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Abstract

This thesis consists of four papers and deals with the spectral theory of quan-
tum graphs. A quantum graph is a metric graph equipped with a self-adjoint
Schrödinger operator acting on functions defined on the edges of the graph
subject to certain vertex conditions.
In Paper I we establish a spectral estimate implying that the distance be-
tween the eigenvalues of a Laplace and a Schrödinger operator on the same
graph is bounded by a constant depending only on the graph and the inte-
gral of the potential. We use this to generalize a geometric version of Am-
bartsumian’s Theorem to the case of Schrödinger operators with standard
vertex conditions.
In Paper II we extend the results of Paper I to more general vertex conditions
but also provide explicit examples of quantum graphs that show that the
results are not valid for all allowed vertex conditions.
In Paper III the zero sets of almost periodic functions are investigated, and it
is shown that if two functions have zeros that are asymptotically close, they
must coincide. This is relevant to the spectral theory of quantum graphs as
the eigenvalues of a quantum graph are given by the zeros of a trigonometric
polynomial, which is almost periodic.
In Paper IV we give a proof of the result in Paper III which does not rely on
the theory of almost periodic functions and apply this to show that asymp-
totically isospectral quantum graphs are in fact isospectral. This allows us to
generalize two uniqueness results in the spectral theory of quantum graphs:
we show that if the spectrum of a Schrödinger operator with standard ver-
tex conditions on a graph is equal to the spectrum of a Laplace operator on
another graph then the potential must be zero, and we show that a metric
graph with rationally independent edge-lengths is uniquely determined by
the spectrum of a Schrödinger operator with standard vertex conditions on
the graph.





Sammanfattning

Denna avhandling består av fyra artiklar och behandlar spektralteorin för
kvantgrafer. En kvantgraf är en metrisk graf med en tillhörande självad-
jungerad Schrödingeroperator som verkar på funktioner som är definierade
på kanterna av grafen och uppfyller vissa hörnvillkor.
I första artikeln bevisar vi en spektraluppskattning: att avståndet mellan
egenvärdena tillhörande Laplace- och Schrödingeroperatorer på samma graf
är begränsad av en konstant som enbart beror på grafen och integralen av
potentialen. Detta använder vi för att generalisera en geometrisk version av
Ambartsumians sats till att även omfatta Schrödingeroperatorer med stan-
dardhörnvillkor.
I andra artikeln utvidgar vi resultaten i första artikeln till att omfatta mer
generella hörnvillkor och vi ger explicita exempel på kvantgrafer som visar
att resultaten inte kan utvidgas till alla tillåtna hörnvillkor.
I tredje artikeln undersöks nollställemängderna till nästanperiodiska funk-
tioner och det visas att om två funktioner har nollställen som ligger asymp-
totiskt nära varandra så måste de sammanfalla. Detta är relevant för spek-
tralteorin för kvantgrafer eftersom egenvärdena till en kvantgraf ges som
nollställen till ett trigonometriskt polynom som är nästanperiodiskt.
I fjärde artikeln ger vi ett bevis för satsen i artikel tre som inte bygger på
teorin för nästanperiodiska funktioner och använder därefter satsen för att
visa att asymptotiskt isospektrala kvantgrafer är isospektrala. Med hjälp av
denna sats generaliserar vi sedan två unicitetsresultat inom spektralteorin
för kvantgrafer. Vi visar att om en Schrödingeroperator med standardhörnvil-
lkor på en graf är isospektral med en Laplaceoperator på en annan graf så är
potentialen noll, samt att en metrisk graf med rationellt oberoende kant-
längder är entydigt bestämd av spektrumet för en Schrödingeroperator på
grafen.
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Introduction

Introduction

The subject matter of this PhD thesis is the spectral and inverse spectral
theory of quantum graphs. Briefly, a quantum graph is a metric graph Γ

equipped with a Schrödinger operator. More formally a quantum graph is
a triple (Γ,Lq ,S) with Lq a self-adjoint, edge-wise Schrödinger differential
operator, and S a set of vertex conditions. We begin by giving a short ex-
planation for the interest in spectral and inverse spectral theory and then
proceed to introduce quantum graphs in more detail. We finish by describ-
ing some earlier results in the spectral theory of quantum graphs and how
the results in this thesis relate to them.

For an operator A on a Hilbert space H , its spectrum σ(A) ⊂ C is defined as
the complement of the set of λ ∈ C such that A −λ is boundedly invertible
and ran(A−λ) = H . Given an operator, one important problem is to deter-
mine its spectrum. On the other hand one may consider the inverse spec-
tral problem, namely that of determining properties of the operator from its
spectrum. Apart from being of mathematical interest, it is also a problem
that arises naturally from applications. In quantum mechanics an observ-
able — a measurable physical property — is given by a self-adjoint operator
on a Hilbert space, and the values that can be measured correspond to the
spectrum of the operator. Since the spectrum of the operator is the only
data that is available through measurements, the inverse spectral problem
assumes a central role. The first instance of an inverse spectral theorem was
Ambartsumian’s celebrated result [1] (Theorem 2.1 below).

1 Basics of quantum graphs

In this section we give a brief introduction to quantum graphs. For more
comprehensive treatments we refer to [4] and [21].
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Metric graphs

A discrete graph is an ordered pair (V ,E) with V a non-empty set with el-
ements that are called vertices, and E the set of edges which are just two-
element subsets of V . In order to let differential operators act on functions
defined on graphs, we equip the edges with a metric structure. A compact
finite metric graph Γ is a finite collection of compact intervals glued together
at some endpoints. One can construct a graph Γ by parametrising the edges
E = {En}N

n=1 of Γ by identifying them with compact intervals [x2n−1, x2n] of
separate copies of R (to remove any formal problems with two edges hav-
ing the same parametrisation). Each vertex Vi of Γ is then identified with a
collection of endpoints Vi = {xi j }, where we require that the set of vertices
V = {Vi }M

i=1 forms a partition of the set of endpoints. The induced relation
xi ∼ x j if and only if xi , x j ∈Vk for some k is then an equivalence relation on
the set of endpoints, and setting x ∼ y if and only if x = y for all other points,
Γ can be seen as the quotient space

N⋃
n=1

En/ ∼ .

The particular choice of parametrisation of the edges will play no role in that
two isometric graphs are considered to be the same graph. Thus a metric
graph is determined uniquely by the ordered pair (E ,V) with E a collection
of edges and V a partition of the set of endpoints of the intervals in E .

Differential expression

The Schrödinger operator acts as f �→ − f ′′ +q f on each edge separately for
some real potential function q defined on each edge. The action is in the
Hilbert spaces L2(En) of square Lebesgue-integrable functions. We denote
the operator by Lq (L0 denotes −d 2/d x2) which then acts in

L2(Γ) =
N⊕

n=1
L2(Ei ).

Clearly L2(Γ) in no way reflects the connectivity of the graph: any graph Δ

whose edges are of the same length as the edges of Γ will satisfy L2(Δ) �
L2(Γ). Instead the connectivity of Γ is encoded in the domain of Lq via the
conditions on u ∈ dom(Lq ) at the vertices of Γ.

Vertex Conditions

The vertex conditions are to serve two purposes: they should reflect the
topology of the graph, and they are needed to ensure that the operator given
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by the differential expression is self-adjoint. There are two operators in L2(Γ)
that are naturally associated with the differential expression

−d 2/d x2 =∑
En

−d 2/d x2,

namely the minimal and maximal operators Lmin and Lmax with domains

dom(Lmin(Γ)) =
N⊕

n=1
C∞

0 (x2n−1, x2n) =C∞
0 (Γ\ V),

and

dom(Lmax(Γ)) =
N⊕

n=1
W 2

2 (x2n−1, x2n) =W 2
2 (Γ\ V),

respectively. One can show that Lmin ⊂ Lmax = L∗
min, and all self-adjoint op-

erators L associated with −d 2/d x2 — i.e. self-adjoint operators satisfying
Lmin ⊂ L — are given as restrictions of Lmax via vertex conditions. Functions
u ∈ dom(Lmax) = W 2

2 (Γ \ V) are continuous on each edge, and we let u(x j )
denote the limiting values of the functions at the end points of the edges:

u(x j ) = lim
x→x j

u(x),

where the limit is taken over x inside the edge. The normal derivatives are
defined similarly and are therefore independent of the chosen parametrisa-
tion of the edge:

∂n�u(x j ) =
⎧⎨
⎩ u′(x j ) x j left end-point,

−u′(x j ) x j right end-point.

The vertex conditions at any vertex Vm = {xm1 , . . . , xmdm
} of degree dm can

be written by imposing relations between the dm-dimensional vectors of
boundary values and normal derivatives,

�u(Vm) := (u(xm1 ), . . .u(xdm )) ∈Cdm ,

∂n�u(Vm) := (∂nu(xm1 ), . . . ,∂nu(xdm )) ∈Cdm ,

as follows:
i (Sm − I )�u(Vm) = (Sm + I )∂n�u(Vm). (1.1)

Here Sm is an arbitrary unitary matrix. In order to accurately reflect the
topology of the graph, we shall require that each Sm is irreducible, as a re-
ducible matrix imposes relations between the limiting values and normal
derivatives of a function that more properly corresponds to a subdivision of
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Vm into several vertices. We form the matrix S as the block-diagonal matrix
with blocks equal to Sm (in the basis where all boundary values u(x j ),∂nu(x j )
are arranged in accordance to the vertices they belong to).

Example 1.1. The most common vertex conditions are the standard condi-
tions (also known as Kirchoff-, Neumann-, free, and natural conditions), are
given at each vertex Vm by the relations

⎧⎨
⎩ u continuous at Vm ,∑

x j∈Vm
∂nu(x j ) = 0.

(1.2)

In other words, u is required to be continuous in each vertex Vm and the
sum of normal derivatives must vanish. The corresponding matrix can be
calculated to be :

(Sst
m)i j =

⎧⎪⎨
⎪⎩

− 2
dm

, i �= j ,

1− 2
dm

, i = j .
(1.3)

We denote corresponding self-adjoint operator by Lst
q (Γ). It is easy to check

hat Sst
m is hermitian with −1 is an eigenvalue of multiplicity one and 1 an

eigenvalue of multiplicity dm −1.

On an open edge (x2n−1, x2n) with x2n−1 ∈ Vm , the solution to −ψ′′
n = λψn

can be written in terms of incoming and outgoing waves at x2n−1 as ψ =
anei k(x−xn ) +bne−i k(x−xn ). For a function ψ on Γ the vertex conditions im-
pose a relation between the coefficients �am = (ai )dm

i=1 and �bm = (bi )dm

i=1 at

each vertex Vm which we may write as �am = Sm(k)�bm . The matrix Sm(k) is
called the vertex scattering matrix for k-waves at Vm . We form the vertex
scattering matrix Sv (k) as the block-diagonal vector with entries Sm(k). The
vectors of boundary values and normal derivatives can then be written

�ψ = �b +Sv (k)�b,

∂�ψ = −i k�b + i kSv (k)�b.

Subtituting this into the (1.1) we obtain

i (Sm − I )(I +Sv (k)�b = (S + I )i k(−I +Sv (k))�b,

so provided the vertex conditions are given by (1.1) the vertex scattering ma-
trix Sv (k) is given by ([13; 14; 19])

Sv (k) = (k +1)S + (k −1)I

(k −1)S + (k +1)I
. (1.4)
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Setting k = 1 we see that S corresponds to the vertex scattering matrix for k =
1, i.e. S = Sv (1). Since Sv (k) is unitary it may be written using the spectral
representation of S, with eigenvalues eiθn and eigenvectors�en , as [11; 12; 19]

Sv (k) =
d∑

n=1

(k +1)eiθn + (k −1)

(k −1)eiθn + (k +1)
〈�en , ·〉Cd�en

=
d∑

n=1

k(eiθn +1)+ (eiθn −1)

k(eiθn +1)− (eiθn −1)
〈�en , ·〉Cd�en

= ∑
θn=π

(−1)〈�en , ·〉Cd�en + ∑
θn �=π

k(eiθn +1)+ (eiθn −1)

k(eiθn +1)− (eiθn −1)
〈�en , ·〉Cd�en .

(1.5)

Thus Sv (k) has the same (k-independent) eigenvectors as S but the corre-
sponding eigenvalues are in general k-dependent. The eigenvalues ±1 are
invariant, and all other eigenvalues tend to 1 as k → ∞. Thus, if S is Her-
mitian — so that eiθn = ±1 for all n — Sv (k) does not depend on k. Such
conditions are called non-resonant, and all other conditions resonant. Note
in particular that standard conditions are non-resonant.

If S is not Hermitian we define the high energy limit of Sv (k) as follows:

Sv (∞) = lim
k→∞

Sv (k) =−P (−1) + (I −P (−1)) = I −2P (−1), (1.6)

where P (−1) is the orthogonal projection onto the eigenspace associated with
−1. The high-energy limits Sm(∞) of vertex scattering matrices associated
with each particular vertex are defined in an analogous way.

We can then define a new operator LSv (∞)
0 that is obtained from LS

0 by let-
ting the vertex conditions be given by Sv (∞) instead of S. In general it is not
the case that LSv (∞)

0 (Γ) is equal to Lst
0 (Γ), even though eigenvalues of Sv (∞)

can only be 1 and −1. The multiplicities may be wrong, and in fact the ver-
tex conditions given by Sv (∞) need not even be properly connecting — the
blocks Sm(∞) might be reducible and the operator therefore appropriate to
a graph Γ∞ obtained from Γ by dividing some vertices in Γ into several ver-
tices.

Definition 1.2. We say that vertex conditions on Γ given by S are asymptot-
ically properly connecting if the high energy limits Sm(∞) of all vertex scat-
tering matrices are irreducible.

If vertex conditions are asymptotically properly connecting, then Γ∞ = Γ.

Definition 1.3. We say that vertex conditions on Γ given by S are asymptot-
ically standard if it is the case that Sv (∞) = Sst(Γ∞).
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Any non-resonant conditions are asymptotically properly connecting, and
standard vertex conditions are asymptotically standard. See [21] for a fur-
ther discussion of asymptotically standard conditions.

The operator

We may now define the Schrödinger operator on a metric graph.

Definition 1.4. Let Γ be a finite compact metric graph, q a real valued ab-
solutely integrable potential on the graph q ∈ L1(Γ), and Sm be dm ×dm ir-
reducible unitary matrices. Then the operator LS

q (Γ) is defined on the func-

tions from the Sobolev space u ∈ W 1
2 (Γ \V) such that −u′′ + qu ∈ L2(Γ) and

satisfy vertex conditions (1.1).

The spectrum

The spectrum σ(LS
q (Γ)) is discrete and accumulates at infinity for any finite

compact Γ and q ∈ L1(Γ). The main tool for the investigation of the spec-
trum in this thesis is the fact that the positive spectrum σ(LS

0(Γ))\{0} of LS
0(Γ)

with S non-resonant is determined by the secular equation [10; 15; 20; 22]

det(Sv (k)Se (k)− I )︸ ︷︷ ︸
=: p(k)

= 0, (1.7)

where Sn
e (k) is the edge-scattering matrix given by 2×2 blocks

⎛
⎝ 0 ei k�n

ei k�n 0

⎞
⎠

on the diagonal (the diagonal form is in the basis where the endpoints are
arranged in the order of the edges). To see this note that on each edge
[x2n−1, x2n] a solution to −ψ′′ = λψ for λ > 0 can be written both in terms
of incoming or out going waves:

ψ(x) = a2n−1ei (x−x2n−1) +a2ne−i (x−x2n ) (1.8)

= b2n−1e−i (x−x2n−1) +b2nei (x−x2n ). (1.9)

These two representations are in turn related via the edge scattering matrix
Sn

e (k): ⎛
⎝ b2n−1

b2n

⎞
⎠=

⎛
⎝ 0 ei k�n

ei k�n 0

⎞
⎠

︸ ︷︷ ︸
=: Sn

e (k)

⎛
⎝ a2n−1

a2n

⎞
⎠ . (1.10)
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Collecting all these relations we get �B = Se (k)�A, where Se (k) is block diag-
onal with entries Sn

e (k), and the entries of �A,�B are ordered as the edges of
Γ. By definition the edge scattering matrix Sv must then act as �A = Sv �B , so
S(k)�A = Sv (k)Se (k)�A = �A, which has a solution if and only if det(S(k)−I ) = 0.
For non-resonant vertex conditions Sv does not depend on k which implies
Sv Se (k)− I has entries that are trigonometric polynomials and therefore its
determinant is also a trigonometric polynomial. Thus we have sketched one
part of the proof of the following proposition:

Proposition 1.5. Let the vertex conditions on Γ be non-resonant, then the
non-zero eigenvalues of LS

0(Γ) are given as zeros of a generalised trigonometric
polynomial:

• The function p(k) defined by (1.7) can be written in the form:

p(k) := det(Sv (k)Se (k)− I ) ≡ det(SSe (k)− I ) =
J∑

j=1
a j eiω j k , (1.11)

with k-independent coefficients a j
1 ∈C and ω j ∈R.

• A point λ= k2 > 0 is an eigenvalue of LS
0(Γ) if and only if p(k) = 0.

• The multiplicity of every eigenvalue λn(LS
0(Γ)) = k2

n coincides with the
order of the corresponding zero of the function p.

For the proof, see [23] and [21], see also [30].

Remark 1.6. In the proof of Proposition 1.5 one uses explicitly that λ > 0,
and in general the trigonometric polynomial does not give the correct mul-
tiplicity for the eigenvalue 0. For example the circle S1 of length π with one
vertex Lst

0 (S1) has spectrum 0,22,22,42,42, . . . , so that it has one eigenvalue of
multiplicity 1 and all other eigenvalues are of multiplicity 2. This is not the
zero set of a trigonometric polynomial (see [23]), and indeed the trigono-
metric polynomial associated with Lst

0 (S1) is p(k) = (eiπk −1)2 which has a
zero of order two at k = 0.

This characterization of the spectrum of Laplace operators with non-resonant
vertex conditions in terms of the zeros of trigonometric polynomials was
used in Paper IV to prove that if the spectra of two such operators do not
grow apart too quickly then the operators have to be isospectral, except that
the multiplicity of the eigenvalue zero may differ. We introduced the follow-
ing terminology

1the a j ’s here are not the amplitudes appearing in (1.8)
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Definition 1.7. Two semi-bounded self-adjoint operators A, B with discrete
spectrum are said to be asymptotically isospectral if√

λn(A)−
√
λn(B) → 0, as n →∞.

The spectra of quantum graphs satisfy Weyl asymptotics, namely

λn(LS
q (Γ))

(πn/L)2 → 1, as n →∞.

From this follows in particular that two quantum graphs are almost isospec-
tral if the eigenvalues grow apart sub-linearly:

|λn(LS1
q1

(Γ1))−λn(LS2
q2

(Γ2))| ≤C n1−ε, for some ε> 0.

From an investigation of asymptotically close zeros of trigonometric poly-
nomials in Paper III and Paper IV, it was shown that in particular

Theorem 1.8 (Paper IV). Let Γ1, Γ2 be finite, compact and connected. Sup-
pose that Lst

0 (Γ1) and Lst
0 (Γ2) are asymptotically isospectral then Lst

0 (Γ1) and
Lst

0 (Γ2) are isospectral.

2 Inverse spectral theory

2.1. Classical inverse spectral theory for finite intervals Inverse spectral
theory for Schrödinger operators began in 1929 — three years after Schrödinger
published his equation — with Ambartsumian’s classical Paper [1]. There he
proved that if the spectrum of a Schrödinger operator − d 2

d x2 + q on a finite
interval with Neumann conditions at the endpoints coincided with that of
− d 2

d x2 with Neumann conditions at the endpoints, then q ≡ 0. Since Neu-
mann conditions at a vertex of degree one is just standard conditions the
theorem in our notation becomes

Theorem 2.1. Let q ∈ L1([0,�]). If

σ(Lst
q ([0,�])) =σ(Lst

0 ([0,�]))1

then q ≡ 0.

For the proof we need the following standard result (see e.g. [26])

1σ(Lst
0 ([0,�])) =

{(
π
�

n
)2

: n ∈N

}
.
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Theorem 2.2. Let φ(x,λ) be a solution of

−φ′′
xx +q(x)φ= k2φ,

with k2 =λ, satisfying

φ(0,λ) = 1, φ′
x (0,λ) = 0.

Then there exists a unique K (·, ·) with locally integrable first derivatives with
respect to each argument, such that

φ(x,λ) = coskx +
∫x

0
K (x, t )coskt d t , (2.1)

K (x, x) = 1

2

∫x

0
q(t )d t . (2.2)

Proof. Theorem 2.1 With the representation (2.1) it is clear thatλn ∈σ(Lst
q [0,�])

if and only if φ′
x (�,λn) = 0, which we may then write as

−kn sinkn�+K (�,�)coskn�+
∫�

0
Kx (�, t )coskn t d t = 0. (2.3)

For Lst
q ([0,π]) we in general have

kn − π

�
n =O(1/n).

Thus kn has an asymptotic expansion

kn = π

�
n + a0

n
+ γn

n

with γn second order correction terms , so in particular γn → 0 as n → ∞.
Plugging this expansion into (2.3) we get

0 =−
(π
�

n + a0

n
+ γn

n

)
(−1)n�

( a0

n
+ γn

n
+O(1/n2)

)
+K (�,�)(−1)n(1+O(1/n2))+

∫�

0
Kx (�, t )coskn t d t .

(2.4)

Since Kx (·, t ) ∈ L1(0,�), by the Riemann-Lebesgue Lemma∫�

0
Kx (�, t )coskn t d t → 0, as n →∞.

Collecting terms in (2.4) we can then see that

a0 = K (�,�)

π
=

∫�
0 q(t )d t

2π
,
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so the asymptotic expansion of kn is

kn = π

�

(
n + 1

2

∫�
0 q(t )d t

�

1

n
+o(1/n)

)
.

But since kn(Lst
q ([0,�])) = π

�n by assumption, we conclude that
∫�

0 q(t )d t =
0. Plugging in the constant function u(x) = 1/� in the quadratic form of Lst

q

we obtain

QLst
q

(u) =
∫�

0
|u′(x)|2 d x +

∫�

0
q(x)|u(x)|2 d x = 0,

so u(x) = 1/� is an eigenfunction for the eigenvalue 0 of Lst
q , but then

−u′′ +q(x)u(x) = q(x)/�= 0,

so q is zero almost everywhere.

The same result holds for periodic boundary conditions but is false for Dirich-
let boundary conditions. In general two spectra for two different boundary
conditions are needed to determine q , see [5], [25] and [26].

2.2. Inverse spectral theory for quantum graphs The inverse spectral prob-
lem for a quantum graph (Γ,Lq ,S) consists of determining the three ele-
ments of the triple from the spectrum σ(LS

q (Γ)). This problem does not, as
indicated in the previous section, admit a complete solution: already the
simplest examples of quantum graphs form an obstruction as σ(LS

q ([0,�]))
does not determine q ≡ 0 uniquely, for general boundary conditions S. Fur-
thermore the graphs themselves are not determined by the spectrum of the
associated operators: examples of graphs and vertex conditions such that
σ(LS1

0 (Γ1)) = σ(LS2
0 (Γ2)) where Γ1 and Γ2 are not isometric have been con-

structed (see for example [10], [3]).

The inverse problem may be partially solved in some cases where one com-
pares the spectrum of an operator with the spectrum of a reference operator,
where one or several elements of (Γ,Lq ,S) are fixed.

If Γ is fixed and the spectrum of Lst
q (Γ) is compared with the spectrum of

the reference operator Lst
0 (Γ) a direct analogue of Ambartsumian’s Theorem

has been proven. There were several partial results in this direction where
certain subclasses of graphs were considered, see [28] [29] [7] [31], [24] and
the general theorem was obtained by Davies [8]:

Theorem 2.3. Let q ∈ L∞(Γ) and suppose that σ(Lst
q (Γ)) =σ(Lst

0 (Γ)), then q ≡
0.
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It turns out, however, that one doesn’t actually have to fix Γ to obtain this
uniqueness result for q . In Paper IV the theorem was extended to the case
where σ(Lst

q (Γ1)) = σ(Lst
0 (Γ2)) for two different graphs. The proof used an

estimate from Paper I showing that |λn(Lst
q (Γ))−λn(Lst

0 (Γ))| < C for some C
and all n, together with Theorem 1.8:

Theorem 2.4 (Paper IV). Let Γ1 be a finite compact graph, q ∈ L∞(Γ1) and
suppose that σ(Lst

q (Γ1)) =σ(Lst
0 (Γ2)) for some finite compact Γ2. Then q = 0.

If one sets Γ= I (a finite interval), q = 0 and let S to be standard vertex con-
ditions, then:

Theorem 2.5 ([27], [9] and [18]). Let Γ be a finite compact metric graph with
total length L. If σ(Lst

0 (Γ)) =σ(Lst
0 ([0,L])) then Γ= I .

Here the reference operator is Lst
0 (I ), and Theorem 2.5 can be considered as a

geometric version of Ambartsumian’s Theorem 2.1, in that the uniqueness is
for the graph rather than the potential. For non-resonant vertex conditions
it is crucial that the vertex conditions are standard, as was shown in Paper
II. While keeping q = 0 in the reference operator this result was extended
to Lst

q (Γ) in Paper I, and LS
q (Γ) with S asymptotically standard conditions in

Paper II:

Theorem 2.6 (Paper I). Let Γ be a finite compact metric graph and q ∈ L1(Γ).
The spectrum of the standard Schrödinger operator Lst

q (Γ) coincides with the
spectrum of the standard Laplacian on an interval

λn(Lst
q (Γ)) =λn(Lst

0 (I )), (2.5)

if and only if Γ= I and q ≡ 0.

Spectral information about operators with two different resonant vertex con-
ditions Si , i = 1, 2, can be used to obtain spectral information about the op-
erators with the limit vertex conditions Si (∞) from (1.6), as it was shown in
Paper II that going to the limit vertex conditions does not perturb the eigen-
values too much:

Theorem 2.7 (Paper II). Let Γ be a finite compact metric graph, q ∈ L1(Γ)
and S be a unitary matrix parametrising properly connecting vertex condi-
tions. Let Sv (∞) be the high-energy limit of the corresponding vertex scatter-
ing matrix and Γ∞ — the corresponding metric graph so that Sv (∞) deter-
mines properly connecting vertex conditions on Γ∞.
Then the difference between the eigenvalues λn(LSv (∞)

0 (Γ∞)) and λn(LS
q (Γ)) is

bounded by a constant, i.e.

|λn(LS
q (Γ))−λn(LSv (∞)

0 (Γ∞))| ≤C , (2.6)

where C =C (Γ,‖q‖L1(Γ),S) is independent of n.
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This together with a general version of Theorem 1.8 was used in Paper IV to
show that

Theorem 2.8 (Paper IV). Suppose that LS1
q1

(Γ1) and LS2
q2

(Γ2) are asymptoti-

cally isospectral. Then LS1(∞)
0 (Γ∞

1 ) and LS2(∞)
0 (Γ∞

2 ) are isospectral.

In particular for non-resonant conditions (i.e. when S = S(∞)) asymptoti-
cally isospectrality implies isospectrality. For non-resonant conditions one
may say that it is not possible for a potential q to move a Laplace opera-
tor LS1

0 (Γ1) to a different isospectral class: if the spectrum of LS1
q (Γ1) looks

(asymptotically) similar to that of LS2
0 (Γ2), then the Laplace operators on the

two graphs are isospectral.

The reconstruction of a graph from the spectrum of the Laplace operator
is in general not possible as we have seen. If one is willing to restricts the
class of graphs under consideration, however, it is possible to reconstruct
the graph from the spectrum of the standard Laplacian Lst

0 (Γ):

Theorem 2.9 ([10], [15] and [20]). The spectrum of a Laplace operator with
standard conditions on a metric graph determines the graph uniquely, pro-
vided that the graph is finite and connected, has no vertices of degree 2, and
the edge lengths are rationally independent.

This theorem was generalized in Paper IV in by showing that σ(Lst
q (Γ)) also

determines Γ if Γ satisfies the asumptions of Theorem 2.9, though an al-
gorithm for reconstructing Γ was not given as in [10], [15] and [20]. Note
however that the claim is not that no other graph Γ2 with the same spec-
trum may exist, only that no other graph with rationally independent edge
lengths with the same spectrum may exist.

Though this thesis contains no work on reconstructing non-zero potentials
we mention some of the developments there has been in this area. Brown-
Weikard [6] showed that the Dirichlet-to-Neumann map for a Schrödinger
operator Lst

q (Γ) on a finite connected tree Γ uniquely determines q on Γ.
Pivovarchik [29] showed that for star-graphs the spectrum σ(Lst

q (Γ)) together
with the spectra of the Dirichlet–Dirichlet problems on the edges of the graph
determines q if the spectra are disjoint. An explicit procedure for recover-
ing the potentials was also presented. Avdonin-Kurasov [2] used the bound-
ary control method to prove that the response operator determines a quan-
tum tree with standard conditions completely, i.e. it determines the lengths
of the edges, their connectivity and the potential of each edge uniquely.
Freiling-Yurko have shown that the potential may be recovered from sev-
eral spectra corresponding to different vertex conditions at the boundary of
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so-called hedgehog-typ graphs [32].

Due to the fact that standard conditions (1.2) are usually assumed, the prob-
lem of reconstructing vertex conditions from the spectrum has received some-
what less attention than the other parts of the inverse spectral problem. The
interested reader may see [16] and [17].

3 Summary of papers

Paper I

The paper generalizes the geometric version of Ambartsumian’s Theorem
(Theorem 2.5)to the case of σ(Lst

q (Γ)) = σ(Lst
0 ([0,L])), with the conclusion

being that also here Γ = I and furthermore q ≡ 0. By Theorem 2.5 it is suf-
ficient to show that the Laplace operators Lst

0 (Γ) and Lst
0 (I ) are isospectral,

for then Γ= I and Ambartsumian’s classical theorem implies q ≡ 0, with no
extra work required. This is done by showing the uniform (in n) estimate

|λn(Lst
q (Γ))−λn(Lst

0 (Γ))| <C , (3.1)

with the help of variational (Max-Min & Min-Max Theorems) characteriza-

tions of the spectrum of Lq .
√
λn(Lst

0 (Γ)) is given by the zeros of a trigono-

metric polynomial p and since σ(Lst
q (Γ)) = σ(Lst

0 ([0,L])) it follows from (3.1)
that √

λn(Lst
0 (Γ))−

√
λn(Lst

0 (I )) → 0.

Since
√
λn(Lst

0 (I )) =πn/|I | it is sufficient to show that a trigonometric poly-
nomial which has zeros tending to πn/|I | only have zeros at πn/|I |. This is
done by using a generalization of Kronecker’s Theorem and a suitable choice
of subsequences of πn/|I |. Finally, the fact that σ(Lst

0 (Γ)) determines the
Euler characteristic χ(Γ) of Γ is generalized by showing that σ(Lst

q (Γ)) also
determines χ(Γ).

Paper II

This paper continues the investigations of Paper I by allowing more general
vertex conditions than the standard conditions that were assumed through-
out Paper I. We introduce the notions of resonant and non-resonant vertex
conditions S — corresponding to energy dependent and independent ver-
tex scattering, respectively — and for resonant conditions define the high-
energy limit S(∞) of the conditions. The proof of (3.1) is modified to show
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that also
|λn(LS

q (Γ))−λn(LS(∞)
0 (Γ))| <C ,

and we generalize the geometric version of Ambartsumian’s Theorem to con-
ditions where S(∞) coincides with standard conditions onΓ. We then present
a family of graphs — intervals with an additional vertex with non-resonant
non-standard conditions in the middle — with Laplacians LS

0(Γ) that are
isospectral to the standard Laplacian on an interval of the same length. Whereas
vertices of degree two with standard conditions are removable, the extra
middle vertex in Γ is not removable and this shows that the geometric ver-
sion of Ambartsumian’s theorem can not be generalized to all vertex condi-
tions.

Paper III

In Paper I we showed that if the zeros kn of a trigonometric polynomial
asymptotically tend to the integers, i.e. kn −n → 0 then kn = n for all n. This
theorem is generalized to show that given two almost periodic functions
f1, f2 in a horizontal strip in C with zeros kn , ln respectively, if ln −kn → 0
then kn = ln for all n, so if the zeros of f1 and f2 are asymptotically close
they must coincide. The proof relies on the theory of almost periodic dis-
crete sets and the fact that the set of zeros of an almost periodic function
forms such a set.

Paper IV

The result from Paper III is generalized to deal with the case where a subse-
quence knk of zeros of an almost periodic function f1 is asymptotically close
to the zeros ln of an almost periodic function f2, and we show that ln must in
fact me zeros of f1 as well in this case. We give a new and more direct proof,
using only basic tools from complex analysis. This result is then applied to
the spectral theory of quantum graphs. Two semi-bounded operators with
discrete spectra are called asymptotically isospectral if |

√
λn(A)−

√
λn(B)| <

C , and we show that if the Laplacians with non-resonant vertex conditions
on two connected graphs are asymptotically isospectral then they are in
fact isospectral. We use this result to generalize Theorem 2.3 and 2.9 as de-
scribed in Section 2.2 above.
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