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Abstract

This PhD thesis consists in three papers in which we describe irreducibil-

ity conditions and the number of factors in a composition series of certain

perverse sheaves. We study some particular cases, providing examples and

showing how to explicitly use perverse sheaves to obtain precise results. The

aim is to add to the class of concrete applications of perverse sheaves and ex-

ploit their role in the cohomology of hyperplane arrangements. In the three

papers the perverse sheaves considered are given by the derived direct image

of locally constant sheaves defined in the complement U := C
n \A of a hy-

perplane arrangement A. In Paper I, we start with a locally constant rank 1

sheaf La in C
2 \A and use a category equivalence, developed by MacPherson

and Vilonen, to obtain a criterion for the irreducibility of R j∗La in terms of a

multi-index a ∈ C
n associated to the sheaf La. We then determine the number

of decomposition factors when the irreducibility conditions are not satisfied. In

Paper II we define a constant sheaf C in the complement U of A ⊂ C
n, show

that the number of decomposition factors of R j∗CU is given by the Poincaré

polynomial of the hyperplane arrangement A and describe them as certain lo-

cal cohomology sheaves and give their multiplicity. In Paper III, we use the

Riemann-Hilbert correspondence and D-module calculations to determine a

condition for which R j∗La contains a decomposition factor as perverse sheaf

that has support on a certain flat of the hyperplane arrangement.





Sammanfattning

Denna avhandling består av tre uppsatser i vilka vi beskriver villkor för

irreducibilitet och antal dekompositionsfaktorer i en dekompositionsserie för

vissa perversa kärvar. Vi studerar några speciella situationer som exemplifierar

explicita beräkningar med perversa kärvar. Avsikten är att öka antalet konkreta

tillämpningar av perversa kärvar, i synnerhet tillämpa dem för kohomologi av

hyperplanarrangemang.

I alla de tre uppsatserna är de perversa kärvar som studeras den härled-

da direkta bilden av en lokalkonstant kärve på komplementet U := C
n \A av

ett hyperplanarrangemang A. I uppsats I, är utgångspunkten en lokalkonstant

rang 1 kärve La i C2 \A, och med hjälp av en kategoriekvivalens, utvecklad

av MacPherson and Vilonen, erhåller vi ett kriterium för irreducibiliteten av

R j∗La i termer av multiindexet a ∈ C
n associerat till kärven La. Dessutom

bestäms antalet dekompositionsfaktorer och deras stöd, i den situation när ir-

reducibilitetsvillkoret inte är uppfyllt.

I uppsats II bestämmer vi för den konstanta kärven C på komplementet U
av A⊂C

n explicit antalet dekompositionsfaktorer till R j∗CU som Poincarépo-

lynomet av hyperplansarrangemanget. Dessutom identifieras dekompositions-

faktorerna; de är kärvar av lokala kohomologigrupper på flator, och faktorernas

multiplicitet beräknas.

I uppsats III, använder vi Riemann-Hilbert korrespondensen tillsammans

med D-modulberäkningar för att ge ett (partiellt) villkor för att dekomposi-

tionsserien av R j∗La innehåller en faktor som har support på en given fla-

ta(snitt av hyperplan) i hyperplanarrangemanget.





Sumário

Esta Tese de Doutoramento é composta por uma introdução alargada e três

artigos. Na Introdução são apresentadas algumas definicões e resultados con-

hecidos, sob uma forma que se adequa ao trabalho que desenvolvemos. Nos

artigos descrevemos as condições para a irredutibilidade de certos feixes per-

versos e, no caso dessas condições não serem cumpridas, o número de factores

de decomposição das correspondentes séries de composição.

Foram estudados alguns casos particulares, em que se forneceram exemp-

los e se mostrou como efectivamente fazer uso dos feixes perversos de modo

a obter resultados precisos. O objectivo foi contribuir para a classe das apli-

cações concretas dos feixes perversos e no sue papel na co-homologiade arran-

jos de hiperplanos.

No Artigo I, começamos por considerar um arranjo central de linhas plano⋃n
i=1 Li ⊂ C

2. No seu complementar X = C
2 −⋃n

i=1 Li definimos um feixe lo-

calmente constante de espaços vectoriais La associado a um multi-índice a ∈
C

n. Usando a descrição de MacPherson e Vilonen da categoria dos feixes per-

versos ([17] and [18]) obtemos um critério para a irredutibilidade e o número

de factores de decomposção da imagem directa R j∗La como um feixe per-

verso, onde j : X → C
2 é a inclusão canónica.

No Artigo II, o nosso objecto inicial é um arranjo de hiperplanos A em

C
n. Seja R j∗CU a imagem directa no complemento U do arranjo A. Tomando

R j∗CU como um feixe perverso, mostramos que o seu número de factores de

decomposição é dado pelo Polinómio de Poincaré do arranjo. Apresentamos

também uma descrição dos factores de decomposição de R j∗CU como certos

feixes de co-homologia local e indicamos a sua multiplicidade.

No Artigo III voltamos a tomar um arranjo de hiperplanos A em C
n e

usamos o espaço de módulos de fibrados de linhas de característica 1 em U
e D-módulos para determinar uma condição para que que a imagem directa

R j∗La contenha um feixe perverso como factor de decomposição com suporte

na variedade linear F do arranjo de hiperplanos.





List of Papers

The following papers, referred to in the text by their Roman numerals, are

included in this PhD thesis.

PAPER I: Decomposition of Perverse Sheaves on Plane Line Arrange-
ments 1

R. Bøgvad and I. Gonçalves, Communications in Algebra, Vol-

ume 46, Issue 6

PAPER II: Length and Decomposition of the Cohomology of the Com-
plement to a Hyperplane Arrangement
R. Bøgvad and I. Gonçalves, Preprint, arXiv:1703.07662

PAPER III: Support of Decomposition Factors of Direct Images of Line
Bundles on the Open Complement of a Hyperplane Config-
uration
R. Bøgvad and I. Gonçalves

1This paper is mostly contained in a more detailed version as part of the Licentiate

thesis ([10]).
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1. Introduction

To study a complicated object, one tries to see how it is built from simpler

objects. In an abelian category these simpler objects may consist in irreducible

objects. This PhD thesis is concerned with decomposition of direct images

of perverse sheaves. We start by presenting a general overview of the main

definitions and properties, in particular we will describe perverse sheaves. Our

general reference in this is the work by Beı̆linson, Bernstein and Deligne [3].

1.1 Sheaves

1.1.1 Abelian categories

Recall that an abelian category is a category in which all hom-sets are

abelian groups and the composition of morphisms is bilinear, all finite limits

and colimits (in particular kernels and cokernels) exist and have certain good

properties, the main being the following:

Let C be an abelian category, A,B ∈ C and f the morphism A → B. The

fundamental defining property of an abelian category is:

cok(ker( f )→ A)
∼=−→ ker(B → cok( f )), (1.1)

which for categories of modules over a ring reduces to one of the isomorphism

theorems: A/ker( f )∼= im( f ).
Hence in an abelian category we may talk about injection, subobjects and

simple objects. The category of perverse sheaves is abelian and it has the

property that there is a finite decomposition series for each object (see below

subsection 1.2.3).

1.1.2 Sheaves and Operations

A general reference for this section is [12], in particular pp.223-225. In

our work we only consider sheaves with sections that are finite-dimensional

vector spaces over C. There is a direct equivalence between complex repre-

sentations of the fundamental group and locally constant sheaves, given by the

monodromy representation on stalks.
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First recall that a locally constant sheaf on a simply connected and path-

connected space is constant. We will always assume that the spaces considered

satisfy these conditions. Let then L be a locally constant sheaf on a topological

space V . For a fix point x0 ∈V , consider an element γ ∈ π1(V,x0), represented

by a path γ(t), t ∈ [0,1]. The gluing property of sheaves allow us to identify

Lx0
with Lγ(t), independently of the the homotopy class of γ(t).

Proposition 1.1.1. Let V be a path-connected topological space and π1(V,x0)
be its fundamental group with base point x0. The monodromy representation
of π1(V,x0) on the stalk Lx0

, defines an equivalence between the category of
local systems L on a space V and the category of finite dimensional complex
representations of the fundamental group of V .

Example 1.1.1. Consider a union of lines Li, i = 1, ...,n, through the origin in

C
2. Let Γi correspond to a loop around Li. These loops generate the funda-

mental group of the space C
2 \∪n

i=1Li, which has the following presentation:

π1(C
2 \∪n

i=1Li) = 〈Γ1, . . . ,Γn〉/R,

where R is the group generated by the (cyclic) relations

Γ1Γ2 . . .Γn = Γ2 . . .ΓnΓ1 = ΓnΓ1 . . .Γn−1.

Then, locally constant sheaves L of rank 1 on C
2 \∪n

i=1Li are classified up

to isomorphism by the element a = (a1, ...,an) ∈ C
n, such that for the mon-

odromy representation

Γie = aie (1.2)

where Lx0
= Ce is the stalk at x0.

The example above, showing the direct relation between the local systems

on a space V and the finite dimensional representations of the fundamental

group of the same space V , provides the starting point of Paper I (see section

2.1.1).

Operations

Let X be a topological space, U an open subset of X and F the closed

complement. We will denote by j the inclusion of U in X and by i the inclusion

of F in X . Let Sh(X) (respectively Sh(U) and Sh(F)) denote the category of

sheaves on X (respectively on U and F).

Then there are the following basic functors that relate the categories above:

• j! : Sh(U)→ Sh(X): extension by 0 (exact);
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• j∗ : Sh(X)→ Sh(U): restriction (exact, also denoted by j!);

• j∗ : Sh(U)→ Sh(X): direct image (left exact);

• i∗ : Sh(X)→ Sh(F): restriction (exact);

• i∗ : Sh(F)→ Sh(X): direct image (exact, also denoted by i!);

• i! : Sh(X)→ Sh(F): sections with support in F (left exact).

1.2 Perverse sheaves

The main object of this PhD thesis might be described in the following

way: consider a topological space X , a closed subset S and a direct image

functor j : X −S→X . Let La be a a locally constant sheaf in the open subspace

X − S. We will be interested in certain characteristics of the perverse sheaf

R j∗La in different settings.

1.2.1 The category of complexes and the derived category

Let A denote the category of sheaves on a topological space X and K(A)
the homotopy category of complexes over A. Let Q be the class of K(A) con-

sisting of all quasi-isomorphisms. The category obtained by formally invert-

ing the class Q of quasi-isomorphisms is the (bounded below) derived category

D(A) of A (see [12], pp. 430-435).

Any bounded below complex A• admits a quasi-isomorphism f : A• → I•

into a bounded below complex of injective objects, I• (an injective resolu-

tion of A•, that is a right resolution whose all elements are injective)(see [12],

pp.40). By working with injective resolutions the derived category becomes

more manageable. The definition of derived functors is an example.

Definition 1.2.1. ([21], pp.14) Suppose that F : A→ B is a left exact functor

between abelian categories A and B. Let A• be a complex of A and A• ∼= I(A•)
an injective resolution. Then define RF(A•) := F(I(A•)). This establishes a

functor

RF : D+(A)→ D+(B)

called a right derived functor of F . The i-th right derived functor

RiF : D+(A)→B

is defined by RiF = Hi ◦RF .
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If A• ∈ K(A), the shifted complex A•[m] is defined to be the complex that

in degree n is An+m, and has differentials that are those of A• multiplied by

−m. If f : A• → B• is a chain map then the mapping cone is the complex

M• := A•[1]⊕B. It sits in a sequence

A• f→ B• → M•, (1.3)

which can be continued by a map M• → A•[1] → B•[1] → ..., and therefore

often written as

A• f→ B• → M• +1→ ...

We will denote the mapping cone as above by Cone( f ). Any sequence in

the derived category that is homotopy equivalent to a sequence of type (1.3) in

K(A) is called a distinguished triangle. This descends to the derived category

D(A), where again a distinguished triangle is a sequence that is isomorphic to

one of the type (1.3).

These two features, the translation functor A• �→ A•[1] and the set of dis-

tinguished triangles, make D(A) into a triangulated category (see the axioms

that have to be satisfied in [3]).

1.2.2 Definition of perverse sheaves

The definition of perverse sheaves can be presented in different ways ac-

cording to the properties we want to explore, but every definition demands a

certain level of abstraction and a rather complex previous technical work. We

are going to present the definition from [3].

Let X be topological space and D = DX the derived category of sheaves on

it. The definition of perverse sheaves is based on the concept of a t-structure,

which comprehends a triangulated category D, two full subcategories pD≤0

and pD≥0 and perverse truncation functors, τ≤0
p : D → pD≤0 and τ≥0

p : D →
pD≥0. More generally, we may define the truncation functors as τ≤n

p X• :=

(τ≤0
p (X•[−n]))[n] and τ≥n

p X• := (τ≥0
p (X•[−n]))[n].

The category of perverse sheaves M(X), in the case, D = DX is a full

subcategory of D, corresponding to its heart (or coeur): M(X) := pD≤0(X)∩
pD≥0(X).

M(X) turns out to be an abelian category and therefore we can find kernels

and cokernels. Let f : Q• → R• be a map of perverse sheaves. The kernel and

cokernel are defined through the perverse truncation functors as:

ker( f ) = (τ≤−1
p (Cone( f ))•)[−1]

and

coker( f ) = τ≥0
p (Cone( f ))•.

��



In M(X) is also defined a cohomological functor pH0 := τ≤0
p τ≥0

p . Simi-

larly, in a more general setting, we define pHm := τ≤m
p τ≥m

p .

We will now describe this more precisely. Note that the most important of

the above concepts is the concept of truncation – using it the others may be

defined.

t-category

Definition 1.2.2. ([9], pp.125) A t-category is a triangulated category D, with

two strictly full subcategories D≤0 and D≥0 of the category D, such that, by

setting D≤n = D≤0[−n] and D≥n = D≥0[−n], one has the following properties:

• Hom(X•;Y •) = 0 if X• ∈ D≤0 and Y • ∈ D≥1;

• D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0;

• for any object X• ∈ D, there is a distinguished triangle

A• → X• → B• +1−→ A•[+1]

with the object A• in D≤0 and the object B• in D≥1.

We say that (D≤0,D≥0) is a t-structure over D. Its heart is the full subcategory

C= D≤0 ∩D≥0.

In the above definition A• := τ≤0X• and B• := τ≥1X•. As referred before,

truncation functors may be defined as τ≤nX• := (τ≤0(X•[−n]))[n] and

τ≥nX• := (τ≥0(X•[−n]))[n]. For these functors we have the following propo-

sition.

Proposition 1.2.3. ([3], pp.29) The inclusion of D≤n in D admits a right ad-
joint τ≤n, and the inclusion of D≥n admits a left adjoint τ≥n. For every X• in
D, there exists a unique morphism d ∈ Hom1(τ≥1X•,τ≤0X•) such that

τ≤0X• → X• → τ≥1X• d−→

is a distinguished triangle. Apart from isomorphism, this is the unique distin-
guished triangle (A•,X•,B•) with A• in D≤0 and B• in D≥1.

The simplest example of a t-structure on DX is the one induced by τ≥0

and τ≤0 being the ordinary truncation operators on complexes. In this case the

heart is just the category of sheaves on X . By using shifted truncation operators

one gets a t-structure with a heart that is the the category of sheaves on X , but

now shifted to a fix degree. We call this the shifted trivial t-structure. The idea
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of using perversities is now to shift differently according to the different strata

in a stratification of X .

An at first view easy, but fundamental concept, is the one of perversity. We

will only use a certain perversity, but it makes the construction clearer if we

introduce it more generally.

Definition 1.2.4. Let X be a topological space and Σ a stratification of X . A

perversity is a map p : Σ → Z (to each stratum an integer is associated).

The stratification that we are going to use will be by complex subvarieties

Si, i = 1, . . . ,d and the perversity that we will use will be the middle perversity

p(Si) =−dimCSi.

Gluing t-categories using perversities

(For the following construction see [3], pp. 48-58.) The truncation in the

category DX has to be understood inductively from the truncation τU , asso-

ciated to a t-structure in the category DU , and τF in DF , where U ⊂ X is an

open subset and F = X \U the closed complement. Consider (D≤0
U ,D≥0

U ) a

t-structure on DU and (D≤0
F ,D≥0

F ) a t-structure on DF . Then define:

D≤0 := {K ∈ D | j∗K ∈ D≤0
U and i∗K ∈ D≤0

F }
D≥0 := {K ∈ D | j∗K ∈ D≥0

U and i!K ∈ D≥0
F }

Proposition 1.2.5. (D≤0,D≥0) is a t-structure over D.

We say that we glue the t-structures over U and F .

Now, given a perversity, the idea is to build the t-structure inductively,

starting with U1 = S0 and F1 = S1 (S0,S1 ∈ Σ), and using the t-structures on DU1

and DF1
, that are trivial t-structures that are shifted according to the perversities

pU1
and pF1

, to build a t-structure on X \X2 = S0 ∪ S1. In the next step one

considers X \X3 = X \X2 ∪ (X2 \X3), where one, by the previous inductive

step, has a t-structure on DU2
, with U2 = X \X2 and uses the trivial t-structure

on DF2
, with F2 = X2 \X3 = S2 shifted according to pS2

.

We now describe this equivalently, just using the strata.

Lemma 1.2.6. The subcategory pD≤0(X) (resp. pD≥0(X)) of D(X) is the sub-
category given by the complexes K• (resp. K• in D+(X)) such that for each
stratum S, being iS the inclusion of S in X, one has Hn(i∗SK•) = 0 for n > p(S)
(resp. Hn(i!SK•) = 0 for n < p(S)).

Definition 1.2.7. The category M(p,X) of p-perverse sheaves over X is the

category pD≤0 ∩ pD≥0 (the heart of the t-structure (pD≤0, pD≥0)).

��



Remark 1.2.8. To a locally constant sheaf L defined on a topological space of

even dimension, X , we can "attach" a perverse sheaf structure (for more de-

tails see [3], pp.63,64). If all the strata Si, i = 1, . . . ,d have even dimension in

a complex space X , there exists a perversity defined in terms of their complex

dimension, such that, for every stratum S, p(Si) =−dimCSi. If X is a complex

variety of dimension d, the locally constant sheaf L placed in degree −d corre-

sponds to a perverse sheaf, since the cohomology groups satisfy the conditions

in Lemma 1.2.6.

Truncation

We just describe the truncation for the case of two strata, an open U and

a closed F . Let j : U → X and i : F → X . To these strata we assume that

we have perversities, where pU is the perversity of U and pF the perversity

of F . For K• on U , τ≥i
U (K•) in DU is given by the shifted trivial truncation

τ≥i
U := τ≥i+pU (K•). For L• on F , τ≥i

F (L•) is given by τ≥i
F := τ≥i+pF (L•) in

DF . Similarily with the other truncations.

To get the perverse truncation which is associated to the glued t-structure:

• start with an object X• in D, and choose Y • in a way so that we have the

distinguished triangle

(Y •,X•, j∗τ≥1
U j∗X•);

• then we define A• such that the following is also a distinguished triangle

(A•,Y •, i∗τ≥1
F i∗Y •);

• finally we define B• so that we have the third distinguished triangle (us-

ing the composition A• → Y • → X• as the first map)

(A•,X•,B•).

Clearly all of this constructions may be done using mapping cones. It is

not difficult to prove from Propositions 1.2.2 and 1.2.3 that A• is in D≤0 and

B• in D≥1, and so the perverse truncation is determined as A• = τ≤0
p X• and

B• = τ≥1
p X•.

The relation between the perverse truncation and the kernel and cokernel

In the case of the trivial truncation it is easy to relate it with the kernel

and cokernel of a morphism in the heart, i.e. a map between sheaves. There
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is an equivalent result for the perverse truncation and thus this gives a way of

computing the kernel and cokernel for a morphism of complexes in the derived

category.

Let Z• be the mapping cone of the morphism f : Q• → R•, between two

perverse sheaves. Then we have maps

Q• → R• → Z•

and

Z•[−1]→ Q• → R•.

Following the results of [3], pp.27-31, we have that:

ker( f ) = (τ≤−1
p Z•)[−1] , coker( f ) = τ≥0

p Z•,

or more precisely the kernel of f is the composition

(τ≤−1
p Z•)[−1]→ Z•[−1]→ Q•,

and the cokernel is the composition

R• → Z• → τ≥0
p Z•.

For our purposes we rewrite this as

ker( f ) = (τ≤−1
p Z•)[−1] = (τ≤0

p Z•[−1][1])[−1] = τ≤0
p (Z•[−1]) (1.4)

coker( f ) = τ≥0
p Z• =

(
τ≥1

p (Z•[−1])
)
[1] (1.5)

In particular, one should note that the kernel and cokernel are possible to

calculate in terms of the truncation operators.

Lemma 1.2.9. Suppose A θ−→ B → C is a distinguished triangle of perverse
sheaves and that θ : A → B is an injection in M(X). Then C = cokerθ .

Remark 1.2.10. Let Q• and R• be complexes that are different from zero only

in degree 0. Therefore the mapping cone is the complex Z• : Q• → R•. Let us

apply the definitions of kernel and cokernel given above to this Z•, but using

the normal truncation, which corresponds to the perversity p ≡ 0. Z•[−1] will

be a complex different from zero in degrees 0, 1 and the result of τ≤0(Z•[−1])
will be precisely ker( f ) (in degree 0). The result of τ≥1(Z•[−1]) is, according

to the definition of (trivial) truncation functors, coker( f ), in degree 1. After the

last shifting,
(
τ≥1(Z•[−1])

)
[1], the result will be coker( f ) in degree 0. Hence

the truncation functor gives the kernel and cokernel for the trivial t-structure.
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1.2.3 Irreducibility and composition series

Our main concern in this work is to define the conditions for the irreducibil-

ity of given perverse sheaves in different contexts and, in the case those condi-

tions are not satisfied, the number of factors in its composition series.

Definition 1.2.11 ([14], Def.1.2.18). Let C be a category and X ∈ C.

• An isomorphism class of a monomorphism with target X is called a sub-

object of X .

• An isomorphism class of an epimorphism with source X is called a quo-

tient of X .

Definition 1.2.12 ([14], Ex.8.20). Let C be an abelian category. An object X
in C is irreducible (or simple) if it is not isomorphic to 0 and any subobject of

X is either X or 0. A sequence

X = X0 ⊃ X1 ⊃ . . .⊃ Xn−1 ⊃ Xn = 0

is a composition series if the quotient Xi/Xi+1 is irreducible for all i with 0 ≤
i < n.

We call the integer n the length of the object X . We will denote the number

of factors in a composition series of an object X by c(X) and so c(X) = n.

Every perverse sheaf has a finite composition series whose successive quo-

tients are irreducible perverse sheaves ([3]). As stated, the fact that M(X) is an

abelian category implies that every morphism has a kernel and a cokernel. The

explicit construction of kernels and cokernels and Lemma 1.2.9 above allow

us to associate a decomposition series to the perverse sheaves we will study.

1.2.4 Grothendieck Group

The Grothendieck group is an abstract construction that can be defined for

an abelian category. As mentioned before, the category of perverse sheaves

is abelian and so has short exact sequences. In that case, exact sequences of

perverse sheaves correspond to distinguished triangles:

A → B →C +1−→ A[1]→
Definition 1.2.13. ([11], pp.95) Let C be an abelian category. Let F be the

free abelian group generated by representatives of the isomorphism classes of

objects in Ob(C). We denote by the symbol [N] the representative of N ∈
Ob(C). Let F0 be the subgroup generated by [M] + [L] = [N] for all exact

sequences 0 → M → N → L → 0 in C. The Grothendieck group G(C) is by

definition the factor group F/F0.
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From the definition above we get the following properties:

• [0] = 0 (take N = L);

• if M ∼= N, then 0 → M
∼=−→ N → 0 → 0, and so [M] = [N];

• [M⊕L] = [M]+ [L] (take N = M⊕L).

One of the fundamental features of the Grothendieck construction is that

it allow us to keep track of the building blocks of the objects we are studying,

while disregarding their relations.

1.3 The Poincaré Polynomial

In its more general form the Poincaré polynomial is a diversified tool based

in the notion of dimension of graded algebraic structures defined in a given

space.

Definition 1.3.1 ([20], Def.4.117)). Let K be a field. Suppose M =⊕q∈ZMq is

a finitely generated graded vector space and each Mq is finite dimensional over

K. Then, the Poincaré series is

Poin(M, t) = ∑
q∈Z

(dimKMq)tq

We will work with the Poincaré polynomial of an hyperplane arrangement.

Let M(A) denote the complement of the arrangement A.

Definition 1.3.2 ([20]. Def.5.92). The Poincaré polynomial of the complement

of the arrangement A is

Poin(M(A), t) = ∑
p≥0

dimH p(M(A))t p

Inspired by the fact that the Poincaré polynomial is a combinatorial hyper-

plane invariant ([20]) and the results of a work from T. Oaku ([19]) relating

the length of the first local cohomology group of a polynomial ring with the

Poincaré polynomial, we reached a result that describes the number of decom-

position factors of the direct image of a locally constant sheaf defined in the

complement of a hyperplane arrangement in terms of its Poincaré polynomial.

One of the main features of Poincaré polynomial appears in the work of Orlik

and Terao, who extended results from V.I. Arnold and Brieskorn, proving that

the dimension of the cohomology groups of the complement depend only on

the lattice of intersections of the hyperplanes.

Let V be a topological space and A = {H0, . . .Hm} be an hyperplane ar-

rangement in V .
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Definition 1.3.3. Let L(A) denote the set of all intersections of the arrange-

ment A. We consider that V ∈ L(A) as the empty intersection.

We define in L(A) a reverse inclusion partial order:

F ≤ G ⇔ G ⊆ F

Definition 1.3.4. Let F,G,K ∈ L(A). The Möbius function

μA : L(A)×L(A)→ Z is defined recursively as:

μ(F,G) =

⎧⎨
⎩

1 if F = G
−∑F≤K<G μ(F,K) if F < G
0 otherwise

For F ∈ L(A), we denote μ(F) = μ(V,F).
The following Lemma gives us a concrete, explicit way of computing the

Poincaré polynomial of a hyperplane arrangement.

Lemma 1.3.5 ([20], Def.2.48)). The Poincaré polynomial of A is defined by

Poin(A, t) = ∑
F∈L

μ(F)(−t)r(F)

where t is an indeterminate and r(F) is the codimension of F in V .

Example 1.3.1. Consider the braid arrangement B3 in C
3 consisting in 3 hy-

perplanes Bi, j = {x ∈ C
3 | xi = x j,1 ≤ i < j ≤ 3}.

For this arrangement the intersection lattice is

L(B3) = {C3,B1,2,B1,3,B2,3,B1,2 ∩B1,3 ∩B2,3}
Each one of the elements of L(B3) has the following Möbius function:

μ(C3) = 1, μ(B1,2) = μ(B1,3) = μ(B2,3) =−1, μ(B1,2 ∩B1,3 ∩B2,3) = 2

Finally,

Poin(B3, t) = 2t2 +3t +1

Theorem 1.3.6 ([20], Thm.5.93). Let A be a complex arrangement in V and
M(A) its complement. Then,

Poin(M(A), t) = Poin(A, t).

The Poincaré polynomial can also be defined for an intersection lattice L
that is not directly associated to an hyperplane arrangement. For a lattice of

subvarieties in a space V , we define a partial order as above and the Poincaré

is obtained in the same way.

One of the main properties of the Poincaré polynomial is that it satisfies

the Deletion-Restriction Theorem.
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Definition 1.3.7. Let A= {H0, . . .Hm} be an hyperplane arrangement in V . We

define the deleted arrangement as A′ = {H1, . . .Hm}=A\H0 and the restricted

arrangement as A′′ = {H0∩Hi | Hi ∈A′ and H0∩Hi �= H0}. The arrangements

(A,A′,A′′) define a triple of arrangements.

Theorem 1.3.8 (Deletion-Restriction Theorem). ([20], Thm.2.56) If
(A,A′,A′′) define a triple of arrangements, then

Poin(A, t) = Poin(A′, t)+ tPoin(A′′, t)

It is possible to prove a statement similar to the Deletion-Restriction The-

orem for the Möbius function. We will use results from K. Jewell ([13]) to

outline a brief explanation of the result.

We consider a triple of hyperplane arrangements as before and let (L,L′,L′′)
be the intersection posets. In [13] there is associated to this situation, and to

each F ∈ L, certain simplicial complexes (K[F ],K′[F ],K′′[F ]) that are subcom-

plexes of the nerves of the arrangements (A,A′,A′′). Each of these complexes

contains a subcomplex K(F),K′(F) and K′′(F) respectively, and there is a long

exact sequence in relative homology:

...→ Hm(K′[F ],K′(F))→ Hm(K[F ],K(F))→ Hm−1(K′′[F ],K′′(F))→ ...
(1.6)

Denote by rL(F) = codimF . Then, as hyperplane arrangements are in-

stances of what is called a geometric poset arrangement in [13, section 3], the

following result applies:

Theorem 1.3.9. ([13], Thm.3.3)

Hp(K[F ],K(F)) =

{
Z
|μL(F)| if p = rL(F)−1

0 if p �= rL(F)−1

Since A′ and A′′ are again hyperplane arrangements, this applies as well to

L′ and L′′. So only three homology groups are non-zero in the sequence (1.6)

and their ranks are the absolute value of the appropriate Möbius function.

Recalling standard properties of short exact sequences, it then follows from

(1.6) that we have:

rk(Hm(K[F ],K(F))) = rk(Hm(K′[F ],K′(F)))+ rk(Hm−1(K′[F ],K′(F))).

And so, using the statement in Theorem 1.3.9, we conclude that

| μL(F) |=| μ ′
L(F) |+ | μ ′′

L (F) | .
This property is used in paper 2. There is probably a more immediate proof

of this property, but the paper of Jewell was were we somewhat indirectly

found the statement.
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1.4 Verdier Duality

The Verdier Duality consists in a generalization of Poincaré Duality. Its

description is based in the dualizing complex and, among its main features, is

the compatibility with direct and inverse images. We present here the Local

Form of Verdier Duality since is the one that is applied to complex of sheaves.

Let X and Y be topological manifolds, A• and B• complex of sheaves in

X and Y , respectively, and f : X → Y a continuous map. Verdier Duality is

induced by the following adjunction property.

Theorem 1.4.1. ([5], Thm.7.17) In Db(Y ) we have the canonical isomorphism

RHom•(R f!A•,B•)∼= R f∗RHom•(A•, f !B•).

To define Verdier Duality it is convenient to introduce the dualizing com-

plex.

Definition 1.4.2. The dualizing complex wX ∈ Db(X) is defined by

wX := a!(Apt)

where a = aX : X →{pt} is the projection to a point.

Let DX A• ∈ Db(X) denote the dualizing functor (for more details see [14],

Def. 3.1.6). Define DX A• = RHom(A•,wX). This is the Verdier dual of A•.

There are some basic and important properties of the Verdier dual. Let A•

be a complex in Db(X), then:

1. DX : Db(X)→ Db(X) is a contravariant functor;

2. D2
X A• = A•;

3. DX(A•[n]) = DX(A•)[−n], for any n ∈ Z;

4. let f : X → Y be a continuous map, then:

• DX f ∗A• ∼= f !DY A•;

• R f∗DX A• ∼= DY R f!A•;

• R f!DX A• ∼= DY R f∗A•, for A• and R f!DX A• constructible.

This means that results on the decomposition of R f∗ can be related to re-

sults on R f! by duality, a fact that is used in Paper 3.
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1.5 The Weyl Algebra

In this section our references are [8] and [15].

Let k denote a field of characteristic zero and k[x] the ring of polynomials

in n variables x = (x1, . . . ,xn). We will use the multi-index representation for

the monomials in this ring, xα = xα1

1 , . . . ,xαn
n for α ∈ N

n.

Definition 1.5.1. The n-th Weyl algebra D = k〈x,∂ 〉 is defined as the associa-

tive k-algebra on 2n symbols x = (x1, . . . ,xn) and ∂ = (∂1, . . . ,∂n) with rela-

tions

xix j = x jxi, for all1 ≤ i, j ≤ n;

∂i∂ j = ∂ j∂i, for all 1 ≤ i, j ≤ n;

∂ix j = x j∂i, for all 1 ≤ i, j ≤ n, i �= j;

∂ixi = xi∂i +1, for all 1 ≤ i ≤ n.

The dimension of a finitely generated D-module is the degree of a cer-

tain Hilbert polynomial associated to it (for more details see [8], Chapter 9).

Bernstein’s inequality says that dim(M)≥ n if M is non-zero.

Definition 1.5.2. A finitely generated D-module M over the n-th Weyl algebra

D is holonomic if either M = 0 or dim M = n.

Holonomic D-modules present interesting properties, in particular, they

form an abelian subcategory of the category of D-modules. They are artinian

and noetherian and therefore their decomposition series have a finite length.

We describe now the holonomic module Mα
β that corresponds to R j∗La

(a = exp(2πiα)) and which has been studied in connection with Bernstein-

Sato polynomials (see Walther [22]).

The initial setting is a hyperplane arrangement

A = {H1 =V (β1), . . . ,Hm =V (βm)}

in C
n, where each βi : Cn →C, i = 1, . . . ,m is a non-zero polynomial of degree

1. Define U = C
n \V (β ), where β = ∏m

i=1 βi.

The coordinate ring OU of U is the localization C[x]β := C[x1, . . . ,xn]β .

This corresponds to a holonomic An-module, where An is the n-th Weyl al-

gebra. Consider now the formal D-module corresponding to the multivalued

function β α = β α1

1 . . .β αm
m .

Definition 1.5.3. ([2], Def.1.3) The module Mα
β is a the free rank 1 C[x]β -

module on the generator β α , where α = (α1, . . . ,αm) ∈ C
m. It is furthermore
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an An-module, defining

∂ j(β α) =
m

∑
i=1

αi
∂ j(βi)

βi
β α

for j = 1,2, . . . ,n and extending to an action of An on Mα
β .

One of the main results about holonomic D-modules is the Riemann-Hilbert

correspondence. Denote by D̃X the sheaf of rings of finite order holomorphic

linear differential operators. Let Db
h(D̃X) denote the bounded derived category

of holonomic complexes and Db
rh(D̃X) its subcategory of regular holonomic

complexes (see [6], Chapter VIII).

Theorem 1.5.4. ([9], Thm.5.3.3) [The Riemann-Hilbert Correspondence] Con-
sider the triangulated category Db

rh(D̃X) endowed with the natural t-structure
and the triangulated category of constructible sheaves Db

c(X) endowed with
the middle perversity t-structure. Then the de Rham functor

Db
rh(D̃X)

DR−→ Db
c(X)

is t-exact and establishes an equivalence of categories which commutes with
direct images, inverse images and duality. In particular:

1. DR induces an equivalence of categories between the abelian category
RH(DX) of regular holonomic D̃X -modules on X and the abelian cate-
gory of middle perversity perverse sheaves Perv(X);

2. For any complex M• ∈ Db
rh(D̃X), one has an isomorphism

DR(Hm(M•)) = pHm(DR(M•)).

Here pHm is a cohomological functor pHm : Db
c(X) → Perv(X), that was

defined in Section 1.2.2.

As the category of perverse sheaves, the category of holonomic D-modules

admits Grothendieck’s six operations. Under the de Rahm functor it is possi-

ble to describe the correspondent operations in the two categories. Since any

module over the Weyl algebra can be extended to a module over the differen-

tial operators with holomorphic coefficients D̃X , and this extension is an exact

functor, we have, in particular, the following Proposition.

Proposition 1.5.5. DRMα
β = R j∗La (where j∗ is the direct image j∗ : Sh(U)→

Sh(Cn) and La is the locally constant rank 1 sheaf on U, which is defined
by the fact that the monodromy around each Hi is given by multiplication by
ai = exp(2πiαi)).
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2. Summary of Papers

2.1 Summary of Paper I

This paper is published in ”Communications in Algebra”, Volume 46, Is-

sue 6, DOI:10.1080/00927872.2017.1399410 ([4]). These results are partially

contained in a more detailed version as part of my Licentiate thesis ([10]).

2.1.1 Problem and Results

In Paper I we present conditions for the irreducibility of the perverse direct

image of a locally constant sheaf and the number of factors of its composition

series, in the case the referred conditions are not satisfied.

The main definitions and properties of perverse sheaves we use are based

in the work by Beilinson, Bernstein and Deligne, [3].

The initial setting is the space C
2 −∪m

i=1Li, where ∪m
i=1Li represents a

central line arrangement. Consider a rank 1 locally constant sheaf La, de-

termined, up to isomorphism by a ∈C
m (see Example 1.1.1) and the inclusion

j : C2−∪m
i=1Li →C

2. Our main problem was, since we know that the perverse

sheaf R j∗La has a finite decomposition series, to describe it in terms of a∈C
m.

Theorem 2.1.1. Assume that m > 2. The perverse sheaf R j∗La, where j :

C
2−∪n

i=1Si →C
2, is irreducible if, and only if, both of the following conditions

are satisfied:

• ai �= 1, for all i = 1, . . . ,m;

• Πm
i=1ai �= 1.

In the second part we assume that a1, . . . ,ak = 1 and ak+1, . . . ,an �= 1. In

this case we know that R j∗La is not irreducible and we investigate the number

of factors of its composition series, c(R j∗La). Imposing different conditions

on the product Πm
i=1ai and on the value of k, we obtain models of the decom-

position factors of R j∗La and its number.

Theorem 2.1.2. Assume that a1, . . . ,ak = 1 and ak+1, . . . ,am �= 1.

• If k = m, then c(R j∗La) = 2m
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• If k < m and Πm
i=1ai = 1, then c(R j∗La) = m+ k−1.

• If k < m and Πm
i=1ai �= 1, then c(R j∗La) = k+1.

2.1.2 Methods

In order to obtain the results above, we use a quiver description of irre-

ducible perverse sheaves, first introduced by Deligne and later developed by

MacPherson and Vilonen in the papers [16], [17] and [18]. In this quiver pre-

sentation we consider an abelian category (F,G;T ) whose objects are pairs

(A,B) ∈ Ob jA×Ob jB together with a commutative triangle

FA
TA ��

m
��

GA

B
n

��

and whose morphisms are pairs (a,b) ∈ MorA×MorB such that

FA
TA ��

m

��
Fa

��

GA

Ga

��

B

n
��

b

��

FA′ TA′ ��

m′
��

GA′

B′
n′

��

We translate, to this new language, the definitions and results previously de-

scribed in the category of perverse sheaves, in particular the concept of ir-

reducibility and the functors p j!, p j!∗ and p j∗. As an intermediate step, we

follow the work of MacPherson and Vilonen in [18], associating the func-

tors F,G,T above, to the functors ψ (nearby cycles), ψc (nearby cycles with

compact support) and Φ (vanishing cycles), respectively. Then we follow a

two-step process, considering the inclusions, j1 and j2:

C
2 −S

j1

−→ C
2 −{0} j2

−→ C
2

The irreducibility conditions of p j1∗La are given by a direct application of a

category equivalence established by MacPherson and Vilonen (Prop. 2.6). To

determine the irreducibility conditions of p j2∗La, we combine Lemma 2.7 and
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Lemma 2.8, in a longer and more detailed process. It is interesting to point

out that we start with a rather abstract problem and we manage to simplify it

in a way that our final result comes from a computation of the determinant of

a certain matrix. We conclude that the irreducibility conditions depend only

on the values that a ∈ Cm might assume. This method also allow us to give a

quiver description of the decomposition factors of R j∗La, when the conditions

of Theorem 2.1.1 are not satisfied.

2.2 Summary of Paper II

This paper can be accessed in arXiv:1703.07662.

2.2.1 Problem and Results

In Paper II our initial main goal is to describe the number of decomposition

factors of the perverse direct image of a constant sheaf in terms of an invariant

of the hyperplane, the Poincaré polynomial. Note that this contrasts with the

problem in Paper I, in which a locally constant sheaf La is considered. In this

paper we were primarily inspired by the work of Oaku, [19]. The references

for the initial concepts were Iversen, [12] and Orlik and Terao, [20].

Our initial space was the complement of a hyperplane arrangement

H0, . . . ,Hm in C
n. We considered the inclusion j : Cn \ ∪m

i=0Hi → C
n and a

constant sheaf on C
n \∪m

i=0Hi.

Theorem 2.2.1. Let A be a hyperplane arrangement with hyperplanes Hi, i =
0, ...,m. Let j : Ũ := C

n \∪m
i=0Hi → C

n be the inclusion of the complement to
the arrangement, and CŨ the constant sheaf on Ũ. Then

c(R j∗CŨ [n]) = Π(A,1) = ∑
F∈L(A)

|μ(F)|.

In the second part we take a more detailed view over the composition se-

ries of the perverse sheaf R j∗CŨ [n] and we describe it as an element in the

Grothendieck group G(A) of Perv(Cn). This is the free abelian group on a

symbol [K] for each perverse sheaf, modulo the relations [M]+ [K] = [N] for

any short exact sequence M ↪→ N � K. G(A) is a free abelian group with a

basis corresponding to the set of irreducible objects.

We denote by F a flat of the arrangement A and define NF = i∗CF [dimC F ]∈
Perv(X).

Proposition 2.2.2.

[R j∗CŨ [n]] = ∑
F∈L(A)

|μ(F)|[NF ], (2.1)
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where μ(F) is the Möbius function on the intersection lattice L(A).

2.2.2 Methods

We start by defining a restricted and deleted arrangement, A′ :=A−H0 in

C
n and A′′ := {H0∩H |H ∈A′ and H0∩H �= 0}, respectively. Let U =C

n\H0

and V = C
n \∪m

i=1Hi.

We then consider a Mayer-Vietoris sequence of the right derived direct

images of the constant sheaf associated to the space U ∩V = C
n \∪m

i=1Hi. In

the category of perverse sheaves this translates to a short exact sequence.

Since the number of decomposition factors of a perverse sheaf is the sum

of the number of decomposition factors of perverse sheaves in a short exact

sequence, we may show that:

Lemma 2.2.3. The length c of the decomposition series of the sheaves in the
short exact sequence satisfies

c(iU∩V∗i!U∩VC[n+1]) = 1+ c(iV∗i!VC[n+1])+ c(iU∪V∗i!U∪VC[n+2]),

where iY : Cn \Y → C
n represents the closed inclusion.

The proof of the theorem proceeds by induction on the number of hyper-

planes, using that there is a similar recursive formula for the Poincaré polyno-

mial. To get the more precise result on multiplicities we use the fact, due to K.

Jewell, [13], that, the a priori long exact Mayer-Vietoris sequence, splits into

short exact sequences, implying an inductive formula for the Möbius numbers.

The proof of Proposition 2.2.2 is based on the previous results and on the

fact that the Möbius function satisfies a version of the Deletion-Restriction

Theorem:

|μA(F)|= |μA′(F)|+ |μA′′(F)|.
We can again use induction to prove the desired result.

2.3 Summary of Paper III

2.3.1 Problem and Results

In Paper III conditions for the existence of decomposition factors of the

perverse sheaf R j∗Lγ [n] that have support on a flat are described (note the

change of notation from paper I, Lγ here is the same as La there). In paper

II we saw that when Lγ was trivial (i.e. a constant sheaf), there are decomposi-

tion factors with support on any flat. The situation is more differentiated when

Lγ is arbitrary.
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We use recent work from N. Budur [7] concerning the description of the

locus Ms, the set of γ such that R j∗Lγ is irreducible as a perverse sheaf, in

terms of torii .

We consider a free hyperplane arrangement in C
n, A= {H1, . . . ,Hm}, and

the inclusion j : U := C
n \∪m

i=1Hi → C
n. Let M(A) be the moduli space of

rank 1 locally constant sheaves on U . We have that M(A) is isomorphic to the

torus C∗m . We denote by Lγ the sheaf corresponding to γ = (γ1, . . .γm) ∈C
∗m.

Let F be a flat in A. We define:

• J(F) = {H ∈A : H ⊃ F};

• sF(γ) = {∏Hi∈J(F) γi};

• TF = {γ ∈ M(A) : sF(γ) = 1}, which is a subtorus of C∗m.

We obtain the following result:

Theorem 2.3.1. i) If K is a decomposition factor of R j∗Lγ [n], such that
F := suppK satisfies condition (A) relative to R j∗Lγ [n], then γ ∈ TF .

ii) Conversely, if γ ∈ TF, where F is a dense flat, but γ /∈ TF ′ , for all flats
F ′ such that X �= F ′ �= F, then R j∗Lγ [n] has a decomposition factor with
support on F.

The condition (A) is a slight variation of saying that K is the top (i. e.

is the maximal element in a decomposition series) modulo perverse sheaves

with support of smaller dimension on F . In particular the top of R j∗Lγ [n] in a

decomposition series always satisfies condition (A).

2.3.2 Methods

We consider a holonomic module Mα over the Weyl algebra, that, un-

der the Riemann-Hilbert correspondence, is associated to the perverse sheaf

R j∗Lγ [n]. Hence its decomposition series as a Weyl algebra module corre-

sponds to the decomposition series of R j∗Lγ [n] as a perverse sheaf. The rela-

tion between α and γ is that, γi = exp(2πiαi). Let βi be a defining polynomial

of the affine hyperplane Hi.

Definition 2.3.2. ([1], Def.1.3) The module Mα is the free rank 1 C[x]β -

module on the generator β α , where α =(α1, . . . ,αm)∈C
m. It is an An-module,

defining

∂ j(β α) =
m

∑
i=1

αi
∂ j(βi)

βi
β α

for j = 1,2, . . . ,m and extending to an action of An on Mα .

��



We then consider the closed inclusions of suitable generic lines iK : K →
C

n, and the effect of i!K on Mα . This functor on the category of D-modules

is related to local cohomology, and is easy to work with for closed inclusions.

We then deduce the theorem using information on Mα from the behaviour of

similar modules defined on lines.

��
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