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The fear of the LORD is the beginning of wisdom,

and knowledge of the Holy One is understanding.

Proverbs 9:10
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(b) at the excitation frequency and comparison with theoretical iso-frequency
dispersion contours (solid black lines). The dashed black line outlines the
First Brillouin Zone of the reciprocal space for the lattice [3][106]. . . . . . 128

6.9 Direction variations of group velocity at the excitation frequency fe =
16.74 kHz: S-mode: solid blue line, P-mode: dashed red line. . . . . . . . . 129

6.10 The fabricated lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.11 The simulated (a-c), and experimental lattice (d-f) at 3 instances in time
after the impactor contact at 1.2 m/s . . . . . . . . . . . . . . . . . . . . . 136

6.12 The simulated (a-c), and experimental lattice (d-f) at 3 instances in time
after the impactor contact at 1.7 m/s . . . . . . . . . . . . . . . . . . . . . 137

6.13 The simulated (a-c), and experimental lattice (d-f) at 3 instances in time
after the impactor contact at 2.3 m/s . . . . . . . . . . . . . . . . . . . . . 138

6.14 Direct comparison of experimental (points) and simulated (curves) impactor
position for 1.2 m/s (black circles and solid curve, 1.7 m/s (red squares and
dashed curve), and 2.3 m/s (blue triangles and dot-dashed curve)) . . . . . . 139

xvi



SUMMARY

This thesis presents the investigation of lattice structures for the purpose of providing

novel pathways for wave and mechanical property control. Structures of the type studied

are often called “metamaterials” or “metastructures” as they behave in a way that is beyond

their constituents. Magneto-elastic lattices are the primary focus, since they are generally

multistable, allowing one structure to assume various geometric configurations, which can

correspond to various functional modes, providing the possibility for adaptive structures.

Periodic structures are considered for their unique wave properties, as well as for ease of

design and application, including: 2D hexagonal, re-entrant, and kagome lattices.

A fundamental step to the analysis of reconfigurable structures is the identification of

possible stable configurations. By minimizing energy a variety of configurations are iden-

tified for further study. A method for transition from one stable configuration to another

is required to make use of the reconfiguration. So, dynamic reconfiguration is investi-

gated as a fast and versatile method for switching configurations via transient numerical

simulations. Bloch wave analysis is applied to models of magneto-elastic lattices to in-

vestigate the possible wave propagation changes. The introduction of anisotropic wave

propagation, opening of bandgaps, and changes in wave speeds are observed as a result of

geometric lattice reconfiguration. Reconfiguration also drastically effects static properties.

The equivalent continuum properties of magneto-elastic lattice structures are calculated us-

ing a homogenization methodology. Reconfiguration from hexagonal to re-entrant lattices

produces over an order of magnitude change in stiffness while converting the lattice from

having isotropic to orthotropic properties.

While magneto-elastic structures are the primary focus, this thesis also addresses two

other topics relevant to the development of periodic structures that seek to control wave

energy. The first, pursuing novel wave control, is topologically protected edge modes, or

edge states. Building by analogy from quantum mechanics, elastic mechanical structures

xvii



are designed that carry special waves modes, which are termed helical edge states, in only

one direction along a lattice boundary. A hexagonal and Lieb lattice are investigated as

examples of a methodology developed which defines a family of mechanical lattices that

can exhibit such wave modes. Analytical approaches predict the phenomena and numerical

simulations verify the predictions. Another topic is the development of a methodology

for measuring in-plane waves in lattice structures, which is needed for the experimental

validation of the theoretical wave propagation results found in this thesis. In-plane waves

modes are very common in metastructures research, but there is presently no easy way

to measure such waves. As a new methodology, digital image correlation is combined

with high-speed photography. The transient propagation of in-plane waves in an elastic

hexagonal honeycomb lattice is measured to develop the method, and comparisons are

made to finite element predictions to show the efficacy.
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CHAPTER 1

INTRODUCTION

1.1 Chapter overview

The goal of this thesis is to investigate the properties of lattice structures for the purpose

of providing novel avenues for wave and mechanical property control. Structures of the

type studied are often called “metamaterials” or “metastructures.” Magneto-elastic lattices

are the primary focus, in order to make use of their multistability for property control, and

both static and dynamic properties are considered. This chapter first overviews the field

of metastructures as it relates to this thesis. Next, the motivations for this thesis and its

objectives are discussed. Finally the scientific contributions of this work are listed and the

organization of the document is summarized.

1.2 Reconfigurable metastructures

1.2.1 Metastructures

In the endeavor to produce structures that are more useful, effort has been directed towards

periodic structures, in which the architecture of a small-scale local structure, i.e. a unit

cell, can be designed to control the properties of a global system. Such structures are com-

prised of repeating patterns and are attractive, in part, because the chosen geometry can

often give the global structure properties that are much different and more desirable than

the material from which the structure is made. Furthermore, studying only a unit cell is

often sufficient to characterize a large system, which aids in the modeling and design pro-

cess. Two of the most prominent positive attributes of periodic structures is their ability to

be extremely stiff for their weight, or to exhibit novel wave propagation properties [1, 2,

3, 4, 5, 6]. Acoustic and phononic metamaterials or metastructures are periodic structures

1



used to control mechanical waves. The architecture of the unit cell controls the flow of

wave energy, affecting the speed and direction at which energy flows as a function of its

wave number and frequency. A common result of these dispersive properties of metastruc-

tures is the “wave beaming” phenomenon [7]. Bandgaps can also occur that prevent waves

at certain frequencies from propagating through the system. The aforesaid wave proper-

ties are highly dependent on lattice geometry as well as stiffness and mass distributions.

Changing the geometry and stiffness/mass distribution within a lattice therefore provides

the means of tailoring and controlling wave motion and the subsequent onset of vibrations.

Wave propagation control finds application in methods for isolation of vibrations in rotat-

ing machinery [8], for the protection of important locations (such as the brain) from waves

resulting from blasts and impacts through their steering and redirection [9], for the harvest-

ing of mechanical energy and its conversion for power generation by forming wave lenses

and reflectors [10], or for the processing of acoustic wave signals [11].

1.2.2 Dynamic reconfiguration

When the units comprising a structure are bistable or multistable, the structure may re-

configure into geometries with different internal configurations, and/or global shape. Each

unique configuration is a static equilibrium, i.e. a local potential energy minimum. Magneto-

elastic systems generally have the ability to be multistable [12, 13], which makes them

good candidates for the design of periodic lattices with geometries that can be toggled [14].

Changes in structural properties due to static or quasi-static reconfiguration have already

been investigated, for example, in [15, 16, 17, 18, 19]. However, in order to access a richer

set of final configurations and to find paths for faster transitions, dynamic lattice reconfig-

urations should be considered. The specifics of the dynamic reconfiguration can determine

how certain regions of a structure reconfigure, allowing local property control and grading.

A fast rate of reconfiguration could be valuable in applications intended for protection from

short events and shocks that can damage organs, electronics, or other delicate objects. The
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reconfiguration itself can even be a way of redirecting, dissipating, and storing incoming

energy without damaging the protective structure, similar to the example given by [20].

One dimensional (1D) systems composed of bistable interactions have received atten-

tion for of their dynamic reconfiguration, including the study of “transition front” propa-

gation, or the rate at which reconfiguration occurs [21, 22, 23, 24, 25]. The energy profile

of bistable interactions, i.e. how the interaction potential varies with the distance between

interacting entities, provides important insight into the paths leading to changes and the ini-

tial and final static configurations. The ability to shape such profiles could be the primary

means by which the dynamic reconfiguration of a structure is designed. Of importance is

the identification of energy minima which determine equilibrium configurations, and the

estimated amount of energy required for reconfiguration. While the previously mentioned

references focus on more general systems, dynamic reconfiguration has also been studied

specifically to understand martensitic transformation in shape memory alloys, which in-

cludes both 1D [26, 27] and 2D [28, 29] studies. In contrast to 1D dynamic reconfiguration

investigations, the study of 2D systems is still in need of much attention.

1.2.3 Wave propagation in reconfigurable lattices

The dependence of wave motion in a lattice on unit cell geometry has been extensively

investigated. For example, differences of in-plane wave propagation between hexagonal

and re-entrant lattices are investigated in [7, 30]. The effect on lattice undulations on wave

propagations are studied in [31]. Similarly, the volume fraction and skewness of rhombic

grid lattices are shown to greatly affect wave speed and directionality in [32]. As structures

transition from near-continuum to beam lattices, wave beaming is a prominent phenom-

ena that arises. Furthermore, increasing the skewness of the lattice affects the direction in

which beaming occurs. Similarly, rotation of lattice components can be exploited to tune

bandgaps in a reversible way [17, 33, 34, 19]. Specifically, in [17] and [19] the configura-

tion of a highly deformable 2D structure changes as it buckles under a compressive load.
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Periodic 2D systems of high-density rectangular inclusions in a fluid are investigated in

[33, 34], where the rotation of the high-density inclusions is the mechanism used to tune

bandgaps.

All of the aforementioned studies demonstrate that large changes in wave propagation

can be induced by changing lattice geometry. Hence, the concept of adapting the mechan-

ical wave properties of a structure through unit cell geometric reconfiguration is of inter-

est [17, 33, 34], as it leads to the design of components with adaptive and programmable

dynamic behavior. In this context, lattices featuring multiple stable equilibrium configura-

tions, which are intrinsic to the structure, are of particular interest. Structures exhibiting

more than one intrinsic stable configuration allow switching between operational modes

associated with different dispersion, bandgap, and beaming properties, i.e. wave propaga-

tion properties, without the need for the continued application of an external control action.

Such reconfiguration may allow, for example, a filter that can switch between two opera-

tional frequencies, or one structure that can turn a function on and off. Previous studies of

relevance utilizing reconfiguration to control waves include the work of [11], which pro-

vides a good example of how changes in elastic moduli of magnetostrictive materials can

be used to affect wave motion. Another tunable magneto-elastic system consists of mag-

netostrictive particles immersed in an elastic medium, as investigated in [35]. Analogous

configuration and stiffness changes are applied in reconfigurable electromagnetic wave fil-

ters, as illustrated in [36, 37]. These devices reconfigure their circuit geometry through the

activation of electrical switches, allowing a change in the frequencies that can propagate.

Though the aforementioned studies utilized reconfiguration to modify wave propagation,

the configurations are not stable without a constant input of some kind.

In the subset of magneto-elastic lattices the kagome lattice (KL) is considered as a spe-

cific example because it is a very versatile 2D structure regarding shape change [38], which

is brought about by reorientation of its components. The 2D KL has already received at-

tention because of its unique mechanical properties such as periodic collapse modes and
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“isostatic modes” or “floppy modes” of wave propagation [39, 40, 41] which have low

strain energy, or no strain energy in the idealized case. Furthermore, 3D analogs of the

kagome pattern have gained interest for shape control in structures [42, 43, 44, 45]. Wave

propagation has been studied in KLs for cases involving next-nearest-neighbor interac-

tions [40], lattices including randomly added or removed bonds [46, 47], a 3D kagome

analog [48], and even cases with magneto-electro-elastic interactions in solid-state struc-

tures [49]. However, the shape change capabilities of the KL have not been coupled with

nonlinearities from magnetic interactions to produce engineered configuration changing

structures with adaptable wave propagation properties.

1.2.4 Homogenized properties of lattice structures

Oftentimes, it is convenient to investigate periodic metamaterial systems as equivalent con-

tinua through homogenization. To show the properties of magneto-elastic lattices on a

larger scale their equivalent continuum properties are calculated. The process of homog-

enization has been investigated for discrete periodic structures by, for example [50, 51,

52, 53]. The approach by [52, 53] is focused mainly on atomistic and molecular crystals.

The approach found in [51] provides a generalized method that was extended in [50] to

be applied to arbitrarily complex elastic structures. Work that appears very similar at first

to the homogenization of magneto-elastic lattices has been published, [15], in which finite

magneto-elastic structures show that their Poisson’s ratio can be tuned with the application

of a non-uniform external magnetic field and through changes in constituent dimensions.

The magnetic dipole moments in the 2D structures discussed therein are oriented in the

plane of the system and the changes in Poisson’s ratio are a result of the re-orientation of

the system’s rigid entities, as described in [54], under the constant application of the exter-

nal magnetic field. In contrast to the work in [15], the structures discussed herein contain

magnetic dipole moments perpendicular to the lattice plane, and the constant application

of a magnetic field is not required.
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1.3 Topologically protected boundary modes

Topologically protected boundary modes (TPBM) are a recent development in physics

which opens novel approaches in mechanical systems. Starting from the work of Hal-

dane [55], who predicted the possibility of electronic edge states, topological edge modes

in quantum systems have been the subject of extensive research due to their immense poten-

tial. Their existence has since been demonstrated experimentally [56] and they are called

“chiral edge modes.” Chiral edge modes are based on breaking time reversal symmetry to

mimic the quantum hall effect and are analogous to “chiral” fermions. The bulk bands

are characterized by a topological invariant called the Chern number. Recently, Kane and

Mele [57, 58] discovered topological modes in systems with intrinsic spin orbit (ISO) cou-

pling, which exhibit the quantum spin Hall effect. These modes are termed “helical edge

modes.” This system does not require breaking of time reversal symmetry, is character-

ized by the Z2 topological invariant, and has also been demonstrated experimentally [59].

Smith and coworkers [60, 61] studied the effect of next nearest neighbor interactions on a

number of lattices and demonstrated competition between the helical and chiral edge states

when both ISO coupling and time reversal symmetry breaking occur. These quantum me-

chanical systems have been extended to other areas of physics as well. For example, Hal-

dane and Raghu [62] demonstrated boundary modes in electromagnetic systems following

Maxwell’s relations, which have subsequently been widely studied in the context of pho-

tonic systems [63, 64].

In recent years, numerous acoustic and elastic analogues of quantum mechanical sys-

tems have also been developed. Prodan and Prodan [65] demonstrated edge modes in

biological structures, where time reversal symmetry is broken by Lorentz forces on ions

due to the presence of weak magnetic fields. Zhang et al. [66] developed a systematic way

to analyze eigenvalue problems which break time reversal symmetry by gyroscopic forces.

Extending this line of work, Bertoldi and coworkers [67] demonstrated chiral edge modes
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in a hexagonal lattice with the Coriolis forces obtained from gyroscopes which rotate at

the same frequency as the excitation frequency. Another example is the recent work of

Kariyado and Hatsugai [68], where Coriolis forces are generated by spinning the whole

lattice. All these designs involve components rotating at high frequencies, or excitation of

rotating masses. There have also been a few mechanical boundary modes, based on mod-

ulating stiffness in time. Examples include the works of Khanikaev and coworkers [69,

70], Yang et al. [71], Deymier and coworkers [72] and Carusotto et al. [73]. We remark

here that all the above devices require energy input for operation and are based on active

components. This need to provide energy is an obvious drawback for practical applications.

On the other hand, a few works have focused on mechanical analogues of the helical

edge states that arise from ISO coupling and they typically require passive components.

Süsstrunk and Huber [74] demonstrated these edge states experimentally in a square lat-

tice network of double pendulums, connected by a complex network of springs and levers.

Recently, Chan and coworkers [75] numerically demonstrated edge modes in an acoustic

system, comprised of stacked hexagonal lattices and tubes interconnecting the layers in a

chiral arrangement. Deymier and coworkers [76] demonstrated non-conventional topology

of the band structure in 1D systems supporting rotational waves. Khanikaev and cowork-

ers [77] numerically demonstrated helical edge modes in perforated thin plates by coupling

the symmetric and antisymmetric Lamb wave modes. The edge modes occur at specially

connected interfaces between two plates and it is not clear how to extend the framework

to incorporate general building blocks. Indeed, there presently exists a paucity of works

demonstrating a simple and systematic way to extend these concepts and build new lattices.

Previous topics discuss reconfiguration and magnetization as a means for controlling

structure properties. The work in this thesis on TPBMs, though not including magnets

or reconfiguration, is expected to benefit from the future inclusion of magnets due to their

asymmetric linearized torsional stiffnesses [78], which might be used to break time reversal

symmetry or induce effective spin-orbital coupling. Furthermore, systems exhibiting topo-
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logically protected edge states can have changes in one-way wave propagation direction

due to geometric reconfiguration [79]. Floppy TPBMs [80] are also a promising avenue

for organized structural reconfiguration. Hence, the extension of the work on elastic struc-

tures herein is expected to produce useful reconfigurable magneto-elastic lattices exhibiting

novel wave control possibilities.

1.4 Wave measurement in 2D lattices

With any new theoretical modelling, it is valuable to have direct validation of the theoret-

ical models used. Therefore, experiments measuring the transient propagation of waves

through a magneto-elastic lattice in various configurations are valuable for this research.

However, methods suitable for measuring the transient propagation of waves are in short

supply. Indeed, most of the work on wave propagation in lattices has been conducted the-

oretically, with few works focusing on experimental validation of the analyzed properties.

Among those which do, the great majority study vibration isolation due to band gaps [81,

82], thus analyzing the steady-state behavior of the system. Transient phenomena, which

showcase wave directionality, negative refraction index, and topologically protected edge

modes are inherently more difficult to experimentally investigate, requiring full-field mea-

surement of in-plane waves, and they possibly represent the most interesting features of

structural lattices. Examples [83, 84] of such experimental investigations are performed

by employing a 3D scanning laser Doppler vibrometer (3D SLDV), which has limitations

in terms of cost, data acquisition time and applicability to lattice structures with slender

elements. Therefore, an alternative approach able to overcome such limitations would be

beneficial in aiding the validation process of the properties of magneto-elastic , and other

structural lattices.
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1.5 Motivations

Reconfigurable structures, which remain passively in their operating state once placed

there, could prove valuable in applications requiring a operating state to be held for long

periods of time and especially in those in which energy is scarce. Furthermore, their passiv-

ity could simplify the practical integration into an application. Though it is well understood

that geometric changes have a significant effect on wave propagation in lattice structures,

no structures have been recorded that allow for reconfiguration between multiple stable

configurations that do not require constant input to maintain stability. Even the versa-

tile kagome lattice has not been applied to produce configuration changing structures with

adaptable wave propagation properties. In order to use reconfigurable lattices the means of

reconfiguration must be understood, and certainly up to 3 spatial dimensions to be generally

applicable. Though 1D dynamic reconfiguration already has a strong base of literature, the

study of 2D systems is still in need of much attention. In order to realize reconfigurable de-

vices as suggested previously, deeper understanding of reconfiguration dynamics in higher

dimensions is required. Furthermore, if magneto-elastic structures are to be used as re-

configurable structures, quantification of the effect of lattice reconfigurations on the static

properties of the lattice would aid in the application of such lattices. Currently, there is no

methodology that can quantify the static properties of magneto-elastic lattices as desired.

The methodology of [50] is well suited for periodic elastic lattices, but is not presented for

use in systems exhibiting non-nearest neighbor interactions, such as magnetic interactions,

and therefore requires extension for application to magneto-elastic lattices.

When in pursuit of novel wave control approaches, the notion of confining mechanical

waves to one direction of propagation on a lattice boundary is very powerful. However,

there are an insufficient number of works demonstrating a simple and systematic way to

extend the concepts predicting topologically protected wave modes to arbitrary mechanical

lattices.
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Ideally, there would be a method to validate the in-plane wave propagation results pre-

dicted for magneto-elastic lattices experimentally. Looking also to the further development

of metastructures – magneto-elastic , reconfigurable, or otherwise – waves with in-plane

polarizations are commonplace. Yet, the only current method for measuring the transient

propagation of an in-plane wave in an entire lattice is a 3D scanning laser Doppler vibrom-

eter. An alternative approach able to overcome limitations of cost, data acquisition time,

and applicability to lattices of slender elements would be beneficial in aiding the validation

process of the properties of structural lattices, and the application of such lattices in the

future.

1.6 Objectives

With the aforementioned motivations in mind, in order to provide new and useful work, the

objectives of this research are to:

1. identify and evaluate new structures, which have adaptable wave properties,

2. identify practical methods for adapting wave properties,

3. calculate the effect of wave property adaptation on static mechanical properties,

4. improve the tools available for experimentally investigating wave propagation in lat-

tice structures, and

5. increase the understanding of and practicality of mechanical topological insulators.

1.7 Contributions

To pursue the objectives listed in Section 1.6 the following contributions are made:

1. Introduction of magneto-elastic structures for adaptation of wave properties through

geometric reconfiguration. Multiple stable configurations allow adaptation between
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different stable states, which have different wave propagation properties. Both pe-

riodic configurations and arbitrary finite configurations are possible, allowing a rich

set of possibilities.

2. Introduction of dynamic reconfiguration as a means for adapting wave properties of

magneto-elastic structures. Controlled dynamic forcing leads to transient dynamics

that determine a final structural configuration, as does tailoring the unit cell energy

profile. By determining the final configuration, the wave properties of the structure

are controlled.

3. Quantification of the effect of magneto-elastic structural reconfiguration on equiva-

lent continuum properties. A methodology is extended to fit magneto-elastic lattices,

showing that the equivalent orthotropic mechanical properties of magneto-elastic lat-

tices can change by over an order of magnitude due to reconfiguration alone.

4. Identification of new mechanical topological insulators. A new mechanical lattices

are added to a presently short list of lattices which can exhibit one-way wave propa-

gation along their boundaries.

5. Development of a new technique for measuring in-plane waves in lattice structures.

High-speed photography and digital image correlation (DIC) are combined with ge-

ometry recognizing algorithms to measure the time history of the in-plane displace-

ments of lattice nodes. As the method is new, it is applied to the well studied hexag-

onal lattice.

1.8 Thesis organization

This thesis is organized as follows. Following this introduction, lattice reconfiguration is

discussed in Chapter 2, which also contains the description of the model used for magneto-

elastic lattices. Wave propagation analyses, and the effect of reconfiguration on wave prop-

agation are discussed in Chapter 3. Homogenized properties of magneto-elastic structures
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and their variation with reconfigurations are discussed in Chapter 4. The development of

topologically protected boundary modes in a set of mechanical structures is discussed in

Chapter 5. A new methodology for the experimental measurement of in-plane waves in

metastructures and an experiment conducted to validate the dynamic numerical simulation

code is presented in Chapter 6. Finally, conclusions are stated in Chapter 7.
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CHAPTER 2

RECONFIGURABLE MAGNETO-ELASTIC STRUCTURES

2.1 Chapter overview

This chapter introduces magneto-elastic structures as a platform for demonstrating systems

with multiple stable configurations. It also investigates dynamic reconfiguration between

different stable states as a practical means of imposing a global or local geometric change.

Tailoring of the unit cell energy profile during reconfiguration is seen to have a substantial

effect on the final reconfigured result, determining whether a few or all cells in a lattice

reconfigure due to the same forcing. First, the theoretical background of the magneto-

elastic structure modeling is described, which uses a lumped parameter model, and the

procedure for determining stable eqilibria is presented. Then unit cell energy calculations

and numerical simulations are conducted to investigate dynamic transitions.

2.2 Lattice model

Magneto-elastic lattices are modeled as systems of permanent magnetic particles with

translational and rotational degrees of freedom (DOFs). Axial and torsional springs con-

nect the particles to form an elastic structure. The particles have a finite radius rp, and

feature both translational and rotational inertias. All particles are identical in terms of their

inertial and magnetic properties. Similarly, all springs connecting the particles are massless

and feature the same axial and torsional stiffness. The interactions between particles are

governed by: (1) magnetic interactions, (2) elastic interactions through axial and torsional

springs, and (3) axial and torsional viscous damping interactions. The energy functionals

associated with the interactions above and the governing equations are described in the

following subsections.
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(a) (b)

Figure 2.1: Schematic of mechanical connectivity between two adjacent particles (a), and
particle degrees of freedom (b).

2.2.1 Energy functionals

The behavior of the generic i-th particle of a 2D lattice is described by the position of its

center of mass ri = xii + yij, and by a rotation angle θi. Accordingly, the vector of the

generalized coordinates associated with the i-th particle is given by:

qi = [xi, yi, θi]
T . (2.1)

and the kinetic energy of each particle is expressed as:

Ti =
1

2
m(ẋ2i + ẏ2i ) +

1

2
Iθ̇2i , (2.2)

where I = 1
2
mr2p.
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Mechanical interactions

The strain energy associated with the elastic interactions is defined in terms of axial and

torsional contributions. A phenomenological, simplified model is formulated whereby the

axial spring is characterized by a bilinear force-displacement relation, which is chosen as a

simplified model for a contact condition between two particles (see Fig. 2.2) . The contact

stiffness is described as proportional to the stiffness ka through a parameter α > 1. A

contact distance rc = 2rp defines the contact conditions. When the contact conditions are

satisfied the axial stiffness of the bilinear spring is αka. The strain energy associated with

the mechanical components connecting particles i and j is therefore given by:

U
(e)
ij =

1

2
ka(rij − r0)2 +

1

2
(α− 1)ka (rc − rij)2H(rc − rij)

+
1

2
kτ (θi − θb)2 +

1

2
kτ (θj − θb)2

(2.3)

where kτ denotes the torsional spring constant, rij = rj − ri, r0 defines the inter-particle

distance when the axial springs are undeformed, and H is the Heaviside unit step function.

Magnetic interactions

The magnetic interaction force is described by modeling the permanent magnets as mag-

netically rigid dipole moments [85, 86]. Furthermore, all magnetic dipole moments are

considered perpendicular to the direction of motion. The force between two dipoles is

given by [87].

f
(m)
ij = −µ0

4π
∇
(
mi ·mj

r3ij
− 3

(mi · rij)(mj · rij)
r5ij

)
(2.4)

In the 1D and 2D lattices considered, the motion of the masses is constrained to the di-

rection i and to the lattice plane i, j respectively. This simplifies the expression of the
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(a) (b)

Figure 2.2: Schematic of bilinear spring interaction model as a simplified description of
contact (a), and corresponding force-displacement relation (b).

magnetic interaction force as follows:

f
(m)
ij =

3µ0

4π

mimj

r4ij
n =

ψ(m)

r4ij
n (2.5)

where µ0 is the permeability of free space,mi andmj are the dipole moments of particles

i and j, n = rij/rij is a unit vector and ψ(m) = mimj3µ0/(4π) contains all the magnetic

constants. Evaluating the work of the magnetic force (Eq. (2.5)) from a reference state at

rij →∞ to the current state rij defines a magnetic potential energy function U (m)
ij .

U
(m)
ij = −

∫ rij

∞

ψ(m)

r4ij
n · drij =

1

3

ψ(m)

r3ij
(2.6)

The magnetic force described by Eq. (2.5) in theory acts for r →∞. This implies that

the lattice is, in general, characterized by non-nearest neighbor interactions that extend to

infinity. However, the magnitude of the magnetic force rapidly decays with inter-particle

distance, which for practical purposes allows the introduction of a radius of influence r∞,
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beyond which magnetic interactions are neglected. As many as 3,000 particles may be

included in a typical analysis of a magnetized structure. The radius of influence is defined

through a tolerable error in energy calculations ε(m)
e , i.e. the error that is introduced by

omitting a single magnetic particle at the distance r∞, given by:

ε(m)
e =

1

3
ψ(m) 1

r3∞
(2.7)

which can be solved for r∞ to give:

r∞ =

(
ψ(m)

3ε
(m)
e

)1/3

(2.8)

The value of r∞ defines the range of interactions to be considered, and therefore also

dictates the number of particles interacting magnetically.

Dissipative Interactions

Dissipation is introduced in the model in the form of viscous forces acting in conjunc-

tion with the spring generalized forces. The work of the dissipative generalized forces is

expressed as:

W
(d)
ij = −

∫
f

(d)
ij · drij −

∫
φ
(d)
i dθi −

∫
φ
(d)
j dθj (2.9)

where:

f
(d)
ij =

 caṙijn rij > rc

βcaṙijn rij ≤ rc

(2.10)

where ca is the damping coefficient and β > 1 defines the increase in damping coefficient

during contact between particles. Also, in Eq. (2.9):

φ
(d)
i = −cτ (θ̇i − θ̇b). (2.11)

where cτ is the damping coefficient associated with the particles’ relative rotation.
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2.2.2 Particle equations of motion

The equation of motion for a single particle can be derived by considering the associated

Lagrangian Li = Ti − Ui and the sum of the work of the external forces Wi. Here, Ui and

Wi denote the contributions to the potential energy and work corresponding to the mechan-

ical and magnetic connections with the neighboring particles affected by such interactions.

Specifically, Ui can be expressed as:

Ui =
J∑
j

U e
ij +

M∑
m

Um
im

where the index j identifies the particles that are mechanically connected to particle i, and

the contribution to the energy of the magnetic interactions includes the M magnetically

connected particles, here denoted by the index m. The coordination number of the lattice

is J , which in the considered configurations is equal to 2 for the 1D lattice, and equal to 3

for the 2D hexagonal and re-entrant lattices. Also,

Wi =
J∑
j

W
(d)
ij

Application of Lagrange equations leads to the following equation of motion in terms

of the generalized coordinates qi ∈ R3×1 of each particle:

Miq̈i +
J∑
j

[Cj(qj)q̇j +Kj(qj)qj] = f
(m)
i (qi, ..., qm, ..., qM) (2.12)

where Mi,Cj(qj),Kj(qj) ∈ R3×3 are mass, damping and equivalent stiffness matrices

that describe inertial, dissipative and mechanical interactions of the particles with its neigh-

bors, while, f (m)
i ∈ R3×1 is the generalized force vector describing the magnetic interac-

tions with the M magnetically connected particles.
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2.2.3 Lattice description and unit cell energy

The considered lattices are characterized by periodic distributions of masses along the i

direction in the case of the 1D lattice, and over the plane i, j for the 2D lattice. Their

positions are described through a set of lattice vectors. For the 1D lattice, the position

of the n − th particle can be expressed as ri,n = xi,ni = (xi + nd)i, where xi defines

the particle position within a reference unit cell, while d denotes the spatial periodicity of

the lattice. In the 2D lattice case, the generic particle is identified by two indexes and its

position is expressed as ri,nm = ri+nd1 +md2, where d1,d2 are the lattice vectors, while

ri is the position of the considered particle in the reference cell (Fig. 2.3).

The description of the behavior of the lattice relies on the identification of a unit cell,

and on the study of its equation of motion including all interactions with other cells within

the lattice. In this work, a unit cell is defined as the smallest structure which can be repeated

to describe the mass, stiffness, damping, and magnetic characteristics of the assembly.

The distribution of magnetizations within the lattice offers the opportunity to produce a

large number of periodic configurations, or magnetic domains, in addition to the geometric

connectivity of the particles. In the present study, we limit our attention to the case where

nearest neighbor magnets are all in attraction. The considered unit cells for 1D and 2D

lattices are shown in Fig. 2.4. Unit cells describing kagome lattices are also considered,

but the study of kagome lattices and additional detail describing the modelling of them are

discussed in the next chapter. Accordingly, both 1D and 2D lattices feature unit cells that

include two particles with opposite magnetizations.

The total energy of the unit cell is given by the sum of the potential energy U and kinetic

energy T and the work of the external forces W :

E =
E∑
e=1

Ue + Te +We (2.13)

where e = 1, ..., E identifies the particles belonging to a unit cell. The magnetic interac-
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tions can be considered as external forces or, since they are magnetically rigid, they can be

included in Ue. As the lattice is periodic, this energy functional is equal for all unit cells and

its expression does not need to keep track of a specific unit cell identifier, which simplifies

notation. The generalized coordinates for the unit cell are therefore:

q = [qe, ...., qE]T . (2.14)

As the lattice is periodic, this energy functional is equal for all units and its expression

does not need to keep track of a specific unit cell identifier, which simplifies notation.

The formulation of the unit cell governing equations describing the behavior of the cell

and its interactions with connected units is a straightforward extension of the equation of

motion of a single particle (Eq. (2.12)). The resulting set of governing equations describing

the behavior of the cell and its interactions with connected units is expressed as follows:

Mq̈ +
1∑

n=−1

1∑
m=−1

[Cn,m(qn,m)q̇n,m +Kn,m(qn,m)qn,m] = f (m)(q−N,−M , ..., qN,M)

(2.15)

where M ,Cn,m,Kn,m ∈ R3E×3E are unit cell level matrices, and q,f (m) ∈ R3E×1 are

unit cell level vectors of generalized coordinates and forces. The considered equations can

be extended to the entire lattice through standard assembly procedures so that they may be

used for dynamic simulations predicting the dynamic behavior of finite lattices.

2.3 Identification of stable equilibria

The energy functional in Eq. (2.13), restricted to the time constant terms, is employed for

the identification of the periodic equilibrium configurations and for the analysis of their

stability which is discussed in this section. The stable periodic equilibrium configurations

are identified through an optimization search algorithm that seeks for local energy min-

ima [88]. The considered energy functional includes contributions of all elastic and mag-
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Figure 2.3: Schematic of 2D periodic lattice and index notation for the identification of a
particle and of a unit cell.

netic interactions, which extend beyond the nearest neighbors. The cell interacting with a

reference unit are denoted with the index n = −N, ..., N in 1D lattices, and the index pair

n = −N, ..., N ;m = −M, ...,M in 2D lattices. The case of N,M = 1 describe the lim-

iting case where only nearest neighbor cell interactions are included in the energy balance

and contribute to the equilibrium configuration.

The considered lattices include bilinear springs and magnetic interactions, which lead

to the potential for multiple periodic patterns to exist. Periodicity is associated with the

arrangement of masses and the chosen magnetization patterns. Moreover, the elongation

of the springs allows for distinct inter-mass distances at equilibrium. As a result, unit cells

with different number of masses can define different periodic configurations.

As indicated before, we limit this study to the case were adjacent magnets are in at-

traction. Even with this assumption, several periodic unit cells can be identified depending

on the spatial distribution of the stable inter-mass distances within the lattice. For exam-

ple, Fig. 2.5(a-c) illustrates examples of periodic equilibrium configurations for 1D lattices

corresponding to unit cells consisting of two particles, where the unit cells are defined by al-

ternating magnetizations and by equilibrium configurations corresponding to all springs at
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rest in their most elongated configurations (a), by masses in contact alternating with masses

separated by spring at rest (b), and by all masses in contact (c). Unit cells defined by 3 and

4 particles as a result of different spring elongations are shown in Fig. 2.5(d-g), while two-

dimensional configurations are illustrated in Fig. 2.6. In order to reduce the number of

possible combinations, and operate with a manageable set configurations, an additional as-

sumption is made that only configurations consisting of 2 particles are considered. This is

enforced by imposing a 2-particle periodicity as a constraint to the optimization problem

defining the equilibrium conditions. This is practically implemented by imposing periodic

conditions prior to the minimization of the static energy functional, i.e. by letting:

qn,m = q

with n = −N, ..., N ;m = −M, ...,M , and where for simplicity q = q0,0 denotes the

degrees of freedom of the reference unit. This implies that the unknowns of the nonlinear

algebraic problem seeking for a minimum of the energy functional are: the unit cell degrees

of freedom q including the coordinates x, y of the particles within a unit cell and their

rotation θ, and the lattice vectors d1,d2 in the case of 2D lattices. The resulting nonlinear

system of equations is expressed as:

min
u

E(u) (2.16)

where u = [q,d1,d2]. The problem in Eq. (2.16) is solved through an unconstrained

Quasi-Newton optimization scheme as described in [89].

Requiring a 2-particle periodicity is clearly an arbitrary choice which excludes many of

the possible solutions and implicitly relies on the assumption of an infinite lattice. Some

of the excluded equilibrium solutions may be associated with lower energy levels, and

therefore may be energetically favorable with respect to the ones found herein. However,

this choice limits the amount of investigations and provides a framework for the study of
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(a) (b)

Figure 2.4: 1D and 2D lattices resulting from magnets in attraction as considered in this
study. Red and blue circles denote magnets with dipole moments perpendicular to the
lattice plane pointing towards and away from the reader respectively. Black lines denote
elastic connections between magnets.

the lattice properties in the selected subset of possible periodic equilibrium configurations.

2.4 Dynamic reconfiguration of magneto-elastic hexagonal lattices

To add to the literature regarding 2D dynamic reconfiguration an initial study of dynamic

structural changes in 2D structures is conducted using a magneto-elastic hexagonal honey-

comb lattice as an example. The energy profile associated with a unit cell of the lattice is

employed as a means to predict the reconfiguration characteristics. Though additional re-

search is required to investigate the spatial extent of the reconfiguration in 2D systems, unit

cell analyses and numerical experiments presented herein are expected to provide insights

for future modeling and design of 2D dynamically reconfigurable structures.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 2.5: Examples of periodic equilibrium configurations for 1D lattices consisting of
2 particle unit cells (a-c), 3 particle unit cells (d,e), and 4 particle unit cells (f,g). Red and
blue circles denote magnets with dipole moments perpendicular to the lattice plane pointing
towards and away from the reader respectively. Black lines denote elastic connections
between magnets.

24



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.6: Examples of periodic equilibrium configurations for 2D lattices consisting of 2
particle unit cells (a-f), and 4 particle unit cells (g-i). Red and blue circles denote magnets
with dipole moments perpendicular to the lattice plane pointing towards and away from the
reader respectively. Black lines denote elastic connections between magnets.
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(a) θ = 30◦ (b) θ = 15◦ (c) θ ≈ −14◦

Figure 2.7: Hexagonal (a) and re-entrant (c) lattices as two stable periodic equilibrium
configurations. The angle θ describes the transition from one to the other and defines
intermediate configurations (b). Red and blue circles denote magnets polarized into and
out of the page respectively. Black lines represent elastic connections.

2.4.1 Analysis of equilibrium configurations

Because of magnetic interactions, the lattice can take different stable configurations, which

correspond to different values of the angle θ (Fig. 2.7). When magnetized in the pattern

shown (blue and red circles denote opposite magnetic polarizations), the hexagonal lattice

(Fig. 2.7(a)) may reconfigure in stable configurations corresponding to various values of

the internal angle θ, and may evolve into the re-entrant lattices of Fig. 2.7(c).

As discussed in Section 2.3, the minimization problem at the unit cell level is formu-

lated by considering as unknowns the generalized coordinates q of the particle inside the

unit cell, i.e. the red particle in Fig. 2.8, and the lattice vectors d1,d2. To look at the energy

associated with a transition between configurations geometrical constraints are imposed on

the energy minimization problem (Eq. (2.16)) as follows: (1) the center red particle can

only move along the horizontal center line of the unit cell which is defined by the vector

resultant d1 + d2, and (2) the two lattice vectors are of equal magnitude, i.e. d1 = d2.

These two constraints enforce the unit cell symmetry about its horizontal center line. This

problem is solved by imposing the angle θ and then looking for the geometrical configu-

ration associated with a stable equilibrium configuration. The result for each input θ is a

local energy minimum and associated configuration, giving insight to the energy required

to transition from one value of θ to another.
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Figure 2.8: Unit cell of the hexagonal lattice, lattice vectors and main geometric parame-
ters.

Equilibrium configurations are found for assigned values of θ ∈ [−20◦, +35◦] and for

different magnetization levels. The loci of the corresponding equilibrium configurations

are shown in Fig. 2.9 for three levels of magnetizations. The plots present the change in

unit cell potential energy ∆U at equilibrium relative to the regular hexagonal unmagnetized

case as a function of the imposed value of θ. In the plot of Fig. 2.9 and in the remainder

of the chapter, unit cell energy and magnetization parameter are respectively normalized as

follows:

∆Ē =
2∆U

kar20
(2.17)

where the denominator corresponds to the total energy stored by the axial spring when it

is fully compressed and there is no contact (i.e. rij = 0, and γ = 0), with r0 denoting the

undeformed length of the axial springs, and

ψ̄(m) =
ψ(m)

kar50
=
f (m)(rij = r0)

kar0
(2.18)

which defines the ratio of the magnetic force at rij = r0 to the force required to fully

compress the axial spring in the absence of contact, i.e. kar0. Hence, ψ̄(m) provides a

comparison of the strength of the magnetic interactions relative the axial spring restoring

force.

The magnetization levels considered in Fig. 2.9 are ψ̄(m) =0, 0.02, and 0.05, while the
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lattice is defined by the following parameters: γ = α− 1 = 39, rc = 0.5, ca/m = 0.4 s−1,

cτ/(mr
2
0) = 0 s−1, β = 50, I/(mr20) = 1/32, ω0 =

√
ka/m = 1 rad/s, ωr =

√
kτ/I =√

1/2 rad/s. In Fig. 2.9, the curve corresponding to the unmagnetized case, (ψ̄(m) = 0)

is continuous, with a noticeable slope discontinuity near θ = −15◦ which corresponds to

the initial contact between particles. Of note is the fact that the initial, regular hexagonal

case θ = 30◦ is the most energetically favorable configuration, which therefore indicates

that a lattice perturbed from this initial configuration is likely to return to it without under-

going any reconfiguration. The energetic advantage of this initial configuration is clearly

shown in the detailed plot of Fig. 2.9(b). Thus, configurations with re-entrant angle and

contact would require additional energy to be provided for the system to evolve into them

from an initial configuration of θ = 30◦. The magnetized cases, in contrast, have a sig-

nificantly different behavior as indicated by the discontinuous red and blue dashed lines in

Fig. 2.9. The range for θ > 0 looks essentially identical to the case for ψ̄(m) = 0, while

re-entrant magnetized configurations are characterized by equilibrium geometries associ-

ated with significantly lower energy levels. This indicates that the magnetized lattices, if

provided enough energy in the form of external perturbations, can indeed evolve and tran-

sition to a different stable equilibrium geometries with θ < 0. The amounts of energy that

enable such a transition cannot be directly estimated from the curves in Fig. 2.9 as the dy-

namic terms associated with inertias and dissipation need to be accounted for in order to

evaluate the transition through a saddle point in the energy profile, which is here not shown

and not directly estimated. As expected, the energetic levels of the re-entrant equilibrium

configurations for the magnetized lattices are lower for increasing magnetization levels.

This is consistent with the fact that the magnets are all arranged in attraction due to their

alternate polarization distributions. One may consider cases where repulsive configurations

are present, which would lead to different geometries and periodic lay-outs defined by the

distributions of magnetic polarizations.

The next section illustrates how these investigations can aid the interpretation of the
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Figure 2.9: Equilibrium loci for the unit cell as a function of internal angle θ: ψ̄(m) = 0
(black−), ψ̄(m) = 0.02 (red−−), and ψ̄(m) = 0.05 (blue ·−) (a), and 10x zoom for detailed
view in the θ > 0 range (b).

dynamic behavior of the considered class of lattices and potentially inform their design for

multi-stability.

2.4.2 Numerical simulation of dynamic reconfiguration

To gather information about how lattice magnetization can affect the transformation of the

2D magneto-elastic lattice, numerical simulations are performed by integrating the equa-

tions of motion (Eq. (2.12)) in time. A finite lattice is considered with a number of cells

chosen so that boundary effects can have minimum influence on the transient behavior of

the central portion of the lattice. The initial configuration for the finite lattice is determined

by imposing an initial angle θ = 30◦ and determining the lattice vectors as a function of the

applied magnetization levels, and assuming that all springs are at rest when the lattice is

in the initial regular hexagonal configuration in the absence of magnetization. Solution of

the equilibrium configurations through minimization of the energy function for the entire

finite lattice defines the initial geometry. Such geometry may be slightly different in the

presence of magnetization, due to the magnetic attraction that leads to small changes in

the lattice vectors. Such changes, which are accounted for in the simulations, are however
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too small to be noticeable from the graphical representation of the lattice, given the small

magnetization levels considered and the forces that are only a few percent of the magni-

tude of the spring restoring forces. Once the initial equilibrium configuration is identified,

boundary conditions are applied to enforce the stability of the lattice and to avoid rigid

body motions. The choice of the equilibrium conditions are based on the choice of enforc-

ing symmetry along the mid horizontal line under an equally symmetric load distribution,

which in this case is a horizontal point force applied at the middle point of the left vertical

boundary. The selected boundary conditions are pins constraining horizontal and vertical

displacements along the vertical right boundary, and roller-type constraints along the top

and bottom edges to constrain only the vertical displacements. Along all boundaries, ro-

tations remain unconstrained. A schematic of the finite lattice with point of loading and

boundary conditions is shown in Fig. 2.10.

All simulations are conducted by applying a force varying in time as a rectangular

pulse at the location shown. Pulse duration and amplitude are chosen empirically to be

sufficient to induce transition in the magnetized cases. The energy associated with the

pulse is sufficient to compensate for the energy needed to transition from the initial stable

configuration to another in the case of multi-stable layouts. Such energy must overcome

all kinetic contributions and dissipation terms. All simulations consider a pulse width of

0.08π s and an amplitude F0 = 6kar0. The response of the three different structures is

presented in Fig. 2.11. In the unmagnetized case, this pulse perturbs the lattice, but it does

not cause its re-configuration, since upon removal of the force the lattice returns to its initial

configuration, which is the most energetically favorable. As a result no transition occurs

in the lattice, as shown in Fig. 2.11(c). For ψ̄(m) = 0.02 the system becomes multistable.

The re-entrant configuration has a lower energy. Therefore, energy will be released into

the lattice during the transformation, with the potential to aid in further reconfiguration.

Given the 2D geometry of the lattice, the energy associated with the input force decays

with the distance from the point of application due to geometrical spreading. This leads to
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the re-configuration to be only observed over a limited region of the lattice, within which

the cells receive sufficient energy to transition to the lower energy states corresponding to

the re-entrant configuration (Fig. 2.11(d-f)). For a higher magnetization, i.e. ψ̄(m) = 0.05,

the entire lattice reconfigures by the end of the simulations due to the lower energetic

level observed at the unit cell level for this magnetization (Fig. 2.11(g-h). The study of

the dynamic behavior of the lattice can also be observed in terms of the energy within a

unit cell. Specifically, the cell highlighted by the red dashed line in Fig. 2.10 is observed

at various instants of time during the simulations. These variations are overlaid on the

equilibrium curves for the corresponding magnetization levels in Fig. 2.12. The resulting

plots show the time evolution of the trajectory of the unit cell configuration and its energy

as black dots, while the minimum energy curve is the solid red curve. Each black dot

shows the energy at an instant, evenly spaced in time, and the red curves are the curves of

Fig. 2.9 without the shift. The plots illustrate how such configurations evolve dynamically

from the initial configuration to a final. All the simulations begin at the local minimum

at θ = 30◦, which is the hexagonal lattice configuration. Then the cell energy increases

due to the applied force, and through the dynamics of the structure it oscillates about and

progresses to its final local energy minimum. Such oscillations are shown in the inset of the

figures for better clarity. Note that all energy trajectory points are above the red curve for

all intermediate dynamic configurations, which illustrates how the curve correctly provides

a lower bound for the energy content of the unit cell under consideration. In the absence

of magnetization (Fig. 2.12(a)) the unit cell undergoes significant distortions due to the

forcing as illustrated by the large variations of the internal angle θ, which temporarily

reaches negative values, but it returns to oscillate around the initial configuration. This

is because there is no other equilibrium position for it to stop at. The magnetized cases

shown in Fig. 2.12(b,c) clearly illustrate the transition of the unit cell energy from the

initial configuration at θ = 30◦ to the re-entrant state near θ = −15◦, which is the point of

arrival upon removal of the force and the free motion of the lattice.
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Returning to Fig. 2.11, it is worth noting that the pattern of reconfiguration is not uni-

form and appears to be characterized by a pattern which is common to both magnetization

cases. The results seem to suggest the existence of a triangular transition front that does

not propagate uniformly within the lattice. The pattern of propagation of this front may be

affected by the underlying isotropy, or lack thereof, of the lattice, which in turn is deter-

mined by the unit cell geometry. This aspect certainly deserves further investigation as it

may have significant implications for the design of multi-stable lattices with desirable tran-

sition front propagation characteristics. Of note is also the fact that the energy profile of the

ψ̄(m) = 0.05 structure allows faster reconfiguration for the same forcing, which is observed

in comparing Figs. 2.11(d-e) and Figs. 2.11(g-h). This is likely because more energy is

available to be converted into kinetic energy. The final configuration of the ψ̄(m) = 0.05

case (Fig. 2.11(i)) is much different than the initial configuration and the final configura-

tion of the ψ̄(m) = 0.02 case. It has a much higher density and is composed entirely of

anisotropic cells. Three sub-regions of re-entrant cells are separated by two bands of cells

oriented approximately perpendicularly to the others. These bands can be denoted as “tran-

sition bands”. The transition bands are the result of the dynamic reconfiguration of the

lattice, and different forcing has been observed to produce different numbers and positions

of transition bands. The local geometric variations seen in the transition bands affect the

propagation of waves and are expected to aid in wave steering and energy absorption.

Finally, in simulating the collapse of magneto-elastic lattices such as those presented

here it is observed that the damping characteristics of the system can greatly affect the

dynamics of the system, which can ultimately change the final configuration. For the

aforementioned study, the damping was all kept constant for simplicity, but if structures

such as these are to be dynamically reconfigured in a predictable way, the effect of damp-

ing must be taken into account and properly characterized. For example, increasing the

contact damping parameter β helps prevent overshooting when particles come into contact

near their secondary stable position. To illustrate this, β is reduced to 5 from 50 for the
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Figure 2.10: Numerical simulation setup for finite lattice. Black lines represent axial
springs and black dots represent magnetized masses. Green “x”s denote constraint for
horizontal displacements, and blue “+”s denote constraint of vertical motion. The dashed
red lines show a unit cell for which energy is plotted in Fig. 2.12.

ψ̄(m) = 0.02 case and the simulation is repeated. Shown in Fig. 2.13(a-c), it is clear that

the change in β does not allow some of the particle pairs to remain in contact. Instead, they

bounce out of the local energy minimum and the final configuration has only one collapsed

cell. It has also been observed that increasing the torsional damping cτ allows the system to

better distribute the applied force transversely, similar to increasing the viscosity of a fluid.

For reference, in Fig. 2.11 there is no torsional damping. To contrast this, simulations of

the ψ̄(m) = 0.02 case with cτ/(mr20) = 0.05 s−1 and 0.50 s−1 were run. The first case

(Fig. 2.13(a-c)) shows deformation spread more evenly across the left side of the structure

than in Fig. 2.11(d-f) and results in only 3 collapsed cells in response to the forcing instead

of 6. The second case (Fig. 2.13(g-i)) shows that with sufficient torsional damping the

applied force will be distributed and dissipated so well that no reconfiguration can occur

under the applied load. These 3 examples are merely an example of how reconfiguration

can be further tailored through damping, and this aspect requires further investigation.
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(a) t = 50s (b) t = 100s (c) t = 500s

(d) t = 50s (e) t = 100s (f) t = 500s

(g) t = 50s (h) t = 100s (i) t = 500s

Figure 2.11: Snapshots of deformed configuration of the lattices observed during dynamic
simulations: ψ̄(m) = 0 (a-c), ψ̄(m) = 0.02 (d-f), and ψ̄(m) = 0.05 (g-i)
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Ē

θ

(c) ψ̄(m) = 0.05

Figure 2.12: Normalized potential energy Ē of the unit cell highlighted in Fig. 2.10 for the
three simulations discussed shown as the cell exhibits different values of θ during deforma-
tion.
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(a) t = 50s (b) t = 100s (c) t = 500s

(d) t = 50s (e) t = 100s (f) t = 500s

(g) t = 50s (h) t = 100s (i) t = 500s

Figure 2.13: Snapshots of the lattices with ψ̄(m) = 0.02 observed during dynamic simu-
lations with different damping parameters: β = 5 (a-c), cτ/(mr20) = 0.05 s−1 (d-f), and
cτ/(mr

2
0) = 0.50 s−1 (g-i). Other lattice parameters are left unchanged.
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CHAPTER 3

WAVE PROPAGATION IN MAGNETO-ELASTIC STRUCTURES

3.1 Chapter overview

The purpose of this chapter is to present the wave propagation properties of periodic

magneto-elastic lattices and quantify how reconfigurations affect these properties. Bloch

analysis is performed to provide analytical quantification of dispersion relations for both

1D and 2D lattices, and numerical simulations are used to verify and illustrate the findings

of Bloch analysis. Drastic wave propagation changes are induced through the configura-

tion changes, including the opening of bandgaps and wave beaming. First, the procedure

for applying Bloch analysis to magneto-elastic structures is over-viewed. Then analytical

and numerical results for 1D structures are presented. This is followed by results for 2D

structures, which include hexagonal, re-entrant, and kagome lattices.

3.2 Application of Bloch analysis

Wave propagation within the considered lattices is investigated through the application of

Bloch Theorem [90, 91], which requires the linearization of the governing equations. This

is based on the assumption that propagating waves induce small perturbations of the lattice

configuration about one of the stable equilibrium configurations. A first order Taylor series

expansion is employed to linearize the magnetic force expressed in Eq. (2.5), which gives:

f̄
(m)
ij = f (m)

eqij
− 4

ψ(m)

r5eqij
(rij − reqij)n (3.1)

where reqij denotes the equilibrium distance of particles i, j obtained through the approach

described in the previous section. Also, f̄ (m)
ij is the linearized magnetic force, while f (m)

eqij
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is the interaction force at equilibrium, i.e. when it is equilibrated by the mechanical inter-

action corresponding to spring elongations r0ij − reqij . The spring force is linear for small

changes of the inter-particle distance, so further linearization is not necessary. In addition,

a small angle approximation linearizes the contribution to the mechanical interactions of

the torsional springs, as defined by the angle θb, which is simplified to:

θb =
y′j − y′i
reqij

(3.2)

where y′j and y′i are the displacements of particles i and j in the direction perpendicular to

reqij .

Upon linearization, the equations of motion for a unit cell (Eq. (2.15)) can be expressed

as:

Mq̈n,m +
N∑

n=−N

M∑
m=−M

(
K(e)

n,m +K(m)
n,m

)
qn,m = 0 (3.3)

where, for the purpose of wave propagation analysis, dissipation is neglected, and the ab-

sence of external forcing is assumed. In Eq. (3.3), K(e)
n,m,K

(m)
n,m respectively describe the

linearized elastic and magnetic interactions between the considered unit cell, here identi-

fied by the subscripts n = 0,m = 0, and the (2N + 1)(2M + 1)− 1 connected neighbors.

In the case of nearest neighbor interactions, N = M = 1, while the magnetic forces cause

long range interactions defined by the selected r∞ value.

Plane wave propagation is investigated through the application of Bloch theorem, which

seeks for solutions of the kind [3]:

qn,m = q0e
i(ωt+κ·(nd1+md2)) (3.4)

Its substitution in Eq. (3.3) gives:

[
−ω2M +

∑
n,m

(
Kn,me

iκ·(nd1+md2)
)]
q0 = 0 (3.5)
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whereKn,m = K
(e)
n,m +K

(m)
n,m. Letting:

K(κ) =
∑
n,m

[
Kn,me

iκ·(nd1+md2)
]

leads to the following eigenvalue problem:

[
K(κ)− ω2M

]
q0 = 0 (3.6)

which is solved in terms of ω for assigned values of the wave vector κ. Equation (3.6) is

a linear eigenvalue problem whose solution provides the dispersion relations ω(κ) char-

acterizing wave motion associated with small perturbations around one of the equilibrium

configurations. The dispersion properties characterize the propagation of waves within the

lattice and provide the wave velocities and their directional dependence, which gives in-

sight in the speed and direction of wave motion. Specifically, the group velocity, given by:

cg = ∇ω(κ) (3.7)

can be evaluated through numerical differentiation of the dispersion relations obtained from

the solution of Eq. (3.6), and directly [92]. Both methods yield the same result.

3.3 Wave propagation in 1D magneto-elastic strcutures

One dimensional structures are discussed first to demonstrate wave propagation properties

adaptation as a function of configuration and magnetization. A simple example of a 1D

stable reconfigurable lattice is presented to illustrate these concepts.

3.3.1 Geometric adaptation

Geometric adaptation refers to the transition of the lattice between two of its stable con-

figurations. In this case, we investigate the 2 particle unit cell lattice of Fig. 2.4(a), and its
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transition between the configurations shown in Fig. 2.5(a) and 2.5(b), and also between the

configurations shown in Fig. 2.5(a) and 2.5(c). Such a transition corresponds to the case

where the magnetic attractive forces overcome the restoring force provided by the connect-

ing springs and drive the particles in contact. The result is a shorter chain whose periodicity

is dependent upon the contact radius of the particles in addition to the initial inter-particle

distance r0.

It is instructive to first evaluate the energy associated with the unit cell and its variation

in terms of strength of magnetization and inter-particle distance. For illustration purposes,

a first study considers the case where the spring force is purely linear, thus neglecting

the contact model and assuming α = 1 as the contact parameter in Eq. (2.3) (see also

Fig. 2.2(b)). Furthermore, the inter-particle distance r between all neighboring particles

is kept equal to r so that the period is d = 2(x2 − x1) = 2r. Although this constraint

may require effort to apply to a manufactured structure, since the structure shown in 2.5(b)

would typically be an intermediate configuration for a quasi-static transition between the

configurations in Fig. 2.5(a) and 2.5(c), it is a convenient way to illustrate the change in

energy as a function of the inter-particle distance r and make considerations that apply also

to other reconfigurations.

The variation of the total static energy of interaction (Eq. (2.13)) as a function of inter-

particle distance is shown in Fig. 3.1(a). The energy is normalized as follows:

Ē =
2E
kar20

where normalization is conducted with respect to the total energy stored by the axial spring

when it is fully compressed and there is no contact (i.e. r = 0, and α = 1). The different

curves represent different magnetization values ψ(m), where the following normalization is

conducted:
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ψ̄(m) =
ψ(m)

kar50
=
f (m)(r = r0)

kar0

The normalized value ψ̄(m) can be interpreted as the ratio of the magnetic force at

r = r0 to the force required to fully compress the axial spring in the absence of contact,

i.e. kar0. Hence, this normalized quantity provides a reference of the strength of the

magnetic interaction with respect to the spring restoring force, with a magnitude of ψ̄(m) =

1 corresponding to the magnets providing enough force at r = r0 to theoretically reduce

the inter-particle distance from the spring undeformed distance r0 to zero. In the following

results shown ψ̄(m) > 0 will be used to denote a structure with repelling nearest neighbors

and ψ̄(m) < 0 will be used to denote a structure with attracting nearest neighbors. In

general, ψ̄(m) will simply denote magnitude for a structure, since attraction and repulsion

of magnets depends on the specific magnet pair in a lattice. Therefore when the terms

“high” and “low” are used to refer to ψ̄(m) it is the magnitude that is being discussed.

The energy curve for ψ̄(m) = 0 in Fig. 3.1 (thin ·− curve) is parabolic, since it is

governed only by linear elastic springs. Therefore a single minimum defines the stable

equilibrium inter-particle distance req = r0. For magnets in repulsion (thin ·· curve), the

lattice is still characterized by a single equilibrium for req > r0, while nearest neighbor

magnets in attraction (thick− and thick−− curves) lead to a stable equilibrium req < r0, as

well as to a second equilibrium point that corresponds to the local maximum of the energy

curve and thus is unstable. As attraction increases (thick ·· curve), stable and unstable

equilibria points get closer, and eventually no longer exist as a result of the magnetic force

overpowering the spring restoring force. Of interest is the transition between the condition

of existence of the equilibria and their absence, which is characterized by a finite range

of inter-particle distance values which defines almost neutral equilibrium conditions. In

this range, the lattice configuration may be altered with essentially no energy input. Also

in Fig. 3.1(a), the loci of the energy minima and maxima are highlighted respectively by

a solid black line, and by the dashed red line, which respectively display the change in

41



0.4 0.6 0.8 1 1.2
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

r/r
0

2
/(
k
a
r 02
)

(a)

0.4 0.6 0.8 1 1.2
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

r/r
0

2
/(
k
a
r 02
)

(b)

Figure 3.1: Interaction energy within a 2-particle unit cell lattice as a function of inter-
particle distance for different levels of magnetization (ψ̄(m) = 0.20 thin ··, ψ̄(m) = 0 thin
·−, ψ̄(m) = −0.04 thick −, ψ̄(m) = −0.08 thick −−, ψ̄(m) = −0.20 thick ··): no-contact
(α = 1) (a), and contact (α = 50) (b) Circles and squares denote stable and unstable
equilibria respectively, thin solid black line is the locus of stable equilibria, thin dashed red
line is the locus of unstable equilibria.
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Figure 3.2: The normalized equilibrium distance req/r0 versus magnetization ψ̄(m): no-
contact (α = 1) (a), and contact (α = 50) (b) (Black solid lines denote stable equilibria
while red dashed lines denote unstable equilibria).
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location of stable and unstable equilibria as a function of magnetization. The energy plots

become more interesting when particle contact is added by considering α 6= 1 in the spring

constitutive behavior. For example, the energy plot of Fig. 3.1(b) is obtained for rc = 0.5r0

(particle radius rp = 0.25r0) and a contact stiffness defined by α = 50. The plots show that

with magnets in attraction (thick− and thick−− curves), there are values of magnetization

that lead to a second stable equilibrium. Depending on the choice of parameters, the two

energy wells may be characterized by either lower or higher energy, which in principle

allows one configuration to be designed as more energetically favorable than the other.

Plotting the equilibrium distances req (normalized to the inter-particle distance in the

absence of magnetization r0) against magnetization for the case of no particle contact

(Fig. 3.2(a)) further reveals that there is a maximum attractive magnetization at which the

particles can stably stay apart. Stable and unstable equilibria are shown by the solid and

dashed lines respectively. When the stable equilibrium vanishes the magnets overpower the

spring at all distances and there is no equilibrium. Furthermore, for repulsive magnetization

there is no unstable equilibrium. Adding contact (Fig. 3.2(b)) introduces a second stable

equilibrium condition that is also characterized by an attractive magnetization value beyond

which there are no more equilibria. The value of the critical magnetization is dependent

on the contact distance rc and the contact relative stiffness α, which are again chosen as

rc = 0.5r0 and α = 50.

3.3.2 Dispersion diagrams and numerical results

Bloch wave analysis is conducted for the lattices in the two equilibrium configurations.

The linearized equations of motion are considered according to the procedure described in

Section 3.2, reduced to the case of 1D wave motion. The considered lattices are defined

by the following set of parameters: rc = 0.5r0, α = 8, ω2
0 = ka/m = 1 rad/s, and

ψ̄(m) = −0.035. The latter value leads to a non-local interaction which extends to 46

particles, which according to Eq. (2.7) corresponds to a residual error of ε(m)
e = 10−5.
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Figure 3.3: Band structure for the 1D lattices of Fig. 2.5(a) unmagnetized (blue ·−),
Fig. 2.5(a) magnetized with ψ̄(m) = −0.035 (red −−), and Fig. 2.5(b) magnetized with
ψ̄(m) = −0.035 (black −). The plots illustrate the shift of dispersion branches due to the
magnetization and the opening of a bandgap due to lattice reconfiguration from Fig. 2.5(a)
to Fig. 2.5(b).
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Figure 3.4: The bandgap of the lattice pictured in Fig. 2.5(b) changes with lattice magneti-
zation. The gray denotes frequencies at which waves will not propagate for a given relative
magnetization (ψ̄(m)).

The corresponding stable equilibrium configurations are those shown in Fig. 2.5(a) and

(b), for which band diagrams are calculated and presented in Fig. 3.3. In both cases, the

diagrams are plotted in terms of a non-dimensional frequency Ω = ω/ω0, versus the propa-

gation constant µ = κd, where d is the period of the lattice identified as detailed in Section

2.3. The propagation constant allows the dispersion relations for both configurations to

be plotted on the same axes even though the period d of each configuration is different.

The results for the lattice in Fig. 2.5(a) (blue ·− and red −− curves) show the absence of

a bandgap, as optical and acoustic modes join at the edge of the Brioullin zone. This is

to be expected, as the lattice effectively reduces to mono-atomic of period equal to twice

the inter-particle distance defined by the stable equilibrium distance req associated with the

considered level of magnetization (ψ̄(m) = −0.035). The effect of the magnetization is

to effectively reduce the mechanical stiffness of the connecting spring of a quantity cor-

responding to the linearized expression of the magnetic force (Eq. (3.1)). This results in
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a downshift of the dispersion branches, which is consistent with the reduction in equiva-

lent stiffness. However, no stiffness modulation is produced and therefore no bandgaps are

generated. In contrast, the transition of the lattice to the configuration shown in Fig. 2.5(b)

(black − curve), obtained also with a magnetization of ψ̄(m) = −0.035, effectively intro-

duces a periodic stiffness modulation that is defined by the two considered stiffness values

ka and αka. This modulation leaves the acoustic mode almost unaffected, but significantly

shifts the optical mode towards higher frequencies, thus generating a large bandgap around

Ω ≈ 1.8. This illustrates how the transition of the lattice between these two stable configu-

rations reduces its ability to transmit mechanical waves in the considered frequency range.

Such a transition is the result of perturbation of the lattice that provides the energy required

for the system to evolve from one stable configuration to another.

The bandgap for the configuration of Fig. 2.5(b) can also be tuned through changes in

the applied magnetization, which influences the equivalent stiffness of interaction. A map

of bandgaps as a function of magnetization is shown in Fig. 3.4. The range of magnetiza-

tions chosen coincides with one where the considered configuration can exist as a stable

equilibrium. If the magnetization magnitude is too low, the structure will open fully, while

if it is too high, the contact interaction will be overcome by the magnets. This sensitivity of

this structure to changes in magnetization allows its bandgap to be controlled through rel-

atively small changes in magnetization (< 10%). Less sensitive structures can also be de-

signed, for example, by increasing the contact stiffness α. Here, the optical and acoustical

branches are respectively associated with the contacting and non-contacting magnets. The

optical branch appears more sensitive to magnetization changes than the acoustic branch

because the magnetic interactions play a larger role in softening the shorter distance in-

teraction between the contacting magnets than the longer distance interaction between the

non-contacting magnets.
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3.3.3 Numerical simulation of wave motion

The change in wave propagation properties, and the occurrence of a bandgap is evaluated

by performing numerical simulations through integration of the fully nonlinear equations

of motion of a finite lattice with a sufficiently large number of cells. Specifically, the lattice

is chosen to include 32 particles, which is found as a good compromise between computa-

tional cost and number of units of the assembly. The number of units must be sufficiently

large to allow observing wave propagation without being affected by boundary reflections

that complicate the interpretation of the data. The lattices are excited by an imposed dis-

placement of the left end mass. The displacement varies in time according to a 20 cycles

tone burst at Ω = 1.5 with an amplitude of 5× 10−5r0. The amplitude is small enough for

nonlinearities not to have a significant effect on wave motion. Furthermore, all magnetic in-

teractions are included given the finite extent of the lattice. Results are presented in Fig. 3.5

as the position of the magnets over time. The time axis τ = t/t0 is normalized with respect

to a characteristic time t0 = L/c which corresponds to the propagation time through the

length of the lattice L at speed c. Such speed is here estimated as the slope of the disper-

sion diagrams of Fig. 3.3 for µ→ 0, i.e. in the long wavelength limit. This speed does not

correspond to the actual speed of wave motion at the considered frequency, but provides a

reference value suitable for time normalization. The results of Fig. 3.5 show that the wave

propagates along the structure when in the fully open configuration (Fig. 2.5(a)), but not

when the structure is reconfigured to the so-called semi-packed configuration of Fig. 2.5(b).

This observation verifies the presence of a bandgap at the considered frequency and that

the dispersion relation in Fig. 3.3 can be useful for predicting whether or not waves will

propagate as long as the linearized behavior holds.
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Figure 3.5: The existence of the bandgap at Ω = 1.5 is verified through direct numerical
simulation. Propagation along the length of the structure is depicted as a position vs. time
plot where each line is the motion of one magnet (particle number np in the chain). For
viewing clarity the displacement of the magnets is amplified and only every other magnet
is plotted.
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3.4 Wave propagation in 2D magneto-elastic structures

3.4.1 Hexagonal and re-entrant lattices

The investigations are extended to the case of 2D magneto-elastic lattices, which provide

the opportunity to investigate the effects of magnetization and configurational changes on

the in-plane wave properties, which include dispersion and directionality. Multi-stability

leads to changes in the equivalent elastic moduli, mass distributions and anisotropy. Hexag-

onal lattices provide a good framework for this study, as their elastic properties and the

associated wave propagation characteristics have been extensively studied [93, 30, 7].

Geometric Adaptation

The configurations of Fig. 2.6(a)-(c) are examples of lattices under investigation, and the

transition between them can be geometrically described through the change of a single

angle. As shown in [30], hexagonal lattices of the kind shown in Fig. 2.6(a), and re-entrant

ones as in Fig. 2.6(b) differ in their mechanical properties, the former being isotropic,

the latter being strongly anisotropic and featuring negative Poisson’s ratios. As a result,

their wave properties largely differ. Hence, the possibility of transitioning between an

hexagonal and a re-entrant configuration provides the opportunity to induce both changes

in mechanical properties as well as in the way waves are transmitted by the lattice.

Equilibrium configurations for the 2D lattices considered herein are investigated using

the procedure described in Section 2.3. As previously indicated, the investigations are

limited to cases where the unit cell includes two masses. Hence, potential equilibrium

configurations are those shown in Fig. 2.6(a) and (c), which are obtained by considering

lattices defined by the following parameters: rc = 0.5r0, α = 50, ψ̄(m) = −0.035, and

ε
(m)
e = 10−6.
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Dispersion diagrams and wave velocities

The dispersion relations for the two lattices of Fig. 2.6(a) and (c) are evaluated through

the application of Bloch analysis based on the linearized equations of motion about the

two equilibria. For these studies the parameters used are: rc = 0.5r0 = 2rp, α = 40,

ω2
0 = ka/m = 1 rad2/s2, I = 1

2
mr2p = 1

32
mr20 (cylindrical magnets), ω2

r = kt/I =

1
2

rad2/s2, and values of ψ̄(m) ∈ [0, −0.1]. The contact distance and contact stiffness

allow for stability of the re-entrant lattice pictured in Fig. 2.6(c) through a wide range

of ψ̄(m) values. The analysis includes non-local interactions with interaction distances

determined by Eq. (2.8) with ε(m)
e = 10−6 and an assigned magnetization. Magnetization

specifically induces a change in the effective stiffness of the lattice which produces shifts

in the dispersion branches. In addition, magnetization and contact lead to multi-stability

which is associated to a configurational change that has a dramatic effect on mechanical

properties and dispersion.

Figure 3.6 and 3.7 show the band diagrams for the hexagonal and re-entrant lattices

of Fig. 2.6(a) and (c) respectively, and illustrate the effect of varying magnetization. As

is customary, the band diagrams are generated by identifying the first Brioullin zone and

by varying the wave vector along the boundary of the irreducible zones which are shown

respectively in Fig. 3.6(a) and Fig. 3.7(a). In the case of the hexagonal lattice (Fig. 3.6),

the considered levels of magnetization have the effect of slightly altering the configuration

of the lattice, and most importantly of changing the equivalent stiffness. Such stiffness

change causes a noticeable change in slope of the dispersion curves in the long wavelength

limit (κ → 0). The branch corresponding to the longitudinal mode (P mode) undergoes a

slope reduction which can be directly related to a reduction in the corresponding modulus

caused by magnetic attraction. Less intuitive is the fact that the branch for the shear mode

(S mode) is characterized by an increase in slope which suggests that the equivalent shear

modulus for the lattice increases for increasing attractive magnetization. In addition, it is

interesting to observe that magnetization generates a bandgap between frequencies Ω ≈ 0.8
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Figure 3.6: Irreducible Brillioun zone considered for the computation of the band diagram
of the hexagonal lattice (a). Band structure for the hexagonal lattice and different levels of
magnetization: ψ̄(m) = 0 (red −−), ψ̄(m) = −0.05 (green ·−), and ψ̄(m) = −0.1 (black −)
(b).
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Figure 3.7: Irreducible Brillioun zone considered for the computation of the band diagram
of the re-entrant lattice (a). Band structure for the re-entrant lattice and different levels of
magnetization: ψ̄(m) = −0.002 (red −−), ψ̄(m) = −0.05 (green ·−), and ψ̄(m) = −0.1
(black −) (b).
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and Ω ≈ 1.2, which confirms the potentials for bandgap tunability of the considered designs

observed in the 1D lattice analysis. The re-entrant lattice (Fig. 3.7) in the long wavelength

limit (κ→ 0) is also characterized by the branch corresponding to the longitudinal mode (P

mode) undergoing a slope reduction, while the slope of the shear mode (S mode) increases

with magnetization. The re-entrant lattice experiences a significantly greater change in

the S mode and there are no low frequency bandgaps (Ω < 2) that open as the lattice is

magnetized.

Of interest is also the evaluation of directionality of the dispersion surfaces and of the

group velocity as indication of anisotropy of the lattice. Examples of iso-frequency con-

tours of dispersion surfaces for the hexagonal and re-entrant lattices are shown respectively

in Fig. 3.8 and Fig. 3.10, to illustrate their variation as a function of magnetization. A fre-

quency value of Ω = 0.5 is selected as representative of the behavior above the long wave-

length limit. For the hexagonal lattice (Fig. 3.8), at this frequency only the P mode (black

− curve) propagates and its circular dispersion contour suggests the isotropic behavior of

the lattice for low magnetization levels (Fig. 3.8(a,b)). In contrast, higher magnetizations

lead to the propagation of both wave modes, which are anisotropic and reflect the six-fold

symmetry of the lattice (Fig. 3.8(c)). This is further confirmed by the group velocity plots

for both modes and the considered magnetization levels shown in Fig. 3.9. The group ve-

locity directional variation illustrates the pattern by which the energy propagates within

the lattice, and essentially describes the shape of the wavefront of a wave packet at this

frequency. In Fig. 3.9 and Fig. 3.11 the group velocities are normalized with respect to

the velocity of the P mode in an unmagnetized hexagonal lattice for the long wavelength

case (κ → 0). The group velocity directional variation illustrates the pattern by which the

energy propagates within the lattice, and essentially describes the shape of the wavefront

of a wave packet at this frequency. For low magnetizations (red −− curve), the P mode

is characterized by circular group velocity plots, indicating that the velocity is constant in

every direction. For the highest magnetization considered (black − curve), both modes
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Figure 3.8: Isofrequency dispersion surfaces P mode (black −) and S mode (blue −−)
at Ω = 0.5 for hexagonal lattice and various magnetization levels: ψ̄(m) = 0 (a), ψ̄(m) =
−0.05 (b), ψ̄(m) = −0.1 (c).
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Figure 3.9: Variation of group velocity for hexagonal lattice at Ω = 0.5 for various magne-
tizations (ψ̄(m) = 0 (red −−), ψ̄(m) = −0.05 (green ·−), and ψ̄(m) = −0.1 (black −)): P
mode (a) and and S mode (b). S mode does not exist at the considered frequency for lower
magnetization levels.

feature angular changes in group velocity, and more importantly the occurrence of closed

loops, or caustics at angles corresponding to the hexagonal structure. These closed loops

are known to be indicative of directional wave motion and focusing [94]. The magnitude

of the P mode group velocity also decreases with increasing magnetization, in accordance

with the stiffness reduction caused by attractive magnets. At this frequency (Ω = 0.5) the S

mode is not present for all magnetizations. However, because of the shear stiffening caused

by magnetization discussed earlier, the S mode exists at Ω = 0.5 for high enough magne-

tizations. It is therefore interesting to note how the presence of magnetization can induce

multi-modal wave propagation, as well as directional wave motion. Results for the re-

entrant lattice are shown in Fig. 3.10, which illustrates a strongly anisotropic behavior for

both modes at this frequency, and dispersion contours that vary significantly with magneti-

zation in particular for the S mode (blue −− curve). The group velocity plots of Fig. 3.11

illustrate directional wave motion for both modes and the considered magnetization levels
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Figure 3.10: Isofrequency dispersion surfaces P mode (black −) and S mode (blue −−)
at Ω = 0.5 for re-entrant lattice and various magnetization levels: ψ̄(m) = −0.002 (a),
ψ̄(m) = −0.05 (b), ψ̄(m) = −0.1 (c).
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Figure 3.11: Variation of group velocity for re-entrant lattice at Ω = 0.5 for various mag-
netizations (ψ̄(m) = −0.002 (red −−), ψ̄(m) = −0.05 (green ·−), and ψ̄(m) = −0.1 (black
−)): P mode (a) and and S mode (b).

for the re-entrant lattice. As the magnetization is increased caustics form, suggesting that

shear waves will be focused in the corresponding directions.

Numerical simulation of wave propagation

The propagation of perturbations through the lattices here considered is investigated through

numerical simulations that account for all nonlinearities in the system. The finite lattice

size is selected to include at least 10 unit cells along each dimension which provides suf-

ficient spatial extent to observe the characteristics of wave motion and reduces the effects

of boundaries. As previously, lattice size is limited by computational cost. The parame-

ters considered are the same used for the dispersion analysis, i.e. rc = 0.5r0, α = 40,

ω2
0 = ka/m = 1 rad2/s2, I = 1

32
mr20, ω2

r = kt/I = 1
2

rad2/s2, and ψ̄(m) is set to −0.05. As

in the 1D case, the time is normalized with respect to a characteristic time t0 = L/c0 with

c0 as the wave speed in an unmagnetized hexagonal lattice in the long wavelength limit

(κ→ 0), just as in Section 3.4.1, and L as the width of the lattice. The lattice is excited by
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a force applied to one point on the left side of the domain which varies as a Hanning win-

dowed sine burst of 6 cycles, at frequency Ω = 0.5, and amplitude of F = 1 × 10−3kar0.

This amplitude is chosen as a value that is expected not to lead to any reconfiguration of

geometry and to be associated with a structural response that is governed by linear in-

teractions. The results for the hexagonal lattice (Fig. 3.12(a-d)) show the nearly uniform

propagation of the P mode as predicted in Fig. 3.6, and the noticeable absence of a shear-

like mode for this level of magnetization (see Fig. 3.9). A reasonable agreement between

the group velocity predicted by Bloch analysis and the wavefront velocity observed in this

finite lattice simulation is noted. The re-entrant lattice results of Fig. 3.12(e-h) are in con-

trast of more difficult interpretation due to the presence of two wave modes as predicted

by Fig. 3.7, 3.10, and 3.11. The limited size of the lattice makes the separation of the

two modes difficult, possibly requiring the application of a modal filtering procedure sim-

ilar to the one found in [32]. Of note, however, is the significantly different propagation

pattern compared to the hexagonal lattice. The re-entrant lattice is here characterized by

strongly directional propagation, and the presence of specific “beams” that correspond to

the directions associated with the caustics in Fig. 3.11(b) for the shear-like mode.

Another set of simulations evaluates the response of the lattice to a broad-band, rectan-

gular input of the kind shown in Fig. 3.13. The lattice configuration is shown in Fig. 3.14,

whereby the horizontal motion of all nodes on the right boundary are constrained, and the

point at mid height of the boundary is also constrained in its vertical motion as indicated

respectively by the red and blue crosses in the figure. Time domain integration of the lattice

equations is conducted for different amplitudes of forcing F , while keeping the duration of

the pulse constant. The amplitude is progressively increased to allow the observation of the

different propagation patterns that arise in the presence of configurational transitions and

the comparison with instances where such transitions do not take place. The duration of

the pulse is held constant to cover a range of frequencies that is associated with long wave-

length deformations, and where the lattice is non-dispersive, to limit the number of studies.
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(a) τ = 0.4 (b) τ = 0.8 (c) τ = 1.2 (d) τ = 1.6

(e) τ = 0.4 (f) τ = 0.8 (g) τ = 1.2 (h) τ = 1.6

Figure 3.12: Snapshots of wave fields at dimensionless times τ = t/t0 propagating in
hexagonal (a-d) and re-entrant (e-h) lattices for narrow band excitation at Ω = 0.5 and
small amplitude corresponding to linear wave motion. The color denotes the magnitude
of the total displacment of a node with red denoting the greatest displacement and blue
denoting none.
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Figure 3.13: Applied pulse: time domain (a) and frequency domain (b) representation
showing bandwidth of excitation.

This range is of particular interest as in these conditions, the lattice can be considered as a

solid with equivalent mechanical properties that are defined by elastic and magnetic interac-

tions and by the lattice configuration. Figures 3.15 show snapshots of wave fields resulting

from low amplitude pulses and illustrate some interesting differences with respect to the

narrow band input case previously described. The case corresponding to Figures 3.15(a-d)

is characterized by a circular wavefront followed by a second wavefront, most likely asso-

ciated with the shear-like mode, that seems to reflect the six-fold symmetry of the lattice.

This is even more evident for higher amplitude input as in the case of Fig. 3.15(e-h). The

directional properties of the lattice deformation becomes evident for large amplitude inputs

as considered in Fig. 3.16, where the first wavefront propagates preferentially along three

directions that reflect the initial hexagonal symmetry of the lattice. The directional char-

acteristics of the leading wavefront produces strongly directional transition patterns, i.e.

the local reconfiguration of the lattice components is not the same in all directions. This

is particularly evident in Fig. 3.16(e-h), which correspond to the highest amplitude forc-

ing considered during these investigations. To visualize the lattice reconfiguration black

lines representing the axial springs in the lattice have been superimposed on the colored

plot of particle displacements. It is hypothesized that the large amplitude wave propaga-
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Figure 3.14: Loading configuration and boundary conditions considered for numerical sim-
ulations. Red and blue crosses denote constraints against horizontal and vertical motion
respectively.
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(a) τ = 1 (b) τ = 2 (c) τ = 3 (d) τ = 4

(e) τ = 1 (f) τ = 2 (g) τ = 3 (h) τ = 4

Figure 3.15: Snapshots of wave fields resulting from a low amplitude pulse. The pulse
amplitudes are: (a-d) F = 1 × 10−4kar0, (e-h) F = 0.025kar0. The color denotes the
magnitude of the total displacment of a node with red denoting the greatest displacement
and blue denoting none.
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(a) τ = 1 (b) τ = 2 (c) τ = 3 (d) τ = 4

(e) τ = 1 (f) τ = 2 (g) τ = 3 (h) τ = 4

Figure 3.16: Snapshots of wave fields resulting from a high amplitude pulse. The pulse
amplitudes are: (a-d) F = 0.030kar0, (e-h) F = 0.100kar0. The color denotes the mag-
nitude of the total displacement of a node with red denoting the greatest displacement and
blue denoting none.
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tion properties of the structure effects the transformation patterns that occur. Hence, the

directional characteristics of the wave front is likely the cause of the occurrence of “tran-

sition bands” that confine the propagation of the transition front. The so-called “transition

bands” refer to the regions in Fig. 3.16(g-h) where there is a zigzag pattern in the locally

emerging re-entrant patterns. Overall, the transition is characterized by strong directional

characteristics, and may be related to the anisotropy of the lattice in one of its intermediate

configurations in addition to the properties of the initial configuration.

3.4.2 Reconfigurable kagome lattices

Kagome lattice model description and geometric adaptation

The inspiration for the kagome lattice (KL) modeling discussed in this publication is the

structure pictured in Fig. 3.17 where two of its possible stable configurations are shown.

This structure is made of a molded elastomer, which allows it to undergo the large de-

formations required for reconfiguration. Permanent magnets are placed in the center of

each of the triangular regions and nearest neighbor magnets attract. To model similar KL

systems, which are not necessarily constructed in the same way, a lumped parameter ap-

proach is used which consists of linear axial and torsional springs connecting point masses.

This simplified model still allows for the large geometric reconfigurations that bring about

changes in global properties, which is of greatest interest in this publication. For simplicity,

dissipative effects are neglected, but could be added by considering methodologies of the

kind surveyed in [3]. These studies, however, go beyond the scope of this work.

The KLs to be modeled can be conceptualized as solid triangular elastic components

with magnets at their centers connected by soft “hinges” at their corners. These hinges are

assumed to have linear torsional elastic properties. The network of triangles is discretized

into springs and point masses as represented by the unit cell in Fig. 3.18(a). The gray KL

pattern pictured there shows the structure to be modeled and θ is the angle between triangles

when the structure is undeformed. The entities representing the model of the structure are
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(a) Open Configuration

(b) Closed Configuration

Figure 3.17: Magneto-elastic kagome lattice structure.
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as follows. The solid black lines represent linear elastic springs that do not bend. The large

red circle and the blue ring are magnetized masses with anti-parallel polarizations and the

smaller black circles are the mass that is lumped at the hinge locations. The torsional

springs linking the rotations of the masses to the relative rotations of the axial springs are

not shown. The dashed gray line bounds the unit cell and d1 and d2 are the lattice vectors.

Very stiff torsional springs of stiffness kτc are placed around the magnetized mass in the

center of each triangle, and softer torsional springs of stiffness kτh are placed at the hinges

between the triangles. The radius of the hinge particles is rp.

For simplicity only a few specific configurations are discussed in this publication (Fig.

3.18). These configurations are composed of the smallest unit cell that can describe a KL,

which can be represented by 5 particles. The 4 general configurations that emerge in the

lattices discussed are shown in Fig. 3.18. Two elastic lattices are used, which have an angle

θ = 120◦ (Fig. 3.18(a)) and θ = 60◦ (Fig. 3.18(b)) between the triangles composing the un-

magnetized structures. The θ = 120◦ structure can exist in a so-called “open” (Fig. 3.18(c))

configuration, for low and no lattice magnetization, and its “closed” (Fig. 3.18(f)) configu-

ration for magnetizations sufficient to overcome the torsional hinge springs. The θ = 60◦

structure will exhibit its “open” configuration (Fig. 3.18(d)) when unmagnetized, inter-

mediate configurations (Fig. 3.18(e)) for moderate magnetizations (with the angular de-

formation determined by the magnetization), and “closed” configuration (Fig. 3.18(f)) for

sufficiently high magnetization.

Dispersion diagrams and wave velocities

The wave properties of a 2D KL with attractive nearest neighbor magnetic forces is con-

sidered. Since results are dimensionless for the purpose of generality ratios of parameters

relative to one another are provided instead of parameters.

To model the KL the torsional springs about the centers of the triangles kτc are made

much stiffer than those at the hinges kτh such that kτc/kτh = 100. This ratio of stiff-
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: (a) KL unit cell for θ = 120◦ and (b) θ = 60◦. (c) Open KL configuration for
θ = 120◦. (d,e) Open configuration for θ = 60◦ unmagnetized and magnetized respectively.
(f) Closed KL configuration which is the same for θ = 120◦ and 60◦.
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nesses qualitatively captures the fact that the solid triangles composing the lattice are stiff

compared to the hinges at their corners.

Though the torsional interactions in the lattice are captured through the rotational de-

grees of freedom of each particle, wave propagation modes in which local particle reso-

nances are prominent are not expected in the physical systems that the model is made to

mimic. Therefore, to remove the effect of local particle rotational resonances on wave

propagation, the rotational resonant frequency of the masses at the center of the triangles

and at the hinges is chosen to be much higher than the frequencies of the modes containing

motion of the triangles relative to one another, effectively removing the rotational inertia

of the particles. Thus ω2
c = 3kτc/Ic = ω2

h = 2kτh/Ih = 3 × 105 where Ic and Ih are the

rotational inertia of the particles at the triangle centers and hinges respectively.

The contact distance is rc = 2rp = 0.2r0 to match the approximate half-width of the

web between triangles in a real structure. The contact stiffness γ is 7, which is somewhat

arbitrary, and has little effect on the results shown if increased. The mass of the particles

at the hinges relative to the magnets is 0.1, so not all mass is lumped in the center of the

triangles. Furthermore, the stiffness of axial springs ka is related to the magnet mass m by

ω2
n = ka/m = 1 rad2/s2, and kτc/(mr20) = 1 rad−1 for convenience. Finally, ε(m)

e = 10−6

defines r∞. In the following band diagrams let Ω be the dimensionless frequency of a plane

wave defined as Ω = ω/
√
ka/m.

A band diagram for the θ = 120◦ structure (Fig. 3.18(a)) is presented in Fig. 3.19

for both the open and closed configuration. The lattice’s band diagram in the open con-

figuration (Fig. 3.18(c)) is relatively insensitive to changes in ψ̄(m). Therefore, only small

changes can be achieved on a broad band level by these means and only results for ψ̄(m) = 0

are shown. The lattice vectors shorten only about 3% between ψ̄(m) = 0 and ψ̄(m) = 0.2

due to the magnetic attraction, so there is not much of an effect on the equilibrium geometry.

As ψ̄(m) increases beyond 0.2 the open configuration of the lattice becomes unstable and

the lattice will collapse or fold. The band structure of the collapsed/closed configuration
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Figure 3.19: Band tunability of θ = 120◦. Open configuration ψ̄(m) = 0 (solid black),
closed configuration ψ̄(m) = 0.025 (blue dot-dashed).

is shown near the lowest magnetization at which it can exist ψ̄(m) = 0.025 (Fig. 3.18(f)),

since sufficient magnetic forces are required to hold the structure closed. Three of the bands

have moved to higher frequencies and are not shown. The frequencies that they move to

depend on γ, which is 7 in this case, with higher γ moving them to higher frequencies.

The collapsed structure has a wide bandgap, which is a significant change from the open

configuration. The width of this bandgap is slightly tunable with changing ψ̄(m). The lower

frequency bands of the KL also show a noticeable transformation due to the reconfigura-

tion, which has a significant effect on the wave velocities shown later. One notable change

is that the lattice is less dispersive for frequencies below Ω ≈ 1 once collapsed, as the shear

(S) and pressure (P ) mode move to higher frequencies.

A band diagram for θ = 60◦ (Fig. 3.18(b)) is presented in Fig. 3.20 for both the open

and closed configuration. In contrast with the θ = 120◦ structure the bands are noticeably

affected by changes in ψ̄(m) and intermediate equilibrium configurations can be achieved
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Figure 3.20: Band tunability of θ = 60◦. Open configuration ψ̄(m) = 0 (solid black),
open configuration ψ̄(m) = 0.019 (red dashed), closed configuration ψ̄(m) = 0.020 (blue
dot-dashed).

in which the angle between connected solid triangles will vary. The lattice vectors shorten

by 11% between ψ̄(m) = 0 and ψ̄(m) = 0.019 and the angle between connected solid

triangles changes by 9.8◦, all without collapsing to the closed configuration. Varying ψ̄(m)

through this range can double the width of the band gap at Ω ≈ 2. As ψ̄(m) increases

beyond 0.019 the open configuration of the lattice becomes unstable and the structure will

assume the closed configuration (Fig. 3.18(f)). The band structure of the collapsed/closed

configuration is shown at ψ̄(m) = 0.020 and it is similar to the band diagram shown for the

collapsed θ = 60◦ structure. The bandgap at Ω ≈ 2 remains after the reconfiguration, but

narrows somewhat from the ψ̄(m) = 0.019 open configuration.

Group velocities cg for θ = 120◦ are shown in Fig. 3.21. The velocities are normalized

with respect to the wave velocity c0 of the θ = 120◦ structure when ψ̄(m) = 0 and Ω → 0.

The frequency chosen captures the “quasi-isostatic” [40], i.e. low strain energy, mode of

the unmagnetized KL in the S-mode band, which is very directionally biased. Without
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the torsional hinge springs this would be a zero frequency “isostatic” mode of the kagome

lattice between points O and B in Fig. 3.19. The restoring force in this mode is largely due

to the rotational springs, and since they are fairly soft the mode exhibits a low frequency

between points O and B in addition to slow group velocities. The loops or “caustics” in

the plot are indicative of beaming, which is a focusing of the wave energy in certain direc-

tions [3]. There are so many curves for the S-mode of the unmagnetized case because at

the frequency shown there is more than one wavelength that can propagate. The P -mode

also shows faster propagation along some of the the same directions for which the S-mode

shows beaming. For waves propagating in the closed configuration at the same frequency

the length of the waves compared to the unit cell becomes large enough that the continuum

assumption may be valid. At this point the structure is essentially non-dispersive, which

is shown in the linearity of the bands in Fig. 3.19. Furthermore, the group velocities are

essentially constant with changing direction in the closed configuration, as in an isotropic

material. The maximum P -mode wave speed seen in the open configuration is nearly the

same wave speed observed for minimal magnetization of the closed configuration. It is also

seen that increasing the magnetization of the closed configuration reduces the wave speeds

at this frequency because the attractive magnetic forces have a softening effect on the ef-

fective stiffness of the structure. In addition, though not shown for brevity, increasing ψ̄(m)

of the closed configuration at higher frequencies Ω > 0.5 can introduce small directional

biases.

Group velocities for θ = 60◦ are shown in Fig. 3.22. The frequency chosen for the plots

(Ω = 0.3) shows how magnetization of the open configuration of θ = 60◦ can reduce the

anisotropy of the lattice and tune the wave speeds. The values of ψ̄(m) shown are the full

range for which the open configuration remains stable and therefore show the full amount

by which the open configuration can be tuned with changing magnetization. The closed

configuration for θ = 60◦ is quite similar to the one for θ = 120◦ so the results of further

magnetization are not shown.
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Figure 3.21: Variation in group velocity at Ω = 0.127 due to reconfiguration and magne-
tization for θ = 120◦. Open configuration ψ̄(m) = 0 (solid black), closed configuration
ψ̄(m) = 0.025 (red dashed), closed configuration ψ̄(m) = 0.125 (blue dot-dashed).
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Figure 3.22: Variation in group velocity at Ω = 0.3 due to reconfiguration and magne-
tization for θ = 60◦. Open configuration ψ̄(m) = 0 (solid black), open configuration
ψ̄(m) = 0.019 (red dashed), closed configuration ψ̄(m) = 0.020 (blue dot-dashed).
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CHAPTER 4

HOMOGENIZATION OF MAGNETO-ELASTIC STRUCTURES

4.1 Chapter overview

The purpose of this chapter is to quantify the effect that lattice reconfiguration has on the

equivalent continuum properties of a lattice. To do so, a homogenization methodology for

elastic lattices [50] is extended and applied to some of the lattices discussed previously in

Chapters 2 and 3. Over an order of magnitude change in homogenized stiffness is seen to be

possible through reconfiguration, in addition to the introduction of anisotropy. 1D lattices

are considered as linear elastic continuua and 2D lattices are considered as linear elastic

orthotropic continuua. First the homogenization procedure is described. Then results for

1D cases are presented including numerical simulations for verification of the method.

Finally, results for 2D hexagonal and re-entrant lattices are presented.

4.2 Homogenization procedure

4.2.1 Linearization about equilibrium

The considered homogenization approach assumes a linear elastic continuum. This requires

linearization of the governing equations under the assumption that the lattice undergoes

small displacements from a stable equilibrium. A first order Taylor series expansion is

employed to linearize the forces. Thus, the gradient of the forces with respect to the unit

cell DOFs defines a stiffness matrix, and the equations of motion for a unit cell can be

expressed as in Eq. (3.3).
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4.2.2 Reduction of the degrees of freedom

The homogenization method, developed by [50], derives an equation of motion from the

lattice structure that is compared to the continuum equations of motion in order to extract

the mechanical properties. Before the method is applied the lattice must be reduced to

an equivalent system with only one particle per unit cell, which ensures that the spacing

between the particles makes a square grid in the lattice coordinate space. This is required to

achieve cancellation between the 1st order partial derivatives that would otherwise manifest

in the equation of motion derived by the homogenization method and break the analogy to

the continuum equation of motion. Guyan reduction [95] accomplishes this task. Through

the algebraic manipulation and substitution in Guyan reduction the nm DOFs of the master

particles m are used to define the ns DOFs of the slave particles s. Any particle in a unit

cell can be chosen as the master particle as long as the same particle is chosen in each unit

cell. Partitioning the equation of motion into master and slave DOFs gives:

(
K − ω2M

)
q =


Kmm Kms

KT
ms Kss

− ω2

Mmm Mms

MT
ms Mss



ndof×ndof

qmqs

ndof×1

= 0

(4.1)

where ndof = nm + ns is the number of DOFs describing the particles within the distance

r∞ from a reference unit cell.

Though the equilibrium geometry of the structure is periodic, the deformation is arbi-

trary and cannot be described by the reference unit cell alone. Therefore, Eq. (4.1) is the

equation of motion for an entire structure, not just one cell as Eq. (3.3), and [qm; qs] con-

tains the qm,n corresponding to all m,n pairs. Having Eq. (4.1), a transformation matrix

is then calculated, which, when applied, solves for the master DOFs in terms of the slave
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DOFs.

T =


Inm×nm

−K−1ss KT
ms


ndof×nm

(4.2)

where I is the identity matrix. Applying the transformation matrix produces the reduced

mass and stiffness matrices M (r),K(r) ∈ Rnm×nm , and the displacement vector q(r) ∈

Rnm×1.

M (r) = T TMT

K(r) = T TKT

q(r) = qm

(4.3)

In final preparation for homogenization methodology the mass and stiffness matrices

are partitioned into blocks, each of which describe the effect of cell m,n’s DOFs on the

reference cell’s DOFs. For the lattices studied, Eq. (4.4) separates out 3 equations from the

nm reduced equations of motion, which correspond to the three degrees of freedom of the

master node in the reference unit cell.

M∑
m=−M

N∑
n=−N

(
M (r)

m,nq̈
(r)
m,n +K(r)

m,nq
(r)
m,n

)
= 0 (4.4)

It is worth noting here that for a static problem Guyan reduction introduces no assump-

tions, and thus no error regarding static elastic properties.

4.2.3 Long-wavelength approximation

The homogenization method follows the procedure described in [50] and is summarized

here. First the lattice coordinate space η1, η2 is defined using the lattice vectors d1,d2.xy
 = E

η1η2
 (4.5)

76



E =

[
d1 d2

]
=


e11 e12

e21 e22

 (4.6)

Then it is assumed that the displacement of the particles is continuous in space and

can be represented by a second order Taylor series in the lattice coordinate space η1, η2.

Thus, the master DOFs of the cell md1 + nd2 away from the reference unit cell may be

approximated as:

qm,n ≈ q(η1, η2) +m
∂q

∂η1
+ n

∂q

∂η2
+

1

2
m2∂

2q

∂η21
+

1

2
n2∂

2q

∂η22
+mn

∂2q

∂η1∂η2
(4.7)

Application of Eq. (4.7) to Eq. (4.4) produces:

F ′mq̈ +A′
∂2q

∂η21
+B′

∂2q

∂η1∂η2
+C ′

∂2q

∂η22
+D′

∂q

∂η1
+E′

∂q

∂η2
+ F ′q = f (4.8)

where, although the absence of external forcing will be assumed, a force vector f continu-

ous in x, y is included for generality. Equation 4.8 assumes that M (r)
m,n = 0 for m,n 6= 0,

meaning there is no inertial coupling between cells. Of note is the fact that the matrices

in Eq. (4.8) are dependent not on nearest neighbors only but on the cells up to M or N

indexes away, where M,N 6= 1 in general, allowing the inclusion of non-nearest neighbor

77



magnetic interactions. The matrices in Eq. (4.8) are defined:

A′ =
1

2

M∑
m=−M

N∑
n=−N

m2K(r)
m,n B′ =

M∑
m=−M

N∑
n=−N

mnK(r)
m,n

C ′ =
1

2

M∑
m=−M

N∑
n=−N

n2K(r)
m,n D′ =

M∑
m=−M

N∑
n=−N

mK(r)
m,n

E′ =
M∑

m=−M

N∑
n=−N

nK(r)
m,n F ′ =

M∑
m=−M

N∑
n=−N

K(r)
m,n

F ′m =
M∑

m=−M

N∑
n=−N

M (r)
m,n.

(4.9)

Equation (4.9) differs from that in [50] as the typo omitting the 1/2 fromA′ andC ′ has

been fixed. In order to convert to the physical space x, y from the lattice coordinate space

η1, η2 the derivatives are converted using:


∂
∂η1

∂
∂η2

 = ET


∂
∂x

∂
∂y

 (4.10)



∂2

∂η21

∂2

∂η22

∂2

∂η1∂η2


=



e211 e221 2e11e21

e212 e222 2e22e12

e11e12 e21e22 e12e21 + e11e22





∂2

∂x2

∂2

∂y2

∂2

∂x∂y


. (4.11)

Note that these equations differ from those in [50] slightly as two small typos have been

fixed. The change of basis gives the continuum equation of motion in the physical space

x, y:

Fmq̈ +A
∂2q

∂x2
+B

∂2q

∂x∂y
+C

∂2q

∂y2
+D

∂q

∂x
+E

∂q

∂y
+ Fq = f (4.12)
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whereA, ...,F ,Fm are defined in terms ofA′, ...,F ′,F ′m and E as follows:

A = e211A
′ + e11e12B

′ + e212C
′

B = 2e11e21A
′ + (e12e21 + e11e22)B

′ + 2e22e12C
′

C = e221A
′ + e21e22B

′ + e222C
′

D = e11D
′ + e12E

′

E = e21D
′ + e22E

′

F = F ′

Fm = F ′m.

(4.13)

As a comparison will be made with the equation of motion for a continuum the equation

must be expressed per unit volume V , which for a 2D structure is:

V = |d1 × d2|b (4.14)

where b is the out-of-plane thickness of the structure. The new equation of motion is:

1

V

(
Fmq̈ +A

∂2q

∂x2
+B

∂2q

∂x∂y
+C

∂2q

∂y2
+D

∂q

∂x
+E

∂q

∂y
+ Fq

)
=
f

V
= b (4.15)

where b is a vector of body forces.

From here the procedure of [50] is continued, omitting terms that decrease with the

length scale of the micro structure ε3. Then the rotational DOF θ is algebraically removed

(assuming no moments are applied) and the 2 resulting equations are:

fmxx q̈x − a
∂2qx
∂x2

− b∂
2qx
∂y2
− c ∂

2qy
∂x∂y

= bx

fmyy q̈y − d
∂2qy
∂x2
− e∂

2qy
∂y2
− f ∂

2qx
∂x∂y

= by

(4.16)

where qx, qy and bx, by are the components of q and b respectively, and a · · · f are constants.
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Equation (4.16) is compared with the equations of motion for a thin orthotropic material

(plane stress) which are:

ρq̈x − E ′1
∂2qx
∂x2

−G∂
2qx
∂y2
− (E ′12 +G)

∂2qy
∂x∂y

= bx

ρq̈y −G
∂2qy
∂x2
− E ′2

∂2qy
∂y2
− (E ′12 +G)

∂2qx
∂x∂y

= by

(4.17)

Comparing like terms allows algebraic solution of the density ρ the Young’s moduli E1

and E2, the Poisson’s ratios ν12 and ν21, and the shear modulus G12 in terms of a · · · f .

4.3 Homogenization of 1D magneto-elastic lattices

The procedure is first applied to the 1D lattices shown in Fig. 4.1(a) and Fig. 4.1(b). The

analytical expressions of the equivalent properties of both structures derived below are used

to check the convergence of the approximate solutions described in the previous section.

For both lattices the same approach is used. A variable s, used to denote the pattern

type, allowing specification between the two lattices mathematically. It is−1 for alternating

polarities (Fig. 4.1(b)) and 1 if all polarities are the same (Fig. 4.1a). First the equation of

motion for the generic particle i is derived. It is assumed that the lattice is in equilibrium,

and evenly spaced with distance h between all nearest-neighbor magnets. The equation of

motion is:

mpüi + ka(−ui−1 + 2ui − ui+1) +
∞∑
n=1

k(m)
n (−ui−n + 2ui − ui+n) = 0 (4.18)

where ui is the displacement of particle i in the x direction, and k(m)
n is the equivalent lin-

earized stiffness of the magnetic interaction with a particle distance hn away from particle

i.

Assuming a continuous distribution of displacement, a second order Taylor series can

be expanded about particle i for a step n, which approximates ui+n. The i is dropped from
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(a) (b)

(c) (d)

(e)

(f)

(g)

Figure 4.1: Periodic equilibrium examples for 1D structures with 1 (a), 2 (b-d), and 4 (e-g)
particle unit cells. Red and blue circles denote magnets with dipole moments perpendicular
to the lattice plane pointing towards and away from the reader respectively. Black lines
denote elastic connections between magnets.
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(a) (b) (c)

Figure 4.2: Periodic equilibrium examples for 2D structures with 2 particle unit cells. Red
and blue circles denote magnets with dipole moments perpendicular to the lattice plane
pointing towards and away from the reader respectively. Black lines denote elastic connec-
tions between magnets. Particles in the unit cell have been highlighted by placing yellow
dots in their centers.

the notation as its value is not important so ui, ui+n → u, un, yielding:

un ≈ u+ hn
∂u

∂x
+

1

2
(hn)2

∂2u

∂x2
(4.19)

For 1D lattices the unit cell volume V is:

V = hbw (4.20)

where b and w are the thicknesses of the rectangular prism unit cell in the 2 directions per-

pendicular to the length of the lattice. Substituting Eq. (4.19) into Eq. (4.18) and dividing

by the unit cell volume V simplifies to:

h2

V

[
k +

∞∑
n=1

k(m)
n n2

]
∂2u

∂x2
− mp

V
ü = 0 (4.21)

By comparing Eq. (4.21) to the 1D wave equation

E
∂2u

∂x2
− ρü = 0 (4.22)
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where ρ is the material density, it can be seen that the equivalent Young’s modulus E is:

E =
h2

V

[
k +

∞∑
n=1

k(m)
n n2

]
(4.23)

Linearizing Eq. (2.5) it can be determined that:

k(m)
n = 4

ψ(m)

r5n
sn = 4

ψ(m)

n5h5
sn (4.24)

where rn is the distance from particle i to particle n and s is defined above.

4.3.1 Young’s modulus for 2 particle cells

For convenience, the modulus of elasticity is normalized to the unmagnetized case (ψ(m) =

0),Eo. If all magnets are repelling (s = 1) (Fig. 4.1(a)) the normalized modulus of elasticity

is:
E

Eo
= ho

[
1 + 4

ψ̄(m)

h5o
ζ(3)

]
(4.25)

where ho = h/r0 and ζ is the Reimann zeta function defined as [96]:

ζ(p) =
∞∑
n=1

1

np
. (4.26)

Since there exist methods to accurately calculate the Reimann zeta function and it is

computationally reasonable to achieve a value for it to machine precision the radius of in-

fluence r∞ is not used in this case and no modeling error is introduced by omitting magnetic

interactions in this 1D structure. Furthermore, the normalized magnetization is defined as

in Eq. (2.18). If the polarity of the magnets alternates (s = −1) (Fig. 4.1b) the normalized

modulus of elasticity is:

E

Eo
= ho

[
1− 3

ψ̄(m)

h5o
ζ(3)

]
(4.27)
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Now only ho must still be defined. The distance between each particle h is a stable

critical point of the energy functional Eq. (2.13) when reduced to its static terms. This

leads to the following polynomial problem for nearest neighbors repelling and attracting

respectively:

h5o − h4o − ψ̄(m)ζ(3) = 0 (4.28)

h5o − h4o +
3

4
ψ̄(m)ζ(3) = 0 (4.29)

The variation of the equivalent Young’s modulus with ψ̄(m) is presented in Fig. 4.3.

The figure describes the tunability of the stiffness with changes in magnetization for simple

structures defined by a 1 and 2 magnet unit cell. It is observed that the presence of repulsive

magnetic interactions produces a hardening of the structure (solid black curve), and the

presence of attractive nearest neighbor magnetic interactions has a softening effect (dashed

red curve). There is a critical magnetization for the case with attracting nearest neighbors

near ψ̄(m) = 0.09 where the structure approaches 0 stiffness as the structure becomes

unstable. This is the magnetization magnitude at which the magnetic forces overpower the

elastic forces from the axial springs. Beyond this point only reconfigured versions of the

structure are stable.

4.3.2 Young’s modulus for 4 particle cells

The larger a unit cell becomes, the more possible configurations there are. The 1D results

in this paper only consider unit cells of up to 4 magnets for simplicity. Furthermore, not

all possible magnetic polarity patterns are considered. The results from 4 magnet unit cells

are now discussed, with 2 magnet unit cells considered as a special case of 4 magnet unit

cells. The group of configurations considered here are those pictured in Figs. 4.1(b), 4.1(c),

4.1(d), 4.1(e), 4.1(f), and 4.1(g). The configurations in this group can reconfigure into any

other configurations in the group, provided that both can exist for a given magnetization.
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Figure 4.3: Exact analytical solution of normalized modulus of elasticity for: the structure
pictured in Fig. 4.1a (black −) and the structure pictured in Fig. 4.1b (red −−).
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Figure 4.4: Normalized modulus of elasticity of structures with an even number of mag-
nets per unit cell; configuration in Fig. 4.1b (black circles), configuration in Fig. 4.1c (red
squares), configuration in Fig. 4.1e (red −−), configuration in Fig. 4.1f (black −), config-
uration in Fig. 4.1g (blue −·).
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Figure 4.5: Normalized density of structures with an even number of magnets per unit
cell; configuration in Fig. 4.1b (black circles), configuration in Fig. 4.1c (red squares),
configuration in Fig. 4.1d (black rings), configuration in Fig. 4.1e (red −−), configuration
in Fig. 4.1f (black −), configuration in Fig. 4.1g (blue −·).

Any structures that have contacting particles require a minimum magnetization to hold the

particles in contact against the compressed spring’s force. In addition, when a structure is

magnetized highly enough certain configurations will not be possible as magnetic forces

will overcome elastic forces. Therefore, there are values of ψ̄(m) that do not permit all the

configurations. For the following results a contact stiffness of α = 40 and a contact distance

of rc = 0.5r0 are used. The properties of the different configurations are shown in Figs.

4.4, and 4.5. For ψ̄(m) ≈ 0.045 to 0.090 this single system can take any of the 6 studied

configurations, which have different stiffnesses and densities. The modulus of elasticity

E and density ρ are normalized by the modulus of elasticity and density calculated when

ψ̄(m) = 0, which are Eo and ρo. Conveniently, the normalized density is the reciprocal

of the normalized equilibrium unit cell width d, i.e. d/d0 = (ρ/ρo)
−1, where d0 is the

equilibrium distance calculated when ψ̄(m) = 0. For the simplest cases, which are shown

in Fig. 4.3, d/d0 = 2h/(2r0) = ho.

The Young’s modulus and its variation with ψ̄(m) is presented in Fig. 4.4. Through

reconfiguration alone there are as many values available as configurations. The structures
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corresponding to Fig. 4.4 all soften in response to an increase of their magnetization. This

is due to nearest neighbors that are in attraction, because the linearized model of attract-

ing magnets exhibits negative axial stiffness. If both reconfiguration and changes in ψ̄(m)

are considered there is no stiffness between the values of E/Eo ≈ 0.2 and 2 that cannot be

achieved by at least one configuration, and there are some stiffnesses which can be achieved

by as many as 4 configurations. This shows that stiffness adaptation is not limited to a few

discrete values, allowing easier integration into possible design applications. The structure

pictured in Fig. 4.1(d) is shown separately in Fig. 4.7 because its stiffness is much greater

than the other structures’ as the contact stiffness used is α = 40. The structure is not a

full 40 times stiffer though because the attractive magnetic interactions soften the struc-

ture, even under the minimum magnetization required for it to exist. Having only contact

interactions, the structure in Fig. 4.1(d) is the stiffest possible configuration for a structure

with alternating magnetic poles and the parameters considered here, and thus gives an up-

per bound. The same can be said for the density, as contacting particles provides the closest

packed structure.

The densities of the 2 and 4 magnet configurations are presented in Fig. 4.5. The density

is primarily effected by the configuration, but there is some change with ψ̄(m). The den-

sity can be approximately doubled through reconfiguration. The configurations pictured

in Fig. 4.1(c) and Fig. 4.1(f) exhibit similar densities because both have the same ratio of

contacting to non-contacting magnets.

The configurations pictured in Fig. 4.1(c) and Fig. 4.1(f) are worthy of note because

they would be considered equivalent in terms of E and ρ if only nearest neighbor interac-

tions were considered. In fact, for low enough ψ̄(m) they have almost equivalent properties.

But with higher values of ψ̄(m) their dissimilar properties show that non-nearest-neighbor

interactions have a significant effect. Even so, the density does not change significantly

with increasing ψ̄(m), which means that a structure can have little change in its global size

but a significant change in its stiffness by changing only its internal configuration. For
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example, if ψ̄(m) = 0.09 reconfiguring from the configuration in Fig. 4.1(c) to the one in

Fig. 4.1(f) would produce only a 2.7% increase in density, but a 33% decrease in stiffness.

4.3.3 Numerical simulations

For the purpose of validating the homogenization method, as applied to the magneto-elastic

lattices, numerical simulations are completed. The equations of motion are integrated using

an explicit, variable-step Runge-Kutta method to obtain the time history of the positions

of the particles in a finite lattice. This provides a framework for performing numerical

experiments. A finite sample of each configuration to be validated, 40 particles long, is

compressed quasi-statically over a strain of less than 0.001, in which the structure can be

considered linear. The compression is performed through an applied displacement of one

end of the system while the other end is held fixed. There is linear damping included to

damp out vibrations, so slow enough forcing will ensure that dynamic forces are negligi-

ble. To obtain a strain rate slow enough to consider quasi-static a convergence study is

performed. The force vs. displacement information is used to calculate a stiffness simply

by comparing the change in reaction force to the structure’s axial strain. By normalizing to

the case when ψ̄(m) = 0 the simulation results can be compared with the homogenization

results directly. Their comparison is shown in Figs. 4.6 and 4.7, with curves representing

the approximate analytical results and the shapes representing the numerical results.

4.4 Homogenization of 2D magneto-elastic lattices

For simplicity the results presented for 2D magneto-elastic structures are restricted to sys-

tems described by a 2 magnet unit cell. A magnetization pattern where all magnets repel

(Fig. 4.2(a)) is used to investigate and compare to the pattern where nearest neighbors at-

tract (Fig. 4.2(b)). The magnetization pattern with attracting nearest neighbors is used to

showcase the drastic changes in properties that can be achieved by reconfiguration. The

reconfiguration considered is the transition to the re-entrant lattice (Fig. 4.2(c)) as this
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Figure 4.6: Comparison between normalized modulus of elasticity calculated by homog-
enization and numerical simulation for the configuration in Fig. 4.1a (blue −· and black
squares respectively), the configuration in Fig. 4.1b (red−− and black circles respectively),
and the configuration in Fig. 4.1c (black − and black diamonds respectively).
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Figure 4.7: Comparison between normalized modulus of elasticity calculated by homog-
enization and numerical simulation for the configuration in Fig. 4.1d (red −− and black
circles respectively).
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is possibly the easiest way to reconfigure the magneto-elastic hexagonal lattice studied.

In contrast with the hexagonal patterns, the re-entrant lattice is anisotropic. Fig. 4.10(a)

defines the 1 and 2 directions for the re-entrant lattice, which are used to identify the or-

thotropic properties. Furthermore, the re-entrant lattice cannot exist for all the same values

of kτ/kτo and ψ̄(m) as the hexagonal lattice. Namely, there is an upper limit on kτ/kτo

near 0.1. To explore the tunability of the equivalent mechanical properties of the aforesaid

lattices the homogenization procedure as described in Section 4.2 is applied to structures

with varying torsional stiffnesses kτ and magnetization magnitudes ψ̄(m). As in the previ-

ous section a contact stiffness of α = 40 and a contact distance of rc = 0.5r0 are used. The

properties are normalized with respect to a reference case defining the reference properties

Eo and Go, which is the unmagnetized (ψ̄(m) = 0) hexagonal lattice with kτo = 1 N/rad

and kao = 1 N/m.

The first results presented are for the two considered hexagonal lattice structures (Figs.

4.2(a) and (b)). The homogenization produces properties that describe an isotropic mate-

rial, i.e. E1 = E2 = E, ν12 = ν21 = ν, and G12 = E/(2(1 + ν)) = G, which is to be

expected for regular hexagonal geometry [2]. Variation in kτ is seen to cause substantial

changes in material stiffness so the value of kτ is incremented exponentially. Indeed, as

kτ → 0 the quantities E,G → 0 and the lattice approaches a mechanism. In this state

the structure’s global deformation is dominated by the rotational deformation of the tor-

sional springs. In such a case magnetization has a stiffening effect on the structure, which

is evident in Figs. 4.8(a-d) for the cases where kτ/kτo = 10−3 (solid black line), though it

is more prominent in the lattice with only repelling magnetic interactions. The stiffening

of the structure can be explained predominantly through the repulsion of the next-nearest

neighbor interactions, which are repulsive in both of the lattices discussed here. As the lat-

tices are dominated by rotational deformation, the nearest neighbor magnetic interactions

do not significantly effect the global properties. The exception comes when the the effective

axial stiffness is nearly 0 close to the point of instability for attracting nearest neighbors,

90



e.g. near ψ̄(m) = 0.1. Though next-nearest neighbor interactions can explain the dominant

trend for both magnetization patterns, comparison of Fig. 4.8(a) and (b) reveals that more

distant magnetic interactions have an non-negligible effect on the structure. Thus, efforts to

include the non-nearest neighbor interactions appear to be valuable. Significant tunability

is seen for low kτ when the magnetic interactions dominate the structure’s properties. For

example, in the case where kτ/kτo = 10−3 in Fig. 4.8(a) E increases by a factor of 48 over

the range of ψ̄(m) shown.

Increasing kτ causes the global deformation of the lattice to be dominated by the defor-

mation of the axial springs in the lattice. In the limit as kτ →∞ the structure will become

like the one discussed in [97]. The axial deformation dominated structures are stiffened

by repulsive nearest neighbor interactions and softened by attractive nearest neighbor in-

teractions, due to the equivalent linearized axial stiffness of magnetic interactions being

positive for repulsion and negative for attraction. The greatest torsional stiffness shown is

kτ/kτo = 102 (dashed red line). Increasing kτ/kτo above this does not have a significant

effect on the mechanical properties. In addition, decreasing the torsional stiffness below

kτ/kτo = 10−3 does not make a significant change. Therefore, the properties of the hexag-

onal lattices discussed are bounded by the solid black and red dashed curves in Fig. 4.8.

An interesting property of both magnetization patterns is that the Poisson’s ratio can

be either positive or negative depending on the torsional stiffness kτ and the magnetization

(Figs. 4.8(e) and (f)). In the limit as kτ → 0, when the compliance of the system is

dominated by the torsional springs, it is observed that ν → 1, as expected for the analogous

structure of the regular hexagonal honeycomb with slender beams [2]. In the limit as kτ →

∞ it is observed that ν → −1/3, which is consistent with equations given by [97] for

regular hexagonal lattices with the angles between bars constrained. In this second case

the structure’s compliance is dominated by the axial springs. Thus, it is clear that the ratio

between rotational and axial stiffness affects the sign of ν. Since magnetization can have a

similar effect to changing the rotational stiffness, as discussed above, for proper values of
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Figure 4.8: Normalized moduli and Poisson’s ratio for the hexagonal lattice with repelling
magnets (a, c, and e) and with attracting nearest neighbors (b, d, and f). kτ/kτo = 102 (red
−−), kτ/kτo = 100 (black triangles), kτ/kτo = 10−1 (blue −·), and kτ/kτo = 10−3 (black
−).
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Figure 4.9: Poisson’s ratio for the hexagonal lattice with repelling magnets (a) and with
attracting nearest neighbors (b) for values of kτ that allow changes in ψ̄(m) to change the
sign of ν. kτ/kτo = 10−0.1 (blue circles), kτ/kτo = 10−0.2 (red squares), kτ/kτo = 10−0.3

(black −), kτ/kτo = 10−0.4 (red −−), kτ/kτo = 10−0.5 (blue −·), and kτ/kτo = 10−0.6

(black diamonds).

kτ it is possible to switch between positive and negative ν simply by changing ψ̄(m). The

ranges of kτ that allow for such tunability of ν for both magnetization patterns discussed

are shown in Fig. 4.9.

As stated previously the magneto-elastic hexagonal lattice with attracting nearest neigh-

bors can be reconfigured into the re-entrant lattice (Fig. 4.2(c)) where strong contact forces

hold the structure in equilibrium against magnetic attraction. The homogenized properties

for varying values of kτ/kτo and ψ̄(m) are presented in Fig. 4.11 and they are compared

to the hexagonal lattices that reconfigure into them. In contrast to analyses of re-entrant

lattices such as those by [2] or [50], where the geometry of a cell is explicitly defined, the

re-entrant lattices discussed in this article have their geometry defined by the equilibrium

configuration associated with a chosen value of ψ̄(m). The equilibrium length of one axial

spring relative to another may differ by more than 10% depending on the choice of kτ/kτo

and ψ̄(m), but the equilibrium lengths are approximately equal for low kτ/kτo and ψ̄(m).

Therefore, the tuning of properties with changing ψ̄(m) discussed hereafter are caused in

part by the change in the re-entrant lattice equilibrium geometry.
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(a) (b)

Figure 4.10: Re-entrant unit cell with coordinate system 1,2 pictured (a), and θ defined as
the angle between coordinate axes 1,2 and x, y (b)

Reconfiguration from the hexagonal to the re-entrant lattice has a drastic effect on the

stiffness of the lattice. The drastic change is seen comparing in Fig. 4.11 and Fig. 4.8(b, d,

and f). Two choices of kτ/kτo are used. The value kτ/kτo = 10−1 is near the maximum

value of kτ/kτo for which the re-entrant lattice can exist, and the value kτ/kτo = 10−3 is

representative of the asymptotic solution as kτ/kτo → 0. Values forE1 andE2 (Fig. 4.11(a)

and (b)) in the re-entrant lattices are generally much higher than E in hexagonal lattices of

equal kτ/kτo. The internal structure of the re-entrant lattice makes strain along the 1 and 2

directions produce axially dominant local deformation, regardless of the torsional stiffness.

Furthermore, the stiff contact interactions make E1 stiffer than values of E associated with

axial deformation dominant hexagonal lattices with the same ψ̄(m) and magnetization pat-

tern. In the 2 direction, the increased density from the reconfiguration makes values of E2

stiffer than associated values of E for axial deformation dominant hexagonal lattices. For

the kτ/kτo = 10−3 case the Young’s moduli of the hexagonal configuration are dominated

by magnetic interactions, so since the minimum magnetization for the existence of the re-

entrant configuration is low in this case the Young’s moduli can be increased by more than

2 orders of magnitude simply through structural reconfiguration to the re-entrant lattice.

Even for higher magnetizations there is over a 10-fold increase in stiffness due to reconfig-

uration. For kτ/kτo = 10−1 the structure is still significantly stiffened by reconfiguration,

but not as drastically as in the previous case. The kτ/kτo = 10−1 also has a more limited
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range of ψ̄(m) in which it can exist in the re-entrant configuration.

As in the hexagonal lattice the shear modulus G12 in the re-entrant lattice is dependent

on kτ . When kτ/kτo = 10−3 reconfiguration can account for over order of magnitude

increase inG12, but when kτ/kτo = 10−1 the shear moduli for the hex and re-entrant lattices

are more comparable. The Poisson’s ratios also change significantly with reconfiguration,

with the re-entrant lattices exhibiting lower Poisson’s ratios than corresponding hexagonal

lattices in general. Although the re-entrant lattice structure is generally known for being

auxetic [2] this magneto-elastic example has positive ν12 and ν21 because of the stiff contact

interactions that prevent the structure from folding in on itself. However, sufficiently soft

contact interactions do allow negative ν12 and ν21.

In the re-entrant lattice the shear moduli are small compared to the axial stiffnesses, and

this produces significant variation of stiffness with respect to direction. Figure 4.12 shows

the variation of the equivalent properties in the x, y coordinate system, which is redefined

here to be oriented by θ with respect to the nominal coordinate system 1,2 as defined in

Fig. 4.10(b). The properties of a re-entrant lattice (solid black line) with kτ/kτo < 10−1.5 is

compared to its hexagonal configuration (dashed blue line). Note that the radii of the polar

plots in Figs. 4.12(a-c) are logarithmic. It is evident that the re-entrant lattice is much softer

for θ = 45 degrees (Fig. 4.12(a) and (b) solid black line) than θ = 0 degrees, becoming

over half an order of magnitude softer. As the Young’s moduli soften with changing θ the

shear modulus stiffens by almost one order of magnitude (Fig. 4.12(c)). Simultaneously,

there are substantial changes in the Poisson’s ratios, though they remain positive. So, even

when E1 and E2 are nearly equal the re-entrant lattice is far from isotropic in contrast to

the hexagonal lattice.
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Figure 4.11: Normalized equivalent orthotropic properties for the re-entrant lattice with
α = 40 and kτ/kτo = 10−1 (blue ·−), and kτ/kτo = 10−3 (black −).
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Figure 4.12: Variation of mechanical properties with coordinate axis orientation θ of the
hexagonal (blue −−) and re-entrant lattice (black −) with kτ/kτo = 10−1.5, ψ̄(m) = 0.01,
α = 40.
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CHAPTER 5

TOPOLOGICALLY PROTECTED BOUNDARY MODES

5.1 Chapter overview

This chapter aims to develop a framework for designing lattices which support propaga-

tion of topologically protected helical edge states in mechanical systems. The approach for

converting from quantum-mechanical to mechanical lattices presented by Süsstrunk and

Huber [74] for square lattices is extended to general planar lattices in a simple and system-

atic way, thereby developing a family of mechanical lattices. First the applied theoretical

approach is described. Next, the lattices used to illustrate the effectiveness of the approach

are described, which include a hexagonal and Lieb lattice. Finally, the results are pre-

sented for both lattices, showing the existence of helical edge modes of mechanical wave

propagation with analytical band diagrams and transient numerical simulations.

5.2 Theory: from quantum to classical mechanical systems

Quantum mechanical systems exhibiting topologically protected edge states are governed

by the eigenvalue problem that arises from the Schrödinger equation, but in mechanical

systems it arises from Newton’s laws of motion. In both cases creating a lattice exhibiting

TPBMs relies on the existence of two overlapping pairs of Dirac cones in the dispersion

relations, which may be separated to form a topologically nontrivial bandgap introducing

so-called spin-orbital coupling [57]. The attributes of a quantum mechanical system with

helical edge states are discussed first, and then its mechanical analogue is derived.

LetH be the tight-binding Hamiltonian of the quantum system for a lattice with up and

down spin electrons denoted by subscript µ which takes values in {−1, 1}. A lattice with

only nearest neighbor interactions and spin orbital coupling as those in [98] are considered.,

98



identical layers
coupling

y

x

z

Figure 5.1: Schematic of bi-layered lattice, made of two identical layers, with interlayer
coupling between them.

with their interaction strengths denoted by knn and λiso, respectively. Let dpq denote the

vector connecting two lattice sites (p, q). Let npq = dpr × drq/|dpr × drq| denote the

unit vector in terms of the bond vectors which connect next nearest neighbor lattice sites

p and q via the unique intermediate site r. Let σp, p ∈ {x, y, z} denote the set of Pauli

matrices and let ez denote the unit normal vector in the z−direction. Following the second

neighbor tight binding model [57] and assuming that our lattice is located in the xy plane,

the Hamiltonian for this planar lattice can then be expressed in the form

H = −knn
∑
〈pq〉;µ

ŝ†p,µŝq,µ − iλiso
∑
〈〈pq〉〉;µ

(npq · ez)σz,µµŝ†p,µŝq,µ (5.1)

Here ŝp and ŝ†p denote the standard creation and annihilation operators, respectively, and

σz,µµ equals the value of µ. The notation 〈pq〉 denotes nearest neighbor pairs of p and q,

and the notation 〈〈pq〉〉 denotes next-nearest neighbors. The eigenvalue problem arising

from the above Hamiltonian has helical edge modes for a range of values of λiso and knn.

We now describe the procedure to get a mechanical analogue of the above system. In

the mechanical system, the stiffness matrix comprises of real terms for forces arising from

passive components and the eigenvalue problem arises from applying a traveling wave

assumption to Newton’s laws. Noting that unitary transformations preserve the eigenvalues

and thus the topological properties of the band structures, we apply the following unitary
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transformation [74] to the quantum eigenvalue problem towards obtaining a corresponding

Hamiltonian with the desired properties in a mechanical system:

U = u⊗ 1N , u =
1√
2

1 −i

1 i

 (5.2)

whereN is the number of sites in the lattice. Under this unitary transformation, the mechan-

ical Hamiltonian, is obtained by DH = U †HU . Noting that u†σzu = iσy and u†u = 12,

the mechanical Hamiltonian has the following expression:

DH = −knn
∑
〈pq〉;µ

ŝ†p,µŝq,µ − λiso
∑
〈〈pq〉〉;µ

µ(npq · ez)s†p,µsq,−µ (5.3)

As required, this equivalent HamiltonianD has only real terms and it should arise from the

eigenvalue problem of a mechanical system.

Similar to the quantum Hamiltonian, the band structure of the dynamical matrix of

the corresponding mechanical system requires two overlapping bands, with a bulk band

gap between them which breaks the Dirac cones and this band gap arises due to the λiso

coupling. The two overlapping bands are obtained by simply having two identical lattices

stacked on top of each other, as illustrated in the schematic in Fig. 5.1. There are masses

at the sites. The two lattices have nearest neighbor coupling springs knn in their respective

planes and springs with strength λiso between the next nearest neighbor sites in the other

plane. When λiso = 0, the two lattice layers are uncoupled and the band structure for each

layer has two Dirac cones in the first Brillouin zone. The couplings introduced by λiso

are inter-layer and connect all next nearest neighbors at the lattice site. In the presence

of couplings between the two lattice layers, the Dirac cones are broken, but the bands still

overlap. The band structure is now topologically nontrivial and supports edge states similar

to the quantum mechanical system.

Assuming the springs in the lattice to follow a linear force displacement law, Newton’s
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law for displacement u at the lattice site x takes the form Mü + Ku = 0. Imposing

a harmonic solution with frequency ω of the form u(t) = veiωt results in the eigenvalue

problem Dv = ω2v, where D = M−1K is the dynamical matrix. The band structure

for an infinite lattice is obtained by imposing the Bloch representation v(x) = v0e
iκ·x,

where v0 represents the degrees of freedom in a unit cell of the lattice. The eigenvalues

of the dynamical matrix ω2 are positive, in contrast with the eigenvalues of the mechanical

Hamiltonian DH . To have edge modes in the mechanical system with dynamical matrix

D, we require that its band structure be identical to that ofDH . This condition is achieved

by translating the bands of DH upward along the frequency axis, so they are all positive.

Adding a term D0 = η12N (η > 0) to DH shifts the bands upward and imposing the

condition D = DH + D0 results in identical band structures. Note that adding the term

D0 keeps the eigenvectors unchanged while adding a constant term η to all the eigenvalues,

and thus it does not alter the topological properties of the bands. Let np and mp denote the

number of nearest and next-nearest neighbors at a site p. Then we have the following

expression forD0

D0 =
∑
p;µ

ηŝ†p,µŝp,µ, η = max
p

(knnmp + λisonp) . (5.4)

In a mechanical system, the stiffness kpp = knnmp + λisonp arises at lattice site p when

there are springs connecting two lattice sites. The dynamical matrix as a result is diagonally

dominant and the termD0 arises naturally as a result of spring interactions. Any additional

stiffness required at a lattice site p can be achieved by adding a ground spring stiffness equal

to the difference between η and kpp. We will demonstrate in the next section that topological

phase transitions can arise if the ground spring stiffness deviates from this value.
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(a) (b)

Figure 5.2: Schematic of (a) normal and (b) reverse springs. A clockwise rotation in one
disk induces a clockwise (counter-clockwise) torque on the other from the normal (reverse)
spring.

5.3 Mechanical lattice description

Having presented the structure of a dynamical matrixD for realizing edge modes, we now

outline the procedure to construct a mechanical lattice using fundamental building blocks,

which are disks and two types of linear springs here called: “normal” and “reversed.”

There is a disk at each lattice site, which can rotate about its center in the ez direction

as its single degree of freedom. It has a rotational inertia I and radius R, and the mass

of the springs relative to the disks are assumed to be negligible. The disks interact with

each other by a combination of these normal and reversed springs. Figure 5.2(a) displays

a schematic of the normal spring, composed of a linear axial spring of stiffness kN con-

necting the edges of disks (i, j). Figure 5.2(b) displays a schematic of a reversed spring,

an axial spring joining opposite sides of a disk. For small angular displacements θi, θj the

torque exerted on disk i due to the normal and reversed springs are kNR2(θj − θi) and

kRR
2(−θj − θi), respectively. The aforementioned torque-displacement relations remain

a reasonable approximation when the inter-layer springs are nearly parallel to the lattice,

which is assumed. Otherwise, a scale factor can be added.

We present the explicit construction of two lattice configurations: the hexagonal and

the Lieb lattice. Figure 5.3(a) displays the schematic of a cell of the hexagonal lattice. It is
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Figure 5.3: Hexagonal and Lieb lattice respectively (a,b) unit cell defined by the lattice
vectors d1 and d2 with nearest-neighbor interactions in gray, (c,d) trimetric view, and (e,f)
top view. (c-f) Bars represent axial springs and the only DOF of each blue cylinder is
rotation about its longitudinal axis. Gray bars act within one layer. Red and green bars
couple the layers.
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composed of two layers of disks, with the disks on the top and bottom layer analogous to the

up and down spin electrons at each site in a quantum mechanical system. The arrangement

of couplings is chosen to achieve the desired form ofD, with normal in-plane springs (gray

color) of stiffness knn/R2 between nearest neighbors. There are two sets of interlayer

springs between the next-nearest neighbors, normal springs (green) and reversed springs

(red), both having stiffness kiso/R2. The inter-layer spring between two sites (p, µ) and

(q,−µ) is of normal or reversed type depending on the sign of µ(npq · ez) in Eqn. (5.3).

Figure 5.3 displays a schematic of the Lieb lattice. Note that the Lieb lattice also requires

some normal springs connected to the rigid ground due to the mismatch between η and kpp.

In order to practically implement the described mechanical systems a fixture is required

to constrain the translation and undesired rotation of the disks. One can envision a stiff

plate or truss above and below the lattice with rods connecting the two through the disks.

As long as the fixture is designed with higher frequency wave modes than the bi-layered

lattice it should not interfere with the desired TPBMs.

We present the complete equations of motion for the disks in a unit cell for both the

lattices considered in this work in the following subsections. Consider an infinite lattice

divided into unit cells, and each unit cell is indexed by a pair of integers (i, j), denoting

its location with respect to a fixed coordinate system. Let I be the rotational inertia of

each disk and let θa,bi,j denote the angular displacement of a disk. The two subscripts (i, j)

identify the unit cell and and the two super-scripts identify the location of the disk within

the unit cell (i, j). The first super-script index denotes its location in the xy-plane while

the second super-script index denotes whether the disk is in top (t) or bottom (b) layer.

5.3.1 Hexagonal lattice

Figure 5.3(a) displays the top layer of a unit cell of the hexagonal lattice. Each layer has

two disks, indexed as illustrated. The equations of motion of the four disks of the unit cell
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are

Iθ̈1,ti,j = knn
(
θ2,ti,j + θ2,ti,j−1 + θ2,ti−1,j − 3θ1,ti,j

)
− 6kisoθ

1,t
i,j

+ kiso

(
θ1,bi+1,j + θ1,bi−1,j+1 + θ1,bi,j−1

)
− kiso

(
θ1,bi,j+1 + θ1,bi−1,j + θ1,bi+1,j−1

)
(5.5a)

Iθ̈2,ti,j = knn
(
θ1,ti,j + θ1,ti,j+1 + θ1,ti+1,j − 3θ2,ti,j

)
− 6kisoθ

2,t
i,j

+ kiso

(
θ2,bi,j+1 + θ2,bi−1,j + θ2,bi+1,j−1

)
− kiso

(
θ2,bi+1,j + θ2,bi−1,j+1 + θ2,bi,j−1

)
(5.5b)

Iθ̈1,bi,j = knn

(
θ2,bi,j + θ2,bi,j−1 + θ2,bi−1,j − 3θ1,bi,j

)
− 6kisoθ

1,b
i,j

+ kiso
(
θ1,ti+1,j + θ1,ti−1,j+1 + θ1,ti,j−1

)
− kiso

(
θ1,ti,j+1 + θ1,ti−1,j + θ1,ti+1,j−1

)
(5.5c)

Iθ̈2,bi,j = knn

(
θ1,bi,j + θ1,bi,j+1 + θ1,bi+1,j − 3θ2,bi,j

)
− 6kisoθ

2,b
i,j

+ kiso
(
θ2,ti,j+1 + θ2,ti−1,j + θ2,ti+1,j−1

)
− kiso

(
θ2,ti+1,j + θ2,ti−1,j+1 + θ2,ti,j−1

)
(5.5d)

5.3.2 Lieb lattice

Figure 5.3(b) displays the top layer of a unit cell of the Lieb lattice. Each layer has three

disks, indexed as illustrated. Let kg = max(2knn + 4λiso, 4knn) be the additional term

required to shift all the bands upward. The equations of motion of the six disks of the unit
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cell are

Iθ̈1,ti,j = knn
(
θ2,ti,j + θ3,ti,j + θ3,ti,j−1 + θ2,ti−1,j

)
− kgθ1,ti,j , (5.6a)

Iθ̈2,ti,j = knn
(
θ1,ti,j + θ1,ti+1,j

)
− kgθ2,ti,j + kiso

(
θ3,bi+1,j − θ

3,b
i,j + θ3,bi,j−1 − θ

3,b
i+1,j−1

)
(5.6b)

Iθ̈3,ti,j = knn
(
θ1,ti,j + θ1,ti,j+1

)
− kgθ3,ti,j + kiso

(
θ2,bi−1,j+1 − θ

2,b
i−1,j + θ2,bi,j − θ

2,b
i,j+1

)
(5.6c)

Iθ̈1,bi,j = knn

(
θ2,bi,j + θ3,bi,j + θ3,bi,j−1 + θ2,bi−1,j

)
− kgθ1,bi,j , (5.6d)

Iθ̈2,bi,j = knn

(
θ1,bi,j + θ1,bi+1,j

)
− kgθ2,bi,j + kiso

(
θ3,ti+1,j − θ

3,t
i,j + θ3,ti,j−1 − θ

3,t
i+1,j−1

)
(5.6e)

Iθ̈3,bi,j = knn

(
θ1,bi,j + θ1,bi,j+1

)
− kgθ3,bi,j + kiso

(
θ2,ti−1,j+1 − θ

2,t
i−1,j + θ2,ti,j − θ

2,t
i,j+1

)
(5.6f)

Note that the disks indexed 1 and {2, 3} have different number of neighbors and hence

ground springs are required to ensure that all the bands are shifted by the same amount.

The ground stiffness is required on either the 1 disks or on the {2, 3} depending on the

relative magnitudes of knn and kiso. Its value is 4kiso − 2knn on disk 1 if 2kiso > knn or

2knn − 4kiso on disks {2, 3} in each unit cell.
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Figure 5.4: Bulk band structure with (a) λiso = 0, (b)λiso = 0.2, and (c) band diagram of a
periodic strip with fixed ends and λiso = 0.2 coupling.

5.4 Results: edge modes in bi-layered mechanical lattices

Bloch wave analysis [90, 91, 3] is conducted to show the existence of TPBMs on lat-

tice boundaries. Numerical simulations are used to verify the presence of edge states and

demonstrate the excitation of a desired one-way propagating mode. The equations of mo-

tion of the lattice are solved using a 4th-order Runge-Kutta time-marching algorithm.

5.4.1 Mechanical hexagonal lattice with TPBMs

Figure 5.4 displays a projection of the dispersion surface of the hexagonal lattice onto the

xΩ-plane. It illustrates the progression from a structure with no bandgap to one with a

topologically nontrivial bulk band gap that exhibits TPBMs. The wavenumber along x,

κx, is normalized by the lattice vector magnitude d = |d1| = |d2| and π for viewing

convenience, and Ω = ω/ω0 where ω2
0 = knn/I . Figures 5.4(a) and 5.4(b) are dispersion

relations for a 2D, periodic lattice defined by the unit cell in Fig. 5.3(a), which approximate

the behavior of a lattice far from its boundaries. Figure 5.4(a) shows the dispersion relation

of an uncoupled bilayer system with knn = 1 and λiso = 0. It consists of two identical
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(a) τ = 100 (b) τ = 200 (c) τ = 300 (d) τ = 400

(e) τ = 100 (f) τ = 200 (g) τ = 300 (h) τ = 400

Figure 5.5: RMS displacement at each lattice site for different moments in time τ . (a-d)
Clockwise propagation. (e-h) Counter-clockwise propagation. Red denotes the greatest
displacement and green denotes none.
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dispersion surfaces superimposed. If λiso is instead 0.2 a topologically nontrivial bandgap

opens up in the coupled bi-layered system (Fig. 5.4(b)), so waves at frequencies Ω ≈ 1.7 to

2.3 cannot propagate in the bulk of the lattice, i.e. far from the boundaries. This is referred

to as the “bulk bandgap” [63]. Also note that low frequency waves can no longer propagate

and there is a band gap at low frequencies due to the presence of both normal and reverse

springs. Note that reverse springs prevent zero frequency modes at zero wavenumber. To

observe this, consider a chain of disks connected by reverse springs. The equation of

motion of disk i is Iθ̈i + kRR
2(2θi + θi+1 + θi−1) = 0 and the dispersion relation of the

system is ω = 2| cos(kL/2)|. They allow low frequency waves only at k close to π. On

the other hand, a chain of disks connected by normal springs have dispersion relation ω =

2| sin(kL/2)| and they do not permit low frequency waves close to π. Hence a combination

of these normal and reverse leads to a complete band gap at low frequencies.

Bloch wave analysis is performed on a strip of the hexagonal lattice to analyze the wave

modes localized on the lattice boundaries [67, 65].

A convenient way to check for the existence of TPBMs is to calculate the band diagram

for the 1D, periodic system created in the following way. The unit cell is tessellated a finite

number of times along one lattice vector to make a strip, and then made periodic along the

other lattice vector. The result is a system with two parallel boundaries. TPBMs, if they

exist in a specific structure, will manifest in the frequency range of the bulk bandgap due to

the bulk-edge correspondence principle [99, 100]. Furthermore, the deformation associated

with these modes, i.e. the eigenvectors, will be localized at one of the boundaries. Indeed,

there is some redundancy in solving for edge modes this way, as an infinite half space

would describe only one edge. However, this method requires only a small modification

from a 2D Bloch analysis implementation and is therefore quite convenient and practical.

For the results shown in this article a strip of the hexagonal lattice is made by repeating

27 unit cells along d1 and then made periodic along d2 by assuming the traveling wave

solution. The disks of the unit cells at each end of the strip are rigidly fixed, so there are
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25 unit cells elastically connected to two rigid “walls”. Similarly, to analyze another type

of edge, the ends of the strip can be left free. For the Lieb lattice the strip is also made by

repeating 27 unit cells (Fig. 5.3(b)) along d1, rigidly fixing the unit cells at each end of the

strip, and making the strip periodic along d2.

The disks at each end of the strip are fixed. Figure 5.4(c) displays the band diagram,

showing 2 boundary modes spanning the bulk bandgap. Note that there are actually 4

modes as each mode superimposes another mode. On each boundary, there are 2 modes,

propagating in opposite directions and they have different polarizations [74]. Thus, an edge

excited with a polarization corresponding to a boundary mode will have a wave propagating

in only one direction along the boundary.

Numerical simulations are performed to demonstrate the excitation of a TPBM on a

finite structure. The hexagonal lattice unit cell is tessellated into a 20 by 20 cell lattice and

the outer layer of cells is fixed. One site is excited such that the torque is T↑ = cos(Ωτ)

and T↓ = sin(Ωτ) on the top and bottom layer respectively, where time t is normalized by

defining τ = tω0. A Hanning window is applied to T↑ and T↓ so only 60 cycles of forcing

are applied, and Ω = 2. The result is plotted in Fig. 5.5(a-d) for different moments in

the simulation. The coloring of each site corresponds to the root mean square (RMS) of

the displacement at that site, considering the disks in both the top and bottom layer. The

simulations show that only one wave mode is excited, which propagates in a clockwise

direction around the structure, and that this wave mode passes around the two corner types

on the lattice boundary without back-scattering. The displacement magnitude is also seen

to decay quickly with increasing distance from the boundary. There is little dispersion

given the relatively constant slope for the edge mode at Ω = 2, so the variation of the

amplitude along the boundary is primarily due to the windowing of the excitation.

If the excitation to the lattice is modified so that T↓ = − sin(Ωτ) but T↑ remains the

same, only the wave mode which propagates counter-clockwise around the lattice is ex-

cited (Fig. 5.5(e-h)). Thus, the direction of energy propagation can be selected via the
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Figure 5.6: Bulk band structure with (a) λiso = 0, (b)λiso = 0.2, and (c) band diagram of a
periodic strip with fixed ends and λiso = 0.2 coupling.

polarization of the input to the system.

5.4.2 Mechanical Lieb lattice with TPBMs

Our final example studies the Lieb lattice. The bulk dispersion surface of the mechanical

Lieb lattice with knn = 1 and λiso = 0 is pictured in Fig. 5.6(a), projected on the xΩ-

plane with the wavenumber κx normalized as in the previous subsection. Low frequency

waves cannot propagate, due to the presence of ground springs. The addition of inter layer

coupling with λiso = 0.2 opens two bandgaps spanning Ω ≈ 2.0 to 2.2 and Ω ≈ 2.2 to 2.4.

A strip of the Lieb lattice is analyzed in the same way as the hexagonal lattice, with

the disks at the boundary fixed. Note that there are two types of edges arising in the Bloch

analysis of a strip. The first edge corresponds to the edge of a unit cell closer to the x-axis

in the schematic in Fig. 5.3b, while the second type corresponds to the opposite edge of the

unit cell. Figure 5.6(c) displays the corresponding dispersion diagram. There are 4 distinct

modes localized at the boundary which span the bulk bandgaps. They correspond to the

left and right propagating modes on the two distinct boundaries.

For numerical simulations, first a lattice is considered with all boundaries identical.
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(a) τ = 300 (b) τ = 600 (c) τ = 900

(d) τ = 200 (e) τ = 400 (f) τ = 600

Figure 5.7: RMS displacement at each lattice site for different moments in time τ . (a-c)
Clockwise propagation with one edge type. (d-f) Clockwise propagation with two edge
types. Red denotes the greatest displacement and green denotes none.
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The edge described by the upper end of the strip, i.e. positive y in Fig. 5.3(b), is used to

demonstrate the excitation of a TPBM in a simulation of the Lieb lattice. The unit cell is

tessellated into a 30 by 30 cell lattice and sites are added where needed to make all the

boundaries of the same construction. Then, the outer layer of cells is fixed. The same

forcing input as for the hexagonal lattice is used except Ω = 2.1. With T↑ = cos(Ωτ) and

T↓ = sin(Ωτ) a clockwise-propagating mode is excited, but if T↓ = − sin(Ωτ), a counter-

clockwise propagating wave is excited. Figure 5.7(a-c) depicts the results, and the waves

are seen to transition between edges without reflections.

Next, we present numerical simulations of a wave propagating from one boundary type

to another (Fig. 5.7(d-f)). The same forcing input is used as in the aforementioned sim-

ulation, and the simulation domain is a 30 by 30 cell lattice with the outer layer of cells

fixed. The wave packet propagates on both edge types at different velocities, and exhibits

no back-scattering when transitioning from one edge to the other. In Fig. 5.7(e-f) the wave

packet looks smaller than in Fig. 5.7(a-c) because the “smooth” edge type is not as disper-

sive as the other, and the wave has not had as much time to disperse. Indeed, this behavior is

consistent with the trends observed in the band diagram, where there are two group veloc-

ities at each frequency in the bulk bandgap region. Each mode corresponds to a localized

wave on a particular boundary type and they are all unidirectional. As the wave traverses

from one boundary type to the other, there is thus a change in group velocity as the wave

transitions from one branch to another.
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CHAPTER 6

EXPERIMENTATION ON METASTRUCTURES

6.1 Chapter overview

The purpose of this chapter is to present and discuss experiments performed on lattice struc-

tures. The first is a novel approach for the experimental characterization of the dispersion

properties of in-plane waves in lattice structures using high speed cameras and digital im-

age correlation (DIC). A 3D printed hexagonal lattice excited with a narrow-band signal is

used as a benchmark for the investigation. The transient response of the lattice is recorded

to measure the displacement throughout the lattice in time and processed to unveil the dif-

ferent directional features of longitudinal and transverse waves propagating through the

structure. In the discussion of the results, elaboration on both the advantages and disad-

vantages of the proposed approach are discussed by comparing it to a 3D LDV. First, the

experimental methodologies are described, followed by the results and discussion.

The second experiment is performed on elastic hexagonal lattices to validate the tran-

sient dynamic model used for the simulations discussed in Chapter 2. An impact event in

which a brass weight is dropped on a lattice is recorded and simulated and the results are

compared. The experimental procedure is first discussed, followed by the approach used to

simulate the same impact event. Finally, the results of the simulation and experiment are

compared.
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6.2 Measurement of in-plane elastic waves in lattice structures via digital image cor-

relation

6.2.1 Experimental methods

Hexagonal lattice fabrication

The hexagonal honeycomb lattice is manufactured out of polylactic acid (PLA) using fused

deposition manufacturing (FDM). The lattice is characterized by 56x36 unit cells of dimen-

sions l = 3 mm, t = 0.8053 mm (Fig. 6.1.a), and out-of-plane width w = 10 mm. The

number of cells is maximized in relation to the overall area than can be fabricated by avail-

able machines. The beams comprising the hexagons have slenderness ratio l/t ≈ 3.73

which leads to a fairly small material to void ratio. A densely filled region on the lattice

boundary is included to facilitate fixturing and approximate a rigid boundary. A reflective

mirror spray paint is applied to the lattice, enhancing its ability to reflect the bright lights

required for short camera exposures and protects the structure from overheating. Before

painting, the structure is sanded with 240 grit sandpaper to give more defined features for

DIC to utilize.

Experimental setup of excitation and recording

The experimental setup is shown in Fig. 6.2. The excitation to the lattice is provided by

a resonant piezoelectric (PZT) stack assembly (APC 90-4060) attached to the lattice in

the location shown. The PZT resonance frequency is the considered excitation frequency

fe = 16.74 kHz. The excitation is applied in the form of a sinusoidal burst, with mod-

ulation being provided by an 11-cycle Tuckey window. The motion of the structure is

recorded by a high-speed camera (Photron Fastcam SA1.1) which is set to record images

at a rate of fs = 5, 000 frames per seconds. The interleaving process described below

considers n = 14 properly delayed takes, so that the effective sampling frequency is

fs,eff = nfs = 70kHz. Each recording is repeated 16 times and averaged to minimize

115



noise. Recording is started by a manual switch connected to the camera. Once the record-

ing started, the camera triggers a first function generator (FG1 - Agilent 33120A), which

produces a square wave. The falling edge of the square wave then triggers the excitation

signal produced by second function generator (FG2 - Agilent 33220A). Imposing the fre-

quency of the first signal generator allows us to enforce the time delay needed to achieve the

effective sampling rate fs,eff . The excitation signal is then fed to the PZT exciter through

an amplified (E&I 1040L). The motion of one point of the lattice is also monitored through

a Laser Doppler Vibrometer (LDV) (Polytec PDV 100). The location of the monitored

point is shown also in Fig. 6.2. The LDV measurements are employed to verify the re-

peatability of the excitation and motion during various takes and excitation cycles, as well

as to compare the time histories recorded at the monitored location with those extracted

from the DIC procedure. During data collection, uniform illumination of the lattice is pro-

vided by two lamps. These lamps are observed to have a small but detectable flicker in

brightness at 120 Hz which is filtered out by a high-pass filter applied before the interleav-

ing. In addition, mean subtraction in time is applied to remove any low frequency motion

that may contribute to noise. A Hamming window is then applied in the time domain to

minimize spectral leakage.

FE modeling and Bloch analysis

Bloch analysis is implemented numerically by using the FE commercial code ABAQUS/

Standard [101]. The unit cell, represented in Fig. 6.4, is discretized by using three-dimensional

hexahedral C3D8R ABAQUS elements. The Bloch conditions, depending on the wavenum-

ber κ, are enforced on the nodal displacement of the boundaries of two identical unit cells,

defined as real and imaginary unit cells. An eigenvalue problem is solved for the frequency

ω for each value of κ used to discretize the Irreducible Brillouin Zone in order to obtain

the dispersion relation ω = ω(κ) for the structure. The material is modeled as linear elastic

with Young’s modulusE = 2.46 GPa, obtained by previously gained empirical knowledge,
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mass density ρ = 1250 kg/m3 and Poisson’s ratio ν = 0.36.

6.2.2 Results: measured in-plane waves

The considered DIC approach is applied for the detection of in-plane wave motion of the

periodic hexagonal lattice shown in Fig. 6.1.a. Motion is evaluated by tracking the posi-

tion of the lattice intersections, or nodes, in the recorded images. These intersections are

identified by setting a brightness threshold to each black and white image of the kind in

Fig. 6.1.a, which produces a binary representation of material and void as illustrated in

Fig.s 6.1.c,d. Pixels with brightness above the threshold are denoted as “material pixels”.

A tolerance brightness level is applied to connect each material pixel to its neighbors whose

brightness may fall just below the threshold, but are still part of the lattice material, which

corrects for inaccuracies resulting from the non-uniform illumination of the lattice. The

search for lattice intersections proceeds by counting the number of material points within a

radius r = t/
√

3 from each material pixel. Here, t denotes the wall thickness of the lattice,

so that the radius r corresponds to the theoretical area occupied by an intersection, which

is denoted as Ai in Fig. 6.1.d. It is expected that the material points with the largest number

of neighbors within radius r correspond to the location of the intersection. The process

is guided by the approximate estimate of the ratio of the area occupied by an intersection

relative to the area of a unit cell. Based on the schematic of Fig. 6.1.d, the area occupied by

three beams connected at one node is A ≈ 3/2lt, where l denotes the length of a ligament

and the distance between neighboring nodes, while the area occupied by an intersection is

Ai ≈ πt2/3. The considered aspect ratio l/t ≈ 3.725 gives Ai/(A + Ai) ≈ 15.8%. This

ratio is employed for an initial estimate of the number of pixels, out of those identified

from the thresholding, that are expected to define an intersection. This target number is

lowered by an 80% factor to account and correct for variability in the thresholding pro-

cess related to imperfections in manufacturing, limitations in image resolution and slight

inhomogeneities in illumination. This value is chosen empirically based on comparisons
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(a) (b)

(d)(c) (e)

A i

Figure 6.1: Picture of hexagonal lattice (a) and identified lattice geometry consisting of in-
tersection points (red dots) connected by lines (black lines). Schematic of process followed
for the identification of intersections and of lattice geometry (c-e).

of identified geometry and original images, and is found to provide accurate detection of

all nodes. Finally, the location of the intersection is defined by the centroid of the material

points within each cluster of radius r . Once the intersections are evaluated, their con-

nectivity is determined by looking for intersections which are approximately l apart. This

results in the geometrical description of the lattice as an assembly of points connected by

lines as shown in Fig. 6.1.e at the local level, and in Fig. 6.1.b for the lattice assembly. This

is simple procedure is limited to the specific lattice topology considered, and will require

to be extended to handle a variety of topologies with complex connectivities and a variety

of intersections characterized by different coordination numbers.

The intersection identification process is applied to every image recorded during the

acquisition time, so that displacements can be evaluated through DIC [102, 103]. The DIC

process in this work employs the open-source code by Eberl et al. [104], here adapted to

track the intersection points. DIC applied to 19x19 pixel image subsets that are located at
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Figure 6.2: Schematic of experimental set-up.

each lattice intersection, which provides a measure of the two in-plane displacement com-

ponents relative to the initial reference lattice position. The recorded motion corresponds

to the transient wave induced in the lattice by a piezoelectric (PZT) stack disks assembly

designed to resonate at a specified frequency. The motion of the structure is recorded by a

high-speed camera which is triggered by the excitation signal. A schematic of the experi-

mental set-up is depicted in Fig. 6.2, while details of the equipment and excitation param-

eters are provided in the ‘Methods’ section. The excitation system is selected to provide

repeatable forcing and, as a result, repeatable wave motion in the lattice. This has two main

advantages. First, hardware limitations of the camera impose a trade-off between frame

rate and image size, i.e. the number of pixels captured in each frame. To circumvent this,

images from n recordings at a frame rate of fs are interleaved to obtain an effective higher

frame rate fs,eff = nfs [105]. This is implemented by controlling the time delay between

the start of an excitation and the beginning of a recording. The time delay corresponding

to the i-th recording is given by:

t
(i)
d =

1

fs

i− 1

n
(6.1)

where i ∈ 1, ..., n, with n denoting is the number of the recordings. In this work, we used

n = 14 delayed recordings to realize an effective fs,eff = 14× fs, where fs = 5 kHz is the

frame rate provided by the video camera utilized. A schematic of the interleaving process
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Figure 6.3: Schematic of interleaving process for enhancement of effective sampling rate.

is presented in Fig. 6.3. A second advantage is that it provides a wide effective field of

view that allows capturing a sufficiently large portion of the surface area of the lattice. We

elected to capture the motion only of half of the lattice, invoking symmetry of geometry

and loading configuration. The monitored half surface is further divided into 4 tiles as

illustrated in Fig. 6.4. Recordings are first conducted on each of the tiles. A composite

video is then obtained from the combination of the 4 tiles which is obtained by aligning the

intersection locations in planned overlapping regions. The composite images are obtained

by first rotating each tile’s coordinate system so that the edges of the overlapping area align

with the global coordinate axes. Then, each tile is translated so that the centroid of its

overlap region matches that of its pairing neighbor.

The recorded motion of the lattice can be represented in the form of the time snapshots

in Fig.s 6.5, where the color code is associated with the resultant of the in-plane displace-

ment components .

In addition, the motion of individual points can be extracted from the recorded images

to obtain individual time-traces that can be compared with point measurements obtained for

example from a single point LDV. An example of such a comparison is shown in Fig. 6.6
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Figure 6.4: Schematic of monitored portion of surface area of the lattice, and subdivision
into 4 tiles. The figure also illustrates the point of excitation as well as the location of the
LDV measurements.

to illustrate how the method proposed herein is capable of providing information that is

comparable with that recorded by the LDV. While the results from the DIC (black solid line)

appear more noisy, which is evident from the recorded signal prior to the arrival of the wave,

which occurs at t ≈ 1.5 ms, they compare well in general trends in terms of amplitude,

and of rising and decaying trends. Of note is the fact the the LDV’s data were obtained

from numerical integration of the LDV velocity outputs. In addition, no perfect alignment

of the LDV beam relative to the lattice may lead to contribution of both horizontal and

vertical displacement component, which could be considered as reasons for the relative

mismatch between the data. The comparison of the two time traces indicates how the DIC

technique can be employed for the description of wave motion through measurements that

contain sufficient information in space and time for subsequent characterization of the wave

mechanics of the lattice as discussed in the upcoming “Discussion” section.
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Figure 6.5: Time snapshots of the recorded wave motion in the lattice resulting from the
DIC process presented: t = 3.78 ms (a,c), t = 3.99 ms (b,d) (Horizontal x component
(a,b), Vertical y component (c,d)).
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Figure 6.6: Comparison of DIC time trace with LDV measurements recorded at the location
shown in Fig. 6.4.
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6.2.3 Discussion

Analysis of the wave motion of the lattice as recorded through the process described in the

previous section reveals some of the interesting properties that characterize the hexagonal

topology here considered. The results also suggest how this measurement approach may

be applied to investigate the properties of a variety of lattice topologies. Examples of

such investigation enabled by the in-plane detection of wave motion are described in the

following paragraphs.

The time snapshots of Fig.s 6.5 illustrate how the response of the lattice at the con-

sidered excitation frequency (fe = 16.74 kHz - see “Methods” Section) is directional in

space, i.e. wave motion occurs preferentially along the vertical (y) direction. This is the

result of the anisotropy of this lattice which is documented for example in [30]. Such direc-

tionality can be predicted numerically by performing the dispersion analysis of the lattice

as described for example in [31]. The experimental determination of the directional prop-

erties however is complicated by the fact that the recorded responses a superposition of

the in-plane wave modes corresponding to longitudinal (P-mode) and transverse (S-mode)

polarizations.

The availability of the in-plane displacement vector u = ui + vj, with i, j denoting

the unit vectors aligned with the horizontal (x) and vertical (y) axes respectively, however

affords the possibility to effectively separate the two modal contributions. This is achieved

by employing Helmholtz decomposition to express the displacement u as a function of the

scalar P-wave potential φ and the vector S-wave potential ψ [32]:

u = ∇φ+∇×ψ (6.2)

where the divergence ∇ · u = ∇2φ and of the nonzero component of the curl ∇ × u =

−∇2ψ of the wavefield, in this case directed along the out-of-plane direction z, separate

P and S-wave contributions, respectively. The spatial derivatives required for the com-
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putation in eq. 6.2 are computed by first interpolating the displacements of the hexago-

nal grid onto a rectangular grid. This is based on a natural neighbor interpolation rou-

tine available in the Matlab environment. Next, a central difference scheme is employed

for the computation of derivatives. The time snapshots of P(x, y, t) = ∇ · u and of

S(x, y, t) = ∇ × u|z shown in Fig. 6.7 illustrate the differences in speed, wavelength

and directionality between the two wave modes. In both figures, the color map is based on

normalized data, with red and blue respectively denoting maximum positive and negative

values. Most notably, and as expected, the P-mode has a significantly larger wavelength

and appears more isotropic than the S-mode, which is anisotropic with preferential propa-

gation along the positive y direction and towards the top left corner of the structure. The

maps of the separated modes also show that the S-mode dominates the overall response

shown in Fig. 6.5. Directionality and wave speeds can be characterized and quantified

by representing the two modal components P(x, y, t),S(x, y, t) in the Fourier domain, i.e.

P̂(kx, ky, ω), Ŝ(kx, ky, ω) at a specific frequency. The contour plots of Figs. 6.8 correspond

to the magnitudes |P̂(kx, ky, ω)|, |Ŝ(kx, ky, ω)| at the excitation frequency fe = 16.74

kHz and provide a distribution map of the energy content of the recorded response in the

wavenumber domain. The maps also superimpose the iso-frequency contours of the theo-

retical dispersion surfaces for the lattice, which are represented by the solid black lines in

both Fig.s 6.8. The theoretical dispersion relations are evaluated by applying established

methods based on the Finite Element (FE) discretization of a unit cell, and the application

of Bloch periodic conditions [31]. Both maps in Fig.s 6.8 show a good match between

theoretical predictions and measured data, which demonstrates that the detected motion is

descriptive of the wave properties of the lattice, and that the representation of the measured

wavefields in the wavenumber space can be an effective tool for the estimation of the dis-

persion properties, and therefore the mechanical properties of a lattice under investigation.

Of note is the fact that the iso-frequency contour has the form of a circle for the P-mode

(Fig. 6.8.a), which matches the theoretical predictions well, while the S-mode reflects more
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predominantly the hexagonal geometry of the lattice and its six-fold symmetry (Fig. 6.8.b).

The theoretical predictions of dispersion can be further elaborated to obtain the group

velocities for the two modes at designated frequencies. Theoretical group velocities for the

two modes are shown in Fig. 6.9 illustrate their different anisotropy, and further highlight

the directional properties of the S-mode in particular. The group velocity directional varia-

tions provide an estimate of the shape of the wave front corresponding to the propagation

in the lattice of a wave packet. Thus, at a particular time, one may superimpose the pre-

dicted wavefront to the one actually measured to once again illustrate the capabilities of

the method presented here along with the theoretical estimation of dispersion to investigate

wave propagation characteristics in terms of both magnitude of group velocity and direc-

tional dependence. Specific to the results in Fig. 6.9, isotropy of the P-mode at fe = 16.74

kHz is confirmed by the corresponding group velocity plot, which is almost a perfect circle,

signaling that the energy carried by the P-mode spreads in all the direction, with about the

same average speed approximately equal to 820 m/s. The “star” pattern shown in Fig. 6.8.b

instead captures the anisotropic propagation of the S-waves, which is in good agreement

with theoretical predictions showing directions along which the energy is focused by the

S-wave with 6-fold symmetry, with faster components of the wave traveling at about 320

m/s.

6.3 Experimental validation of the lattice model

6.3.1 Specimen description and experimental procedure

To perform a large deformation experiment, a hexagonal lattice is fabricated using two-

material rapid prototyping technology. The beams comprising the lattice are made of a stiff

material (Stratasys VeroWhitePlus RGD835) and the intersections or nodes of the lattice

are made of an elastomer (Stratasys TangoPlus FLX930). The elastomeric nodes act as

the torsional springs in the model discussed in Section 2.2. The deformation of the nodes

from longitudinal loads acts as the axial springs in the aforementioned lattice model. The
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(a)

(b)

Figure 6.7: Snapshot of divergence P(x, y, t) (a) and curl S(x, y, t) (b) of the measured
displacement field at t = 3.78 ms and t = 4.14 ms, respectively.
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Figure 6.8: Wavenumber domain representation |P̂(kx, ky, ω)| (a), and |Ŝ(kx, ky, ω)| (b) at
the excitation frequency and comparison with theoretical iso-frequency dispersion contours
(solid black lines). The dashed black line outlines the First Brillouin Zone of the reciprocal
space for the lattice [3][106].
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Figure 6.9: Direction variations of group velocity at the excitation frequency fe = 16.74
kHz: S-mode: solid blue line, P-mode: dashed red line.
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Figure 6.10: The fabricated lattice

lattice is painted with a reflective mirror paint to protect it from the bright lights required

for high frame-rate photography and to reduce the amount of light required to sufficiently

illuminate it. A brass cylinder with a knob on top is used as an impactor and is dropped

from heights ranging from about 150 mm to 600 mm to achieve impact velocities of 1.2,

1.7, and 2.3 m/s.

A Photron Fastcam SA1.1 camera is used to record the impact events at 5,400 frames

per second. To achieve sufficient lighting across the lattice two bright lamps are used to

illuminate the structure. The lattice specimen is placed on a stage. A loop of string is tied

to the knob on top of the impactor and another string is used to hang the impactor from

this loop. A frame over the stage suspends the impactor above the lattice and the impactor

is raised and dropped by hand to impact the lattice. The camera is automatically triggered

to record when the impactor enters the field of view. Since the velocity of the impactor is

measured to determine a simulation input, the exact height of the impactor before release

is not a concern. Symmetry was intentionally broken by dropping the impactor about 1 cell
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off the center of the lattice since it is expected that the fabricated specimen will not be as

symmetric as the simulated lattice. By intentionally breaking symmetry, it is assumed that

bifurcations that may have been driven by random fabrication error in a symmetric loading

scenario will not be a factor in the performed experiment.

6.3.2 Lattice impact simulation: model specifics

To simulate the experimental impact an impactor model is added to the lumped-parameter

lattice model described in Section 2.2 as follows. The impactor is modeled as a rigid rectan-

gle with the mass and in-plane rotational inertia of the brass impactor. A phenomenological

model of contact with the impactor is implemented in which lattice particles are allowed

to penetrate the impactor and receive a force perpendicular to the surface of penetration

directly proportional to the depth of penetration. The constant used for this proportional

relationship is 2 times the contact stiffness, since two intersections in series define the

contact stiffness αka, and only one node is involved in the contact interaction with the

comparatively rigid impactor. Hence, the stiffness is 2αka. No energy dissipation or fric-

tion regarding impactor contact is included. Thus, the force on particle i by the impactor

is:

~fi = 2αkaδpn̂s

where δp is the depth of penetration measured perpendicular from the impactor surface and

n̂s is the outward facing unit normal vector of the surface of entry. The reaction forces from

the particles contacting the impactor are applied to the impactor center of gravity G as a

net force ~FG and moment ~MG, which are:

~FG = −
∑
i

~fi (6.3)

~MG = −
∑
i

~ri/G × ~fi (6.4)
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where ~ri/G is the location of ~fi relative to G. Equations (6.3) and (6.4) are integrated in

time with the lattice equations of motion to obtain the impactor’s motion. In addition,

gravity is added to the simulation by applying the weight of each particle and the impactor

at each time step. To achieve the correct initial lattice position, the initial lattice equilibrium

calculation also includes gravity.

The particles on the boundary which corresponds to the side of the lattice contacting

the table are fixed against translating. The other lattice boundaries are left free.

Identification of physical properties

The mass of the painted lattice is ml = 299.8 g. Composed of Nb = 6, 010 bars, the

average bar mass is mb = ml/Nb. Since the mass of the bars is lumped to the intersections,

assigning mb/2 to each, and all non-boundary intersections join 3 bars, the particle mass

for non-boundary intersections is

mp =
3

2
mb =

3

2

ml

Nb

= 74.8 mg

Particles on the lattice boundary where there are only two bars per intersection have a mass

of 2mp/3.

The lumping of mass at the intersections causes the rotational inertia of the beams to be

artificially high by a factor of 3 if rotating about their centers and by a factor of 1.5 if rotat-

ing about their ends. However, the rotational inertia of the bars is insignificant compared

to the torsional stiffness of the intersections. Consider a bar from the lattice pivoting about

one intersection with a rotational inertia of Ieb = mr20/3. The resonant frequency of this

simple system is 2.9 kHz when attached to a torsional spring of the stiffness identified for

the lattice below. The impact event takes some 90 ms and therefore has a significantly lower

frequency content than concerns the inertia of the bars pivoting about the intersections. In

addition, the rotational inertia of the intersections is neglected, i.e. I = 0.
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The torsional stiffnesses used to model the lattice are obtained using a 3D nonlinear

finite element model of an elastomeric intersection. The 3rd order Ogden model recorded

in [107] for Stratasys TangoPlus FLX930 is used. Two of the locations on the intersection

that would attach to stiff beams are made fixed. The third location that would attach to

the last beam is constrained to move as a rigid entity, and has a rotation applied to it.

The reaction torque on the rotated boundary is measured. A linear fit is applied to the

results to estimate an equivalent linear stiffness for modelling the rotational stiffness of the

intersection. The slope is keff = 1.271 × 10−3 Nm/rad, which is the effective stiffness

of the two branches with fixed ends in parallel, connected to the rotated branch in series.

Hence, the torsional spring has the stiffness kτ = 3keff/2 = 1.907× 10−3 Nm/rad.

It is clear from observing the lattice under arbitrary forcing that the angular deformation

of the intersections dominates the compliance of the lattice, since the length of the bars does

not change noticeably and the orientation of bars about an intersection change significantly

under the same loading. Consider the deformation from a force F on the end of a lever of

length r0 attached to a torsional spring of stiffness kτ . The deformation along the arc swept

by the lever is δτ = Fr20/kτ . The deformation of an axial spring under the same load F is

δs = F/ka. The comparison of these deformations is

φ =
δs
δτ

=
kτ
kar20

(6.5)

which, when using the lattice parameters, gives a measure of which type of elastic inter-

action dominates the compliance of the lattice. Therefore, the observation that the lattice

compliance is dominated by angular deformation of the intersections implies that φ for the

lattice is low, i.e. below 10−1. As long as φ is small, its precise value should have little

effect on the large deformation results simulated. A value of φ = 10−2 is chosen.

Since the axial compliance 1/ka comes mostly from the series deformation of the nodes

at either end of a bar, and the soft nodes are deforming serially during contact, the contact
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stiffness is expected to be the same order of magnitude as the axial stiffness. The contact

stiffness is assumed to be 3ka, i.e. α = 3 as it is expected to be stiffer than the axial inter-

actions. However, since the primary lattice compliance comes from the torsional springs

the exact value of the contact stiffness should not be of great importance. Energy dissipa-

tion in the lattice was not measured and is not included in the simulations, so all damping

parameters are 0.

The mass of the impactor and the string loop used to suspend it is mI = 228.9 g.

The geometry of the knob on top of the cylinder and the blind hole that it threads into are

neglected when calculating the rotational inertia. Hence a cylinder with the dimensions of

the main body of the impactor but the total mass of the impactor and string loop is used.

The rotational inertia is:

II =
mI

12

(
3

(
W

2

)2

+H2

)
(6.6)

The diameter of the impactor is W = 31.70 mm and the height of the cylinder is H =

32.44 mm, so the rotational inertia used is 3.444× 10−5 kgm2.

The position of the center of the impactor’s bottom face in a frame was measured by

manually identifying the two bottom corners of the impactor in a frame and averaging their

position. Distance in meters is measured from the frames using the known size of the lattice

cells. The angular orientation θI of the impactor is also measured using the two identified

corners (x1, y1) and (x2, y2) such that

θI = arctan

(
y2 − y1
x2 − x1

)

The position of the impactor is measured in the first 11 frames before the impactor contacts

the lattice. The initial velocity of the impactor is obtained from a linear fit to these positions,

which assumes the impactor is moving at a constant velocity over the 2 ms before impact.

Velocities of 1.2, 1.7, and 2.3 m/s are measured for the impact events considered.
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6.3.3 Comparison of experimental and numerical results

The simulated and recorded lattices are pictured at three moments after impact for each of

the three ascending impactor velocities in Figs. 6.11, 6.12, and 6.13 respectively. Each

greater impact velocity produces deeper penetration, which brings about the collapse of

a larger number of hexagonal cells. Repeated experiments produce qualitatively similar

results.

One notable difference between the simulation and the experiment is the flattening of

the first row of cells contacted by the impactor. This could possibly be due to the frictionless

contact assumed between the impactor and the lattice. The response of the cells near the

impactor on the impacted surface appear similar in the simulation as in the experiment. Due

to the nature of the lattice fabrication, it is possible that some defects, which are associated

with movement errors of the rapid prototyping machine and the periodicity of the structure,

will be periodic. Periodic errors could effect the global behavior of the lattice and may bias

the reconfiguration. An avenue for future work that may be of value is intentional biasing

of lattice geometry and properties to guide global reconfigurations.

The measured and simulated impactor positions over time are superimposed in Fig. 6.14

for a direct comparison. Given the approximation introduced in modeling the lattice with

lumped parameters in 2D without damping, the simulation is not far off from the experi-

ment. The comparison of the impactor positions shows that the effect of viscoelastic nature

of the experimental lattice, which is expected to be the largest contributer to energy dissi-

pation, is a significant component of the recorded phenomenon. The simulation does not

include damping and hence exhibits less deceleration of the impactor while in contact with

the lattice, leading to deeper lattice penetration. Furthermore, the speed of the impactor

when returning to y = 0 is approximately equal to the initial speed in the simulations.

In contrast, the experimental impactor leaves the lattice with a noticeably lower velocity

magnitude than its initial velocity.
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(a) t = 11.7 ms (b) t = 23.3 ms (c) t = 35.0 ms

(d) t = 11.7 ms (e) t = 23.3 ms (f) t = 35.0 ms

Figure 6.11: The simulated (a-c), and experimental lattice (d-f) at 3 instances in time after
the impactor contact at 1.2 m/s
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(a) t = 11.7 ms (b) t = 23.3 ms (c) t = 35.0 ms

(d) t = 11.7 ms (e) t = 23.3 ms (f) t = 35.0 ms

Figure 6.12: The simulated (a-c), and experimental lattice (d-f) at 3 instances in time after
the impactor contact at 1.7 m/s
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(a) t = 11.7 ms (b) t = 23.3 ms (c) t = 35.0 ms

(d) t = 11.7 ms (e) t = 23.3 ms (f) t = 35.0 ms

Figure 6.13: The simulated (a-c), and experimental lattice (d-f) at 3 instances in time after
the impactor contact at 2.3 m/s
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Figure 6.14: Direct comparison of experimental (points) and simulated (curves) impactor
position for 1.2 m/s (black circles and solid curve, 1.7 m/s (red squares and dashed curve),
and 2.3 m/s (blue triangles and dot-dashed curve))
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CHAPTER 7

CONCLUSION

7.1 Summary

This thesis presents the investigation of lattice structures for the purpose of providing novel

pathways for wave and mechanical property control. Structures of the type studied are

often called “metamaterials” or “metastructures” as they behave in a way that is beyond

their constituents. Magneto-elastic lattices are the primary focus, since they are generally

multistable, allowing one structure to assume various geometric configurations, which can

correspond to various functional modes, providing the possibility for adaptive structures.

Periodic structures are considered for their unique wave properties, as well as for ease of

design and application, including: 2D hexagonal, re-entrant, and kagome lattices.

A fundamental step to the analysis of reconfigurable structures is the identification of

possible stable configurations. By minimizing energy a variety of configurations are iden-

tified for further study. A method for transition from one stable configuration to another

is required to make use of the reconfiguration. So, dynamic reconfiguration is investi-

gated as a fast and versatile method for switching configurations via transient numerical

simulations. Bloch wave analysis is applied to models of magneto-elastic lattices to in-

vestigate the possible wave propagation changes. The introduction of anisotropic wave

propagation, opening of bandgaps, and changes in wave speeds are observed as a result of

geometric lattice reconfiguration. Reconfiguration also drastically effects static properties.

The equivalent continuum properties of magneto-elastic lattice structures are calculated us-

ing a homogenization methodology. Reconfiguration from hexagonal to re-entrant lattices

produces over an order of magnitude change in stiffness while converting the lattice from

having isotropic to orthotropic properties.
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While magneto-elastic structures are the primary focus, this thesis also addresses two

other topics relevant to the development of periodic structures that seek to control wave

energy. The first, pursuing novel wave control, is topologically protected edge modes, or

edge states. Building by analogy from quantum mechanics, elastic mechanical structures

are designed that carry special waves modes, which are termed helical edge states, in only

one direction along a lattice boundary. A hexagonal and Lieb lattice are investigated as

examples of a methodology developed which defines a family of mechanical lattices that

can exhibit such wave modes. Analytical approaches predict the phenomena and numerical

simulations verify the predictions. Another topic is the development of a methodology

for measuring in-plane waves in lattice structures, which is needed for the experimental

validation of the theoretical wave propagation results found in this thesis. In-plane waves

modes are very common in metastructures research, but there is presently no easy way

to measure such waves. As a new methodology, digital image correlation is combined

with high-speed photography. The transient propagation of in-plane waves in an elastic

hexagonal honeycomb lattice is measured to develop the method, and comparisons are

made to finite element predictions to show the efficacy.

7.2 Contributions

The following contributions are made to the understanding of metastructures:

1. Introduction of magneto-elastic structures for adaptation of wave properties through

geometric reconfiguration. A lumped parameter model is developed to illustrate the

fundamentals of reconfigurable magneto-elastic structures (Section 2.2). Various sta-

ble configurations , which have different wave propagation properties are identified

through energy minimization (Section 2.3), and are analyzed using Bloch analysis

(Section 3.2). Both periodic configurations and arbitrary finite configurations are

possible, allowing a rich set of possibilities. Both 1D (Section 3.3) and 2D (Sec-

tion 3.4) structures are investigated though analytical and numerical calculations,
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and significant changes in wave propagation result from reconfiguration.

2. Introduction of dynamic reconfiguration as a means for adapting wave properties of

magneto-elastic structures. Controlled dynamic forcing leads to transient dynamics

that determine a final structural configuration, as does tailoring the unit cell energy

profile (Section 2.4). By determining the final configuration, the wave properties

of the structure are controlled. The dynamic reconfiguration code is also validated

against an impact experiment (Section 6.3).

3. Quantification of the effect of magneto-elastic structural reconfiguration on equiva-

lent continuum properties. A methodology is extended to fit magneto-elastic lattices

(Section 4.2), showing that the equivalent orthotropic mechanical properties of 2D

magneto-elastic lattices can change by over an order of magnitude due to reconfig-

uration alone (Section 4.4). Reconfigurations of 1D lattices are also seen to have a

significant effect on equivalent lattice stiffness (Section 4.3).

4. Identification of new mechanical topological insulators. New mechanical lattices are

added to a presently short list of lattices which can exhibit one-way wave propaga-

tion along their boundaries. A methodology is developed which allows the conver-

sion from a set of quantum-mechanical systems to elastic analogs (Section 5.2) and

analytical results are verified against numerical simulations (Section 5.4).

5. Development of a new technique for measuring in-plane waves in lattice structures.

High-speed photography and digital image correlation (DIC) are combined with ge-

ometry recognizing algorithms to measure the time history of the in-plane displace-

ments of lattice nodes (Section 6.2).
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7.3 Future work

7.3.1 Dynamic reconfiguration

Of the contributions outlined in Section 7.2 undertaken with magneto-elastic lattices, the

one which has the most closely related work left open is dynamic reconfiguration as a

means of adapting wave properties. The primary piece missing is a method for planning

the transition path of a structure. Ideally, one could specify an initial structure and a desired

final configuration, and then calculate the proper forcing and lattice construction required

to achieve the final configuration. Such a capability would be indispensable for the appli-

cation of reconfiguration as a means for control in the application of metastructures. The

nudged elastic band method [108, 109, 110] was applied to address this need, but was found

insufficient as it was not robust.

A step towards the larger goal of finding transition paths to arbitrary configurations is

investigating the propagation of 2D and 3D transition fronts in lattices, i.e. the traveling

boundary between two different configurations of a lattice. Presently only 1D transition

fronts have received much attention. A description of the velocity of the triangular transi-

tion front seen in Section 2.4 as a function of lattice parameters and forcing would a good

next step. Floppy modes [80] are another possible avenue to understanding a subset of

possible reconfigurations. Given their topological nature floppy modes may be a robust

reconfiguration mechanism.

7.3.2 Wave propagation control through reconfiguration

The design and evaluation of acoustic devices that can be made with reconfigurable lat-

tices would develop what is the end goal of this research, i.e. adaptable devices, which

can be applied by engineers. Therefore, useful examples of reconfigurable devices would

motivate further research in this field. Such devices could include acoustic lenses, cloaks,

multiplexes, filters, or other signal processors, etc.
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A larger set of reconfigurable lattices would also allow more possibilities for adaptable

devices. Expanding further into elastic-only lattices could simplify applications, while

including other multi-physics lattices outside of magneto-elasticity would allow for the

most broad range of applications. The consideration of 3D lattices, though much more

difficult, would be the greatest extension of reconfigurable lattice identification, and is

required for the broad application of such structures.

7.3.3 Topologically protected boundary modes

Affecting TPBMs through reconfiguration is not expected to be an unreasonable task. An

experiment recorded in [79] demonstrates, with a time reversal symmetry (TRS) breaking

structure, that a hexagonal and re-entrant lattice of gyroscopes have one way chiral TPBMs

that propagate in opposite directions, and in-between the hexagonal and re-entrant states

there is a state with no edge mode. This shows that reconfiguration is a valid way to affect

the existence of TPBMs. The proposed goal is to extend the concept to other lattices,

such as those preserving TRS and exhibiting helical TPBMs. As a possible component for

designing structures with TPBMs, investigations regarding the breaking of the linearized

stiffness matrix symmetry through the asymmetry in magnetic torques [78] is suggested.

Preliminary efforts towards this end were taken, but no significant results were obtained.

If magnetic interactions become a key component in achieving the TPBMs it is likely that

they will also lead to multistability.

Overall, the understanding of TPBMs in mechanical structures is still very young.

Deeper understanding and more examples are required. Simple examples of mechanical

lattices exhibiting helical edge modes are specifically in great need. In conjuncture, liter-

ature that makes the methodologies more usable for mechanical-focused researches would

benefit the research community significantly, as much of the fundamentals are buried deep

inside quantum-mechanics. Experiments exhibiting helical edge modes are still in short

supply. A particular step that would be good to take is a simple, lumped mass lattice,
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which requires no constrains on its degrees of freedom to achieve TPBMs, i.e. a passive

structure that can stand alone with no grounding frame. Such a structure will be the first of

its kind and, if simple enough, will be able to demonstrate some fundamentals that are lost

in lattices requiring high degree of freedom finite element calculations such as the structure

in [77].
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