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Soliton dynamics in the Gross–Pitaevskii equation:

splitting, collisions and interferometry

John Lloyd Helm

Abstract

Bose–Einstein condensates with attractive interactions have stable 1D solutions in
the form of bright solitary-waves. These solitary waves behave, in the absence of
external potentials, like macroscopic quantum particles. This opens up a wide ar-
ray of applications for the testing of quantum mechanical behaviours and precision
measurement. Here we investigate these applications with particular focus on the
interactions of bright solitary-waves with narrow potential barriers.

We first study bright solitons in the Gross–Pitaevskii equation as they are split on
Gaussian and δ-function barriers, and then on Gaussian barriers in a low energy
system. We present analytic and numerical results determining the general region
in which a soliton may not be split on a finite width potential barrier. Furthermore,
we test the sensitivity of the system to quantum fluctuations.

We then study fast-moving bright solitons colliding at a narrow Gaussian potential
barrier. In the limiting case of a δ-function barrier, we show analytically that the
relative norms of the outgoing waves depends sinusoidally on the relative phase of
the incoming waves, and determine whether the outgoing waves are bright solitons.
We use numerical simulations to show that outside the high velocity limit nonlinear
effects introduce a skew to the phase-dependence.

Finally, we use these results to analyse the process of soliton interferometry. We
develop analyses of both toroidal and harmonic trapping geometries for Mach–
Zehnder interferometry, and then two implementations of a toroidal Sagnac inter-
ferometer, also giving the analytical determination of the Sagnac phase in such sys-
tems. These results are again verified numerically. In the Mach–Zehnder case, we
again probe the systems sensitivity to quantum fluctuations.
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Introduction

Key concepts

The Gross-Pitaevskii equation

The work presented in this thesis is, in essence, an attempt to determine the dy-
namics of a somewhat complicated equation (or small group of similar equations),
to which there is no exact solution. This group of equations are variations on the
Gross–Pitaevskii equation (GPE) [1], which has the form

i~
∂ψ(r, t)
∂t

=

[
−
~2

2m
∇2 + Uext(r) + gN |ψ(r, t)|2

]
ψ(r, t). (1)

This equation is common in atomic physics, and in this thesis we will primarily
discuss it in the context of the Bose–Einstein condensate (BEC) [1–3] but it should
be noted that the GPE can arise in a number of different forms, including optical
systems with a Kerr type nonlinearity [4, 5]. The creation of the BEC in 1995 [6, 7]
brought quantum phenomena to length scales of new orders of magnitude and so
the zero temperature, ideal limit of these systems (the GPE) is now a popular area
of study.

The fully 3D nature of the GPE, coupled with the presence of external potentials
(Uext) means that while it is well understood, the GPE is difficult to solve. This dif-
ficulty is primarily a result of the nonlinearity (quantified by the particle number N,
and g which is dependent on the inter-particle s-wave scattering scattering length)
and so we must resort to non-linear methods of solution in order to continue.

Bright solitary matter-waves

Bright solitary matter-waves are solitonlike dynamical excitations observed in atomic
Bose-Einstein condensates (BECs) with attractive inter-atomic interactions [8–11].
They are solitonlike in the sense that they propagate without dispersing [12], emerge
largely unscathed from collisions with other bright solitary matter-waves and with
external potentials [13, 14], and have center-of-mass trajectories which are well-
described by effective particle models [15–17]. They derive these solitonlike prop-
erties from their analogousness to the bright soliton solutions of the focusing non-

10



Introduction 11

linear Schrödinger equation (NLSE),

iut +
uxx

2
+ u |u|2 = 0 (2)

to which the mean-field description of an atomic BEC reduces in a homogeneous,
quasi-one-dimensional (quasi-1D) limit. These bright soliton solutions of the 1D fo-
cusing NLSE have been extensively explored in nonlinear optics, both in the context
of solitons in optical fibers [18–22] and as stable structures existing in arrays of cou-
pled waveguides [23, 24] which are described by a discretized NLSE. Although the
quasi-1D limit is experimentally challenging for attractive condensates [25], bright
solitary matter-wave dynamics remain highly solitonlike outside this limit [10, 14].
Consequently, bright solitary matter-waves present an intriguing candidate system
for future interferometric devices [9, 14, 26–30].

Matter-wave interferometry

The macroscopic quantum systems that are bright matter-waves in BECs give us the
ability to take advantage of large-scale wave-like phenomena in an atomic medium.
A primary mechanism which exploits these concepts is atom interferometry [31–
33]. Previously these interferometric systems have been primarily linear, but as
more stable BEC experiments become increasingly common and versatile [34] it is
becoming clear that there is real scope for the creation of a bright solitary matter-
wave interferometer [35].

A key component of such a system is a mechanism to coherently split and recom-
bine bright solitary matter-waves: the collision of a bright solitary wave with a nar-
row potential barrier is one way to create such a beamsplitter. Within a quasi-1D,
mean-field description of an atomic BEC, collisions of single solitary matter-waves
with potential barriers and wells have been extensively studied [36–41], and suffi-
ciently fast collisions with potential barriers have been shown to lead to the desired
beamsplitting effect [40, 41].

When, in nonlinear optics, the soliton exists in an inhomogeneous array of discrete
waveguides, the soliton can be reflected, split or captured at the position of the
inhomogeneity [42–44]. This is equivalent, in the continuum limit of an infinite
number of waveguides, to splitting a soliton in the GPE at a δ-function [42] — a
phenomenon which has been called the “optical axe” [22].

Recently, a number of investigations have considered an interferometer using a nar-
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row potential barrier as a beamsplitter for harmonically trapped solitary waves [30,
45], based on the particular configurations of recent experiments [34, 46]. In partic-
ular this work demonstrated that such a potential barrier can also be used to recom-
bine solitary waves, by arranging for them to collide at the location of the barrier. In
such collisions, the relative norms of the two outgoing solitary waves was shown to
be governed by the phase difference ∆ between the incoming ones. In the mean-field
description the relative norms of the outgoing waves exhibit enhanced sensitivity to
small variations in the phase ∆; however, a simulation of the same system including
quantum noise, via the truncated Wigner method [47], showed increased number
fluctuations that ultimately negated this enhancement [30].

Thesis outline

The thrust of the work presented in this thesis is a comprehensive discussion of how
bright solitary matter waves in BECs can be used to perform interferometry. With
this goal in mind, the contents are essentially a collation and restructuring of three
works produced by the author. These works are

[48] J. L. Helm, T. P. Billam, and S. A. Gardiner, Bright matter-wave soliton col-

lisions at narrow barriers Phys. Rev. A 85, 053621 (2012).

[49] J. L. Helm, S. J. Rooney, Christoph Weiss and S. A. Gardiner, Splitting

bright matter-wave solitons on narrow potential barriers: Quantum to clas-

sical transition and applications to interferometry Phys. Rev. A 89, 033610
(2014).

[50] J. L. Helm, S. L. Cornish and S. A. Gardiner, Bright soliton Sagnac interfer-

ometry (in preparation).

Thesis structure

Chapters 1 and 2: Bose-Einstein condensates and Solitons

Chapter 1 provides an introduction to the fundamental concepts of BECs, along
with some simple derivations of their more interesting properties. This chapter also
points out, as a guide to further study, where some of the more advanced theoretical
frameworks describing BECs might be found. The key content of Chapter 1 is the
careful derivation of the GPE, and its reduction to the quasi-1D GPE.

http://dx.doi.org/10.1103/PhysRevA.85.053621
http://dx.doi.org/10.1103/PhysRevA.89.033610
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Chapter 2 provides information about soliton solutions to the non-linear Schrödinger
equation (to which the GPE reduces in the correct limits). We outline some of the
more advanced methods of its solution, and use them to provide basic results about
the behaviour of these solutions.

Chapters 3 to 5: The components of soliton matter-wave in-

terferometry

Chapter 3 outlines how bright solitary matter-waves can be coherently split by nar-
row potential barriers. This is a fundamental requirement if we are to consider a
soliton interferometer. First comes a comparison between δ-function and Gaussian
barriers, in order to compare more physical systems to analytical results. This work
determines restrictions on the barrier’s width and define how narrow the barrier
must be in a given energy regime. The second part of this chapter discusses how
we quantify the energetic regime of the system and determine whether or not the
soliton may be split as we require in this regime. This question is considered in the
context of both the harmonically trapped and untrapped cases. Finally we discuss
how the effects of the low energy regime combine with quantum fluctuations of the
centre of mass position and momentum and delimit a lower bound on the kinetic
energy, below which soliton splitting becomes highly non-classical. This analysis
is conducted in the harmonically trapped geometry. This chapter is comprised of
results from the first halves of Refs. [48] and [49]

Chapter 4 provides an analysis of soliton collisions at narrow barriers. This is the
second requirement of soliton interferometry; that coherent matter-waves be inter-
fered with one another. We present an analytical proof based on a δ-function barrier,
and then numerically analyse the system for a Gaussian barrier, determining how the
soliton’s kinetic energy affects the outcome of the collisional process. This chapter
is taken from the second half of Ref. [49]

Chapter 5 outlines two different geometries which may be employed to conduct
Mach–Zehnder interferometry. The first is conducted in the absence of axial trap-
ping potentials and follows from established analytical results. The second requires
axial harmonic confinement and must be analysed numerically. Finally, we present
Monte Carlo simulations of the harmonically trapped system in order to charac-
terise the effect of quantum fluctuations in the low energy regime. The content of
this chapter was published in the second half of Ref. [49].



Chapter 1: Bose-Einstein condensates and

the Gross-Pitaevskii equation

1.1 The race to absolute zero

1.1.1 Cooling gases in the early 20th Century

The 19th century thermodynamical assertion of absolute zero and the Kelvin scale
[51] posed an intriguing question to physicists of the era. What would the removal
of thermal disorder reveal about the nature of matter? This began the race to ab-
solute zero. Labs across Europe were set up with the goal of liquefying all known
gasses. Aided by the development of new cooling techniques, oxygen was liquefied
at 90K, nitrogen at 77K, and hydrogen at 20K. This last was achieved by James
Dewar in London around 1896. The final challenge to Dewar and his Leiden based
rival Kamerlingh Onnes was the liquefaction of helium, which had only recently
been identified as an element.

It was not until 1908 that this was achieved by Kamerlingh Onnes, with the conden-
sation of liquid helium occurring at 4K. For this work he was awarded the Nobel
Prize in 1913. After this new low in the race to zero, in 1924 Kamerlingh Onnes
also observed that helium appeared to undergo a second phase transition at 2.2K,
at which point was a discontinuous peak in the density (the λ point). While inter-
esting, this behaviour was secondary to frictionless flow observed by Kapitza [52]
(who was awarded a Nobel prize) and by Allen and Misener [53] (who, contro-
versially, were not) in 1938. This superfluid flow allowed the helium to, among
other things, climb out of open containers, pass through microscopic holes and flow
against the gradient of entropy through a superleak. This concept of superfluidity,
and the concepts of superconductivity developed by Kamerlingh Onnes in 1911,
were beyond the understanding of the classical theories of the time, being funda-
mentally quantum mechanical in nature.

The next development in the understanding of the low temperature world would
rely on the work of an Indian mathematical physicist, Satyendra Nath Bose. Bose’s
original work [54] considered the particle statistics associated with indistinguish-
able, non-interacting particles in the form of photons. Considering the implications

14



Chapter 1: BECs and the GPE 15

of Bose’s analysis in the context of non-interacting massive particles with integer-
spin (as would be required for bosonic interchangeability by Pauli [55]), Einstein
posited a process whereby at low energy the particles would macroscopically oc-
cupy a single, lowest-energy state of the system [2, 3]. This was the inception of the
BEC and would be linked with superfluid helium shortly after Kapitza, Allen and
Misener’s experiments [52, 53] by London [56] and Tizsa [57].

1.1.2 Experimental realisations of the BEC

Just as the Dewar and other experimental methods developed in the late 19th century
facilitated the liquefaction of all known gasses, developments in laser cooling in the
late 20th century [58] would allow the next leg on the race to absolute zero, and the
understanding of matter at such degrees of thermal order, to begin.

The first atomic BEC was finally realised in 1995. Wieman and Cornell condensed
87Rb [7], while Ketterle was able to condense 23Na [6]. These achievements were
awarded Nobel prizes in 2001. As in the late 19th century there was a flurry of
activity, now focused on the condensation of any stable isotope which lends itself
to the methods of laser cooling. This so far includes [59]: isotopes of other alkali
metals — 7Li [60], 39K [61], 41K [62], 85Rb [63], 133Cs [64] — various other ele-
mental isotopes — 1H [65], 40Ca [66], 84Sr [67, 68], 86Sr [69], 88Sr [70], 168Er [71]
— four different isotopes of Ytterbium (two of which were condensed together) —
170Yb [72], 176Yb [73], 174Yb and 168Yb [74] — a metastable (lowest triplet) state
of Helium — 4He [75, 76] — and two elements which displayed long-range dipolar
interactions —164Dy [77], 52Cr [78].

These condensates could all be classified in terms of the strength of their inter-
actions. As such, a key feature of current investigations into BECs is the Fesh-
bach Resonance. These resonances are a feature of the internal structure of dimeric
molecules, and allow the interactions of the condensed atoms to be tuned to some
desirable state through the application of external magnetic fields [79, 80]. This al-
lows the s-wave scattering length as to take a continuous and wide range of values,
both positive and negative, allowing for the creation of strongly or weakly attractive
or repulsive condensates. This is extremely useful in that, among other things, it
allows experimentalists to avoid excessive density, satisfying the dilution criterion
n1/3as � 1. For instance, condensates of alkali metals typically contain 103 − 107

atoms, and have number densities in the 1011 − 1015cm−3. This dilution both pre-
vents three body loss events, which would deplete the condensate, and allows for a
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contact potential approximation of the interactions, which will be invaluable in the
development of the theoretical framework for the dynamics of the BEC [81, 82].

It is interesting that this requirement of a dilute, weakly interacting gas precludes
the quantitative description of helium II as a true BEC. While superfluidity is a fun-
damental characteristic of the BEC the first observed instance of such superfluidity
was in a system with such strong interactions that the condensed fraction is only
of the order of 10% [83, 84]. The standard model used to fully describe superfluid
helium is the two-fluid model, where one fluid is inviscid and the other viscous.

1.2 Degenerate Bose gases

1.2.1 Bose–Einstein statistics

We will now outline some of the characteristics of condensates in dilute atomic
vapours. In this section we will outline the derivation of the Bose–Einstein dis-
tribution, following the formalism outlined in Ref. [85]. Further details are avail-
able in other standard textbooks on quantum mechanics and Bose–Einstein conden-
sates [81, 86]. We first consider the properties of a statistical ensemble describing
a gas in thermodynamic equilibrium [87]. The system is comprised of discrete
single-particle states with energy En, degeneracy dn and occupation Nn. We now
work under the assumption that each degenerate state within a given energy level
can be occupied an arbitrary number of times by indistinguishable particles; a de-
generate Bose gas. As such, the number of possible configurations in a given energy
level is

Qn =
(Nn + dn − 1)!
Nn!(dn − 1!)

; (1.1)

and the total number of ways the entire system may be configured (Q) is the product
of the configurations of all energies

Q(N1,N2,N3, . . .) =

∞∏
n=1

Qn. (1.2)



Chapter 1: BECs and the GPE 17

Figure 1.1: State occupation for varying temperatures

We can write the total particle number and energy as

N =

∞∑
n=1

Nn, (1.3)

E =

∞∑
n=1

EnNn, (1.4)

and maximise Q under these measures by using the method of Lagrange multipliers
α and β in the new function G, defined as

G = ln(Q) + α

N − ∞∑
n=1

Nn

 + β

E − ∞∑
n=1

NnEn

 . (1.5)

Here we have taken the logarithm of Q to simplify our arithmetic by turning the
product into a sum. Setting ∂G/∂Nn = 0 will maximise Q and so tell us that the
most likely occupation configuration for a given total energy and particle number is

Nn =
dn

eα+βEn − 1
, (1.6)

where we have taken dn � 1.

In order to further explore the dynamics of the degenerate Bose gas and determine
α, β we will consider a more carefully defined system.
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1.2.2 Bose condensation for an ideal gas

We assume an ideal gas of an infinite number of particles in an infinite volume but
keep the density N/V constant. As such the particles can take a continuous range of
energies ε(k) = k2~2/2m, where k is the length of the particle’s wave-vector k and
so ~k is its scalar momentum.

Our Lagrange multipliers α and β can be set to −µ(T )/kBT and 1/kBT respectively,
defining T as the temperature and µ(T ) as the so-called chemical potential of our
(now grand canonical) ensemble. kB, of course, is Boltzmann’s constant. This yields
the Bose–Einstein distribution:

n(ε) =
1

e(ε−µ(T ))/kBT − 1
, (1.7)

which quantifies the number of particles n in a state with energy ε. Note that this
quantity differs from the number of particles with energy ε by a factor of the degen-
eracy of that energy.

Furthermore, we can now re-write our particle number and energy conditions [Eqs.
(1.3) and (1.4)] in the ideal gas limit using Eq. (1.7). This is achieved by reformu-
lating the degeneracy as the integral element over a thin spherical shell in k-space,
such that dn → (V/2π2)k2dk, and rewriting our summations as integrals:

N =
V

2π2

∫ ∞

0

k2

e[(~2k2/2m)−µ]/kBT − 1
dk (1.8)

E =
V

2π2

~2

2m

∫ ∞

0

k4

e[(~2k2/2m)−µ]/kBT − 1
dk (1.9)

By noting that n(ε) must be non-negative, we see from Eq. (1.7) that µ(T ) < εmin,
and so the chemical potential must be negative. Combining this requirement with
Eq. (1.8) we see that that µ(T ) increases monotonically with T . As such, a pivotal
event occurs at some critical value Tλ, where µ(Tλ) = 0. Studying Fig. 1.1 we see
that, at T = Tλ the population of the ε = 0 energy level diverges, which we interpret
as a condensation of the gas in the zero momentum state.

1.2.3 Long range off-diagonal order

Bose–Einstein condensates constitute a macroscopic quantum body supporting co-
herent interaction over the length of the condensate [88], long distances indeed
in quantum mechanical terms. This quality is of fundamental interest to modern
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physics as it allows us to bring quantum behaviour to large scales [27, 28, 89–92],
further confirming the postulates of quantum mechanics and opening up new av-
enues for applying these ideas in fields like metrology [93–95]. The exploration
and exploitation of this behaviour is a continuation of the early 20th century desire
to strip thermal complications from a system to illuminate the low energy world.

Here, we will illustrate this large distance correlation utilising the concept of off-
diagonal long-range order, closely following the description outlined in Ref [86].
We will first introduce the one-body density matrix which has elements defined as

ρ1(r, r′, t) = 〈Ψ̂†(r′)Ψ̂(r)〉. (1.10)

Here, the 〈· · · 〉 notation implies a quantum and, in the case of finite temperature,
thermal average with respect to the full many-particle density matrix. Taking Ψ̂†(r)
as the field operator which creates a particle at point r [96] [along with the annihi-
lation operator Ψ̂(r)], we see that ρ1(r, r′, t) is the probability of removing a particle
at r and regaining it at r′ at time t. For the moment we will not consider time depen-
dence of the density matrix, remaining in our equilibrated ideal gas scenario. As we
consider bosons, we assert that our field operators follow the bosonic commutator
relations:

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), [Ψ̂(r), Ψ̂(r′)] = [Ψ̂†(r), Ψ̂†(r′)] = 0. (1.11)

Similarly, we can denote the momentum analogue of ρ1 as,

ρ1(p,p′, t) = 〈Ψ̂†(p′)Ψ̂(p)〉, (1.12)

where the field operators are now taken to be in momentum space, and so

Ψ̂(p) =
1

(2π~)3/2

∫
drΨ̂(r)eip·r/~ (1.13)

As usual, setting r′ = r and p′ = p yields the diagonal spatial density ρ(r, t) =

ρ1(r, r, t) and diagonal momentum density ρ(p, t) = ρ1(p,p, t). Both of these are
normalised by

∫
drρ(r, t) =

∫
dpρ(p, t) = N

Substituting Eq. (1.13) into Eq. (1.12) and adopting the relative coordinate system
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defined as s = r − r′, R = (r + r′)/2 we obtain

ρ(p, t) =
1

(2π~)3

∫
dRdsρ1

(
R −

s
2
,R +

s
2
, t
)

eip·s/~. (1.14)

In this analysis, we still consider the ideal Bose condensed gas as described above,
where the volume is infinite, but N/V is held constant at n. In this case, we see that
our density matrix no longer depends on the relative coordinate R and is rotationally
symmetric, and so we can write ρ1(r, r′, t) = ρ1(s, t)1, where s = |r − r′|. This
quantity is equal to the inverse 3D Fourier transform over volume V of ρ(p, t),

ρ1(s, t) =
1
V

∫
dpρ(p, t)e−ip·s/~. (1.15)

When the temperature drops below Tλ our atoms macroscopically occupy the zero
momentum state, and so we can partition our density operator as ρ(p, t) = Ncδ(p) +

ρ̃(p, t). Here Nc is the condensation population, with Nc/N ≤ 1, and tells us the
proportion of our atoms in the zero momentum state. Substituting this form of
ρ(p, t) into Eq. (1.15), we see that

lim
s→∞

ρ1(s, t) = Nc/V, (1.16)

If we consider this result in the context of our previous interpretation of the density
matrix, we see that we are stating that there is a non-zero probability of a particle
being removed and another particle being added coherently over long distances, and
that this probability remains constant outside of a certain range. This off-diagonal
long-range order demonstrates that the BEC supports long-range coherent interac-
tions independent of direct particle interactions in the form of nonlinear potentials.

1.2.4 The macroscopically occupied mode

Previously we relied on the ideal homogeneous gas case to illuminate the character-
istics of the BEC. However, this is not the only system which supports BEC. Often
the system of the harmonically trapped weakly interacting gas is developed by anal-
ogy to the ideal gas case. This development can introduce some inconsistencies, for
instance in the determination of Tλ [97–100] and the loss of a true thermodynamic

1It should be noted that ρ(r, t) denotes the diagonal matrix elements only and is a function of only
one position, while ρ1(s, t) describes groups of off-diagonal elements and can still be considered to
be a function of two positions, the notations of which are condensed for brevity, and so is a general
matrix element of the one body density matrix, given certain assumptions about the symmetry of the
state.



Chapter 1: BECs and the GPE 21

phase transition in favour of a smoothed pseudo-transition [97, 101–103]. However,
similar analyses to that presented in Section 1.2.2 do still show the Bose conden-
sation event when the temperature drops below a critical value and a particular
state becomes macroscopically occupied, even in the presence of weak interactions
and/or harmonic trapping.

Here, we will generalise our definition of the condensate and formally introduce
the definition adopted by Penrose and Onsager [84]. This definition does not rely
on a zero momentum state (available to the untrapped ideal gas but not elsewhere),
merely a single macroscopically occupied state. We begin with the density opera-
tor ρ1(r, r′, t) as defined in Eq. (1.15). Previously we did not have a fixed particle
number, but now we move from the grand canonical description to the canonical
formulation (we still assume thermal equilibrium at temperature T ), where the par-
ticle number is assumed to be well defined and so the density matrix is normalised
by ∫

drρ1(r, r, t) = N. (1.17)

In this treatment we adopt the modes φi form an orthonormal basis of single particle
wave functions. These functions are eigenstates of the Hermitian one-body density
operator, with matrix element defined by Eq. (1.15) and so can be obtained through
diagonalisation at any time t [86].∫

dr′ρ1(r, r′, t)φi(r′, t) = ni(t)φi(r, t), (1.18)

with
∑

i ni(t) = N. We identify a condensate where an eigenstate φc(r, t) has eigen-
value Nc(t) which is of the order of N and so is much larger than all other eigenvalues
(which are generally of order 1).

1.3 Dynamics of the BEC and the GPE

Overview

In this section we will outline a derivation of how one can determine the dynamics
of the entire system, and particularly the dynamics of the condensate. The original
results of this thesis pertain only to the condensed state in the absence of thermal ef-
fects, but it is helpful to discuss the different ways that the fundamental equation de-
scribing this state, the Gross–Pitaevskii equation (GPE), can be derived, and briefly
describe the implications and results associated with the different derivations. In
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brief, The GPE constitutes a lowest order description of the system dynamics, but
this description is consistent throughout the various approaches, accounting for its
robustness as a method to describe dynamics of BECs up to T ≈ Tλ/2.

1.3.1 Second quantised Hamiltonian

Our Hamiltonian can be constructed from single-particle contributions and two-
particle contributions [82, 96]. This relies on the assumption that the gas is suffi-
ciently dilute that three-body collisions are unlikely, as discussed previously. The
single-particle contributions will account for potential and kinetic energy. The two-
particle contributions denote collisional events via some interaction potential. As
such, we can write

Ĥ =

N∑
i=1

ĥ1(ri) +
1
2

N∑
i, j=1

V̂(ri, r j), (1.19)

where ĥ1(r) is the single particle Hamiltonian and V̂(r, r′) describes the two-body
interactions. Note that the factor of one half prevents double counting and that the
interaction potential operator V̂ is defined to be zero for i = j. Moving from the
standard position basis used here, we can consider the state occupation operators
âi, â

†

i which remove and add particles (respectively) in some basis mode φi(r, t) of
the system. We again assert the bosonic commutator relations for these operators

[â†i , â j] = δi, j, [âi, â j] = [â†i , â
†

j] = 0 (1.20)

We can now consider a single-particle Hamiltonian contribution as the event that a
particle spontaneously moves from state l to mode m, and the two-particle contri-
butions being those events where two particles move from states l, j to states m, k

(remembering to symmetrise along the way to account for the interchangeable na-
ture of the bosons). As such, we rewrite Eq. (1.19) as

Ĥ =
∑
`m

〈`| ĥ1(r) |m〉 â†` âm +
1
2

∑
` jmk

〈` j| Ŵ |mk〉 â†` â
†

j âmâk. (1.21)

The single-particle events are all weighted by the matrix elements

〈`| ĥ1(r) |m〉 =

∫
drφ∗`(r, t)ĥ1(r)φm(r, t), (1.22)

and the two-particle events are weighted by the symmetrised matrix elements

〈` j| Ŵ |mk〉 =
1
2

(
〈` j| V̂ |mk〉 + 〈` j| V̂ |km〉

)
, (1.23)
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where

〈` j| V̂ |mk〉 =

"
drdr′φ∗`(r, t)φ

∗
j(r
′, t)V̂(r − r′)φm(r, t)φk(r′, t). (1.24)

The single particle eigenstates φi which construct our field operators have eigen-
values as defined in Eq. (1.18). We can now construct our field operators Ψ̂, Ψ̂† in
terms of â, â†, such that

Ψ̂(r) =
∑

i

âi(t)φi(r, t),

Ψ̂†(r) =
∑

i

â†i (t)φ∗i (r, t).
(1.25)

This allows us to transform our Hamiltonian [Eq. (1.21)], yielding the second quan-
tised system Hamiltonian

Ĥ =

∫
drΨ̂†(r)ĥ1(r)Ψ̂(r)

+
1
2

"
drdr′Ψ̂†(r′)Ψ̂†(r)V̂(r − r′)Ψ̂(r′)Ψ̂(r).

(1.26)

Finally, we set the forms of our single- and two-particle operators. The single-
particle operator is simply the sum of kinetic and potential energies, −~2∇2/2m +

Uext(r). The two-particle interactions are approximated by a contact potential gδ(r−
r′). The interaction strength is given by g = 4π~2as/m, where as is the s-wave
scattering length. Finally, we obtain

Ĥ =

∫
drΨ̂†(r)

[
−
~2

2m
∇2 + Uext(r) +

g
2

Ψ̂†(r)Ψ̂(r)
]
Ψ̂(r). (1.27)

Working in the Heisenberg picture [96], we can obtain the time evolution of an
arbitrary operator Ô via the standard relation

i~
dÔ
dt

= [Ô, Ĥ] + i~
∂Ô

∂t
. (1.28)

1.3.2 Spontaneous symmetry-breaking

Symmetry breaking partition

Having picked out the condensate mode φc and defined the mode operators âi(t) (in
particular, the condensate mode operator âc(t) which acts on the condensate mode



Chapter 1: BECs and the GPE 24

φc(r, t)) we can decompose and partition our field operators [104], giving

Ψ̂(r) = φc(r, t)âc(t) + δ̂n(r, t). (1.29)

The more convenient δ̂n notation refers to the non-condensate field operator and
will be explicitly defined later. The standard procedure from this point on [81, 82,
86, 105–107] is to make use of the large Nc limit, where 〈â†c âc〉 � [â†c , âc], and
so approximate the condensate field operator term φc(r, t)âc(t) by the classical field
ψc(r, t) = 〈Ψ̂(r)〉. This approximation introduces δ̂s(r, t) as a fluctuation term about
the finite expectation value of Ψ̂(r, t), specifically

Ψ̂(r) = ψc(r, t) + δ̂s(r, t). (1.30)

Hamiltonian contributions

We note that 〈δ̂s(r, t)〉 = 0 because δ̂s(r, t) is a well defined fluctuation operator, and
also note that δ̂s(r, t) scales with the number of non-condensed or thermal atoms
Nt(t). This means that we can use this fluctuation operator not only to determine
the coupled dynamics of the condensed and non-condensed atoms [via Eq. (1.28)]
but also as a small expansion parameter allowing for varying degrees of exactitude
in our analysis. In particular, we can substitute Eq. (1.30) into a slightly modified
version of our Hamiltonian [Eq. (1.27)]. This yields

Ĥ′ = Hsb
0 + Ĥsb

h , (1.31)

The prime denotes the modification of Eq. (1.27) to obtain the grand canonical
Hamiltonian [108] of the system (which is consistent with the lack of number-
conservation which will be discussed later [82]), such that Ĥ′ = Ĥ−µN̂ for chemical
potential µ and number operator N̂ =

∫
drΨ̂†Ψ̂. The non-operator term Hsb

0 denotes
those terms which are zeroth order in terms of δ̂s and has the form

Hsb
0 =

∫
dr

[
ψc(r, t)∗

(
ĥ1(r) − µ

)
ψc(r, t) +

g
2
|ψc(r, t)|4

]
. (1.32)

Because this term is purely classical, we can easily obtain the equation which de-
scribes the evolution of ψc(r, t) through functional differentiation, which would
yield the GPE [109, 110]. Terms which are first degree or higher in δ̂s are con-
tained in Ĥsb

h . While these terms are not directly relevant to the work presented in
this thesis, it is worthwhile to point out what they can be used to achieve.
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Zero temperature

Firstly, the terms up to second order can be used to determine equations for the
collective modes around the ground state; the modes of the Bogoliubov quasipar-
ticles [110–113]. These modes can, in fact, be derived from linearising a time
dependent perturbation applied to ψc(r, t) in the zeroth order approximation [82].
It can be shown that these quasiparticles follow a bosonic algebra, and so, to sec-
ond order, the problem can be reduced to considering a system of non-interacting
bosonic quasiparticles [82].

Finite temperature, static

Secondly, the higher order terms can be used to develop static thermal cloud de-
scriptions in the finite temperature limit. This requires a mean-field approximation
of third and fourth order occurrences of δ̂s via Wick’s theorem [96, 114] equivalent
to ignoring particle-exchanging collisions between condensed and thermal atoms
(third order) and ignoring thermal particle-exchanging collisions (fourth order).
This essentially decouples the system and so describes static dynamics. Further-
more, the full treatment of all these terms after the mean-field approximations [the
Hartree-Fock-Bogoliubov (HFB) limit] has the advantage of dressing the single-
particle states as Bogoliubov quasiparticles [115], but is susceptible to issues arising
from the contact potential approximation [116] (known as ultraviolet divergence)
and contains an anomalous gap in the quasiparticle excitation spectrum [117, 118].
A further mean-field approximation is available wherein terms with double creation
or annihilation operators are discarded, equivalent to describing the system with
single particle energies only [82].

Finite temperature, dynamic

Finally, we consider the evolution of the coupled condensate and non-condensate.
This is achieved using the Heisenberg equation of motion [Eq. (1.28)] with Eq.
(1.30) to determine the coupled dynamics equations of the condensate mode and
then the fluctuation operator δ̂s [119, 120]. Noting that ψc(r, t) = 〈Ψ̂(r)〉 (by def-
inition), 〈∂(δ̂s)/∂t〉 = 0 (because the statistical average commutes with the time
derivative and δ̂s is a well defined fluctuation operator with zero mean) and that
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Ψ̂(r) has no explicit t dependence the condensate equation becomes

i~
dψc(r, t)

dt
= 〈[Ψ̂, Ĥ]〉

= 〈ĥ1(r)Ψ̂〉 + g〈Ψ̂†Ψ̂Ψ̂〉

=
[
ĥ1(r) + g|ψc|

2
]
ψc + 2g〈δ̂†s δ̂s〉ψc + g〈δ̂sδ̂s〉ψ

∗
c + g〈δ̂†s δ̂sδ̂s〉. (1.33)

Similarly, the evolution of the non-condensate operator is given by

i~
dδ̂s(r, t)

dt
= i~

d
dt

[
Ψ̂(r) − ψc(r, t)

]
,

which can be written [121], with functional dependences omitted for brevity, as

i~
dδ̂s

dt
= ĥ1(r)δ̂s + g

[
2|ψc|

2δ̂s + ψ2
c δ̂
†
s

]
+ 2g

(
δ̂†s δ̂s − 〈δ̂

†
s δ̂s〉

)
ψc

+g
(
δ̂sδ̂s − 〈δ̂sδ̂s〉

)
ψ∗c + g

(
δ̂†s δ̂sδ̂s − 〈δ̂

†
s δ̂sδ̂s〉

)
.

(1.34)

These equations are exact, but lead to an infinite hierarchy of coupled equations of
motion, and so some truncation is required if they are to be solved. Various ap-
proximations and methods are available to this end, including the above mentioned
HF [114] and HFB [122–124] mean field approximations. Full discussions of the
available methodologies are beyond the scope of this thesis, but in depth discussions
are available in the standard texts [81, 86, 107].

Problems with symmetry-breaking

There are two major problems with the symmetry-breaking approach. First, the
classical field approximation requires replacing âc(t) with

√
Nc(t)eiΦ (which is a

complex number), for some arbitrary phase Φ. This replacement is often referred
to as the Bogoliubov approximation [125]. This assumes

√
Nc(t)eiΦφc(r, t) to be

a coherent state and fixes the phase of the condensate mode, breaking the U(1)
gauge symmetry of the Hamiltonian and leading to uncertainty in the particle num-
ber [106]. As such, this method is named the symmetry-breaking approach.

A second problem is the lack of orthogonality between the non-condensate fluctua-
tions δ̂s(r, t) and the condensate mode φc(r, t). This is something of a problem when
considering coupled condensate non-condensate dynamical treatments. We can see
this lack of orthogonality by taking the expectation value of Eq. (1.29),

〈Ψ̂〉 = 〈âc(t)〉φc(r, t) + 〈δ̂n(r, t)〉, (1.35)
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substituting into Eq. (1.30) and then equating to Eq. (1.29). This gives

δ̂s = [âc(t) − 〈âc(t)〉] φc(r, t) +
[
δ̂n(r, t) − 〈δ̂n(r, t)〉

]
. (1.36)

1.3.3 Number-conserving formalism

Overview

The issues associated with symmetry-breaking can be avoided by taking a differ-
ent approach. The number-conserving formalism developed by C. Gardiner [126],
Castin and Dum [127, 128], Morgan [117, 117, 129–132], and S. Gardiner [129]
are more consistent with the Penrose-Onsager definition of the BEC [84] in that
they maintain the orthogonality of the condensate and non-condensate. This yields
a canonical description of the system, as apposed to the grand-canonical inter-
pretation imposed by the lack of number conservation inherent in the symmetry-
breaking.

The partition

Instead of immediately approximating the condensate mode by a classical field, we
retain the condensate operators

âc(t) =

∫
drφ∗c(r, t)Ψ̂(r), (1.37)

and define the non-condensate field operator δ̂n(r, t) [Eq. (1.29)] as

δ̂n(r, t) =

∫
dr′Q(r, r′, t)Ψ̂(r′), (1.38)

where the projector is defined as Q(r, r′, t) = δ(r − r′) − φ∗c(r, t)φ∗c(r′, t), and so
projects Ψ̂(r) onto all modes orthogonal to φc(r, t). Considering Eq. (1.29) we see
that we have reformulated our problem to be in terms of the operators âc(t) and
δ̂n(r, t) (and their respective creation operators). It should be noted that the only
non-zero commutators are [129]

[âc(t), â†c(t)] = 1, (1.39)

[δ̂n(r, t), δ̂†n(r′, t))] = Q(r, r′, t). (1.40)
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This formalism neither breaks symmetry [as the condensate’s phase is undetermined
through the retention of âc(t)] nor leads to non-orthogonality [as Q(r, r′, t) explicitly
determines δ̂n(r, t) to be orthogonal to the condensate mode] and so allows us to
develop a self consistent number-conserving theory of BEC dynamics even in the
limit of finite temperature or low particle number (where the non-condensate has a
non-negligible population).

Small and large parameters

As with the symmetry-breaking formalism, we can consider the Heisenberg picture
equations of motion of an appropriate fluctuation operator in order to determine the
full dynamics of the system, again using a small operator to perform a fluctuation
expansion about zeroth order.

In the number-conserving formalism, we consider an operator which removes a
particle from the non-condensate and creates one in the condensate [129], and so
has the form

Λ̂(r, t) =
1√
N̂

â†c(t)δ̂n(r, t). (1.41)

The denominator
√
N̂ is generally taken to be a number operator and should be of

order
√

Nc(t) in order to keep our fluctuation operator of the order of the condensate
fraction. There are three possible candidates for this operator [129]: N̂ = N̂, the
total number operator; N̂ = Nc(t), the condensate number eigenvalue; or N̂ = N̂c(t)
the condensate number operator. These three alternatives are judged on how well
the resulting Λ̂ satisfies three desirable conditions: it must be a good fluctuation
operator, such that 〈Λ̂(r, t)〉 = 0; it must scale as the non-condensate fraction,
such that Λ̂ ∝

√
Nn(t); and it should describe bosonic quasiparticles, such that

[Λ̂(r′, t), Λ̂†(r, t)] = δ(r − r′).

Figure 1.2 shows how the different denominator candidates perform. The first,
√

N̂

(used by Castin and Dum [127, 128]) is a good fluctuation operator (having zero
mean), but only scales correctly in the Nn(t) � N limit and has only approximately
bosonic quasiparticles. The second,

√
Nc(t) (used by Gardiner and Morgan [129])

is also a good fluctuation operator, and has the extra benefit that it scales correctly
for all Nn(t), but again has only approximately bosonic quasiparticles. The third,√

N̂c(t) has bosonic quasiparticles and scales exactly with the non-condensate frac-
tion, but is not a well defined fluctuation operator.

We will now adopt the approach of Gardiner and Morgan [129], in that we prioritise



Chapter 1: BECs and the GPE 29

Figure 1.2: Fluctuation operator rescaling factors and their validities for a
non-negligible thermal fraction. The blue region satisfies bosonic quasipar-
ticles, the yellow region contains well defined fluctuation operators and the
red region scales appropriately with the non-condensed fraction [129].

that Λ̂(r, t) scale correctly and be a good fluctuation operator. This selection is
largely unimportant in the current context, as the differences in analysis engendered
by the selection will not affect the work presented in this thesis, and the outcomes
are broadly similar up to some subtle caveats. However, a selection must be made
in order to continue. As such, we select

√
Nc(t) as our denominator:

Λ̂(r, t) =
1

√
Nc(t)

â†c(t)δΨ̂(r, t). (1.42)

Beyond this point the derivations and considerations become somewhat involved.
For instance, third order factorisations of the Hamiltonian require the assumption
that fluctuations in the dynamics operator Λ̂(r, t) are essentially Gaussian. This al-
lows a process analogous to the HF and HFB formulation of the symmetry-breaking
dynamics [133] but is not consistent to fourth order as it requires that terms of mag-
nitude comparable to fourth order terms be discarded [117]. As such, the higher
order dynamics of the condensate will not be discussed further in this thesis. We
will stop at identifying a set of candidates for the fluctuation operator and illustrate
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how one of these operators can be used to determine the GPE.

Zeroth order expansion

In order to approximate the dynamics to first order, the full second quantised Hamil-
tonian must be expanded in terms of Eq. (1.29) and then reduced to first order in
Λ̂(r, t), yielding [129]

Ĥnc
1 =Nc

∫
drφ∗c(r, t)

[
ĥ1(r) +

gNc

2
|φc(r, t)|2

]
φc(r, t)

+
√

Nc

∫
dr

{
φ∗c(r, t)

[
ĥ1(r) + gNc|φc(r, t)|2

]
Λ̂(r, t) + H.c.

}
,

(1.43)

with H.c. denoting the hermitian conjugate. Substituting Eq. (1.42) into Eq. (1.28)
yields, to first order and taking care with explicit time dependencies,

i~
d
dt

Λ̂(r, t) = [Λ̂(r, t), Ĥnc
1 ] −

√
Nc

∫
dr′Q(r, r′, t)

[
i~
∂

∂t
ψc(r′, t)

]
(1.44)

Since the fluctuation operator has zero expectation and the statistical average com-
mutes with the time derivative, taking the average of Eq. (1.44) gives us the fully
3D Gross–Pitaevskii equation

i~
∂φc(r, t)
∂t

=

[
−
~2

2m
∇2 + Uext(r) + gNc|φc(r, t)|2 − λ0

]
φc(r, t), (1.45)

where λ0 is a global energy offset, defined as

λ0 =

∫
drφ∗c(r, t)

[
−
~2

2m
∇2 + Uext(r) + gNc|φc(r, t)|2 − i~

∂

∂t

]
φc(r, t), (1.46)

which can generally be discarded as an arbitrary global phase [81].

1.4 Classical analysis of dimensionality

Now that we have determined the dynamical equation governing the lowest order
approximation of the BEC we will make one final approximation in order to ob-
tain the dynamics equation which the results of this thesis will focus on. This is
the reduction to 1D. First, however, we must outline a 3D effect which cannot be
overlooked, namely the collapse threshold, and point out a method of making this
analysis.
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1.4.1 Collapse in attractive condensates

The Pérez-García treatment

As previously mentioned, through the use of Feshbach resonances it is possible to
tune the scattering length of the atoms in a BEC to a wide range of values, pos-
itive or negative. As such, we can create both dispersive (repulsive, as > 0) or
self-focusing (attractive as < 0) condensates. Dispersive condensates will not be
discussed in the current thesis, but are interesting systems in that they support a
wide range of fundamental excitations (including vortices and dark solitons) and
intriguing behaviours. In this thesis we consider the self-focusing case only, such
that we can create bright solitary waves and solitons (as opposed to the dark solitary
waves and solitons of the dispersive GPE).

An important feature of the dynamics of the self-focusing GPE is the collapse
threshold. Clearly, the presence of attractive interactions will increase the rate of
inelastic two-body collisions and three-body collisions resulting in depletion. How-
ever, even if this process is ignored, the 3D GPE is fundamentally unstable to col-
lapse when unconfined. This phenomenon has been observed and investigated ex-
perimentally [80, 134–138] and through extensive theoretical investigations [139–
151]. In particular, here we will highlight the work of Pérez-García et al. [152],
where a variational method was employed to determine regions of stability in the
GPE by assuming a 3D Gaussian profile of the condensate.

Considering a condensate wavefunction denoted as ψ(r, t) and taking the classical
Lagrangian density functional L[ψ]

L[ψ] =
i
~

(
ψ
∂ψ∗

∂t
− ψ∗

∂ψ

∂t

)
−
~2

2m
|∇ψ|2 +

mν2

2

(
λ2

xx2 + λ2
yy2 + λ2

z z2
)
|ψ|2 +

2πas~
2

m
|ψ|4.

(1.47)

The λη and ν parameters describe the harmonic trapping aspect ratios and base fre-
quency. We then vary the parameters of some ψ ansatz to get a minimal extrema
in the action

∫
Ldrdt. This is the classical mechanical approach wherein the ac-

tion is made extremal by taking the Euler–Lagrange (E–L) equations for some free
parameters of the ansatz. Pérez-García et al. selected a Gaussian ansatz for this
purpose [152]:

ψ(r, t) = A(t)
∏
η=x,y,z

exp
{
−

[
η − η0(t)

]2 /2w2
η + iηαη(t) + iη2βη(t)

}
. (1.48)
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The parameter η runs over the x, y, z coordinates. Substituting this ansatz [Eq. (1.48)]
into our Lagrangian density [Eq. (1.47)] and integrating over the spatial coordinates,
we obtain the effective Lagrangian2

L =

∫
drL =

π3/2

2
wxwywz

{
i~

(
A∗Ȧ − AȦ∗

)
+ |A|2

∑
η=x,y,x

[ (
β̇η −

2~2

m
β2
η −

1
2

mν2λ2
η

) (
w2
η + 2η2

0

)
−
~2w2

η

2m
+
~2α2

η

m
+ 2η0

(
α̇η −

2~2

m
αηβη

) ]
+

√
2π~2a
m

|A|4
}
.

(1.49)

Taking the E–L equations of our effective Lagrangian L,

d
dt

(
∂L
∂q̇ j

)
−
∂L
∂q j

= 0, (1.50)

gives us a set of dynamics equations for all parameters

q ≡ {wx,wy,wz, A, A∗, x0, y0, z0, αx, αy, αz, βx, βy, βz}. (1.51)

For clarity, wη denotes the Gaussian width, A is the complex amplitude, η0 denotes
the centre of mass position, αη denotes the linear phase contributions (or slope,
which can be shown to be unimportant) and βη describes the curvature radius.

It can be shown that the only true dynamical variables of note are the η0(t) and wη(t).
All other variables are fixed or can be determined from the width and COM posi-
tion. The COM position coordinates are shown to follow simple harmonic motion,
and the width and COM dynamics are independent. This is an interesting result,
which will later be confirmed through a different methodology. Simply put, a har-
monically trapped condensate’s internal dynamics and COM position can be shown
to decouple (for both Gaussian [152] and solitonic parameter regimes [153]) from
the condensate’s internal degrees of freedom. This can be a useful characteristic,

2It is strongly recommended that any reader who would like to use the Pérez-García analysis, or
similar variational methods, take great care as inconsistencies in notation are a common pitfall with
such laborious algebraic manipulation. Here we have transcribed exactly from Ref. [152] in order to
outline the process and broader results.
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and will be used later. If we now consider the width dynamics, we find

ẅη + λ2
ην

2wη =
~2

m2w3
η

+

√
2
π

a~2N
m2wxwywzwη

. (1.52)

This system of PDEs describes a particle with position νη (essentially a rescaling of
the widths wη) moving in a 3D potential

Vp(νx, νy, νz) =
1
2

(
λ2

xνx + λ2
yνy + λ2

zνz

)
+

1
2ν2

x
+

1
2ν2

y
+

1
2ν2

z
+

P
νxνyνz

.
(1.53)

If we consider this potential we see that the key parameter P =
√

2/πNas/a0 is
fundamental in determining whether or not there is a local minimum corresponding
to wη , 0. Any of the wη going to zero signifies collapse. In Fig. 1.3 we consider
the spherically symmetric case (λη = 1, wη = ν) with the condensate initially “at
rest” (ẇη = 0), giving the 1D equation of motion

∂2ν

∂τ2 + ν =
1
ν3 −

|P|
ν4 . (1.54)

This is essentially the motion of a particle in the potential

V1D(ν) =
ν2

2
+

1
2ν2 −

|P|
3ν3 . (1.55)

Note that τ is simply a dimensionless rescaling of the time variable. To obtain
the critical point νc, where the condensate is stable, we set the potential’s first and
second derivatives to zero (such that the “particle” does not accelerate), yielding

νc =
1
ν3

c
−
|P|
ν4

c
,

1 = −
3
ν4

c
+

4|P|
ν5

c
.

(1.56)

This tells us that Eq. (1.54) has a stable region for |P| < |Pc| = 4/55/4. When this is
the case, the width oscillates around a local minimum in the potential. If this is not
the case then ν (and consequently wη) decays to zero and the condensate collapses.

Similar analyses can be conducted for different trapping geometries where 3D har-
monic trapping is employed (namely prolate and oblate) [139, 145, 147, 148] and
different ansätze [16, 25, 146, 151, 154].
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Figure 1.3: Regions of stability in the GPE: Here we show various instances
of the “particle” potential of the widths of the symmetric Gaussian ansatz to
the GPE. For |P| < |Pc| [a),b)] we see a stable region wherein the width
oscillates without collapsing. For |P| = |Pc| [c)] we see that there is an un-
stable state where the width can remain but is unstable to any perturbation.
For |P| > |Pc| [d)] the condensate will always collapse. The blue labelling
lines indicate the turning point in the potential.

The Salasnich treatment

A second such analysis of note was carried out by Salasnich et al. [147]. In this
variational method the radial and axial dynamics are separated through the ansatz

ψ(r, t) = φ(y, z, t;σ f (x, t)) f (x, t) (1.57)

where φ(y, z, t;σ f (x, t)) is the radial wavefunction parameter defined as

φ(y, z, t;σ f (x, t)) =
e−[y2+z2]/2σ f (x,t)2

π1/2σ f (x, t)
. (1.58)
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where σ f (x, t) = a2
⊥

√
1 + 2asN | f (x, t)|2 is the Gaussian radial width. Through

action minimisation via the E–L equation for f (x, t) Salasnich obtained the non-
polynomial Schrödinger equation (NPSE) [155]

i~
∂ f (x, t)
∂t

=

− ~2

2m
∂2

∂x2 + Vext(x, t) +
1 + (3/2)(2as/a⊥)| f (x, t)|2√

1 + (as/a⊥)| f (x, t)|2

 f (x, t). (1.59)

this equation is particularly powerful, as it allows the determination of the width
σ f (x, t) which becomes zero upon collapse. This can be seen to result in a divergent
non-linear term, illuminating the concept that this collapse is brought about by a
catastrophic over-focusing of the condensate. Furthermore, this equation allows
for the consideration of 3D collapse behaviour in a 1D system. This method has
been used to find collapse events in systems where solitons interact with narrow
potentials, and showed good qualitative agreement with 3D methods [45].

1.4.2 1D reduction and soliton units

It is now widely accepted that sufficiently (i.e. very) prolate geometries are well
suited to supporting effectively 1-D dynamics [15, 16, 146, 147, 156, 157]. There
are two main requirements associated with the 1D regime: the radial direction con-
finements must be much tighter than the axial confinement, ωy = ωz = ωr � ωx,
essentially freezing out radial excitations and dynamics; and the radial confinement
must not be so tight that the scattering is no longer 3D, with ωr � (~/mas)1/2.
While under these conditions the condensate may be described as effectively 1D,
the reduction is not perfect, especially for attractive condensates [25].

This allows us to substitute the factorisation

φ(r, t) = Ψ(x, t)Φ(y, z), (1.60)

where
Φ(x, t) =

(mωr

π~

)1/2
exp

[
−

mωr

2~

(
y2 + z2

)]
(1.61)

into Eq. (1.45), yielding

i~
∂Ψ(x, t)
∂t

=

[
−
~2

2m
∂2

∂x2 + Uext(x, t) − g1DN |Ψ(x, t)|2 − λ1

]
Ψ(x, t), (1.62)

Where λ1 is the energy associated with the radial groundstate and can, again, be
discarded as a global phase. We have rescaled the strength of our nonlinearity to
g1D = 2~ωr|as|.
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The final adaptation we can make to our dynamics equation is a dimensionless
rescaling. For the purposes of the work presented in this thesis, the soliton rescaling
is the most appropriate [25]. As such, we take position units of ~2/mgN, time units
of ~3/mg2N2, and energy units of mg2N2/~2 we obtain the dimensionless, quasi-1D
GPE

i
∂ψ(x̃, t̃)
∂t̃

=

[
−

1
2
∂2

∂x̃2 +
ω̃2 x̃2

2
−

∣∣∣ψ(x̃, t̃)
∣∣∣2]ψ(x̃, t̃), (1.63)

where ω̃ denotes the dimensionless axial trapping frequency and the dimensionless
wave function is ψ(x̃, t̃) = ~Ψ(x, t)/

√
mgN.

It is helpful to characterise these units in terms of typical experimental parame-
ters. The following information is determined using experimental parameters for a
condensate of 85Rb atoms [10], expressed in S.I. units:

N = 4000

m = 85u

as = −11a0

ωr = 2π × 17.3Hz

ωx = 2π × 6.92Hz

Where u = 1.66 × 10−27kg is the atomic mass unit, and a0 = 5.29 × 10−11m is the
Bohr radius. The non-linearity is now quantified by

g1D = 2~ωr|as| = −1.37 × 10−41kg m3s−2

Working in soliton units:

x =
~2

mg1DN
x̃ = (1.43 × 10−6m) × x̃

t =
~3

mg2
1DN2

t̃ = (2.73 × 10−3s) × t̃

v =
g1DN
~

ṽ = (5.22 × 10−4ms−1) × ṽ

E =
mg2

1DN2

~2 Ẽ = (3.84 × 10−32kg m2s−2) × Ẽ

where tildes denote dimensionless variables and quantities. This notation will be
omitted for brevity after this point.
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Schrödinger equation

2.1 Introduction

As noted previously, the macroscopic quantum nature of BECs can be used as a
powerful tool in that we can observe wave-like features in the behaviour of matter
on large scales, but this begs the question of what other features are intrinsic to
BECs. The goal of our analysis in this chapter is to identify robust structures within
BECs and determine how they behave and to what uses they can be put. In the case
of condensates of mutually attractive atoms, where the s-wave scattering length
is negative, recent experiments [8, 10, 34, 158] report the existence of localised,
finite sized wave-packets within the condensate. These bright solitary waves retain
their shape even when in close proximity to one-another, despite the intrinsically
attractive nature of the condensate, and so are in some sense topological features of
the system. These excitations are often referred to as solitons [10], and are physical
analogues to the topological defect of the same name [159–161]. In this chapter we
will describe the nature of these structures and the mathematical tools available to
those who wish to study them.

In the previous chapter we developed a description of BECs which was complete up
to the degree of second quantisation [82]. However, this degree of completeness is
not a stringent requirement for the analysis to illuminate the fundamental quantum
nature of the system. Under the Copenhagen interpretation, the standard interpreta-
tion of quantum mechanics, the probabilistic nature of quantum mechanical states
is key. Our 1D leading order approximation, the GPE [Eq. (1.63)], is used to define
the probability density function (PDF) of the atoms in the condensed state in the
quasi-1D system. The GPE is , from a mathematical perspective, a partial differen-
tial equation (PDE), and so we can analyse the coarse-grained quantum mechanical
characteristics of the system using the more classical tools of PDE analysis.

We will now adopt the ideas of the wave equation to describe the dynamics exhib-
ited by the GPE, and so allow us to better understand bright solitary matter-waves.
Wave equations determine the dynamics of a field over some spatial domain (with
appropriate boundary and initial -conditions) [159]. As such they are PDEs contain-

37
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ing spatial and temporal derivatives. Essentially, we can consider the propagation
of oscillations and pulses through a classical field u(x, t) (which describes our wave
function PDF) by considering the structure of the dynamics equation associated
with that field. The fundamental form of Eq. (1.63), in the absence of external
potentials, is that of the focusing non-linear Schrödinger equation (NLSE), a com-
monly discussed wave equation:

iut +
uxx

2
+ u |u|2 = 0. (2.1)

Here the subscripts denote a partial derivative. Before we analyse this equation, we
will first develop an understanding of some of the basic behaviours such a system
can exhibit.

2.2 Fundamentals of wave behaviour

2.2.1 Simple harmonic motion

Here we will follow ideas presented in [159] to introduce some fundamental wave
behaviours. Wave propagation can be introduced with simple harmonic motion in
1D, as described by

utt − c2uxx = 0 (2.2)

This simple model will allow us to develop a framework within which we can con-
sider various types of wave behaviour. Studying Eq. (2.2) we see that the ampli-
tude’s acceleration at any point is proportional to how quickly its gradient varies
spatially at that point. If we consider a region where the amplitude varies from
zero, up to some finite value and then returns to zero (also requiring that the am-
plitude varies smoothly, slowly and is single valued) we see that where the gradient
is positive or zero it will accelerate to zero, and that where the gradient is negative
it will accelerate away from zero. This describes a pulse in the amplitude which
travels through the medium as the amplitude at a given point oscillates. This is, of
course, our wave. The variable c can be seen to be the wave’s speed of translation
if we introduce characteristic variables (x ± ct) such that our solution has the form

u(x, t) = f (x − ct) + g(x + ct), (2.3)

where f and g are functions which are well defined up to their second derivatives.
Equation (2.3), known as d’Alambert’s solution, describes two wave forms f and
g moving in opposite directions [159]. A useful example of such a solution is, of
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course,

u(x, t) = ei(kx−ωt). (2.4)

(2.5)

This is the elementary harmonic wave solution with wavenumber k, frequency ω

and wave speed c = ω/k.

2.2.2 More complex wave equations

Linear wave properties

As elementary as Eq. (2.2) may seem, let us reduce it further, and consider a system
where waves can move in one direction only:

ut + cux = 0. (2.6)

Any twice differentiable solution of this equation is a solution of Eq. (2.2), but the
reverse is not true, and so the set of solutions to Eq. (2.6) is a subset of Eq. (2.2)’s
solutions, given by

u(x, t) = f (x − ct). (2.7)

Notice that Eq. (2.3) is a linear combination of Eq. (2.7) and a second set of so-
lutions g. This is the superposition principle, which applies to linear systems such
as Eqs. (2.2) and (2.6). Simply put, the sum of any two solutions to a linear equation
is also a solution to that equation. We will revisit this concept later.

Now let us add terms to this equation and consider their implications. For instance,
let us add a third-order spatial derivative, yielding

ut + ux + uxxx = 0. (2.8)

We can successfully seek a solution of the form Eq. (2.5). This treatment yields a
dispersion relation between the frequency ω and wave number k of the form

ω = k − k3, (2.9)

and so the wave speed is
c =

ω

k
= 1 − k2.

This tells us that waves of differing wavelength (different values of k) move at dif-
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ferent speeds, and so we might call Eq. (2.8) a dispersive wave equation [159].

Similarly, adding in a second order spatial derivative to Eq. (2.6),

ut + ux − uxx = 0, (2.10)

yields the dispersion relation
ω = k − ik2. (2.11)

In a harmonic wave solution the imaginary part of the frequency causes the har-
monic wave solution’s amplitude to decay exponentially over time, and so we might
call Eq. (2.10) a dissipative wave equation [159].

Nonlinear wave properties

We now broaden our investigation to nonlinear terms and their characteristics. For
instance, equations of the form

ut + a(u)ux = 0 (2.12)

yield no non-trivial solutions after application of the harmonic wave ansatz. Instead,
we employ the method of characteristics. This is a standard method for the solution
for first order nonlinear PDEs [162]. To use this methodology, we will first consider
the formulation of conservation equations, following Ref. [163]. Beginning in full
3D we note that the rate of change of a physical entity within a region G bounded
by surface S is determined by the flux out of that region, f · n, and write

d
dt

$
G

udr = −

	
S

f · ndS . (2.13)

This equation asserts that the rate of change of the integral of u is equal to the flux
of u normal to the boundaries of G. Through the divergence theorem, allowing G

to tend to a point and considering our problem in 1D we obtain the conservation
equation,

ut + fx = 0. (2.14)

We now assume that the flux f depends on u alone and is nonlinear in u. We then
assert that

d f
du

= a(u), (2.15)

and note that Eqs. (2.12) and (2.14) are equal under this assertion, making Eq. (2.12)
a conservative equation [162–164]. As such we can determine a family of curves
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xc(t) along which u remains constant by setting

d
dt

u(xc[t], t) =ut + uxxt

=0
(2.16)

and equating this with Eq. (2.12). Note that the notation on the left-hand side
of Eq. (2.16) is intended to highlight that u(xc, t) is purely a function of t, and the
square brackets merely describe xc’s dependence on t. This shows that u is constant
along the curves satisfying

dxc

dt
= a(u). (2.17)

These are the characteristic curves with signal speed a(u). Taking the initial condi-
tion

u(x, 0) = u0(x) (2.18)

we can formulate a solution of the form

u(x, t) = u0(x − a[u0]t). (2.19)

We will now point out the major problem with this solution. Let us take au > 0,
such that Eq. (2.12) is genuinely nonlinear [163], and consider the time and space
derivatives. According to the implicit function theorem [163] we obtain

ut = −
u′0a

1 + u′0aut
and ux =

u′0
1 + u′0aut

(2.20)

for small t. These equations clearly satisfy Eq. (2.12), and if u′0 ≥ 0 then the char-
acteristic curves are divergent in the positive t direction, and so the initial condition
can propagate indefinitely and remain single valued as the wave form of u dissi-
pates [163]. However, if u′0 < 0 then both parts of (2.20) are divergent. In this
scenario the characteristic curves issuing from two points y1 < y2 (with associated
amplitudes u1 = u0(y1) > u0(y2) = u2 and speeds a1 = a(u1) > a(u2) = a2) will cross
at time ts = (y2−y1)/(a1−a2). When this occurs ux becomes infinite and u(x, t) is no
longer single valued. Our wave topples [159]. This crossing of characteristic curves
is known as a shock wave and is an inherent problem of the solution of nonlinear
wave equations in terms of both stability and solution [164].



Chapter 2: Solitons in the NLSE 42

Combination of behaviours

The benefit of this analysis is to consider the outcome of mixing one or more of the
above behaviours. If an equation were amenable to a solution constructed in such
a way that the nonlinear term could counteract the effects of dissipation and disper-
sion then that solution could translate along the x-axis coherently and indefinitely.
Equations such as the Korteweg-de Vries (KdV) equation [165] and the NLSE are
amenable to just such a type of solution [159–161]. These are the fabled soliton
solutions.

2.3 Solutions to nonlinear equations and the NLSE

2.3.1 Fourier and inverse scattering transforms

A noteworthy feature of the NLSE is that the nonlinear |u|2 term and the dissipative
uxx term1 can counteract one another and lead to stable travelling wave solutions.
However, as shown above the nonlinearity is a more difficult feature to describe
as it is not amenable to simpler methods of solution. In particular, (2.1) is not
amenable to solution by linear combination of other solutions. This is a fundamental
property of nonlinear equations and is a severe impediment to their easy solution.
For instance, equations such as (2.2) and (2.6) can be informatively solved by a
Fourier transform of the form

A(k, t) =

∫ ∞

−∞

u(x, t)e−2πikxdx. (2.21)

This is effectively the Fourier transform of u in momentum space (although k has
units of inverse length). Once obtained, the wavenumber amplitudes A can often be
evolved in time more efficiently than when represented in the spatial basis, as spatial
derivative operations can be easily carried out via wavenumber multiplication, and
so the dispersion relation of the dynamical equation can be used to easily evolve
the system. After this evolution, the spatial representation can be retrieved by the
transform

u(x, t) =

∫ ∞

−∞

A(k, t)e2πikxdk. (2.22)

Such transform pairs are particularly useful in a numerical context, as there exist a
number of well optimised libraries of spectral methods based on the Fourier trans-
form [166]. These transforms, however, depend on linear superpositions being a

1In Eq. (2.10) uxx was said to have dissipative, not dispersive properties. However, in the NLSE
the presence of the complex factor i in the time derivative term alters this behaviour.
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valid solution to the initial equation.

The nonlinear analogue to Fourier transforms, inverse scattering transforms, utilise
a similar process: the spatial data are transformed into some new basis, the scatter-
ing data S; the scattering data are then evolved in time by an appropriate dynamical
equation; and at the end of this evolution the data are transformed back. Further-
more, the scattering data can be used to construct complete solutions and illuminate
the behaviour of these solution.

There are many methodologies of the inverse scattering transform, (See Refs. [159–
161, 165, 167]). Here we will give a brief sketch of the behaviour common to
all of these techniques and discuss what features this behaviour shows us. All the
approaches are, in essence, the reformulation of the nonlinear equation in terms of
an auxiliary linear scattering problem [168],

ψxx + (u − λ)ψ = 0 (2.23)

where the initial condition of the nonlinear problem, u(x, 0), acts as a potential.
The construction of an operator which achieves this transformation is the first major
hurdle to creating an inverse scattering transform, as there is no process or algorithm
which is guaranteed to be successful, and in general is found through shrewd guess-
work [159, 160, 165].

The illuminating features come from consideration of the eigenvalues of the linear
problem, which has eigenfunctions in the form [159, 168]

ψ̂(x; k) ∼

e−ikx + b(k)eikx as x→ +∞

a(k)e−ikx as x→ −∞,
(2.24)

and
ψn(x) ∼ cne−κn x as x→ +∞ (2.25)

Here k2 = λ > 0 denotes the continuous spectrum of eigenvalues and corresponding
eigenfunctions ψ̂(x; k). These eigenfunctions are oscillatory as x → ±∞ and so the
first exponential in equation (2.24) can be thought of as an incident wave while a(k)
and b(k) denote the amplitudes of that wave transmitted or reflected by the potential
u(x, 0).

The discrete spectrum denoted by −κ2
n = λn < 0 corresponds to eigenfunctions ψn

with amplitudes cn for n = 1, 2, 3...N. These parts of the solution decay as x→ ±∞
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Figure 2.1: Schematic of the inverse scattering technique

and so form discrete wave packets and represent bound states in the scattering prob-
lem which are poles in the upper half complex-plane of the scattering eigenvalue.
This presence as a topological defect is what affords solitons their stability, in a
mathematical sense [159].

Once the initial scattering data have been determined it is then necessary to use the
nonlinear wave equation in question to develop a method of time evolution for the
scattering data. Determining this time evolution is the second major obstacle in
constructing an inverse scattering transform for a particular wave equation.

Finally it is necessary to reconstruct our solution u(x, t) as the solution to the inverse
scattering problem. This process uses the result [159–161, 165, 165, 167]

u(x, t) = −2
d
dx

K(x, x; t), (2.26)

where K(x, z; t) (here t plays the role of a parameter) is the solution of the Marchenko
equation

K(x, z; t) + F(x + z; t) +

∫ ∞

x
K(x, y)F(y + z)dy = 0 (2.27)

and

F(X) =

N∑
n=1

c2
n(t)e−κnX +

1
2π

∫ ∞

−∞

b(k; t)eikXdk (2.28)

is constructed from our time dependent scattering data.

Through application of the methods of inverse scattering transforms, not only can
the dynamics of nonlinear equations be determined exactly, but the structure and
dynamics of topological defects can be described. This makes the inverse scattering
transform a powerful, if capricious, tool in the analysis of nonlinear problems.
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2.3.2 NLSE solutions

Inverse scattering transforms, with their links to integrability [161], are often con-
sidered to be the fundamental mathematical definition of solitons. However, a
more pragmatic definition relies on the excitations having the characteristics of
localised stability and robustness to collision with one-another. This definition
is common because these characteristics are of particular interest in experimental
terms, and so they are often considered the most important characteristics of soli-
tons [30, 45, 169].

We will now show that the NLSE does indeed support stable-travelling wave so-
lutions. The derivation that follows is a specific case of a more complete analysis
presented in Appendix A. The analysis in Appendix A is concerned with the exact
form of travelling wave solutions to the NLSE when considered in a translational
frame of reference, and will be relevant to later results. Here we present the case
retrieved when the speed of translation is zero. We will leave the question of the
multiple soliton case, and the associated question of collisional stability, to the liter-
ature concerned with the properties of inverse scattering transforms [159–161]. We
will begin by seeking solutions to Eq. (2.1) of the form

u = rei(θ+nt) (2.29)

as suggested in Ref. [159]. As such, we set r and θ to be functions of the variable
ξ = x − ct. We also assert that r and θ are real (as any imaginary component in
these functions would result in exponential growth or decay of the solution, which
is incompatible with our stability requirement) and note that r2 must be ≥ 0 for a
meaningful solution. Substitution of this ansatz into the NLSE and separation into
real and imaginary parts yields, from the imaginary part,

θ′ = c +
A
r2 . (2.30)

Here, A is an arbitrary real constant of integration and the prime denotes a derivative
with respect to the argument of the function. This is then substituted into the real
part, and we obtain

r3 − α
r
2

+
r′′

2
−

A2

2r3 = 0, (2.31)

where
α = 2n − c2. (2.32)
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Figure 2.2: Here we see that the polynomial F(S ) can satisfy one of three
cases: a) three single roots, b) one double root and one single root and c)one
triple root

Using r′ as an integrating factor we obtain, after some manipulation,

(
S ′

)2
= −4S 3 + 4αS 2 + BS − 2A2

= F(S ).
(2.33)

We have also used the substitution S = r2, where S ≥ 0 is the density. Equa-
tion (2.33) tells us that valid solutions to the NLSE only exist where F(S ) is greater
than zero, as S ′ (and indeed S ) must be real. The requirement of valid solutions
for S = 0 fixes A = 0 and F(0) = 0. Considering the behaviour as S → ∞, and
knowing that F(S ) is a third order polynomial, we can narrow its structure down to
four possible cases. These are displayed in Fig. 2.2.

We can see that scenarios (b) and (c)(i) hold no interesting solutions, as there is no
range of S over which F is positive. There are, however, ranges of values of S in
scenarios (a) and (c)(ii) which hold travelling wave solutions. We can see that in
a) this range exits between two simple zeros of F. In (c)(ii) the range is between a
double zero at S = 0 and a simple zero.

It can be shown (Ref. [159] and Appendix A) that if F(S i) = 0, where S i = S (ξi),
is a single zero then S has a local minimum or maximum at ξi. If S i is a double zero
then it can be shown that S → S i as ξ → ±∞. Applying this result to scenario (a)
we see that if we start at a value of ξ such that S (ξ) lies between the two non-zero
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roots of F, as we increase or decrease ξ we will either increase or decrease S until
we reach a turning point in S , where we will reverse direction and return to our
starting value of S . Put simply, as we move in space or time, the amplitude u will
oscillate regularly between the two values S 1 and S 2 which are the roots of F. This
scenario shows us periodic regular wave-like excitations translating along the top of
a bulk condensate. For completeness, further analysis of this scenario is presented
in Appendix A.

In scenario (c)(ii) we see that by correctly varying ξ we will asymptotically de-
part from zero density, approach a maximum value in the wave’s density, and then
asymptotically return to zero again. This describes our classic solitary wave. A
single wave form travelling at a set speed and maintaining its form indefinitely.

With A = 0 and setting r, r′ → 0 as ξ → ±∞ in (2.33), which is true for a solitary
wave profile, we determine that B = 0. Note that this result only holds true for
(S ′)2 /S → 0 as ξ → ±∞ which we will justify later. Hence we find that

(
S ′

)2
= S 2 (α − S ) ,

which can be rewritten as ∫
dξ = ±

∫
dS

2S (α − S )1/2 .

This can be solved by the substitution S = αsech2(α1/2η), where η is a dummy
integration argument. Normalising to the quantity 2D > 0 such that∫ ∞

−∞

|u(x, t)|2 = 2D (2.34)

we obtain α = D2 and so

r(x − ct) = Dsech (D [x − ct]) . (2.35)

If we now consider Eq. (2.30), recall that A = 0 and note that the second integration
of this equation results in a global phase constant which can be discarded, we obtain

θ(ξ) = cξ (2.36)

Combining this information with Eq. (3.11), now uniquely determined in terms of
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the normalisation, we can determine the full phase evolution

u(x, t) = Dsech [D (x − ct)] exp
[
icx + i(D2 − c2)t/2

]
. (2.37)

We see that our initial ansatz has exactly retrieved the standard J. P. Gordon soliton
solution [20]. Note that this solution also satisfies (S ′)2 /S → 0 as ξ → ±∞,
justifying our previous selection.

2.3.3 Asymptotic behaviour after collisions

Finally, we will cover the results pertaining to soliton collision and the asymptotic
behaviour after collisions. We consider a train of solitons with individual ampli-
tudes D j (which are all positive and satisfy

∑
j D j = 2D), initial phase differences

φ j0 and initial positions (x j0). After a sufficient amount of time the solitons are
well separated and will not undergo any further collision (assuming that any soli-
tons with exactly equal velocities are initially well separated). After this time the
general solution has the form [20]

u(x, t) =

N∑
1

u j(x, t) (2.38)

where each individual soliton is given by

u j(x, t) = D jsech
[
D j

(
x − x j

)
+ q j

]
exp

[
i
(
φ j + Ψ j

)]
. (2.39)

Here the position is given by x j = x j0 + c jt, and the phase is given by φ j = c(x −

x j) + (D2
j + c2

j)t/2 + φ j0. The quantities of interest to us are the asymptotic shifts to
position and phase, q j and Ψ j. These shifts are given by [20]

q j + iΨ j =
∑
j,k

± ln
[
D j + Dk + i(c j − ck)
D j − Dk + i(c j − ck)

]
, (2.40)

where the plus applies for xk > x j and the minus sign applies otherwise.
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barriers

3.1 Introduction

The collision of a bright solitary wave with a narrow potential barrier is a good can-
didate for a mechanism for the creation of coherent localised condensates, much as a
beamsplitter coherently splits a light beam in an optical interferometer. This mech-
anism has been investigated extensively in the quasi-1D, mean-field description of
an atomic BEC [36–41, 48, 169–172], and sufficiently fast collisions with potential
barriers have been shown to lead to the desired beamsplitting effect [40, 41].

Incomplete/bound state splitting has been considered in the context of the formation
of soliton molecules [29], within a mean-field description, and also in the context
of many-body quantum mechanical descriptions: in the latter it has been demon-
strated that macroscopic quantum superpositions of solitary waves could be created,
offering intriguing possibilities for future atom interferometry experiments [27, 28].
While in the context of atomic BECs the NLSE represents a quasi-1D condensate
with tight radial trapping and either zero or very weak axial trapping (e.g., a peri-
odic “ring” trap [173], or a waveguide or weak harmonic trap [25]), we emphasise
that the equation we study here remains general and could also be used to describe
similar systems in, e.g., nonlinear optics.

In this chapter we investigate a broad range of behaviours which can be exhibited
by a soliton splitting event. The work is comprised of content from the first halves
of Refs. [48, 49]. We first consider the case of splitting a soliton on both δ-function
and Gaussian barriers in the absence of axial confinement. We discuss how the fi-
nite width of the barrier becomes relevant in the high energy regime (Sec. 3.3). We
then explore the transition to the low energy regimen, wherein the kinetic and inter-
nal energies of the soliton become comparable, and some splitting events become
inaccessible (Sec. 3.4). Finally, we analyse the effect of quantum fluctuations in the
centre of mass position and momentum on soliton splitting. We will also present
a rigorous determination of the phase shift accrued between the resulting solitons
after a splitting event, based on the work presented in [40].

49
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3.2 Physical system

We begin with the 3D N-particle mean-field energy Hamiltonian H[ψ] for a Bose
field, defined as [81]

H[Ψ] =

∫
dr

[
~2

2m
|∇Ψ(r)|2 + Vext(r)|Ψ(r)|2 −

2πN|as|~
2

m
|Ψ(r)|4

]
. (3.1)

Here N, m and as are the atom number, mass, and (negative) s-wave scattering
length respectively. A delta function contact potential is assumed. Further details
of the system this Hamiltonian describes are available in Section 1.3.1. The wave
function, Ψ, is normalised to 1. The potential Vext(r) is comprised of both the trap-
ping potentials and any external potentials used to construct narrow barriers used
for splitting the soliton. We model this potential as

Vext(r) = EBe−2x2/x2
r +

m
2

[
ω2

Tx2 + ωr

(
y2 + z2

)]
. (3.2)

The first term describes the narrow splitting barrier and can be generated by an
off-resonant Gaussian light sheet [34] perpendicular to the x direction with 1/e2

radius xr in the x direction, and with peak beam strength EB. The second term
denotes a standard magnetic harmonic confinement which we take to be a cylindri-
cally symmetric waveguide; such a configuration is approximately achieved in an
atomic waveguide trap [34].

By increasing the radial trapping we can reach a quasi-1D regime, as defined in
detail in Ref. [25] and Section 1.4.2, where the radial trapping is tight but remains
3D [as � (~/mωr)1/2]. In this regime we can separate the radial and axial dynamics
with the ansatz Ψ(r) = Ψ1D(x)(mωr/π~)1/2 exp (−mωr[y2 + z2]/2~). After factoring
out global phases associated with the radial harmonic ground state energies, this
yields both the quasi-1D classical field Hamiltonian [81],

H1D[Ψ1D] =

∫
dx

[
~2

2m

∣∣∣∣∣ ∂∂x
Ψ1D(x)

∣∣∣∣∣2 + Vext(x)|Ψ1D(x)|2 −
gN
2
|Ψ1D(x)|4

]
, (3.3)

and its associated quasi-1D GPE [81]

i~
∂Ψ1D(x)
∂t

=

[
−
~2

2m
∂2

∂x2 + Vext(x) − g1DN |Ψ1D(x)|2
]
Ψ1D(x). (3.4)

The non-linearity is quantified by g1D = 2~ωr|as|. If we take Vext = 0 then this
equation reduces to the NLSE.
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Working in soliton units yields the dimensionless, quasi-1D GPE1

i
∂ψ(x)
∂t

=

[
−

1
2
∂2

∂x2 +
q

σb
√

2π
e−x2/2σ2

b +
ω2

xx2

2
− |ψ(x)|2

]
ψ(x), (3.5)

where the dimensionless wave function is ψ = ~Ψ1D/
√

mgN, the barrier width is
characterised by σb (the dimensionless form of half the 1/e2 radius) and the barrier
strength is given by

q =

√
π

2
EBxr

gN
. (3.6)

Equation (3.5) is equivalent to Eq. (1.63) with an extra externally applied splitting
potential.

3.3 Classical soliton splitting on narrow barriers

3.3.1 Splitting on δ-function barriers

In this section we examine the splitting of a single bright soliton on a δ-function
barrier in the absence of harmonic confinement [Eq. (3.5) with ωx = 0]. The as-
sumption of a δ-function barrier facilitates an analytic treatment and is valid for
narrow barriers with σb → 0. A detailed analytic treatment of single-bright-soliton
splitting on such a barrier is given by Holmer, Marzuola and Zworski in Ref. [40].
Here we briefly restate two key results of Ref. [40] within our own notation.

Firstly, the transmission coefficient for a fast-moving bright soliton splitting on a
δ-function barrier is approximately equal to the transmission coefficient for plane
waves incident on an identical δ-function barrier in linear quantum mechanics,
Tq(v), given by

Tq(v) = |tq(v)|2 =
v2

v2 + q2 =
1

1 + α2 . (3.7)

Here, tq(v) is the transmission amplitude associated with a δ-function barrier in
linear quantum mechanics, and the soliton velocity v plays a role analogous to the
wavenumber of the incident wave. The transmission and reflection amplitudes tq(v)
and rq(v), are defined as

tq(v) =
iv

iv − q
and rq(v) =

q
iv − q

. (3.8)

1It should be noted that in the very low N limit this rescaling takes a slightly different form, with
N replaced by N − 1. This rescaling is used in Ref. [153]
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The quantity α characterises the transmission in the linear case, and hence the trans-
mission of bright solitons in the high velocity limit. The exact relation between
Tq(v) and the actual transmission coefficient for the incident bright soliton,

T s
q(v) = lim

t→∞

∫ ∞

0
|ψ(x, t)|2dx, (3.9)

is determined in Ref. [40] to be

T s
q(v) =

v2

v2 + q2 + O(v1−3η/2)

= Tq(v) + O(v1−3η/2), as v→ ∞, (3.10)

provided that the initial offset is x0 ≤ −v1−η and the transmission rate

α =
q
v

(3.11)

is fixed. Here, η is a parameter linked to the duration for which the soliton interacts
with the barrier, and must satisfy 2/3 < η < 1. The brevity of this duration for a
fast-moving bright soliton, which allows one to treat the splitting as a linear process,
is fundamental to the proof of the above result [40]. The error term in Eq. (3.10)
is minimized for brief collisions (η → 1), in which case it decays with increasing
velocity as v−1/2.

Secondly, it is also determined in Ref. [40] that the outgoing waves resulting from
splitting a bright soliton on a δ-function barrier are composed of either one, or
two, bright solitons, and a time-decaying radiation term. This is significant, as
previously the transmitted and reflected waves were considered to be only ‘soliton-
like’ [39, 41]. The resulting bright solitons are described, for high velocity, by

ψ(x, t) = ψT (x, t) + ψR(x, t) + O
(
[t − |x0|/v]−1/2

)
+ O(v1−3η/2) (3.12)

where [40]

ψT (x, t) = eiϑT ei(xv+[A2
T−v2]t/2)AT sech(AT [x − x0 − tv]),

ψR(x, t) = eiϑRei(−xv+[A2
R−v2]t/2)ARsech(AR[x + x0 + tv]).

The amplitudes of the transmitted and reflected solitons are given by

AT = max(0, 2|tq(v)| − 1) and AR = max(0, 2|rq(v)| − 1); (3.13)
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in the case that AT (AR) is equal to zero, the transmitted (reflected) outgoing wave
does not contain a soliton, but only radiation. More generally, the inequalities AT <

T s
q(v) and AR < 1 − T s

q(v) hold. The exact forms of ϑR/T will be given later.

3.3.2 Splitting on Gaussian barriers

We now give numerical analysis of the bright soliton splitting process at a Gaussian
barrier, again in the absence of axial confinement (ωx = 0). Our numerical sim-
ulations use a Fourier pseudo-spectral split-step method with a periodic grid (see
Appendix B). We ensure that grid size and spacing are chosen such that the bright
solitons are well separated and the effects of the periodicity are negligible.

Our initial condition takes the form

ψ0 =
1
2

sech
( x − x0

2

)
eivx, (3.14)

where x0 < 0. Figure 3.1(a) shows the transmission coefficient T s
q(v) obtained from

numerical simulations of a single bright soliton splitting on a Gaussian barrier with
width σ = 0.1, and with α = q/v = 0.6, 0.8, 1.0, 1.2, and 1.4. In our numerics we
define T s

q(v) by the integral of ψ(x, t1) over the positive x domain,

T s
q(v) =

∫ ∞

0
|ψ(x, t1)|2dx. (3.15)

Here t1 = 2|x0|/v, such that at this time an unimpeded bright soliton would have
reached the point x = +|x0|; at this time the outgoing waves are well-separated. The
results are comparable to the δ-function barrier case explored in Ref. [40] and the
previous section.

Figure 3.1(a) shows that as α increases so does the discrepancy between the asymp-
totic δ-function limit and T s

q(v). This can be understood by considering how the
strength of the barrier compares to the (particle-like) kinetic energy of the soliton
v2/2. In the region where the strength of the barrier is greater than the soliton’s
kinetic energy the wave function decays, reducing transmission. By equating these
two values,

v2

2
=

q

σ
√

2π
e−xd/2σ2

, (3.16)

we determine that the distance over which the wave function decays, xd, is described
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Figure 3.1: (a) Plot of numerically obtained bright soliton transmission,
T s

q(v), as a function of velocity v for a range of fixed α = q/v and a narrow
Gaussian barrier with width σ = 0.1. Dashed lines show the transmission
through a δ-function in the linear regime for the same range of α. (b) Nu-
merically obtained bright soliton transmission for α = 1 and with a range
of barrier widths σ. Reproduced from Ref. [48].

by

x2
d = 2σ2 ln

√2
π

α

|v|σ

 . (3.17)

It is clear that, for a given v and σ, as we increase α (by increasing q) we increase xd.
This is inconsistent with the assumption of a brief barrier-soliton interaction period,
which is required in the delta function case of soliton splitting. This inconsistency
causes an increase in the attenuation of the wave function, reducing transmission.

We show the computed dependence of the transmission on the barrier width σ in
Fig. 3.1(b). These computations were carried out with α = 1. For wider barri-
ers or in the higher velocity range, where the peak height of the potential is less
than the (particle-like) kinetic energy v2/2 of the incident soliton, the amount of
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transmission is greatly increased. This illustrates the classical transmission regime
where the soliton simply passes through the potential, and, for the Gaussian barriers
considered, boils down to an argument that we must have

v2

2
�

q

σ
√

2π
⇒ |v| �

2|α|

σ
√

2π
(3.18)

to be definitely out of the classical transmission regime. From Eq. (3.18) it is ap-
parent that for satisfactorily large v we will always enter the classical transmission
regime for any given finite Gaussian barrier. This regime cannot be retrieved in the
δ-function case.

The comparison to the δ-function case is valid in the quantum transmission regime,
where the velocity is low enough (for a given q, σ) that the soliton cannot classically
pass through the barrier and must tunnel through instead. For example, this is true
when 0.5 . v . 2 and σ ≤ 0.28 [see Fig. 3.1]. Within the quantum transmission
regime [Eq. (3.18)] the δ-function limit of 0.5 is reached (from below) by reducing
σ. This allows for larger values of v, as is consistent with Holmer and Marzuola’s
work in [40] where results are general for any v & 1 (which is the high velocity
regime).

Figure 3.1(b) shows that the transmission approaches the analytic prediction for a
δ-function barrier as the barrier width σ tends to zero. This confirms that the ana-
lytic expressions given in Ref. [40] and the previous section for the δ-function bar-
rier can be quantitatively useful for realistic Gaussian barrier widths. For example,
Fig. 3.1(b) indicates the analytic prediction is reasonably quantitatively accurate for
σ ≤ 0.28 in soliton units. For a condensate of 85Rb and using typical experimental
parameters of N ∼ 6 × 103 atoms, as ∼ 5a0 (the Bohr radius) and ωr ∼ 17Hz this
translates to a splitting beam with a full width at half maximum of ∼ 9 µm. These
parameters are consistent with the experimental setup in [10]. For a similarly sized
condensate of 7Li atoms tuned to a similar scattering length this width becomes
∼ 2 µm. This parameter regime is consistent with [8] apart from the radial trapping
frequency, which we reduced from 2π × 710Hz to 2π × 200Hz.
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3.4 Low energy soliton splitting

3.4.1 Overview

In this section we probe the transition from low- to high-energy soliton splitting. We
quantify the energy by the velocity of the soliton at the point of collision with the
barrier, denoted as v for an untrapped system, where the velocity is brought about
by an imprinted phase on the initial condition; or v0 for the axially trapped system,
where the velocity is a result of the axial trapping ωx being greater than zero and
an initial offset x0 in the initial condition. This offset separates the soliton from the
point where the soliton is split by the barrier at x = 0.

We take v, v0 & 1.0 to be the high energy regime and v, v0 . 0.25 to be the
low energy regime [92]. As such, the transitional energy regime lies within the
0.25 ≤ v, v0 ≤ 1 velocity range. We will justify the lower bound of this regime
by considering classical descriptions of the kinetic and ground state energies of
the system. We will also show that these arguments describe a process which is
analogous to the quantum mechanical transition from product state wave-functions
(where, after scattering the transmitted/reflected portions of the wave function can
range continuously between zero and full transmission/reflection) to bimodal sys-
tems (where the soliton is either reflected by or transmitted through the barrier, but
never split)2.

3.4.2 Classical analysis of the transitional regime

Hamiltonian analysis of the transitional regime

We explain the transition between high and low energy dynamics by comparing the
incoming collisional kinetic energy EK and the energy required to split the soliton
ES. Firstly, rescaling the quasi-1D Hamiltonian [Eq. (3.3)] in to soliton units with
ωT = 0 gives

H1D[ψ] =

∫
dx

[
1
2

∣∣∣∣∣ ∂∂x
ψ(x)

∣∣∣∣∣2 − 1
2
|ψ(x)|4

]
. (3.19)

We then substitute the 1D soliton solution, Eq. (3.14) into our Hamiltonian, with
v = 0, and obtain both the per-particle soliton ground state energy (H1D[ψ0] =

−1/24) and N-particle soliton ground state energy [EG(N) = −N/24]. We then

2It should be noted that even in the high energy regime we cannot make a soliton of arbitrary size
by simply scattering a larger soliton off a barrier. The scattered portion of the wavefunction may be
too small to form a soliton and must be considered radiation [40].
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consider an n particle soliton which is spatially well separated from the rest of the
condensate and any potentials. Failure to satisfy this separation assumption may
result in a bound state, and further contributions to the ground state energy will
arise. The effects of such bound states will be discussed later. Assuming that the
whole condensate contains a total of N particles we see that the spatially separated
soliton’s contribution to the total energy is

EG(n) = −
n

24

( n
N

)2
. (3.20)

We reach this conclusion by rescaling the n-particle soliton ground state energy
EG(n) into N particle soliton units. This is equivalent to multiplying by (n/N)2. By
constructing the energy difference ES we can easily see that the energy required to
split the soliton is

ES = EG(N − n) + EG(n) − EG(N),

= 3|EG(N)|
(
1 −

n
N

) n
N
. (3.21)

We can now re-cast this result in terms of the transmission, T+:

T+ =

∫ ∞

0
|ψ|2dx =

n
N

(3.22)

yielding

ES =
1
8

T+ (1 − T+) N. (3.23)

Next, we describe the classical particle energy of an N-particle soliton moving at
velocity v:

EK =
v2N

2
. (3.24)

We can now see that, for splitting to occur, we must satisfy EK > ES and so

|v| >
1
2

√
T+ (1 − T+). (3.25)

This inequality can be used to characterise the transition to the low energy regime
in that parameters which do not satisfy it are only available in the transitional to
low energy regime. If we consider the functional form of our inequality we see that
√

T+ (1 − T+) is maximal for T+ = 0.5, at which value we have |v| > 0.25. As such,
the first state to become inaccessible is the equal splitting case, which cannot be
accessed for |v| < 0.25. Equivalently, we must satisfy EK/ES > 0.75 [Eq. (3.21)].
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This is consistent with results described in Ref. [92].

As noted above, splitting the soliton reduces the amount of kinetic energy available
to the solitons. This was numerically investigated in Ref. [92]. In the high energy
regime, this reduction is negligible and the solitons are capable of becoming well
separated from the barrier, and one another, after the split occurs. At lower energies
this is not always the case. As less and less energy is available to the resulting
solitons their outgoing velocities are notably reduced, and eventually the solitons
become trapped at the barrier. The effect of the harmonic trap enhances this effect,
as the outgoing velocity determines the maximal separation which the resulting
solitons can achieve. This phenomenon is shown in Fig. 3.2 and will be discussed
in the next section.

Numerical analysis of the transitional regime

We numerically verify these results by evolving the initial condition described by
Eq. (3.14) according to the dynamics of Eq. (3.5). We perform two types of evolu-
tion. For the first type we set ωx = 0 and perform integrations over a range of v and
q. These calculations allow us to consider the behaviour of the untrapped, true, soli-
ton to which the above analytic results apply exactly. Fig. 3.2(a-c) shows the results
of these simulations. For the second type of simulation we set the initial velocity
v = 0 and integrate over a range of ωx and q. By keeping the initial offset constant
at x0 = −L/4, where the numerical algorithm has spatial domain −L/2 < x ≤ L/2,
we are able to use ωx to select a collisional velocity v0 = ωxx0. This allows us to
more accurately describe the behaviour we would see in an experiment where the
soliton is accelerated by an axial harmonic trap. Fig. 3.2(d-f) shows the results of
these equations.

For all simulations the barrier is situated at the trap minimum (specifically x = 0)
and we set the barrier width to σb = 0.2. Barrier potentials of finite width/height
have some limitations in the extremely high velocity regime, in that if the peak
energy of the barrier is not notably higher than the kinetic energy of the soliton
then the soliton classically passes over the barrier and no splitting occurs [48] .
This restricts the width of the barrier in a given energy regime by requiring that the
barrier be narrow enough to constitute a quickly varying potential when compared to
the incoming velocity of the soliton. The energy regimes we consider in the current
work are compatible with a barrier width of σb . 0.2. A broader discussion of the
effect of finite width (for a Rosen–Morse i.e. sech2 potential barrier) is presented in
Ref. [169].
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Figure 3.2: Numerical results of splitting a soliton travelling at velocity v-
(a–c) or v0-(d–f) at a Gaussian barrier of strength q and width σ = 0.2. (a,d)
Colormaps of transmission as a function of q and v or v0. The solid (red)
curves are iso-lines of constant transmission T+ obtained from the numer-
ics, while the dashed (gray) curves are theoretical predictions of transmis-
sion T s

q in the linear case over the same range. (b,e) Curves of transmission
as a function of collisional velocity v or v0 for various barrier strength q.
The shaded (red) region shows energetically disallowed splitting events.
(c,f) Curves of transmission as a function of barrier strength q for various
values of v or v0. The labelled (red) curve, for which v, v0 = 0.25 indicates
the classical, untrapped lower energy bound on the region where a contin-
uous range of transmission is accessible. Reproduced from Ref. [49].

Figure 3.2(a) displays a broad scan of the q, v parameter space. At higher velocities
(v > 0.25) we see a continuous range of transmissions is accessible. At lower
velocities this is not the case, and for v . 0.1 we see that we are effectively left with
only full transmission and full reflection as accessible final states.

We have displayed two sets of curves of constant transmission on Fig. 3.2(a): solid
(red) and dashed (grey). The solid (red) curves are iso-lines of constant transmis-
sion T+ = 0.1, 0.2, . . . 1.0 taken from the colormap itself. At higher values of v
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these curves are well separated, illustrating that we can access the full range of
transmissions by selecting q and v accordingly. As v decreases these curves begin
to converge. The convergence of iso-curves signifies that the splitting state associ-
ated with the curves has become disallowed.

We derived the second set of curves in Fig. 3.2, the dashed (grey) curves, from Eq.
(3.7). This illustrates that in the high energy regime the transmission is determined
solely by the ratio α = q/v, and we predict the dashed (grey) curves of constant
transmission which take the form

v =

( T s
q

1 − T s
q

)1/2

q. (3.26)

Here we have adopted Holmer’s T s
q notation [40] to denote the limiting case of a

high energy mean-field soliton colliding with a δ-function barrier. In Fig. 3.2 we
display the curves for T s

q = 0.1, 0.2, . . . 1.0. It should be noted that these curves are
also the transmission rates of plane-waves though a δ-function barrier in the linear
Schrödinger equation, where the energy is expressed in terms of the velocity instead
of the wavenumber.

Comparing the two sets of curves, we see that the system does, indeed, retrieve a
more linear behaviour in the high energy regime where the effect of kinetic energy
is greater than that of the non-linear energy. While the curves do not quantitatively
align in the range displayed, they at least share a qualitative agreement. At lower
energies, where we see bunching/convergence of the red iso-curves which illustrates
disallowed states, the transmission behavior departs from being comparable to the
linear system and becomes truly non-linear.

In Fig. 3.2(b) we display curves of transmission as a function of velocity for a
range of values of q. The shaded (red) region is the region of T+, v combinations
disallowed under inequality Eq. (3.25). In the high kinetic energy regime these
curves increase monotonically, but at low kinetic energies this ceases to be true [92,
169–171]. We see that here (in the absence of an axial harmonic trap) the disallowed
region is quite strict, with no substantial violation of Eq. (3.25). Indeed, Eq. (3.25)
is generally found to be more strict than the numerical result, as seen by the empty
gaps between the disallowed region and the transmission curves.

In Fig. 3.2(c), the last part that pertains to the axially untrapped case, we dis-
play curves of transmission as a function of barrier strength for a range of colli-
sional/initial velocities. The labelled (red) curve, for which v = 0.25, shows the



Chapter 3: Soliton splitting 61

bound below which there is never enough kinetic energy to access all splitting
events. We see that all curves T+(q; v) are discontinuous for v ≤ 0.25, although the
discontinuous region is narrower for higher v, and is instantaneous for the v = 0.25
case.

Figure 3.2(d–f) are the harmonically trapped counterparts of the figures described
above, as we described at the beginning of this subsection. The behaviour is broadly
the same, however there are some specific qualitative and quantitative differences.

In terms of qualitative differences, we see in Figs. 3.2(e) and (f) that there exists
a class of solution which appears to access disallowed outcomes, shown by points
lying within the shaded (red) region of the plot. Upon closer inspection we deter-
mined these outcomes to be bound state solutions [169]. The energetic arguments
leading to Eq. (3.25) suppose that the solitons are, after splitting, well separated.
If this is not the case then we can access a bound state solution. In this event, the
kinetic energy shortfall (the deficit of energy required to fully split the soliton) is
made up for by the bound-state interaction energy which is gained from the overlap,
and attraction, between the resulting solitons. This effect can be greatly enhanced in
the harmonically trapped system, where an insufficient kinetic energy after splitting
means that the solitons cannot fully separate in the trap, necessitating a bound state.

Quantitatively we see that the value of v0 (the velocity of the soliton at the bottom
of the trap in the absence of a splitting potential, which we take to be the collisional
velocity) must be slightly higher than its untrapped counterpart v in order to access
a continuous range of splitting outcomes. This is because the soliton begins to
interact with the barrier slightly before it reaches the bottom of the trap at x = 0,
and so the collisional velocity is, in fact, slightly lower than v0. This is shown by:
the gap between the transmission curves and the disallowed region being wider in
Fig. 3.2(e) than in Fig. 3.2(b); and the labelled (red) transmission curve in Fig. 3.2(f)
having a substantially wider discontinuous region than its counterpart in Fig. 3.2(c),
where the GPE limit of N → ∞ is taken.

3.4.3 Classical indicators of the quantum regime

The behaviour we observe here, which describes an energy bound below which the
possibility for splitting to occur is progressively curtailed, mirrors behaviour which
leads to the generation of entangled states [174] in the purely quantum mechanical
treatment. Indeed, it has been shown that entangled states in the fully quantum me-
chanical regime imply the discontinuities we see here [92]. There is also evidence
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for the reverse implication [174], and so it is conceivable that these behaviours are
equivalent to the extent that transmission discontinuities in the mean-field treatment
delimit the regime where mesoscopic Bell states would exist in the fully quantum
mechanical treatment, despite these states not being present in the GPE formalism.

3.4.4 Analysis of centre-of-mass uncertainty

We now address this high- to low-energy transitional regime by considering how
quantum uncertainty impacts the dynamics of the system. The transmission through
the barrier is determined by the velocity of the soliton at the point of collision. In the
harmonically trapped system, fluctuations in the initial COM position and momen-
tum will affect this velocity and so affect the transmission. We consider these un-
certainties in the harmonically trapped system only, which presents a better defined
situation than the untrapped, periodic regime when considering quantum fluctua-
tions of the COM. In order to delimit a regime where the position and momentum
uncertainty of the soliton affects the outcome of a splitting event, we must develop
a formalism which allows us to introduce this uncertainty into our system.

First we consider a full many body treatment of our 1D N-particle system. We can
write the first quantized form of the Hamiltonian as [175]

Ĥ(x) =

N∑
k=1

(
−
~2

2m
∂2

∂x2
k

+
mω2

Tx2
k

2

)
− g1D

N∑
k=2

k−1∑
j=1

δ(xk − x j). (3.27)

In this notation, x denotes the vector of the positions of all N particles, {x1, x2, .., xN},
and all quantities are expressed in their fully dimensional form.

Moving to Jacobi coordinates we can show that the COM dynamics and the internal
degrees of freedom separate [153] by expressing the Hamiltonian as H = HC + HR,
where

HC(xC) = −
~2

2Nm
∂2

∂x2
C

+
Nmω2

Tx2
C

2
(3.28)

is simply the single particle Hamiltonian for a particle of mass Nm at position xC –
the COM coordinate. HR describes the residual internal dynamics.

The dimensional wave function for the COM, ψC, is then given by

ψC(xC) =

(
1

s̃x
√

2π

)1/2

exp
(
−

x2
C

4s̃x
2

)
. (3.29)
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which is simply the 1D wave function of a single particle of mass mN in an axial
harmonic trap of frequency ωT normalized to 1. We can interpret |ψC|

2 as the prob-
ability density function for the normally distributed random variable xC such that
the expected value is 〈xC〉 = 0 and the variance (or the position uncertainty of our
soliton) is given by 〈x2

C〉 = s̃x
2 = 2mNωT/~.

For our purposes, it is better to consider velocity uncertainty than it is to consider
momentum uncertainty. Regardless, we must express our COM wave function in
momentum space to obtain the momentum/velocity uncertainty. We now use stan-
dard result for the Fourier transform of a Gaussian, giving us the Fourier space wave
function

φC(kC) =

(
1

s̃k
√

2π

)1/2

exp
(
−

k2
C

4s̃k
2

)
. (3.30)

where the wavenumber variance is 〈k2
C〉 = s̃k

2 = 1/4s̃x
2 = mNωT/2~. We can now

determine the momentum uncertainty (~sk) and so the velocity uncertainty s̃v =

(~/mN)s̃k.

Rescaling the position and velocity uncertainties into dimensionless quantities, we
now have

sx = (1/2Nωx)1/2,

sv = (ωx/2N)1/2.
(3.31)

These uncertainties are consistent with the GPE formalism in that as N → ∞ they
both disappear. In this limit, the full wave function ψ gives the actual density profile,
rather than a probability density function.

We now consider this system with an initial condition described by a ground state
soliton at position x0. If we consider a single observation of the quantum system, we
see that the soliton’s initial position and velocity are given by x0 + xf and vf , where
xf and vf denote the quantum fluctuations and are, therefore, normally distributed
random variables with mean 0 and standard deviations sx and sv respectively. By
classically evolving these initial conditions (according to Eq. (3.5)) we can apply
previous results to state that the final transmission will depend on the fluctuating
collisional velocity vb, where vb = [ω2

x (x0 + xf)2 + v2
f ]1/2.

By re-writing this velocity as vb = [ω2
f + v2

f ]1/2, where ωf = ωx(x0 + xf), we can see
that vb is essentially the length of a vector comprised of two normally distributed
random variables: ωf ∼ N(ωxx0, s2

v) and vf ∼ N(0, s2
v). Note that both variables are
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Gaussian and have the same variance. As such, we can treat the collisional velocity
vb as a Rician distributed random variable vb ∼ R(ωxx0, sv), and so is described (in
terms of the Laguerre polynomials of order 1/2, L1/2 [176]) by mean and variance
µvb , σvb defined as

µvb = E [vb] = sv

√
π

2
L1/2

(
−(ωxx0)2

2s2
v

)
, (3.32)

σ2
vb

= Var [vb] = 2s2
v + (ωxx0)2 − µ2

vb
. (3.33)

3.4.5 Numerical analysis of the effects of quantum effects in

the transitional regime

Overview of the method

We now wish to characterise the effect of COM and collision velocity uncertainties
on the soliton’s transmission through the barrier after being accelerated by the har-
monic trap (T+). To determine the effect of these quantum fluctuations we perform a
Monte-Carlo analysis, where we numerically evolve the GPE [Eq. (3.5)] with fluc-
tuations in the initial COM position and momentum. This procedure uses the COM
truncated Wigner approximation (TWA), as used in Ref. [174] to describe the be-
havior of mesoscopic quantum superpositions. The COM TWA was shown to agree
well with the effective potential approach of Ref. [27], demonstrating the validity
of this method for describing quantum fluctuations in bright soliton systems. Note
the related work investigating bright solitons using the TWA in Refs. [30, 177].

To characterise the effects of quantum fluctuations, we performed numerical calcu-
lations of soliton splitting for varying particle numbers and trap frequencies. We
perform these calculations over the same range of velocities as that explored in Sec-
tion 3.4.2, allowing for comparisons over the same energetic regime.

Given that this is the velocity range of interest we must select a range of values
for the particle number N such that the relevant uncertainties [Eq. (3.31)] generate
fluctuations which are significant relative to the grid spacing in the numerical algo-
rithm. With 4096 spatial grid points over a −20π < x < 20π domain we have a grid
spacing ∆x ≈ 0.031. If we now require that sx/∆x > 10 (giving twenty grid points
within one standard deviation of the spatial mean), we are limited to N . 166. We
will distribute N logarithmically over this range (taking powers of 2) and so we
consider N = 16, 32, 64, 128.
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Figure 3.3: Results of numerical integrations of the GPE illustrating the
sensitivity of equal splitting to extreme quantum fluctuation for various par-
ticle numbers. The transmission after extreme positive (negative) energy
quantum fluctuations are displayed in panel (a) (panel (b)). The number
fluctuation measure T6σvb

[Eq. (3.34)] is plotted in (c). For all plots we
show N = 16 (+), 32 (×), 64 (�) and 128 (•). Reproduced from Ref. [49].

It should be noted that this limit on N was determined with v0 = 1, and so in general
there are significantly more than twenty grid points within one standard deviation
of the mean. For example, with N = 16 and v0 = 0.1 there are over two hundred
grid points within one standard deviation of the mean.

In both sections, for each value of v0 a value of the barrier strength q was selected
such that the soliton would be split equally in the absence of quantum fluctuations
on the initial condition. The barrier’s width was σb = 0.2 for all runs.

Transmission sensitivity to quantum fluctuations

We first characterise the sensitivity of the equal splitting case to extreme quantum
fluctuations over a continuous range of v0. For v0 in the range 0 < v0 ≤ 1 the barrier
strength q was found such that T+(v0) = 1/2. The simulation was then run twice
more, replacing the initial position x0 with x± = (µvb±3σvb)/ωx [Fig. 3.3(a,b)]. This
selection achieves collisional velocities at the barrier of µvb ± 3σvb . The transmis-
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sions associated with these initial conditions [T+(µvb ± 3σvb)] illustrate the effects
of extreme quantum fluctuations. These velocities represent extreme cases of quan-
tum uncertainties adding/removing energy from the system, and so the +/− cases
correspond to extreme positive/negative energy quantum fluctuations in the system,
and will be referred to as such hereafter.

We have also constructed the number fluctuation measure

T6σvb
= |T+(µvb + 3σvb) − T+(µvb − 3σvb)|. (3.34)

This measure takes values between 0 and 1, with 0 indicating absolute insensitivity
to fluctuation and 1 indicating a complete population shift resulting from extreme
fluctuations in the initial COM position and momentum.

Figure 3.3(a) shows that T+(µvb + 3σvb) behaves as we might expect. As the colli-
sional kinetic energy of the system decreases (shown by decreasing v0), we see that
extreme fluctuations in the initial COM position and momentum cause a deviation
from from equal splitting. At first, when v0 is relatively high (v0 & 0.5), the devi-
ation of T+ from 0.5 is weakly dependent on v0. Then, as v0 approaches 0.25 the
effect of disallowed states becomes dominant. In this regime we see that extreme
positive energy quantum fluctuations rapidly enhance transmission.

The effects of extreme negative energy quantum fluctuations, quantified by T+(µvb −

3σvb), are slightly more complicated. The careful selection of q makes the bound
states (as described in Section 3.4.2 and observed in Section 3.4.2) a notable factor.
This can be seen by the more complex structure of the data displayed in Fig. 3.3(b).
At the high energy end of the velocity range we see the same weak deviation of T+

from 0.5 as that described above for extreme positive energy fluctuations. However,
where we might expect disallowed states to enhance reflection (namely v . 0.25),
we see a revival in the transmission. This is a result of a bound state confining the
wave function to the region around the barrier at the bottom of the trap, resulting in
a T+ failing to tend to 0. This effect is consistent with the reduced kinetic energy
being insufficient to split the soliton in the low velocity regime.

Finally, in Fig. 3.3(c) we see that T6σvb
does generally increase as v0 decreases,

showing that number fluctuations become very important at low kinetic energies as
a result of energetically disallowed states enhancing transmission/reflection. How-
ever, as a result of the previously discussed impact of bound states, T6σvb

does not
vary smoothly between 0 and 1. This effect could be treated as an artefact and re-
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Figure 3.4: Distributions of the transmission T+ obtained from Monte-Carlo
simulations. Here we show results for a range of trap frequencies and par-
ticle numbers, giving a range of uncertainties in the initial COM position
and momentum. In the range explored, we see that the effects of varying
the trap frequency (and so kinetic energy) dominate the dynamics, with nar-
row Gaussians at high energy, but a bimodal structure arising at low energy
when energetically disallowed states arise. Reproduced from Ref. [49].

moved by only taking the post-splitting positive domain integral (T+) far from the
barrier, thus excluding bound states. This would give a continuous, smooth range
between 0 and 1, but would obscure the effect of bound states.

Monte-Carlo analysis of transmission with quantum fluctuations

In order to characterise the distribution of the transmission T+ after factoring in
quantum uncertainty in the initial condition we performed a selection of Monte-
Carlo simulations. These simulations allow us to develop a broader qualitative
understanding of the effects of quantum uncertainty. Here we have selected the
same values of the particle number N as used previously and consider velocities
v0 = 0.3, 0.5, 0.7, 0.9. We present the results of 16 Monte-Carlo simulations for
each v0,N pair. Each simulation is comprised of 1000 realisations.

Figure 3.4 displays the different distributions of the transmission T+ which arise
from varying the energetic regime and particle number. In the bottom row we see
that for high v0 the distribution is a narrow Gaussian for all displayed N. Reduc-
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Figure 3.5: Results of Monte-Carlo simulations. Here we show the depen-
dence of transmission on T+ on the collision velocity (vb) after quantum
position and momentum fluctuations have been added to a base collision
velocity (v0). For each v0 the barrier strength was set to ensure equal split-
ting in the limit of zero fluctuations. We see that in the low energy regimes
the transmission can be very sensitive to quantum fluctuations. Reproduced
from Ref. [49].

ing v0 for a given N (reading up the column) causes the standard deviations of the
Gaussians to broaden. For v0 = 0.3 (the top row of Fig. 3.4) a bimodal distribution
appears, again illustrating that the equal splitting case is less easily accessed. This
behaviour is evident for all N. Reading across the rows (varying N while keeping
v0 constant) shows that increasing N simply reduces the width of the transmission
distribution. This illustrates that the N dependence is secondary to the v0 depen-
dence in the range explored here. This is evident in that there is still significant
broadening of the transmission distribution at low v0 even for the highest values of
N. We might expect this to be the case, given that the range of N explored here is,
in experimental terms, very low.

We can see the functional dependence of transmission on vb (T+(vb)) in Fig. 3.5.
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Figure 3.6: Results of Monte-Carlo simulations. Here, the standard
deviations associated with the final transmission distributions depicted
in Fig. 3.4. We see a weak linear dependence on the sample velocity uncer-
tainty s̄vb for high v0, which becomes stronger, but less linear, as we reduce
the energy. This can be seen by the widening (shaded) 95% confidence
intervals of the linear fits. Reproduced from Ref. [49].

We see that in the higher energetic regime (v0 > 0.5) the transmission has a weak
approximately linear dependence on the velocity. The relatively small gradient of
this dependence indicates that the transmission is less sensitive to the fluctuations.
For the v0 = 0.3 data we see that the dependence becomes very sensitive to small
fluctuations around vb = 0.3, the equal splitting case. This confirms that proximity
to the energetically disallowed state can cause large variations in transmission when
quantum fluctuations are considered. Increasing N has the effect of narrowing the
distributions of the fluctuations, and so these fluctuations can affect the transmission
less dramatically, even when close to the energetically disallowed state. It should be
noted that the points in Fig. 3.5 lie along curves with structure analogous to those
depicted in Fig. 3.2(e).

We can quantify the relationship between the initial quantum uncertainties (via σvb)
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and the resulting transmission uncertainty σT+
by making a maximum-likelihood

estimate s̄T+
based on our data. The process of maximum-likelihood parameter es-

timation is a standard statistical technique, and so we refer the reader to standard
texts for a full discussion (see, for instance, Ref. [178]). It is used to obtain the most
probable set of distribution parameters given a set of data and an assumed probabil-
ity density function with associated characteristic parameters (generally a measure
of location and spread, such as the Gaussian’s mean µ and variance σ2). In essence,
the method achieves these estimates by constructing a “likelihood function” L(µ, σ)
which is the product of probabilities of each individual data point given µ and σ

(the probabilities are obtained from the probability density function f (xi; µ, σ) for
all xi in the data set x). The likelihood function L is then maximised with respect to
µ and σ, giving the most probable values of these parameters given the data. This
maximisation can often be obtained analytically (for instance, the sample mean and
variance are maximum-likelihood estimators of the Gaussian distribution [178]),
but it is often necessary to carry out this process numerically for more complex
distributions.

We assume that the data follows a truncated Gaussian distribution on the interval
[0, 1]. The results of numerical estimates of the width parameter s̄T+

are shown
in Fig. 3.6. We see that s̄T+

has approximately linear correlations with σvb . This
correlation becomes stronger, illustrated by the increased gradient of the linear fit,
as we reduce v0. The grey shaded areas indicate a 95% confidence interval for the
least squares linear regression. The confidence interval associated with v0 = 0.3
is widest, indicating a less linear relation between σvb and s̄T+

in the low energy
regime.

3.4.6 Split induced phase shift

In order to construct an analysis of soliton interferometry there is another aspect
of soliton splitting which we must address. The act of splitting the soliton (which
gives us two coherent matter waves to interfere) causes a phase difference to arise
between the solitons. This is similar to the case of classical optics. A classical
analysis of electromagnetic fields at interfaces between media, yielding the Fres-
nel equations [179], shows us that when light passes into a medium with a higher
refractive index the reflected part is phase shifted by π with respect to the transmit-
ted part. This effect is particularly relevant in the case of optical interferometers
where a beam of light is split by a beam splitter. In the case of soliton splitting
the principle is similar, and the barrier (here acting as our beam splitter) imparts a
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phase difference between the two residual solitons. In contrast to the optical case,
the transmitted soliton is π/2 phase shifted with respect to the reflected soliton. In
other words, the phase difference has half the magnitude and opposite sign. This
difference between the two cases is understandable, as the two are very different
physical systems and so are governed by very different sets of equations. The sys-
tems are analogous but, of course, not identical. We now present a derivation of this
phase shift.

It has been rigorously analytically shown [40] that, in the high kinetic energy limit
(high soliton velocity v) of the 1D untrapped system, when a soliton is split at a
δ-function barrier the phases imparted to the solitons by the split are

ϑT =
[
1 − A2

T

] ∣∣∣∣∣ x0

2v

∣∣∣∣∣ + arg
(
tq(v)

)
+ ϑ0

(
|tq(+v)|

)
,

ϑR =
[
1 − A2

R

] ∣∣∣∣∣ x0

2v

∣∣∣∣∣ + arg
(
rq(v)

)
+ ϑ0

(
|rq(−v)|

)
,

(3.35)

where

ϑ0(ω) =

∫ ∞

0
ln

(
1 +

sin2(πω)
cosh2(πζ)

)
ζ

ζ2 + (2ω − 1)2 dζ. (3.36)

The ϑR,T are the reflected, transmitted soliton phases, and AR,T are the reflected,
transmitted soliton amplitudes. Quantities rq(v) and tq(v) are the transmission and
reflection rates of a δ-function in the linear regime, given by

tq(v) =
iv

iv − q
and rq(v) =

q
iv − q

. (3.37)

If the barrier strength and initial velocity (q and v) are selected to be equal (q = v),
such that |rq(v)| = |tq(v)| and (as a result) AR = AT then the soliton is split equally
into two secondary solitons of equal amplitude. This is desirable because later we
will wish to collide the resulting solitons at a barrier, and if these solitons are of
similar size then the interference between them is more pronounced. It is also true
that a size difference causes secondary nonlinear phase shifts to arise during the
collision, which is undesirable.

Making this selection, such that the soliton is equally split, and substituting appro-
priate values of q, v, AR,T , |rq(v)| and |tq(v)| into Eq. (3.35) we see that the relative
phase between the solitons reduces to

ϑT − ϑR = arg(tq(v)) − arg(rq(v))

= π/2. (3.38)
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A broader discussion of the effect of a finite width barrier on the phase shift ac-
cumulated during splitting is, again, available in Ref. [169]. We will use the π/2
figure as an estimate of the phase difference accumulated by splitting on a Gaussian
barrier, as justified in [48], for the rest of the current work.



Chapter 4: Soliton collisions at narrow

barriers

4.1 Introduction

In this chapter we demonstrate that a potential barrier can be used to recombine
solitary waves, by arranging for them to collide at the location of the barrier. In such
collisions, the relative norms of the two outgoing solitary waves were shown to be
governed by the phase difference ∆ between the incoming ones. In the mean-field
description the relative norms of the outgoing waves exhibit enhanced sensitivity to
small variations in the phase ∆; however, a simulation of the same system including
quantum noise, via the truncated Wigner method [47], showed increased number
fluctuations that ultimately negated this enhancement [30]. The work presented in
this chapter was originally published in Ref. [48]

4.2 Physical system

To describe such collisions we introduce a two-soliton initial condition of the form

ψ(x) =
1

2 + 2b

{
sech

( x + x0

2 + 2b

)
eivx + bsech

(
b[x − x0]

2 + 2b

)
e−i(vx+∆)

}
, (4.1)

This is a two-soliton initial condition which has arbitrary relative amplitude deter-
mined by b and is normalised to 1 for 0 ≤ b ≤ 1. In this chapter we only consider
the untrapped version of Eq. (3.5), specifically

i
∂ψ(x)
∂t

=

[
−

1
2
∂2

∂x2 +
q

σb
√

2π
e−x2/2σ2

b − |ψ(x)|2
]
ψ(x). (4.2)

By examining soliton collisions at a barrier for general b, ∆, σb, q and v we give
a detailed explanation of the nonlinear recombination which occurs after the soli-
tons collide at the potential barrier and are recombined into left- and right-travelling
waves in a phase-sensitive way. This general and comprehensive treatment of two-
soliton collisions at a barrier constitutes the main result of the chapter. For the case
of solitons of equal size (as reported in Ref. [30]) we illustrate this phase depen-
dence in Fig. 4.1(b). In this chapter we present an analytic description of the recom-
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Figure 4.1: (Color online) (a) Schematic of the collisions we consider: two
bright solitons [one in the case b = 0 (a)(i)] (solid lines) collide at a nar-
row Gaussian potential barrier (dashed line). The norms of the two outgo-
ing waves are nonlinearly dependent on the relative phase ∆ between the
solitons, as illustrated in (b) for equal-amplitude solitons [the case b = 1
(a)(iii)]; solid red (dashed blue) lines indicate the outgoing wave in the neg-
ative (positive) x domain. Here the soliton velocity is v = 2 and the barrier
width is characterised by σb = 0.28. Reproduced from Ref. [48].

bination for the general two-soliton case (b > 0) in the limit of a δ-function barrier
(σb → 0). This description is derived from an exact description of the single-soliton
case (b = 0) in the same limit [40, 41]. We compare this to numerical simulations,
and find the analytic description is exact in the limit of high velocity. In addition
to yielding useful predictions for the relative norms of the recombined waves, this
analytic method allows us to estimate whether one, or both, of the outgoing waves
are bright solitons. We also numerically investigate the case of a Gaussian barrier,
σb > 0.

4.3 Analytic treatment for δ-function barrier

We now give an approximate analytical description of the dynamics of two fast-
moving bright solitons colliding at a δ-function barrier, which we subsequently
compare to numerical simulations in order to give a fuller picture of the real dy-
namics that we might expect to see in an experiment. This analysis stops short of
the full analytic rigor used in [40] but is consistent within its assumptions of lin-
earity. As previously stated, during the time over which one bright soliton interacts
with the potential we can describe the system as linear [40]. Here we extend this
argument to a scenario in which two bright solitons collide at a δ-function potential,
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as described by the equation

i
∂ψ(x, t)
∂t

=

[
−

1
2
∂2

∂x2 + qδ(x) − |ψ(x, t)|2
]
ψ(x, t), (4.3)

(which, again, is [Eq. (1.63)] plus an externally applied potential) and initial condi-
tion

ψ(x, 0) = ψ+(x) + ψ−(x),

ψ−(x) =
1

2 + 2b
sech

( x + x0

2 + 2b

)
eivx,

ψ+(x) =
b

2 + 2b
sech

(
b(x − x0)

2 + 2b

)
e−i[vx+∆],

(4.4)

[Eq. (4.1)]. We achieve this by making use of the second result of Ref. [40], which
we apply to the positive and negative domain bright solitons, ψ+ and ψ−, separately,
before taking a linear combination of the results. This means that at some time
|x0|/v < t < v−η + |x0|/v after the barrier collision the solution can be written as a
sum of four sech profiles, two in each of the positive and negative domains;

ψ(x, t) = ψ+T (x, t) + ψ−R(x, t) + ψ−T (x, t) + ψ+R(x, t). (4.5)

Here ψ+T denotes the bright soliton transmitted to the negative domain which orig-
inated in the positive domain, ψ−R denotes the bright soliton originating from and
reflected back into the negative domain, and so on. In this scheme

ψ+T (x, t) = ei(φ+T +ϕ+T +∆)A+T sech (A+T [x − x0 + tv]) ,

ψ+R(x, t) = ei(φ+R+ϕ+R+∆)A+Rsech (A+R [x + x0 − tv]) ,

ψ−T (x, t) = ei(φ−T +ϕ−T )A−T sech (A−T [x + x0 − tv]) ,

ψ−R(x, t) = ei(φ−R+ϕ−R)A−Rsech (A−R [x − x0 + tv]) .

(4.6)

Two phase factors appear above; the φ±R/T are those associated with the standard
soliton solution and are given by

φ±T = ∓vx +
[
A2
±T − v2

]
t/2,

φ±R = ±vx +
[
A2
±R − v2

]
t/2.

(4.7)
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The ϕ±R/T factors are imparted by the collision, and are described by

ϕ±T =
[
1 − A2

±T

]
|x0|/(∓2v) + arg

(
tq(v)

)
+ ϕ0(|tq(∓v)|),

ϕ±R =
[
1 − A2

±R

]
|x0|/(∓2v) + arg

(
rq(v)

)
+ ϕ0(|rq(∓v)|).

With b = 1, barrier height q = v, and fast-moving solitons (v large) both initial
bright solitons are split equally, such that the amplitudes A±R/T are all equal and
global phases can be dropped. In this case Eq. (4.5) simplifies dramatically, and
shortly after the collision can be written as

ψ(x, t) = ψ++(x, t) + ψ−−(x, t)),

ψ++(x, t) = P+(∆) f+(x, t),

ψ−−(x, t) = P−(∆) f−(x, t),

(4.8)

where the terms

P−(∆) =
1
2

{
ei arg(rq(q)) + ei[arg(tq(q))+∆]} ,

P+(∆) =
1
2

{
ei arg(tq(q)) + ei[arg(rq(q))+∆]} , (4.9)

contain information about the constructive and destructive interference between the
transmitted and reflected waves. It should be noted that this treatment allows us to
infer the bright soliton interactions, but does not give us a complete solution; the
terms f+ and f− contain information about the outgoing wave profiles. By taking a
linear superposition of the resultant bright solitons we initially obtain a sech profile
which is not a single-soliton solution. However, in subsequent nonlinear evolution
this profile returns to a soliton profile to within a known error, as documented in
Appendix B of Ref. [40].

At a suitably large time after the collision, when the solitons have again separated
to the extent that they are again effectively independent, inspection of |ψ|2 shows
that the bright solitons are modulated by the factors

|P−(∆)|2 =
1
2

[1 − sin (∆)] ,

|P+(∆)|2 =
1
2

[1 + sin (∆)] .
(4.10)

These factors determine the norm of the outgoing waves in the positive and negative
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domains, defined by

T± = ± lim
t→∞

∫ ±∞

0
|ψ(x, t)|2dx = |P±(∆)|2. (4.11)

Within the analytic approach presented here T± are functions of ∆ alone. It should
be noted that the symmetry of the initial condition and linear interaction means that
the phase interactions apply to both the transmitted and reflected bright solitons and
the radiation terms. As a result the quantity T± scribes the total density in the posi-
tive and negative domains, not just the respective bright solitons. For suitably high
incident velocities this radiation becomes negligible, in accordance with Eq. (3.12).
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Figure 4.2: (Color online) Phase skew of numerical results with respect
to analytic prediction for equal-size (b = 1) bright soliton collisions at
a narrow barrier. (a) Numerically obtained data showing the dependence
of the norm of the outgoing wave in the positive domain, T+, after Gaus-
sian barrier collision, on phase difference ∆. Shown here are interference
curves for solitons moving with velocity v = 1 (fuchsia, solid), 2 (light
blue, long dashed), 3 (red, short dashed), 4 (green, dotted) and 5 (dark
blue, dot-dashed). The width of the barrier was σb = 0.14. (b) [see (a)]
Collisions at a δ-function barrier. Notice the qualitatively identical form of
the curves, illustrating that both δ-function and Gaussian barriers exhibit
the same skew, and so both undergo the same non-linear effects. (c) Nu-
merically obtained data showing the phase perturbation ε [Eq. (4.13)] due
to non-linear effects in a soliton collision at a δ-function barrier. Shown
here, in order of descending amplitude, are the skewness parameters (ε) of
the interference curves for solitons moving with velocity v = 1, 2, 3, 4, and
5 colliding at a δ-function barrier. (a)-(c) are the upper left quarters of the
full data set; the plots are both symmetric about the lower and right hand
axes. All results shown are calculated for α = q/v = 1. Reproduced from
Ref. [48].
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4.4 Numerical results for δ-function and Gaussian

barriers

In Fig. 4.2 we present results of numerical simulations of fast (v & 1) bright soliton
collisions at both δ-function1 and Gaussian barriers. The norms of the outgoing
waves, defined in our numerics by

T± = ±

∫ ±∞

0
|ψ(x, t1)|2dx, (4.12)

agree qualitatively with the predictions of our analytic treatment, but with a notice-
able skew in the predicted sinusoid. This skew is also visible in the results for the
Gaussian barrier case shown in Fig. 4.1. We parametrise this skew by ε and describe
the norms of the outgoing waves, T±, as

T± =
1 ± sin(∆ + ε(∆))

2
. (4.13)

This skewness parameter is less pronounced for increasing velocities, i.e.,

lim
v→∞

max(|ε|) = 0. (4.14)

The presence of the skew in simulations with both Gaussian and δ-function barri-
ers rules out any explanation in terms of the barrier structure. However, it is well
known that when solitons collide in the absence of a barrier they induce a small
phase and position shift in one another [20, 29, 159]. We propose that the skew
is a result of interactions between the solitons while approaching the barrier; more
fundamentally, this is a result of the condition of a brief interaction not being fully
satisfied. For instance, from initial condition Eq. (4.1) the phase (ϕ′l) and position
(x′l) shift on the left hand soliton are given by

2x′l
1 + b

+ iϕ′l = 2 ln
(

v + i
v + i [(1 − b)/(1 + b)]

)
. (4.15)

In the case of equal amplitudes and velocities total phase difference reduces to ϕ′ =

±4 arctan(1/v) or, in the limit of high velocity, ϕ′ ≈ ±4/v. In our scenario only part
of this phase-shift can occur before the solitons enter the linear regime, and so we
expect that our skewness parameter ε will be some fraction of ϕ′. What we have

1Within our Fourier pseudo-spectral method a δ-function barrier can be implemented with high
accuracy in momentum space using the approach outlined in Ref. [180].
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Figure 4.3: Numerically computed transmission coefficient T+ illustrating
the interference between solitons of different initial amplitudes (b = eβ)
colliding at a δ-function barrier. Even in the case of a large difference in
initial amplitude (large |β|) there is still interference between the solitons.
The contour lines show the boundary between having one (interior regions)
and two (exterior region) outgoing bright solitons in the analytic treatment
[see Eq. (3.13)]. All results shown are calculated for α = q/v = 1 and
v = 5. Reproduced from Ref. [48].

observed from our numerics is that ε oscillates with ∆ but the maximum value is
εmax ≈ ϕ

′/8. This is consistent with the behaviour we observe in the high velocity
limit.

4.5 Inhomogeneous soliton collisions

It should also be noted that the interference effect is present in collisions between
solitons of differing amplitudes. By taking b = eβ we see that there is still inter-
ference between the transmitted positive and reflected negative bright solitons (and
vice versa) [Fig. 4.3]. Along the line β = 0, where the amplitudes of the incoming
bright solitons are equal, we can clearly see a sinusoidal dependence on ∆. For
nonzero β there is still a notable dependence on the incoming phase difference, but
this effect is soon washed out if the difference in initial amplitudes becomes too
large. It is true, however, that the solitons do not have to be of similar size to con-
structively or destructively interfere.
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The black (white) contour on Fig. 4.3 shows where the final population in the posi-
tive (negative) domain was not great enough, after interference, for the final aggre-
gation to form a soliton. This is determined by treating the total positive (negative)
domain population as the transmission (reflection) coefficient in equation (3.13).
From Eq. (3.13) we see that |tq| and |rq| must both be > 0.5 to get two outgoing
solitons. We determine |tq| and |rq| numerically as

√
T± =

√
±

∫ ±∞

0
|ψ|2dx. (4.16)

As such, the white contour marks where T− = 0.25 (T+ = 0.75) and the black
contour marks where T+ = 0.25 (T− = 0.75).



Chapter 5: Bright matter-wave soliton

interferometry

5.1 Introduction

A related work [30] considered an interferometer using a narrow potential barrier
as a beamsplitter for harmonically trapped solitary waves, based on the particular
configuration of a recent experiment [46]. In this chapter our first result will be
to construct the interferometer system and analyse its behaviours. In particular,
we wish to consider the boundary between quantum behaviour and more classical
behaviour investigated in Chapter 3, which will determine where interferometry is
a more practical goal. We will outline two different geometries which might be
employed for soliton interferometry and delineate energetic regimes where these
implementations are practicable. This chapter is comprised of work presented in
the second half of Ref. [49] and Ref. [50].

We again consider the dynamical equation

i
∂ψ(x)
∂t

=

[
−

1
2
∂2

∂x2 +
q

σb
√

2π
e−x2/2σ2

b +
ω2

xx2

2
− |ψ(x)|2

]
ψ(x), (5.1)

which is equivalent to Eq. (1.63) with an extra externally applied splitting potential,
and initial condition

ψ0 =
1
2

sech
( x − x0

2

)
eivx, (5.2)

5.2 Analysis of soliton interferometry

We can use the above results regarding soliton interactions at narrow barriers to
analyse and construct a soliton interferometer. Soliton interferometry is a three step
process.

First we split a ground state soliton into two lesser solitons of equal size at a narrow
potential barrier [Fig. 5.1(a,b)(i)]. In the case of a δ-function barrier, this split causes
the transmitted soliton to gain a π/2 phase shift relative to the reflected soliton, as
described in Section 3.4.6.
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These solitons then accumulate a further relative phase difference δMZ. This phase
difference is the quantity we wish to measure. In this thesis we consider the case
where this difference is gained by exposing one soliton to a phase shifting phe-
nomenon.

In the third step the two solitons are made to collide at a narrow barrier [Fig.
5.1(a,b)(ii)]. After this final barrier collision the wave-function integrals on either
side of the barrier,

I± = ±

∫ ±∞

0
|ψ(x)|2dx, (5.3)

allow us to determine the magnitude of δMZ [Fig. 5.1(a,b)(ii)]. Here I+ is the pos-
itive domain population and I− is the negative domain population. We can deter-
mine the dependence of I± on δMZ by recalling the result obtained in Chapter 4,
namely Eqs. (4.13) and (4.14). Using this result we can see that taking the phase
difference ∆ to be the sum of the phase shift we wish to measure, δMZ, and the phase
shift accumulated during the initial split, π/2 we obtain

I± =
1 ± cos(∆ + ε)

2
, (5.4)

The different types of soliton interferometry available are determined by the geom-
etry of the potentials used to confine and split the BEC. Here we investigate two
different geometries. The first is a toroidal trap giving a periodic geometry with
two splitting potentials at antipodal points (Sec. 5.3) [Fig. 5.1(a,c)]. This geometry
is somewhat challenging to create experimentally but provides the simplest frame-
work in which to establish our analytical results. The second geometry uses a non-
periodic geometry with a weak axial harmonic trap centred on a narrow splitting
potential (Sec. 5.4) [Fig. 5.1(b,d)]. This geometry makes it more experimentally vi-
able, but questions of broken integrability require that we confirm the applicability
of the results established above.

We will now present more expansive numerical analyses of these cases in order
to determine whether our analytical results are confirmed numerically and also to
determine the best energy regime in which to attempt soliton interferometry.
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Figure 5.1: (a) Diagram of a Mach–Zehnder interferometer utilising a pe-
riodic confinement with two antipodal barriers. An example of the time
evolution of the density for this configuration is displayed in (c). (b) Di-
agram of a Mach–Zehnder interferometer utilising harmonic confinement
and a single splitting barrier. Again, an example of the time evolution for
such a configuration is displayed in (d). Reproduced from Ref. [49].
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5.3 Toroidal confinement Mach–Zehnder interfer-

ometry

An often discussed trapping geometry is the periodic toroidal trap. The existence of
experimental results utilising optical [173] and magnetic [181, 182] confinement
methods coupled with theoretical investigations proving localised bright soliton
states exist in mean-field/truncated Hamiltonian [183], 3–D GPE [184], and cou-
pled Gross–Pitaevskii Bogoliubov-de Gennes equations[185, 186] makes it worth-
while to consider extending our theory into this geometry. The toroidal geometry is
beneficial in that it has no axial trapping, the presence of which breaks integrability
and could, arguably, compromise our previous results. 1

By treating Eq. (5.1) as periodic over the domain −L/2 < x ≤ L/2, such that
ψ(−L/2) = ψ(L/2), we obtain a suitable dynamical equation. We use the same
initial condition [Eq. (5.2)] and initial offset, but set the trap frequency ωx = 0
and directly vary the velocity v by imprinting a phase on the initial condition. We
also add a second barrier at x = ±L/2, where the solitons will be collided for
interferometry, giving the dynamical equation

i
∂ψ(x)
∂t

=

[
−

1
2
∂2

∂x2 +
q

σb
√

2π
e−x2/2σ2

b +
q

σb
√

2π
e−(x±L/2)2/2σ2

b − |ψ(x)|2
]
ψ(x). (5.5)

Results of GPE simulations are shown in Figs. 5.2(a) and (b). We see that for
very high velocities, v ≈ 4, the interference follows our prediction [Eq. (5.23)]
closely, with very small skews arising from nonlinear effects during the final barrier
collision, showing that ε ≈ 0 in this regime.

As the velocity decreases, and we enter the transitional regime between high and
low kinetic energy, ε increases and the skew becomes more prominent. As this
happens the interference curve ceases to be sinusoidal and becomes approximately
linear over some range, with I± ∝ ∓δMZ up to some discontinuity. This discontinuity
becomes narrower for higher ε and is situated at 2π for v ≈ 0.3. In this regime,
however, we are drawing close to the regime where equal soliton splitting becomes
disallowed. For v . 0.3 the structure of the transmission becomes very complex,
as the sensitivity of splitting to small changes in velocity becomes apparent. In this
regime, soliton interferometry becomes impracticable.

1Indeed, adding any potential breaks the integrability, but for narrow splitting barriers one can
consider the system to be widely integrable with small regions where the solution behaves differently.
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Figure 5.2: Numerically calculated transmission rates after the second col-
lision, I+, for two Mach–Zehnder interferometry geometries. Color-maps
for the (b) toroidal Mach–Zehnder and (d) harmonic Mach–Zehnder cases
show the full parameter space. (a) and (c) show specific curves of constant
v, v0 for the same respective scenarios and highlight the transition from the
high energy sinusoidal dependence regime to the lower energy quasi-linear
dependence regime. Reproduced from Ref. [49].

5.4 Harmonic confinement Mach–Zehnder interfer-

ometry

5.4.1 Overview

When considering trapping geometries for BEC experiments it is important to note
that the addition of an axial harmonic trap globally breaks the integrability of the
system, and so we can no longer say that we are studying true NLSE solitons in
the mathematical sense. It is true, however, that the bright solitary waves supported
by the system and confined in the harmonic trapping potential behave in a very
soliton-like manner, staying robust to collisions and retaining their forms for long
periods. Investigations utilising particle Hamiltonian models [15] to describe the
soliton motion agree well with GPE simulations, and so we can safely treat these
bright solitary waves as solitons.
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5.4.2 Classical numerical analysis

The results of fully classical numerical simulations are displayed in Fig. 5.2(c)(d),
obtained by evolving the initial condition described by Eq. (5.2) according to Eq.
(5.1). In this case, the initial velocity v was set to zero while the soliton’s velocity
at the barrier, v0, was set by varying the axial trap frequency ωx (the dimensionless
from of ωT) and holding the initial offset x0 at a constant value such that the soliton
is initially well separated from the barrier.

The results are comparable to those seen for the periodic Mach–Zehnder case (Sec.
5.3), with good agreement with theory for high velocities, a linear dependence aris-
ing as we approach v0 ≈ 0.3 and finally complex structure arising in the low energy
regime making interferometry impracticable. It should be noted that in the data set
displayed in Fig. 5.2(d) is incomplete. The solid white band at v ≈ 0 is a region
where the system evolved too slowly to be numerically practical.

5.4.3 Interferometry sensitivity to quantum fluctuations

It was stated above that the linear relation between final domain population and
phase shift might make interferometry more easily interpreted in the lower velocity
regime. However, if we are to work in the regime we must consider the implications
of the results outlined in Chapter 3; namely the impacts of energetically disallowed
states and quantum uncertainty in the initial condition.

We again characterise the system’s sensitivity to extreme positive/negative energy
fluctuations. As such, we construct the quantities I+(µvb ± 3σvb) and

I6σvb
= |I+(µvb + 3σvb) − I+(µvb − 3σvb)|. (5.6)

These quantities are analogous to those used previously (Sec. 3.4.5), but are ob-
tained by allowing the system to evolve through the entire process of interferometry,
rather than just the initial splitting event. In this section and the next section [where
we discuss results displayed in Figs. 5.3, 5.4, 5.5 and 5.6] we have considered the
∆ = 0 case only in order to simplify our analysis.

Figure 5.3 shows the results of these simulations. We see that for high N and
high v0 the systems are reasonably insensitive to fluctuations. However, even in
the high energy limit we see that as we decrease N the interferometry transmissions
significantly deviate from their asymptotic values. This sensitivity is high compared
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Figure 5.3: Results of numerical integrations illustrating the sensitivity of
interferometry to extreme quantum fluctuation for various particle numbers.
The interferometry transmission after extreme positive (negative) energy
quantum fluctuations are displayed in panel (a) (panel (b)). The number
fluctuation measure I6σvb

[Eq. (5.6)] is plotted in (c). For all plots we show
N = 16 (+), 32 (×), 64 (�) and 128 (•). Reproduced from Ref. [49].

to that of the single splitting case, illustrating that the process of splitting (which
occurs twice in interferometry) enhances the sensitivity of the classical system to
initial fluctuations. The double enhancement in interferometry requires that we must
be closer to the mean-field limit or suffer intolerable deviations from the classical
behaviour.

As we decrease v0 still further the previously discussed bound states and disallowed
splitting events greatly complicate the dynamics of interferometry, making both the
system and the results of our numerics difficult to interpret. This difficulty clearly
shows that interferometry is impracticable in the low energy limit.

5.4.4 Monte-Carlo analysis of interferometry with quantum

fluctuations

We now present a Monte-Carlo analysis of the effects of quantum uncertainties in
the COM initial position and momentum. We explore the same parameter regime as
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Figure 5.4: Distributions of the interferometry transmission I+ obtained
from Monte-Carlo simulations. Here we show results for a range of trap
frequencies and particle numbers, giving a range of uncertainties in the ini-
tial COM position and momentum. In the range explored, we see that the
effects of varying the trap frequency (and so kinetic energy) dominate the
dynamics, with narrow Gaussians at high energy, but a uniform structure
arising at low energy when interferometry becomes impracticable. Repro-
duced from Ref. [49].

in Section 3.4.5 and again present the results of 16 Monte-Carlo simulations. The
plots in Fig. 5.4, illustrating the distributions of the interferometry transmission
I+, show characteristics similar to those in Fig. 3.4, but more pronounced. The
distributions are approximately Gaussian at higher energies/particle numbers, but
become more uniform at low energies (v0 = 0.3), with a peak in the frequencies
near I+ = 0.5 arising from the presence of persistent bound states. This again
indicates that interferometry is not viable in the low energy regime.

The transmission curves in Fig. 5.5 have a much more complex structure than that
exhibited in its counterpart Fig. 3.5. At higher velocities, the points are clearly cen-
tred on the I+ = 1 state, as we would expect, but as we lower the velocity the trans-
mission becomes very sensitive to quantum fluctuations. This can be attributed to
nonlinear phase shifts arising during the soliton collision at the barrier, compounded
by a mis-match between the barrier strength and soliton velocity upon collision. In-
deed, for the v0 = 0.3 case these nonlinear phase shifts can cause I+ to take literally
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Figure 5.5: Results of Monte-Carlo simulations. Here we show the depen-
dence of interferometry transmission on I+ on the collision velocity (vb)
after quantum position/momentum fluctuations have been added to a base
collision velocity (v0). For each v0 the barrier strength was set to ensure
equal splitting in the limit of zero fluctuations. We see that in the low
energy regimes the complex and velocity sensitive structure of the trans-
mission renders interferometry unworkable. Reproduced from Ref. [49].

any value between 0 and 1, and the quantum fluctuations cause I+ to tune across this
period multiple times. This, alone, precludes any possibility of soliton interferom-
etry in this regime. It is also visible that, even for high energies, a particle number
of less than ≈ 130 can cause increased sensitivity, and so we really must ensure that
we are in the regime of high N. After these considerations have been taken into
account, it should be possible to perform interferometry with a quasi-linear signal
[similar to that associated with the v0 = 0.52 curve in Fig. 3.2(e)] for values of
v0 & 0.5.

Finally, we again calculated maximum-likelihood estimates of the variance s̄I+
of

the transmission, which we again assumed to be distributed as a truncated Gaussian.
The results of these calculations are displayed in Fig. 5.6. At higher velocities, we
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Figure 5.6: Results of Monte-Carlo simulations. Here, the standard
deviation associated with the final interferometry distributions depicted
in Fig. 5.4. We see a strong, weakly linear dependence on s̄vb for high
v0, which becomes stronger, but less linear, as we reduce the energy. The
variance saturates when the distribution becomes effectively uniform. Re-
produced from Ref. [49].

see an approximately linear correlation between the transmission uncertainty and
collisional velocity uncertainty standard deviation σvb . The gradient of the regres-
sion lines is much steeper than those in Fig. 3.6, showing the increased sensitivity
of I+ to quantum fluctuations. Again, the shaded regions show a 95% confidence
interval for the linear fit. For all velocities shown the confidence intervals are no-
tably wider than their counterparts in Fig. 3.6, and so we can conclude that the
dependence of s̄I+

on σvb is more complicated than in the soliton splitting case, as
we would expect. At lower velocities s̄I+

saturates below ∼ 0.4. This is a result
of attempting to fit a Gaussian to a distribution which is, in effect, uniform. This
becomes apparent when we consider that ∼ 38% of the probability mass of a Gaus-
sian lies within a central period of width σ, and so applying a fitting algorithm to a
uniform distribution will likely produce a standard deviation with a width encom-
passing ∼ 38% of the sample. In this case, that with is ∼ 0.4. This saturation is
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a strong indicator of a velocity/particle number regime in which interferometry is
unworkable.

5.5 Sagnac interferometry

Our final result will be to explore how the framework of soliton interferometry
might be extended to the measurement of the Sagnac effect, first observed in an
atom interferometer by Riehle et al.[187]. In this experiment the observation man-
ifested as a shift in the Ramsay fringes produced by passing an atomic beam of
40Ca through four travelling waves in a Ramsay excitation geometry, producing an
atomic beam interferometer.

The Riehle setup differs from the ideas developed in the current work in two ways.
First we have that in Ref. [187] some of the phase information is transported opti-
cally. Here we discuss a system where atom-light interactions serve only to coher-
ently split the condensate. Any phase dynamics resulting from these interactions
are incidental. Secondly, in the current work we propose a system which results,
not in an interference fringe shift, but a population shift between the positive and
negative domains of the interferometer. This allows inferences of the Sagnac ef-
fect to be drawn from measurements of the particle numbers of the spatially distinct
condensates on either side of the barrier, and not the structure of those condensates
(which should remain solitonlike).

5.5.1 Physical system

In the case of Sagnac interferometry, we must first slightly alter Eq. (5.5). As we
are now working in a moving frame of reference we must transform our spatial
coordinate: x → x − Γt. This results in the following dynamical equation in the
moving frame

i
∂ψ(x)
∂t

=

[
−

1
2
∂2

∂x2 + iΓ
∂

∂x
+

q

σ
√

2π
e−x2/2σ2

+ (nb − 1)
q

σ
√

2π
e−(x±L/2)2/2σ2

− |ψ(x)|2
]
ψ(x). (5.7)

Notice that we have gained a translational term and altered the second barrier term.
Adding or removing the second barrier allows us to implement two different forms
of Sagnac interferometry: one where the solitons both perform a full circumnaviga-
tion of the ring, enclosing the area within the ring twice; and one where each soliton
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Figure 5.7: Diagram of soliton Sagnac-interferometry. (a) Stages of Sagnac
interferometry with one barrier. (b) Sagnac interferometry with two barri-
ers. (c) Interference curves for both the one barrier (green, dashed) and two
barrier cases for varying rotational frequency Ω with L = 40π and v = 4.

circumnavigates a different half of the ring, enclosing the area once. These cases
are labelled by the quantity nb, which is 1 for the first (single barrier) case and 2 for
the second (two antipodal barriers) case. As such, the second barrier term is zero
for nb = 1 (illustrated in Figs. 5.7(a) and 5.8(a)) and identical to the other barrier
term, up to a spatial offset, for nb = 2 (illustrated in Figs. 5.7(b) and 5.8(b)). The
number of barriers nb is taken to be 1 or 2 only.

For periodic boundary conditions over the domain −L/2 < x ≤ L/2 we set ψ(x) =

ψ(x + L). This system is comparable to a rotating toroidal trap geometry where L

is the dimensionless form of the circumference. Γ can be written in terms of the
circumference of the torus L and angular frequency of the rotation Ω. Note that
all of these quantities are dimensionless, but we can also write Γ in terms of the
dimensional quantities LD and ΩD, giving

Γ =
ΩL
2π

(5.8)

=
~

g1DN
ΩDLD

2π
. (5.9)

where N is the number of particles and g1D = 2~ωr|as| (as defined in Chapter 1).

We assume that the wave function has zero amplitude at the location of splitting
potentials, and so we always take ψ(0) = 0. This allows for a discontinuous phase
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in the presence of splitting potentials, and is exact in the σ → 0 limit, where the
Gaussian profile becomes a δ-function.

The soliton solution to Eq. (5.7) (in the absence of splitting potentials and periodic
boundary conditions) is obtained by the Galilean invariance of the standard soliton
profile [20]. We begin with the invariant solution

ψ̃(x̃, t) = Dsech (D [x̃ − Vt]) exp
{
iV x̃ + i

(
D2 − V2

)
t/2

}
, (5.10)

where the tilde notation denotes the stationary frame of reference. A soliton moving
with velocity v in a frame moving with velocity Γ is moving at velocity V = v + Γ

in the stationary frame, and so we obtain

ψ̃(x̃, t) = Dsech (D (x̃ − [v + Γ]t)) exp
{
i[v + Γ]x̃ + i

(
D2 − [v + Γ]2

)
t/2

}
. (5.11)

Transferring to the moving frame, where x = x̃ − Γt, we obtain

ψ(x, t) = Dsech(D[x − vt]) exp
{
i[v + Γ][x + Γt] + i

(
D2 − [v + Γ]2

)
t/2

}
. (5.12)

This retrieves a result obtained by the analysis presented in Appendix A. A more
general result, valid for periodic boundary conditions, is also presented in Ap-
pendix A [Eq. (A.60)], however we assume that L � 1 and so Eq. (5.12) can be
taken as a valid solution to Eq. (5.7).

5.5.2 Process

We will now outline the process of soliton Sagnac-interferometry, which has three
steps. This process is common to both the nb = 1 and nb = 2 configurations. The
phase evolution of the system will later be analysed in full.

First, a ground state soliton is split into two secondary solitons of equal size at a
narrow potential barrier (Fig. 5.7(a)(i) and (b)(i), time Ts in Fig. 5.8). An equal split
is obtained by selecting the barrier’s strength q for a given incident velocity and
barrier width σ. As discussed previously (Sec. 3.4.6), this splitting event causes a
phase difference to arise between the solitons.

In the second step these secondary solitons accumulate a further relative phase-
difference. This phase difference is the quantity we wish to measure and is gained
as a result of the differing path lengths travelled by counter propagating waves in
a moving frame (Fig. 5.7(a)(ii) and (b)(i)-(ii), time Ts < t < Tc in Fig. 5.8). This
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Figure 5.8: Overview of a Sagnac interferometry. (a) The one barrier case.
(b) The two barrier case. For both cases the velocity was v = 4

phase shift will be denoted as δS and is dependent on the frequency of rotation and
path length travelled by the solitons.

In the third step the two solitons are made to collide at a narrow barrier (Fig.
5.7(a)(iii) and (b)(ii), time Tc in Fig. 5.8). After this final barrier collision the wave-
function integrals on either side of the barrier [Eq. (5.3)] allow us to determine the
magnitude of δS [48, 49]. Again, I+ is the positive domain population and I− is the
negative domain population.

5.5.3 Analysis of phase evolution

The three steps outlined above each introduce phase dynamics to the system. In this
section we will describe these dynamics more fully in order to determine how the
Sagnac effect arises in GPE soliton interferometry.

After the initial split at time Ts the soliton in the positive domain has peak phase
φ+(t), while that in the negative domain has peak phase φ−(t). Here we wish to
determine the phase difference between the two solitons before they collide with
one-another at a barrier at time Tc. This is denoted as

∆ = (−1)nb(φ+(Tc) − φ−(Tc)). (5.13)

The prefactor (−1)nb changes the sign of the phase difference to account for the
fact that the solitons will approach the collisional barrier from different directions
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depending on the number of barriers. For all values of nb we have Ts = L/4v. For
nb = 1 the solitons created by the splitting event must both fully circumnavigate
the periodic domain before colliding at a barrier, while for nb = 2 the solitons must
only travel half the x-domain, and so Tc = Ts + L/nbv.

The first step, in which the initial soliton is split on the narrow barrier, creates our
two solitons of equal amplitude. In the case of a δ-function barrier this split causes
the transmitted soliton to be phase shifted by π/2 ahead of the reflected soliton, as
determined analytically in Section 3.4.6 [49]. We will use this figure as an estimate
of the phase difference accumulated by splitting on a Gaussian barrier, as justified
in Section 3.3.2 [48]. A discussion of phase shifts accumulated by finite width
barriers is available in Ref. [169]. We select a Gaussian profile for the barrier as this
is standard for typical experimental setups [34]. As such we take

φ+(Ts) = φ−(Ts) + π/2 (5.14)

The evolution of the phase at the peak of an individual soliton is obtained by taking
the imaginary part of the exponent of Eq. (5.12) and setting x = vt, giving

φs(t; v) =
(
D2 + [Γ + v]2

)
t/2 (5.15)

up to an arbitrary initial offset. We can use this equation with Eq. (5.14) to write

φ−(t) = φs(t − Ts;−v)

=
(
D2 + [Γ − v]2

) (t − Ts)
2

(5.16)

φ+(t) = φs(t − Ts; v) +
π

2

=
(
D2 + [Γ + v]2

) (t − Ts)
2

+
π

2
. (5.17)

We can now write ∆ as

∆ = (−1)nb

{
φs(Tc − Ts; v) +

π

2
− φs(Tc − Ts;−v)

}
= (−1)nb

{(
[Γ + v]2 − [Γ − v]2

) (Tc − Ts)
2

+
π

2

}
= (−1)nb

{
(4Γv)

L
2nbv

+
π

2

}
= (−1)nb

{
2ΓL
nb

+
π

2

}
(5.18)
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It is also true that in the absence of the second barrier (nb = 1) the solitons will
collide with one another at the point antipodal to the splitting barrier situated at x =

0. As this antipodal collision occurs in the absence of any axial potentials or barriers
the solitons remain topologically stable and are unaffected beyond asymptotic shifts
to position and phase (Chapter 2) [20, 167]. These asymptotic shifts are given by
the two soliton case of Eq. (2.40),

D jδx j + iδφ j = (−1)k ln
[
D j + Dk + i(v j − vk)
D j − Dk + i(v j − vk)

]
, (5.19)

where j, k = {1, 2} and j , k. The quantities δx j and δφ j are the asymptotic position
and phase shifts associated with the jth soliton, while v j and D j describe that soli-
ton’s velocity and normalisation. Taking the soliton which is transmitted through
the barrier at time Ts to be associated with j, k = 1 we obtain the correct sign for
our asymptotic shifts.

In our case, by noting that D1 = D2 = 1/4 we can determine the relative phase shift
which arises as a result of this collision:

φC = δφ2 − δφ1,

= − Im
(
ln

[
1 + 2i [(v) − (−v)]

2i [(v) − (−v)]

]
+ ln

[
1 + 2i [(−v) − (v)]

2i [(−v) − (v)]

])
,

= Im
(
ln

[
16v2

16v2 + 1

])
,

= 0 (5.20)

As such, φC does not need to be included in the calculation of ∆.

Similarly, we can consider the positions shifts δx j

D jδx j = (−1)k Re
(
ln

[
1 + (−1)ki4v]

(−1)ki4v

])
= (−1)k Re

(
ln

[
1 − i

(−1)k

4v

])
=

(−1)k

2
ln

[
1 +

1
16v2

]
(5.21)

= −Dkδxk. (5.22)

Both results pertaining to the asymptotic position and phase shifts use the standard
complex logarithmic identity ln(z) = 1/2 ln(|z|2) + i arg(z)
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Figure 5.9: Numerically calculated transmission rates after the second col-
lision, I+, for two Sagnac interferometry geometries. Color-maps for the
(b) nb = 2 and (d) nb = 1 cases show the 0.16 < v < 4, 0 < Ω × 103 < 2.5
parameter space. Panels (a) and (c) show specific curves of constant v for
these scenarios respectively and highlight how the different interrogation
times result in a different Sagnac phase accumulation. The phase differ-
ence is varied by varying Ω with L = 40π.

Equation (5.21) shows us that δx j → 0 quickly as v → ∞, while Eq. (5.22) shows
us that whatever the size of the asymptotic position shift, the solitons are always
shifted by equal amounts in opposite directions, and so will always meet at the
collisional barrier situated at x = 0.

These results [Eqs. (5.20), ( 5.21), and (5.22)] tell us that the antipodal collision in
the absence of a barrier does not affect the outcome of Sagnac interferometry if we
assume that the solitons’ accelerations during the collision do not affect the Sagnac
phase accumulation. The analysis supporting this assumption is beyond the scope
of the current work but can be verified numerically.

We can now determine I± by recalling previous results Chapter 4, namely Eqs.
(4.13) and (4.14) [48]. Following the same procedure outlined in Section 5.2 [sub-
stituting Eq. (5.18) into Eq. (4.13)] we obtain

I± =
1 ± (−1)nbcos(δS − ε)

2
, (5.23)

where ε → 0 as v → ∞ and is sufficiently small for v & 2; and δS is the Sagnac
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phase we wish to measure and is given by

δS =
2ΓL
nb

=
ΩL2

πnb
(5.24)

=
m
~

ΩDL2
D

πnb
.

5.5.4 Numerical verification

Results of numerical simulations are shown in Fig. 5.9(a–b). We see that for very
high velocities, v ≈ 4, the interference follows our prediction [Eq. (5.23)] closely,
with very small skews arising from nonlinear effects during the final barrier colli-
sion, showing that ε ≈ 0 in this regime. The nb = 1 (c–d) and nb = 2 (a–b) have
similar structures, however for nb = 1 the phase varies twice as quickly. This is con-
sistent with our predictions. The similarity of the structures supports the assumption
that accelerations during barrier free collisions do not affect the Sagnac effect phase
accumulation.

As we reduce the velocity, and the necessary assumption of high initial kinetic en-
ergy breaks down, our numerics show that our results no longer hold, and so we
conclude that Sagnac interferometry is not practicable in the v . 1 regime. This is
consistent with previous work by the authors [49] which delimited this regime as
the high-to-low energy transitional regime. Furthermore, the results shown here are
comparable to those obtained for the Mach–Zehnder configuration [Fig. 5.2].



Chapter 6: Conclusions

In this thesis we have covered the three major components of the theory of soliton
interferometry.

First we developed the theory of soliton splitting on Gaussian barriers, and com-
pared this to the ideal case of the δ-function barrier. We found that for sufficiently
narrow barriers the behaviour was comparable between the two barrier structures
but for finite width barriers there was an upper limit to the allowed incident velocity,
above which classical transmission dominated. We then probed different energetic
regimes in the classical system, and found that at low energies the classical approach
became highly sensitive to uncertainty in the initial condition consistent with quan-
tum mechanical fluctuations. This low energy regime failure of classical results
is primarily caused by disallowed soliton splitting events, extremely discontinuous
transmission curves, and bound states. We also provided analysis to determine the
phase difference between the outgoing solitons after the split.

Secondly we presented a general and detailed analysis of the collision of two fast-
moving bright solitons at a narrow potential barrier. We have developed an analytic
treatment of this problem, based on the assumption of a δ-function potential and
short collision times. Our numerical simulations of the same problem revealed that
this analytic treatment is quantitatively accurate in the limit of narrow barriers and
fast solitons. At realistic soliton speeds and barrier widths, however, our numerical
results differ from the analytic prediction; we have quantified this in terms of the
phase-skew ε which tends to zero as the incident velocity increases. Our analytic
treatment also provides an estimate of the regimes in which the outgoing waves
contain solitons.

Finally we have shown analytic results describing soliton interferometry in the ideal
classical case, specifically the cases of a Mach–Zehnder configuration and a Sagnac
configuration. We have extended the Mach–Zehnder results to the harmonically
trapped system, which is currently more experimentally relevant than the toroidal
case [34] and presents a better defined situation when considering quantum fluc-
tuations of the COM. This has allowed us to investigate and delimit the energetic
regimes in which quantum fluctuations in the initial COM position and momentum
cause the classical dynamics to break down.

100
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The breakdown of the classical model in the low energy regime complicates the
early evolution of the interferometric system and compromises the dynamics. As
we approach the low energy regime quantum effects mix these phenomena into the
dynamics of the system where classically they would be absent. This causes greatly
enhanced sensitivity to quantum effects in both the splitting transmission and the
interferometry transmission when close to the low energy regime. This sensitivity
appears at marginally higher kinetic energies in the presence of harmonic trapping,
but the difference is relatively slight for the weak trapping considered.

We conclude that whether or not the mean-field limit is truly achieved, soliton in-
terferometry is not a viable process in the extremely, or even transitionally, low
kinetic energy regime. However, for a suitably high initial kinetic energy we see
good results for particle numbers upwards of the low hundreds (beyond which our
numerical algorithm struggles to resolve fluctuations, also indicating that the clas-
sical model is robust in this regime), and so conclude that soliton interferometry is
viable given a suitably high-energy and effectively classical regime.



Appendix A: Travelling wave solutions to

the translational focusing NLSE

In this appendix we provide a more meticulous derivation of travelling wave solu-
tions in the translational NLSE. We begin with the NLSE with a negative (focusing)
nonlinearity.

iut = −
uxx

2
− u|u|2 (A.1)

If we now change our spatial coordinate to one moving to the right at speed γ, i.e.
x→ x − γt, we obtain

iut = −
uxx

2
+ iγux − u|u|2 (A.2)

We now consider all calculations within this moving frame, and so if we consider a
solitary wave moving to the right at speed c in this frame we are, in fact, considering
a wave moving at speed c − γ. Note that for γ = 0 we retrieve results valid in the
stationary frame, as outlined in Chapter 2.

We now seek travelling wave solutions under the ansatz suggested in Ref. [159],

u = rei(θ+µt). (A.3)

We set r and θ to be functions of the variable ξ = x− ct, while µ is a constant chem-
ical potential. We also assert that r and θ are real (preventing exponential growth or
decal in the full solution, which would be incompatible with our requirement of a
stabe profile) and note that |r|2 must be ≥ 0 for a meaningful solution. For clarity
we will consider each derivative individually:

ut = −cr′e + ire(−cθ′ + µ) (A.4)

ux = r′e + irθ′e (A.5)

uxx = r′′e + ir′θ′e + ir′θ′e − r(θ′)2e + irθ′′e (A.6)

|u|2u = r3e (A.7)

where the prime denotes a partial derivative and e denotes the exponential term
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exp i(θ + µt) and is reduced for brevity. Now, going term by term we obtain

iut = crθ′e − µre − icr′e (A.8)

−
uxx

2
= −

r′′e
2
− ir′θ′e +

r(θ′)2e
2
−

irθ′′e
2

(A.9)

iγux = iγr′e − γrθ′e (A.10)

−|u|2u = −r3e (A.11)

or, dropping the global factor of e,

crθ′ − µr − icr′ = −
r′′

2
− ir′θ′ +

r(θ′)2

2
− i

rθ′′

2
+ iγr′ − γrθ′ − r3. (A.12)

This equation can now be split into real and imaginary parts:

Im(A.12) − cr′ = −r′θ′ −
rθ′′

2
+ γr′, (A.13)

Re(A.12) crθ′ − µr = −
r′′

2
+

r(θ′)2

2
− γrθ′ − r3. (A.14)

Beginning with the imaginary part, rearranging Eq. (A.13) and multiplying by r

gives us

rr′θ′ +
r2θ′′

2
= (c + γ)rr′, (A.15)

which integrates to give us

θ′ = (c + γ) +
A
r2 , (A.16)

where A is a real constant of integration.

Now, taking the real part we rearrange Eq. (A.14) to get

(c + γ)rθ′ − µr +
r′′

2
−

r(θ′)2

2
+ r3 = 0. (A.17)

Substituting Eq. (A.34) into this equation and setting β = c + γ we obtain

βr
( A
r2 + β

)
− µr +

r′′

2
−

r
2

( A
r2 + β

)2

+ r3 = 0. (A.18)

Simplifying, multiplying by r′ and setting

α = 2µ − β2 (A.19)



Appendix A: Travelling wave solutions to NLSE 104

Figure A.1: Reproduced from Chapter 2. Here we see that the polynomial
F(S ) can satisfy one of three cases: (a) three single roots, (b) one triple root
and (c) one double root and one single root.

gives us

−
αrr′

2
+

r′r′′

2
−

A2r′

2r3 + r′r3 = 0. (A.20)

This integrates immediately and, after multiplication by 4r2, becomes

−
αr2

4
+

(r′)2

4
+

A2

4r2 +
r4

4
= B. (A.21)

We now re-write r(ξ) in terms of the density S (ξ) = r2, with (rr′)2 = (S ′)2/4, and
rearrange to give

(S ′)2 = 4
(
−S 3 + αS 2 + 4BS − A2

)
. (A.22)

When S = 0 we see that S ′ = i2A. As we have stated that S is a real function we
conclude that A = 0, and so

(S ′)2 = 4
(
−S 3 + αS 2 + 4BS

)
. (A.23)

≡ 4G(S ) (A.24)

Furthermore, if we consider the asymptotic behaviour as S → ∞ we can determine
the structure of G to follow one of four forms (see Fig. A.1, reproduced from Chap-
ter 2).
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From the requirement that S be real (and so S ′ is real, meaning G > 0) we can
discard Fig. A.1(b) and (c)(i). This leaves us with Fig. A.1(a) and (b)(ii). In order
to better understand these two cases we must discuss exactly how S depends on ξ.
This is achieved by solving Eq. (A.24) in the region of specific roots of G. In the
two remaining cases these roots are either single or double.

Single roots: In the region of a single root S 1 = S (ξ1) we can Taylor expand G

about S 1 to obtain

(S ′)2 = 4
[
(S − S 1) G′(S 1) + O

(
[S − S 1]2

)]
. (A.25)

Here theO notation signifies “terms of the order of”. This equation can be integrated
to give the solution

S = S 1 + (ξ − ξ1)2 G′(S 1) + O
([
ξ − ξ1

]3
)

(A.26)

in the region of S 1. As such, a single zero in G indicates a feature where S (ξ1)
is extremal. This means that as we monotonically vary ξ, S increases/decreases
(depending on the sign of G′[S 1]) towards S 1, becomes S 1 for ξ = ξ1, and then
decreases/increases away from S 1 as we continue to vary ξ.

Double roots: our Taylor expansion now yields

(S ′)2 = 4
[
(S − S 1)2 G′′(S 1) + O

(
[S − S 1]3

)]
. (A.27)

Again, this can be integrated immediately with solutions of the form [159]

S − S 1 ∝ exp
[
± {G′′(S 1)}1/2 ξ

]
as ∓ ξ → ∞ (A.28)

for bounded solutions. As such, we see that a double zero in G indicates a feature
where S (ξ1) is an asymptotic value for large ξ.

Considering these behaviours in the context of the remaining parts of Fig. A.1, pan-
els (a) and (c)(ii), we see that: (a) contains a solution which continually oscillates
between the two single roots of G, S 1 and S 2; while (c)(ii) contains a solution which
asymptotes from 0 at ξ → −∞ to S = S 1 and then back to 0 for ξ → ∞. While the
case of a)’s periodic surface waves is a valid solution to the NLSE, it does not have
a finite norm for unbounded ξ. We will now focus on the case of (c)(ii), our solitary
translating wave.



Appendix A: Travelling wave solutions to NLSE 106

In this scenario, setting r, r′ → 0 as ξ → ±∞ in (A.24), which is true for a solitary
wave profile, we determine that B = 0. Note that this result only holds true for
(S ′)2 /S → 0 as ξ → ±∞ which we will justify later. Equation (A.24) now has the
form

(S ′)2 = 4
(
−S 2(S − α)

)
(A.29)

This can be rearranged to the integral∫
dS

2S (α − S )1/2 =

∫
dξ. (A.30)

This integral is solved by the substitution S = αsech2(η), where η is a function of ξ,
giving ∫

−2αsech2(η)tanh(η)

2α3/2sech2(η)
(
1 − sech2(η)

)1/2 dη =

∫
dξ, (A.31)

which simplifies to ∫
−α−1/2dη =

∫
dξ, (A.32)

determining η = −α1/2(ξ − ξ0), where ξ0 arises as a constant of integration but is
simply an initial offset. Noting that sech is symmetric about zero and requiring
r(ξ) ≥ 0, this gives us

r(ξ) = α1/2sech(α1/2[ξ − ξ0]). (A.33)

Note that this solution also satisfies (S ′)2 /S → 0 as ξ → ±∞, justifying our previ-
ous selection.

If we now recall Eq. (A.34) and apply the A = 0 condition. This equation for the
phase now immediately integrates to give

θ(ξ) = βξ, (A.34)

and so, via Eq. (A.19), we obtain

u(ξ) = α1/2sech(α1/2[ξ − ξ0]) exp
[
iβξ + i

(
α + β2

)
t/2

]
. (A.35)

Finally, we might impose the normalisation∫
|u|2dξ = 2D (A.36)

which is consistent with the N-particle GPE for N = 2D. This determines α = D2
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and gives us

u(x, t; c, γ) = Dsech(D[x − ct])

× exp
{
i[c + γ][x − ct] + i

(
D2 + [c + γ]2

)
t/2

}
(A.37)

which is equivalent to

u(x, t; c, γ) = Dsech(D[x − ct])

× exp
{
i[c + γ][x + γt] + i

(
D2 − [c + γ]2

)
t/2

}
. (A.38)

For γ = 0 this reduces to

uG(x, t) = Dsech(D[x − ct]) exp
{
icx + i

(
D2 − c2

)
t/2

}
, (A.39)

which is exactly the standard J. P. Gordon soliton solution [20].

We can retrieve Eq. (A.37) from the more general case were we have three roots at
0, S 1 and S 2 where S 1 < S 2 and S 1 may or may not be zero. This covers both cases
(a) and (c)(ii) of Fig. A.1. From Eq. (2.33) we can see that∫ S 2

S

dS̃

2
{
G(S̃ )

}1/2 = ±

∫ ξ2

ξ

dξ̃, (A.40)

where tildes denote dummy integration variables. From the structure of G in Eq.
(A.24) we can write

G(S ) = −S (S − S 1)(S − S 2), (A.41)

and in the region between S 1 and S 2 we can write

S = S 2 − (S 2 − S 1)sin2(ζ) (A.42)

= S 2

(
1 − msin2(ζ)

)
(A.43)

where ζ is a parameter which varies S between S 1 and S 2 (and will prove to be
another a dummy integration variable) and

m =
S 2 − S 1

S 2
. (A.44)
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Substituting equations (A.41) and (A.42) into integral (A.40) we obtain

± S 1/2
2 (ξ2 − ξ) =

∫ ζ

0

dζ̃(
1 − msin2(ζ̃)

) . (A.45)

This integral is solved in terms of Jacobi elliptic functions [188]. We use dn[x|m],
which is a function of x and has parameter m, and gives

dn[S 1/2
2 ξ|m] =

√
1 − msin2(ζ) (A.46)

as a solution to Eq. (A.45), noting that ξ2 is an arbitrary offset and dn is symmetric
about its argument. Substituting this into Eq. (A.43) we obtain

S (ξ) = S 2dn2
[
S 1/2

2 ξ
∣∣∣m]

, (A.47)

The dn function describes a bulk condensate with surface waves. The period of
these waves can be described in terms of the complete elliptic integral of the first
kind, and is 2K(m). As such the domain 0 ≤ ξ ≤ 2nK(m)/S 1/2

2 will contain n surface
waves (i.e. n peaks), and we can integrate over this region to obtain

∫ 2nK(m)/S 1/2
2

0
S (ξ)dξ = S −1/2

2

∫ 2nK(m)

0
S (ξ)dξ̂ (A.48)

= S 1/2
2

∫ 2nK(m)

0
dn2[ξ̂|m]dξ̂ (A.49)

= 2S 1/2
2 nE(m). (A.50)

Here we used a change of variable ξ̂ = S 1/2
2 ξ and refer the reader to Abramowitz

and Stegun [188] for results pertaining to the integrals of squared Jacobi elliptic
functions. The result is expressed in terms of the complete elliptic integral of the
second kind E(m), also described in Ref. [188].

Again asserting that the number of particles in the region considered is 2D, we
determine S 2 to be

S 2 =

(
D

nE(m)

)2

, (A.51)

now expressed in terms of m and n alone. This fully determines the amplitude of
u(ξ), and so we now move on to the phase. As before, A = 0 and so Eq. (A.34) still
applies. This leaves us to determine the chemical potential in terms of m and n. To
achieve this we must first determine our roots S 1 and S 2 in terms of µ and β, and
so we consider Eq. (A.24). Setting S ′ = 0 for our roots, and discarding the trivial
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S = 0 solution, we obtain
S 2 − αS − 4B = 0 (A.52)

which has roots

S ± =
α ±
√
α + 16B
2

(A.53)

As α and B are real, recalling that S 2 > S 1 we see that the positive (negative) sign
corresponds to S 2 (S 1). Taking the sum of the roots we obtain

S 1 + S 2 = α

= 2µ − β2 (A.54)

by Eq. (A.19), and so

µ =
(S 1 + S 2) + β2

2
(A.55)

Rearranging Eq. (A.44) and combining Eq. (A.51) we see

S 1 = (1 − m)
(

D
nE(m)

)2

, (A.56)

and so

µ =

[
p(m, n)D2 + (c + γ)2

]
2

, (A.57)

where we define p(m, n) as

p(m, n) =
2 − m

[nE(m)]2 . (A.58)

Combining these results, we can construct our general n-travelling-wave solution

u(x, t; m, n, c, γ) =
D

nE(m)
dn

(
D

nE(m)
[x − ct]

)
× exp

{
i[c + γ][x − ct] + i

(
p(m, n)D2 + [c + γ]2

)
t/2

}
. (A.59)

which is equivalent to

u(x, t; m, n, c, γ) =
D

nE(m)
dn

(
D

nE(m)
[x − ct]

)
× exp

{
i[c + γ][x + γt] + i

(
p(m, n)D2 − [c + γ]2

)
t/2

}
. (A.60)

As we send S 1 → 0 we see that m → 1. In this limit we note that K(m) → ∞̃
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(complex infinity) and E(1) = 1. The period of dn[x|m] is 2K(m) and so in the
S 1 → 0 limit the period becomes infinite and only a single travelling wave exists
on the real line. This can also be seen from the fact that dn[x|1] = sech(x). With
only a single travelling wave we have n = 1 and so for S 1 = 0 we have p(1, 1) = 1;
the bulk condensate disappears and Eq. (A.60) retrieves Eq. (A.38). This is as
we would expect. Similarly, for γ = 0 Eq. (A.60) is equivalent to work presented
by Carr et al. in Ref. [189] (although here we have adopted a different method of
normalisation).



Appendix B: Notes on the numerical

method

Many of the results presented in this thesis were numerical in nature. Here we will
briefly outline the technique used in the most computationally demanding method
(the split-step pseudo-spectral GPE solver) and describe an aspect of this numerical
technique (the treatment of the δ-function barrier) the numerical implementation of
which was not discussed elsewhere (although see also relevant theoretical results in
Ref. [190]).

Here we choose to decompose the wave function ψ(x, t) into a plane wave (Fourier)
basis1. From a mathematical point of view we are representing our wave function
in momentum space as a Fourier series

ψ(x, t) =

∞∑
k=−∞

ck(t)e2πikx/L (B.1)

where the complex amplitudes ck(t) are given by

ck(t) =
1
L

∫ L/2

−L/2
ψ(x, t)e−2πikx/Ldx (B.2)

over the finite −L/2 < x ≤ L/2 domain. This implicitly requires periodic boundary
conditions. In terms of the numerical algorithm, we discretise our spatial grid to N

regularly spaced points and restrict our plane wave basis to N modes, truncating the
Fourier series. This is a simpler example of Gaussian quadrature, which generally
requires a more complex selection of the spatial grid as prescribed by the basis. The
basis also generally requires specific weight functions for orthonormality. For plane
waves the grid spacing is merely regular intervals and the weight function is 1. As
such, the definitive FFTW library [191] computes

ck(t) = af

N−1∑
n=0

ψn(t)e2πink/N (B.3)

= af

N−1∑
n=0

ψn(t)e2πinxk/L (B.4)

1A more general analysis for arbitrary bases is available in Appendix B of Ref [59].
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for the forward transform and

ψk(t) = ab

N−1∑
n=0

cn(t)e−2πink/N (B.5)

= ab

N−1∑
n=0

cn(t)e−2πinxk/L (B.6)

for the backward transform, where ψk(t) = ψ(xk, t) and xk = kL/N. Note that the
norm-preserving rescaling prefactors af and ab are not contained within the FFTW
algorithms and must be applied manually. This is because in the absence of an exact
physical interpretation the transform normalisation is somewhat arbitrary. Applying
both the forward and backward transforms effectively multiplies the wave function
by N and so we require that afab = 1/N

This choice of grid replaces the conversion from a discrete spatial basis to a trun-
cated momentum basis by multiplication by the matrix A which satisfies

c(t) = Aψ(t). (B.7)

Similarly, the reverse transform matrix B satisfies

ψ(t) = Bc(t). (B.8)

Comparing equations Eqs. (B.7) and (B.8) with Eqs. (B.4) and (B.6), we see that
the matrix elements are

A jk = afe2πi jxk/L (B.9)

B jk = abe−2πi jxk/L. (B.10)

Considering

(AB) jk = afab

N−1∑
n=0

e2πi( j−k)xn/L (B.11)

= δ jk, (B.12)

where the last step can be determined from the orthogonality of the plane wave
basis, we see that B = A−1.
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We now consider the dynamical equation (the GPE)

i
∂ψ

∂t
=

{
−

1
2
∂2

∂x2 + qδ(x − x0) − |ψ|2
}
ψ (B.13)

describing an untrapped system with a δ-function barrier at x0. This equation can
be split into linear and nonlinear operators

i
∂ψ

∂t
= {R(x) + N[ψ(x, t)]}ψ (B.14)

where the operators are

R(x) = −
1
2
∂2

∂x2 + qδ(x − x0) (B.15)

N[ψ(x, t)] = −|ψ|2. (B.16)

We can write the approximate solution to this equation in the discrete basis as

ψ(t + δt) = e−iN[ψ(t)]δt/2e−iRδte−iN[ψ(t)]δt/2ψ(t) (B.17)

where R and N are now matrix operators. Splitting the nonlinear operation in this
way incorporates some of the nonlinearity into the linear operation and retains accu-
racy down to the order of δt3 [192]. Note that the terms in the exponential operators
are held constant over the time-step.

The benefit of the plane wave basis comes in the calculation of the matrix elements
of the linear operator R. The numerical calculation of derivative terms is often
somewhat involved, but the application of Fourier transforms via the FFTW library
simplifies this process drastically. Resolving R into the plane wave basis we obtain
the linear Fourier space matrix operator R which has matrix elements

R jk =
1
L

∫ L/2

−L/2
e2πi jx/LR(x)e−2πikx/Ldx

=
1
L

∫ L/2

−L/2
e2πi jx/L

[
−

1
2
∂2

∂x2 + qδ(x − c0)
]

e−2πikx/Ldx

=
1

2L

(
2πk
L

)2 ∫ L/2

−L/2
e2πi( j−k)x/Ldx +

q
L

e2πi( j−k)x0/L

=
δ jk

2

(
2πk
L

)2

+
q
L

e2πi( j−k)x0/L (B.18)

These matrix elements are far simpler to calculate than the alternative derivative
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calculations in the spatial basis, and can be utilised between forward and backward
Fourier transforms, giving

R = A−1RA (B.19)

Finally, the exponentiation of our operators is achieved via diagonalisation. N is
already diagonal, but R is not due to the presence of the δ-function barrier. However,
by re-writing R as L = M−1DM, where D is diagonal, we can write

e−iRδt = A−1M−1e−iDδtMA (B.20)

where the functional operation on the diagonal matrix is defined as

f [D] j j = f [D j j] (B.21)

and all off-diagonal elements are zero. We also point out that in the code the mul-
tiplications by A and A−1 are replaced by forward and backward executions of the
FFTW routine.

The diagonalisation of R can be somewhat computationally intensive, and generally
requires the use of advanced linear algebra packages. For the Hermitian matrix L

this was accomplished by the “ZHEEV” subroutine found in the LAPACK library.
Happily, this diagonalisation must only be carried out once (and the subsequent
exponential operator determined) before being used at every time-step in the same
form.
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