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Abstract

This thesis consists of six papers.

In Paper I, we give an algorithm for merging sorted lists of monomials and
together with a projection technique, we obtain a new complexity bound for the
Buchberger-Möller algorithm and the FGLM algorithm.

In Paper II, we discuss four different constructions of vector space bases associ-
ated to vanishing ideals of points. We show how to compute normal forms with
respect to these bases and give complexity bounds. As an application we drasti-
cally improve the computational algebra approach to the reverse engineering of
gene regulatory networks.

In Paper III, we introduce the concept of multiplication matrices for ideals of
projective dimension zero. We discuss various applications and, in particular, we
give a new algorithm to compute the variety of an ideal of projective dimension
zero.

In Paper IV, we consider a subset of projective space over a finite field and
give a geometric description of the minimal degree of a non-vanishing form with
respect to this subset. We also give bounds on the minimal degree in terms of
the cardinality of the subset.

In Paper V, we study an associative version of an algorithm constructed to
compute the Hilbert series for graded Lie algebras. In the commutative case we
use Gotzmann’s persistence theorem to show that the algorithm terminates in
finite time.

In Paper VI, we connect the commutative version of the algorithm in Paper V
with the Buchberger algorithm.
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1 Introduction and summary of the papers

This thesis concerns computational algorithms for algebras. We present six pa-
pers on this subject.

Notation needed to summarize the papers

Let k be a field, and denote by k[x1, . . . , xn] the polynomial ring in n variables
over k. A monomial in k[x1, . . . , xn] is an element of the form xα1

1 · · ·xαn
n , where

each αi is a non-negative integer. A polynomial in k[x1, . . . , xn] is regarded as a
k-linear combination of monomials.

We evaluate a monomial at a point p = (p1, . . . , pn) ∈ kn by xα1
1 · · ·xαn

n (p) =
pα1
1 · · · pαn

n . We extend this evaluation to polynomials by linearity. Suppose that
f is a polynomial in k[x1, . . . , xn]. We say that f is vanishing on p if f(p) = 0.
When P is a collection of points, we say that f is vanishing on P if f(p) = 0 for
all p ∈ P .

Example 1.1. Consider P = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, a set of three points in
Q3. Then f = x1x2x3 − x3 is vanishing on P .

When P is a collection of points, the vanishing ideal with respect to P consists
of all polynomials that vanish on all of the points in P .

While performing computations in the polynomial ring, it is suitable to have
an order defined on the set of monomials. A natural ordering is the Lexico-
graphical ordering, denoted by ≺lex. It is defined by xα0

0 · · ·xαn
n ≺lex x

β0
0 · · ·x

βn
n

if α0 = β0, α1 = β1, . . . , αi−1 = βi−1 and αi < βi for some i.

Example 1.2. Consider the monomials 1, x0, x2, x
2
2, x1x2, x0x2, x

2
0, x

3
1x2 in the

ring k[x0, x1, x2]. The following holds:

1 ≺lex x2 ≺lex x2
2 ≺lex x1x2 ≺lex x3

1x2 ≺lex x0 ≺lex x0x2 ≺lex x2
0.

The Lexicographical ordering is an example of a so-called admissible mono-
mial ordering. An admissible monomial ordering ≺ on k[x0, . . . , xn] is a total
order on the monomials which respects multiplication and has the monomial 1
as the minimal element.

When f is a polynomial in k[x0, . . . , xn] and ≺ is an admissible monomial
ordering, we denote by in≺(f) the greatest monomial occurring in f with respect
to ≺. When I is an ideal in k[x0, . . . , xn] and ≺ is an admissible monomial
ordering, the initial ideal of I, denoted by in≺(I), is the set of monomials m such
that m = in≺(f) for some f ∈ I.

A Gröbner basis for an ideal I with respect to an admissible monomial order-
ing ≺ is a finite set of elements g1, . . . , gr in k[x0, . . . , xn] such that (g1, . . . , gr) =
I and (in≺(g1), . . . , in≺(gr)) = in≺(I).
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Example 1.3. Suppose that x2
1 + x2 and x1x2 + x3 are elements in an ideal

I, ordered by the Lexicographical ordering. Then x2
1 and x1x2 are elements in

in(I). Since x1x3 − x2
2 = −x2(x2

1 + x2) + x1(x1x2 + x3), it holds also that x1x3

belongs to in(I).

Example 1.4. If I = (m1, . . . ,ms) and all the mi’s are monomials, then in(I) =
(m1, . . . ,ms) independently of ordering. Hence (m1, . . . ,ms) is a Gröbner basis
for I, independently of ordering.

The computation of a Gröbner basis for an ideal I depends on how I is
defined.

• If a set of generators for I is given, we can compute a Gröbner basis for
I by means of the Buchberger algorithm. The algorithm forms pairs of
certain elements in the ideal and computes the so-called S-polynomial of
these elements. Each S-polynomial is reduced with elements from the ideal.
Due to the Noetherian property of the polynomial ring, the algorithm
terminates in finite time.

• If I is defined to be the set of polynomials which vanish on a finite set
of points, then a Gröbner basis for I can be computed by means of the
Buchberger-Möller algorithm. This algorithm is based on linear algebra
and has polynomial complexity in the number of variables and the number
of points.

Let I be an ideal in k[x1, . . . , xn]. Then we can form the quotient ring
k[x1, . . . , xn]/I. We write elements in this ring as [f ], where f ∈ k[x1, . . . , xn]
and where the brackets indicate that we are working modulo I. An important
property of the initial ideal in≺(I) with respect to ≺ is that

{[e], e is a monomial outside in(I)}

constitute a vector space basis for k[x1, . . . , xn]/I.
An ideal I ⊆ k[x1, . . . , xn] is defined to be zero-dimensional if the quotient

ring k[x1, . . . , xn]/I is of finite dimension as a vector space over k. The variety
of a zero dimensional ideal is finite.

We conclude with the notation used in the graded setting. The degree of a
monomial m = xα1

1 · · ·xαn
n , denoted by |m|, is

∑
i αi. A polynomial f is said to be

homogenous if all the monomials occurring in f have the same degree. When I is
generated by homogenous elements, I becomes graded over the natural numbers.
By convention, when working on graded ideals, we number the variables starting
from zero instead of one. If I ⊆ k[x0, . . . , xn] is graded, then the quotient ring
R = k[x0, . . . , xn]/I can be written as the direct sum R0⊕R1⊕· · · . The Hilbert
function of R is the map N → N, d 7→ dimk(Rd) and the Hilbert series of R is
dimk(R0) + dimk(R1)t+ dimk(R2)t2 + · · · .
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1.1 Paper I

In 1982 Buchberger and Möller [1] gave an algorithm, based on linear algebra,
to compute a Gröbner basis with respect to a vanishing ideal of points.

Inspired by the Buchberger-Möller algorithm, hereby referred to as the BM
algorithm, the so called FGLM algorithm appeared in 1993 [4]. This algorithm
transforms a Gröbner basis for a zero-dimensional ideal with respect to any given
ordering into a Gröbner basis with respect to any other ordering. The same year
another paper related to the subject appeared [9]. Using a higher abstraction
level, it was shown that both the BM algorithm and the FGLM algorithm could
be seen as algorithms to compute a Gröbner basis from an ideal defined by
functionals.

The BM algorithm and the FGLM algorithm both have the same run time
complexity. The number of arithmetic operations was reported in [4] and [9] to
be proportional to nm3, where n is the number of variables and m is the number
of points. The BM/FGLM algorithm also performs integer comparisons. The
integer comparisons were reported to be proportional to n2m2.

The BM algorithm appears now in many applications in pure and applied
mathematics: statistics, coding theory, interpolation, and computational biology.
The FGLM algorithm is the most common tool to solve systems of equations,
the defining ideal of which is zero-dimensional.

The application of the BM algorithm in computational biology is the reverse
engineering of gene regulatory networks, see [7]. In this application the number
of points m is small compared to n — the number of variables. This fact lead
to a search of optimized versions of the BM algorithm for the situation m� n,
for instance, see [5] and [6].

In the first paper we show that the optimized versions of the BM algorithm
actually performs worse than the original method. Indeed, we show that an upper
bound for the arithmetic complexity of the BM/FGLM algorithm is proportional
to min(m,n)m3 + nm2 instead of the previously reported nm3.

The paper concerns also the integer comparisons during the BM/FGLM al-
gorithm. The integer comparisons come from merging sorted lists of monomials.

Example 1.5. The lists (x1x2, x3x4, x
2
5) and (x2x3, x3, x

2
5) are sorted in decreas-

ing order with respect to the Lexicographical ordering. Merging the two lists,
we obtain (x1x2, x2x3, x3x4, x3, x

2
5, x

2
5).

Merging lists of monomials is essentially the same as addition of polynomi-
als. Since addition of polynomials is the most common operation in computer
algebra, it is clear that efficient ways to do it is of importance when it comes to
performance.

We give a new algorithm for merging sorted lists of monomials and applied
to the BM/FGLM algorithm for standard orderings we show that the number of
integer comparisons, where the integers are bounded by n, is at most proportional
to nm2.
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1.2 Paper II

The second paper is much related to the first one. The aim of it is to argue
for that it is vector space bases over the quotient ring k[x1, . . . , xn]/I(P ), rather
than Gröbner bases for I(P ), which should be worked with in order to perform
computations, such as determining normal forms, over vanishing ideals of points.
We show that in the biological applications described in [7], the usage of vector
space bases instead of Gröbner bases makes the runtime of the computations
decrease from exponential to polynomial.

It holds that the vector space k[x1, . . . , xn]/I(P ) is of dimension m = |P |, and
that {[e1], . . . , [em]} is a basis exactly when the matrix (cij), where cij = ei(pj),
has full rank∗.

There are several ways to construct a basis. We give four efficient construc-
tions related to the following three bases.

• The basis is the monomial complement of the initial ideal with respect to
some monomial ordering.

• The basis separates the points, that is, ei(pi) = 1 and ei(pj) = 0 if i 6= j.

• The basis is ”univariate”, that is, ei = f i, where f is a polynomial of degree
one. The polynomial f satisfies f(pi) 6= f(pj) whenever i 6= j.

Example 1.6. Let P = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} in Q3, so that I(P ) ⊂
Q[x1, x2, x3].

• A Gröbner basis for I(P ) with respect to the Lexicographical ordering
with x1 � x2 � x3 is {x1 − 1, x2

2 − x2, x2x3 − x3, x
2
3 − x3}. Thus, the

initial ideal is equal to (x1, x
2
2, x2x3, x

2
3) and the set of monomials outside

the initial ideal is {1, x3, x2}. This means that {[1], [x3], [x2]} is a k-basis
for k[x1, . . . , xn]/I(P ).

• An example of a separator basis with respect to P is {[x1(1 − x2)], [x2 −
x3], [x3]}.

• An example of a ”univariate” basis is {[1], [x1 +x2 +x3], [(x1 +x2 +x3)2]}.

1.3 Paper III

Algorithms to compute the variety of a zero-dimensional ideal by means of eigen-
values have been studied in various papers, for instance, see [2] and [10]. An
interesting aspect of this approach is that it benefits from using both numerical
and symbolic algorithms.

The eigenvalue approach is as follows. If a basis {[e1], . . . , [em]} has been
chosen for the quotient ring k[x1, . . . , xn]/I, then [xi][ej ] can be expressed as a

∗The full rank condition is independent of the representative for each equivalence class.

4



linear combination of the basis elements for each i and each j. Thus, [xi][ej ] =∑
k c

(i,j)
k [ek]. The matrix Mi = (m(i)

jk ), where m(i)
jk = c

(i,j)
k , is called the multipli-

cation matrix of xi with respect to {[e1], . . . , [em]}. There is a nice one-to-one
correspondence of points in the variety of I and common eigenvectors the multi-
plication matrices M1, . . . ,Mn and this correspondence can be used to compute
the variety of I from the multiplication matrices.

The aim of the third paper is to generalize this correspondence to quotient
rings R = k[x0, . . . , xn]/I, where I is of projective dimension zero, i.e. graded
one-dimensional. Such rings are characterized by the Hilbert function — even-
tually it attends a constant value m > 0. The variety of an ideal of projective
dimension zero consists of a finite number of projective points.

When k is infinite or contains enough elements, we show that there is a
linear form l and an integer r such that the map from Rd to Rd+1 induced by
multiplication by l is surjective for all d ≥ r. When k contains too few elements,
it is possible to make a field extension of k which guarantees the existence of
such a linear form.

For d large enough, this implies that if {[e1], . . . , [em]} is a k-basis for Rd,
then {[le1], . . . , [lem]} is a k-basis for Rd+1. This choice of basis is the key to the
connection to the eigenvalue method in the zero-dimensional case.

Example 1.7. Let I = (x2
0, x

2
1). A Q-basis in degree greater than or equal to

two for the ring
R = Q[x0, x1, x2]/(x2

0, x
2
1)

is given by
{[x0x

d−1
2 ], [x0x1x

d−2
2 ], [x1x

d−1
2 ], [xd2]},

so that dimQ(Rd) = 4 for d ≥ 2. We have dimQ([x2]Rd) = dimQ(Rd+1) for d ≥ 2,
hence multiplication with [x2] is surjective for all d ≥ 2.

As a side effect of our study of ideals of projective dimension zero, we obtain
an upper bound of the degree of an element in a reduced Gröbner basis of any
graded ideal.

1.4 Paper IV

Given a set of points in projective space over a finite field k, we can pose the
following question: Which is the least degree of a non-vanishing form (non-zero
on all of the points) with respect to this set of points?

Example 1.8. Consider {(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 :
1), (1 : 1 : 1 : 0), (1 : 1 : 1 : 1)} ⊆ P3(F2), where F2 denotes the field with two
elements. The quadratic form

(x0 + x2 + x3)2 + x1(x0 + x2 + x3) + x2
1
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is non-vanishing with respect to the points. Does there exist a linear non-
vanishing form? The answer is no and this can be shown by examining all
linear forms in F2[x0, x1, x2, x3].

The existence of a linear non-vanishing form is related to the linear form l in
Paper III.

In the fourth paper we show that the least degree of a non-vanishing form
with respect to a point set is equal to d+ 1, where d is the highest degree such
that there is a linear embedding of projective space of degree d into the point
set. While it seems hard to check whether there exists a linear embedding or
not, it is possible to give a fast algorithm which returns a non-vanishing form,
but not necessarily with the lowest possible degree.

1.5 Paper V

In the fifth paper, we give an algorithm to compute the Hilbert function for
graded associative algebras. This is the only part of the thesis where we consider
non-commutative algebras. By a graded non-commutative algebra we mean the
quotient of the free associative algebra in the variables x1, . . . , xn, denoted by
k〈x1, . . . , xn〉, with a two-sided ideal generated by homogeneous elements. The
algorithm we present does in some sense force algebra axioms on a graded mod-
ule, turning the latter into an isomorphic copy of a part of k〈x1, . . . , xn〉/I. Using
the presentation

k〈X1, . . . , Xn〉/({XiXj −XjXi}i,j) ∼= k[x1, . . . , xn],

we can use the algorithm to compute the Hilbert series of graded commutative
algebras as well. By using Gotzmann’s persistence theorem, we show that in the
commutative case, the algorithm computes the Hilbert series in finite time.

The interesting aspect with this approach is that it does not rely on Gröbner
bases theory or monomial orders, and that k-bases can be computed which are
not residues of monomials outside the initial ideal.

The ideas of the algorithm came from a paper by Löfwall and Roos [8], where
an algorithm to compute the Hilbert series of a graded Lie Algebras was given.

Without going into details, we will illustrate the commutative version of the
algorithm with an example.

Example 1.9. Let I = (x2
0, x0x1 − x2

1) ⊆ Q[x0, x1] and let R = Q[x0, x1]/I. We
choose [1] as a vector space basis for R0 and {[x0], [x1]} as a vector space basis
for R1. We let V2 = spanQ{x0⊗ [x0], x1⊗ [x0], x0⊗ [x1], x1⊗ [x1]}. In the graded
Q〈X0, X1〉-module R0 ⊕R1 ⊕ V2 we perform the following computations:

X2
0 .1 = x0 ⊗ x0, (X0X1 −X2

1 ).1 = x0 ⊗ [x1]− x1 ⊗ [x1] (1)

and
(X0X1 −X1X0).1 = x0 ⊗ [x1]− x1 ⊗ [x0]. (2)

6



Let C2 be the Q-space spanned by these three expressions. Then dimQ V2/C2 = 1
and we choose [x1⊗ [x0] +x1⊗ [x1]] as a Q-basis of V2/R2. Let e = x1x0 +x2

1. It
holds that {[x1x0 +x2

1]} is a Q-basis of R2. We have [x0][x0] = 0, [x0][x1] = [e]/2,
and [x1][x1] = [e]/2.

The equations in (1) force x2
0 = 0 and x0x1−x2

1 = 0 to hold, while (2) forces
commutativity.

In degree three, let V3 = spanQ{x0 ⊗ [e], x1 ⊗ [e]} and let

C3 = spanQ{X0X1 −X1X0).[x0], (X0X1 −X1X0).[x1]}

= spanQ{x0 ⊗ [e]/2, x0 ⊗ [e]/2− x1 ⊗ [e]/2}.

Thus C3 = V3, which implies that dimQ(R3) = 0, so the Hilbert series of R
is equal to 1 + 2t+ t2.

The algorithm has been implemented in C, and in the non-commutative case,
part of some conjectures by D. Anick and A. Kirillov has been verified.

1.6 Paper VI

The last paper can be seen as a comment on Paper V. It turns out that the
axioms we are forcing in the commutative case have an interesting connection
to Gröbner bases theory. We show that, during a Gröbner basis computation,
each S-polynomial can be replaced by a commutator expression in a graded
k〈X1, . . . , Xn〉-module. We also show that the commutator expressions can be
used to perform reduction of elements with respect to a Gröbner basis. This
gives a homogeneous way to perform the Buchberger algorithm. The reduction
of elements in terms of the commutator expressions has much in common with
the F4-algorithm [3], which is known to be the fastest existing Gröbner basis
algorithm. So, in some sense, the method in Paper V can be seen as a general-
ization of the Buchberger algorithm, since we can perform it without a monomial
ordering. But if we do use a monomial ordering, we are essentially performing
the Buchberger algorithm.

The connection to the Buchberger algorithm seems possible to formulate also
for non-commutative graded algebras. Indeed, the outline for the graded non-
commutative case is already done. Also, the non-graded cases seem possible to
attack. Moreover, we have reason to believe that also the Lie Algebra algorithm
[8], can be connected to Gröbner basis theory for Lie Algebras. All of this will
be joint work with Clas Löfwall.

Another interesting aspect of our approach is that it might give some new
insight on the criteria which tells when an S-polynomial does not need to be
computed during the Buchberger algorithm. For instance, part of Buchberger’s
first criteria is implicit in our method.

We give an example of this method below, where, as in Example 1.9, details
are omitted.
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Example 1.10. We consider the same ideal as in Example 1.9 with respect to
the Lexicographical ordering. We now work in the polynomial ring, rather than
in the quotient ring, so we omit brackets. It holds that 1, x0, x1 /∈ in(I). Consider
a graded Q〈X0, X1〉-module

spanQ{1} ⊕ spanQ{x0, x1} ⊕ V ′2 ,

where
V ′2 = spanQ{x0 ⊗ x0, x0 ⊗ x1, x1 ⊗ x1}.

In this module, we have X2
0 .1 = x0⊗x0 and (X0X1−X2

1 ).1 = x0⊗x1−x1⊗x1.
Let

G2 = {X2
0 .1, (X0X1 −X2

1 ).1}

Notice that, contrary to Example 1.9, x1⊗ x0 /∈ V ′2 and (X0X1−X1X0).1 /∈ G2.
It holds that mult(G2) = {x2

0, x0x1−x2
1} is the set of Gröbner basis elements

of I of degree two. Hence, the only monomial outside in(I) of degree two is x2
1.

In degree three, let
V ′3 = {x0 ⊗ x2

1, x1 ⊗ x2
1}

and let
G3 = {(X0X1 −X1X0).x0} ⊆ V ′3 .

The commutator (X0X1−X1X0).x0 corresponds to the S-polynomial S(x2
0, x0x1−

x2
1) = x1(x2

0)− x0(x0x1 − x2
1) = x0x

2
1.

We have (X0X1 −X1X0).x0 = x0 ⊗ x2
1 and since x0x

2
1 ∈ in(G2), we reduce

x0⊗x2
1 by the reductor (X0X1−X1X0).x1 = x0⊗x2

1−x1⊗x2
1 and get x1⊗x2

1. The
element mult(x1 ⊗ x2

1) = x3
1 is the only Gröbner basis element of degree three.

In the Gröbner basis sense, reducing (X0X1 −X1X0).x0 by (X0X1 −X1X0).x1

corresponds to reducing S(x2
0, x0x1 − x2

1) by x0x1 − x2
1 to x3

1.
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