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Abstract

Emission from X-ray binaries is variable on a wide range of timescales. On long

timescales, changes in mass accretion rate drive changes in spectral state. There is

also rapid variability, the power spectrum of which consists of a low frequency quasi-

periodic oscillation (QPO) superimposed on a broad band noise continuum. Here

I investigate a model intended to quantitatively explain the observed spectral and

variability properties. I consider a truncated disc geometry whereby the inner regions

of an optically thick, geometrically thin accretion disc evaporate to form an optically

thin, large scale height accretion flow. The QPO is driven by Lense-Thirring precession

of the entire hot flow and the broad band noise is due to fluctuations in mass accretion

rate which propagate towards the central object. Mass conservation ties these two

processes together, enabling me to define a model for the QPO and broad band noise

which uses only one set of parameters. I am thus able fit the model to data. The

accretion rate fluctuations drive fluctuations in the precession frequency, giving rise to

a quasi-periodic oscillation rather than a pure periodicity. The model thus predicts

recent observations which show the QPO frequency to correlate with flux on short

timescales. I then investigate a more unique model prediction. As the flow precesses,

the patch of the disc preferentially illuminated by the flow rotates such that a non face

on observer sees a quasi-periodic shift between blue and red shift in the iron Kα line.

An observation of such an effect would constitute excellent evidence for the model.
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Chapter 1
Introduction

1.1 X-ray binaries

In this thesis, I develop a physical model designed to self-consistently explain the

spectral and timing properties of the X-ray emission driven by mass accretion onto

a black hole or neutron star. Since black holes are the simpler of the two classes of

object, they are the focus of most of my efforts. However, I also make attempts to use

the same model in order to explain the common observational properties of the two

object classes. In this section, I introduce these objects and the systems in which they

reside.

1.1.1 Compact objects

When a star runs out of fuel to power fusion reactions, its ultimate fate is determined by

its mass. For the most massive stars, a supernova explosion leaves behind the remains

of its core in the form of a compact object. If degenerate neutron pressure can arrest

the collapse of the core, a neutron star is formed. If the progenitor was sufficiently

massive for gravitational collapse to overcome even this force, the core collapses into

a singularity and a black hole is formed. A black hole has only two properties: mass

and spin (in theory, a black hole could also have a charge but this is unlikely for an

astrophysical black hole). The black hole horizon is defined as the point where the

escape velocity is the speed of light. For a Schwarzschild black hole (non spinning),

this is given by RS = 2GM/c2 = 2Rg. Here, Rg is a gravitational radius. Because

this is a characteristic size scale, it is often convenient to write distances in units of

1



1. Introduction 2

Rg. Thus, hereafter I will use the convention R = rRg. Generally, the black hole is

spinning and its angular momentum JBH can be expressed with the dimensionless spin

parameter a∗ = JBH/(McRg). In this case, space-time is well described by the Kerr

metric and it can be shown (e.g. Kato, Fukue & Mineshige 1998) that the horizon

generalises to rH = 1 +
√

1 − a2
∗, which reduces to rH = 2 in the Schwarzschild limit.

It is also clear from this expression that a2
∗ ≤ 1.

A key prediction of general relativity is that, in a strong gravitational field, there

is a region in which there are no stable orbits. Again using the Kerr metric, it can

be shown that a test mass orbiting interior to the radius of the last stable orbit, rlso,

will be sure to eventually fall beyond the horizon if gravity is the only force present

(see e.g. Kato, Fukue & Mineshige 1998). Figure 1.1 shows the dependence of the last

stable orbit on spin. Positive values of a∗ are for prograde motion and negative values

are for retrograde.

The fundamental difference between black holes and neutron stars is that a neutron

star has a solid surface and black holes do not. However, the gravitational field expe-

rienced by the accretion flow is similar for both objects because a neutron star outer

radius coincides approximately with its own last stable orbit. The exact value of neu-

tron star mass and outer radius depends on its equation of state and is still an active

area of research but for canonical assumptions, they are thought to be M ≈ 1.4M⊙

and R ≈ 10 km (see e.g. Haensel et al 2007).

1.1.2 Mass transfer in X-ray binaries

A binary system consists of two stars orbiting around a common centre of mass. In

an X-ray binary (XRB), one of the stars is a compact object and mass is transferred

from the companion star. The gravitational energy lost by this accreting gas can be

converted very efficiently into emission which peaks in the X-rays, giving rise to the

term X-ray binaries. In a high-mass X-ray binary (HMXRB), the companion star has
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Figure 1.1: Last stable orbit as a function of the dimensionless spin parameter, a∗.

a mass typically larger than 10 M⊙ meaning that it is very luminous, of spectral type

O or B and is younger than ∼ 107 years. In a low-mass X-ray binary (LMXRB), the

companion star is typically smaller than ∼ 1 M⊙ and so is generally older. Figure 1.2

illustrates the Roche potential created by the gravitational pull of the two stars. If the

companion star fills its Roche-Lobe, either by expansion through stellar evolution or

by contraction of the binary orbit, mass can pass through the L1 point and fall onto

the compact object (see e.g. Frank, King & Raine 1992). In this thesis, I concentrate

on systems in which accretion is dominated by this process of Roche-Lobe overflow (in

general, accretion can also be powered by a large scale wind). This encapsulates all

LMXRBs and some HMXRBs.

Gas which passes through L1 cannot fall straight onto the compact object because

it has angular momentum. Instead, particles orbit the compact object to form an

accretion disc. Viscosity erodes the angular momentum of these orbits, meaning that
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Figure 1.2: The Roche potential in a binary system. Here, the more massive of the

two stars is in the foreground.

material spirals slowly inward. In a simple system, the disc will be truncated by gravity

at the last stable orbit where material, rather than spiralling slowly inward, enters free

fall.

The rate of gravitational energy loss in an accretion disc is proportional to the mass

accretion rate, Ṁ . If the disc is in thermal equilibrium, the temperature at any point

of the disc is related to the luminosity as L ∝ T 4 and therefore T 4 ∝ Ṁ . The mass

accretion rate is not constant over long timescales if the disc is subject to the hydrogen

ionisation instability. For low mass accretion rates, the disc is cool so the material is

mostly neutral. Because neutral material has a much lower opacity than free electrons

(e.g. Cannizzo & Reiff 1992), radiation can escape and cool the disc. However, a small

increase in temperature may lead to photons in the high energy Wien tail of the thermal

distribution becoming energetic enough to ionise hydrogen in some region of the disc.

The resulting photo-ionised absorption edge drives a sharp rise in opacity. This heats

the disc, meaning more photons can ionise hydrogen and further increase the opacity.
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This runaway heating increases the local mass accretion rate, making it higher than

the input mass accretion rate (coming through L1). This reduces the density in the

region thus reducing the pressure. The region cools and hydrogen recombines leading to

runaway cooling (Frank, King & Raine 1992; Kato, Fukue & Mineshige 1998; Cannizzo

1993). This is a local instability but an increase in mass accretion rate will flow through

to the next disc annulus, heating that region and sparking off runaway heating there.

Heating and cooling waves can therefore run through the entire disc leading to a global

instability. Cooling is, however, slowed because the luminous inner disc irradiates

the outer disc, keeping hydrogen from recombining even at large radii (van Paradijs

& McClintock 1994; van Paradijs 1996). Eventually, since the mass accretion rate

is higher than that provided by the companion, the inner regions become starved of

material which reduces the luminosity enough to allow hydrogen to recombine in the

outer regions (King & Ritter 1998; Lasota 2001).

Although all XRBs show long time scale (i.e. days, weeks, years) variability, not all

are subject to the hydrogen ionisation instability. Thus sources can be placed in one

of two categories: persistent and transient. Persistent sources have been ‘on’ since the

birth of X-ray astronomy whereas transient sources are usually ‘off’ but occasionally

rise to outburst. Figures 1.3, 1.4 and 1.5 (reproduced from Done, Gierliński & Kubota

2007) show 1.5-12 keV light curves as seen by the all sky monitor (ASM) on board the

Rossi X-ray timing explorer (RXTE ). The luminosity is expressed as a fraction of the

Eddington luminosity which is the limit whereby outward radiation pressure balances

inward gravitational force giving

LEdd =
4πGMmpc

σT
, (1.1)

where mp is a proton mass and σT is the Thompson cross-section. All the sources

in Figure 1.3 are black hole (BH) HMXRBs with mass transfer dominated by Roche-

Lobe overflow, Figure 1.4 is for BH LMXRBs and Figure 1.5 is for neutron star (NS)

LMXRBs. We see that all of the BH HMXRBs are persistent sources and all of the
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Figure 1.3: Long term light curves for a selection of BH HMXRBs as seen by the RXTE

ASM (with mission days on the x-axis).

BH LMXRBs are transient sources. Thus the outer disc in BH HMXRBs is always

hot enough for hydrogen to be ionised. This is partly because of a high input mass

accretion rate and also due to irradiation from the companion star (van Paradijs 1996;

Menou, Narayan & Lasota 1999). The outer disc for BH LMXRBs, in contrast, is

cooler thus the hydrogen ionisation instability causes transient behaviour. Figure 1.5

shows that many (in fact most) NS LMXRBs are persistent and some are transient.

This is because neutron stars are less massive than black holes meaning that the binary

separation is less so the outer edge of the disc has a higher temperature (King, Kolb &

Burderi 1996; King et al 1997; Dubus et al 1999; Chakrabarty & Morgan 1998; Ergma

& Antipova 1999; Gladstone, Done & Gierliński 2007; Done, Gierliński & Kubota

2007).
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Figure 1.4: Long term light curves for a selection of BH LMXRBs as seen by the RXTE

ASM (with mission days on the x-axis).
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Figure 1.5: Long term light curves for a selection of NS LMXRBs as seen by the RXTE

ASM (with mission days on the x-axis).
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1.2 Radiative processes in X-ray binaries

Wheather transient or persistent, the observed spectrum of an XRB is dramatically

different for different X-ray luminosities (and therefore mass accretion rate). Figure 1.6

shows the spectrum of the BH LMXRB GRO J1655-40 for 4 different mass accretion

rates during its 2005 outburst (plotted in units of energy × flux in order to show where

the flux peaks on a logarithmic scale 1). The most striking difference is between the

red line and the blue line. The red line is dominated by a thermal component whereas

the blue line is dominated between ∼3-100 keV by a power law. Because of their

comparative luminosities and the band pass in which they peak, these two spectral

‘states’ are referred to as the high/soft state (red line) and the low/hard state (blue

line).

We can identify the high/soft state (HSS) spectrum with the sort of thermalised

accretion disc discussed in the previous section. An accretion disc also seems to be

present at low energies in the low/hard state (LHS) but clearly a few more physical

processes are at work. If some corona containing energetic electrons is present near

the disc, photons from the disc will be Compton up-scattered resulting in a power

law spectrum. Some fraction of photons emitted from the corona will then reflect off

the disc to give a reflection spectrum with the most prominent feature being the iron

Kα line visible at ∼6.4 keV. In the transition from LHS to HSS, the source passes

through intermediate states depicted by the green and black lines. These intermedi-

ate states clearly contain the same spectral components as the HSS and LHS. During

the transition from LHS to HSS, the power law becomes softer as the disc compo-

nent becomes stronger. The observed spectra also display absorption features resulting

from interaction between the intrinsic photons and the extrinsic interstellar medium.

The spectral states of black hole binaries (BHBs) can therefore generally be explained

with four radiative processes: quasi-thermal emission, Comptonisation, absorption and

1On a logarithmic scale, dlogE is the constant so EF (E)dlogE = EF (E)dE/E = F (E)dE
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Figure 1.6: A selection of spectral states from the 2005 outburst of GRO J1655-40, as

seen by RXTE. The blue line represents the low/hard state, the red line the high/soft

state and the black and green lines represent the transition between the two (interme-

diate states).

reflection. The spectral states of neutron star binaries (NSBs) are complicated some-

what by the solid surface of the star (see chapter 3), but can also be modeled with

the same contributing components. I will summarise these processes in the following

sub-sections.
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1.2.1 Quasi-thermal disc emission

The standard Shakura & Sunyaev (1973) disc solution consists of gas particles in nearly

Keplerian orbits which are influenced only by the gravity of the central object (i.e. the

disc has negligible self gravity). Angular momentum is slowly transported outwards by

viscosity giving the gas a small inward velocity, vr << vφ. The disc is geometrically thin

(with aspect ratio h/r ∼ 0.01) and optically thick meaning that liberated gravitational

energy is radiated locally with a black body spectrum. If half of the liberated potential

energy in an annulus of width dr is radiated (virial), then the luminosity from that

annulus is

dL =
GMṀ

2R2
dR. (1.2)

Each annulus radiates like a black body, so we can write dL = AσT 4 = 2×2πR dR σT 4

and re-arrange to obtain

T 4 =
GMṀ

8πR3σ
. (1.3)

Here σ is the Stefan-Boltzmann constant. The total observed spectrum can be es-

timated simply by summing the black body contribution from each annulus, as is

illustrated in Figure 1.7. Because the peak temperature of the contribution increases

for smaller radii, this is called a ‘multi-coloured’ black body spectrum. Conserving

angular momentum as well as energy gives

T 4 =
3GMṀ

8πR3σ
(1 −

√

Rin/R). (1.4)

This is the stress free inner boundary condition which arises because there is no viscosity

interior toRin. There are also some relativistic effects that must be considered (Novikov

& Thorne 1973) but these are fairly small corrections. It is then possible to fit this

predicted spectrum to HSS data in order to derive the position of the disc inner radius.

If this is at the last stable orbit, the relation plotted in Figure 1.1 can therefore be used

to measure the black hole spin (e.g. Kubota, Makishima & Ebisawa 2001; Gierliński &

Done 2004; Middleton et al 2006; McClintock et al 2006; Kolehmainen & Done 2010).
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Figure 1.7: Schematic of a multi-coloured black body disc. Each annulus emits a black

body with the peak temperature T ∝ r−3/4.

The nature of viscosity in the disc does not influence the emitted spectrum as

long as the emission thermalises. Shakura & Sunyaev introduced the α prescription,

whereby the radial viscous force is proportional to the pressure. This is equivalent to

setting the kinematic viscosity to ν = αcsH , where cs is the sound speed, H is the

disc semi-thickness and α is the dimensionless viscosity parameter. It is likely that the

physical origin of this viscosity lies in the magneto rotational instability (MRI; Balbus

& Hawley 1998). If different disc annuli are connected via magnetic fields, differential

rotation will tangle up the field lines giving rise to the shearing force required for

outward transport of angular momentum.

1.2.2 Comptonisation

Compton scattering is simply the transfer of energy between a photon and electron

via a collision. Figure 1.8 illustrates a geometry whereby a photon with an energy ǫin
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Figure 1.8: Schematic illustrating a collision between an electron with energy E and a

photon with energy ǫin.

collides with an electron with velocity β and energy E. The photon recoils from the

collision and its new energy is ǫout. Note the electron will also recoil but this is not

pictured. The new photon energy is given by

ǫout =
ǫin(1 − β cos θei)

1 − β cos θeo + ǫin/γ(1 − cos θio)
. (1.5)

Here, γ = (1 − β2)−1/2 is the Lorentz factor, θei is the angle between incident photon

and (incident) electron, θeo is the angle between the output photon and the (incident)

electron and θio is the angle between incident and output photons. Note that β is

velocity in units of c and ǫ is represented as a fraction of the rest frame electron energy,

mec
2. The energy of the electron is E = (γ2 − 1)1/2mec

2.

If the electron is at rest (i.e. β = 0) and ǫin << 1 (the Thompson limit), equation
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1.5 can be simplified using a binomial expansion to

ǫout ≈ ǫin[1 − ǫin(1 − cos θio)]. (1.6)

If we imagine many such collisions in an isotropic distribution of photons and electrons,

the average output energy is ǫout ≈ ǫin[1 − ǫin] (e.g. Rybicki & Lightman 1979). The

average change in energy is therefore ∆ǫ ≈ −ǫ2in. The electron which was originally at

rest has recoiled after the collision meaning that the photon has passed energy to the

electron.

In a thermal distribution of electrons, the typical random velocity is v2 ∼ 3kTe/me.

The electron temperature can be re-written in dimensionless units as Θ = kTe/mec
2,

meaning that the average electron velocity in the distribution is β2 = 3Θ. If the electron

and photon distributions are again isotropic, in the limit of Θ << 1 and ǫin << 1, it

can be shown using equation 1.5 (e.g. Rybicki & Lightman 1979)

ǫout ≈ (1 + 4Θ + 16Θ2...)ǫin ≈ (1 + 4Θ)ǫin. (1.7)

The average change in photon energy when a distribution of photons are scattered by

a thermal distribution of electrons is therefore ∆ǫ = 4Θǫin (for ǫout . 3Θ). Because

the electrons pass energy to the photons, this process is called Compton up-scattering.

Because energy can only be exchanged in a collision, the total energy transferred

depends on the likelihood of a collision. In the ǫ << 1 Thompson limit, electrons

have a cross section σT (the Thompson cross-section) for interaction with photons. A

photon travelling a path length R sweeps out a volume RσT . The optical depth is

defined as the number of electrons in this volume and so is given by

τ = nRσT , (1.8)

where n is the electron (volume) density. The scattering probability is 1 − e−τ which

reduces to ∼ τ for τ << 1.
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Therefore, if a distribution of seed photons are incident on some thermal cloud of

electrons, a fraction ∼ τ of these photons will be scattered up to an energy of (1+4Θ)ǫin.

These output photons can also be scattered and the total number of scattering orders

possible, N , is limited by the electron temperature such that (1+4Θ)Nǫin ∼ 3Θ. Figure

1.9 illustrates that, because each scattering order is subject to the same fractional

energy shift and the same fractional shift in flux, the output flux for ǫin < ǫ < 3Θ can

be represented by a power law F (ǫ) ∝ ǫ−α where

α ≈ log(τ)

log(1 + 4Θ)
. (1.9)

The differential photon spectrum 2 is thus N(ǫ) ∝ ǫ−Γ where Γ = α + 1 is the photon

index. Both functions will display low and high energy turn-offs at ∼ ǫin and ∼ 3Θ

respectively.

Perhaps the most intuitive way to think of Compton scattering is in terms of the

energetics. The electrons are being heated by gravitational collapse and so have a

luminosity Lh. They are also being cooled by interactions with seed photons which

have a luminosity Ls. The heating and cooling reach an equilibrium in order to main-

tain a temperature Θ for an optical depth τ . Pietrini & Krolik (1995) calculated the

parameter dependencies numerically and recovered the simple empirical scaling relation

α ≈ 1.6

(

Ls

Lh

)1/4

∝ 1

τΘ
. (1.10)

This relation shows very clearly that, if the luminosity of seed photons illuminating the

electron distribution (Ls) increases, this will cool the electrons and soften the output

power law spectrum.

It is therefore possible to explain much of the observed spectral evolution of XRBs

with a simple disc plus corona model in which the corona contains a population of

thermal electrons which interact with seed photons provided by the disc. As the disc

2For a detector with a perfectly flat energy response, this is proportional to the count rate.
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Figure 1.9: Schematic illustrating thermal Comptonisation. A population of seed pho-

tons (red) is incident on a population of thermally distributed electrons. The output

spectrum can be approximated by a power law because each scattering order is subject

to the same fractional energy shift and the same fractional shift in flux
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Figure 1.10: Left: A flat (Γ = 2) power law spectrum as observed through a cloud of

hydrogen with column density log10NH = 19−23. Right: The same intrinsic spectrum

as seen through a cloud with log10NH = 22 with progressively heavier elements being

introduced to the column (with solar abundance) for each line.

luminosity increases, the luminosity of disc photons incident on the corona will nat-

urally increase thus softening the resultant power law emission. This also cools the

coronal electrons, leading to the high energy turn-off moving to lower energies, as

observed (e.g. Ibragimov et al 2005).

1.2.3 Absorption

Intrinsic emission is modified by photo-electric absorption by material along the line

of sight. This could be the interstellar medium of our galaxy (or the host galaxy for

extra-galactic sources) or some kind of wind either from the accretion flow itself or

the companion star. The amount of absorption is governed by the optical depth of

the absorbing medium such that a fraction e−τ of the intrinsic emission is transmitted.

Whereas the interaction cross-section for free electrons (in the Thompson limit) is

σ(E) = σT , the cross-section for bound atoms is much more complex. A hydrogen atom

has one bound electron with binding energy 13.6eV. Since the atom can only absorb
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photons with enough energy to un-bind the electron, the cross-section of hydrogen is

zero below 13.6eV with a sharp edge at Eedge = 13.6eV and a slow decline going as

≈ (E/Eedge)
−3 above this. We can combine nR = NH (where n is now the hydrogen

atom density) to make the column density. Figure 1.10 (left; reproduced from Done

2010) shows a flat (Γ = 2) power law spectrum as observed through a cloud of hydrogen

with column density NH = 1019 − 1023cm−2 (black-cyan). A typical column through

our galaxy has NH > 1020cm−2.

Heavier elements are also present, which have progressively larger binding energies.

There are a number of energy shells, but the highest energy edge always results from

an electron escaping from the innermost (K) shell. The total absorption cross-section

is therefore a sum, weighted by relative abundances, of the cross-section for each ele-

ment. Heavier elements have higher Eedge but lower abundance and therefore a smaller

influence on the total absorption cross-section. Figure 1.10 (right; also reproduced

from Done 2010) shows the transmitted emission from a flat power law through a

log10NH = 22 column. Different lines show the effect of adding progressively heavier

elements, assuming solar abundances. The last astrophysically abundant element is

iron, thus the magenta line shows the spectrum as observed through a neutral column

with solar abundances.

Photo-electric absorption leaves an ion and a free electron. The remaining elec-

trons in the ion are more tightly bound and thus have a higher binding energy. Figure

1.10 (right) effectively assumes that the free electrons always combine with the photo-

ionised ions before the next absorption event. However, if the X-ray irradiation is

very intense, there may on average be many absorption events by the time the ions re-

combine meaning that the cross-section is actually dominated by the collisions between

photons and ions rather than collisions between photons and neutral atoms. The cross-

section therefore depends on the balance between recombination and photo-ionisation.

For higher ionisation states, more elements are, on average, completely stripped of
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Figure 1.11: A flat power law spectrum as observed through a cloud with log10NH = 23

with solar abundances and ionisation state ranging from log10 ξ = 0 − 1000.

electrons meaning they do not contribute to the cross-section at all. Thus, the higher

the ionisation state, the lower the total absorption cross-section. The ionisation state

can be parametrised by the ionisation parameter ξ = L/nc2, where L is the source

luminosity (see e.g. Done 2010; Fabian et al 2000). Figure 1.11 (reproduced from

Done 2010) shows the transmitted flux for a column density of NH = 1023cm−2, with

the number by each line representing log10 ξ. We see that increasing ionisation does

indeed reduce the overall absorption cross-section. Also, we can see for intermediate

values of log10 ξ, there are more edges than for neutral material. This is because, if

there is not almost complete ionisation or neutrality, there are at least two relatively

abundant ionisation states for each element.
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Figure 1.12: Left: Optical depth for neutral material with solar abundance and NH =

1.5 × 1024cm−2 (black) together with the optical depth for electron scattering. Right:

The corresponding reflection spectrum from such material. Both plots are reproduced

from Done (2010).

1.2.4 Reflection

Some fraction of the flux emitted from the Comptonising corona will be incident on

the disc and thus have some probability of scattering off electrons therein and be-

ing reflected into the line of sight. The reflection probability is set by the relative

importance of scattering and photo-electric absorption. Figure 1.12 (left) shows the

photo-electric absorption optical depth for neutral material (with the exception of hy-

drogen and helium which are fully ionised) with NH = 1.5 × 1024cm−2 (black) along

side the full (Klein-Nishima) electron scattering optical depth (grey) which drops-off

from the Thompson limit for E ∼ 511keV due to inelastic scattering. Thus we can

see that photo-electric absorption will be important for E . 10keV because, the more

photons are absorbed at a given energy, the fewer are available to scatter into our line

of sight. Above ∼ 10keV, electron scattering dominates. There will also be fluorescence

lines resulting from an electron dropping to fill a lower shell thus emitting a photon
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with energy equal to the difference in shell energies. The most common transition of

this kind is the Kα line which results from an electron falling from the L (n = 2) shell

down to the K (n = 1) shell.

Figure 1.12 (right) shows the reflection spectrum for a flat power law illuminating

continuum, assuming all elements except for hydrogen and helium are bound (usually

referred to as neutral reflection despite the assumed ionisation of hydrogen and helium).

At low energies, we see that the reflection fraction increases with energy due to the

reducing absorption cross-section. We also see many fluorescence lines with the most

prominent being the iron Kα line. This is because the iron lines occur at the energy

least suppressed by absorption, plus lighter elements are more likely to de-excite via

Auger ionisation where an outer electron is lost instead of a photon being emitted. At

high energies, the spectrum is dominated by inelastic electron scattering. High energy

photons do scatter, but they lose a significant fraction of their incident energy from

down-scattering. This bump at 20-50keV is often termed the reflection hump (George

& Fabian 1991; Matt, Perola & Piro 1991).

Since the low energy reflection spectrum depends on absorption, reflection is sen-

sitive to the ionisation state of the reflecting material. As Figure 1.11 shows, the

absorption cross-section reduces with increased ionisation. This means that the total

reflected flux increases with the ionisation parameter ξ. Figure 1.13 shows a reflection

model which considers ionisation state and also calculates self-consistent fluorescence

lines, for four different values of ξ. As expected, the . 10keV spectrum increases in

flux with ξ but the reflection hump, which is dominated by free electron scattering, is

left largely unaffected by the change in absorption. Also the edges and emission lines

are broader for higher ξ as free electron scattering becomes increasingly important with

increasing ionisation.

Finally, we must consider that the disc is rapidly spinning. A non face-on observer

will therefore see part of the disc moving rapidly towards them and the other side
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Figure 1.13: Reflection spectrum from a constant density slab including self-consistent

line and and recombination continuum emission. Different lines represent different

ionisation states with log10 ξ ranging from 0 − 1000.
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Figure 1.14: Observed line profile resulting from assuming the rest frame reflection

spectrum to be a δ−function iron Kα fluorescence line. Since the disc is spinning

rapidly, a number of processes serve to broaden and skew the line meaning that the

observer sees a broad line even if the rest frame line is very narrow.
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rapidly away. This gives rise to a number of effects which are illustrated in Figure

1.14 (Fabian et al 2000) under the assumption that the rest frame reflection spectrum

is simply a δ−function iron fluorescence line. Emission from the approaching and

receding sides is respectively blue and red shifted by the Doppler effect, giving rise to

the ‘two horn’ profile pictured in the top plot. Doppler boosting of the blue wing plus

length contraction in the line of sight lead to the skewed profile shown in the second

plot down. Gravitational redshift also serves to move everything to a slightly lower

energy. Since the final line profile includes all of these effects, it is relatively broad

even if the line is very narrow in the rest frame. These effects provide a potentially

very powerful diagnostic for the accretion flow because a smaller inner disc radius gives

rise to more rapid rotation, thus greater smearing and skewing (e.g. Fabian et al 1989;

2000; Reis et al 2009; Miller et al 2006).

1.3 The truncated disc model

It is clear that a two component spectral model, in which a disc interacts with some

Comptonising region, can explain much of the spectral behaviour of XRBs. It is,

however, unclear what exactly this Comptonising region is. It could be a coronal layer

covering the disc above and below the mid-plane (sandwich model: Haardt & Maraschi

1991; 1993). However, in this geometry the luminosity of disc photons intercepted

by the coronal layer will be too large for the source to produce the hard power law

emission observed in the LHS (Dove et al 1997; Gierliński et al 1997; Poutanen, Krolik

& Ryde 1997); particularly when reprocessing of coronal emission in the disc is taken

into account (Malzac, Dumont, & Mouchet 2005; Stern et al 1995). If, instead, the layer

is only partially covering, it will be sufficiently starved of disc photons (patchy corona:

Galeev, Rosner & Vaiana 1979; Haardt, Maraschi & Ghisellini 1994). Alternatively,

the corona could be positioned above the black hole, in the form of a wind or the base

of a jet (lamp post model: Markoff, Nowak & Wilms 2005; Miller et al 2006). However,
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the corona in this geometry would also be prevented from emitting a hard spectrum

due to the large incident luminosity of disc (plus reprocessed) photons. This can be

remedied if the coronal region is assumed to be moving away from the disc (outflowing

corona: Beloborodov 1999; Malzac, Beloborodov & Poutanen 2001). The picture I

consider throughout this thesis is the truncated disc model (e.g. Esin, McClintock &

Narayan; Done, Gierliński & Kubota 2007) whereby the thin disc truncates at some

radius ro > rlso and is replaced interior to this by some hot, optically thin accretion

flow which acts as the Comptonising region.

The truncated disc geometry is illustrated in Figure 1.15. As the truncation radius

moves in, the source transitions from the LHS, through the intermediate state, to the

HSS. As this happens, the disc luminosity and temperature increase (as observed) and

the luminosity of seed photons incident on the flow increases, thus cooling the electrons

and softening the power law emission. The spectra can be fit if the truncation radius is

assumed to move from ro ∼ 60 in the LHS to ro ≈ rlso in the HSS (e.g. Di Salvo et al

2001). The evolution of the reflection spectrum can also be interpreted in this picture.

As ro moves in, the luminosity of flow photons incident on the disc increases thus

strengthening the appearance of reflection features in the spectrum and increasing the

disc ionisation, as observed (e.g. Gierliński et al 1999). In addition to this, as ro moves

in, the amount of smearing and skewing of the iron line caused by increasingly rapid

rotation of the inner disc should increase. There have been studies showing the data

to be consistent with this picture (Gilfanov, Churazov & Revnivtsev 1999; Zdziarski,

Lubinski & Smith 1999; Ibragimov et al 2005; Gilfanov 2010; Życki, Done & Smith

1999; Gierliński et al 1999) but there are also contradictory studies (Miller et al 2006;

Miller et al 2009; Reis et al 2008; 2011) which have themselves been challenged on the

grounds of both instrumental effects (Done & Diaz-Trigo 2010; Kolehmainen & Done

2010) and uncertainty over the detailed shape of the underlying continuum spectrum

(Kolehmainen, Done & Diaz-Trigo 2011; 2012). Since there is thus no unambiguous
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Figure 1.15: Schematic illustrating the truncated disc interpretation of the spectral

state transitions.
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evidence as yet to rule out the truncated disc model, and all alternative geometries

(e.g. Markoff, Nowak & Wilms 2005; Miller, Homan & Miniutti 2006) run into other

difficulties (Done, Gierliński & Kubota 2007), I use it as my framework in which to

interpret the short timescale variability which forms the main subject of this thesis.

In this section, I will first discuss some of the physics associated with optically

thin accretion flows and disc truncation before introducing short timescale variability.

Analysis and modelling of this rapid variability holds the key to breaking the spectral

degeneracy and resolving the contention in the literature over different accretion ge-

ometries because it provides us with vastly more information than simply considering

the time averaged spectrum. The ultimate goal of this body of work is to explain the

observed variability properties of XRBs in the context of the truncated disc model. In

this section, I review the characteristic timescales we may expect to be associated with

the accretion flow as a first step towards this goal.

1.3.1 Optically thin accretion flows

As discussed in section 1.2.1, the thin disc solution of Shakura & Sunyaev is based on

the assumption that the disc is very optically thick. When the mass accretion rate is

very low in quiescence, the density will be very low and this assumption breaks down.

The disc no longer radiates like a black body and thus heats up (since black body radi-

ation provides the most efficient cooling mechanism). This increases the internal (gas

and radiation) pressure, causing the disc to expand vertically into a large scaleheight

accretion flow. In such an optically thin, geometrically thick accretion flow, ions and

electrons do not undergo enough collisions to thermalise (Stepney 1983; Shapiro, Light-

man & Eardley 1976; Ichimaru 1977; Narayan & Yi 1995). The ions are hotter than

the electrons because they hold all the gravitational energy, whereas Compton cooling

is dominated by the electrons which have a far larger photon interaction cross-section.

Another result of the sparsity of collisions is advective cooling and thus such accretion
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Figure 1.16: Schematic view illustrating the results of Mayer & Pringle (2007). The

initial sandwich configuration (top; with only one side of the sandwich shown) is mod-

ified by mass transfer (arrows) between the disc (blue) and corona (red). Eventually,

the inner regions of the disc evaporate and the outer regions condense.
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flow solutions are often referred to as advection dominated accretion flows (ADAFs;

Narayan & Yi 1995; also see Ichimaru 1977; Rees et al 1982).

The truncated disc model thus consists of a geometrically thin, optically thick disc

(the disc) and a geometrically thick, optically thin flow (the flow), with some (poorly

understood) transition at ro which moves in as the mass accretion rate increases. It is

possible to gain some understanding as to how such a two component accretion flow

may form by considering the vertical density structure of the disc. If the disc is in

hydrostatic equilibrium, the density will drop off from the midplane value at large

z (Frank, King & Raine 1992). Consequently, the optical depth in these regions is

lower than in the midplane and so a coronal layer could plausibly form on the top

and bottom of the disc (i.e. a sandwich model geometry). Mayer & Pringle (2007)

assume such a sandwich geometry and consider thermal interaction between the disc

and coronal layer. They show that, after the system is left to evolve, the balance of

heating and cooling leads to a truncated disc solution (the authors’ schematic diagram

is reproduced in Figure 1.16) where the disc evaporates interior to the truncation radius

(labelled Rtr) and the flow condenses outside of some radius > Rtr to form a truncated

disc / hot inner flow configuration with an overlap region. In intuitive terms, they

find that heating dominates for R < Rtr and cooling dominates for R > Rtr. If the

mass accretion rate through the disc were to increase, this would increase the disc

luminosity meaning that cooling can dominate for a greater range of radii; i.e. the

truncation radius moves in.

1.3.2 Short timescale variability

In addition to long term changes in mass accretion rate, XRBs also display variability

on timescales far too short (10−3 − 100s) to result from global changes in accretion

geometry. The properties and amplitude of this variability, as will be reviewed in

section 1.4, are heavily dependent on spectral state. Figure 1.17 shows two light curves
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Figure 1.17: Count rate as a fraction of the mean plotted against time for XTE J1550-

564 in the LHS (blue) and the HSS (red). We clearly see that the LHS light curve

displays a far larger fractional variability than that of the HSS.

from XTE J1550-564 in both the HSS (red) and LHS (blue). We clearly see that the

LHS light curve is far more variable than the HSS light curve on timescales ∼ 100s.

Since the emission is stable when only a disc is present and variable when the flow is

prominent, it may be inferred that the variability originates in the flow with the disc

remaining fairly stable (e.g. Churazov, Gilfanov & Revnivtsev 2001)

The variability displayed in Figure 1.17 is aperiodic: there is strong variability on

a range of timescales. In addition to this, a single timescale is often picked out by

far more coherent quasi-periodic oscillations (QPOs). In Figure 1.18 I have plotted 3s

of data from XTE J1550-564 in an intermediate state. The raw data (grey) display
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variability on a range of timescales but it is just about possible to pick out a QPO

with period ∼ 1/4 s by eye. The short timescale noise in the raw light curve (lraw(t))

can be smoothed out by averaging each point over the previous tshort seconds (so only

variability on timescales longer than tshort remains), to create the function lshort(t).

This new light curve, however, still contains long time scale variability. Filtering the

raw light curve on tlong seconds creates llong(t) which only contains the long term trends.

I use tshort ≈ 0.18s and tlong ≈ 0.39s and calculate the light curve plotted in red by

lQPO(t) =
√

lshort(t)2 − llong(t)2 + µ2, (1.11)

where µ is the average value of lraw(t). The QPO is now very clear and can be fit with

a sine wave (black line) to show that it is coherent over the 3s duration plotted; i.e. the

phase, amplitude and period stay fairly constant. The best fit sine wave has a period

of tQPO = 0.256s. Even the smoothed light curve is far from perfectly described by a

sine wave: this is a quasi-periodic oscillation rather than simply a periodic one. As

we will see later, the QPO period shortens as the spectrum softens and the truncation

radius is inferred to move in.

Whereas the spectral properties of XRBs are fairly well understood, there is very

little consensus in the literature as to the origin of the variability properties. There

are, however, a few characteristic time scales which we may expect to be associated

with the accretion flow. Simple consideration of these time scales forms the first step

to building a model for the variability properties of XRBs.

1.3.3 Characteristic timescales of the accretion flow

The characteristic timescales of the accretion flow can be grouped into two classes:

timescales associated with bound orbits in the Kerr metric (relativistic timescales) and

timescales associated with the physics of the accretion flow itself (accretion timescales).
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Figure 1.18: 3s light curve of XTE J1550-564 in an intermediate state (grey). This

raw light curve can be filtered using equation 1.11 to produce the red line which has

a clear periodicity. The black line is the best fitting sine wave which has a period of

0.256s.
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Relativistic timescales

Relativistic bound orbits differ from those in Newtonian mechanics. I have already

discussed the last stable orbit in section 1.1.1, the prediction of which is is one major

difference between the Kerr metric and the flat metric always assumed in Newtonian

mechanics. Figure 1.19 illustrates an elliptical orbit (blue dotted line) of a test particle

around a massive object at the origin. This can be described by the three polar

coordinates φ(t), θ(t) and r(t). This is a closed orbit, meaning that the particle will

keep following the same blue dotted line as it orbits the central object. Mathematically,

we can say that each coordinate varies with an angular velocity Ωφ, Ωθ and Ωr for the

φ(t), θ(t) and r(t) coordinates respectively (i.e. ¨φ(t) = −Ω2
φφ(t)). In Newtonian

mechanics, orbits always close and thus obey

Ωφ = Ωθ = Ωr = r−3/2 c

Rg
. (1.12)

A non-zero ṙ(t) denotes an elliptical (as opposed to circular) orbit and a non-zero θ̇(t)

results from the z−axis not being orthogonal to the plane of the orbit (Figure 1.19).

However, if the central object is a spinning black hole with a spin axis aligned with

the z−axis, it is possible to show from the Kerr metric (see e.g. Merloni et al 1999)

that

Ωφ 6= Ωθ 6= Ωr. (1.13)

Specifically

Ωφ =
r−3/2

1 + a∗r−3/2

c

Rg

Ω2
θ = Ω2

φ

[

1 − 4a∗
r3/2

+
3a2

∗

r2

]

Ω2
r =

r2 − 6r + 8a∗r
1/2 − 3a∗

r2(r3/2 + a∗)2

(

c

Rg

)2

. (1.14)

So the orbital motion in the φ direction departs from Newtonian mechanics only for

the very inner regions of the accretion flow. When θ = π/2, this reduces to the
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Figure 1.19: A bound elliptical orbit (blue dotted line), described by the three coordi-

nates φ(t), θ(t) and r(t). The orbit closes because all three coordinates vary with the

same angular velocity.

a∗ = 0 (Schwarzschild) case, giving Ωθ = Ωφ = r−3/2(c/Rg), which is consistent with

classical mechanics. However, even in this limit, there is a small correction to Ωr =

r−2
√
r − 6(c/Rg) which only tends to the Newtonian case for r >> 6.

The non-degeneracy between coordinate velocities creates two effects. Perihelion

precession is a rotation of the orbit’s semi-major axis with an angular velocity ΩPP =

|Ωr − Ωφ|. This was observed in Mercury’s orbit of the sun by Urbain le Verrier in

1859 (although it would be nearly 60 years before the observation could be correctly

interpreted). Frame dragging is a slow rotation of the orbit’s plane. This is also named

Lense-Thirring precession after the authors who first derived it (Lense & Thirring 1918;

although there is evidence that much of the merit for the derivation belongs to Einstein:

Pfister 2007) and the angular velocity of precession is given by ΩLT = |Ωr − Ωφ|.
Relativistic corrections consistent with frame dragging were recently measured in the
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orbit of Gravity Probe B around Earth (Everitt et al 2011), although there were high

uncertainties in these measurements. However, this effect is much larger around a

compact object because the curvature of space-time is so much greater near a black

hole or neutron star. It is therefore possible that the observed variability in XRBs

is some modulation of these orbital motions. In 1998-99, a slew of authors (Stella

& Vietri 1998; Stella, Vietri & Morsink 1999; Merloni et al 1999; Markovic & Lamb

1998; Cui, Zhang & Chen 1998) noted that the QPO period is commensurate with the

Lense-Thirring precession period at ro, as estimated by spectral fitting. For example

a moderate spin of a∗ = 0.5 and a black hole mass of 10M⊙, gives a Lense-Thirring

period of tLT = 2π/ΩLT ≈ 0.26s at a radius of r ≈ 9. This is the same period as the

QPO plotted in Figure 1.18, for which the truncated disc model estimates ro ∼ 10. As

the truncation radius moves in, both tLT (ro) and the QPO period decrease.

Accretion timescales

The time dependence of an accretion disc is described by the diffusion equation

∂Σ

∂t
=

3

R

∂

∂R

{

R1/2 ∂

∂R
(νΣR1/2)

}

, (1.15)

which is derived using mass, angular momentum and energy conservation (see e.g.

Frank, King & Raine 1992, equation 5.6). Here, Σ is the surface density and ν is

the kinematic viscosity. Frank, King & Raine (1992) use an illustrative example with

ν = constant to study how a ring of mass m and radius R0 evolves with time. In this

case, the initial surface density is

Σ(R, t = 0) =
m

2πR0

δ(R− R0) (1.16)

and it can be shown that the surface density at a position x = R/R0 and time t∗ =

12νt/R2
0 is given by

Σ(x, t∗) =
m

πR0

t−1
∗ x−1/4 exp

{

−1 + x2

t∗

}

I1/4(2x/t∗), (1.17)
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where I1/4(z) is a modified Bessel function. This is the Green’s function which describes

how the disc reacts to a perturbation in the surface density (or any related physical

quantity).

Figure 1.20 shows that the Green’s function causes the mass in the ring, which

started out all at x = 1, to spread out with the peak of the distribution slowly drifting

towards the compact object (i.e. the ring is being accreted). If we treat this initial

ring of mass as a density perturbation, we can see that it is being damped out. From

equation 1.17, we can see that damping occurs on a characteristic timescale given

by setting the argument of the exponential term to unity. This is called the viscous

timescale, obtained by setting x2t∗ ∼ 1 to get

tvisc ∼ R2/ν. (1.18)

By the same argument, the velocity of the radial drift illustrated in Figure 1.20 is given

by

vR ∼ R/tvisc. (1.19)

The disc therefore acts as a filter to fast variability. Perturbations in Σ on timescales

shorter than tvisc will be strongly damped because the disc cannot react quickly enough.

We can use the α prescription (ν = αcsH) to show

tvisc = α−1(h/r)−2tφ. (1.20)

This allows us to compare the viscous timescales of disc and flow assuming α ∼ 0.1 for

both and h/r ∼ 0.01 and ∼ 0.2 for disc and flow respectively. This gives

tvisc(disc) ≈ 450s (M/10M⊙)(r/6)3/2 (1.21)

and

tvisc(flow) ≈ 1s (M/10M⊙)(r/6)3/2. (1.22)

Therefore, the truncated disc model is consistent with Figure 1.17 which shows that the

(disc dominated) HSS is stable on the ∼ 100s timescales on which the (flow dominated)

LHS is highly variable.
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Figure 1.20: A ring of material starting at R0 is spread out by the response of the disc

with the peak of the distribution slowly moving towards the black hole (equation 1.17).

The modified Bessel function in the Green’s function is calculated using codes in Press

et al (1992).
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We also expect the amplitude of disc variability to be suppressed compared to the

flow. This is because the disc has more independent regions per radial extent than

the flow. To illustrate this, consider an accreting ring with constant h/r and width

∆R. We can model independent regions as spherical bubbles just small enough to fit

in the ring. The bubbles therefore have a radius H , the ring width is ∆R = 2H and it

is possible to fit (2πR)/(2H) bubbles in the ring. There are therefore N = π(h/r)−1

independent regions in the ring. Let us assume that each region generates fluctuations

in, say, mass accretion rate to produce N uncorrelated ṁn(t) functions with averages

µn and variances σ2
n. If the N regions all produce a similar amplitude of variability

(i.e. µn ≈ µ, σn ≈ σ), the summed contribution of the ring has an average µtot ≈ Nµ

and variance σ2
tot ≈ Nσ2. The fractional variability of the ring is therefore

σtot/µtot ≈ N−1/2(σ/µ) ∝ (h/r)1/2(σ/µ), (1.23)

and so we do indeed expect suppressed disc variability.

1.4 Spectral and timing properties of black hole bi-

naries

The spectral and variability properties of XRBs are tightly correlated; thus a great

deal of insight can be gained from considering their simultaneous evolution. The power

spectrum provides a measure of the varability amplitude as a function of frequency (i.e.

1/timescale) and so is a useful tool in characterising variability. In this section, I first

introduce the power spectrum before summarising the parallel evolution of the spectral

and timing properties of BHBs.
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1.4.1 The power spectrum

The power spectrum, or power spectral density (PSD; I will use the two terms in-

terchangeably) is the modulus squared of the Fourier transform of a light curve. By

definition, it is a continuous function and so the process of estimating the PSD from a

discrete data set is not trivial.

The Fourier transform

The Fourier transform gives a decomposition of a signal h(t) into sine waves. The

contribution to the signal at a given frequency f is given by a(f) cos(2πft − φ(f)).

Every frequency therefore has an amplitude, a(f), and a phase, φ(f). If h(t) is infinitely

long and continuous, it relates to its Fourier transform such that

H(f) =

∫ +∞

−∞

h(t)e2πiftdt

h(t) =

∫ +∞

−∞

H(f)e−2πiftdt. (1.24)

In general, both functions are complex but, since we will be considering it to be the

observed signal, h(t) is real. This means that the complex conjugate of H(f) obeys

the identity H∗(f) = H(−f). Of course, we observe h(t) neither continuously nor for

an infinitely long time. We instead collect some number of X-ray photons in each time

interval, dt, to record a (background subtracted) count rate, hk(tk), at time tk = kdt

where 0 ≤ k ≤ N − 1. The total duration of the light curve is therefore T = Ndt. The

discrete Fourier transform of hk is given by (e.g. Deeming 1975; Press et al 1992)

Hn(fn) =

N−1
∑

k=0

hk(tk)e2πikn/N , (1.25)

where fn = n/(Ndt) for 1 ≤ n ≤ N/2. This means that the lowest frequency we

can study is 1/T and the highest is the Nyquist frequency, 1/(2dt). The frequency

resolution available to us is df = 1/(Ndt). Computing this is very expensive as it
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requires ∼ N2 calculations. It is common to use the fast Fourier transform (FFT)

algorithm which dramatically cuts this number to ∼ N log2N (Press et al 1992). The

way this algorithm works means that it requires N to be an integer power of 2. The

FFT then gives us the amplitude ak and phase φk as a function of frequency for a

discretely sampled time series of finite length.

Estimating the power spectrum from discrete data sets

The power spectrum is given by

P (f) = |H(f)|2 = a2(f). (1.26)

Since we do not have H(f), we must estimate the power spectrum from Hn(fn). The

periodogram is defined as

P(fn) =
2T

µ2N2
|Hn(fn)|2 =

2T

µ2N2
a2

k (1.27)

where µ is the average (background subtracted) count rate. This normalisation means

that the integral of P(fn) over a range f1 to f2 gives the squared fractional rms over

that frequency range. For this reason, I will always plot power spectra in units of

frequency × power (i.e. units of fractional rms squared). The Poisson counting error

on the count rate contributes a (approximately; see van der Klis 1989) constant power

given by Pnoise = 2(µ + B)/µ2 for this normalisation, where B is the average back-

ground count rate. In order to consider the underlying variability independent from

instrumental effects, we must therefore use the white noise subtracted periodogram,

P(fn) → P(fn) − Pnoise.

The periodogram calculated for hk(tk) only provides a poor estimate for the power

spectrum of h(t). The dispersion of the periodogram points is described approximately

by a χ2 distribution with 2 degrees of freedom meaning that the error on every peri-

odogram point is ∼ P(fn) (e.g. van der Klis 1989; Papadakis & Lawrence 1993); i.e.

100% fractional error! A better estimate can be obtained using one or a combination
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of two techniques. The first is ensemble averaging. This involves splitting the light

curve into M intervals and averaging the periodograms from each interval; i.e.

P (fn) =
1

M

M
∑

m=1

Pm(fn) (1.28)

with error

dP (fn) =

√

√

√

√

1

M− 1

M
∑

m=1

(Pm(fn) − P (fn))2. (1.29)

The second technique is geometric re-binning such that the (integer) number of points

in the J th frequency bin is

Np(J) ≤ cJ0 , (1.30)

where c0 is some constant larger than unity. The width of the J th bin is therefore

∆fJ = dfNp(J) and the maximum frequency in the bin is

fmax(J) =

[

J
∑

j=1

Np(j) + 1/2

]

df. (1.31)

The minimum frequency in each bin is simply fmin(J) = fmax(J − 1), meaning the

frequency at the centre of each bin is f(J) = (fmax(J) + fmin(J))/2. For large values

of J , the ratio fJ/fJ−1 tends to a constant value (logarithmic re-binning), however

for low J values, the bin spacing is wider than logarithmic to ensure that every bin

contains at least one linearly spaced data point.

The estimated power in the bin is then

Pbin(fJ) =

∑nmax
nmin P (fn)

Np(J)
, (1.32)

where nmin = 1 +
∑J−1

j=1 Np(j) and nmax =
∑J

j=1Np(j). If ensemble averaging has

been carried out, the error can be estimated as

dPbin(fJ) =

√

∑nmax
nmin dP (fn)2

Np(J)
. (1.33)
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If no ensemble averaging has been carried out, the error estimate is given by the

standard deviation around the mean power.

With enough smoothing, the power spectral estimate becomes well behaved such

that Pbin(fJ) belongs to a Gaussian distribution with width dPbin(f) and centre P (f)

meaning a model can be fit to the power spectrum by reducing χ2. We do, however, lose

information from this smoothing. Ensemble averaging reduces the duration, T , and

therefore the lowest frequencies are lost. Binning clearly decreases the frequency reso-

lution. All the results in this thesis are for XRBs which have low variability amplitude

below ∼ 0.01 Hz and so a typical observation of a few ks is easily long enough to do

ensemble averaging without losing important information. I therefore use binned and

averaged power spectral estimates throughout this thesis, referring to them hereafter

simply as the power spectrum P (f), with error dP (f).

1.4.2 Power spectral properties of black hole binaries

In Figure 1.21, I plot 5 representative ∼ 3 − 31keV PSDs from the 2002 outburst

of GX339-4. We see that QPOs appear in the PSD as narrow peaks and aperiodic

variability appears as broad band noise (BBN). The properties of these power spectral

features vary dramatically during spectral evolution of the source.

PSDs 1 & 2: type-C QPO

PSDs 1 and 2 show strong BBN along with a QPO which is very weak in PSD 1 and

dominant in PSD 2. Such QPOs which are present alongside strong BBN are classed as

type-C QPOs (Casella, Belloni & Stella 2005). In the LHS, a QPO is often not observed,

although it is likely that one is present but merely hidden by strong BBN. It is clear to

see in PSD 2 that the QPO has a harmonic structure with peaks at the fundamental,

fQPO ∼ 5Hz, along side a sub-harmonic at 1/2fQPO and a second harmonic at 2fQPO

(a third harmonic is also often visible). These peaks are well described by Lorentzian
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Figure 1.21: Five representative PSDs displaying type-C (1 and 2), type-B (3) and

type-A (4) QPOs in addition to a typical HSS PSD displaying a low level of red noise

(5).
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Figure 1.22: Low frequency break (fb in the text, νb on the plot) plotted against QPO

frequency (fQPO in text, νQPO on the plot) for a number of different objects. In (a), the

black points are BHBs, the red points are atolls and the blue points are a millisecond

X-ray pulsar (see chapter 3). In (b), the black points are all the objects in (a), the

red points are z-sources (again, see chapter 3) and the blue points are objects which

display two QPOs. Different symbols correspond to different individual objects, see

the original plot in Wijnands & van der Klis 1999 for details.
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functions with three parameters: amplitude (i.e. integrated fractional rms), centroid

frequency, fc, and width, ∆f . The width and centroid frequency can be combined into

the quality factor, Q = fc/∆f . For the hardest spectra, type-C QPOs are broad with

Q ∼ 1 − 10. As the source transitions through the intermediate state, the coherence

increases before reaching a plateau at Q ∼ 10 (e.g. Rao et al 2010). The Q of each

harmonic is tied to the fundamental, except for the sub-harmonic which can sometimes

be less coherent (Rao et al 2010). The BBN can be (roughly) fit with two Lorentzians

with characteristic frequencies fb and fh which pick out low and high frequency breaks

labelled in Figure 1.21.

During the rise to outburst, fQPO, fb and (to a far lesser extent) fh increase with

the amount of power above ∼ 10Hz remaining roughly constant (Gierliński, Niko lajuk

& Czerny 2008). Figure 1.22, taken from Wijnands & van der Klis (1999), shows that

fQPO and fb are tightly correlated (also see Klein-Wolt & van der Klis 2008). In this

plot, only the black points are for black holes with all others being for neutron stars. I

leave the details of NSBs to chapter 3 but we already see that the variability properties

are similar for both objects in addition to the spectral properties. In BHBs, the type-C

QPO frequency moves from ∼0.1-10 Hz.

The BBN can be interpreted in the truncated disc model as originating from turbu-

lence stirred up by the inherently variable MRI (e.g. Balbus & Hawley 1998; Krolik &

Hawley 2002). The disc and flow will respond to this turbulence by damping any fluc-

tuations on frequencies greater than the local viscous frequency (fvisc(r) = 1/tvisc(r)).

Due to the difference in scaleheight, the disc will damp these fluctuations more effi-

ciently than the flow. The blue lines in Figure 1.23 illustrate that the noise from each

radius in the flow will therefore peak at fvisc(r) thus implying that fb ≈ fvisc(ro) and

fh ≈ fvisc(ri), where ri is the inner radius of the flow. As the truncation radius moves

in, the regions of the flow fluctuating at low frequencies condense onto the disc and so

this variability is lost. The inner radius of the flow, in contrast, hardly moves and thus
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the power above ∼ 10Hz remains constant. If the QPO (black line) is some modula-

tion of Lense-Thirring precession at the truncation radius, its centroid frequency will

increase as the truncation radius moves in, as is observed.

PSDs 3-5: the rest

PSD 3 is significantly different from the first two. We still see a fairly strong QPO

with harmonic structure but the BBN has almost completely disappeared. This is

classed as a type-B QPO. PSD 4 is different again. This is a type-A QPO which is

characterised as being very broad and weak (a very large integration time is needed to

clearly pick the feature out), with no coincident BBN. It is unclear whether the three

QPO types have a common physical origin. It is also unclear why the BBN disappears

so suddenly. PSD 5 is for the HSS. The main characteristic of this is the low level of

variability which is, of course, consistent with the HSS light curve shown in Figure 1.17

and easy to explain with a disc dominated accretion geometry. There are sometimes

very weak QPOs observed during the HSS with fQPO > 10 Hz for which the origin is,

again, unclear.

1.4.3 Spectral evolution

The evolution of spectral and variability properties can be coupled together in a model

independent fashion using hardness vs intensity diagrams (HIDs) and hardness vs rms

diagrams (HRDs). In this case, the hardness ratio is defined as the 16-20/2-6 keV

count rate and the intensity is defined as the PCU2 count rate (one of the proportional

counter units of the proportional counter array; PCA). Figure 1.24 shows the HID

and HRD for the 2002 outburst of GX339-4, adapted from Belloni (2010a). Following

Belloni (2010), Motta et al (2011), Belloni et al (2005), I use this as a ‘prototypical’

outburst.

In Figure 1.24, consecutive observations are connected with a line showing that the
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Figure 1.23: Schematic illustrating how the truncated disc model can qualitatively

explain the evolution of the BBN. The variability generated in each region of the flow

peaks at the local viscous frequency. As the truncation radius moves in, low frequency

power is lost.
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source follows a characteristic ‘q’ shaped track. The direction of motion is always anti-

clockwise. Plainly, LHS observations are all on the far right of the diagram because

the spectrum is dominated by a hard power law and HSS observations reside on the

far left because the spectrum is dominated by a disc component. We can now clearly

see that the fall back to quiescence happens at lower flux than the rise to outburst.

For this reason, it seems best to define the state transitions by the spectral hardness

rather than count rate (e.g. Belloni 2010).

We can also use variability properties to differentiate between spectral states. The

5 different kinds of marker in this Figure represent the 5 different varieties of PSD

illustrated in Figure 1.21. Filled circles correspond to PSD 1 (weak type-C QPO), open

circles to PSD 2 (strong type-C QPO), filled stars to PSD 3 (type-B QPO), open stars

to PSD 4 (type-A QPO) and crosses to PSD 5 (very weak red noise). Remarkably, all of

the observations with type-A and B QPOs occur over a very narrow range of hardness

during both the rise and the fall. This implies that there is something unique about

this hardness range and so the intermediate state is split up into the hard intermediate

state (HIMS), with type-C QPOs, and the soft intermediate state (SIMS), with type-A

and B QPOs. This is illustrated at the bottom of the Figure where the type of QPO

present for a given range of hardness is labelled.

Radio observations also point to the existence of a collimated jet which displays a

connection with the X-ray states and transitions. A compact and mildly relativistic jet

is observed in the LHS and HIMS but not in the HSS (Fender, Belloni & Gallo 2004).

The transition between these two regions marks the ejection of a fast relativistic jet,

observed as a bright radio flare. Fender, Belloni & Gallo (2004) dub the narrow region

on the HID at which this occurs the ‘jet line’ and remark that it coincides with the

transition between HIMS and SIMS (which they dub the ‘QPO line’). This leaves

open the possibility that the material responsible for the BBN is being ejected in the

jet thus naturally explaining the transition from type-C to type-B QPOs. However,
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Figure 1.24: HID and HRD of the 2002/2003 outburst of GX339-4. The four state

classifications are labelled at the top with the different varieties of QPO labelled at the

bottom.
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Fender, Belloni & Gallo (2005) use a bigger sample to show that the lines do not always

coincide but are always close.

Whereas the HID is q shaped, the HRD follows a linear track with only the SIMS

observations falling below the trend line (mainly because of the lack of BBN in the

PSD). This, again, can be interpreted with a moving truncation radius. As Figure

1.23 illustrates, the radial extent of the variable flow governs the range of frequencies

at which significant variability is present. Since the hardness is ultimately governed

by the luminosity of disc photons seen by both the observer and the flow, both the

hardness and rms are driven by the position of the truncation radius.

1.5 Higher order statistics

Statistical techniques which compare how timing properties depend on energy band

provide the most powerful tools to derive the underlying physics driving the emission

in XRBs. In this section, I summarise some of these techniques.

1.5.1 Frequency resolved spectroscopy

Frequency resolved spectroscopy involves comparing the variability amplitude of differ-

ent energy bands. Figure 1.25 shows PSDs from GX339-4 (reproduced from Wilkinson

& Uttley 2009) in the LHS for 0.5-1keV (solid red line) and 2-10keV (dotted blue line)

energy bands. It is clear that the two PSDs have different shapes. It is also possible

to see that there is more integrated power in the soft (0.5-1keV) band compared with

the hard (2-10keV) band.

Integrating the PSD for each energy band over only a narrow frequency range

(rather than over all frequencies) isolates the fractional variability amplitude as a

function of energy and frequency. Multiplying the fractional variability through by

the average count rate in that energy band, µ(E), gives the absolute variability as a
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Figure 1.25: Soft and hard band PSDs for GX339-4, as seen by XMM Newton (re-

produced from Wilkinson & Uttley 2009). The solid red line is for 0.5-1keV and the

dotted line is for 2-10keV. Note, the y−axis is plotted on a linear scale.

function of energy and frequency. The spectrum which varies in the frequency range

f − ∆f/2 to f + ∆f/2 is therefore given by

S(E, f) = µ(E)
√

P (E, f)∆f. (1.34)

This is extremely useful because it is in units of count rate and so spectral components

can be recognised in the data.

The right hand panel of Figure 1.26 is taken from Revnivtsev, Gilfanov & Churazov

(1999) and shows the spectrum of Cygnus X-1 in the LHS for three different frequency

ranges, plotted as a ratio to a power law with Γ = 1.8. It is clear that the power law

is harder and the reflection features are weaker for higher frequencies. The first (and

to date only) intuitive explanation for this in the literature, offered in Ingram & Done



1. Introduction 52

Figure 1.26: Right: Frequency resolved spectra for Cygnus X-1 in the LHS (Revnivt-

sev, Gilfanov & Churazov 1999). The slow variability displays a softer spectrum and

stronger reflection features than the fast variability. Left: The interpretation of this in

a truncated disc geometry (see text).

(2011; 2012) which form the basis for Chapters 4 and 5 of this thesis, is demonstrated

by the schematic in Figure 1.26 (left). This shows a truncated disc geometry, in which

the inner regions vary more rapidly than the outer regions because of the difference

in local viscous timescale. Because the outer regions are closer to the disc, electrons

there will see a greater flux of disc seed photons and therefore will be cooler than those

in the inner regions. Therefore the inner regions emit the hardest spectrum (the blue

line in the cartoon) and dominate the high frequency spectrum. By much the same

argument, the disc sees a greater flux of Comptonised photons from the (closer by)

outer regions than from the inner regions, meaning that the slowly varying spectrum

from the outer region displays stronger reflection features. We therefore see that this

technique effectively probes the spectrum as a function of radius, since all characteristic

frequencies of the accretion flow have a radial dependence.
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1.5.2 Correlated variability

A ubiquitous property of emission from accreting objects is the strong correlation

observed between different energy bands. Figure 1.27 is taken from Churazov, Gilfanov

& Revnivtsev’s (2001) study of Cygnus X-1 in the HIMS. The left hand panel shows the

count rate in a soft (< 3.3keV) energy band, S(t), plotted against the corresponding

count rate in a hard (> 9.4keV) energy band, H(t). Each point is averaged over 16s

and so the highest variability frequency visible is 0.03125Hz. It is clear that the two

correlate, with the points being well described by the straight line, S(t) = A+B H(t)

where A > 0. This shows that the spectrum varies in shape as well as intensity (as

we already know from frequency resolved spectroscopy). The authors find a similarly

good linear relation between the count rate in each energy channel, C(E, t), and the

hard band such that C(E, t) = A(E)+B(E) H(t). A(E) and B(E) therefore represent

the constant and variable components of the spectrum respectively. In the right hand

panel of Figure 1.27, both components are unfolded around the PCA response using

a Γ = 2.5 power law model and plotted in units of energy × flux. A(E) (which is in

absolute units) is represented by the open circles and B(E) (which has an arbitrary

normalisation) is represented by the filled circles. Clearly the shape of the constant

component is well described by the multi-coloured disc black body model (with peak

temperature kTbb = 0.5keV) shown in yellow whereas the variable component looks like

Comptonisation plus reflection. Finally, the solid square points are selected for high

and low flux intervals of H(t). The green lines approximate these points reasonably

well using a model M(E) = A(E) + I B(E), where I is the only free parameter. Thus

the stable disc / variable corona picture is appropriate, at least for the SIMS.

Another manifestation of the correlated nature of XRB variability is the linear rms-

flux relation. This can be calculated by splitting the light curve into ∼ 3s segments and

finding the mean (flux) and standard deviation (σ) in each segment before plotting σ

against flux. Figure 1.28, from Uttley & McHardy (2001) shows that, after binning, the
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Figure 1.27: Left: Soft band (< 3.3keV) count rate plotted against hard band (>

9.4keV) count rate for Cygnus X-1 in the SIMS (Churazov, Gilfanov & Revnivtsev

2001). The two correlate and the points can be fit with the straight line S(t) =

A+B.H(t). Right: This relation can be used (see text) to define constant, A(E) and

variable, B(E), components shown in the right hand plot. The constant component is

the shape of a disc spectrum whereas the variable component contains power law and

reflection components.
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Figure 1.28: The rms-flux relation for the BHB Cygnus X-1 and the accreting millisec-

ond X-ray pulsar SAX J1808.4-3658 (Uttley & McHardy 2001).

relation is clearly linear both for the BHB Cygnus X-1 and the atoll source (millisecond

X-ray pulsar) SAX J1808.4-3658. This is seemingly a ubiquitous property of emission

from accretion. Linear rms-flux relations have been observed in BHBs, NSBs, an active

galactic nucleus (AGN) and an ultra luminous X-ray (ULX) source (Uttley & McHardy

2001; Uttley 2004; Gaskell 2004; Uttley, McHardy & Vaughan 2005, Heil & Vaughan

2010; Heil, Vaughan & Uttley 2011; 2012).

The fact that the different energy bands and timescales are correlated tells us that,

in a picture where different frequencies are generated in different regions of the flow,

these regions must be in causal connection (Uttley, McHardy & Vaughan 2005). The

truncated disc interpretation of the PSD is consistent with this as long as we consider

the mass accretion rate fluctuations stirred up in each region of the flow to propagate

towards the compact object (Lyubarskii 1997). As I show explicitly in Chapters 4 and

5, the linear rms-flux relation (and the linear relation between S(t) and H(t); Kotov,

Churazov & Gilfanov 2001) can be reproduced once we consider propagation (Arévalo

& Uttley 2006).
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1.5.3 The cross spectrum

The cross spectrum is particularly useful for studying accreting objects because it picks

out correlated variability. Moreover, unlike the power spectrum, the cross spectrum

contains information on both variability amplitude and phase. If we imagine measuring

light curves from a range of subject bands, s(E, t), and a reference band, r(t), the cross

spectrum is

C(E, f) = S∗(E, f)R(f). (1.35)

This is a complex function and so has real and imaginary parts given by

ℜ[C(E, f)] = ℜ[S(E, f)]ℜ[R(f)] + ℑ[S(E, f)]ℑ[R(f)]

= |C(E, f)| cos ∆(E, f)

ℑ[C(E, f)] = ℜ[S(E, f)]ℑ[R(f)] − ℑ[S(E, f)]ℜ[R(f)]

= |C(E, f)| sin ∆(E, f). (1.36)

where ∆(E, f) is the frequency dependent phase lag of the subject band (centred at

E) with respect to the reference band (so ∆ > 0 is for the subject band lagging the

reference band). We now hit the same problem we encountered for the power spectrum:

we cannot measure continuous and infinite functions, only finite and discretely binned

light curves. This problem can be solved by separately smoothing the real and imagi-

nary parts of the cross spectrum in the same way as described for the power spectrum

in section 1.4.1. After this smoothing has been performed (which is hereafter assumed

rather than written explicitly), we can recover the value of the phase lag

tan ∆(E, f) =
ℑ[C(E, f)]

ℜ[C(E, f)]
, (1.37)

and the associated time lag

tlag(E, f) =
∆(E, f)

2πf
. (1.38)

The left hand panel of Figure 1.29, from Nowak et al (1999), shows the time lag of

the 8.2-14.1keV band with respect to the 0.0-3.9keV band for Cygnus X-1 in the LHS,
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as seen by the RXTE PCA. We see that the hard lags the soft with the amplitude of

the lag reducing with increasing frequency. The right hand panel, taken from Kotov,

Churazov & Gilfanov (2001), shows the time lag, again for Cygnus X-1, for a frequency

bin centred on 2.5Hz as a function of energy (the reference band is trivially where the

lag is zero). We see that the lag amplitude increases with subject band energy.

As shown by Kotov, Churazov & Gilfanov (2001) and Arévalo & Uttley (2006),

this can be explained in the propagating mass accretion rate fluctuations model of

Lyubarskii (1997) if the outer regions emit a softer spectrum than the inner regions.

Consider a perturbation at large r which modulates the soft spectrum immediately. It

will take some time to propagate to the inner regions where it is emitted in the hard

spectrum. The larger the separation between energy bands, the further the perturba-

tion has to travel to get to the hard emitting region. Also, all regions in the flow can

vary slowly but only the inner regions can vary quickly. Therefore a slow perturbation

is more likely to have travelled a long distance than a fast perturbation which must

have originated at small r. Such a model, using propagating fluctuations in an inhomo-

geneous emitting region, was used to create the red line in the right hand panel (Kotov,

Churazov & Gilfanov 2001). The model I consider in this thesis is naturally consistent

with this reasoning because the outer regions of the flow see more seed photons and are

therefore cooler than the inner regions. This assumption is, of course, also consistent

with the results of frequency resolved spectroscopy.

The cross spectrum can also be used to study the amplitude of correlated variability.

The covariance spectrum, which is analogous to the power spectrum is given by

Cov(E, f) =
|C(E, f)|2
|R(f)|2 , (1.39)

where |R(f)|2 is the white noise subtracted power spectrum of the reference band. If

a normalisation analogous to equation 1.27 is used, integrating Cov(E, f) from f1 to

f2 gives the (squared) correlated fractional variability amplitude of the subject band

in that frequency range. In XRBs, the intrinsic variability is highly correlated and so
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Figure 1.29: Left: Time lag of hard (8.2-14.1keV) emission with respect to soft (0-

3.9keV) emission in Cygnus X-1, plotted as a function of frequency (Nowak et al

1999). Right: Time lag of the subject band with respect to a reference band centred on

∼3keV, plotted as a function of subject band energy for Cygnus X-1 (Kotov, Churazov

& Gilfanov 2001).

Cov(E, f) provides an estimate of the subject band power spectrum except the white

noise in the subject band automatically cancels and so does not need to be subtracted.

The reference band white noise still has to be subtracted but it is selected as the band

with the highest signal to noise so as to reduce errors. Therefore, the formula

S(E, f) = µ(E)
√

Cov(E, f)∆f, (1.40)

gives the frequency resolved spectrum but with much smaller errors, particularly for

high energies and high frequencies where the signal to noise is generally poor (Wilkinson

& Uttley 2009).

Figure 1.30, reproduced from Wilkinson & Uttley (2009), shows the unfolded fre-

quency resolved spectrum of SWIFT J1753.5-0127 in the LHS, calculated using this

method. The green line is the mean spectrum, the red line is for ‘slow’ variability

(∼ 0.004 − 0.4Hz) and the blue line is for ‘fast’ variability (0.25 − 10Hz). These data



1. Introduction 59

are from the XMM Newton European Photon Image pn Camera (EPIC-pn) which has

much better low energy coverage than the RXTE PCA. This means that the disc peak

energy is within the observable band pass. The authors fit all three spectra with an

absorbed disc plus power law model. If the disc were completely stable, the disc nor-

malisation would drop to zero for the red and blue lines. We see that this is not the

case and thus this is the first (and only) proof that the disc varies in the LHS. It is

not clear from this exactly what variability amplitude the disc contributes relative to

the power law because decomposing a frequency resolved spectrum into additive spec-

tral components is formally inappropriate if those components are correlated with one

another. Since the disc and power law do correlate, a disc, d(E, t), plus power law,

pl(E, t), spectral model has a power spectrum

P (E, f) = |D(E, f)|2 + |PL(E, f)|2

+2|D(E, f)||PL(E, f)| cos ∆(E, f). (1.41)

Since the cross term does not vanish (at least not for low frequencies), we cannot trust

the quantitative information provided by the fit in Figure 1.30. We can, however, see

that there is disc variability which (unsurprisingly) peaks at lower frequencies. More

work is needed to quantitatively ascertain how important disc variability is in the LHS.
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Figure 1.30: Frequency resolved spectrum for SWIFT J1753.5-0127 in the LHS, calcu-

lated using the covariance spectrum (Wilkinson & Uttley 2009). The mean spectrum

is in green, the fast variability in blue and the slow variability in red. We clearly see

that disc emission does contribute the the variability in the LHS.



Chapter 2
Low frequency QPO

spectra and

Lense-Thirring

precession

2.1 Introduction

Relativistic precession models associate the low frequency QPO (LF QPO) with the

Lense-Thirring precession frequency at the truncation radius (Stella & Vietri 1998;

Stella et al 1999; Psaltis & Norman 2000, Fragile et al 2001). In this picture, a moving

truncation is responsible both for the changing spectral shape and the moving QPO

frequency. However, there are several problems with such an identification. Firstly,

this associates the frequency with the inner edge of the thin (cool) disc, yet the QPO

(and all the rapid variability) is associated with the Comptonised emission, not the

disc (Churazov et al 2001; Sobolewska & Życki 2006; Belloni et al 1997; Cui et al 1999;

Casella et al 2004). Secondly, and more fundamentally, it requires that all BHB are

spinning. Given their birth in the collapsing core of a massive star this is not surprising,

with estimates of a∗ < 0.8 − 0.9 (Gammie, Shapiro & McKinney 2004). However, this

allows for a range of spins in BHBs, as is also suggested by observations (Davis, Done

& Blaes 2006; Shafee et al 2006). The Lense-Thirring precession timescale depends

strongly on spin, so predicts that the same truncation radius in BHBs of different spin

61
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should give different QPO frequencies. Yet observations seem to show little difference

in QPO frequencies from object to object (Sobczak et al 2000; Pottschmidt et al 2003,

Kalemci et al 2004, Belloni et al 2005). This makes any Lense-Thirring model appear

uncomfortably fine-tuned, especially in the light of tight correlation between the low

frequency break in the power spectrum and QPO frequency which extends across both

black holes and neutron stars (Wijnands & van der Klis 1999). The low frequency break

is most plausibly from the viscous timescale at ro (Psaltis & Norman 2000; DGK07),

so does not depend on spin, unlike a Lense-Thirring model for the QPO. Any range

in spin between different objects (and neutron star spins are known to range between

a∗ = 0.2 − 0.4, while the black hole spins can plausibly be significantly larger) should

then give rise to a large dispersion in the break-QPO relation, yet the data limit this

to less than a factor of 2 (Klein-Wolt & van der Klis 2008).

This chapter is adapted from Ingram, Done & Fragile (2009) in which we show

how Lense-Thirring models can match the observations by considering the physical

interpretation of recent numerical simulations. Specifically, we suggest that the shape

of the warped, geometrically thick accretion flow which fills the region inside ro affects

the frequency at which it precesses. We discuss how this precession can modulate the

hard X-ray emission in order to produce the observed energy dependence as well as

frequency behaviour of the QPO.
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2.2 Predictions for low frequency QPO spectra from

Lense-Thirring precession

2.2.1 Point particle

The Lense-Thirring precession frequency for prograde orbits in the limit of a small

perturbation with respect to the equatorial plane is

fLT = |fφ − fθ| = fφ

[

1 −
√

1 − 4a∗
r3/2

+
3a∗
r2

]

(2.1)

where fφ = c/[2πRg(r3/2 + a∗)], a∗ is the dimensionless spin per unit mass and r is the

dimensionless orbital radius (in units of Rg = GM/c2).

We assume a black hole mass of 10M⊙ throughout this paper. Figure 2.1 shows

the precession frequency for a variety of black hole spins from 0.3 < a∗ < 0.998 as a

function of radius down to the last stable orbit, rlso. This clearly shows that the highest

frequency predicted is heavily dependent on spin, and that these are well in excess of the

∼ 10Hz maximum observed QPO frequency for a∗ > 0.3. The corresponding Keplerian

frequencies (upper lines) plotted for comparison trace out even higher values.

2.2.2 Solid disc with inner radius at the last stable orbit

The simple estimates in the previous section assumed single particle orbits at the

truncation radius of the thin disc, ro. However, the energy dependence of the QPO

clearly associates it with the hot flow rather than the disc. Thus we consider Lense-

Thirring precession of the geometrically thick, hot flow interior to the truncated disc

as illustrated in Figure 2.2. Fragile et al. (2007) estimate the associated frequency

assuming that the black hole torque from the misalignment makes the entire flow

precess as a solid body between an inner and outer radius, ri and ro (again scaled in
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Figure 2.1: Lense-Thirring precession frequency for a point particle and Keplerian

orbital frequency plotted against orbital radius. The solid black, red, green, blue and

magenta lines depict a∗ = 0.3, a∗ = 0.5, a∗ = 0.7, a∗ = 0.9 and a =∗ 0.998 respectively.

The dashed lines represent the limits of the observed range. Although Lense-Thirring

precession gives predictions closer to observation than Keplerian frequencies, the peak

frequency and a∗ dependence do not match observation.
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Figure 2.2: Schematic diagram of the geometry considered. The inner flow (grey with

blue angular momentum vector) precesses about the black hole angular momentum

vector whilst the outer disc (red/orange) remains aligned with the binary partner. The

flow extends between ri and ro.

units of Rg to make them dimensionless). This gives

fprec =
(5 − 2ζ)

π(1 + 2ζ)

a∗[1 − (ri/ro)
1/2+ζ ]

r
5/2−ζ
o r

1/2+ζ
i [1 − (ri/ro)5/2−ζ ]

c

Rg

(2.2)

where the moment of inertia of the disc is calculated assuming a surface density of the

form Σ = Σo(r/ri)
−ζ. Classical advection dominated accretion flows give ζ = 0.5, while

thin discs have ζ ∼ −0.5, and the numerical simulations give ζ ∼ 0. We choose ζ = 0,

but note this makes less than a factor of 2 difference from the other prescription for the

resultant QPO frequency even at the largest radii, and that this difference decreases

monotonically as ro decreases.

Figure 2.3 shows the precession frequency plotted against ro for a number of spins

with ri = rlso. These frequencies are always higher at a given ro as the effective radius

is a surface density weighted average from ri to ro We still, however, see the same two

problems encountered in section 2.2.1, namely, that the peak frequency is too high and

varies too strongly with spin.
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Figure 2.3: Precession frequency of an inner flow of varying outer radius. The solid

black, red, green, blue and magenta lines represent spin values of a∗ = 0.3, a∗ = 0.5,

a∗ = 0.7, a∗ = 0.9 and a∗ = 0.998 respectively. The green dashed line represents a

point particle for a∗ = 0.7. The minimum radius is the last stable orbit as a function of

spin. We see that, as in the case of point particle Lense-Thirring, the peak frequency

is both higher than observed values and has too strong a spin dependence.
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2.2.3 Inner radius

So far we have considered a flow with its inner radius at the last stable orbit. Instead,

the precession timescale is set by where the surface density drops significantly, as

the region interior to this will not contribute significantly to the moment of inertia.

Full general relativistic simulations of the magneto-rotational instability (MRI, the

underlying source of the stresses which transport angular momentum) show that this

drops sharply at around 1.5 × rlso (e.g. Fig 4. in Krolik, Hawley & Hirose 2005) for

thick flows aligned with the black hole spin.

However, we are considering Lense-Thirring precession so the key issue is that

the flow is misaligned. The extra torques on the flow give extra contributions to the

stresses. Simulations (e.g. Fragile et al 2007) have shown this to increase the inward

velocity, and therefore decrease the density of the flow. Figure 2.4 shows the surface

density profile obtained from two simulations, both of a flow misaligned by 15o but

with differing black hole spin. The blue points are for a∗ = 0.9 (Fragile et al 2007)

and the red points are for a∗ = 0.5 (Fragile et al 2009). We have fit the data with a

smoothly broken power law function Σox
α/(1 + xγ)(ζ+α)/γ where x = r/ri. This gives

xα and x−ζ for r << ri and r >> ri, respectively, while γ controls the sharpness of the

break. We fix ζ = 0 (see Section 2.2.2) and obtain ri ∼ 9 for a∗ = 0.9 and ri ∼ 8 for

a∗ = 0.5, both of which are significantly larger than rlso − 1.5 rlso for untilted flows.

Ideally, we would now like to re-plot Figure 2.3 using the inner radius for a mis-

aligned flow. However, we only have two simulation points for ri which is clearly

inadequate for our purposes. We therefore make an analytical approximation in the

next section in order to address this point.

Solid flow with inner radius set by bending waves

The additional torques will be strongest where the flow is most misaligned, so these

should track the shape of the flow. This is set by bending waves, which communicate
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Figure 2.4: Surface density as a function of radius recovered from numerical simulations

of a misaligned flow (Fragile et al 2007) with a∗ = 0.5 (red) and a∗ = 0.9 (blue). Data

points have been fit by a double law which breaks at ri. We find ri(a∗ = 0.5) ∼ 8 and

ri(a∗ = 0.9) ∼ 9.

the warp and twist in initially circular and coplanar orbits, against viscous damping.

Analytic approximations to the resulting shape can be calculated assuming linear per-

turbations in an initially thin disc (e.g. Ferreira & Ogilvie 2008). The global structure

then depends on the ratio of the viscosity parameter, α, relative to the disc semi-

thickness, H = hRg. For α > h/r, warped disturbances via Lense-Thirring precession

are propagated by viscous decay which eventually drags the inner disc into alignment

with the black hole spin, while the outer disc aligns with the orbital plane of the

companion star (Bardeen & Peterson 1975, King et al 2005). The Bardeen-Petterson

transition radius can be roughly defined as the point where viscosity can no longer

propagate warps in the disc outward quickly enough to prevent a twisting of the disc

due to differential precession.
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However, we are considering instead a hot inner flow which is geometrically thick

so α < h/r. In this case, the warp is propagated via bending waves. The local

sound crossing timescale is shorter than the precession timescale throughout the flow

allowing the material to be strongly coupled by pressure waves. Consequently, the flow

precesses as a solid body (Fragile et al 2007) with its shape influenced by the bending

waves (Ferraria & Ogilvie 2008; Pringle 1992, Lubow et al. 2002). Undamped bending

waves have a characteristic wavelength of

λ ∼ πr9/4

(6a∗)1/2

(h

r

)

. (2.3)

These waves are, therefore, smooth at large radii and oscillatory at small radii due to

the strong r dependence of the wavelength. Figure 12 in Fragile et al (2007) and Figure

10 in Fragile et al (2009) show the tilt angle of the flow at varying radii for a∗ = 0.9

and 0.5, respectively. This tilt angle increases dramatically at small radii in a manner

similar to that of the bending waves. It could be that this rapid change in disc tilt

gives rise to additional stresses which lead to the observed drop off in surface density.

It is encouraging that Figure 13 in Fragile et al (2007) seems to support this assertion

as it shows that the viscosity parameter of the disc, α, increases rapidly at small radii.

The largest radius at which the rate of change of disc tilt is significant is r ∼ λ/4

i.e. at ri ∼ 2.5(h/r)−4/5a
2/5
∗ (using equation 2.3) as this is the first point at which

the bending waves have room to turn over. A more rigorous treatment by Lubow et

al (2002) gives ri ∼ 3.0(h/r)−4/5a
2/5
∗ . Both of these expressions give ∼ 10 and 8 for

a∗ = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the simulations (see

Section 2.2.3).

Figure 2.5 shows the precession frequency recalculated assuming the inner radius as

above. We see that the expected decrease in QPO frequency with spin is offset by the

increase in inner radius with spin. Counter-intuitively, the QPO probes smaller radii

in the flow for lower black hole spins! Figure 2.5 is in fact remarkably like the observed

data in that it predicts a maximum frequency of ∼ 10 Hz for all spins considered here
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Figure 2.5: Precession frequency versus outer radius of a hot flow with scale height

h/r = 0.2 and inner radius set by the bending wave region ri = 3.0(h/r)−4/5a
2/5
∗ (Lubow

et al 2002) for spins of a∗ = 0.3 (black), a∗ = 0.5 (red), a∗ = 0.7 (green), a∗ = 0.9

(blue) and a∗ = 0.998 (magenta). The expected increase in QPO frequency with a∗ is

mostly cancelled out by the increased radial extent of the bending wave region, and

the maximum QPO frequency is ∼ 10Hz, as observed.

(a∗ > 0.3). It also predicts the frequency to be mostly dependent on the outer radius of

the flow, not spin, which allows the QPO frequency to tightly correlate with any other

frequency picked out by this radius, e.g. the low frequency break in the broad band

power spectrum (Psaltis et al 1999; Wijnands & van der Klis 1999; Psaltis & Norman

2000).

This is a very encouraging result, but we caution that many more simulations are



2. Low frequency QPO spectra and Lense-Thirring precession 71

needed to quantify the behaviour the inner radius as a function of spin, and to assess the

effect of misalignment angle (both current simulations are for 15◦). Such simulations

also mean that the simplified form of the surface density profile in equation 2 can be

replaced by the observed precession frequency of the flow. However, the two current

simulations show the drawback of this approach as this is also sensitive to the outer

boundary condition. Our model sets the outer radius of the precessing flow by the

inner edge of the truncated disc. The flow can only freely precess in the region where

there is no thin disc blocking the mid-plane. Instead, the current simulations only

include the hot flow, and its effective outer radius is larger for the a∗ = 0.5 run than

in the a∗ = 0.9 and the precession frequency directly observed from the simulations is

roughly a factor of two higher for a∗ = 0.9 than for 0.5. Thus the simulations need also

to include an outer boundary condition in order to properly explore parameter space,

and to consider the additional torque on the flow from the interaction between the thin

disc and hot flow which adds a great deal of complexity.

2.3 Discussion

The Lense-Thirring frequency of the inner flow precessing as a solid disc does not match

observed LF QPO frequencies if we assume the inner radius of the flow is set by the

last stable orbit. However, recent numerical simulations show that the surface density

profile of a misaligned flow drops substantially at radii which are significantly larger

than rlso for a∗ = 0.9 and a∗ = 0.5. We postulate that this radius is set by the shape of

the bending waves which distort the disc. This radius increases with a∗ in a way that

counteracts most of the expected increase in QPO frequency with spin at a given ro.

This results in a maximum value of ∼ 5 − 10Hz for a 10M⊙ black hole of almost any

spin, as observed.

Clearly this conclusion depends on the outcome of future numerical simulations. It

also depends on the flow being misaligned! The Bardeen-Peterson effect dictates that
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a misaligned thin disc will gradually align with the black hole at small enough radii

(Bardeen & Peterson 1974). Most analytical estimates predict that the disc should

be more or less aligned at typical values of the truncation radius (e.g. Fragile et al

2001). This, therefore, implies that the flow should be aligned if most of the material

for the hot flow accretes through the outer disc which, in turn, implies that it shouldn’t

precess! However, the thin disc alignment should be rather different for a truncated

thin disc. We intend to explore this effect in future work.

These caveats aside, we have a very attractive model for the origin of the low

frequency QPO in black hole binaries. This is made even more compelling as it ties the

QPO to the hot flow, so should directly modulate the Comptonised tail, as observed,

even though the outer radius ro is determined by the thin disc.

There are several processes which can imprint the modulation on the spectrum. The

flow is translucent (optical depth, τ ∼ 1) so there can be weak projected area effects.

More importantly, the flow can self-occult causing a dip in the flux of maximum depth

exp(−τ) when the flow is aligned with the observer’s line of sight. There should also

be a variation in the number of seed photons from the disc irradiating the flow which,

for example, will give maximum flux when the flow is maximally misaligned with the

disc. Relativistic effects can also contribute to the modulation (Schnittman, Homan &

Miller 2006; Schnittman & Rezzolla 2006)

These effects will give a stronger modulation for higher inclination angles, and

higher optical depth. There is observational evidence for both of these, with a compi-

lation of BHB showing that the maximum QPO r.m.s. strength increases with incli-

nation, and with mass accretion rate i.e. optical depth of the hot flow (Schnittman,

Homan, & Miller 2006). This can also explain why the QPOs appear stronger on the

hard–to–soft transition during the rapid rise to outburst than on the soft–to–hard tran-

sition on the decline. The hysteresis effect (plausibly caused by the rapid rise driving

the disc into a non-steady state configuration: Done, Gierliński & Kubota 2007) means
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that the luminosity during the rise is higher, so the mass accretion rate through the

hot flow and hence its optical depth are both also larger, giving stronger modulation.

This all fits well with the observations that broader, weaker QPOs are seen in the

low inclination systems such as 4U 1543-47 (Schnittman, Homan & Miller 2006). Our

model also predicts that Cyg X-1 should have the weakest QPOs, as observed, as it is

both at low inclination and is stable to the hydrogen ionisation instability which drives

the enhanced optical depth seen during hysteresis (DGK07).

The physical processes in our model are scale invariant, so predict that the fre-

quencies for a given black hole spin, a∗, depend linearly on mass, as generally assumed

(Vaughan & Uttley 2005; Gierlinski et al 2008; Middleton et al 2008). The BHB alone

probably span 6 − 14M⊙ (Remillard & McClintock 2006), so this predicts a factor of

2.3 variation in frequency which may be detectable.

2.4 Conclusions

Lense-Thirring precession of a radially extended section of the hot inner flow in the

truncated disc models can match the properties of the low frequency QPO in BHB.

The outer radius of the precessing flow is set by the truncation radius of the cool disc.

This sweeps inwards as the source makes a transition from the low/hard to high/soft

state (DGK07). The surface density of a misaligned flow drops off at an inner radius

greater than the last stable orbit (Fragile et al 2007). The expected increase in QPO

frequency with spin is mostly counteracted by the increasing inner radius in our (albeit

speculative) models for ri. This gives a maximum predicted QPO frequency of 6-

10 Hz irrespective of spin, as observed in all BHB. Thus while the QPO mechanism

fundamentally depends on black hole spin, the behaviour of the inner radius of the hot

flow means that it does not give a simple diagnostic of a∗.

The QPO arises from the hot flow, so naturally modulates the hard X-ray flux

through a combination of self occultation, projected area and relativistic effects. These
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become stronger as a function of inclination and optical depth, as observed.

This gives the first mechanism for the QPO which predicts both its frequency and

spectral behaviour, and embeds it firmly in the models for the accretion flow and

associated jet. If confirmed by further numerical simulations, this solves the 20 year

mystery of how these characteristic frequencies arise in the accretion flow.



Chapter 3
A physical

interpretation of the

variability power

spectral components in

accreting neutron stars

3.1 Introduction

Neutron star binaries (NSBs) can be distinguished into two sub-types: the Z-sources

and the atoll sources, so named after the shape they trace out on an X-ray colour-

colour diagram. The Z-sources are the most luminous (L/LEdd > 0.5) while the atolls

are seen over the same range of Eddington fractions (∼ 10−3 − 1) as BHBs (see e.g.

van der Klis 2006; 1997). Since BHBs and atolls are both powered by accretion in a

similar gravitational potential, it should be possible to apply the ideas developed thus

far for BHBs to atoll sources.

The spectral evolution of atolls is often studied using a colour-colour diagram (CD).

Figure 3.1 shows a CD for 5 outbursts of the transient atoll source Aquila X-1, repro-

duced from Reig et al (2004). Here, hard colour is (9.7-16keV counts)/(6.0-9.7keV

counts) and soft colour is (3.5-6.0keV counts)/(2.0-3.5keV counts). This can be split

into 3 states: the extreme island state (EIS), the island state (IS) and the banana

75
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Figure 3.1: Colour-colour diagram for the atoll source Aquila X-1 for 5 different

outbursts (reproduced from Reig et al 2004). Hard colour is defined as (9.7-16keV

counts)/(6.0-9.7keV counts) and soft colour as (3.5-6.0keV counts)/(2.0-3.5keV counts).

The source traces out a characteristic C or atoll shape which can be split into the ex-

treme island state (EIS), island state (IS) and banana branch. The dashed arrow

illustrates increasing X-ray luminosity.
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branch. The dashed line points out increasing X-ray luminosity.

The main spectral differences between atolls and BHBs can be attributed to the

solid neutron star surface. For example, coherent pulses are caused by hotspots forming

on the neutron star surface, either due to larger scale magnetic fields (the atoll sub-

class know as millisecond accreting X-ray pulsars; Gierlinski & Done 2002a; Wilkinson

et al 2011; Liu et al 2007) or nuclear burning (X-ray bursts; Strohmayer & Bildsten

2006). Both processes give an excellent estimate of the neutron star spin frequency

with X-ray bursts in the millisecond X-ray pulsars SAX J1808.4-3658 and XTE J1814-

338 occurring at identical frequencies to the corresponding pulses within an error of

∼ 1 Hz (Chakrabarty et al 2003; Strohmayer & Bildsten 2003).

These spin constraints tell us that even the most rapidly spinning neutron stars are

only rotating at approximately half the Keplerian rotational frequency (at r ∼ 6). As

remarked in section 1.2.1, Newtonian gravity predicts that half of the rest mass energy

of the accretion flow is locked up in the kinetic energy of the accreting gas particles.

Material accreting onto the neutron star surface must therefore slow down to the spin

frequency of the neutron star and so a boundary layer forms in which the lost kinetic

energy is liberated as radiation. In General Relativity, the energy of the boundary

layer is even larger (Sunyaev & Shakura 1986; Sibgatullin & Sunyaev 2000) giving it

a comparable luminosity to the rest of the accretion flow. This will plainly affect the

spectrum, as will direct thermal emission from the surface due to irradiation and/or

conduction.

Figure 3.2 (reproduced from Done, Gierlinski & Kubota 2007) shows unfolded,

unabsorbed spectra for the atoll 4U 1705-44 (a) in the IS and (b) on the banana

branch with the model extrapolated beyond the low energy band pass of the PCA. We

see that, as for BHBs, the spectrum can be fit with disc (red), Comptonisation (blue)

and reflection (green) components. However, there are differences. The low energy

turn-off of the Comptonised emission is not tied to the disc temperature because the
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Figure 3.2: RXTE spectra of the atoll 4U 1705-44 (a) in the IS and (b) on the banana

branch, reproduced from DGK07. The spectra have been unfolded and unabsorbed

and the best fitting models have been extrapolated below the PCA bandpass (3keV).

Spectrum (a) is fit with a blackbody (red), its thermal Comptonisation (blue) and

reflection (green). Spectrum (b) is fit with a disc blackbody (red), Comptonisation

seeded by the (unseen) emission from the NS surface and reflection (green).

dominant source of seed photons is the thermal emission from the neutron star surface.

Also, we see that the Comptonised spectrum in (b) is so optically thick that it is nearly

thermal. It is possible to explain the different tracks followed by BHBs and atolls on a

CD by considering these extra processes (Gierlinski & Done 2002b; Done & Gierlinski

2003; Done, Gierlinski & Kubota 2007).

There are also comparisons to be drawn between the PSDs of black hole and neutron

star binaries. Atoll power spectra can also be approximately described as broad band

noise, characterised by low and high frequency breaks at fb and fh respectively, with a

LF QPO superimposed. Whereas fh remains roughly constant, fb moves with the QPO

frequency, fQPO. We can see by turning back to Figure 1.22, which shows fb plotted
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against fQPO for both black holes and neutron stars, that power spectral evolution is

very similar for both classes of object. In (a), the black points are for BHBs with the

red and blue points for atolls (the blue points are millisecond pulsars). In (b), the black

points are all of the points from (a), the red points are Z-sources and the blue points

are for objects which display two QPOs. It is clear that all of these objects (except

for possibly the Z-sources) lie on the same relation with the factor ∼ 10 difference in

average frequency between black holes and neutron stars consistent with a factor ∼ 10

mass scaling. This strongly implies that common processes give rise to these features

in both object classes (Wijnands & van der Klis 1999; Klein-Wolt & van der Klis 2008).

We can therefore interpret the power spectral evolution of atolls in the picture

developed thus far for BHBs, with the LF QPO produced by Lense-Thirring precession

of the entire hot inner flow. Numerical simulations show that angular momentum

transport in the accretion flow takes place via stresses (a.k.a. ‘viscosity’) generated

by the magneto rotational instability (MRI: Balbus & Hawley 1998). This process

generates fluctuations in all quantities (e.g. Krolik & Hawley 2002). However, the mass

accretion rate at any given radius cannot change faster than the local viscous timescale,

so fluctuations at each radius are damped on this timescale (Lyubarskii 1997; Psaltis

& Norman 2000; also see Titarchuck & Osherovich 1999; Misra & Zdziarski 2008 for a

slightly different approach). As illustrated in Figure 1.23, this gives rise to self-similar

fluctuation power between the viscous timescale at the inner and outer radii of the flow.

(Lyubarskii 1997; Churasov et al 2001; Nowak & Wagoner 1995; King et al 2004). The

inner radius of the flow is now presumably the neutron star surface, thus giving rise

to a constant component at fh. The evolution of the continuum power spectrum can

therefore determine the inner and outer radii of the flow, and these can be used to

predict the LF QPO frequency, to compare with that observed.

Atoll power spectra also display a pair of kHz QPOs, a feature not (unambiguously)

observed in BHB power spectra. The peak frequency of both the upper, fukHz, and
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lower, flkHz, QPO is seen to increase as the source spectrum softens such that it

correlates with the break frequency and the LF QPO. (see e.g. the reviews by van der

Klis 2005, hereafter vdK05; McClintock & Remillard 2006, hereafter MR06; and Done,

Gierlinski & Kubota 2007, hereafter DGK07). Relativistic precession models (Stella

& Vietri 1998; 1999) identify fukHz and flkHz respectively as some modulation of the

orbital, fφ(ro), and the perihelion precession, fpp(ro), frequencies, both evaluated at

the truncation radius.

This chapter is adapted from Ingram & Done (2010). In this paper, we studied atolls

with well constrained spins using the assumption that fukHz = fφ(ro) in order to give

an accurate determination of the truncation radius. This identification independently

constrains a key parameter of the LF QPO model. Hence we used the atolls to outline

a self-consistent model for all the observed components in the power spectrum.

3.2 The origin of the broad band power spectrum

We choose atoll sources with multiple observations showing the power spectral evolution

so as to test the model over a wide range of ro. We consider only low spin systems

(a∗ < 0.3), because higher spins lead to an equatorial bulge of the neutron star which

distorts space-time from being well described by the Kerr metric (Miller et al 1998).

This leads us to pick the atoll systems 4U 1728-34 and 4U 0614+09 (van Straaten et

al 2002), both of which have spin a∗ ∼ 0.2 and (assumed) mass M ∼ 1.4M⊙. Typical

power spectra of 4U 1728-34 and 4U 0614+09 are shown in the top and bottom panels

respectively of Figure 3.3. We see that the QPOs can be fit with narrow Lorentzians

with the broad band noise requiring a number of broad Lorentzians (although note

that the Lorentzian labelled Lh is sometimes referred to as the hectohertz QPO; e.g.

van Straaten 2002; van Straaten et al 2003; Di Salvo et al 2001).
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Figure 3.3: Power spectra and fit functions for 4U 1728-34 (top) and 4U 0614+09

(bottom), reproduced with the permission of van Straaten et al (2002) and the AAS.

Lorentzians represent the following components: the low frequency Lorentzian Lb

(peaking at fb; dashed line), the LF QPO (peaking at fQPO; dotted line), the high

frequency Lorentzian (peaking at fh; dot-dashed line) and the kHz QPOs (peaking at

flkHz and fukHz; triple dot-dashed). When there are two dashed lines present, as in

the bottom panel, we will refer to the left hand one as Lb2 and the right hand one as

LV LF with one assumed to be a continuation of Lb.
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3.2.1 Outer radius

The evolution of the high and low frequency breaks can be qualitatively explained in the

truncated disc/hot inner flow model. The inner radius of the flow remains constant at

the neutron star radius, so giving the constant high frequency power, while the outer

radius sweeps inwards, leading to the progressive loss of low frequency components

(Gierlinski, Nikolajuk & Czerny 2008). Quantitatively this can be modelled by each

radius generating noise power as a zero-centred Lorentzian with width ∆f = fvisc.

The viscous frequency fvisc = 1.5α(h/r)2fφ, where α is the Shakura-Sunyaev viscosity

parameter, h/r is the disc semi-thickness and fφ is the rotational frequency of fluid

particles within the flow. However, none of these are necessarily straightforward to

define. MRI simulations of black hole accretion flows show that α and h/r vary with

radius (e.g. Fragile et al 2007, 2009). Additionally, h/r should change during state

transitions as the hot inner flow collapses. In neutron stars especially, this collapse

marks the transition from the hard X-ray emission region being an extended optically

thin boundary layer which merges smoothly onto the hot inner flow, to a much more

compact boundary layer. As well as the impact of such a transition on h/r, the viscosity

mechanism in the boundary layer may well be very different to that of the standard

MRI, and the azimuthal velocity field is dominated by that of the star rather than

being Keplerian.

This makes neutron stars somewhat more complex than black holes. However, their

saving grace is that we can use their additional kHz QPOs to independently determine

ro assuming that fukHz = fk(ro) = c/[2πRg(r
3/2
o + a∗)] (it should be safe to assume fφ

at the inner edge of the disc to be Keplerian). The blue triangular points in Figure

3.4 show that this requires ro to decrease from 20 − 8Rg, consistent with the expected

change in radius from the spectral softening seen from the island state to the lower

banana branch (Barret 2001).

The square magenta points in Figure 3.4 show the high frequency break (hectohertz)
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Figure 3.4: Plot of characteristic frequencies plotted against ro as inferred from the

assumption fukHz = fk(ro). The blue triangular points represent fukHz and the square

magenta points represent fh. The orange crossed points represent the LF QPO fre-

quencies and the circular points the low frequency break. The black points are for

power spectra where there is no ambiguity over what the break frequency is whereas

the red points are for fb = fb2 and the green points for fb = fV LF .
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frequency, which remains approximately constant as discussed earlier and the crossed

orange points show the LF QPO frequency. This correlates with the low frequency

break (e.g. Wijnands & van der Klis 1999), which is represented by the circular points.

Of these, the black points represent data where fb is unambiguously identified in the

power spectra. However, this becomes difficult at the highest ukHz QPO frequencies

(i.e. smallest radii) as there is an additional component observed in the low frequency

power spectrum e.g. the lower panel of Figure 3.3, where two low frequency Lorentzians

are required. It is not immediately clear which one of these corresponds to fb e.g. van

Straaten et al (2002) refer to the lowest frequency Lorentzian as Lb and call the other

LV LF while Altamirano et al (2008) put Lb on the right and term the other Lb2. Here

we only use Lb where this break is unambiguously determined by the data. Where

there are two competing low frequency components we refer to the lowest frequency

one as Lb2 and the other as LV LF . The green points in Figure 3.4 represent fV LF

whereas the red points represent fb2. The green points connect smoothly onto the

black points where fb is unambiguously determined, while the red points do not. Thus

it seems most likely that the higher of the two low frequency components represents

the continuation of the break frequency determined by ro.

Of these 6 points with a split break frequency, 4 are from observations of 4U 1728-34

and 2 from 4U 0614+09. If we analyse the colour-colour diagram of 4U 1728-34 (Di

Salvo et al 2000), we see that these 4 observations (9-12 of 19) occur just before the

transition between the island state and the banana branch. Intriguingly, the geometry

inferred from models of the spectral evolution require an overlap between the hot flow

and truncated disc close to the transition. The splitting of the break frequency then

has an obvious interpretation with the outer radius of the hot flow being larger than

the inner radius of the thin disc. The hot flow in this overlap region will have smaller

scale fluctuations, as the size scale of the magnetic field is limited by the thin disc in

the mid plane. Thus fb2 can be interpreted as the viscous frequency at the edge of the
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corona with fV LF being the viscous frequency at the truncation radius.

3.2.2 Inner radius

We assume that the lower break frequency, fb is identified with fvisc(ro), and we use the

independent constraints on ro from the ukHz QPO above to track out the unknown

variation in fvisc (∝ α(h/r)2fφ(r)). We parameterise this as a power law, so that

fb = fvisc(ro) = Ar−γ
o . We then use the best fit values of A and γ derived from the low

frequency break to determine ri = [(Afh)]1/γ assuming that the high frequency break

in the noise power (hectohertz component) is the viscous frequency at ri.

However, as discussed in the previous section, we do not necessarily expect this

power law representation of fvisc(r) to stay constant as the truncation radius sweeps in

and the source spectrum softens due to the collapse of the more extended hot flow into

the boundary layer, with its potentially very different viscosity and azimuthal velocity.

Instead we split the radial range in ro into four groups of points, each described by a

different best fit power law. The top panel of Figure 3.5 shows this best fit power law

relation for each group of points, with a clear change in both slope and normalisation

as the truncation radius moves inwards. Quantitatively, the inferred value of γ moves

from 3.25 (blue), 3.02 (magenta), 2.88 (green) to 2.69 (red). We can now use our

moving power law representation in order to extrapolate values for ri = [(Afh)]1/γ

taking care to use the correct values of γ and A for a given value of fh.

The lower plot of Fig. 3.5 shows the derived values for ri with error bars including

the systematic error in determining the best fit values of A and γ. We infer from

this that the radius of the neutron star lies at ri ≈ 4.5 ± 0.04 ≈ 9.2 ± 0.1 km. This

would mean that the neutron star is slightly smaller than its own last stable orbit

(5.3 Rg for a∗ = 0.2), indicating a soft equation of state, but we caution that the exact

value depends on the accuracy of our assumed power law representation of the viscous

frequency with radius. Any more complex form will extrapolate to a different inner
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radius, and the value of this radius may also be affected by time dilation. Nonetheless,

the remarkable constancy of the derived inner radius gives some confidence in our

approach, and the value of 9.2 km is very close to the ‘canonical’ assumption of 10 km

for a 1.4M⊙ neutron star.

3.3 Testing Lense-Thirring in atolls

Now we have both the inner and outer radius for the hot flow, we can directly calculate

the predicted Lense-Thirring precession frequency. However, there is one additional free

parameter which is the mass distribution in the hot flow, which can be parameterised

by ζ , the radial dependence of the surface density, Σ = Σi(r/ri)
−ζ (see IDF09 and

Fragile et al 2007). The LF QPO frequency is then predicted to be

fprec =
(5 − 2ζ)

π(1 + 2ζ)

a∗[1 − (ri/ro)
1/2+ζ ]

r
5/2−ζ
o r

1/2+ζ
i [1 − (ri/ro)5/2−ζ ]

c

Rg
(3.1)

Simulation data for black holes shows ζ ∼ 0 (e.g. Fragile et al 2007) but neutron

stars have a solid surface which could give a rather different situation where the flow

is increasingly concentrated on the neutron star surface as the accretion rate increases.

Nonetheless, assuming ζ = 0, and taking ri fixed at 4.5 (see previous section) gives

quite a good fit (grey line) to the observed LF QPO (black circles) as shown in Fig 3.6.

The fit can be made even better by allowing ζ to vary. As ro decreases the ex-

pectation is that the flow goes from being similar to the BH case, to being more and

more concentrated in the boundary layer i.e. we expect an increase in ζ as the dense

boundary layer begins to dominate the surface density of the flow. Such an increase in

the surface density profile is also implied by the change in viscous frequency implied

from the previous section, since surface density is inversely proportional to the radial

velocity vr = Rfvisc. We fit our Lense-Thirring model to the four different sets of points

from before and obtain excellent agreement with observation if ζ takes the values −0.7

(blue), −0.3 (magenta) 0.6 (green) and 2.7 (red) i.e. ζ increases with decreasing ro
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Figure 3.5: Top panel: Break frequency plotted against truncation radius, ro, with four

separate power law fits: γ = 3.25 (blue), 3.02 (magenta), 2.88 (green) and 2.69 (red).

This treatment assumes that the viscous frequency is given by a power law, the index

of which becomes less negative as ro reduces. fb is then fvisc(ro) and ri is the value of

r that gives fvisc(r) = fh. Bottom panel: Inferred values for ri plotted against ro.
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Figure 3.6: LF QPO frequency plotted against truncation radius (black circles). The

grey line tracks Lense-Thirring precession frequency of the inner flow with ri = 4.5 and

ζ = 0. The blue, magenta, green and red squares are for ζ = −0.7, −0.3, 0.6 and 2.7

respectively and use the ri values from the bottom plot of Figure 3.5.
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as expected. However, a quantitative understanding of how these parameters should

interact in neutron stars is a very difficult goal as the boundary conditions associated

with accreting neutron stars are so poorly understood.

3.4 Conclusions

We show that the broadband continuum noise power and LF QPO seen in atolls and

BHB can be self-consistently explained in the same truncated disc/hot inner flow model

which describes their spectral evolution. We test this on the atoll systems, as these

have strong kHz QPOs which most probably pick out the truncation radius of the thin

disc, ro, so this key parameter is known independently. Using the standard assumption

that the upper of the two kHz QPOs marks the Keplerian frequency gives that ro

decreases from 20− 8 Rg during the marked spectral transition seen in atolls from the

hard (island) state to soft (banana branch) spectra.

The low frequency break seen in the noise power is then consistent with being the

viscous timescale of the hot flow at ro. All smaller radii in the hot flow contribute

to the noise power, giving the broad band continuum power spectrum. The highest

frequency noise component marks the viscous timescale at the inner edge of the hot

flow, ri. We use our parameterisation of fvisc to calculate ri and find that this remains

remarkably constant at ri ∼ 4.5 ≡ 9.2 km for a 1.4M⊙ neutron star.

The truncated disc model also gives a physical interpretation for the observed ‘split-

ting’ of the lowest frequency noise component seen close to the spectral transition. At

this point the spectral models predict that the disc overlaps the hot flow, so there is

a component which tracks turbulence in the hot flow within the disc inner radius, and

another component which tracks the true outer edge of the hot flow which extends over

the disc.

With all of the parameters of the truncated disc geometry constrained, we are then

able to test the Lense-Thirring precession model for the LF QPO presented in IDF09.
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This gives a fairly good match to the data at large truncation radii, but increasingly

underestimates the QPO frequency as ro decreases. Nonetheless, it still only 25 per cent

too low even at the smallest ro. However, there is still one additional free parameter

which is the radial dependence of the surface density of the hot flow. Allowing this to

change so that the flow becomes increasingly concentrated towards ri as the truncation

rate decreases, as expected from the collapse of a hot flow into the boundary layer,

gives an excellent match to the data. However, we caution that the expected evolution

of the surface density is not well understood quantitatively for neutron stars.

It must also be noted that considering the whole flow to precess removes a previous

objection to Lense-Thirring precession as the origin of the LF QPO. If the LF QPO is

produced by Lense-Thirring at ro then this implies the moment of inertia of the neutron

star is too large (Markovic and Lamb 1998). Instead, in our model the LF QPO is

produced at some mass weighted radius between ro and ri with the weight increasingly

towards ri for softer spectra (higher frequencies). Thus for the lowest values of ro ∼ 8.5,

the LF QPO is predominantly produced by material at ri = 4.5 rather than at ro, so

the moment of inertia is correspondingly reduced.

Overall, we present a model of the power spectrum in which both broad band con-

tinuum and LF QPO components are interpreted physically. This forms a framework in

which the characteristic frequencies in the power spectrum can be used as a diagnostic

of the properties of the accretion flow in strong gravity.



Chapter 4
A physical model for

the continuum

variability and QPO in

accreting black holes

4.1 Introduction

Despite being known about for ∼ 25 years (e.g. van der Klis 1989), there is still no con-

sensus in the literature as to the origin of the QPO and broad band variability observed

in the PSD of black hole and neutron star binaries. There are multiple potential models

for the LF QPO which fall into 2 main categories: those associated with a geometrical

misalignment of the accretion flow and black hole spin (Stella & Vietri 1998; Fragile,

Mathews & Wilson 2001; Schnittman 2005; Schnittman et al 2006; Ingram, Done &

Fragile 2009, hereafter IDF09), and those associated with wave modes of the accretion

flow (Wagoner et al 2001; Titarchuk & Oscherovich 1999; Cabanac et al 2010). Most

of these concentrate on matching the QPO frequency, but the spectrum of the QPO

gives additional constraints. This is similar to that of the spectrum of the broadband

variability, showing that they both arise predominantly from the Comptonising region

rather than the disc (e.g Gilfanov et al 2003; Sobolewska & Życki 2006), favouring

models in which the modulation arises directly from the Comptonised emission e.g.

IDF09, where the QPO is set by Lense-Thirring (vertical) precession of the entire hot

91
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inner flow interior to the disc truncation radius at ro, or by a mode of the hot inner

flow (Cabernac et al 2010).

The physical origin for the viscosity of the flow is the Magneto-Rotational Instability

(MRI: Balbus & Hawley 1991). This is inherently variable, with large fluctuations

in all quantities, both spatially and temporally (Krolik & Hawley 2002), making it

a natural origin for the broad band noise (Noble & Krolik 2009; Ingram & Done

2010; Dexter & Fragile 2011). However, these fluctuations also effectively shred any

coherent wave modes in the flow (see e.g. Reynolds & Miller 2009; Henisey et al 2009).

This casts doubt on trapped wave propagation as the origin of the LF QPO, leaving

Lense-Thirring precession as the most likely candidate. As shown in the two previous

chapters, precession of the entire hot flow from ro to ri can match the observed LF

QPO frequency in both BHBs (IDF09) and neutron stars (NS; Ingram & Done 2010),

and provides a clear mechanism to match the spectrum as this is a modulation of the

Comptonising region.

Thus the entire power spectrum can be explained by MRI fluctuations in a hot

flow, which is also precessing around the black hole. However, the power spectrum

does not represent all the information contained in the variability, as it uses only

Fourier amplitudes, not phases. This is important as the light curves contain additional

correlations which give a linear rms-flux relation (Uttley & McHardy 2001). This is

equivalent to the flux on these timescales having a log-normal distribution (Negoro et

al 2000), and rules out simple models of the variability where the light curve is made

from adding together multiple, uncorrelated events (Uttley & McHardy 2001; see also

DGK07). Instead, this can be produced if the light curve is made from a multiplicative

process, rather than an additive one. Again, the MRI in the hot flow gives a physical

interpretation to this. The MRI at large radii produces intrinsic fluctuations in the

density of the flow. These fluctuations propagate down to smaller radii on a viscous

timescale, so all higher frequency fluctuations are smoothed out. These smoothed and
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lagged fluctuations in mass accretion rate modulate the MRI fluctuations produced

by the next radius, and so on, down to the smallest radii in the flow (Luybarski

1997: hereafter L97). This naturally produces a light curve which has an rms-flux

relation/log-normal flux distribution (Uttley, McHardy & Vaughan 2005; Kotov et al

2001: hereafter K01; Arevalo & Uttley 2006: hereafter AU06; also see Misra & Zdziarski

2008).

This chapter is adapted from Ingram & Done (2011) in which we use these ideas to

build a model for the entire power spectrum, where the broadband noise arises from

propagation of MRI fluctuations through the hot flow from ro to ri and the LF QPO

arises from Lense-Thirring precession of the same hot flow.

4.2 The simplified model

We first introduce the simplified toy model considered in IDF09 and Ingram & Done

(2010), whereby the low frequency break, fb, occurs at the viscous frequency of the trun-

cation radius and the QPO frequency, fQPO, is the precession frequency of the flow. Us-

ing the Shakura Sunyaev (1973) viscosity prescription, fb = fvisc(ro) = α(h/r)2fk(ro) =

−vr(ro)/Ro where α is the viscosity parameter, h/r the flow semi-thickness, fk the Ke-

plerian frequency and vr is the infall velocity. The Lense-Thirring precession frequency

is then a weighted average of the point particle precession frequency at each radius in

the hot flow, so

fprec = fQPO =

∫ ro

ri
fLTfkΣr3dr

∫ ro

ri
fkΣr3dr

(4.1)

(Liu & Melia 2002) where ri is the innermost point of the flow (i.e. the surface density

is negligible interior to this), Σ is the surface density and

fLT = fk

[

1 −
√

1 − 4a∗
r3/2

+
3a∗
r2

]

(4.2)

is the point particle Lense-Thirring precession frequency for a dimensionless spin pa-

rameter a∗ (Merloni et al 1999). Here, r is dimensionless, expressed in units of
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Figure 4.1: The QPO-break relation plotted in dimensions of c/Rg for a fiducial mass

of 10 and 1.4M⊙ for black holes (black circles) and neutron stars (red triangles) respec-

tively. The fact that these frequencies lie on the same relationship for the two objects

implies a common physical origin. The lines are predictions of the simplified model for

spins of a∗ = 0.2 (dot-dashed), 0.5 (dashed) and 0.998 (solid) with ro ranging from ri

to 100 and ri = rbw. For the blue lines, we assume the viscous frequency to be pro-

portional to the Keplerian frequency. For the green lines, we assume fvisc = Br−mfk

where B = 0.03 and m = 0.5 and find good agreement with the trend in the data.



4. A physical model for the continuum variability and QPO in accreting
black holes 95

Rg = GM/c2. In the weak field limit (a∗ << 1 and/or r >> 1), equation 4.2 re-

duces to

fLT ≈ fnodal =
a∗
πr3

c

Rg

, (4.3)

(e.g. van der Klis 2006; Stella & Vietri 1998). An analytic form for the integrals in

equation 4.1 can therefore be obtained in the weak field limit if we assume Σ ∝ (r/ri)
−ζ

between an inner and outer radius for the hot flow ri and ro (Fragile et al 2007, IDF09).

This gives

fQPO =
(5 − 2ζ)

π(1 + 2ζ)

a∗[1 − (ri/ro)
1/2+ζ ]

r
5/2−ζ
o r

1/2+ζ
i [1 − (ri/ro)5/2−ζ ]

c

Rg

. (4.4)

Hence this model predicts the relation between fQPO and fb which can be compared

to the multiple observations of these frequencies in both black holes and neutron stars

(e.g. Wijnands & van der Klis 1999; Klein-Wolt & van der Klis 2008). The observed

relation is continuous, implying that these frequencies show the same behaviour in

both sources, i.e. that neither can depend strongly on any property of the neutron

star surface but are instead set by the accretion flow itself. We re-plot this data in

Figure 4.1, normalising the frequencies by mass for a fiducial mass of 1.4 and 10M⊙ for

neutron stars (red triangles) and black holes (black circles), respectively. This shows

even more clearly that the two different types of object show the same observed relation

between these frequencies as they now occupy the same range.

The blue lines show the prediction of the toy model, where the hot flow has constant

α = 0.2 and h/r = 0.2, surface density constant with radius (i.e. ζ = 0: Fragile et

al 2007) between ro and ri, where ri is given by the bending wave radius. Warps in

a large scale height flow are communicated via bending waves which have wavelength

λ ∝ r9/4 and so are smooth at large r and oscillatory at small r. The bending wave

radius (ri = 3.0(h/r)−4/5a
2/5
∗ ; Fragile et al 2007; 2009; Fragile 2009; IDF09) marks the

transition between the two regimes. We show a∗ = 0.2 (dot-dashed), a∗ = 0.5 (dashed)

and a∗ = 0.998 (solid). While this very simple model predicts frequencies which are

fairly close to the observations, it is clear that the gradient of this model in log space
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is different from that observed.

Plainly the assumptions above are very simplistic. Global analytic models of the

hot flow with a standard α viscosity do not have fvisc ∝ fK as they depart from

the self-similar solutions at r < 100 due to the requirement that the flow becomes

supersonic (Narayan, Kato & Honma 1997; Gammie & Popham 1998). Full numerical

simulations also show that α is not constant (e.g. Fragile et al 2007; 2009). Ingram &

Done (2010) also suggest that ζ can change in neutron stars as the material piles up

onto a boundary layer. However, the similarity between the mass scaled frequencies

seen in neutron stars and black holes shown in Fig. 4.1 make this now seem unlikely

to be an important effect as it would not affect the black holes.

Here then we simply assume that α(h/r)2 is a power law function of radius, so that

fvisc = Br−mfK . We choose values for B and m which allow us to match the data in

Figure 4.1. We see good agreement with the observations for B = 0.03 and m = 0.5

(green lines), again for a∗ = 0.2 (dot-dashed), a∗ = 0.5 (dashed) and a∗ = 0.998 (solid).

We use this specific prescription for the viscous frequency in the following section.

4.3 The full model

We consider a model where local fluctuations in the mass accretion rate of the flow

propagate down towards the central object (e.g. L97; K01). Our method mainly follows

that of AU06, with a few small differences.

We split the flow into annuli, characterised by a radius rn and width drn, with

logarithmic spacing so drn/rn is a constant for all annuli from ro to ri. We assume that

the generated power spectrum of mass accretion rate fluctuations at radius rn is given

by a zero centred Lorentzian cutting off at the viscous frequency

| ˜̇m(rn, f)|2 ∝ 1

1 + (f/fvisc(rn))2
(4.5)

where fvisc = − 1
Rg
vr/r = Br−mfK as discussed at the end of section 4.2 and a tilde
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denotes a Fourier transform. This approximates the MRI generating a white noise

of variability power which is then damped by the response of the flow on timescales

shorter than tvisc(r). Note that magnetic fields can also affect the mass accretion rate

by driving direct angular momentum loss through an outflow (jet/wind). This process

is damped, not on the viscous timescale, but on the time it typically takes for magnetic

field fluctuations to randomly align over enough neighbouring annuli to drive significant

angular momentum loss (tmag ; King et al 2004). We ignore this effect here .

We start at the outermost annulus, so r1 = ro, and generate the time dependent fluc-

tuations in mass accretion rate, ṁ(r1, t), from equation 5.4 using the method of Timmer

& Koenig (1995). We normalise each ṁ(rn, t) to have a mean of unity and fractional

variability σ/I = Fvar

√
Ndec where Fvar is the fractional variability per decade in radial

extent and Ndec is the number of annuli per decade in radial extent. Thus the mass

accretion rate across the first annulus is Ṁ(r1, t) = Ṁ0ṁ(r1, t) where Ṁ0 is the mean

mass accretion rate. This then propagates inward to the second annulus, travelling a

distance dr1, which takes a time tlag = Rg dr1/vr(r1). When it arrives at r2, it has

been filtered by the response of the flow which we take from Psaltis & Norman (2000)

to get

˜̇Mf (rn, f) ∝
˜̇M(rn, f)

√

1 + [(drn/rn)(f/fvisc(rn))]2
. (4.6)

The mass accretion rate at the nth annulus is then given by

Ṁ(rn, t) = Ṁf(rn−1, t− tlag)ṁ(rn, t) (4.7)

where tlag = Rg drn/vr(rn). However, equation 4.6 only filters out fluctuations on

much shorter timescales (by a factor dr/r) than the typical timescales generated in

the annulus (equation 5.4) and so we can say ˜̇Mf (rn, f) ≈ ˜̇M(rn, f) to a very good

approximation. The mass accretion rate at the nth annulus is therefore given by

Ṁ(rn, t) = Ṁ(rn−1, t− tlag)ṁ(rn, t), (4.8)

until the N th annulus which is ri.
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To transform this into a light curve requires an emissivity, ǫ(r) such that the lu-

minosity from each annulus is given by dL(r, t) = 1/2 Ṁ(rn, t)ǫ(r)rndrnc
2 where we

assume the emissivity ǫ(r) ∝ r−γb(r) where b(r) is a boundary condition. For a Newto-

nian thin disc, γ = 3 and we have the stress free inner boundary b(r) = 3(1−
√

ri/rn)

but we note that the large scale magnetic fields present in the large scale height flow

can give a stressed inner boundary condition b(r) = 1 (Agol & Krolik 2000; Beckwith

Hawley & Krolik 2008). Also γ is, in general, a free parameter since the emission need

not exactly follow the radial dependence of gravitational energy release as long as the

total energy release is gravitational. A different emissivity for different energy bands

gives a way for the model to predict frequency dependent time lags between hard and

soft X-ray bands (K01; AU06).

4.4 The fiducial model

Figure 4.2b shows 20s of the resulting light curve for a fiducial set of input parameters

for a black hole mass of M = 10M⊙ and a spin of a∗ = 0.5. We assume ri = 2.5, ro = 20,

Fvar = 0.4, B = 0.03, m = 0.5, γ = 4.5 with a stressed inner boundary condition (see

Section 4.2). We calculate the light curve with 222 time points, corresponding to

∼ 4096 s (a typical length for an RXTE observation) of data on a time binning of

0.00097 s, and 30 radial bins per decade in radius.

Figure 4.2a (red) shows the PSD of this light curve, while the black and green

points show the effect of changing the number of radial bins per decade to Ndec = 10

and Ndec = 50, respectively. Clearly, the high frequency power is not well resolved with

only 10 radial bins per decade, while the difference between 30 and 50 is very small.

Hence we use Ndec = 30 for the fiducial model. For all PSDs, we use a combination of

ensemble averaging and geometric rebinning. Each periodogram is calculated for 128s

of data. Since we simulate 4096s of data, we can average over M = 32 realisations.

Geometrical rebinning is always carried out using a rebinning constant of c0 = 1.05.
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Figure 4.2: Top (a): The simulated power spectral density calculated using 10 (black),

30 (red) and 50 (green) radial bins per decade. We see that 10 bins is not enough to

resolve the high frequency power but 30 bins is a good approximation. Bottom left

(b): A 20 second section of the simulated light curve (using 30 radial bins per decade).

Bottom right (c): The rms-flux relation for the light curve shown. We see that this is

linear as observed.



4. A physical model for the continuum variability and QPO in accreting
black holes 100

The PSD shows the same characteristic broadband noise features as are seen in the

power spectra of black hole binaries, namely band limited noise, with low and high

frequency breaks, peaking between 0.1-10 Hz. Figure 4.2c shows the rms-flux relation

for the fiducial light curve, derived from splitting this into 4s segments. As with the

data (Uttley & McHardy 2001), we see a large scatter before binning (grey points) but,

after binning (red crosses), we retrieve a linear flux-rms relation (AU06).

4.5 The truncated disc/hot inner flow model

The major prediction of the truncated disc/hot inner flow model is that the spectral

softening as the source brightens from a low/hard through to intermediate states is

caused by the truncation radius of the thin disc moving inwards (e.g. DGK07; Gier-

linski, Done & Page 2008). This radius also sets the outer edge of the hot flow, so this

predicts that ro decreases also.

Figure 4.3 shows the predicted PSD for ro = 50, 20 and 10, as required to match the

energy spectral evolution (and low frequency QPO: IDF09), with all other parameters

held constant at the fiducial model values described above. The model predicts that

decreasing the outer radius of the hot flow leads to less low frequency power, while the

high frequency power remains constant. This is precisely what is seen in the PSD of

the data (DGK07; Gierlinski, Nikolajuk & Czerny 2008).

This is the first physical model of the power spectral behaviour which naturally

reproduces the observations. The low frequency break is close to the frequency of the

viscous timescale at ro, as proposed by e.g. Churazov et al (2001); Gilfanov & Areief

(2005); DGK07; Ingram & Done (2010). However, the high frequency break is not at

the viscous frequency at ri. We explore the origin of the high frequency break below.
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Figure 4.3: PSD calculated using the fiducial parameters with ro = 50 (black), 20 (red)

and 10 (green) with total fractional variability generated per decade in radius, Fvar,

held constant. This has the same characteristics as the observed PSD of the data as the

source softens from a low/hard to intermediate state, namely that the low frequency

power drops while the high frequency power remains constant.
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Figure 4.4: Left (a): The grey lines are the power spectra of 5 simulated ṁ(rn, t)

functions. We simulate 30 of these functions but, for clarity, only plot 5 without

showing the errors. The red line is the PSD of the light curve created by assuming there

to be no propagation (i.e.Ṁ (rn, t) = ṁ(rn, t)) and an emissivity index of 4.5. Because

the functions we sum over are uncorrelated, the PSD of the light curve looks like the

(weighted) sum of the 100 PSDs with the only difference being the normalisation.

Right (b): The grey lines are now the power spectra of Ṁ(rn, t) functions, i.e. we now

allow propagation. These are correlated at low frequencies but not at high frequencies

allowing the model to reproduce the observed linear sigma-flux relation. The red line

is the PSD of the light curve if we do not consider the propagation time between annuli

(i.e. tlag = 0) and the blue line results if we do consider the propagation time. We see

that the red line differs from the top plot in 2 ways: the normalisation is much higher

and high frequency noise is lost. However, much more high frequency noise is lost

for the blue line indicating that considering lags reduces high frequency noise. These

plots illustrate that the prediction from shot noise models such as the top plot that the

observed high frequency break is the viscous frequency at the inner radius breaks down

once we consider a more advanced model capable of reproducing other observational

properties.
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4.5.1 Effect of propagation on the PSD shape

Figure 4.4a shows a model where the variability at each radius is a Lorentzian at the

local viscous frequency (see equation 5.4), but with no propagation so there is no causal

connection between annuli. We show the PSD of the resulting ṁ(rn, t) functions from

5 of the 25 individual radial annuli (rings 1,7,13,19 and 25), from ro to ri as the grey

lines on Figure 4.4a. These peak, as expected, at fvisc(ro) and fvisc(ri). The total

variability (red) is an emissivity weighted sum of these fluctuations, but since they are

uncorrelated, the effect of this is to strongly dilute the total variability seen. This total

PSD does have fh ≈ fvisc(ri) ∼ 12Hz as our emissivity weighting strongly favours the

smallest radii, but fb > fvisc(ro) (∼ 10Hz and ∼ 0.3Hz respectively). In fact, to achieve

fPf ∝ f 0 as observed, we would have to assume a completely flat emissivity profile,

which seems very unlikely. More fundamentally, such uncorrelated fluctuations cannot

reproduce a linear rms-flux relation.

This is in sharp contrast to a model where fluctuations propagate down in radius.

The resulting PSD from the same set of radii are shown in Figure 4.4b, where the

power in each annulus increases strongly with radius as the MRI power generated in

each annulus is modulated by the propagating fluctuations from all radii prior to it.

The red line shows the resulting emissivity weighted power spectrum from the total

flow assuming that time lags between radii are negligible. This preserves the maximum

correlation between variability at different annuli i.e. gives the least dilution between

fluctuations in different annuli. This is very different to that in Figure 4.4a, both

in normalisation and shape. The normalisation is dramatically enhanced because the

long timescale fluctuations are correlated together, so at low frequencies the power from

different radii add together as they are in phase. This gives fb ≈ fvisc(ro) ∼ 0.3Hz as the

correlated variability weighting to larger radii is stronger than the emissivity weighting

to smaller radii. However, at the fastest timescales, the power is mainly generated at

the smallest radii, so it does not correlate with any other fluctuations generated at
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larger radii, so is not enhanced in the same way.

The blue line shows how time delays dramatically change the high frequency break

as the propagation time prevents the mass accretion rate from two consecutive annuli

from being correlated on time scales shorter than tlag. This reduces the correlation

between the fastest timescale variability, strongly suppressing high frequency power.

Thus in the propagating fluctuation model, the low frequency break is fb ≈ fvisc(ro) but

fh << fvisc(ri), which appears to be consistent with the King et al (2004) model for the

case tmag >> tvisc (see Figure 3b therein). This makes intuitive sense, since this limiting

case prevents angular momentum loss driven directly by magnetic field fluctuations

from significantly affecting the short timescale variability, effectively aligning their

assumptions with ours.

4.5.2 Emissivity and boundary condition

We use an emissivity to translate the fluctuations in mass accretion rate to a luminosity.

This emissivity is in two parts, firstly a power law dependence in radius, and secondly

a boundary condition. Our fiducial model parameters have γ = 4.5 and a stressed

boundary condition, b(r) = 1. This emissivity peaks at ri, so fluctuations from the

very smallest radii are given most weight.

Figure 4.5 compares this (black line) with results using the same power law radial

dependence, but with a stress-free inner boundary condition (red line), b(r) = 3(1 −
√

ri/r). This emissivity goes to zero at the innermost radius, so the highest frequency

fluctuations are strongly suppressed. However, this also has a more subtle effect on the

region between the two breaks, as there is a gradual decrease in weighting of fluctuations

below r = 2ri, and a stronger weighting to the fluctuations at larger radii, giving the

tilt between fb and fh.

This effect is similar to that of changing the radial dependence of the emissivity.

The green line shows γ = 3 with a stress-free boundary condition, showing an even
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Figure 4.5: The PSD calculated assuming b(r) = 1 and γ = 4.5 (black), b(r) =stress

free and γ = 4.5 (red), b(r) =stress free and γ = 3 (green), all with ri = 2.5. The blue

points are for b(r) =stress free, γ = 3 and ri = 6. This illustrates that we can reduce

the predicted high frequency noise by changing boundary condition, emissivity index

or inner radius.
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stronger tilt to the PSD between fb and fh (green). However, it is also similar to

changing the inner radius of the flow. The blue line in Figure 4.5 shows the resulting

PSD from γ = 3 and a stress-free inner boundary condition with ri = 6. Thus there

are degeneracies between the two parts to the emissivity and the inner radius, making

it unlikely that they can all be uniquely constrained by the observed PSD.

It is clear from this analysis that while the low frequency break is fairly strongly

linked to the viscous timescale of the outer radius of the hot flow (as assumed in section

4.2), the high frequency break is rather more complex, depending on propagation

correlations, emissivity, boundary condition and inner radius in addition to the viscous

timescale. This makes it difficult to directly associate the high frequency break with any

physical parameter of the models. Instead, we now use the additional information from

the QPO to remove some of the degeneracies inherent in this model for the broadband

noise.

4.6 The QPO: Precession and surface density

For our fiducial model, we used the observed relation between the low frequency break

and LF QPO to set the radial dependence of the viscous timescale, assuming that

the low frequency break was set by the viscous timescale at ro and that the QPO

was Lense-Thirring precession of the entire hot flow from ro to ri (Section 4.2). This

assumed that the surface density of the hot flow, Σ = Σ0(r/ri)
−ζ between ro and

ri, with ζ = 0. However, the broadband noise model described above calculates a

self-consistent surface density as mass conservation implies

Ṁ(rn, t) = −2πrnvr(rn)Σ(rn, t), (4.9)

(Frank, King & Raine 1992) where vr is now expressed in units of c, Ṁ in units of Ṁ0,

Σ in units of Ṁ0/(cRg) and r in units of Rg. Using our velocity prescription, we can
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then easily show

Σ(rn, t) =
Ṁ(rn, t)r

m−1/2

B
. (4.10)

This means that, for the time averaged surface density, ζ = 1/2 − m giving extra

physical motivation for the parameters used in section 4.2 (ζ = 0 and m = 1/2). Note

that equation 4.10 results from assuming the angular momentum loss from outflows to

be negligible (Pringle 1981; Livio & Pringle 1992).

Figure 4.6 shows Σ(rn) plotted at a number of different times (0, 256, 512, ..., 1792 s)

along with the corresponding Ṁ(r, t) function. Ṁ(r, t) is quite clearly more variable at

small r. This is because we have assumed the variability generated in each logarithmic

annulus to be the same but annuli at smaller radii include also the fluctuations that

have propagated down from large r and so the emitted variability is greater (see Figure

4.4b). We do not see a drop off in surface density at the bending wave radius like that

seen in simulations (e.g. Fragile 2009) because we assume that the infall velocity can be

given by a power law. It is clear that, for the surface density drop off at a given point,

the infall velocity must accelerate at that point. In a future paper, we will investigate

this model with a more advanced velocity prescription.

Therefore the broadband noise model above, set by ri, ro and Fvar predicts the QPO

frequency at any point in time. The fluctuations in surface density with time predict

that the QPO frequency changes, i.e. it is quasi–periodic rather than truly periodic.

However, the precession frequency will not respond instantaneously to these changes,

as their effect is only communicated across the entire hot flow by bending waves. These

travel at the sound speed, faster by a factor ∼ α than the viscous timescale across the

region, so we calculate the QPO frequency every ∼ 4 s rather than at every point. We

then average these values to get the predicted QPO frequency (by combining equation

4.1 and equation 4.2 numerically rather than assuming the weak field limit as before)

and use the dispersion around this to set the r.m.s. variance of these QPO frequencies,

σQPO.
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Figure 4.6: Top: Mass accretion rate as a function of radius shown here at a number

of different times. Bottom: Surface density as a function of radius shown at the same

times as the lines of corresponding colour in the top plot. This is calculated by applying

mass conservation in the flow.
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Fig. 4.7 shows σQPO/fQPO as a function of fQPO as ro varies from 300–10 in the

fiducial model. This decrease in ro not only leads to an increase in QPO frequency, but

also to a decrease in the QPO width, or equivalently, an increase in its coherence/quality

factor Q = fQPO/σQPO. An increase in QPO coherence during the transition from

low/hard state to hard intermediate state is commonly observed in BHBs (although Q

tends to plateau at ∼ 10 for fQPO & 1; Belloni, Psaltis & van der Klis 2002; Rao et al

2010). Our model provides the first physical explanation for this effect as the smaller

the radial extent, the higher the QPO frequency, but also the smaller the fluctuation

power, giving smaller jitter in frequency. The red squares in Fig 4.7 show the observed

frequency and width of the QPO from data from the 1998 rise to outburst of the BHB

XTE J1550-564 (see section 7). The model matches the trend in the data fairly well,

and forms a lower limit to the width of the QPO. However, other effects such as the

on-time of the QPO (see Lachowicz & Done 2010) can decrease the coherence of the

signal, so our model only predicts an upper limit for the quality factor, Q, of the QPO.

The model also predicts another correlation, one between the QPO frequency and

flux on short timescales. The top plot of Figure 4.8 shows this for the fiducial model

(i.e. ro = 20), with precession frequency calculated every 4s together with the instan-

taneous luminosity at that time. After binning (red crosses), there is a clear linear

relation between the two. This happens because both the QPO frequency and the

luminosity depend on the mass accretion rate fluctuations. A perturbation in mass

accretion rate at large r will lead to a perturbation in the surface density. This will

reduce the precession frequency but will have little effect on the luminosity because the

emissivity is quite steeply weighted towards small r. Later on, this perturbation will

have propagated inwards to small r where it has the effect of increasing the precession

frequency, but now also has much more of an effect on the luminosity. Heil, Vaughan

& Uttley (2011) have recently discovered this correlation in data from the 1998 rise

to outburst of XTE J1550-564 (a similar correlation was previously discovered for a
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Figure 4.7: Fractional variability of the precession frequency plotted against the average

precession frequency (black line). These are calculated by measuring the precession

frequency every 4s for a number of different truncation radii, ranging from 300 − 10,

and taking the average and standard deviation over a 2048s duration. The red squares

show the observed QPO width and frequency in data from the 1998 rise to outburst

of XTE 1550-564. We see broad agreement with the data, however, other effects such

as on-time of the QPO can decrease the coherence of the signal so we note that we are

only able to predict a lower limit for the width of the QPO
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Figure 4.8: Precession frequency plotted against luminosity, where both are calculated

at 4s intervals using the fiducial model parameters (grey points). After binning (red

crosses), we clearly see a linear relationship between the two quantities. This rela-

tionship has recently been discovered in data from the 1998 rise to outburst of XTE

J1550-564 (Heil, Vaughan & Uttley 2011), demonstrating the substantial predictive

power of this model.
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Figure 4.9: The full PSD calculated using the fiducial model parameters with ro = 50

(black), 20 (red) and 10 (green). Here, the QPO is represented by a Lorentzian centred

at the precession frequency with the width set by the r.m.s variance in precession

frequency (see text).

type-B QPO by Nespoli et al 2003). They also find that the gradient of this relation

is steeper for observations with a higher QPO frequency. This is also predicted by

the model as illustrated in the bottom plot of Figure 4.8 where we have measured

the gradient of the fQPO-L relation and the average QPO frequency for 11 different

ro values. There is clearly a very strong correlation as is seen in the data. This is

because an absolute change in precession frequency depends on a fractional change in

mass accretion rate whereas an absolute change in luminosity depends on an absolute

change in mass accretion rate. The same absolute change in mass accretion rate at a

given radius and time constitutes a larger fractional change for small ro than for high

ro. Therefore the luminosity will experience exactly the same change in both instances

but the precession frequency will undergo a larger change when ro is smaller. The
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fact that these are predicted properties of the model constitutes strong support for its

validity.

To include the QPO into our power spectral model, we must predict a shape for

the QPO light curve as well as a frequency. The data show that the QPO has a power

spectrum which can be represented by a Lorentzian at the fundamental frequency,

fQPO, together with its second and third harmonic and sub-harmonic i.e. at 2fQPO,

3fQPO and 1/2fQPO (e.g. Belloni, Psaltis & van der Klis 2002). Our model for the

QPO in terms of Lense-Thirring precession predicts the shape of the modulation of

the emission from the hot flow via variation of projected area, self-occultation and

seed photons (IDF09). We will explore this further in a later paper (Ingram, Done

& Życki in prep), but here we simply assume that all the harmonics have the same

quality factor, Q, and allow the power in each harmonic to be a free parameter. We

then generate a QPO light curve, LQPO, using these narrow Lorentzians as input to the

Timmer & Koenig (1995) algorithm, and add this to the light curve already created

for the broadband noise.

We show an example of the final predicted PSD in Figure 4.9, using the fiducial

model parameters with ro = 50 (black), 20 (red) and 10 (green). For clarity, we have

set the normalisation of all the harmonics other than the fundamental to 0, set the

width of the QPO using the model prediction of σQPO/fQPO, and set its rms power to

be constant across the three simulations. These PSD show all the main features seen

in the data during spectral transitions of BHB (Gierlinski, Nikolajuk & Czerny 2008).

4.7 Conclusions

The truncated disc/hot inner flow model designed to describe the spectral evolution of

BHB can also give a self consistent geometry in which to model the correlated evolution

of the power spectrum. Propagating fluctuations through a hot flow which extends from

and outer to inner radius, ro − ri, can produce the band limited noise characteristic
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of the continuum power spectrum, as well as producing the rms-flux relation (L97;

K01; AU06). Lense Thirring precession of this same hot flow can produce the QPO,

with frequency set by the same parameters of ro and ri, together with the surface

density of the flow (IDF09). The surface density is itself given self consistently by

mass conservation from the propagating fluctuations. This predicts that the surface

density fluctuates, so predicts that the QPO frequency will vary on short timescales

(i.e. that it is a quasi rather than true period). These fluctuations set an upper

limit to the coherence of the QPO, and this increases (i.e. width decreases) as ro

decreases. This is due to the decrease in fluctuation power due to the smaller range

of radii from which to pick up variability. All these features are well known properties

of the data (e.g. Remillard & McClintock 2006; DGK07): this model gives the first

quantitative description of their origin. The fluctuations also predict that the flux and

QPO frequency are correlated on short timescales, as a perturbation in the surface

density at large radii leads to a longer QPO frequency but has little effect on the

luminosity. As this propagates down, it weights the mass distribution to smaller radii,

increasing the QPO frequency but also increasingly contributing to the luminosity due

to the centrally peaked emissivity. This behaviour has also recently been observed

(Heil, Vaughan & Uttley 2011).

The model also gives a framework in which to interpret some otherwise very puzzling

aspects of the energy dependence of the variability seen in BHB. The extended emission

region can be inhomogeneous, with different parts of the flow producing a different

spectrum. The outermost parts of the flow are closest to the cool disc, so will intercept

more seed photons and have a softer spectrum than that produced in the more photon-

starved inner part of the flow (Kawabata & Mineshige 2010; Makishima et al 2008;

Takahashi et al 2008). This implies that a larger fraction of the lower energy Compton

scattered photons come from larger radii in the flow than the higher energy ones.

The higher frequency variability is preferentially produced at the smallest radii, where
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the spectrum is hardest. The flow at these small radii is also furthest from the cool

disc, so has little reflection spectrum superimposed on the Compton continuum. Thus

the model predicts that the fastest variability has the hardest spectrum and smallest

reflected fraction, while slower variability has a softer spectrum and larger reflected

fraction. This trend is also observed in the data (Revnivtsev et al 1999), and is very

difficult to interpret in any other geometric picture as the inner disc edge cannot change

in radius on even the longest timescale (few seconds) over which this relation is seen.

Similarly, the propagating fluctuations model means that a fluctuation starts at

larger radii and then accretes down to smaller radii. Thus the fluctuation first affects

the region producing a softer spectrum, then propagates down to smaller radii which

produce the harder spectrum, so the hard band lags the soft band. The size of this lag

depends on the frequency of fluctuations considered. Slow fluctuations (low frequencies)

are produced at the outermost radius, so have the longest propagation time down to

the innermost radius. High frequencies are produced only close to the inner radius,

so only have a short distance to travel and hence have shorter lags. This gives rise to

the frequency dependent time lags seen in the spectrum (Miyamoto & Kitamoto 1989;

Revnivtsev et al 2001; K01; AU06). The precession model for the QPO also predicts

harmonic structure. As the flow precesses, Comptonised emission is modulated by

self occultation in the observer’s line of sight and variation in seed photons from the

changing projected area of the disc. In general this predicts non-sinusoidal variability,

with the harmonic structure of the QPO being dependent on the details of the geometry

of the flow. This gives rise to the prospect of actually using the PSD of BHBs to probe

the geometry of the flow in detail.

While the many successes of the model are clearly evident, it is also clear that it is

still far from complete. The most obvious outstanding issues are of the interaction of

the hot flow with the truncated disc. The mechanism by which the cool disc truncates

is not well established, though evaporation powered by thermal conduction between the
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two different temperature fluids almost certainly plays some role in this (Liu et al 1997;

Rozanska & Czerny 2000; Mayer & Pringle 2007). Whatever the mechanism, it seems

physically unlikely that this will give a smooth transition between a cool thin disc and

the hot flow. Any inhomogeneities will probably also be amplified by the difference

in velocity between the disc and flow (discs are close to Keplarian, while the hot flow

is strongly sub Keplarian) so there will be a shearing turbulent layer formed between

them. Recent results show that there is variability associated with the truncated disc

at a few 10s of seconds in the low/hard state of the bright BHBs GX339-4 and SWIFT

J1753.5-0127 (Wilkinson & Uttley 2009), suggesting that there is considerable com-

plexity in the disc truncation (see also Chiang et al 2010). Full numerical simulations

of the MRI in a composite truncated disc/hot inner flow geometry are probably re-

quired in order to show the effect of these. However, such simulations are way beyond

current computer capabilities. A more tractable issue is the effect of relativity on the

propagating fluctuations. Near the black hole, light bending and time dilation should

be important and consequently future versions of this model need to take these effects

into account. The final goal should of course be the creation of a fully relativistic model

which can produce a Fourier resolved spectrum with both energy and time dependence

such that we can test it against observations such as the PSD, the energy spectrum,

the lag spectrum, the cross spectrum etc. This is of course very ambitious but it is

the only way we can genuinely achieve a full theoretical understanding of what drives

mass accretion and emission in BHBs.



Chapter 5
Modelling variability in

black hole binaries:

linking simulations to

observations

5.1 Introduction

In the previous chapter (based on Ingram & Done 2011; hereafter ID11), we explored

a model to explain the PSD of BHBs in the truncated disc / hot inner flow geometry

initially proposed to explain the observed spectral transitions. Here the QPO is driven

by Lense Thirring precession of the entire hot flow (as considered in Chapter 2) and

the broad band variability is a result of propagating mass accretion rate fluctuations

in the same hot flow. Crucially, these two processes are linked such that a few physical

parameters (inner and outer radius of the hot flow, surface density of the hot flow)

set both the QPO and broad band noise properties. Precession of the fluctuating

flow modulates its observed emission, imprinting the QPO on the broad band noise,

while fluctuations in the flow cause fluctuations in the precession frequency, making a

quasi-periodic rather than periodic oscillation.

This chapter is adapted from Ingram & Done (2012a), in which we develop a more

advanced version of the model which is in better agreement with the results of General

Relativistic Magnetohydrodynamic (GRMHD) simulations. We fit the model to data
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from the 1998 outburst of XTE J1550-564, allowing us to directly compare the results of

simulations with observations of BHBs. This model is now publically available within

the spectral fitting package xspec (Arnaud et al 1996) as a local model, propfluc.

5.2 The model

As in ID11, the model consists of fluctuations in mass accretion rate which propa-

gate towards the black hole (following Lyubarskii 1997, Kotov et al 2001 and AU06)

within a flow that is precessing. Here we develop the model to include a number of im-

provements which allow us to gain more physical insight from the best fit parameters.

Most significantly, we change our underlying assumption about the viscous frequency

fvisc(r). In ID11 we assumed that this was a power law between ri and ro, the inner

and outer radius of the precessing hot flow. Here we have it be a smoothly broken

power law, with the radius of the break being the bending wave radius, rbw, expected

from a misaligned flow. The viscous frequency is related to the surface density profile,

Σ via the radial infall velocity vr(r) as fvisc(r) = −vr(r)/R and mass conservation

sets Ṁ ∝ Σ2πrvr. Hence we can use the surface density profiles from the GRMHD

simulations to derive fvisc(r), which is especially important as the QPO frequency is

dependent on Σ(r).

We also change the assumed emissivity from ID11, where ǫ ∝ r−γb(r) (where b(r)

was an unknown boundary condition) to ǫ ∝ r−γΣ(r) i.e. we tie the emission to where

the mass is in the flow. We describe the details of the model below, mainly focusing

on these improvements made since ID11. Note that we assume a 10 solar mass black

hole throughout.
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5.2.1 Steady state properties

The surface density of the flow sets the QPO frequency by global precession as

fprec =

∫ ro

ri
fLT fkΣr3dr

∫ ro

ri
fkΣr3dr

(5.1)

where fk is the Keplerian orbital frequency and fLT is the point particle Lense-Thirring

precession frequency (equation 4.2).

We use the GRMHD simulations of tilted flows to guide our description of Σ(r)

(Fragile et al 2007; 2009; Fragile 2009). These can be well fit by a smoothly broken

power law function

Σ(rn, t) =
Σ0Ṁ0

cRg

xλ

(1 + xκ)(ζ+λ)/κ
. (5.2)

(IDF09), where x = r/rbw is radius normalised to the bending wave radius rbw =

3(h/r)−4/5a
2/5
∗ , Σ0 is a dimensionless normalisation constant and Ṁ0 is the average

mass accretion rate which we will assume stays constant over the course of a single

observation. This gives Σ ∝ rλ for small r and Σ ∝ r−ζ for large r, where κ governs

the sharpness of the break. The bending wave radius occurs at radii larger than the last

stable orbit because there are additional torques created by the misaligned black hole

spin which result in additional stresses i.e. enhanced angular momentum transport.

The material in falls faster, so its surface density drops.

Mass conservation then sets the viscous frequency as

fvisc(rn) =
Ṁ0

2πR2Σ(r, t)
=

1

2πr2
bwΣ0

(1 + xκ)(ζ+λ)/κ

xλ+2

c

Rg
, (5.3)

such that fvisc ∝ rζ−2 for large r and fvisc ∝ r−(λ+2) for small r.

5.2.2 Propagating mass accretion rate fluctuations

As in ID11 (and AU06), we start by splitting the flow up into N annuli of width drn

such that r1 = ro (the truncation radius) and rN = ri+drn ≈ ri (the inner radius of the
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flow). We assume that the power spectrum of variability generated in mass accretion

rate at the nth annulus is given by a zero centred Lorentzian cutting off at the local

viscous frequency

| ˜̇m(rn, f)|2 ∝ 1

1 + (f/fvisc(rn))2
(5.4)

where a tilde denotes a Fourier transform and fvisc(rn) is derived from Equation 5.3.

We use the method of Timmer & Koenig (1995) to generate mass accretion rate

fluctuations, ṁ(rn, t), which satisfy equation 5.4. These are normalised to have a mean

of unity and fractional variability σ/I = Fvar/
√
Ndec where, unlike ID11, Fvar and Ndec

are the fractional variability and number of annuli per decade in viscous frequency

rather than radius. These two descriptions are exactly equivalent where fvisc is a power

law function of radius as in ID11, as dfvisc/fvisc = dr/r. However, the more physical

smoothly broken power law form for fvisc does not retain this property. We choose to

parametrise the noise power in terms of dfvisc/fvisc and discuss the implications of this

in section 5.2.3.

The mass accretion rate through the outer annulus is given by Ṁ(r1, t) = Ṁ0ṁ(r1, t).

Variability is generated in every other annulus according to Equation 5.4, but this is

also accompanied by the noise from the outer regions of the flow which propagates

inwards. Thus the mass accretion rate at the nth annulus is given by

Ṁ(rn, t) = Ṁ(rn−1, t− tlag)ṁ(rn, t), (5.5)

where tlag = −Rgdrn/vr(rn) = drn/(rnfvisc(rn)) is the propagation time across the nth

annulus and vr(rn) = −Rgrnfvisc(rn) is the infall velocity.

To convert these mass accretion rate fluctuations into a lightcurve, we assume that

the luminosity emitted from the nth annulus is given by

dL(rn, t) = η/2 Ṁ(rn, t)c
2ǫ(rn)rndrn, (5.6)

where the (dimensionless) emissivity is given by

ǫ(rn) = ǫ0r
−γ
n b(rn), (5.7)
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and γ is the emissivity index, η the emission efficiency (this may be smaller than unity

due to e.g. advection), b(r) the boundary condition and ǫ0 is a normalisation constant.

In ID11, we considered two boundary conditions: the ‘stress free’ boundary condition

b(r) = 3(1 −
√

rn/ri) and the ‘stressed’ boundary condition b(r) = 1. Here, however,

we make the intuitive and physical assumption that the boundary condition is set by

the surface density such that b(r) ∝ Σ(rn, t) where Σ(rn, t) is the time averaged surface

density. This allows the model to link the emission with the amount of material in a

particular annulus.

The fluctuating mass accretion rate will also have an effect on precession because

mass conservation needs to hold on short time scales as well as long time scales, which

gives Ṁ(rn, t) ∝ Σ(rn, t)2πr
2fvisc. This means that the surface density at time t is

given by

Σ(rn, t) =
Σ0Ṁ(rn, t)

cRg

xλ

(1 + xκ)(ζ+λ)/κ
, (5.8)

which trivially averages to equation 5.2 on long time scales. Because the surface density

sets the precession frequency (equation 5.1), we see that the fluctuations in mass ac-

cretion rate cause the precession frequency to vary, thus allowing the model to predict

a quasi-periodic oscillation rather than a purely periodic oscillation.

5.2.3 Surface density profile

In ID11, we parametrised the viscous frequency with a power law. The fiducial model

parameters therein gave fvisc = 0.03r−0.5fk, corresponding to a surface density profile

Σ(r) = constant between the inner and outer radii which were set to ri = 2.5 and

ro = 50 respectively. By comparison, the GRMHD titled flow simulations of Fragile

et al (2009) also give Σ(r) = constant at large radii, but then smoothly break at the

bending wave radius to a much steeper dependence. The most relevant simulation

to this paper is the case with a∗ = 0.5 as this is likely closest to the spin of XTE

J1550-564 (e.g. Davis, Done & Blaes 2006; Steiner et al 2011). This has surface
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Figure 5.1: Top left: Surface density as a function of radius for the fiducial model

parameters in ID11 (solid black line), simulations of a misaligned accretion flow around

a 10 solar mass black hole with a∗ = 0.5 (red dashed line) and the fiducial model

parameters we choose for this paper (green dot-dashed line). The red dashed line

is calculated using equation 5.2 with λ = 7.6, κ = 5, ζ = 0 and rbw = 8.08 (the

parameters which best fit the simulation data). For the dot-dashed green line, λ = 1

with all other parameters the same. Top right: The viscous frequency as a function of

radius resulting from assuming the surface density to be given by the corresponding

line in the top panel. Bottom: The PSD predicted using the surface density given by

corresponding lines in the top panel.
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density parameters (Equation 5.2, see Figure 4 in IDF09) of rbw = 8.1 (corresponding

to h/r = 0.21), κ = 5, λ = 7.6 and ζ = 0.

In the top of Figure 5.1, we plot these two different surface density prescriptions

(top left) and their resulting viscous frequencies (top right), with the power law shown

by the black solid line and the broken power law shown by the red dashed line. In the

case of the broken power law, we choose the normalisation Σ0 = 33.3 to ensure that

both assumptions become consistent with one another at large radii. The bottom plot

of Figure 5.1 shows the PSD resulting from the two different prescriptions. The new

(and more physically realistic) surface density prescription predicts much less noise at

high frequencies than the previous model, where the surface density remained constant

down to the innermost radii.

To retrieve sufficient high frequency power in order to match the data requires λ = 1

rather than 7.6 (green dot-dashed lines in the top plots of Figure 5.1). This gives a

more gradual drop-off in surface density, leading to a less severe transition in viscous

frequency at the bending wave radius and hence more high frequency power (green

points in the bottom plot of Figure 5.1). We discuss the physical implications of this

in more detail in Section 6.2.1. For now, however, we use λ = 1 for our fiducial model.

We can also use the fiducial model parameters to explore the significance of assum-

ing dfvisc/fvisc = constant (hereafter df/f for simplicity). From equation 5.3, df/f and

dr/r are related as

(df/f) = (dr/r)

[

ζ + λ

x−κ + 1
− (λ+ 2)

]

, (5.9)

where we employ the convention df/f < 0 and dr/r > 0 (since fvisc is higher for smaller

r). Since, by definition, each ring generates the same fractional variability, each must

contain the same number of independent regions, implying (dr/r) = A(h/r). Here, A is

a constant which sets the resolution (A = 2 means each independent region covers the

whole vertical extent of the flow). We can therefore rearrange equation 5.9 to obtain
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Figure 5.2: Flow scale height as a function of radius as predicted by the fiducial model.

The dotted line represents the bending wave radius which sets the break in the function.

an expression for the flow scale height

(h/r) =
(df/f)

A

[

ζ + λ

x−κ + 1
− (λ+ 2)

]−1

. (5.10)

The formula linking the bending wave radius with the scale height (evaluated at the

bending wave radius) can then be used to show (df/f)/A = (3)5/4a
1/2
∗ r

−5/4
bw (ζ/2−λ/2−

2). Figure 5.2 shows the scale height as a function of r for the fiducial parameters. We

see that our df/f = constant assumption means we predict the scale height to drop

off at small radii, consistent with simulation results (Figure 13 in Fragile et al 2007).
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Figure 5.3: Top: A 10s segment of the light curve calculated using the fiducial model

parameters and ro = 50. Bottom: The sigma-flux relation for the above light curve.

We see this is linear as is seen in the data.
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Figure 5.4: The predicted PSD for the fiducial model parameters with ro = 50 (black),

20 (red) and 10 (green). For clarity the normalisation of the fundamental is set to

increase as ro reduces and all the other QPO components are normalised to zero.

5.2.4 The fiducial model

Following the discussion in section 5.2.1, we use model parameters Σ0 = 33.3, rbw = 8.1,

κ = 5, λ = 1 and ζ = 0. We also set ri = 2 and γ = 4 but note that the new assumptions

for surface density coupled with the new boundary condition mean the model is now

much less sensitive to the parameter ri than its predecessor in ID11. Figure 5.3 (top)

shows a 10s segment of the light curve created using these assumptions and with

ro = 50. We use Ndec = 15 (i.e. 15 annuli per decade in viscous frequency) with 222

time steps, giving a duration of 4096s (similar to a typical RXTE observation) for a

time bin of dt = 9.7× 10−4. Figure 5.3 (bottom) confirms that this light curve has the

linear sigma-flux relation implied by its skewed nature. The PSD of this light curve is

represented by the red points in Figure 5.1 (bottom).

We calculate the QPO as in ID11, but we briefly summarise this here for complete-



5. Modelling variability in black hole binaries: linking simulations to
observations 127

ness. The QPO fundamental frequency is set to the average (over the 4096s duration)

precession frequency calculated from Equation 5.1. In principle we can calculate the

width of the QPO from the fluctuations in frequency which result from fluctuations in

surface density. However, these only set a lower limit to the width of the QPO since it

can also be broadened by other processes (ID11), so we leave this as a free parameter.

We can in principle predict the harmonic structure in the QPO lightcurve by a full

Comptonisation calculation of the angle dependent emission from a precessing hot flow

(Ingram, Done & Zycki in preparation). Until then, we simply allow the normalisations

of the harmonics to be a free parameter but fix their width so that they have the same

quality factor as the fundamental (apart from the sub-harmonic which is free: Rao et

al 2010). We use the method of Timmer & Koenig (1995) to generate a light curve

from these narrow QPO Lorentzians and add this to the light curve already created

for the broad band noise.

Figure 5.4 shows the full PSD given by the fiducial model parameters with ro = 50

(black), ro = 20 (red) and ro = 10 (green). For clarity we set the normalisations of

the QPO harmonics to zero, and increase the normalisation and quality factor of the

fundamental as ro decreases to match with the data. This captures the essence of the

observed evolution of the PSD in terms of a decreasing truncation radius.

5.3 Fitting to data

We use RXTE data from the 1998 outburst of XTE J1550-564 (Remillard et al 2002;

Sobczak et al 2000; Rao et al 2010; Wilson & Done 2001; Altamirano 2008). We look at

5 specific observations with observational IDs: 30188-06-03-00, 30188-06-01-00, 30188-

06-01-03, 30188-06-05-00 and 30188-06-11-00; hereafter observations 1-5 respectively.

We only consider energy channels 36-71 (corresponding to 13.36-27 keV) in order to

avoid disc contamination.

For all PSDs, we use a combination of ensemble averaging and geometric rebinning.
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Figure 5.5: Best fit PSDs along with data points for observations 1-5. The rejection

probability, Prej, and truncation radius, ro, are included in each plot. The rest of the

best fit physical parameters are included in table 5.1.
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Each periodogram is calculated for 128s of data. Since we simulate 4096s of data, we

can average over M = 32 realisations. For the observed data, the duration of the

observation limits us to M = 41, 26, 13, 14 and 14 for observations 1-5 respectively.

Geometrical rebinning is always carried out using a rebinning constant of c0 = 1.05.

Since this smoothing should lead to statistically well behaved PSDs with Gaussian

error distributions (for both observed and simulated data), we carry out the fit using

a χ2 minimization test. However, to test our assumption of Gaussian errors, we do

a posteriori checks on the goodness of fit using the rejection probability method of

Uttley et al (2002) and Markewicz et al (2003). This involves comparing the agree-

ment between data and model with the agreement between the model and alternative

realisations which use the same parameters. The minimized χ2 value is calculated as

χ2 =
∑

J

(Pmod(fJ) − Pobs(fJ))2

dP 2
mod(fJ) + dP 2

obs(fJ)
. (5.11)

We then simulate many more (1000) realisations with the same model parameters (i.e.

we change the seed for the random number generator) in order to calculate many values

of

χ2
k =

∑

J

(Pmod(fJ) − Pk(fJ))2

dP 2
mod(fJ) + dP 2

k (fJ)
, (5.12)

where Pk(fJ) is the PSD of the kth realization. The rejection probability, Prej, is given

by the percentile of χ2
k values which are smaller than χ2. This method therefore asseses

the likelihood that Pobs(fJ) does not belong to the distribution that Pmod(fJ) and each

Pk(fJ) belong to without making any assumptions about the shape of that distribution.

We incorporate our model for the power spectrum into xspec, using the local model

functionality. This is now available publically as propfluc, described in detail in the

appendix. Our model outputs a PSD rather than the more familiar flux as a function

of energy. We fit each observed PSD to derive the parameters of the smoothly broken

power law surface density. We assume that the shape of the surface density stays

constant across all datasets, but its normalisation Σ0 can change. We also allow the
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Obs Σ0 ζ λ κ ri ro h/r (rbw) Fvar γ

1 5.43 68.0 0.41 (4.6) 0.32

2 10.48 45.7 0.27 (6.5) 0.31

3 21.73 ≡ 0 ≡ 0.9 ≡ 3.0 ≡ 3.3 25.0 0.21 (8.0) 0.36 5.28

4 30.03 16.3 0.13 (12.03) 0.43

5 30.36 12.8 0.12 (12.1) 0.48

Table 5.1: Best fit physical parameters for observations 1-5. A ≡ symbol indicates that

the parameter has been fixed.

bending wave radius to be a free parameter, rbw = 3(h/r)−4/5a
2/5
∗ (where h/r is the

scaleheight of the flow). As we have fixed the spin, the best fit value of rbw gives us an

estimate of the scale height of the flow which may change through the transition due

to the increase in seed photons from the disc cooling the flow. The inner radius of the

flow is tied across all the data sets, and we fit for ro. The remaining free parameters

which determine the broadband noise are the level of MRI fluctuations generated over

each decade in frequency, Fvar, and the emissivity index, γ (held constant across all 5

observations).

While xspec can fit the model to the 5 PSD simultaneously, this is very slow.

Instead, we used trial and error to set values of the parameters which are tied across

all the datasets and then fix these to fit the remaining parameters for each PSD indi-

vidually.

5.3.1 Fit results

The data and best fit model PSD are shown in Figure 5.5. These give a reduced χ2 value

of 1.09 (764.6 for 704 degrees of freedom). We calculate the rejection probability to be

Prej = 4%, 62%, 22%, 77% and 7% for observations 1-5 respectively. The lowest values

of Prej obviously imply a very good fit but even the higher values are still acceptable.
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Figure 5.6: Distribution of χ2
k values calculated using the best fit model parameters for

observation 4. The green line illustrates that this is a nearly Gaussian distribution. The

red dashed line picks out the χ2 value for this observation and we see that, although it

is larger than the mean χ2
k value, it still lies believably within the distribution meaning

we can be confident that the model fits.
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Figure 5.6 shows the distribution of χ2
k values from the Prej calculation (black stepped

line) using the best fit parameters for observation 4. The red dashed line shows the χ2

value for this observation and we see that, although it is larger than most χ2
k values, it

still lies believably within the distribution. We also plot (green solid line) a Gaussian

with the same mean, standard deviation and normalisation as the distribution and we

see very good agreement between the two. This confirms that the PSD estimate we

use does indeed give (approximately) Gaussian errors and therefore χ2 is a reliable

measure of goodness of fit.

Table 5.1 shows all of the best fit physical parameters. The truncation radius moves

from ro = 68 − 13, while Fvar increases throughout the transition. In addition, our

new parametrisation means that we can directly explore the change in bending wave

radius, rbw, and surface density normalisation, Σ0. The bending wave radius increases,

implying that the flow scaleheight, h/r, is collapsing. This makes sense physically

as the decreasing truncation radius means that the flow is cooled by an increasing

number of seed photons, so the electron temperature decreases. The spectra also show

that the optical depth increases (as is also implied by the increasing surface density

normalisation). This increases the coupling between electrons and ions so the ion

temperature also decreases (Malzac & Belmont 2009). The flow is held up (at least

partly) by ion pressure so the scale height of the flow collapses.

Note that, in our model, the characteristic frequency fvisc(rbw) decreases as the

other characteristic frequencies increase. This at first seems to contradict the results

of Lorentzian fitting which always show the high frequency break, fh, to increase. This

apparent contradiction occurs due to the effect of propagation on the PSD shape as

discussed in ID11. As the truncation radius moves in and the range of frequencies pro-

duced by the flow narrows, the highest frequencies become less affected by destructive

interference and thus, even though the generated variability peaks at a lower frequency

as the ro moves in, the emitted variability actually peaks at higher frequencies, as
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Figure 5.7: The red dashed line is the PSD predicted using the fiducial model parame-

ters with ro = 50 (i.e. λ = 1) whereas the black dashed line is for λ = 7.6 with all other

parameters the same. For the green solid line, we use the same parameters as used for

the black line but we have changed the model by assuming the annulus containing rbw

to be more variable than the other annuli. We see we can recover the amount of high

frequency power required to match the observations using this assumption.

observed.

5.4 Discussion

We have improved upon the model of ID11 by including a surface density profile which

has the same shape as predicted by GRMHD simulations. We obtain an excellent fit to

data for five observations and the evolution of the best fit parameters is self-consistent.

However, we require the surface density interior to the bending wave radius to drop-off

as rλ with λ ∼ 1, where as the simulations predict λ ≈ 7 (see Figure 5.1). A possible
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reason for this apparent discrepancy is that the torque created by the misalignment

between flow and black hole angular momenta not only creates a drop-off in surface

density but also generates extra turbulence which we do not account for in our model.

Because the surface density sets the emissivity, we can still reproduce the observations

by over predicting the surface density at small r to compensate for under predicting the

intrinsic variability. In Figure 5.7, we re-plot the predicted PSD for λ = 7.6 (dashed

black line) and λ = 1 (dashed red line) without errors for clarity. For the green solid

line, also plotted without errors, we have changed the model slightly. We again set

λ = 7.6 but now the fractional variability in the annulus containing rbw is higher

(by a factor of 10) than that at all other annuli so as to approximate the additional

turbulence created by the bending waves. We see that it is possible to qualitatively

reproduce the shape of the broad band noise using a surface density profile consistent

with simulations if we include this extra assumption.

It is interesting that the green line in Figure 5.7 does not have a flat top between

low and high frequency breaks as the model generally predicts, but rather has a ‘bump’

at ∼ 7Hz and another at ∼ 0.15Hz. There are actually many observations of bumpy

power spectra such as this which cannot be well described by the model in its current

state (e.g. Axelsson et al 2006; Wilkinson & Uttley 2009). In fact, even the data

considered here show evidence that a double hump is a more appropriate description

than flat top noise (especially observations 1 and 5). It therefore looks likely that the

variability generated by the MRI is not as uniform as we naively assume and actually

some regions produce more variability than others thus giving rise to a bumpy power

spectrum such as the green line in Figure 5.7.

5.5 Conclusions

We have made some improvements to a model designed to predict the power spectral

behaviour of BHBs in the context of a truncated disc / hot inner flow geometry which
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can also explain the energy spectral evolution. The model uses simple, theoretically

motivated assumptions in order to reproduce the shape and evolution of the broad-

band noise with the extra requirement that the QPO is generated by Lense-Thirring

precession of the entire hot inner flow. Because the model now assumes a surface den-

sity profile consistent with that predicted by GRMHD simulations, we can now gain

more physical insight from the evolution of best fit parameters which reproduce the

observed evolution of the PSD. A coherent picture is now emerging: as the truncation

radius, ro, moves inwards, the increased number of seed photons incident on the flow

cool it, thus reducing both the electron and ion temperatures, Te and Ti respectively.

The Comptonised emission from the flow is therefore softer and, in addition to this,

the lower ion temperature gives rise to a lower pressure meaning that the scale height

of the flow, h/r, should collapse. The bending wave radius, which sets the shape of

the surface density, is given by rbw = 3(h/r)−4/5a
2/5
∗ and therefore increases as h/r

collapses. Also, because the volume of the flow is reducing, the surface density must

increase and, by mass conservation, the infall velocity decreases. When we fit the model

to five observations of XTE J1550-564, we see all of these trends: ro reduces and rbw

increases as does Σ0, the normalisation of the surface density (and also the inverse of

the normalisation of the infall velocity).

Since the model has the capability to reproduce other higher order statistical prop-

erties seen in the data such as time lags and the frequency resolved spectrum, it is very

attractive. However, although we believe the trends in best fit parameter values to be

reliable, their absolute values should not be taken too seriously. This is because there

are a few complexities not currently included in the model. For example, we currently

effectively assume that the disc is stable which is not true, at least in the low/hard

state (Wilkinson & Uttley 2009). Although we only consider energies at which the

Comptonized emission dominates, the disc is feeding the flow and therefore disc vari-

ability should propagate to the flow and modulate the hard emission. This means that
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the lowest frequencies in the PSD are actually being generated in the disc and not in

the flow, meaning we over predict the truncation radius, ro. In fact, it could be that

the entire low frequency Lorentzian in the PSD is generated in the disc (perhaps from

the presumably turbulent process of disc truncation) before propagating to the flow,

with the MRI only generating the high frequency Lorentzian. This would provide an

alternative explaination for the double humped nature of the observed BHB PSD.

The main uncertainty associated with the model is that it is unclear exactly how

the disc and flow couple together. Although the most likely truncation mechanism

is evaporation via thermal conduction (e.g. Liu, Meyer & Meyer-Hofmeister 1997;

Różańska & Czerny 2000; Mayer & Pringle 2007), the details of this process are still

far from well understood and, in particular, numerical simulations of a truncated disc /

hot inner flow configuration are far beyond current computing capabilities. Whatever

the specific nature of the coupling, it seems very likely that the disc will exert a torque

on the flow, especially in a region where the flow overlaps the disc, which would slow

down precession. This means that ro would need to be smaller in order for the model

to reproduce both the QPO and the broad band noise. For this reason, we see our best

fit values of ro as upper limits rather than definitive measurements.

Still, it is extremely encouraging that this model can produce a good fit to PSD

data whilst also having the potential to qualitatively reproduce many other properties

seen in the data.

5.6 Appendix: Using propfluc

This model is publically available as the xspec local model, propfluc. Here we

include some tips for anyone wanting to use the model.
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5.6.1 Data

We use powspec from xronos in order to create a power spectrum from the observed

light curve. We set norm=-2, which means white noise will be subtracted and choose

the minimum lightcurve time step, which is dtobs = 0.390625 × 10−2s for RXTE data.

We set the number of time steps per interval to 215 = 32768, meaning that the duration

of an interval is 215dtobs = 128s. This means that a periodogram will be calculated

for each interval with minimum frequency 1/128Hz and maximum (Nyquist) frequency

1/(2dtobs) = 128Hz. The number of intervals per frame should be set to maximum so

that powspec averages over as many intervals as the length of the observation allows

and we use a geometric re-binning with a constant factor of 1.045, resulting in 150 new

bins. The resulting binned power spectrum can then be written to a data file in the

form

f, df, P, dP.

xspec, however is expecting to recieve data in the form

Emin, Emax, F (Emax −Emin), dF (Emax −Emin)

where Emin and Emax are the lower and upper bounds of each energy bin and F is the

flux. It is therefore neccessary to create a data file with inputs

fmin, fmax, P (fmax − fmin), dP (fmax − fmin) (5.13)

where fmin and fmax are the lower and upper bounds of each frequency bin. As f

marks the centre of a bin and df is defined such that fmax = f + df and fmin = f − df ,

this equation can be re-written as

f − df, f + df, 2Pdf, 2dPdf.

We then use flx2xsp in order to convert this into a .pha file and also generate a

diagonal response function. The data can now be loaded into xspec and, eventhough
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the axis on the plots are by default labeled as flux and energy, it is in fact reading

in a power spectrum as a function of temporal frequency (i.e the command ip euf

will show frequency multiplied by power plotted against frequency for both data and

model).

5.6.2 Model

The model consists of a fortran program, propfluc.f, and a data file lmodel pf.dat.

These two files are all that is needed to load the model using the local model func-

tionality. The model has 18 parameters, summarised in table 5.2, plus xspec always

includes a 19th normalization parameter which must be set to (and fixed at) unity. The

simulated light curve is generated using a time step of dt = dtobs/4 = 9.76562× 10−4s.

It is important that this time step is short because the Nyquist frequency must be

higher than the highest frequency at which significant variability is generated. The

final power spectrum is calculated using 217 steps per interval, meaning that each in-

terval is 217dt = 217dtobs/4 = 215dtobs = 128s. The simulated power spectrum is then

binned into the same frequency bins used for the observed power spectrum. For this

reason, it is vital that the periodograms are calculated on the same interval (i.e. 128s)

for both model and data, the use of two different intervals could result in empty bins

in the simulated power spectrum which doesn’t help χ2! In table 5.2 we see that it is

possible for the user to decide on the length of simulated light curve (parameter 17).

Since the interval length is fixed, this dictates how many intervals the power spectrum

is averaged over. We recommend nn = 22 (32 intervals) for fitting but this does make

the code very slow. Preliminary fitting is best done with nn = 20 (8 intervals) as this

is faster but provides a good enough PSD estimate to work with. It should be noted

that this setting slightly under predicts the power but it is a constant offset and so the

best fit found using nn = 20 has a higher value for Fvar than that found using nn = 22

but the other parameters are largely unaffected. The main advantage of using nn = 22
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is that χ2 gives a much more reliable estimate of goodness of fit.

The model is difficult to fit, partly because of the stochastic nature of the power

spectrum and partly because of the complicated relationship between parameters. We

recommend finding a good fit by eye first and fixing a few key parameters before fitting.

We set xspec to calculate the gradient in χ2 numerically rather than analytically and

set the critical ∆χ2 value to 0.1 rather than the default 0.01. Finally, the third column

of table 5.2 shows all of our best fit model parameters for observation 1, with a ≡
symbol indicating that the parameter is fixed.
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Parameter Comments Obs 1

1 Sigma0 Normalization of surface density. 5.43

2 rbw Bending wave radius - dictates 4.60

where Σ(r) breaks.

3 kappa Dictates sharpness of the break. ≡ 3.0

4 lambda Dictates Σ(r) for r < rbw. ≡ 0.9

5 zeta Dictates Σ(r) for r > rbw. ≡ 0.0

6 Fvar Intrinsic amount of variability generated 0.32

per decade in fvisc.

7 fbmin This is fvisc(ro). It is much easier 0.129

to set this instead of ro.

8 ri Inner radius ≡ 3.3

9 sig qpo QPO width (fundamental). Width of higher 0.0226

harmonics is tied to this.

10 sig subh Width of the subharmonic. This can have a 0.0283

different Q value to the other harmonics.

11 n qpo Normalization of fundamental. 0.244806

12 n h Normalization of second harmonic. 0.1706

13 n 3h Normalization of third harmonic. 0.1018

14 n subh Normalization of sub-harmonic. 0.0967

15 em in Emissivity index (i.e. γ). 5.281

16 dL The model gives the option to generate a ≡ 0.0

Gaussian error on each point of the simulated

lightcurve, thus creating white noise. To match

a typical RXTE observation, this needs

to be dL ∼ 0.8, however we recommend setting

this to zero and using white noise subtracted data.

Table 5.2: Summary of model parameters.
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Parameter Comments Obs 1

17 nn Sets the number of time steps in the simulated ≡ 22.0

light curve (i.e. the light curve has a total

duration of of 2nndt). This must be an

integer because the model uses a fast fourier

transform algorithm (Press et al 1992). The PSD

estimate of the model must be calculated on the

same interval as the data (128s) and therefore the

value of nn used dictates how many intervals are

averaged over.

18 Ndec Sets the radial resolution. If this is particularly ≡ 15.0

high, the code is very slow! Ndec = 15 should be

sufficient. The total number of annuli used is

sufficient. The total number of annuli used is

calculated from this.

Table 5.3: Table 5.2 continued.
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Chapter 6
The effect of frame

dragging on the iron Kα

line in X-ray binaries

6.1 Introduction

Over the course of the previous chapters, I have presented evidence that the spectral

and timing properties of XRBs can be self-consistently explained with a truncated

disc / hot inner flow accretion geometry, with the entire hot inner flow precessing due

to the relativistic effect of frame dragging. In our model, it is this precession which

gives rise to the low frequency QPO in XRBs. This is not the first model to associate

the QPO with Lense-Thirring precession. Stella & Vietri (1998) and Stella, Vietri &

Morsink (1999) showed that the Lense-Thirring precession frequency of a test mass

at the truncation radius is broadly consistent with the QPO frequency. Schnittman

(2005) and Schnittman, Homan & Miller (2006) developed this into a fully relativistic

description of a misaligned ring, showing that its direct emission and iron line signature

should be modulated on the precession frequency, which could be somewhat higher than

observed. However, the real problem with these models is that the energy spectrum

of the QPO is dominated by the Comptonised emission (Sobolewska & Zycki 2006;

Rodriguez et al 2004), requiring that the QPO mechanism predominantly modulates

the hot flow rather than the disc (although the variability could be produced elsewhere

before propagating into the flow; Wilkinson 2011). Since our model considers the entire

143
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hot flow to globally precess, it naturally explains the QPO spectrum. Such global

precession has been seen in recent numerical simulations (Fragile et al 2007, Fragile

2009). I show in chapter 2 of this thesis (based on Ingram, Done & Fragile 2009) that

the predicted frequency range is completely consistent with the type-C QPO in BHBs

and also in NSBs (chapter 3 based on Ingram & Done 2010).

There are other more subtle properties that are naturally explained by the pre-

cessing flow model. In chapter 4 (based on Ingram & Done 2011), I show that the

correlation between QPO frequency and total flux observed on short time scales (Heil,

Vaughan & Uttley 2011) is predicted by the model presented in this thesis. This is be-

cause the propagating fluctuations in mass accretion rate which give rise to the broad

band noise (e.g. Lybarskii 1997; Arevalo & Uttley 2006) will affect the moment of

inertia of the flow leading the precession frequency to fluctuate. The linear relation

with flux then occurs because both the flux and the precession frequency depend on

mass accretion rate. Although it is very encouraging that this property is predicted

by the model, we still do not have unambiguous proof that the flow precesses - a QPO

produced from any mode of the hot flow will also couple to fluctuations propagating

through the hot flow, and should give an fQPO-flux relation.

The interpretation of the QPO as vertical precession requires a truncated disc as

otherwise the flow could not cross the equatorial plane. The issue of whether or not the

disc truncates is still somewhat controversial. Nowak et al (2011) show that the broad

iron line in a low/hard state of Cyg X-1 can be variously interpreted as implying a disc

anywhere from 6−32Rg (for their Obs 4) depending whether the continuum is thermal

Comptonisation, non-thermal Comptonisation, multiple Compton components or in-

cludes a jet contribution. Fabian et al (2012) show another deconvolution of a similarly

shaped spectrum from Cyg X-1, where the spectrum below 10 keV is dominated by

highly ionised, highly smeared reflection, with a very small inner radius of ∼ 1.3Rg

and a very steep emissivity profile (a.k.a. the lightbending model). However, this
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lightbending geometry seems to be inconsistent with the independent requirement on

the un-truncated disc geometry that the source is beamed away from the disc in order

to produce an intrinsically hard spectrum (Malzac, Beloborodov & Poutanen 2001).

Although the only models for rapid spectral variability currently in the literature

involve inhomogeneous emission in an extended Comptonising region (Kotov, Churazov

& Gilfanov 2001; Arevalo & Uttley 2006; this thesis) where the line profile is consistent

with a truncated disc (Makishima et al 2008), the issue is clearly still very controversial.

This chapter is adapted from Ingram & Done (2012b) in which we use the truncated

disc geometry in order to propose a distinctive test of a vertical precession origin of

the QPO. As a tilted flow precesses, the illumination pattern on the disc rotates. The

resulting iron line is boosted and blue shifted at a time when the flow illuminates the

approaching side of the disc, and red shifted when the flow illuminates the receding

side of the disc. Since this periodic rocking of the iron line is a requirement of the

Lense-Thirring QPO model, this also offers a potentially unambiguous test of disc

truncation. Our geometry differs from the Schnittman, Homan & Miller (2006) model,

where a precessing inner disc ring produces the iron line and continuum. Instead, we

have a hot inner flow replacing the inner disc to produce the continuum, and precession

of the entire hot flow produces a rotating illumination pattern which excites the iron

line from the outer thin disc.

6.2 Model geometry

In this section, we outline the geometry used for our QPO model. We assume that the

spin axis of the compact object is misaligned with that of the binary system as may be

expected from supernova kicks (Fragos et al 2010). Due to frame dragging, the orbit

of an accreting particle from the binary partner will precess around the spin axis of

the compact object. The effect of frame dragging on an entire accretion flow depends

on the dynamics of the flow. A thin accretion disc being fed by a binary partner out
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of the spin plane of the compact object will form a Bardeen Petterson configuration

(Bardeen & Petterson 1975) where the outer regions align with the binary partner and

the inner regions align with the spin of the compact object, with a transition between

the two regimes at rBP . The value of rBP is not well known, with analytical estimates

ranging from ∼ 10−400 Rg (see e.g. Bardeen & Petterson 1975; Papaloizou & Pringle

1983; Fragile, Mathews & Wilson 2001). In the thin disc regime, warps caused by the

misaligned black hole propagate in a viscous manner. This means that the time scale on

which a warp is communicated is much longer than the precession period and therefore

a steady configuration forms. In contrast, warps in a large scale height accretion flow

are communicated by bending waves (see e.g. Lubow, Ogilvie & Pringle 2002; Fragile

et al 2007) which propagate on approximately the sound crossing timescale which is

shorter than the precession period. For this reason, the hot flow can precess as a solid

body with the precession period given by a surface density weighted average of the

point particle precession period at each radius (Liu & Melia 2002), while a cool disc

forms a stable warped configuration. This solid body precession of a hot flow has been

seen explicitlly in recent numerical simulations (Fragile et al 2007) for the special case

of a large scale height flow which we consider here.

The key aspect is that the flow angular momentum has to be misaligned with the

black hole spin. Yet the outer thin disc will warp into alignment with the black hole at

rBP . Since this radius is poorly known, there are two possible scenarios. Firstly rBP

may be small enough for the outer thin disc to still be aligned with the binary partner

at the truncation radius. In this case, the hot flow is misaligned with the black hole spin

by the intrinsic misalignment of the binary system which will naturally lead to solid

body precession of the entire flow. Secondly, if rBP is large, the disc and hence hot flow

are intrinsically aligned with the black hole spin. However, precession may be possible.

The flow has a large scale height, so is sub-Keplerian. At the truncation radius it

overlaps with the Keplerian disc, so this overlap layer is probably Kelvin-Helmholtz
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unstable, producing turbulence. Clumps forming from random density fluctuations

in regions high above the midplane could temporarily mis-align the flow leading to

intermittent precession. This predicted intermittency has the advantage of naturally

explaining the observed random jumps in QPO phase (Miller & Homan 2005; Lachowicz

& Done 2010).

Here we assume the first geometry i.e. assume that rBP is very small. However, the

effect of rotating illumination on the iron line is qualitatively the same in the second

geometry, differing only in the details. In the next section, we outline the geometry

used. We work under the assumption that the central object is a black hole, but the

geometry is valid for neutron stars also.

6.2.1 Disc

The geometry we consider for the two component accretion flow is illustrated in Figure

6.1. We assume that the disc has angular momentum vector set by the binary system,

ĴBS, and that this is misaligned with the spin axis of the black hole (the z-axis) by an

angle β. The flow angular momentum vector, Ĵflow, precesses around the z-axis with

phase given by the precession angle, γ. The plane of the disc is the plane orthogonal

to ĴBS, while the plane of the flow is orthogonal to Ĵflow. In this coordinate system,

the binary partner will orbit in the ‘disc’ plane. The observer’s position is described by

an inclination angle, θi, and a viewer azimuth, φi, which can take the range of values

0 ≤ θi ≤ π/2 and 0 ≤ φi ≤ 2π. Here, θi is defined with respect to the binary (i.e. the

disc) angular momentum vector and φi is defined with respect to the x-axis.

The flow then precesses around a circle centred on the black hole spin axis, from

being aligned with the disc when γ = 0, to being misaligned by angle 2β with respect

to the disc when γ = π. We can define a vector r̂d which points from the black

hole to any point on the disc plane. If the top of the flow is its brightest part, the

region of the disc most strongly illuminated by the flow for a given γ is where the



6. The effect of frame dragging on the iron Kα line in X-ray binaries 148

Figure 6.1: Schematic diagram illustrating the coordinate system we are considering.

The black hole is at the origin and the black hole angular momentum vector is aligned

with the z-axis. See text for details.

angle between r̂d and Ĵflow is smallest. The smallest this angle can ever be is for

r̂d = ǫ̂ when γ = π; i.e. this is the most that the flow angular momentum vector ever

aligns with any azimuth of the disc plane. ǫ̂ therefore defines the azimuth of the disc

which sees the maximum illumination from the flow. Material in the disc is spinning

rapidly and, because precession is prograde, this orbital motion is anti-clockwise for

our geometry. The viewer azimuth φi therefore specifies the direction with respect to

the viewer in which disc material in the maximally illuminated region (i.e. on the ǫ̂

axis) is moving. For φi = 0, the receding part of the disc is most strongly illuminated

as the flow precesses. Instead, for φi = π/2 the maximum illumination is on the patch

directly in front of the black hole. For φi = π the maximum illumination is on the

approaching side of the disc, while for 3π/2 it it for the patch directly behind the black

hole. We assume that the disc is razor thin and flat (i.e. no flaring). The mathematical

definitions for the geometry we use are outlined in the appendix (section 6.7.1).



6. The effect of frame dragging on the iron Kα line in X-ray binaries 149

Figure 6.2: Schematic diagram illustrating the cross section of the flow. See text for

details.

6.2.2 Flow

Unlike the disc, the flow has volume and scale height, so we must make some assump-

tions about its shape. We assume that it is a crushed sphere; i.e. viewed from above it

is circular but it has an elliptical cross section as illustrated in Figure 6.2. The semi-

major axis of the ellipse is ro and the semi-minor axis is ho. We choose to parametrise

this by defining a scaleheight, h/r, such that ho = (h/r)ro. Figure 6.2 also shows that

we set an inner radius, ri, such that the core of the quasi-spherical flow is missing.

This is to incorporate a flavour of the numerical simulations which show that shocks

(at the bending wave radius) can truncate the inner region of the hot flow (Fragile

et al 2007). Any point on the flow surface is then a distance r away from the black

hole, where r is a function of the angle θf . We assume that each radius of the surface

radiates the gravitational potential energy released at that radius (i.e. we use a surface

rather than a volume emissivity). This gives a simple analytic model where the central

parts of the flow (outside of ri) are brighter than the outer parts, but that these bright

regions are near the poles which gives a reasonable reflection fraction, (Ω/2π) while
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also giving a reasonable precession frequency (set by ri, ro, M , the surface density

profile which we assume to be constant, and a∗, where a∗ is the dimensionless spin

parameter: equation 1 in Ingram, Done & Fragile 2009). Note that, even though this

is a simplified prescription, the most influential aspect of the flow geometry is where

the brightest region lies. In nearly all imaginable geometries, this point lies at the

pole of the flow (as it does for our geometry). Thus our mathematically convenient

assumptions for flow geometry should provide us with results not materially different

from a far more difficult calculation assuming a geometry identical to the Fragile et

al (2007) simulation. More details of the flow geometry are presented in the appendix

(section 6.7.1).

Fundamentally, the precession frequency modulates the continuum as the pole

moves in and out of sight. The QPO maximum occurs when the pole faces the ob-

server and the minimum when it faces away. Thus the region of the disc preferentially

illuminated is in front of the black hole (from the point of view of the observer) at

the QPO maximum and behind for a QPO minimum. Because precession is prograde,

this means that the flow illuminates the approaching disc material during the rise to

a QPO maximum (because the pole has to first move towards us in order to face us)

and the receding material on the fall to a QPO minimum. Below we calculate the

self-consistent illumination pattern for the disc as a function of QPO phase for our

assumed geometry.

6.3 Implications of a precessing flow

6.3.1 Disc irradiation

Each flow surface element will radiate a luminosity dL over a semi-sphere (because

the element radiates away from the black hole). A disc surface element with area

dAd will intercept some fraction of this luminosity. This fraction can be calculated
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Figure 6.3: Disc irradiation by the flow as seen by a viewer with θi = 60o and φi = 0o

(left) or φi = 90o (right). The flow is shown in grey with black gridlines for clarity.

The truncation radius is ro = 60. The luminosity incident on the disc is grouped into

8 bins with black, red, green, blue, cyan, magenta, yellow and orange representing the

dimmest to brightest patches on the disc. The solid black line in the top picture of

each plot indicates the black hole spin axis. Flow precession causes the characteristic

illumination pattern to rotate around the disc.
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Figure 6.4: The iron line profile as seen by a viewer with θi = 60o and φi = 0o (left) or

φi = 90o (right). The rest frame iron line profile is assumed to be a δ−function at 6.4

keV and the truncation radius is ro = 60 as in Figure 6.3. Different colours represent

different snapshots in time with black, red, green, blue and cyan representing the top

to bottom snapshots pictured in Figure 6.3. The rotation of the illumination pattern

causes the iron line profile to rock from red to blue shift.
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Figure 6.5: The iron line profile as seen by a viewer with θi = 60o and φi = 0o (left) or

φi = 90o (right). The rest frame iron line profile is still assumed to be a δ−function at

6.4 keV but the truncation radius is now ro = 10. The different colours represent the

same snapshots in time as in Figure 6.4. We see the motion of the iron line is different

here compared to Figure 6.4. Due to stronger Doppler (and relativistic) boosting in

the inner disc, the red wing never dominates in the E < 6.4 keV region.
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self-consistently from the projected area of the disc element. The disc element will

not intercept any of the luminosity from the flow element if it makes an angle greater

than π/2 with a vector which is orthogonal to the flow element and points away from

the black hole (i.e. if it is not in the unit semi-sphere of the flow element). Also, as

observers with θi ≤ 90o, we only observe reflected photons which are intercepted by

the top of the disc.

The total incident luminosity on the disc surface element is calculated by integrating

over the surface of the entire flow. We do this calculation for every disc surface element

over a full range of precession angles (0 ≤ γ < 2π) in order to build a picture of disc

irradiation as a function of precession angle (and therefore time). The details of this

calculation are presented in the appendix (section 6.7.2). For simplicity, we use a

Euclidean metric i.e. assume that light travels in straight lines. This should be a fairly

reasonable approximation because we assume a fairly large value of ri throughout the

paper (following Dexter & Fragile 2011; Ingram & Done 2012a; Fragile 2009) and so

lightbending is not very significant (e.g. Fabian et al 1989).

Throughout the paper, we will use the values ri = 7, β = 15o and h/r = 0.9

(we discuss our reasoning for these fiducial values in section 6.3.3). Figure 6.3 shows

the resulting illumination pattern with ro = 60, with snapshots taken at five different

values of precession angle γ for an inclination angle of θi = 60o. The left hand plot

shows the pattern as seen by an observer at φi = 0o, whereas the right hand plot shows

this for φi = 90o. The luminosity is grouped into bins of equal logarithmic size with

black, red, green, blue, cyan, magenta, yellow and orange representing the dimmest to

brightest bins respectively. The flow is shown in grey with black gridlines included for

clarity. In the top picture of each plot, we also include a straight black line to illustrate

the orientation of the black hole spin axis. This is misaligned with ĴBS by β = 15o

but, as Figure 6.3 demonstrates, the apparent misalignment between these two vectors

depends on the viewing position. We clearly see the flow precess, with the pole of the
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flow moving in a circle around the black hole spin axis. As it does, the brightest part

of the disc is always the region closest to the pole of the flow meaning that it rotates

around the disc. Because of our asymmetric geometry, the flow starts off aligned with

the disc, is misaligned by 2β when γ = π before aligning again for γ = 2π. For φi = 0,

the maximum misalignment (giving the maximum illumination of the disc) is on the

right hand (receding) side of the disc, while for φi = 90 it is directly in front of the

black hole, but in both cases the illumination pattern rotates. In the next section, we

will discuss how this will affect the observed iron Kα line.

6.3.2 Effect on the iron Kα line profile

When the flow emission irradiates the disc, bound atoms in the disc will fluoresce to

produce emission lines, the most prominent being the iron Kα line at ∼ 6.4 keV (George

& Fabian 1991; Matt, Perola & Piro 1991). However, this line is in the rest frame of

the disc which is rotating rapidly meaning that a non face-on observer will see some

regions of the disc moving towards them and others receding. Doppler shifts mean that

emission from the approaching side is blue shifted while that on the receding side is red

shifted. Also, length contraction along the line of motion beams the emission in that

direction. Thus the blue shifted emission from the approaching side is also boosted in

comparison to the red shifted emission, leading to a broadened and skewed iron line.

An additional energy shift is provided by time dilation and also gravitational redshift

which combine to broaden the line even further (Fabian et al 1989; 2000). Figure

6.3 clearly shows that, according to this model, the disc irradiation pattern rotates

around the disc meaning that sometimes the brightest region of the disc is receding

(e.g. the φi = 0o, γ = 4π/5 scenario in Figure 6.3), and sometimes the brightest region

is approaching (e.g. the φi = 90o, γ = 2π/5 scenario in Figure 6.3). Therefore, as

the flow precesses, the iron line will periodically rock between red and blue shift. In

this example, the material in the disc and the irradiation pattern are both rotating
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anti-clockwise. In general, they they could both be moving clockwise but the resulting

pattern is the same (maximum blueshift, QPO maximum, maximum redshift, QPO

minimum). Lense-Thirring precession is prograde, so the disc and flow will never be

rotating in opposite directions, making this periodic shifting of the iron line profile a

unique prediction of the model.

We use the illumination pattern on each surface element of the disc to set the

amount of intrinsic iron line emission. We assume that this is a δ−function at E0 =

6.4keV and then use the radius and azimuth of the surface element of the disc and

the inclination of the observer to calculate the shifted line emission (see the appendix;

section 6.7.4).

Figure 6.4 shows the iron line profile at five snapshots of time with black, red, green,

blue and cyan lines corresponding to γ = 0, 2π/5, 4π/5, 6π/5 and 8π/5 respectively. We

use the same parameters as for Figure 6.3. The details of this calculation are presented

in the appendix (section 6.7.4). For simplicity, we do not include light bending but this

should not be a large effect for the comparatively large radii we consider. The left hand

plot is for φi = 0o, ro = 60 (i.e. corresponding to the left plot of Figure 6.3) and we

see that the iron line does indeed rock between red and blue shift as the illumination

pattern rotates. Note that, for these parameters, the 2nd and 5th snapshots have an

identical iron line profile, as do the 3rd and 4th snapshots. The right hand plot is for

φi = 90o, ro = 60 (i.e. corresponding to the right hand plot in Figure 6.3). We see that

the periodic rocking has a different phase and the peak flux of the blue wing is much

larger. This is because, for the φi = 0o case, the approaching side of the disc is never

the brightest part, whereas this does happen for the φi = 90o case. This movement of

the iron line is obviously a very distinctive model prediction and so could provide a

detectable, unambiguous signature of a vertically tilted, prograde precessing flow i.e.

a clean test of a Lense-Thirring origin of the QPO.

Figure 6.5 shows the same thing but now ro = 10. We see that Doppler (and
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relativistic) boosting of the blue wing is now such a large effect that the red wing never

dominates even when the flow is preferentially illuminating the receding material. As

such, the motion of the iron line is different. Crucially, although the exact shape of

the iron line depends on the illumination pattern and thus the details of the assumed

flow geometry, this dependence on truncation radius is really quite robust to changes

in flow geometry. The differences between Figures 6.4 and 6.5 are driven primarily by

the difference in disc angular velocity (i.e. the position of the truncation radius) and

not the details of the modelling. Thus this effect could provide a robust diagnostic for

the accretion flow geometry.

6.3.3 Modulation of the continuum

As the flow precesses, the luminosity seen by the observer will change periodically

giving rise to a strong QPO (with the quasi-periodicity provided by frequency jitter

among other processes; Ingram & Done 2012a; Heil, Vaughan & Uttley 2011; Lachowicz

& Done 2010). This is because the total surface area of the flow viewed by the observer

changes and, also, some regions of the flow are brighter than others meaning that a

trough in the light curve would typically occur when the brightest regions of the flow

(i.e. the poles) are hidden. The calculation for this process is similar to that performed

in section 6.3.1. Each flow surface element emits a luminosity dL. The observer at

θi, φi will see no luminosity from this surface element if they are not within the unit

semi-sphere of the element, and we also remove luminosity from lines of sight which

are obstructed by the disc. We can then integrate over every flow element to calculate

the observed luminosity as a function of precession angle.

The blue lines in Figure 6.6 show the observed luminosity expressed as a fraction

of the total luminosity, Ltot, plotted against precession angle. We use the fiducial

parameters ri = 7, β = 15o and h/r = 0.9 and consider the ro = 60 example. The

solid line is for φi = 0o and the dashed line represents φi = 90o. As expected, the
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observed luminosity varies with precession angle and the phase depends on φi. The

fractional rms is 8.4% and 4.2% for φi = 0o and φi = 90o respectively. These values

are lower than the observed QPO rms values of ∼ 10 − 15%. However, the predicted

values would be higher if we were to consider that the flow is fed by disc photons, the

flux of which incident on the flow will change periodically as the flow precesses. We

ignore this process here because it will affect the direct and reflected emission equally

and so will not contribute to the rocking iron line effect.

For the green line, we plot the total luminosity incident on the disc (which deter-

mines the iron line / reflected flux) as a function of precession angle. Because the disc

is flat, this does not depend on φi. This effectively tracks the misalignment between

flow and disc with the minimum reflection occurring when the flow is aligned (γ = 0)

and the maximum when the flow is misaligned by 2β (γ = π). Hence the direct and

intercepted emission are generally out of phase. The black lines show the reflection

fraction (intercepted/direct) with the solid and dashed lines representing φi = 0 and

90o respectively. This corresponds to the solid angle of the disc, and the time averaged

ratio for φi = 0o is Ω/2π = 0.263, and with Ω/2π = 0.238 for the φi = 90o case. These

values are fairly representative of those observed for the low/hard state (e.g. Gierlinski

et al 1999; Zycki, Done & Smith 1998; Gilfanov 2010).

Note that a large value of h/r gives a reasonable reflection fraction but under

predicts the QPO rms. If we had considered, for example, an overlap region between

disc and flow, disc flares or a small disc scale height, we could have achieved a reasonable

reflection fraction and the correct QPO rms (for this we would also need to consider the

variation in disc seed photons) for a far lower value of h/r. However, these effects are

all very difficult to model and our assumed geometry should not significantly affect the

final results. Thus we choose the fiducial parameter values to give reasonable results

for a simplified geometry.



6. The effect of frame dragging on the iron Kα line in X-ray binaries 159

0 0.5 1

0
0.

1
0.

2
0.

3
0.

4
Lu

m
in

os
ity

 / 
L to

t

γ/2π

ratio

direct

intercepted

(ro=60)

Figure 6.6: Emission as seen by a viewer at θi = 60o and φi = 0o (solid lines) or

φi = 90o (dashed lines). The blue line represents emission directly observed from the

flow. We see that precession of the flow introduces a strong periodicity. The green

line represents the total luminosity intercepted by the disc. This also has a periodicity

because the misalignment between disc and flow changes as the precession angle, γ,

evolves. It does not, however, depend on the position of the observer. The black line

is the ratio between direct and reflected (intercepted) light, (Ω/2π).
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6.4 Spectral modelling

We now use a full reflected spectrum rather than just a line, and recalculate the effect

of the rotating disc illumination pattern and varying effective area of the flow for this

more realistic scenario. We consider the same two values of truncation radius as those

considered previously, ro = 60 and ro = 10. These values correspond to precession

frequencies of fQPO(ro = 60) = 0.145 Hz and fQPO(ro = 10) = 5.36 Hz for the fiducial

parameters, a spin of a∗ = 0.5 and a mass of M = 10M⊙ (i.e. 2.9 and 107.1 a∗(M⊙/M)

Hz). They also correspond to different spectral states, with ro = 60 giving rise to

a low/hard state (LHS) spectrum and ro = 10 leading to a soft intermediate state

(SIMS) spectrum. The QPO in the LHS spectrum will be of type-C whereas it will be

of type-B for the SIMS spectrum.

6.4.1 Method

For both the LHS and SIMS spectra, we include quasi-thermal disc emission, Comp-

tonised flow emission and a reflection spectrum. We use xspecv12 (Arnaud 1996)

throughout. We describe the disc with diskbb (Mitsuda et al 1984), and for simplicity

we assume that this spectrum is constant. This is not strictly true. Figure 6.3 shows

that the inner disc is periodically obstructed by the flow, giving a small periodicity

in the hottest part of the disc emission. Also, the non-reflected photons which illumi-

nate the disc will thermalise and add to the intrinsic disc emission, and this additional

thermal emission will vary in intensity, being stronger when the flow is at its maxi-

mum misalignment angle to the disc, and weakest when the flow is aligned with the

disc. This additional thermal emission is also periodically redshifted/blueshifted in the

same way as the line. However, these effects should be small as they are diluted by

the much larger constant flux from the disc. We will investigate this in a future paper,

as evidence for this may have been observed (Wilkinson 2011). However, here we are

interested in the iron line region and so ignore this potential contribution to the QPO
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in the disc spectrum.

For the flow we assume that every element emits the same spectrum, meaning that

the periodicity is in the normalisation of the flow spectrum. We describe the spectrum

by the Comptonisation model nthcomp (Zdziarski, Johnson & Magdziarz 1996; Zycki,

Done & Smith 1999) which produces a power law spectrum with high and low energy

cut-offs governed by the electron temperature and disc photon temperature (kTbb tied

to the disc temperature) respectively. We fix the normalisation of this by the angle

averaged flux from the flow (Ltot), to set the flux from each surface element of the flow.

We then use the method described in section 6.3.3 to determine the modulation of the

observed continuum, to calculate the factor by which to multiply the normalisation of

nthcomp as a function of phase angle.

We use the method described in section 6.3.2 to calculate the illuminating flux from

the flow at each surface element in the disc, and use this to set the normalisation of

the illuminating nthcomp model. We describe the shape of the resulting reflected

emission by rfxconv (Ross & Fabian 2005; Done & Gierlinski 2006; Magdziarz &

Zdziarski 1995; Kolehmainen, Done & Diaz Trigo 2011). This is similar in form to the

ireflect model in xspec but replaces the very approximate ionisation balance incor-

porated in this model with the much better Ross & Fabian (2005) calculations. This

outputs a partially ionised (parametrised by log10 ξ) reflection spectrum, including the

self consistent emission lines, for a general illuminating spectrum. We fix the inclina-

tion angle of the reflector at θi and abundances at solar. We calculate the reflected

emission from this illuminating flux assuming Ω/2π = 1. This is an underestimate as

rfxconv assumes that the disc is illuminated isotropically, whereas in our geometry

the illumination is preferentially at grazing incidence. However, the amount of reflec-

tion is also set by the unknown details of the shape of the flow, so this approximation

is good enough to demonstrate the general behaviour of the model.

The reflected emission from each surface element is shifted in energy depending on
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LHS SIMS

phabs Nh (cm−2) 1 × 1022 1 × 1022

diskbb kTbb (keV) 0.1 0.5

norm 1 × 108 5 × 104

nthcomp kTbb (keV) 0.1 0.5

kTe (keV) 100 60

Γ 1.7 2.4

norm 5 4

rfxconv Ω/2π 1 1

log10 ξ 2.4 3

norm 5 4

QPO ro (Rg) 60 10

modulation β (degrees) 15 15

& ri (Rg) 7 7

smearing h/r 0.9 0.9

Table 6.1: Summary of the parameters used for both the LHS and SIMS spectral

models.

the radius and azimuth (see the appendix; section 6.7.4). We sum the reflected emission

from all the disc elements to derive the total reflected emission for each phase. This

gives the correct relative normalisation of the continuum and reflected flux, and how

this changes as a function of precession phase angle γ for a given set of model (ro, ri,

β, h/r, θi, φi) and spectral (kTbb, Γ, log ξ, kTe) parameters.

6.4.2 Phase resolved spectra

The parameters used for each state are shown in Table 6.1. We assume that kTbb, Γ

and disc ionisation increase as the rise to outburst continues whereas kTe decreases,
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Figure 6.7: LHS spectrum for five snapshots in time calculated using the model de-

scribed in the text, using the parameters listed in Table 6.1. We use the same conven-

tion as for Figures 6.4 and 6.5 with black, red, green, blue and cyan representing the

first to last snapshots. The top plot is a broadband spectrum with all of the compo-

nents. The disc and Comptonisation components are both represented by dotted lines

and the total spectrum as well as the reflection component are represented by solid

lines. The bottom right plot zooms in on the intrinsic iron line and the bottom left

plot zooms in on the iron line region of the total spectrum. We see that the motion

of the iron line is still present but dilution from the continuum makes the effect much

more subtle in the total spectrum.
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Figure 6.8: SIMS spectrum for five snapshots in time calculated using the model de-

scribed in the text, using the parameters listed in Table 6.1. We use the same conven-

tions as for Figure 6.7. We see that, as for the δ−function calculation, the movement

of the iron line is characteristically different for the SIMS compared with the LHS.
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as is commonly observed. The resultant time averaged LHS (ro = 60) spectrum has

a 2 − 10 keV flux of ∼ 0.3 Crab and Ω/2π = 0.24 (or iron line equivalent with of

150 eV when fit by a diskline profile rather than a full reflected spectrum). For the

SIMS (ro = 10) spectrum, the flux is ∼ 0.66 Crab and the reflection has Ω/2π = 0.42

(iron line equivalent width of ∼ 240 eV) with a much steeper continuum. These

values are typical of those observed in the relevant states for fairly bright BHBs (e.g.

GRS1915+104 in its QPO state: Ueda et al 2010, and the intermediate state of GX339-

4; Tamura et al 2012), justifying our choice of parameters.

Figure 6.7 shows the LHS spectrum as viewed from a position with φi = 90o and

θi = 60o at five different snapshots in time. We use the same convention as for Figures

6.4 and 6.5 with black, red, green, blue and cyan representing γ = 0, 2π/5, 4π/5, 6π/5

and 8π/5 respectively. The top plot shows the total spectrum (upper solid lines) and

its components, the constant disc (black dotted line just seen in the lower left hand

corner of the plot), variable flow (dotted continuum lines just underneath the total

spectra - the symmetry means that the red dotted line is the same as the cyan, while

the green is the same as the blue) and reflected spectra (lower solid lines). We clearly

see the flow continuum oscillate while the reflection spectrum rocks between red and

blue shift, as well as changing in normalisation. The reflection spectrum is in phase

with the continuum in this example because φi = 90o (see Figure 6.6) but, in general,

there is a phase difference between the two components. The lower left plot zooms

in on the iron line region in the total spectrum, while the lower right plot shows the

changes in the reflected emission. We see that the reflected spectrum displays similar

behaviour to the corresponding δ−function (right hand plot of Figure 6.4). The rocking

movement in the underlying reflection spectrum is still visible in the total spectrum,

though somewhat diluted by the changing continuum level.

Figure 6.8 shows the same thing but for the SIMS. As for the δ−function iron line

profile in section 6.3.2, we see that the major effect is now the strength and position of
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the blue wing rather than a rocking motion from blue to red due to the much stronger

Doppler boosting in the inner disc. Nonetheless, there is still a clear periodic shift in

the line shape with QPO phase, although the pronounced rocking of the iron line peak

energy predicted for the LHS provides more of a ‘smoking gun’ for the Lense-Thirring

model.

6.5 Observational predictions

In this section, we consider how this effect may be best observed. One potential method

is to look at phase lags between different energy bands. We could define a red wing

energy band (say 5.4 − 6.4keV) and a blue wing energy band (say 6.4 − 7.4keV) and

look for a phase lag between the two. However, Figures 6.7 and 6.8 show that, due to

dilution from the periodically varying continuum, the energy shifting of the iron line is

very subtle in the total spectrum. This means that the phase lag between red and blue

wings is very small (2 − 6 × 10−2π) for our model and, consequently may be difficult

to observe. Instead, we consider phase resolved spectroscopy.

6.5.1 Phase binning

The random phase jumps and varying period characteristic of QPO light curves make

phase resolved spectroscopy difficult. Naively folding the light curve on the QPO period

is not appropriate. It is, however, possible to isolate the maximum and minimum phase

bins of the QPO by averaging over the brightest and faintest points in the light curve.

Miller & Homan (2005) did this for two GRS 1915+105 light curves, both containing

a strong type-C QPO. This allowed them to compare the spectra corresponding to

the QPO peak and trough. This analysis can be taken a step further because a rise

will always follow a trough and a fall will always follow a peak. This simple phase

binning can therefore provide four phase bins as opposed to two. Crucially, our model
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Figure 6.9: The 2-20 keV integrated flux of the LHS model with φi = 90o and θi = 60o

plotted against precession angle. The dashed lines are flux thresholds. Intervals of

the light curve above the top dashed line are considered to be the QPO peak, intervals

below the bottom dashed line are considered to be the trough. The rising section which

will always follow a trough will have the bluest iron line profile. The falling section

which always follows the peak will have the reddest iron line profile.
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Figure 6.10: Top: Phase binned spectra calculated assuming ro = 60, φi = 90o and

θi = 60o plotted as a ratio to a power law with photon index Γ = 1.6. These four phase

bins are for the QPO minimum (green), rise (blue), maximum (black) and fall (red).

As expected, the rise has the most heavily blue shifted iron line and the fall has the

most heavily red shifted iron line. Bottom: The red fall spectrum subtracted from the

blue rise spectrum. The solid line is for the ro = 60 example shown in the top plot

and the dashed line is for ro = 10. The shape of this difference spectrum is different

for the two truncation radii. There is no negative section in the dashed line because

strong Doppler boosting in the inner disc prevents the red wing from dominating.
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predicts that the maximum red shift always follows the QPO peak and the maximum

blue shift always follows the QPO trough. This is because the pole of the flow (which

is the brightest region) faces us, then is moving away from us, then faces away from

us, then is moving towards us (before facing us again). Therefore the flow illuminates

the observer, then the receding (red shift) part of the disc, then the region hidden to

the observer then the approaching (blue shift) part of the disc.

Figure 6.9 shows the 2-20keV light curve of our LHS model with φi = 90o and

θi = 60o. We define a peak as the brightest 10% of the light curve and a trough as

the faintest 10%. These thresholds are shown as dashed lines. We can therefore isolate

the trough, the blue rise, the peak and the red fall. This flux selection means that the

majority of the counts lie in the more interesting rise and fall sections as opposed to the

peak and trough (unlike the flux selection of Miller & Homan who were interested in

the peak and trough spectra). Figure 6.10 (top) shows the result of averaging spectra

belonging to each of these four phase bins. The green line is the trough spectrum, the

blue line is the rise spectrum, the black line is the peak spectrum and the red line is the

fall spectrum. All are plotted as a ratio to a power law with photon index Γ = 1.6. We

use this photon index rather than Γ = 1.7 because the reflection hump makes the total

spectrum harder than the underlying Comptonisation. As expected, the rise spectrum

contains the most heavily blue shifted iron line and the fall spectrum contains the most

heavily red shifted iron line. Because we tie the normalisation of the power law across

the four spectra, we can see that the peak spectrum has the highest flux, the trough

spectrum has the lowest and the rise and fall have comparable flux.

In the bottom plot of Figure 6.10, we plot the red fall spectrum subtracted from the

blue rise spectrum. We use the absolute spectrum in units of energy × flux rather than

a ratio to a power law. The solid line is for the example shown in the top plot where

ro = 60 and the dotted line is for ro = 10. When ro = 60, the red wing of the iron line

dominates during the fall meaning that the solid line in the bottom plot dips below
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zero for 5.4 & E & 6.4. During the fall, the blue wing dominates which gives rise to the

hump in the 6.4 & E & 7.4 region. Due to relativistic boosting, the blue hump is larger

than the red dip. When ro = 10, the inner regions of the disc are moving much faster

than the ro = 60 case and therefore the Doppler boosting is a much more significant

effect. So much so, in fact, that the red wing of the iron line never dominates over the

blue wing, even during the fall. The dotted line in the bottom plot therefore contains

no red dip but only a blue hump. The peak of the blue hump is lower for ro = 10 than

for ro = 60 but the area under the line is greater. This is because the iron line is more

heavily smeared in the ro = 10 case, again due to faster orbital motion closer to the

black hole.

For both the LHS and the SIMS, the difference in iron line profile between the QPO

rise and the QPO fall is significant, offering the possibility of direct observation for a

range of spectral states. Note that this association of the rise with the bluest profile

and the fall with the redest profile is robust as long as we are confident that the top

(pole) of the flow is brighter than the sides. Because type-B QPOs provide a far cleaner

signal than type-C QPOs, which are always coincident with broad band variability, it

will be easier to observe this effect for a source in the SIMS. However, the QPO phase

dependence of the iron line is particularly distinctive for the LHS model. An enhanced

blue wing on the QPO rise, as predicted for the SIMS model, may feasibly be produced

by some other process. A dominant red wing on the QPO fall and an enhanced blue

wing on the rise, as predicted for the LHS model, can only realistically be produced

by precession and a large truncation radius. Moreover, an observation showing that

the difference spectrum changes between states as we predict (i.e. the bottom plot of

Figure 6.10) would surely provide excellent evidence, not only of the precession model,

but also that the truncation radius moves between the LHS and the SIMS. In the next

section, we assess the likelihood of achieving such observational confirmation.
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6.5.2 Simulated observations

We test the feasibility of observation directly by simulating phase resolved spectra

using the ftool fakeit. This adds Poisson noise to a model before subtracting

a representative background and deconvolving around a given response matrix. We

simulate LHS spectra for 50 phase bins evenly spaced in precession phase angle, γ.

We assume 100s exposure for each phase bin. This corresponds to 50 × 100s = 5ks of

good time. We sort the simulated data into four phase bins just as we did with the

model. For the simulated data, there is just one QPO cycle with a long exposure but,

for observational data there will be many short exposure QPO cycles to average over.

As long as any fluctuations in the accretion geometry over this time are varying around

an average value, the two processes should be equivalent to a good approximation.

The top left plot in Figure 6.11 shows the result of simulating the response of

the Rossi x-ray timing explorer (RXTE ) proportional counter array (PCA; top layer,

detector 2). We unfold the spectrum around a flat power law and, as for the model,

take the ratio to a power law with photon index Γ = 1.6. We use the same model as

that shown in the top plot of Figure 6.10; i.e. ro = 60, φi = 90o, θi = 60o. Again,

the green points are the trough, the blue points are the rise, the black points are the

peak and the red points are the fall. Although a shift in line energy is visible between

the rise and fall spectra, it is unlikely to be statistically significant due to a high noise

level and low spectral resolution. The two observations of GRS 1915+105 studied by

Miller & Homan (2005) were both seen with RXTE and, as such, the data were of a

comparable quality to our simulation. They fit the QPO peak and trough spectra with

a simple continuum model plus a Gaussian function for the iron line. When allowed

to be free in the fits, the centroid energy of the Gaussian was higher for the trough

spectrum than for the peak spectrum in both observations. However, they were also

able to achieve statistically acceptable results by fixing the centroid energy to the value

measured for the total spectrum. Therefore, although there is some evidence that the
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Figure 6.11: Simulated observations of the phase binned spectra shown in Figure 6.10

with ro = 60, φi = 90o and θi = 60o. These spectra are unfolded around a flat power

law and plotted as the ratio to a power law with Γ = 1.6 and unity normalisation.

Again the four phase bins are for the QPO minimum (green), rise (blue), maximum

(black) and fall (red). Observed with the RXTE PCA or the XMM Newton EPIC-pn

for 5ks, it is difficult to see by eye the difference in iron line peak energy between

different phase bins. In contrast, a 100ks EPIC-pn exposure recovers the model well

and the LOFT LAD does so with an exceptionally high precision for a 5ks exposure.
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line energy shifts, it is by no means statistically significant. It should be possible to

achieve a slightly more significant result with RXTE data by comparing the rise and

fall phases rather than the peak and trough, but this is always marginal in practice

due to the limited energy resolution of RXTE fast timing modes.

The top right plot of Figure 6.11 shows the same thing but for the XMM Newton

European photon imaging pn camera (EPIC-pn). The Poisson noise level seems to

be marginally worse compared with the simulated PCA data. Although the spectral

resolution of the EPIC-pn is far better than that of the PCA, its effective area is less

(∼ 0.05m2 compared with ∼ 0.12m2) meaning that we require a very heavy re-binning

to get a reasonable signal to noise. Therefore, it may prove difficult to observe this

effect using either RXTE or XMM Newton. However, the number of counts in the rise

and fall phase bins could be maximised by halving the peak and trough phase bins and

adding them to either the rise or the fall (i.e. the first half of the peak phase becomes

part of the rise and the second half becomes part of the fall).

A longer exposure is required to reduce the counting errors. In the bottom right

hand panel of Figure 6.11, we plot the result of assuming a 100ks exposure for the

EPIC-pn. Encouragingly, we see that the dominant red wing in the falling phase is

indeed resolved. However, over such a long exposure time, parameters such as ro may

have systematically moved and so care must be taken to take this into consideration.

The size of the effect is also dependent on our assumptions. A smaller flow scale-

height would increase the size of this effect because the flux emitted from the poles

of the flow would be an even greater fraction of the flux emitted from the entire flow.

Frame dragging could therefore have a larger effect on the iron line than we predict

here making it easier to observe with current instruments than our simulations imply.

However, it also must be noted that the continuum will be more complicated than

we assume here with some QPO phase dependent spectral pivoting resulting from a

variation in the flux of disc photons incident on the flow. This will make observation
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harder.

The bottom left hand plot of Figure 6.11 shows the potential impact of the proposed

mission LOFT (the large observatory for x-ray timing). We use the ‘required’ response

of the large area detector (LAD), which is the principle instrument of the mission.

Because the LAD has an exceptionally large effective area (10-12m2), the results are

far clearer than those provided by current missions. In fact, the noise level is so low

with LOFT, it would be possible to constrain spectra for far more than four phase

bins. We could also constrain these spectra for less than 5ks good time, meaning that

we could conduct detailed studies of the evolution of the phase resolved spectra.

6.5.3 RMS spectum

Since we calculate 50 spectra for both the LHS and SIMS models, it is simple to

calculate the rms spectrum of the QPO. This is simply the standard deviation of each

energy channel in absolute units (i.e. not divided through by the average). Figure

6.12 shows this for the LHS model (top) and the SIMS model (bottom) with the mean

spectrum plotted in black and the QPO spectrum plotted in red. Since the QPO

spectrum is fairly sensitive to model assumptions, it provides a good way to constrain

model parameters against observation. For the models we use here, the misalignment

angle β is large and thus we see reflection features in the LHS QPO spectrum as the

amount of reflection changes with QPO phase.

By contrast, in the SIMS, the extent of the flow is so small (ri = 7 and ro = 10) that

even this large misalignment angle does not give rise to significant variability in the

total reflection fraction. Previous rms spectral analyses of the QPO have not looked

at this in detail (e.g. Sobolewska & Zycki 2006). We plan to address this issue in a

future work (Axelsson et al in preparation).
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Figure 6.12: Mean and QPO spectra for the LHS (top) and SIMS (bottom) models.

The QPO spectum is calculated by measuring the standard deviation of each energy

channel around the mean value across 50 values of precession angle.
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6.6 Conclusions

The truncated disc / precessing inner flow model for the spectral timing properties of

XRBs predicts a QPO phase dependence of the iron line profile. This results from the

inner flow preferentially illuminating different regions of the disc as it precesses. When

the brightest region of the disc is moving towards us, the iron line will be blue shifted

and boosted. When the brightest region is receding, the iron line will be red shifted. As

the illumination pattern rotates around the disc, the iron line rocks between blue and

red shift. This process always happens in a particular order with the most heavily blue

shifted iron line profile following the QPO trough and the most heavily red shifted iron

line profile following the QPO peak. It is possible to isolate the peaks and troughs in

a light curve using a simple flux selection. The rising phase, which follows the trough,

is predicted to have the bluest iron line and the falling phase, which follows the peak,

is predicted to have the reddest iron line.

We predict this QPO phase dependence of the iron line profile to be present for a

large range of spectral states (and therefore truncation radii). This means that it may

be best to search for the effect in spectra containing type-B QPOs which have very little

broad band variability associated with them and therefore provide a much cleaner signal

than type-C QPOs. However, the nature of the iron line phase dependence changes

with truncation radius. When it is large, the red wing can dominate over the blue wing

during the fall from QPO peak to trough. When it is small, Doppler boosting from the

rapidly moving inner regions of the disc means that the red wing can never dominate

over the blue wing. The characteristic shape of the difference spectrum between rise

and fall should therefore change as the spectrum evolves from the LHS to the SIMS.

The dominant red wing of the QPO fall spectrum in the LHS (the ‘red dip’ in the

difference spectrum) is the most unique model prediction but if we wish to observe

this, we must disentangle the underlying QPO signal from the broad band noise. This

will be the subject of a future paper. An observation of the effect in both states, along
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with confirmation that the difference spectrum changes with state, would constitute

excellent evidence, not only of the precession model, but also that the truncation radius

moves between the LHS and the SIMS.

Quasi-periodic shifting of the iron line peak energy is a unique prediction of the

Lense-Thirring precession model for the low frequency QPO in XRBs. We have shown

that it may be possible to observe such an effect with current missions, but that LOFT

will be able to measure this with precision, enabling us to place accurate constraints

on the accretion geometry.

6.7 Appendix

6.7.1 Geometry

In order to perform our calculations, we must define some vectors using the coordinate

system outlined in Figure 6.1. We represent the x, y and z axes with the standard î,

ĵ and k̂ unit basis vectors. It then follows from Figure 6.1 that

ĴBS = − sin β ĵ + cosβ k̂

ǫ̂ = cosβ ĵ + sin β k̂. (6.1)

The three vectors î, ǫ̂ and ĴBS therefore form a right handed Cartesian coordinate

system: the disc basis vectors. We can define a vector, rd r̂d, which points from the

origin (the black hole) to any point on the disc where

r̂d = cosφd î+ sin φd ǫ̂. (6.2)

Note, because the disc is razor thin, there is no ĴBS component (i.e. ĴBS.r̂d = 0) and

φd is simply the angle between r̂d and the x-axis. We also define a vector pointing from

the origin to the observer using the disc basis vectors

Ŝ = sin θi cosφi î + sin θi sin φi ǫ̂ + cos θi ĴBS . (6.3)
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In order to describe points on the surface of the flow, we must define flow basis

vectors. The ‘z-axis’ of this right handed coordinate system is Ĵflow which precesses

around k̂ as illustrated in Figure 6.1. The other two basis vectors, x̂f and ŷ
f
, must

therefore also precess with the flow. We use

x̂f = cos γ î + sin γ ĵ

ŷ
f

= − cos β sin γ î+ cos β cos γ ĵ + sin β k̂

Ĵflow = sin β sin γ î− sin β cos γ ĵ + cos β k̂, (6.4)

such that x̂f = î when γ = 0 but, as the precession angle unwinds, the axes move. We

can then specify a point in the flow with the vector rf r̂f where

r̂f = sin θf cosφf x̂f + sin θf sin φf ŷf
+ cos θf Ĵflow. (6.5)

Here, θf is the angle between r̂f and Ĵflow and φf is the angle between r̂f (θf = π/2)

and î.

Because our flow is elliptical with semi-minor axis in the Ĵflow direction and semi-

major axis in the â = cosφf x̂f + sinφf ŷf
direction, the distance from the origin to

any point on the surface is

rf(θf ) =
roho

√

(ho sin θf )2 + (ro cos θf )2
. (6.6)

Because rf is uniquely determined by θf , we can define dr = |r(θf) − r(θf + dθf )|.
We need to be able to write down the unit vector normal to the flow surface. We

can do this using a few identities. Imagine a triangle drawn between the two focuses

of the ellipse, F1 and F2, and any point on the circumference of the ellipse, P . We

know that the distance from the origin to either focus is f =
√

r2
o − h2

o and also that

the three sides of the triangle add up to 2ro + 2f . We can define the angle between the

line from P to F1 (P F1) and the line from P to F2 (P F2) as ψ. We know that the

surface area unit vector, Â, goes directly between these two lines such that the angle



6. The effect of frame dragging on the iron Kα line in X-ray binaries 179

between −Â and each line is ψ/2. We can say that Â points from some point xo â to

the point on the flow surface, P , in such a way that this condition is satisfied. Say that

d is the distance from P to F2 and Ω is the angle between the lines F2 F1 and F2 P .

We can use the cosine rule a few times to show that d =
√

f 2 + r2
f − 2frf sin θf and

cos Ω = (f 2 − r2
o + rod)/(f d). It is then possible to show that

Â =
rf r̂f − xo â

√

x2
o + r2

f − 2xorf sin θf

(6.7)

where

cosψ =
2r2

o + d2 − 2rod− 2f 2

d(2ro − d)
(6.8)

and

xo = f − d sin(ψ/2)

sin(π − ψ/2 − Ω)
. (6.9)

We will also need to define a vector which points from a given point on the flow to

a given point on this disc. This can be written as

ζ ζ̂ = −rf r̂f + rd r̂d. (6.10)

From this, it is simple to show that the distance between the two points is

ζ2 = r2
f + r2

d − rfrd r̂f .r̂d. (6.11)

All of these vectors will become very useful for the following sections.

6.7.2 Disc irradiation calculations

So, we need to calculate what luminosity a disc element with surface area dAd =

rddφddrd will intercept from a flow surface element emitting a luminosity dL over a

semi-sphere (because it only emits away from the rest of the flow). We can then

integrate over all flow elements to work out the total flow luminosity that the disc

element intercepts. For the disc patch to see anything at all from a given flow element,
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it must pass two tests. First, does it lie in the unit semi-sphere of the flow element;

i.e. is Â.ζ̂ > 0. Also, because we are viewing the top of the system (θi ≤ 90o), we

only see luminosity which has reflected off the top of the disc. Therefore, we only

count luminosity incident on the top of the disc in our integral. This means we require

ζ̂ .ĴBS < 0. If one of these conditions isn’t met, the luminosity intercepted by the disc

element is dLr = 0. If both are, we have

dLr =
(−ζ̂ .ĴBS)dAd

2πζ2
dL. (6.12)

We see that, the amount of luminosity intercepted depends on the projected area of

the disc patch as seen by the flow element. If the patch is face-on as seen by the

flow, ζ̂ .ĴBS = 1 and the projected area is dAd. This area reduces as the patch turns

away from the emitting flow element. The total luminosity incident on a disc patch is

calculated by adding up the contribution from every flow element.

6.7.3 Flow modulation calculations

We now need to calculate how much luminosity a telescope with effective area Aeff

will intercept from a given flow element in order to again integrate over the whole flow.

For the telescope to see any luminosity at all, two tests must again be passed. First

of all, the viewer must be in the unit semi-sphere of the flow element. This means we

require Â.Ŝ > 0. We also won’t see anything if the emission is blocked by the disc. We

know the emission definitely won’t be blocked by the disc if the flow element is above

the disc; i.e. r̂f .ĴBS > 0. Even if the element is below the disc plane, we still might

be able to see through the hole in the centre of the disc. So, imagine a point on the

flow which is below the disc plane, emitting along the vector Ŝ. At some point it will

intercept the disc plane. The distance between the flow element and the point where

the vector crosses the disc plane is ζ . This point will be a distance rd from the origin.

We can write

ζŜ = −rf r̂f + rd r̂d. (6.13)
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Dotting both sides with ĴBS and rearranging gives

ζ =
−rf r̂f .ĴBS

cos θi
. (6.14)

We then know that

r2
d = ζ2 + r2

f + 2ζrf Ŝ.r̂f . (6.15)

If r2
d < r2

o, we still see the flow element through the hole in the disc. If not, it is hidden

by the disc.

So, if the unit-sphere and disc obstruction tests are not passed, the luminosity

intercepted by the telescope is dLobs = 0. Otherwise, this is

dLobs =
Aeff dL

2πD2
, (6.16)

where D is the distance to the source. Note, because the telescope is so far away and is

pointed straight at the black hole, we can say that the projected area of the telescope

as seen by any flow element is Aeff . We then just set Aeff/(2πD
2) = 1, because it only

tells us about normalisation, and sum up the contribution from each flow element.

6.7.4 Iron line profile calculations

A disc element at rd r̂d is rotating with Keplerian velocity vk. An observer at θi, φi

then sees the disc patch travelling towards them at a velocity of v = vk sinφ sin θi where

φ = φi − φd. The tangent points of the disc will therefore travel towards the observer

at a velocity of ±vk sin θi. This means that a photon emitted will energy Eem with be

red shifted by

Eem/Eobs = (1 − 3/rd)−1/2

[

1 +
cosα

[rd(1 + tan2 ξo) − 2]1/2

]

, (6.17)

where

cosα = sin φ sin θi(cos2 θi + cos2 φ sin2 θi)
−1/2

tan ξo = cos φ sin θi(1 − cos2 φ sin2 θi)
−1/2, (6.18)
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(Fabian et al 1989; 2000).

For a given precession angle, γ, the flow luminosity incident on a disc patch de-

scribed by rd and φd is Lr(rd, φd). If this luminosity were all emitted at energy Eem,

the observer would see a luminosity, all at Eobs, of

dLobs ≈ Lr(rd, φd)(Eobs/Eem)3 cos θi. (6.19)

Here, the approximations come from assuming light to travel in a straight line. Through-

out this paper, we ignore gravitational light bending thus taking these to be good ap-

proximations. This should be apropriate since the inner radius of the flow is assumed

to be ri = 7 throughout and light bending effects outside of this radius will be minimal.

The total observed luminosity as a function of energy is calculated by summing the

contribution from each disc patch. As the flow precesses and the function Lr(rd, φd)

evolves, the observed iron line profile will change.



Chapter 7
Concluding remarks

In this thesis, over the course of 5 papers, I have investigated a model intended to

quantitatively explain the spectral and variability properties observed for XRBs. Set

in the framework of the truncated disc model which was originally designed to explain

the long term spectral transitions with a moving truncation radius, the first premise

of the variability model is that, as the truncation radius moves in, all characteristic

frequencies associated with that radius increase and thus the characteristic frequencies

measured in the PSD also increase. Following authors such as Stella & Vietri (1998)

and Marković & Lamb (1998), I associate the low frequency QPO with Lense-Thirring

precession. However, in our model the entire inner accretion flow precesses as a solid

body as has been seen in the recent numerical simulations of Fragile et al (2007; 2009).

This extra step allows the model to reproduce the observed QPO frequency range in

both BHBs (Ingram, Done & Fragile 2009) and NSBs (Ingram & Done 2010) with the

extra advantage of predicting a QPO in the Comptonised emission rather than the

disc, as is observed (Sobolewska & Życki 2006, Rodriguez et al 2004). Fluctuations in

mass accretion rate driven by the intrinsically variable MRI (Balbus & Hawley 1998)

but damped on the local viscous timescale in the accretion flow (Psaltis & Norman

2000; Churasov, Gilfanov & Revnivtsev 2001; Lyubarski 1997) can then produce the

broad band noise observed in the PSD. In our model, the disc is stable and the flow is

variable with the variability amplitude from a given annulus of the inner flow peaking

at the local viscous timescale. Thus the low frequency variability is produced in the
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outer flow and the high frequency variability in the inner part. As the truncation radius

moves in, the lowest frequency noise is lost and the low frequency break in the power

spectrum moves to higher frequencies.

The two processes can be tied together simply by imposing mass conservation. This

allowed us to define a model for the QPO and broad band noise which uses only one

set of parameters. We were thus able to fit the model to a series of observed PSDs

(Ingram & Done 2011; Ingram & Done 2012a). Since this is a physical model, we

can gain insight from the evolution of best fit parameters values which imply that the

flow scale height collapses as the truncation radius moves in, consistent with the gas

pressure reducing with temperature in the flow. Mass conservation also implies that

the mass accretion rate fluctuations will drive fluctuations in the surface density and,

consequently, the precession frequency, giving rise to a quasi-periodic oscillation rather

than a pure periodicity. Since the total variability amplitude of the mass accretion

rate fluctuations reduces as the truncation radius moves in, we naturally predict the

QPO to be less coherent in the LHS than in the HIMS, as is observed (Rao et al 2010;

Belloni 2010).

Also, one of the key predictions of this model is the short timescale QPO-flux

correlation (Heil, Vaughan & Uttley 2011). Since the flux and precession frequency are

both sensitive to the mass accretion rate fluctuations, the two correlate on short time

scales (∼3s). This was discovered in RXTE data from XTE J1550-564 after I wrote

the original propfluc code. When we looked for this property in the simulated data,

it was present and, in fact, a necessary consequence of the assumptions we had already

made. In addition to this, since the outer regions of the flow see a greater luminosity

of seed photons than the inner regions and contribute slower variability, the frequency

resolved spectrum (Revnivtsev, Gilfanov & Churazov 1999) can naturally be explained,

at least qualitatively. This also allows the model to reproduce the observed phase lags

between energy bands (Arévalo & Uttley 2006; Kotov, Chirazov & Gilfanov 2001).
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Although this is encouraging, it by no means constitutes unambiguous proof for the

model. Chapter 6 summarises our latest paper (Ingram & Done 2012b) in which we

suggest a potentially unambiguous test for the precession model. As the flow precesses,

the patch of the disc preferentially illuminated by the flow rotates such that a non face

on observer sees a quasi-periodic shift between blue and red shift in the iron Kα line. We

use a spectral model in order to predict the spectral shape as a function of QPO phase

and simulate observation with RXTE, XMM Newton and the proposed ESA mission

LOFT. We find that it may be difficult to constrain the spectral shape sufficiently with

archival RXTE or XMM Newton data (consistent with Miller & Homan 2005). This

could perhaps be solved with a very long XMM Newton observation. However, the

effect will be clearly observable using LOFT, should it fly.

For all the successes of the model, there are weaknesses. Our assumption of a

completely stable disc conflicts with observation (Wilkinson & Uttley 2009). Future

versions of the model must incorporate disc variability. This could solve two other

problems highlighted in chapter 5. Firstly, the model always predicts flat top noise

whereas the observed PSD always has a ‘double hump’ shape that only approximates

to flat top noise. Secondly, in order to achieve a fit to the PSD, we had to assume a

surface density profile with a much more gradual drop-off at small radius than that

predicted by the simulations (Fragile 2009; Ingram, Done & Fragile 2009). Perhaps the

low frequency hump is actually generated in the inner few Rg of the outer disc (before

propagating into the flow) and the flow only generates the high frequency hump. Since

we will not then need the flow to produce variability on such a wide frequency range,

it will be possible to reproduce the observations with the steep surface density drop-

off measured from the simulations. If this transition region has constant width with

its inner edge defined by the truncation radius, a moving truncation radius will still

naturally give rise to a moving break frequency in the PSD.

However, in order to do this, we need to guide our assumptions with observation.
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Currently, there are very few observations in which the disc is confirmed to be signif-

icantly variable (due to the high RXTE energy bandpass and comparative sparsity of

suitable XMM Newton observations) and no one has actually measured the disc PSD or

even confirmed if the inner regions of the disc are more variable than the outer regions.

I believe it is possible to use Fourier techniques to answer some of these questions. Ad-

vances in our theoretical understanding of disc variability are also required. It seems

plausible that a transition region between disc and flow will generate a large amount of

turbulence, which could be a good candidate for the observed disc variability. However,

is has not yet been possible to conduct a simulation of such a two phase flow.

This highlights another challenge. The Fragile et al (2007; 2009) simulations imply

that a large scale height accretion flow can precess as a solid body if it is misaligned

with the spin axis of the central black hole. In contrast, analytical work suggests the

central regions of a thin disc should align with the black hole and the outer regions

align with the binary system (the Bardeen-Petterson effect: Bardeen & Petterson 1975;

Papaloizou & Pringle 1983; King et al 2005). If the flow is fed by a Bardeen-Petterson

disc which aligns with the black hole spin axis from a large radius, it will not be

misaligned and thus will not be expected to precess. However, there is uncertainty in

the literature as to where this alignment occurs. If this happens at r < 10, the flow is

intrinsically misaligned and is predicted to precess (although the effect on precession

of torque from the disc must also eventually be taken into account). In fact, for

relatively low values of α and/or high values of h/r, the disc does not fully align with

the black hole spin plane in any region (Zhuravlev & Ivanov 2011). Future simulations

considering a large scale height accretion flow with cooling artificially introduced at a

few tens ofRg may yield a truncated disc / hot inner flow configuration and go some way

to addressing this fundamental uncertainty (P. Chris Fragile; private communication).

Clearly, the model requires further development and refinement but I believe this

work should be the first in what will eventually be a widely used technique of power
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spectral fitting. Spectral fitting using physical models has been common place for

decades and has formed the corner stone of our understanding of XRBs. The next

step, as our observational capabilities and theoretical understanding increase, is to

complement this with PSD fitting and advancing this even further to incorporate phase

information.
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[120] Marković D., Lamb F. K., 1998, ApJ, 507, 316

[121] Markowitz A., et al., 2003, ApJ, 593, 96

[122] Matt G., Perola G. C., Piro L., 1991, A&A, 247, 25

[123] Mayer M., Pringle J. E., 2007, MNRAS, 376, 435



BIBLIOGRAPHY 196

[124] McClintock J. E., Shafee R., Narayan R., Remillard R. A., Davis S. W., Li L.-X.,

2006, ApJ, 652, 518

[125] Medvedev M. V., 2004, ApJ, 613, 506

[126] Méndez M., 2006, MNRAS, 371, 1925

[127] Menou K., Narayan R., Lasota J.-P., 1999, ApJ, 513, 811

[128] Merloni A., Vietri M., Stella L., Bini D., 1999, MNRAS, 304, 155
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[176] Różańska A., Czerny B., 2000, MNRAS, 316, 473

[177] Rybicki G. B., Lightman A. P., 1979, rpa..book,

[178] Rykoff E. S., Miller J. M., Steeghs D., Torres M. A. P., 2007, ApJ, 666, 1129

[179] Schnittman J. D., 2005, ApJ, 621, 940

[180] Schnittman J. D., Homan J., Miller J. M., 2006, ApJ, 642, 420

[181] Shafee R., Narayan R., McClintock J. E., 2008, ApJ, 676, 549

[182] Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337

[183] Shapiro S. L., Lightman A. P., Eardley D. M., 1976, ApJ, 204, 187

[184] Sobczak G. J., McClintock J. E., Remillard R. A., Cui W., Levine A. M., Morgan

E. H., Orosz J. A., Bailyn C. D., 2000, ApJ, 531, 537
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