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Abstract

This dissertation is concerned with extensions and wedge products of positive
currents. Our study can be considered as a generalization for classical works
done earlier in this field.

Paper I deals with the extension of positive currents across different types
of sets. For closed complete pluripolar obstacles, we show the existence of such
extensions. To do so, further Hausdorff dimension conditions are required.
Moreover, we study the case when these obstacles are zero sets of strictly k-
convex functions.

In Paper II, we discuss the wedge product of positive pluriharmonic (resp.
plurisubharmonic) current of bidimension (p, p) with the Monge-Ampère oper-
ator of plurisubharmonic function. In the first part of the paper, we define this
product when the locus points of the plurisubharmonic function are located in
a (2p−2)-dimensional closed set (resp. (2p−4)-dimensional sets), in the sense of
Hartogs. The second part treats the case when these locus points are contained
in a compact complete pluripolar sets and p ≥ 2 (resp. p ≥ 3).

Paper III studies the extendability of negative S-plurisubharmonic current
of bidimension (p, p) across a (2p − 2)-dimensional closed set. Using only the
positivity of S, we show that such extensions exist in the case when these
obstacles are complete pluripolar, as well as zero sets of C2-plurisubharmoinc
functions.
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Introduction

In this introductory chapter we give a background paving the readers’ way to
get into the details of the papers in this thesis. In spite that many related topics
to positive currents are exposed here, this introduction is not generic enough to
embrace a complete account of this field. However, this chapter together with
the list of references are very helpful to get your teeth into this subject.

Since our issue is local, all notions will be restricted to the case of open
subsets Ω of Cn, n ≥ 1.

1.1 Differential Forms

Let Dp,q(Ω) where p, q ∈ {0, ...,n} be the space of C∞ compactly supported
differential forms of bidegree (p, q). Let z j = x j + iy j be the coordinates in Cn,
we consider the operators

∂
∂z j

=
1
2

(
∂
∂x j
− i

∂
∂y j

)
and

∂

∂z j
=

1
2

(
∂
∂x j

+ i
∂
∂y j

)
If ϕ ∈ Dp,q(Ω), then we define

∂ϕ =

n∑
j=1

∂ϕ

∂z j
dz j and ∂ϕ =

n∑
j=1

∂ϕ

∂z j
dz j

We use the notation d = ∂ + ∂ and dc = i(∂ − ∂). A computation shows that

ddc = 2i∂∂ (1.1.1)

Recall that Cn is oriented. Namely, we have the (n,n)-form

V(z) =
( i

2

)n

dz1 ∧ dz1 ∧ ... ∧ dzn ∧ dzn = dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn (1.1.2)

The right hand side is Lebesgue’s volume form when we identify Cn with a
real (x, y)-space. If (w1, ...,wn) are other coordinates, we find that

V(w) = |det(
∂w j

∂zk
)|2V(z) (1.1.3)

1



2 1.1 Differential Forms

Recall that a form ϕ ∈ Dn,n(Ω) is positive if there exists a non negative
function γ such that ϕ(z) = γ(z)V(z). Then by (1.1.3), the positivity onDn,n(Ω)
does not depend on the choice of the coordinates.

The Kähler form is the (1, 1)-form defined by

K =
i
2

n∑
j=1

dz j ∧ dz j (1.1.4)

One checks that n-fold exterior product ofK is n! times the volume form.

1
n!
K

n =V (1.1.5)

Let us remark that one has the equality

β = ddc
|z|2 = 4K (1.1.6)

where in the literature, the left hand side is often used.

1.1.1 The Positivity onDp,p(Ω)

Definition 1.1.1. A form ϕ ∈ Dp,p(Ω) is said to be weakly positive if for all
α1, ..., αn−p ∈ D1,0(Ω), the (n,n)-form

ϕ ∧ iα1 ∧ α1 ∧ ... ∧ iαn−p ∧ αn−p (1.1.7)

is positive. A form ϕ ∈ Dp,p(Ω) is said to be strongly positive if ϕ can be written as

ϕ(z) =

N∑
j=1

γ j(z) iα1, j ∧ α1, j ∧ ... ∧ iαp, j ∧ αp, j, N ∈N

where γ j ≥ 0 and αs, j ∈ D0,1(Ω).

By this definition, we find that Dp,p(Ω) has a basis consisting of strongly
positive forms. This follows from the equality

4dz j ∧ dzk = (dz j + dzk) ∧ (dz j + dzk) − (dz j − dzk) ∧ (dz j − dzk)

+ i(dz j + idzk) ∧ (dz j + idzk) − i(dz j − idzk) ∧ (dz j − idzk)

An example of strongly positive forms is the (1, 1)-form β. The (n,n)-form
βn will play a pivotal role in the subsequent study of positive currents.

1.1.2 Pull-Back of Differential Forms
Let Ω′ be an open subset of Cm and let f be a smooth function which maps Ω′

into Ω. If ϕ ∈ Dp,q(Ω), then the pull-back f ∗ϕ is the form on Ω′ which is defined
as follows.

If ϕ =
∑
|I|=p,|J|=q ϕI,JdzI ∧ dzJ, and if f j are the components of f , then we have

f ∗ϕ(z′) =
∑

|I|=p,|J|=q

ϕI,J ◦ f (z′)d fi1 (z′) ∧ ... ∧ d fip (z′) ∧ d f j1 (z′) ∧ ... ∧ d f jq (z
′) (1.1.8)
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Notice that f ∗ϕ ∈ Dp+q(Ω) and Supp f ∗ϕ ⊂ f−1(Suppϕ), but in general
Supp f ∗ϕ need not to be compact. If f is analytic, then d f j is (1, 0)-form, for all
j = 1, ..,n. Therefore, the pull-back involving analytic functions preserves both
the bidegree and the positivity.

Some properties of the pull-back. Let ϕ and f as above, and let ψ be a
differential form on Ω . Then we have the following.

1. ∂ f ∗(ϕ) = f ∗(∂ϕ)

2. ∂ f ∗(ϕ) = f ∗(∂ϕ)

3. f ∗(ϕ ∧ ψ) = f ∗(ϕ) ∧ f ∗(ψ)

Fubini’s Theorem. Let M and N be oriented differentiable manifolds of real
dimensions m and n, respectively, and let f be a smooth map from M to N such
that f is a submersionI. Take a differential form ϕ of degree m on M, with L1

loc
coefficients such that f |Suppϕ is proper, i.e. Suppϕ∩ f−1(K) is compact for every
compact subset K of N, then for all ψ ∈ Dn(N) we have∫

M
ϕ ∧ f ∗(ψ) =

∫
y∈N

(∫
x∈ f−1(y)

ϕ(x)
)
ψ

1.2 Positive Currents

The dual spaceD′p,q(Ω) is the space of currents of bidimension (p, q) or bidegree
(n − p,n − q). A current T ∈ D′p,p(Ω) is said to be positive if 〈T, ϕ〉 ≥ 0 for all
forms ϕ ∈ Dp,p(Ω, k) that are strongly positive. Remember that, a famous result
due to Laurent Schwartz asserts that the distribution coefficients of a positive
current T are all expressed by measures. Hence we can define the mass of T
over each relatively compact open subset Ω1 ⊂ Ω defined as follows

‖T‖Ω1 = sup{|T(ϕ)|, ϕ ∈ Dp,p(Ω1) and ‖ϕ‖ ≤ 1}

where ‖ϕ‖ refers to the sum of the usual maximum norms on the continuous
coefficients of ϕ. A fundamental result which goes back to work by Lelong
asserts that there exists a constant C depending only on n and p such that

1
2pp!

(T ∧ βp)(Ω1) ≤ ‖T‖Ω1 ≤ C(T ∧ βp)(Ω1)

In the last term, the exterior product T ∧ βp is a positive current of bidimension
(0, 0), and hence a non-negative measure whose mass is evaluated on Ω1 in the
right hand side above.

1.2.1 Different Types of Currents

Let T ∈ D′p,q(Ω), we define the currents ∂T and ∂T on Dp−1,q(Ω) and Dp,q−1(Ω),
respectively, by

〈∂T, ϕ〉 = (−1)(p+q)+1
〈T, ∂ϕ〉 and 〈∂T, ψ〉 = (−1)(p+q)+1

〈T, ∂ψ〉
IMeans that f is surjective and for every x ∈ M, the differential map Dx f : TM,x −→ TN, f (x) is

surjective



4 1.2 Positive Currents

for all ϕ ∈ Dp−1,q(Ω) and ψ ∈ Dp,q−1(Ω).

Definition 1.2.1. A current T is said to be closed if dT = 0. A current T ∈ D′p,p(Ω) is
said to be positive plurisubharmonic if both T and ddcT are positive. In the case when
T is negative and ddcT is positive we say that T is negative plurisubharmonic.

In general, if we only assume that T and ddcT both have locally finite mass,
then T is called C-normal. Notice that the theorem by Schwartz implies that
any positive (or negative) plurisubharmonic current T is C-normal. Finally, T
is said to be C-flat if T = F + ∂H + ∂S + ∂∂R, where F,H,S and R are currents
with locally integrable coefficients.

A deep result due to Bassanelli (see [4]), asserts that everyC-normal current
is C-flat.

1.2.2 Support Theorem and Slice Formula

The support theorem (see [4]) says that for a C-flat current T of bidimension
(p, p), one has the implication

H2p(SuppT) = 0⇒ T = 0

Above H2p notes 2p-Hausdorff measure. Next, using Stokes formula one
can show how currents are effected by its support. See [27] where it is proved
that, when T is a positive (or negative) plurisubharmonic current with compact
support, then T = 0.

A useful slicing formula. Let k ≤ p and T ∈ D′p,p(Ω) with locally integrable
coefficients. Set π : Cn

→ Ck, π(z′, z′′) = z′ and iz′ : Cn−k
→ Cn, iz′ (z′′) = (z′, z′′).

Then the slice 〈T, π, z′〉which is defined by

〈T, π, z′〉(ϕ) =

∫
z′′∈π−1(z′)

i∗z′T(z′′) ∧ i∗z′ϕ(z′′), ∀ϕ ∈ Dp−k,p−k(Ω)

is a well defined (p− k, p− k)-current for a.e z′, and supported in π−1(z′). Notice
that, the above properties of the pull-back show that

ddc
〈T, π, z′〉 = 〈ddcT, π, z′〉, dc

〈T, π, z′〉 = 〈dcT, π, z′〉, d〈T, π, z′〉 = 〈dT, π, z′〉

So, we deduce that for every C-flat current T, the slice 〈T, π, z′〉 is well defined
for a.e z′. Moreover, we have the slicing formula∫

Ω

T ∧ ϕ ∧ π∗β′k =

∫
z′∈π(Ω)

〈T, π, z′〉(ϕ)β′k

This formula is helpful in many cases, and can be applied to positive (or neg-
ative) plurisubharmonic currents. For example, one can establish properties of
T by testing it for the slice of T.II

IIMore general definition for the slice of currents can see it in [5] and [19]
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1.3 Currents and Plurisubharmonic Functions

Definition 1.3.1. A function u defined on Ω with values in [−∞,+∞[ is called
plurisubharmonic if

1. u is upper semi continuous.

2. For arbitrary z ∈ Ω and w ∈ Cn, the function ξ 7−→ u(z + ξw) is subharmonic
in the part of C where it is defined.

From the previous definition, the (n − 1,n − 1)-current ddcu is positive. So,
for positive current T and u of class C2, the current T ∧ ddcu is positive.

The current ddcu takes its place in the study of currents. One of our main
issues in this thesis is about finding the sufficient conditions on the plurisub-
harmonic function u and the positive current T that make T∧ddcu well-defined.

1.3.1 Local Potential of Closed Currents

Let T ∈ D′n−1,n−1(Ω) positive and closed. Then for all z ∈ Ω there exists a
neighborhood V of z and u ∈ Psh(V) such that T = ddcu. For lower bidimensions,
Ben Messaoud and El Mir [6] proved that, if T ∈ D′p,p(Ω) positive and closed,
then locally there exist a negative current U of bidimension (p + 1, p + 1) and a
smooth form R such that T = ddcU + R.

1.3.2 Pluripolar and Analytic sets

A subset A of Ω is called pluripolar if for every point z0 ∈ A there exists a
neighborhood V of z0 and a plurisubharmonic function u on V such that

V ∩ A ⊆ {z ∈ V,u(z) = −∞} (1.3.1)

If we have equality in (1.3.1), then we call A a complete pluripolar set. If we
have analytic functions f1, ..., fl such that

V ∩ A = {z ∈ V, f1(z) = ... = fl(z) = 0} (1.3.2)

we say that A is an analytic subset. Notice that, any analytic subset A is a closed
complete pluripolar set by taking u = log(| f1|2 + ... + | fl|2).

In our study of extending currents, we take a current T defined outside a
set A. The most general is when A is an arbitrary closed set. More specific
cases occur when A is a closed complete pluripolar set, and a very special case
when A is analytic. In the thesis we investigate conditions to extend T across
the obstacle A to a current T̃.

How to find T̃? Let (χn) be a smooth bounded sequence which vanishes on
a neighborhood of closed subset A ⊂ Ω and (χn) converges to the characteristic
function 1Ω\A of Ω \ A, and let T be a current of order zero defined on Ω \ A.
If χnT has a limit which does not depend on (χn), this limit is called the trivial
extension of T by zero across A and is denoted by T̃. It is clear that, T̃ exists if
and only if T has a locally finite mass across A.
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In the case of closed complete pluripolar set, we have an appropriate
choice of (χn). In particular, there exists an increasing sequence of smooth
and plurisubharmonic functions 0 ≤ un ≤ 1 converging uniformly to 1 on each
compact subset of Ω \ A such that un = 0 on a neighborhood of A. The profit
from using such sequence (un), is keeping the signs of T ∧ ddcun and unddcT.
This gives us better space to deduce estimates which our whole subject is all
about.

1.4 HausdorffMeasure

The announced results in section 1.2.2. show that the notion of Hausdorff
measure plays a central role in this subject. Of course, not each current T can
be extended over a closed obstacle A. To guarantee the existence of T̃, we need
to examine A and see how thick it is. Because of that, the extension of current
and Hausdorff measure are often connected to each other like conjoined twins.

1.4.1 Definition and Basic Properties
Let A be a subset ofRm, m ≥ 0. Consider a countable covering of balls B j for A,
with radii r j, respectively. For each α ≥ 0, we define the α-Hausdorff measure
of A by

Hα(A) = lim
ε→0+

inf{cα
∑

j

rαj , A ⊂
⋃

j

B j, r j < ε} (1.4.1)

For α = m we take the constant cα > 0 equal to the volume of the unit ball in
Rm; for non integers αwe take it the corresponding expression with the gamma
function.

cα =
πα/2

2αΓ(α/2 + 1)
Notice that, forα = 0, the Hausdorff measure of A is just the number of elements
of A.III

Let us spell out some basic properties of Hausdorff measure.

1. If A ⊂ Rm and tA := {tx, x ∈ A} for t > 0, then

Hα(tA) = tαHα(A)

2. IfHα(A) < ∞, thenHβ(A) = 0 for all β > α. IfHα(A) > 0, thenHγ(A) = ∞
for all γ < α. The number d := inf{α, Hα(A) = 0} is called the Hausdorff
dimension of A.

3. If f : X −→ X′ is a continuous map between metric spaces that satisfies
dX′ ( f (x), f (y)) ≤ CdX(x, y) for some constant C and for all x, y ∈ X, then
Hα( f (A)) ≤ CαHα(A) for all A ⊂ X. In particular, under the projection,
Hausdorff measure does not increase.

4. If α = m, then for all Lebesgue measurable set A ⊂ Rm, we have

Hα(A) = λ(A)
IIIWhen A is a subset of a metric space, the definition of Hα(A) coincides with (1.4.1), after

removing the multiplicative constant cα.
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A useful result due to Bernard Shiffman ([26], Corollary 4), asserts the
following

Theorem 1.4.1. Let A be an open subset of Rm, let α ≥ 0, and let πk : Rm
−→ Rk

denote the projection onto the first k coordinates.

1. IfHk+α(A) = 0, thenHα(A ∩ π−1
k (x)) = 0 forHk-(a.e) x ∈ Rk.

2. IfHk+α(A) < ∞, thenHα(A ∩ π−1
k (x)) < ∞ forHk-(a.e) x ∈ Rk.

1.4.2 Bishop’s Lemma

In [7], Errett Bishop performed a spectacular work concerning the analytic sets.
Theorem 1.4.2 below, was one of the main tools in his article. Actually, it stands
tall as a preparation step for the results announced in section 1.5.

Theorem 1.4.2. Let A be a closed subset ofCn such thatH2s+1(A) = 0 for some integer
0 ≤ s < n. Then for almost all choices of unitary coordinates (z1, ..., zn) = (z′, z′′), z′ =
(z1, ..., zs) and z′′ = (zs+1, ..., zn), and almost all B′′ = B(0, r′′) ⊂ Cn−s, the set ∂B′′×{0}
does not intersect A.

1.5 The Evolution of Currents’ Extension

Once we say the word “current”, a very prominent mathematician must be
mentioned. The French mathematician Pierre Lelong defined the plurisub-
harmonic functions in his note (see [23]), and perceived the integration over
analytic sets expressed via currents. His glamorous works inspired others to
go further in this subject. One must also give contribution to Kiyoshi Oka who
was the first to investigate plurisubharmonic functions, restricted to the case of
two complex variables (see [25]).

As in every mathematical subject, the theory of currents underwent several
stages. We give in this section a historical survey for the evolution of currents.

1.5.1 Integration Currents

A basic example of currents comes from the integration over analytic sets. For
such currents, many papers are devoted to solve problems when singularities
occur.

Lelong [24] 1957. Let A be a pure p-dimensional analytic subset of Ω, the
the current [A]reg ∈ D

′
p,p(Ω \ Asing) has finite mass in a neighborhood of every point

z0 ∈ Asing. Moreover, the current [A] - the trivial extension of [A]reg- is a closed
positive current on Ω.

Bishop [7] 1968. Let E be an analytic subset of Ω, and let A be a pure p-
dimensional analytic subset of Ω \ E with finite 2p-dimensional volume. Then A ∩Ω
is an analytic subset of Ω.
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1.5.2 Positive Closed Currents

Next follows two results which extend those of Lelong and Bishop.

Skoda [28] 1982. Let A be an analytic subset of Ω and let T ∈ D′p,p(Ω \ A) be a
closed positive. Assume that T has a finite mass on a neighborhood of each point in A.
Then the trivial extension T̃ is a closed positive current.

The case when A is a closed complete pluripolar set was settled by Hassine
El Mir.

El Mir [16] 1982. Let A be a closed complete pluripolar subset of Ω and let
T ∈ D′p,p(Ω\A) be a closed positive. Assume that T has a finite mass on a neighborhood
of each point in A. Then the trivial extension T̃ is a closed positive current.

The Existence Problem. El Mir and Imed Feki gave sufficient conditions that
guarantee the existence of T̃, without a priori assumption on local finite mass.

El Mir-Feki [18] 1998. Let A be a closed complete pluripolar subset of an open
subset Ω and T be a closed positive current of bidimension (p, p) on Ω \ A. Assume
thatH2p(A ∩ SuppT) = 0. Then T extends to a closed positive current.

The result above was inspired by a theorem due to Reese Harvey.

Harvey [20] 1974. Let A be a closed subset of an open subset Ω and T be a closed
positive current of bidimension (p, p) on Ω \ A. If H2p−1(A) = 0, then T has a closed
positive extension T̃.

1.5.3 Plurisubharmonic Currents

In the early eighties, Skoda [28] and Jean-Pierre Demailly [11] started study-
ing a new type of currents. Sibony considered the Skoda-El Mir result for
plurisubharmonic currents, and proved.

Sibony [27] 1985. Let A be a closed complete pluripolar subset of Ω and let
T ∈ D′p,p(Ω \ A) be a positive (resp. negative) plurisubharmonic. Assume that the

trivial extensions T̃, d̃T and d̃dcT exist. Then dT̃ = d̃T. Moreover, the residual current
R = d̃dcT − ddcT̃ is closed positive (resp. negative) current supported in A.

Although the current R above depends on ddcT, Sibony required the exis-
tence of d̃T. There remained the question whether the condition on dT can be
omitted. Lucia Alessandrini and Bassanelli [2](1993) proved that the existence
of d̃T is superfluous when A is an analytic set. This result was improved by El
Mir [17](2001) who showed that it suffices to assume that A is a closed complete
pluripolar sets.IV

IVIvashkovich and Shiffman made some initial work to settle this problem (see [21] and [22])
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The Existence Problem. Once again, this problem started surfacing. Khalifa
Dabbek, Fredj Elkhadhra and El Mir kneeled this problem, and proved.

Dabbek-Elkhadhra-El Mir [10] (2003). Let A be a closed complete pluripolar
subset of an open subset Ω and T be a negative plurisubharmonic current of bidimension
(p, p) on Ω \ A. Assume that H2p(A ∩ SuppT) = 0. Then T̃ exists and is negative
plurisubharmonic.

Harvey’s Extension. In the same article [10], the authors continued Harvey’s
studies about plurisubharmonic currents. They found a relaxed condition for
a certain Hausdorff dimension which goes as follows.

Let A be a closed subset of Ω and T a negative plurisubharmonic current of bidi-
mension (p, p) on Ω \ A such that H2p−2(SuppT ∩ A) is locally finite. Then T̃ exists
and is plurisubharmonic. Moreover, the current R = d̃dcT− ddcT̃ is a negative current
supported in A.

1.6 The Main Motivation Behind the Dissertation

Let S ∈ D′p−1,p−1(Ω) be a positive current. Tien-Cuong Dinh and Sibony studied
the case when T ∈ D′p,p(Ω \ A) is a negative current such that ddcT ≥ −S on
Ω \ A (such current T we call it S-plurisubharmonic). Obviously, this case is
more general than plurisubharmonic currents. The authors succeeded to get
the residual current R for this case.

Dinh-Sibony [15] 2007. Let A be a closed complete pluripolar set of Ω and let T
as above. Suppose that T̃ exists, then d̃dcT exists. Furthermore, there exists a negative
current R supported in A such that R = d̃dcT − ddcT̃.

The question marks regarding the existence problem, the case of closed
obstacle, etc..., are the main motivations behind writing this thesis.





Glimpses of the Licentiate
Thesis

The licentiate thesis [1] treats three main issues concerning the wedge product
of currents, the extension over pluripolar sets and the continuation across zero
sets of 0-convex functions. For the first issue we proved the following result.

Theorem 3.1. Let T be a positive ddc-negative current of bidimension
(
p, p

)
on a

complex manifold X of dimension n and let A be a closed complete pluripolar subset
of X such that H2p−1(A) = 0. Let S be a positive and closed current of bidimension
(n − 1,n − 1) on X and smooth on X \ A. If g is a solution of ddcg = S on an open
set U ⊂ X and g j is a sequence of smooth plurisubharmonic functions such that

(
g j

)
converges to g in C2(U \A), then the sequence

(
ddcg j ∧ T

)
is locally bounded in mass

in U.
This result implies that, there exists a subsequence g js such that the sequence

ddcg js ∧ T converges weakly to a current S∧ T. Of course, two questions occur,
immediately.

• What about the uniqueness of S ∧ T ?I

• Does g jT converge ?

Paper II deals with these two questions.

The extension of currents also had its share in [1]. In fact, for Dinh-Sibony
hypothesis, we showed that

Theorem 3.7. Let A be a closed complete pluripolar subset of Ω and T be a negative
current of bidimension (p, p) on Ω \A such that ddcT ≥ −S on Ω \A for some positive
closed current S on Ω. Assume thatH2p(A∩SuppT) = 0. Then T̃ exists. Furthermore
the current R = d̃dcT − ddcT̃ is closed and negative supported in A.II

Our proof was basically based on [10]. Chern-Levine-Nirenberg inequality
was involved in the proof, and because of this closedness of S was required.

IThe uniqueness of S ∧ T has been achieved in many different cases (see [4], [14] and [3])
IIWe should point out that Noureddine and Dabbek [9] proved the same result prior to present

work.
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12 Glimpses of the Licentiate Thesis

But to what extent can this condition on S be relaxed? This is one of the major
goals in paper I. However, the closedness of S was not always essential in [1].
In particular, it was neglected in the case of 0-convex functions.

Theorem 4.6. Let u be a positive exhaustion strictly 0-convex function on Ω and set
A = {z ∈ Ω : u(z) = 0}. Let T be a positive current of bidimension (p, p) on Ω \A such
that ddcT ≤ S on Ω \ A for some positive current S on Ω. If p ≥ 1, then T̃ exists. If
p ≥ 2, ddcS is of locally finite mass and u ∈ C2, then d̃dcT exists and d̃dcT = ddcT̃.



Overview of Paper I

The aim in this paper is to relax the closedness condition on S in [1]. So, for
this purpose we assume that S ∈ D′p−1,p−1(Ω) is a positive current, A is a closed
subset of Ω and T ∈ D′p,p(Ω \ A) is a negative current such that ddcT ≥ −S on
Ω \ A, and the first main theorem of this paper goes as follows:

Theorem( Paper I, Theorem 3.3) If S is plurisubharmonic and A is complete
pluripolar such that H2p(A ∩ SuppT) = 0, then T̃ exists. Moreover, the current
R = d̃dcT − ddcT̃ is negative and supported in A.

In the last section of paper I, we assume that u is a positive strictly k-convex
function on Ω and we set A = {z ∈ Ω : u(z) = 0}. For this type of obstacles we
prove our second main theorem.

Theorem( Paper I, Theorem 4.7) If S is plurisubharmonic (or ddcS ≤ 0) and
p ≥ k + 1, then T̃ exists. If ddcS ≤ 0, p ≥ k + 2 and u is of class C2, then d̃dcT exists
and d̃dcT = ddcT̃.

We also show that in some cases the positivity of S is sufficient to get the
extension of T. This is true for the following cases.

Theorem( Paper I, Theorem 4.9) Assume that A is compact complete pluripolar
set. If p ≥ 1, then T̃ exists and R = d̃dcT − ddcT̃ is a negative current supported in A.

Theorem( Paper I, Theorem 4.10) If A is closed set such thatH2p−2(A∩ SuppT)
is locally finite, then T̃ exists. If ddcS ≤ 0, then d̃dcT exists and the residual current R
is negative supported in A.

The technical tools in this paper are essentially based on [10]. Actually, by
compiling the techniques in [10] and new versions of Chern-Levine-Nirenberg
we have been able to conquer the problems.

The first main theorem provides some good news concerning Monge-
Ampère operators. It tells us how to control higher orders for plurisubharmonic
functions. In fact, let A be a closed complete pluripolar subset of an open subset
Ω and T be a closed positive current of bidimension (p, p) on Ω \ A. Assume
that H2p−2(A) = 0. Now, suppose that g is a plurisubharmonic function on Ω
such that g ∈ C∞(Ω \ A). Of course by using ([10], Theorem 1), the extension
g̃T exists. But the innovated new result is that g̃2T exists as well.

13



14 Overview of Paper I

We should point out that this paper partially solves problems (2) and (3) in
the problems’ list of [1], since we still would like that the plurisubharmonicity
of S to be removed in all hypotheses. This can be considered as an intersting
problem to be discussed in future projects.



Overview of Paper II

This paper deals with the wedge product of positive currents. More precisely,
we consider the following case.

Let A be a closed subset of Ω and T ∈ D′p,p(Ω) be a positive current. Let
g ∈ Psh(Ω) ∩ C∞(Ω \ A) We show

Theorem (Paper II, Theorem 3.3) Let T be a pluriharmonic current and (g j) be
a sequence of decreasing smooth plurisubharmonic functions converging pointwise to
g on Ω \ A.

1. If H2p−1(A ∩ SuppT) = 0, then ˜ddcg ∧ T exists. Furthermore, there exists a
subsequence (g js ) such that ddcg js ∧ T converges.

2. In addition to the hypotheses above, ifH2p−2(A ∩ SuppT) is locally finite and g j
converges to g in C1(Ω \A), then ddcg∧T is a well-defined current as a limit of
ddcg j ∧ T.

Theorem (Paper II, Theorem 3.13) Let A be an analytic subset of Ω, and T be a
plurisubharmonic current, dimA < p − 1. Then ddcg ∧ T is a well-defined current as
a limit of ddcg j ∧ T.

As a consequence of the above results, the current S ∧ T is well-defined as
soon as S ∈ D′n−1,n−1(Ω) is a closed positive and smooth on Ω \ A. This is true,
since we can apply the previous results for the local potential of S.

The more we improve inequalities, the more we get extensions. This is the
real wealth we seek in the study of currents. Actually, the main tool to prove the
existence of wedge products above is a new version of Chern-Liveine-Nirenberg
inequality which asserts.

Theorem (Paper II, Lemma 3.5 and Lemma 3.12) Let A and g as above, and let
T be a pluriharmonic current such thatH2p−1(A ∩ SuppT) = 0. Let K and L compact
sets of Ω with L ⊂ K◦. Then there exist a constant CK,L > 0, and a neighborhood V of
K ∩ A such that

1. ‖ddcg ∧ T‖L\A ≤ CK,L‖g‖L∞(K\V)‖T‖K

2. If ddcT ≥ 0 (or ddcT ≤ 0) andH2p−3(A∩SuppT) = 0, then there exist a constant
DK,L > 0 such that

‖ddcg ∧ T‖L\A ≤ DK,L‖g‖L∞(K\V)‖T‖K
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16 Overview of Paper II

This part of the paper solves the first problem in [1]. Also, by induction
process we give more general versions of the precedent results.

In the last part of the paper, we assume the case when A is compact complete
pluripolar set. For this case we prove

Theorem (Paper II, Theorem 5.8) Let T be a ddc-negative current, p ≥ 3 (resp.
pluriharmonic, p ≥ 2). Then ddcg ∧ T is well-defined as a limit of ddcg j ∧ T.

As an application of this result, a version of Lelong number is defined in
the case of ddc-negative (resp. pluriharmonic) currents. Moreover, the study of
Monge-Ampère operators on hyperconvex domains can be extended to such
currents.



Overview of Paper III

In this paper we study the extendability of S-plurisubharmonic currents. More
precisely, we consider the following case. Let A be a closed subset of Ω and let
T ∈ D′p,p(Ω \ A) be a positive current such that

ddcT ≤ S

on Ω \ A for some positive current S on Ω. Such current T is called ddc(S)-
negative. Using only the positivity of S, we prove

Theorem (Paper III, Theorem 2.2) If A is complete pluripolar and H2p−1(A ∩
SuppT) = 0, then T̃ exists. Moreover, the current R = d̃dcT − ddcT̃ is positive and
supported in A.

To obtain the extension above, we establish a version of the Ben Messaoud-El
Mir inequality which asserts.

Theorem (Paper III, Lemma 2.1) Let A be a closed complete pluripolar subset
of Ω and let v be a plurisubharmonic function of class C2, v ≥ −1 on Ω such that
Ω
′

= {z ∈ Ω : v(z) < 0} is relatively compact in Ω. Let K ⊂ Ω′ be a compact subset
and set cK = − supz∈K v(z). Then there exists a constant η ≥ 0 such that for every
plurisubharmonic function u on Ω′ of class C2 satisfying that −1 ≤ u < 0 we have,∫

K\A
T ∧ ddcu ∧ βp−1

≤
1
cK

∫
Ω′\A

T ∧ ddcv ∧ βp−1 + η‖S‖Ω′

In the second part of the paper, we consider the case when A is the zero set
of a non-negative plurisubharmonic function u on Ω of class C2, and prove the
following result.

Theorem (Paper II, Theorem 3.1) Let L and K be compact sets of Ω such that
L ⊂ K◦. If H2p−1(A ∩ SuppT) = 0, then there exist a constant CK,L ≥ 0 and a
neighborhood V of K ∩ A such that

‖ddcu ∧ T‖L\A ≤ CK,L‖u‖L∞(K)(‖T‖K\V + ‖ddcT‖K\V + ‖S‖K)
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