the expected dimension), then Fröberg’s Conjec-

ture is a consequence of Conjecture 2.2.

We suggest to prove Conjecture 2.2 and Fröberg’s Conjecture by induction

on a pair (k,z). We prove that our approach works for 2 and 3 variables. For

the general case, it is still possible to make half of the induction step.

Proposition 2.6 Assume that Conjecture 2.2 holds for all pairs smaller than
(k,z). Then Fröberg’s Conjecture holds for (k,z).

In fact, we can also prove the following important lemma, where dim(A :

D), A ⊆ Sk, D ⊆ Bk is the dimension of A in Sk/span(Bk \D).

Lemma 2.1 Assume that Conjecture 2.2 holds for all pairs smaller than (k,z).
Set Ck,z := span{ fz ·β : β ∈ (Bk−az \Mk−az,z−1)}. If dim(Ck,z : Mk,z \Mk,z−1) =
mk,z −mk,z−1, then lm(Ik,z) = Mk,z.

We can not prove the second condition of Lemma 2.1 in general. However,

we can prove it in the case of three variables.

Proposition 2.7 Assume that the number of variables n is 2 or 3. Let fz be
generic form of degree az, then dim(Ck,z : Mk,z \Mk,z−1) = mk,z−mk,z−1, where
Ck,z := span{ fz ·β : β ∈ (Bk−az \Mk−az,z−1)}.

From Proposition 2.7 and Lemma 2.1 we get the following theorem.

Theorem 2.8 Conjecture 2.2 holds for 2 and 3 variables.

All proofs except Proposition 2.7 are either simple or technical (but with-

out serious ideas). To prove Proposition 2.7 we should construct a unique chain

(i.e., there is no other chain with the same product) of length mk,z −mk,z−1 in

the matrix M, where the rows of M correspond to the elements of Bk−az \
Mk−az,z−1, columns of M to Mk,z \Mk,z−1, and an element (β ,γ) is equal to the

coefficient of γ in fz ·β .

We construct this chain using the following algorithm:

• Ak,z := Mk,z−1 and C := Bk−az \Mk−az,z−1.

• repeat while C �= /0:
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1. Choose maximal β ∈C and delete it from C
(i.e., C :=C−β),

2. Choose maximal (if possible) ψk,z(β ) := α ∈ Baz such
that αβ /∈ Ak,z and add this product to Ak,z
(i.e., Ak,z := Ak,z +αβ).

In the case of three variables, this algorithm has two good properties.

Theorem 2.9 For any k and z, we have

• Ak,z = Mk,z;

• if β1 < β2 ∈ Bk−az \ Mk−az,z−1 and β1|(ψk,z(β2)β2) , then ψk,z(β1) ≥
ψk,z(β2).

The first property shows that M has a chain, and the second one shows that

there is no chain with the same product of elements. Since the coefficients of

fz are generic, we get that the determinant of M does not vanish which finishes

the proof of Proposition 2.7.
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2.3 Ideals generated by two quadratic forms in the exter-

nal and square-free algebras

(based on [B3])

In this section we study the Hilbert series of two classes of algebras. (It is a

joint work with V. Crispin and S. Lundqvist.)

The first class is En/〈 f ,g〉, where En is the exterior algebra and f ,g are two

quadratic forms. The second class is Φn/〈�2
1, �

2
2〉, where Φn is the square-free

algebra, i.e., with relations

φiφ j = φ jφi, i, j ∈ [n] and φ 2
i = 0, i ∈ [n],

and �1 and �2 are two linear forms in Φn.

Proposition 2.10 (cf. [26]) Given the exterior algebra En, let f be a generic
form of degree 2d, then the Hilbert series of En/〈 f 〉 is given by

HEn/〈 f 〉 = [(1+ t)n(1− t2d)].

The following proposition is a particular case of Theorem 2.1.

Proposition 2.11 (cf. [39]) Given the square-free algebra Φn and a positive
integer d, let � be a generic linear form. Then the Hilbert series of Φn/〈�d〉 is
given by

HΦn/〈�d〉 = [(1+ t)n(1− td)].

Let us return to our case. We have a conjecture about the Hilbert series. Let

a(n,k) be the number of lattice paths inside the rectangle (n+2−2k)×(n+2)
from the bottom-left corner to the top-right corner with moves of two types:

(x,y)→ (x+1,y+1) or (x−1,y+1), see Figure 2.1.

Conjecture 2.3 Let f and g be two generic quadratic forms in the exterior
algebra En. Then the Hilbert series of En/〈 f ,g〉 is equal to

HEn/〈 f ,g〉 = 1+a(n,1)t +a(n,2)t2 + · · ·+ · · ·+a(n,�n
2
�)t� n

2 �.

Conjecture 2.4 Let �1 and �2 be generic linear forms in the square-free alge-
bra Φn. Then the Hilbert series of Φn/〈�2

1, �
2
2〉 is equal to

HΦn/〈�2
1,�

2
2〉 = 1+a(n,1)t +a(n,2)t2 + · · ·+ · · ·+a(n,�n

2
�)t� n

2�.
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Figure 2.1: Case (n,k) = (12,4). The red path is not inside the rectangle while

the blue path is inside the rectangle.

Coefficients a(n,k) are presented in Table 2.1, we checked the first con-

jecture for random linear forms and n ≤ 20 and proved it for odd n ≤ 19.

Furthermore, we proved the upper bound.

Theorem 2.12 In notations of Conjectures 2.3 and 2.4, the dimension of k-
graded of En/〈 f ,g〉 and of Φn/〈�2

1, �
2
2〉 are at most a(n,k).

Although the above conjectures give the same Hilbert series for different

and non-isomorphic algebras, Conjecture 2.4 is weaker than Conjecture 2.3.

Theorem 2.13 The following statements are equivalent:

• Conjecture 2.3 holds for any even n;

• Conjecture 2.4 holds for any n.

Theorem 2.14 In notation of Conjectures 2.3 and 2.4 and given integer num-
bers n and k ≤� n+1

3
�, the dimensions of k-graded components of En/〈 f ,g〉 and

of Φn/〈�2
1, �

2
2〉 are equal to a(n,s).
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For the exterior, algebra we also have the equality for the last components.

Theorem 2.15 In notation of Conjecture 2.3, the dimension of � n
2
�-graded of

En/〈 f ,g〉 is equal to a(n,�n
2
�), which is 1 for odd n and 2

n
2 for even n.

n\ k 0 1 2 3 4 5 6 7 8 9 10

1 1 1 0 0 0 0 0 0 0 0 0

2 1 2 0 0 0 0 0 0 0 0 0

3 1 3 1 0 0 0 0 0 0 0 0

4 1 4 4 0 0 0 0 0 0 0 0

5 1 5 8 1 0 0 0 0 0 0 0

6 1 6 13 8 0 0 0 0 0 0 0

7 1 7 19 21 1 0 0 0 0 0 0

8 1 8 26 40 16 0 0 0 0 0 0

9 1 9 34 66 55 1 0 0 0 0 0

10 1 10 43 100 121 32 0 0 0 0 0

11 1 11 53 143 221 144 1 0 0 0 0

12 1 12 64 196 364 364 64 0 0 0 0

13 1 13 76 260 560 728 377 1 0 0 0

14 1 14 89 336 820 1288 1093 128 0 0 0

15 1 15 103 425 1156 2108 2380 987 1 0 0

16 1 16 118 528 1581 3264 4488 3280 256 0 0

17 1 17 134 646 2109 4845 7752 7753 2584 1 0

18 1 18 151 780 2755 6954 12597 15504 9841 512 0

19 1 19 169 931 3535 9709 19551 28101 25213 6765 1

20 1 20 188 1100 4466 13244 29260 47652 53296 29524 1024

Table 2.1: The values of a(n,k) and of the Hilbert function of En/〈 f ,g〉 with

random quadratic forms f and g.
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