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Abstract

Astrophysical black holes should be simple objects with only two parameters: mass

and spin. As material accretes onto the black hole this adds two further parameters:

accretion rate and, since accretion generally occurs through a preferential plane, the

inclination at which we view the system. Inclination becomes particularly important

when a fraction of the inflowing material is not accreted but is instead ejected from

the system in powerful, highly collimated and sometimes highly relativistic jets. It

is these luminous accretion flows and jets that allow accreting black holes to be

detected across the entire range of the electromagnetic spectrum from radio up to

gamma-ray energies. The emission from the accretion flow and jet should be com-

pletely determined by the four fundamental parameters of mass, spin, accretion rate

and inclination. Variations in these four parameters should be all that is required

to explain the enormous variety of spectra from accreting black holes. In this thesis

I present five papers studying emission from black holes of all size-scales and in all

accretion regimes, including inclination effects and investigating the possible effect

of the most difficult parameter to measure — black hole spin. Black holes do not

exist in isolation. Stellar mass black holes are fed by their companion stars and su-

permassive black holes by gas from their host galaxies. Not only does the galaxy fuel

the growth of the supermassive black hole but equally the outflows that result from

black hole accretion affect the growth of the galaxy, heating gas and suppressing

star formation. This adds extra importance to understanding black hole accretion

and the interplay between accretion and ejection. I find a scenario where low spin

black holes are limited to feeding back via winds and moderately relativistic jets,

while only the highest spin black holes are capable of producing the most powerful,

highly relativistic jets, may be consistent with current observations.
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Chapter 1

Introduction: Fundamental

Properties of Black Holes

A black hole is formed when material collapses to such high densities that not even

light can escape its gravitational potential well. The strength of a gravitational

field can be characterised by the velocity a test mass would require to escape to

infinity. The closer to the black hole the test mass is launched, the stronger the

gravitational attraction it experiences and the larger the velocity required to escape

to infinity. The radius around a black hole at which the escape velocity equals the

speed of light is called the event horizon. Escaping from within the horizon requires

an escape speed greater than the speed of light. Since nothing can travel faster than

the speed of light this means the region of space-time inside the horizon is cut off

from the rest of the Universe. The radius of the event horizon (RH) depends on both

the mass and the spin of the black hole. For a non-spinning (Schwarzschild) black

hole, RH = 2GM/c2 = 2Rg, where Rg is the gravitational radius (used hereafter

to write distances in dimensionless units as r = R/Rg). However if the black hole

is spinning it will drag space-time around with it, reducing the radius of the event

horizon. For a spinning black hole, rH = 1 +
√

1− a2 (Fig.1.1, top panel), where

a = J/McRg is the dimensionless black hole spin parameter (−1 ≤ a ≤ 1) and J is

the angular momentum of the black hole (Kato et al., 1998). A black hole therefore

has only two fundamental properties: its mass and its spin.

By its very nature a black hole cannot be seen directly, but its presence can be

1
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Figure 1.1: Radius of the horizon and innermost stable circular orbit and black hole
efficiency as a function of black hole spin.

inferred through its effects on its surroundings. The extreme gravity around a black

hole strongly distorts space-time, producing regions with high curvature. Light rays

from a distant source passing close to the black hole but not close enough to be

captured follow this curved space-time so that their path appears bent around the

black hole. In this way black holes become gravitational lenses (see, for example,

the review by Bozza, 2010).

Any material entering the black hole’s sphere of influence may be accreted onto

the black hole. In order to accrete, the material must lose potential energy and

angular momentum, and some of this energy is lost via radiation. The nearer to

the black hole the accreting material, the deeper the potential well and the higher

the energy of the emitted radiation. As a result, the emission from such accretion

flows peaks in the X-rays, with luminosities as high as 1043 erg s−1 for a typical su-

permassive black hole, making accreting black holes some of the brightest objects
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in the Universe. The black hole itself may be invisible, but the luminous accretion

flows around them provide a means of studying them and their environment. Ma-

terial accretes in a series of concentric circular orbits with decreasing radius, until

it reaches the innermost stable circular orbit (Risco), after which general relativity

predicts there can be no more stable orbits and material goes into free fall towards

the horizon and the black hole. Just like RH , Risco depends on the mass and spin of

the black hole, varying from 1Rg for a = 1 (maximal prograde spin, i.e. accretion

flow and black hole spin perfectly aligned) to 9Rg for a maximal retrograde black

hole with a = −1 (Fig.1.1, middle panel). The total amount of energy the accretion

flow can radiate depends on Risco. Hence the efficiency of the black hole at convert-

ing accreting matter to radiation depends on its spin (Fig.1.1, bottom panel). Not

only does the accreted material add to the mass of the black hole but it also carries

its own angular momentum, which can in turn act to increase or decrease the spin

of the black hole.

Black hole accretion rates are measured in terms of the ratio of the accretion flow

luminosity with respect to the Eddington luminosity (LEdd), where the Eddington

luminosity is the luminosity at which radiation pressure pushing outwards balances

the inward gravitational force. LEdd therefore represents a theoretical limit on the

accretion rate. If the accretion rate exceeds the Eddington limit then radiation

pressure from the accreting material is greater than the gravitational attraction of

the black hole and pushes material away, preventing the accretion rate rising any

further. The Eddington limit depends on the mass of the black hole as:

LEdd =
4πGMmpc

σT
∼ 1.3× 1038M/M� (1.0.1)

where σT is the Thompson cross section for electron scattering and M� is a solar

mass. The Eddington limit assumes spherical accretion, so in practice the Eddington

limit can be overcome if the radiation from the accreting flow is directed away from

the in-falling material, reducing the radiation pressure on it. In this way super-

Eddington accretion flows can and probably do occur.

Therefore, in addition to a black hole’s two fundamental properties of mass and

spin, a black hole may have two further important parameters: the mass accretion
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rate onto it and, since accretion often occurs in a preferential plane, the inclination

of the accreting system with respect to our line of sight. This fourth parameter

of inclination becomes especially important when considering material that is not

accreted by the black hole, but is instead ejected from the system in powerful, highly

collimated and sometimes highly relativistic jets perpendicular to the accretion flow.

Such outflows are often found to accompany accretion but the conditions required

to produce and power them are still not fully understood and still debated.

In this thesis I present five papers focussing on accretion and ejection around

both stellar mass and supermassive black holes and what the emission from these

systems might tell us about the black holes at their centres and their four physical

parameters of mass, spin, accretion rate and inclination.



Chapter 2

Introduction: Stellar Mass Black

Holes

Stellar mass black holes are formed from the collapse of massive stars. During

most of a star’s life, nuclear reactions in the core provide enough outward radiation

pressure to balance the inward force of gravity. When the star runs out of fuel there

is nothing to oppose the star’s self gravity and it collapses.

If the core of the collapsing star is less than ∼ 1.4M� (where M� is a solar

mass), electron degeneracy pressure will eventually halt the collapse and the star

will become a white dwarf (Chandrasekhar, 1931). If the star is more massive than

this, electron degeneracy pressure will not be enough to halt the in-falling material.

When the the outer layers hit the hard stellar core a shockwave is produced which

propagates outwards causing the star to explode in a supernova. If the supernova

remnant is less than ∼ 2− 3M� neutron degeneracy pressure will be strong enough

to prevent further collapse, and the remnant becomes a neutron star. If the stellar

remnant is larger than ∼ 2− 3M� then there is nothing left to prevent collapse and

the result is a black hole (Chitre & Hartle, 1976; Kalogera & Baym, 1996).

Stars are rarely formed in isolation and many exist in binary systems, where

two stars are gravitationally bound and orbit one another. If one of the stars goes

supernova, leaving a black hole, material can be accreted onto the black hole from

the companion. As the material is accreted it shines brightly in the X-rays, allowing

these systems to be detected, and as a result they are termed black hole binaries

5
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Figure 2.1: High/soft (red) and low/hard (blue) spectral states of Cyg X-1, from
Gierliński et al. (1999).

(BHBs). The mass of the black hole can be estimated by measuring the orbital

motion of the companion star and estimating the companion star’s mass from its

optical spectrum (e.g. Orosz et al., 2002 and references therein). The X-ray spectra

of BHBs are not constant but vary with time. They can be classified in terms of

spectral states, determined by the mass accretion rate onto the black hole.

2.1 Spectral States

The two canonical spectral states of BHBs are the low/hard state (LHS) and the

high/soft state (HSS). The LHS is seen at low luminosities and corresponds to

low mass accretion rates. As accretion rate increases, luminosity increases and

the source may make a transition to the HSS. The accretion rate at which the

transition occurs varies not only between sources, but also within the same source,

and depends on whether the transition is from LHS to HSS or from HSS to LHS. The

transition from LHS to HSS is generally at a higher luminosity (∼ 0.10.2L/LEdd,

Done et al., 2007) while the transition from HSS back to LHS occurs at lower

luminosity (∼ 0.02L/LEdd, Maccarone & Coppi, 2003).

Fig.2.1 shows an example of a LHS and a HSS (in blue and red, respectively)

of the BHB Cyg X-1. The HSS (Fig.2.1, red points) is characterized by a strong
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  Figure 2.2: Hardness-intensity diagram showing spectra colour-coded by spectral state
(HIMS, hard intermediate state; SIMS, soft intermediate state) from three outbursts of
GX 339–4, from Plant et al. (2014).

thermal component in the soft X-rays peaking at ∼ 1 keV, which dominates the

total luminosity, and a weak non-thermal tail to high energies. The emission in the

LHS (Fig.2.1, blue points) is dominated by a power law like tail peaking in the hard

X-rays at ∼ 100 keV. A lower temperature thermal component may be observed but

the X-ray band pass is now dominated by the hard X-ray tail.

The fact the LHS is dominated by hard emission and occurs at low luminosities

and the HSS is dominated by soft emission and occurs at high luminosities can be

used to construct a hardness-intensity diagram, where a measure of the ‘hardness’

of the spectrum is plotted against its luminosity. Fig.2.2 shows a hardness-intensity

diagram for the BHB GX 339–4. Three outbursts of the the source are shown,

with each point representing an individual observation coloured according to its
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spectral state. Prior to the outburst the black hole is in quiescence. As accretion

rate increases it progresses up the right hand side of the diagram in the LHS until

it reaches the top where it crosses to the left hand side and switches to the HSS.

The luminosity then gradually drops again until the source moves back along the

bottom horizontal track back to the LHS and finally drops down into quiescence.

The diagram clearly demonstrates how the luminosity of the transition is variable;

while the source generally always returns to the LHS along the bottom horizontal

track, the luminosity at which it switches from LHS to HSS varies such that it may

make the transition before reaching the maximum luminosity of the LHS branch by

taking the middle track rather than the upper (Plant et al., 2014). This hysteresis

which causes systems to switch from LHS to HSS at a higher luminosity and switch

back at a lower luminosity has led to Fig.2.2 being referred to as a ‘turtle head’

diagram.

The HSS and LHS are not the only states BHBs show. Intermediate states are

seen when sources make the fast transition from LHS to HSS and back again (green

triangles, Fig.2.2). Some BHBs also show a very high state (VHS) at luminosities

much higher than a typical HSS (Miyamoto et al., 1991). The VHS is characterised

by high luminosity in both the soft thermal component and the hard power law and

is often accompanied by strong jet emission.

A model proposed to explain these observed spectral changes with accretion rate

is the truncated disc model (Done et al., 2007), illustrated in Fig.2.3. In this model

the soft thermal component is black body (BB) emission from an accretion disc.

In the HSS the disc extends down to the last stable orbit around the black hole.

The non-thermal tail in the HSS is then produced by Compton up-scattering disc

photons off hot electrons in an optically thin corona above the disc.

As accretion rate drops and the source enters the LHS, the disc recedes, evap-

orating from the inside out to be replaced by a hot inner flow (Meyer & Meyer-

Hofmeister, 1994; Mayer & Pringle, 2007). In order to form an accretion disc the

material must cool by radiating away its potential energy. The electrons emit the

radiation but it is the more massive protons that carry most of the potential en-

ergy. In order for the material to cool there must be efficient transfer of energy
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Figure 2.3: Schematic showing the proposed geometry of the accretion flow corresponding
to the low/hard state, very high state and two high/soft state spectra (thermal dominant
and ultra soft) according to the truncated disc model. In the high/soft state, the flow
consists of an outer cool, geometrically thin, optically thick accretion disc, which extends
down to the last stable orbit. As accretion rate drops in the low/hard state, the disc, which
produces the soft thermal emission, is truncated at progressively larger radii. Within the
truncation radius the flow is hot, geometrically thick and optically thin and produces the
hard Compton emission. From Done et al. (2007).

between protons and electrons (Stepney, 1983). When accretion rate drops, the

density of the accreting material drops and there are fewer collisions between pro-

tons and electrons. As a result the material can no longer cool into a geometrically

thin, optically thick disc, but remains hot, geometrically thick and optically thin.

A fraction of the accretion energy is retained by the protons and advected with the

flow, leading to these hot flows being termed Advection Dominated Accretion Flows

(ADAFs, Narayan & Yi, 1995). The remains of the outer accretion disc provide a

low temperature soft BB component, but the X-rays are now dominated by emission

from the hot flow, where hot electrons Compton up-scatter seed photons from the

disc and cyclo-synchrotron emission produced from magnetic fields within the hot

flow, to provide the hard power law tail. The brightest LHS spectra have an optical

depth (τ) inferred from their spectra of 2− 3, corresponding to an accretion rate of

ṁ = L/LEdd ∼ 0.1 (Ibragimov et al., 2005, Malzac & Belmont, 2009), implying this

is the critical density at which energy transfer between ions and electrons becomes

inefficient and the hottest material nearest to the black hole can no longer cool and

condense into a disc.
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In the context of the truncated disc model, the VHS should represent the highest

accretion rates, where there is so much inflowing gas that the disc is throwing off

material, potentially disrupting its structure, and making both a strong disc and

corona, as well as expelling excess material via the jet.

Modelling the spectra of BHBs therefore involves modelling both the emission

from an optically thick accretion disc and from hot electrons in the inner hot flow.

2.1.1 Disc Emission

The radiation from a thin accretion disc can be estimated by considering the gravi-

tational potential energy liberated at each radius (R):

dE

dt
=
GMṀ

R2
dR (2.1.1)

where M is the mass of the black hole and Ṁ is the accretion rate. Following the

virial theorem, half of this can be radiated, giving:

dL =
GMṀ

2R2
dR (2.1.2)

If the radiation thermalises then setting this equal to dL = dAσT 4, where σ is

the Stefan-Boltzmann constant, gives:

T 4 =
GMṀ

8πσR3
dR (2.1.3)

Each radius emits as a black body with temperature increasing with decreasing

radius. The peak of the disc spectrum is therefore determined by the inner radius

of the disc. In the HSS this will be at the last stable orbit around the black hole

(Risco). In the LHS this will be the radius at which the disc is truncated (Rtrunc)

and replaced by the hot inner flow, as in Fig.2.4.

This is the standard Shakura & Sunyaev (1973) disc solution. If the disc extends

to down to Risco then a stress free inner boundary condition must be included. This

accounts for the fact there is no viscosity inside Risco. Small relativistic corrections

to the emissivity can also be included following Novikov & Thorne (1973). A colour
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Figure 2.4: Model disc spectrum around a 10M� black hole with Rtrunc = 20Rg.
Each annulus of the disc radiates as a black body with temperature increasing as radius
decreases. The peak disc luminosity is therefore determined by the inner radius of the
disc.

temperature correction can also be included, which accounts for the fact the disc

emission may not completely thermalise at every radius. This is because the absorp-

tion opacity depends on temperature, density and the energy of the radiation, all

of which change with radius, while the electron scattering opacity is constant. For

hot inner radii, the absorption opacity can be much less than the scattering opac-

ity, causing a higher effective temperature than otherwise predicted, so the resulting

modified BB spectrum will be hotter (Shimura & Takahara, 1995; Done et al., 2012).

Nonetheless, assuming all the energy (more or less) thermalises, so that the

energy released at each radius is radiated locally, remains a good approximation.

This requires the disc is optically thick and results in a geometrically thin disc

(H/R ∼ 0.01, where H is the vertical scale height of the disc). As material accretes

inwards, angular momentum is transported outwards by viscosity. The material is

likely to be threaded with magnetic fields and differential rotation causes field lines

connecting material at different radii to become stretched and tangled. Simulations

show this magneto-rotational instability (MRI; Balbus & Hawley, 1991) can provide
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the stresses required to transport angular momentum outwards.

2.1.2 Hot Flow Emission

In the hot flow within a truncated disc (as in the corona above a HSS disc) en-

ergy transfer between ions and electrons is inefficient, due to the lower density of

the material. As a result the hot flow forms a two temperature plasma. The ion

temperature will be set by the virial temperature, such that:

kTion =
GMmp

R
=
mpc

2

r
(2.1.4)

where r is the radius in units of gravitational radii (Rg = GM/c2) and n is the

density of accreting material, related to the optical depth (τ) by n = τ/(σTRtrunc).

This gives ion temperatures of 1012 K, whilst the radiating electrons are much cooler,

remaining at 109 K (Narayan & Yi, 1995).

Just like the disc, the hot flow also contains tangled magnetic fields. An estimate

of the magnetic field strength can be made by assuming the magnetic energy density

(UB) saturates at 10% of the gas pressure:

UB =
B2

8π
= 0.1nkTion (2.1.5)

The radiative inefficiency of the hot flow means that it will only radiate a fraction,

f , of the gravitational energy radiated by a disc spanning the same radii:

Lhot = fLdisc(Rtrunc < R < Risco) (2.1.6)

The hot flow therefore consists of tangled magnetic fields and hot electrons with

an input power of Lhot: it will produce Comptonised emission from up-scattering disc

photons, and will also produce cyclo-synchrotron radiation through the interaction

of electrons with the magnetic field.
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2.1.2.1 Thermal Comptonisation

The energy of hot flow electrons is much greater than that of any photons from the

disc. A disc photon passing through the hot flow which happens to collide with an

electron will therefore gain energy and be Compton up-scattered. The energy of

the photon after the collision (E2) depends on its original energy (E1), the Lorentz

factor of the electron (γ = (1 − β2)−1/2) and the angles between the electron and

original photon (θe,1), electron and final photon (θe,2) and the original and final

photons (θ1,2) (Rybicki & Lightman, 1979):

E2 =
E1(1− β cos θe,1)

1− β cos θe,2 + (E1/γ)(1− cos θ1,2)
(2.1.7)

Averaging over angles, assuming an isotropic distribution of original seed photons

and θe � 1, gives an average energy gain by each photon of (1 + 4Θ), where Θ =

kTe/mec
2 is the dimensionless electron temperature. The up-scattered photons can

go on to collide again with more electrons, gaining (1 + 4Θ) each time until they

reach 3Θ. They cannot be up-scattered further than this since the photons cannot

gain more energy than the electrons began with.

However the photons will only be up-scattered by the electrons if they collide.

The probability of a photon colliding with an electron depends on the optical depth

as e−τ , so only a fraction of the photons will be boosted on to higher energies each

time. This succession of scattering orders, with a constant fraction, τ , of the photons

being boosted on by a constant amount, (1 + 4Θ), each time gives the power law

seen in LHS spectra, with the roll-over of the Compton spectrum determined by the

electron temperature. This process is shown schematically in Fig.2.5a.

This has led to LHS spectra often being modelled by a power law with an ex-

ponential cut-off at the electron temperature. However, a simple power law is not

always a good approximation to the true Comptonised spectrum. The actual cut-off

is steeper than an exponential, and there will be a bump in the spectrum at the seed

photon energy, due to the fraction of seed photons that escape without scattering,

and a downturn below the seed photon energy which must also be modelled (Kubota

& Done, 2004). Moreover, at very low mass accretion rates, such as those seen in
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Figure 2.5: Schematic showing formation of Compton power law from successive electron
scatterings. Red line shows the seed photon population, a fraction τ of these are up-
scattered by energetic electrons to form the first scattering order (blue), a fraction τ of
these photons are then up-scattered again, with each scattering boosting the photons by
1 + 4Θ. In panel a). a high optical depth produces a smooth power law spectrum, while
the lower optical depth in b). results in a bumpy spectrum. From Done (2010).

dimmer LHS, the optical depth is expected to be � 1. At such low optical depths,

the probability of scattering is less and the individual scattering orders become sep-

arated, giving a spectrum that is bumpy (Fig.2.5b). Even far from the seed photon

energy and high energy cut-off, a power law is no longer a good description of the

spectrum.

A more accurate model of Comptonisation can be produced using the code eq-

pair (Coppi, 1999). This calculates the emission from a homogeneous sphere, given

inputs of the total heating power to the electrons (Lhot), the optical depth and size

of the region, and the power and typical energy of the seed photons for Compton

cooling (Lseed and kTseed). eqpair derives the electron temperature self-consistently

from the cooling rates and can accommodate the low optical depths expected at low

mass accretion rates. It also provides a more intuitive way to understand Compton-

isation: rather than considering the spectrum in terms of optical depth and electron

temperature, a better framework is in terms of optical depth and the ratio Lhot/Lseed.

More seed photons (Lhot/Lseed ∼ 1) means more Compton cooling, a lower electron

temperature and a softer Compton spectrum. Fewer seed photons (Lhot/Lseed > 1),
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Figure 2.6: Example Compton spectra of Cyg X-1 showing spectral softening and de-
creasing electron temperature from red to blue as the disc moves inwards and seed photon
flux increases, from Ibragimov et al. (2005).

i.e. if the disc has receded, means the electrons remain hotter and the spectrum is

harder. The photon index (Γ) is often used as a measure of the hardness of an X-ray

spectrum, where Γ is defined as νL(ν) ∝ ν−Γ+2 and Γ > 2 is defined as soft and

Γ < 2 as hard. Fig.2.6 shows three Compton spectra from Cyg X-1, showing how

the spectrum softens and electron temperature (i.e. Compton roll-over) decreases

as the seed photon flux increases, due to the disc moving inwards and increasing the

amount of cooling.

In practice, approximating the hard emission as a single Compton spectrum can

be overly simplistic. Regions of the hot flow nearer the disc will receive a greater

flux of seed photons so will emit a softer Compton spectrum than central regions,

which intercept fewer seed photons. In other words, Comptonisation is probably

inhomogeneous. This is most clearly the case in BHBs approaching the transition

from LHS to HSS, for which the hard Compton tail can be better modelled as two
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Figure 2.7: Sequence of low/hard state spectra from Cyg X-1, from Yamada et al.
(2013). Spectra are numbered according to the order in which they were observed, but
presented in order of decreasing luminosity. Grey line shows spectrum from observation
3 for comparison. Fitting the brightest states requires both a hard and a soft power law,
suggesting Comptonisation is inhomogeneous.

power laws — a soft power law, which increases in luminosity as the disc undercuts

the hot flow and increases the flux of seed photons in the outer regions, and a hard

power law from the remaining central regions. Fig.2.7 shows a sequence of spectra

from Cyg X-1 for which this is clearly the case in the brightest spectra (Yamada

et al., 2013).

2.1.2.2 Cyclo-Synchrotron

In the presence of a magnetic field, electrons will be accelerated and if an electron

accelerates it will radiate. If the electrons are travelling at non-relativistic velocities

then the emission is termed cyclo-synchrotron radiation. The process is essentially

the same as Comptonisation, except that the seed photon is now a virtual magnetic
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Figure 2.8: Cyclo-synchrotron spectrum for a hot flow of radius 20Rg. Dotted line shows
unabsorbed spectrum, solid line shows spectrum taking into account self-absorption.

field photon, which interacts with a hot electron to produce a ‘real’ photon.

Cyclo-synchrotron emission forms a steep power law. However, most of the emis-

sion is self-absorbed, so the spectrum actually peaks at the self-absorption frequency

(νcsa). Fig.2.8 shows an example of a self-absorbed cyclo-synchrotron spectrum from

a hot flow with a radius of 20Rg. This internally generated cyclo-synchrotron emis-

sion provides a second source of seed photons for Comptonisation in the hot flow. It

is particularly important in the inner regions of the flow, which are shielded from disc

flux when τ ∼> 1, and also when the disc truncation radius is large and consequently

the number of disc seed photons intercepted by the hot flow is low.

Self-absorption greatly reduces the amount of cyclo-synchrotron emission that is

produced. So much so that a very high electron temperature — roughly twice as

high as is observed — is required to produce enough seed photons to make a LHS

spectrum using a population of thermal electrons (Yuan et al., 2007). However, if

the electron population has a non-thermal tail, cyclo-synchrotron emission becomes

much more efficient and can reproduce observed spectra with electron temperatures

in agreement with the observations (Wardziński & Zdziarski, 2001; Veledina et al.,



2.1. Spectral States 18

  

Figure 2.9: Schematic of the evolution of the hot flow spectrum with hot flow size
during a transition from high/soft state to low/hard state. Red line shows contribution
of the outer disc (including irradiation), while other lines show the cyclo-synchrotron-self-
Compton emission from each region of the hot flow, with the zone closest to the disc also
including Comptonisation of disc seed photons, from Poutanen & Veledina (2014).
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2011; Veledina et al., 2013). The existence of an MeV power law tail in the LHS

of Cyg X-1 (Zdziarski et al., 2012) and a weak power law tail in the HSS (Grove

et al., 1998; Gierliński et al., 1999; Zdziarski et al., 2001; McConnell et al., 2002)

supports the theory that non-thermal electrons are present. In which case the hot

flow should contain a hybrid distribution of electrons, with a main population of

thermal electrons heated by Coulomb collisions with protons, plus a proportion of

non-thermal electrons accelerated by shocks or magnetic reconnection (Fragile &

Blaes, 2008; Das et al., 2009; Henisey et al., 2012; Ding et al., 2010; Riquelme et al.,

2012; Hoshino, 2013). Fig.2.9 shows how the spectrum from such a hybrid electron

distribution changes as the the disc recedes and the size of the hot flow increases.

2.1.3 Reflection

A fraction of the hard coronal flux will illuminate the outer disc. These photons can

scatter off electrons in the disc and be reflected. This adds a third spectral compo-

nent to the intrinsic disc and coronal emission. The amount of reflection depends

on the relative importance of electron scattering versus photoelectric absorption.

For neutral material, photoelectric absorption dominates at low energies so there

is very little reflected flux below 10 keV. The cross section for photoelectric absorp-

tion decreases as the energy of the incident photons increases. Consequently the

reflected flux increases and reaches a peak between 20−50 keV, called the reflection

hump (George & Fabian, 1991). Above this the reflected flux decreases again due

to Compton down-scattering; the highest energy photons scatter inelastically, losing

some of their energy to the electrons and so the reflected photon has lower energy.

Fig.2.10 shows a reflection spectrum from neutral material, together with the

illuminating power law. In addition to the reflection hump, the reflection spectrum

also shows emission lines. The incident electrons that are not reflected are photo-

electrically absorbed, exciting the ions in the disc, which then decay and re-emit the

energy as emission lines. The most strongest line is generally Kα, where the excited

electron drops from shell n = 2 to n = 1. Since photoelectric absorption dominates

at low energies this is where the emission lines occur. Most are not visible in the

total spectrum since they are heavily diluted by the illuminating continuum. In
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Figure 2.10: Reflection spectrum from neutral material with solar abundance and column
NH = 1.5 × 1024 cm−2 (blue) together with the original illuminating continuum (grey),
from Done (2010).

addition, low atomic number elements also have a high probability of Auger ioniza-

tion de-excitation, whereby the excited electron is ejected rather than decaying to

a lower energy level. Iron has a high atomic number, so fewer Auger losses, and a

high atomic number also means its lines are emitted at higher energies where the

reflection spectrum is less diluted. The iron Kα line at ∼ 6.4keV is therefore the

most prominent emission line in neutral reflection spectra (e.g. Suzuki et al., 1984).

If the material is not neutral but ionised, the shape of the reflection spectrum

will change. This is because the amount of photoelectric absorption at low energies

depends on the ionisation state of the reflecting material. As the ionisation state

increases, the cross section for photoelectric absorption decreases, so more of the low

energy flux will be reflected. Fig.2.11 shows how the reflection spectrum changes

for increasing ionisation parameter, ζ. The absorption edges and emission lines

also broaden as ζ increases as there are more free electrons so more free-electron

scattering, which alters the photon energies and causes broadening.

The emission lines from BHB reflection spectra are not just broadened by electron
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Figure 2.11: Ionised reflection spectra from material with increasing ionisation param-
eter (ζ), assuming solar abundance and column NH = 1.5 × 1024 cm−2, with original
illuminating continuum shown in grey, from Done (2010).

scattering, but also by relativistic effects (Fabian et al., 1989). The accretion disc is

rapidly rotating in a strong gravitational field. Photons from the approaching side of

the disc are blue shifted and Doppler boosted while those from the receding side are

red shifted and deboosted. Both these effects are a function of inclination angle of the

disc with respect to our line of sight, while the additional effects of time dilation and

gravitational redshift cause line broadening in systems at any inclination. Fig.2.12

shows how each of these effects contributes to the final broadened line. The smaller

the radius from which the line is emitted, the faster the material is travelling and

the broader the line. Hence line broadening and line shifts can be used to estimate

the radius of the inner edge of the accretion disc and from this estimate the spin

of the black hole if the disc extends down to the innermost stable orbit (e.g. Reis

et al., 2009).

The reflection contribution to the spectrum will be at its strongest when the

disc subtends the largest possible angle with respect to the illuminating continuum,

allowing it to intercept the maximum amount of flux, i.e. when the disc inner radius
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Figure 2.12: Schematic illustrating how Doppler and relativistic effects contribute to
produce a broadened emission line profile, from Fabian et al. (2000).

is small (Gierliński et al., 1999). This is also when the iron line will be broadest as

it will be dominated by reflection at the smallest radii. Fig.2.13 shows a sequence of

spectra demonstrating the strengthening of the reflection component and broadening

of the iron line as luminosity increases and the disc inner radius decreases.

2.1.4 Reprocessing

The fraction of hard coronal flux that intercepts the disc and is not reflected or

emitted as lines will be reprocessed. The photon energy goes into heating the disc

which then re-radiates this as quasi-thermal emission that adds to the observed disc

spectrum (Malzac et al., 2005). If the disc is energetically dominant and the hard
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Figure 2.13: Sequence of low/hard state spectra ordered by luminosity showing the
changing strength of the reflection spectrum; brighter spectra have smaller disc trunca-
tion radii so stronger reflection. The bottom panel shows the ratio of the spectrum to
an absorbed power law, clearly showing stronger deviations caused by reflection at soft
energies and at the iron line in the brighter spectra, from Kolehmainen et al. (2014).
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Figure 2.14: Model showing increasing inner disc reprocessing with increasing ratio of
Compton/disc flux. Grey arrow shows the direction of increasing Lc/Ld and dashed line
shows disc with no irradiation, from Gierliński et al. (2008).

power law tail is weak then this additional reprocessed flux will only increase the

intrinsic disc emission by a very small amount. However if the hard power law

carries a large fraction of the bolometric luminosity, e.g. in the LHS when the disc

is truncated, then the reprocessed emission can contribute a significant fraction of

the observed disc flux.

Fig.2.14 shows how the disc spectrum changes as the fraction of energy in the

hard power law increases, increasing the amount of reprocessing on the inner edge

of the disc. The illumination heats the inner edge of the disc, causing it to appear

brighter and more luminous, hence it is important to account for reprocessing when

fitting spectra to derive inner disc radii (Gierliński et al., 2008).

The hot inner disc will in turn illuminate the outer disc. For large disc radii,

which are cool and radiate much less intrinsic flux, this reprocessed emission can
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Figure 2.15: Sequence of observations of the BHB XTE J1817—330 as it makes the
transition from high/soft state (observations 1, 8 and 13) to low/hard state (observations
20 and 22), showing how the inner and outer disc reprocessing increases as the fraction of
flux in the power law increases. Blue lines show hard coronal power law, red lines intrinsic
disc emission, from Gierliński et al. (2009).

dominate the intrinsic disc flux, giving the disc spectrum a distinctive shoulder in

the optical region of the spectrum (Gierliński et al., 2009). Fig.2.15 shows how both

the inner and outer disc reprocessing increases as the BHB XTE J1817—330 makes

the transition to the LHS.

2.2 Variability

BHBs do not just show long term variability on day–month timescales in terms of

spectral state changes. Within a given spectral state they also show much shorter

timescale variability, with luminosity fluctuations occurring on ms–100 s timescales.

Spectral state change are due to the entire structure of the accretion flow altering

in response to global changes in mass accretion rate. Short timescale fluctuations
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are probably also caused by mass accretion rate fluctuations, but on a much smaller

scale. The structure of the accretion flow cannot change on 100 s timescales, but the

MRI — the mechanism which transports angular momentum outwards and therefore

regulates the flow of material inwards — is stochastic, causing the mass accretion

rate between adjacent radii to constantly vary. As a result the X-ray emission from

BHBs shows aperiodic variability over a range of timescales — their accretion flows

‘flicker’.

The mass accretion rate fluctuations at a given radius (r) will occur around the

viscous frequency (fvisc) for that radius:

fvisc = α(H/R)2fdyn =
α (h/r)2 c

2πRg(r1.5 + a)
(2.2.8)

where fdyn is the dynamical frequency, α is the viscosity parameter, H is the vertical

scale-height at that radius and a is the spin of the black hole (Shakura & Sunyaev,

1973). It is immediately clear that the scale-height of the accretion flow is important.

The smaller (h/r), i.e. the thinner the accretion flow, the smaller fvisc, so the longer

the characteristic timescale of fluctuations from a given radius. (h/r) is typically 0.01

for an optically thick, geometrically thin accretion disc, but can be as large as 0.2

for an optically thin, geometrically thick hot flow. This means a soft BHB accretion

disc typically varies on timescales � 1000 s while the hard hot flow emission varies

on timescales of the order ∼ 1 s. Consequently for a typical 1 ks observation, the

soft emission should appear much less variable than the hard emission (Churazov

et al., 2001). Fig.2.16 shows that this is indeed the case. At low accretion rates the

source is in the LHS, the count rate is low and the emission is dominated by the

variable power law from the hot flow, so that while the source brightens along the

‘hard line’ it shows consistently high fractional variability (∼ 30 − 40%). As soon

as the source transitions to the HSS at high count rates, the X-ray band becomes

dominated by the stable disc and the variability drops significantly to < 5% (Plant

et al., 2014).
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Figure 2.16: Root mean square variability versus count rate for multiple observations of
GX339–4, from Plant et al. (2014).

2.2.1 RMS–Flux Relation

A useful way to quantify variability is to simply calculate the root mean square

variability (RMS) of a light curve. RMS is defined as:

σ =

√∑N
i=1(xi − I)

N − 1
(2.2.9)

where xi is the flux at time ti, I is the mean flux and N is the total number of

timesteps in the light curve (e.g. Nowak et al., 1999). The fractional variability of

the light curve is then Fvar = σ/I.

BHBs obey a linear RMS–flux relation (Fig.2.17). If a light curve is split into

equal length segments and the RMS and mean flux of each segment is calculated,

the size of the RMS fluctuations and the mean flux are linearly related so that σ/I

is a constant.

A linear RMS–flux relation cannot be produced by summing independent events

but requires a multiplicative process (Uttley & McHardy, 2001). This is easily
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Figure 2.17: RMS–flux relation for Cyg X-1, from Uttley & McHardy (2001).

provided in the context of an accretion flow, because low frequency mass accretion

rate fluctuations produced at larger radii propagate inwards. The fluctuations at

smaller radii therefore consist of the long timescale fluctuations propagating inwards

from outer radii modulated by the faster fluctuations generated at smaller radii

(Lyubarskii, 1997).

2.2.2 Power Spectra

Another way to quantify variability is to calculate the power spectrum of the light

curve. This is the modulus squared of the Fourier transform of the source’s light

curve and shows how much power there is at different frequencies. Each radius has

a different viscous frequency (with viscous frequency increasing with radius for a

constant scaleheight). The power spectrum of the fluctuations generated at each

radius is a Lorentzian centred around the viscous frequency for that radius. Since

the total light curve consists of emission from all radii, its power spectrum will be a

sum of Lorentzians generated at all relevant radii.

The hard band light curves of LHS BHBs therefore show ‘flat topped noise’
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(P (f) ∝ f−1, i.e. fP (f) ∝ f 0) between a low frequency break, fl (which is move-

able), and a high frequency break, fh ∼ 5Hz (Remillard & McClintock, 2006). Below

the low frequency break the power scales as P (f) ∝ f 0 and above the high frequency

break it scales as P (f) ∝ f−2. In the context of the truncated disc model these two

frequency breaks can be understood as representing the two boundaries of the hot

flow. The low frequency break corresponds to the viscous frequency of the largest

radius of the hot flow, i.e. where the hot flow meets the truncated disc. The high fre-

quency break corresponds to the viscous frequency at the innermost stable circular

orbit (Done et al., 2007).

The top panel in Fig.2.18 shows an example of a LHS power spectrum from XTE

J1550–564. The following panels show how the power spectrum changes as the source

makes a transition towards the HSS (Ingram & Done, 2012a). The high frequency

break, corresponding to fluctuations generated at Risco, does not change much. In

contrast the low frequency break increases as the disc inner radius moves in, and

the larger radii of the hot flow, which produce the lowest frequency fluctuations, are

replaced by a stable (on these timescales) disc (Churazov et al., 2001).

The bottom panel in Fig.2.18 shows a strong peak at ∼ 4Hz in addition to the

flat topped noise. A similar peak can be seen in the other power spectra, with the

peak decreasing in strength as truncation radius increases. These are the signatures

of quasi-periodic oscillations (QPOs; van der Klis, 1989). Although the majority of

the variability is stochastic and aperiodic, the light curves of LHS BHBs can show

additional quasi-periodic behaviour. Sinusoidal flux variations, which often slip out

of phase, can be seen in their light curves and produce characteristic narrow peaks

in their power spectra. One model to explain this phenomenon is that these signals

arise due to frame dragging caused by the black hole spin axis being misaligned

with the axis of rotation of the accretion flow (Ingram et al., 2009; Ingram & Done,

2011). This causes the hot inner flow to precess. Since the sound speed in the

hot flow is faster than the precession speed, pressure waves allow the entire hot

flow to precess as a solid body. This precession changes the orientation of the hot

flow with respect to our line of sight producing periodic variations in flux. The

characteristic frequency of these variations is related to the outer radius of the hot
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Figure 2.18: Power spectra of XTE J1550–564 during a transition from the low/hard
state (top panel) to the high/soft state (bottom panel), together with the truncation radii
predicted from fitting a truncated disc model, from Ingram & Done (2012a).
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Figure 2.19: Changing hot flow orientation and disc illumination due to precession of
the hot flow, caused by misalignment of the black hole spin axis and the axis of rotation
of the accretion flow. Black line shows black hole spin axis, grey region inner hot flow
and orange to black regions show brightest to dimmest regions of disc illumination, from
Ingram & Done (2012b)
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flow, hence the QPO frequency increases with the low frequency break as the disc

moves inwards, as is seen in Fig.2.18. The sound speed is much slower in an optically

thick, geometrically thin accretion disc, hence the disc warps rather than precessing

and the QPO disappears when the inner hot flow is replaced by a stable disc in the

HSS. Fig.2.19 illustrates this precession effect and also shows how the precessing

flow alters the illumination pattern on the disc, which should cause the reflection

spectrum to subtly change with QPO phase (Ingram & Done, 2012b).

Fig.2.20 (top panel) shows a collection of LHS power spectra in comparison with

power spectra typical of other spectral states (Done & Gierliński, 2005). The bottom

panel shows the corresponding energy spectra for reference. The extreme LHS in

Fig.2.20c is an example of a spectrum where the disc truncation radius is extremely

large, so that the hard power law produced by the hot flow accumulates fluctuations

out to very large radii, giving a particularly low low frequency break. The LHS in

Fig.2.20a and b have smaller truncation radii and so the flat topped fluctuations

are limited to a narrower range of frequencies. In the HSS shown in Fig.2.20e, the

disc extends down close to the last stable orbit so the corona is confined to only the

smallest radii and the bulk of the power that remains is at high frequencies. The

VHS in Fig.2.20f shows more power over a wider range of frequencies than the HSS

due to the size of the corona increasing again as it extends out above the disc.

Almost all BHBs show HSS power spectra similar to Fig.2.20e. The exception

is Cyg X-1, the HSS power spectrum of which is shown in Fig.2.20d, which instead

shows a flat topped noise component with no low frequency break (Axelsson et al.,

2005). Fig.2.21 shows how this flat topped component, not seen in other BHBs,

increases in power as the source approaches the HSS until it dominates the power

spectrum. Where this extra variability component comes from is not understood,

however it implies that even in the HSS the variable coronal emission is still able to

accumulate fluctuations from a wide range of radii. Perhaps the corona extends out

above the disc in the HSS of Cyg X-1, rather than being confined to the innermost

radii as in other BHBs. One potential reason for this may be that Cyg X-1 never

fully makes the transition to the HSS.
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Figure 2.20: Examples of typical power spectra and corresponding energy spectra during
different spectral states, from Done & Gierliński (2005). Power spectra: black shows full
2 − 60 keV power spectrum, blue shows power spectrum from just 13 − 25 keV energy
band. Energy spectra: red shows disc, blue shows Comptonisation, green reflection, solid
magenta shows absorbed total and dashed magenta unabsorbed.
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Figure 2.21: Power spectral evolution of Cyg X-1 during a transition from low/hard
state to high/soft state, from Axelsson et al. (2005); Done et al. (2007).

2.2.3 Time Lags

It takes time for mass accretion rate fluctuations to propagate inwards. Since the

highest energy emission is produced at the smallest radii this means higher energy

bands should progressively lag softer energies.

Fig.2.22 shows the lag as a function of Fourier frequency for four increasingly

hard energy bands with respect to a soft energy band (0 − 3.9 keV; Nowak et al.,

1999). Slow frequency fluctuations (∼ 0.1−1 Hz) are generated at large hot flow radii

and propagate inwards to the smaller radii producing the higher energy emission.

Consequently the soft emission brightens first and then the higher energy emission

follows when the accretion rate fluctuation has propagated down to the relevant

radii. The lag of the softest hard band (3.9− 6 keV) behind the soft band at 1 Hz is

therefore shorter than that of the hardest hard band (14.1−45 keV) behind the same

soft band (∼ 0.004 s compared to 0.025 s) since the fluctuation must travel further to

reach the smallest radii producing the hardest flux. That hard bands progressively

lag soft bands supports the idea of inward propagation of fluctuations. For each

lag-frequency spectrum, the fact the lags between hard and soft bands decrease as
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Figure 2.22: Lag-frequency spectra between different energy band light curves of Cyg
X-1 in the low/hard state, from Nowak et al. (1999).
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Figure 2.23: Lag-energy spectra of GX 339–4, where the lag of each energy bin is
calculated relative to the light curve over the total energy band such that energy bins
with more positive lag values lag those with less positive values, from Uttley et al. (2011).
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Fourier frequency increases indicates the low frequency fluctuations are originating

in the soft component while high frequency fluctuations are produced by the hard

emission regions, in agreement with the hard emission coming from smaller radii

which can fluctuate faster.

However, not all of the soft emission leads the hard emission. Uttley et al. (2011)

showed that the high frequency soft band fluctuations lag the hard band rather

than leading it. This is due to thermal reprocessing: some of the hard coronal flux

illuminates the inner parts of the disc, heating it up. The disc then re-radiates this

energy as thermal emission at soft energies.

Fig.2.23 shows the lags as a function of energy for four different frequency ranges,

measured during a LHS of GX 339–4 (Uttley et al., 2011). The lag of each energy

bin is now measured relative to the total light curve summed over the whole energy

range. Energy bins with more positive lag values lag behind those with less positive

lag values. At low frequencies (0.034− 0.12 Hz), the soft energy bins (< 1 keV) lead

the hard energy bins, due to low frequency fluctuations being generated at large hot

flow radii and in the disc, which together produce the softest emission. However at

high frequencies (2 − 8 Hz), all the fluctuations are generated at small radii, which

produce the hardest emission, and this heats the soft disc causing it to re-radiate

the energy as quickly varying soft emission, which lags behind the illuminating hard

flux with a lag that corresponds to the light travel time from illuminating corona to

soft disc.

2.3 Jets

BHBs do not only emit at high energies. Outer parts of the accretion disc emit

at optical wavelengths and are frequently capable of outshining the companion star

at high mass accretion rates. However still lower energy emission is detected from

many BHBs — in the infra-red and radio regimes.

Even the outermost parts of a BHB disc — limited in size by the binary sepa-

ration — are too hot to radiate at these wavelengths, although cyclo-synchrotron

emission can make some contribution. However the bulk of this low energy emission
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Figure 2.24: Each section of a conical jet produces self-absorbed synchrotron emission.
Regions further out (red lines) are larger so have a lower self-absorption frequency. The
sum of emission from all regions produces a flat spectrum in the radio (Lν ∝ ν0 or νLν ∝ ν
at ∼ 1010 Hz).

comes from material that is not accreted but is instead ejected from the system in

the form of relativistic jets.

BHBs do not universally show jet emission. The presence or absence of a jet is

related to the accretion state. In the LHS there is a steady jet and the radio and X-

ray luminosities are correlated (LR ∝ L0.7±0.1
X , Corbel et al., 2003). This is known as

the radio–X-ray correlation. Measurements of the bulk Lorentz factor (BLF) of these

jets find mildly relativistic values of Γ ∼ 1.4 (Fender et al., 2004). In fact, for the

radio–X-ray correlation to hold precludes these jets having highly relativistic BLFs

(Γ ∼ 10), since different orientations would result in different amounts of Doppler

boosting, resulting in a large range in LR for a given LX , assuming the X-rays are

produced by the accretion flow. The radio spectrum itself is flat and is produced

by successive regions of self-absorbed synchrotron emission, as shown in Fig.2.24

(Blandford & Königl, 1979). Just as for the cyclo-synchrotron emission from the

hot flow, this is produced by electrons spiralling around magnetic field lines, with

the difference that the magnetic fields are now in the jet and the electrons now have
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Figure 2.25: Radio image of the steady, milliarcsecond-scale, low/hard state jet of Cyg X-
1 (left panel; Stirling et al., 2001) compared to a transient, arcsecond-scale, state transition
jet from GRS 1915+105 (right panel; Mirabel & Rodŕıguez, 1994), from Gallo (2010)

relativistic energies. Magnetic reconnection and shocks within the jet are assumed

to accelerate the electrons and their synchrotron emission is further boosted by the

jet bulk motion.

As the system moves towards the HSS, the BLF of the jet is observed to increase

to Γ ∼ 2. This produces internal shocks within the jet, as faster material catches

up with the previous slower ejecta, and optically thin flares are observed (Fender

et al., 2004), which may be seen as individual knots moving away from the jet core

(Mirabel & Rodŕıguez, 1994). Fig.2.25 shows an example of such a transient jet

from GRS 1915+105, compared to the steady LHS jet of Cyg X-1.

When the source enters the HSS, the radio emission switches off. This is known

as crossing the ‘jet line’. Fig.2.26 shows a schematic of the track a BHB might

take on a hardness-intensity diagram during a transition from the LHS to HSS and

back again. The schematic also includes tracks taken by those systems that attempt

to make transitions between the HSS and LHS, but fail. The jet line matches the

transition from LHS to HSS.

Once in the HSS no jet is produced (or alternatively it is so weak that it is not

detected) and there is no radio emission. Fig.2.27 shows the radio–X-ray correlation

in GX 339–4 and the suppression of radio emission once the source crosses the jet line

and reaches the HSS at high X-ray luminosities, together with the switching back on

of the jet when the source drops back down into the LHS at lower luminosity (Corbel
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  Figure 2.26: Schematic of the progress of a BHB on a hardness-intensity diagram during
a transition from the low/hard to high/soft state and back again, where intensity increases
vertically and hardness increases to the right, from Fender et al. (2004). The surrounding
cartoons show the proposed behaviour of the jet during the transition: in the LHS there
is a steady mildly relativistic jet (i and ii), as the system approaches the transition the jet
BLF increases producing a travelling internal shock in the jet (iii) and in the HSS the jet
switches off (iv) as the system crosses the jet line.
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  Figure 2.27: Radio–X-ray correlation in GX 339–4, showing the break in the correlation
and suppression of radio emission at high X-ray luminosities when the source reaches the
high/soft state and the switching back on of the jet when the source drops back down into
the low/hard state at lower luminosity, from Corbel et al. (2013).

et al., 2013). This suppression of jet emission in the HSS suggests that whatever

conditions are necessary for jet formation, they are present when the source is in

the LHS and not when it switches to the HSS. The key difference between LHS

and HSS accretion flows is that the LHS accretion flow has a much larger scale-

height. Hydrodynamic simulations support the interpretation that a large scale-

height flow is required to provide the large scale-height magnetic fields necessary for

jet formation (Ohsuga & Mineshige, 2011).



Chapter 3

Introduction: Supermassive Black

Holes

In contrast to stellar mass black holes, which are typically around 10M�, super-

massive black holes have masses in the range of a million to a billion solar masses

(∼ 106 − 1010M�). While stellar mass black holes are found dotted throughout

galaxies, each galaxy generally has only one supermassive black hole at its centre.

How these supermassize black holes formed and grew to such enormous sizes is still

not well understood. Fig.3.1 shows several possible routes for supermassive black

hole formation. One theory is that these black holes were formed from the collapse

of the first generation of stars (Madau & Rees, 2001). A lack of heavy elements

makes cooling inefficient causing gas clouds to collapse slowly and form massive

stars ∼> 250M�, which collapse to form supermassive black hole seeds of ∼ 100M�

(Bromm & Larson, 2004). Other theories suggest these first stars may merge to

form a massive star which goes on to collapse into a black hole. These supermassive

black hole seeds of ∼ 102 − 104M� then grow through accretion to form the billion

solar mass black holes in the present universe (Volonteri, 2012).

In the case of stellar mass black hole binaries (BHBs), the black hole accretes

matter from its companion star, so this material has a well defined angular momen-

tum. For a supermassive black hole, the gas supply for it to accrete comes from its

host galaxy. As gas in the interstellar medium cools it forms stars. Any gas that

does not go into star formation will sink towards the centre. If it loses enough grav-

42
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Figure 3.1: Potential pathways for the formation of supermassive black hole seeds, from
Volonteri (2012).

itational potential energy and angular momentum to come within the black hole’s

sphere of influence (i.e. where the gravitational field of the black hole dominates

over that of the galaxy) it will be accreted.

A supermassive black hole may grow through either prolonged or chaotic accre-

tion (Fanidakis et al., 2011; Fanidakis et al., 2012). In prolonged accretion the gas

from a particular star formation episode is accreted in a single event. In chaotic ac-

cretion the available gas is not accreted in one go but split up into multiple smaller

accretion events. If the total mass of in-falling gas is the same, the mass of the

black hole will change by the same amount regardless of which accretion mode takes

place. However the effect on the black hole’s spin is very different if the accretion

mode is prolonged compared to chaotic.

In the case of prolonged accretion, the gas is accreted in a single event and

crucially from the same inflow direction. This results in net angular momentum

transfer to the black hole. A prolonged accretion event will therefore quickly spin a

supermassive black hole up to close to maximal spin (Volonteri et al., 2005; Volonteri

et al., 2007). In contrast, in the case of chaotic accretion the gas is split into
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multiple smaller accretion events, which enter from random directions with random

angular momenta. This is possible because the scale-height of star formation is

large compared to the black hole sphere of influence (King et al., 2008). As a result

the black hole will be alternately spun up and spun down until the net angular

momentum transfer is zero, resulting in a low spin black hole (Fanidakis et al.,

2011; Fanidakis et al., 2012).

The energy released through accretion onto a central supermassive black hole

can be so large that supermassive black hole accretion flows can outshine their host

galaxies by several orders of magnitude. If the supermassive black hole at the centre

of a galaxy is accreting — even at low accretion rates — then the galaxy is said to

contain an Active Galactic Nucleus (AGN).

There is one final method by which supermassive black holes can grow, and

that is through mergers. Galaxies grow through gas cooling onto them and through

merging with other galaxies. When two galaxies merge so do their black holes. The

black holes will sink to the centre of the merged galaxy. As they orbit one another

they lose energy by emitting gravitational waves until eventually the two black holes

coalesce (Merritt & Milosavljević, 2005). Just like prolonged accretion, this results

in a final black hole that is highly spinning (Rezzolla et al., 2008).

That supermassive black holes grow in tandem with their host galaxies is evi-

denced by the M − σ relation, shown in Fig.3.2. In other words, the stellar velocity

dispersion (σ) of a galaxy bulge is found to correlate with the mass of the central

black hole (Ferrarese & Merritt, 2000; Gebhardt et al., 2000). This means that

the mass of the central black hole is closely linked to the size of its galaxy, with

larger black holes residing in more massive galaxies. Clearly the more massive the

galaxy the more gas and dust available to feed and grow the black hole. However

the interaction is not just one way. Not only does the galaxy affect the growth of

the black hole, but the growth of the black hole also affects the galaxy. The central

black hole, with its sphere of influence of only a few parsecs, can affect the structure

and growth of its host galaxy on megaparsec scales. This is because accretion is

accompanied by ejection.

Radiation pressure can drive material off the accretion disc in the form of a wind.
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  Figure 3.2: M − σ relation for supermassive black holes and their host galaxies, from
McConnell & Ma (2013).
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Such winds are wide angle and can reach velocities of 0.5 c (Cappi, 2006; Tombesi

et al., 2010). When the wind collides with material in the galaxy it dumps enormous

amounts of energy into its surroundings, heating interstellar gas and suppressing star

formation. Since only cool gas can sink to the centre and be accreted, this heating

prevents further accretion. In this way the black hole ‘feeds back’ to its galaxy,

tying together their growth (Silk & Rees, 1998). This is known as the radiative (or

quasar) mode of feedback.

Jets provide an even more powerful method of feedback. Jets are highly colli-

mated and can reach velocities > 0.994 c. Consequently they can transport energy

far beyond the black hole’s host galaxy into the intracluster medium. There the

energy may be dumped in giant radio lobes, reheating the intracluster medium and

preventing the galaxy growing by cutting off its external gas supply. This is known

as the kinetic (or jet) mode of feedback (Fabian, 2012).

Cosmological simulations have shown that such feedback mechanisms must be

included in order to correctly reproduce the luminosity function of galaxies and its

evolution with redshift (Bower et al., 2006). Hence understanding accretion around

supermassive black holes and how they feed back and what conditions are required

for them to feed back, as well as how much energy they return to their host galaxies

and whether this energy comes from the in-falling material or the black hole itself,

are of much wider importance.

3.1 Types of Active Galactic Nuclei

The ultra-violet (UV) and optical spectra of AGN almost always show strong emis-

sion lines and these have historically been used to classify AGN into different types.

The larger masses of AGN compared to BHBs cause their disc emission to peak in

the UV, rather than the X-rays. If the UV emission is strong it illuminates circum-

nuclear material, exciting the gas, which then remits the energy as optical and UV

line emission. The strongest, most commonly observed lines are the Balmer series

of Hydrogen, Hydrogen Lyα, MgII, CIV and OIII.

Fig.3.3 shows examples of optical spectra typical of seven main types of AGN.
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Figure 3.3: Optical spectra from different types of active galactic nuclei, from
http://www.astr.ua.edu/keel/agn/spectra.html.

Close inspection of the Seyfert 1, Broad Line Radio Galaxy (BLRG) and mean

quasar spectra reveals that the emission lines have both a broad and narrow compo-

nent, while the same lines in the Seyfert 2 and Narrow Line Radio Galaxy (NLRG)

spectra show only a narrow component (e.g. Khachikian & Weedman, 1974). Low

Ionisation Emission Region galaxies (LINERs) show predominantly low ionisation

lines such as OI and NII (Heckman, 1980) and have much lower nuclear luminosi-

ties, while BL Lac spectra show either very weak lines or no lines at all (Padovani

& Giommi, 1995).

Emission line widths are affected by the velocity of the material that emitted

them. If the material is travelling more quickly, Doppler effects will cause the

emission line to be broader, as photons from material travelling towards the observer

will be blue shifted while photons emitted by material moving away will be red

shifted. Gas closer to the central black hole will be orbiting faster, hence the broadest

lines are emitted closest to the black hole, while narrower lines are emitted at much

larger radii.



3.1. Types of Active Galactic Nuclei 48

A given emission line will only be produced by gas close to the correct ionisation

state for that transition. Ionisation state (ξ) depends on the density of the gas (n)

and the illuminating flux, i.e. on the luminosity of the illuminating source (L) and

the radius of the gas from it (R), as (Peterson, 1997):

ξ =
L

nR2
(3.1.1)

Hence, for a given luminosity, gas can be in the same ionisation state (and there-

fore emit the same line) at two different radii providing gas at a larger radius has

a lower density. In this way, the same object can show both a broad emission line

component produced closer to the black hole and a narrower component produced

further out. Another consequence of the gas being denser at smaller radii and less

dense at larger radii is that the broad lines are only due to permitted transitions,

while the narrow lines include both permitted and forbidden transitions, since forbid-

den transitions are collisionally de-excited (and therefore suppressed) in the higher

density central regions (Peterson, 1997).

Since ξ ∝ L, this means the width of any given emission line will depend on the

mass and accretion rate of the black hole, since L ∝ ṁM , where ṁ is the Eddington

scaled accretion rate (ṁ = Ṁ/ṀEdd). The broad emission line component (for

instance) will be produced by gas at some critical density and ionisation state. The

radius at which this gas is located is then R ∝ (L/ncξc)
1/2 ∝ (ṁM)1/2. In terms

of gravitational radii (Rg), this becomes r ∝ R/Rg ∝ (ṁ/M)1/2 ∝ 1/v2, where v is

the velocity of the gas assuming it’s in a Keplerian orbit. The larger the black hole

mass, the smaller the radius at which the line is produced, the faster the orbiting

gas and hence the broader the line. Conversely, the higher the accretion rate, the

larger the radius at which the line is produced, since the higher central luminosity

over-ionises the gas out to a larger radius. Gas clouds at larger radii have a smaller

orbital velocity and the line width is smaller. Broad lines can therefore be used in

two ways to determine supermassive black hole masses: the time taken for the line

to respond to an increase in the illuminating flux gives a measure of the light travel

time to the broad line emitting gas which depends on the mass of the black hole

— this is reverberation mapping (Peterson & Horne, 2004) — and the line widths
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themselves can be used to estimate black hole mass (e.g. Corbett et al., 2003).

Variations in black hole mass and accretion rate can therefore explain why dif-

ferent classes of AGN show different broad line widths: Quasars and Seyfert 1s have

similar accretion rates (ṁ ∼ 0.1), but the black holes in quasars are typically an

order of magnitude bigger (M ∼ 109 as opposed to 108M�), hence quasars show

broader emission lines and have higher luminosity. A subset of Seyfert 1s, called

Narrow Line Seyfert 1s (NLS1s), show both broad and narrow lines like all Seyfert

1s, however their broad lines are particularly narrow (v < 2000 cm s−1, Osterbrock

& Pogge, 1985). This is because NLS1s have smaller masses (107M�) and higher

accretion rates (ṁ ∼ 1) than ordinary Seyfert 1s. As a result they have the same

central luminosity but narrower broad lines, since v2 ∝ (M/ṁ)1/2. LINERs show

only low ionisation emission lines because their nuclear luminosities are too low to

highly ionise the surrounding material — even though their masses are relatively

high (∼ 108−109M�), this is not enough to compensate for their very low accretion

rates (ṁ < 0.01) and hence radiatively inefficient flows.

However, differences in mass and accretion rate cannot explain why some AGN

appear to lack broad emission lines altogether; Seyfert 2s have similar masses and

accretion rates to Seyfert 1s, while NLRGs have similar masses and accretion rates

to BLRGs. Yet Seyfert 2s and NLRGs show only narrow emission lines, with no

broad component. A model developed to explain this is the unified model of AGN.

3.2 Unified Model of Active Galactic Nuclei

In theory, supermassive black holes (i.e. AGN) should simply be scaled up versions

of stellar mass BHBs. Black holes and their accretion flows after all have only four

parameters of mass, spin, accretion rate and inclination. However Fig.3.3 suggests

there are many more types of AGN than there are variations in BHBs. This is partly

due to the fact AGN span a much larger range in mass (∼ 5 decades, while BHBs

are all typically around 10M�), and partly because supermassive black holes live in

a much more complex environment, making inclination much more important.

Fig.3.4 shows the unified model of AGN, whereby the apparent presence or ab-
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Figure 3.4: Unified model of active galactic nuclei, from Beckmann & Shrader (2012).

sence of broad emission lines can be explained by differences in viewing angle (An-

tonucci, 1993; Beckmann & Shrader, 2012). The maximum size of a BHB accretion

disc is limited by the binary’s orbital separation. In the case of AGN, the size of

the accretion disc is limited by self-gravity. Beyond the self-gravity radius material

is cool enough that it begins to clump and prevents an accretion disc forming. This

limits the maximum radius of the accretion disc to ∼ 500 − 1000Rg, depending

on the black hole mass and accretion rate (Laor & Netzer, 1989). Far beyond this

radius the temperature eventually falls below the dust sublimation temperature and

according to the unified model a dusty torus forms (Antonucci & Miller, 1985). The

torus has a large scale-height and is optically thick to X-rays. X-rays from the cen-

tral regions are absorbed and re-emitted in the infra-red (IR). For large inclinations,

where our line of sight intersects the torus, the central regions will be obscured. If

the hydrogen column density NH > 1.2×1024 cm−2, such obscured AGN are termed

‘Compton thick’ (Maiolino et al., 1998).

Not only will the direct continuum emission from the accretion flow be obscured,
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but so will the reprocessed line emission produced above the disc. The broad line

emission is produced closer to the black hole than the narrow line emission, hence

it is more likely to be obscured, while the narrow lines, which are produced further

out, should always be visible.

For systems at low inclination i ∼< 30◦ (where i = 0◦ is the axis of rotation of the

accretion flow) we have a direct view down to the innermost parts of the accretion

flow: the narrow line region (NLR), IR torus, broad line region (BLR) and direct

accretion flow emission will all be observed. Consequently the AGN will be classed

as a type I quasar or Seyfert 1 (depending on its luminosity) if it is radio quiet (i.e.

has a weak radio jet), or as a BLRG or radio loud quasar if it has a strong radio jet.

As inclination increases, the torus gradually obscures the direct accretion flow

and BLR emission. The scale-height of the torus is sufficiently large that, for i ∼> 45◦,

both the accretion flow and BLR are completely obscured and the only emission lines

come from the NLR. As a result the object will be classed as a Seyfert 2, NLRG or

type II quasar, depending on its luminosity and the strength of its jet. Differences

in inclination can therefore explain the variation in emission line properties and the

proportion of objects in each class.

For the case of radio loud AGN, low inclination has extra significance, since for

i ∼ 0◦ our line of sight is orientated directly down the jet. The jet emission — which

is already strong in a radio loud AGN — is maximally Doppler boosted due to its

bulk motion and can dominate the spectrum of the AGN, in which case the AGN is

classed as a blazar. In the case of flat spectrum radio quasars (FSRQs), broad and

narrow emission lines are still seen, since FSRQs are high accretion rate systems

with strong lines (Ghisellini et al., 1998; Ghisellini et al., 2010). In the case of BL

Lacs, which are at much lower accretion rates, the jet emission swamps any weak

emission lines from the accretion flow so they may appear lineless.

The unified model therefore makes it possible to separate out the effects of in-

clination from the more fundamental black hole parameters of mass, accretion rate

and spin. By concentrating on unobscured objects — those which show both broad

and narrow lines — it is possible to investigate whether the underlying AGN have

spectral states like BHBs.
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3.3 Spectral States

It is not possible to observe a single AGN progress through successive state changes

as it is for BHBs. This is because all timescales scale with mass, so that 1 year for

a 108M� AGN corresponds to just 3 s for a 10M� BHB. State changes in BHBs

typically occur on a timescale of days. Correcting for mass and a smaller outer disc

radius means the corresponding state changes in AGN should occur on megayear

timescales, making state changes in individual objects impossible to observe. The

only way to investigate the possible states of AGN accretion flows is therefore to

examine the spectra of multiple objects with different masses and accretion rates,

taking into account selection effects.

A further complication is that the accretion discs of AGN peak in the UV which

is unobservable due to absorption in our own galaxy. This is because the disc

temperature Td ∝ L/A and L ∝ M while the emitting area A ∝ M2, because the

inner disc radius scales with mass. This gives T ∝ 1/M , shifting the peak luminosity

of the disc from the X-rays for a BHB to the UV for an AGN. Nevertheless, by

combining optical and X-ray data it is still possible to reconstruct the accretion flow

spectra of AGN.

3.3.1 The Soft Excess

Fig.3.5 shows how the spectrum of an AGN changes with accretion rate. The three

spectra are mean spectra obtained by binning Seyfert 1 spectra by accretion rate

(Jin et al., 2012) and correcting for mass (Done et al., 2012), since low accretion

rate Seyferts (i.e. BLS1s) generally have larger masses than higher accretion rate

NLS1s. The three spectra correspond to a 108M� AGN at ṁ = 0.77 (red), 0.25

(green) and 0.058 (blue).

Just like BHBs, AGN spectra can be fitted with a hard power law tail peaking at

∼ 100 keV and a black body (BB) disc component, peaking at 6× 10−3, 1.5× 10−2

and 2.5 × 10−2 keV for the blue, green and red spectra, respectively. As accretion

rate drops, the disc peak not only drops in luminosity but shifts to lower energy,

just like in BHBs, suggesting a truncating disc. However it is clear that these two
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Figure 3.5: AGN accretion flow spectra as a function of accretion rate for ṁ = 0.77
(red), 0.25 (green) and 0.058 (blue), for a 108M� black hole. From Done et al. (2012).

components alone are not enough to fit the spectra. They cannot explain the excess

of emission at soft X-ray energies (∼ 0.01 − 1 keV), which is present in all three

spectra but most prominent in the blue spectrum. This excess of emission above

the extrapolation of the hard 2−10 keV power law down to lower energies is referred

to as the ‘soft excess’.

The soft excess can be well fit by an additional Comptonisation component

(Czerny et al., 2003; Gierliński & Done, 2004; Porquet et al., 2004). Although

extreme relativistic reflection has been proposed as an alternative explanation, for

the soft excess of NLS1s in particular (Crummy et al., 2006). BHBs do show evidence

for an additional soft Comptonised component, but in bright intermediate states

(Yamada et al., 2013), as the disc moves inwards with increasing accretion rate,

dramatically increasing the seed photon flux as the system approaches the HSS. In

contrast, in AGN, the soft Compton component is strongest at low accretion rates.

The disc, hard and soft Comptonised components can be understood in terms

of a phenomenological model where the disc truncates as accretion rate drops and
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the accretion energy below Rtrunc is used to power the two Compton components

(Done et al., 2012). Fits to multiple objects suggest the energy split between the two

remains roughly constant, at 30% in the hard power law and 70% in the soft excess

(Jin et al., 2012). The soft Comptonisation is optically thick and can be interpreted

as coming from the inner regions of the disc below Rtrunc, which for some reason do

not completely thermalise so emit via optically thick Compton rather than standard

BB emission. The seed photons for soft excess Comptonisation may well come from

the disc. In contrast the seed photons for the optically thin, hard Comptonisation

can be traced to the soft excess (Jin et al., 2013). This, combined with the fact the

variability timescales increase from disc to soft excess to hard power law, support a

picture where the outer disc is truncated and gives way to the optically thick region

producing the soft excess emission, above which is an optically thin corona where

soft excess seed photons are up-scattered into a hard power law. This scenario is

shown in Fig.3.6.

There are two possible reasons AGN discs do not completely thermalise, while

BHB discs appear to. One is that AGN discs are UV bright, due to being cooler,

and UV line driving will drive material off the disc in the form of a wind, dis-

rupting its structure regardless of whether the wind escapes or is failed (Risaliti &

Elvis, 2010). Another possible reason is that AGN discs are more radiation pressure

dominated than BHB discs, since the ratio of radiation pressure to gas pressure is

∝ (ṁM)1/4 (Laor & Netzer, 1989). This leads to a larger scale-height and may

affect the magneto-rotational instability (MRI), causing turbulent Comptonisation

in the disc rather than thermalisation (Socrates et al., 2004).

By examining Fig.3.5 it is clear to see that BLS1s and their radio loud coun-

terparts BLRGs should have accretion flow spectra similar to the blue spectrum.

NLS1s should be similar to the red spectrum, but with the disc peak shifted to

slightly higher energies due to their smaller mass. The standard quasar spectrum

should be similar to the green line, but with the disc peak shifted to lower energies

due to their large masses and comparison with the mean quasar spectrum of Elvis

et al. (1994) shows that this is the case. Low accretion rate LINERs should be

similar to the blue spectrum but with even larger disc truncation radii and lower lu-
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Figure 3.6: Schematic showing AGN spectral components together with proposed ac-
cretion flow geometry, including emission from a truncated accretion disc (red), optically
thick soft excess Comptonising region (green) and optically thin Comptonising corona
(blue). Black line shows total spectrum, grey dashed line shows spectrum after including
external absorption. From Collinson et al. (2015).
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minosities. Following the unified model, the obscured and narrow line counterparts

of all these objects should have the same underlying accretion flow spectra. The

spectra we observe from them only appear different due to a combination of their

intrinsic spectra and the limitations of our line of sight, through which absorption,

scattering and reprocessing reduce and redistribute the emission we see.

3.3.2 Reflection

Reflection is seen in AGN just as it is in BHBs. Reflection from the torus produces a

narrow neutral iron line and reflection continuum, while reflection from the accretion

disc produces a broader iron line component (Reeves et al., 2001).

The broad component can generally be modelled by neutral to moderately ionised

reflection from material within 50Rg with a standard r−3 illumination profile (Nan-

dra et al., 2007). However, much more extreme parameters are needed if the reflec-

tion component is required to explain both the iron line and the soft excess emission.

Such models are termed reflection dominated models.

3.3.2.1 Reflection Dominated Models

Reflection dominated models, or extreme relativistic reflection models, were devel-

oped to explain both the broad iron lines and strong soft excess emission of several

high accretion rate NLS1s (MCG 6-30-15: Wilms et al., 2001, 1H0707–495: Fabian

et al., 2002, e.t.c.). In these models the spectrum is decomposed into some BB disc

emission at the very softest energies (< 0.5 keV), a hard coronal power law and a

strong relativistic reflection component which provides both the iron line and all the

excess emission at soft energies.

In order to produce enough reflected emission at soft energies requires extremely

centrally concentrated illumination with r−5 or r−6, often higher than solar abun-

dances and reflection from r < 3Rg, in order to smear out the associated emission

lines and produce the smooth soft spectrum that is observed (Fabian et al., 2004).

Requiring reflection to occur from r < 3Rg requires the disc to extend down to the

last stable orbit and the central black hole to be highly spinning. Producing such

centrally concentrated illumination requires the illuminating corona to be confined



3.3. Spectral States 57

  

Figure 3.7: Intensity-sorted X-ray spectra of the NLS1 MRK 766, showing systematic
spectral changes with luminosity, from Miller et al. (2007).

to ∼ 2Rg on the spin axis above the black hole, leading to this scenario also being

termed the ‘lamppost model’.

Some support for the lamppost model comes from the fact that some NLS1s

show spectra at low luminosities that look very like they are dominated by ionised

reflection, while at high luminosities their spectra look much more power law like

(Vaughan & Fabian, 2004). Fig.3.7 shows a sequence of such spectra from the NLS1

MRK 766. In the context of the lamppost model, this can be explained by the height

of the illuminating corona changing. When the object is bright, the illuminating

corona is higher above the black hole, more direct power law flux is seen and the

reflected component is diluted. When the object is dim, the illuminating corona is

closer to the black hole, more of the power law flux is bent back towards the disc

due to gravitational light bending, less direct emission is observed and the spectrum

is dominated by the reflected component (Miniutti & Fabian, 2004).

However, extreme relativistic reflection is not the only way to model these dim,

apparently reflection dominated NLS1 spectra. A combination of moderate reflec-
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tion, a continuum Compton component to produce the soft excess emission and

clumpy absorption can also fit such spectra (Pounds et al., 2004). Some extreme

NLS1s (e.g. MRK 766) do show absorption features around 6.7 keV, supporting the

idea that absorption may play a role (Miller et al., 2007).

3.3.3 Reprocessing

As in BHBs, any flux incident on the accretion disc that is not reflected will be

reprocessed. Again this heating effect on the inner edge of the disc must be taken into

account when fitting disc spectra for inner disc radii (Done et al., 2013). However,

since most AGN discs peak in the unobservable UV and only the smallest, highest

mass accretion rate AGN show disc emission in the soft X-rays, this is not often

attempted.

The presence of reprocessing at larger radii in the optical regions of the disc

is evidenced by the fact the optical light curves of many AGN appear to lag the

illuminating hard X-rays on short timescales (e.g. Arévalo et al., 2008). However,

reprocessing should never dominate the outer disc emission in AGN as it does in

BHBs. This is because reprocessing only dominates at the very largest radii ∼
1000 − 2000Rg, where the illuminating flux is greater than that produced by the

disc (van Paradijs & McClintock, 1995). BHB discs can easily extend to these radii,

depending on the binary separation. In contrast, AGN discs are much smaller,

since they are truncated at the self-gravity radius, which limits their outer disc

radius to ∼ 800Rg. Consequently the intrinsic disc flux should be brighter than the

illuminating flux at all radii in an AGN disc.

3.3.4 Comparison with BHB Spectral States

It is useful to note that the accretion flow structure of AGN at a given accretion rate

does not necessarily match that predicted by scaling up a BHB. LINERs, with their

discs truncated at large radii and their jets, correspond well to LHS BHBs. However

BLS1s, BLRGs and quasars should correspond to the disc dominated HSS. Yet they

still show significant disc truncation and a large soft excess despite accretion rates
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comparable to disc dominated HSS BHBs, as evidenced by a hard coronal power

law (e.g. ARK 120: Matt et al., 2014; Haardt & Maraschi, 1991) and disc peaks

at low energies (e.g. MRK 509: Mehdipour et al., 2011). In addition, radio loud

quasars show powerful jets, while the HSS of BHBs is exclusively radio quiet. Finally

the Eddington rate NLS1s should correspond to the VHS of BHBs, where the jet

switches back on and the hard power law starts to carry more of the energy budget

again. Yet NLS1s are resolutely disc dominated, with a weak power law tail and the

majority are radio quiet. Perhaps mass loss in UV winds and a tendency towards

larger scale-height discs mean a higher accretion rate is required in an AGN to obtain

the same geometry as a BHB, i.e. thermalised disc dominated states are harder to

achieve so require higher mass inflow densities and therefore higher accretion rates.

3.4 Winds from Active Galactic Nuclei

Although the unified model can explain the presence/absence of broad lines in differ-

ent objects through the visibility/obscuration of different regions of circum-nuclear

gas, it doesn’t explain how the gas producing the emission got there to begin with.

Disc winds provide an obvious mechanism for supplying circum-nuclear material.

There are four main mechanisms by which material can be driven off the accretion

disc — in a thermal wind, a dust driven wind, UV line driving and through radiation

pressure. The presence or absence of each type of wind in a particular AGN depends

on the state of its accretion flow and the spectral shape of its emission.

The central X-ray source illuminates the surrounding accretion disc and torus,

heating the material to the Compton temperature (∼ 107 K). At large radii, material

heated to the Compton temperature will be unbound since the thermal velocity of

the material becomes greater than the escape velocity. This material is then driven

from the system in the form of a thermal wind (Begelman et al., 1983). Thermal

winds only exist at large radii so are associated with the torus and BLR.

The inner edge of the torus is set by the dust sublimation radius. Inside this

radius the illuminating X-ray flux is too high, heating the material above the dust

sublimation temperature so dust can no longer exist. However, material inside the
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accretion disc is shielded from the central X-ray source by the rest of the disc,

so dust can exist (Czerny & Hryniewicz, 2011). Radiation pressure from photons

emitted by the accretion disc itself pushes on this dust lifting it up out of the disc.

Once out of the disc it is illuminated by the central X-rays, the dust sublimates and

either the material falls back down (failed wind) or if it has gained sufficient height

its rotational velocity will be larger than the Keplerian velocity for its new larger

radius and it will escape from the system. Czerny et al. (2015) propose that this

dust driven wind region could provide the source of the broad line emission and this

scenario is shown in Fig.3.8. The inner edge of this dust driving region is set by

the radius at which the temperature within the disc reaches the dust sublimation

temperature and the disc no longer contains dust grains.

AGN with strong UV disc emission can also power UV line driven disc winds.

This requires moderately ionised gas, allowing for multiple UV line transitions (Cas-

tor et al., 1975). As the gas absorbs UV photons it also absorbs their momentum.

This accelerates the gas to a higher velocity. Its UV line transitions are then Doppler

shifted allowing it to absorb more UV photons of higher energy, accelerating it again.

The process repeats, potentially accelerating the gas up to velocities of> 0.1 c (Proga

& Kallman, 2004). The range of radii over which UV line driving occurs is restricted

to the range of disc radii emitting in the UV (Shlosman et al., 1985; Risaliti & Elvis,

2010). UV line driven disc winds are also restricted to X-ray weak sources, since

if the X-ray illumination is strong it over-ionises any material that lifts off the disc

so it no longer interacts with UV photons, effectively switching off UV line driving.

If the wind self-shields, this can help (Murray & Chiang, 1996; Proga & Kallman,

2002, but see also Higginbottom et al., 2014), but primarily a UV strong, X-ray

weak accretion flow spectrum is required for UV line driving to be effective.

The final mechanism for driving material off the disc is radiation pressure in the

form of an Eddington wind. In the highest accretion rate sources, the luminosity of

the central regions of the accretion flow is sufficiently high that radiation pressure

alone will blow material out of the disc in the form of an Eddington wind (Shakura

& Sunyaev, 1973; King & Pounds, 2003). Since the luminosity is highest in the

innermost regions, Eddington winds are generally confined to small radii.
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Figure 3.8: Schematic showing the formation of the torus and broad line region. The
torus exists beyond the dust sublimation radius. Below the dust sublimation radius dust
can only exist in the disc, where it is shielded from the central X-ray source. Radiation
pressure lifts this dust up out of the disc, where irradiation increases, the dust evaporates
and the remaining material falls back down. The whole dust driving region is then the
source of the broad lines, with the inner edge set by the radius at which dust within the
disc sublimates. From Czerny et al. (2015).
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Fig.3.9 summarises which of these different winds may be present in AGN of

different masses and accretion rates.

High mass, high accretion rate AGN should show all four types of wind —

thermal, dust driven, UV line driven and Eddington — since their disc spectra peak

in the UV. Low mass, high accretion rate AGN should lack a UV line driven disc

wind since their lower masses means hotter accretion discs peaking in the extreme

UV (EUV) and soft X-rays rather than the UV (Hagino et al., 2015).

Moderate accretion rate AGN will lack a radiation pressure Eddington wind due

to their lower accretion rates and lack a UV line driven wind since their spectra are

UV weaker and X-ray stronger, over-ionising any UV wind that tries to form.

The lowest accretion rate AGN are so under-luminous they may be unable to

drive a thermal wind, as the heating rate is less than the cooling rate of the rising

and expanding material (Begelman et al., 1983), and they may even lack a torus

due to the low densities of inflowing material (Gonzalez-Martin et al., 2015). Their

spectra are UV weak and X-ray strong, due to the disc being replaced by a hot,

inefficient, ADAF-like flow, such that even dust driving may be inefficient.

One explanation for the source of the narrow lines is that they are produced at

the back of the torus, since within the torus, dust will absorb the line emission so

that narrow line emission will only escape from the back, where the dust grains are

clumping and the density is lower (Netzer & Laor, 1993; Netzer, 2015). This spatial

separation of the broad and narrow line regions by the dusty absorbing torus then

helps to explain why there are distinct broad and narrow line components rather

than a continuum of line widths. However observations of extended narrow line

regions with lower gas velocities, suggest some narrow line emission must also be

produced by gas at much larger radii above the accretion flow, as in the traditional

unified model scenario (Unger et al., 1987). This emission arises from illuminated

interstellar gas in the host galaxy itself, rather than gas expelled from the accretion

flow.
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Figure 3.9: Schematic showing accretion flow geometry and spectral shape for AGN of
different masses and accretion rates and the potential winds that may result.
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Figure 3.10: Comparison of two AGN power spectra with power spectra of Cyg X-1 in
the low/hard and high/soft states, from McHardy et al. (2004).

3.5 Variability

AGN show stochastic X-ray variability just like BHBs. They also follow a linear

RMS–flux relation implying, just like BHBs, this variability is due to accumulation

of mass accretion rate fluctuations generated at the viscous frequency at each radius

(Uttley & McHardy, 2001). However since fvisc scales inversely with mass, the

timescale of fluctuations is correspondingly longer; while BHBs show variability on

millisecond timescales, the fastest variability in AGN is of the order of minutes.

3.5.1 Power Spectra

Due to their longer timescales, observations spanning years/decades are required to

measure AGN power spectra. Fig.3.10 shows the power spectra of two AGN (NGC

3516 and NGC 4051) compared to the power spectra of the BHB Cyg X-1 in its

hard and soft state.

The black hole in NGC 4051 is roughly 106M�, while Cyg X-1 is ∼ 10M�.
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Scaling the 10 Hz high frequency break of the HSS Cyg X-1 power spectrum down

by the five orders of magnitude mass difference implies the high frequency break

of NGC 4051 should be at 10−4 Hz. Fig.3.10 shows that the high frequency break

of NGC 4051 is in fact an order of magnitude higher than expected (∼ 10−3 Hz).

McHardy et al. (2006) showed this can be explained if the high frequency breaks of

AGN scale with accretion rate as well as mass, so that fh ∝ 1/Th ∝ M−1.12ṁ0.98.

This suggests there is some fundamental difference in the variability properties of

AGN compared with BHBs, since most HSS BHBs show a high frequency break

at 10 Hz regardless of accretion rate, expect for some states of GRS 1915+105 (at

Eddington) which actually break at a lower frequency rather than higher (Zdziarski

et al., 2005).

Another difference is that AGN do not seem to show low frequency breaks in their

power spectra (one exception is the NLS1 galaxy ARK 564 for which a low frequency

break has been measured at 10−6 Hz, McHardy et al., 2007). For very large mass, low

accretion rate AGN, measuring the low frequency break would require a prohibitively

long light curve. However for many lower mass AGN, where a low frequency break

could be observed, it is not; instead below the high frequency break the power

spectrum shows flat topped noise without any detection of a low frequency break

(Uttley & McHardy, 2005). This is similar in shape to the HSS power spectrum

of Cyg X-1 (which is itself not typical of other HSS BHB power spectra, Done

& Gierliński, 2005). The absence of a low frequency break suggests the hard X-

ray emission is responding to fluctuations accumulated from all radii. In the HSS

of Cyg X-1 this can be explained by the hard fluctuations coming from a corona

extending above the disc, in contrast to LHS BHBs where the strongest fluctuations

are produced in the hot flow and so restricted to the range of hot flow radii. Perhaps

AGN lacking low frequency breaks have similarly extended coronae.

Not only does the high frequency break change with mass and accretion rate

scaling from BHBs to AGN, but so can the total power. While many AGN show flat

topped hard band noise at fP (f) ∼ 0.01 similar to BHBs (e.g. NGC 3516: Uttley

& McHardy, 2005, PG1244+026: Jin et al., 2013), some show much more power,

with fP (f) nearing 0.1 (e.g. NGC 4051: Vaughan et al., 2011, 1H0707–495: Zoghbi
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et al., 2011). Winds and obscuration provide an additional source of variability in

AGN. Material thrown off the disc in a wind and even BLR clouds may interrupt

the line of sight causing absorption events which alter the spectrum and introduce

an extra source of variability. Such events must be excluded when investigating

the intrinsic variability of the accretion flow. Since they generally occur in high

inclination systems, this effect can be minimised by studying broad line systems at

low inclination.

3.5.2 Time Lags

Just like BHBs, AGN can show time lags between hard and soft X-ray bands. As

in BHBs, positive lags indicate propagation while negative lags (soft lagging hard)

indicate reverberation. Fig.3.11 shows lag-frequency spectra for a sample of AGN,

some of which show both positive and negative lags.

The discovery of short ∼ 30 s high frequency soft lags in several NLS1s (e.g.

Fabian et al., 2009; Emmanoulopoulos et al., 2011) lent support to the suggestion

that the excess of soft emission in these objects was the result of relativistic reflection

of the hard coronal power law off the accretion disc. Such reflection dominated

models require reflection from disc radii extending down to ∼ 1 Rg around a highly

spinning central black hole. At first glance, the very short 30 s reverberation lag

is in good agreement with the idea the distance from hard illuminating source to

reflecting disc is < 5Rg, since this roughly matches the light travel time assuming a

106M� black hole. However it is important to note that the lag measured between

two bands is strongly affected by dilution (Uttley et al., 2014; Kara et al., 2013). If

the hard band contained only coronal power law emission and the soft only reflected

emission, then the lag between hard and soft bands would be the lag between the

coronal power law and its reflection. However, in practice, the hard and soft band

will contain a contribution from both components and this reduces the measured

lag from its ‘true’ value. Therefore if the lag between hard and soft bands is ∼ 30 s

and the hard contains primarily power law emission while the soft mostly reflected

emission, then it is more accurate to say that the lag between the coronal power

law and its reflection is at least 30 s or longer. This is even more true if the soft
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Figure 3.11: Lag-frequency spectra for a sample of AGN, where positive lags indicate
the hard X-ray band lagging the soft X-ray band, from De Marco et al. (2013). Dashed
black lines bound the 1σ confidence levels for the observed lags. Red solid lines show
the range of allowed lag values at each frequency (τ = −ν/2, +ν/2). Red dotted lines
show the standard deviation of a uniform distribution defined on the same interval of lag
time permitted values — Poisson noise errors become important when the spread on the
measured lags (defined by the 1σ confidence levels) approaches this line.
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Figure 3.12: Frequency and amplitude of the negative reverberation lag as a function of
black hole mass for a sample of AGN, from De Marco et al. (2013). Coloured lines (from
bottom to top) in the right hand panel show the light crossing time at 1Rg, 2Rg and 6Rg
as a function of black hole mass.

band contains an additional component which leads the hard power law, in which

case these positive leads must be subtracted before estimating the true value of the

negative lag.

De Marco et al. (2013) showed that both the frequency of the negative rever-

beration lag and its amplitude correlate with the mass of the central black hole

(Fig.3.12). All size-scales scale with black hole mass, so light travel times should

be longer in larger mass AGN (assuming reflection occurs at the same gravitational

radius) and fluctuations occur at lower frequencies, so this is expected. The dashed

lines in the right panel of Fig.3.12 show the light crossing time as a function of mass

at different radii. However it is not appropriate to simply interpret the lag amplitude

as a light travel time for any given AGN mass, since it is a combination of the actual

light travel time to the reverberating component with that component’s fractional

contribution to the X-ray bands used to calculate the lag, plus any positive lags

between the two bands at those frequencies. The fact that the lag amplitudes show

a different dependence on mass to the light travel time at a constant radius, suggests

either reverberation does not always occur at the same gravitational radius, or the

fractional contribution of the reverberating component to the chosen X-ray bands

is changing, or the strength of the positive lags is changing, or all three. Similarly

the frequency that the minimum of the negative reverberation lag occurs at will

depend on how much it is diluted by positive propagation lags, i.e. how strong the
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positive lags are and how much of the soft band flux comes from the reverberating

component and how much comes from soft continuum components.

3.6 Jets

AGN are historically divided into two classes: radio loud and radio quiet, where

the radio loudness parameter (R) is defined as the ratio of the radio luminosity

at 5 GHz to the optical luminosity at 4400 Å and R = LR/Lopt > 10 is classed as

radio loud (Kellermann et al., 1989). Since the radio emission comes from the jet

and the optical from the accretion flow, radio loudness is often used as a proxy

for the strength of the jet. However, the amount of optical emission depends on

the accretion state of the flow, which in turn depends on accretion rate, so radio

loudness is affected by accretion rate. Low luminosity sources such as LINERs,

with radiatively inefficient accretion flows and steady jets, will have a higher ratio

of radio–optical luminosity, and so be more radio loud than, for example, a Seyfert

with a bright radiatively efficient UV-optical accretion disc. Fig.3.13 shows that

radio loudness does indeed decrease with increasing accretion rate. Similarly BHBs

show a radio loud LHS at low accretion rates, with strong steady jet emission and

a radiatively inefficient flow, and switch to a radio quiet HSS at high accretion

rates, when the accretion flow emission is bright and efficient and the jet emission

quenched. However it is important to note that, while high accretion rate AGN are

less radio loud due to their more efficient accretion flow emission, they do not seem

to show the additional jet quenching that HSS BHBs do. High accretion rate AGN

are capable of sustaining steady radio jets while HSS BHBs do not. This may be

additional support for larger scale-height flows in AGN, if a large scale-height flow

is required to support a jet (Ohsuga & Mineshige, 2011).

Changing accretion state can explain the general trend of decreasing radio loud-

ness with increasing accretion rate. However the top panel of Fig.3.13 shows that,

despite separating AGN by accretion rate, there is still a large scatter in radio loud-

ness (∼ 5 orders of magnitude) for any given accretion rate. Some of this can be

explained by differences in mass and some by differences in environment.
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Figure 3.13: Radio loudness (where R = L5 GHz/L
4400 Å

) as a function of Eddington
ratio calculated using i). total radio luminosity, ii). only core radio luminosity and iii).
core radio luminosity plus a correction for AGN mass, from Broderick & Fender (2011).
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Figure 3.14: Different AGN groupings as a function of luminosity and accretion rate,
from Boroson (2002).

More massive AGN have larger jets which are less self-absorbed so more radia-

tively efficient at a given frequency for a given accretion rate. A mass correction

term must therefore be applied when comparing radio emission from different AGN

(Heinz & Sunyaev, 2003). In particular, Seyferts can be two orders of magnitude

smaller than radio loud quasars, which have typical masses of 108 − 109M�, so

their radio luminosity should be roughly three orders of magnitude lower (LR ∝
L0.6
X M0.8 ∝ ṁ0.6M1.4, Broderick & Fender, 2011).

Fig.3.14 shows how radio loud and radio quiet AGN are grouped by luminosity

and mass and related to host galaxy size and type. Larger mass black holes tend to

reside in more massive elliptical galaxies in denser environments. The emerging jet

ploughs into the surrounding gas and dust often producing extended radio emission

or evacuating bright radio lobes in the intracluster medium. In contrast, small black

holes generally reside in small spiral galaxies which occur in less dense environments,
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where there is much less surrounding material for the jet to interact with (Donoso

et al., 2010; Hardcastle & Krause, 2013).

One way to reduce the effects of environment is to calculate radio loudness using

the core radio emission and exclude extended emission produced by the jet inter-

acting with the external environment. The bottom panel of Fig.3.13 shows that, by

correcting for mass differences and using only core radio emission, the scatter can

be reduced to ∼ 3 orders of magnitude.

Nevertheless, at low accretion rates, Fanaroff-Riley Type I (FRI) radio galaxies

remain systematically more radio loud than LINERs. While at high accretion rates,

BLRGs and radio loud quasars remain systematically more radio loud than Seyferts

and traditionally radio quiet Palomar-Green (PG) quasars. Having accounted for

differences in mass, accretion rate and environment, leaves only one remaining pa-

rameter — spin. One explanation may be that jets are predominantly accretion

powered, but if the black hole is highly spinning the jet may gain extra power by

extracting some of the rotational energy of the black hole through the Blandford-

Znajek mechanism (Blandford & Znajek, 1977). A difference in black hole spins

from a = 0.2− 1 could then explain the spread in radio loudness for a given accre-

tion rate (Heinz & Sunyaev, 2003), since spin powered jets are expected to scale as

a2. An alternative explanation is that jet production relies not on black hole spin

but on accumulation of magnetic flux from the galaxy, so that jet strength, and

therefore radio loudness, depends on the amount of available flux and the ability of

the black hole to accrete it (Sikora & Begelman, 2013), however such models have

limited predictive power.

3.6.1 Fundamental Plane

LHS BHBs follow the radio–X-ray correlation, where the radio emission from the

steady jet is correlated with the X-ray emission (generally assumed to be) from the

accretion flow. With the addition of a mass correction term, this correlation can

be extended to include AGN. This is known as the fundamental plane of black hole

activity (Merloni et al., 2003), shown in Fig.3.15.
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  Figure 3.15: The fundamental plane of black hole activity, from Merloni et al. (2003).

Merloni et al. (2003) showed that a sample of LINERs, Seyferts and PG Quasars

all lie on the fundamental plane. These are the AGN that lie on the lower half of

the trend shown in Fig.3.13. In other words, the radio emission in these AGN is as

expected from scaling up the steady jets of LHS BHBs, suggesting the mechanism of

jet production in these objects is scale invariant. If spin is the source of the remaining

scatter in Fig.3.13, it also suggests that the sub-sample of LINERs, Seyferts and PG

quasars must have similar spin to the BHBs, since they follow the same correlation.

If their spins differed they would be offset and require an additional correction term,

besides just mass.

Fig.3.15 shows that the radio loud quasar 3C 273 is clearly offset from the fun-

damental plane. If the BHBs, LINERs, Seyferts and radio quiet PG quasars all have

low to moderate spins and accretion powered jets, this is consistent with 3C 273 (and

the other radio loud quasars, BLRGs and FRI objects on the upper half of the trend

in Fig.3.13) potentially having higher spins and an additional spin contribution to
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Figure 3.16: a). Fanaroff-Riley Type I radio galaxy 3C 296 (Leahy & Perley, 1991) and
b). Fanaroff-Riley Type II radio galaxy Cygnus A (Perley et al., 1984), from Hardcastle
(2005).

their jet powers.

3.6.2 Highly Relativistic

The FRI sources, BLRGs and radio loud quasars that lie in the upper half of the

trend shown in Fig.3.13 represent some of the most powerful astrophysical jets. The

most massive radio loud AGN, which live in the densest environments, are separated

into two types according to their extended radio emission — Fanaroff-Riley Type I

(FRI) and Fanaroff-Riley Type II (FRII) (Fanaroff & Riley, 1974), shown in Fig.3.16.

FRI sources show fluffy radio jets that are brightest in the centre and fade away at

large radii, in the form of wide angle plumes. The jets of FRII sources are much

narrower and fainter and end in bright hot spots. For some reason FRI jets are

inefficient, losing a large fraction of their energy as they travel, and so they fizzle

out in plumes, while FRII jets radiate very little energy and remain well collimated,

so that when they collide with external gas clouds all the energy is dumped in a bow

shock and radiated away in giant radio lobes. One explanation for this may be a

difference in jet opening angle. Simulations suggest jets with wider opening angles

suffer more from entrainment and deceleration due to radiative loses (Krause et al.,

2012). In which case, FRI sources should have wider angle jets. In addition FRI jets

originate from low luminosity, low accretion rate systems (ṁ < 0.01), while FRII
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jets originate from high luminosity, high accretion rate radio galaxies/radio loud

quasars (see Fig.3.13). The higher power, and potentially greater mass loading,

in higher accretion rate FRIIs may help them power through surrounding material

and remain collimated. While the presence of an accretion disc down to smaller

radii may also help to confine the jet and produce a smaller opening angle in FRIIs,

compared to the large scale-height, inefficient accretion flows in FRIs (where the disc

is truncated at very large radii or absent), if jet production is restricted to regions

of the accretion flow with large scale-height.

Only sources viewed from the side (i ∼ 90◦) will be classed as FRI/FRII sources.

As viewing angle decreases the receding jet becomes increasingly deboosted until

only radio emission from the approaching jet is visible. If the jet is viewed head on

(i ∼ 0◦) the source is classed as a blazar and Doppler boosted emission from the

approaching jet dominates the spectrum of the AGN.

Blazars can be classed as either BL Lacs or FSRQs, with BL Lacs being FRIs

viewed face on and FSRQs FRIIs viewed face on (following the unified model in

Fig.3.4). Population studies taking into account beaming effects confirm that the

observed numbers of BL Lacs/FSRQs are consistent with FRIs/FRIIs, respectively,

being the parent populations (Urry & Padovani, 1995).

Fig.3.17 (left panel) shows the mean broadband spectrum from a sample of BL

Lacs compared to the mean spectrum from a sample of FSRQs. In each case the plot

models only the emission from the base of the jet, which dominates the spectrum,

and neglects regions further out which sum to give the flat radio spectrum. The

different spectral shapes of BL Lacs and FSRQs are a direct consequence of their

different accretion regimes (Fig.3.17, right panel). Both BL Lacs and FSRQs show

a hump at low energies due to synchrotron radiation from relativistic electrons in

the jet, presumably accelerated by shocks at the base of the jet. FSRQs are in

the radiatively efficient accretion regime (ṁ > 0.01) so they show a second smaller

peak at ∼ 1015 Hz, which is BB emission from the UV bright accretion disc. BL Lacs

have lower accretion rates (ṁ < 0.01) and radiatively inefficient flows so show no UV

accretion disc and the jet emission drowns out any emission from the low luminosity

flow. The higher energy hump (∼ 1024 Hz) in the mean BL Lac spectrum is due to



3.6. Jets 76

    

Figure 3.17: Mean BL Lac and FSRQ spectra (left panel) together with the number of
BL Lacs and FSRQs as a function of accretion rate (right panel), from Ghisellini et al.
(2010).

Compton up-scattering of the synchrotron radiation produced by the electrons and

magnetic fields in the jet. The entire BL Lac spectrum is therefore composed of

synchrotron and synchrotron self-Compton (SSC) emission.

The highest energy hump (∼ 1022 Hz) in the FSRQ spectrum likewise contains

a contribution from SSC emission. However the higher accretion rate FSRQs have

an additional source of seed photons for Compton up-scattering in the jet. The UV

bright accretion disc provides some seed photons, although these are behind the jet

so strongly deboosted in the jet frame. Importantly the UV disc illuminates the BLR

which (in the context of the traditional unified model) is in front of the jet emission

region. The jet electrons are travelling towards this reprocessed line emission at

relativistic velocities due to the bulk motion of the jet. Consequently they see this

external source of seed photons strongly Doppler boosted so that external-Compton

(EC) emission dominates over SSC. The higher jet power and greater seed photon

flux means the Compton humps of FSRQs are more luminous than those of BL

Lacs, and more seed photons means more cooling, so they also peak at slightly

lower energies. The combination of Compton up-scattering and Doppler boosting

makes BL Lacs and FSRQs some of the brightest objects detected at gamma-ray
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energies (Chadwick et al., 1999; Nolan et al., 2012).

Spectral fitting of BL Lacs and FSRQs allows not only jet powers and magnetic

fields to be estimated but also the BLF of the jet. Ghisellini et al. (2010) typically

find Γ ∼ 13 is required to fit FSRQ spectra and Γ ∼ 15 for BL Lacs. These

are much higher BLFs than the mildly relativistic Γ ∼ 1.4 − 2 more commonly

assumed for BHBs. This suggests radio louder AGN (BL Lacs/FRIs/FSRQs/FRIIs

and potentially BLRGs/NLRGs) may have much more relativistic jets than BHBs

and, by extension, the LINERs, Seyferts and radio quiet quasars that lie on the

same fundamental plane. Again, one possibility is that spin may be increasing the

BLF in these objects.

However, not quite all Seyferts are radio and gamma-ray quiet. So far 7 radio

loud NLS1s have been detected with gamma-ray emission (Foschini et al., 2015).

Since NLS1s are high accretion rate systems (ṁ ∼ 1) with M ∼ 107− 108M�, they

should be scaled down versions of the higher mass FSRQs. Just like FSRQs, their

broadband spectra show a low energy synchrotron hump, high energy EC dominated

hump and require Γ ∼ 13 to fit (Abdo et al., 2009), so they do appear like mini-

FSRQs (Fig.3.18). The discovery of these gamma-ray loud NLS1s (γNLS1s) provides

a new opportunity to test existing blazar jet models and scalings over an extended

mass range.
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Figure 3.18: Spectrum of the Gamma-Ray Loud Narrow Line Seyfert 1 PMN
J0948+0022, from Foschini et al. (2012).



Chapter 4

Jets and the Accretion Flow in

Low Luminosity Black Hole

Binaries

4.1 Introduction

In this chapter we focus on accretion and ejection around black hole binaries in the

low/hard state.

The low/hard state (LHS) of black hole binaries (BHBs) is typically seen at mass

accretion rates below a few per cent of the Eddington limit. It is characterised by a

hard X-ray spectrum, rising in νfν to a peak at a few hundred keV, in sharp contrast

to the typical temperature of a few hundred eV expected from an optically thick,

geometrically thin accretion disc. These hard X-rays are also strongly variable on

short (sub second) timescales, again, in sharp contrast to the long (few hour) viscous

timescale expected from even the innermost radii of a thin disc. These properties

are more typical of the alternative set of solutions of the accretion flow equations,

where the flow is geometrically thick, and optically thin. The most well known of

these alternative solutions are the Advection Dominated Accretion Flow (ADAF)

models (Narayan & Yi, 1995), but these are only an analytic approximation to

what is almost certainly a more complex solution, as the flow must be threaded by

magnetic fields. Differential rotation shears the field azimuthally, while buoyancy

79
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Figure 4.1: Low/hard state X-ray photon index as a function of luminosity in Eddington
units, from Sobolewska et al. (2011)

lifts it vertically, and the combination sets up a turbulent magnetic dynamo which

acts to transport angular momentum outwards so material can fall inwards. Close

to the horizon, this turbulent field can also produce a jet, as observed in this state

(Fender et al., 2004).

These hot flow solutions are only possible at low mass accretion rates, collapsing

to the standard disc solutions when the flow becomes optically thick. The transi-

tion is complex, but the data can be largely fit into a picture where the thin disc

progressively replaces the hot flow down to smaller radii as the mass accretion rate

increases. Such truncated disc models predict that the contribution from the thin

disc becomes stronger with increasing mass accretion rate, increasing the seed pho-

tons for Compton cooling of the hot flow, so the hard X-ray spectrum becomes

softer, as observed.

Conversely, as accretion rate drops, the X-ray spectrum should harden. In fact,

the data show that the X-ray spectral index first becomes harder, but then softens

again below an (Eddington scaled) luminosity of L/LEdd ∼ 10−2 (e.g. Corbel et al.,

2008; Russell et al., 2010; Sobolewska et al., 2011, hereafter S11, see Fig.4.1). The
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truncated disc/hot inner flow model gives a possible explanation for this behaviour

of the X-ray spectral index. The disc recedes as mass accretion rate drops, which

leads to a decrease in the seed photon luminosity intercepted by the hot flow so

its Compton spectrum hardens. However, there is another source of seed photons,

from cyclo-synchrotron emission generated within the flow itself by the hot electrons

spiralling in the turbulent magnetic field. This source of seed photons increases as

the mass accretion rate drops, as the drop in density means that the emission is

much less self-absorbed and this more than compensates for the drop in emissivity.

Thus the flow should make a transition from hardening due to Compton scattering

on the receding disc, to softening due to Compton scattering of cyclo-synchrotron

photons within the flow (S11).

However there is an alternative possibility for the change in X-ray spectral index,

where this marks instead the change from a flow dominated X-ray spectrum to a

jet dominated X-ray spectrum (Russell et al 2010; S11). Such a transition to a jet

dominated flow (JDAF) was suggested by Yuan & Cui (2005) and there are coupled

ADAF-jet models in the literature where the X-rays are produced by synchrotron

jet emission at low mass accretion rates (e.g. Yuan & Cui, 2005; Yu et al., 2011).

Here we make a simple model of the accretion flow (truncated disc and hot,

radiatively inefficient inner flow) to gain a quantitative understanding of how the

X-ray spectrum evolves with accretion rate in terms of the contribution of disc and

cyclo-synchrotron seed photons for flow Comptonisation. We then couple this to

a standard conical jet model (Blandford & Königl, 1979; Merloni et al., 2003) to

assess the relative contribution of the flow and the jet to the X-ray emission, using

independent constraints from the observed radio–X-ray correlation (Hannikainen

et al., 1998; Corbel et al., 2003; Gallo et al., 2003; Corbel et al., 2013).

4.2 The Fiducial Truncated Disc/Hot Inner Flow

Model

In all the following we use dimensionless radii r = R/Rg, where Rg = GM/c2, and

mass accretion rates ṁ = Ṁ/ṀEdd, where the Eddington limit LEdd = ηṀEddc
2
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and η = 0.057 for a Schwarzschild black hole with innermost stable circular orbit

risco = 6. We plot models for a 10M� black hole.

Our main aim is to explore the origin of the X-ray flux in the LHS, firstly

whether the truncated disc/hot inner flow model can produce the observed change

in behaviour of spectral index with ṁ, and then to see whether this can also be

produced by jet models. Previous models which included both truncated disc seed

photons and internally generated cyclo-synchrotron seed photons (Narayan et al.,

1997; Esin et al., 1997) did not explicitly explore this, and are also based on a

pure ADAF model for the accretion flow. Such pure ADAF models are too hot and

optically thin (maximum optical depth τ ∝ ṁ < 1) to match the observed hard X-

ray emission (Yuan & Zdziarski, 2004). Allowing advection to be negative (heating

the flow) as well as positive (assumed in the ADAF solution) takes the (luminous hot

accretion flow: LHAF) models closer to the data, but there is still a clear mismatch,

with data extending up to an optical depth of τ ∼ 2 (Yuan & Zdziarski, 2004). This

probably reflects the fact that all such analytic models are only an approximation to

a more complex reality, with magnetic fields threading the flow. Hence rather than

build a full ADAF/LHAF model, which is known not to match the data, we instead

take the key aspects of these models (radiatively inefficient flow, i.e. luminosity

L ∝ ṁ2, which exists only up to a maximum mass accretion rate, ṁc) and set the

parameters of this flow from the data, i.e. we take ṁc = 0.1 and τ = τmax(ṁ/ṁc)

with τmax = 2 (e.g. Ibragimov et al., 2005; Torii et al., 2011; Yamada et al., 2013).

In the truncated disc/hot inner flow geometry, this radiatively inefficient flow

exists inside a Shakura-Sunyaev disc truncated at radius rt ≥ risco. Evaporation

of the cool disc by thermal conduction from a hot corona is known to produce this

geometry at low mass accretion rates (Liu et al., 2002; Mayer & Pringle, 2007), where

it typically gives rt ∝ ṁ−1/2 below the critical mass accretion rate, ṁc, at which the

hot flow collapses (e.g. Czerny et al., 2004). Evaporation models show that the disc

is still substantially truncated at this critical mass accretion rate, but the value of

this minimum truncation radius is ∼ 40Rg (20Rsch: Czerny et al., 2004). However,

the evaporation rates assume the hot flow is an ADAF, whereas our flow is denser

and cooler. The conductive flux depends more strongly on density, so we expect
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stronger evaporation. This combined with weaker constraints on the observed disc

radius in the LHS (Yamada et al., 2013) motivates us to choose rt = 20(ṁ/ṁc)
−1/2.

We assume a standard Novikov-Thorne emissivity for a disc from rout = 105 to

rt, and assume that all this energy thermalises, giving Ldisc. The remaining energy

from the Novikov-Thorne emissivity from rt to risco is available to power the hot

flow, Lhot,power, but this is radiatively inefficient so we take the actual radiated power

to be Lhot = (ṁ/ṁc)Lhot,power, i.e. assume that the flow is as efficient as a thin disc

at ṁc.

The hot flow radiates Lhot via Comptonisation (which depends on seed photon

luminosity from both the disc and cyclo-synchrotron photons generated by the elec-

trons interacting with the magnetic field in the hot flow) and Bremsstrahlung (which

depends on density). We assume that the hot flow is a homogeneous sphere. The

obvious radius of this sphere is rt, but the emission should be centrally concentrated,

so instead we assume that all the energy is dissipated in a region rh = 20. At any

radius r in the disc, we calculate the fraction of photons illuminating the hot flow,

so the seed photon luminosity, Lseed,disc is given by this integrated over all the disc

from rout to rt. The density of the flow is then n ∼ τ/(σT rhRg).

Radiatively inefficient flows are also generically two temperature, with ion tem-

perature set by the virial temperature kTion ≈ mpc
2/r, while the electron tem-

perature is set by the balance of heating and cooling. We assume that the flow

is homogeneous within rh so kTion ∼ mpc
2/rh. Simulations show that the energy

density in the tangled magnetic field saturates to ∼ 10% of the gas pressure, so

UB = B2/(8π) = 0.1nkTion. The cyclo-synchrotron emission from the hot flow then

extends as an approximate steep power law from vB = eB/(2πmec) = 2.6 × 106B.

However, the majority of this emission is self-absorbed, so the emission peaks instead

at the self-absorption frequency νcsa = 3
2
νBθ

2
exm where the electron temperature

θe = kTe/mec
2 (found iteratively, see below) and xm typically has values of a few

hundred to a few thousand (full details are given in the Appendix). The luminosity

is then Lseed,cyclo ∝ nν2
csaV , where V = 4

3
πr3

hR
3
g is the volume of the hot flow.

The total seed photon luminosity Lseed = Lseed,disc +Lseed,cyclo. We take the seed

photon energy (νseed) as the weighted mean of the inner disc temperature and the
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cyclo-synchrotron self-absorption frequency. The electron temperature can then be

derived self-consistently from balancing heating (Lhot) and cooling (determined by

Lseed, but also including Bremsstrahlung) rates using the publicly available eqpair

code. This calculates the electron temperature and resulting emission spectrum from

a homogeneous sphere, given inputs of the heating power to the electrons (Lhot), the

optical depth and size of the region (τ and rh), and the power and typical energy of

the seed photons (Lseed and νseed) for Compton cooling (Coppi, 1999). The resulting

spectrum incorporates both Bremsstrahlung and Compton components and does

not assume that the Compton emission can be approximated as a power law. This

is increasingly important as the flow density drops, as each successive Compton

scattering order is separated by a factor 1/τ , making the spectrum increasingly

bumpy as the mass accretion rate decreases.

To summarise: our accretion flow model consists of a truncated disc where the

truncation radius increases with decreasing ṁ, and a radiatively inefficient inner

hot flow powered by the remaining gravitational energy that is not dissipated in

the truncated disc. We allow the optical depth of this hot flow to decrease with

ṁ, and use both the external disc photons intercepting the hot flow and internal

cyclo-synchrotron photons generated within the hot flow as seed photons for Comp-

tonisation.

4.2.1 Spectral Changes with Accretion Rate

Fig.4.2 shows a sequence of model spectra for ṁ = ṁc = 10−1 to ṁ = 4× 10−3 (i.e.

rt = 20 to 100). Solid lines show the total emission, long dashed, short dashed and

dotted lines show the individual components of cyclo-synchrotron, truncated disc

and Comptonisation, respectively.

The proportion of luminosity in the disc compared to the hot flow, Ldisc/Lhot ≈
(ṁ/ṁc)

−1( rt
risco
− 1)−1. Since we also know how rt depends on ṁ we can simplify

this further to ≈ 0.3(ṁ/ṁc)
−1/2 ∝ rt. Thus decreasing ṁ by a factor of 25 increases

the disc truncation radius by a factor of 5 and increases Ldisc/Lhot by a factor 5.

This is not a large factor, but is evident in Fig.4.2 by comparing the ratio between

the peak νfν flux of the disc and Comptonised emission for the highest and lowest
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Figure 4.2: Model SEDs, with truncated disc (short dashed line), hot flow cyclo-
synchrotron emission (long dashed line) and Comptonisation of both disc and cyclo-
synchrotron seed photons (dotted line) for increasing truncation radius: 20Rg (black),
35Rg (blue), 50Rg (green), 70Rg (red) and 100Rg (magenta). Solid line shows sum of all
three components.
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Figure 4.3: a). Seed photon luminosity as a function of truncation radius, for disc seed
photons (red dotted line) and cyclo-synchrotron seed photons (green dashed line). For
Rtrunc ∼> 60Rg (ṁ ∼< 0.01) the dominant source of seed photons is cyclo-synchrotron
emission from the hot flow. b). Photon index as a function of 2–200 keV X-ray luminosity,
showing softening of the X-ray spectrum at low luminosities as cyclo-synchrotron seed
photons begin to dominate. c). Hot flow electron temperature as a function of mass
accretion rate, where ṁ = Ṁ/ṀE .
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ṁ spectra.

However, the ratio between Lseed,disc/Lhot changes by much more than Ldisc/Lhot

as the fraction of seed photons intercepted by the hot flow drops as rt increases.

The seed photons from the disc which illuminate the hot flow are integrated over

the entire disc, but both the disc luminosity and the fraction which are inter-

cepted by the flow will peak at rt. Hence Lseed,disc ≈ Ldisc(rh/rt) arcsin(rh/rt) ≈
ṁ
rt

(rh/rt)
2 ∝ r−5

t ∝ ṁ2.5. Thus Lseed,disc/Lhot ∝ ṁ2.5/ṁ2 ∝ ṁ1/2 ∝ r−1
t . Thus

while Ldisc/Lhot increases by a factor 5 as ṁ decreases, Lseed,disc/Lhot decreases by a

factor 5 (see red line in Fig.4.3a). If this were the only source of seed photons, the

spectrum should harden substantially. However, there are also seed photons from

the cyclo-synchrotron emission. These have Lseed,cyc ∝ nν2
csa ∝ n(Bθ2

e)
2 ∝ ṁ2θ4

e ,

so Lseed,cyc/Lhot ∝ θ4
e . This increases as ṁ decreases, as θe increases as accretion

rate drops (see below). The green line on Fig.4.3a shows the internally generated

cyclo-synchrotron emission starts to dominate over seed photons from the disc at

rt > 60 (equivalently ṁ ≤ 10−2). Thus the total Lseed/Lhot reaches a minimum at

this point, and then starts to increase. This change in dominant seed photons can

also be seen in Fig.4.2 as the Compton spectrum extends to lower energies reflecting

the lower seed photon energy of the cyclo-synchrotron photons.

The Comptonisation spectral slope is set by Lseed/Lhot, so this also shows a

minimum corresponding to the minimum Lseed/Lhot. Fig.4.3b shows the resulting 2–

10 keV power law index and 2–200 keV bolometric luminosity, L2−200. Our minimum

in photon index occurs at 2 − 3 × 10−3LEdd, a factor 2–3 below that shown by the

data in S11 (Fig.4.1). Given the simple assumptions made about the structure of the

flow, this is probably not significant. In particular, changing the efficiency of the hot

flow from a simple ∝ ṁ to the more complex behaviour calculated by Xie & Yuan

(2012) specifically for an ADAF model would make this discrepancy smaller. Thus

the model is able to quantitatively describe a key observation of the LHS, namely

that the X-ray spectrum hardens with decreasing ṁ and then softens again by the

change in seed photons from the disc to internally generated cyclo-synchrotron. This

softening of the Comptonised emission can be seen by eye in the spectra of Fig.4.2

by comparing the slope of the tail at highest and lowest luminosity.



4.2. The Fiducial Truncated Disc/Hot Inner Flow Model 88

Qiao & Liu (2013) find a similar trend in photon index using a full ADAF calcu-

lation. However their disc-corona geometry is rather different from that considered

here. They focus on the residual inner disc which can remain after considering ther-

mal conduction from the hot flow (Liu et al., 2006; Liu et al., 2011). At the highest

mass accretion rates, the disc extends all the way down to the innermost stable

circular orbit. Then as accretion rate drops a gap opens up between the inner and

outer disc at ∼ 200Rg, and this gap extends inwards and outwards as ṁ decreases

until the entire inner disc evaporates. Thus their drop in seed photons comes from

a decreasing outer extent of the inner disc, whereas in our model it comes from the

increasing inner radius of the outer disc. Nonetheless, both models have a drop in

seed photons with mass accretion rate, so the spectra harden, and then both models

show the characteristic minimum as self-generated cyclo-synchrotron photons take

over as the dominant seed photons in the hot flow.

Fig.4.3c shows the resulting electron temperature, set from the balance of heat-

ing and cooling. The heating rate is ∝ ṁ2, and cooling is predominantly Compton

cooling so is ∝ 4θeτLseed. At high ṁ, the seed photons are from the disc so the

cooling rate is ∝ 4θeτ
ṁ
rt

( rh
rt

)2. Hence θ ∝ ṁ−3/2, quite close to the observed depen-

dence. Conversely, when seed photons from cyclo-synchrotron cooling dominate, the

Compton cooling rate is ∝ 4θeτnν
2
csa, where νcsa ∝ Bθ2

e so θe ∝ ṁ−0.2. The strong

increase in seed photons with increasing temperature leads to increasing cooling with

decreasing mass accretion rate, which counteracts much of the decrease in cooling

from the decrease in optical depth. Thus the electron temperature increases much

more slowly as the mass accretion rate decreases. Again this can be seen in the spec-

tra of Fig.4.2, where the electron temperature (marked by the high energy rollover of

the tail) first increases markedly with decreasing mass accretion rate, then stabilises.

This changing temperature dependence on accretion rate is a testable prediction of

the model. Current observations already show that the brightest LHS spectra do

indeed show the predicted decrease in temperature with increasing ṁ (Motta et al.,

2009; Torii et al., 2011), but future observations with the more sensitive Soft Gamma

Ray detector (60–600 keV bandpass) on ASTRO-H (Takahashi et al., 2012) will be

able to constrain the temperature down to much lower ṁ.
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The other obvious change in the Comptonised emission is that it is progressively

less well described by a power law as ṁ decreases and τ � 1. At such low optical

depths the individual scattering orders become visible, giving a more complex spec-

tral shape. Data are rarely fit with such low optical depths, as X-ray observations

do not show the strong first Compton peak, which would be clearly visible in the

X-ray regime if the seed photons were provided by a disc. From our model it is

clear the dominant source of seed photons at these mass accretion rates is cyclo-

synchrotron emission. This brings the first peak out of the X-ray regime, leaving

the X-ray spectrum to be dominated by higher order scattering with less extreme

curvature. Nevertheless, this is still not visible in X-ray spectra from low L/LEdd

flows (e.g. Corbel et al., 2006). We suggest the reason for this is that our model

assumes that the electrons in the hot flow completely thermalise. An initially non-

thermal acceleration process will probably thermalise via self-absorption of its own

cyclo-synchrotron radiation in a bright LHS (Malzac & Belmont, 2009; Poutanen

& Vurm, 2009). However, the thermalisation timescale increases as the source lu-

minosity drops, so the electron distribution retains more of its initially non-thermal

character, giving a non-thermal power law Compton spectrum (e.g. Veledina et al.,

2011).

4.3 Fiducial Conical Jet

The radio jet is an important part of the energy budget of the black hole accretion

flow, with kinetic energy comparable to the hard X-ray luminosity at ṁc (e.g. Cyg

X-1: Gallo et al., 2005; Russell et al., 2007; Malzac et al., 2009). Hence we take the

jet LKE,max = ṁcLEdd = 1.3× 1038 erg s−1.

We add a standard conical jet model onto our accretion flow (e.g. Blandford &

Königl, 1979; hereafter BK79; Merloni et al., 2003; Falcke et al., 2004), assuming

that some acceleration process operates continuously down the jet, so that a small

fraction of the electrons in the jet form a relativistic particle distribution. The

electrons radiate via synchrotron to produce a broad band spectrum from radio to

X-rays. If these radiative losses are high then this will affect the self-similar jet
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structure. Hence we limit the radiative luminosity to 10% of the kinetic luminosity

of the jet i.e. we make a maximally radiatively efficient, self-similar jet.

Parameters for a standard conical jet include the distance from the black hole

at which the material is accelerated, Z0 (the jet base). We make the standard

assumption that the energy is transported by Poynting flux from rh in the hot

flow, where the jet is presumably launched, to z0 without any radiative losses. The

self-similar behaviour then extends out from Z0 to a distance of Zmax = 106Z0,

where Z = zRg is distance along the jet. Distance perpendicular to the jet is

Rj = ρRg = φZ, where φ is constant for a conical jet.

We use observations to set the bulk Lorentz factor Γ = 1.2 and opening angle

φ = 0.1 (e.g. Gallo et al., 2005). We assume that these stay constant with ṁ.

We transform all specific luminosities, Lν , from jet frame to observer frame by

multiplying by δ3 = (Γ−√Γ2 − 1 cosψ)−1, assuming a mean inclination angle ψ =

60◦, and boost all frequencies by δ.

In such a geometry, the magnetic field energy density UB(z) ∝ z−2 (BK79). Tur-

bulence in the field probably results in scaling between the relativistic particle and

magnetic pressures, so Urel(z) = mec
2
∫ γmax

1
N(z, γ)γdγ = frelUB(z) where N(z, γ)

is the electron distribution at each point z of the jet. We make the standard assump-

tions that N(z, γ) = K(z)γ−p with p = 2.4 between γmin = 1 and γmax = 105. Hence

the optically thin synchrotron emission has energy index α = (p− 1)/2 = 0.7, i.e. it

rises in νfν with energy output peaking at the highest frequency νmax = 4/3γ2
maxνB.

The power law synchrotron emission becomes optically thick to self-absorption

below νssa ∝ K2/7B5/7R
2/7
j ∝ (z/z0)−1 (Ghisellini et al., 1985), i.e. decreases with

larger distance along the jet. The flux at this point is therefore:

Lsync(νssa) ∝ (z/z0)−1(νssa/νB)−(p−1)/2dZ ∝ (z/z0)−1dZ ∝ d logZ (4.3.1)

Thus the self-absorbed spectra from each part of the jet sum together to produce the

characteristic ‘flat spectrum’ (i.e. energy index α = 0: BK79) at low frequencies.

We do not include the self-consistent inverse Compton emission from the jet,
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since this contributes only at higher energies (e.g. Zdziarski et al., 2012) and the

baseline model we are testing is one where the X-rays are produced by synchrotron

from the jet.

4.3.1 Jet at ṁc

We anchor the jet at ṁc = 0.1 using observational constraints. The observed break

from optically thick to optically thin synchrotron in a bright LHS from GX 339–4

is νssa,0 ∼ 1013.5 Hz, and the 10 GHz radio luminosity from the sum of self-absorbed

jet components is six orders of magnitude below the X-ray emission (Gandhi et al.,

2011), i.e. νLν ∼ 1031 erg s−1 at 10 GHz. This sets B(z0) ∼ 3.5×104 G (i.e. K(z0) =

2.4× 1012 cm−3 for frel = 0.1) and z0 ∼ 5300. This gives a total radiated luminosity

of 10% of the kinetic jet power, as described above for a maximal radiatively efficient

jet.

We note that in these standard conical jets the fraction of radiative power to

kinetic power is not constant down the jet, as the radiation depends on both mag-

netic and electron energy density so is ∝ (z/z0)−4dV , while the jet kinetic energy is

simply ∝ (z/z0)−2dV .

4.3.2 Jet Scaling with Mass Accretion Rate – Transition to

a Jet Dominated State?

We then assume that the jet kinetic power ∝ ṁ and that all energy densities scale

as ṁ/ṁc (Heinz & Sunyaev, 2003), so that B(z, ṁ) = B0(z0, ṁc)(z/z0)−1(ṁ/ṁc)
1/2

and K(z, ṁ) = K0(z0, ṁc)(z/z0)−2(ṁ/ṁc). Fig.4.4a shows a sequence of spectra for

decreasing ṁ using this coupled accretion flow-jet model. Our model reproduces the

LR ∝ L0.7
X radio–X-ray correlation, as shown in Fig.4.4b. The X-rays come from a

radiatively inefficient accretion flow and are therefore proportional to ṁ2. The radio

is from the optically thick jet, where it has a flat spectrum, so LR ∝ B1.2
0 K0.8

0 ∝ ṁ1.4

for any model where the magnetic and relativistic particle energy densities scale with

ṁ, hence LR ∝ L0.7
X for a radiatively inefficient X-ray flow (e.g. Heinz & Sunyaev,

2003; Merloni et al., 2003). The model slightly deviates from this relation at low ṁ,
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Figure 4.4: a). Model SEDs, including synchrotron jet emission (dotted line) for increas-
ing truncation radius: 20Rg (black), 35Rg (blue), 50Rg (green), 70Rg (red) and 100Rg
(magenta). b). LR ∝ L0.7

X radio–X-ray correlation (black line), together with correlation
from coupled accretion flow/jet model (solid red line). Dashed red line shows radio–X-ray
correlation using L20−100 keV X-ray luminosity instead of L3−9 keV. c). X-ray luminosity
as a function of mass accretion rate, where ṁ = Ṁ/ṀE , for X-rays from the radiatively
inefficient accretion flow (solid red line) and X-rays from the jet (dotted blue line).
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because of the spectral curvature in our model at low ṁ which changes the scaling

over a small bandpass (L3−9kev). The dashed line in Fig.4.4b shows that a wider

bandpass recovers the relation even down to the lowest luminosities. As discussed in

Section 2.1, this detailed issue can probably be circumvented by a proper treatment

of the self-consistent electron distribution in the hot flow (as in Veledina et al.,

2011).

The jet emission does not ever dominate the total hard X-ray emission, but

remains an approximately constant factor below the hot flow (Fig.4.4c). This is

because the optically thin synchrotron luminosity LX,jet ∝ K0UB,0 ∝ ṁ2 so it also

follows a radiatively inefficient scaling. This is in contrast to the jet kinetic lumi-

nosity, which does scale as ṁ. Thus while the kinetic luminosity of the jet can easily

dominate the radiative energy of the flow, the radiated energy of the jet drops as fast

as that from the flow. Thus there is no transition in the X-ray spectrum from being

dominated by the radiatively inefficient hot flow to being dominated by the syn-

chrotron emission of a conical, self-similar jet (see also Merloni et al., 2003; Falcke

et al., 2004). There are instances in the literature where there is a flow-jet transition

in the X-ray flux, but these use models where the flow is radiatively efficient (no

advection: Fender et al., 2003) and/or have a jet kinetic power which does not scale

as ṁ (Yuan & Cui, 2005).

4.3.3 Jet Scaling with Electron Cooling

The discussion above assumes that the energy density in relativistic particles scales

as the energy density in the jet, i.e.
∫
N(γ)γdγ ∝ ṁ/M (Heinz & Sunyaev, 2003).

However, a better approach is to say that it is the injected electron distribution,

Q(γ) = Q0q(γ), which scales, and then cools into a steady state distribution N(γ) =

Kn(γ) (e.g. for Blazar jets: Ghisellini et al., 2010). In this case, the injected

distribution is normalised to the available power (i.e. Q0 ∝ ṁ), so that K now scales

as K ∝ Q0/Useed. For synchrotron cooling, Useed = UB ∝ ṁ giving K constant with

accretion rate. Hence LX,jet ∝ K0UB,0 ∝ ṁ, such that it is possible for the jet

X-rays to overtake the X-ray luminosity from the flow as accretion rate decreases.

However, LR ∝ B1.2
0 K0.8

0 , so the radio luminosity no longer scales as LR ∝ ṁ1.4 but
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Type of Jet LR LX,jet LX,flow Dominant Source of X-ray Emission αflow αjet
(LR ∝ LαX,flow) (LR ∝ LαX,jet)

(1) (2) (3) (4) (5) (6) (7)
Standard ṁ1.4 ṁ2 ṁ2 Either Hot Flow or Jet 0.7 0.7
Cooling ṁ0.6 ṁ ṁ2 Hot Flow with a transition to Jet X-rays as ṁ decreases 0.3 0.6

Table 4.1: Scalings with accretion rate for a standard self-similar conical synchrotron
jet, and the same synchrotron jet including cooling. (2) Dependence of radio luminosity
on Eddington scaled accretion rate. (3) Dependence of jet X-ray luminosity on accretion
rate. (4) Dependence of flow X-ray luminosity on accretion rate, assuming a radiatively
inefficient hot flow. (5) Dominant source of X-ray emission as a function of accretion
rate. (6) Index of the radio–X-ray correlation for X-rays from the flow. (7) Index of the
radio–X-ray correlation for X-rays from the jet.

scales as LR ∝ ṁ0.6 (Table 4.1). When the X-rays come from the jet, this gives

LR ∝ L0.6
X,jet, which is not inconsistent with the data. But for higher accretion rates,

when the X-rays come from the flow (and we know LX,flow must be proportional to

ṁβ where β > 1 for a transition to occur at all), this becomes LR ∝ L0.3
X , which

does not match the observed correlation. The optically thick synchrotron from the

jet must still drop as ṁ1.4 to make the observed LR−LX relation when the hot flow

dominates.

4.3.4 Composite Jet with Electron Cooling Break

Since energetic electrons cool faster, the electron distribution is expected to be com-

posite, with the electron distribution above some break energy, γcool, being domi-

nated by cooling, while below this energy it reflects instead the injected electron

distribution (e.g. Markoff et al., 2005; Yuan et al., 2005; Zdziarski et al., 2012).

The cooling break energy ∝ 1/(UBZ) ∝ ṁ−1 (Zdziarski et al., 2012, equation 36),

so does not depend on mass but increases linearly with decreasing mass accretion

rate. For our parameters, the cooling break is γcool ∼ 1.3 for ṁ = ṁc, increas-

ing to γcool ∼ 26 for our lowest ṁ. Even the highest γcool is mostly below the

synchrotron self-absorption break, so makes very little difference in the spectrum

(see e.g. Zdziarski et al., 2012 Fig. 5a) or in the predicted X-ray scaling from the

completely cooling dominated jet described above.
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4.3.5 Arbitrary Jet Scaling

It is possible to contrive situations for a synchrotron jet where the radio scales as ṁ1.4

but the X-rays scale as ṁ (e.g. by allowing z0 to change with accretion rate). But

it is clear any transition from a flow where LX ∝ ṁ2 to this jet, where LX ∝ ṁ, will

cause a steepening of the observed LR−LX relation (Yuan & Cui, 2005). Changing

the X-ray behaviour with ṁ, without a simultaneous change in the behaviour of

the optically thick radio emission, necessarily changes the LR − LX correlation in a

way which is not observed (Corbel et al., 2013). Since we do not observe a change

in the radio–X-ray correlation down to quiescence in BHBs (e.g Corbel et al., 2013

and references therein), we know there can be no transition in the dominant X-ray

production mechanism down to these luminosities. Whatever dominates the X-rays

in the brightest LHS spectra, at the top of the correlation, must dominate at the

bottom. This rules out all plausible models in which the X-rays switch from being

dominated by the flow to being dominated by the jet.

We note that a break has been observed in the radio–X-ray correlation in active

galactic nuclei (AGN) at very low accretion rates (ṁ ∼ 10−6, Yuan et al., 2009),

but crucially the observed minimum in photon index occurs where the correlation

is unbroken, implying that jet emission taking over cannot be the cause.

4.3.6 Jet Dominated Models

Since a switch from flow dominated to jet dominated X-ray flux is ruled out by the

radio–X-ray correlation, the final possibility is that the X-rays are always dominated

by the jet (Falcke et al., 2004). However our fiducial jet model is already very efficient

at producing radiation. To make the jet dominate at ṁc would require that almost

all of the jet kinetic energy was transformed to radiation, which seems unlikely.

It would also impact on our assumptions that adiabatic and radiative losses are

negligible, and leaves unanswered the question of what causes the change in X-ray

behaviour (hardening then softening of the spectral index) as ṁ decreases. Jet

dominated models are also unable to fit the rollover at high energies seen in the

bright LHS (ṁ ∼ ṁc: Ibragimov et al., 2005; Torii et al., 2011). More spectral
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and energetic constraints are discussed in Zdziarski et al. (2003) and Malzac et al.

(2009).

4.4 Conclusions

The observed change in X-ray spectral index as ṁ decreases in the LHS (first harden-

ing then softening) can be quantitatively explained by a truncated disc/radiatively

inefficient hot inner flow. Seed photons from the disc drop as the disc recedes with

decreasing ṁ so that self-generated cyclo-synchrotron seed photons in the flow be-

come dominant in Compton cooling. This model can also produce the observed

radio–X-ray correlation with the addition of a standard, conical self-similar jet.

These standard jets are as radiatively inefficient as the hot flow, so there is no

transition from the X-rays being dominated by the flow to being dominated by the

jet, which was the alternative explanation for the X-ray spectral behaviour (Russell

et al., 2010, S11). Including the effects of cooling allows the jet X-rays to drop more

slowly with accretion rate and hence overtake the X-rays from the hot flow, however

such a transition would also necessarily distort the radio–X-ray correlation in a way

which is not observed.

Thus we show that the truncated disc/radiatively inefficient hot flow/standard

conical jet model can quantitatively explain the broad band spectral evolution of

BHBs in the LHS, with the X-rays always being dominated by the flow, and the

radio by the jet. However, at low luminosities, the optical depth in the hot flow

is rather small, so the X-ray spectra are no longer a power law and the individual

Compton scattering orders can clearly be seen. Yet the observed BHB spectra at

these low mass accretion rates (quiescence) are well described by a power law (e.g.

Gallo et al., 2006). This discrepancy is even more evident in the low mass accretion

rate AGN (e.g Yu et al., 2011), which has again led to models where the X-rays

are dominated by the jet. Since these are inconsistent with the observed radio–X-

ray correlation, we suggest instead that this points to a more complex flow, where

the electron acceleration process produces an intrinsically non-thermal distribution.

Thermalisation via cyclo-synchrotron emission and absorption produces the domi-
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nant thermal electron population of the bright LHS, while the dramatic increase in

seed photons from the disc in the high/soft state means that the power law distribu-

tion is seen (Malzac & Belmont, 2009; Vurm & Poutanen, 2009). We suggest at very

low accretion rates the cooling is so inefficient that thermalisation does not happen

and the electron distribution remains non-thermal. A non-thermal electron distri-

bution will emit a power law spectrum, as observed. Hybrid thermal/non-thermal

models, especially combined with a multi-zone approach (Veledina et al., 2013), hold

out the possibility to understand the broad band spectral variability both on long

timescales, with changing accretion rate, and on short timescales, to understand

how fluctuations in the flow can make the observed IR/optical/X-ray correlations

(Kanbach et al., 2001; Malzac et al., 2004; Gandhi et al., 2008).



Chapter 5

What Powers the Most

Relativistic Jets? I. BL Lacs

5.1 Introduction

In this chapter we focus on supermassive black holes in the same accretion regime

as low/hard state black hole binaries, whose X-ray spectra definitely are dominated

by jet emission.

Relativistic jets are the most dramatic consequence of accretion onto stellar mass

black hole binaries (BHBs) and supermassive black holes (SMBHs). Blazars are

extreme examples of this; they are a class of Active Galactic Nuclei (AGN) where

the jet is viewed very close to the line of sight so its emission is maximally boosted

by the relativistic bulk motion and can dominate the spectrum of the AGN from the

lowest radio energies up to TeV. However, despite years of study, the fundamental

issues of powering and launching these jets are not understood. There is general

agreement only that it requires magnetic fields, but whether these can be generated

solely from the accretion flow or whether the jets also tap the spin energy of the

black hole (Blandford & Znajek, 1977) is still an open question. It is also difficult

to test this observationally as neither black hole spin nor total jet power are easy

to measure, leading to divergent views, e.g. in BHBs compare Russell et al. (2013)

with Narayan & McClintock (2012) and in SMBHs compare Sikora et al. (2007)

with Broderick & Fender (2011).

98
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By contrast, the radiation emitted from the jet is fairly well understood, with

spectra separating blazars into two types: BL Lacs and Flat Spectrum Radio

Quasars (FSRQs). BL Lac spectra are typically completely dominated by jet emis-

sion, showing a double humped synchrotron self-Compton (SSC) spectrum. The

FSRQs are more complex, showing clear signatures of a ‘normal’ AGN disc and

broad line region (BLR), in contrast to BL Lac spectra which lack both a disc and

broad lines. The presence of the disc and BLR in FSRQs means that there is an ad-

ditional source of seed photons for cooling of relativistic particles in the jet, so their

jet emission includes both SSC and external-Compton (EC) components, making

their Compton component more luminous (Dermer et al., 1992; Sikora et al., 1994).

Thus the nature of the accretion flow itself is different in BL Lacs and FSRQs.

This is linked to a clear distinction in Eddington ratio between BL Lacs and FSRQs,

with the BL Lacs all consistent with ṁ = Ṁ/ṀEdd < 0.01 (where ηṀEddc
2 = LEdd

and efficiency η depends on black hole spin), while the FSRQs have ṁ > 0.01 (see e.g.

Ghisellini et al., 2010, hereafter G10). Thus the BL Lacs have low accretion rates

and hot, geometrically thick, radiatively inefficient accretion flows, while FSRQs

accrete at higher rates and have standard disks (see e.g. Ghisellini & Tavecchio,

2008b; G10; Ghisellini et al., 2011, Best & Heckman, 2012).

Since all BL Lacs are associated with a low ṁ accretion flow, we test here the

hypothesis that all low accretion rate flows can launch a BL Lac type jet whose

properties are determined simply by the black hole mass and mass accretion rate.

We use the simplest possible scalings for how the jet (emission region size, magnetic

field and injected power) scales with these parameters (Heinz & Sunyaev, 2003;

Heinz, 2004), anchoring our scalings onto the fits to individual BL Lac objects of

G10, and use cosmological simulations to predict the number densities of black holes

with ṁ < 0.01, assuming that each of these will produce an appropriately scaled,

randomly orientated, BL Lac type jet. In this way, we can predict how many BL

Lacs should be detected by the Fermi Large Area Telescope and compare our results

with observations, so giving some statistical constraints on what conditions may be

required to power highly relativistic BL Lac jets.
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5.2 Synchrotron Self-Compton Jets

We adopt a single zone SSC model of the type used by Ghisellini & Tavecchio (2009),

which self-consistently determines the electron distribution from cooling. We briefly

summarise our model here, with full details in the Appendix.

We assume a spherical emission region of radius Rdiss. We neglect the contribu-

tion from regions further out along the jet, as these only make a difference to the

low energy (predominantly radio) emission. We assume material in the jet moves

at a constant bulk Lorentz factor (Γ), and that a fraction of the resulting jet power

is used to accelerate electrons in the emission region. The power injected into rel-

ativistic electrons is then Prel = 4/3πR3
diss

∫
γmec

2Q(γ)dγ, where the accelerated

electron distribution is a broken power law of the form:

Q(γ) = Q0

(
γ

γb

)−n1

(1 + γ/γb)
n1−n2 for γmin < γ < γmax (5.2.1)

These electrons cool by emitting self-absorbed synchrotron and synchrotron self-

Compton radiation, so the seed photon energy density Useed = UB + g(γ)Usync and

includes both the magnetic energy density (UB = B2/8π) and the fraction g(γ) of the

energy density of synchrotron seed photons (Usync) which can be Compton scattered

by electrons of energy γ within the Klein-Nishina limit. This gives rise to a steady

state electron distribution, N(γ) = −γ̇−1
∫ γmax
γ

Q(γ′)dγ′, where the rate at which

an electron loses energy γ̇mec
2 = 4/3γ2σT cUseed. However, this assumes that the

electrons can cool within a light crossing time, but the cooling timescale tcool = γ/γ̇

itself depends on γ, with high energy electrons cooling fastest. We calculate the

Lorentz factor that can just cool in a light crossing time of the region, γcool, and

join smoothly onto the accelerated electron distribution below this. The full self-

consistent electron distribution can be characterised by N(γ) = Kn(γ), where K

is the number density of electrons at γ = 1 and n(γ) incorporates all the spectral

shape. We calculate the resulting (self-absorbed) synchrotron and self-Compton

emission using the delta function approximation, as this is much faster than using

the full kernel but is accurate enough for our statistical analysis (Dermer & Menon,

2009).
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This jet frame emission is boosted by the bulk motion of the jet, with the amount

of boosting depending on both Γ and the orientation of the jet. The emission is then

cosmologically redshifted and attenuated due to pair production on the extragalactic

infrared background light (though this is generally small for the Fermi bandpass) to

produce the observed flux.

The parameters of our model are therefore:

• Physical parameters of the jet: Γ and radius of emission region Rdiss.

• The magnetic field of the emission region and power injected into relativistic

electrons (B and Prel).

• Parameters of the injected electron distribution: γmin, γb, γmax, n1 and n2.

We adopt the cosmology used in the Millennium simulations: h = 0.72, Ωm =

0.25, Ωvac = 0.75 (Springel et al., 2005; Fanidakis et al., 2011).

5.3 Scaling Jets

We assume that the acceleration mechanism is the same for all BL Lacs, giving

the same injected electron distribution, regardless of mass and accretion rate. We

also assume all jets are produced with the same Γ. This leaves three remaining

parameters: Rdiss, B and Prel.

We scale Rdiss ∝M , since all size-scales should scale with the mass of the black

hole (Heinz & Sunyaev, 2003). We assume the jet power is a constant fraction of

the total accretion power, Pj ∝ ṁM . This assumption is valid whether the jet is

powered by the accretion flow or the spin energy of the black hole, since extraction

of black hole spin energy relies on magnetic fields generated in the accretion flow,

which will be affected by accretion rate. A constant fraction of the total jet power is

then injected into relativistic particles and magnetic fields. Hence Prel ∝ Pj ∝ ṁM .

Energy density in the jet frame is related to power in the rest frame via P =

πR2
dissΓcU , so PB ∝ R2

dissUB ∝ ṁM , hence B ∝ U
1/2
B ∝ (ṁ/M)1/2. Therefore all

energy densities should scale as UB ∝ Urel ∝ (ṁ/M)1/2.
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We anchor this with parameters from the fit to the classic low peaked BL Lac

(LBL) object, 1749+096 from G10, which is relatively near to the top of the BL Lac

accretion rate range. This gives M0 = 7×108M�, Rdiss,0 = 172×1015 cm, B0 = 1 G,

Prel,0 = 3.5× 1042 erg s−1, Γ = 15, γmin = 1, γb = 2× 103, γmax = 1× 105, n1 = 0.9,

n2 = 2.8, and we scale Rdiss, Prel and B as:

Rdiss = Rdiss,0
M

M0

(5.3.2)

Prel = Prel,0
ṁ

ṁ0

M

M0

(5.3.3)

B = B0

(
ṁ

ṁ0

M0

M

)1/2

(5.3.4)

We calculate the accretion rate of 1749+096 following the method of G10. As-

suming the jet is maximal (Pj = Ṁc2), we sum the power in magnetic fields, rela-

tivistic electrons and the bulk motion of cold protons to calculate Pj, giving:

ṁ0 =
Pjη

1.38× 1038(M/M�)
∼ 3.5× 10−3 (5.3.5)

for their value of η = 0.08. Fig.5.1 shows our model spectrum, together with the

model and data from G10. The two models differ slightly due to our use of the delta

function approximation to speed up calculation time. Nevertheless the two models

are in agreement within ∼ 0.3 dex, and crucially our model reproduces the correct

level of Fermi flux (red bow tie).

5.4 Transition from High Frequency Peaked to

Low Frequency Peaked BL Lacs with Accre-

tion Rate

We limit our model to a maximum accretion rate of ṁ = 10−2, since above this the

accretion flow is expected to make a transition to a radiatively efficient thin disc.

The strong UV and consequent broad line region emission provide additional seed
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Figure 5.1: Model spectrum using parameters for 1749+096 (z=0.322) from Ghisellini
et al. (2010) (solid black line). Dotted line shows their spectrum for the same parameters
and red points show their data.

photons, switching the main Fermi radiation process from SSC (BL Lacs) to EC

(FSRQs).

Fig.5.2a shows a sequence of spectra with Rdiss, Prel and B scaling as described

above for ṁ = 10−2 (black) – 10−4 (magenta) for constant mass. This shows the

systematic decrease in luminosity, coupled to a change in spectral shape from a

low synchrotron peak energy (optical: LBL) to a high synchrotron peak energy (X-

ray: HBL), as shown by Ghisellini & Tavecchio (2008b) and Ghisellini & Tavecchio

(2009).

We can compare the Fermi flux levels of our lower accretion rate spectra with

observed HBLs. The HBL 1959+650 (see Tavecchio et al., 2010 for a spectrum,

G10 for spectral fitting parameters) has a mass of 2 × 108M�, so only slightly

larger than the 108M� system shown in Fig.5.2a. 1959+650 has an injected Prel

of 7 × 1040 erg s−1 (G10), corresponding in our scalings to ṁ = 2.45 × 10−4. So it

should have a similar Fermi flux to the red spectrum of Fig.5.2a, which corresponds

to ṁ = 3× 10−4, M = 108M�. The observed log(νL(ν)) Fermi flux of 1959+650 at
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Figure 5.2: a). BL Lac model SEDs for fixed black hole mass and increasing accretion
rate (ṁ = 10−4 (magenta), 3×10−4 (red), 10−3 (green), 3×10−3 (blue) and 10−2 (black),
MBH = 108M�). b). Corresponding steady state electron distributions. c). Fermi flux
as a function of accretion rate, using mass and distance of model spectrum.
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1023 Hz is 43.5 Hz erg s−1, which is consistent with our red spectrum.

The changing shape of the emitted spectrum with accretion rate is due to the

decrease in seed photons for electron cooling at lower ṁ, as shown explicitly by

the corresponding self-consistent electron distributions in Fig.5.2b. The Lorentz

factor of electrons which can cool in a light crossing time is γcool ∝ 1/(RdissUseed) ∝
(1/M)(M/ṁ) ∝ 1/ṁ. The lowest mass accretion rate (ṁ = 10−4, magenta) shows

cooling only for the highest Lorentz factors, with γcool ∼ 104.5. Below this the shape

of the electron distribution is the same as the injected distribution, with a smooth

break at γb ∼ 103. As ṁ increases, the sharp break at γcool moves to lower Lorentz

factors. For the black electron distribution corresponding to ṁ = 10−2, γcool is

comparable to γb. This is clear from the black spectrum in Fig.5.2a, where the

spectral peak is now produced by the cooled electron distribution above γcool.

Increasing cooling, as a result of increasing accretion rate, therefore provides a

natural explanation for the existence of high frequency peaked (HBL) and low fre-

quency peaked (LBL) BL Lacs (Ghisellini & Tavecchio, 2008b; Ghisellini & Tavec-

chio, 2009). In the context of our model, HBLs correspond to black holes with very

low accretion rates. There is very little cooling and the bulk of the synchrotron

emission is produced by electrons with Lorentz factors close to γmax. Their electron

distributions most closely resemble the original injected distributions. LBLs corre-

spond to black holes with higher accretion rates, where cooling becomes increasingly

important and the bulk of the energy is produced by electrons close to γcool.

Since HBLs are at lower accretion rates they are intrinsically fainter and so

should be observed at lower redshifts than LBLs. This is indeed observed (Shaw

et al., 2013). Fermi sensitivity is also a strong function of spectral index, decreasing

with spectral hardness (Nolan et al., 2012). Since LBLs have softer spectra this

suggests Fermi will preferentially select LBLs over HBLs due to spectral shape as

well as flux.

Fig.5.2a also shows that as ṁ increases, the ratio of the Compton to syn-

chrotron luminosities changes. With our scalings, Lsync ∝ R3
dissUBK and Lcomp ∝

R3
dissUsyncK ∝ R3

diss(RdissUBK)K, i.e. Lsync/Lcomp ∝ 1/(RdissK), where K is the

normalisation of the steady state electron distribution. If there is complete cooling,
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i.e. γcool < γmin, then K ∝ Q0/Useed ∝ (ṁ/M2)(ṁ/M)−1 ∝ 1/M which is indepen-

dent of accretion rate. However the BL Lac spectra do not show complete cooling

(see Fig.5.2b). If there is no cooling, K ∼ RdissQ0/c ∝ ṁ/M . The BL Lac spectra

lie in this regime where the cooling is incomplete, hence Lsync/Lcomp ∝ 1/ṁ. This

can be seen in Fig.5.2b, where the normalisation of the electron distribution at γ = 1

increases with ṁ. The scaling is not exactly K ∝ ṁ, since there is an additional

dependence on ṁ introduced by γcool decreasing through the intermediate regime.

Fig.5.2c shows how the flux in the Fermi band drops with accretion rate. For

higher accretion rates, cooling is efficient, so Lcomp ∝ ṁ. For low accretion rates,

cooling is inefficient so Lcomp ∝ ṁ3.

However, a more detailed comparison of Fig.5.2a to the data in the ‘blazar se-

quence’ shows evidence that the Compton flux changes more slowly with decreasing

mass accretion rate due to an increase in the maximum Lorentz factor of the accel-

erated electron distribution (Ghisellini & Tavecchio, 2008b; Ghisellini & Tavecchio,

2009). Again, this can be a consequence of the different cooling environment, where

electrons are accelerated to a maximum energy which is set by a balance between

the acceleration timescale and the cooling timescale. Thus the accelerated electron

distribution may itself change with cooling, such that γb ∝ γmax ∝ 1/Useed. We will

consider such models later in the chapter.

5.5 BL Lac Visibility

The visibility of a BL Lac is strongly affected by viewing angle. Fig.5.3a shows how

sharply the observed luminosity decreases for our assumed Γ = 15 with increasing

viewing angle, where θ is measured in radians from the jet axis. Thus there is a

difference of 1012 between the observed flux from a face on jet compared to an edge

on jet.

The more distant the source, the more closely aligned to our line of sight the

jet must be in order to boost the observed flux to a visible level. We define a flux

limit of F100MeV−100GeV > 5 × 10−12 erg cm−2 s−1 from the Fermi 2-year catalogue

(Nolan et al., 2012), and show in Fig.5.3b the limiting redshift, zlimit, at which a
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Figure 5.3: a). Decrease in observed flux with increasing viewing angle, where θ is
measured in radians from the jet axis, for Γ = 15. b). Redshift limits for Fermi visible
BL Lacs as a function of black hole mass, for increasing viewing angle and ṁ = 10−2. c).
Redshift limits for Fermi visible BL Lacs as a function of accretion rate, for MBH = 107

(red), 108 (magenta), 109 (blue) and 1010M� (black) and θ = 0.



5.6. Predicted BL Lac Population from Cosmological Simulations 108

BL Lac at ṁ = 10−2 with different masses can be detected by Fermi at different

inclination angles. We include the effects of absorption from pair production on the

extragalactic IR background using the model of Kneiske & Dole (2010), though this

is negligible. Only the most massive black holes (∼ 1010M�) which are most closely

aligned to our line of sight can be seen out beyond z = 4. zlimit drops by a factor of

∼ 3 if the inclination angle is increased from 0 to the more statistically likely 1/Γ.

This represents a change of just ∼ 4◦ for Γ = 15 used in our calculations. For a

typical BL Lac mass of 109M� viewed at 1/Γ the maximum observable redshift is

z ∼ 1, increasing to 4 only for the most face on jets.

Fig.5.3c shows how the redshift limit drops as a function of accretion rate for

each mass (1010 (black), 109 (blue), 108 (magenta) and 107M� (red)) black hole

for θ = 0. If LBLs correspond to BL Lacs at ṁ ∼ 10−2 and HBLs at ṁ < 10−3

this shows how the redshift limits for the two populations should differ, with the

majority of HBLs being observed below z = 3. Shaw et al. (2013) find this to be

the case, with the distribution of LBLs extending to higher z, although they find

the means of both populations are well below z = 3.

5.6 Predicted BL Lac Population from Cosmolog-

ical Simulations

Cosmological simulations predict the number of supermassive black holes accreting

at different redshifts, together with their masses and accretion rates. These simula-

tions have been found to agree well with the observed number densities of broad line

and narrow line AGN in the local universe (Fanidakis et al., 2011; Fanidakis et al.,

2012). Combining our spectral code with the black hole data from these simulations

allows us to predict the number of AGN that should be detected as BL Lacs by

Fermi.

We combine our code with the black hole number densities predicted by the

Millennium Simulation (Springel et al., 2005; Fanidakis et al., 2011; Fanidakis et al.,

2012), binned as a function of both mass and mass accretion rate. We define a

luminosity density from the number density multiplied by the luminosity at that
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Figure 5.4: Predicted mass and accretion rate distribution of accreting black holes at
increasing redshift from Millennium simulation. Colours trace luminosity density, with
red showing the mass and accretion rates at which the maximum accretion luminosity is
emitted at each redshift.
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mass and mass accretion rate, i.e. L = ηṀc2 for the thin disc regime 10−2 < ṁ < 1,

joining smoothly onto a radiatively inefficient regime at lower ṁ where L ∝ ṁ2

(Narayan & Yi, 1995) and onto a super-Eddington flow at higher ṁ where L ∝
ln(1 + ṁ) (Shakura & Sunyaev, 1973). The luminosity density in each (z,M, ṁ)

bin therefore depends on the mass, accretion rate, spin (which sets η), the inferred

accretion regime and the number of black holes in that bin.

Fig.5.4 shows the evolution of the luminosity density of accretion power across

cosmic time showing the features described by Fanidakis et al. (2011) and Fanidakis

et al. (2012). At high redshift there is plenty of gas to fuel accretion. The black holes

accrete close to the Eddington limit and grow rapidly. Comparing the snapshots for

z ∼ 9 and z ∼ 5, the typical black hole mass producing the bulk of the accretion

luminosity increases from ∼ 106 to ∼ 108M�. As the black holes gradually run

out of gas, their accretion rates drop (compare z ∼ 2 and z ∼ 1). By redshift 2,

accretion rates are beginning to drop below ṁ = 10−2, into the regime at which BL

Lac type jets should be produced. This suggests no BL Lacs should be observed

much above z ∼ 2, not just because the flux becomes too faint, but because the

typical accretion rate is too high for the production of BL Lac jets.

We initially assume all black holes accreting inefficiently will produce a BL Lac

type jet. We can then calculate the number of AGN hosting a BL Lac type jet in

each (z,M, ṁ) bin by using the number densities of black holes in the radiatively

inefficient regime (ṁ < 10−2). If this number is less than 1 we use Poisson statistics

to randomly determine whether a black hole is present or not. Each black hole

in each (z,M, ṁ) bin is then assigned a random distance within this redshift bin

and random θobs, assuming cos θobs is distributed uniformly. We then calculate the

observed spectrum to determine whether or not the jet would be visible to Fermi.

Fig.5.5a shows the predicted redshift distribution of Fermi visible BL Lacs (black).

The predicted distribution peaks at z ∼ 0.5 and drops gradually to z ∼ 2. No BL

Lacs are observed above this point, not because they are not visible (see Fig.5.3b),

but because there simply are not enough SMBHs accreting below 10−2 in the cos-

mological simulations to produce SSC jets, due to the higher activity expected at

earlier times. The low redshift distribution of BL Lacs is a direct result of cosmic
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Figure 5.5: a). Predicted redshift distribution of Fermi visible BL Lacs, assuming black
holes of all spins accreting below ṁ = 10−2 produce a BL Lac type jet (black). Red
solid line shows observed redshift distribution of Fermi detected BL Lacs. Red dashed
line shows observed redshift distribution ×100. b). Predicted mass distribution of Fermi
visible BL Lacs. c). Predicted accretion rate distribution of Fermi visible BL Lacs.
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downsizing and the requirement of an ṁ < 10−2 to produce a SSC jet.

However, comparing this to observations shows a huge discrepancy (red solid

line from Shaw et al., 2013, which almost merges with the x-axis at this scale).

Our expected number of ∼ 100000 BL Lacs dramatically overpredicts the observed

number of Fermi detections (∼ 500). A clear illustration of the problem can be seen

from simply the number density of massive (8 < logM < 9) black hole accretion

flows with 10−3 < ṁ < 10−2 in the cosmological simulations in the redshift bin

centred around z ∼ 0.5 (Fanidakis et al., 2011). This number is 6.8 × 10−4 Mpc−3

and the volume of this bin, from 0.509 < z < 0.564 is ∼ 9 Gpc3 so this gives 6101659

objects which should host similar jets to 1749+096 (Fig.5.1), i.e. have Fermi flux

of 10−10.5(0.5/0.322)−2 ∼ 10−11 erg s−1 cm−2 if viewed at the same angle (roughly

1/Γ). The probability that we see the source within this angle is 1 − cos(1/Γ), so

the expected number of Fermi detections of these sources alone is ≈ 13554, similar

to the full calculation results. The large discrepancy clearly points to a fundamental

breakdown of one of the assumptions.

On a more subtle level, the shape of the redshift distribution for the Fermi

predictions is also mismatched to the observations. The red dashed line shows the

observed number of BL Lacs scaled by a factor of 100 so it can be compared to

the predicted distribution. We define redshift from Shaw et al. (2013) as either

spectroscopic redshift, spectroscopic lower limit, the mean of their redshifts derived

from host galaxy fitting, or their redshift upper limits, in that order of preference.

The dashed line shows this observed redshift distribution (×100). It is clear that

not only is the total predicted number wrong, but we are also over estimating the

proportion of BL Lacs in the range z = 0.5− 2.

The mass distribution and mass accretion rate distributions are as expected

(Fig.5.5b and c), with higher luminosity SSC flows (i.e. higher ṁM) being more

likely to be observed, so simple energetics selects the highest mass and mass accretion

rate objects, so the typical predicted mass of a Fermi visible BL Lac of ∼ 108.5 −
109M� is a combination of three factors:

1. Very few black holes accreting at ṁ < 10−2 above z = 2.
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2. Most black holes at z < 2 accreting with ṁ < 10−2 have M > 108.

3. Black holes with M > 109 are increasingly rare in the local universe so we are

less likely to observe one favourably orientated to our line of sight.

5.7 Another Factor Affecting Jet Scaling?

Our results predict ∼ 105 BL Lacs should have been detected in the Fermi 2-year

catalogue. In contrast, ∼ 500 objects in the 2nd Fermi LAT catalogue are classed as

BL Lacs. Even allowing for Galactic centre emission limiting sky coverage (|b| > 10◦

means that only 80% of the sky is included), this is still 3 orders of magnitude larger

than observed. Clearly jets do not simply scale with accretion power.

We assumed the injected electron distribution was independent of mass accretion

rate. This may not be the case. Ghisellini & Tavecchio (2009) approximately use

γmax ∝ γb ∝ 1/ṁ to fit their blazar sequence. Acceleration of electrons is affected

by the ambient photon field which depends on the amount of cooling and ultimately

on accretion rate. In the efficient cooling regime, Lsync ∝ Lcomp ∝ ṁM , making

γmax ∝ 1/ṁ not unreasonable. However, an increase of γmax, and γb in particular,

only serves to increase the Fermi band luminosity for lower ṁ systems, and increase

the discrepancy between the predictions and observations.

The discrepancy could instead be explained if every black hole accreting below

10−2 has the potential to produce a BL Lac type jet, but only does so 1/1000th of the

time. This seems unlikely, since Fanaroff Riley Type I (FRI) AGN, the misaligned

versions of BL Lacs (Padovani & Urry, 1990, Padovani & Urry, 1991, Urry et al.,

1991), show large scale extended radio jets. This suggests these jets are persistent,

analogous to the steady low/hard state jet seen in BHBs at low ṁ, not transient

events.

Another possibility is that the jet depends on magnetic flux being advected onto

the black hole from the extremely large scale hot halo gas around the galaxy. Sikora

& Begelman (2013) suggest that if there is magnetic flux in this gas, then it could

be dragged down close to the black hole by cold gas from a merging spiral galaxy.

However, this does not address the fundamental question as to where the magnetic
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flux in the halo gas comes from, and using cold gas from a spiral merger to drag

this field down to the black hole is unlikely to be applicable in the BL Lacs, as they

have low ongoing mass accretion rates.

The bulk Lorentz factor of the jet is the biggest factor affecting its visibility. We

rerun our calculations with a reduced Γ = 10 instead of 15 and find this roughly

halves the predicted number of BL Lacs, but still wildly overpredicts the observa-

tions.

We have assumed all jets are produced with the same value of bulk Lorentz

factor but this is clearly not the case — BHBs at low ṁ have Γ ∼ 1.2 (Fender et al.,

2004). The most obvious way to reduce the number of visible BL Lacs is to allow

a distribution of Γ. Yet there must be some physical parameter which controls the

jet acceleration. The acceleration region, where the magnetic (Poynting) flux of the

jet is converted to kinetic energy, is very close to the black hole, so it seems most

likely that this is set by the black hole itself, in which case black hole spin is the

only remaining plausible parameter. A potential explanation for the lower number

of observed BL Lacs is that if only black holes with the highest spin produce highly

relativistic jets, and high spin is rare.

The cosmological simulations include the growth of SMBH spin via accretion

processes and black hole-black hole coalescence following galaxy mergers (Volonteri

et al., 2005; Volonteri et al., 2007; Volonteri, 2012: Fanidakis et al., 2011; Fanidakis

et al., 2012). The mass accumulated onto the central SMBH in an accretion event

is tied in the simulation to a fixed fraction (0.5%) of the mass of gas in a star

formation episode in the host galaxy. If this mass is all accreted in a single event

(prolonged accretion) then this is sufficient to spin most black holes up to maximal

(Volonteri et al., 2005; Volonteri et al., 2007). However, the mass accreting onto the

central black hole in any single event may be limited by self-gravity. This splits the

accreting material up into multiple smaller events, each of which can be randomly

aligned since the star formation scale-height is large compared to the black hole

sphere of influence even in a disc galaxy (King et al., 2008). Such chaotic accretion

flow models result in predominantly low spin black holes (Volonteri et al., 2007:

King et al., 2008: Fanidakis et al., 2011; Fanidakis et al., 2012) and high spins are
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rare, as they are produced not via accretion but via black hole mergers (Fanidakis

et al., 2011; Fanidakis et al., 2012).

We use the spin distribution from the chaotic accretion flow model simulations,

and introduce a spin cut to our results, so that only black holes with spin greater

than acut ∼ 0.8 produce a BL Lac type jet. This reduces the predicted number of

Fermi visible BL Lacs to ∼ 900. Fig.5.6a shows the resulting redshift distribution

together with the observed distribution. Not only does this reduce the discrepancy

between predicted and observed total numbers, it also gives a better match to the

shape of the distribution. Limiting production of BL Lac type jets to black holes

with high spin causes the redshift distribution to peak slightly later and drop off

more sharply above z = 0.5. This is because high spins arise from black hole mergers.

Production of BL Lac jets is already limited to black holes accreting below 10−2, i.e.

M > 108M�. The black hole mergers which make the most massive black holes,

occur at the latest times.

Fig.5.6b and c show how this affects the predicted mass and accretion rate dis-

tributions of Fermi visible BL Lacs. The scaled down distributions including black

holes of all spins are shown by the dashed lines for comparison. Requiring high

spin increases the peak of the mass distribution to ∼ 108.5 − 109.5M�, because it

is the most massive black holes that are former by mergers and are consequently

more likely to have high spin. The peak of the accretion rate distribution is actually

slightly reduced. This is because the more massive black holes have lower accretion

rates; the spin cut has excluded lower mass black holes with lower spins which tend

to have slightly higher accretion rates.

The low spin, low accretion rate black holes, which generally have smaller masses

(107 − 108M�) correspond to the LINERs, which are not observed to have jets as

relativistic as those in BL Lacs. If they are low spin, as expected, and high spin is

required for a highly relativistic jet, then this naturally explains why LINERs are

observed to have weaker radio jets.
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Figure 5.6: a). Predicted redshift distribution of Fermi visible BL Lacs, assuming only
black holes with spins a > 0.8 produce a BL Lac type jet (blue). Red solid line shows
observed redshift distribution of Fermi detected BL Lacs. b). Predicted mass distribution
including only black holes with a > 0.8 (blue). Black dashed line shows predicted distri-
bution including all black holes ×0.01. c). Predicted accretion rate distribution including
only black holes with a > 0.8 (blue). Black dashed line shows predicted distribution
including all black holes ×0.01.
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5.8 Implications of Scaling Jet Power with Spin:

FRI Sources

The parent population of BL Lacs is probably the Fanaroff Riley Type I (FRI)

sources (e.g. the review by Urry & Padovani, 1995). These show ‘fluffy’ radio jets

whose surface brightness decreases with distance from the central source, contrasting

with the classic lobe and hotspot radio emission seen in the more powerful FRII

sources which are the parent population of the FSRQ (Padovani & Urry, 1992).

Thus the FRI sources should also correspond to high spin black holes, and indeed

are similarly powered by high mass SMBHs (Woo & Urry, 2002).

However, we might then expect some difference in jet radio emission between the

FRIs and lower mass LINERs as the cosmological simulations predict that the lower

mass SMBHs have lower spin (Fanidakis et al., 2011; Fanidakis et al., 2012). Sikora

et al. (2007) claim that this difference is indeed seen, with radio emission being ∼ 3

orders of magnitude higher in the FRIs.

However, some of this difference disappears when only core radio luminosity

(rather than core plus lobes) is used (Broderick & Fender, 2011). This is clearly

an issue as the extended radio emission also depends on environment. The black

holes in FRIs are more massive than those in LINERs, hence live in richer cluster

environments, with larger dark matter halos which trap more hot cluster gas. The jet

then emerges into a denser, higher pressure environment, which means that a much

larger fraction (potentially all) of the jet kinetic energy is converted to radiation

and/or heating of the cluster gas (B̂ırzan et al., 2004). Conversely, any jet from the

lower mass LINERs emerges into a poorer group environment, so adiabatic losses

can predominate and the extended radio emission is much smaller (e.g. Krause

et al., 2012).

Some of the remaining difference in core radio power is expected due to the

difference in mass (Broderick & Fender, 2011). However, even accounting for this

there is still a factor of ∼ 10 in mass corrected, core radio emission. The LINERs

lie on the Fundamental plane (Merloni et al., 2003; Falcke et al., 2004), i.e. have the

expected core radio emission for their black hole mass and mass accretion rate, so the
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FRIs are a factor 10 brighter in mass corrected, core radio emission than expected

from the same jet models which produce the low bulk Lorentz factor BHB and

LINER jets, consistent with the idea that the jet is intrinsically more powerful/has

higher Lorentz factor due to black hole spin.

It is difficult to predict the difference in core radio emission with black hole spin

in our models as synchrotron self-absorption means that the observed radio emission

does not arise in the same region as produces the Fermi flux. It may be produced

either at larger radii, perhaps where the jet has decelerated, or in a lower density,

lower bulk Lorentz factor layer surrounding the Γ = 15 spine of the jet. Either of

these could explain the lower Lorentz factor (Γ ∼ 2−10) of the radio jet observed in

FRIs (Chiaberge et al., 2000), though the spine-layer structure may additionally be

able to explain the very fast variability timescales seen in some BL Lacs (Ghisellini

& Tavecchio, 2008a).

5.9 Conclusions

We have taken a statistical approach to constrain the conditions necessary to produce

the highly relativistic jets seen in BL Lac objects. We combine SMBH number

densities from cosmological simulations, known to reproduce the optical luminosity

function of AGN, with spectral models of jet emission and simple jet scaling functions

which depend only on mass and accretion rate. The key assumption is that every

black hole accreting with ṁ < 10−2, i.e. in the radiatively inefficient accretion flow

regime, should produce a BL Lac type jet.

Our calculation of the expected number of BL Lacs detectable by Fermi over-

predicts the observations by three orders of magnitude. This clearly shows that our

fundamental assumptions are incorrect, and that the jet power and properties do not

scale simply with mass and mass accretion rate. The only other parameter which

a black hole can have is spin. We can reproduce the observed numbers of BL Lacs

if SMBHs grow predominantly via chaotic (randomly aligned) accretion episodes

and BL Lac type jets are restricted to black holes with spin a > 0.8. These are

rare as they form from black hole-black hole coalescence following a major merger
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event which is not then overwhelmed by further chaotic accretion, i.e. this requires

a gas poor major merger event and only the most massive galaxies, which host the

most massive black holes, are gas poor in the local Universe (Fanidakis et al., 2011;

Fanidakis et al., 2012).

A spin cut is in line with the longstanding speculation that these most relativistic

jets require high spin black holes (Maraschi et al., 2012), and also gives a good match

to the observed redshift distribution of BL Lacs which peaks at z = 0.5 and then

drops off sharply, with no objects above z ∼ 2. This is a consequence of three

factors:

1. BL Lac jets are restricted to black holes with ṁ < 10−2, and there are no

black holes accreting at ṁ < 10−2 above z ∼ 2.

2. Only the most massive black holes have high spin through mergers, which

happen at late times, causing the bulk of the population to fall below z = 1

3. These most massive objects are rare in the local universe causing the distri-

bution to decrease again below z = 0.5.

Since FRI sources are consistent with being the misaligned analogs of BL Lacs,

they should also have high spin. They are indeed offset from the Fundamental

Plane, i.e. have higher (mass corrected) core radio emission than the lower mass

and presumably lower spin LINERs (Broderick & Fender, 2011), however only by a

factor ∼ 10. This suggests the radio emission, which is not predominantly produced

from the same region as the Fermi flux, may not be as sensitive to the difference in

spin.



Chapter 6

What Powers the Most

Relativistic Jets? II. Flat

Spectrum Radio Quasars

Flat Spectrum Radio Quasars (FSRQs) are the high accretion rate counterparts of

BL Lacs (ṁ = Ṁ/ṀEdd > 0.01, where ηṀEddc
2 = LEdd). At high accretion rates the

accretion flow around the black hole takes the form of a radiatively efficient accretion

disc, which can often be seen dominating the optical–UV spectra of FSRQs, despite

the strongly boosted jet emission (Ghisellini et al., 2010, hereafter G10). The strong

UV disc emission illuminates material above the disc, which, at a particular radius

set by the gas density and illuminating flux, re-emits the radiation in the form of

broad emission lines (the ‘broad line region’, BLR). Both the direct accretion flow

emission and BLR emission (and reprocessed emission from the torus) provide a

source of external seed photons for FSRQ jets, in addition to the internal synchrotron

radiation which predominates in BL Lacs. Crucially the radius at which the broad

lines are produced is normally at a larger distance from the black hole than the

region of the jet where the high energy emission is produced (Ghisellini & Tavecchio,

2009). As a result the jet electrons moving with the relativistic bulk motion of the

jet see the stationary BLR seed photons strongly Doppler boosted. This enhances

the luminosity of the external-Compton (EC) emission, causing the Compton humps

of EC FSRQs to be much more luminous than those of synchrotron self-Compton

120
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(SSC) BL Lacs.

In this chapter we extend the SSC model of the previous chapter to include

external sources of seed photons and now use the number densities of black holes

accreting with ṁ > 0.01 to try to predict the observed population of Fermi detected

FSRQs. In addition, we test our assumed jet scalings using observations of gamma-

ray loud Narrow Line Seyfert 1s (γNLS1s), which should be lower mass versions of

FSRQs.

6.1 External-Compton Jets

We extend the SSC model of the previous chapter to include sources of external seed

photons, since these are important in the higher accretion rate FSRQs, which have

UV bright accretion discs. We include seed photons from the accretion disc and

X-ray corona, emission from the BLR and torus, and reflection of coronal X-rays off

the BLR.

We assume the distance of the BLR and infra-red (IR) torus (RBLR and RIR)

from the central black hole scales with the accretion disc luminosity as (Ghisellini

& Tavecchio, 2009):

RBLR = 1017(
Ld

1045 erg s−1
)1/2 cm (6.1.1)

RIR = 2.5× 1018(
Ld

1045 erg s−1
)1/2 cm (6.1.2)

And we calculate the external seed photon energy densities following the prescrip-

tions in Ghisellini & Tavecchio (2009) (full calculation details are given in the Ap-

pendix). The total seed photon energy density U ′seed = U ′B + g(γ)(U ′sync + U ′ex) and

now includes the magnetic energy density (U ′B = B2/8π) and the fraction g(γ) of

the energy density of synchrotron (U ′sync) and external (U ′ex) seed photons which can

be Compton upscattered by electrons of energy γ within the Klein-Nishina limit.

As before we assume a spherical emission region of radius Rdiss, where Rdiss is

related to the distance of the emission region from the black hole by Zdiss = φRdiss,
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φ is the half opening angle of the jet and we assume a conical jet. The electrons

are accelerated into an intial distribution (Q(γ)), and cool by emitting self-absorbed

synchrotron and synchrotron self-Compton radiation, and by upscattering seed pho-

tons from external sources of radiation, into the steady state distribution N(γ).

This jet frame emission is then boosted by the bulk motion of the jet, cosmologi-

cally redshifted and attenuated due to pair production on the extragalactic infra-red

background light (though this is generally small for the Fermi bandpass) to produce

the observed flux.

The parameters of our extended model are therefore:

• Parameters of the accretion flow: black hole mass and Eddington scaled ac-

cretion rate (M and ṁ), for calculating the density of external seed photons.

• Physical parameters of the jet: Γ, radius of emission region Rdiss and half

opening angle of the jet φ.

• The magnetic field of the emission region and power injected into relativistic

electrons (B and Prel).

• Parameters of the injected electron distribution: γmin, γb, γmax, n1 and n2.

We adopt the cosmology used in the Millennium simulations: h = 0.72, Ωm =

0.25, Ωvac = 0.75 (Springel et al., 2005; Fanidakis et al., 2011).

6.2 Standard Jet Scalings

As in the previous chapter, we assume that the acceleration mechanism is the same

for all FSRQs, giving the same injected electron distribution, regardless of mass and

accretion rate. We also assume all jets are produced with the same Γ and the same

half opening angle (which we fix to φ = 0.1). As before, this leaves three remaining

parameters: Rdiss, B and Prel.

We initially assume that FSRQs follow the same standard jet scalings that BL

Lacs appear to follow. Hence we scale Rdiss ∝ M , since all size-scales should scale

with the mass of the black hole (Heinz & Sunyaev, 2003), and assume the jet power



6.2. Standard Jet Scalings 123

is a constant fraction of the total accretion power, Pj ∝ ṁM . We again stress that

this assumption is valid whether the jet is powered by the accretion flow or the spin

energy of the black hole, since extraction of black hole spin energy relies on magnetic

fields generated in the accretion flow, which will be affected by accretion rate. A

constant fraction of the total jet power is then injected into relativistic particles and

magnetic fields, giving Prel ∝ ṁM and B ∝ (ṁ/M)1/2 (Gardner & Done, 2014b).

We choose the mean FSRQ parameters from G10 to scale from, which are the

logarithmic average values from their sample of 53 Fermi detected FSRQs. This gives

M0 = 1×109M�, ṁ = 0.1, Rdiss,0 = 1.89×1016 cm, B0 = 2.6 G, Prel,0 = 2×1043 erg

s−1, Γ = 13, γmin = 1, γb = 300, γmax = 3 × 103, n1 = 1, n2 = 2.7, and we scale

Rdiss, Prel and B as:

Rdiss = Rdiss,0
M

M0

(6.2.3)

Prel = Prel,0
ṁ

ṁ0

M

M0

(6.2.4)

B = B0

(
ṁ

ṁ0

M0

M

)1/2

(6.2.5)

The distance to the BLR and IR torus are both ∝ L
1/2
d . This implies RBLR

and RIR should also scale with the mass and accretion rate of the black hole, since

Ld ∝ ṁM . Hence RBLR ∝ RIR ∝ (ṁM)1/2.

6.2.1 Spectral Changes with Mass

Fig.6.1a shows a sequence of FSRQ spectra with increasing black hole mass. The

accretion rate is fixed to ṁ = 0.1 and Rdiss, B and Prel are scaled as described

above.

As black hole mass decreases, so does the size of the emission region, since Rdiss ∝
M . This can be seen in the increase in synchrotron self-absorption frequency, from

∼ 1010.5 (black spectrum) to ∼ 1011.5 Hz (magenta spectrum). The total luminosity

also decreases, since the power injected into relativistic electrons decreases with

decreasing mass (Prel ∝M).
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Figure 6.1: Spectral changes with mass using standard jet scalings. a). FSRQ model
SEDs for fixed accretion rate and increasing black hole mass (MBH = 106 (magenta), 107

(red), 108 (green), 109 (blue) and 1010M� (black), ṁ = 0.1). b). Corresponding seed
photon energy density spectra as seen in the jet frame. Solid lines show synchrotron seed
photons, dashed lines show accretion disc plus coronal seed photons, dot-dashed lines show
seed photons from the BLR plus coronal flux reflected by the BLR, and dotted lines show
seed photons from the torus. The seed photon energy density from the torus is the same
for all masses. The seed photon energy density from the BLR is the same for all masses
except 1010M�, where Zdiss > RBLR. c). Seed photon energy densities in the jet frame
as a function of black hole mass. Blue line shows U ′B, red line shows U ′sync, black lines
show energy densities of external seed photons: dashed line shows U ′d + U ′X , dot-dashed
line U ′BLR + U ′XBLR, dotted line U ′IR, and solid line shows total U ′ex.
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The relative strengths of the synchrotron and Compton humps also changes

with mass. The blue spectrum corresponds to the mean FSRQ model of G10,

with ṁ = 0.1, M = 109M�. It shows a strong Compton hump at 1022 Hz due

to Compton up-scattering of external seed photons, predominantly from the BLR.

The low energy synchrotron hump is roughly an order of magnitude less luminous

(∼ 1046 erg s−1). As the black hole mass drops from 109 (blue) - 106M� (magenta),

the relative luminosity of the Compton hump decreases until at the lowest masses

the two humps show comparable luminosity. The relative strength of the two humps

depends on the relative strength of the energy density in magnetic fields compared

to the energy density of external seed photons.

Fig.6.1b shows the spectral energy density of seed photons in the jet frame. As

mass drops so does the emission region size and hence its distance from the black

hole, since Zdiss = Rdiss/φ ∝ M . Smaller Rdiss and Zdiss increases the energy

density of accretion disc seed photons, despite the drop in Ld with M , showing

an increase of ∼ 3 orders of magnitude (blue dashed line to magenta dashed line).

However the dominant source of seed photons is U ′BLR and this stays constant, since

U ′BLR ∝ Ld/R
2
BLR ∝ Ld/(L

1/2
d )2 = const for Zdiss < RBLR (blue dot-dashed line). In

contrast the magnetic field, which determines the amount of synchrotron emission,

increases as black hole mass decreases, since B ∝ M−1/2. As a result U ′sync (solid

lines) increases by more than 4 orders of magnitude, becoming comparable to U ′BLR

at the lowest masses. As a result the Compton humps of the lowest mass spectra are

dominated by up-scattering of synchrotron radiation causing them to look more like

low accretion rate SSC BL Lacs than FSRQs, despite their higher accretion rates.

The lack of external seed photons means less efficient cooling in lower mass ob-

jects. For the 109M� spectrum (Fig.6.1a, blue line), the cooling is almost complete

with γcool = 7, where γcool is the minimum Lorentz factor of electrons that can cool

in one light crossing time. For the 106M� spectrum (magenta), γcool has increased

to 106, resulting in a clear spectral break at ∼ 1013.5 Hz in the synchrotron emis-

sion. The decreasing frequency of this spectral break tracks the decrease in γcool and

increase in cooling from 106 − 109M�.

Above 109M�, γcool increases again (Fig.6.1a, black spectrum, γcool = 39). This
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is because for a 1010M� black hole the emission region has gone beyond RBLR,

since Zdiss ∝ M while RBLR (and RIR) ∝ M1/2. This causes U ′BLR to drop dra-

matically (black dot-dashed line in Fig.6.1c), reducing the amount of cooling. The

next strongest source of seed photons is the torus (Fig.6.1b, black dotted line). U ′IR

is constant for all masses since like U ′BLR, U ′IR ∝ Ld/R
2
IR ∝ Ld/(L

1/2
d )2 = const for

Zdiss < RIR, which is the case for all five masses. Consequently, above 109M� the

ratio between synchrotron and Compton peaks drops again.

Fig.6.1c shows the total energy densities of seed photons in the jet frame as a

function of black hole mass. This shows clearly for masses around 109M�, where the

energy density of BLR seed photons dominates (black dot-dashed line), the energy

density of synchrotron radiation is suppressed (red line) due to the strong cooling.

U ′sync recovers at higher masses, as Zdiss > RBLR, and dominates over U ′BLR at low

masses (< 107M�), where the magnetic field is strongest (blue line).

6.2.2 Spectral Changes with Accretion Rate

Fig.6.2a shows a sequence of FSRQ spectra with increasing accretion rate. We fix

M = 109M� and increase the accretion rate from log ṁ = −2 to 0.5.

As accretion rate increases, the synchrotron self absorption frequency increases

from ∼ 1010 (magenta) to 1012 Hz (blue). This is because the size of the emission

region stays constant (Rdiss does not depend on ṁ) while the magnetic field is

increasing (B ∝ ṁ1/2).

As accretion rate increases the total luminosity also increases since Prel ∝ ṁ and

B ∝ ṁ1/2. However the synchrotron emission increases faster than the Compton

emission so that for the highest accretion rate (log ṁ = 0.5) the two peaks show

comparable luminosity (blue spectrum) while at log ṁ = −1.5 (red) the Compton

peak is ∼ 2 orders of magnitude brighter than the synchrotron peak.

This is because the increase in synchrotron emission comes from both the increase

in Prel and the increase in its seed photons from the magnetic field. In contrast the

main source of seed photons for the Compton hump is the BLR and the energy

density of these remains constant while Zdiss < RBLR. Hence most of the increase in

Lcomp is due to Prel. Only for the highest accretion rates (blue and cyan spectra) do
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Figure 6.2: Spectral changes with accretion rate using standard jet scalings. a). FSRQ
model SEDs for fixed black hole mass and increasing accretion rate (log ṁ = −2 (magenta),
−1.5 (red), −1 (orange), −0.5 (green), 0 (cyan) and 0.5 (blue), MBH = 109M�). b).
Corresponding seed photon energy density spectra as seen in the jet frame. Solid lines
show synchrotron seed photons, dashed lines show accretion disc plus coronal seed photons,
dot-dashed lines show seed photons from the BLR plus coronal flux reflected by the BLR,
and dotted lines show seed photons from the torus. The seed photon energy density from
the torus is the same for all accretion rates. The seed photon energy density from the
BLR is the same for all accretion rates except log ṁ = −2, where Zdiss > RBLR. c).
Seed photon energy densities in the jet frame as a function of accretion rate. Blue line
shows U ′B, red line shows U ′sync, black lines show energy densities of external seed photons:
dashed line shows U ′d + U ′X , dot-dashed line U ′BLR + U ′XBLR, dotted line U ′IR, and solid
line shows total U ′ex.
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the other sources of seed photons (U ′sync and U ′acc, solid and dashed lines in Fig.6.2b)

become comparable with U ′BLR. These are much lower energy photons than the

blue shifted BLR emission (Fig.6.2b). Consequently the Compton hump at the

highest accretion rates is much broader as well as being more similar in luminosity

to the synchrotron peak. Again this gives a spectral shape much more typical of low

accretion rate BL Lacs, except now it is the result of an extremely high ṁ causing

U ′sync to dominate over U ′ex rather than an extremely low ṁ where U ′ex is absent.

The red spectrum in Fig.6.2a (log ṁ = −1.5) shows the greatest luminosity

difference between synchrotron and Compton peaks. The difference lessens again

for the lowest accretion rate spectrum (magenta, log ṁ = −2). This is because

RBLR ∝ L
1/2
d ∝ ṁ1/2. For a 109M� black hole at ṁ = 10−2, the BLR radius has

shrunk so much that it is now less than the distance to the jet emission region. Once

the BLR is behind the jet emission region its seed photons are de-boosted and U ′BLR

drops significantly (compare magenta and blue dot-dashed lines in Fig.6.2b). The

amount of cooling drops, shown by the appearance of a cooling break at 1013 Hz

in the magenta spectrum. Synchrotron and accretion flow seed photons become

more important, broadening the Compton hump again. But even these cannot help

for long; ṁ = 10−2 is the rate at which accretion flows make the transition from

radiatively efficient to inefficient. Below ṁ = 10−2 UV bright accretion discs can

no longer be sustained and give way to ADAF-like flows. This severely reduces

the available accretion flow seed photons and effectively switches off the BLR since

there are no UV photons to illuminate it. This final magenta spectrum represents

the transition from dimming FSRQ to a low accretion rate SSC BL Lac.

Fig.6.2c shows the total energy densities of seed photons in the jet frame as a

function of accretion rate. For −1.5 < log ṁ < −0.5, U ′BLR dominates, suppressing

U ′sync and giving the luminous Compton hump and much smaller synchrotron peak

typical of FSRQs. Only at the extremes of accretion rate does U ′sync dominate. At

super Eddington accretion rates U ′sync and U ′acc start to overtake U ′BLR producing

a pseudo-BL Lac type spectrum but with extremely high luminosity. And at the

lowest accretion rates U ′sync recovers when RBLR has shrunk below Zdiss and the

object is making the transition to a low accretion rate SSC BL Lac.
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Figure 6.3: Redshift limits using standard jet scalings. a). Redshift limits for Fermi
visible FSRQs as a function of black hole mass, for increasing viewing angle (θ = 0 (black),
1/Γ (blue) and 1/2Γ (magenta), where Γ = 13) and ṁ = 0.1. b). Redshift limits for Fermi
visible FSRQs as a function of accretion rate, for MBH = 107 (red), 108 (magenta), 109

(blue) and 1010M� (black) and θ = 0.

6.2.3 FSRQ Visibility

Having shown how the spectrum of a FSRQ might change with mass and accretion

rate, we now investigate the redshift limits at which FSRQs of different masses and

accretion rates should be visible to Fermi, according to these standard jet scalings.

We define a flux limit of F1GeV−100GeV > 5× 10−10 photons cm−2 s−1 from the Fermi

1-year catalogue (Abdo et al., 2010). If a FSRQ of a given mass and accretion rate

has F > Flimit in the Fermi band we assume it will be detected.

Fig.6.3a shows the redshift limits for Fermi visible FSRQs as a function of black

hole mass. We fix ṁ = 0.1 and show three different inclination angles: θ = 0 (black),

1/Γ (blue) and 1/2Γ (magenta). Clearly more closely aligned FSRQs are seen out

to higher redshifts. The limiting redshift increases with mass, since Lcomp increases

with mass (see Fig.6.1a), until ∼ 109.5M�. A highly aligned FSRQ with a 109.5M�

black hole can be detected out beyond z = 6. However above 109.5M�, the redshift

limits drop sharply to z 6 2 for a 1010M� black hole. The reason for this can be

seen in Fig.6.1a. For the most massive 1010M� black holes, Zdiss > RBLR, because

Zdiss grows ∝M while RBLR ∝M1/2. BLR photons are still the dominant source of

seed photons, however they are now behind the emission region. Consequently they

are de-boosted, so that the peak energy of BLR seed photons is lower. This shifts
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the peak of the Comptonised emission to lower energies. The flux in the Fermi

band (1 − 100 GeV, corresponding to 23.38 < log ν < 25.38) drops significantly.

The luminosity of a 1010M� FSRQ at 1024 Hz is almost 2 orders of magnitude less

than a 109M� black hole at the same accretion rate (compare black and blue lines,

Fig.6.1a). Redshifting the spectrum only exacerbates the shift of the Compton peak

to lower energies and further reduces the Fermi flux. Consequently the redshift

limits of 1010M� FSRQs are nearer those of 107−8M� black holes.

Fig.6.3b shows the redshift limits for FSRQs as a function of accretion rate for

four different black hole masses (M = 107 (red), 108 (magenta), 109 (blue) and

1010M� (black) and θ = 0). zlimit increases with ṁ, however the rate of increase

differs with mass.

The redshift limits for 107−8M� FSRQs increase very slowly with accretion rate

(magenta and red lines). The redshift limit for a 107M� FSRQ is ∼ 0.5 at log ṁ =

−2 and ∼ 0.75 at log ṁ = 1. 108M� FSRQs show a similarly small factor ∼ 3

increase over the same range in accretion rate. This is because for small masses

the dominant cooling is through SSC, due to the small emission region size and

high magnetic field. As a low mass FSRQ (107−8M�) increases its accretion rate

from log ṁ = −2 to 1, its Compton spectrum changes from being high peaked (at

∼ 1024 Hz) to low peaked (∼ 1021 Hz), analogous to the change in BL Lac spectra

from high peaked to low peaked. The reason is the same: increasing ṁ increases

the cooling, shifting all the peak energies to lower frequency, because low mass

FSRQs are similarly dominated by SSC cooling (plus low energy accretion disc

seed photons), which always dominates over BLR emission. Even though the total

luminosity is increasing, the shift of the peak emission to lower energies means the

Fermi band flux increases more slowly and hence zlimit shows a very gradual increase.

In contrast, 109M� FSRQs show a much faster increase in zlimit with ṁ (blue

line, Fig.6.3b). This is because they are almost always dominated by BLR Compton

scattering. The spectral energy density of BLR seed photons peaks at higher energy

(see Fig.6.1b, blue dot-dashed line), than the synchrotron and disc seed photons

which dominate in lower mass systems, hence the Compton peak is at higher energy

(1023 compared to 1020 Hz, compare blue and magenta lines, Fig.6.1a), so more of the
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luminosity increase can be seen in the Fermi band. Only at the very lowest accretion

rates (log ṁ ∼ −2) does the Fermi visibility of a 109M� FSRQ dip below that of

a 108M� object. This is because the Compton cooling is slightly more efficient in

the larger mass object, shifting its Compton peak to slightly lower energy and hence

giving it a lower Fermi band flux.

The 1010M� example (black line, Fig.6.3b) shows a similar effect, with the zlimit

increasing slowly at first and then more rapidly for log ṁ > −1. This is because

RBLR ∝ (ṁM)1/2 while Zdiss ∝ M , hence for larger mass a higher ṁ is needed

for RBLR > Zdiss, i.e. RBLR < Zdiss up to higher ṁ. While RBLR < Zdiss, the

Compton hump is produced from synchrotron, accretion flow and de-boosted BLR

seed photons, so its peak is at lower frequency and the Fermi band flux (∼ 1024 Hz)

is significantly reduced. Once RBLR > Zdiss (at log ṁ ∼ −1 for M = 1010M�),

Doppler boosted BLR seed photons dominate and zlimit increases dramatically.

6.2.4 Predicted FSRQ Population from Cosmological Sim-

ulations

Combining our scaled jet emission model with the results from cosmological sim-

ulations allows us to predict the population of FSRQs that should be detected by

Fermi. As in the previous chapter, we use the black hole number densities from the

Millennium Simulation (Springel et al., 2005; Fanidakis et al., 2011; Fanidakis et al.,

2012), which predicts the number of SMBHs accreting at different redshifts together

with their masses and accretion rates (n(z,M, ṁ)).

We initially assume that all black holes accreting efficiently will produce a FSRQ

jet. We can then calculate the number of Active Galactic Nuclei (AGN) hosting a

FSRQ jet in each (z,M, ṁ) bin by using the number densities of black holes in the

radiatively efficient accretion regime (ṁ > 10−2). Again, if this number is less than

1 we use Poisson statistics to randomly determine whether a black hole is present

or not. Each black hole in each (z,M, ṁ) bin is then assigned a random distance

within this redshift bin and random θobs, assuming cos θobs is distributed uniformly,

and we calculate the observed spectrum to determine whether or not the jet would

be visible to Fermi. We choose the flux limit of the Fermi 1-year catalogue, in order
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to compare our simulation results with the observations presented in Shaw et al.,

2012.

Fig.6.4a shows the predicted redshift distribution of Fermi visible FSRQs (black

line). The predicted distribution peaks between redshifts 1 < z < 2.5. This cor-

responds to the peak in quasar activity at z ∼ 2. At later times (z < 1), typical

black hole accretion rates drop below 10−2 due to systems running out of gas to

accrete. At low accretion rates, the accretion flow becomes radiatively inefficient

and no longer illuminates the BLR, effectively switching off the source of external

seed photons, so that the black holes produce BL Lac rather than FSRQ type jets.

A few systems remain at high accretion rates — these typically host smaller black

holes (∼ 107M�), which haven’t yet used up their gas supplies. These correspond to

Seyfert galaxies in the local Universe. According to our criteria (ṁ > 10−2), these

black holes should host EC jets. However Fig.6.3a shows that the Fermi visibility

of jets from such small black holes is poor, so their contribution to the number of

FSRQs at late times (z < 1) is small.

Whilst the predicted redshift distribution peaks at 1 < z < 2.5, there is a tail

out to high redshifts, with the most distant FSRQs being detected out to z ∼ 5.

As redshift increases, the typical black hole mass decreases. At z = 2, the bulk of

the accretion luminosity is produced by 108M� black holes (see Fig.5.4, previous

chapter). For z > 2, the typical black hole mass producing the bulk of the accretion

luminosity is dropping below 108M�. Fig.6.3a shows how sharply the Fermi visibility

drops with mass, more than halving for a decade drop in mass from 109 − 108M�.

Fig.6.3b shows that for small black hole masses (6 108M�), the increase in accretion

rate at early times does not compensate for the drop in mass in terms of Fermi

visibility (compare magenta and blue lines, Fig.6.3b). The decreasing tail of the

predicted redshift distribution from 2.5 < z < 5 is therefore due to the decreasing

number density of 108−9M� black holes and the increasing reliance on strongly

beamed sources (θobs ∼ 0) to reach the Fermi flux limit.

The total number of Fermi visible FSRQs predicted by our simulation is ∼ 26000,

while the actual number of FSRQs detected in the Fermi 1 year catalogue is ∼ 300

(Abdo et al., 2010). Our simulation overpredicts the number of Fermi visible FSRQs
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Figure 6.4: Simulation results using standard jet scalings. a). Predicted redshift distri-
bution of Fermi visible FSRQs, assuming black holes of all spins accreting above ṁ = 10−2

produce a FSRQ jet (black). Red solid line shows observed redshift distribution of Fermi
detected FSRQs from Fermi 1-year catalogue. Red dashed line shows observed redshift
distribution ×100. b). Predicted mass distribution of Fermi visible FSRQs. c). Predicted
accretion rate distribution of Fermi visible FSRQs.
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by ∼ 2 orders of magnitude. This is one order of magnitude less than the 3 orders

of magnitude discrepancy found in the previous chapter using the same method to

predict the Fermi population of BL Lacs. Nevertheless, a 2 order of magnitude

discrepancy is still too large to be explained by the sky coverage limit of Fermi

(|b| > 10◦ implying 80% of the sky is included).

In Fig.6.4a we show the observed redshift distribution of Fermi detected FSRQs

from Shaw et al. (2012) (solid red line). The dashed red line shows the observed

redshift distribution ×100 for better comparison of the shapes of the two distribu-

tions. The observed redshift distribution peaks later (0.5 < z < 1.5 rather than

1 < z < 2.5), with no FSRQs detected in the 1LAT catalogue with z > 3.5. Not

only is the total number of FSRQs overpredicted, but the shape of the redshift

distribution also does not match the observations.

Fig.6.4b and c show the predicted mass and accretion rate distributions of Fermi

visible FSRQs from the simulation. The typical predicted FSRQ accretion rate is

−1 < log ṁ < 0, since Fermi visibility increases with accretion rate. Above Ed-

dington, the increase in Fermi flux with ṁ becomes progressively less (see Fig.6.2a)

and the number density of super-Eddington sources of sufficient mass (> 108M�)

drops off sharply, both of which result in the typical FSRQ accretion rate being just

sub-Eddington. This is in agreement with the findings of Shaw et al. (2012), where

most FSRQs are observed to have −1 < log ṁ < 0. The typical predicted mass is

108−8.5M�, since these FSRQs are bright in the Fermi band and most numerous at

1 < z < 2 where quasar activity peaks. The results of Shaw et al. (2012) indicate

that the observed peak extends to slightly higher mass 108−9M�.

6.2.5 Dependence on Black Hole Spin?

In assuming every black hole accreting with ṁ > 10−2 is capable of producing

a FSRQ jet our simulation overpredicts the number of Fermi detected FSRQs by

two orders of magnitude. Clearly another factor is reducing the number of FSRQs

detected by Fermi. In the previous chapter we found that the number of Fermi

detected BL Lacs was similarly overpredicted (by 3 orders of magnitude) when the

same technique was applied to predict the observed population of BL Lacs (i.e. all
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Figure 6.5: Effect of imposing a spin cut on simulation results using standard jet scal-
ings. Blue line shows predicted redshift distribution of Fermi visible FSRQs, assuming
only black holes with ṁ > 0.01 and spin a > 0.77 produce a FSRQ jet. Red line shows ob-
served redshift distribution of Fermi detected FSRQs. Black line shows predicted redshift
distribution with no spin cut.

black holes accreting below ṁ = 10−2 produce BL Lac type jets). The observed

numbers of BL Lacs, and their redshift distribution, are much better reproduced

assuming that only high spin black holes with ṁ < 10−2 produce BL Lac type

jets, specifically a > 0.8. This suggests black hole spin might be important in the

production of highly relativistic Γ = 15 jets in BL Lacs. Maraschi et al. (2012)

find that the efficiency of spin-powered jet production drops off sharply below 0.8,

which provides additional support for an effective spin threshold for relativistic jet

production at a ∼ 0.8. We investigate whether this may also be the case for FSRQs.

The chaotic accretion model for the evolution of black hole spin is required to

match the population of Fermi detected BL Lacs. In this model, accretion events are

randomly aligned, producing predominantly low spin black holes, while high spin is

rare, being only produced through black hole-black hole mergers, so requiring high

spin reduces the predicted number of BL Lacs, in better agreement with the observed

numbers. Motivated by this, we continue to use the black hole spin distributions

predicted by the chaotic accretion model.

Fig.6.5 shows the results of applying a spin cut to our simulation results for

FSRQs. The black line shows our original results, where all black holes with ṁ >
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Figure 6.6: Redshift distribution of high spin black holes (a > 0.8) from the Millennium
simulation. Red line shows black holes accreting with ṁ < 10−2 (corresponding to BL
Lacs), blue line shows black holes accreting at ṁ > 10−2 (corresponding to FSRQs), black
line shows total.

10−2 produce a FSRQ jet (now with a logarithmic y axis). The red line shows the

observed FSRQ redshift distribution. The blue line shows the simulation results

after imposing a spin cut, so that only black holes with ṁ > 10−2 and a > acut

produce a FSRQ jet. We find a lower spin cut is required to reproduce the observed

number of FSRQs compared to the BL Lacs: acut ∼ 0.77 rather than 0.8.

Closer comparison of the red and blue lines shows that, although the total number

of FSRQs is better reproduced, the simulation cannot reproduce the tail out to high

redshifts (> 2). Imposing a spin cut limits the maximum expected FSRQ redshift

to ∼ 2.3. This is clearly in conflict with observations.

Fig.6.6 shows the number density of high spin black holes (a > 0.8) as a function

of redshift from the Millennium Simulation (black line). This has two peaks, one

at z = 0 and one at z = 5. The red line shows the number density of high spin

black holes with low accretion rates (ṁ < 10−2). These are responsible for the peak

at z = 0. They get their high spins from late gas poor mergers, so represent the

most massive black holes. This is the population of black holes responsible for the

production of BL Lac jets. The blue line shows the number density of high spin

black holes with high accretion rates (ṁ > 10−2). These are responsible for the peak
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at z = 5. They acquire their high spins through early mergers of much smaller black

holes. At early times the black holes still have a plentiful gas supply (hence their

high accretion rates) and subsequent chaotic accretion gradually spins down the

black holes, so that the number density of high spin, high accretion rate black holes

drops with decreasing redshift, not only because typical accretion rates drop, but

also because most black holes are losing their earlier high spins. If we require high

spin as well as high accretion rate to produce a FSRQ jet, then these are the black

holes that should be responsible for FSRQs. However, when we include a spin cut in

our simulation our results cannot replicate the observed FSRQ population between

2 < z < 3. Fig.6.6 (blue line) shows that the number of high spin, high ṁ black

holes has dropped significantly by 2 < z < 3. Many of the high spin black holes

that remain are still small (107−8M�), because if they had grown significantly since

their last merger the process of chaotic accretion would have reduced their spins. As

a result they are not massive enough to be Fermi visible in our simulation. Yet the

observations show there are some relatively massive black holes with FSRQ jets at

these redshifts. Our simulation accounts for spin-ups due to mergers, so these black

holes cannot have acquired their spins through mergers, but must have maintained

them whilst growing by accretion. This suggests that early accretion may be more

organised than late accretion, i.e. gas from a star formation episode is accreted in

one go from a single direction so that accretion alone can spin up the black hole.

Perhaps there is a transition from prolonged accretion to more chaotic accretion as

gas supplies diminish and redshift decreases. In assuming a chaotic accretion mode

throughout, we have underestimated the number of high spin black holes at higher

redshifts (z > 2.5), where accretion may be more ordered. Although in order to

reproduce the observed BL Lac population, chaotic accretion must have taken over

and reduced many black holes to low spins by z = 2 when accretion rates drastically

drop.

This may suggest why a lower spin cut is required in our simulation to match the

FSRQ population compared to the BL Lacs. Alternatively spin may genuinely be

less important in high accretion rate FSRQs, since FSRQs have more accretion power

available to power a jet than the low accretion rate BL Lacs. However given the
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uncertainties in tracking black hole spin evolution in the cosmological simulations

no firm conclusions on this can be drawn.

An alternative explanation is that we have simply underestimated the Fermi

visibility of the small mass FSRQs which dominate at high redshifts, by relying on

standard jet scalings to predict their luminosity. In the next section we test this

assumption.

6.3 The Gamma-Ray Loud NLS1 as a Test of Jet

Scalings

A key assumption affecting the results of our simulations are the scalings we choose

to calculate Rdiss, Prel and B. Gamma-ray loud NLS1s (γNLS1s) provide a unique

opportunity to test these scalings. NLS1s are small mass (106−8M�), high accretion

rate AGN. Most are radio quiet, however a small subset are found to be radio loud

(Komossa et al., 2006). Of these radio loud NLS1s, 7 have been detected by Fermi.

These γNLS1s show Doppler boosted jet emission with a weaker synchrotron hump

and strong Compton emission so that their SEDs appear like ‘mini FSRQs’ (Abdo

et al., 2009). The high accretion rates of NLS1s (ṁ ∼ 1) mean that their accretion

flows are in the radiatively efficient regime, giving them a BLR (albeit with relatively

narrow broad lines) so they should correspond to low mass FSRQs. In which case

we should be able to replicate their spectra simply by turning down the mass in our

mean FSRQ spectral model.

PMN J0948+0022 was the first γNLS1 to be discovered. A multi-wavelength

monitoring campaign was carried out on the source in 2009. Abdo et al. (2009)

subsequently fitted its broadband spectrum (Fig.6.7, top panel) with the jet model

of Ghisellini & Tavecchio (2009). In Table 6.1 we show their derived values of Rdiss,

Prel and B. We also show the expected values of Rdiss, Prel and B for this source

that result from scaling the mean FSRQ parameters of G10 as R ∝M , Prel ∝ ṁM

and B ∝ (ṁ/M)1/2 (‘standard scalings’) according to the mass and accretion rate of

PMN J0948+0022 (M = 1.5×108, ṁ = 0.5). These scalings correspond to assuming

both the power injected into relativistic electrons and the power in magnetic fields
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Figure 6.7: Top: Observed spectrum of γNLS1 PMN J0948+0022, from Abdo et al.
(2009). Bottom: Predicted γNLS1 spectra. Dashed black line shows the expected jet
spectrum for a black hole with mass and accretion rate of the γNLS1 PMN J0948+0022
(M = 1.5 × 108M�, ṁ = 0.5), from scaling the mean FSRQ spectrum of G10 according
to standard jet scalings (Rdiss ∝ M , Prel ∝ ṁM and B ∝ (ṁ/M)1/2). Red line shows
resulting spectrum replacing Rdiss, Prel and B with the observed values found by Abdo
et al. (2009) to fit PMN J0948+0022. Solid black line shows expected spectrum using the
alternative jet scalings (Rdiss ∝ ṁM , Prel ∝ ṁM and B ∝ (ṁM)−1/2). See Table 6.1 for
parameter values.
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Parameter < FSRQ > γ NLS1
Observed §6.2 Standard Scalings §6.4 Alternative Scalings

M (M�) 109 1.5× 108

ṁ (L/LEdd) 0.1 0.5
Rdiss (×1015 cm) 18.9 6.75 2.835 14.2
Prel (×1043 erg s−1) 2.0 2.3 1.5 1.5
B (G) 2.6 4.1 15 3.0

Table 6.1: Comparison between the observed jet parameters for the γNLS1 PMN
J0948+0022 (Abdo et al., 2009) with those expected from scaling the mean FSRQ jet
parameters from G10 according to the standard jet scalings of Section 6.2 (Rdiss ∝ M ,
Prel ∝ ṁM , B ∝ (ṁ/M)1/2) and using the alternative jet scalings of Section 6.4
(Rdiss ∝ ṁM , Prel ∝ ṁM , B ∝ (ṁM)−1/2).

is a fixed fraction of the accretion power, i.e. Prel ∝ PB ∝ Pacc ∝ ṁM . In Table 6.1

we also list the mean FSRQ values for reference.

The values of Rdiss and Prel found from fitting the observed spectrum of PMN

J0948+0022 are both slightly larger than expected scaling from the mean FSRQ

parameters. However the biggest difference is in the magnetic field strength. Scaling

the mean FSRQ magnetic field strength of 2.6 G as B ∝ (ṁ/M)1/2 implies PMN

J0948+0022 should have a jet magnetic field of 15 G. In reality, the magnetic field

required to fit its spectrum is much smaller (4 G). This is larger than the mean

FSRQ value, as expected for its smaller mass, but not nearly as large as the standard

scalings predict.

In Fig.6.7 (bottom panel) we show the effect of this on the predicted spectrum.

The dashed black line shows the spectrum produced taking the mean FSRQ parame-

ters and scaling Rdiss, Prel and B to the mass and accretion rate of PMN J0948+0022

according to the standard scaling relations, i.e. standard scaling values from Table

6.1. The red line shows the same spectrum, but replacing Rdiss, Prel and B with

the values found by Abdo et al. (2009) from fitting the observed spectrum of PMN

J0948+0022 (i.e. observed values in Table 6.1). The red line is not a fit to PMN

J0948+0022, since we have kept the other parameters (φ, Γ etc.) the same as the

mean FSRQ, in order to show just the effect of correcting Rdiss, Prel and B (although

we note that the injected electron distribution parameters of PMN J0948+0022 are

not very different to those of the mean FSRQ). It is clear that replacing the values

predicted by the standard scalings with the observed values has a big effect on the

shape of the spectrum. The high magnetic field predicted by the standard scal-
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ing relations causes synchrotron and SSC emission to dominate the dashed black

predicted spectrum, resulting in synchrotron and Compton peaks of similar lumi-

nosity. The resulting spectral shape is similar to that of a BL Lac, where the only

source of emission is synchrotron and SSC emission. In contrast, when we use the

observed values, where the magnetic field is much lower, the Compton emission is

dominated by up-scattering of external seed photons and the synchrotron emission is

suppressed (red spectrum). As a result the Compton peak is much brighter than the

synchrotron peak — a spectral shape typical of FSRQs. However, according to the

standard scaling relations, γNLS1s shouldn’t look like mini FSRQs — SSC should

dominate their Compton humps not EC. Yet they do (Fig.6.7, top panel). This sug-

gests the standard scaling relations break down between normal mass FSRQs and

γNLS1s. Or that FSRQs simply do not follow them. This is surprising, given that

these scaling relations are based on just two assumptions: that the size-scales of the

jet should scale with black hole mass, and that the power injected into relativistic

electrons and the power in magnetic fields is a fixed fraction of the accretion power.

Fig.6.7 (bottom panel) shows that replacing the parameters predicted by stan-

dard jet scalings with those observed for a γNLS1 increases the Fermi flux (at

ν ∼ 1022 Hz) by half an order of magnitude. This suggests the small mass FSRQs in

our simulation should be brighter and hence more visible than we have estimated.

Consequently our original predicted population, which already overestimates the

observed population by 2 orders of magnitude, should be an underestimate. This

only increases the need for some other factor, such as a limit on black hole spin,

to reduce the predicted numbers. It would also increase the visibility of high red-

shift FSRQs, which are typically lower mass, so potentially making it easier for

our spin cut simulation to reproduce the high redshift tail of the observed redshift

distribution.

6.4 Alternative Jet Scaling

Comparison of our scaled spectra with the observed spectrum of a γNLS1 suggests

FSRQs do not follow the standard jet scalings. We now investigate the effects of
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trying an alternative jet scaling.

The biggest discrepancy between the observed γNLS1 values and those predicted

by standard jet scalings is in the magnetic field. This discrepancy is further amplified

by the fact the emitted radiation depends on UB ∝ B2.

Our standard scalings assume B ∝ (PB/R
2
diss)

1/2, where Rdiss ∝ M and PB ∝
Pacc. The relativistic electrons are accelerated by inhomogeneities in the magnetic

field, so PB and Prel should scale the same way. If Prel ∝ ṁM then PB, which

caused the particle acceleration in the first place, must be scaling as ṁM . The only

way to change how B scales is then to change the scaling of Rdiss.

It seems reasonable that jet size-scales should scale with the mass of the black

hole, however we have so far neglected any scaling with accretion rate. If the jet

base, where the bulk of the high energy emission comes from, represents a standing

shock caused by some pressure balance between high pressure material outflowing

into less dense material, this could well depend on accretion rate. In which case a

higher accretion rate means high central pressure, with pressure equilibrium occur-

ring further out. Rdiss would then have a dependence on ṁ as well as M , assuming

Rdiss = φZdiss with constant φ. If Rdiss ∝ ṁM and Prel ∝ PB ∝ ṁM , then this

gives B ∝ (ṁM)−1/2.

In Table 6.1 we show the predicted Rdiss, Prel and B values for PMN J0948+0022

using these alternative scalings. The predicted magnetic field of 3 G is now much

nearer the observed value than the estimate of 15 G from using standard jet scalings.

We have not altered how the values scale with mass so this is simply a result of the

NLS1’s high accretion rate partially compensating for its lower mass. The solid black

line in Fig.6.7 (bottom panel) shows the predicted spectrum using these new values.

The Compton dominance and the level of Fermi flux is much better reproduced

(compare black and red solid lines). The Compton dominance is actually slightly

overestimated — comparison of the synchrotron humps shows that the synchrotron

emission is more suppressed using these alternative scalings. This is because Rdiss

is now much larger (14.2 × 1015 compared to 6.75 × 1015 cm) due to the additional

dependence on ṁ. We have slightly overcorrected the underestimated Rdiss of the

previous standard scalings. However the effect of this is less in the EC dominated
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Fermi band, which we are interested in.

In the following sections we test the effect of these alternative scalings (Rdiss ∝
ṁM and B ∝ (ṁM)−1/2, with Prel still ∝ ṁM) on the visibility of different FSRQs

and the predicted Fermi visible population.

6.4.1 Spectral Change with Accretion Rate

We have not changed how the FSRQs scale with mass, so for constant accretion rate

the alternative jet scalings cause the spectrum to change as in Fig.6.1, i.e. the same

way as the standard jet scalings. By allowing Rdiss to also scale with ṁ we have

only changed how the spectrum should scale with accretion rate.

Fig.6.8 shows three sequences of spectra, analogous to Fig.6.2a, demonstrating

how the spectrum changes with accretion rate for this alternative jet scaling. The

three panels represent three different black hole masses — 109, 108 and 107M� (top

to bottom). In each the mass is kept constant and accretion rate increases from

log ṁ = −2 (magenta) to 1 (black).

It is clear that the accretion rate at which the FSRQ is most Compton dominant

(i.e. appears most like a typical FSRQ spectrum) changes with mass. For a 109M�

black hole the spectrum is most Compton dominant at ‘low’ accretion rates (−1 <

log ṁ 6 −0.5). For a 108M� black hole it’s at roughly Eddington (0 < log ṁ 6 0.5),

and for a 107M� black hole it’s super-Eddington (log ṁ > 0.5).

This is a direct result of Zdiss ∝ ṁM (since we assume Zdiss ∝ Rdiss ∝ ṁM).

For a 109M� FSRQ (Fig.6.8a), Zdiss is already large due to its large mass. Only

a moderate increase in ṁ is required to push Zdiss beyond the radius of the BLR

(RBLR ∝ (ṁM)1/2). The lack of blue shifted BLR seed photons results in a much

lower frequency Compton peak (cyan, blue and black spectra), firmly shifting the

peak out of the Fermi band.

For a 108M� FSRQ (Fig.6.8b), Zdiss is inherently smaller due to the smaller

black hole mass. Only the very highest accretion rates are enough to push Zdiss

beyond the BLR (black spectrum). Hence 108M� FSRQs appear ‘FSRQ-like’ up

to higher accretion rates. However at the lowest accretion rates (log ṁ ∼< −1.5)

they start to lose their Compton dominance again. This is because, for a 108M�
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Figure 6.8: FSRQ model SEDs for fixed black hole mass and increasing accretion rate
(log ṁ = −2 (magenta), −1.5 (red), −1 (orange), −0.5 (green), 0 (cyan), 0.5 (blue) and
1.0 (black)) for a). MBH = 109, b). 108 and c). 107M�, using the alternative jet scalings.
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FSRQ, Zdiss is now getting so close to the black hole that direct accretion flow seed

photons and SSC begin to dominate over BLR seed photons. This reduces both the

frequency of the Compton peak and the Compton dominance.

For the smallest 107M� FSRQs (Fig.6.8c), Zdiss never goes beyond RBLR, even

for the highest accretion rates. Synchrotron and direct disc seed photons now dom-

inate up to higher accretion rates (log ṁ ∼ −0.5), since the very small black hole

mass means Zdiss is already very compact through Zdiss ∝ M before reducing it

further by Zdiss ∝ ṁ.

When the Compton peak is shifted to lower frequencies, either through Zdiss

becoming larger than RBLR or Zdiss becoming very small, this greatly reduces the

Fermi flux. This means FSRQ type jets are clearly most likely to be detected

when they have strong Compton dominance, i.e. when they are most ‘FSRQ-like’.

Fig.6.8 shows that, selecting only the most FSRQ-like spectra picks out different

accretion regimes for different mass FSRQs. So that a 109M� FSRQ is likely to be

accreting at 10% of Eddington, while a ∼< 108M� FSRQ is likely to be accreting at

Eddington. This would explain why γNLS1s, which like all NLS1s accrete at roughly

the Eddington limit, still have jets that resemble FSRQs, despite the typical FSRQ

being more massive and at lower accretion rate. The existence of γNLS1s therefore

requires that Rdiss (∝ Zdiss) scales not only with mass but also with accretion rate.

6.4.2 Effect on FSRQ Visibility

Fig.6.9 shows how scaling Rdiss ∝ ṁM (and by extension Zdiss ∝ ṁM and B ∝
(ṁM)−1/2, with Prel still ∝ ṁM) affects the Fermi visibility of FSRQs as a func-

tion of accretion rate. We show the redshift limits as a function of accretion rate

for four different masses: 1010, 109, 108 and 107M� (in black, blue, magenta and

red respectively), analogous to Fig.6.3b, which shows the same plot but using the

standard jet scalings.

Each mass shows the same trend in zlimit with accretion rate — specifically zlimit

increases with ṁ until a peak zlimit of ∼ 8, after which the visibility drops sharply.

This is a result of the effect shown in Fig.6.8a. As ṁ increases, so does the total

luminosity and Zdiss until eventually Zdiss > RBLR, at which point the peak of
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Figure 6.9: Redshift limits for Fermi visible FSRQs as a function of accretion rate, for
MBH = 107 (red), 108 (magenta), 109 (blue) and 1010M� (black) and θ = 0, using the
alternative jet scalings.

the Compton hump shifts to lower frequencies, severely reducing the Fermi band

flux. As a consequence the limiting redshift out to which the FSRQ is visible drops

sharply.

The accretion rate at which the Fermi visibility peaks (i.e. where zlimit is great-

est) is higher for smaller masses. Again this is a result of the effect shown in Fig.6.8.

The Fermi band flux is a maximum when the FSRQ is strongly Compton domi-

nant, i.e. when Zdiss is neither too close nor too far from the black hole. Since

Zdiss ∝ ṁM , this optimum region will be at a higher accretion rate for a smaller

mass. A FSRQ will be visible out to the highest redshifts when its Fermi flux is

brightest, hence the maximum limiting redshift occurs at a higher accretion rate for

a smaller mass FSRQ.

Comparison of Fig.6.9 with Fig.6.3b shows that the predicted redshift limits

are very different for these alternative scalings compared with using the standard

jet scalings. The highest mass black holes (1010M�) are now most visible at low

accretion rates, since this is when Zdiss < RBLR. In contrast, using the standard

jet scalings Zdiss was always > RBLR at this mass. This meant 1010M� FSRQs

always had low frequency peaked Compton humps and were only visible at the

highest accretion rates, because their enormous luminosities gave sufficient Fermi
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flux despite the peak of the Compton hump being below the Fermi band.

However the biggest difference is in the visibility of low mass FSRQs (107−8M�).

Using the standard jet scalings, Zdiss was always close to the black hole and direct

disc seed photons and SSC dominated, again lowering the frequency at which the

Compton hump peaked and limiting the Fermi band flux. Consequently these ob-

jects were never visible beyond z ∼ 3. In contrast the alternative scalings, with

Zdiss ∝ ṁM , allow an increase in accretion rate to compensate their small mass, so

that at high accretion rates they can be Compton dominant and Fermi bright. As a

result, for a limited range of accretion rates, these objects are Fermi visible beyond

z = 4.

This will have implications for our simulated population of Fermi visible FSRQs.

Our spin cut results using standard jet scalings fail to reproduce the observed number

of high redshift FSRQs (z > 2.5). As redshift increases the typical black hole mass

decreases and the typical accretion rate increases. Using these alternative jet scalings

means FSRQ jets from these small mass, high accretion rate black holes should be

more visible.

6.4.3 Effect on Predicted FSRQ Population

We now rerun our simulation using these alternative jet scalings (Rdiss ∝ ṁM ,

Prel ∝ ṁM and B ∝ (ṁM)−1/2). Fig.6.10 shows the predicted redshift distribution

of Fermi visible FSRQs using the alternative jet scalings (solid lines) compared

with our previous results using standard jet scalings (Rdiss ∝ M , Prel ∝ ṁM and

B ∝ (ṁ/M)1/2, dashed lines).

Using the alternative jet scalings almost triples the predicted number of Fermi

detected FSRQs (∼ 73000, compared to 26000 using standard jet scalings), assuming

every black hole with ṁ > 10−2 produces a FSRQ jet. The difference between

the numbers predicted using the alternative scalings versus the standard scalings

increases as redshift increases (compare solid and dashed black lines, Fig.6.10). This

is because the alternative scalings increase the visibility of small mass, high mass

accretion rate black holes and as redshift increases an increasing fraction of the

active black holes fall into this category.
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Figure 6.10: Comparison of redshift distributions of Fermi visible FSRQs predicted using
the alternative jet scalings (solid lines) with those predicted using standard jet scalings
(dashed lines). Black lines compare results where all black holes with ṁ > 0.01 produce a
FSRQ jet. Blue lines compare results assuming only black holes with ṁ > 0.01 and spin
a > 0.77 produce a FSRQ jet. Red solid line shows observed redshift distribution of Fermi
detected FSRQs.

Fig.6.11a and b compare the predicted mass and accretion rate distributions

of Fermi visible black holes using the two different scalings, assuming every black

hole with ṁ > 10−2 produces a FSRQ jet. Again solid lines show results using the

alternative scalings and dashed lines show the standard scaling results. Fig.6.11a

shows that small mass FSRQs (< 108M�) make up a much larger fraction of the

Fermi detections when the alternative jet scalings are used (∼ 0.45 as opposed to

∼ 0.2), with the largest fraction of detections having masses between 107.5−8.5M�.

Fig.6.8b shows that a 108M� FSRQ is Fermi brightest for −0.5 < log ṁ < 0.5.

Consequently these are the accretion rates that form the largest fraction of Fermi

detections in the simulation using the alternative jet scalings (Fig.6.11b, solid line).

Low accretion rate FSRQs (log ṁ < −1) now make up a much smaller fraction of

the total number of detections than when we used the standard jet scalings (∼ 0.05

as opposed to ∼ 0.2). This is partly due to the much larger number of high accretion

rate FSRQs detected and also because low mass, low mass accretion rate FSRQs

are slightly less Fermi visible using the alternative jet scalings (compare red and

magenta lines, Fig.6.9 and Fig.6.3b). In contrast, high mass, low mass accretion
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Figure 6.11: a). Predicted mass distribution of Fermi visible FSRQs using the alternative
jet scalings (solid line) compared with standard jet scalings (dashed line), assuming all
black holes with ṁ > 0.01 produce a FSRQ jet. b). Predicted accretion rate distribution of
Fermi visible FSRQs using the alternative jet scalings (solid line) compared with standard
jet scalings (dashed line), assuming all black holes with ṁ > 0.01 produce a FSRQ jet.
c). & d). are same as a) and b) but compare the results after imposing a spin cut of
acut = 0.77 so that only high spin, high accretion rate black holes produce a FSRQ jet.
Red lines show observed mass and accretion rate distributions from the data of Shaw et al.
(2012).
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rate FSRQs are more Fermi visible using the alternative jet scalings (compare black

lines, Fig.6.9 and Fig.6.3b), which is why the predicted mass distribution extends to

slightly higher masses when using the alternative jet scalings, however the number

density of these is very low.

In Fig.6.10 we also show the predicted population of Fermi detected FSRQs using

the alternative jet scalings, assuming only high spin, high accretion rate black holes

produce FSRQ jets (a > 0.77 and ṁ > 0.01, solid blue line). Despite increasing

the visibility of small mass, high accretion rate black holes, which dominate at high

redshifts, we still cannot reproduce the tail of the observed redshift distribution

at high redshifts (z > 2). This is due to a lack of high spin black holes between

2 < z < 3 in the cosmological simulation (see Fig.6.6).

In Fig.6.11c and d we show the effect of imposing a spin cut on the predicted

mass and accretion rate distributions (blue lines). Again solid lines show results

using the alternative scalings and dashed lines show the standard scaling results.

The red lines show the observed mass and accretion rate distributions of Fermi

detected FSRQs from the data of Shaw et al. (2012). Where they have multiple

mass estimates for individual objects we use in order of preference masses derived

from Hβ line width, MgII and CIV, and as in Shaw et al. (2012) convert the local

continuum luminosity to a bolometric luminosity using the factors from Richards

et al (2006) to estimate accretion rate. Comparing Fig.6.11a with Fig.6.11c shows

that restricting FSRQ jet production to high spin objects has skewed the predicted

mass distribution towards higher masses for both scalings. Instead of the majority of

detections having masses in the range 107.5−8.5M� (alternative scalings, solid black

line, Fig.6.11a) the majority of detections now have masses between 108.5−9.5M�

(solid blue line, Fig.6.11c). This is because the cosmological simulation assumes

chaotic accretion at all redshifts so the only highly spinning black holes are produced

by mergers and are necessarily the most massive. In contrast the observed mass

distribution (red line, Fig.6.11c) is much more symmetric. It peaks at roughly the

same mass (108.5−9M�) as the spin cut distributions but shows at least as many

Fermi detected FSRQs have masses below this as above. This implies more low

mass black holes are highly spinning than the cosmological simulations account for,
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if high spin is required to produce a FSRQ type jet.

Fig.6.11b and d compare the predicted accretion rate distributions before and

after imposing a spin cut, and with the observed distribution (red line, Fig.6.11d).

Before imposing a spin cut, the predicted accretion rate distribution using both stan-

dard jet scalings and the alternative scalings peaks at −1 < log ṁ < 0.5, in agree-

ment with the observations (compare black lines Fig.6.11b with red line Fig.6.11d).

However after imposing a spin cut the predicted distributions are heavily distorted

towards the lowest accretion rates (−2 < log ṁ < −1.5, since below log ṁ = −2 we

assume the jet appears as a BL Lac not a FSRQ). This is clearly in disagreement

with the observations (compare blue and red lines, Fig.6.11d). This is again because

the cosmological simulation relies only on black hole-black hole mergers to produce

high spin black holes, and the most visible of these are those produced at late times

in the local universe and as a consequence they are slowly accreting. The blue dis-

tributions in Fig.6.11d show that imposing a spin cut has merely caused us to select

the ‘high accretion rate’ tail of the population of massive, generally lower accretion

rate black holes that are responsible for BL Lac type jets. In reality the observed

mass, accretion rate and redshift distributions suggest that this is not the popu-

lation of black holes primarily responsible for producing FSRQ type jets. Instead

there is a population of possibly highly spinning black holes that are smaller and

at higher accretion rates and our failure to match the redshift distribution suggests

they are at correspondingly higher redshifts. A solely chaotic model of accretion

cannot produce this population, as our simulations have shown. This provides sup-

port for models where accretion is more ordered and prolonged in the early universe,

allowing some highly accreting black holes to acquire and/or maintain high spins

and so produce FSRQ type jets. Then as accretion rates drop, accretion becomes

more disordered and chaotic, spinning most black holes down to zero. As a result

most black holes in the local universe are low spin, expect for a small fraction which

have undergone late gas-poor mergers, causing their black holes to spin up again.

These are the most massive black holes and since they are at low redshift they have

low accretion rates, so the relativistic jets they produce appear as BL Lac type jets,

not FSRQs.
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Our original simulations show that clearly not every black hole with ṁ > 0.01

produces a FSRQ jet. There is another condition which must be satisfied in order

to produce a highly relativistic Γ ∼ 13 jet. Assuming this condition is a highly

spinning black hole can dramatically reduce the predicted number of Fermi detected

FSRQs by the two orders of magnitude required to match the observations. The

fact that the shape of the observed mass and accretion rate distributions cannot

be matched indicates a limit on the ability of the cosmological simulations to track

the evolution of black hole spin. In which case the observed mass, accretion rate

and redshift distributions of FSRQs could prove a useful constraint for testing the

predictions of future cosmological simulations.

6.5 Other Assumptions

Clearly the jet scalings we adopt are one of the biggest factors affecting our re-

sults, however the calculation involves a number of other assumptions which we now

discuss.

The Fermi band flux from a FSRQ is dominated by Compton up-scattering of

seed photons from the BLR. We have approximated the BLR as a spherical shell of

radius RBLR centred on the black hole. However studies of line profiles have shown

that the BLR geometry may be more similar to that of a disc wind (Kollatschny

& Zetzl, 2013), in which case the material should have a more flattened geometry.

The BLR clouds which are reprocessing the disc luminosity are then clumps of

material thrown off the disc, possibly as part of a UV line driven disc wind. A

more flattened geometry means the BLR is behind the jet emission region not in

front, in which case the BLR seed photons will be deboosted and redshifted in the

jet frame. In order to produce the bright Compton emission of FSRQs requires a

source of seed photons in front of the jet emission region, so that the seed photons

appear maximally boosted with respect to the jet electrons. If the BLR does have

a flattened disc wind geometry then the seed photons we attribute to the BLR may

instead be provided by the narrow line region (NLR). The BLR would still provide

a source of seed photons but they are likely to scale differently with ṁ and M .
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We assume RBLR (or RNLR) scales as L
1/2
d , but for the case of a funnel-like disc

wind both the launch radius, the opening angle of the wind and the vertical height

material travels before bending outwards are all likely to scale with Ld in a more

complex way (Elvis, 2000).

We have also assumed that a fixed fraction of Ld is reprocessed by the BLR

(/NLR) and torus. Again this may not be the case. G10 find from spectral fitting

of a sample of FSRQs that the fraction does vary slightly, although not by much.

Consequently we consider this to be a small effect less important in our statistical

sample.

We have used the mean FSRQ spectrum of G10 as our model spectrum from

which to scale, however FSRQs are highly variable. During flaring the Fermi flux

can increase by more than an order of magnitude. As a result, distant FSRQs that

would not normally be detected may become visible. This would extend the tail of

the redshift distribution out to higher redshifts than otherwise expected. In only

modelling the typical FSRQ emission, such events have not been included in our

simulation.

We have also assumed that a FSRQ jet is produced for the entire time a black

hole is accreting with ṁ > 10−2. If instead the jet follows a duty cycle and is

only produced for a fraction of that time then this will reduce the number of Fermi

detected FSRQs. We overpredict the number of Fermi visible FSRQs by 2 orders

of magnitude assuming every black hole with ṁ > 10−2 produces a FSRQ jet. If

each of these black holes only produces a FSRQ jet 100th of the time then we could

match the observed numbers without needing any limits on the spin of the black

hole. However FSRQs should be the aligned analogues of FRII sources (Padovani

& Urry, 1992). The large scale radio lobes of FRII sources indicate that the jet

producing them must be persistent, since the time taken to produce such large scale

structures is of the order of megayears. One explanation may then be that the

large scale structure is produced by a persistent slower jet, while there is a fast

central spine with Γ = 13, which appears as a FSRQ when viewed head on and is

intermittent.

One final caveat to our results relates to the Doppler boosting of the jet emission.
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We assume the synchrotron, SSC and EC radiation is boosted by a factor δ3 in lumi-

nosity and shifted up by a factor of δ in frequency, where δ = (Γ− cos θ
√

Γ2 − 1)−1.

This is the approach adopted by G10 and crucially allows us to match our model

spectra to their observations. However Dermer & Menon (2009) point out that the

EC radiation should in fact be boosted by a factor of δ4 and shifted up in frequency

by δ2, due to the anisotropy of the BLR seed photon field in the jet frame. As a

result the beaming cone for EC jet emission is narrower than that of the synchrotron

and SSC emission. Since our simulations involve a range of Rdiss, including cases

where the dominant external seed photons move behind the emission region where

a δ4 boosting factor is not appropriate, we keep to the simpler model of G10 where

synchrotron, SSC and EC are all boosted by δ3. We note that an extra factor of δ

would increase the visibility of very highly aligned high redshift sources and would

improve the Compton dominance of highly aligned small mass objects. However,

including this extra factor does not affect the main conclusions of our work: that

in order to reproduce the number of Fermi detections not every black hole with

ṁ > 0.01 can produce a FSRQ jet, and if the requirement to produce one is high

spin then there must be more high spin black holes at 2 < z < 3 than chaotic

accretion models predict, suggesting accretion at early times may be more ordered

than at late times.

6.6 Comparing FSRQ and BL Lac Jets

FSRQs and BL Lacs are typically understood as representing the two ends of the

‘blazar sequence’. The transition from low power BL Lac to high power FSRQ can

be understood in terms of increasing accretion rate onto the central black hole. The

dimmest BL Lacs, produced by the lowest accretion rate black holes (ṁ < 10−3),

appear as high peaked BL Lacs (HBLs). Their low accretion rates mean lower

magnetic fields and injected electron powers, which result in less cooling so the

synchrotron and SSC emission peak at high frequencies. As accretion rate increases,

B and Prel increase, the amount of cooling increases so the electron distribution cools

down to lower Lorentz factors and the observed synchrotron and SSC spectra peak
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at lower frequencies. Increasing ṁ and the corresponding increase in B and Prel

switch the observed spectrum from a HBL to a low peaked BL Lac (LBL). As ṁ

becomes greater than 10−2, the accretion flow around the black hole switches to

a radiatively efficient disc, effectively turning on external sources of seed photons

and the jet stops being a BL Lac and appears as a FSRQ. In this picture, the jet

is the same in both cases, the only difference is the power input (B and Prel) and

the presence or absence of external seed photons, both of which are linked by a

dependence on the accretion rate. However in reality this is not the case. There are

fundamental differences between the two types of jet.

Comparison of the mean injected electron distribution parameters found by G10

for FSRQs and BL Lacs shows that γmax and γb are much larger for BL Lacs

(γmax ∼ 105 for BL Lacs compared to 103 for FSRQs and γb ∼ 104 compared to

102). The difference between BL Lacs and FSRQs is not simply that the electrons

have a different seed photon field to cool off. The accelerated electron distribution

is intrinsically different in FSRQs compared to BL Lacs. This suggests there is some

difference in the way electrons are accelerated, presumably by shocks, in FSRQ jets

compared to BL Lacs.

A more fundamental difference is in jet opening angle (φ). Here and in the

previous chapter we have used φ = 0.1, which is typically assumed for calculating

blazar spectra. However Krause et al. (2012) have shown that φ should be larger

for BL Lac jets. They find from hydrodynamic simulations that the jet opening

angle sets the large scale morphology of the jet, with FRII jets (corresponding to

misaligned FSRQs) being produced for opening angles < 24◦ (= 0.4 rad) and FRI

morphologies (corresponding to BL Lacs) being produced for larger opening angles.

Since φ relates Zdiss and Rdiss, this means that the same size emission region will

be located at smaller Zdiss for a larger opening angle. Since the calculation of BL

Lac spectra does not involve any external seed photons, the only change as a result

of accounting for a larger opening angle will be that the Zdiss derived from fitting a

given BL Lac spectrum will be smaller.

A related factor is that the mean BL Lac BLF is slightly larger than the mean

FSRQ BLF (15 compared to 13, G10). The BLF of the jet should influence where
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the dissipation region is, if it corresponds to a standing shock at the base of the jet.

For larger Γ material will travel further before shocking. The discontinuity in both

opening angle and BLF suggests that Rdiss and Zdiss should not scale continuously

between FSRQs and BL Lacs.

This break in the jet scalings is emphasised by the fact FSRQs do not appear to

follow standard jet scalings, while BL Lacs do. Standard jet scalings (where all size-

scales scale with mass and the power injected into relativistic electrons and magnetic

fields is a constant fraction of the accretion power) reproduce the observed transition

from HBL to LBL with increasing accretion rate in BL Lacs. The alternative jet

scalings (where Rdiss ∝ ṁM , which give a slightly better approximation to the

behaviour of FSRQs) cannot produce this transition. The peak of the synchrotron

spectrum from a BL Lac is determined by the minimum electron Lorentz factor

that can cool in one light crossing time, γcool. γcool ∝ (RdissUseed)
−1, where the

seed photons are provided by the magnetic field UB ∝ ṁM/R2
diss, hence γcool ∝

Rdiss/ṁM . Following standard jet scalings, Rdiss ∝ M and γcool ∝ ṁ−1, allowing

γcool to decrease as ṁ increases, which produces the transition from HBL to LBL. If

Rdiss ∝ ṁM then γcool stays constant and there is no transition from HBL to LBL.

Clearly BL Lacs cannot follow the alternative jet scalings, while FSRQs seem not

to follow the standard scalings.

6.7 Conclusions

We have combined models of FSRQ spectra together with prescriptions for how

they should scale with mass and accretion rate and the number densities of black

holes from cosmological simulations to predict the number of FSRQs that should be

observed by Fermi. If we assume all black holes accreting with ṁ > 10−2 produce a

FSRQ jet our simulation overpredicts the number of Fermi detected FSRQs by two

orders of magnitude. If we restrict the production of FSRQ jets to high spin black

holes (a > 0.77) we can reproduce the observed numbers, however the predicted

redshift distribution does not extend to as high redshift (2 < z < 3) as is observed.

An important factor in our simulations are the scaling relations we use to predict
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the spectra from FSRQs of different masses and accretion rates. We test these by

comparing our scaled models with gamma-ray loud NLS1s, which should be scaled

down versions of the more massive FSRQs. We find that standard scaling relations

(allowing all size-scales to scale with mass and assuming the power injected into

relativistic electrons and magnetic fields is a constant fraction of the accretion power)

significantly underpredict the amount of Fermi flux small mass FSRQs (∼< 108M�)

should produce. This is because they predict small mass FSRQs should have much

higher magnetic fields, while in reality the magnetic fields of γNLS1s are comparable

to those of normal mass FSRQs. High magnetic fields produce synchrotron and

SSC dominated spectra, with low Compton dominance. This is in contrast to the

predominantly EC, highly Compton dominant and consequently much more Fermi

visible spectra that are actually observed from γNLS1s.

In light of this we reran our simulations using an alternative jet scaling, where we

allowed the size-scales of the jet to scale with both mass and accretion rate. If the jet

emission region is a standing shock caused by some pressure balance between high

pressure material outflowing into less dense material this could plausibly depend

on accretion rate, with pressure equilibrium occurring further out and giving larger

size-scales for higher accretion rates. This allows the higher accretion rates of small

black holes to compensate for their smaller masses, giving magnetic fields for γNLS1s

more similar to those of normal mass FSRQs. Increasing the visibility of low mass

FSRQs by adopting these alternative scaling relations only increases the predicted

population of FSRQs, making the need for some other factor, such as a limit on black

hole spin, even more necessary to reduce the predicted numbers. However despite

increasing the visibility of low mass FSRQs, which should dominate at high redshifts,

we still cannot reproduce the observed population of FSRQs at high redshifts after

imposing a spin cut. This highlights a limit on the ability of the cosmological

simulations to track the evolution of black hole spin. We suggest this may be due to

the cosmological simulation we use only assuming chaotic accretion when tracking

black hole spin evolution, while in reality there may be a transition from prolonged

to chaotic accretion with decreasing redshift.



Chapter 7

A Physical Model for the X-ray

Time Lags of Narrow Line Seyfert

Type I Active Galactic Nuclei

7.1 Introduction

In the previous chapter we investigated gamma-ray loud Narrow Line Seyfert 1s

as scaled down versions of the more massive flat spectrum radio quasars. If the

powerful jets in these objects are the result of a highly spinning central black hole,

this suggests the ordinary radio quiet Narrow Line Seyfert 1s (NLS1s) should host

low spin black holes. In this chapter we use both the spectral and timing properties

of radio quiet NLS1s to investigate whether this is the case.

NLS1s are small mass, high mass accretion rate Active Galactic Nuclei (AGN).

One of the defining characteristics of NLS1s is their strong soft X-ray emission

(Boller et al., 1996). While the disc spectra of most AGN peak in the UV, the

relatively small black hole masses and high accretion rates of NLS1s mean that the

disc emission in these objects can extend into the soft X-rays. However a simple

combination of disc emission plus coronal power law is not sufficient to explain the

soft X-ray spectra of NLS1s. The disc rolls over very rapidly past its maximum

temperature, whereas the data show a much more gradual decline. An additional

component is required to explain the excess of emission at soft energies.

158
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Since the soft X-ray excess has a smooth shape, with no clear atomic signatures, it

can be well fit by an additional Comptonised component. However, the temperature

of this is remarkably constant at ∼ 0.2 keV across a range in mass and mass accretion

rates, requiring some unknown fine tuning mechanism (Czerny et al., 2003; Gierliński

& Done, 2004; Porquet et al., 2004). An alternative model is that the soft X-

ray excess is produced by reflection from a partially ionised disc. However this

also requires fine tuning of the ionisation state of the disc in order to consistently

generate sufficient change in opacity from partially ionised material at ∼ 0.7 keV

(Done & Nayakshin, 2007) and extreme relativistic effects are required to smear out

the resulting emission lines, as these are not seen in the data (Fabian et al., 2004;

Crummy et al., 2006). As a result the reflection must arise from the innermost disc

radii around a highly spinning black hole. Both models for the soft X-ray excess —

the reflection and the additional Compton component — can give equally good fits

to the X-ray spectra in the 0.3− 10 keV CCD bandpass.

Variability gives another way to distinguish between these two models. The dis-

covery of a lagged signal in the X-ray light curves of AGN has led to a breakthrough

in our ability to probe the structure of the emission region on the smallest scales.

The simplest interpretation of this lag is that it is due to the light travel time de-

layed response of the disc to X-ray illumination (Fabian et al., 2009). However, the

lag behaviour is complex; at long timescales (low frequency) the hard X-rays lag

behind the soft, while at high frequencies the opposite is true (Papadakis et al.,

2001; Vaughan et al., 2003; McHardy et al., 2004; Fabian et al., 2009; Zoghbi et al.,

2011; Emmanoulopoulos et al., 2011; De Marco et al., 2013). This is interpreted as

the interplay of two different processes, with propagation of fluctuations on longer

timescales giving rise to the hard lags, while reverberation from the disc takes over

on shorter timescales. Reflection from the disc produces an iron line and Compton

hump above 10 keV, but can also contribute to the soft X-ray band if the disc is par-

tially ionised, producing a soft lag at high frequencies (Fabian et al., 2009; Zoghbi

et al., 2011; Cackett et al., 2013).

However, an alternative explanation for the soft lags at high frequency was sug-

gested by Alston et al. (2014) (hereafter ADV14, also Zoghbi et al., 2011). They
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noted that another feature of X-ray illumination of the disc is that the non-reflected

flux is reprocessed as thermal emission. This provides another component which re-

verberates behind the hard X-rays in the same way as reflection, and can contribute

to the soft X-ray bandpass even if reflection itself does not produce much soft X-ray

flux.

Here we build a fully self consistent spectral and timing model, starting from fluc-

tuations generated intrinsically in the accretion flow which then propagate through

the system and including reflection/reprocessing with realistic transfer functions.

We focus on explaining the data from the NLS1 PG1244+026, where a range of

spectral and timing properties favour an additional Compton component. We ex-

plore the lags in this model, and then compare them with the lags expected from

reflection models for the soft X-ray excess, including the one specifically for this

object (Kara et al., 2014, hereafter K14).

7.2 Spectral Decomposition

We use the long (120 ks) XMM-Newton observation of PG1244+026 (OBS ID:

0675320101, as studied by Jin et al., 2013, hereafter J13; ADV14 and K14). We

use a similar spectral decomposition to J13 which assumes that the spectrum is

composed of three components: a (colour temperature corrected) blackbody (BB)

disc, a low temperature optically thick Compton component to describe the soft

excess, and a second optically thin Compton component to describe the hard X-ray

power law. We model these together using the publicly available model optxagnf,

which assumes that these three components are all powered by the accretion flow,

so the luminosity to power the soft excess and power law sets the truncation radius

Rcor of the standard BB disc emission (Done et al., 2012). This model assumes

that the soft excess arises at radii < Rcor, and a plausible origin is that this rep-

resents the inner regions of the standard disc, but that the emission here does not

completely thermalise, perhaps because of a larger scale-height (and hence lower

density) expected if there are strong winds from the disc (Done et al., 2012).

We also include moderately ionised reflection of the power law off the disc in
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Figure 7.1: a). Spectral decomposition for PG1244+026: disc (red), soft excess (green),
coronal power law (blue), reflection (magenta), total (black). Data points show time
averaged spectrum (OBS ID: 0675320101). b). Power spectrum of intrinsic fluctuations
in each model component: disc (red), soft excess (green), coronal power law (blue).

order to account for reflection features at 6 − 7 keV due to iron. J13 showed two

extreme fits, one where the disc was mostly neutral, the other where it was highly

ionised. ADV14 used these to explore the shape of the lag spectra, but here we use

the more likely (and better fitting) moderate ionisation reflection model. Fig.7.1a

shows the model components compared to the data, with full parameters detailed

in Table 7.1. We fix the inclination of the reflector to 30◦ and match the seed

photon temperature for the high energy Comptonisation to the temperature of the

soft excess.

7.3 Time Dependent Model

Ideally, the full (energy and frequency dependent) cross-spectrum should be directly

fit to constrain the intrinsic components — both their energy spectra and variability

properties. Since this inverse problem has not yet been solved, we do forward fitting

instead, using the spectral components from model fitting, and estimating their

variability from a combination of the observed power spectra and lag-frequency

spectra. We then calculate the various spectral-timing properties, and qualitatively

compare these to the observations.

There have been many timing studies of PG1244+026. In order to maximise
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Component Parameter Value
Galactic absorption Nh (1022 cm−2) 0.019
Intrinsic absorption Nh (1022 cm−2) 6.1× 10−11

redshift 0.048
bbody kT (keV) 0.062

norm 2.0× 10−4

nthcomp Γ 2.4
kTe (keV) 100
norm 1.9× 10−3

kdblur index 3.0
rin (Rg) 11
i (◦) 30

rfxconv relative refl norm -0.65
ZFe 1.0
log(xi) 1.3

comptt kTe (keV) 0.15
τ 190
norm 0.073

Table 7.1: Parameters for the spectral model shown in Fig.7.1a, with a sepa-
rate optically thick Comptonisation component producing the soft excess emission:
wabs*zwabs(bbody+nthcomp+kdblur*rfxconv*nthcomp+comptt).

diagnostic power, we choose to use the power spectra and covariance measured by

J13 and the coherence, lag-frequency and lag-energy spectra measured by ADV14.

We note that ADV14 used slightly different soft and hard energy bands (0.3−0.7 keV

and 1.2− 4.0 keV) compared to J13 (0.3− 1.0 keV and 2− 10 keV). Therefore when

calculating power spectra we use the hard and soft bands of J13 and use the energy

bands of ADV14 when calculating lags and coherence, in order to match to the

data. The equations for these calculations are given in the Appendix. Throughout

the figures, points show our model results, while the shaded regions illustrate the

range of the error on the values measured for PG1244+026.

We use the spectral components derived from the previous section — BB disc,

soft excess, power law and reflection — to determine the relative contributions of

each component to a given energy band. This then determines the power spec-

trum of that energy band. Since the observed power spectra of the hard and soft

bands are different, this implies different components dominate each band and these

components have fluctuations at different characteristic frequencies.
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7.3.1 Intrinsic Fluctuations: No Propagation

We assume fluctuations are generated intrinsically within the BB disc, soft excess

and corona. We assume the power spectrum of these fluctuations takes the form of

a Lorentzian centred around some characteristic frequency — fd, fs or fp, respec-

tively. This characteristic frequency will be different for each component and can be

associated with a viscous timescale in analogy with propagating fluctuation models

in black hole binaries (BHBs; Kotov et al., 2001; Arévalo & Uttley, 2006; Ingram &

Done, 2011; Ingram & Done, 2012a). Since our physical model describes an outer

disc, inner soft excess and corona, the relevant radii for each component decreases

from disc to soft excess to corona (and scale-height probably also increases), so the

characteristic frequency of fluctuations should increase.

This increase in characteristic frequency can be seen in the power spectra of

PG1244+026 (J13, ADV14). The soft band power spectra show more power at low

frequencies (f < 10−4 Hz), whilst the hard band power spectra show much more

high frequency power (f > 10−4 Hz). The corresponding lag-frequency spectrum

(ADV14) shows the soft band leading the hard band at low frequencies and lagging

it at high frequencies. This implies the low frequency fluctuations must be generated

in the soft band components (or at least pass through them) before reaching the hard

power law component, whilst the hard power law component must be the source of

the high frequency fluctuations, which then reverberate in the soft band to produce

soft lags at high frequencies. The switch between soft leads and soft lags occurs

at ∼ 10−4 Hz in PG1244+026, implying the characteristic frequency of intrinsic

fluctuations in the soft band components (disc and soft excess) are at frequencies

below 10−4 Hz, while the hard power law generates frequencies above 10−4 Hz.

Motivated by the observed power spectra and lag-frequency spectrum, we choose

fd = 3 × 10−5 Hz as the characteristic frequency of the fluctuations in the disc,

fs = 1 × 10−4 Hz for the soft excess, and use two Lorentzians (fp,1 = 3 × 10−4 Hz

and fp,2 = 1 × 10−3 Hz) to describe the breadth of the high frequency variability

in the coronal power law. We use the method of Timmer & Koenig (1995) to

generate fluctuations in each component, Ṁd,s,p(t). Each Ṁd,s,p(t) is normalised to a

mean of unity and fractional variability σ/I = Fd,s,p. This represents fluctuations of
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Figure 7.2: Model results with only intrinsic fluctuations, no propagation between com-
ponents. a). Soft band (0.3 − 1 keV, black) and hard band (2 − 10 keV, grey) model
power spectra. Red (blue) regions show range of error on soft (hard) band power spectra
measured by J13 for PG1244+026. b). Coherence between hard (1.2 − 4 keV) and soft
(0.3 − 0.7 keV) band model light curves. Grey regions show range of error on coherence
measured by ADV14 for PG1244+026.

the component around its time averaged value determined from the fit to the time

averaged spectrum.

For each time, t, the time averaged spectral components are multiplied by their

fluctuations, Ṁd,s,p(t), at that time and summed to give the total spectrum. In order

to allow for red noise leakage, we calculate the total spectrum for 220 timesteps with

dt = 100 s and then split it into ten 102.4 ks segments. For each segment we calculate

the power spectrum in the hard (2−10 keV) and soft (0.3−1 keV) bands and average

the ten power spectra to get a mean power spectrum.

Fig.7.1b shows the power spectrum of the fluctuations in each model component

(red: disc, green: soft excess, blue: power law). Fig.7.2a shows the resulting hard

and soft band power spectra in grey and black respectively, analogous to those in J13.

The red and blue regions show the error on the soft and hard band power spectra

measured by J13 for PG1244+026. The observed hard and soft power spectra are the

same within a factor of 2 below 10−4 Hz and a factor of 10 different at 10−3 Hz, with

much less high frequency power in the soft band. In our model, the power in the soft

band is much less than that in the individual disc and soft excess components which

contribute to it, because the power in both components is incoherent, so summing

them reduces the total power (Arévalo & Uttley, 2006). In contrast, the hard band
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is dominated by the power law with little dilution from other components, so the

hard band power spectrum is very similar to the power spectrum of the power law

component.

Fig.7.2b shows the coherence between the hard and soft band model light curves,

where 1 is perfect coherence and 0 is incoherence (Vaughan & Nowak, 1997; Nowak

et al., 1999). The components themselves are incoherent, so the coherence between

the soft excess and power law is 0. Although the hard band is dominated by the

power law and the soft band by the soft excess, the soft band also contains a non

negligible contribution from the power law. Thus some fraction of the soft band

light curve is correlated with the hard band, due to the presence of the power law

in both bands. Consequently the coherence at frequencies produced by the power

law is equal to the fractional contribution of the power law to the soft band.

The grey regions in Fig.7.2b show the range of the error on the coherence mea-

sured by ADV14 for PG1244+026. The measured coherence clearly shows the op-

posite trend, with the coherence being highest for low frequencies and dropping

between 10−4 − 10−3 Hz. In order to replicate this, we must allow fluctuations to

propagate inwards from the slowly varying soft components to the faster varying

coronal power law which dominates the hard band.

7.3.2 Propagating Fluctuations

We now allow the fluctuations to propagate inwards from the disc into the soft

excess and then to the corona. We choose this scenario, rather than allowing fluc-

tuations to pass directly from the disc into the corona, since J13 showed that the

soft excess rather than the disc provides the seed photons for Comptonisation in

the corona. This suggests that the soft excess and corona are more closely associ-

ated. Perhaps the disc and corona are spatially separated by the soft excess. Or

more likely in PG1244+026 (where the inner disc radius derived from the spectral

fit is ∼ 12Rg), the soft excess lies below the corona, with the corona formed from

material that has evaporated from the optically thick soft excess region beneath

it. A moderate scale-height corona extended above the soft excess would then re-

ceive a greater seed photon flux from the soft excess than from the disc. This is in
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agreement with the characteristic frequencies of coronal fluctuations (which cannot

vary on timescales faster than the source light crossing time), with the highest fre-

quency fluctuations (3×10−3 Hz) being generated at ∼ 6Rg and the lower frequency

fluctuations (10−3 Hz) being generated at larger radii ∼ 10Rg.

In this scenario the fluctuations in the soft excess therefore consist of the intrinsic

fluctuations (Ṁs,int(t)) generated in the soft excess, modulated by fluctuations that

have propagated inwards from the disc:

Ṁs(t) = Ṁs,int(t)Ṁd,int(t− tlag,s) (7.3.1)

where tlag,s is the time delay for propagation of fluctuations from the disc to the soft

excess. We set tlag,s = 1000 s, from the results of ADV14. As well as lagging, we

also smooth the propagating fluctuations on this timescale using a sliding boxcar

of width tlag,s. We note that this is much shorter than the expected lag times for

propagation, which should be related to the viscous timescale if NLS1s behaved as

scaled up BHBs (Ingram & Done, 2011), i.e. tlag,s ∼ 1
fvisc,d

− 1
fvisc,s

∼ 104 s. The light

travel time between 20−12Rg is ∼ 500 s for PG1244+026 (MBH ∼ 107M�), so this

could mean tlag,s represents a light travel time from the disc to the soft excess, i.e.

that the disc provides the seed photons for the optically thick Compton scattering

in the soft excess.

Similarly the fluctuations in the corona consist of the intrinsic coronal fluctu-

ations (Ṁp,int(t)) modulated by the smoothed and lagged fluctuations propagating

inwards from the soft excess:

Ṁp(t) = Ṁp,int(t)Ṁs(t− tlag,p) (7.3.2)

where tlag,p is the time delay for propagation of fluctuations from the soft excess to

the corona. We set tlag,p = 600 s, again guided by ADV14, and again note that this

is much closer to a light travel time than to a viscous propagation time.

Fig.7.3a shows the power spectra of the individual model components and of

the hard and soft band model light curves respectively. Due to accumulation of

fluctuations, the hard band power spectrum now has more low frequency power
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Figure 7.3: Model results allowing fluctuations to propagate from disc to soft excess
(tlag,s = 1000 s) to coronal power law (tlag,p = 600 s). a). Power spectra: disc (red),
soft excess (green), coronal power law (blue), soft band (0.3− 1.0 keV, black), hard band
(2−10 keV, grey). b). Coherence between hard (1.2−4 keV) and soft (0.3−0.7 keV) bands.
c). Lag-frequency spectrum between hard (1.2−4 keV) and soft (0.3−0.7 keV) bands. d).
Lag-energy spectrum calculated using 1.2−4 keV reference band: low frequency lag (2.3×
10−5−7.3×10−5 Hz), red points; high frequency lag (2.3×10−4−7.3×10−4 Hz), blue points.
Shaded regions show range of error on values measured by ADV14 for PG1244+026.
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than the soft band. The total power in the soft band has also increased, because

propagation of fluctuations means more of the power in the soft excess is correlated

with the disc power. We note that this model is indeed giving hard and soft power

spectra which are within a factor of 2 at 10−4 Hz yet different by a factor of 10 at

10−3 Hz, as required by the data. Fig.7.3b shows the coherence between the hard

and soft band model light curves, which is now highest at low frequencies due to the

inward propagation of the slower outer fluctuations. This gives a much better match

to the data. The coherence drops above 10−4 Hz since this is the maximum typical

frequency of fluctuations generated in the soft excess that can propagate down to

the coronal power law, which dominates the hard band.

In Fig.7.3c and d we show the lag-frequency and lag-energy spectra from the

model. We define the lag as a function of frequency as lag(f) = arg[C(f)]/(2πf),

where C(f) = S∗(f)H(f) is the complex valued cross spectrum, and H is the Fourier

transform of the hard band light curve and S is the Fourier transform of the soft

band light curve (Vaughan & Nowak, 1997; Nowak et al., 1999). A positive time

lag therefore corresponds to the soft band leading the hard, and negative lags to the

soft band lagging the hard.

At all frequencies below ∼< 6 × 10−4 Hz, the model soft band leads the hard,

because these are the frequencies that are intrinsically generated in the disc and soft

excess, which propagate down to the corona.

This is shown more clearly in the lag-energy spectrum (Fig.7.3d). For each energy

bin we calculate the cross spectrum of the light curve of that energy bin with a hard

reference band light curve (minus the energy bin light curve if the energy bin lies

within the 1.2−4 keV reference band). We plot the value of the lag at low frequencies

(2.3 × 10−5 − 7.3 × 10−5 Hz) in red in Fig.7.3d. A negative lag now represents the

energy bin leading the hard reference band. The model light curves at energies

dominated by disc and soft excess emission (< 1 keV) lead the hard reference band,

with a lag that decreases as the energy of the bin increases. This matches the disc

contribution decreasing with increasing energy and being replaced by the soft excess,

which has a shorter time delay between it and the coronal emission, until ∼ 1 keV

by which point the coronal emission begins to dominate the total spectrum and the
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low frequency lag reduces to 0.

In blue in Fig.7.3d we plot the value of the model lags at high frequencies (2.3×
10−4 − 7.3 × 10−4 Hz), corresponding to frequencies generated in the soft excess.

These show a negative lag at low energies. The energy spectrum of the lag matches

the energy spectrum of the soft excess (cf. Fig.7.1a). The lag is a maximum for

energy bins corresponding to the peak of the soft excess (∼ 0.3 keV). It decreases

towards higher energies as the soft excess emission is gradually replaced by power

law emission. It decreases towards lower energies because the soft excess emission is

replaced by the disc, which doesn’t generate strong fluctuations at high frequencies.

However, even at its maximum the measured model lag is only ∼ 200 s, whilst the

actual lag time input into the model for propagation from the soft excess to the

power law is 600 s. This is a result of dilution. The soft band contains contributions

from the disc and power law in addition to the soft excess component. The small

contribution from the power law (which has zero lag with respect to the power law

dominated hard band) reduces the net lag that is actually measured. Since we can

only ever measure the net lag, the lag measured between two bands should never be

taken as representing a ‘true’ delay between components, since it will always be a

combination of the lags from each component contributing to that band weighted

by their contributions to the total flux in the band.

In Fig.7.3c and d we also show the lag values measured by ADV14 for PG1244+026;

the shaded regions show the range of the errors. Clearly the propagating model has

no way of producing the observed soft lags (negative grey regions and positive blue

regions). These are generally attributed to reverberation but there is an alternative

way to produce spectral lags/leads and that is by spectral pivoting. We explore this

first below.

7.3.3 The Effect of Power Law Spectral Pivoting

So far we have taken a simple approach of multiplying the time averaged spectral

components by their fluctuations. This is justified for components that retain their

spectral shape and only change in normalisation with addition of fluctuations, i.e.

the disc and soft excess. However the power law has a spectral slope set by the
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balance of heating and cooling in the corona, so its shape should be affected by

fluctuations in the corona and also in its seed photons, which come from the soft

excess (J13). In order to allow for this, we use the Comptonisation code eqpair

(Coppi, 1999) to replace the simple power law fit from the time averaged spectrum.

This calculates the spectrum of the Comptonised emission for a spherical region of

size r, optical depth τ , seed photon temperature kTseed, seed photon power ls and

heating power to the electrons lh. We fix the size of the emission region to 10Rg and

match the seed photon temperature to that of the soft excess (0.2 keV). We set the

mean values of the optical depth, seed photon power and ratio of heating to cooling

power to τ0 = 1, ls,0 = 1000 and lh,0/ls,0 = 1 in order to reproduce the slope of the

time averaged power law spectrum, and then allow them to vary according to the

coronal and soft excess fluctuations as:

τ(t) = τ0Ṁp,int(t) (7.3.3)

ls(t) = ls,0Ṁs(t− tlag,p) (7.3.4)

lh(t)

ls(t)
=
lh,0(t)

ls,0(t)

Ṁp,int(t)

Ṁs(t− tlag,p)
(7.3.5)

where Ṁp,int are the intrinsic fluctuations generated in the corona as before. Ṁp

therefore consists of a combination of the intrinsic fluctuations in coronal power and

the fluctuations in seed photon flux from the soft excess. This assumes that tlag,p is

not the lag time for fluctuations to physically propagate from the soft excess into

the corona, but instead the light travel time for seed photons. This has clear moti-

vation from the similarity of timescales between the propagation and reprocessing,

as determined by ADV14. It is not unlikely that there would be both transmission

of fluctuations through varying seed photon flux and also through physical propaga-

tion of accretion rate fluctuations, with a slightly longer lag time. However we can

only measure one net lag, and since it is closer to a light travel time that suggests

seed photon propagation makes a strong contribution. Therefore for simplicity we

assume all the transmission of fluctuations is via the seed photon flux in this model.

We normalise the resulting spectrum to have a total power equal to the input elec-

tron heating power plus the seed photon power. This approach allows us to account
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Figure 7.4: As in fig 3, but now for model with propagation of fluctuations from disc
to soft excess (tlag,s = 1000 s) and spectral pivoting of the power law assuming its seed
photons are provided by the soft excess (tlag,seed = tlag,p = 600 s).

for spectral pivoting of the power law resulting from the relationship between the

corona and its seed photons from the soft excess.

Fig.7.4 shows the resulting power spectra, coherence, lag-frequency and lag-

energy spectra. The pivoting model power spectra, coherence and lag-frequency

spectra are very similar to the non-pivoting case. However the lag-energy spectrum

at low frequencies has changed (Fig.7.4d, red points). There is a negative lag at

low energies, tending to zero at ∼ 1 keV. But instead of remaining at zero, as in the

non-pivoting case, a negative lag returns above ∼ 1 keV, increasing in strength with

increasing energy. This is due to the pivoting of the power law spectrum.

Poutanen & Fabian (1999) showed how such pivoting from spectral evolution

could cause time delays between hard and soft photons. They used a model for

short timescale variability in BHB systems where a magnetic reconnection event
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caused particle acceleration above the disc, heating the electrons. These are cooled

by Compton cooling off the copious seed photons from the disc, resulting in a soft

spectrum. If the reconnection event expands upwards then the flux of seed photons

drops and the spectrum hardens. This spectral change from soft to hard gives a

hard lag as seen in the data, but its origin is from the spectral evolution of a single

region rather than delays between spectra emitted from different regions.

In our pivoting model, the coronal spectrum is initially hard and an increase in

seed photons from the soft excess causes the coronal emission to soften. Hence this

appears as a soft lag (i.e. harder energy bins increasingly ‘lead’) in the lag-energy

spectrum. The hard reference band extends from 1.2 − 4 keV. Above 4 keV, the

‘lead’ increases with energy as the effect of spectral pivoting increases. However,

because the softening occurs on timescales associated with fluctuations in the soft

excess this does not cause soft lags at high frequencies but at low frequencies. The

leads are also at hard energies, whilst the data require soft leads. As a result, the

high frequency lag-energy spectrum from the pivoting model looks the same as in

the non-pivoting case (cf. Fig.7.3d).

The observed low frequency lag-energy spectrum of PG1244+026 does not appear

to show this characteristic pattern of soft lags at high energies (ADV14). In Fig.7.4d

we also show the range of the low frequency lag measured by ADV14 shaded in

pink. This is more consistent with remaining at zero lag, although the errors are

large. This suggests the power law component in PG1244+026 does not pivot, but

merely changes in normalisation like the other components. To produce a change in

normalisation without pivoting in the spectrum requires lh and ls to change together.

This suggests a situation where the corona is connected to the soft excess so that

a mass accretion rate fluctuation in the soft excess can increases the soft flux, but

can also propagate into the corona (perhaps through evaporation) to produce a

correlated increase in the power in hot electrons (lh).

7.3.3.1 Covariance Spectrum

In Fig.7.5 we show the 4 − 10 keV covariance spectra from the pivoting model (for

comparison we also show the covariance spectra from the non-pivoting model as
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Figure 7.5: 4−10 keV covariance spectra for low frequencies (2.3×10−5−7.3×10−5 Hz,
red) and high frequencies (2.3 × 10−4 − 7.3 × 10−4 Hz, blue) for the propagating model
including spectral pivoting of the power law (solid red and blue) and the propagating model
without spectral pivoting (dashed red and blue). Black solid line shows total spectrum,
dotted lines show model components.

dashed lines). This shows the spectrum of the variability that is correlated with

variations in the 4 − 10 keV band. Red shows the spectrum of the variability that

is correlated at low frequencies (2.3 × 10−5 − 7.3 × 10−5 Hz) and blue shows the

correlated variability at high frequencies (2.3×10−4−7.3×10−4 Hz). The covariance

is calculated as in J13 (see also Wilkinson & Uttley, 2009). Briefly, a light curve is

generated for each energy bin and also for the 4−10 keV reference band (subtracting

the light curve of the energy bin if that bin lies within the reference band). The

light curves are then Fourier transformed and the power set to zero for all frequencies

other than the range of interest. An inverse Fourier transform is then applied to

transform the filtered periodogram back into a light curve, now containing variability

only in a narrow frequency range. The covariance between the filtered energy bin

and reference band light curves is then calculated as in Wilkinson & Uttley (2009).

J13 showed that at low frequencies the spectrum of correlated variability in

PG1244+026 has the same shape as the total spectrum, i.e. there is correlated low

frequency variability in all components. Our model reproduces this (Fig.7.5, solid

red line), by propagation of slower fluctuations from the outer disc down to the inner

components.
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In contrast the observed high frequency variability correlated with the 4−10 keV

band drops off below 1 keV, following the shape of the time averaged coronal power

law. The high frequency covariance spectrum calculated from our model similarly

drops off below 1 keV. However the spectral slope of the correlated variability is

different depending on whether the power law is allowed to pivot (solid blue line) or

not (dashed blue line), with the slope being slightly harder than the time averaged

power law for the model including spectral pivoting. The observed high frequency

covariance does seem to suggest a slightly harder slope at the highest energies (J13),

which would favour a pivoting model. However the low frequency lag-energy spec-

trum clearly rules out this scenario. This shows that it is not sufficient for a spectral

model to match one aspect of the timing observations. A successful spectral model

must correctly reproduce them all and matching one does not necessarily mean it

will match the others.

In all subsequent simulations we choose to use the non-pivoting model since this

is what the data require.

7.3.4 Reflection

In order to fit the time averaged spectrum we require some of the coronal power law

to be reflected off the disc (Fig.7.1a, magenta component). The reflected component

should therefore respond to variations in the coronal emission, with a light travel

time delay. However there will be a range of time delays, as reflection will occur

first from inner parts of the disc and take longer to travel to larger radii. If we are

viewing the disc at some angle, not face on, the near side of the disc will appear

to respond before the far side. The fastest fluctuations in the coronal emission will

therefore be smoothed out. In order to account for this we calculate the transfer

function of the disc.

We assume reflection occurs from the innermost parts of the disc, between 12−
20Rg, since below 12Rg the disc is replaced by the soft excess, and beyond 20Rg

the solid angle subtended by the disc is rather small. This range of radii matches

the range used in our spectral fit.

The time delay (τ) for light reflected off a point on the disc at radius r from a
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Figure 7.6: Transfer functions for reflection off the disc (R = 12 − 20Rg, red) and soft
excess (R = 6− 12Rg, green).

central source is (Welsh & Horne, 1991):

τ =
r

c
(1− sin i cosφ) (7.3.6)

where i is the inclination of the axis of the disc to the line of sight and φ is the

angle between the point on the disc and the projection of the line of sight onto the

disc. Since we have not specified the geometry of the corona (beyond confining it to

the central regions < 10Rg) we do not include any general relativistic corrections

on photon light travel times. Given that we measure a low black hole spin from our

spectral fit this is a reasonable approximation.

We assume the disc of PG1244+026 is inclined at 30◦ with respect to our line

of sight, consistent with it being classed as a ‘simple’ NLS1, assuming that some of

the complexity of the ‘complex’ NLS1s (Gallo, 2006a) is from absorption/scattering

in a disc wind. We calculate the transfer function of the disc by summing the

contribution to the time delay from each azimuth of the disc over all relevant radii,

and show the result in Fig.7.6 (red line).

The fluctuations in the model’s reflected component will therefore be the fluctu-

ations of the coronal emission, convolved with this transfer function, ie:
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Figure 7.7: As in fig 3, but now for model with propagation of fluctuations from disc to
soft excess (tlag,s = 1000 s) to coronal power law (tlag,p = 600 s) including reflection off the
disc (R = 12− 20Rg, magenta).

Ṁrefl(t) =

∫ τmax

0

T (τ)Ṁp(t− τ)dτ (7.3.7)

Fig.7.7a shows the power spectrum of the reflected component (magenta), along

with the other spectral components. There is a clear drop off in power in the reflected

component above ∼ 3×10−4 Hz, corresponding to the highest frequency the transfer

function can transmit.

Comparing the model lag-energy spectra in Fig.7.3d with Fig.7.7d, shows that

including reflection has caused the highest energy bins (> 5 keV) to lag slightly

behind the 1.2 − 4 keV reference band at low frequencies (red points). This is the

region where reflection makes the largest contribution to the total spectrum (see

Fig.7.1a), due to the presence of the iron line at ∼ 6.7 keV.
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We find the reflection component alone is not enough to generate the observed

high frequency soft lags (Fig.7.7c) as its contribution to the soft band is too small

to overcome the soft lead from propagation.

7.3.5 Reprocessing on the Disc

Only a fraction of the coronal flux incident on the disc is reflected. The fraction

that is not reflected will thermalise in the disc and be reprocessed. This happens in

the same physical location as reflection, so will have the same transfer function, but

(unlike reflection) the reprocessed emission is concentrated in the soft X-ray band.

We first assume it is reprocessed on the BB disc, so that a fraction of the total flux

in the BB disc spectrum will come from reprocessed flux. We assume that half of the

coronal emission goes up — the half we observe as power law emission — and the

other half goes down, back towards the disc. The total reprocessed flux is then the

power law flux minus the flux of the reflected component: Lrep = (Ω/2π)Lp − Lref ,

where Ω/2π = 0.65 is the solid angle of the reflector as measured from the spectral fit

(Table 7.1). The fraction of total disc flux that is due to reprocessed emission is then

frep = Lrep/Ld ' 0.3 for our chosen spectral decomposition. The thermalisation time

is of order the Compton time for an AGN disc (∼ σTnc ∼ 0.5 s for n ∼ 1014 cm−3,

Stepney, 1983), hence we assume it is negligible compared to the timescale of coronal

fluctuations.

The fluctuations in the spectrum from the BB disc therefore consist of a sum of

the intrinsic disc fluctuations, which have fractional variability Fd around a BB of

luminosity fintLd = (1 − frep)Ld ' 0.7Ld, and the reprocessed fluctuations, which

follow the coronal fluctuations (smoothed out by a transfer function) around a BB

of luminosity frepLd, ie:

Ṁd(t) = fintṀd,int(t) + frep

∫ τmax

0

T (τ)Ṁp(t− τ)dτ

= fintṀd,int(t) + frepṀrep(t)

(7.3.8)

Fig.7.8 shows the model power spectra, coherence function, lag-frequency and
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Figure 7.8: As in fig 3, but now for model with propagation of fluctuations from disc to
soft excess (tlag,s = 1000 s) to coronal power law (tlag,p = 600 s) including reflection and
reprocessing on the disc (R = 12− 20Rg).
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lag-energy spectra, now including reflection and reprocessing on the disc. Compar-

ison of the model lag-frequency spectrum (Fig.7.8c) with Fig.7.7c shows that the

low frequency hard lags have been reduced. This is due to dilution of the intrinsic

disc fluctuations, which produce the hard propagation lags, by the reprocessed disc

component, which produces soft lags. The net lag at low frequencies is simply the

intrinsic hard lag minus the reprocessed soft lag, taking into account the relative

proportions of each. So for there to be a net hard lag at low frequencies requires that

the propagation lags dominate over the reprocessing lags. This is easily achieved

if the intrinsic flux dominates over the reprocessed flux (as in this case). However

it can still be achieved in situations where the reprocessed flux dominates, if the

propagation lag is sufficiently longer than the shorter light travel time reprocessing

lag to compensate for the smaller intrinsic fraction. But there must be a component

capable of producing the propagation lag. Thus the existence of hard lags at low

frequencies rules out models where the soft X-ray excess is produced by reflection

and a soft jet power law, as we will show explicitly in Section 7.4.1.

Fig.7.8d shows the model lag-energy spectrum. The high frequency lags (blue)

are almost identical to Fig.7.7d, except for the lowest three energy bins (< 0.4 keV).

These show a small lag behind the 1.2 − 4 keV hard reference band. Comparison

with the spectrum in Fig.7.1a shows that these are the only energies at which the

disc emission dominates over the soft excess. Between 0.4 − 1 keV the lag-energy

spectrum shows the energy bins leading the hard reference band, due to propagation

lags generated by the soft excess. In contrast, the observed high frequency lag-energy

spectrum shows all energy bins from 0.2 − 1 keV lagging the hard reference band

(Fig.7.8d, shaded blue regions).

ADV14 suggest this could be achieved by allowing the reprocessed fluctuations

to propagate from the disc down into the soft excess. The illuminating coronal

flux heats up the disc, which then re-emits the radiation as reprocessed flux. The

process of disc heating will alter the viscous frequency, allowing matter to propagate

faster. In this way, fluctuations in the illuminating continuum can become accretion

rate fluctuations in the disc, which can propagate inwards just like the intrinsic

fluctuations.
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Figure 7.9: Model lag-frequency spectrum, including reflection and reprocessing off the
disc and propagation of reprocessed fluctuations. Shaded grey regions show range of error
on the lags measured by ADV14 for PG1244+026.

To test the effect of this we now allow both the intrinsic disc fluctuations and

fluctuations generated by reprocessing to propagate into the soft excess (and on to

the corona). Since the coronal emission is now affected by the delayed propagated

fluctuations, which are in turn affected by the time lagged coronal emission, we must

iterate to find a self consistent solution. We first calculate the intrinsic disc, soft

excess and power law fluctuations at each time. We then allow these fluctuations to

propagate inwards and calculate the fluctuations of the reflected/reprocessed com-

ponent as a function of time (Ṁrep(t)). The BB component should consist of a

sum of these two components: the intrinsic fluctuations (weighted by fint) and the

reprocessed fluctuations (weighted by frep), i.e. Ṁd(t) = fintṀd,int(t) + frepṀrep(t).

We repeat the calculation with this new Ṁd, now including the reprocessed fluctua-

tions, and again calculate Ṁrep. This is fed into the next iteration and the process

repeated until successive iterations result in a total fractional change in the power

law fluctuations of less than 10−3.

Fig.7.9 shows the resulting model lag-frequency spectrum, which is nearly iden-

tical to Fig.7.8c and still lacks a high frequency soft lag. We find any propagated

reprocessed fluctuations are not strong enough to overcome the intrinsic soft excess

fluctuations, which cannot themselves be reduced without losing the hard propaga-
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Figure 7.10: As in Fig.7.3, but now for model with propagation of fluctuations from disc
to soft excess (tlag,s = 1000 s) to coronal power law (tlag,p = 600 s) including reflection and
reprocessing on the soft excess (R = 6 − 12Rg) (crosses). Solid circles show model with
half the reprocessing occurring on the disc, half on the soft excess.

tion lags. In order to replicate the observed lag-energy spectrum, the reprocessing

must occur not on the disc, but the soft excess.

7.3.6 Reprocessing on the Soft Excess

We rerun our model, this time with the reprocessing occurring in the soft excess.

We assume this has a reflection spectrum with the same ionisation as used for the

disc, i.e. matching that seen fit to the data in Section 7.2, since the structure

of this region is not known. We change our transfer function to match the size

of the soft excess region, ∼ 6 − 12Rg (Fig.7.6, green line). This increases the

maximum frequency of the reflected/reprocessed power in the model (Fig.7.10a,

magenta points). Consequently the model coherence remains high up to higher
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frequencies (compare crosses Fig.7.10b with Fig.7.8b).

Fig.7.10c (crosses) shows the model lag-frequency spectrum, which shows hard

propagation lags at low frequencies (∼< 10−4 Hz) and a soft reprocessing lag be-

tween 10−4 − 10−3 Hz. This is in much better agreement with the observed lags of

PG1244+026 (ADV14).

Fig.7.10d shows the model lag-energy spectrum. The high frequency lag (blue

crosses) shows the soft energy bins lagging the hard reference band for nearly all

energies below ∼ 1 keV, in much better agreement with the observations. Only

the very lowest energy bins, where the disc dominates, now lack a strong soft lag.

It is likely there is reprocessing on both the disc and soft excess, though clearly

reprocessing in the soft excess region dominates in the band of our observations.

The soft excess is less luminous than the disc, as a consequence the fraction

of reprocessed to intrinsic emission is much larger with fint = 0.3, frep = 0.7,

while when reprocessing is confined to the disc the fractions are roughly reversed.

Allowing for some reprocessing on the disc as well as the soft excess would reduce

the reprocessed fraction. Nevertheless, even in this limiting case, the model still

produces soft leads in addition to reverberation lags. This is because the propagation

time lags between soft excess and corona are longer than the light travel time delay

for reverberation, so can be more heavily diluted without losing the net lead at low

frequencies.

However, a very high reprocessing fraction on the soft excess will affect the model

covariance spectrum. In particular, the spectrum of the correlated variability at high

frequencies will be extended to lower energies. We calculate the covariance spectra

for the soft excess reprocessing model to check they do not disagree with the data

and show them in Fig.7.11 (solid red and blue lines). The low frequency correlated

variability still matches the shape of the total spectrum, in agreement with the

observations. The high frequency correlated variability now rolls over at ∼ 0.6 keV

rather than 1 keV, due to the amount of reprocessing on the soft excess. The dashed

red and blue lines in Fig.7.11 show a model where half of the flux available for

reprocessing is reprocessed on the soft excess and the other half is reprocessed on

the disc. This increases the energy of the roll-over. Hence both the high frequency
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Figure 7.11: 4−10 keV covariance spectra for low frequencies (2.3×10−5−7.3×10−5 Hz,
red) and high frequencies (2.3 × 10−4 − 7.3 × 10−4 Hz, blue) for the model including
reprocessing on the soft excess (solid red and blue) and model including reprocessing on
both the soft excess and the disc (dashed red and blue). Black solid line shows total
spectrum, dotted lines show model components.

lag-energy spectrum and high frequency covariance spectrum suggest there is some

reprocessing on both the disc and the soft excess. In Fig.7.10b, c and d we also show

the coherence, lag-frequency and lag-energy spectra for the combined disc and soft

excess reprocessing model (circles). This shows that a model with a combination of

propagating fluctuations, from the disc through a separate soft excess component

to the coronal power law, together with reprocessing on both the disc and the soft

excess component, can capture all the main features of the data.

We note that including reprocessing on the disc as well as the soft excess does

not exactly match the shape of the high frequency lag-energy spectrum. This is

because the disc reprocessing is likely to be concentrated on the inner edge of the

disc, which our simple model doesn’t account for. In other words, the data suggest

the reprocessed emission should have a spectrum similar to that of the soft excess

component, but extending to slightly lower energies to include the innermost radii

of the disc.
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7.4 Comparison with a Reflection Model for the

Soft X-ray Excess

Reflection dominated models have a strong soft X-ray excess from a combination

of line and continuum. However, the observed soft X-ray excess is smooth, so this

requires strong relativistic smearing. In complex NLS1s such as 1H0707–495, this

smearing is so extreme as to require strongly centrally concentrated emissivity (∝
r−7) onto a high spin black hole (Fabian et al., 2009). This makes all size-scales,

and hence reflection/reprocessing lag times shorter.

However, while this can reproduce the soft lags, a single power law which varies

only in normalisation and its constant ionisation reflection cannot match the soft

lead at low frequencies. Chainakun & Young (2012) showed that the mismatch was

made worse by including the radial and time variability of the ionisation of the

reflector which should arise from the extremely centrally concentrated and variable

illumination. This means that more complex continuum models are required to

match the spectral-timing data, in particular to match the soft lead.

7.4.1 Hard Coronal Power Law and its Reflection with Ad-

ditional Soft Power Law from the Jet

K14 decompose the spectrum of PG1244+026 as a soft power law, together with a

harder power law and its reflection (Fig.7.12a, see Table 7.2 for spectral parameters).

The soft power law then gives an additional component which could give a source

for the soft lead. However, they interpret this soft power law as coming from the jet.

Since fluctuations propagate through the accretion flow and then up the jet, the soft

emission from the jet should always lag the harder emission from the accretion flow.

In this model there is no component of the soft emission which leads the power law,

as reflection also always lags, so this cannot give an origin for the soft lead seen in

the data at low frequencies. We show this explicitly below.

We assume the intrinsic power law variations have a broad power spectrum

consisting of four Lorentzians centred at fvisc,p = 3 × 10−5, 1 × 10−4, 3 × 10−4 and
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Component Parameter §7.4.1/§7.4.3 §7.4.2 §7.4.4
Galactic absorption Nh (1022 cm−2) 0.019 0.019 0.019
Intrinsic absorption Nh (1022 cm−2) 0.019 0.029 0.047
Hard power law Γ 2.26 2.3 2.3

norm 6.9× 10−4 7.3× 10−4 4.9× 10−4

Soft power law Γ 3.5 3.5 3.0
norm 1.6× 10−3 1.5× 10−3 9.3× 10−4

kdblur index 3.4 3.9 4.5
rin (Rg) 3.2 3.1 3.0

rfxconv relative refl norm -2.6 -3.2 -2.8
log(xi) 2.7 2.7 3.0

bbody kT (keV) - 0.027 0.032
norm - 4.0× 10−3 3.6× 10−3

Table 7.2: Parameters for the spectral models shown in Fig.7.12–Fig.7.15, with reflec-
tion dominating the soft X-ray excess emission. a). Model used in Sections 7.4.1 and
7.4.3: wabs*zwabs(powerlaw + powerlaw + kdblur*rfxconv*powerlaw). b).
Model used in Section 7.4.2: wabs*zwabs(bbody + powerlaw + powerlaw + kd-
blur*rfxconv*powerlaw). c). Model used in Section 7.4.4: wabs*zwabs(bbody +
powerlaw + powerlaw + kdblur*rfxconv(powerlaw + powerlaw)). For all
models ZFe was fixed at 1.0.

1 × 10−3 Hz, representing the accumulation of fluctuations generated at different

radii. This is necessary to replicate the broad range of power observed in the hard

band power spectrum. Since there are no disc/soft excess components, all these

frequencies must be generated intrinsically in the power law. The jet power law

peaks in the soft band. Since the observed soft band power spectrum has less high

frequency power than the hard band, we assign the intrinsic jet fluctuations a power

spectral Lorentzian at 1×10−4 Hz. Since the data require a drop in coherence above

104 Hz, we allow fluctuations to propagate from the corona up into the jet with a

lag time of tlag,jet = 104 s. This means any fluctuations faster than 1
tlag,jet

should

be smoothed out, causing a drop in coherence at 10−4 Hz. We calculate the disc

transfer function between rin = 1Rg and rout = 12Rg, to better match the smaller

radii used to calculate the reflection spectrum in K14. We assume the ionisation

state of the reflector remains constant with both radius and time (Chainakun &

Young, 2012).

Fig.7.12 shows the resulting model power spectra, coherence, covariance, lag-

frequency and lag-energy spectra. The model power spectra for the hard and soft

bands are nearly identical (Fig.7.12c). This is in disagreement with the observations,
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Figure 7.12: Results for model with a hard coronal power law and its reflection with
additional soft power law from the jet. tlag,jet = 104 s for propagation of fluctuations from
the corona to the jet. Reflection from R = 1 − 12Rg. a). Spectral decomposition: soft
jet power law (green), hard coronal power law (blue) and reflection of the hard power law
(magenta), with total shown in black. Data points show time averaged spectrum (OBS
ID: 0675320101). b). 4 − 10 keV covariance spectra for low frequencies (2.3 × 10−5 −
7.3×10−5 Hz, red) and high frequencies (2.3×10−4−7.3×10−4 Hz, blue). Black solid line
shows total spectrum, dotted lines show model components. c). Power spectra: jet (green),
coronal power law (blue), reflection (magenta), soft band (0.3−1.0 keV, black), hard band
(2−10 keV, grey). d). Coherence between hard (1.2−4 keV) and soft (0.3−0.7 keV) bands.
e). Lag-frequency spectrum between hard (1.2 − 4 keV)and soft (0.3 − 0.7 keV) bands.
f). Lag-energy spectrum calculated using 1.2 − 4 keV reference band: low frequency lag
(2.3×10−5−7.3×10−5 Hz), red points; high frequency lag (2.3×10−4−7.3×10−4 Hz), blue
points. Shaded regions show approximate range of error on values measured by ADV14
for PG1244+026.
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which show more high frequency power in the hard band than the soft band (J13).

This is because all three components — soft power law, hard power law and reflection

— contribute strongly to both the hard and soft energy bands. To achieve a drop

in high frequency power in the soft band requires a long lag time between the hard

power law and the soft jet, to smooth out the high frequency variability. But because

the hard band consists of the same three components this also produces the same

effect in the hard band. Hence the incoherence between the hard and soft power

laws, required to limit the high frequency power in the soft band, also restricts the

amount of high frequency power in the hard band. Reducing the lag between power

law and jet to increase high frequency power in the hard band only serves to give

a worse match to the soft band power spectrum. Producing different hard and soft

band power spectra requires at least some of the components to be confined to one

band. This spectral decomposition does not meet this criterion.

The similarity of the model hard and soft band power spectra means the spectra

of the correlated variability at low frequencies and high frequencies are both identical

to the total spectrum (Fig.7.12b). This is in disagreement with the data, which

require the spectrum of the variability correlated at high frequencies to drop off

below 1 keV.

In Fig.7.12d we show the model coherence. For this model the coherence remains

high up to very high frequencies (∼ 10−3 Hz). This is despite our attempts to limit

the coherence with a long propagation time to the jet, and again is a result of all

three components contributing strongly to both hard and soft bands. In particular,

the small radii used for reflection allow the reflection component to respond at high

frequencies, which are coherent between hard and soft bands because reflection dom-

inates the soft X-ray excess and also the iron line region at ∼ 6.7 keV. Consequently

it is the roll-over in the reflected component power spectrum at ∼ 4× 10−4 Hz that

determines the drop in model coherence, not our jet lag time. This is in disagreement

with the observations, which show a drop in coherence at ∼ 10−4 Hz (ADV14).

The lag-frequency spectrum shows this model cannot reproduce the observed

soft leads at low frequencies (Fig.7.12e). This is shown more clearly in the lag-

energy spectrum (Fig.7.12f). At high frequencies the model lag-energy spectrum



7.4. Comparison with a Reflection Model for the Soft X-ray Excess 188

picks out the shape of the reflection spectrum (blue points). This roughly matches

the observed high frequency hard lags, although the lag times are a little short due

to the very small radii required to produce the relativistically smeared reflection. In

contrast, the model’s low frequency lag-energy spectrum does not match the data

at all. There is no slowly varying soft component in this model that leads the hard

power law. The only slowly varying component is the soft jet power law which can

only lag, since fluctuations go through the accretion flow before travelling up the

jet. Hence at low frequencies there is a soft lag which is inconsistent with the soft

lead seen in the data. Above ∼ 2 keV, the hard energy bins increasingly lead the

hard reference band as energy increases. This is a result of the contribution from

the soft jet power law to the total flux decreasing and causing less dilution of the

hard power law.

7.4.2 Hard Coronal Power Law and its Reflection with Ad-

ditional Soft Power Law from the Jet and a Disc Com-

ponent

We rerun the model of the previous section, this time assigning the lowest frequency

fluctuations (fvisc = 3 × 10−5 Hz) to a disc component (Fig.7.13a, see Table 7.2

for spectral parameters), and allowing them to propagate down to the power law

(tlag,p = 600 s) and on to the jet (tlag,jet = 104 s).

Fig.7.13 shows the resulting model power spectra, coherence, covariance, lag-

frequency and lag-energy spectra. In this model, the soft lags of the lowest energy

bins (∼< 0.4 keV) have been diluted but only the lowest energy bin has been diluted

enough to show a soft lead at low frequencies (Fig.7.13f). Even if the propagation

lag time to the jet component is reduced (to minimise dilution of the disc lead), the

disc makes little contribution to the spectrum above 0.4 keV, so cannot replicate the

observed soft leads up to ∼ 1 keV. The dominance of the jet spectrum together with

reflection, both of which lag the power law, prevent there being any soft leads at

these energies. Hence extending the model to include a separate very soft component

from the disc does not help, because the disc makes too small a contribution to the
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Figure 7.13: As in Fig.7.12, but for model with a hard coronal power law and its reflection
with additional soft power law from the jet and a disc component (red). tlag,p = 600 s for
propagation of fluctuations from the disc to the corona and tlag,jet = 104 s for propagation
from the corona to the jet. Reflection from R = 1− 12Rg.
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soft band to give a large enough effect, and its soft lead is swamped even at low

frequencies by the soft lag from the reflection component.

7.4.3 Hard Coronal Power Law and its Reflection with Ad-

ditional Soft Power Law from the Accretion Flow

Instead, the model lags match more easily to the data if the soft power law is

produced between the disc and the hard power law region, i.e. it comes from the

accretion flow rather than the jet (Fig.7.14a).

We assume the soft power law represents the outer parts of the accretion flow,

with a power spectrum consisting of two low frequency Lorentzians (fvisc,s = 3×10−5

and 1 × 10−4 Hz). We allow these fluctuations to propagate down into the inner

harder power law, which generates intrinsic fluctuations at fvisc,p = 3 × 10−4 and

1× 10−3 Hz. The inner harder power law produces the reflection.

Fig.7.14 shows the resulting model power spectra, coherence, covariance, lag-

frequency and lag-energy spectra. The model lag-frequency spectrum (Fig.7.14e)

now shows a soft lead below 2×10−4 Hz and a soft lag above ∼ 3×10−4 Hz. However,

producing this soft lead requires a lag time between the soft and hard power laws

double that of the previous separate soft excess model, due to the strong reflection

component causing much more dilution. The model lag-energy spectrum taken at

the frequency of the soft lead shows the energy bins lead the hard band at energies

below ∼< 0.6 keV, where the contribution from reflection decreases (Fig.7.14f, red

points). The highest energy bins (> 2 keV) lag the hard reference band at low

frequencies, with the lag increasing with increasing energy. This is because at 2 keV

the contributions from the hard and soft power laws are equal and above this energy

the fraction of total flux contributed by the leading soft power law decreases while

the fraction contributed by the lagging hard power law increases. The data do

not show a systematically increasing low frequency lag at high energies, despite the

large errors. This suggests whatever soft component is leading the hard power law is

confined to the soft band and does not contribute significant flux at energies above

2 keV. In other words, the low temperature optically thick soft excess component of

Section 7.3, which is confined to the soft band, provides a better match to the data
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Figure 7.14: As in Fig.7.12, but for model with a hard coronal power law and its reflection
with additional soft power law from the accretion flow. tlag,p = 1200 s for propagation of
fluctuations from the soft power law to the hard. Reflection from R = 1 − 12Rg. Low
frequency lag-energy spectrum now calculated between 7.3 × 10−5 − 2.3 × 10−4 Hz, high
frequency between 4.1× 10−4 − 1.3× 10−3 Hz.
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than an extended soft power law.

At high frequencies, the model lag-energy spectrum keeps the shape of the re-

flection spectrum (Fig.7.14f, blue points). However the small radii required for

relativistically smeared reflection mean shorter lag times, which do not match the

observed high frequency soft lags as well as the longer lag times produced by the

previous soft excess model, where reflection/reprocessing occurred at larger radii

(Section 7.3). The roll-over at 0.6 keV of the reflection spectrum also occurs at

too low an energy to reproduce the observed decrease in correlated high frequency

variability at 1 keV in the covariance spectrum (Fig.7.14b).

Whilst changing the order in which fluctuations propagate through the com-

ponents has given a better match to the lags compared to the original model in

Section 7.4.1, the spectral decomposition itself has not changed. Therefore this

model has the same problems replicating the power spectra and coherence as the

first model did, i.e. the model coherence remains higher than the observations at

all frequencies (Fig.7.14d) and the model hard and soft band power spectra are still

too similar, simply because both bands contain strong contributions from all three

spectral components.

7.4.4 Soft and Hard Coronal Power Laws plus Reflection

and a Disc Component

Finally we test the more complex model used to describe the NLS1 1H0707–495,

consisting of two power laws from the accretion flow, both with reflection spectra,

and a contribution from a BB disc.

As before, we assign the lowest frequency intrinsic fluctuations to the disc (fvisc,d =

3× 10−5 Hz) and increase the frequency of the fluctuations from the soft power law

(fvisc,s = 1 × 10−4 Hz) to the hard power law (fvisc,p = 3 × 10−4 and 1 × 10−3 Hz).

Since the soft power law represents the outer parts of the accretion flow, we calculate

the disc transfer function for its reflection between 12− 20Rg. We assume the inner

hard power law is reflected from the inner regions of the disc (1 − 12Rg). We set

tlag,s = 1000 s for propagation of fluctuations from the disc to the soft power law

and tlag,p = 600 s for propagation of fluctuations from the soft power law and to the
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Figure 7.15: As in Fig.7.12, but for model with soft and hard coronal power laws plus
their reflection (orange (R = 12− 20Rg) and magenta (R = 1− 12Rg) respectively) and
a disc component (red). tlag,s = 1000 s for propagation of fluctuations from the disc to the
soft power law and tlag,p = 600 s for propagation from the soft power law and to the hard.
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hard.

Fig.7.15 shows the resulting model power spectra, coherence, covariance, lag-

frequency and lag-energy spectra. Including two reflection spectra swamps the

propagation leads at low frequencies (Fig.7.15e). They are only visible in the model

lag-energy spectrum in the lowest energy bins dominated by the disc (Fig.7.15f, red

points). The model’s high frequency lag-energy spectrum (Fig.7.15f, blue points)

lacks a strong lag at the lowest energies due to the roll-over of the reflection spectra

and the lack of any reprocessing on the disc. The soft lags are also still too short to

match the data, despite including reflection from slightly larger size-scales, because

there is strong dilution by the other four components.

Moreover, this model suffers from the same problem as the three previous re-

flection models: the hard and soft bands both contain strong contributions from

(nearly) all components, leading to high coherence at all frequencies and very simi-

lar power spectra for both bands (Fig.7.15b, c and d). In contrast the data require

low frequencies to be generated in the soft band, high frequencies to be generated

in the hard band, longer disc transfer functions to limit the amount of high fre-

quency power transmitted back to the soft band and, importantly, for the main

reverberation response to be concentrated in the soft band not spread over both

bands.

7.5 Discussion and Conclusions

Time variability gives additional information which can break spectral degeneracies.

Any successful model must be able to fit both spectral and timing properties of the

data. Here we show quite generally that the switch in behaviour from soft leading

hard at low frequencies to soft lagging hard at high frequencies favours a model where

the majority of the soft X-ray excess is not produced by reflection, but consists of

a combination of emission from the accretion flow and reprocessed emission. We

show this explicitly using the simple NLS1 PG1244+026 as an example. Reflection

dominated models including a soft power law from the jet (K14) do not produce soft

leads at low frequencies, as fluctuations propagate to the jet only after they have
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gone through the accretion flow.

If the additional soft power law is from the accretion flow rather than the jet,

so the fluctuations propagate from the soft power law to the hard, these models

can produce soft leads but they do not match the shape of the observed lag-energy

spectrum, due to the soft power law extending into the hard band, and they cannot

match the other observed timing features of the data. The fact that reflection

contributes a large fraction of the flux in both the hard and soft energy bands

means these models produce high coherence over a wide frequency range, and very

similar hard and soft band power spectra. This is made worse by the small size-scales

over which the reflection occurs (necessary to produce such strongly relativistically

smeared emission), which allow the reflection component to respond at very high

frequencies. All this is at odds with the observations, which show a drop in coherence

between the hard and soft bands at high frequencies, and much less high frequency

power in the soft band compared to the hard.

Since the argument is quite general, it is likely that the similar model (disc plus

soft and hard power laws and their reflection) used for complex NLS1s, e.g. 1H0707–

495, cannot explain their data either. All the papers using this model concentrate

on how this fits the soft lags at high frequencies (Zoghbi et al., 2011; Kara et al.,

2013; K14), but the soft leading at low frequencies also needs to be explained and

any spectral decomposition must be able to replicate the observed power spectra

and coherence.

Instead, the switch in lag behaviour can be explained if the soft X-ray excess is

dominated by an intrinsically curved component, such as a low temperature, high

optical depth Compton component. Fluctuations start in the disc, propagate down

through this intrinsic soft excess component and then into the power law. Reflection

alone does not produce enough soft lag in these models as the reflected emission

makes too small a contribution to the soft X-ray bandpass. However, the non-

reflected flux should be reprocessed, and this reprocessed emission reverberates in a

similar way to reflection, as is seen in the BHBs (Uttley et al., 2011). Importantly

this response is concentrated in the soft band and high frequencies are filtered out

due to the larger radii involved. We explore two models of this reprocessed emission,
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one where it thermalises to the disc temperature, and one where it thermalises to

produce part of the soft excess. The low temperature of the disc in our spectral

models means that it does not contribute enough flux to the soft X-ray band to turn

the propagation soft lead into a lag, but thermalising to the soft excess can match

the switch in behaviour of the lag as a function of frequency. In reality there is likely

to be some reprocessing on both the disc and soft excess. We show that a model

including both gives a good match to all the timing observations.

An important additional finding from our simulations is that the observed lag-

energy spectra appear to show no evidence of spectral pivoting of the coronal power

law; the power law spectral slope does not vary on short timescales, and instead

only changes in normalisation. This lack of spectral pivoting could be explained if

there are correlated changes in coronal power and seed photons, perhaps through

evaporation of material from the soft excess into the corona. Alternatively this could

suggest that the coronal emission mechanism in NLS1s is non-thermal, so that the

seed photons only experience one scattering before escaping from the corona.

A model for the soft X-ray excess in which it consists of a combination of intrinsic

emission from the accretion flow, together with reprocessed emission, can fit all the

current spectral and timing properties of PG1244+026. Such models do not require

inner disc radii smaller than ∼ 6Rg, so put no constraints on the spin of the black

hole. In contrast, reflection dominated models for the soft X-ray excess, which

require the black hole to be highly spinning, can only replicate the high frequency

soft lags and cannot match the observed power spectra, coherence or covariance.

This is a direct consequence of the extremely small radii (∼ 1Rg) required to produce

these spectra and the dominance of the smeared reflection component in both the

hard and soft energy bands.

However, we note that neither model can explain the possible detection of very

high frequency soft lags by ADV14. We show that the model proposed by ADV14,

where the irradiated disc fluctuations propagate down to the soft excess, cannot

quantitatively explain this feature, suggesting this feature requires some additional

reverberation signal from smaller size-scales.



Chapter 8

Complex Narrow Line Seyfert

Type 1s: High Spin or High

Inclination?

8.1 Introduction

In the previous chapter we showed that the spectral and timing properties of the

simple Narrow Line Seyfert 1 (NLS1) PG1244+026 were best explained by a model

where the soft X-ray excess is a combination of optically thick Comptonisation and

reprocessing. In contrast, high spin, reflection dominated models did not provide a

good match to its behaviour. However some NLS1s have very different spectral and

variability properties.

All NLS1s show rapid X-ray variability (Leighly, 1999), but some also show deep

dips in the X-ray light curve. These dips coincide with the appearance of high energy

complexity in the 2 − 10 keV spectra, either gradual curvature or strong features

around the Fe Kα line energy. Gallo (2006b) termed these ‘complex’ NLS1s to

distinguish them from the ‘simple’ NLS1s which do not show dips and have relatively

power law like spectra from 2 − 10 keV. Two different models have been proposed

to explain the deep dips and associated spectral complexity: partial covering and

relativistic reflection.

In the partial covering model, the dips are caused by low ionisation material

197
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moving into the line of sight, increasing the absorption at the iron edge energy at

7.1 keV. This material can only partially cover the source as some fraction of the

flux at low energies is still seen (e.g. Inoue & Matsumoto, 2003; Turner et al.,

2007; Miyakawa et al., 2012). Conversely, in the relativistic reflection model the

dips are caused by an extremely compact X-ray source on the spin axis of the black

hole approaching the event horizon. The resulting strong light bending focusses the

intrinsic continuum away from the observer (producing the drop in flux) so it instead

strongly illuminates the very inner disc. For high spin black holes the resulting

spectrum can be dominated by highly smeared relativistic reflection, marked by a

strong but extremely broad and skewed Fe Kα line (e.g. Fabian et al., 2004; Miniutti

& Fabian, 2004; Fabian et al., 2009). In both models, the complex and simple NLS1s

are intrinsically similar, and can change from one to the other (as observed: Gallo,

2006b) depending on whether there is absorption along the line of sight, or in the

reflection model, whether the compact X-ray source is close to the horizon.

Both absorption and reflection models can fit the observed 0.3− 10 keV spectra,

as fitting complex models over a limited bandpass is highly degenerate. Variability

can be used as an extra diagnostic. Detection of a very short soft lag (∼ 30 s) in the

complex NLS1 1H0707–495 is often taken as unequivocal support for the high spin

relativistic reflection picture, as this implies distances of the source from the disc

of < 2Rg for a 3 × 106M� black hole. In contrast, the simple NLS1 PG1244+026

shows a much longer lag time of ∼ 200 s (Alston et al., 2014), consistent with the

source being somewhat further from the horizon if source height is assumed to cause

the difference between simple and complex sources.

Here we investigate the effect of the partial covering model on the timing proper-

ties of the source. NLS1s all accrete close to the Eddington limit, so it seems unlikely

that they are actually described by a flat disc, as assumed in the relativistic rever-

beration models. Global MRI simulations at Ṁin = 20ṀEdd show a complex flow

structure, with a large scale-height radiation pressure driven wind from the inner

disc carrying away 30% of the input mass accretion rate (Jiang et al., 2014). This

wind is likely to be less strong in PG1244+026 since this source is only Ṁin ∼ ṀEdd.

UV line driving is unlikely to help since the low mass and high mass accretion rate
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of NLS1s mean that their disc is too hot for its photosphere to have the required

opacity to UV line transitions (Hagino et al., 2015). Hence strong mass loss is not

expected in NLS1s, but some turbulent, clumpy, failed Eddington wind in the in-

ner disc could easily form (Jiang et al., 2014). High inclination angles have a high

probability of a clump intersecting the line of sight, while low inclination angles

are mostly free of obscuration, giving a potential mapping from complex to simple

NLS1 as a function of inclination. The spectral signature of this time dependent

absorption should be complex, depending on the amount of source occulted and the

ionisation state of the absorber.

Here we couple orbiting clump occultations with the full spectral timing model

developed in the previous chapter to explain the properties of the simple NLS1

PG1244+026. We investigate whether introducing occultations can replicate the

change in observed spectral and timing properties from a simple to a complex NLS1,

without requiring a highly spinning central black hole.

8.2 Linear Occulation

We choose to model the underlying accretion flow using the separate soft excess

model found in the previous chapter to well describe the spectral and timing prop-

erties of the simple NLS1 PG1244+026 (Gardner & Done, 2014a, hereafter GD14).

To briefly recap: we assume the accretion flow consists of three components. The

outermost radii form a standard accretion disc. This is truncated at some radius

(Rcor ∼ 20Rg). The remaining gravitational energy liberated between Rcor and the

innermost stable circular orbit (Risco) is used to power the remaining two compo-

nents: the soft excess and the corona. Below Rcor material is unable to thermalise

completely and form a cool accretion disc, perhaps due to a larger scale-height from

the photosphere lifting to form the (failed) wind. Instead some of the electrons emit

via optically thick Comptonisation of the cooler disc seed photons. This optically

thick Compton emission adds to the spectrum at low energies, producing an excess

of soft X-rays, hence we call the physical region producing this emission the ‘soft

excess’. An optically thin corona extends above the soft excess at the very smallest
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Figure 8.1: a). Physical location of accretion flow model components, as viewed at
high inclination (i = 70◦): disc (red), soft excess (green), corona (blue), obscuring cloud
(black). For simplicity we have approximated the geometry of the accretion flow as a
flattened disc. b). Spectrum emitted by each component, with total spectrum shown in
black, and hard and soft bands shaded in blue and red respectively.

radii. This corona contains hot electrons at lower density and higher energy than

the soft excess and provides a source of optically thin Comptonisation, using seed

photons from the cooler soft excess region (Jin et al., 2013).

Fig.8.1a shows the physical locations of each model component and Fig.8.1b

shows their contributions to the total X-ray spectrum. For simplicity we approxi-

mate the geometry of the accretion flow as a flattened disc. We model the wind as

a series of individual clouds which transit the flow (from left to right in Fig.8.1a,

co-rotating with the flow) and obscure the intrinsic emission. We assume identical

spherical clouds. The model has five free parameters: cloud transit time, cloud ra-

dius, cloud number density, transit latitude and cloud ionisation. In the following

sections (§8.2–8.3) we investigate the effect of occultations with no intrinsic varia-

tions in luminosity of the accretion flow components, i.e. we assume constant flux

from the underlying accretion flow. In all cases we assume an inclination angle of the

accretion flow with respect to the line of sight of 70◦ and black hole mass of 107M�

and define a soft band from 0.3 − 1 keV and hard band from 2 − 5 keV (shaded in

red and blue respectively in Fig.8.1b).



8.2. Linear Occulation 201

0.0 0.2 0.4 0.6 0.8 1.0
t/ttransit

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n
or

m
al

is
ed

fl
u

x

a

0 20000 40000 60000 80000 100000
Time (s)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

F
lu

x

b

10−5 10−4 10−3

f (Hz)

10−4

10−3

10−2

10−1

100

fP
(f

)

c

10−4 10−3

f (Hz)

−400

−200

0

200

400

600

800

1000

L
ag

(s
)

d

Figure 8.2: Model occulting a static accretion flow. a). Fractional flux drop for a single
occultation as a function of total transit time: disc (dashed red), soft excess (dashed
green), corona (dashed blue), hard band (2− 5 keV, solid grey; same shape as coronal flux
drop), soft band (0.3 − 1 keV, solid black). b). Sample hard (blue) and soft (red) model
light curves, showing effect of occultations. Dotted lines show unobscured flux level. c).
Hard and soft band power spectra (blue and red respectively). d). Lag-frequency spectrum
between hard and soft bands.
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8.2.1 Effect of Doppler Boosting

Fig.8.2a shows the fractional flux drop as a single cloud passes across a static accre-

tion flow. We assume the cloud reduces the observed flux by e−τ , where the optical

depth τ = 1 and does not vary with the energy of the incident radiation, i.e. the

material is completely ionised.

The dashed red line shows the drop in disc flux. Since the apparent size of the

disc is much larger than the cloud the drop in flux is small (< 10%). We assume

a radial emissivity profile for the disc of ε(r) ∝ r−3, so when the cloud occults the

outer parts of the disc the flux drop is small. The flux drop increases as the transit

progresses and the cloud begins to occult the brighter inner disc radii. The disc flux

recovers during the middle of the transit, as the cloud passes over the innermost

regions occupied by the corona and soft excess, and then drops again as the cloud

crosses the far side of the disc. The dashed green line shows the drop in flux from the

soft excess. This shows similar behaviour, but more centrally concentrated, since

the soft excess region is smaller. The corona shows the biggest drop in flux (dashed

blue line), being a similar size to the occulting cloud. The solid grey and black

lines show the flux drop in the hard and soft bands respectively. The hard band is

dominated by emission from the corona and hence shows a greater flux drop than

the soft band, which is dominated by emission from the disc and soft excess.

Fig.8.2b shows sample hard and soft band light curves (in blue and red respec-

tively), showing the effect of multiple occultations. Dotted lines show the unobscured

flux levels. The light curves are generated by allocating each cloud a random start

time for its transit of the disc. Each cloud has a radius of 5Rg and takes Ttr = 104 s

to cross the accretion flow (from left to right as seen in Fig.8.1a). On careful inspec-

tion of the light curves it can be seen that the width of the occultations is narrower

in the hard band than the soft band, due to the smaller physical size of the corona,

which is the main contributor of hard band flux.

Fig.8.2c shows the corresponding power spectra. The occultations add power to

the light curve at a frequency that is related to the transit time. In this simulation

all clouds were given a transit time of Ttr = 104 s, corresponding to a frequency

of 10−4 Hz. The power in the hard band peaks at a slightly higher frequency and
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greater amplitude. This is a direct result of the the shape of the flux drops shown

in Fig.8.2a. The more compact coronal emission experiences a narrower, deeper flux

drop than the more extended soft band components, hence occultations add more

power to the hard band and at higher frequencies. The width of the hard band flux

drop is ∼ 0.2Ttr ∼ 2×103 s, which corresponds to a frequency of 5×10−4 Hz. Hence

the power drops off sharply above 5 × 10−4 Hz. Nevertheless there is a low power

tail extending to higher frequencies in both bands. A single occultation cannot add

power at these frequencies. This power comes from the superposition of occultations.

The hard and soft band light curves in Fig.8.2b show that multiple occultations close

together can add variability on timescales much shorter than that of an individual

transit.

Fig.8.2d shows the lag as a function of frequency between the hard and soft

bands (calculated following Nowak et al., 1999). There is no lag at any frequency.

This is because, even though the soft band flux drop is wider than the hard band,

they are both symmetric around a common centre. Even though the soft band flux

drops before the hard, the hard flux then recovers before the soft with the same

time delay, cancelling out any net lag. This is the case for a stationary disc.

However the accretion flow is not stationary. Material should be rotating at the

Keplerian frequency. As a consequence material on one side of the flow is travelling

towards the observer and Doppler boosted, while on the other side the emission is

deboosted. Fig.8.3 shows the resulting flux drops, light curves, power spectra and

lags now including the effect of this Doppler boosting.

Fig.8.3a shows that the flux drop in each component is now no longer symmetric.

Doppler boosting means that the approaching side of the accretion flow appears

brighter than the receding side. We assume the occulting clouds are co-rotating

with the flow. The approaching side of the flow, which now contributes a greater

fraction of the total flux, is occulted first. Hence the first half of the transit shows a

much stronger flux drop. The receding side of the flow contributes much less flux to

the total spectrum, hence there is a much smaller flux drop during the second half

of the transit. This effect is more noticeable in the more extended components —

the disc and soft excess — and most noticeable in the soft excess, where the smaller
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Figure 8.3: Occultation model including effects of Doppler boosting. a). Fractional flux
drop for a single occultation as a function of total transit time: disc (dashed red), soft
excess (dashed green), corona (dashed blue), hard band (2−5 keV, solid grey; same shape
as coronal flux drop), soft band (0.3−1 keV, solid black). b). Sample hard (blue) and soft
(red) model light curves, showing effect of occultations. Dotted lines show unobscured flux
level. c). Hard and soft band power spectra (blue and red respectively). d). Coherence
between hard and soft energy bands. e). Lag-frequency spectrum between hard and soft
bands. f). Lag-energy spectrum calculated using 2 − 5 keV reference band. Red points
show energy spectrum of lag at low frequencies (2.3× 10−5 − 7.3× 10−5 Hz), blue points
show the lag-energy spectrum at high frequencies (2.3× 10−4 − 7.3× 10−4 Hz).
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radii give faster radial velocities and stronger Doppler boosting/deboosting. The

flux drops in the hard and soft bands (grey and black solid lines) are consequently

skewed towards the first half of the transit, with the soft band being more strongly

skewed. On closer inspection of Fig.8.3a, it can be seen that the soft band flux

now drops before the hard flux and recovers before the hard flux. The occultations

themselves have introduced a lag between the hard and soft energy bands.

Fig.8.3e shows the lag as a function of frequency between the hard and soft

energy bands. The only source of variability in the light curves is the occultations,

we keep the intrinsic flux from the accretion flow constant. By including the effects of

Doppler boosting, the occultations have introduced a soft lead of ∼ 300 s (a positive

lag value indicates the soft band leading the hard). This lead remains roughly

constant for the frequency range over which the occultations introduce power into

the light curves (∼ 5× 10−5 − 5× 10−4 Hz).

Fig.8.3f shows the lag as a function of energy. This is constructed by choosing a

reference band (in this case the hard band, 2−5 keV) and then dividing the spectrum

into a series of energy bins. The flux in each energy bin is summed up as a function

of time to create a light curve for that energy bin. The light curve of the energy

bin is then compared with the reference band light curve and the value of the lag

between the two is computed as a function of frequency. In Fig.8.3f we plot the value

of the lag from each energy bin for two frequency ranges: low frequency (red points,

2.3×10−5−7.3×10−5 Hz) and high frequency (blue points, 2.3×10−4−7.3×10−4 Hz).

This gives the energy spectrum of the lag at that frequency. For each energy bin, a

negative lag value implies that energy bin leads the hard reference band.

At low frequencies, energy bins below 1 keV lead the hard reference band, with

a lead that increases as the energy of the bin decreases (red points, Fig.8.3f). These

are the energies at which the disc and soft excess dominate. The soft excess emission

peaks at ∼ 0.5 keV, giving way to the disc at lower energies. Since the clouds occult

the outermost components first, crossing first the disc and then the soft excess before

passing in front of the corona, the low energy disc emission shows the strongest lead,

giving way to a slightly shorter lead from the soft excess at smaller radii and higher

energies. Above 1 keV the emission is dominated by the corona. These are the
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energies also covered by the reference band (2− 5 keV). Hence the lag of the energy

bins with respect to the reference band tends to zero at high energies (> 1 keV).

This pattern of soft leads (at low frequencies) is a signature normally associ-

ated with propagation; low frequency fluctuations are generated in the cooler outer

components and propagate down to the hotter smaller radii which produce the high

energy emission. Yet in this scenario we have produced soft leads simply by the

movement of absorbing clouds, i.e. occultations affect the lag-frequency and lag-

energy spectra the same way as propagation, by introducing soft leads.

Soft leads due to propagation of fluctuations are generally confined to low fre-

quencies, since large radii only generate slow fluctuations. The blue points in Fig.8.3f

show that occultations can continue producing strong soft leads up to much higher

frequencies. This is because the strength and frequency of the soft leads are no

longer determined by the properties of the accretion flow but by the properties of

the transiting clouds. However, comparison of the red and blue points in Fig.8.3f

shows that, while all energy bins below 1keV show a soft lead at low frequencies, at

high frequencies the two lowest energy bins (< 0.3 keV) switch from a soft lead to

a soft lag. These two energy bins are dominated by disc emission. High frequency

variability results from short timescale features in the flux drops shown in Fig.8.3a,

implying this soft lag confined to very low energy comes from the cloud covering the

deboosted side of the disc after covering the corona.

For completeness we also show the coherence between hard and soft energy bands

(Fig.8.3d), where 1 is perfect coherence between the two bands and 0 is incoherence.

The coherence remains high up to high frequencies, since occultation is the only

source of variability in the two light curves and is common to both. The coherence

drops off above ∼ 5 × 10−4 Hz, where the variability power introduced by the oc-

cultations also drops off. 5× 10−4 Hz corresponds roughly to the width of the hard

band flux drops (∼ 0.2Ttr ∼ 2× 103 s).

8.2.2 Effect of Transit Time

Fig.8.4 shows the effect of changing the cloud transit time. We increase the transit

time from Ttr = 5 × 103 s (black) to 1.5 × 104 s (magenta). The hard band power
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Figure 8.4: Effect of increasing cloud transit time on a). power spectrum and b). lag-
frequency spectrum, for Ttr = 5× 103 (black), 104 (blue) and 1.5× 104 s (magenta). Solid
lines show soft band (0.3− 1 keV) power spectra, dashed lines show hard band (2− 5 keV)
power spectra.

spectra (dashed lines, Fig.8.4a) clearly show that as the transit time increases, the

peak frequency at which power is added to the light curves decreases. The decrease

in peak frequency of approximately half an order of magnitude roughly matches the

threefold increase in transit time. The total amount of power added to the light

curves also increases by a similar amount in both bands.

Fig.8.4b shows how this affects the lag measured between the hard and soft band

light curves. For short transit times (5× 103 s, black), a short lag (∼ 150 s) is mea-

sured up to high frequencies (10−3 Hz). As the transit time increases, the maximum

frequency at which a lag is measured decreases. This is because occultations with a

longer transit time cannot add high frequency power to the light curves (as shown

by the power spectra in Fig.8.4a). The absolute value of the lag also increases,

since for longer transit times the clouds spend longer occulting the outer soft com-

ponents before they cross and occult the central corona. The measured lag drops

from ∼ 550 s to 150 s, roughly matching the decrease in transit time of a third from

1.5× 104 to 5× 103 s.

We note that increasing black hole mass or increasing the size scales of the

individual components has a similar effect on the power spectrum and variability as

increasing the transit time.
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Figure 8.5: Effect of increasing cloud radius on a). power spectrum and b). lag-frequency
spectrum, for Rcl = 5 (black), 10 (blue) and 15Rg (magenta). Solid lines show soft band
(0.3− 1 keV) power spectra, dashed lines show hard band (2− 5 keV) power spectra.

8.2.3 Effect of Cloud Radius

We now fix the transit time at 104 s and investigate the effect of changing the cloud

radius. Fig.8.5 shows the resulting power spectra and lag-frequency spectra for

Rcl = 5, 10 and 15Rg (black, blue and magenta lines, respectively).

Increasing the cloud radius increases the amount of power in the light curves.

The soft band shows the biggest increase (Fig.8.5a, solid lines), with the amount of

power at 10−4 Hz increasing by nearly one and a half orders of magnitude. The effect

is much less in the corona dominated hard band (just under an order of magnitude),

because the corona is much smaller, so that it is already completely obscured by a

small cloud of 5Rg. Increasing the cloud radius only prolongs the length of time

it is obscured. By contrast the much larger disc is never completely obscured by a

5Rg cloud. Increasing the cloud radius therefore increases the area of the disc that

experiences obscuration and hence adds more power to the soft band light curve.

The more noticeable change to the hard band light curve is that the frequency at

which the hard band power peaks decreases as the cloud radius increases (Fig.8.5a,

dashed lines). This is because, for a larger cloud radius (and fixed transit time),

the time taken between covering and uncovering the corona increases. Consequently

the transit cannot add as much high frequency power to the light curve. The peak

in power drops from ∼ 3 × 10−4 to 2 × 10−4 Hz, as more power is added at low
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Figure 8.6: Effect of increasing number of clouds on a). power spectrum and b). lag-
frequency spectrum, for ncl ∼ 5 × 10−4 (black), 10−3 (blue) and 1.5 × 10−3 (magenta)
clouds per second. Solid lines show soft band (0.3 − 1 keV) power spectra, dashed lines
show hard band (2− 5 keV) power spectra.

frequencies and lost at high frequencies.

Fig.8.5b shows the lag as a function of frequency between the hard and soft band

light curves. The lag measured actually slightly decreases as cloud radius increases.

This is because the larger the cloud the more time it spends obscuring hard and soft

components simultaneously. This results in very broad, very similar flux drops in

both the hard and soft bands. In contrast, the strongest soft leads are seen when

the cloud is small enough to obscure the blue wing of the disc and soft excess and

then the corona in turn. This results in much narrower flux drops in the hard and

soft bands, where the skew due to Doppler boosting (which causes the soft lead) is

much more prominent.

8.2.4 Effect of Cloud Number Density

Fig.8.6 shows the effect of increasing the number of occulting clouds. We fix the

cloud radius and transit time at 5Rg and 104 s and increase the number density of

clouds from ncl ∼ 5×10−4 (black) to 1.5×10−3 s−1 (magenta). Our total simulation

time is 1.024 Ms, in practice this corresponds to increasing the total number of

occulting clouds from 500 to 1500 clouds, each of which is assigned a random start

time for its transit.

Fig.8.6a shows that increasing the number of clouds increases the power spectrum
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Figure 8.7: Effect of increasing transit latitude on a). power spectrum and b). lag-
frequency spectrum, for zcl = 0 (black), 5 (blue) and 8Rg (magenta), where zcl defines the
apparent latitude of the centre of the clouds as shown in Fig.8.1a. Solid lines show soft
band (0.3− 1 keV) power spectra, dashed lines show hard band (2− 5 keV) power spectra.

normalisation without affecting its shape. This is because more occultations simply

add more power to the light curve. Both the hard and soft bands are affected

equally. Fig.8.6b shows that increasing the number of occultations has no effect on

the lag measured between the hard and soft band light curves. The value of the

lag is determined primarily by the transit time, with a weak dependence on cloud

radius.

8.2.5 Effect of Transit Latitude

In Fig.8.7 we show the effect of increasing the latitude of the cloud path so that it no

longer aligns exactly with the black hole. In all three cases we fix the cloud radius

and transit time to 5Rg and 104 s and the number density of clouds to 10−4 s−1.

We increase the apparent latitude of the cloud center from zcl = 0Rg (black) to

zcl = 8Rg (magenta). Fig.8.8 shows as an illustration the path taken by a cloud

transiting at zcl = 8Rg, where the dashed lines bound the region experiencing

obscuration.

Fig.8.7a shows the effect on the hard and soft band power spectra. As the latitude

increases the cloud only obscures the ‘back half’ of the accretion flow (z > 0Rg in

Fig.8.8). Consequently the power in the light curves decreases. By the time the

latitude has increased to 8Rg the cloud no longer obscures the central corona, hence
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Figure 8.8: Dashed lines show path of cloud across accretion flow for a high transit
latitude (zcl = 8Rg), with disc (red), soft excess (green), corona (blue), obscuring cloud
(black) and accretion flow viewed at i = 70◦.

there is almost no power in the hard band (hence no dashed magenta line), since we

have fixed the underlying accretion flow to have constant flux. Consequently high

latitude transits that do not occult the corona add power to the soft band that is

uncorrelated with the hard band.

The soft band power drops from ∼ 7 × 10−2 for a central transit (solid black

line) to ∼ 10−3 at the highest latitude (solid magenta line). Comparison of the

black and magenta solid lines shows that, not only has total power been lost, but

power has preferentially been lost at high frequencies. Below 5 × 10−5 Hz the two

soft band power spectra show the same shape, whilst above 5 × 10−5 Hz the high

latitude power spectrum shows a cut off, with the power dropping off sharply above

10−4 Hz. This is because the transiting cloud just clips the very edge of the disc

and soft excess. These regions of the flow are travelling nearly perpendicular to the

line of sight so experience very little Doppler boosting/deboosting. They therefore

carry only a moderate fraction of the total soft band flux. The shortest, sharpest

dips in the soft band light curve arise through the cloud occulting the innermost

parts of the disc/soft excess, which are centrally concentrated and strongly Doppler

boosted. These add the highest frequency components to the soft band light curve.

Occultations of the outer parts of the flow result in slower more gradual flux drops
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and hence add low frequency power. The coronal power law also contributes some

flux to the soft band, so with no coronal occultations that removes its additional

source of high frequency power.

Fig.8.7b shows the effect of increasing the transit latitude on the lag measured

between the hard and soft bands. As high frequency power is lost from both the

hard and soft bands, the measured lag begins to tend to zero at lower frequencies

(∼ 2×10−4 Hz for the high latitude magenta spectrum, compared to 7×10−4 Hz for

the central transit back spectrum). The lag tends more gradually to zero in the case

of the high latitude transit. This is again because the highest frequency components

come from the shortest, sharpest flux drops which arise from occulting the brightest

central regions. For a high latitude transit this is when the cloud just clips the small

part of the soft excess that appears at high latitude (i.e. large z and y = 0Rg in

Fig.8.8) at the midpoint of the transit. Because the coronal flux is not occulted,

occultation of the soft excess is the only source of variability in the hard band. It is

also the only source of high frequency variability in the soft band. When the source

of variability is the same in both bands, there can be no lag between them. Hence

as frequency increases above ∼ 2 × 10−4 Hz the lag tends gradually to zero as the

only source of variability becomes occultation of the soft excess in both bands.

8.2.6 Effect of Cloud Ionisation

So far we have approximated the absorption of the cloud as e−τ , where the electron

scattering optical depth, τ = 1 (equivalent to a pure hydrogen column of 1.5 ×
1024 cm−2, which is 1.25 × 1024 cm−2 for solar abundance material), is a constant

with energy. However this is only appropriate for completely ionised material. In

general, the optical depth of the cloud is a function of energy, depending on the

ionisation state of the cloud.

In Fig.8.9a we show our original model (dotted black line) compared to trans-

mission spectra for NH = 1.5× 1024 cm−2 at log ξ = 4 (magenta line) and at ξ = 0

(solid black line). The log ξ = 4 transmission spectrum is calculated using the

xspec model zxipcf. This assumes a turbulent velocity of 200 km s−1, so the line

strength can be enhanced for the same column density of material for higher veloci-
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Figure 8.9: Effect of changing cloud ionisation on a). transmission spectrum, b). power
spectrum and c). lag-frequency spectrum, for two cloud ionisation states: ξ = 0 (black)
and log ξ = 4 (magenta). Solid lines show soft band (0.3 − 1 keV) power spectra, dashed
lines show hard band (2− 5 keV) power spectra. Dotted line shows transmitted flux level
for constant e−τ , τ = 1.
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ties. The neutral spectrum is calculated using phabs. As before, we fix Rcl = 5Rg,

Ttr = 104 s, ncl = 10−4 s−1 and zcl = 0Rg. Having fixed both the optical depth and

cloud radius, this constrains the cloud density, since n = τ/(2RclσT ) ∼ 1011 cm−3.

The ionisation state of the clouds is related to their density and the X-ray luminos-

ity as ξ = LX/(nD
2), where D is the distance of the cloud from the central X-ray

source. For LX = 1042 erg s−1 and D = 20Rg, ξ ∼ 104.

Fig.8.9b shows that increasing the ionisation state of the cloud reduces the

amount of power added to the hard and soft band light curves. The difference

is roughly half an order of magnitude in both bands, since the change in opacity is

roughly the same for both bands. For a neutral cloud, the transmitted flux below

5 keV is zero. In contrast, when the cloud is highly ionised there is very little ab-

sorption left, so the fraction of transmitted flux rises to e−τ ∼ 0.3. This results in

shallower flux drops and hence less power in the hard and soft band light curves.

Fig.8.9c shows that changing the ionisation state of the clouds has no effect on

the lag measured between the hard and soft energy bands. The lag depends on the

motion of the cloud with time, not on the relative amounts of power carried by the

hard and soft bands.

8.3 Circular Occultation

So far we have modelled linear occultations, where the apparent velocity of the clouds

remains constant during the transit. However the clouds should be rotating with

the accretion flow, in which case their apparent velocity during the transit will vary

as a cosine function. During the middle of the transit the component of the cloud’s

velocity perpendicular to the line of sight is greatest and the cloud appears to move

faster. At the beginning and end of the transit the cloud is moving towards/away

from the observer, the component of its velocity perpendicular to the line of sight

is small and its apparent velocity is much slower. If the orbital radius of the clouds

is much larger than the radius of the region being occulted then linear occultation

is a reasonable approximation. As the orbital radius of the clouds becomes similar

to the occulting region size the effect becomes more important. A transit time of
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Figure 8.10: Change in a). power spectrum and b). lag-frequency spectrum when circu-
lar motion of clouds is taken into account (magenta), compared with linear occultations
(black). Solid lines show soft band (0.3 − 1 keV) power spectra, dashed lines show hard
band (2− 5 keV) power spectra.

104 s corresponds to a Keplerian orbital velocity at ∼ 20Rg for a 107M� black hole,

implying this effect should be taken into account.

Fig.8.10 shows the effect on the power spectra and lag-frequency spectrum. We

fix Rcl = 5Rg, Ttr = 104 s, ncl = 10−4s−1 and zcl = 0Rg and show the result of linear

occultations in black and accounting for circular motion in magenta. In the circular

case the cloud moves faster while it is occulting the brightest central region of the

accretion flow. As a result the flux drops are narrower. This adds more power at

higher frequencies, hence both the hard and soft band power spectra are shifted to

slightly higher frequencies for the case of circular occultations (Fig.8.10a).

Similarly the lag-frequency spectrum extends to slightly higher frequencies in

the circular motion case, showing a non-zero lag up to 10−3 Hz compared to 7 ×
10−4 Hz for linear occultations (Fig.8.10b). The measured lag is also shorter (∼ 200 s

compared to 300 s for linear occultations). Again this is a consequence of the cloud

moving faster during the central part of the occultation. The lag predominantly

arises from the delay between occulting soft excess and then coronal emission on the

Doppler boosted side of the flow and when the cloud is moving faster the delay is

shorter.
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Figure 8.11: a). Schematic of the simple NLS1 model of GD14. Slow fluctuations
propagate inwards from the outer components and are modulated by the faster fluctuations
generated at smaller radii. The high energy coronal emission then reflects off and is
reprocessed by the soft excess component. b). Scenario for the transition from simple to
complex NLS1 as a function of inclination, where the soft excess is a turbulent region of
rotating clouds which partially obscures the line of sight to the central regions in complex
NLS1s. The clouds are then responsible for the bulk of the reflected/reprocessed emission,
while partially obscuring the intrinsic emission.
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8.4 Transition from Simple to Complex NLS1 by

Including Occulting Clouds

We now investigate whether the addition of occultations can change the timing

properties of a simple NLS1 so that they appear more typical of complex NLS1s.

That is, can the effect of occultations reduce the maximum measured reverberation

lag from ∼ 200 s to nearer 50 s and shift it to higher frequencies?

In the previous sections we assumed constant flux from the underlying accretion

flow. We now replace this static model with the time dependent model of the pre-

vious chapter shown in Fig.8.11a (GD14). The disc, which is at the largest radii,

generates the slowest fluctuations. These propagate down to the soft excess, which

is at smaller radii and generates its own slightly faster fluctuations. The fluctu-

ations in soft excess emission therefore consist of the slow fluctuations from the

disc, delayed by some lag related to the propagation time, modulated by the faster

fluctuations generated in the soft excess. These fluctuations then propagate down

to the corona, which generates even faster fluctuations. The hard coronal emission

therefore shows fluctuations on a whole range of timescales, as it responds to mass

accretion rate fluctuations propagating down from all radii. A fraction of these cen-

tral hard X-rays illuminate the cooler soft excess and disc components. Some of

this illuminating flux will be reflected, the rest will thermalise and be reprocessed.

Fig.8.12 shows our spectral decomposition now including these reflected and repro-

cessed components. These come from the fit to the time averaged spectrum of the

simple NLS1 PG1244+026 (OBS ID: 0675320101, shown in black data points) used

in the previous chapter. For simplicity we assume all reflection/reprocessing occurs

on the soft excess (6 − 12Rg). Thus the fluctuations in the reflected/reprocessed

emission follow the coronal fluctuations (Fig.8.11a), except for the very fastest fluc-

tuations which are smoothed out by the range of light travel time delays. Hence the

reflected and reprocessed fluctuations are a lagged and smoothed version of the hard

coronal fluctuations. The soft excess therefore consists of intrinsic emission from the

accretion flow (dashed green line, Fig.8.12), which varies slowly due to intrinsic mass

accretion rate fluctuations in the soft excess and those that have propagated inwards
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Figure 8.12: Spectral decomposition for PG1244+026: disc (red), soft excess (green,
with dashed line for intrinsic emission, dotted line for reprocessed emission, solid line for
total), corona (blue), reflection (magenta), total (black). Data points show time averaged
spectrum (OBS ID: 0675320101). Grey line shows an example of the spectrum after
introducing absorption by intervening clouds.

from the disc, and reprocessed emission (dotted green line, Fig.8.12), which follows

the faster coronal fluctuations. In the previous chapter we showed that this model

can reproduce all the observed timing properties of the simple NLS1 PG1244+026

(GD14).

We use this model to describe the emission from the underlying accretion flow

as a function of time, and now add the effect of occulting clouds. We fix the cloud

parameters to Rcl = 5Rg, Ttr = 104 s and zcl = 0Rg. A transit time of 104 s

implies an orbital radius of 20Rg. Hence we reduce our transit radius from 40Rg in

Fig.8.1a to 20Rg and take into account the circular motion of the clouds. Since the

clouds are launched so close to the central X-ray source we allow them to be highly

ionised and use the magenta transmission spectrum shown in Fig.8.9a (log ξ = 4,

Nh = 1.5 × 1024 cm−2). 20Rg is consistent with the clouds being launched as part

of a failed Eddington (radiation pressure driven) wind from the soft excess region

as sketched in Fig.8.11b. Radiation pressure lifts material from the accretion flow,

which forms clumps as it rises (Takeuchi et al., 2014). As soon as the optical depth

of the clumps becomes τ > 1, some of the material is self-shielded from X-ray

photons. The mass of the clump is still the same but the radiation pressure on it
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is now less. If the source is not strongly super-Eddington, the radiation pressure is

not strong enough to expel the material so it falls back to the disc, resulting in a

failed rather than outflowing wind. The whole turbulent large scale-height region is

the source of the soft excess. Propagation of fluctuations occurs through the lower

disc-like regions, which are the source of the intrinsic emission, while the bulk of

the reflected and reprocessed emission comes from the turbulent clouds. We assume

the turbulent velocity is less than the orbital velocity (vturb < vKepl) and that the

clouds remain largely intact on the timescale of a single transit (although vKepl may

be sufficient to shred them on longer timescales, stripping off material before what

remains falls back to the disc). For a source at high inclination, these clouds will

intercept the line of sight to the central regions. As the clouds transit the line of

sight, we assume they obscure the intrinsic disc, intrinsic soft excess and coronal

emission. We do not obscure the reflected or reprocessed emission, since we assume

these are predominantly from the clouds.

8.4.1 Fourier Timing Properties

Fig.8.13 shows the resulting soft and hard band light curves (left and right respec-

tively). The top panels show the original simple NLS1 model with no occultations.

These light curves have power spectra that match the hard and soft band power

spectra of the simple NLS1 PG1244+026. In the subsequent panels we increase the

number of occulting clouds (ncl = 10−4 and 10−3 s−1). The occultations are most

obvious in the hard band, where the flux drops are conspicuously narrower than in

the soft band, due to the smaller physical size of the corona compared to the more

extended soft band components. These occultations add power to the light curve.

The most heavily occulted hard band light curve (bottom right panel) shows peaks

and deep troughs more typical of a complex NLS1.

Fig.8.14 shows the power spectra, lag-frequency spectra and coherence between

hard and soft bands for the same three simulations. Comparing the hard band

power spectra (Fig.8.14a, dashed lines) of the original model (black) with the most

heavily obscured model (magenta) shows that occultations have increased the power

at ∼ 3 × 10−4 Hz by almost one and a half orders of magnitude. Hard band power
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Figure 8.13: Soft band (0.3 − 1 keV, red) and hard band (2 − 5 keV, blue) light curves
showing effect of adding obscuring clouds to the simple NLS1 model of GD14. Top panels:
simple NLS1 model with no clouds. Middle panels: ncl = 10−4 s−1. Bottom panels:
ncl = 10−3 s−1. For both cases we fix the cloud parameters to Rcl = 5Rg, Ttr = 104 s,
zcl = 0, log ξ = 4 and NH = 1.5 × 1024 cm−2 and assume the clouds are launched from
∼ 20Rg.



8.4. Transition from Simple to Complex NLS1 by Including Occulting
Clouds 221

10−5 10−4 10−3

f (Hz)

10−4

10−3

10−2

10−1

100

fP
(f

)

a

10−4 10−3

f (Hz)

−200

−100

0

100

200

300

400

500

600

L
ag

(s
)

b

10−5 10−4 10−3

f (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

er
en

ce

c

Figure 8.14: Effect of adding occultations to the simple NLS1 model of GD14 on a).
hard band (2− 5 keV, dashed lines) and soft band (0.3− 1 keV, solid lines) power spectra,
b). lag frequency spectrum and c). coherence between hard and soft bands. Black lines
show simple NLS1 model with no clouds, blue ncl = 10−4 and magenta ncl = 10−3 s−1,
with cloud parameters as in Fig.8.13.
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spectra of complex NLS1s routinely show similarly high power at these frequencies.

Thus occultations are more than capable of increasing the hard band high frequency

power from the fP (f) ∼ 10−2 typical of a simple NLS1 to ∼ 0.1, as is typical of a

complex NLS1. The power increase in the soft band (solid lines) is much smaller

(roughly half an order of magnitude). However we have only included occultations

at zcl = 0Rg. Higher latitude occultations would add additional power to the soft

band, however this power would be uncorrelated with the hard band.

Fig.8.14b shows the lag as a function of frequency between the hard and soft

bands. The black points show the original simple NLS1 model, with a strong rever-

beration lag of ∼ 200 s at ∼ 5×10−4 Hz, matching that seen in PG1244+026. As the

number of occultations increases (blue to magenta), the maximum measured rever-

beration lag decreases from 200 s to 50 s and increases in frequency from ∼ 5× 10−4

to 10−3 Hz. This much shorter reverberation lag, at higher frequency, is much more

typical of those seen in complex NLS1s such as 1H0707–495. In our model, this is

a direct result of the soft leads introduced by the occultations at low frequencies,

diluting the reverberation lag and shifting its minimum to higher frequencies. This

is also in good agreement with the findings of Kara et al. (2013), who showed that

the reverberation lag of the complex NLS1 IRAS 13224–3809 is much shorter and

at higher frequency during low flux periods (when in this scenario it would be more

obscured) than high flux periods.

Fig.8.14c shows the coherence between hard and soft bands. As the number of

occultations increases, the coherence drops slightly, particularly at low frequencies

(from ∼ 1 to ∼ 0.8). This is due to the slightly differently shaped flux drops in the

hard and soft bands. The sudden drop in coherence at 10−4 Hz, characteristic of the

simple NLS1 PG1244+026, becomes less obvious in the more obscured simulations.

The coherence functions of complex NLS1s do show a more gradual drop in coherence

with increasing frequency, so this is not in disagreement with the data.

8.4.2 Spectral Changes

In Fig.8.12, in grey, we show an example of the total spectrum when the source is

highly absorbed. We assume the clouds are the source of the reflected and repro-
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cessed emission, hence these components are not absorbed. Consequently the low

flux spectrum is dominated by reprocessed emission at low energies (< 1 keV) and

reflected emission at high energies. This gives a total spectrum that is no longer

power law like but instead shows strong curvature, with a large soft excess and a

strong iron emission line. But the tell tale signature of highly ionised occultation

is the presence of highly ionised Fe Kα absorption lines at 6.7 and 6.95 keV. The

strength of these features is probably underestimated in our model as the zxipcf

model used assumes a turbulent velocity of only 200 km s−1, which is probably much

smaller than expected in a failed wind structure from the inner disc.

Strong highly ionised absorption lines are detected in the deep dip states of

several complex NLS1s such as MRK 766 (Miller et al., 2007), MCG 6-30-15 (Miller

et al., 2008) and MRK 335 (Gallo et al., 2013). It is possible that even higher

turbulent velocities in the failed wind could merge the 6.7 and 6.95 keV absorption

lines into each other, and into the absorption edge, which could produce the more

dramatic drop at Kα in 1H0707–495 (Hagino et al., 2015).

Our assumption that the clouds do not occult the reflected and reprocessed

emission sets a limit on the amount of absorption present in our model. Complex

NLS1s often show rather stronger drops at low energy, which in this scenario would

require that the clouds do also occult part of the failed wind structure or that our

reprocessed emission is overestimated due to our models taking only the model flux

rather than weighting this by the instrument response. Nonetheless, this model

demonstrates the potential of this scenario to match the spectral variability, given

a more sophisticated prescription for the reflected/reprocessed flux.

8.5 Discussion

We have shown that occultation of the accretion flow can introduce lags between

the hard and soft energy bands. In particular the occultations generate soft leads at

a frequency related to the transit time. For a transit time of 104 s, corresponding to

an orbital radius of 20Rg, these lags predominate at low frequencies (∼ 10−4 Hz for

a 107M� black hole). When combined with a model for the intrinsic variability of
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the accretion flow, these low frequency soft leads act to dilute the negative reverber-

ation lag, reducing the maximum measured lag and shifting it to higher frequencies,

reproducing the trend seen in the data from simple to complex NLS1. This can

plausibly be produced by increasing inclination with respect to a clumpy, turbulent

structure above the inner disc. Since NLS1s are high accretion rate sources, it is

likely that the inner regions of the disc will become ‘puffed up’ to a large scale-height

where the local accretion rate exceeds the Eddington limit (e.g. Jiang et al., 2014),

producing a turbulent structure capable of obscuring the innermost regions. Low

inclination sources are rarely occulted (simple NLS1s), while high inclination ones

have multiple occultations (complex NLS1s). The assumed higher inclination for

complex NLS1s also explains the observed association of extreme (deep dip) spectra

with warm absorbers. This is not causal, in that the warm absorbers are not dis-

torting our view of the extreme spectra (e.g. Chiang & Fabian, 2011), but is instead

a consequence of high inclination so that the line of sight is more likely to intercept

a wind driven from the torus/flattened broad line region (BLR). Importantly, the

occultations superimpose highly ionised absorption lines at FeKα in the dips, as are

seen in the data.

We show the evolution of the lag-frequency spectrum with increased occulta-

tions for a fixed black hole mass of 107M�, but this should also depend on black

hole mass. The intrinsic lags/leads in the spectral components should scale simply

with mass, as should the occultation timescale. However, mass for NLS1s is hard to

determine accurately, as they are accreting close to Eddington. Masses estimated

from line widths assume the BLR clouds are virialised. However the effective gravity

experienced by the clouds will be reduced due to radiation pressure from the cen-

tral source, leading to an underestimate for masses of NLS1s (Marconi et al., 2008).

Inclination is also another uncertainty, as the BLR velocity field is not completely

virialised, but contains a clear equatorial component (e.g. Collin et al., 2006; Kol-

latschny & Zetzl, 2013; Pancoast et al., 2014). Any equatorial component to the

velocity field will be suppressed in low inclination (simple) NLS1s, so their masses

will be systematically biased towards higher values compared to high inclination

(complex) NLS1s.
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Leighly (1999) gives the FWHM for the Hβ line widths in PG1244+026 and

1H0707–495 as 830 and 1050 km s−1, respectively. These are corrected for FeII

and have the narrow Hβ component subtracted assuming that this is 0.1× the

[OIII] line intensity (see also Leighly & Moore, 2004). Both sources have intrinsic

optical luminosities which are very similar, so these give masses which are 2.4× 106

and 3.7 × 106M�, respectively (Niko lajuk et al., 2009). The two object masses

may be even closer if the inclination dependence discussed above is important. An

Eddington correction to the mass of PG1244+026 increases the mass estimate to

107M� (Done et al., 2013), but this should also be similar for 1H0707–495. Hence,

while there are large uncertainties on masses for NLS1s, these two objects should

be very similar. At this larger mass, PG1244+026 is at the Eddington limit for a

low spin black hole (Done et al., 2013). A lower mass and/or higher spin pushes the

system to higher Eddington fractions, so making it even less likely that the disc is

flat.

Our model is more of a pilot study than a complete description. Obvious im-

provements are to include general relativistic effects of light bending on the disc

image (Fig.8.1a), e.g. Miniutti et al. (2014), Middleton & Ingram (2015). This

would be most important for the central coronal regions, as the far side of this

small source always has a small impact parameter with the black hole. This would

make the corona appear larger, so a 5Rg cloud may not occult the entire corona.

As a consequence the coronal flux drops would not be quite as narrow and deep

and this would reduce the difference between the total amount of power added to

the hard and soft bands. Complex NLS1s do show more power in the hard band

than the soft band (Zoghbi et al., 2011) at all frequencies, unlike the simple NLS1

PG1244+026, which shows comparable power at low frequencies in the hard and

soft bands. Our occultation model replicates this, since occultations add power to

both bands. However the small size of the corona necessarily adds much more power

to the hard band. Including light-bending (or a smaller cloud size) would slightly

lessen this difference, in better agreement with the data.

The model presented here is in some way a composite between the previous

extreme relativistic reflection models and partial covering models. It follows the
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partial covering model in identifying absorption (as opposed to light bending) events

as the origin for the deep dips, but has the occulting material be closer to the

source (ten gravitational radii rather than a few tens–hundreds), and be more highly

ionised. Reflection does make an important contribution to the spectrum during the

dips in our model, but it is not extremely smeared by relativistic effects. Instead,

and in a step beyond what is modelled here, we envisage the reflector as a clumpy,

turbulent, failed wind rather than a flat Keplerian disc (see also Miller et al., 2008).

The clumps may be only marginally optically thick, so their reflected/scattered

emission is not quite the same shape as from τ � 1 (Miller & Turner, 2013), and

they may be embedded in hotter material which Comptonises the reflected emission.

Additionally, the cloud itself could have a complex structure due to the ionisation

instability of X-ray illuminated material (Krolik et al., 1981). The illuminated face of

the cloud will be heated to the local Compton temperature (∼ 106 K). Temperature

decreases at larger depths into the cloud, where scattering reduces the heating, so

the density must increase to keep in pressure balance. This lower ionisation state

material has more line cooling, so the temperature drops abruptly, giving a sharp

transition between a highly ionised skin and a nearly neutral core (Chevallier et al.,

2006). Reflection from such structures, especially with a turbulent velocity field,

may be a feasible way to reproduce the observed 2− 10 keV spectra in the dips.

Another difference between this model and standard relativistic reflection is that

we include thermalisation of the illuminating flux. Hard X-rays which are not re-

flected can either heat the disc and be re-emitted as (mostly) thermalised radiation,

or the energy can be released as lines/recombination continua. The relative impor-

tance of these two processes depends strongly on the vertical structure of the disc.

Thermalisation is more important for discs in hydrostatic equilibrium (Nayakshin

& Kallman, 2001) but current reflection models are calculated for constant density

discs (e.g. Ross & Fabian, 2005; Garćıa et al., 2013). The high disc temperatures

expected in NLS1s means that this component must be important at some level in

contributing to the soft X-ray excess in these objects, and since it is predominantly

thermal then it has no strong soft X-rays lines which require high spin to smear

them into the observed smooth continuum.
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However, probably the most important effect which should be included in match-

ing to real data is that the light curves in the soft and hard bands are weighted by

the detector response rather than being simply flux integrated over the energy band

as used here. This is a key requirement to fit the model to real data in future work.

8.6 Conclusions

We have constructed a simple occultation model to investigate whether the change in

spectral and timing properties between simple and complex NLS1s can be explained

by a difference in inclination with respect to a failed wind. In this scenario, clumps

of material lifted from the inner parts of the accretion disc by radiation pressure

obscure the X-ray emission for sources seen at high inclination angles, resulting in

more extreme variability and more complex spectra. Associating the deep dips with

occultation superimposes absorption features from FeKα on the dip spectra. This

is seen in complex NLS1s such as MRK 776 (Miller et al., 2007) and is a clear

indication of the presence of these occultation events.

We model the obscuration as a series of individual clouds of constant ionisation

parameter which transit the inner accretion flow, co-rotating with the flow and

obscure the underlying emission. The underlying accretion flow emission is radially

stratified, with the softest X-rays (disc) from the largest radii, and then the soft

X-ray excess and corona at progressively smaller radii. We find that occultations

add power to the X-ray light curves over a range of frequencies related to the transit

time. Occultations also introduce a lag between the hard and soft energy bands when

Doppler boosting of the underlying accretion flow emission is taken into account;

specifically occultations introduce a soft lead, with the hard band lagging the soft

band.

We then combined our occultation model with the full spectral-timing model of

GD14 which describes the accretion flow emission of the simple NLS1 PG1244+026.

This model also includes reprocessed emission as part of the soft X-ray excess, as

well as reflection from it. This reproduces the timing properties of PG1244+026 by

assuming slow fluctuations are generated in the outer components and these prop-
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agate down to the corona, producing low frequency hard lags. The high frequency

soft lags (reverberation lags) are produced predominantly by fast coronal fluctua-

tions being reprocessed in the soft excess wind material rather than by reflection

from it.

The effect of the occultations is to dilute the negative reverberation lag and shift

it to higher frequencies. By increasing the rate of occultations we can match the

change in reverberation lag from the 200 s at 5 × 10−4 Hz seen in the simple NLS1

PG1244+026, to the ∼ 50 s lag at 10−3 Hz seen in the complex NLS1 1H0707–495.

The lag times and light travel times put into the model are the same in both the

obscured and unobscured cases. The only difference is the presence of occultations.

It is the soft leads caused by the broken symmetry of the flux drops, due to Doppler

boosting of the underlying occulted disc emission, which result in a shorter net

reverberation lag in the obscured case. The occultations also change the energy

spectrum from a simple NLS1, with a strong soft excess and a steep power law

above 2 keV, to something resembling a complex NLS1, with a prominent iron line

from reflection off the soft excess, highly ionised Fe Kα absorption lines and strong

spectral curvature.

The short ∼ 50 s reverberation lags have been taken as evidence for extreme

relativistic reflection in complex NLS1s. If 50 s really is a light travel time this

requires reflection from the innermost radii of an accretion disc around a highly

spinning black hole. Our occultation model shows that this need not be the case. A

short reverberation lag can be the result of a much longer light travel time, diluted

and shifted by the soft leads introduced by occulting clouds. In our model, reflection

and reprocessing occurs between 6−12Rg and puts no constraints on the spin of the

black hole. Changing inclination then naturally explains the change from smooth

spectra to complex spectra, and long, lower frequency reverberation lags to shorter,

higher frequency reverberation lags in simple and complex NLS1s. Given that NLS1s

are high accretion rate sources, it is quite natural to expect that the disc is not flat,

that radiation pressure can lift material from the disc which will obscure the central

emission for high inclination lines of sight. This is a promising geometry to explore

further.



Chapter 9

Concluding Remarks

In this thesis I have presented five papers on accretion and ejection around astro-

physical black holes. In Chapter 4 I showed that the truncated disc model, developed

to explain the dramatic hard to soft spectral state transition in stellar mass black

hole binaries (BHBs), continues to well describe the behaviour of low/hard state

(LHS) BHBs as they drop down into quiescence. The switch in seed photon source

for Comptonisation, from the truncating disc to cyclo-synchrotron radiation gen-

erated within the hot flow that replaces it, provides a natural explanation for the

hardening and then softening of the X-ray spectral index with decreasing luminosity.

By coupling a synchrotron jet to the truncated disc model I showed that a transition

from flow dominated X-ray emission to jet dominated X-ray emission causes a break

in the radio–X-ray correlation. Since the observed radio–X-ray correlation remains

unbroken down to low luminosities, jet emission taking over from accretion flow

emission cannot be the cause of the X-ray spectral softening at low accretion rates.

The X-ray emission of LHS BHBs therefore remains dominated by emission from

the accretion flow down into quiescence, while the low bulk Lorentz factor (BLF)

jet provides the low energy radio emission.

By contrast, the X-ray spectra from blazars are dominated by jet emission. These

are Active Galactic Nuclei (AGN) with high BLF jets, where the jet is orientated

directly towards us so that its emission is maximally Doppler boosted and dominates

the spectrum of the AGN from radio up to gamma-ray energies. BL Lacs are low

accretion rate blazars, in the same radiatively inefficient accretion regime as LHS

229
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BHBs, while flat spectrum radio quasars (FSRQs) represent the high accretion rate

end of the blazar sequence, corresponding to high/soft state BHBs with bright,

radiatively efficient accretion discs. In Chapters 5 and 6 I combined spectral models

of blazar jet emission with prescriptions for how they should scale with black hole

mass and accretion rate and the number densities of black holes from cosmological

simulations to predict the observed populations of BL Lacs and FSRQs, given certain

assumptions for which black holes should produce highly relativistic blazar jets. I

showed that assuming every low accretion rate black hole (ṁ < 0.01) produces a

BL Lac jet and every high accretion rate black hole (ṁ > 0.01) produces a FSRQ

jet vastly overpredicts the observed numbers of BL Lacs and FSRQs. I showed that

assuming only high spin black holes (a > 0.8) produce BL Lac jets gives a much

better match to the observed number of BL Lacs and their mass, accretion rate and

redshift distributions, providing supermassive black hole accretion is chaotic. High

spin black holes are then only produced by late, gas poor mergers and so correspond

to the most massive black holes in the local Universe (z < 2). Matching the observed

number of FSRQs likewise requires some limiting condition for FSRQ jet production,

presumably also high spin. However chaotic accretion models for black hole spin

evolution struggle to produce enough high spin black holes at z = 2 − 3 (where

quasar activity and the FSRQ population peaks), since the rapid accretion at these

times spins down any black holes that were previously spun up by the first generation

of galaxy and black hole mergers at early times. This suggests accretion may have

been more ordered at early times, allowing some black holes to maintain high spins

despite high accretion rates. If FSRQs are due to high spin black holes then their

redshift distribution provides powerful constraints for future, more sophisticated

cosmological simulations of black hole spin evolution.

Fanaroff-Riley Type I and Type II (FRI and FRII) radio galaxies are the mis-

aligned counterparts of BL Lacs and FSRQs, respectively. If BL Lacs and FSRQs

host highly spinning black holes then so should FRI and FRII AGN. Broderick &

Fender (2011) showed that FRIs, FRIIs and broad line radio galaxies (BLRGs; the

lower mass, lower accretion rate counterparts of FRIIs) are all slightly offset from

the fundamental plane that relates the X-ray and radio luminosity of both stellar
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mass and supermassive black holes; specifically these three classes of AGN are more

radio loud than the radio quiet quasars (RQQs), Seyferts, Low Ionisation Emission

Region galaxies (LINERs) and BHBs which do follow the fundamental plane. If

FRIs/BL Lacs, FRIIs/FSRQs and BLRGs are radio louder because their jets can

tap the rotational spin energy of the black hole in addition to energy from the accre-

tion flow, then this implies the RQQs, Seyferts, LINERs and BHBs should host low

spin black holes. Directly measuring the black hole spins of AGN is both difficult

and controversial. Narrow Line Seyfert 1s (NLS1s) provide the best opportunity

as, unlike other AGN, their small masses and high accretion rates mean the disc

emission in these objects can extend into the soft X-ray regime rather than peaking

in the unobservable UV.

The X-ray spectra of NLS1s are often fitted with reflection dominated models,

where the strong soft X-ray excess in these objects is fitted by an extremely rela-

tivistically smeared reflection component. Producing sufficient relativistic smearing

requires the hard coronal X-rays are reflected off the innermost radii of a flat ac-

cretion disc extending down to ∼ 1Rg, implying the black hole must be highly

spinning. The alternative to these reflection dominated models is the separate soft

excess model, where the soft excess emission is produced by optically thick Compton-

isation in the inner regions of the disc, which do not completely thermalise perhaps

due to a larger scale-height caused by the turbulent inner regions being close to

Eddington in these sources. This soft excess component is then a combination of

continuum emission and reprocessed emission due to illumination by the coronal

power law and there is only moderate reflection in these models to explain the iron

line at ∼ 6.7 keV. In Chapter 7 I built a fully self-consistent spectral-timing model

to investigate which of these two spectral models best matches the timing proper-

ties of the NLS1 PG1244+026 and found that only the separate soft excess model

could reproduce all the observed timing properties of the source — power spectra,

coherence, covariance, lag-frequency and lag-energy spectra. In contrast, reflection

dominated models are too coherent over a wide energy and frequency range due

to relativistic reflection contributing strongly at both hard and soft energies and

responding to coronal fluctuations up to high frequencies due to the small reflection
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radii involved. In addition, the observed soft leads at low frequencies require that

at least some of the soft excess must be produced by a continuum component —

it cannot be solely due to a reverberating component — ruling out the simplest

reflection dominated models where this is the case. Since the disc is truncated by

the optically thick Comptonised region in the separate soft excess model, fitting this

model puts no constraints on the spin of the black hole, so is consistent with radio

quiet NLS1s having low spin.

However, PG1244+026 is a simple NLS1 with only moderate variability. Com-

plex NLS1s, such as 1H0707–495, MCG 6-30-15, MRK 766 and IRAS 13224–3809,

have much more extreme variability with deep dip spectra showing even stronger

soft excess and iron line features and shorter, higher frequency reverberation lags.

These features are often taken as evidence for an extreme reflection dominated sce-

nario, where the dim spectra appear more reflection dominated as the height of the

corona drops and more coronal flux is gravitationally bent back towards the disc,

and the short ∼ 30 s reverberation lags are taken as the light travel time from corona

to disc. In Chapter 8 I showed that complex NLS1s similarly need not be explained

by reflection dominated models. By coupling a simple occultation model to the

previous separate soft excess spectral-timing model for simple NLS1s, I showed that

the switch in spectral-timing properties from a simple NLS1 to a complex NLS1 can

be understood in terms of changing inclination with respect to a clumpy turbulent

region in the inner disc. For low inclination sources there is a clean line of sight

down to the inner regions of the accretion flow and the source appears as a sim-

ple NLS1, while for high inclinations our line of sight intercepts the turbulent failed

wind structure (which I identify with the soft excess) resulting in variable absorption

and enhancing the variability of complex NLS1s. Occultations of the central regions

introduce additional hard lags when Doppler boosting of the underlying accretion

flow emission is taken into account. These dilute the soft reverberation lag and shift

it to higher frequencies, so giving a smooth transition from the longer lags in simple

NLS1s to the shorter lags of complex NLS1s, without requiring the black holes of

either to be highly spinning.

If the bulk of NLS1s, which are radio quiet, host low spin black holes, then this
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fits in with the theory that the subset of radio and gamma-ray loud NLS1s may host

high spin black holes, like their higher mass FSRQ counterparts. If there really is

a one to one correlation between highly spinning black holes and production of the

most relativistic (Γ ∼ 15) jets, this provides enormous potential for the inclusion

of feedback in cosmological simulations. High spin black holes with Γ ∼ 15 jets

would feed significantly more power back into their surroundings over much larger

scales than lower spin black holes limited to feeding back via slower Γ ∼ 2 jets and

winds, where the strength and type of wind will depend on the mass and accretion

rate of the black hole. Combining jet and accretion flow spectral models with new

simulations and observational constraints provides the way forward for testing such

theories, using population statistics to continually refine the predicted spin evolution

and feedback prescriptions.

Scaling jets with mass and accretion rate is a useful tool to compare the jet

emission from different objects and test the scaling assumptions themselves. BL

Lacs and LHS BHBs are in the same accretion regime. Scaling the blazar jet model

down to stellar mass black holes provides a way to test whether BHBs could host

Γ ∼ 15 spines to their jets that are just not visible due to Doppler deboosting, or

whether they really do lack a highly relativistic spine to their jet, as their position

on the fundamental place, and presumably moderate spin, suggests.

I have shown that the soft excess of NLS1s is well modelled by optically thick

Comptonisation and reprocessing in a turbulent region in the inner disc, where

radiation pressure lifts material to a large scale-height, but where does that leave

the soft excess in broad line Seyferts and quasars? These objects are at lower

accretion rates so a failed Eddington wind cannot be the cause. The spectra of

these objects are UV weak and X-ray stronger. Instead the large scale-height may

be due to UV radiation lifting material, the luminous hard X-rays over-ionising it

and it falling back down. Full radiative transfer models are needed to show whether

this process can transform the disc into an optically thick Comptonising region in

these objects.

Importantly, any model of the accretion flow must be able to replicate both the

spectral and timing properties of a source. Including timing information provides a
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powerful extra diagnostic for distinguishing between spectrally degenerate models,

with power spectra, coherence, covariance, lag-frequency and lag-energy spectra all

providing model constraints. However caution must be exercised when interpreting

spectral lags. If one energy band contains several spectral components, each of which

fluctuate in normalisation with time, then the net lag that is measured will be the

sum of the lags of each component with respect to the reference band, weighted

by the contribution of each component to the total flux in the band. Lags due to

propagation of mass accretion rate fluctuations tend to dominate at low frequencies,

with the hard emission progressively lagging the soft. Reverberation lags due to

reflection and reprocessing, with soft emission and line emission lagging the hard

illumination, tend to dominate at high frequencies. However these are not the only

sources of lags. A single power law component on its own can produce lags if it

pivots as a function of time due to fluctuations in its seed photons. These lags

then occur on the timescale of the seed photon fluctuations. In AGN, the highest

frequency power law fluctuations are approaching the light crossing time of the

corona, in which case lags between individual Compton scattering orders may even

be affecting the lag-energy spectrum. Spectral components which change shape as

a function of time, such as reflection spectra responding to changes in the ionisation

state of the reflector, can further complicate the lags, as the reflector ionisation

depends not only on the instantaneous illuminating flux but also the flux history

of the source (Silva & Uttley, in prep.). Finally, I have shown that occultations by

clouds orbiting at small radii can affect the lag-frequency spectrum by adding soft

leads on the transit timescale when Doppler boosting of the underlying accretion

flow emission is taken into account. Combining spectral and timing information is

clearly a powerful tool, but also a complex area. Understanding these effects is key

to making the most out of these techniques, and better understanding accretion and

ejection around both stellar mass and supermassive black holes.



Appendix A

A.1 Black Hole Binary Accretion Flow Model

The model consists of an outer black body (BB) disc, truncated at some radius (Rt),

with an inner hot flow of radius Rhot, where Rhot = 20Rg. The hot flow is taken to

be radiatively inefficient, such that:

Lhot = LBBdisc(R < Rt)

(
ṁ

ṁc

)
(1.1.1)

where ṁ = Ṁ/ṀE, ṁc = 0.1 and LBBdisc(R < Rt) is the luminosity of a BB disc

extending from the truncation radius down to the last stable orbit.

We scale the truncation radius with accretion rate, such that:

Rt = 20Rg

(
ṁ

ṁc

)−1/2

(1.1.2)

The optical depth (τ) of the Comptonising region is fixed at 2 for ṁ = ṁc, and

scales with ṁ as:

τ = 2

(
ṁ

ṁc

)
(1.1.3)

The unabsorbed cyclo-synchrotron emission from the hot flow is calculated fol-

lowing Di Matteo et al. (1997):

Lcyclo(ν) = 5.57× 10−29nνI(x)V

K2(1/θe)
(1.1.4)

where V = 2/3πR3
hot is the volume of the Comptonising hot flow, n is the number

235



A.1. Black Hole Binary Accretion Flow Model 236

density of electrons calculated from the optical depth, θ = kT/mec
2 is the dimension-

less electron temperature, K2(1/θ) is the modified Bessel function, x = 2ν/3νBθ
2,

νB = eB/2πmec is the Larmor frequency, and the function I(x) is given by:

I(x) =
4.050

x1/6

(
1 +

0.40

x1/4
+

0.532

x1/2

)
exp(−1.8899x1/3) (1.1.5)

The magnetic field (B) of the hot flow is calculated from the density by assuming

the ions are at the virial temperature and the magnetic field is 10% of the gas

pressure, giving:

B =

√
0.1nmpc2

8π

rhot
(1.1.6)

where rhot = Rhot/Rg. The cyclo-synchrotron self-absorption frequency is given by:

νcsa =
3

2
νBθ

2xm (1.1.7)

where xm is found by solving for x when the cyclo-synchrotron and BB emission are

set equal:

Lcyclo(νcsa) = 8π2meν
2
csaθeR

2
hot (1.1.8)

Below the self-absorption frequency the absorbed emission is calculated as:

L(ν < νcsa) =

(
ν

νcsa

)5/2

L(νcsa) (1.1.9)

Thermal Comptonisation is modelled using eqpair (Coppi, 1999), with seed

photons from both the disc and cyclo-synchrotron emission, where the fraction of

disc photons from a given radius (R) intercepted by the hot flow is given by:

Lseed,disc
Ldisc

=

(
Rhot

R

)
arcsin(Rhot/R)

π
(1.1.10)

And we calculate the mean seed photon temperature:

kTseed =
k(Lseed,discTdisc + LcycloTcyclo)

Lseed,disc + Lcyclo
(1.1.11)



A.1. Black Hole Binary Accretion Flow Model 237

The electron temperature, a parameter in both the cyclo-synchrotron equations

and eqpair, is calculated self consistently.

A.1.1 Jet Model

We construct a conical jet, where opening angle (φ = 0.1) relates jet radius (Rj) to

distance along the jet (z):

Rj(z) = φZ = φzRg (1.1.12)

We assume a fraction of the accreting material (fj) is diverted up the jet. The

energy density in relativistic particles at the jet base is set to be some fraction

(frel = 0.1) of the magnetic energy density:

mec
2

∫ γmax

γmin

γN(γ)dγ = Urel,0 = frelUB,0 (1.1.13)

We conserve magnetic energy and particle number along the jet such that:

B(z) = B0

(
z

z0

)−1

(1.1.14)

K(z) = K0

(
z

z0

)−2

(1.1.15)

and allow B0 and K0 to scale with accretion rate as:

B0(ṁ) = B0(ṁc)

(
ṁ

ṁc

)1/2

(1.1.16)

K0(ṁ) = K0(ṁc)

(
ṁ

ṁc

)
(1.1.17)

where ṁc = 0.1, and B0(ṁc), K0(ṁc) and z0 are fixed by requiring the radio lumi-

nosity and the optically thick-optically thin synchrotron break match observations

of GX 339-4 (Gandhi et al., 2011).

We assume electrons in the jet are continually accelerated into a power law

distribution of the form:
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N(γ) = Kγ−p (1.1.18)

where p = 2.4, for electron Lorentz factors ranging from γ = 1.0− 1× 105.

We split the jet into conical sections and calculate the synchrotron emission from

electrons in each section:

Lsync(ν) =
σT c

8πνB
UBγN(γ)V δ3 (1.1.19)

where V is the volume of the conic section, δ = 1/(Γ−cosψ
√

Γ2 − 1) is the boosting

factor of the jet, ψ is the angle of the jet with respect to the observer, and the electron

Lorentz factor and synchrotron photon frequency are related by γ =
√

3ν/4νB.

The synchrotron self-absorption frequency (νssa) in each section is given by (Ghis-

ellini et al., 1985):

νssa =

(
4.62× 1014KB2.5 Rj

0.7

)2/7

(1.1.20)

The frequency of the observed radiation is boosted by a factor νobs = νδ. We

neglect synchrotron self-Comptonisation.

A.2 Blazar Jet Model

Table A1 lists the blazar jet model parameters. The first four set the parameters

of the black hole and the distance. Parameters 5–8 set the physical parameters

of the jet: inclination to the line of sight, BLF, jet opening angle and distance

of the emission region from the black hole. When combined together the last two

of these set the radius of the emission region, since the code assumes a conical

jet. Parameters 9 and 10 set the jet magnetic field and the power injected into

relativistic electrons. The remaining parameters 11–15 determine the shape of the

injected electron distribution, and parameter 16 sets the redshift.

The code can be used to model both FSRQs and BL Lacs. If log ṁ < −2

(parameter 3) the code assumes the accretion flow regime is radiatively inefficient,

corresponding to a BL Lac. In this case the external seed photon energy density is
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Parameter Description
1 M Black hole mass in solar masses
2 Rco Comoving distance in Mpc
3 log ṁ Mass accretion rate in units of L/LEdd

(if log ṁ < −2, does SSC with no external seed photons)
4 a? Dimensionless black hole spin
5 θobs Inclination of jet axis from line of sight in degrees
6 Γ Jet bulk Lorentz factor
7 φ Jet opening angle in radians
8 zdiss Distance of dissipation region from the black hole in Rg

(radius of dissipation region, Rdiss = φZdiss = φzdissRg)
9 B Magnetic field in Gauss
10 logPrel Power injected into relativistic electrons in erg s−1

11 γmin,inj Minimum Lorentz factor of injected electron distribution
12 γb Lorentz factor of break in injected electron distribution
13 γmax Maximum Lorentz factor of injected electron distribution
14 n1 Index of electron distribution below the break
15 n2 Index above the break
16 z Redshift

Table A.1: Summary of blazar jet model parameters.

set to zero and the model calculates only synchrotron and synchrotron self-Compton

(SSC) emission. If log ṁ > −2 then the model assumes a radiatively efficient ac-

cretion disc is present and includes external Compton (EC) emission from external

sources of seed photons. The radiatively efficient disc is assumed to illuminate the

broad line region (BLR) and torus, both of which reprocess a fraction of the disc

emission. The code calculates the energy density of seed photons from direct disc

and coronal emission, BLR emission, reflection of coronal X-rays off the BLR and

emission from the torus, following the method of Ghisellini & Tavecchio (2009).

The code prints to screen which type of jet is calculated (SSC or SSC+EC), along

with the logarithm of the power in radiation, magnetic fields, electrons, protons

and total jet power (Pr, PB, Pe, Pp and Pj). For SSC+EC jets, the code flags if

Zdiss > RBLR and Zdiss > RIR. It also writes out into files the steady state electron

distribution (γN(γ)) and the energy density of seed photons in the jet frame (U ′(ν ′)).

Since the inclination of the jet is a parameter, the code can in practice be used

to model any jet, not just highly aligned blazars. However the code assumes a single

emission zone, so it is best suited for modelling the high energy jet base emission.
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Although the fortran subroutine can be easily modified to be called multiple times

with increasing emission region size to model more extended structures.

A.2.1 Jet Emission Calculation

The emission comes from a single spherical zone of radius Rdiss. We assume the jet

has a constant opening angle (φ), such that the distance of the emission region from

the central black hole (Zdiss = zdissRg) is related to the radius of the emission region

by: Rdiss = φZdiss. We assume material in the jet moves at a constant bulk Lorentz

factor (Γ) and that some fraction of the transported electrons are accelerated into

a power law distribution between minimum and maximum Lorentz factors γmin,inj

and γmax, of the form:

Q(γ) = Q0

(
γ

γb

)−n1
(

1 +
γ

γb

)n1−n2

= Q0q(γ) for γmin,inj < γ < γmax (1.2.21)

γb is the Lorentz factor at which the electron distribution changes in slope from

n1 to n2. We calculate the normalisation Q0 from the power injected into the

accelerated electrons (Prel):

Prel =
4π

3
R3
dissmec

2Q0

∫ γmax

γmin,inj

γq(γ)dγ (1.2.22)

We calculate γcool after a light crossing time tcross = Rdiss/c = γcool/γ̇cool, as:

γcool =
3mec

2

4σTRUseed
(1.2.23)

where Useed = UB + Usync + Uex is the sum of the energy density in magnetic fields,

synchrotron emission and external emission which provides the seed photons for

cooling.

We solve the continuity equation to find the self consistent steady state electron

distribution:
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N(γ, tcross) = Kn(γ)

=

AQ0q(γ) for γmin,inj < γ < γcool

3mec2

4σT cUseed

Q0

γ2

∫ γmax
γ

q(γ)dγ for γcool < γ < γmax

(1.2.24)

where A is found by matching at γcool.

We use the delta function approximation and calculate the synchrotron emissivity

as:

jsync(ν) =
σT c

6πνB
UBγN(γ) (1.2.25)

where the electron Lorentz factor and synchrotron photon frequency are related by

γ =
√

3ν/4νB and we calculate the synchrotron self-absorption frequency (νssa) as

given by (Ghisellini et al., 1985):

νssa =

(
4.62× 1014KB2.5Rdiss

0.7

)2/7

(1.2.26)

We calculate Compton emission including the Klein-Nishina cross section using

the delta approximation:

jcomp(ν) =
σT c

6π

∫ γmax

γmin

∫ νseed,max

νseed,min

Useed(νseed)

νseed
γN(γ)dνseeddγ (1.2.27)

where electron Lorentz factor and Compton photon frequency are related by γ =√
3ν/4νseed and γmin = γmin,inj, unless γcool < γmin,inj and then γmin = γcool.

Bulk motion of the jet boosts and blue shifts the emission. We calculate the

observed flux as:

F (νδ/(1 + z)) =
(jsync(ν) + jcomp(ν))

R2
co

4π

3
R3
dissδ

3 (1.2.28)

where δ = (Γ − cos θ
√

Γ2 − 1)−1 is the Doppler factor and Rco is the comoving

distance to the object at redshift z.

We neglect photon-photon pair production. However the code calculates the

source compactness and flags a warning if l′ > 30. This corresponds to τγγ ∼ 1, i.e.
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when the source starts to become optically thick to photon-photon pair production

and this effect becomes important. For most blazar jets the compactness is typically

< 3.

A.2.2 External Seed Photons

If log ṁ > −2 then the model assumes a radiatively efficient accretion disc is present

and includes EC emission from external sources of seed photons, calculating the en-

ergy density of seed photons following the method of Ghisellini & Tavecchio (2009).

The model includes direct disc and coronal emission, BLR emission, reflection of

coronal X-rays off the BLR and emission from the torus.

The accretion disc luminosity (Ld) is calculated from M and ṁ (parameters 1

and 3). Each annulus of the disc is seen at a different angle with respect to the

jet emission region so receives a difference amount of Doppler deboosting (bd). We

approximate the energy density of disc seed photons from each annulus in the jet

frame as:

U ′d(ν
′) =

4πhbd
c3

(ν/bd)
3

exp
[
hν/bd
kT

]
− 1

dµd (1.2.29)

where bd = Γ(1 − βµd), µd = cos η and η is the angle of the annulus with re-

spect to the jet axis. µd therefore varies between µmax = 1, for the innermost

radii which are directly behind the jet and experience most deboosting, to µmin =

[1 + (Rd,max/Zdiss)
2]
−1/2

for the outermost radius Rd,max = 1000Rg. We calculate

the temperature of each disc radius from the mass, accretion rate and spin input in

parameters 1, 3 and 4.

We assume the luminosity of coronal X-rays is LX = fXLd = 0.1Ld and the

corona extends to RX = 60Rg. Its emission is therefore deboosted by a factor

bX = Γ(1 − βµX), where µX = [1 + (RX/Zdiss)
2]
−1/2

. The total energy density of

coronal seed photons in the jet frame is therefore:

U ′X =
fXLdΓ

2

πR2
Xc

[
1− µX − β(1− µ2

X) +
β2

3
(1− µ3

X)

]
(1.2.30)
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We assume the spectrum of this emission is a cut-off power law starting from

bXνd,peak, where νd,peak = 4kTmax/h is the frequency at which the unboosted disc

spectrum peaks. We assume the power law cut-off vc = 150× 103e/h, so that:

U ′X(ν ′) ∝ ν ′−αX exp

[
− ν ′

bXνc

]
(1.2.31)

where α = 1.

We assume a fraction fBLR = 0.1 of the disc luminosity is reprocessed by the

BLR. This emission takes the form of a BB centred on the frequency of the Lyman

α line (νLyα = c
4(1216×10−8)

Hz), so that:

U ′BLR(ν ′) ∝ ν ′3

exp
[

ν′

bBLRνLyα

]
− 1

(1.2.32)

The total energy density in the jet frame (U ′BLR) and boosting factor (bBLR)

depend on the radius of the BLR (RBLR) compared to Zdiss. The radius of the BLR

scales with Ld as:

RBLR = 1017(
Ld

1045 erg s−1
)1/2 cm (1.2.33)

If Zdiss < RBLR:

U ′BLR =
17Γ2

12

fBLRLd
4πcR2

BLR

(1.2.34)

bBLR = Γ (1.2.35)

If Zdiss > 3RBLR:

U ′BLR =
fBLRLd

4πcR2
BLR

Γ2

3β

[
2(1− βµ1)3 − (1− βµ2)3 − (1− β)3

]
(1.2.36)
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µ1 =
[
1 + (RBLR/Zdiss)

2
]−1/2

(1.2.37)

µ2 =
[
1− (RBLR/Zdiss)

2
]1/2

(1.2.38)

bBLR = Γ(1− βµ1) (1.2.39)

If RBLR 6 Zdiss 6 3RBLR, we use a power law interpolation between the two

regimes for U ′BLR and assume bBLR = Γ(1− βµ1) for Zdiss = 3RBLR.

We assume a fraction fXBLR = 0.01 of the coronal X-rays are reflected by the

BLR clouds. We assume the reflected emission has the same cut-off power law shape

as the direct coronal emission. Both bXBLR and U ′XBLR vary as bBLR and U ′BLR, with

fBLRLd replaced by fXBLRfXLd.

We assume a fraction fIR = 0.3 of the disc luminosity is reprocessed by the torus.

This emission takes the form of a BB at ∼ 370 K (i.e. νIR = 370k/h), so that:

U ′IR(ν ′) ∝ ν ′3

exp
[

ν′

bIRνIR

]
− 1

(1.2.40)

As in the case of the BLR seed photons, U ′IR and bIR depend on the radius of

the torus (RIR) compared to Zdiss. RIR scales with Ld as:

RIR = 2.5× 1018(
Ld

1045 erg s−1
)1/2 cm (1.2.41)

and again we consider three regimes. If Zdiss < RIR:

U ′IR =
fIRLdΓ

2

4πcR2
IR

(1.2.42)

If Zdiss > 3RIR:

U ′IR =
fIRLd

4πcR2
IR

Γ2

3β

[
2(1− βµ1)3 − (1− βµ2)3 − (1− β)3

]
(1.2.43)

µ1 =
[
1 + (RIR/Zdiss)

2
]−1/2

(1.2.44)

µ2 =
[
1− (RIR/Zdiss)

2
]1/2

(1.2.45)

If RIR 6 Zdiss 6 3RIR, we use a power law interpolation between the two
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regimes for U ′IR. In all three cases we use bIR = Γ(1 − βµIR), where µIR =

cos(arctan(RIR/Zdiss)).

A.3 Time Series Analysis Techniques

For two light curves, s(t) and h(t), with Fourier transforms S(f) and H(f), we define

the complex valued cross spectrum as (Vaughan & Nowak, 1997; Nowak et al., 1999):

C(f) = S∗(f)H(f) (1.3.46)

where S∗ denotes the complex conjugate of S.

The coherence is then:

coh(f) =
|〈C(f)〉|2

〈|S(f)|2〉〈|H(f)|2〉 (1.3.47)

where angle brackets denote an average over multiple light curve segments.

The lag is calculated as:

lag(f) =
arg[C(f)]

2πf
(1.3.48)

The covariance between the two lightcurves, if h(t) is the reference band, is

calculated in the time domain as (Wilkinson & Uttley, 2009):

cov =

∑
(s(t)− s̄)(h(t)− h̄)

(N − 1)
√
σ2
h

(1.3.49)

where N is the number of time steps in the light curve, s̄ and h̄ are the mean fluxes

of s(t) and h(t) respectively, and the factor of
√
σ2
h is required for normalisation.

σ2
h is the excess variance of the reference band light curve, defined as:

σ2
h =

∑
(h(t)− h̄)2

(N − 1)
(1.3.50)

We normalise all power spectra (P (f) = |H(f)|2), such that:

∫ ∞
0

P (f)df =
σ2

I2
(1.3.51)
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where σ2 is the excess variance of the light curve and I is its mean flux.
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McHardy I. M., Arévalo P., Uttley P., Papadakis I. E., Summons D. P., Brinkmann

W., Page M. J., 2007, MNRAS, 382, 985



BIBLIOGRAPHY 257

McHardy I. M., Koerding E., Knigge C., Uttley P., Fender R. P., 2006, Nature, 444,

730

McHardy I. M., Papadakis I. E., Uttley P., Page M. J., Mason K. O., 2004, MNRAS,

348, 783

Mehdipour M., Branduardi-Raymont G., Kaastra J. S., Petrucci P. O., Kriss G. A.,

Ponti G., Blustin A. J., Paltani S., Cappi M., Detmers R. G., Steenbrugge K. C.,

2011, A&A, 534, A39

Merloni A., Heinz S., di Matteo T., 2003, MNRAS, 345, 1057
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