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Abstract

This thesis consists of four papers and deals with supersingular rank one
perturbations of self-adjoint operators and their models in Hilbert or Pon-
tryagin spaces. Here, the term supersingular describes perturbation ele-
ments that are outside the underlying space but still obey a certain regularity
conditions.
The first two papers study certain Sturm-Liouville differential expressions
that can be realised as Schrödinger operators. In Paper I we show that for
the potential consisting of the inverse square plus a comparatively well-
behaved term we can employ an existing model due to Kurasov to describe
these operators in a Hilbert space. In particular, this approach is in good
agreement with ODE techniques.
In Paper II we study the inverse fourth power potential. While it is known
that the ODE techniques still work, we show that the above model fails and
thus that there are limits to the above operator theoretic approach.
In Paper III we concentrate on generalising Kurasov’s model. The origi-
nal formulation assumes that the self-adjoint operator is semi-bounded,
whereas we drop this requirement. We give two models with a Hilbert and
Pontryagin space structure, respectively, and study the connections between
the resulting constructions.
Finally, in Paper IV, we consider the concrete case of the operator of multi-
plication by the independent variable, a self-adjoint operator whose spec-
trum covers the real line, and study its perturbations. This illustrates some
of the formalism that was developed in the previous paper, and a number
of more explicit results are obtained, especially regarding the spectra of the
appearing perturbed operators.





Sammanfattning

Denna avhandling består av fyra artiklar och behandlar supersingulära rang-
ett-störningar av självadjungerade operatorer samt deras modeller i Hilbert-
eller Pontryaginrum. Med supersingulära störningar avses här sådana stör-
ningselement som ligger utanför rummet där operatorn agerar men som
ändå uppfyller vissa regularitetsvillkor.
De första två artiklarna handlar om speciella Sturm-Liouville differentialut-
tryck som kan realiseras som Schrödingeroperatorer. I den första artikeln
studerar vi fallet där potentialen består av en inverterad kvadratisk term,
samt en term som beter sig mindre singulärt vid origo. Vi visar att en mo-
dell skapad av Kurasov kan tillämpas för att beskriva dessa operatorer i ett
Hilbertrum. Resultaten från denna metod är ekvivalenta med dem vi kan
förvänta oss från ODE-tekniker.
I den andra artikeln undersöker vi fallet där potentialen är en inverterad
kvartisk term. Det är känt att ODE-tekniker även fungerar här men vi visar
att Kurasovs modell inte längre är applicerbar. Modellen har alltså vissa be-
gränsningar i jämförelse med metoder från ODE-teorin.
I den tredje artikeln koncentrerar vi oss på att generalisera Kurasovs modell.
I den ursprungliga formuleringen antas att den självadjungerade operatorn
är begränsad nedåt, något som vi i denna artikel inte antar. Vi konstruerar
två modeller som har antingen en Hilbert- eller Pontryaginrumsstruktur och
undersöker relationen mellan dessa modeller.
I den sista artikeln studerar vi perturbationer av en specifik självadjungerad
operator vars spektrum täcker hela den reella linjen, nämligen operatorn
som multiplicerar en funktion med den oberoende variabeln. Detta exem-
pel illustrerar delar av den formalism vi utvecklade i den tredje artikeln. Vi
erhåller också en del konkreta resultat, speciellt angående spektrum av de
störda operatorerna.





Zusammenfassung

Die vorliegende Arbeit besteht aus vier Artikeln und befasst sich mit super-
singulären Rang-eins-Störungen selbstadjungierter Operatoren sowie deren
Hilbert- oder Pontryaginraummodellen. Als supersingulär bezeichnen wir
hier Störungsvektoren, die außerhalb jenes Raums, wo der gegebene Oper-
ator agiert, liegen, aber immer noch gewisse Regularitätsbedingungen er-
füllen.
Die ersten beiden Artikel behandeln gewisse Sturm-Liouville-Differential-
ausdrücke, die sich als Schrödingeroperatoren realisieren lassen. Im ersten
Artikel zeigen wir, dass für ein Potential, das aus einem invers quadratischen
sowie einem vergleichsweise milderen Term besteht, ein bestehendes Mod-
ell von Kurasov angewandt werden kann, um die gestörten Operatoren zu
beschreiben. Es zeigt sich, dass dieser Zugang vergleichbare Ergebnisse wie
jene aus der Theorie gewöhnlicher Differentialgleichungen liefert.
Im zweiten Artikel untersuchen wir den Fall eines quartisch inversen Poten-
tials. Hier ist zwar bekannt, dass der Differentialgleichungszugang weiter-
hin funktioniert, aber wir zeigen, dass das genannte Modell hier an seine
Grenzen stößt und nicht mehr anwendbar ist.
Im dritten Artikel konzentrieren wir uns darauf, Kurasovs Modell zu verall-
gemeinern. In der ursprünglichen Formulierung waren die vorkommenden
Operatoren als halbbeschränkt vorausgesetzt, was wir hier hingegen nicht
mehr annehmen. Wir konstruieren zwei Modelle mit einer Hilbert- bzw.
Pontryaginraumstruktur und studieren, wie diese zusammenhängen.
Im letzten Artikel betrachten wir einen konkreten selbstadjungierten Oper-
ator, dessen Spektrum die gesamte reelle Linie einnimmt, nämlich den Op-
erator, der eine Funktion mit der unabhängigen Variablen multipliziert. Wir
studieren seine Störungen und illustrieren so den Formalismus aus dem vo-
rangegangenen Artikel. Außerdem können wir auf diese Weise explizite Aus-
sagen über die vorkommenden gestörten Operatoren, besonders im Bezug
auf ihr Spektrum, tätigen.
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Introduction

This thesis consists of four papers. The research contained therein is con-
cerned with topics in mathematical analysis. It uses and develops the tech-
nique of supersingular perturbations of self-adjoint operators and touches,
in particular, on the following three areas: extension theory of symmetric
operators, Sturm-Liouville problems with strongly singular potentials, and
— naturally appearing every now and then — Nevanlinna functions. We
shall therefore introduce these subjects in the following. In the end of this
introduction we shall give a short summary of the papers included in this
thesis.
We also already point out here in the beginning that the second half of this
introduction, entitled Sturm-Liouville problems, was adapted from the li-
centiate thesis [30]. By this we mean that some parts have been shortened
as well as that notation and examples have been unified. Furthermore, Pa-
pers I and II were also included in the licentiate.

1 Supersingular Perturbations of Self-adjoint Opera-
tors

Let us start with some perturbation theory for self-adjoint operators. In the
end we would like to understand formal sums like

A+α〈ϕ, ·〉ϕ

for a self-adjoint operator A in a Hilbert space H, numbers α ∈ R∪ {∞} and
a perturbation element ϕ. It should already be noted here that we do not
demand ϕ to be a vector from the Hilbert space.

1.1. Self-adjoint and Symmetric Operators A (complex) Hilbert spaceH is
a vector space (over the base field C) with an inner product 〈·, ·〉 that is also
complete in the norm ‖ · ‖ :=�〈·, ·〉 induced by the scalar product. We will,
unless specifically stated otherwise, always consider the scalar product to
be linear in the second entry.
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If one sticks to finite dimensions and considers Cn for 1 < n < ∞ one can
study linear mappings in this space, i.e., n ×n-matrices. An especially nice
class of such mappings are self-adjoint matrices, that is A ∈Cn×n satisfying

〈Ax, y〉 = 〈x, Ay〉 ∀x, y ∈Cn (1.1)

or, equivalently,

A = A∗ := AH (1.2)

where AH is the Hermitian (conjugate transpose) of A. Remember the eigen-
value equation Ax = λx with λ ∈C and x ∈Cn , where the nonzero vectors x
solving the equation are referred to as eigenvectors and the accompanying
λ as eigenvalue. In the case of a self-adjoint matrix A, all eigenvalues turn
out to be real and it is possible to choose an orthonormal basis of Cn con-
sisting of eigenvectors of A. Furthermore, self-adjoint matrices allow for a
spectral theorem.

Theorem 1.1. Let A = A∗ ∈Cn×n. Letλ1, . . . ,λn be the eigenvalues of A counted
with multiplicities, and x1, . . . , xn a set of corresponding orthogonal eigenvec-
tors of A. If P j is the orthogonal projection onto x j for j = 1, . . . ,n then

A =
n∑

j=1
λ j P j .

However, there are also Hilbert spaces (H,〈·, ·〉) of infinite dimensions and
the study of linear mappings therein. In this setting, one works with opera-
tors T : domT →H that are no longer necessarily defined everywhere in the
Hilbert space but instead on domT ⊆H. The set domT is called the domain
of T and we call T densely defined if domT is a dense subset of H. Also in
this setting there is a notion of self-adjointness. In finite dimensions, the
defining features (1.1) and (1.2) both lead to the same class of matrices. In
infinite dimensions, they describe different classes of operators.

Definition 1.2. Let T : domT →H be densely defined. Then its adjoint T ∗

is given by the operator

domT ∗ := {x ∈H : ∃! hx ∈H such that 〈x,T y〉 = 〈hx , y〉 ∀y ∈ domT }

T ∗x := hx

With this notion the generalisation of (1.2) is immediate.

Definition 1.3. A densely defined operator A : dom A → H is called self-
adjoint if A = A∗.
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If S,T are two operators in H then writing S ⊂ T means that domS ⊂ domT
and Sx = T x for all x belonging to the smaller set domS. With this in mind,
it turns out that requiring something like (1.1) to hold at least for all vectors
from the domain of some operator S gives only that S ⊆ S∗. Hence, we arrive
at a second, larger class of operators.

Definition 1.4. A densely defined operator S : domS →H is called symmet-
ric if 〈Sx, y〉 = 〈x,Sy〉 holds for all x, y ∈ domS.

For self-adjoint operators in infinite dimensional Hilbert spaces there is a
spectral theorem again and it remains true that self-adjoint operators have
only real spectrum. The spectrum σ(T ) is the set of those λ ∈ C for which
T −λ is not bijective; its complement is called the resolvent set ρ(T ). It is
known from elementary operator theory that the spectrum of an operator
contains the set of eigenvalues, i.e., when the kernel ker(T −λ) is nontriv-
ial, just as in the finite-dimensional setting. We mention, however, that the
spectrum can contain also other points that are no eigenvalues as in the
infinite-dimensional setting T −λ can be injective but fail to be surjective.

Theorem 1.5. Let A = A∗ be a densely defined self-adjoint operator in a Hilbert
spaceH. Then there exists a unique resolution of the identity Eλ(·) that is con-
centrated on the spectrum σ(A) ⊆R of A and such that

A =
∫
σ(A)

tdE(t ).

We point out that this also means that self-adjoint operators are unitarily
equivalent to multiplication operators, that is, they can in a certain sense be
diagonalized.
Self-adjoint operators also play a big role in mathematical physics where
they for example appear as observables in formulations of quantum me-
chanics.

1.2. Extension Theory of Symmetric Operators An operator being self-ad-
joint implies also that it is symmetric but not the other way round. Consid-
ering the notations A = A∗ versus S ⊆ S∗ it is not just a question of how
an operator acts but rather where it is defined that gives information about
symmetry or self-adjointness. For operators R ⊆ T going to adjoints yields
T ∗ ⊆ R∗. So, informally speaking, given a symmetric operator S ⊆ S∗ it begs
the question if it is possible to somehow extend S — or equivalently restrict
S∗ — to a self-adjoint operator. In other words, does there exist a self-adjoint
operator A such that

S ⊆ A = A∗ ⊆ S∗
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is satisfied? And if yes, how many such extensions are there? This classical
question is investigated in the extension theory of symmetric operators, cf.
for example [31].
An operator is called closed if its graph is closed. It is called closable if it can
be extended to a closed operator. Symmetric operators are closable, so it is
no loss of generality to only deal with closed symmetric operators from now
on.
We will come back to the following example at different places in this intro-
duction to illustrate some of the appearing concepts.

Example (Part I). Let H := L2(0,∞) and consider the differential expression
τ :=− d 2

d x2 , the formal operation of taking the negative second derivative. Let

Dmax := {
f ∈H : f , f ′ ∈ ACloc (0,∞), f ′′ ∈ L2(0,∞)

}
,

i.e., all functions that are locally absolutely continuous, that have derivatives
with the same property and square integrable second derivatives. We define
an operator Lmax on domLmax :=Dmax and with action Lmax f := τ f = − f ′′,
which will be called the maximal operator as it is defined on the largest pos-
sible set in H. If we consider the domain

Dmin := {
f ∈Dmax : f (0) = f ′(0) = 0

}
,

and set Lmin := Lmax|Dmin then the so-called minimal operator Lmin is sym-
metric and its adjoint turns out to be just Lmax. An example for a self-adjoint
operator is L0 := Lmax|D0 with the set

D0 := {
f ∈Dmax : f (0) = 0

}
.

It is clear from the description that in this case

Lmin ⊆ L0 = L∗
0 ⊆ Lmax = L∗

min

holds. �

Von Neumann’s Approach The following well-known concepts can be found
with more details for example in [12] or [31]. Recall that for elements λ from
the resolvent set ρ(T ) of an operator the expression T −λ is bijective. The
inverse (T −λ)−1 is called the resolvent and it is a bounded, i.e., continuous,
operator that is defined everywhere. We also mention here the important
resolvent identity

(T −λ)−1 − (T −μ)−1 = (λ−μ)(T −λ)−1(T −μ)−1 λ �=μ. (1.3)
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Dropping the requirement that the resolvent be defined everywhere charac-
terizes the so-called points of regular type r (T ). Clearly, they encompass the
resolvent set. For a symmetric operator it turns out that there are at most
two connected components, containing the upper and lower half-planes
C±. Furthermore, it is in general true that on each component of r (T ) the
dimension of the orthogonal complement of ran(T −λ) is constant.

Definition 1.6. Let S ⊆ S∗ be a densely defined closed symmetric operator.
Then

Nλ := (ran(S −λ))⊥ = ker(S∗ −λ)

for λ ∈C\R are called defect spaces and

n± := dimNλ λ ∈C±

are called the defect indices of S.

Given the defect spaces one can show von Neumann’s first formula.

Theorem 1.7. Let S ⊆ S∗ be a closed densely defined symmetric operator and
λ �=λ. Then

domS∗ = domS �Nλ�N
λ

.

It then immediately follows that a symmetric operator is self-adjoint iff its
defect indices are (n+,n−) = (0,0). If the defect indices are not trivial, the
question arises when there are self-adjoint extensions A of S, i.e., operators
that fit

S ⊆ A = A∗ ⊆ S∗.

An answer can again be given in terms of the defect indices.

Theorem 1.8. A closed densely defined symmetric operator S ⊆ S∗ has self-
adjoint extensions in H iff n+ = n−.

The proof of this usually proceeds as follows: translate the problem to in-
vestigating when a partial isometry T , i.e., it satisfies 〈T x,T y〉 = 〈x, y〉 for
x, y ∈ domT , can be extended to a unitary operator, i.e., an isometry that is
defined everywhere. This is achieved via the Cayley transform, i.e., one con-
siders T := C(S) = (S + i )(S − i )−1. This T is then a partial isometry and has
the property that it maps ran(S−i ) =N⊥

i
into ran(S+i ) =N⊥

i . Hence, we are

in the following situation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T : N⊥
i

−→ N⊥
i⊕ ⊕

Ni

?��� Ni

17



So extending T to a unitary operator U in H boils down to requiring the
dimensions of Ni and Ni to be the same. Going back via the inverse Cayley
transform, one sees that A := C−1(U ) is a self-adjoint extension of S.
Moreover, one sees from this how von Neumann’s second formula parame-
trises all self-adjoint extensions of a given symmetry.

Theorem 1.9. Every self-adjoint extension AV of a closed densely defined
symmetric operator S ⊆ S∗ with equal defect indices n+ = n− is given by

dom AV = domS � (V + I )Ni

where V :Nλ →N
λ

is unitary.

Remark 1.10. One can also just parametrise symmetric extensions S̃ of S, i.e.
one has S ⊆ S̃ � S̃∗ ⊆ S∗, by using Ṽ which maps a subspace of Nλ unitarily
into an equally dimensioned subspace of N

λ
. �

Thus, von Neumann’s theory gives a complete picture of when self-adjoint
extensions exist and what they look like.

Example (Part II). Let us continue with the previous example and the oper-
ators Lmin ⊆ L0 ⊆ Lmax. We see that the defect spaces for the symmetry Lmin

is one-dimensional as Nλ = ker(Lmax −λ) = span
{

e−
�−λx

}
when λ is non-

real and where we take the branch cut of the square root along the negative
real axis. Hence, Lmin has defect indices (1,1). In contrast to this, note that
ker(L0 −λ) = {0} for all nonreal λ so that L0 has indeed defect indices (0,0).
By von Neumann’s first formula, we can thus write

Dmax =Dmin � span
{

e−
�−λx

}
� span

{
e−

�
−λx

}
.

If Vθ with θ ∈ [0,2π) is defined from e−
�−λx �→ eiθe−

�
−λx then the domain

of a self-adjoint extension LV of Lmin is given by

domLVθ =Dmin � (Vθ+ I )span
{

e−
�−λx

}
.

In terms of boundary values at the origin, it can be deduced that a function
belongs to this domain if it satisfies a condition of the form

f (0) = e−iθ/2 +eiθ/2

−�−λe−iθ/2 −
√
−λeiθ/2

f ′(0) =: sλ(θ) f ′(0)

with the parameter sλ(θ) ∈R∪ {∞} depending on the chosen unitary opera-
tor Vθ, i.e., it also holds that

domLVθ = {
f ∈Dmax : f (0) = sλ(θ) f ′(0)

}
.

In particular, for θ =π one gets s(π) = 0 and thus LVπ = L0. �
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1.3. Nevanlinna Functions We give a brief survey of Nevanlinna functions
at this point as they will appear naturally in the following sections.

Definition 1.11. An analytic function q : C\R→ C satisfying q(z) = q(z) for
z ∈ C\R and such that Imz > 0 implies Imq(z) ≥ 0 is called a Nevanlinna
function. In this case we write q ∈N .

This concept of analytic functions mapping the open upper halfplane C+

into the closed upper halfplane C+ ∪R can be generalized into several di-
rections. First, however, let us remember a classical theorem characterizing
Nevanlinna functions, cf. for example [1], Section 59 for (ii) and [27] for (iii).

Theorem 1.12. The following are equivalent:

(i) q ∈N
(ii) There exists a Borel measure μ, satisfying

∫
R

1
1+t 2 dμ(t ) <∞, as well as

constants a ∈R and b ≥ 0 such that

q(z) = a +bz +
∫
R

(
1

t − z
− t

1+ t 2

)
dμ(t ). (1.4)

(iii) There exists a Hilbert space (H,〈·, ·〉), a self-adjoint linear relation A = A∗

(cf. Remark 1.14), an element v ∈H and z0 ∈C+ such that

q(z) = q(z0)+ (z − z0)〈(I + (z − z0)(A− z)−1)v, v〉, (1.5)

where I is the identity in H.

This theorem thus opens up the possibility to study a Nevanlinna function
q in terms of the associated measure μ or via a Hilbert space model involv-
ing a self-adjoint linear relation A. We will in the following often encounter
Nevanlinna functions of the form z �→ 〈 f , (A− z)−1 f 〉 with a self-adjoint op-
erator A and a certain element f in a given Hilbert space.

Remark 1.13. We note that the measure μ appearing in Theorem 1.12 (ii) can
be calculated from q by way of the Stieltjes inversion formula

1

2

(
μ((α,β))+μ([α,β])

)= lim
ε↘0

1

π

∫β

α
Imq(t + iε)d t , (1.6)

where [α,β] ⊂R. �
Remark 1.14. Linear relations essentially generalize the notion of linear op-
erators. More concretely, if H is a Hilbert space then one considers linear
subspaces of H×H. Every linear operator is also a linear relation when
identifying the operator with its graph. Basic operations such as the sum
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or multiplication of two linear relations is defined purely algebraically. Fur-
thermore, concepts such as kernel, range and domain carry over easily to
linear relations. For operators all the above boils down to the usual defini-
tions. We draw attention to the following two points:
First, a linear relation T is an operator if and only if the multi-valued part

mulT := {g ∈H : (0; g ) ∈ T }

is trivial. Hence, linear relations can be thought of as multi-valued linear
operators.
Second, the adjoint relation T ∗ of a linear relation T is defined as the sub-
space

T ∗ := {( f ; g ) ∈H×H : 〈 f , v〉 = 〈g ,u〉 for all (u; v) ∈ T }.

This coincides again with the usual definition of an adjoint in the case of
an operator. With this in mind the definition of symmetric and self-adjoint
linear relations is straightforward.
For further details, see for example [2; 6–8; 27]. �
Note that the implication

Imz > 0 ⇒ Imq(z) ≥ 0

in Definition 1.11 for a given function q can be substituted by the require-
ment that the associated Nevanlinna kernel

Kq (z, w) := q(z)−q(w)

z −w
, (1.7)

is positive definite, i.e., that for any N ∈N and z1, . . . , zN ∈C+ the Hermitian
matrix (Kq (zi , z j ))N

i , j=1 has this property. With this it is now easy to see two
principal ways how to broaden the definition of Nevanlinna functions: On
the one hand, one can consider matrix- or operator-valued functions. On
the other hand, the condition (1.7) can in a sense be relaxed. It goes without
saying that both of these possibilities can then also be combined.
The first case is straighforward. For the sake of simplicity we only consider
matrix-valued functions as only those will (on occasion) appear in the fol-
lowing.

Definition 1.15. Let n ≥ 1. An analytic function Q : C\R→Cn×n is called an
(n ×n)-matrix-valued Nevanlinna function if it obeys the symmetry condi-
tion Q(z) =Q(z)∗ and it satisfies that Q(z)−Q(z)∗

z−z ≥ 0, i.e., that all these matri-
ces are positive semidefinite. In this case one writes Q ∈N n×n .
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For the second case, let us first recall that Kq (·, ·) having κ ≥ 0 negative
squares means that for any N ∈ N and z1, . . . , zN ∈ C+ the Hermitian matrix
(Kq (zi , z j ))N

i , j=1 has at most κ negative eigenvalues and κ is minimal regard-
ing this property.

Definition 1.16. A meromorphic function q : C\R→C satisfying q(z) = q(z)
and whose associated Nevanlinna kernel Kq (·, ·) has κ negative squares is
called a generalized Nevanlinna function. In this case one writes q ∈Nκ.

The case where Kq (·, ·) has κ= 0 negative squares is exactly (1.7) so that one
reverts back to N0 =N .
As is the case with the scalar setting, also matrix- and operator-valued Nevan-
linna functions can be generalized that way. As before, the condition of
Q(z)−Q(z)

z−z ≥ 0 is replaced by considering a Nevanlinna kernel KQ (·, ·) defined
as above and requiring this kernel to have κ negative squares.
Regarding Theorem 1.12, let us only mention that similar characterizations
exist. The integral representation becomes more involved whereas the oper-
ator representation still looks the same. However, in the case of generalized
Nevanlinna functions, these models will no longer involve a Hilbert space
but a Pontryagin space (cf. Definition 1.20), reflecting the negative squares
present in the Nevanlinna kernel.
For further information, especially on the generalized setting, see also the
survey article [29] and the references therein.

1.4. Parametrization of Self-adjoint Extensions via Krein’s Formula As we
have seen, the question of when self-adjoint extensions of a symmetry exist
has been answered in terms of equality of defect indices and these exten-
sions can furthermore all be described in von Neumann’s theory. However,
there are other possibilities to parametrise them, cf. for example [1] or the
more recent [3] and the references therein.
Take again a closed, densely defined symmetric operator S ⊆ S∗ with equal
and, for the sake of simplicity, finite defect indices n := n+ = n− <∞. Fur-
thermore, fix a self-adjoint extension A0 = A∗

0 and a nonreal number z0.
Choose also an n-dimensional auxiliary Hilbert space G and a bijective map
γz0 :G→Nz0 . This gives rise to the so-called Gamma-field

γz := (A0 − z0)(A0 − z)−1γz0 :G→Nz z ∈C\R (1.8)

with adjoint γ∗z :Nz →G. This in turn lets us define the so-called Q-function

Q(z) :=Q∗
0 + (z − z0)γ∗z0

γz z ∈C\R
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where Q0 satisfies

Q0 −Q∗
0

z0 − z0
= γ∗z0

γz0 .

It turns out that Q is a Nevanlinna (n ×n-matrix) function, cf. the above
Definition 1.15.
With these notions in mind one then arrives at a parametrisation of all self-
adjoint extensions. In particular, this is achieved by the following formula
involving resolvents.

Theorem 1.17 (Krein’s formula). Let S ⊆ S∗ be a densely defined closed sym-
metric operator with deficiency index (n,n). Choose a fixed self-adjoint ex-
tension A0, a Gamma-field γz and let Q be given as above. Then

(AT − z)−1 = (A0 − z)−1 −γz (T +Q(z))−1γ∗z (1.9)

establishes a one-to-one correspondence between all resolvents of self-adjoint
extensions AT of S and all self-adjoint linear relations T = T ∗ in G×G.

Remark 1.18. The case n = 1 is especially important for us in the following.
Here, the auxiliary Hilbert space G is just C. The set of all self-adjoint linear
relations in C×C is then made up of R together with the formal element {∞}.
�
Remark 1.19. Krein’s formula can be also used to to parametrise self-adjoint
extensions of a symmetric operator that are defined in a larger Hilbert space
properly containing the original one. These extensions with exit, and Krein’s
formula involving so-called generalized resolvents and Nevanlinna families,
do not play a role in the following and shall thus only be mentioned here.
More details can be found in the references given in the beginning of this
section. �
Example (Part III). We continue with the closed densely defined symmet-
ric Lmin ⊆ Lmax with defect indices (1,1). Then L0 is the obvious fixed self-
adjoint extension. The bijection γi : C→Ni acting as ω �→ ωe−

�−i x can be
extended to a Gamma-field by (1.8), i.e., γz : ω �→ ωe−

�−zx with transpose
γ∗z : f �→ 〈e−

�−zx , f 〉. A Q-function can be calculated as

q(z) =
∫∞

0
e−

�−i x
(
(z + i )e−

�−zx − i e−
�−i x

)
d x

= (z + i )
∫∞

0
e−(

�
i+�−z)x d x − i

∫∞

0
e−(

�
i+�−i )x d x

= z + i�
i +�−z

− i
1�
2
=−�−z +

�
i − i�

2
=−�−z +C
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with C ∈R. Given these ingredients, Krein’s formula then describes all canon-
ical extensions via

(Lt − z)−1 = (L0 − z)−1 − 〈e−
�
−z·, · 〉

q(z)+ 1
t

e−
�−z· (1.10)

The constant 1
t is chosen such that if t = 0 then the denominator on the right

side is infinite and so one gets back the original extension L0.

1.5. Extensions in Pontryagin spaces

Definition 1.20. Let V be a vector space endowed with an indefinite inner
product [·, ·]. Then V is called a Pontryagin space if there is a decomposition
V = V+ ⊕V− with respect to the inner product such that dimV− < ∞, the
inner product is negative definite on V− and (V+, [·, ·]) is a Hilbert space. In
this case, one often writes V =Πκ where κ is the dimension of the negative
definite space.

In other words, a Pontryagin space is a Hilbert space up to a finite dimen-
sional component where the inner product is negative definite.
In a Pontryagin space (Πκ, [·, ·]), symmetric and self-adjoint operators can
be defined involving the indefinite inner product [·, ·] just as was done in the
Hilbert space setting. The extension theory of symmetric operators works in
much the same way as discussed above and in terms of parametrization of
generalized resolvents, a similar formula to Krein’s (1.9) holds.
A difference in the formula in contrast to the previous section arises from
the indefinite scalar product. The indefiniteness is reflected in the fact that
Q(z) becomes a generalized Nevanlinna function (relation). If the Pontrya-
gin space Πκ has κ negative squares then the Q-function for the extension
problem will belong to the class Nκ. For further details, cf. [4; 18] and the
references therein.

It should be noted that such extension problems as discussed in the above
two sections can also be formulated in the language of boundary triplets.
We will not require this theory in the following but point to [17] as well as to
the references therein.

1.6. Perturbations of self-adjoint operators as extensions of symmetric op-
erators We start with a “non-example”: Let us consider a densely defined
self-adjoint operator A = A∗ in a Hilbert space H and let us perturb this op-
erator with a rank-one operator, i.e., for real α and ϕ ∈H one can consider
the sum

Aα := A+α〈ϕ, ·〉ϕ.
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This sum is well-defined on dom Aα = dom A and again Aα = A∗
α. If we now

define the operator S := A|ϕ⊥ then it turns out this is a symmetric operator
but it is of course no longer densely defined. Nevertheless, it seems natural
to think of Aα as a self-adjoint extension of S. One can calculate the resol-
vent of Aα and express it in terms of A0 = A to get

(Aα− z)−1 = (A0 − z)−1 − 〈(A0 − z)−1ϕ, ·〉
〈ϕ, (A0 − z)−1ϕ〉+ 1

α

(A0 − z)−1ϕ,

with the Nevanlinna function 〈(A0 − z)−1ϕ,ϕ〉 in the denominator. Even
though the theory we have seen so far was not applicable directly, this should
still remind us somewhat of Krein’s formula (2.5).
Before we go on, we need the following concept, cf. for example the general
outline given in [32].

Definition 1.21. Let A = A∗ be a self-adjoint operator in a Hilbert space H.
Define for n ∈Z a mapping ‖ · ‖n := ‖(|A|+1)n/2 · ‖H. Then one defines the
scale of Hilbert spaces Hn(A) generated by A as follows:

• For n ≥ 0 set Hn(A) := dom(|A|n/2). Then ‖ · ‖n is a norm on this set
and Hn(A) is complete in this norm.

• For −n < 0 define H−n(A) as the closure of H in the norm ‖ · ‖−n or,
alternatively, as the dual space ofHn(A), which is then again complete
in the norm ‖ ·‖−n .

Note that |A| can be defined via the spectral theorem for (unbounded) self-
adjoint operators. In the case of a semi-bounded operator, i.e., A ≥ c for
some c ∈ R, one can (potentially after a shift by a constant) take away the
absolute value. In particular, this is true for a positive operator.

Remark 1.22. By the above procedure a scale of spaces is obtained such that
Hm(A) ⊃Hn(A) for n > m and the smaller space is densely contained in the
larger space with respect the norm of the latter. The picture one should have
in mind looks like

· · · ⊃H−3 ⊃H−2 ⊃H−1 ⊃H0 =H⊃H1 ⊃H2 ⊃H3 ⊃ . . . ,

where for example (H2(A),‖ · ‖2) is just the domain of A together with the
graph norm. Furthermore, we also use 〈 f , g 〉 to denote the action of the
functional f ∈ H−n(A) on a function g ∈ Hn(A). If a self-adjoint operator
has been fixed, we simply write Hn for the respective spaces. �
Example (Part IV). IfH and L0 are chosen as before, then the scale of Hilbert
spaces coincides with the Sobolev spaces H k = W k,2 and their respective
dual spaces H−k .
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Singular Perturbations

In contrast to the “non-example” above, let us look at a situation where the
extension theory of symmetric operators as outlined in the previous sec-
tions can be applied, namely in the case of a singular perturbation: That is,
one considers ϕ outside (but “not too far” outside) of the original Hilbert
space, namely, ϕ ∈H−1\H or ϕ ∈H−2\H−1, cf. [32] and also the references
therein.
In this case the formal sum Aα := A +α〈ϕ, ·〉ϕ does not immediately make
sense. The goal is nevertheless to understand it as an operator in the Hilbert
space. This operator should be self-adjoint since the sum formally has this
property. Moreover, when we vary α and compare different formal sums
and their domains, the perturbation does not affect those elements u from
dom A that satisfy 〈ϕ,u〉 = 0. Hence, evaluation of the functional 〈ϕ, ·〉 takes
the place of considering ϕ⊥ above and thus we define a symmetric operator

S := A|{u∈dom A:〈ϕ,u〉=0}.

In this setting, S is now densely defined, closed and has deficiency indices
(1,1). It is thus plausible to expect operators Aα to be found among the self-
adjoint extensions of this symmetric operator.
The obvious choice for a certain self-adjoint extension to compare other ex-
tensions with is A0 = A. If ϕz := (A0 − z)−1ϕ then the defect spaces of S are
Nz := span{ϕz }. A gamma field γz in this setting is easily obtained from the
bijection γz0 : ω �→ ωϕz0 between C and Nz0 , where some z0 ∈ C+ has been
fixed. The Q-function appears from

q(z)−q(z0)

z − z0
= 〈ϕz0 ,ϕz〉

and we then get all generalized resolvents of S inside the Hilbert space H
from Krein’s formula, which appears as

(Aτ− z)−1 = (A− z)−1 − 〈ϕz , ·〉
q(z)− 1

t

ϕz

where t ∈ R∪ {∞}. Hence, via these resolvents the family (Aα) is defined in
terms of the family (At ). It turns out that givenϕ ∈H−1 allows for one partic-
ular t-value to be associated with one particular α-value. This is essentially
due to the fact that it is possible to decompose

(z − z0)〈ϕz0 ,ϕz〉 =−〈ϕ, (A− z0)−1ϕ〉+〈ϕ, (A− z)−1ϕ〉
where both summands are then well-defined. However, for more singular
perturbation elements ϕ ∈H−2\H−1 connecting one α-value to one t-value
requires additional assumptions.

25



1.7. Supersingular Perturbations In the case where ϕ ∈ H−n−2\H−2 for
n ≥ 1, so-called supersingular perturbations, the above construction does
not work.

• On the one hand, restricting S := A|{u∈dom A:〈ϕ,u〉=0} does not give a
symmetry with defect indices (1,1). Instead, this operator is essen-
tially self-adjoint, i.e., its closure is a self-adjoint operator, namely A,
and this is the only self-adjoint extension to work with in H. This of
course contrasts negatively with the expectation that (Aα) would still
be an infinite family of self-adjoint operators.

• On the other hand, one could consider A in a smaller spaceHn , where
its domain is then Hn+2. Restricting A to obtain an operator S as
above leads to S being symmetric with deficiency indices (1,1). Then,
the machinery of Krein’s formula can be applied and a family of self-
adjoint operators in Hn is parametrised in terms of their resolvents.
However, this approach has several disadvantages. For one, the rank-
one operator in Krein’s formula, that is

〈ψz , ·〉
q̃(z)+ 1

t̃

ψz ,

involves the defect elements ψz , calculated in Hn , that have no direct
connection to the perturbation element ϕ ∈H−n−2 as in the previous
singular perturbation case.

There exist several operator models dealing with supersingular perturba-
tions. On the one hand, is is possible to consider the perturbation prob-
lem in a Pontryagin space setting as was done in [10], for an application see
for example also [11]. On the other hand, a different model due to Kurasov
could give an interpretation of the perturbations in a Hilbert space, cf. the
series of papers [21; 22; 24; 25] and in particular [23]. However, this latter
model requires the operator A to be semi-bounded. A comparison of the
two approaches, Pontryagin space and Hilbert space models, is presented
in [9].
From our viewpoint the Hilbert space model is of particular interest. It is
used in Papers I and II to analyse certain Sturm-Liouville differential expres-
sions. Furthermore, in Paper III the requirement for A to be semi-bounded
is investigated. We will thus give a short overview of this model here.
In the case of semibounded operators, one can consider H :=Hn ⊕Cn and
equip it with a Hilbert space structure. The smaller space Hn � H allows
one to define a symmetric operator with deficiency indices (1,1). The role of
the extension Cn is to involve n elements of the form (A−μ j )−1ϕ, which are
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exactly the kind of elements that appear in Krein’s formula in the case of sin-
gular perturbations. Hence, in order for Krein’s formula to involve (A−z)−1ϕ

one accordingly needs to add such elements to the space. Furthermore, this
also connects the defect element in H and the perturbation element ϕ.
The Hilbert space structure on the component Cn is achieved by choosing
μ1, . . . ,μn from the resolvent set of A, real and mutually different, a choice
which clearly cannot be guaranteed for any (non-semibounded) self-adjoint
operator. Note furthermore that there exists an embedding ιH : H→H−n .
Given H one can build two operators in this space, a maximal operator Amax

and its adjoint Amin := A∗
max in H. The maximal operator arises when con-

sidering the restriction of A in Hn to the set {u ∈ Hn+2 : 〈ϕ,u〉 = 0}, then
taking the triplet adjoint A† with respect to Hn ⊂H ⊂H−n and then finally
restricting A† to H. It then turns out that Amin is a symmetric operator with
deficiency indices (1,1). From this point on forwards it is a question of ap-
plying extension theory and using the resulting family of self-adjoint opera-
tors (At ) to define (Aα). Finally, Krein’s formula can then be restricted to Hn ,
i.e., the first component, and embedded into the space of functionals H−n ,
giving rise to the formula

ιH(At − z)−1
∣∣∣Hn

= (A− z)−1 − 〈(A− z)−1ϕ, ·〉
b(z)(Q(z)+1/t )

(A− z)−1ϕ, (1.11)

where Q(z) is the Q-function from the extension inH and b(z) = (z−μ1) · · · (z−
μn) is a polynomial. Hence, one sees that building a Hilbert space model
that closely mirrors Krein’s formula from the singular perturbation case comes
at the price of a generalized Nevanlinna function b(z)Q(z) appearing in the
denominator.

Remark 1.23. It should be noted that there are two formulations of the Hilbert
space model. Informally speaking, the so-called “cascade” model (used in
Papers I and II) involves a certain number of progressively less singular ele-
ments to build a Hilbert space, whereas the so-called “peak” model (appear-
ing in Paper III) uses “equally singular” elements in such a construction. The
above description of the model is based on the “peak” model. The formula-
tions are, however, equivalent by way of the resolvent identity (1.3).

2 Sturm-Liouville Problems

The following section has been adapted from [30] and was shortened a little
in the process. More information on some of the often well-known results
can be found for example in [1; 34], see also the treatise [35]. Let us now start
with a quite general definition to set the foundation.
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Definition 2.1. Let (a,b) be a bounded or unbounded interval. Further-
more, let p, q,r be measurable complex-valued functions on (a,b). Suppose
that r and p vanish at most on a set of measure zero and that r is nonnega-
tive. Then

τ := 1

r

(
− d

d x

(
p

d

d x

)
+q

)
is called a Sturm-Liouville differential expression (with coefficients p, q,r ).

Definition 2.2. Let τ be a Sturm-Liouville differential expression. An oper-
ator

L :

⎧⎨
⎩ L2(a,b) ⊇ dom(L) → L2(a,b)

f �→ τ f

is called a realization of τ in the Hilbert space L2(a,b). It is called a symmet-
ric or self-adjoint realization if L has the respective property, i.e., if L ⊆ L∗ or
L = L∗.

Remark 2.3. Note that under certain conditions the equation

−(p(x)u′(x))′ +q(x)u(x) =λr (x)u(x),

together with some boundary conditions, can be transformed, by way of the
Liouville transform, to the so-called Liouville normal form

−y ′′(x)+ q̃(x)y(x) =λy(x),

where λ is a complex parameter. �
Definition 2.1 is quite broad and for the purposes of this work more exten-
sive than necessary. In the following, our main point of interest lies with the
coefficient q . In the light of Remark 2.3, it will suffice to concentrate on the
case where p,r ≡ 1. Furthermore, we want to investigate these differential
expressions in the setting of self-adjoint operators acting in a Hilbert space.
Thus, we want the image of q to be real, which will make the differential
expression formally self-adjoint.
Hence, from now on we will only use the following

Definition 2.4. Let (a,b) be a bounded or unbounded interval. Further-
more, let q be a locally integrable real-valued function. Then by a Sturm-
Liouville differential expression we will always mean an expression of the
form

τ :=− d 2

d x2 +q(x). (2.1)

The coefficient q is called the potential of τ. Furthermore, a realization of τ
inside the Hilbert space L2(a,b) is also called a Schrödinger operator.
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We also need the following endpoint classification.

Definition 2.5. If the left endpoint a is finite and if for some, and hence for
any, c ∈ (a,b) we have ∫c

a
|q(x)|d x <∞

then a is a regular endpoint; otherwise it is called singular. Similarly, we
define regularity/singularity of the endpoint b. If a and b are both regular
endpoints, then the expression τ is called regular. Otherwise, τ is called sin-
gular.

There is an additional finer categorization of endpoints due to Weyl.

Definition 2.6. Consider the equation τu =λu for λ ∈C.

1. If for all λ ∈C all its solutions are square integrable near the endpoint
a then τ is said to be in the limit circle case at a.

2. If for all λ ∈C there is at least one solution that is not square integrable
at the endpoint a then τ is said to be in the limit point case.

Similarly, we define limit circle and limit point case at b.

It is clear from the definition that limit circle and limit point case exclude
each other. Moreover, we have

Theorem 2.7 (Weyl’s alternative). Let τ be a Sturm-Liouville differential ex-
pression. If there exists some λ0 ∈ C such that all solutions of τu = λ0u are
square integrable at an endpoint, then the same is true for any λ ∈C. Conse-
quently, τ is at any endpoint either in the limit circle or the limit point case.

We point out that the limit point case does not say that no solution is square
integrable at the respective endpoint. Instead, the following is true: a basis
of the two-dimensional solution space of τu = λu can be chosen such that
one vector is still square integrable at the endpoint whereas the other one
cannot fulfill this requirement.
We note that a regular endpoint is automatically in the limit circle case.
Hence, it is the singular endpoints that receive an additional distinction
through this terminology.
In the following we will only deal with problems on the half-line, i.e., when
the interval is given by (0,∞). Thus, the right endpoint is always singular
and we assume it to be in the limit point case.
The potential q now determines what difficulties one faces when analysing
a Sturm-Liouville problem. Historically, the analysis started with “nice” po-
tentials that let τ be regular at the left endpoint — think of a test function
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q ∈C∞
0 (0,∞) as an example. In the next section we will review the classical

case of a differential expression τ with only one singular endpoint.
However, for a potential that fails to be integrable at the origin we end up
with two singular endpoints. Depending on whether 0 will fall into the limit
circle or limit point case we will need to adapt the classical approaches to
some extent. In this situation one could consider the so-called Bessel po-
tential q(x) = q0+q1x

x2 as an example and continue from this starting point.
This more general setup will be the topic of the later sections in the intro-
duction.

2.1. The Classical Case In this section we assume that q ∈ L1
l oc [0,∞). In

particular, this means that it is integrable at the left endpoint. Hence, the
differential expression (2.1) has one regular and one singular endpoint. Fur-
thermore, we assume the singular endpoint to be in the limit point case.

Titchmarsh-Weyl m-function

First, one can look at the problem from the viewpoint of ordinary differential
equations. Thus, we take the equation

−u′′(x)+q(x)u(x) =λu(x) λ ∈C\R (2.2)

together with the two sets of initial conditions

u1(0,λ) = 0

u′
1(0,λ) = 1

and
u2(0,λ) = 1

u′
2(0,λ) = 0

(2.3)

corresponding to a Dirichlet and a Neumann condition. From the standard
theory we can thus find two solutions u1 and u2 to the respective second
order initial value problems. By the chosen initial conditions it is appar-
ent that they are linearly independent and, thus, they will span the space
of solutions. Any two linearly independent solutions are called a funda-
mental system for the equation. In our case this fundamental system is al-
ready uniquely determined and its Wronskian is normalized due to the given
boundary conditions, i.e.,

Wx (u2,u1) :=W (u2,u1)(x) ≡W (u2,u1)(0) = u2(0)u′
1(0)−u′

2(0)u1(0) = 1

Note also that since both solutions are continuous up to the left endpoint,
they are clearly square integrable there. This reflects again the fact that the
left endpoint is in the limit circle case.
On the other hand, the right endpoint should by assumption fall into the
limit point case. This means that there exists a — unique up to a complex
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factor — solution ψ to the above problem that will be square integrable near
infinity. But as we already have chosen a basis for our solution space, it must
be possible to express ψ in this basis, i.e.,

ψ(x,λ) = u2(x,λ)+m(λ)u1(x,λ) λ ∈C\R

for any fixedλ and it is now uniquely determined by this linear combination.
This solution ψ is called the Weyl solution.
We note that our Sturm-Liouville equation (2.2) depends analytically on the
spectral parameter λ, as do the intial conditions (2.3). Hence, its solutions
will display the same kind of dependence on λ. This implies that m(λ) is
in fact an analytic function on the upper and lower half plane, called the
Titchmarsh-Weyl m-function. It is, furthermore, easy to see that m(λ) is
in fact a Nevanlinna function Hence, m(λ) has an integral representation
involving a measure μ, cf. (1.4), which will play a role below.
Finally, this function may have discontinuities on R. We will at the end of
the section see how the location and type of discontinuities is connected to
the spectrum of a certain self-adjoint realization.

Example (Part V). As an illustration let us consider q ≡ 0, which will connect
back to the Example Part I-IV we have seen so far. Equation (2.2) simplifies
to −u′′(x) = λu(x). The initial conditions (2.3) allow us to find the funda-
mental system

u1(x,λ) = sin(
�
λx)�
λ

and u2(x,λ) = cos(
�
λx),

where (−∞,0] is again the branch cut for the root. To obtain the Weyl solu-
tion, we must find m(λ) such that for λ ∈C\R the function

ψ(x,λ) = cos(
�
λx)+m(λ)

sin(
�
λx)�
λ

is square integrable near infinity. We see that this is the case if we choose

m(λ) :=−
�
−λ=

⎧⎨
⎩ i

�
λ λ ∈C+

−i
�
λ λ ∈C−

and, thus, the Weyl solution is

ψ(x,λ) = e−
�−λx =

⎧⎨
⎩ ei

�
λx λ ∈C+

e−i
�
λx λ ∈C− .
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In other words, we have recovered the Weyl solution as the defect element of
the operator Lmin. Note that m(λ) is clearly analytic on the upper and lower
halfplane, it maps C+ into itself, and satisfies the symmetry condition since

m(λ) =−
√
−λ=−

�
λ= m(λ).

Hence, it is indeed a Nevanlinna function. �

Spectral transform and measure

Given a Sturm-Liouville differential expression τ we have so far seen how
the function m(λ) and, via (1.4), the measure μ can be associated to it. In
terms of operators, it is on the one hand possible to consider the so-called
Dirichlet realization L0 of τ in L2(0,∞), see the section immediately below
for a definition.
On the other hand, one can look at the new Hilbert space L2(R,μ) and try to
recapture the operator L0 in this space. It turns out that the multiplication
operator in this new space and L0 in the original Hilbert space are in fact
unitarily equivalent by way of the transformation

U :

⎧⎨
⎩ L2(0,∞) → L2(R,μ)

f �→ ∫∞
0 u1(x,λ) f (x)d x

with inverse

(U−1F )(x) =
∫
R

u1(x,λ)F (λ)dμ(λ).

Note that
∫∞

0 u1(λ, x) f (x)d x is not obviously well-defined but should be un-

derstood as the limit limN→∞
∫N

0 u1(x,λ) f (x)d x in the space L2(R,μ). The
definition of the inverse involves a similar limit in L2(0,∞).
Hence, one can choose between working with a more difficult second deriva-
tive operator and the Lebesgue measure or with a simpler operator of mul-
tiplication by the independent variable at the cost of a more complicated
measure μ.

Example (Part VI). For the Titchmarsh-Weyl function m(λ) = −�−λ one
can employ the Stieltjes inversion formula (1.6) to find that the associated
spectral measure is dμ=π−1χ[0,∞)

�
t d t . The measure is concentrated along

the set where −�−λ “feels” the branch cut for the square root. �

Realizations via extension theory

It is also possible to analyze τ via its self-adjoint realizations in the Hilbert
space L2(0,∞). To this end we first look at the maximal operator Lmax —
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note the obviously parallel definitions of the operators in the Example Part I
— defined on

dom(Lmax) := {
f ∈ L2(0,∞) | f , f ′ ∈ ACl oc (0,∞),τ f ∈ L2(0,∞)

}
,

i.e., its domain are all functions such that an application of τ gives again an
element of L2(0,∞), and the minimal operator Lmin with

dom(Lmin) := {
f ∈ dom(Lmax) | f (0) = f ′(0) = 0

}
.

Alternatively, the minimal operator appears after considering a realization
of τ defined on C∞

0 (0,∞), i.e., all smooth and compactly supported func-
tions, and then taking the closure in L2(0,∞).
Neither of these two operators is self-adjoint in the current situation of a τ

with only one singular endpoint, but integration by parts shows that Lmin is
symmetric. Furthermore, its adjoint turns out to be Lmax and its deficiency
indices are (1,1). Hence, we know again that there exists a whole family of
self-adjoint extensions (Ls)s∈R∪{∞} of Lmin. It turns out that the domains can
be characterized as

dom(Ls) := {
f ∈ dom(Lmax)| f (0)− s f ′(0) = 0

}
.

Compare even this to the Example Part II.
One immediately notes that the choice s = 0 corresponds to the Dirichlet
boundary condition f (0) = 0, which then lends its name to the so-called
Dirichlet realization L0 of τ. In the following, L0 serves as the point of refer-
ence, that is to compare different self-adjoint extensions to this fixed one.

Remark 2.8. The choice s =∞ gives the boundary condition f ′(0) = 0, which
is easily seen from the equivalent formulation 1

s f (0)− f ′(0) = 0. Hence, L∞
is referred to as the Neumann realization of τ. �
A direct calculation of the resolvent of Ls and comparing it to the one of L0

reveals

(Ls −λ)−1 = (L0 −λ)−1 − 〈ψ(·,λ), ·〉
m(λ)− 1

s

ψ(·,λ). (2.4)

Example (Part VII). We use {u1,u2}, the already determined fundamental
system for −u′′ = λu as well as the respective m-function m(λ) = −�−λ.
Furthermore, the Weyl solution was shown to be ψ(x,λ) = exp(−�−λx).
Hence, the above formula for the resolvent of Ls is

(Ls −λ)−1 = (L0 −λ)−1 − 〈e−
�

−λ·, ·〉
−�−λ− 1

s

e−
�−λ·.

This should of course already remind us of (1.10) in Example Part III. �
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Realizations via perturbation theory

Consider finally also the formal perturbations of the self-adjoint Dirichlet
realization L0

L0 + t〈ϕ, ·〉ϕ t ∈R∪ {∞}.

To analyze τ it turns out that the perturbation element ϕ should be defined
with the help of the Weyl solution ψ(·,λ). In fact, ϕ should be given by

ϕ := (L0 −λ)ψ(·,λ)

but this definition is not immediately meaningful. Even though the Weyl
solution is square integrable it is not guaranteed to be in the domain of L0.
At the very least the perturbation element ϕ can then however be found in
H−1(L0) or H−2(L0). Thus, the framework of singular perturbations is avail-
able.
Through integration by parts one finds

〈ϕ, f 〉 = 〈(L0 −λ)ψ(·,λ), f 〉 = 〈ψ(·,λ), (L0 −λ) f 〉 = f ′(0)ψ(0,λ)

and thus that the condition 〈ϕ, f 〉 = 0 is nothing but f ′(0) = 0. Hence, fol-
lowing the approach leading to Krein’s formula means that the symmetry
S := L0|{ f ∈dom(L0): f ′(0)=0} is nothing but the operator Lmin from the previous
section.
The defect spaceNλ is spanned by the Weyl solutionψ(·,λ) and after picking
a Gamma-field and a Q-function, Krein’s formula takes the form

(Lt −λ)−1 = (L0 −λ)−1 − 〈(L0 −λ)−1ϕ, ·〉
Q(λ)+ 1

t

(L0 −λ)−1ϕ. (2.5)

The singularities of the Q-function are again in a direct correspondence to
the spectrum of the underlying symmetric operator Lmin.

Connections between the approaches

We can start by comparing formulae (2.4) and (2.5). Both describe the same
family of self-adjoint extensions of Lmin. Furthermore, (L0 −λ)−1ϕ=ψ(·,λ)
holds by definition. Thus, even the numerators in the respective fractions
must be equal, which implies that

Q(λ)−m(λ) ≡ const.

Secondly, we saw that L0 in L2(0,∞) was unitarily equivalent to the mul-
tiplication operator A f (t ) := t f (t ) in L2(R,μ). Since unitary equivalence
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preserves the spectrum, σ(A) = σ(L0) holds. The spectrum of a multipli-
cation operator is, however, determined by the support of the measure in
the underlying Hilbert space. On the other hand, μ is also connected to the
Titchmarsh-Weyl m-function via (1.4). Hence, singularities of μ translate to
those of m(λ).
Finally, this now implies that

σ(L0) = {singularities of m} = {singularities of Q}

and

σ(Ls) =
{

singularities of − 1

m − 1
s

}
s ∈ (R\{0})∪ {∞}.

2.2. Generalisations to two singular endpoints In the previous section,
the potential q was assumed to be locally integrable up to the left endpoint.
We will now drop this requirement and from now on let

q ∈ L1
loc (0,∞)\L1

l oc [0,∞).

This means that we are now considering more singular potentials and dif-
ferential expressions with two singular endpoints. However, as by Weyl’s al-
ternative, we can divide this more general setup into yet another two cases.
One of them, namely when the left endpoint is in the limit circle case, is
easier to handle, as we see in the following

Remark 2.9. The treatment of τ is quite similar to before even when the left
endpoint is no longer regular but still in the limit circle case.

• There are still fundamental systems of the equation τu =λu such that
both basic solutions are square integrable at zero. It requires some
extra work to ensure analyticity in the spectral parameter. It is then
possible to define ψ and m as before and even see that m is a Nevan-
linna function.

• One can again use the Stieltjes inversion formula (1.6) to associate a
measure μ to m. With some additional work it can be identified as the
spectral measure of a self-adjoint realization of τ and there is again a
unitary transformation of this realization to a multiplication operator
in L2(R,μ).

• The operator Lmin is still symmetric with deficiency index (1,1). From
standard extension theory we thus again get a family of self-adjoint
extensions (Ls)s∈R∪{∞} and also (2.4).

35



• The elementϕ := (L0−λ)ψ(·,λ) still can be found in eitherH−1 orH−2.
Hence, Krein’s formula (2.5) in the perturbation theory picture carries
over without modifications.

We can thus draw the conclusion that the singular limit circle case at zero
does not pose any greater conceptual difficulties than the regular case. �

Assumption. From now on let the differential expression τ be in the limit
point case at both endpoints.

It seems clear that generalizations of the classical approaches should in the
end again be somehow comparable. Recall that in the above this boiled
down to the statement

m(λ)−Q(λ) ≡ const ,

i.e., both the m-function that was found in a differential equation picture
as well as the Q-function that stemmed from a perturbation problem and
Krein’s description of resolvents contained all important information about
the underlying τ. Hence, a similar connection even in the more singular
setting would be the outcome to expect.
However, the setup looks fundamentally different in this case:

• Finding a “good” fundamental system of τu = λu via properties at 0
is problematic, not to mention the question of analyticity in λ. There
is then also no obvious way to read off the m-function nor a spectral
measure.

• One could think of splitting the problem in two, by which we mean
splitting the interval via (0,∞) = (0,c]∪ [c,∞). However, this leads to
two m-functions, one on each subinterval, which can then be com-
bined to one 2×2-matrix valued Titchmarsh-Weyl-function and cor-
responding matrix-valued spectral measure. For many potentials, a
scalar m-function and spectral measure should be enough, though.

• On the operator theoretic side, Lmin = Lmax = L∗
min, i.e., there is only

one self-adjoint operator.

• The Weyl-solution is no longer square integrable at zero and, thus, ψ ∉
L2(0,∞). Hence, in the perturbation image, we cannot easily make
sense of ϕ.

It is thus necessary to use different techniques in the analysis of differential
expressions τ.
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2.3. The hydrogen atom example As an example for this case one can con-
sider the potential

q(x) = q0 +q1x

x2 q0 ≥ 3

4
,

where the requirement on q0 ensures the limit point case at the origin.

Remark 2.10. Note that the potential comes from describing a hydrogen
atom in three dimensions. After a separation into an angular and a radial
part, the latter gives the above q . The calculation is carried out in, for exam-
ple, [33], Sections 10.2-4. Cf. also [13], Section 39. �
We want to shortly describe three different approaches to the analysis of the
respective differential expression τ.

ODE theory - Fulton [14]

In this example one can employ Frobenius theory to solve second order dif-
ferential equations of the form

a(x)y ′′(x)+b(x)y ′(x)+ c(x)y(x) =λy(x) x ∈ (0,∞), λ ∈C,

where the coefficient functions satisfy that a(x), xb(x), x2c(x) all are analytic
at 0. Clearly this is the case in our situation.
One can now make a generalized power series Ansatz. Eventually, one then
arrives at a fundamental system of solutions

y1(x,λ) = xr1 +
∞∑

k=1
ak (λ)xk+r1

y2(x,λ) = xr2 +
∞∑

k=1
bk (λ)xk+r2

(2.6)

Here, r1,r2 are the roots of the so-called indicial equation, satisfying r1 ≥ r2

and r1 + r2 = 1. Due to the limit point case at zero, r1 ≥ 3/2. It should be
noted that the second solution y2 might have additional logarithmic terms
if r1 − r2 ∈N but the argument runs generally the same course.
The important thing to take away here is that y1 is square integrable at the
origin (“regular” solution), whereas y2 is not (“singular” solution).
However, it turns out that both solutions and their derivatives are entire
in the spectral parameter λ and satisfy the symmetry condition yi (x,λ) =
yi (x,λ). Furthermore, the fundamental system can be normalized, i.e., the
Wronskian of the solutions is one.
In a further step one can define a coefficient m(λ) by requiring that the lin-
ear combination

ψ(·,λ) := y2(·,λ)+m(λ)y1(·,λ)
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gives the Weyl solution, i.e., the solution that is square integrable at infinity.
We note the following:

• m(λ) is called a generalized Titchmarsh-Weyl coefficient. It is not a
Nevanlinna function, but later turned out to be a generalized Nevan-
linna function, i.e., belonging to Nκ.

• Fulton could associate a scalar measure to the m-function, which
then leads to a spectral transform.

• The outlined approach even works for other potentials, e.g., one can
add an analytic perturbation to the potential in the hydrogen atom
example and Frobenius theory is still available, cf. also [15].

Operator theory - Dijksma & Shondin [11]

For the slightly more specialized potential where q1 = 0, i.e., the Bessel po-
tential q(x) = q0/x2, the authors gave a model for perturbations of the form

L0 + t〈ϕ, ·〉ϕ

where ϕ is supersingular. This model made use of a Pontryagin space and
in the description of the resolvents of the perturbed operator a Q-function
appeared.
In this example it then holds that Fulton’s m-function and the Q-function of
Dijksma and Shondin coincide.

Operator theory - Kurasov & Luger [26] For the full example of arbitrary
q1 ∈R, Kurasov and Luger also used a model for the supersingular perturba-
tion

L0 + t〈ϕ, ·〉ϕ,

this time, however, in a Hilbert space. The perturbation element is defined
as ϕ = (L0 −λ)ψ(·,λ), where ψ is again the Weyl solution of the problem
τu =λu.
A priori it is only known that ϕ is not inside the space H−2(L0). However,
utilizing the fundamental system {y1, y2} that appeared in Fulton’s approach
above, it is possible to analyze the asymptotic behaviour of the Weyl solution
at the origin. Note that it is the behaviour of the “singular” solution y2 at the
origin that determines the asymptotic properties of ψ, i.e.,

ψ(x,λ) = o(xr2 ) x ↘ 0.
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The key observation is now to notice that the coefficients of the lowest pow-
ers of x is independent of the spectral parameter λ in (2.6). Hence, if the
difference ψ(·,λ)−ψ(·,μ) is considered, the singularity at the origin will be-
come better, namely

ψ(x,λ)−ψ(x,μ) = o(xr2+2) x ↘ 0.

It follows from the recursive calculation of the coefficients ak (λ) and bk (λ)
in (2.6) that the coefficient of the lowest power in x in the above difference of
Weyl solutions only depends on λ−μ. Thus, by dividing out this factor, one
can work with two such differences and regularize the solution even more
at the origin, i.e.,(

ψ(x,λ)−ψ(x,μ)

λ−μ

)
−

(
ψ(x,μ)−ψ(x,ν)

μ−ν

)
= o(xr2+4) x ↘ 0.

This approach models applying the resolvent of L0 for different points in the
resolvent set. Doing this sufficiently often one arrives at an element from
L2(0,∞). Hence, the perturbation element belongs to some H−n with n ≥ 3.
One can thus employ the theory of supersingular perturbations described
in Section 1.7 and arrive at the Q-function of the problem. This Q-function
Q(λ) will itself be a usual Nevanlinna function since the extension problem
is modeled in a Hilbert space. However, after embedding the model into the
space H−n , cf. (1.11), one can compare the function b(λ)Q(λ) with m(λ).
It then turns out that this product of a polynomial and a Q-function and
Fulton’s m-function only differ up to a polynomial of low degree. In fact, the
degree of the polynomial depends on the strength of the singularity of the
potential at the origin, which is regulated by the coefficient q0.
In conclusion, an agreement between the different approaches is achieved
for the Hydrogen atom example.

2.4. Strongly singular potentials Naturally, the question now arises how
general the potentials can be. From the start we should already exclude po-
tentials that lead to double spectrum, in which case e.g. a scalar m-function
will not do. The following two paragraphs describe some results on the
Titchmarsh-Weyl function side, which are an important starting point for
Papers I and II.

Gesztesy & Zinchenko [16] In this work the authors introduce a class of
functions often referred to as strongly singular potentials. The important
assumption here is the existence of a certain “regular” solution of τu = λu.
In essence, it is required that there exists a solution φ(x,λ), analytic in an
open neighbourhood O of R and square integrable at 0 for all λ ∈O.
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With this solution one can build a fundamental system, i.e., also find a “sin-
gular” solution θ(x,λ), analytic in λ in some neighbourhood O′ ⊆O of the
real line for every x, and such that the system is normalized via its Wron-
skian.
It now follows that there is again a generalized Titchmarsh-Weyl coefficient
to uniquely express the Weyl solution ψ in this system. In general, this m-
function is not a Nevanlinna function. However, one can still associate a
scalar measure ρ to this m-function. This gives rise to a spectral transfor-
mation akin to the classical case.
Finally, it should be noted that it is not a-priori clear whether a given poten-
tial indeed allows us to find a “regular” solution as above. The authors give a
list of sufficient conditions that ensure for this assumption to hold, cf. [16],
Examples 3.10 and 3.13. While this list is not optimized in the sense of giving
all potentials for which this approach works, it nevertheless includes those
examples that play a role in the Papers I and II, namely

l (l +1)

x2 + “less singular terms” and
1

x4 .

Kostenko, (Sakhnovich) & Teschl [19; 20] Within this framework of strongly
singular potentials, several improvements could be achieved.
For a start, Kostenko, Sakhnovich and Teschl in [19] gave two equivalent
formulations of the regularity condition posed for the “regular” solution φ.
First, one can ask for φ to be analytic for all λ ∈ C instead of just in an open
neighbourhood O of R and for it to belong to L2 at the left endpoint for all λ.
Secondly, one can also state it as L0|(0,c], for any c ∈ (0,∞), having discrete
spectrum.
Furthermore, they manage to describe all possible Titchmarsh-Weyl coeffi-
cients, give integral representations, and obtain the spectral types from the
boundary behaviour of the generalized Titchmarsh-Weyl function, amongst
other results. As an application inverse problems are treated.
Later, Kostenko and Teschl in [20] consider the case of the perturbed spher-
ical Schrödinger operator

τ=− d 2

d x2 + l (l +1)

x2 +q(x) (2.7)

with xq(x) ∈ L1[0,1] (meaning that the determining singularity is in the x−2

term) and l ≥ 1/2 (to ensure the limit point case at 0) in more detail. In par-
ticular, they study the behaviour of the m-function in dependence of the
choice of the fundamental system {φ,θ}. It is shown that the fundamen-
tal system can always be taken in such a way as to make the m-function a
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generalized Nevanlinna function, i.e., m ∈Nκ with κ given in terms of the
parameter l describing the strength of the potential at zero.
Hence, if one can treat such potentials in the supersingular perturbation
picture, a comparison of the appearing Q-function to this m(λ) is of interest.

2.5. Further results In all the above treatment the singularity of the poten-
tials is firmly set at the left endpoint. This restriction of sorts has, however,
also been lifted in the literature. To exemplify this point, we draw attention
to the paper by Brown, Langer and Langer [5].
There, the authors consider a Bessel-type differential equation

−v ′′(x)+ α

2

(α
2
+1

) v(x)

(x −1)2 =λv(x) x ∈ [0, a].

If a > 1, the singularity will lie at the inner point x = 1 of the interval [0, a].
Rewriting the equation in the so-called impedence form

−
(

1

|x −1|α y ′(x)

)′
=λ

1

|x −1|α y(x) x ∈ [0, a] (2.8)

one notices that the equation is regular for α ∈ (−1,1) and the singularity at
x = 1 is in the limit circle case from both sides. This corresponds roughly to
the study of the classical case above.
However, for α ≥ 1 the above equations are in the limit point case at x = 1
from both sides. If the boundary conditions at the endpoints of the interval
are fixed, there is only one self-adjoint realization inside L2(0, a). In fact,
this operator is an orthogonal sum of the respective self-adjoint operators
on the left and right side of the singularity, where also the Hilbert space is
split accordingly as L2(0,1)⊕L2(1, a).
In the paper, the singular measure μα with density |x −1|−α on [0, a] is used
to build an — indeterminate with κ negative squares — inner product on
C k [0, a] (for appropriate k and κ). This space plus the inner product can
then be lifted to a Pontryagin space Πκ(μα). Amongst other results, the au-
thors then describe all self-adjoint relations or operators in Πκ(μα) that can
be associated to (2.8) via interface conditions while leaving the boundary
conditions at x = 0 and x = a fixed.

We finally also mention that there are yet other approaches to analyze sin-
gular potentials. In particular, by rewriting the differential equation in the
problem to a system of first order equations one arrives at canonical sys-
tems, which are of the form

Y ′(x) =λJ H(x)Y (x) x ∈ [0,L), where J =
⎛
⎝0 −1

1 0

⎞
⎠ ,
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Y is vector valued and H(x) is a real, locally integrable 2×2-matrix-valued
function on [0,L) (called the Hamiltonian of the system and playing roughly
the role of the potential). See for example [28] and the references therein.

3 Summary of Papers

To conclude this introductory section, we will give a short presentation of
the papers included in this thesis. The first two papers, Paper I and II, were
already included in [30] and are concerned with slightly more concrete prob-
lems. The third paper is more theoretical in nature as it also investigates the
theory that was used in the previous two papers. The fourth paper, finally,
employs these findings in the case of a particular self-adjoint operator.

Paper I

We consider the differential expression

τ :=− d 2

d x2 + l (l +1)

x2 +q(x)

on the halfline (0,∞), where the singularity at the origin is stemming from
the x−2-term. We assume that l ≥ 1/2 to get limit point case at the origin and
we assume that the potential q is such that limit point case also holds at the
right endpoint. Studying this expression in the framework of ODEs, as was
done in [20], one arrives at the Titchmarsh-Weyl function m(λ) which turns
out to be a generalized Nevanlinna function.
Building on the treatment of the hydrogen example in [26] we ask the ques-
tion if it is also possible to investigate this class of potentials by operator
methods. Namely, is it possible to employ the Hilbert space model for su-
persingular perturbations? Will the appearing Q-function be close to the
function m(λ) that has already been described in the literature? In this case,
is it even possible to get complete agreement, something that already hap-
pened for the hydrogen atom example in the Pontryagin space formulation
of Dijksma and Shondin and the ODE analysis due to Fulton?
In the paper, we first select an appropriate fundamental system of the equa-
tion τu =λu via its properties at 0. As expected, one solution can be chosen
as square integrable at the origin whereas the other solution cannot have
this property. Nevertheless, they allow us to study the Weyl solution ψ(λ, ·)
and its dependence on the spectral parameter. We see that certain differ-
ences of the Weyl solution in different spectral points, e.g., ψ(μ1, ·)−ψ(μ2, ·),
have a less problematic singularity at the origin.
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This allows us to find a — supersingular — perturbation element ϕ ∈H−n−2,
where n := �l + 1

2�, to carry out the analysis of τ as an extension problem in
a new Hilbert space H.
It is possible to embed H in the space of functionals H−n . Studying an em-
bedded version of Krein’s formula in this setting we get a generalized Nevan-
linna function Q̃ — this is the Q-function from the formulation in H multi-
plied with a polynomial of degree n stemming from the embedding — and
find that

Q̃(λ)−m(λ)

is indeed a polynomial of degree at most n.
Additionally, we answer also the last question of when this difference can be
zero: given the parameters of the Hilbert space model, thus Q̃ is chosen first,
one can pick a fundamental system that gives an m-function that coincides
with this Q̃.

Paper II

Continuing with the investigation in Paper I, the question one can imme-
diately ask is how far the approach via supersingular perturbations can be
pushed. In particular, we concentrate on the class of strongly singular po-
tentials introduced in the paper [16], for which on the ODE side a “good”
fundamental system exists so that a Titchmarsh-Weyl function could be de-
fined. Especially for this class it would be interesting to know if the operator
approach is as powerful as the ODE one. Hints that this might be possible
could be found in the literature, cf. for example [28].
However, we find that the operator approach has certain limits. In particu-
lar, we study the expression

τ=− d 2

d x2 + 1

x4

on the halfline. We find again a suitable fundamental system for τu = λu.
Studying the behaviour of these fundamental solutions at the origin, we find
that the singular solution behaves as exp(1/x) there. The Weyl-solution ψ

then shares this property. Even though taking the same kind of differences
of several Weyl solutions as in Paper I works well formally, that is the depen-
dence on the spectral parameter can be handled easily, it however does not
smooth out the nonintegrable singularity at the origin.
Consequently, we find that we cannot localize ψ in one of the rigged spaces
H−n with a finite index n. Hence, the technique of supersingular perturba-
tions cannot be employed here. We thus find a negative answer to our ques-
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tion: The class of strongly singular potentials includes potentials where op-
erator methods can fail while an analysis via Weyl-Titchmarsh m-functions
is still possible.

Paper III

The differential expressions involving the negative second derivative oper-
ator have the property that they introduce nonnegative operators into the
picture along the way. Consequently, the model developed by Kurasov could
be employed as it requires that the self-adjoint operator that will be per-
turbed to be semi-bounded.
We thus ask if this is requirement can be lifted? In particular, we consider a
self-adjoint operator A = A∗ with its spectrum potentially covering all of the
real line. The aim is to find an interpretation for the formal perturbation

A+α〈ϕ, ·〉ϕ, α ∈R∪ {∞}

where the perturbation element ϕ ∈H−n−2(A)\H−2(A) with n ≥ 1, i.e., ϕ is
supersingular. As a potential generalisation of Kurasov’s model we want to
preserve two of its key features:

(F1) The model space has a Hilbert space structure.

(F2) Embedding the model space into the space of functionals H−n gives
a nice version of Krein’s formula, involving a generalized Nevanlinna
function, that parametrises these perturbations.

It turns out that assuring both properties in a model relies heavily on the
operator’s spectrum to at least have a gap on the real line. In other words, if
σ(A) =R no such model has been found.
In the case of a Hilbert space model to keep (F1): We diagonalise the oper-
ator A = A+ ⊕ (−A−) so that A± are positive operators. In both associated
subspaces of H = H+ ⊕H− we employ Kurasov’s model for semibounded
operators. This means that we can choose real numbers μ1, . . . ,μn < 0 as
regularisation points from which we can build positive definite inner prod-
ucts on H+

n ⊕Cn and H−
n ⊕Cn . It is then possible to obtain a Hilbert space

model for A via gluing together the respective separate models. However, af-
ter the embedding of the model space intoH−n there appears a certain twist
in Krein’s formula, which is essentially due to the diagonalisation procedure.
Thus, the second feature (F2) fails.
In the case where (F2) is preserved from the start, no such diagonalisation is
carried out and the eventual embedded version of Krein’s formula appears
just as wanted. Instead, we have to find a suitable structure for a space of
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the form H2k ⊕C2k . We assume the index n = 2k to be even so that we can
use ν1, . . . ,νk ∈ C+ and their conjugates as regularisation points. While H2k

is unproblematic in terms of finding a suitable positive definite inner prod-
uct, this becomes more involved for the finite dimensional component C2k .
It turns out that we will necessarily have to have k negative squares in the
inner product there. Hence, the resulting model space will always be a Pon-
tryagin space, which stems from choosing nonreal regularisation points.
Finally we also analyze the (embedded) Q-functions that appear in each
construction. We find that they are always generalized Nevanlinna func-
tions, which was in a sense to be expected from generalising Kurasov’s model.
Furthermore, given the perturbation element ϕ the functions arising in the
Hilbert space and in the Pontryagin space model are equal modulo certain
polynomials of low degree that are symmetric with respect to the real axis.

Paper IV

While the previous paper could shed some light onto how to define super-
singular perturbations of general self-adjoint operators it necessarily lacks
some more concrete results. Thus, we take the operator of multiplication by
the independent variable, A, in the Hilbert space L2(R) as a model case for
a self-adjoint operator whose spectrum covers all of the real line. A natural
choice for supersingular perturbations is readily available in the form of the
functions |x|m/2 for m ≥ 1.
We first build the Hilbert and Pontryagin space model in this particular situ-
ation and some of the formulas simplify. However, it also allows us to in fact
calculate the Q-functions QH and QK that appear in the formulations of the
model.
Studying the behaviour of these functions allows us then to describe some
aspects of the spectra that appear for the families of self-adjoint operators
we use to define the supersingular perturbations. In particular we see that
in either formulation we always find a single operator from the respective
families that has an embedded eigenvalue at the origin and calculate the
respective eigenfunction. Finally, varying the parameters of the models, es-
pecially in the Pontryagin space case, can lead to operators exhibiting quite
curious spectral properties, which can be used as illustrating examples.

45



References

[1] Achieser, N.I., Glasmann, I.M.: Theorie der linearen Operatoren im
Hilbert-Raum. 8. Auflage, Verlag Harri Deutsch, Thun/Frankfurt a.M.
(1981) 19, 21, 27

[2] Arens, R.: Operational Calculus of Linear Relations. Pacific J. Math., 11
9-23 (1961) 20

[3] Behrndt, J., De Snoo, H.S.V.: On Krein’s Formula. J. Math. Anal. Appl.
351 567-578 (2009) 21

[4] Belyi, S., Tsekanovskii, E.: On Krein’s Formula in Indefinite Metric
Spaces. Lin. Alg. Appl. 389 305-322 (2004) 23

[5] Brown, B.M., Langer, H., Langer, M.: Bessel-type operators with an in-
ner singularity. Integr. Equ. Oper. Theory 75, 257-300 (2013) 41

[6] Coddington, E.A.: Extension Theory of Formally Normal and Symmet-
ric Subspaces. Mem. Amer. Math. Soc. 134 (1973) 20

[7] Coddington, E.A.: Spectral Theory of Ordinary Differential Operators.
Lecture Notes in Mathematics, 448, Springer Verlag, Berlin (1975)

[8] Dijksma, A., De Snoo, H.S.V.: Self-adjoint Extensions of Symmetric
Subspaces. Pacific J. Math. 54 71-100 (1974) 20

[9] Dijksma, A., Kurasov, P., Shondin, Yu.: High order Singular Rank One
Perturbations of a Positive Operator. Integr. Equ. Oper. Theory 53, 209-
245 (2005) 26

[10] Dijksma, A., Langer, H., Shondin, Yu., Zeinstra, C.: Self-adjoint Oper-
ators with Inner Singularities and Pontryagin Spaces. Oper. Th. Adv.
Appl. 118, 105-175 (2000) 26

[11] Dijksma, A., Shondin, Yu.: Singular point-like perturbations of the
Bessel operator in a Pontryagin space. J. Differ. Equ. 164, 49-91 (2000)
26, 38

[12] Dunford, N., Schwartz, J.T.: Linear Operators. Part 1 - 3. Wiley Classics
Library (1971) 16

[13] Everitt, W.N.: A catalogue of Sturm-Liouville differential equations. In:
Sturm-Liouville Theory, pp. 137-171. Birkhäuser, Basel (2005) 37

46



[14] Fulton, C.: Titchmarsh-Weyl m-functions for second-order Sturm-
Liouville problems with two singular endpoints. Mathematische
Nachr. 281(10), 1418-1475 (2008) 37

[15] Fulton, C., Langer, H.: Sturm-Liouville operators with singularities and
generalized Nevanlinna functions. Complex Anal. Oper. Theory. 4(2),
179-243 (2010) 38

[16] Gesztesy, F., Zinchenko, M.: On spectral theory for Schrödinger oper-
ators with strongly singular potentials. Mathematische Nachr. 279(9-
10), 1041-1082 (2006) 39, 40, 43

[17] Hassi, S., De Snoo, H., Szafraniec, F. (Eds.): Operator Methods for
Boundary Value Problems. LMS Lecture Note Series, Cambridge Uni-
versity Press (2012) 23

[18] Krein, M.G., Langer, H.: Defect Subspaces and Generalized Resol-
vents of an Hermitian Operator in the Space Πκ. Funktsional. Anal. i
Prilozhen. 5(2) 59-71 (1971); 5(3) 54-69 (1971) (Russian); English trans-
lation: Funct. Anal. Appl. 5 139-146, 217-228 (1971/1972) 23

[19] Kostenko, A., Sakhnovich, A., Teschl, G.: Weyl-Titchmarsh theory for
Schrödinger operators with strongly singular potentials. Int. Math. Res.
Not. 2012(8), 1699-1747 (2012) 40

[20] Kostenko, A., Teschl, G.: On the singular Weyl-Titchmarsh function of
perturbed spherical Schrödinger operators. J. Differ. Equ. 250, 3701-
3739 (2011) 40, 42

[21] Kurasov, P.: H−n-perturbations of self-adjoint operators and Krein’s re-
solvent formula. Integral Equ. Oper. Theory. 45(4), 437-460 (2003) 26

[22] Kurasov, P.: Singular and supersingular perturbations: Hilbert space
methods. Contemp. Math. 340, 185-216 (2004) 26

[23] Kurasov, P.: Triplet extensions I: Semibounded operators in the scale of
Hilbert spaces. J. Anal. Math. 107, 251-286 (2009) 26

[24] Kurasov, P., Watanabe, K.: On rank one H−3-perturbations of posi-
tive self-adjoint operators. In. Gesztesy, F., Holden, H., Jost, J., Pay-
cha, S., Röckner, M., Scarlatti, S. (eds) CMS Conference Proceedings
on Stochastic Processes, Physics and Geometry: New Interplays II, vol.
29, AMS, Providence (2000) 26

[25] Kurasov, P., Watanabe, K.: On H−4-perturbations of self-adjoint opera-
tors. Oper. Theory. Adv. Appl. 126, 179-196 (2001) 26

47



[26] Kurasov, P., Luger, A.: An operator theoretic interpretation of the gen-
eralized Titchmarsh-Weyl coefficient for a singular Sturm-Liouville
problem. Math. Phys. Anal. Geom. 14(2), 115-151 (2011) 38, 42

[27] Langer, H., Textorius, B.: On Generalized Resolvents and Q-Functions
of Symmetric Linear Relations (Subspaces) In Hilbert Space. Pacific J.
Math. 72(1) 135-165 (1977) 19, 20

[28] Langer, M., Woracek, H.: Dependence of the Weyl coefficient on singu-
lar interface conditions. Proc. Edinburgh Math. Soc. 52, 445-487 (2009)
42, 43

[29] Luger, A.: Generalized Nevanlinna functions: Operator Representa-
tions, Asymptotic Behavior. In: Operator Theory - Chapter 50, Springer
Basel (2014) 21

[30] Neuner, C.: Generalized Titchmarsh-Weyl Functions and Super Singu-
lar Perturbations. Licentiate Thesis in Mathematics, Stockholm Uni-
versity (2015) 13, 27, 42

[31] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. vol.
I-IV, Academic Press, New York (1972-1978) 16

[32] Simon, B.: Spectral analysis of rank one perturbations and applica-
tions. In: Mathematical Quantum Theory. II. Schrödinger Operators,
of CRM Proceedings Lecture Notes, vol. 8, pp. 109-149. AMS, Provi-
dence (1995) 24, 25

[33] Teschl, G.: Mathematical Methods in Quantum Mechanics with Appli-
cations to Schrödinger Operators. Grad. Stud. in Math. Vol. 99, AMS,
Providence (2009) 37

[34] Yosida, K.: Functional Analysis. 6th ed., Springer, Berlin (1980) 27

[35] Zettl, A.: Sturm-Liouville Theory. AMS, Providence (2005) 27

Matematiska Institutionen, Stockholms Universitet, 106 91 Stockholm
E-mail address: neuner@math.su.se

48


