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Abstract

In this thesis we use the theory of algebraic operads to define a complete invariant of real and rational homotopy classes
of maps of topological spaces and manifolds. More precisely let f,g : M -> N be two smooth maps between manifolds M
and N. To construct the invariant, we define a homotopy Lie structure on the space of linear maps between the homology
of M and the homotopy groups of N, and a map mc from the set of based maps from M to N, to the set of Maurer-Cartan
elements in the convolution algebra between the homology and homotopy. Then we show that the maps f and g are real
(rational) homotopic if and only if mc(f) is gauge equivalent to mc(g), in this homotopy Lie convolution algebra. In the
last part we show that in the real case, the map mc can be computed by integrating certain differential forms over certain
subspaces of M. We also give a method to determine in certain cases, if the Maurer-Cartan elements mc(f) and me(g) are
gauge equivalent or not.
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Abstract

In this thesis we use the theory of algebraic operads to define a complete in-
variant of real and rational homotopy classes of maps of topological spaces
and manifolds. More precisely let f,g: M — N be two smooth maps be-
tween manifolds M and N. To construct the invariant, we define an L-
structure on the space of linear maps Homg(H. (M;R), 7. (N)®R) and a map

mc:Map.(M,N) — MC(Homg(H.(M;R), 7, (N) ®R)),

from the set of based maps from M to N, to the set of Maurer-Cartan ele-
ments in Homg(H. (M;R), 7. (N) ® R). Then we show that the maps f and
g are real (rational) homotopic if and only if mc(f) is gauge equivalent to
mc(g), in this L,-algebra.

In the last part we show that in the real case, the map mc can be com-
puted by integrating certain differential forms over certain subspaces of M.
We also give a method to determine in certain cases, if the Maurer-Cartan
elements mc(f) and mc(g) are gauge equivalent or not.






Abstract in Swedish

I denna avhandling anvénds teorin for algebraiska operader for att definiera
fullstdndiga invarianter for reella och rationella homotopiklasser av avbild-
ningar av topologiska rum eller mangfalder. Mer specifikt, lat f,g: M — N
vara tva sldta avbildningar mellan méngfalder M och N. Fér att konstruera
invarianten definieras en Lyo-struktur pd rummet av linjdra avbildningar
Homg(H,.(M;R), m.(N) ®R) och en avbildning

mc:Map.(M,N) — MC(Homgr(H,(M;R), 7. (N) ®R)),

frdn midngeden avbaserade avbildningar frdn M till N till mdngden av Maurer-
Cartan-element i Homg(H. (M;R), . (N) ® R). Vi visar att avbildningarna f
och g &r reellt (rationellt) homotopa om och endast om mc(f) dr gaugeek-
vivalent med mc(g) i denna L..-algebra.

I den sista delen visar vi, i det reella fallet, att avbildningen mc kan berék-
nas genom att integrera specifika differentialformer 6ver specifika delmang-
falder av M. Vi framfor &ven en metod for att i specifika fall kunna bestimma
om mc(f) och mc(g) dr gaugeekvivalenta eller inte.
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Introduction

“I'hate when I'm on a flight and I wake up with a water bottle next to me like
oh great now I gotta be responsible for this water bottle”
-Kanye West

1 The central question

The goal of this thesis is to use the theory of algebraic operads to solve ques-
tions in homotopy and algebraic topology. In particular we are mainly inter-
ested in the question:

Question 1.1. Given two maps f,g: X — Y between topological spaces X
and Y, are f and g homotopic?

This is one of the most elementary questions in topology and is also ex-
tremely hard to answer in full generality. In this thesis we will solve a special
case of this question by combining the theory of L,,-algebras and algebraic
operads with the theory of integration to answer Question 1.1 in the real and
rational case. To do this we will first recall what real homotopic means.

Definition 1.2. Two smooth maps f,g: M — N between simply-connected
smooth manifolds M and N are called real homotopic if the induced maps
Q.(f),Q.(8) : Q. (N) — Q. (M) between the de Rham complexes of M and N
are homotopic as maps of commutative differential graded algebras.

The central question that motivated this thesis then becomes:

Question 1.3. Given two smoothmaps f,g: M — N from a compact simply-
connected smooth manifold M to a simply-connected smooth manifold N
of finite R-type, are the maps f and g real homotopic?

Our goal is to define a sequence of invariants of the maps f and g such
that f and g are real homotopic if and only if these invariants agree. Our ap-
proach to defining these invariants is to combine the latest developments
in operad theory with the theory of differential forms and integration to ob-
tain computable invariants of real homotopy classes of maps between man-
ifolds.
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Convention 1.4. Since we want to use the de Rham complex we will as-
sume that all manifolds are smooth and that all maps between manifolds
are smooth as well. Further we will assume that all manifolds are orientable.
We will also assume that all our algebras, coalgebras, operads and cooperads
are differential graded.

Remark 1.5. In this introduction we will only focus on manifolds, in Section
10 of Paper III we will give a brief explanation how we can apply the ideas of
this thesis to simplicial sets as well.

2 Invariants of homotopy classes of maps using inte-
gration

The theory of differential forms and integration has a long history in alge-
braic topology and has often been very effective in answering many ques-
tions, for a more detailed description of applications of differential forms in
algebraic topology we refer to the book [3]. In this section we will describe
some examples of invariants of homotopy classes of maps which use dif-
ferential forms and integration. These examples are the degree of a map,
the classical Hopf invariant and the Hopf invariants in rational homotopy
theory defined by Sinha and Walter (see [20]). The work in this thesis gen-
eralizes the ideas of these examples to give a complete invariant of real ho-
motopy classes of maps between two simply-connected manifolds M and
N, when M is compact.

2.1. The degree of a map The first example is the degree of a map. This is
the simplest example where differential forms are used to define invariants
of homotopy classes of maps.

Definition 2.1. Let f: M — N be a smooth map between a compact mani-
fold M and a manifold N, assume that dim(M) = dim(N). Denote by wy a
representative of the top cohomology class of N and by M the fundamental
class of M. The degree of the map f is defined as the following integral

fyron

This invariant is not particularly powerful, since we need to require that
the manifolds M and N have the same dimension it is only defined in special
cases. The degree of a map will also detect at most as much as the induced
map in cohomology will detect, which is usually not enough to distinguish
homotopy classes of maps. It is however strong enough to distinguish self
maps of the n-sphere S”.
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Theorem 2.2. Let f,g:S" — S" be two smooth maps. The maps f and g are
homotopic if and only if they have the same degree, i.e.

ff*wsn=f g wsn.
SVl S”

For a proof see Lemma 17.10.2 of [3].

2.2. The classical Hopf invariant As we have seen in the previous section
the degree of a map has the problem that it can not see anything above the
top dimension of the target N. To solve this we will introduce the bar con-
struction, this is a new chain complex associated to the de Rham complex
Q.(N), which has the property that it has more cohomology and therefore
detects more. Using the bar construction we can define a version of the clas-
sical Hopf invariant, which is an invariant of maps f : $*"! — 2", More
details about the bar constructions can be found in Chapter 2 of [16]. The
rest of this section is based on Section 1 of [20].

Definition 2.3. Let A be an associative algebra. The bar construction BA is
defined as the cofree coassociative coalgebra generated by sA, the suspen-
sion of A. This space has as basis elements of the form sa; | ... | sa;. We will
call n the weight of an element sa, | ... | sa,. The coproduct

A:BA— BA®BA

is given by
n
A(say | ...| say) = Z sayl..|sa;®sa;ji1|...1say.
i=1

The differential dp 4 consists of two parts dp s = dj +d>. The first part is given
by the extension of d4 by the Leibniz rule, i.e.

n .
dy(say | ... | sap) = Y (D) HalAaialsg, | s(daan) | ... | an.
i=1

The second part d» is coming from the product of A and is defined by

n—1
i—1+|a|+...+]a;
do(say | ... | sap) = Y (D) MHalt-Hailsg | I s(aiai) | ... | san,
i=1

where a;a; is the multiplication in A of a; and a; 4.
Remark 2.4. In this section we include a suspension in our definition of the
bar construction, in the papers we not do this. Since we need more refined

versions of the bar construction it is more natural to put the suspensions in
the operads instead.

17



Proposition 2.5. The bar construction is a functor
B:As—alg— Coas—coalg
from associative algebras to coassociative coalgebras.

Definition 2.6. Let 7 : BA — A denote the degree —1 linear map defined by
n(sa;) =a; and n(say | ...| sa,) =0for n=2.

Using the bar construction we can now define the classical Hopf invari-
ant. The classical Hopf invariant is an invariant of maps f : $**~! — §2" and
is defined as follows.

Let € Q,,(S*") be a cocycle representative for the top dimensional co-
homology class. Since Qi (S?") is zero for k > 2n, the wedge product w A w
is also zero. It follows that the element sw | sw € BQ.(S*") is a cocycle in the
bar construction.

Fix a map f: §*"! — §2". Since the bar construction is a functor we
can pull sw | sw back along f and get a cocycle sf*w | sf*w € BQ.(S*"1).
Since H2"(S*"~1) = 0, the element f*w is null homologous in Q. (S~ 1). Itis
therefore possible to find an element d~! f*w which bounds the cycle f*w.
A straightforward calculation then shows that the element sd~! f*w | sf*w
is a coboundary, cobounding sf*w | sf*w and s(d™! f*w A f*w).

The next step is to apply the map 7 to the cocycle s(d~! f*w A f*w). By
doing this we obtain a (4n — 1)-form d_lf*a) A ffwon §47=1 which we can
integrate. The Hopf invariant is now defined as follows.

Definition 2.7. Let f: S*~! — 2" be a smooth map. The Hopf invariant
H(f) of the map f is defined as the integral

H(f):f A frfon fro.
S4n—1

Proposition 2.8 (Proposition 17.22, [3]). The definition of the Hopf invari-
ant is independent of choice of w and is an invariant of the homotopy class
of f,i.e. homotopic maps have the same Hopf invariant.

The Hopf invariant is unfortunately not a complete invariant of maps
f:8*""1 — §27 thatis there are maps with the same Hopf invariant that are
not homotopic. It is however possible to show that it is a complete invari-
ant of real or rational homotopy classes of maps. We will state this result in
Theorem 2.13 in the next section.

18



2.3. The Sinha-Walter Hopfinvariants The classical Hopf invariant can be
generalized to construct a complete invariant of real homotopy classes of
maps. This was done in [20] by replacing the associative bar construction by
a Lie coalgebraic version of the bar construction.

Definition 2.9 ([20], Definition 2.1). Let A be a commutative algebra. The
Lie coalgebraic bar construction is defined as the cofree Lie coalgebra co-
generated by A with a certain differential coming from the differential of A
and the multiplication of A. We will denote the Lie coalgebraic bar construc-
tion by Br;eA.

Remark 2.10. In [21] and [20] Sinha and Walter also develop some com-
putational techniques for getting an explicit basis for the free Lie coalgebra
and for obtaining information about the Lie coalgebraic bar construction. In
this introduction we omit this. Specially since we replace these techniques
in Papers I and III by the Homotopy Transfer Theorem.

We will now define a similar construction as in the case of the classical
Hopf invariant. Let f: S" — Yg be a continuous map from S” to a ratio-
nal space Yg, denote by A}, (Yp) the polynomial de Rham forms on Yy (see
Chapter 10 of [9]). This is a generalization of the smooth de Rham form due
to Sullivan, which is defined for more general spaces than manifolds.

Definition 2.11. Let X be a simply-connected space and f : S” — X be a
map. Letw € B LieA;‘) 1 (X) be a cocycle of weight n, we call w weight reducible
if w is cohomology equivalent to a cocylce of weight 1. If w is weight re-
ducible we will denote by 7(w) a choice of weight 1 cocycle cohomologous
to w.

Definition 2.12. Let Yy be a simply-connected rational space of finite Q-
type, f : S" — Yg a continuous map and let w € Br;.Apr(Yg) be a cocycle.
The Hopf pairing

n:7m.(Yg)® H* (BLieApL(Yg) — Q,
is defined by the following evaluation

n(f,w) =fsnr(f*(w)).

Here 7(f*w) is a cocycle of weight 1 cohomology equivalent to f*w.

It can be shown that this pairing is independent of choices, this is done
in [20].

19



Theorem 2.13 ([20], Theorem 2.10). The pairing 1 from Definition 2.12 is
perfect, i.e. by taking the adjoint of the pairing we get an isomorphism

n': H* (BLieApL(Yg)) — Homz (7. (Yg), Q).

This theorem has as a corollary that it can distinguish homotopy classes
of maps between S” and Yg.

Corollary 2.14. Two maps f, g:S" — Yg are homotopic if and only if

fr(f*w):f 7(g"w)
Sﬂ Sﬂ
forall w € H* (Brie(Ap; (Yo))).

When the space Y is not rational we get the following statement.

Corollary 2.15. Let Y be a simply-connected space of finite Q-type and let
f,g:8" — Y be two maps, the maps f and g are rationally homotopic if and

only if
fr(f*w)=f 7(g" w),
N N

forall w € H* (Brie(Ap; (Y))).

3 Algebraic operads

The other essential ingredient of this thesis is the notion of an operad. Intu-
itively an operad is a type of algebraic structure that encodes certain types of
algebras. Some examples of such types algebras are an associative product
on a vector space, a Lie bracket on a vector space, or the multiplication of
loops in the loop space of a topological space.

Operads originated in algebraic topology in the study of loop spaces and
the word operad was coined by May in [19] to define the Recognition Princi-
ple. This theorem states that a topological space is weakly equivalent to an
n-fold loop space if and only if it is an algebra over the little n-disks operad.
But since then operads have found many applications in other fields. For
examples, see the book [18].

Because of the great success of operads and the many applications to
other fields, the field of algebraic operads became a topic of research in its
own right and today there are numerous papers about algebraic operads.
The main reference about algebraic operads is [16] and unless stated other-
wise we will use the definitions and notation of [16] in this introduction.

20



To give an answer to Question 1.3 we will first use the theory of algebraic
operads to define invariants between maps of algebras. Because of Defini-
tion 1.2 determining whether two maps f,g: M — N are real homotopic is
equivalent to determining whether the induced maps on the de Rahm com-
plexes are homotopic as maps of commutative differential graded algebras.
To do this we will first need some preliminaries.

Convention 3.1. From now on we will work in the category of chain com-
plexes over a field K of characteristic 0. In most situations K is either R or

Q.

3.1. The bar and cobar construction relative to a twisting morphism Two
of the most important ingredients in all our constructions are the bar and
the cobar construction and in the previous sections we have already seen
two examples of the associative and the Lie bar constructions. These con-
structions have many good properties, but what will be most important for
this thesis is that they help to us construct fibrant and cofibrant objects in
the model categories of algebras and coalgebras over an operad or cooperad.
The main reference for this section is Chapter 11 of [16].

Definition 3.2 ([16], Section 11.2.2). Let 7 : C — P be an operadic twisting
morphism and A be a P-algebra. Then we define B; A the bar construction
relative to 7 as (C(A), d), the free C-coalgebra cogenerated by A with a certain
differential coming from the differential and multiplication of A.

Dually we also have the cobar construction.

Definition 3.3 ([16], Section 11.2.8). Let 7 : C — P be an operadic twisting
morphism and C a C-coalgebra. The cobar construction Q;C is defined as
(P(C),d) the free P algebra generated by C with a certain differential com-
ing from the differential and coproduct of C.

For more details about the bar and cobar differentials see Chapter 11 of
[16].

3.2. The homotopy theory of algebras over an operad To determine whether
two algebra maps are homotopic it is important that we first define what it
means for algebra maps to be homotopic. To do this we will recall Hinich’s
model category structure on the category of P-algebras, for some operad P.
Then we explain what it means for two algebra maps to be homotopic.

Theorem 3.4 ([14] Theorem 4.1). Let P be an operad. The category of al-
gebras over P admits a model structure in which the weak equivalences are
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given by the quasi-isomorphisms, the fibrations by surjective maps and the
cofibrations are the maps which have the left lifting property with respect to
acyclic fibrations.

A cylinder object in the category of P-algebras is defined as follows.

Definition 3.5. Let A be a P-algebra and R a commutative algebra, then
we define the extension of scalars of A by R as the algebra with underlying
vector space R® A and with a P-algebra structure given by u,(r;®ay,..., 1, ®
an) =T11..T, ® Uplay,...,ay) forr;y® a; € R® Aand u, € P(n).

We can now define what it means for algebra maps to be homotopic.

Definition 3.6. Let Q; = A(t,dt) be the commutative algebra generated by
an element ¢ of degree 0 and an element d ¢ of degree 1, the differential is
given by d(t) = dt. Two algebra maps f : A — B between P algebras A and
B are called homotopic if there exists a map H : Q; ® A — B such that H
restricted to t =0 and dt = 0 is f and H restricted to t =1 and df = 0 is
equal to g.

For this introduction we will also need a description of the fibrant and
some of the cofibrant objects in this category.

Proposition 3.7 ([14]). Let P be an operad and B,,P be the operadic bar
construction on P. Let 7 : By, P — P be the canonical twisting morphism.
In the model category of P-algebras every object is fibrant and a class of
cofibrant objects is given by by algebras of the form Q,C, where Q; is the
bar construction from 3.1 and C is a B,,,P-coalgebra.

Similar to algebras we also have a model structure on the category of
coalgebras over a cooperad C. This was done in [22] and [8].

Theorem 3.8 ([8], Theorem 3.11). Let 7 :C — P be an operadic twisting mor-
phism. The category of C-coalgebras has a model structure in which the
weak equivalences are given by maps f: C — D, suchthatQ; f: Q;C — Q;D
is a quasi isomorphism. The cofibrations are the injective maps and the fi-
brations are the maps with the right lifting property with respect to acyclic
cofibrations.

The fibrant and cofibrant objects are described in the following proposi-
tion.

Proposition 3.9 ([22], Theorem 2.1). In the model category of C-coalgebras
relative to the Koszul twisting morphism ¢ : C — Q,,C every object is cofi-
brant. A coalgebra C is fibrant in this model category if it is isomorphic to
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a quasi-free coalgebra. In particular the bar construction B,A on a Q,,C-
algebra Ais fibrant. Where the twisting morphism::C — Q,,C, is the canon-
ical twisting morphism from the cooperad C to its operadic bar construction
QopC.

3.3. Lo-algebras The next essential ingredient we need for this thesis is
the notion of an L,-algebra. L,-algebras are Lie algebras up to homotopy
and since their discovery they have been appearing everywhere in mathe-
matics. They played for example an important role in Kontsevich’s defor-
mation quantization result (see [15]), rational homotopy theory (see [11])
and in many more areas of mathematics. For the basics of the theory of Ls-
algebras see [11].

Definition 3.10. An L-algebra L is an algebra over the Ly-operad, where
the Ly,-operad is given by Q,,COCOM, the cobar construction on the co-
commutative cooperad. This is equivalent to a differential graded vector
space L together with a sequence of skew symmetric maps [, : L*" — L of
degree —1 for n = 1 satisfying certain identities.

Remark 3.11. In this thesis we will use a different grading convention for
our L..-algebras than usual. In Paper I and Paper II we will give an explana-
tion why we think our grading conventions are more natural.

In an Ly,-algebra there is a certain set of special elements called Maurer-
Cartan elements.

Definition 3.12. Let L be an Ly-algebra, a Maurer-Cartan element in L is
an element 7 that satisfies the Maurer-Cartan equation

1
> ﬁln(r,...,r) =0.

n=1 "%
The set of Maurer-Cartan elements in L will be denoted by MCy(L).

Remark 3.13. For the Maurer-Cartan equation to converge it is necessary to
put some restrictions on the Ly,-algebras, like nilpotence, in this introduc-
tion we will ignore these restrictions and assume that the Maurer-Cartan
equation always converges.

In [13] and [11], Hinich and Getzler define a functor from L,-algebras to
simplicial sets.

Definition 3.14. Let L be a nilpotent L,,-algebra. Then we have a functor
MC., : Lo, —alg — sSet from L,-algebras to simplicial sets, defined by send-
ing an L..-algebra to the simplicial set whose n-simplices are the Maurer-
Cartan elements of the L.,-algebra Q, ® L, where Q,, is the commutative
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algebra of polynomial de Rham forms on the simplex and the tensor prod-
uct is taken as in Definition 3.5. The face and degeneracy maps are the face
and degeneracy maps induced by the face and degeneracy maps of Q..

Definition 3.15. An L,-algebra L is called a rational model for a simplicial
set X., if there exists a zig-zag of rational homotopy equivalences

MC.(L) «...— X..

The simplicial set MC, (L) gives us a notion of homotopy or gauge equiv-
alence between different Maurer-Cartan elements.

Definition 3.16. Two Maurer-Cartan elements in an Ly,-algebra L are called
gauge equivalent if they are connected by a 1-simplex in MC, (L).

Remark 3.17. In theliterature this equivalence relation is both called homo-
topy equivalence and gauge equivalence. Since homotopy is already overused
in this thesis we will call it gauge equivalence.

Definition 3.18. The moduli space of Maurer-Cartan elements in an L,-
algebra L is defined as M Cy(L) modulo the gauge equivalence relation. The
moduli space of Maurer-Cartan elements will be denoted by MC(L).

3.4. Convolution algebras In Section 3.2 we saw that the bar and cobar
constructions are fibrant-cofibrant objects in the categories of C-coalgebras
and P-algebras. So to study the homotopy theory of C-coalgebras and P-
algebras better we need a better understanding about maps into the bar
construction and maps out of the cobar construction.

Let Q;C be the cobar construction on a C-coalgebra and let A be a P-
algebra. Since the underlying P-algebra of the cobar construction is free,
everymap [ : Q;C — Ais completely determined by the image of the gener-
ators of Q;C, i.e. the map f is determined by a linear map f : C — A. Since
the map f: Q;C — A still needs to commute with differentials, not every
linear map f : C — A extends to amap f : Q;C — A. The map f therefore
needs to satisfy a certain equation, called the Maurer-Cartan equation. One
of the results of Paper I is that we show that this Maurer-Cartan equation
comes from an Ly.-structure on Homg(C, A). Before we state the theorem
we will first discuss the dual case as well.

Let B; Abe the bar construction on a P-algebra A and C be aC-coalgebra.
Let f : C — B; A be a morphism of C-coalgebras. Since B; A is cofree this is
again completely determined by a linear map f : C — A. Again not every
linear map f : C — A determines a map f : C — B; 4, it needs to satisfy a
Maurer-Cartan equation.
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Theorem 3.19 (Paper I, Theorem 7.1). Let 7:C — P be an operadic twisting
morphism, C a C-coalgebra and A a P-algebra. Then there exists an Ly-
structure on Homg(C, A) which is natural with respect to strict morphisms
of C-coalgebras and P-algebras, such that

1. The Maurer-Cartan elements in the L,-algebra Homg(C, L) are in bi-
jection with the algebra maps Q; A — C and in bijection with the coal-
gebra maps C — B; A.

2. Two P-algebra maps f, g : Q;C — A are homotopic if and only if the
corresponding Maurer-Cartan elements f, g : C — A are gauge equiv-
alentin Homg(C, A).

Remark 3.20. This Ly,-structure is defined for every field of characteristic 0
and not just R.

One of the main results of Paper II is that the Ly,-algebra structure from
Theorem 3.19 is not only natural with respect to strict morphisms, but also
natural with respect to co-morphisms in one of the variables.

Remark 3.21. An co-morphism of P-algebras is a morphism of P-algebras
up to homotopy, see Paper II for a detailed definition of co-morphism.

Theorem 3.22 (Paper II, Theorem 5.1). The bifunctor
Homg(—,—):(C—coalg)’’ xP—-alg — Loo—alg
can be extended to bifunctors
Homg(—,-): (co—C—coalg)’’ xP—-alg — oco— Ly —alg,

Homg(—,-): (C—-coalg)’” xoco—P-alg —oo— Ly —alg.

Where co — P — alg denotes the category of P-algebras with co-morphisms
and co—C — coalg is the category of C-coalgebras with co-morphisms.

Using this theorem we can prove the following theorem which, under
some assumptions on C and L, turns Homk(C, L) into a rational model for
a mapping space. This theorem is a generalization of Theorem 1.4 of [1]. We
improve Berglund’s Theorem by not only allowing C to be strictly cocom-
mutative , but also cocommutative up to homotopy. The rational homotopy
theory of mapping spaces has also been studied in [6], [6], [17], [10], [4], [2],
[12] and [5].
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Theorem 3.23 (Paper II, Corollary 8.19). Let X be a simply-connected sim-
plicial set of finite Q-type and C a simply-connected Cy,-coalgebra model
of finite type for X. Let Y be another simply-connected simplicial set of fi-
nite Q-type and L a simply-connected locally finite L,,-model for Y. Then
there exists an Lo-structure on Homg(C, L) such that Homg(C, L) becomes
a rational model for the based mapping space Map.(X,Y), i.e. we have a
homotopy equivalence

MC.(Homg(C,L)) = Map.(X, Yg),
where Yg is the rationalization of Y.

Remark 3.24. We call an algebra A simply-connected if A is concentrated in
degrees 2 and higher, similarly we will call a coalgebra C simply connected
if C is concentrated in degree 2 and higher. For the definition of locally finite
see Definition 8.2 of Paper II.

As a corollary of Theorem 3.23 we get an alternative proof of Theorem 3.2
of [7].

Corollary 3.25 (Paper I, Corollary 11.1 and [7] Theorem 3.2). Let X and Y
be simply connected simplicial sets of finite Q-type. There exists an Loo-
structure on Homg (H. (X;Q),7.(Y) ® Q) such that Homg(C, L) becomes a
rational model for the based mapping space Map. (X, Y).

3.5. Algebraic Hopf invariants In this section we will use all the theory
from the previous sections to describe the invariants of maps between al-
gebras and maps between coalgebras.

We start by defining invariants of maps between coalgebras. We will do
this in several steps. Let C and D be C-coalgebras and let 7 : C — P be a
Koszul operadic twisting morphism. We would like to use Theorem 3.19 to
identify the space of maps between C and D with the set of Maurer-Cartan
elements in a certain L,-algebra.

Unfortunately we can not do this directly since D is not necessarily given
by the bar construction on something. Therefore we first apply the cobar
construction and study instead maps between Q;C and Q;D. In Paper I
Lemma 9.1, it is shown that two maps f,g : C — D are homotopic if and
only if Q; f is homotopic to Q;g. So according to Theorem 3.19 the maps
Q; f and Q; g are homotopic if and only if the corresponding Maurer-Cartan
elements /ij/” and Q, g are gauge equivalent in Homg(C, QD).

The main problem with this approach is that the coalgebra models C and
D are often quite large and not well suited for calculations. To solve this
problem we construct strict morphisms of P-algebras i : Q; H,(C) — Q,C
and p:Q;D — H,.(Q;D) in Section 9 of Paper I.
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Remark 3.26. There are a few technical details that are omitted here, which
are solved in Paper 1.

Using the maps i and p we can define the algebraic Hopf invariant map
mc: Homc_walg(C, D) — Homp(H,(C), H.(Q;D)).

Definition 3.27 (Paper I, Definition 9.1). The algebraic Hopfinvariant maps
are defined by

mc: Home—coalg(C, D) — Homg(H« (C), Hy (Q7 D))

mc(f)=poQ,foi.
The map

MCoo : Home_cpa1g(C, D) = MC(Homg(H.(C), H«(Q; D))

is defined by sending f to the gauge equivalence class of mc(f) = poQ,foi
in the moduli space of Maurer-Cartan elements.

Remark 3.28. The map mc(f) is not an invariant of the homotopy class of a
map f: C — D. It does however, have the property that it reduces the ques-
tion whether two maps are homotopic to a question about gauge equiva-
lence in a finite dimensional L.,-algebra. Which is in general much easier
to solve.

The following theorem is one of the main theorems of Paper I. This theo-
rem states that the algebraic Hopf invariants are a complete invariant of the
rational homotopy classes of maps

Theorem 3.29 (Paper I, Theorem 10.1). The maps f,g: C — D between C
coalgebras C and D are homotopic if and only if mc (f) = mceo(g).

4 The Hopfinvariants

In this section we will describe how we can use the algebraic Hopf invariants
from Section 3.5 to construct invariants of maps between manifolds. We will
first explain how we can use integration to compute the map mc and then
we will explain how to get invariants of homotopy classes of maps using mec.

4.1. From manifolds to algebra: How to compute the map mc To get in-
variants of maps between manifolds we can first apply the functor Q. and
then apply the algebraic Hopf invariant map to Homcpga(Q.(N), Q.(M)).
One of the problems with this approach is that the complexes Q. (M) and
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Q.(N) are extremely large, so it is in practice nearly impossible to compute
the algebraic Hopf invariant maps directly. In this section we will state one
of the main theorems of Paper III in which we compute the map mc by solv-
ing a finite number of integrals.

Theorem 4.1 (Paper III, Theorem 6.13). Let {¢; ;} be a basis for
Homg(H.(M),n.(N)) and let f : M — N be a smooth map. The Maurer-
Cartan element mc(f) can be expressed in this basis as mc(f) = Z,-)j Aij®i s
with 1; ; € R. The coefficients 1; ; can be computed as an integral of a cer-
tain differential form over a certain subspace of M.

The exact statement of the theorem can be found in Paper III as Theorem
6.13. The integrals of Theorem 4.1 are given by very explicit formulas and
can often be computed, for a few examples of such computations see Sec-
tion 8 of Paper III. The purpose of this theorem is that it reduces the question
whether two maps f,g: M — N are real homotopic to a question whether
two Maurer-Cartan elements in a finite dimensional L..-algebra are gauge
equivalent or not. This last question can still be hard but is a lot easier to
solve than the original question. In the next section we will also state some
results on how to avoid checking whether the elements mc(f) and mc(g)
are gauge equivalent.

4.2, Invariants of maps between manifolds Let f : M — N be a map be-
tween simply-connected smooth manifolds, such that M is compact. So far
we have only explained how to compute the map mc(f) and we did not ex-
plain how to compute mc(f). So far we have therefore not yet defined any
invariants of the map f. In Paper III we develop a technique to get a better
understanding of the moduli space of Maurer-Cartan elements. We do this
by defining an algebraic analog of a CW-complex to deal with this question
in many favorable cases.

The idea is that when the manifold M has a CW-decomposition we can
use the CW-decomposition to define a filtration on the homology of M. This
filtration will induce a tower of fibrations on the Maurer-Cartan simplicial
set MC.(Homg(H.(M),n.(N))) and will give us the possibility to compare
Maurer-Cartan elements stage by stage in this tower.

In this section we will give two examples of the results we can obtain this
way.

Theorem 4.2 (Paper III, Theorem 7.24). Let f : M — N be a smooth map be-
tween simply-connected manifolds M and N. The map f is real homotopic
to the constant map if and only if all the coefficients /1{ jare equal to zero.
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Another example of an application of our theory is Corollary 7.21 of Pa-
per III.

Theorem 4.3. Let H. (S" xS™) be the homology of §” x ™. This vector space
has as basis «, 8, y, suchthat |a| =n, |fl=m|y|=n+m. Let f,g:S"xS§" —
Y be two maps. The maps f and g are homotopic if and only if

¢ The coefficients Af; ;= Ai ; foralli € m,(Y).

* And Agj = A8 forall j € 7, ().

e And /1;0 K= /1§ k for a certain subset of 4(Y).

In Paper I1I we will give a precise definition of what a certain subset means.
An example of such a subset is given in the following example.

Example 4.4. Let f,g:S? x S? — $? x §2\ {*} be two maps. The maps f and
g are homotopic if and only if

. If/1£ ;= /1‘;’;1. and ﬂtgi = )L% ; for all i € m»(S? x S%\ %) and at least one of

the coefficients Ag ; or /l]g ; is non zero.

» Orif Al =28 = AL =% =0foralliemy(s?xs?\x)and A} =15

forall je 4(S? x 82\ %).
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