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Abstract

This thesis consists of four papers and an introduction.

In Paper I we calculate the second order derivatives of the Ronkin

function of an a�ne polynomial in three variables. This gives an

expression for the real Monge-Ampère measure associated to the

hyperplane amoeba. The measure is expressed in terms of com-

plete elliptic integrals and hypergeometric functions.

In Paper II and III we prove that a certain semi-explicit coho-

mological residue associated to a Cohen-Macaulay ideal or more

generally an ideal of pure dimension, respectively, is annihilated

precisely by the given ideal. This is a generalization of the local

duality principle for the Grothendieck residue and the cohomolog-

ical residue of Passare. These results follow from residue calculus,

due to Andersson and Wulcan, but the point here is that our proof

is more elementary. In particular, it does not rely on the desingu-

larization theorem of Hironaka.

In Paper IV we prove a global uniform Artin-Rees lemma for sec-

tions of ample line bundles over smooth projective varieties. We

also prove an Artin-Rees lemma for the polynomial ring with uni-

form degree bounds. The proofs are based on multidimensional

residue calculus.
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Introduction

1 Amoebas

Amoebas are geometric objects that are connected with many di�er-
ent areas in mathematics such as tropical geometry, complex analysis,
combinatorics, and special functions. Amoebas has a deep connection
to basic classical objects like Laurent series expansions of meromorphic
functions, studied by for example Hartogs in the beginning of the last
century, see [Har06]. It is therefore surprising that amoebas were de�ned
as late as 1994.

We use multiindexnotation meaning that for α ∈ Zn and z ∈ Cn we
let zα = zα1

1 · · · zαn
n and dz/z = dz1 · · · dzn/z1 · · · zn.

1.1 De�nition and basic observations

Let us start with a one-variable polynomial f of degree N and let us
assume that the roots bj are such that 0 < |b1| < · · · < |bN |. Then we
can write

1
f(z)

=
A1

b1 − z
+ · · ·+ An

bN − z
,

where A1, . . . , AN are complex numbers. Using that the geometric series

1
1− z

=
∞∑
k=0

zk,

and hence
1

1− z
= −1

z

(
1

1− 1
z

)
= −

−1∑
k=−∞

zk,

converge for |z| < 1 and for |z| > 1, respectively, we can expand 1/f as
a convergent Laurent series in every annulus

Uj = {z ∈ C; bj < |z| < bj+1}. (1)

On the other hand, if we can write 1/f as a Laurent series that converges
in some open set, then that series must be unique. In particular, we get a
bijection between the set of various convergent Laurent series expansions
of 1/f and the set of annuli on the form (1). If we regard the real set
Af = {log |bj |; j = 1, . . . N}, it follows that there is a bijection between
the connected complement components of Af and the various convergent
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Laurent series expansions of 1/f . This is still true when some of the roots
of f have the same absolute value and it is proved in essentially the same
way.

The set Af is called the amoeba of f . As we saw, the amoeba of
a one-variable polynomial is just a set of points but in several variables
things get a bit more complicated.

De�nition 1.1. The amoeba, Af , of f is the image of the zero set of f
in Cn

∗ under the mapping Log : Cn
∗ → R given by

Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|).

The concept of amoeba was introduced by Gelfand, Kapranov, and
Zelevinsky in their book [GKZ94], and it is fundamental in the modern
view of hypergeometric functions in several variables, introduced and
studied by the same authors.

The amoeba of a polynomial f in n variables is a set in Rn. Note that
if we take a set E in the complement of Af then Log(E) is a so-called
circular domain, i.e., a domain U such that if z = (z1, . . . , zn) ∈ U , then
zeiθ = (z1e

iθ1 , . . . , zne
iθn) ∈ U for every θ ∈ [0, 2π]n. It is well-known

that if a function is holomorphic in a circular domain, then there is a
Laurent series expansion of the function that converges in the domain.
Since two Laurent series that both converge on an open set must coincide
this means that, as in the one-variable case, there is a bijection between
the connected complement components of Af and the various convergent
Laurent series expansions of 1/f . Note also that if E is a connected
complement component of Af , then E is convex. This follows from
the fact that if g is holomorphic on a circular domain U , then it is
holomorphic on the logarithmically convex hull of U . The observations
above were made already in [GKZ94] where the authors also relates the
geometry of Af to the Newton polytope of f .

De�nition 1.2. Let f =
∑

α∈A aαz
α, where A ⊂ Zn, be a Laurent

polynomial. Then the Newton polytope, ∆f , of f is the convex hull in
Rn of the set of points α such that aα 6= 0.

It is not hard to see that the number of complement components of
Af is bounded from below by the number of vertices of ∆f . It turns out
that one can say a lot more than that.
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Theorem 1.3 (Forsberg, Passare, Tsikh, Rullgård). Let f be a Laurent
polynomial. The number of connected complement components of Af is
bounded from below by the number of vertices in ∆f and from above by
the number of points in ∆f ∩ Zn.
For any polytope ∆, and integer k between the lower and upper bound,
there exists a Laurent polynomial g such that ∆g = ∆ and such that the
number of connected complement components of Ag is equal to k.

The �rst part of Theorem 1.3 (which is due to Forsberg, Passare,
Tsikh, [FPT00]) follows since there exists an injective function from the
set of connected complement components of Af to ∆f ∩ Zn. Such a
function can be de�ned from a function introduced by Ronkin.

1.2 The Ronkin function and the Ronkin measure

The Ronkin function of a Laurent polynomial is a fundamental tool in
order to understand the geometry of Af .

De�nition 1.4. Let f be a Laurent polynomial. The Ronkin function of
f , Nf : Rn → R, is given by

Nf (x) =
1

(2πi)n

∫
|zj |=xj

log |f(z)|dz
z
. (2)

Ronkin studied this kind of functions in [Ron74] and showed that Nf

is a convex function that, in terms of amoebas, is a�ne linear exactly on
the complement of Af . This means that the gradient of Nf is constant
in each complement component, and it turns out that the gradient is an
integer point in ∆f , [FPT00]. In particular we get a mapping from the
set of complement components of Af to integer points in ∆f and it is
proved in [FPT00] that this map is injective. This imply the �rst part
of Theorem 1.3.

Contrary to biological amoebas the mathematical ones have spines.
The spine of an amoeba was �rst introduced in [PR04] and de�ned from
the Ronkin function in the following way: First, the order of a comple-
ment component E is de�ned to be the image of E under the mapping
gradNf . The complement component with order α is denoted by Eα.
Let Ã be the subset of Zn ∩∆f concisting of points α such that Af has
a component of order α. Then we can de�ne the real number

cα = Nf (x)− 〈α, x〉 ,

where x is any point in Eα. Let

S(x) = max
α∈Ã

(cα + 〈α, x〉).
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Then S(x) is a convex piecewise a�ne linear function that agrees with
Nf on the complement of the amoeba. The corner locus of S(x), is called
the spine of the amoeba of f and is denoted by Sf .

It is proved in [PR04] that the topology of the amoeba is described
by the spine. To understand that result one needs to take a closer look
at the concept of duality between convex subdivisions of convex sets in
Rn.

De�nition 1.5. Let K be a convex set in Rn and let T be a collection
of closed convex subsets of K. Then T is said to be a convex subdivision
if it satis�es all of the following three conditions:

1. The union of all sets in T is equal to K.

2. A nonempty intersection of two sets in T belongs to T .

3. A subset τ of a set σ in T belongs to T if and only if τ is a face of
σ.

For two convex sets σ and τ such that τ ⊂ σ we de�ne the convex cone
cone(τ, σ) as

cone(τ, σ) = {t(x− y); x ∈ σ, y ∈ τ, t ≥ 0}.

The dual cone C∨ of a convex cone C is de�ned to be

C∨ = {ξ ∈ Rn; 〈ξ, x〉 ≤ 0,∀x ∈ C}.

De�nition 1.6. Let T and T ′ be two convex subdivisions of the sets K
and K ′ respectively. Then T and T ′ are said to be dual to each other
if there exists a bijective mapping from T to T ′, σ 7→ σ∗, such that the
following two conditions are satis�ed for all sets τ, σ ∈ T :

1. τ ⊂ σ if and only if σ∗ ⊂ τ∗.

2. The cone cone(τ, σ) is dual to cone(σ*, τ*).

Theorem 1.7 (Passare, Rullgård, [PR04]). The spine Sf is a deforma-
tion retract of Af and there exist dual subdivisions T of Rn and T ′ of
Ã such that Sf is the union of the cells in T of dimension less than n.
Moreover, the cell of T dual to the point α ∈ Ã contains the complement
component of order α.

For every smooth convex function f on Rn, the Hessian matrix of f ,

Hess(f) =
(

∂2f

∂xi∂xj

)
,
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Figure 1: The amoeba of a polynomial f is a thickened graph dual

to a subdivision of the Newton polytope of f . Here exempli�ed by the

polynomial f = 1 + z3 + w3 − 7zw.

is a positive de�nite matrix. The determinant of the Hessian times the
Lebesgue measure is called the real Monge-Ampère measure of f and is
denoted by M(f). We can de�ne the gradient at a point x0 of a convex
function de�ned in a domain Ω as

grad f(x0) = {y ∈ Rn; f(x)− f(x0) ≥ 〈y, x− x0〉 ,∀x ∈ Ω}.

Notice that the gradient de�ned in this way coincide with the usual
one at points where the function is di�erentiable. The Monge-Ampère
measure can now be extended to all convex functions f by letting

M(f)(E) = λ(grad f(E)),

where λ is the Lebesgue measure and

grad f(E) =
⋃
x∈E

grad f(x).

The Monge-Ampère measure is a positive Borel measure for any convex
function, see [RT77].

Since Nf is convex we may take the real Monge-Ampère measure
of Nf and then we get a positive measure µf that we call the Ronkin
measure. It has support on the amoeba and moreover, it has �nite total
mass equal to the volume of the Newton polytope of f , see [PR04].

In two variables, the Ronkin measure µf has some nice properties.
For instance, it is proved in [PR04] that

µf ≥
λ

π2
(3)
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on the amoeba of f , where λ is the Lebesgue measure. From this estimate
it follows immediately that

Area(Af ) ≤ π2 Area(∆f ). (4)

The inequalities (3) and (4) are sharp and it turns out that those poly-
nomials that have amoebas with maximal areas are the ones that de�ne
the so-called Harnack curves, see [MR01]. These curves are connected
to the �rst part of Hilbert's 16th problem. Since f = 1 + z +w de�ne a
Harnack curve it follows that the Ronkin measure of f has the constant
measure (1/π2)λ on the amoeba. It is also fairly easy to calculate the
Ronkin measure of f = 1 + z + w directly. If one consider the corre-
sponding polynomial f = 1 + z + w + t in three variables the Ronkin
measure of f is much harder to calculate.

At this point, it is interesting to note that the Ronkin function is
closely connected with the so-called Mahler measure from number theory.
In fact the Ronkin function of f evaluated at the origin is the Mahler
measure of f , and for a�ne linear polynomials it is easy to make the
transition of the Ronkin function evaluated at a point and the Mahler
measure of some other a�ne linear polynomial. In two variables, there
are known explicit expressions for the Mahler measure of all a�ne linear
polynomials and hence the Ronkin function itself of such a polynomial
has a known explicit expression.

In three variables, very little is known about the Ronkin measure.
Note that the amoebas in more than two variables have in�nite volume
in general, and hence there is no inequality like (4). There might still be
an inequality like (3) but with 1/π2 replaced by a function. In Paper I
we are interested in the Ronkin measure of the a�ne linear polynomial
f = 1 + z + w + t, which should be the easiest possible three variable
example. One can note that there are some known explicit formulas for
the associated Mahler measure in this case but only for those polynomials
that corresponds to special points lying on what is called the contour of
the amoeba. In particular, this means that there is no known explicit
expression for the Ronkin function to use when calculating the measure
µf , which indicates that it might be considerably more complicated than
in the two variable case. On the other hand, it seems that the Ronkin
measure is easier to calculate than the Ronkin function itself. The main
result of Paper I is that the Ronkin measure of an a�ne linear polynomial
in three variables can be described in terms of complete elliptic integrals
or hypergeometric functions. As an application of the calculations done
there one gets new information about the regularity of the measure.
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2 Multidimensional residues

We let O0 denote the ring of germs of holomorphic functions at the origin
in Cn. That is, ϕ belongs to O0 if there exists a small neighborhood U
of 0 such that ϕ is holomorphic in U . We let Ωk

0 denote the O0-module
of holomorphic germs of (k, 0)-forms at the origin.

Let us start with the picture in one variable. Then the maximal ideal
in O0 is generated by the coordinate function z, and every non-trivial
ideal is generated by a monomial zm for some m ≥ 1. Given such an
ideal J = 〈zm〉 and a holomorphic germ ϕ we would like to answer the
question whether or not ϕ belongs to J . Let us consider two slightly
di�erent ways of deciding that.

First, we can test whether

ϕReszm(ψ) =
∫
∂D

ϕψ

zm

vanishes for every ψ ∈ Ω1
0. Here, D is a su�ciently (depending on ψ)

small neighborhood of 0. Indeed, if ϕ = zmg for some holomorhic germ
g, then the integrand is a holomorphic function in D and is consequently
zero by the theorem of Cauchy. On the other hand, if the integral is
zero for all ψ ∈ Ω1

0, then it is zero for ψj := zjdz for j = 0, 1, . . . ,m− 1
and by the residue theorem in one variable this means that all negative
powers in the Laurent series expansion of ϕ/zm vanish, i.e., ϕ = zmg for
some g ∈ O0.

Second, we may regard the principle value current 1/zm which is
de�ned by 〈

1
zm

, φ

〉
= lim

ε→0

∫
|zm|>ε

φ

zm

for test forms φ. If we take the ∂̄-operator on the principle value current
in the current sense, then by Stokes' theorem we get a current de�ned
by 〈

∂̄
1
zm

, φ

〉
= lim

ε→0

∫
|zm|=ε

φ

zm
, (5)

with support at the origin, and we get

ϕ ∈ (zm)⇔ ϕ∂̄
1
zm

= 0.

In several variables there are generalizations of the second approach
for all kind of ideals. The drawback is that it uses sophisticated and

9



deep results such as the desingularization theorem of Hironaka. The
�rst approach has earlier only been generalized for very special ideals.
In Paper II and III we consider the �rst approach and generalize it to
a larger set of ideals than has been considered before, in an essentially
algebraic way, not using the theorem of Hironaka. Given such an ideal J ,
this enable us to get a semi-explicit integral condition on a germ ϕ ∈ O0

to belong to J .

2.1 The Grothendieck residue

Let (f1, . . . , fn) be a tuple of germs of holomorphic functions at 0 ∈ Cn

and assume that the common zero set consists of the single point 0. Let

B(z) =
1

(2πi)n

∑
(−1)j−1z̄jdz̄1 ∧ . . . ∧ d̂z̄j ∧ . . . ∧ dz̄n

(|z1|2 + . . .+ |zn|2)n
,

be the so-called Bochner-Martinelli kernel. The Grothendieck residue is
de�ned by

Resf (ψ) :=
∫
∂D

f∗B ∧ ψ, ψ ∈ Ωn
0 , (6)

where D is a su�ciently small neighborhood (depending on ψ) of the
origin. As in the one-variable case we de�ne multiplication by a holo-
morphic germ ϕ by

ϕResf (ψ) = Resf (ϕψ).

The residue Resf is said to be annihilated by a holomorphic germ ϕ if
ϕResf = 0. The Grothendieck residue gives an analytic condition on a
germ ϕ ∈ O0 to be in the ideal generated by the f j :s, see [GH78].

Theorem 2.1 (The local duality theorem). If J = 〈f1, . . . , fn〉 and the
common zero set of the f j:s only consists of the origin, then ϕ ∈ J if
and only if ϕ annihilates Resf .

Example 2.2. If f j = zj and ψ = ψ̃dz, then Resf (ψ) = ψ̃(0) by the
Bochner-Martinelli formula, which is the multivariate analogue of the
Cauchy formula. Thus, in this case we get that ϕResf (ψ) = 0 for every
ψ ∈ Ωn

0 if and only if ϕ(0) = 0, and that is obviously equivalent with
ϕ ∈ 〈z1, . . . , zn〉.

2.2 Residue currents and the duality principle

One generalization of the current (5) to several variables is the Cole�-
Herrera product, de�ned in [CH78]. Let (f1, . . . , fp) be a tuple of germs
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in O0 in Cn. Then the Cole�-Herrera product is the current〈
∂̄

1
fp
∧ · · · ∧ ∂̄ 1

f1
, φ

〉
:= lim

δ→0

∫
∩{|fj |=εj(δ)}

φ

f1 · · · fp
. (7)

Here the limit is taken so that εj(δ) tends to zero faster than any power of
εj−1(δ) and this ensures that the limit exists. If the zero set of the tuple
f = (f1, . . . , fp) is nice in the sense that the dimension of the common
zero set is the intuitive one, i.e., it has dimension n − p, then the tuple
f is said to de�ne a complete intersection. As with the Grothendieck
residue a holomorphic germ ϕ is said to annihilate a current R if ϕR = 0.
The following fundamental result is proved independently by Passare in
[Pas88] and Dickenstein and Sessa in [DS85].

Theorem 2.3. If the tuple f de�nes a complete intersection, then ϕ
belongs to the ideal generated by the germs in f if and only if ϕ annihilates
the Cole�-Herrera product (7).

All known proofs of the existence of the Cole�-Herrera product in the
general case uses the desingularization theorem of Hironaka. In [TY04]
the authors give a proof of the existence of the Cole�-Herrera product
when the common zero set of f is a point and f de�nes a complete in-
tersection that uses amoebas and avoid Hironaka's theorem. It should
also be mentioned that in the complete intersection case there is a con-
struction in [Maz10] of another current that is annihilated exactly by the
given ideal. The construction in [Maz10] only use Weierstrass prepara-
tion theorem.

For a general ideal J in O0, Andersson and Wulcan de�ned a residue
current R that satis�es a duality principle like in Theorem 2.3. They
start with a free resolution of J :

0→ O⊕rM0
fM→ . . .

f2→ O⊕r10
f1→ O0. (8)

Let X be a small neighborhood of 0 such that fj(x) de�ne a complex for
each x ∈ X. Moreover, let Ej be trivial vector bundles of rank rj over X
and assume that the bundles are equipped with a Z2-grading, a so-called
super structure, so that the operators fj and ∂̄ on smooth (0, q)-sections
of Ej anti-commute, see [AW07] for more details. Let Z be the common
zero set of the tuple f1 = (f1, . . . , fm) that de�nes J . Let σk be the
pointwise minimal inverse of fk on X \ Z. That is,

σkξ =

{
η, where fkη = ξ and η has minimal norm, if ξ ∈ Im fk,

0, if ξ ∈ (Im fk)⊥.
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It is proved in [AW07] that the Ek-valued forms

uk := σk∂̄σk−1 · · · ∂̄σ1 (9)

satisfy the equations{
f1u1 = 1
fk+1uk+1 − ∂̄uk = 0, 1 ≤ k ≤M.

(10)

If h1, . . . , hs are functions with Z as their common zero set, then the
form uk can be extended over Z to a current Uk de�ned as

Uk := lim
ε→0

χ(|h|2/ε2)uk, (11)

where χ(t) is a smooth function on the reals that is 0 for t < 1 and 1
for t > 2. Another and equivalent way to extend uk is to consider the
current valued function

C 3 λ 7→ uλ := |h|2λu,

which is analytic for λ with a large real part. One can continue uλ
analytically to Re(λ) > −ε for some small ε, and U is de�ned to be uλ
evaluated at λ = 0, [AW07].

The currents Uk satisfy the equations{
f1U1 = 1
fk+1Uk+1 − ∂̄Uk = Rk,

(12)

for some currents Rk with support on Z, cf. (10). Currents de�ned in
such a way are called residue currents. If the tuple f de�nes a complete
intersection, then the Koszul complex is a free resolution of J that ends
at levelM = p, where p is the codimension of Z, and the residue Rp is the
Cole�-Herrera product (7), see [AW07]. In this case Rk = 0 for k 6= p.
Let R be the E =

⊕
Ek-valued current

∑
Rk. The following theorem is

proved in [AW07] and is a direct generalization of Theorem 2.3.

Theorem 2.4 (Andersson, Wulcan). Let J be an ideal in O0 and let
ϕ ∈ O0. Then ϕ ∈ J if and only if ϕ annihilates the residue current R.

2.3 Cohomological residues

We want to formulate and prove a result like Theorem 2.4 without using
the desingularization theorem of Hironaka. Theorem 2.4 is based on a
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generalization of the second approach in Section 2. We now present a
way to generalize the �rst approach and get the desired result.

If φ and ψ are ∂̄-closed germs of smooth forms at the origin, then they
are said to be in the same Dolbeault cohomology class if the di�erence
φ− ψ is ∂̄-exact, meaning that there exists a small neighborhood of the
origin such that φ − ψ = ∂̄η there for some smooth form η. We write
[φ]∂̄ for the Dolbeault cohomology class of φ. We say that φ and ψ are
in the same Dolbeault cohomology class outside of a germ of an analytic
set Z if there exist a neighborhood U of the origin such that φ−ψ = ∂̄η
in U \ Z for some smooth form η.

Note that Stokes' theorem implies that the Grothendieck residue (6)
only depends on the Dolbeault cohomology class of ϕf∗B outside of 0. It
follows from Theorem 2.1 that if [ϕf∗B]∂̄ = 0 outside of the origin, then
ϕ ∈ 〈f1, . . . , fn〉. Moreover, it turns out that the reversed implication is
true too and this is generalized in [Pas88] in the following way. Assume
that the tuple f = (f1, . . . , fp) de�nes a complete intersection and let Z
be its zero set. Let D be a small neighborhood of the origin and denote
by DZ the O-module of smooth (n, n−p)-forms that are ∂̄-closed near Z
and with compact support in D. If D is small enough, then the residue

ResPf (ψ) :=
∫
f∗B ∧ ψ, ψ ∈ DZ (13)

is de�ned and coincides with the Grothendieck residue when Z is a point.
The residue ResPf satis�es the following result:

Theorem 2.5 (Passare). Assume that the tuple f = (f1, . . . , fp) de�nes
a complete intersection and let J = 〈f1, . . . , fp〉. Then the following are
equivalent:

(i) ϕ ∈ J

(ii) [ϕf∗B]∂̄ = 0 outside of Z

(iii) ϕ annihilates the residue ResPf .

In the two-variable case when f1 = z and f2 = w it is easy to see
this result directly. If a and b are holomorphic, then we see that

∂̄
aw̄ − bz̄

(|z|2 + |w|2)
= (az + bw)B(z, w),

outside of the origin. This means that the Dolbeault cohomology class
of ϕB vanishes outside of the origin if ϕ ∈ 〈z, w〉, the maximal ideal. If

13



we now assume that the cohomology class of ϕB(z, w) vanishes outside
of the origin for a holomorphic germ ϕ, then it follows that

0 =
∫
∂D

ϕBdz ∧ dw =
ϕ(0)

(n− 1)!
,

by the Bochner-Martinelli formula. This means that ϕ ∈ 〈z, w〉.
It is possible to generalize Theorem 2.5 to more complicated ideals.

In Paper II we consider the case when J is a so-called Cohen-Macaulay
ideal of codimension p. Then the resolution (8) ends at level M = p
and hence the form up de�ned in (9) is ∂̄-closed by (10). We de�ne the
residue

ResJ(ψ) :=
∫
upϕ ∧ ψ, ψ ∈ DZ

and prove that the following are equivalent:

(i) ϕ ∈ J

(ii) [upϕ]∂̄ = 0 outside of Z

(iii) ϕ annihilates the residue ResJ .

Note that in general ϕup is vector valued. The residue ResJ coincides
with ResPf when J is de�ned by the tuple f = (f1, . . . , fm) and f de�nes
a complete intersection. This generalization of Theorem 2.5 has already
been proved in [AW07] but the point is that the proof in Paper II is more
elementary and avoids the theorem of Hironaka used in [AW07].

Example 2.6. Let J = 〈z1z2, z1z3, z2z3〉. Then J is Cohen-Macaulay
and has codimension 2. The complex

0→ O2
0

g→ O3
0
f→ O0,

where

g =

 −z3 0
z2 −z2

0 z1

 , f =
(
z1z2 z1z3 z2z3

)
,

is exact outside of the common zero set of z1z2, z1z3, and z2z3. A simple
calculation shows that

σ1 = h(z)

 z̄1z̄2

z̄1z̄3

z̄2z̄3


14



and

σ2 = h(z)
(
|z1|2 + |z2|2 |z2|2
|z2|2 |z2|2|z3|2

)(
−z̄3 z̄2 0

0 −z̄2 z̄1

)
, (14)

where h(z) = 1/(|z1z2|2 + |z1z3|2 + |z2z3|2). We note that the matrix at
the right in (14) multiplied with ∂̄h(z) is zero, and hence we get

u2 = h2(z)
(
|z1|2 + |z2|2 |z2|2
|z2|2 |z2|2 + |z3|2

)(
−z̄3 z̄2 0

0 −z̄2 z̄1

) dz̄1z̄2

dz̄1z̄3

dz̄2z̄3

 ,

which is equal to

h2(z)
(
−z̄2z̄3|z2|2dz̄1 − |z1|2z̄1z̄3dz̄2 + z̄1z̄2(|z1|2 + |z2|2)dz3

−z̄2z̄3(|z2|2 + |z3|2)dz̄1 − z̄1z̄3|z3|2dz̄2 + z̄1z̄2|z2|2dz̄3

)
.

In Paper III the result is generalized to ideals of pure dimension. The
di�culties in this case arise from the fact that upϕ does not need to be
∂̄-closed. It turns out that this problem is circumvented if we multiply
with certain holomorphic sections of the dual bundle of Ep.

3 The e�ective membership problem for polyno-

mial ideals

Let F1, . . . , Fm be polynomials in Cn and assume that their common zero
set is empty. Then, by a version of the Nullstellensatz, we can write

1 =
∑

QjFj

for some polynomials Qj . We are interested in degree estimates of QjFj .
Using methods of Hermann from [Her26] it is proved by Masser and
Wüstholz in [MW83] that if degFj ≤ d, then one can choose the poly-
nomials Qj such that

deg(QjFj) ≤ 2(2d)2n−1
+ d,

which is a double exponential bound in the degree of the Fj :s. However,
this estimate can be substantially improved and the �rst breakthrough
was done by Brownawell in [Bro87], where he proves that one can choose
the polynomials Qj such that

deg(QjFj) ≤ min(m,n)(ndmin(m,n) + d) + d.
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Already the year after Brownawell's result Kollár proved the sharpened
estimate

deg(QjFj) ≤ dmin(m,n), d ≥ 3,

see [Kol88]. This estimate is sharp. The case when d < 3 was later done
by Sombra in [Som99] and Jelonek in [Jel05].

If the common zero set of the Fj :s is non-empty and the polynomial
Φ belongs to J(F ), the ideal generated by the Fj :s, then we may regard
the more general equation

Φ =
∑

QjFj . (15)

The methods of Hermann imply that there exist polynomials Qj such
that (15) holds and where the degree of QjFj is double exponential. It
is proved in [MM82] that this cannot be substantially improved, mean-
ing that one can �nd examples where one really need something double
exponential. On the other hand, with further assumptions on the zeros
of Φ it may be possible to get a much better bound. For example, the
theorem of Briançon-Skoda implies that if

|Φ| ≤ C|F |min(m,n), (16)

then Φ ∈ J(F ). This exponent cannot be improved. For n=2 this is seen
by the example where

|xy| ≤ |x2|+ |y2|, but xy /∈ 〈x2, y2〉.

A similar example can be made for any n. Now, if Φ belongs to J(F )
due to (16), then it is proved in [Hic01] that one can choose Qj such that

deg(QjFj) ≤ max
(

deg Φ + min(m,n+ 1)dmin(m,n), (n+ 1)d− n
)
.

(17)
When attacking these kind of problems it is standard �rst to homog-

enize the polynomials to Cn+1. We may then regard them as sections of
the line bundle O(d) on the projective space Pn and this opens up for
analytic and geometric methods. In [And06] this is mixed with residue
calculus to provide a general set-up to obtain these kind of membership
results. With this approach and with idéas from [Hic01] and [EL99] one
can get a slightly sharper estimate than (17), see [AG11].

Remark 3.1. It is possible to replace dmin(m,n) in (17) by dc∞ , where
c∞ is a number that depends on the complexity of the common zero set
of the Fj :s at in�nity. In particular, c∞ ≤ min(m,n). In certain nice
situations c∞ = −∞ so that dc∞ = 0. See [EL99] and [Hic01] for more
about this.
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Related to these kind of theorems is the uniform Artin-Rees lemma,
see [Hun92], that implies that if J is a polynomial ideal, then there exists
a constant µ such that

Iµ+r ∩ J ⊂ IrJ
for every polynomial ideal I and every integer r. In view of the theorem
of Briançon-Skoda we may reformulate this result:

Theorem 3.2 (Uniform Artin-Rees lemma for polynomials). If F1, . . . , Fm
are polynomials in Cn, then there exists a constant µ such that the fol-
lowing holds: If Φ, G1, . . . , G` are polynomials, r ≥ 1,

Φ ≤ C|G|µ+r−1,

and
Φ ∈ J(F ),

then we can write

Φ =
∑

j=1,...,m
I1+···+I`=r

QI,jG
I1
1 . . . GI`` Fj

for some polynomials QI,j.

In Paper IV we use a re�nement of the residue calculus set-up men-
tioned above and an algebraic construction in [Szn11] to prove an e�ec-
tive version of Theorem 3.2, and we get the bound

deg(QI,jGI11 . . . GI`` Fj) ≤

max
(

(µ+ r − 1)dmin(`,n) + deg Φ, (n+ r)d+ κ1, deg Φ + κ2

)
,

where the constants κ1 and κ2 only depend on J(F ). In some cases the
constants µ, κ1, and κ2 can all be explicitly calculated. For example, if
r = m = 1 and F1 = 1, then µ = min(`, n), κ1 = −n, and κ2 = 0. This
means that we get back the e�ective Briançon-Skoda theorem in [AG11].
If J(G) = (1), then the result of Mayr and Mayer in [MM82] imply that
one in general need something double exponential. This is captured by
the constant κ2.

The e�ective uniform Artin-Rees lemma in Paper IV is a bit more
general. There the polynomials only need to be considered on a smooth
subvariety in Cn. There is also a more abstract geometric version of our
e�ective result, where we consider holomorphic sections of ample line
bundles over smooth projective varieties. In this case the special case
when r = m = 1 and F1 = 1 corresponds to an abstract version of the
theorem of Briançon-Skoda proved in [EL99].
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