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SUMMARY 

Due to their complex shape, wavy walled geometries are capable of inducing 

unsteady and even chaotic flows at low Reynolds numbers. The convective effects of the 

unsteady motion significantly enhances heat and mass transport in the fluid. Because of 

this, wavy walled channels are commonly used in applications such as heat exchangers. 

Despite their common use however, a systematic investigation of the dependence of the 

fluid flow and heat transfer on the geometric parameters of the channel does not exist. 

In many heat exchanger applications, the working fluid contains suspended 

particulates. When cooling these particle laden flows, thermophoretic forces induced on 

the particles by thermal gradients in the fluid result in their deposition along the cooler 

walls. This process, known as fouling, leads to the formation of a porous layer, which 

reduces the effectiveness of the cooler. One application in which fouling is a significant 

issue is exhaust gas recirculation (EGR) used in diesel and gasoline engines to reduce 

nitrogen oxides (NOx) emissions. The heat exchanger used in this process experiences rapid 

degradation in performance from fouling caused by the high concentration of soot particles 

entrained in the exhaust gas. Recently, engine manufacturers have begun using wavy 

walled heat exchangers as empirical evidence suggests that this geometry is less prone to 

fouling. However, a limited amount of research has been performed to understand how this 

geometry reduces fouling and the dependence of this reduction on the geometric 

parameters of the channel. 

In this work we use computational modeling to investigate the effect of asymmetric 

wavy walled channel geometries on laminar fluid flow and heat/mass transfer. To this end, 
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we develop a computational model based on the lattice Boltzmann method, explicit finite 

differences and Brownian dynamics to simulate unsteady viscous flow and heat/mass 

transport in wavy walled channel geometries and use this model to systematically examine 

these processes. Furthermore, we investigate the formation of deposit layers resulting from 

thermophoretic deposition of particulates transported by the flow onto the channel walls 

and probe how this process can be mitigated using a wavy wall geometry. The results from 

our studies are important for designing laminar heat/mass exchangers utilizing unsteady 

flows for enhancing transport processes. Additionally these results provide valuable 

information necessary to develop heat exchangers which are less prone to fouling. 
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CHAPTER 1. INTRODUCTION 

In laminar flows in straight pipes and channels, the rate of heat and mass transfer is 

limited by the diffusive timescale. This rate can be improved by increasing the flow rate to 

achieve turbulent flow which induces turbulent mixing. This occurs at the cost of increased 

viscous losses and a reduced contact time of the fluid with the walls, which in applications 

such as heat exchangers, reduces their overall effectiveness. Additionally, achieving the 

Reynolds numbers necessary to induce turbulence is difficult with small length scales such 

as those found in microfluidic devices. Due to these shortcomings associated with utilizing 

turbulent mixing, another common approach to facilitate mixing and heat/mass transport is 

the use of complex channel geometries to induce convective transport and mixing in 

laminar flows.1 

The use of complex geometries to enhance mixing has received considerable 

attention by researchers and engineers and a multitude of geometries have been 

investigated. Examples of a few geometries used in compact heat exchangers and 

microfluidic devices are described in reviews by Jacobi and Shah2 and Hessel et al.,3 

respectively. A geometry of particular interest for this study is channels with in-phase 

periodic sinusoidal shaped wavy walls, an example of which is provided in Figure 1.1. This 

is due to the potential for this geometry to induce significant mixing, while being 

considerably easier to manufacture and introducing smaller additional frictional losses 

compared to other more complex geometries.4 

In many technological applications, the working fluid contains suspended 

particulates. Cooling of such fluid induces deposition of the particulates onto the inner 
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walls of the heat exchanger, a process known as fouling. The deposits may form a porous 

layer characterized by a low thermal conductivity that acts to insulate the cold walls from 

the hot fluid and can severely reduce the effectiveness of the heat exchanger.5 The 

mechanisms behind the particle deposition include turbulent impaction (when flow is 

turbulent), diffusion and thermophoresis, which is the motion of particles toward areas of 

lower temperatures. The magnitude of the thermophoretic motion is proportional to the 

thermal gradient at the location of the particles. Because of the large temperature gradients 

in heat exchangers, this is often the dominant mechanism for particle deposition.6-9 When 

heat exchangers are used in applications where the fluids contain high amounts of entrained 

particulates, the effects of fouling become a significant obstacle that must be overcome. 

 

Figure 1.1 – Visualization of streamlines in flow through an asymmetric wavy walled 

channel.10 

An application where fouling is a significant issue is exhaust gas recirculation (EGR) 

used in diesel and gasoline engines. EGR is a commonly used method to reduce the amount 

of nitrogen oxides (NOx) generated by diesel engines in order to meet the emission 

regulations found in most developed countries. This is done by redirecting a portion of the 

exhaust gas through a heat exchanger, reducing its temperature, before directing it into the 

intake manifold of the engine along with fresh air. This reduces the combustion 
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temperatures in the engine cylinders, which in turn reduces the amount of NOx generated 

by the combustion process.11  

EGR is a highly effective method of reducing NOx generation; however, the need for 

a heat exchanger to reduce the exhaust temperature does create a significant engineering 

problem, especially in diesel engines. This is due to the high levels of soot particles in 

diesel exhaust, causing fouling in the heat exchanger to occur so rapidly that they are 

rendered ineffective in a matter of hours (an example of a fouled EGR heat exchanger can 

be seen in Figure 1.2).12-14 Because of this, it is important to identify efficient methods for 

reducing the fouling rate in EGR heat exchangers. Using the wavy walled geometry is a 

promising approach that can be employed to reduce fouling in addition to increasing the 

heat transfer effectiveness. 

 

Figure 1.2 – Image of a fouled EGR heat exchanger.15  
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1.1 Background 

In this section, we provide a brief overview of the current state of research into the 

wavy walled channel geometry. The overview is divided into three subsections with 

research into the flow through the channel, the heat/mass transfer enhancement induced by 

the geometry and its effect on fouling in heat exchangers (specifically EGR coolers) 

grouped together. Additionally, the fouling subsection provides a general discussion of 

EGR fouling and computational models developed for simulating the fouling layer 

development.  

1.1.1 Fluid Flow 

The geometry of wavy walled channels is capable of inducing complex flow patterns 

in the fluid flowing through it. These patterns are the result of vortices generated by the 

wall geometry including their shedding from the walls of the channel which in turn can 

lead to periodic, quasi-periodic and chaotic flows at low Reynolds numbers. Because of 

this, a significant amount of research has been performed in order to better understand how 

the geometry influences the flow, as well as to provide a foundation for future 

investigations into harnessing this flow to enhance heat and mass transport. 

Multiple studies have been performed to determine the effects of sinusoidal-shaped 

geometries on the onset of circulation and unsteady motion in flow within the channel. 

These studies each focused on either one or both of two types of wavy walled geometries, 

which are a converging-diverging (symmetric) channel with the walls 180° out of phase 

and an asymmetric channel with the walls in phase with each other. These studies indicate 
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that sinusoidal geometries can induce unsteady laminar flows with significant circulation 

at low Reynolds numbers.  

Using numerical simulations, Sobey16 investigated the flow in symmetric and 

asymmetric wavy channels and determined that, at a critical Reynolds number, inertial 

effects lead to flow separation and the formation of vortices in the furrows of the channels. 

He also described the onset of unsteady flow as Re increases, which results from the 

ejection and subsequent shedding of a new vortex. Stephanoff et al.17 used experiments to 

visualize the flow and support the predictions for the symmetric channel made by Sobey.  

Guzmán, Amon and others used numerical simulations to investigate flow 

bifurcations and the route taken by the flow as it transitions to chaos in both symmetric and 

asymmetric channels.18-24 In their research, they found that both channel geometries 

induced chaotic flows at significantly lower Reynolds numbers than those necessary in 

straight channels, but at the cost of higher frictional losses. Additionally, they found that 

depending on the ratio of the wall amplitude to its period, the flow transitions to chaotic 

through either the Feigenbaum (successive period doubling bifurcations) or the Ruelle-

Takens-Newhouse (successive Hopf bifurcations) scenarios.18, 24  

Using a linear stability analysis, Cho et al.25 and Cabal et al.26 examined the 

dependence of two and three dimensional instabilities on the amplitude of the wavy walls. 

These analytical studies were limited to relatively low wall amplitudes. They determined 

the critical Reynolds number at which the flow becomes unstable for several amplitudes. 

Both groups concluded that the instabilities were Tollmien-Schlichting waves modified by 

the channel walls. Tollmien-Schlichting waves are viscosity induced instabilities resulting 
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from the amplification of an initial disturbance.27 Cho et al.25 pointed out that the critical 

Reynolds numbers for asymmetric channels are slightly lower than those of the symmetric 

channel. 

Despite the significant previous research into flow through wavy walled channels, 

little information exists regarding the onset of circulatory and unsteady flow (both periodic 

and quasi-periodic) over a wide range of geometric parameters. Furthermore, while 

Guzmán and Amon investigated the flow at Reynolds numbers well beyond those 

necessary to induce unsteady flow, the majority of their research focuses on the symmetric 

converging-diverging channel and, like much of the other research described above, only 

investigates geometries of a few different dimensions. 

1.1.2 Heat/Mass Transfer 

Due to the ability of the wavy channel geometry to enhance heat and mass transfer, 

a significant amount of research has been performed to better understand the mechanisms 

behind these enhancements. As in the previous section, these studies investigated mixing 

enhancement in both symmetric and asymmetric wavy walled channels. In these studies, it 

was determined that the heat/mass transfer is improved by the wavy walled channels due 

to the increased convective mixing induced by the geometry of the channel. 

Using numerical techniques, Wang and Chen investigated the influence of channel 

aspect ratio on heat transfer in symmetric wavy-walled channels.28 For each aspect ratio, 

they performed simulations at several different Reynolds numbers while remaining in the 

steady flow regime. Their results showed that for small aspect ratios (small amplitudes), 

the heat transfer enhancement is minimal, but for larger aspect ratios (large amplitudes) the 
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enhancement is significant. Additionally, the enhancement is increased as Re increases. 

Wang and Vanka investigated the influence of both steady and unsteady flows in 

symmetric wavy walled channels on the heat transfer rate.29 They found that a significant 

increase in heat transfer accompanies the transition from steady to unsteady flow and they 

concluded that this increase is the result of oscillations in the flow destabilizing the laminar 

thermal boundary layer.  

Several papers have investigated the effects of pulsatile flows on heat/mass transfer 

in both asymmetric and symmetric wavy walled channels.10, 30-37 The research described in 

the papers was performed using both experimental and numerical techniques. Results from 

the investigations indicate that the optimum geometry for mass/heat transfer is dependent 

on oscillation frequency of the fluid pumping defined using the Strouhal number. 

Using direct numerical simulations, Guzmán et al. examined the effect of flow 

bifurcations in asymmetric wavy channels on heat transfer.22 Their investigations 

examined the increase in the heat transfer for a wide range of Reynolds numbers which 

included multiple bifurcations for three different aspect ratios and two Prandtl numbers. 

By comparing the Nusselt number for a given flow rate with the pumping power required 

to achieve that flow rate, they showed that a larger Prandtl number results in a significantly 

greater return in heat transfer for a given increase in pumping power. 

Sui et al. used numerical simulations38, 39 and experiments40 to investigate the effects 

of three dimensional asymmetric wavy channels with rectangular cross sections on flow 

and heat transfer in microchannels. They found that secondary flows (Dean vortices) are 

generated by the geometry of the channel, and location of these vortices varies along the 
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flow direction. This induces chaotic advection that significantly increases heat transfer. 

From their results they concluded that the increase in pressure drop associated with wavy 

channels is less than the increase in heat transfer, which makes wavy walled geometries a 

viable option for increasing heat transfer in microscale devices. Gong et al.41 used 

numerical simulations to study the dependence of flow and heat transfer in both symmetric 

and asymmetric three dimensional microchannels at low Re on the wall amplitude, 

wavelength and aspect ratio. From their simulations, they determined that wavy walled 

channels are a viable option for use in microscale devices to improve heat transfer rates. 

Also, due to the larger improvement in heat transfer compared to the increase in pressure 

drop, the asymmetric channel outperforms the symmetric microchannel. 

Stone and Vanka42 studied developing flow and heat transfer in a 2D symmetric wavy 

walled channel using numerical techniques. They simulated flow in a channel with multiple 

periods and varied Re (from steady to time periodic) while keeping geometric parameters 

constant. They found that when the flow becomes unsteady, the mixing between the fluid 

in the center of the channel and that near the walls increases leading to an increase in heat 

transfer as well as pressure drop. They extended their research to investigate the influence 

of geometric parameters for both developing and fully developed flows.43 Their 

investigations initially focused on three geometries in which they simulated a long channel 

with multiple periods. For these geometries they determined the location where the flow 

becomes unsteady as a function of the Re as well as examining the flow patterns, heat 

transfer rates and pressure drop associated with the flow in the developing region. They 

extended their understanding of the effect of wavy walls on heat transfer by simulating a 

single period with periodic boundary conditions. They varied the amplitude, period and 
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aspect ratio, and examined the effect on the heat transfer. From their investigations they 

determined that the transition Re is more dependent on amplitude of the wave than the 

height of the channel and that the heat transfer enhancement is minimal for steady flow. 

Rush et al.44 used experiments to study the influence of phase shift between the upper 

and lower walls of a wavy walled channel on fluid flow and heat transfer in the laminar 

and transitional regimes. Based on their experiments, they made several conclusions: 1) 

Flow is unsteady and unstable in wavy channels while remaining laminar and the distance 

necessary for the fluid to travel in the channel before becoming unsteady decreases as Re 

increases. 2) For symmetric channels, circulation develops in the furrows at low Re and 

the flow becomes unsteady when the shear layer between the trapped vortices and the core 

becomes unstable. 3) For asymmetric channels (phase shift of 0 and 90) the circulations 

develop at a low Re also and “macroscopic mixing occurs when the oscillating 

reattachment point moves upstream and the impinging flow ‘injects’ fluid in the trapped 

vortex.” 4) Phase shifts of 0 and 90 lead to development of unsteady flow further upstream 

than symmetric channel. 5) Amplitude significantly influences the stability of the flow. 6) 

The geometry of the channel significantly enhances heat transfer for laminar flow.  

Metwally and Manglik45 used numerical simulations to investigate the effect of the 

Reynolds number, the aspect ratio and the Prandtl number on heat transfer in asymmetric 

wavy walled channels. In their investigations, they examined the flow and heat transfer for 

steady flow and unsteady time periodic flows. They found that the use of wavy walled 

channels produces self-sustained transverse vortices which significantly enhance heat 

transfer at a nominal friction factor penalty. 
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Nishimura et al.46 used experiments to investigate the influence of asymmetric wavy 

walled channels on mass transfer for flow rates that ranged from laminar to turbulent. They 

found that for laminar flows, a steady vortex existed in the furrow of the channels and, for 

turbulent flows, the separated shear layer between the main stream and the recirculation 

vortex rolls up into a traverse vortex. This is accompanied with vortex fusion and stretching 

leading to a significant increase in mass transfer rate especially near the flow reattachment 

point in the large recirculation vortex. 

Zhang et al.47 used numerical simulations to investigate the effect of amplitude, 

period and flow rate on flow and heat transfer in an asymmetric wavy walled channel. By 

examining the Colburn j factor, 1 3Nu RePrj  , in each flow, they determined that the 

heat transfer is significantly enhanced when the flow becomes unsteady. Furthermore, they 

found that the amplitude of the wall corrugations has the most significant influence on the 

total performance of the channel. 

Manglik et al.48 used 3D numerical simulations to investigate the influence of Re, 

width to height aspect ratio, amplitude, and period of asymmetric wavy walled channels 

on heat transfer and fluid flow. Their investigation considered both constant wall 

temperatures and constant heat fluxes. Their simulations indicated the formation of 

secondary cross flows affect the core flow in the center of the channel, which slow the core 

fluid down. The size and strength of the vortices increases with increasing Re. These 

vortices serve to thin the thermal boundary layer and increase heat transfer. 

Although a substantial amount of research has been conducted to better understand 

the effects of wavy walled channels on heat and mass transfer, a comprehensive and 
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systematic picture of how the heat and mass transfer changes for a wide range of system 

parameters is still missing. Additionally, as with the fluid flow, a majority of research into 

the heat transfer enhancement in wavy channels is focused on the converging-diverging 

geometry, while most compact heat exchanger designs utilize the asymmetric channel 

geometry.49 This, coupled with the fact that the asymmetric channel has been shown to 

outperform the converging-diverging channel, indicates a need for further research into the 

heat transfer enhancement in this geometry.50 

1.1.3 Heat Exchanger Fouling 

Due to the significant effect of fouling on the effectiveness and lifespan of EGR heat 

exchangers, a considerable amount of research has been conducted investigating this 

phenomenon. This research includes both the development and use of computational 

models as well as experiments. Although a few have focused on wavy walled coolers, the 

majority of studies examined the formation of the fouling layer in simple shell and tube 

geometries. 

Several groups have performed experiments investigating the fouling layer formation 

and the reduction in effectiveness in shell and tube heat exchangers.11, 12, 14, 51-53 These 

investigations showed large degradations in performance in as little as 12 hours of 

operation and that this degradation was coupled with an increasing thermal resistance of 

the fouling layer. They also observed that the rate of increase in the thermal resistance, 

indicating an increasing layer thickness, decreased over time. This continued until the 

resistance approached an asymptotic value, signifying a steady operating condition was 

reached.  
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In order to understand how deposits can be removed from the fouling layer, several 

groups have narrowed their investigations to focus specifically on the effect of the fluid 

velocity on shear removal of particles from the surface.5, 54-56 These studies have found that 

the critical velocity necessary for shear removal is a function of the particle size with the 

smallest particles requiring the largest velocities. They have found that this critical velocity 

provides one explanation for the asymptotic behavior of the fouling layer growth. This is 

because the increase in the fouling layer thickness decreases the diameter of the tube, 

causing an increase in the fluid velocity. The narrowing continues until the velocity reaches 

a critical value where any additional deposits are immediately sheared from the surface. 

Various models have been developed by different groups in order simulate the effects 

of the fouling layer growth in a cooler. The most basic of these are one dimensional models 

which rely on experimental correlations without explicitly including physical mechanisms 

accounting for particle removal and re-entrainment.57, 58 Results obtained with these 

models compare well with those obtained in the beginning of experiments indicating that 

they are well suited for investigating the initial fouling in shell and tube coolers.  

Other groups have extended these one dimensional models by including mechanisms 

to capture particle rebound and deposit removal.59, 60 By including these mechanisms, 

results from these models compare well with those obtained over the full length of 

experiments. Even more elaborated models have been developed to account for two and 

three dimensional depositions, employ a Lagrangian framework to simulate the particle 

motion, and incorporate highly detailed models for the interaction of particles with the 

surface.61-64 In addition to being able to simulate geometries other than a single channel of 



  

13 

a shell and tube cooler, these models are capable of simulating the formation of a fouling 

layer with greater accuracy than the simple one dimensional models. 

In addition to simulations and experiments investigating how the fouling layer 

develops in the cooler, several studies examining the properties of the deposits have been 

conducted.65-67 In these studies, researchers examined the composition of the fouling layer, 

the structures formed by the deposits in the layer, its thermal properties and its density. 

Results showed that the layer is composed of soot, metallic ash and sulfate hydrate 

particles, as well as condensed hydrocarbons which can form complex dendritic structures 

at the surface. Additionally, by determining the mass of a small section of the layer, the 

researchers calculated a deposit porosity of ~ 0.98 . This high porosity accounts for the 

thermal conductivity of the layer being much lower than that of carbon soot which is the 

primary constituent of the layer. 

While a large body of research exists on fouling in EGR heat exchangers, only two 

of these investigations have focused specifically on the wavy walled geometry, both of 

which utilized numerical simulations. Strebel used computational simulations to 

investigate thermophoretic deposition of particles in an asymmetric wavy channel with 

both laminar and turbulent flows.68 His results showed that compared to a straight channel, 

the wavy channel induces higher rates of deposition for both laminar and turbulent flows 

and that this rate increases with the temperature gradient. Additionally he found that for 

laminar flows, the amount of deposition decreases with an increase in Re while the opposite 

is true for turbulent flows.  
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Nagendra et al. used numerical simulations to investigate the deposition of soot 

particles in a wavy EGR heat exchanger.69, 70 Using their model they simulated particles 

entrained in fully developed turbulent flow through a single period of a channel with 

perfectly adsorbing walls. From their results they concluded that for large wall temperature 

gradients, the deposition of sub-micron particles is independent of size, and the amount of 

deposition is linearly correlated with the wall temperature gradient. Additionally they 

found that the deposition rate increases with decreasing Re.  

In addition to these two computational studies, a survey of fouled EGR coolers from 

production vehicles conducted by Lance et al. included coolers with wavy walled 

geometries.67 In their examination of fouling in the wavy walled cooler, they observed that 

the leading edge of the sinusoidal peak contained a minimal amount of deposit with the 

majority of the deposit being located beyond the peak.  

Despite the limited amount of research conducted into the effect of a sinusoidal 

shaped wavy walled geometry on fouling layer formation, it is frequently used in 

production EGR heat exchangers.67 This is because it is believed that the larger surface 

area of these coolers leads to an increased resistance to the negative effects of fouling. 

There is little to no published data that supports this assumption. Moreover, a review of 

studies on the effectiveness of various geometries at mitigating fouling found conflicting 

results to be common among them. By looking into the studies concerning the various 

geometries, the authors of the review concluded that the effect of the geometry on fouling 

layer development is not fully known and computational modeling is necessary to gain a 

complete understanding.9 
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Of the two computational studies concerning particle deposition in wavy walled EGR 

coolers, neither incorporated a model for the growth of the fouling layer. Both models also 

utilized perfectly adsorbing walls, leaving them unable to capture the effects of the fluid 

velocity and wall shear stress inhibiting particle deposition. Because of this, neither model 

is able to accurately capture particle deposition. This is apparent in the results Nagendra et 

al. obtained using their model, which showed the leading edge of the wall peak having the 

highest concentration of deposits.69 This directly contradicts the observations on fouled 

coolers made by Lance et al. and indicates that a more robust computational model is 

necessary for modeling particle deposition and fouling layer growth.67 Although other 

models discussed above incorporate models for particle attachment and removal and 

fouling layer growth, their use appears limited to a small range of parameter. Furthermore, 

none have been utilized to simulate the wavy-walled geometry. 

1.2 Objectives 

In spite of a significant amount of research that has been already performed to better 

understand the effects of wavy walled geometries on flow with heat and mass transport, 

we are still missing a fundamental and systematic insight into these processes especially in 

the case of EGR cooler fouling. This knowledge is critical for the efficient use of wavy 

walled channels in practical applications. The goal of this thesis, therefore, is to contribute 

to the understanding of the influence of asymmetric wavy walled channels on the flow, 

heat transfer and formation of a fouling layer within it. To achieve this goal, our research 

was split into these five objectives: 
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1. Develop and validate a finite-differences thermal model for simulating heat 

transfer and couple it with a lattice Boltzmann model for fluid flow. 

2. Investigate influence of wavy wall geometry on the fluid flow through the 

channel. 

3. Investigate the influence of the geometry on heat transfer in the fluid. 

4. Expend the computational model for simulating fouling layer growth by 

integrating it with a Brownian dynamics model for the motion and deposition of 

particles entrained in the fluid. 

5. Employ the extended model to examine the effect of the geometry on the fouling 

layer formation and development. 

When investigating the effect of the geometry on the fluid flow, heat transfer and fouling 

layer development (objectives 2, 3, and 5, respectively), we systematically vary the 

parameters defining the geometry and flow in order to understand how they influence the 

various aspects of the system.  

The insights gained from this research will have impacts not only in EGR heat 

exchanger design, but on a wide range of engineering applications. This includes mixing 

and heat transfer in microscale devices which are incapable of achieving turbulent mixing, 

as well as designing more efficient general purpose heat exchangers were fouling may or 

may not be a significant issue. Furthermore, our computational model will provide a more 

comprehensive understanding of the physics governing the fouling layer development as 

well as serve provide a computational framework that can be further expanded for use in 

future research. 
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1.3 Thesis Overview 

A detailed description of the computational model developed when completing 

objectives 1 and 4 is provided in Chapter 2. Significant attention is given to the 

implementation of the methods used for simulating particle deposition and the fouling layer 

model. Additionally, a brief discussion of GPU computing, specifically the OpenCL® 

programming framework, is included as it became necessary for our code to utilize GPU 

accelerators to maintain reasonable simulation times for the computationally intensive 

simulations. To verify the implementation of the methods, we performed validation tests 

for the developed computational models. We have provided the results from these tests in 

Chapter 3. 

Our investigations began by probing the effects of wavy walled channels on the fluid 

flow, which are detailed in Chapter 4. Specifically, we investigated how the flow occurring 

in the channel is influenced by the geometric parameters of the channel (i.e., the amplitude 

and period of the walls and height of the channel), and the pressure drop driving the flow. 

By performing simulations over a wide range of these parameters we were able to examine 

how they influence multiple aspects of the system. These aspects include the flow 

structures found in the fluid, the pressure drop necessary to induce unsteady flow, and the 

frictional losses resulting from the complex geometry. Additionally, we probed the effect 

of the geometry on the stability of the flow and the bifurcations the fluid undergoes as it 

transitions from laminar to chaotic flow regimes. 

Chapter 5 focuses on the heat transfer enhancement induced by the wavy walled 

geometry (objective 3). We vary the geometric and flow parameters to observe how they 
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influence the heat transport in the channel. Using the local and mean Nusselt numbers, we 

compare how these parameters affect both the heat transfer occurring at various locations 

along the wall, as well as the overall heat transfer enhancement. Additionally, a thermal-

hydraulic performance factor, which provided a more accurate representation of the overall 

performance, is used to quantify the effects of the geometry.  

Using the full computational model, we conclude our investigation with the 

examination of the effect of the wavy walled geometry on the development of the fouling 

layer (objective 5). A discussion of our results is provided in Chapter 6. As in the previous 

investigations, we vary the geometric and flow parameters and observe how they influence 

the fouling of the channel. Specifically, we examine their effect on the thickness and 

growth rate of the fouling layer, the localization of the deposits, and the degradation of the 

cooler performance. Our results provide insights into how the wavy walled geometry 

influences the growth of the fouling layer.  

Lastly, major conclusions drawn from our research are formulated in Chapter 7. This 

chapter also discusses further plans for continued model development and research. 
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CHAPTER 2. METHODOLOGY 

In order to investigate the systems of interest, computational methods were needed 

to simulate the fluid flow, heat transfer and particle motion in the domain. The methods 

chosen for our computation model consisted of: 

 The Lattice Boltzmann Method (LBM) for the fluid flow 

 A finite-differences thermal model (FDTM) for the heat transfer  

 A Brownian dynamics model (BDM) for the particle motion  

 A custom fouling layer model (FLM) to capture the effect on the system of a 

growing fouling layer, resulting from particle deposition 

This fouling layer model shifts the location of the surfaces defining the fluid-solid interface 

inward into the channel to simulate the growth of the fouling layer. 

In the initial investigation of the fluid flow in the wavy channel, only the lattice 

Boltzmann method was utilized. Consequently, this required no coupling between 

methods. When investigating the heat transport, the finite-differences thermal solver was 

used in addition to the LBM. One way coupling between these two methods was 

implemented through the velocities calculated with the LBM. In the final investigation of 

the fouling layer formation, all four models (LBM, FDTM, BDM and FLM) were 

employed in each simulation. As before, one way coupling was applied between the LBM 

and FDTM using the fluid velocities. Similarly, the Brownian dynamics model was 

coupled with the LBM and FDTM through the velocities and temperatures used to calculate 

the particle trajectories, respectively. The BDM was linked to the fouling layer model 
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through the deposition of particles along the surface. In turn, the FLM directly influenced 

the LBM, FDTM and BDM by shifting the surface locations, changing the shape of the 

domain. With all four methods coupled either directly or indirectly (see Figure 2.1 for a 

diagram of these couplings), our computational model is able to capture the complex 

interactions between all aspects of the system. 

 

Figure 2.1 – Diagram of coupling between methods used in computational model. 

Early developments of this computational model were written in C++ and 

simulations were executed on a compute cluster containing Intel Xeon multicore 

processors. During the development of the fouling layer model, all new methods along with 

nearly all those previously written in C++ were (re)implemented in the OpenCL™ 

framework (which is based on the C99 programming standard). The OpenCL™ framework 

provides the capability to execute on various computational devices, including graphics 

processing units (GPUs).71 As such, simulations using methods implemented in OpenCL™ 

were executed on standard desktop computers containing AMD brand GPUs. 

The following sections of this chapter will discuss the theory and implementation of 

the lattice Boltzmann method, the finite-differences thermal model, the Brownian 

dynamics model and the fouling layer model. A final section will provide a brief overview 

of the OpenCL™ framework along with a discussion of our model’s implementation in the 

framework.  
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2.1 Lattice Boltzmann Method 

In our model, we use the lattice Boltzmann method to model the fluid flow. The LBM 

is a mesoscopic method which uses the discrete Boltzmann equation to simulate flow of a 

Newtonian fluid instead of directly solving the Navier-Stokes equations.72-74 The method 

uses a fixed square lattice and simple boundary conditions, which allow for modeling of 

complex geometries and eliminate the need for re-meshing with moving boundaries. 

Additionally, the spatial locality of the method make is relatively simple to implement and 

highly parallelizable.75 

2.1.1 Historic overview of the LBM 

Historically, the lattice Boltzmann method grew out of the lattice gas cellular 

automata (LGCA) models first introduced by Hardy, Pomeau, and de Pazzis in 1973.76 

Their model, called HPP, consisted of fictitious particles traveling along a fixed square 

lattice in four fixed directions corresponding to four velocities. When two or more particles 

occupy the same lattice site, they undergo collisions which enforce conservation of mass 

and momentum.77 By undergoing successive transport and collision steps, the particles 

behave similar to molecules in a gas at a microscopic level. However, several flaws in the 

model left it incapable of simulating the flow of a fluid at the continuum level.78  

In 1986 Frisch, Hasslacher and Pomeau published a paper detailing an improved 

LGCA method, known as FHP, which was capable of simulating fluid flows.79 Rather than 

using a square lattice and four velocities, their model utilized a hexagonal lattice and six 

particle velocities. The higher symmetry of the FHP model allowed it to achieve the 

isotropy necessary to recover the Navier-Stokes equations in the macroscopic limit.78 
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Although this model and as subsequent LCGA models were able to overcome the initial 

limitations seen in early LCGA models, they still suffered from two notable disadvantages, 

a lack of Galilean invariance and statistical noise.72 

The development of the lattice Boltzmann method grew directly out of attempts to 

overcome the drawbacks of LGCA methods. McNamara and Zanetti replaced the 

individual particles traveling along the lattice with ensemble averaged populations of 

particles in order to eliminate the issue of statistical noise.80 Working independently, 

Higuera and Jimenez also did away with individual particles but went a step further by 

replacing the collision rules defining particle interactions with a linearized collision 

operator derived from the Boltzmann transport equation.81 These two papers laid the 

ground work for what has become known as the lattice Boltzmann method.  

Over the last three decades the method has been improved and new versions of the 

method have been developed. The earliest model, introduced by Quin and Chen et al, used 

the Bhatnagar-Gross-Krook collision operator to form a single relaxation time model 

known as the lattice BGK (LBGK) model.82, 83 In order to overcome stability issues that 

occurred with small relaxation times and to improve accuracy, multi-relaxation time 

(MRT) and two relaxation time (TRT) models have been developed.84-86 Others have 

extended the model to simulate a wide range of physical phenomena such as heat/mass 

transport and multiphase/multicomponent mixtures.87-90 This development has led to the 

lattice Boltzmann method becoming a highly versatile and useful tool in the area of 

computational physics. 
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2.1.2 Implementation of the LBM 

The lattice Boltzmann method simulates hydrodynamic flows using a density 

distribution function describing the motion of microscopic “fluid particles”. The evolution 

of the distribution function proceeds through sequential collision and propagation steps and 

is governed by the discretized lattice Boltzmann equation given by:73 

      , , f ,i i i if t t t f t t f        r c r r   2.1 

In this equation, the local fluid distribution function  tf i ,r  is propagated across each 

lattice direction, ic , at each time step, t . The collision operator   t,f r , which is a 

function of all s'if  at the lattice point, denoted  t,f r , relaxes the distribution function 

towards its local equilibrium. In our simulations we use a double relaxation time model 

developed by Ladd. The right hand side of Equation 2.1, denoted 
if , is the post-collision 

distribution which is calculated according to:73 
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Here, ic
a  is the lattice velocity, 312 sc  is the adiabatic speed of sound,  if  is the 

density,  iif cu  is the local fluid velocity, and ,neq
Π  is the modified non 

equilibrium second moment given by: 
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Here   and v  are eigenvalues of the linearized collision operator, eqneq
ΠΠΠ   is the 

non-equilibrium second moment, i
i

iif ccΠ   is the second moment of the distribution 

function, i

i

i

eq

i

eq f ccΠ   is the second moment of the equilibrium distribution given by:  
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The eigenvalues   and v  are related to the shear and bulk dynamic viscosities according 

to:  5.012   sc  and   312 12  

vsv c  . The pressure is calculated from the 

equation of state, 
2
scp  . In each simulation we used the density 1 , 1v , and 

time step 1t . 

The lattice Boltzmann method is implemented on an equal-spaced square grid 

uniformly covering the computational domain. In our simulations, a 9 velocity model was 

used for two-dimensional simulations (D2Q9) with lattice velocities and corresponding are 

defined below. 
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The directions of the lattice velocities can be seen in Figure 2.2. 
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Figure 2.2 – Velocity directions for D2Q9 lattice. 

2.1.3 Boundary Conditions and Determination of Boundary Nodes 

For simple geometries, such as a straight channel, no-slip boundary conditions can 

be readily implemented using the half-way bounce back method. In this method, 

distributions that cross a solid boundary during propagation return to the same lattice site, 

but in the opposite direction. This method is second order accurate for boundaries located 

one half step from a lattice site, otherwise it is first order accurate.91  

In complex geometries, such as the wavy channel considered in our study, the 

distance between the boundaries and the LBM nodes located next to the boundary varies. 

In this case, we used the interpolated bounce-back method introduced by Bouzidi et al.92 

to impose no slip boundaries along the channel walls, which maintains second order 

accuracy with minimal computational costs. The values for the “bounced back” distribution 

functions are interpolated according to: 
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Here, 'if  is the distribution in the opposite direction relative to if , q  is the distance 

between the lattice node and the wall, lr  is a fluid node with il cr   being a fictitious node 

located within solid, and c
if  is the value taken after the collision, but before the 

propagation step. Figure 2.3 provides a schematic depicting how the method is 

implemented. When 5.0q  (Figure 2.3 (a)), the value of a distribution is interpolated 

from nodes A and E for a fictitious node D. The location of D is chosen such that when the 

distribution is propagated a full step, it will bounce back at the wall (C) and reach node A. 

When 50.q  (Figure 2.3 (b)), the distribution leaving node A propagates a full step to the 

fictitious node D. The new value for the unknown distribution at A is then interpolated 

from the values at nodes D and E. In addition to no-slip boundaries along the wall, periodic 

boundary conditions are implemented along the inlet/outlet of the channel by transferring 

all distributions crossing the outlet (inlet) during propagation to the inlet (outlet). 

   

Figure 2.3 – Schematic of implementation of interpolated bounce-back method for (a) 

q < 0.5 and (b) q ≥ 0.5. 

 

 

(b) 

(a) 

 

50.q  

50.q

F E C D A B 

wall 

F E C D A B 

wall 
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The walls of the channel are delineated by set of 
pn  points spaced equidistantly 

across the length of the domain. Linking these points is a set of 2SE pn n   surface 

elements, each defined by two points. Using these surface elements, we are able to reduce 

the complex sinusoidal shape of the channel walls to a set linear line segments (see Figure 

2.4). 

 

Figure 2.4 – Depiction of surface elements defining channel wall. 

By defining the fluid-solid interface with a set of surface elements defined by two 

points, we can use simple geometrical relationships to obtain important information 

necessary for calculations. For example, the surface element information can be used to 

determine if a distribution at a given node crosses the wall and if it does, the distance 

between the surface and the node. This process is depicted in Figure 2.5, where the lattice 

velocity 
7c  at node 

lr  is crossing the surface is defined by points 0p  and 1p . First, using 

the vector 
0 1, 1 0 

p p
v p p , the surface normal is calculated according to: 
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To ensure consistency, the 0p  and 1p  points defining each surface element are chosen in 

such a way that the normal calculated with Equation 2.8 will always point inward toward 

the fluid. Once the normal vector is obtained, the magnitude of vectors 
0, ,

ˆ
l lE  

r r p s
v v n  

and 
, 7

ˆ
l C  r sv c n  can be calculated. Lastly, because triangles ABC and ADE are similar, 

we can obtain the value of 
,C ,l l Eq  r rv v  for use in the interpolated bounce back 

method as well as the location of intersection int 7l q p r c . Additionally, we can ensure 

that intp  is located on the surface element by testing if Equation 2.9 is satisfied. 

 
0 1 0 1, ,D D, p p p pv v v   2.9 

If it is not satisfied, this indicates that 
intp  is located on the line passing through points 0p  

and 1p , but outside of the section defined by them. 

 

Figure 2.5 – Diagram representing calculation of distance between node and surface. 
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In addition to no-slip boundaries along the wall, a periodic boundary condition is 

implemented along the inlet/outlet of the channel. Coupled with the periodic boundary, a 

body force density f  is applied to the momentum term in the collision operator leading to 

a modified flow momentum:93 

 2i

i

f   ij c f .  2.10 

By setting ˆdp dx f i , we were able to model flow driven by a constant pressure 

gradient. Additionally, using periodic conditions allowed us to simulate the sections of the 

channel sufficiently far downstream from the inlet for the flow to have fully developed. 

This is significantly more efficient than using pressure or velocity boundary conditions, 

which would require a simulation domain containing an entrance region full channel with 

multiple periods to allow the flow to became fully developed. 

2.2 Finite Difference Thermal Model 

An implicit finite-differences thermal model was used to model the temperature 

distribution within the channel. This method was used because of its simple 

implementation and computational efficiency.94 The generalized form of the convection-

diffusion equation for heat transfer in an incompressible fluid without heat generation is 

given by:95 
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where   is the thermal diffusivity, T  is the temperature and v  is the velocity of the fluid. 

Expanding the diffusion term (the first term on the right hand side of Equation 2.11) results 

in 

  2T
T T T

t
 


    


v   2.12 

For systems with constant thermal diffusivity throughout the fluid, the second term on the 

right hand side of Equation 2.12 can be dropped as 0  . Removing this term, and 

expressing differential equation in its implicit form gives: 

    
       2 1 2 1 1 1

1 0

2 2
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r r r r
r r . 2.13 

Here  0T r  and  1T r  are the temperatures at position r  and times t  and t t  

respectively, t  is the time step, and U  and V  are the x and y components of the velocity. 

This form of the heat equation is used when investigating heat transfer in the channel 

without fouling as the thermal diffusivity of the fluid remains constant. 

If the thermal diffusivity is variable in the system, its spatial derivative becomes non-

zero cannot no be dropped from Equation 2.12. Therefore the following term must be 

included on the right hand side of Equation 2.13: 
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where   r  is the local thermal diffusivity. In all simulations the finite difference 

equations are solved on the same lattice as that used in the LBM. 

 

Figure 2.6 – Diagram of node spacing scheme used in finite differences thermal model. 

(a) Interior nodes have uniform spacing while (b) boundary nodes have non-uniform 

spacing. 

2.2.1 Spatial Derivatives 

A central difference scheme was used to calculate the spatial derivatives. Because of 

the complex geometry associated with the wavy walls, the first and second derivatives with 

respect to x  were calculated according to: 
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where ex  and wx  are the distances from the center node (at r ) to the east (at er ) and 

west (at wr ) nodes, respectively (see Figure 2.6 for a visual representation of the node 

layout and spacing).96 For nodes located away from the walls, where we xx   these two 
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equations reduce to the common central difference form. The derivatives in the y  direction 

can be obtained by replacing the east and west nodes with the north and south nodes. 

For the thermal diffusivity, rather than using its value at neighboring nodes to 

calculate the spatial derivatives, those representing the thermal diffusivities between nodes 

are used. Therefore, the spatial derivatives become: 
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Here,   r  is the thermal diffusivity at node r , while e
r  and w

r  signify the locations 

halfway between node r  and its neighboring in the east and west directions respectively. 

The value used for the thermal diffusivity at node r  is obtained from the average of the 

diffusivities between nodes in the four surrounding directions. Note that the form Equations 

2.17 and 2.18 differ from 2.15 and 2.16 by a factor of two due as they were derived from 

Taylor series expansions using a spacing of half the distance between nodes rather than the 

full distance. The derivatives in the y direction can be obtain in the same manner as 

discussed above for the temperature. Variable diffusivities are used when the fouling layer 

growth is included in the system and as such will be discussed in more detail in Section 2.4 

of this chapter. 
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2.2.2 Boundary Conditions 

The channel walls were kept at a constant temperature of 0wT  in all simulations. 

For simulations investigating heat transfer, periodic thermal boundary conditions were 

used at the inlet/outlet of the channel. This boundary condition is implemented by setting 

the dimensionless temperature to be periodic across the inlet/outlet.97 The dimensionless 

temperature is defined by      wbw TxTTtTt  ,),( rr , where wT  is the temperature 

of the wall and  xTb  is the bulk temperature defined as: 
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In all simulations, the bulk mean temperature was set to   10 bT  at the inlet and was 

updated after each iteration of the implicit solver at the outlet. For simulations investigating 

fouling, a constant temperature boundary condition was implemented at the inlet with 

  10 wT  and the outlet temperature was extrapolated.98  

2.2.3 Iterative Solver for System of Equations 

When investigating heat transfer in wavy channels, the Gauss-Seidel method was 

used to iteratively solve the system of equations bAT  , where A  is a NN   sparse 

matrix of coefficients, and T  is a vectors with length N  of the temperatures at each lattice 

node, b  is a vector of constants with length N , and N  is the total number of lattice sites 

in the domain. The Gauss-Seidel method was chosen for is simple implementation, reduced 

memory requirements compared to other iterative solvers as well as its increased rate of 
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convergence.99 When modeling fouling layer development, the Jacobi method was utilized 

to iteratively solve the system of equations. The Jacobi method requires the storage of two 

T  matrices, and has a slower rate of convergence compared to Gauss-Seidel. However, it 

can be parallelized, which was necessary as nearly all calculations performed in fouling 

simulations were done on GPU’s.99 This parallelization significantly reduced the time per 

iteration, overcoming the reduced rate of convergence of the method. 

In order to reduce the memory required to hold the sparse matrix A , only the values 

of the non-zero elements and their indices were stored, reducing the memory requirements 

from  2NO  to  NO . Additionally, to reduce the computational cost of updating matrix 

A  at each time step, the coefficients associated with the diffusive term in the transport 

equation are calculated once and stored in memory. This reduces the calculations 

performed at each time step to only updating the coefficients related to the convective term 

as they are a function of the unsteady velocity. 

2.3 Brownian Dynamics Model 

The sizes of diesel soot particles range from tens to hundreds of nanometers. This, 

coupled with the sufficiently small volume fraction of soot particles makes the Brownian 

dynamics model a suitable choice for simulating the particle motion and deposition.100 In 

this model, the particles travel along trajectories that obey a stochastic-differential equation 

given by:100, 101 

 0( ) ( , ) 2 ( )d t t dt D d t r u r W .  2.20 
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The first term gives the advection due to the local fluid velocity ),( tru . The second term 

is the Brownian contribution, with 0D  being the particle diffusion coefficient and )(tdW  

being the differential of a Wiener process with unit variance. 

We use a first order Euler method to solve Equation 2.20 which gives:102 

 0( ) ( ) [ ( )] 2 ( )t t t t t D t     r r u r W .  2.21 

Here, the increment W  is sampled randomly from a truncated Gaussian distribution with 

unit variance. The fluid velocity at the particle position is obtained directly from the 

velocities at the LBM nodes by using linear interpolation between the neighboring 

nodes.103  

2.3.1 Particle Properties 

As the particle travel with the fluid, they are treated as tracers without mass or any 

excluded volume. Consequently, they do not experience inertial effects or particle-particle 

interactions, and do not induce any backflow effects on the fluid (only one way coupling). 

These assumptions are valid for sub-micron sized particles at a relatively low 

concentration, which are the conditions found in EGR heat exchangers.102 When the 

particle is interacting with a surface, it maintains its lack of an excluded volume, but each 

particle is assigned a finite diameter that is used during interaction calculations. 

Additionally, this diameter is used when calculating the relevant particle properties. 

To reduce computational costs, the particle diameters used in the model were divided 

into thirteen bins ranging from 50 nm to 290 nm, with each bin having a representative 
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mean diameter.60 By doing so, the properties corresponding to each particle diameter were 

calculated once during initialization and stored in an array. Experimental investigations 

into the particle sizes found in diesel exhaust suggest that the particle diameters are log-

normally distributed.104 As such, number of particles in each bin was calculated from a 

lognormal distribution with a mean diameter of 130 nm and a standard deviation of 1.4.60 

A plot showing the percent of particles in each bin can be found in Figure 2.7. 

 

Figure 2.7 – Distribution of particle diameters used in Brownian dynamics method. 

In physical EGR systems, the total number of particles within the cooler can reach 

numbers 910  and varies with time.105 In our simulations, the number of particles is 

limited by its high computational costs. To increase computational efficiency and accuracy, 

the total number of Brownian particles is kept constant in the simulations. Moreover, each 

Brownian particle in the model represents multiple real particles. This allowed for our 

model to maintain a uniform concentration of particles entering the channel at the inlet in 

addition the ability to accurately simulate realistic concentrations of particles at a 

reasonable computational expense. 
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2.3.2 Thermophoretic Forces 

Temperature gradients in the heat exchanger give rise to a thermophoretic force that 

drives particles toward the heat exchanger walls. The effects of the thermophoretic force is 

included into the model by adding a thermophoretic velocity to the particle velocity in 

Equation 2.21. This thermophoretic velocity is calculated from the Brock-Talbot 

correlation given by:106  
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where Kth is the thermophoretic coefficient, μg and ρg are the viscosity and density of the 

fluid, Tp is the temperature of the particle and T is the temperature gradient in the fluid. 

Due to the small size of the particles, the particle temperature is assumed to be equal to the 

temperature of the fluid at that location. thK  is calculated according to:107 
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where  Kn 2p pd d  is the Knudsen number, λ is the mean free path for air, gk  and pk  

are the thermal conductivities of the air and particles respectively, mC  is the momentum 

exchange coefficient, sC  is the thermal slip coefficient, tC  is a numerical factor obtained 

from kinetic theory, and cC  is the Cunningham slip correction factor is defined as:108 
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Here A, B, and C are experimentally determined coefficients. Values used for the 

coefficients mC , sC , tC , A, B, and C are 1.14, 1.17, 2.18, 1.257, 0.4, and 1.1, 

respectively.107, 109 The thermal conductivity of the particles was set to the experimentally 

determined value of 0.057 W/mKpk  .66 

The temperature and the velocity of each particle is obtained directly from the 

temperature and velocity at the four surrounding mesh nodes using bilinear interpolation. 

The temperature gradient is determined from the temperature difference between these 

nodes.  

The effect of diffusion on particle motion is negligible compared to that of 

thermophoresis in systems with sufficiently large temperature gradients.106 Because of this, 

we neglected the effects of diffusion in our model. We also note that simulating diffusion 

in a Brownian dynamics model requires the use of a random number generator capable of 

generating values from a normal distribution, which is a computationally expensive task.110  

2.3.3 Particle Deposition and Removal Models 

Experiments suggest that shear induced removal of deposits can have a significant 

impact on the growth of the fouling layer.55 This can even lead to the layer thickness 

reaching a steady state as the increased fluid velocities caused by the narrowing of the 

channel result in the rate of removal offsetting the rate of deposition.55 Higher flowrates 

also increase the kinetic energy of particles as they impact the wall. If this energy is 

sufficient to overcome the adhesive forces between the particle and the wall, the particle 

will rebound off the wall instead of depositing on it.111 Therefore, in order to capture the 
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effect of the flowrate and wall shear on the deposition and removal of particles as they 

contact the surface, we implemented both a “sticking probability” and shear removal 

model. 

2.3.3.1 Sticking Probability Model 

“Sticking probability” models use the material properties of the surface and the 

impinging object as well as the kinetic energy of the object to calculate a probability that 

it will adhere to the surface.112 In our model, the equation for the sticking probability, Sp, 

is given by: 
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which is the ratio of the adhesion energy acting to keep the particle at the surface to the 

kinetic energy of the rebounding particle (as depicted in Figure 2.8).113  

 

Figure 2.8 – Depiction of particle contacting surface. 

Assuming no energy is lost to heat, the energy balance for the particle can be reduced 

to:114  
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Here, 
pm  is the particle mass, rU  is the rebounding particle velocity, cU  is the velocity of 

the particle when it contacts the surface and AQ  is the energy the particle must expend to 

break contact with the surface. This contact energy is given by:115 
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where p s    is the work of adhesion,   is the surface free energy with the subscripts 

p and s denoting the particle and surface, respectively, R  is the effective radius of the 

particle when in contact with the surface which, assuming negligible deformation, is equal 

to the particle radius, and iE  is the effective Young’s modulus of the particle-surface 

interface. The effective Young’s modulus is a function of the Poisson’s ratio,  , and the 

Young’s moduli of each material and is calculated from:64 
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When the particle is in contact with the surface, small deformations in both lead to 

the formation of a contact area rather than the single point of contact that would exist if no 

deformation occurred. Using the JKR theory of adhesive contact with zero contact 

pressure, the radius of this contact area, a, is given by:64, 116 
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Using this contact radius, the total interface adhesive energy, 22AQ a   can be 

calculated. 

In all simulations the material properties used for the wall were those of stainless 

steel, as this material is commonly used for EGR heat exchangers walls.117 Little 

information on the material properties of diesel soot particles is known. However, it is 

known that the graphite form of carbon is a major component of the soot. Therefore, the 

material properties of graphite were used.118 The values used for the material properties are 

listed in Table 2.1. As the fouling layer forms, the particles begin to impact and make 

contact with soot deposits rather than the wall. To capture this change in the surface, once 

the thickness of the soot reaches 0.5 LB units, the material properties of graphite is used 

for the surface instead of those of stainless steel. 

Table 2.1 – Values for material properties used in simulations. 

 Soot (Graphite) Wall (Stainless Steel) 

Surface Free Energy 0.15 N/m 1.37 N/m 

Young’s Modulus 35 GPa 210 GPa 

Poisson’s Ratio 0.126 0.29 

At each Brownian dynamics step, after the positions of the particles are updated, all 

particles located near the wall are checked to determine if their trajectories intersect with 

the wall. This is done in a manner similar to that used to calculate the distances in the 

interpolated bounce back method with the particle position before updating and the 

displacement vector of the particle replacing point lr  and vector 7c , respectively. If the 
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particle trajectory intersects with a surface, the sticking probability is calculated. 

Additionally, a pseudo-random number generated from a uniform distribution of  0,1x

. If the random number is less than or equal to Sp or the rebound velocity 0rU  , the 

particle deposits on the surface, otherwise it is specularly reflected from the surface with a 

velocity rU , to a distance of rU t . Here, t  is the time step used in the Brownian 

dynamics method in LB units. When the particle rebounds, the new trajectory is examined 

in order to determine if it intersects with a different or the same surface and if it does the 

process is repeated. 

2.3.3.2 Shear Removal Model 

Initially, the deposition of particles is treated as temporary. It is during this temporary 

deposition period that the particles can be sheared from the surface and re-entrained in the 

flow. The length of the temporary deposition is sufficiently long to ensure that the 

deposited particle will experience the full range of the oscillating shear stress due to the 

unsteady flow at its deposit location before becoming permanent. This process is referred 

to as the shear removal model. In the shear removal model, the shear stress at the surface 

where the particle has deposited, w , is compared to a critical shear stress,  cr pd  which 

is a function of the particle diameter. 
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Figure 2.9 – Balance of moments on deposited particle. 

The critical shear stress is calculated from a balance of moments acting on the 

particle at point O (see Figure 2.9). Drag from the fluid exerts a force on the particle 

directed parallel with the wall, while the Van der Waals force acts perpendicular to the wall 

surface. The weight of the particle and the lift force are both neglected as small compared 

to the adhesive Van der Waals force.119 The drag force acting on the particle near the wall 

is calculated using Stokes’ law with the wall correction term, 1.7009f  , given by:120 

 3D pF Ud f . 2.30 

Here,   is the viscosity of the fluid, and U is the fluid velocity at the center of the particle. 

The Van der Waals force is defined as: 
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where 2010 JHA   is the Hamaker’s constant and 50pz d  is the separation distance 

between the particle and the surface.8, 60 
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Figure 2.10 – Diagram of the particle deformation at the surface. 

The particle will detach from the surface and be re-entrained in the flow provided the 

moment generated by DF  about point O (see Figure 2.9) is greater than that of vwF . This is 

defined by the inequality: 
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Here, b  is the distance the particle deforms when adhering to the surface and a  is the 

contact radius defined in Equation 2.29. The shape of the deformed particle when adhered 

to the surface can be approximated as in Figure 2.10, with a right triangle formed between 

the center of the particle and the left and center locations of the contact line. Using the 

properties of the wall and particle defined above, we find that 910a   for a particle 

diameter of 100 nm. From the Pythagorean theorem, we can calculate the length of side B 

in Figure 2.10. 
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Therefore, since 2pB d , we can assume that pb d  and simplify Equation 2.32 to: 
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 2D p vwF d F a . 2.34 

Due to the small particle sizes ( 1μm ), the velocity gradient across the height of the 

particle can be assumed linear. The velocity at the particle center is therefore given by: 
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By combining Equations 2.30, 2.31, 2.34 and 2.35, and rearranging terms we obtain: 
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From this, we can define the critical shear stress as: 
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which describes the shear stress required to remove a particle of diameter pd  deposited on 

the wall. 

In the lattice Boltzmann method, the thi  component of the wall shear stress vector at 

a given lattice node located at the boundary (i.e. has one or more distributions crossing the 

boundary) is given by:121 
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Here,   is the fluid density,   is the LBM relaxation parameter, 2

sc  is the lattice speed of 

sound, neq eqf f f     is the non-equilibrium value of distribution  , and xc  and xn  

denote the components of the lattice vector c  and normal vector ˆ
bn  respectively (with x  

representing Einstein notation indices i , j , and k ). Figure 2.11 provides a visual 

representation of the elements used in the shear stress calculations. As discussed 

previously, the normal vector at each surface element is well defined and can be readily 

calculated from its position information (solid red arrows in Figure 2.11). The vectors 

located at the boundary nodes normal to the surface, however, are ambiguous as a boundary 

node can be positioned near more than one surface element with different normal 

directions. In order to define the normal vector at these nodes, an average of the normal 

vectors of all surface elements neighboring the node is calculated according to:121 
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Here, sn  is the number of neighboring surface elements, ˆ
sn  is the unit normal of each 

neighboring surface. We define a neighboring surface element as any surface element 

located within a circle of radius, nnR  , around the boundary node (black circle centered on 

the fluid node in Figure 2.11). By normalizing bn  we obtain ˆ
bn  (black short-dashed arrow 

in Figure 2.11) used in Equation 2.38 to calculate the wall shear stress at the boundary 

node. 
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Figure 2.11 – Diagram depicting elements used in calculation of shear stress along the 

wall. 

Using the shear stress values at the boundary nodes, the magnitude of the shear stress 

at each surface element can be determined. This is done by taking a weighted average of 

the shear stress magnitudes of the all boundary nodes neighboring a given surface element 

using the equation: 

 w i i b

i i

W W
 

  
 
  τ   2.40 

Again, the neighboring nodes are defined as any node located within a circle of radius, nsR

, around the midpoint of the surface element (the red circle centered around the surface 

element in Figure 2.11). The weights, iW , are calculated from the triweight kernel function 

given by:122 
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Here, nsr r R  is the normalized distance between the surface midpoint and the boundary 

node, and 
 1r 

1  is the indicator function. This kernel function was chosen for its steep 

slope which heavily favors nodes near the given surface. Rather than calculating the 

direction of the shear stress vector, it is assumed to act tangentially to the surface (the red 

dashed arrow in Figure 2.11). 

Once the shear stress is calculated for a given surface element, it can be compared to 

the critical shear stress for all particles temporarily deposited on it to determine if any 

particles are sheared from the surface. When a particle experiences sufficient shear stresses 

to be removed from the surface, an acceleration for the particle and its resulting 

displacement are calculated. The fluid induces two forces on the particle as it is dislodged 

from the surface, a drag force and a lift force acting in the tangential and normal directions 

to the surface, respectively. The drag force, as discussed previously, is calculated from the 

shear stress at the surface according to: 
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The lift force can be calculated from the expression developed by Leighton and Acrivos 

for the lift induced by shear flow over a spherical particle on a plane given by:123 

 4 20.57L pF d  .  2.43 

Here, w    is the strain rate at the wall. From these two forces, the resultant force 

acting on the particle defined by the vector: 
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 ˆ ˆ ˆsgn( )R D w LF F  
s s s

F τ t t n , 2.44 

where ˆ
s

n  and ˆ
s

t  are the normal and tangential unit vectors defining the surface, and 

ˆsgn( )w  s
τ t  is the signum function which ensures that the drag force acts in the same 

direction as the shear stress.  

The forces induced by the flow acting on the particle induce an acceleration, 

p R pma F , where 3 6p p pm d   is the mass of the particle with 31770kg mp   used 

for the density of the particle.66 Assuming the particle detaches at the beginning of the 

Brownian dynamics step and undergoes a constant acceleration throughout the entire time 

step, the location of the particle after it is removed from the surface is given by: 

      
2

0.5 pt t t t   r r a . 2.45 

Here,  tr  is taken as the location where the particle first deposited on the surface. 

After a set number of time steps, if the particle is still adhered to the surface it is 

assumed to be permanently deposited. When this occurs, the number of soot particles 

represented by the individual Brownian particle is added to the appropriate element of an 

array tracking the number of particles from each particle size bin deposited at each surface 

element. After the necessary information is stored, the Brownian particle is re-released at 

the inlet. 
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2.3.4 Inlet Boundary Conditions 

Along with the particles that have permanently deposited on the surface, all particles 

reaching the outlet of the channel are removed from the simulation domain. After a set 

number of time steps, these removed particles are re-introduced in the computational 

domain at the inlet of the channel. This ensures that the total number of Brownian particles 

used in the model remains constant. The number of real particles represented by each 

Brownian particle re-released at the inlet is set at a value which enforces a uniform particle 

concentration in the entering fluid. The representative number of particles, denoted rpn , is 

calculated according to: 
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where pC  is the particle concentration (with units 2

particles# x ), mU  is the mean velocity 

of the fluid at the inlet, h  is half the height of the channel, rrt  is the time between particle 

releases and bpn  is the number of Brownian particles being re-introduced.  

Random numbers are generated in order to determine the location along the inlet at 

which a given Brownian particle is released as well as the diameter assigned to that particle. 

For the particle location, rejection sampling is used to generate a pseudo-random number 

from a probability distribution shaped like the velocity distribution at the inlet. The 

algorithm is implemented as follows: 
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1) Generate two random numbers, 
rngy  and 

rngu , from uniform distributions 

    ,bottom topy t y t  and  max0,U t   , respectively. Here,  bottomy t  and  topy t  

are the y -locations of the bottom and top wall at the inlet at time t  and  maxU t  

is the maximum velocity at the inlet at time t . 

2) Calculate  inlet rngU y  by interpolating between velocities at the neighboring 

inlet nodes. 

3) If  inlet rng rngU y u , the value of rngy  is accepted and the algorithm is 

complete. Otherwise, the value is rejected and the algorithm restarts at step 1. 

The value of rngy  is subsequently used for the y  position of the particle being released. 

For the selection of the particle diameter, rejection sampling was also utilized (with 

a lognormal distribution being used in place of the velocity distribution). Additionally, 

because a discrete set of diameters is used to the represent a continuous range of diameter 

values, the number generated is rounded to fall within the discrete set of sizes. This process 

is repeated for all Brownian particles. With the representative number of particles, the 

location of release and the diameter known, the Brownian particle is ready to be released.  

2.4 Fouling Model 

The formation of a deposit layer along the walls of the heat exchanger has a 

significant impact on all aspects of the system.9 As the thickness of the layer grows, the 

effective height of the channel decreases. This affects the flow by inducing higher fluid 

velocities leading to higher shear stresses at the surface.55, 57 The high porosity of the layer 
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(~98%) allows for it to act as a highly effective thermal insulator.65 This reduces the 

effectiveness of the cooler, reducing the temperature gradients in the fluid. In turn, the 

increased shear stresses and the decreased temperature gradients will influence the motion 

of particles entrained in the fluid as well as the continuing development of the fouling 

layer.63 These are a few examples of the many, interconnected effects resulting from the 

development of the fouling layer. Because of this, in order to accurately model the fluid 

flow, heat transfer and particle motion/deposition in an EGR heat exchanger, a method to 

capture the growth of the fouling layer is a necessary addition. 

Our fouling layer model consists of two steps: a shift step and an update step. In the 

shift step, the location of the surface elements defining fluid-solid interface are shifted to 

simulate the growth of the layer. The distance each element is shifted is proportional to the 

number of particles that have deposited on that surface since the last shift. With the location 

of the fluid-solid interface moved, the update step corrects the variables describing fouling 

layer to reflect the change in the fouling layer thickness. This update step ensures the fluid 

flow, heat transfer and particle motion are coupled to the growth of the fouling layer.  

The model includes several computationally expensive calculations. Because of this, 

and the fact that relatively few Brownian particles deposit on the surface each time step, 

the two fouling layer steps are performed after a set number of simulation time steps rather 

than after each time step. The number of time steps selected for this update interval is 

chosen to achieve a maximum of ~ 5%  of the lattice spacing for the distance the surface 

elements are shifted. This ensures that distances are small enough that the re-positioning 

of the surface can be treated as a quasi-static process. 
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2.4.1 Surface Relocation in Shift Step 

In the shift step, the amount of growth of the layer is calculated and the boundary 

points are re-positioned to reflect the growth. At each boundary point, a weighted average 

of the particles deposited along the neighboring surface elements is calculated for each of 

the representative diameters. Here, the set of neighboring surface elements is defined as 

those with center points falling within a defined radius, 
bpR , from the boundary point. The 

weight applied to each value is determined from the distance between the boundary point 

and the center of the corresponding surface element using a Gaussian kernel. An area of 

the deposit is calculated from the number of particles according to: 
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where dN  is the number of representative particle diameters,  ,p in d  weighted average of 

deposited particles for a given diameter, ,p id  is the representative diameter and   is the 

porosity of the soot. Dividing the area by the length of the distance between the midpoints 

of the surfaces to the left and right of the boundary point provides the thickness of the 

deposited particles. The boundary point is displaced a distance equal to this thickness. For 

every boundary point, its location is shifted in the same direction each time the update step 

is performed. This direction is calculated from the average of the initial (normalized) 

normal vectors defining the orientation of the surface elements to the left and right of the 

boundary point.  

2.4.2 Lattice Boltzmann Update Step 
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Figure 2.12 – Illustrations of update process for lattice Boltzmann method showing 

(a) process of locating node in the fouling layer and (b) geometric method of 

determining if a point is located inside of a given triangle. 

After the location of the surface is updated to reflect the growth of the fouling layer, 

several updates need to be performed. This will ensure that the new thickness is accurately 

reflected in the three other computational methods. The update step starts with the lattice 

Boltzmann method variables. As particles deposit along the wall, a portion of the lattice 

nodes initially located inside the fluid region of the domain will begin to fall within the 

solid fouling layer. An illustration of the method used to determine if a lattice node is 

located within the fouling layer provided in Figure 2.12(a). In this process, the area between 

the initial and current locations of the surface element, which is a section of the fouling 

layer, is divided into two triangles (designated triangles ABC and BCD in Figure 2.12(a)). 

By testing if any lattice node located in the vicinity of the surface element is located within 

the tested, any node falling within this section of fouling layer can be determined (shown 

in Figure 2.12(a) with the foul node located inside of triangle BCD).  

A simple method which is commonly utilized in computer graphics calculations is 

used to test if a point is located within a triangle. The method includes the following steps: 
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1) Form three triangles from the vertices of the triangle of interest and the point being 

tested (triangles XYW, YZW, XZW in Figure 2.12(b)). 

2) For each of the four triangles (the triangle of interest and the three formed in 

previous step), subtract the position of one vertex from that of the other two to 

obtain two vectors defining each triangle (i.e., the vectors XYv  and XWv  define the 

triangle XYW in Figure 2.12(b)). 

3) Calculate the area of each triangle by taking the magnitude of the cross product of 

the two vectors and dividing by two. 

4) Subtract the areas of the three triangles found in step one from the area of the 

triangle of interest. If the difference is zero, the points resides within the triangle, 

otherwise it is outside.  

Using the points U and W in Figure 2.12(b) as an example it can be seen that triangles 

XYW, YZW, XZW formed with point W are equal in area with the triangle XYZ as point 

W is located inside of the triangle. The triangles XYU, YZU, XZU formed with the point 

U, however, have a total area greater than that of the triangle XYZ as the point U is 

positioned outside of XYZ. 

All nodes positioned in the fouling layer are considered as solid nodes. Therefore, 

the collision step will no longer be performed at it, and all distributions that previously 

propagated to the node during the propagation step will be bounced back from the fouling 

layer surface. Once the surface of the fouling layer is repositioned, the information used in 

the interpolated bounce back method must be updated to reflect the new position of the 
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boundary as well as the newly converted fouling layer nodes. This is done using the 

methods discussed in Section 2.1.3. 

2.4.3 Finite Difference Thermal Model Update Step 

Unlike in the lattice Boltzmann method, the temperature continues to be solved for 

at all nodes including those inside the fouling layer located within the channel using the 

finite-differences thermal model. In order to capture the effect of the fouling layer growth 

in this model, the thermal conductivity at nodes near and inside of the layer is varied to 

reflect the effective thermal properties. As such, the finite difference equation used in the 

thermal model includes an additional term provided in Equation 2.14 to capture the effects 

of a variable thermal diffusivity. 

Due to its high porosity (~98%), the fouling layer consists mostly of air. 

Consequently the thermal conductivity and the heat capacity of the layer (0.057 W mK  

and 0.867 J gK , respectively) are similar to that of air (0.0421 W mK  and 1.034 J gK , 

respectively). The density of the layer, however, is significantly larger than that of air (35 

and 0.675 
3kg m , respectively).66, 124 This is due to the individual soot particles having 

densities of 1800 
3kg m , which contribute significant mass to the layer even at this small 

volume fraction.125 The considerable difference in their densities leads to the thermal 

diffusivity varying from 0.0602 
2m s  in the gas to 

31.58 10  
2m s  in the fouling layer. 

Because of this considerable difference, the heat transfer occurring between a point in the 

fluid and a point in the fouling layer depends heavily on the exact location of the surface 



  

57 

between them. Therefore, in order to accurately capture the effect of the fouling layer, the 

location of its surface between nodes must be carefully considered. 

As discussed in Subsection 2.2.2, the spatial derivative of the thermal diffusivity 

utilizes values representing the diffusivity between the given node and its neighbors. For 

nodes with neighbors positioned across the fouling layer surface, the distance from the 

node to the surface is incorporated in the calculation of this representative thermal 

diffusivity. This allows for the model to capture the thickness of the layer with more detail 

than would be possible if only a binary diffusivity of the fluid or fouling values are used. 

In order to determine the representative diffusivity, a thermal conductivity, density and 

heat capacity are calculated as a function of the distance between the node of interest and 

the surface, denoted  (normalized by the spacing between the nodes). From these three 

values the representative thermal diffusivity is calculated according to: 
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where n
r  represents the value between the node and its neighbor in any direction nr  , and 

 ,   and pc  are the thermal conductivity, density and specific heat, respectively. 

The equation for the thermal conductivity can be obtained from an energy balance at 

the surface and is given by:95 
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The values for the density and the specific heat can be obtain from a linear variation 

between the values at the two nodes. For the density, this is: 

       1n       r r ,  2.50 

while the specific heat can be calculated using the above equation with 
pc  replacing  .  

This method is similar to the conjugate heat transfer method described by Patankar, 

which utilizes a single conservation expression for both the fluid and solid domains with 

the thermal conductivity at the interface calculated according to Equation 2.49.95 This 

allows for the temperature to be solved across the entire domain without the need for 

coupling temperatures and fluxes across the interface.126  

During the update step for the thermal model, the representative thermal diffusivities 

are calculated for the four neighboring directions of every node. If the surface of the fouling 

layer is crossed in a given direction between the node and its neighbor, the diffusivity for 

that direction is calculated from the above equations. Otherwise the diffusivity 

corresponding to the state of the node (either fluid or fouling layer) is assigned to that 

direction. Once these four diffusivities are known, the diffusivity of the node is calculated 

by averaging the four values. A process similar to that used to determine the locations of 

the boundary nodes and calculate their distance from the wall discussed in Section 2.1.3 is 

utilized when calculating the thermal diffusivities. 
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2.4.4 Brownian Dynamics Model Update Step 

When the surface elements are shifted to mimic a growing fouling layer, a portion of 

the Brownian particles located close to the previous position of the boundary will be 

“swallowed” by the fouling layer as it grows (i.e. they will end up located inside the fouling 

layer). This “swallowing” of particles introduces two issues. The first is that if left 

unaddressed, it will introduce errors in the computational method which can lead to 

incorrect results. The errors would be the result of the “swallowed” particles being 

positioned inside the layer after it is updated. For the Brownian dynamics model, particles 

near the wall are tested to see if they cross the surface boundary when updated. If they are 

located inside the layer before being updated, they will not cross the surface and therefore 

can travel out of the domain which can induce unknown errors. The other issue that arises 

is that it introduces an unphysical aspect to the model. This unphysical behavior of particles 

being “swallowed” by the layer is a result of its discretized growth and would not occur 

with the continuous growth of the layer in a real system.  

Three possible methods exist to mitigate the unphysical effects of the discretized 

growth causing particles to be swallowed as well as avoid computational errors. One 

approach is to remove the particles that have been swallowed and re-release them at the 

inlet. This addresses the errors, but results in particles near the surface that may soon 

deposit nearby no longer having an opportunity to deposit. This would not be an accurate 

model of a real system, and therefore is not a valid solution to the problem. The second 

method would treat any particle “swallowed” by the fouling layer as though it had 

deposited, before being re-released at the inlet. Again this addresses the computational 

errors, and provides a more accurate solution than the first method, as most of these 
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particles would deposit nearby within a few time steps. However, this nearby location may 

not be the same surface element it is currently beside, and the shear stress may be 

sufficiently high for some larger particles to not be able to deposit in the normal process. 

 

Figure 2.13 – Illustration of particle relocation process. 

We therefore use the third method that re-locates the particles “swallowed” by the 

fouling layer to a new position so they remain in the fluid near the wall after the surface is 

shifted. The following steps define the process applied to each particle in order to determine 

its new position: 

1) Determine the surface located closest to particle before being shifted (the left 

surface in Figure 2.13). 

2) Determine the vector between the un-shifted surface and the particle oriented 

normal to the surface (the vector nv  in Figure 2.13). 

3) Calculate the distance from the left end of the surface to the vector found in step 

two, and the total length of the un-shifted surface element ( pL  and seL  in Figure 

2.13, respectively). 
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4) Calculate the distance from the left end of the shifted surface the new particle 

displacement vector will be placed by multiplying the ratio of the distances found 

in step 3 by the new length of the surface element (
pL  in Figure 2.13). 

5) Determine the new particle position by displacing it from the location found in step 

4 by a vector which oriented normal to the shifted surface with a length equal to 

that of the vector found in step 2 (the vector 
nv  in Figure 2.13). 

This method of dealing with the “swallowed” particles ensures that they remain near the 

surface for deposition to occur given the necessary conditions are met, while not forcing 

particles to deposit that would not be able to otherwise. Unlike the first two methods, 

however, in certain corner cases a particle may remain inside the fouling layer after 

relocation. The frequency at which this occurs is sufficiently low that any particle 

remaining in the fouling layer can be removed and re-released at the inlet without 

influencing the results. Despite the additional computational effort required to reposition 

the particles and test for any remaining in the fouling layer afterward, this method is best 

suited for mitigating the effects of the discretized fouling layer growth. As such, it is 

utilized in the Brownian dynamics model update step of the fouling layer model. 

Along with addressing the particles “swallowed” by the fouling layer, the 

information used in calculating the shear stresses along the surface must be updated to 

reflect the new surface position. This update consists of repeating the same process as that 

used when initializing the information discussed in Section 2.3.3.2. Additionally, the 

implementation of the Brownian dynamics model requires a significant amount of stored 

information to couple it to the three other models and simulate a considerable number of 
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particles in an optimized manner. As a result, a large portion of this information must be 

updated to reflect the new surface location, all of which is done during this portion of the 

update step. 

2.5 GPU Computing 

During the collision step in the lattice Boltzmann method (the most computationally 

expensive step), the distributions at a given lattice site is updated from the current values 

of the distributions at that site. In the Brownian dynamics model, because interactions 

between particles and the effect of particles on the flow are neglected, at each time step, 

the particles can be updated independently of one another. Because of the localized nature 

of these two methods, significant performance gains can be achieved by performing them 

in parallel. Additionally, by utilizing a Jacobi method to solve the system of equations in 

parallel, modest gains in performance can be obtained in the finite-differences thermal 

model as well. With these three methods capable of improved performance when 

parallelized, they are well suited to exploit the large number of cores found in graphics 

processing units (GPUs).127 

The advantage GPUs have over CPUs in performing computational physics 

calculations lies in its architectural differences. Modern CPUs need to be able to handle a 

wide range of tasks, most of which can be performed sequentially. As a result, they are 

designed with a few high power cores and are optimized for general purpose computing. 

Modern GPUs, on the other hand, are designed for very specific tasks involved in computer 

graphics which must be performed at substantial rates. GPUs are therefore designed with 

a large amount of simple processing cores each performing basic calculations all in parallel. 
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By reducing instruction fetching overhead using a method known as the single instruction 

multiple threads (SIMT) execution model, the GPU is able to hide latencies associated with 

memory access operations. This ensures consistently high utilization of every core, making 

the GPUs well suited for physics simulations when parallelizable methods are used.127 

Due to the significant architectural differences, computational code written for 

execution on a CPU, especially when written in a low level language like C or C++, cannot 

be run on a GPU. As a result, code must be developed specifically for execution on the 

GPU (or, more generally, written for execution on a heterogeneous platform). Additionally, 

when compared with the progress made in programming on CPUs, development of GPU 

programming (often referred to as general purpose GPU or GPGPU programming) is still 

in its infancy. However, because of the substantial performance gains possible with their 

use, many methods (including frameworks, languages, standards, models, etc.) are being 

developed to reduce the complexity of GPGPU programming. From these, two have 

emerged as dominant: CUDA® and OpenCL™. CUDA® is a proprietary programming 

model developed by NVIDIA.128 Although considered the most mature of all GPGPU 

programming methods, CUDA® can only be executed on NVIDIA GPUs, drastically 

reducing the selection of hardware that can be used for computations. OpenCL™ is an 

open source framework supported maintained by the non-profit consortium Khronos 

Group.71 It is supported by a wide range of hardware manufacturers including both 

NVIDIA and AMD (the two largest GPU makers). Because of this, we chose to use 

OpenCL™ as our GPGPU programming method. In the following subsections we provide 

a short introduction to the OpenCL framework as well as a brief description of two open 

source OpenCL libraries utilized in our computational methods.  
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2.5.1 The OpenCL Programming Framework 

The Open Computing Language, more commonly known as OpenCL™, is an open 

source framework for writing code capable of execution on various types of computational 

hardware devices. Although commonly used for GPU programming, software developed 

with OpenCL™ is capable of executing on CPUs, digital signal processors (DSPs), field 

programmable gate arrays (FPGAs) and other parallel computing “accelerators”. The 

framework consists of a programming language and an application programming interface 

(API). The programming language is used to write code to be executed on the GPU, FPGA, 

etc. (referred to as a “device”) and the API provides the “host” the ability to handle memory 

management and code execution on the device. 

 

Figure 2.14 – Side-by-side comparison of a matrix multiplication implemented in a 

standard C function (left) and an OpenCL kernel. 

In OpenCL, code which will be executed on a device is implemented in specialized 

functions referred to as “kernels.” This kernel defines a set of instructions to be performed 

by a single thread. When the host schedules a kernel for execution, a number of threads to 

be created is specified. That number of threads will be executed by the processing cores in 

the device, with each performing the kernel instructions on a separate piece of data. 
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Defining instructions in this way differs from the more common method used in most 

programming languages of explicitly defining the iteration through a data set with a for-

loop (or while-loop). This can be seen in Figure 2.14 which shows the implementation of 

a matrix multiplication function in standard C as well as OpenCL. 

The API included in the framework provides the host with the necessary tools for 

memory management as well as kernel scheduling. In a heterogeneous system, the host and 

device each possess their own regions of memory. Furthermore, the memory on the device 

consists of four regions: 

1)  Global memory – Read/write access for kernels as well as the host. Largest 

memory region, but high latency. 

2) Constant memory – Read only access from host only. Small region, but low 

latency. 

3) Local memory – Read/write access from group of processing elements. Second 

largest region, with second highest latencies. 

4) Private memory – Read/write access from individual processing elements only. 

Small size, but very low latency. 

Memory operations must be handled explicitly in OpenCL. Therefore, using the API, 

memory must be copied from the host to the device before it can be utilized by the device 

and vice versa. Furthermore, copies between regions on the device, such as from global to 

local memory, must be handled explicitly as well.  

The need for explicit memory handling in OpenCL is quite different from the 

implicitly handled memory management of program execution on CPUs. This is the result 
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of OpenCL being a relatively new framework which is still in its early development. Well-

developed programming languages, such as C, have advanced compilers which are capable 

of handling most of the memory management. Additionally, CPUs contain hardware 

specifically designed for handling memory, which is not often found on more specialized 

processors such as GPUs.129 

The API also provides the tools necessary for compiling the kernels and scheduling 

their execution on the device. OpenCL kernels are compiled at run-time using the API 

functions called by the host code. This provides portability, as the intended device does not 

need to be known during compilation of the host code. Once the kernels are compiled, a 

“queue” is created on the device, which allows the host to perform actions on the device. 

These actions include memory transfers, kernel execution, etc. The operations submitted 

to the queues can either be executed in-order where they are performed in a first in, first 

out (FIFO) manner, or out-of-order where there is no guaranteed order of execution. The 

API provides tools for explicit synchronization of tasks, referred to as events, when out-

of-order queues are utilized. 

In order for a kernel to be executed on the device, it must be submitted to the queue. 

When submitted, the number work-items must be specified. A work-item is a single 

instance of the kernel performing its instructions. All work-items combined make up the 

work-space, which can be one, two or three dimensional. In the example of matrix 

multiplication provided in Figure 2.14, the work-space is two dimensional with M P  

work-items each calculating a single element of matrix C . In addition to the number of 

work-items, a work-group size can be defined when submitting. The work-group defines a 

set of work-items that execute on a single compute-unit. These work-items share a local 
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memory space and are capable of synchronization across the work-group. Once the kernel 

is submitted to the queue, the host can continue performing others tasks and even submit 

more kernels to the queue, while the device executes the tasks in its queue.71 

2.5.2 Open Source Libraries 

While the majority of our computational model was developed in-house, two open 

source libraries were utilized. These were the Bolt C++ library which provided a sorting 

function and the MWC64X pseudorandom number generator developed by David 

Thomas.130, 131 These libraries were used rather than developing our own methods because 

they were able to be implemented in the code with relative ease, and had already undergone 

extensive optimization. 

The Bolt C++ template library provides common sort, scan, reduce and transform 

algorithms implemented written in C++ and OpenCL for execution on both CPUs and 

GPUs, respectively.130 In our model, we utilized the OpenCL implementation of the merge 

sort algorithm for sorting the array storing particle information. Using the method, the 

particles were sorted by their location in the domain defined by the four lattice points 

surrounding them. Merge sort is a comparison based sorting algorithm of order  logO n n  

capable of parallelization.132 In the Brownian dynamics method, the particles traveled 

distances much smaller than the lattice spacing each time step. Because of this, multiple 

time steps could occur between sorts (between 40 and 100). By sorting them, particles 

whose velocities and temperatures were obtained from the same lattice points were grouped 

together, thereby reducing the number of high latency reads from global memory. As the 

particles traveled distances much smaller than the lattice spacing each time step, multiple 
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time steps could occur between sorts (between 40 and 100). This, coupled with the reduced 

number global memory access, allowed for the OpenCL implementation of the Brownian 

dynamics model to simulate over one million particles on a GPU at significantly higher 

speeds than those possible using a CPU. 

The MWC64X pseudorandom number generator (RNG) is based on a multiply-with-

carry generator which utilizes two unsigned integers to produce a random number 

uniformly distributed between  320,2 1  .131 In a standard random number generator, a 

random number is calculated from the current state of the RNG before the state is updated 

and stored according to a set of rules. As a result, each state is a function of the previous 

state. When accessed in series, this does not create issues. If accessed in parallel (i.e. on a 

GPU), however, threads can read the same state and generate the same random number. 

This results in the RNG no longer providing pseudo-random numbers. In order to overcome 

this, multiple states (often referred to as streams) can be used. This ensures that no two 

threads try to access the same random number generator state. In our implementation, we 

utilized one stream for each particle. By dividing each random number by the max value, 

we obtained a uniformly distributed random number between 0 and 1. 

2.6 Simulation Parameters 

2.6.1 Simulation Domain 

In our simulations, we use three different types of domains shown in Figure 2.15. 

The first type (Figure 2.15 (a)) consists of a single period of channel with periodic boundary 

conditions at the inlet and outlet. This allowed us to model the fluid flow and heat transfer 
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sufficiently far along the channel for the flow and temperature distribution to fully develop. 

The second type of domain (Figure 2.15 (b)) consists of multiple periods with periodic 

boundary conditions. The use of multiple periods ensures that the periodicity of the domain 

did not enforce unnatural frequencies when the flow became unsteady, while still 

simulating fully developed flow. The last type of domain (Figure 2.15 (c)) consists of 

multiple periods with a short straight section at the inlet and a long straight section at the 

outlet. The straight sections were necessary as periodic boundary conditions were used and 

these sections allow for oscillations in the fluid velocity to dissipate before returning to the 

inlet of the channel. This domain represents an entire heat exchanger channel and is used 

when simulating the formation of the fouling layer. 

In our discussions, we make use of several terms to identify regions of the wavy 

domain. The regions, which include the centerline, midplane, peaks and furrows, are 

labelled on the diagram in Figure 2.15 (a). The centerline of the channel (dashed line) is 

the line centred halfway between the upper and lower walls at throughout the length of the 

channel. The midplane (dot-dashed line) is the horizontal line positioned halfway between 

the averaged heights of the upper and lower walls. The furrows of the channel are the crests 

and troughs of the upper and lower walls respectively while the channel peaks are the 

troughs of the upper wall and the and crests lower walls. 
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Figure 2.15 – Computation domain used when investigating (a) steady flows, (b) 

unsteady flows and (c) fouling layer development. 

2.6.2 Geometric and Fluid Parameters 

In all three domains, the upper and lower walls are separated by a distance h2 , and 

the periodic shape of both walls is described by  lxaxf 2sin)(  , where a  and l  are 

the amplitude and the period of the wall oscillations, respectively. In this study, we focus 

on channels in which the ratio la  remains between 401  and 31 . In all simulations, the 

flow is driven by a constant pressure gradient, xp . The parameters varied in each 

simulation are the normalized amplitude haA  , the normalized period or aspect ratio 

hlL  , and the dimensionless pressure gradient  23 3xphP  . Here, h  is half the 

channel height,   is the density of the fluid, and    is the kinematic viscosity of the 
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fluid. The dimensionless pressure gradient is chosen such that for a straight channel, it 

reduces to the Reynolds number, humRe , where mu  is the mean velocity of the flow. 

2.6.3 Heat Transfer Parameters 

When investigating the heat transfer enhancement, both the single period and 

multiple period domains are used (see Figure 2.15 (a) and (b)). Periodic boundary 

conditions are used at the inlet and outlet of the channel for both the LBM and the FD 

thermal solver, with a bulk mean temperature at the inlet set to (0) 1bT  . Along the wall, 

interpolated bounce back is used to enforce the no-slip boundary condition, and the wall 

temperature is set to 0wT  . Again, the flow is driven by a constant pressure gradient, 

defined by the non-dimensional P. The heat transfer rate in the channel is characterized 

using both a local, Nul ,  and mean, Num , Nusselt numbers defined as:133  

  l

,

4
Nu x

w m x

Ta
x

T T n

 
  

  
  2.51 

 
2

,

m

,

2
Nu ln

m inm

m out

Th u

l T

 
   

 

. 2.52 

Here, nTx   is the temperature gradient normal to the wall, mT  is the bulk mean 

temperature with subscripts and wT  is the wall temperature. The Nusselt numbers, lNu  

and mNu , define the ratio of convective to conductive heat transfer along the channel wall 

and across a full channel period, respectively. In all simulations, the Prandtl number was 

kept constant at 708.0Pr  , which corresponds to that of air.  
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2.6.4 Fouling Layer Development Parameters 

When investigating the heat transfer enhancement, the domain shown in Figure 2.15 

(c) is used for all simulations. In each simulation, we set 50h   lattice nodes. In order to 

maintain similar total channel lengths when using various values for L , we vary the total 

number of periods in the channel. Specifically, we use 27, 20 and 16 periods leading to 

lengths (for the wavy section of the channel) of 4050, 4000, and 4000 lattice nodes for 

3L  , 4L   and 5L  , respectively. Furthermore, the inlet length is set to the length of a 

single period, while the outlet has a length of 4000 lattice nodes. This provides sufficient 

length for oscillations induced in the flow to dissipate as periodic boundary conditions are 

used for the fluid solver.  

As before, the flow is driven by a constant pressure gradient, defined by P . For the 

FDTM, the inlet and wall temperatures are set to constant values of 1inT   and 0wT  , 

while an extrapolation boundary condition is used for the outlet. Along the wall, 

interpolated bounce back is used to enforce the no-slip boundary condition. For the 

Brownian dynamics solver, the particles are released at the inlet of the wavy section, and 

the method uses the boundary conditions described Section 2.3. The number of particles 

used in each simulation is kept constant at 202  (~ 610 ).  

Due to limitations in simulating long time scales using the lattice Boltzmann method, 

a simulation length of 25 million time steps was used for each simulation. This allows for 

comparison across the various geometric and flow parameters. Additionally, by using a 

large particle number concentration, the effective throughput of the channel was equivalent 

to that experienced by an EGR heat exchanger channel after several hours of use. Because 



  

73 

we compare results across a constant simulation time span, we use the total simulation 

time, totalT , to define the time scale. For each simulation, we allow the fluid flow and heat 

transfer to fully develop before releasing the particles. It is this time, when particles are 

released, that is considered 0t   . 

In order to quantify the effects of the fouling layer on the heat transfer occurring in 

the channel, both the local and mean Nusselt number defined above are used along with 

the heat exchanger effectiveness, defined as: 
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Here, ,avg inletT  and ,avg outletT  are the average temperature (not bulk mean) at the inlet and 

outlet of the wavy section of the channel, respectively. To compare the shear stress in each 

channel, a normalized wall shear stress is used, which is defined as: 

  w w xp h  . 2.54 

This normalization is chosen such that for a straight channel, it reduces to 1w  . When 

displaying the distribution of w , positive values are used to represent shear stresses acting 

in the downstream direction and negative values the upstream. 

In order to convert between the units used in the model and real units, the density 

and kinematic viscosity of air at 473 K are used, which are 0.675   
3kg m  and 

54.1 10    
2m s . This, along with a channel height of 2h   mm and inlet and wall 

temperatures of 673inT   K and 363wT   K provides the necessary information to convert 
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between real and simulation units. The number concentration of particles used in each 

simulation is 1110 3# m , while the properties of air at 473 K are used for the working fluid.  
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CHAPTER 3. VALIDATION 

In this chapter, we detail the simulations performed to validate out computer model. 

We performed four tests to validate each of the four models. In each case we compared 

results with those obtained from analytical solutions to verify each model. 

3.1 Lattice Boltzmann Model 

To validate our model, we compared the simulation results for wavy channels with 

those obtained using an analytical model valid for small A .134 Figure 3.1 shows the 

longitudinal velocities at two different cross-sections of the channel for two test cases with 

different values for the pressure gradient and wave amplitude. We found close agreement 

between our simulations and the theory indicating that our model accurately captures the 

flow within a wavy channel. Figure 3.1 also includes the results from simulations using 

two different grid sizes, with respectively 20h  nodes and 40h  nodes. For both cases 

the two grid sizes provide nearly identical results. This indicates that the use of a grid with 

20h  nodes provides sufficiently accurate results while remaining computationally more 

efficient. 
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Figure 3.1 – Dimensionless longitudinal velocities at x = L/4 and x = L/2 for two test 

cases of wavy channels plotted against the dimensionless distance from the centerline, 

 sin 2 1y a l h      . The velocity, U, is normalized by the maximum velocity in 

a flow in a straight channel with the same pressure drop. System parameters are (a) 

A = 0.005, L = 2, P = 250 and Re = 230.6 and (b) A = 0.2, L = 3, P = 600 and Re = 386.2. 

3.2 Finite-Differences Thermal Model 

We performed a validation test to ensure the accuracy of the thermal model and the 

implementation of the wall boundary conditions. The test consisted of simulating a flow of 

100Re   and 708.0Pr   in a pipe with constant temperatures at the inlet and the walls. 

To perform this test, we extended our thermal model to three dimensions by including 

derivatives with respect to the z direction, and modified our lattice Boltzmann model to a 

three dimensional nineteen velocity (D3Q19). The results from our numerical model were 

compared with the results obtained from the Graetz series solution.135, 136 A plot of the 

temperature contours obtained from our model and the analytical solution are shown in 

Figure 3.2. It can be seen the results from our model agree well with the analytical data 

indicating that our model provides accurate solution for this convective heat transfer 

problem. 
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Figure 3.2 – Contour lines of temperature for flow through a pipe with Re = 100 and 

Pr = 0.708 and temperatures of 1 and 0 for inlet and walls respectively. 

3.3 Brownian Dynamics Model 

A third validation test was performed to verify accuracy of the thermophoretic and 

advection velocities calculated in the Brownian dynamics model. In this test particles were 

released along the heated inlet of a pipe with a constant cold temperatures along the walls. 

As with the finite-differences thermal model validation, the LBM, FDTM and BD models 

were extended to three dimensions to perform this test. The parameters used in our 

simulation were 120Re  , 2Pr  , 5.0thK , a radius of 40 and   5.0*  winw TTT . 

The results obtained with our model and those calculated from an analytical solution106 are 

shown in Figure 3.3. It can be seen that the results from our model agree well with the 

theory indicating that our model accurately captures the advection and thermophoretic 

motion of submicron sized particles. 
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Figure 3.3 – Cumulative deposition of particles by thermophoresis along length of 

pipe obtained from numerical model (solid line) and analytical solution (markers). 

Simulation parameters were Re = 120, Pr = 2, Kth = 0.5, R = 40 and θ* = 0.5. 

3.4 Fouling Layer Model 

In order to validate the fouling layer model we simulated particle laden flow through 

a plain channel. The parameters used in the simulation were Re 100 , Pr 0.708 , 

1mmh  , 400 CinletT  , 90 CwT  , and a particle diameter of 100nmpd  . Properties of 

air at 250°C were used for the fluid and those provided in the methodology section were 

used for the particles with the exception of the Hamaker’s constant. For this test, the 

Hamaker’s constant was artificially reduced from 1E-20 J to a value of 5.45E-23 J in order 

for the critical shear stress to be reached when the fouling layer grew to a thickness of 

approximately 1.5 nodes. A domain size of 100 8000  nodes, a LBM relaxation parameter 

of 0.52  , and a density of 1   (in LB units) were used in the simulation, and for non-

dimensionalizing the other parameters. Fluid entered the domain with a parabolic velocity 

profile, at a constant temperature and with a uniform concentration of particles.  
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The critical shear stress for a 100 nm particle (using the reduced Hamaker’s constant) 

is 5.67crit   in lattice Boltzmann units. Assuming a parabolic velocity profile and flat 

wall, the shear stress along the wall is given by: 
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    . 3.1 

Here mU  and h  are the mean velocity and half the height of the channel at the location of 

interest. From conservation of mass we know: 

 
, Rem m in inU h U h   ,  3.2 

where the subscript in  indicates the value at the channel inlet. Combining Equations 3.1 

and 3.2 gives: 
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where  x  is the thickness of the fouling layer at a location x  along the channel. With 

the height of the channel varying due to the fouling layer growth, the velocity profile will 

not remain parabolic throughout the length of the channel. Although this assumption was 

made when deriving Equation 3.3, it still should provide a reasonable estimate of the shear 

stress for a given height of the fouled channel. Therefore, with a critical shear stress of 5.67 

we expect the thickness of the layer to stop growing at a height of ~1.5 LB units. 
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Figure 3.4 – Thickness of fouling layer along bottom of channel at several times. 

The profile of the fouling layer at several points in time is provided in Figure 3.4. It 

can be seen in this figure that the fouling layer grows fastest at near the inlet, and the growth 

rate decreases along the length of the channel. Furthermore, the fouling layer continues to 

grow until the shear stress at the wall is sufficient to remove any additional deposits, which 

occurs at a thickness of ~1.35 LB units. This is slightly less that the 1.5 LB units predicted 

by Equation 3.3 because the flow is still developing from the channel narrowing as a result 

of the fouling layer growth. This increases the wall shear stress, reducing the thickness 

necessary to achieve the critical value. Near the outlet of the channel, the fouling layer does 

not reach its maximum thickness. This is a result of the simulation ending while it was still 

growing. If the simulation was continued, the thickness of the outlet would eventually reach 

the ~1.35 units as well. 

Plots of the temporal distribution of the fouling layer thickness and the wall shear 

stress at 1000x  , 3000x  and 5000x   are provided in Figure 3.5(a), (b) and (c) 

respectively. It can be seen in Figure 3.5(a) that as the fouling layer grows the growth rate 
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decreases, which is the result of the temperature gradient decreasing with increasing 

thickness. The thermophoretic velocity decreases with the temperature gradient leading to 

a reduction in the deposition rate at that location. About halfway through the simulation, 

the growth rate abruptly drops to zero when the wall shear stress reaches the critical value 

for the particle diameter. The rate changes abruptly due to the reduced Hamaker’s constant. 

Had it not been reduced, the thermophoretic velocities would continue to decrease with the 

temperature gradients causing the deposition rate to eventually decrease to zero. This 

would result in the thickness asymptotically approaching a final height without achieving 

the critical shear stress at the wall. Because of this, we reduced the Hamaker’s constant in 

order to test the shear removal model. This would have occurred before the critical shear 

stress. Further down the channel at 3000x  , shown in Figure 3.5(b), it can be seen that 

the growth rate is slower, resulting in its maximum thickness not being reached until more 

than ¾ of the way through the simulation. Near the outlet, shown in Figure 3.5(c), the 

fouling layer is still growing due to the critical shear stress not being reached.  

Both the wall shear stress calculated in the model and using Equation 3.3 are included 

along with the thickness in these plots. It can be seen that the shear has an initial value of 

~5.27E-6 for all three locations, which agrees well with the expected value of 5.33E-6 plain 

channel flow and increases with the thickness of the fouling layer. The discontinuity in the 

model value of these three plots occurs when the surface is positioned extremely close to a 

lattice node. The size of the discontinuity is exaggerated by the narrow bounds of the axis 

and from Figure 3.5(d) it can be seen that the values calculated in the model deviate less 

than 2.5% from the theoretical value even at this location. 
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Figure 3.5 – Plots of the thickness wall shear stresses at (a) x = 1000, (b) x = 3000 and 

(c) x = 5000. Shear stress in plots include both those calculated in the model and those 

calculated using Equation 3.3. Percent difference between two shear stresses provided 

in (d). 

From this test we can see that the model is able to simulate a growing fouling layer 

resulting from deposition of particles entrained in the flow. Additionally, the wall shear 

stresses calculated by the model agree well with theory and the model accurately captures 

the effect of deposit removal when these shear stresses are sufficiently high. Without an 

analytical model or experimental data to compare to, we cannot provide a more robust 

validation of the model. However, the we believe that the above validation provides 

adequate proof that our fouling layer model is well suited for simulating the formation of 

the fouling layer in a wavy walled EGR heat exchanger. 
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CHAPTER 4. FLUID FLOW 

4.1 Introduction 

Due to their ability to induce chaotic flows at relatively low Reynolds numbers, the 

wavy walled geometry is well suited for many engineering applications. As such, many 

investigations have been performed to understand its effect on the flow. Despite the 

significant body of research, little information exists regarding the onset of circulatory, 

unsteady flow and chaotic flows over a wide range of geometric parameters. In this chapter, 

we employ computer simulations to systematically investigate a laminar pressure-driven 

flow in a two-dimensional wavy walled channel with asymmetric sinusoidal walls.  

Our examination begins with the influence that the amplitude and period of the 

sinusoidal walls, as well as the magnitude of the pressure drop have on the flow structures 

in the steady regime as well as immediately after transition to unsteady. Because the ability 

of wavy walled channels to induce unsteady flows is the primary reason for their use, we 

investigate how the pressure drop at which the flow becomes unsteady varies with the 

amplitude and period of the walls. Furthermore, we determine the minimum pressure drop 

necessary for unsteady flows. We continue our investigation be examining how subsequent 

bifurcations affect the flow through the channel and as it transitions from laminar to 

chaotic. Here we utilize both visual examination of the flow as well as several techniques 

used to examine dynamical systems during our analysis. From our results we construct a 

phase diagram of the flow regimes found for the various geometries and pressure drops 

investigated. Finally, we conclude with an examination of the frictional losses associated 

with the wavy walled geometry. 



  

84 

4.2 Computational Setup 

In our investigation of the fluid flow, we utilize two different domain types. When 

simulating steady flow, a domain consisting of a single period is used (see Figure 2.15 (a)). 

For simulating unsteady flow, we use a domain containing seven or more periods (see 

Figure 2.15 (b)). The use of multiple periods ensures that the periodicity of the domain 

does not enforce unnatural frequencies in the unsteady flow. In both domains, we use 

periodic boundary conditions at the inlet and outlet, and the flow is driven by a constant 

pressure gradient. This allowed us to model the fluid flow sufficiently far along the channel 

for the flow to fully develop. 

4.3 Analysis Methods 

In our investigation of unsteady flows in the wavy walled geometry, we make use of 

multiple methods for analyzing and comparing flows occurring at different stages in their 

transition from time-periodic to chaotic. This includes examination of the time evolution 

of flow structures using snapshots of the flow at various times. In these snapshots, we 

visualize flow structures using instantaneous streamlines as well as color contour plots of 

the normalized pressure distribution defined as: 
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Here  ,x y  is the local density, 1o   is the simulation density, sc  is the speed of 

sound and xp  is the pressure gradient driving the flow. These snapshots allow for an 
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understanding of how the geometry influences the flow, and to compare how the flow 

changes as it bifurcates.  

An example of the format which we will use to present snapshots of the unstable 

flow in is provided in Figure 4.1. In each figure we will provide a single snapshot showing 

two full wall periods Figure 4.1 (a) as well as several zoomed in views of a furrow along 

the upper wall, each of which are taken at equally spaced intervals in time. In this example 

we show six snapshots (Figures 4.1 (c) – (h)) each spaced one sixth of the oscillation period 

(in time) apart. However, more than six snapshots may be provided when examining more 

complex flow patterns. Additionally, the plot in Figure 4.1 (b) shows three periods of 

oscillation in the u  velocity component at the location indicated by the white dot in each 

of the snapshots (this position is also indicated in Figure 4.2). The x shaped markers along 

the line, indicate the time that the corresponding snapshot in Figures 4.1 (c) – (h) represents. 

 

Figure 4.1 – Example of figure containing snapshots used in subsequent discussion 

In addition to the qualitative examination of the flow structures, an analysis of the 

velocity at a representative point in the domain provides a quantitative evaluation of the 

various flows. The representative point from which the velocity is obtained, shown in 

Figure 4.2, is located along the centerline of the channel above the middle of the lower wall 



  

86 

peak. In this analysis we compare how the temporal evolution and Fourier power spectrum 

of the velocity changes for the various flow conditions. Here, the u  and v  components of 

the velocity are presented in terms of the instantaneous local Reynolds numbers 

   ,Rel u t u t h   and    ,Rel v t v t h  , respectively. These variables are plotted as a 

function of the normalized time 2t th   to show their temporal evolution. The Fast 

Fourier Transform (FFT) function built into the MATLAB software is used to obtain the 

power spectrum of  ,Rel u t . The amplitudes obtained for the power spectrum are plotted 

as a function of the non-dimensional frequency 1f t  . 

 

Figure 4.2 – Diagram showing location where velocity measurements are taken 

(position indicated with x). 

Further analysis is performed on the local velocity data using dynamical system 

analysis techniques to investigate how the flow bifurcates and to determine when the flow 

becomes chaotic. These techniques include reconstructing the pseudo-phase space as well 

using Poincaré sections to reduce the dimension of the attractor. In pseudo-phase space 

reconstruction, an n-dimensional pseudo-phase space,  tX , is obtained from a single 

scalar time series,  x t , according to:137, 138 

           , , 2 ,...,t x t x t x t x t n     X ,  4.2 
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where   is the time delay. The value for the time delay is calculated using the method of 

mutual information developed by Fraser and Swinney.139 In this method, the time delay is 

determined as the value which minimizes the mutual information between the sets  x t  

and  x t  . Using this time delay, we reconstruct a three dimensional pseudo-phase 

space defined as from the data set         , , 2t U t U t U t   U  were the U  is the 

u  velocity component normalized to the range  1,1 . We plot this pseudo-phase space in 

order to examine the attractor defining the system. This examination is aided through the 

use of Poincaré sections which reduce the three-dimensional phase space to a two-

dimensional plane. The Poincaré is obtained by selecting a plane which cuts through the 

attractor and determining the locations at which the attractor intersects the plane from a 

single direction.140 

4.4 Results and Discussion 

4.4.1 Steady Flow Structures 

The wavy walls of a parallel plate channel induce a velocity in the cross-stream y  

direction. In the Stokes regime representing a flow with 1Re  , the flow streamlines 

closely follow the wavy channel shape and the maximum velocity is located approximately 

halfway between the walls throughout the channel (Figure 4.3 (a) and (d)). Furthermore, 

the x  component of the flow velocity is always positive; therefore we refer to this low-

Reynolds-number flow regime as unidirectional. As the flow rate increases, fluid inertia 

causes the fast flow to be localized in the center of the channel, whereas the flow in the 

channel furrows is characterized by a relatively slow motion. This situation is illustrated in 
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Figure 4.3 (b) and (e) showing unidirectional flows in channels with two representative 

amplitudes of wavy walls. As can be seen in these figures, the curvature of the streamlines 

is smaller than that of the channel walls and it further decreases for streamlines that are 

located closer to the channel centerline. Additionally, the flow develops a slight back-

forward asymmetry. This is in contrast to a fully symmetrical flow in the Stokes regime 

shown in Figure 4.3 (a) and (d). 

 

Figure 4.3 – Streamlines and velocity magnitudes for steady unidirectional and 

circulatory flow regimes in a sinusoidal channel with wall period L = 4: (a) A = 0.375, 

Stokes flow (Re = 0); (b) A = 0.375, P = 20, Re = 13; (c) A = 0.375, P = 340, Re = 137.9; 

(d) A = 0.875, Stokes flow (Re = 0); (e) A = 0.875, P = 20, Re = 5; (f) A = 0.875, P = 430, 

Re = 38.1. The dotted lines show flow streamlines that are distributed such that the 

flow rate is constant between each pair of streamlines. The magnitude of flow velocity 

U is normalized by the maximum velocity in the flow. 

When the driving pressure gradient is increased over a critical value, the shear 

stresses between the fast moving part of the flow at the center of the channel and the nearly 

stagnant fluid in the channel furrows lead to the formation of steady fluid circulations 

located in the channel furrows (Figure 4.3 (c) and (f)). We refer to this flow regime as 

circulatory and designate the critical pressure leading to the transition from the 
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unidirectional regime to this circulatory regime as 1crP . In this regime, the vortices are 

characterized by enclosed streamlines, whereas the streamlines located near the channel 

centerline are more straightened and have smaller curvature compared to those in the 

unidirectional regime (cf Figure 4.3 (b) and (c) and Figure 4.3 (e) and (f)).  

4.4.2 Time Periodic Flow Structures 

As the flow rate in the channel is increased further and the pressure exceeds a second 

critical value the circulatory flow becomes unsteady through a supercritical Hopf 

bifurcation. We designate this critical value for the pressure that leads to the transition to 

unsteady flow as 2crP . This flow regime is characterized by time periodic variations of the 

fluid velocity and by repeating changes in the vortex shape and topology. 

 

Figure 4.4 – Streamlines and pressure field in A = 0.3, L = 4 and P = 400 channel. 

We find for channels with small wall amplitudes that the unsteady motion of the fluid 

results from a continuous cycle of vortex generation, growth and contraction in the furrows. 

This can be seen in Figure 4.4 which provides snapshots of the streamlines and pressure 

field at various points in time for a channel with 0.3A  , 4L  , and 400P  . In each 

oscillation period, an adverse pressure gradient along the backside of the wall peak results 
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in the flow separating from the wall, producing a vortex, which can be seen on the left side 

of the furrow in Figure 4.4 (g). As fluid is ejected from the contracting vortex in the 

upstream furrow, it travels along the wall peak into the newly formed vortex as it grows 

(Figure 4.4 (h)). This growth continues (Figure 4.4 (c) and (d)) until the vortex fills nearly 

all of the furrow as seen in Figure 4.4 (e). Eventually, the vortex detaches from the wall 

and contracts toward the right side of the furrow (Figure 4.4 (f)). As the vortex contracts, 

fluid is ejected out and into the next furrow, while the vortex in the upstream furrow does 

the same. The inertia of the fluid entering from the upstream furrow is sufficiently high for 

the flow to separate from the wall and generate a new vortex as the cycle repeats (Figure 

4.4 (g)). 

 

Figure 4.5 – Streamlines and pressure field in A = 0.7, L = 5 and P = 300 channel. 

For channels with larger wall amplitudes, the unsteady motion of the fluid still results 

from the generation of vortices in the furrows. However, when a new vortex is generated 

it combines with the vortex already existing in the furrow rather than replacing it. This 

causes the vortices to undergo significant changes in size and shape as well as the 

momentary formation of a third vortex as the two vortices combine. The process can be 
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seen in the snapshots contained in Figure 4.5, which are from a channel with 0.7A  , 

5L  , and 300P  . As the existing vortex in the furrow travels to the right side of the 

furrow, fluid travels into the furrow to fill the area left behind it. This flow separates from 

the wall, and new vortex is generated (Figure 4.5 (f)). The vortex grows in size and strength 

as it entrains fluid ejected from the upstream furrow. After only a small amount of growth, 

it blocks the fluid flowing in behind the existing vortex as it travels to the right (Figure 4.5 

(g)). This diverts the flow under the existing vortex, causes it to travel backward, into the 

top of the furrow (or bottom for furrows along the lower wall). As this occurs, it approaches 

and is eventually absorbed by the stronger, newly generated vortex. During this process, a 

small amount of fluid becomes trapped between the vortices and the wall, leading to the 

momentary formation of a third, smaller vortex (Figure 4.5 (h)). This vortex is absorbed as 

well, leading to the single vortex seen in Figure 4.5 (c), which grows to fill the entire furrow 

(Figure 4.5 (d)). The vortex eventually detaches from the wall and begins contracting as it 

moves to the right side of the furrow (Figure 4.5 (e)). As this fluid flows to fill the area left 

behind the contracting vortex, it eventually separates from the wall and the process repeats 

(Figure 4.5 (f)). In what follows, we will refer to the unsteady flow regime corresponding 

to the flow pattern shown in Figure 4.4 as the shedding regime, whereas the regime shown 

in Figure 4.5 will be referred to as the oscillatory regime.  

In addition to the evolution of the vortices generated in the furrows, we observe two 

other distinguishing characteristics of these two regimes. The first can be seen in the 

snapshots shown in Figures 4.4 (a) and 4.5 (a). At any point in time in the oscillatory 

regime, the vortices in each furrow are at a different stage in their cycle. This can be seen 

in Figure 4.6 which shows the time distribution of the u  velocity component (normalized 
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as the local Reynolds number 
,Rel u

) sampled at identical locations within three 

consecutive periods of the channel. Here we see that while the velocity undergoes identical 

periodic oscillations in each period of the channel, they occur out of phase from one 

another. Unlike the oscillating regime, the flow pattern in the shedding regime repeats 

across every (spatial) period of the channel as seen in Figure 4.4 (a). Furthermore, the 

evolution of the vortices in the furrows of the upper and lower walls occur in phase as well, 

leading to identical flows occurring across every furrow simultaneously. 

  

Figure 4.6 – Time distribution of local u velocity component sampled from 

representative location in three successive periods of a channel with A = 0.7, L = 5 and 

P = 300.  

The second characteristic distinguishing the shedding and oscillatory regime is 

visible in the evolution of the u  velocity component shown in Figures 4.4 (b) and 4.5 (b). 

In the shedding regime, the generation, growth and contraction cycle of the vortices is 

relatively simple. Furthermore, the vortices remain above the location from which the 

velocity is sampled throughout their entire cycle. This results in the velocity having the 

nearly sinusoidal shape seen in Figure 4.4 (b). Unlike the shedding regime, however, 

vortices in the oscillatory regime undergo more complex changes in their shape and 
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location. This, coupled with the vortices traveling over the sampling location leads to the 

temporal distribution of the velocity component having a saw-tooth-like shape, which can 

be seen in Figure 4.5 (b). 

4.4.3 Transition To Unsteady Flow 

Our simulations indicate that the transitions between different flow regimes in a 

pressure driven flow in wavy channels depend on the magnitude of the wall amplitude A  

and period L . To characterize the conditions at which these transitions take place, we 

constructed a phase diagram that shows the magnitudes of the critical pressures 1crP  and 

2crP  for different values of the wall amplitude. These pressures are shown in Figure 4.7 by 

respectively empty and filled symbols for different values of the channel period L . 

Pressure 1crP  indicating the transition between unidirectional flow and circulatory 

flow monotonically decreases with increasing wave amplitude. Larger amplitudes of the 

wavy walls focus the flow closer to the midplane of the channel, leaving larger areas of 

slow moving fluid in the furrows (cf. Figure 4.3 (b) and (e)). In this situation, the circulatory 

vortices are able to form at a lower value of P . We find this behavior for all L  considered 

in our study; However, the magnitude of 1crP  is smaller for smaller L . This suggests that 

the larger magnitude of the relative depth of the furrows LA  facilitates a more rapid 

development of the vortices, thereby leading to a lower 1crP  at which the circulation 

emerges. 
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Figure 4.7 – Diagram displaying the critical pressure gradients Pcr1 (the empty 

markers) and Pcr2 (the filled markers), at which the respective transitions between the 

unidirectional and circulatory flow regimes and between the circulatory and unsteady 

flow regimes occur for various wall amplitudes A. 

Unlike the transition from a unidirectional to a circulatory flow, the relationship 

between the critical pressure drop indicating the onset of unsteady flow 2crP  and the wall 

amplitude A  is more complex (Figure 4.7). Specifically, 2crP  has two minima, LP  and UP

, that correspond to flows in channels with relatively small and relatively large wall 

amplitudes. Furthermore, the shape of the curve separating the regions with circulatory and 

unsteady flow strongly depends on the period L .  

In the following discussion, we refer to the amplitudes at which 2crP  has the 

respective minimum values LP  and UP  as LA  and UA . Furthermore, we refer to MA  as 

the amplitude at which 2crP  has a local maximum, MP , between the two minima LP  and 

UP ; thus, UML AAA  .  

Figures 4.4 and 4.5 show snapshots of the unsteady flow at pressures slightly above 

the critical ones for, respectively, LA  and UA  in a channel. When the wall amplitude is 
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smaller than LA , the critical pressure 2crP  decreases with increasing A  (Figure 4.7). This 

decrease of 2crP  can be related to larger disturbances that are created in the flow by walls 

with larger waviness. Larger wall amplitudes, on the other hand also increase viscous 

dissipation and reduce the flow rate in the channel. This latter effect has a stabilizing effect 

on the flow and, when A  is increased beyond LA , a further increase of the wave amplitude 

requires an increased pressure to maintain the sufficiently large flow rate enabling the 

development of an unsteady flow. Thus, when A  is less than LA , 2crP  decreases with A . 

However, when A  exceeds LA  and is in the range ML AAA  , 2crP  increases with A .  

For A  greater than MA , the critical pressure 2crP  decreases with A  until the 

amplitude reaches UA . In this case, an increasing depth of furrows filled with a slow 

moving fluid assists the development of unsteady flow, resulting in a decreased 2crP . 

However when A  is greater than UA , this trend reverses and 2crP  increases due to the 

growing viscous dissipation in the channel further suppressing the flow. 

Figure 4.7 indicates that the critical pressures LP  and UP  depend on the channel 

period L . In Figure 4.8, we plot both these pressures for different values of L  in a range 

between 2 and 10. This figure shows that minimum values exist for both the critical 

pressures. The minimum in the curve corresponding to LP  occurs at 0.35A  and 3.5L   

(see inset in Figure 4.8). This minimum pressure is equal to 2 320crP   which results in a 

Reynolds number of Re 128 . The critical pressure UP  has a minimum at 8L   and 

0.81A , in which case it is equal to 2 202crP   and at a Reynolds number of Re 81.2 . 
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Note that the critical pressure UP   changes by only about 10% for a range of L  between 6 

and 10. In Figure 4.8, we report values of LP for L  less than 5 because this regime no 

longer exists for the amplitudes 0.125 1A   for larger values of L . We also find that UP  

only exists for 3L  . Thus, the critical pressure has two minima for periods 3 5L   and 

amplitudes 0.125 1A  , whereas for longer and shorter channel periods only one 

minimum, either LP  and UP  exists. Furthermore, we find that the amplitudes LA  and UA  

both depend on the wall wave period, although LA  seems to be more sensitive to the 

changes of L  than UA  (see inset in Figure 4.8). 

 

Figure 4.8 – Minimum critical pressure gradients, PL and PU, for unsteady regimes as 

a function of the channel period. The inset shows critical amplitudes, AL and AU, at 

which PL and PU occur for each of the channel period lengths. 

4.4.4 Route to Chaos 

As discussed previously, when the pressure driving is increased beyond a critical 

value, 2crP , the flow undergoes a supercritical Hopf bifurcation resulting in unsteady, time-

periodic oscillations in the fluid velocity throughout the channel. This periodic regime is 
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characterized by a single fundamental frequency. At even higher pressure drops, the flow 

undergoes a second Hopf bifurcation leading to a quasi-periodic regime with two 

fundamental frequencies. With continued increases to the pressure drop, the flow 

experiences further Hopf bifurcations, each adding a new frequency to the system, as the 

flow transitions to chaos. This is known as the Ruelle-Takens-Newhouse scenario of the 

onset of chaotic flow. It has been shown that after the third bifurcation, the flow exhibits 

chaotic behavior.141, 142  

 

Figure 4.9 – Streamlines and pressure field in A = 0.3, L = 4 and P = 600 channel. 

 

Figure 4.10 – Streamlines and pressure field in A = 0.3, L = 4 and P = 900 channel. 
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Figure 4.11 – Streamlines and pressure field in A = 0.3, L = 4 and P = 1800 channel. 

After transitioning to unsteady flow, the small amplitude channel begins to 

experience an increased shedding frequency, and subsequently an increased fundamental 

frequency of the flow, as the pressure gradient is increased. For the initial increases in the 

driving pressure, the higher shedding frequency has little impact on how vortices evolve in 

the furrows. This can be seen by comparing Figures 4.4, 4.9, 4.10 and 4.11 which contain 

snapshots of a channel with 0.3A   and 4L   at 400P  , 600P  , 900P   and 

1800P   respectively. In these snapshots we see that while there is an increase in the 

magnitude of the pressure field, the vortices maintain the same generation-growth-

contraction cycle as the pressure gradient is increased from 400P   to 900P  . 

Furthermore, this cycle continues to be synchronized across each furrow, resulting in the 

channel maintaining its spatial periodicity. 

Although the higher pressure gradient does not affect the cycle each vortex 

undergoes, it does increase the size and strength of the vortices as they travel along the 

furrow. This is due to the larger flowrates along the center of the channel imparting more 
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energy into the vortex as it grows, which induces a larger vortex diameter. Using the 

maximum height of the vortex normalized by the height of the channel as the characteristic 

diameter, VD  we measure diameters of 0.61, 0.72, 0.80, and 0.94 for 400P  , 600P  , 

900P   and 1800P   respectively. Therefore, at 400P   the maximum diameter is 

approximately the same as the height of the furrow (Figure 4.4 (e)), but when P  is 

increased to 1800, the vortex grows to nearly half the height of the channel. At this 

diameter, more than one third of the vortex is protruding out of the furrow (Figure 4.11 

(g)), resulting it having an increased influence on the flow through the center of the 

channel. The effect of the increasing diameter in each of these four flows can be seen in 

Figure 4.12, which contains the time distributions of the u  and v  velocity components 

(normalized as the local Reynolds number) sampled from the location indicted in Figure 

4.2. Here we see that for 400P   when the vortex remains within the furrow, that both 

velocity components are nearly sinusoidal. When the vortex protrudes out into the flow at 

1800P  , nearly reaching the location where the velocity is sampled, we see that both 

velocity components have transformed from sinusoidal shaped the shape seen in Figure 

4.12 (d). 
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Figure 4.12 – Time distribution of the u and v velocity components sampled from 

representative location in A = 0.3 and L = 4 channel with (a) P = 400, (b) P = 600, (c) 

P = 900 and (d) P = 1800. 

Although the time distribution of the local velocity undergoes a more complex 

pattern of oscillation, it maintains its single fundamental frequency. This can be seen in 

Figure 4.13, which contains the Fourier power spectrums of the u  velocity components 

provided in Figure 4.12. Here we see that for all four driving pressures, the velocity indeed 

maintains a single fundamental frequency. This indicates that the flow in the system does 

remain periodic with fundamental frequencies of 
0 36f  , 

0 48.6f  , 
0 64.6f   and 

0 94.3f   for 400P  , 600P  , 900P   and 1800P  , respectively. Along with 

increasing the fundamental frequency, larger driving pressures act to increase the energy 

in the super-harmonics frequencies. This results in the complex oscillatory pattern of the 

velocity components in the channel with 1800P  .  
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Figure 4.13 – Fourier power spectrum of u velocity component sampled from 

representative location in A = 0.3 and L = 4 channel with (a) P = 400, (b) P = 600, (c) 

P = 900, and (d) P = 1800. 

The reconstructed pseudo-phase space obtained from the u  velocity component for 

each of the four driving pressures is provided in Figure 4.14. Here we see that, as expected, 

the pseudo-phase space for each velocity distribution contains a limit cycle indicating the 

flow is periodic. As with the velocity components, the deformation seen in the limit cycle 

is a due to the contributions of the super-harmonic frequencies.  
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Figure 4.14 – Pseudo-phase space reconstructed from the time distribution of the u 

velocity component sampled from representative location in A = 0.3 and L = 4 channel 

with (a) P = 400, (b) P = 600, (c) P = 900, and (d) P = 1800. Poincaré sections provided 

in top right inset of each plot. 

Increasing the pressure gradient beyond a critical value, 3crP  results in the flow 

undergoing a second supercritical Hopf bifurcation, leading to quasi-periodic oscillations 

in the fluid velocity characterized by two fundamental frequencies. As with the periodic 

regime, this regime is characterized by a vortex generation-growth-contraction cycle. 

Snapshots of a quasi-periodic flow in a channel with 0.3A  , 4L   and 2100P   are 

provided in Figure 4.15. Here we see in Figure 4.15 (i) and (j), as with the periodic regime, 

a new vortex is generated in the furrow, as the existing vortex shrinks. Unlike in the 
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periodic regime, however, this generation of a new vortex is quickly followed by the 

production of a second vortex at a new separation point along the wall. This separation 

point forms further up the wall peak, closer to its center. Due to their close proximity, these 

vortices rapidly combine (Figure 4.15 (k) and (c)). Once combined, the resulting vortex 

detaches from the second separation point, growing as it travels along the furrow (Figure 

4.15 (d)). As the vortex travels to the right, fluid enters into the furrow to fill the area it 

previously occupied. Due to the high inertia of the fluid, the flow separates from the wall, 

forming an additional vortex (Figure 4.15 (e) and (f)). The formation of this vortex impedes 

the flow of fluid into the furrow, slowing the translation of the large vortex. When this 

occurs, the close proximity of the two vortices leads to the momentary formation of a third 

counter rotating vortex (Figure 4.15 (g)). This counter rotating vortex further reduces the 

flow into the furrow and, in doing so, sufficiently decreases the fluid inertia for the flow to 

reattach to the wall. When this occurs, the smaller vortices dissipate leaving only the large 

vortex to continue its translation to the left (Figure 4.15 (h)). As the vortex resumes 

contracting, the flow once again separates along the backside of the wall peak, creating 

another vortex (Figure 4.15 (i)). When this vortex forms, however, the rear of the shrinking 

vortex is sufficiently far away for fluid to enter the furrow unimpeded. With this fluid 

flowing in, the newly generated vortex grows as the previous vortex dissipates. (Figure 

4.15 (j)). 
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Figure 4.15 – Streamlines and pressure field in in A = 0.3, L = 4 and P = 2100 channel. 

This generation of a new, temporary vortex is the result of the high flowrate in the 

channel causing vortices to generate faster than the previously generated one can dissipate. 

As a result, the newly generated vortex quickly dissipates as seen in Figure 4.15. Although, 

short-lived, the effects of this vortex introduces a second fundamental frequency into the 

system. In order to examine the variations in the velocity more closely, we have provided 

the time distribution of the velocity components in Figure 4.16 (a). Here, we see that the 

velocity distribution has the appearance of a periodic shape. However, due to the effect of 

the second fundamental frequency, these distributions will not repeat as they are quasi-

periodic. 
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Figure 4.16 – Plots showing (a) the time distribution of the u and v components of the 

velocity and (b) the Fourier power spectrum of the u component sampled from a 

channel with A = 0.3, L = 4 and P = 2100. 

In order to see the frequencies in the distribution, we have provided a plot of the 

Fourier power spectrum in Figure 4.16 (b). Here we see that the two fundamental 

frequencies and their linear combinations produce multiple peaks in the spectrum. The first 

fundamental frequency at 94f   still dominates the system, providing the time 

distribution with its nearly periodic shape. When we reconstruct the phase space, we see 

that, due to the second frequency, the limit cycle has been replaced with a limit torus. This 

can be seen in Figure 4.17. Here, we see that the two dimensional limit cycle has 

transformed into a three dimensional 2T  torus. As with the velocity distribution for 

1800P  , the harmonic frequencies distort the shape of the attractor. Taking a Poincaré 

section, we obtain a two-dimensional closed line, rather than the single point as with the 

limit cycle, verifying that this is indeed quasi-periodic flow. 
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Figure 4.17 – Pseudo-phase space reconstructed from the time distribution of the u 

velocity component sampled from a channel with A = 0.3, L = 4 and P = 2100. Poincaré 

sections provided in top right inset the each plot. 

As the pressure gradient increases further, beyond a fourth critical value denoted 

4crP , the flow bifurcates a third time causing the evolution of the vortices to become even 

more complex. This can be seen in Figure 4.18, which contains snapshots of the flow in a 

channel with 0.3A  , 4L  , and 2500P  . Here, we can see that no discernable 

frequency exists in the velocity distribution due to the three fundamental frequencies of the 

system. Furthermore, the snapshots show significant variation in the size, shape and 

number of vortices contained within the furrow.  

 

Figure 4.18 – Streamlines and pressure field in A = 0.3, L = 4 and P = 2500 channel. 
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Figure 4.19 (a) contains the time distribution of the velocity components. Here, we 

see the effects of the third fundamental frequency giving the distribution the appearance of 

random noise. Furthermore, when we view the Fourier power spectrum of the distribution, 

provided in Figure 4.19 (b), we find that the second and third fundamental frequencies are 

no longer discernable from the harmonics. When we reconstruct the pseudo-phase space, 

we see that, due to the inclusion of a third frequency, the limit torus has been transformed 

into a strange attractor. This can be seen in Figure 4.20. In the inset we have provided a 

Poincaré section obtained from the attractor. Here, we see that, due to the additional 

dimension of the attractor, the Poincaré section now contains an area filled with points, 

indicating that this is a indeed 3T  torus. From the work of Newhouse et. al., due to the 

sensitivity to initial conditions indicated by the presence of a strange attractor, this flow 

exibits the behavior of a chaotic system.142  

 

Figure 4.19 – Plots showing (a) the time distribution of the u and v components of the 

velocity and (b) the Fourier power spectrum of the u component from a channel with 

A = 0.3, L = 4 and P = 2500. 
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Figure 4.20 – Pseudo-phase space reconstructed from the time distribution of the u 

velocity component sampled from a channel with A = 0.3, L = 4 and P = 2500. Poincaré 

sections provided in top right inset the each plot. 

In addition to the Hopf bifurcations experienced by the flow as the driving pressure 

increases, for certain larger amplitude channels the flow undergoes a period doubling 

bifurcation as the pressure drop increases. The effect of this bifurcation leads to a change 

in the evolution of vortices located in the furrows. We refer to the critical pressure gradient 

necessary to achieve this bifurcation at 
,cr pdP . This can be seen in Figure 4.21, which 

contains snapshots of the flow after undergoing a period doubling bifurcation in a channel 

with 0.7A  , 5L   and 700P  . Here we see that, like the flow at 300P  , as a new 

vortex is generated in the furrow, it grows and combines with the existing vortex eventually 

filling the entire furrow (cf. Figures 4.5 (c)-(h) and 4.21 (d)-(h)). As a new vortex is 

generated (Figures 4.5 (f) and 4.21 (i)), the cycle repeats for the flow with 300P  , while 

the vortex evolution cycle continues for the flow at 700P  . In this latter stage of the 



  

109 

cycle, the existing vortex is sufficiently small for fluid to continue flowing into the furrow 

unimpeded by the newly generated vortex (Figure 4.21 (j)). This forces the fluid entrained 

in the existing vortex out of the furrow, leading to its dissipation, while the new vortex 

grows behind it (Figure 4.21 (j) and (k)). As the growing vortex detaches from the wall, a 

new vortex is generated and the full cycle is repeated.  

 

Figure 4.21 – Streamlines and pressure field in A = 0.7, L = 5 and P = 700 channel. 

This second cycle doubles the length of the oscillation period, halving the 

fundamental frequency of the flow. The effect of this period doubling can be seen in the 

time distribution of the velocity components provided in Figure 4.22. Here, for comparison 

we show the distributions just before and just after transition at 650P   and 700P  , 

respectively. In this figure we can see that the velocity at 650P   completes slightly less 

than 10 cycles, while completing just over 5 cycles at 700P  . Furthermore, we see that 

the full cycle 650P   closely resembles the corresponding half of the doubled cycle where 

the vortices in the furrows combine. When examining the Fourier power spectrum provided 
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in Figure 4.23 we see that, due to the period doubling, the fundamental frequency of the 

system has been halved, reducing it from 33.4f   at 650P   to 17.6f   at 700P  . 

Here, the frequency is slightly larger than half due to its increase with increasing P  for 

,cr pdP P . 

 

Figure 4.22 – Plots showing the time distribution of the u and v components of the 

velocity in a channel with A = 0.7, L = 5 at (a) P = 650 and (b) P = 700. 

 

Figure 4.23 – Plots showing the Fourier power spectrum of the u component of the 

velocity from a channel with A = 0.7, L = 5 at (a) P = 650 and (b) P = 700. 
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When we reconstruct the pseudo-phase space using the u  component of the velocity, 

we find that both flows contain a single limit cycle. This can be seen in Figure 4.24, which 

contains the pseudo-phase space for both flows along with a corresponding Poincaré 

section. Here we see that while both flows contain a limit cycle, the period doubled flow 

at 700P   completes two loops before returning to its starting point, indicating that the 

flow has undergone a period doubling bifurcation. This is verified by the Poincaré section 

included in the inserts of the plots which contains two points where the limit cycle passes 

through the plane in each loop. The flow at 650P  , on the other hand, contains a single 

loop in its limit cycle and, as a result, a single point in its Poincaré section.  

 

Figure 4.24 – Plots showing the pseudo-phase space reconstruction and the 

corresponding Poincaré sections for a channel with A = 0.7, L = 5 at (a) P = 650 and 

(b) P = 700. 

As the pressure drop is increased further after the flow undergoes a period doubling 

bifurcation, the flow experiences a 2nd supercritical Hopf bifurcation for each geometric 

configuration investigated. This can be seen in the plots of the of the time distribution of 

the velocity components and Fourier power spectrum provided in Figure 4.25, which have 
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been obtained from a flow through a channel with 0.7A  , 5L   and 1100P  . Here, we 

see that the distribution of the velocities have an appearance of a periodic shape. However, 

the addition of the second frequency has transitioned the distribution to quasi-periodic. 

Furthermore, when we examine the Fourier power spectrum, we see the two frequencies 

along with their harmonics. 

 

Figure 4.25 – Plots showing (a) the time distribution of the u and v components of the 

velocity and (b) the Fourier power spectrum of the u component from a channel with 

A = 0.7, L = 5 and P = 1100. 

When reconstructing the pseudo-phase space from the u  velocity component, we 

find that the attractor has taken the form of a limit torus, which can be seen in Figure 4.26. 

As stated previous, this is indicative of a Hopf bifurcation, which introduces a second 

fundamental frequency into the system. Examination of the Poincaré section verifies that 

this is indeed a limit torus, as the section contain multiple points defining a closed line. As 

with the flow in smaller amplitude channels, further increases in the driving pressure result 

in a third Hopf bifurcation as the flow follows the Ruelle-Takens-Newhouse scenario on 

its route to chaos. 
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Figure 4.26 – Plot showing the pseudo-phase space reconstruction of the attractor and 

its corresponding Poincaré section for a channel with A = 0.7, L = 5 and P = 1100. 

In order to understand how the geometric parameters and driving pressure influence 

the flow regime, we systematically varied these parameters while using the methods 

discussed above to determine the state of the flow. Specifically, we vary A  between 0.2 

and 1.0 at step sizes of 0.1 and P  between 0 and 2500 at step sizes of 50 for period lengths 

of 3L  , 4L   and 5L  . Figure 4.27 shows the phase map for 3L  . Here we see that 

for pressure drops less than 2500P  , only two of the wall amplitudes, 0.7A   and 

0.8A  , achieve quasi-periodic flow, which occurs at 1100P   and 1500P  , 

respectively. These correspond to Reynolds numbers of Re 67.1  for 0.7A   and 

Re 54.4  0.8A  . Furthermore, the critical pressure gradient 4crP  is not found for any of 

the amplitudes for the range of driving pressures 0 2500P  . The majority of the wall 

amplitudes fail to reach 3crP  due to the lower velocities resulting from the larger relative 

wall amplitudes. Therefore, we find that decreasing the wall period length L  has a 

stabilizing effect on the flow. 
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Figure 4.27 – Phase map of flow regimes for period length L = 3.  

When L  is increased to 4L  , the flow achieves each of the regimes discussed 

above within the range of driving pressures investigated. This can be seen in Figure 4.28, 

which contains the flow regime map for 4L   . Here we see that, for smaller amplitude 

channels, 3crP  contains a minimum at 0.5A   and 700P  . Furthermore, the flow reaches 

the quasi-periodic regime for each of the wall amplitudes with mA A . Additionally, for 

0.4A   and 0.5A  , this period length achieves chaotic flow, with critical pressure 

gradients 4 1900crP   and 4 2250crP  , respectively. These correspond to Re 371  for 

0.4A   and Re 269  for 0.5A  . For larger wall amplitudes where mA A , each of the 

flows experiences a period doubling bifurcation. While for 0.7A   and 0.8A  , this 

period doubling bifurcation is followed by a second Hopf bifurcation at 3 2300crP   and 

3 2400crP  , respectively.  
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Figure 4.28 – Phase map of flow regimes for period length of L = 4. 

Similar to those with 4L  , for the range of amplitude and driving pressures 

investigated, each of the flow regimes can be found when 5L   as seen in Figure 4.29. 

Here we see that for all amplitude of 0.2 1A   the third critical pressure gradient within 

the range of pressures 0 2500P  . The minimum critical pressure gradient for the second 

Hopf bifurcation occurs at 0.4A   for a pressure drop of 3 550crP  . Furthermore, in the 

range of pressure gradients investigated each of the channels with 0.2 0.8A   achieves 

chaotic flow. The minimal critical pressure gradient for this third Hopf bifurcation occurs 

for 0.4A   at 3 1400crP  . For this period length, the minimum flowrate necessary to 

induce chaotic flow is found in 0.8A   at a Reynolds number of Re 85 .  
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Figure 4.29 – Phase map of flow regimes for period length of L = 5.  

4.4.5 Frictional Losses 

To quantify the effect of wall structure on the viscous dissipation in a wavy channel, 

we calculated the friction factor 2Re6Pf   that characterizes viscous losses in the 

channel flow. The friction factor is plotted in Figure 4.30 as a function of the applied 

pressure gradient P  for channels with period lengths of 3L  , 4L   and 5L   at several 

wall amplitudes A . In this figure, we also plot the friction factor in a straight channel 

Pf 6 . As can be expected, the wavy channel walls increase the friction factor compared 

to the straight channel and this increase is more significant for channels with larger A . 

When the flow is in the unidirectional regime the friction factor decreases with P  at a rate 

that is close to that of the decrease in a straight channel. When the flow transitions to the 

circulatory regime, the decrease with P  slows down and, for 2crPP  , f  levels off for the 

wavy geometry while it continues decreases for the straight channel. 
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The dependence of f  with P  shown in Figure 4.30 can be related to an increase of 

viscous dissipation taking place in the flow due to the development of vortices in the 

channel furrows. Moreover, the dissipation increases even more when the flow becomes 

unsteady, thereby requiring greater pressure gradients to transport the fluid with the same 

flow rate. However, after the initial Hopf bifurcation and transition to unsteady flow, 

subsequent bifurcations do not act to further increase the effects of the channel geometry. 

 

Figure 4.30 – Channel friction factor, f, as a function of normalized pressure gradient 

in a wavy channel at different wall amplitudes for wall period lengths of (a) L = 3, (b) 

L = 4 and (c) L = 5. 
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4.5 Summary 

We used two-dimensional computer simulations to investigate laminar pressure-

driven flow in a channel with sinusoidal walls. In particular, we probed the effects of wall 

amplitude and period on the development of different flow regimes and the onset of chaotic 

flows within the wavy channel. The results are summarized using flow regime diagrams in 

terms of the driving pressure gradient and the channel wall amplitude, which are provided 

in Figures 4.7, 4.27, 4.28 and 4.29. The first of these diagrams indicates the boundaries 

between conditions at which a unidirectional flow, a circulatory flow, and an unsteady flow 

emerge in wavy channels, while the other three provide the boundaries between time-

period, as well as two and three frequency quasi-periodic flows. Due to its sensitivity to 

initial conditions, indicated by the strange attractor in the pseudo-phase space, this three 

frequency quasi-periodic flow exhibits the characteristics of chaos.142 

Through our initial investigations, we found that at a critical pressure drop, 1crP , the 

flow transitions to circulatory while remaining steady, and at a second critical pressure 

drop, 2 1cr crP P , the flow transitions to time-periodic unsteady motion through a 

supercritical Hopf bifurcation. Here, we considered channels with 0.125 1A   and 

2 10L  . We note that for the channel geometries outside of the investigated range this 

behavior may not hold. In our subsequent investigations, we found that the flow undergoes 

additional supercritical Hopf bifurcations at a third and fourth critical pressure drop, 

4 3 2cr cr crP P P  , with each of these bifurcations adding a new fundamental frequency to 

the system. Moreover, we found that for certain large amplitude channels, the flow 

undergoes a period doubling bifurcation at a critical pressure gradient , 2cr pd crP P .  
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The simulations reveal that the transitions to each of the unsteady flow regimes 

exhibits a nontrivial dependence on the channel wall amplitude. The transition is related to 

an interplay among fluid inertia, disturbances introduced by wavy walls, and channel 

confinement. For small amplitude channels, the unsteady flow is characterized by vortex 

shedding and the absence of trapped vortices. New vortices periodically form within the 

channel furrows and, after they grow sufficiently large, are shed and transported 

downstream by the flow. In channels with larger wall amplitudes, confinement effects 

result in the trapping of vortices, which oscillate within the furrows as shed vortices 

combine with them. These oscillations are accompanied by periodical changes in vortex 

size.  

We have identified two channel geometries minimizing the magnitude of the critical 

pressure gradient leading to the unset of an unsteady flow. In the first case, the wall 

amplitude is 0.35A  and the period is 0.35L  , yielding 2 320crP   and Re 128 . The 

second minimum occurs for channels with 8L   and 0.81A , in which case 2 202crP   

and Re 81.2 . The latter pressure is the minimum pressure at which an unsteady flow can 

be generated in a wavy channel.  

In our investigation of the subsequent bifurcations in the flow after transition to 

unsteady, we found a strong dependence of the critical pressure drops on the period length 

of the channel. Due to this dependence, we found only two amplitudes which contain 3crP  

within the range of pressure drops investigated ( 0 2500P  ). For 5L  , on the other 

hand, each of the amplitudes examined contained 3crP  within the range of pressures 

studied. Additionally, the range of amplitudes 0.2 0.8A   contain critical pressure 
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gradients 4 2500crP  . From our simulations we were able to determine the minimum 3crP  

and 4crP  for the range of parameters investigated which are 3 550crP   and 4 1400crP  , 

both of which occur in a channel with 0.4A   and 5L  . Furthermore, we found that the 

asymmetric wavy wall geometry is capable of inducing the onset of chaotic flow at a 

minimum Reynolds number of Re 85  in a channel with 0.8A   and 5L  . 

Lastly, we characterized the effects of the wavy walled geometry in terms of the 

viscous losses it generates. We showed that the geometry of the channel induces significant 

friction coefficients compared to a straight channel. Further, we demonstrated that the 

friction coefficient is nearly independent of the driving pressure when the flow is unsteady. 

Moreover, we showed that, after the initial bifurcation and transition to unsteady flow, 

additional bifurcations do not induce significant changes in the friction coefficient. 

The unsteady flow emerging in wavy channels at relatively low flow rates induces 

constantly evolving local flow circulations and, therefore, can be potentially harnessed for 

enhancing heat and mass transport, key processes of many practical applications. Since this 

unsteady flow remains laminar even when exhibiting chaotic behavior, we anticipate the 

mixing enhancement can be accomplished for a relatively low increase in friction losses 

compared to a turbulent flow with similar transport characteristics. 
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CHAPTER 5. HEAT TRANSFER 

5.1 Introduction 

Although a substantial amount of research has been conducted to better understand 

the effects of wavy walled channels on heat and mass transfer, we are still missing a 

comprehensive and systematic picture of how the heat transfer changes for a wide range of 

system parameters. In this chapter, we systematically investigate laminar pressure driven 

flow in two-dimensional wavy channels with asymmetric sinusoidal walls. We probe the 

dependence of the heat transfer occurring in the channel on the amplitude and period of the 

walls and the magnitude of the pressure drop driving the flow. Our investigation begins by 

examining the heat transfer occurring at low flow rates when the flow is steady. Next, 

larger flow rates where the flow experiences time-periodic oscillations are studied. Lastly, 

the heat transfer enhancement is weighed against the cost of increased frictional losses 

induced by the wavy geometry using a thermal-hydraulic performance factor in order to 

determine the overall performance of wavy walled channels. 

5.2 Computational Setup 

Please refer to Section 2.6.3 for a detailed discussion of simulation parameters used 

in this investigation. Before starting our investigation into the heat transfer enhancement, 

four simulations of heat transfer in a wavy channel were performed with various grid sizes 

to determine the necessary grid spacing for our simulations. The parameters of the 

simulations were 50P , 35.0A  and 4L  with grid sizes corresponding to 20h , 

40h , 60h , and 80h  (in LB units). A plot of lNu  along the top wall for all four 
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grid sizes is provided in Figure 5.1. It can be seen in the plot that all four grid sizes yield 

nearly identical results with the exception of the points obtained near 670./ lx  with 

20h , which deviate slightly from the results obtained with other grids. Table 5.1 

contains the values of mNu  and Re  calculated for each grid resolution along with their 

percent differences from the values obtained for 80h . It can be seen in this table that the 

values of mNu  and Re  obtained using 40h  nodes only differ from those obtained using 

80h  by 0.09%  and 0.14% , respectively. Because the grid with 40h  nodes provides 

nearly identical results with those of higher resolution at significantly lower computational 

costs, we used this grid size in our investigation. 

 

Figure 5.1 – Local Nusselt number Nul across top wall of channel for various grid 

sizes obtained from grid independence tests with P = 50, A = 0.35 and L = 4. 

Table 5.1 – Results from grid independence test with P = 50, A = 0.35 and L = 4. 

Nodes mNu  % Change Re % Change 

20 8.132 0.0277 28.10 1.41 

40 8.135 0.0857 28.50 0.144 

60 8.141 0.0736 28.54 0.0196 

80 8.148 - 28.55 - 



  

123 

5.3 Results and Discussion 

Pressure-driven flow through sinusoidally-shaped channels results in three unique 

flow regimes which we refer to as unidirectional, circulatory, and unsteady. At low flow 

rates, in the unidirectional regime, the flow follows the shape of the channel. As the flow 

rate increases and the flow transitions to circulatory, steady vortices form in the furrows of 

the channel walls. Further increases of the flow rate leads to an unsteady flow characterized 

by a time dependent vortex topology. A more detailed discussion of these different flow 

regimes can be found in Chapter 4.  

 

Figure 5.2 – Temperature distributions and streamlines for unidirectional and 

circulatory flows in (a) A = 0.35, L = 4 and P = 10 (b) A = 0.35, L = 4 and P = 100, (c) 

A = 0.75, L = 4 and P = 10 and (d) A = 0.75, L = 4 and P = 100. 
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5.3.1 Steady Flow Regimes 

Figure 5.2 shows the temperature distribution and streamlines for both small and 

large amplitude wavy walls ( 0.35A  and 0.75A ) in the unidirectional and circulatory 

flow regimes. For small amplitude channels with unidirectional flow (Figure 5.2 (a)), the 

streamlines closely follow the channel shape. This leads to the heated fluid located in the 

center of the channel, which we refer as the hot fluid core, remaining near the center of the 

channel and away from the cold walls, resulting in a minor increase in Num  compared to 

a straight channel. When the wall amplitude is increased, the fluid deviates from the 

channel geometry, causing the flow streamlines converge closer to the crest and trough of 

the lower and upper walls, respectively (Figure 5.2 (c)). As a result, the hot fluid at the core 

is brought closer to the cold walls, increasing Nu . When the flow rate increases and the 

flow transitions to the circulatory regime, the formation of vortices focuses the core flow 

along the midplane of the channel (Figure 5.2 (a) and (d)). This further results in the heated 

fluid being brought closer to the walls near the crest and troughs of the lower and upper 

walls, respectively.  

To gain insight into the dependence of the heat transfer on P, A, and L, we 

systematically varied these parameters and plotted the resulting  Nul x  along the top wall 

of a single period as well as Num  across the entire channel. The plots in Figure 5.3 show 

the dependence of Nul  and Num  on P for small and large amplitude channels, 

respectively. It can be seen in these two figures that as P increases, the local Nusselt number 

experiences increasingly larger variations with the minimum and maximum values 

corresponding to the peak and trough of the top wall, respectively. The increase in Nul  
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near 0.67x l   as P increases is the result of the fast flowing fluid which has a higher 

temperature being squeezed into the midplane of the channel as the flowrate increases 

(Figure 5.2 (b) and (d)). This leads to the hot fluid coming close to the cold wall near the 

trough of the upper wall, increasing Nul  at that location. 

 

Figure 5.3 – Local Nusselt number Nul along top wall of single wall oscillation period 

for varying values of P in the steady flow regimes. Channel geometries kept constant 

at (a) A = 0.35, L = 4 and (b) A = 0.75, L = 4. Inset of the left plot contains Num 

corresponding to each line in the main plots. 

When the flow becomes circulatory, the formation of stationary vortices further 

inhibits the transfer of heat to the walls along the furrows. This is due to the vortices 

focusing the flow along the midplane. Additionally, since they are stationary, diffusion is 

the only mechanism for heat in the fluid moving downstream to be transported into the 

vortices. With diffusion being a slow transport process, the majority of the thermal energy 

is convected downstream with a relatively small amount diffusing into the vortices and 

reaching the wall of the furrows. Because of this, the vortices act as a barrier, decreasing 

the heat transfer along the wall of the furrow. 
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Figure 5.4 – Local Nusselt number Nul along top wall of single wall oscillation period 

for various A in the steady flow regimes with L = 4. P held constant at (a) P = 10 and 

(b) P = 200. Inset of the left plot contains Num corresponding to each line in the main 

plots. 

For both the unidirectional and circulatory flow regimes the increasingly larger 

values of Nul  near 0.67x l   are accompanied by decreases in Nul  around 0.33x l   as 

P increases. As a result, Num  only undergoes minor increases with increasing P (see inset 

in Figure 5.3 (a)). This indicates that in the steady flow regimes, the heat transfer rate is 

only weakly dependent on P, and subsequently the flow rate. The significantly higher Num  

for the larger amplitude compared to the smaller amplitude indicates a strong dependence 

of heat transfer on the wall amplitude. 

Figure 5.4 (a) and (b) show Nul  and Num  in the unidirectional and circulatory 

regimes respectively for several amplitudes and constant pressures 10P   and 200P  , 

respectively. Similar to the effect of increasing P, the variations in Nul  undergo 

increasingly larger changes as A increases. When the flow is unidirectional, the location of 

the maximum Nul  moves to the left with increasing A. For circulatory flow, the maximum 

Nul  no longer depends on A, and remains near 0.67x l  . When increasing P, the overall 
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shape of Nul  remains unchanged while the increasingly larger values of Nul  near the 

trough of the wall are offset by the decreases around the crest. Alternatively, as A is 

increased, Nul  experiences considerable changes in its shape as its values near the trough 

and crest increase and decrease, respectively. At small A, the line resembles a sinusoid and 

as A increases the line transforms to have a prominent crest with a shallow trough. Because 

of this, the increases in Nul  are no longer offset by the corresponding decreases leading to 

an increase in Num  as A increases. This can be seen in the inset of Figure 5.4 (a). This 

dependence is significantly stronger for circulatory flow than unidirectional flow, which 

accounts for the noticeable increase in Num  seen in the inset of Figure 5.3 (a) when 

0.75A  transitions from unidirectional flow at 10P   to circulatory flow at 50P  . 

 

Figure 5.5 – Local Nusselt number Nul along top wall of single wall oscillation period 

for varying values of L in the steady flow regimes. Other parameters kept constant at 

(a) A = 0.35, P = 10 and (b) A = 0.75, P = 200. Inset of the left plot contains Num 

corresponding to each line in the main plots. 

Figure 5.5 (a) and (b) show the Nul  distribution for several values of L with 

0.35A  and 10P  , and with 0.75A  and 200P  , respectively. It can be seen in these 

plots that as L decreases, the magnitude of the variation in Nul  increases. As with 
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increasing A and P, this is the result of the streamlines being unable to follow the sinusoidal 

shape of the channel as L decreases, causing the heated fluid at the core to move closer to 

the cold walls. For both 10P   and 200P  , the lines intersect in the vicinity of 

0.91x l   and 0.81x l  , respectively. This indicates that the location where the hot fluid 

begins to diverge from the wall is dependent on P, but not on L, with larger P resulting in 

faster divergence. At the section of the channel where Nul  is increasing with x, the lines 

do not maintain a common intersection point. Instead, Nul  shifts to the right as L 

decreases. This is due to the flow being focused along the midplane as L decreases. This 

focusing of the flow results in the hot fluid remaining far from the wall near the furrows, 

but coming much closer near the wall peak, which leads to the wide trough and narrow 

crest in the line representing the smaller period 2L  . Unlike the effects of increasing P 

and A, Num  decreases as L increases. This is a result of the relative amplitude decreasing 

as L increases and A remains constant. 

5.3.2 Unsteady Flow Regime 

As P is increased beyond a critical value, the flow transitions to an unsteady regime. 

This regime is characterized by the shedding of vortices from the troughs and crests of the 

upper and lower walls, respectively, which induces periodic variations of the fluid velocity 

and temperature distribution throughout the channel. Figure 5.6 shows the instantaneous 

temperature distribution overlapped with the flow streamlines for 600P   and 2000P   

in both small and large amplitude channels at equally spaced times throughout a single 

flow oscillation period. It can be seen in these snapshots that oscillations in the flow lead 

to large oscillations in the location of the hot fluid core, decreased distances between the 
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core and the walls, and heated fluid being convected into the troughs of the channel. These 

characteristics act to significantly enhance heat transfer.  

 

Figure 5.6 – Instantaneous temperature distributions and streamlines for unsteady 

flows in small and large amplitude channels. Columns correspond to time intervals 

equally spaced across half of the period of oscillation in the flow. The rows correspond 

to (a) A = 0.35, L = 4, P = 600, (b) A = 0.35, L = 4, P = 2000, (c) A = 0.75, L = 4, P = 600 

and (d) A = 0.75, L = 4, P = 2000. 

Because the larger amplitude walls increase flow resistance, the flowrates for 

0.75A  shown in Figure 5.6 (c) and (d) are considerably lower than that of 0.35A  

shown in Figure 5.6 (a) and (b) for the same P. As a result, for larger A the fluid remains 

in contact with the cooled walls for a longer period of time allowing for more heat to be 

removed, which is indicated by the larger area of cool colors (green, yellow and blue) in 

the contour plots of Figure 5.6 (c) and (d). This comes at the cost of a decrease in the 
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throughput of an individual channel and although the temperature of the fluid is more 

significantly reduced, does not necessarily lead to a greater Num . 

 

Figure 5.7 – Local Nusselt number Nul along top wall of single wall oscillation period 

for varying values of P in the unsteady flow regime. Channel geometries kept constant 

at (a) A = 0.35, L = 4 and (b) A = 0.75, L = 4. Inset of the left plot contains Num 

corresponding to each line in main plots. 

Figure 5.7 (a) and (b) presents plots showing the period averaged values of Nul  

along the top wall at different P values for 0.35A  and 0.75A , respectively. It can be 

seen in these plots that as P increases, the maximum values of Nul  increase as well, going 

from ~24 (~37) at 600P   to ~42 (~57) at 2000P   for 0.35A  ( 0.75A ). The 

increase at the peak value is coupled with slight increases in Nul  along the entire channel. 

This is in contrast to the distribution of Nul  seen in the steady regimes where the increases 

in the maximum values around 0.67x l   are offset by the decreasing values around 

0.33x l   as P increases. This difference in the shape of the Nul  distribution for steady 

and unsteady flows is the result of the unsteady motion of the vortices in the channel that 

is a characteristic of the unsteady flow regime. As discussed above, the stationary vortices 

developing in the circulatory regime act as a thermal barrier by preventing convective 
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transport of heat from hot fluid stream traveling in the center of the channel into the channel 

furrows. Conversely, in the unsteady regime the vortices in the furrows are no longer 

stationary and their motion facilitates convective transport of heat into the furrows. This 

removes the barrier-like behavior of the vortices, allowing for more heat transfer to occur 

along the furrow wall and reducing the dip in Nul  along the wall of the channel furrow. It 

also allows for the increased flow rates associated with larger values of P to result in an 

increase in Nul  along the furrow. With the increases in Nul  near 0.67x l   no longer 

counterbalanced by decreases around 0.33x l   as P increases, Num  increases from ~12 

to ~20 for 0.35A  (~14 to ~22 for 0.75A ) as P is varied from 600 to 2000 (inset of 

Figure 5.7 (a)). This indicates that in the unsteady regime the heat transfer rate depends on 

P. Furthermore, the nearly identical slope of the lines shown in the inset suggests a 

reduction in the dependence of the heat transfer rate on A. 

 

Figure 5.8 – Local Nusselt number Nul along top wall of single wall oscillation period 

for varying values of A in the unsteady flow regime with L = 4. P kept constant at (a) 

P = 600 and (b) P = 2000. Inset of the left plot contains Num corresponding to each 

line in main plots. 
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To investigate the effect of the amplitude on the heat transfer rate in unsteady flows, 

we plotted Nul  for varying amplitudes with 600P   and 2000P   in Figure 5.8 (a) and 

(b), respectively. In both plots there is a significant difference in the shape of the Nul  curve 

between smaller amplitudes ( 0.25A  and 0.35) and for larger amplitudes ( 0.65A  and 

0.75). The differences in the shapes of Nul  are a result of the different flow structures 

developing in the large and small amplitude channels. For small A (see Figure 5.6 (a) and 

(b)), a vortex sheds from the trough of the upper wall, grows as it travels along the furrow 

before being ejected. The shedding and subsequent ejection of the vortices creates large 

oscillations in the location of the heated core, which results in it coming in close proximity 

with a larger portion of the wall. This increases the length of the wall interaction with hotter 

fluid leads to the wider peak of Nul , but at the same time lowers the magnitudes of the 

period averaged values of Nul . 

When A is large, two types of vortices develop. There are vortices that remain trapped 

in the channel furrow whereas other shed vortices travel closer to the channel centerline 

causing the trapped vortex to undergo periodic oscillations and deformation. As a result, 

the hot fluid core does not undergo significant variations in its location (see Figure 5.6 (c) 

and (d)) and subsequently narrows the section of wall in which it comes near. Because the 

hot fluid approaches a smaller section around the trough of the top wall, Nul  has a tall 

narrow peak when averaged over time. 

This large amplitude unsteady regime is similar the steady circulatory regime which 

is also characterized by vortices trapped in the furrows. However, the motion of the trapped 

vortex in the unsteady regimes allows it to bring heated fluid from the flow core towards 
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the wall and resulting in a flat Nul  rather than the dip seen in the steady regime. The mean 

Nusselt number, Num , is plotted in the inset of Figure 5.8 (a) as a function of A for 600P   

and 2000P  . Again it follows from this plot that when the flow transitions to unsteady, 

Num  begins to show a stronger dependence on P rather than A, as found in the steady 

regimes. 

5.3.3 Heat Transfer Enhancement 

Figure 5.9 contains plots of the mean Nusselt number as a function of P for several 

amplitudes with periods fixed to L = 3, 4, and 5. These plots show a strong dependence of 

Num  on A and weak dependence on P for steady flows. When the flow transitions to 

unsteady, Num  increases rapidly with increasing P, whereas the dependence on both A and 

L remains similar to that at the steady regime. Because of this and the fact that large 

amplitudes induce greater increases in Num  while in the steady regime, these amplitudes 

maintain slightly greater values of Num  than smaller amplitudes in the unsteady regime. 

This relationship is complicated by the fact that the values of P at which the flow transitions 

to unsteady depend on both A and L. However, as shown in the inset of Figure 5.9 (a), the 

largest values of Num  are obtained by larger amplitude channels throughout the range of 

P investigated. Based on Num , the optimum heat transfer is achieved by 0.75A , 3L   

for 500P   and 1200P   and by 0.65A , 3L   for 500 1200P  . 
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Figure 5.9 – Mean Nusselt number across channel period for P ranging from 10 to 

2100. Each plot contains several amplitudes with (a) L = 3, (b) L = 4 and (c) L = 5. The 

dashed line in each plot represents that of a straight channel (Num = 7.54). Inset of the 

top left plot displays the geometries providing the greatest values of Num for the range 

of P investigated. 

As with other passive methods for heat transfer enhancement utilizing complex 

geometries, the improvement in heat transfer comes at the cost of increased frictional 

losses.143 As discussed previously (Section 4.4.5) the walls in an asymmetric wavy channel 

can induce significant frictional losses, with the magnitudes heavily dependent on both A 

and P. Thus, even though the use of Num  allows us to isolate the flow regimes with 

increased heat transfer, this parameter fails to describe the overall performance of the 

system. 
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In order to quantify the overall thermal performance of the wavy channels, we chose 

to use the thermal–hydraulic performance factor given by:50 

 
 

0

1 3

0

Nu Num

f f
  .  5.1 

Here, 0Nu 7.54  and 0 6f P  are the mean Nusselt number and friction factor for 

a straight channel.124, 144 This parameter indicates the ratio between the increases of heat 

transfer and friction factor normalized by their respective values for a straight channel. 

 

Figure 5.10 – Thermal–hydraulic performance factor for P ranging from 10 to 2100. 

Each plot contains range of amplitudes with (a) L = 3, (b) L = 4 and (c) L = 5. The 

dashed line represents η for a straight channel. 
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Figure 5.10 shows η plotted against P for the same ranges of A and L as in Figure 

5.9. As with the plots of Num , η increases as P increases. Unlike Num , however, η shows 

strong dependence on A and weak dependence on L, with the smallest amplitudes and 

periods having the highest values of η. The strong dependence on A is due to Num  being 

independent of A while f is strongly dependent on it. Therefore, as A is increased, f increases 

while Num  remains nearly constant leading to a decrease in η. Interestingly, even in the 

steady regime where Num  is strongly enhanced with larger A, the increased friction factors 

generated in these large amplitude channels leads to overall lower values of η. These plots 

also indicate that even though the wavy walled channels act to enhance heat transfer, the 

increased friction factors associated with the geometry can lead to a thermal–hydraulic 

performance lower than that of straight channels. This is especially relevant for small 

pressure drops where the channel has yet to achieve significant increases in Num  

associated with the unsteady flow regime, and for large A where the large amplitude of the 

channel walls induces substantial frictional losses. From Figure 5.10 we conclude that 

small amplitudes and short periods achieve the largest values of η for wavy walled channels 

and that these channels will exhibit enhanced performance compared to straight channels 

provided that P is sufficiently large. 

Lastly, because the throughput is oftentimes an important design parameter, in Figure 

5.11 we plotted η against Re rather than P to allow for comparison across different flow 

rates. Due to the increased losses associated with wavy walled channels, the Reynolds 

numbers for different amplitudes have significantly different ranges for the same range of 

P values. As a result, for 0.75A  Re remains less than 200 for each L investigated. As 
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with the plots in Figure 5.10, the plots of η vs Re indicate that smaller amplitudes and 

shorter periods provide the largest increases in thermal performance. Unlike the plots in 

Figure 5.10, however, the dependence on A is not monotonic and 0.35A  produces the 

largest value of η for a portion of the Re values investigated. This is due to the higher 

frictional losses of 0.35A  causing its line to shift further to the left than that of 0.25A  

when η is plotted as a function of Re. As a result, the increase in g seen in the unsteady 

regime occurs earlier, allowing 0.35A  to generate the larger η for certain Re. 

 

Figure 5.11 – Thermal–hydraulic performance factor plotted as a function of the 

Reynolds number. Each plot contains range of amplitudes with (a) L = 3, (b) L = 4 

and (c) L = 5. The dashed line represents η for a straight channel. 

We therefore summarize our simulation results as follows. For small Re 280 , the 

friction penalty of the wavy channel results in a straight channel being the optimum 
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geometry. For 280 Re 385  , the combination of 0.35A  and 3L   has the largest η 

values and for Re 385  the optimum geometry becomes 0.35A  and 3L  . This 

indicates that small amplitudes provide the greatest thermal–hydraulic performances 

provided that the flow is laminar and sufficiently far into the unsteady regime. 

5.4 Summary 

At low pressure drops, when the flow remains in the unidirectional and circulatory 

regimes, the values of lNu  along the upper wall experience large increases near the trough 

of the top wall (around 670.lx ). These increases are accompanied by decreasing values 

along the furrow. In these regimes, the maximum lNu  increases with increasing P , but 

these increases are offset by decreasing lNu  along the furrows. As a result, the average 

Nusselt number along the entire channel, mNu , remains nearly independent of P . The 

mean Nusselt number mNu , on the other hand, does exhibit dependence on A , and 

increases with increasing A . This resembles the results obtained by Wang and Chen who 

found that the heat transfer enhancement in converging-diverging channels increases with 

increasing amplitude when the flow is steady.145 

When the flow transitions to unsteady regime, lNu  increases along the troughs of 

the top wall as P  increases. In contrast to the steady regime, however, lNu  also increases 

along the furrows of the top wall. This is because the motion of the vortices in the unsteady 

regime enables the transport of hot fluid from the center of the flow to the cold walls along 

the furrows. Thus, instead of acting as a barrier between the wall and the hot core as in the 

steady flow regime, unsteady vortices facilitate heat transfer to the channel wall. The 
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increases in lNu  along the entire length of the channel as P  increases leads to an increase 

of the overall heat transfer rate across the channel. As a result, mNu  exhibits a strong 

dependence on P  and is relatively independent of A . 

Although wavy walled geometries provide significant enhancements in the heat 

transfer occurring in the channel, these enhancements are accompanied by considerable 

increases in frictional losses. When the flow is steady, the high friction factor outweighs 

the increases in the heat transfer rate, leading to thermal-hydraulic performance factors 

lower than that of a straight channel. For larger pressure gradients (greater than the critical 

P  associated with the transition to the unsteady regime), the thermal-hydraulic 

performance of small amplitude channels is greater than that of a straight channel. For large 

amplitude channels, however, the performance remains worse than that of straight channels 

for all P .  

Based on the low magnitude of the thermal-hydraulic performance factor of wavy 

walled channels at low values of P , we can conclude that this geometry is not well suited 

for use in heat transfer applications with low flow rates ( 300Re  ). At larger flow rates, 

however, the thermal-hydraulic performance of wavy walled channels shows a significant 

increase for smaller amplitudes, achieving greater than 50% improvement over a straight 

channel for the range of parameters investigated. This indicates that small amplitude wavy 

walled channels are preferable for use in applications such as heat exchangers provided 

that the flow rate is large enough for the flow to be unsteady. 
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CHAPTER 6. FOULING LAYER DEVELOPMENT 

6.1 Introduction 

The fouling of heat exchangers poses a significant problem across a wide range of 

industries. This is particularly true for the coolers found in exhaust gas recirculation 

systems used in gasoline in diesel engines. In these heat exchangers, the deposition of soot 

particles entrained in the exhaust gas form an extremely porous fouling layer. Because of 

its high porosity the layer acts to insulate the cold walls from the hot fluid, decreasing the 

effectiveness of the cooler. With high concentrations of soot particles found in the exhaust 

generated during the combustion process, this fouling process occurs rapidly leading to 

significant losses in the  performance of the system. 

In an attempt to extend the life span of EGR heat exchangers, engine manufacturers 

have begun utilizing wavy walled channels. This is because empirical evidence suggests 

that the wavy geometry provides better resistance to fouling than other traditional cooler 

types such as shell and tube. Despite this increased interest, a full understanding of how 

the fouling layer develops in these channels does not exist. Furthermore, significant 

discrepancies have been found between experimental results and those obtained from 

numerical simulations.  

Using simulations, we probe the early development of the fouling layer from the 

deposition of particles entrained in a laminar flow through an asymmetric wavy walled 

channel. Specifically, we examine the physics driving the fouling layer formation to 

develop a clear understanding of how the geometry influences its growth and the 
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subsequent effects of this growth on the fluid flow and heat transfer occurring in the 

channel. Furthermore, we systematically vary the geometric parameters of the channel, A  

and L , along with the pressure gradient driving the flow in order to investigate their 

effects on the layer development. Using a computational model capable of capturing the 

effects of the growing fouling layer on the flow and heat transfer Results from these 

investigations provide vital insights into the fouling of wavy walled heat exchangers 

necessary for designing more fouling resistant coolers. 

6.2 Computational Setup 

Please refer to Section 2.6.4 for a detailed discussion of simulation parameters used 

in this investigation. 

6.3 Results and Discussion 

As particles entrained in the flow travel along the channel, a thermophoretic force 

induced by temperature gradients in the fluid results in their migration toward and 

subsequent deposition along the cooler walls. These deposited particles accumulate to form 

a layer of soot, which grows as particles continue to deposit. This growth is influenced by 

complex interactions between the effects of the fluid (i.e. advective transport and shear 

removal), and temperature distribution on the particle transport and deposition. 

Furthermore, as the layer grows, its effect on the flow and heat transfer influences 

subsequent development of the fouling layer. In the following discussion, we first examine 

the physical mechanisms driving the formation of the layer and the effects of this layer on 

the fluid flow, heat transfer and continued deposition along the walls. This is followed by 
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a systematic investigation of the dependence of the layer formation on the parameters A , 

P  and L . 

6.3.1 Physics of Fouling Layer Formation 

Snapshots taken at equally spaced intervals of the total simulation time, totalT , 

showing the development of the fouling layer along one wall period of a channel with 

0.5A  , 4L   and 2000P  are provided in Figure 6.1. In this figure, the position of the 

layer is obtained from the average position of the first three wall periods of the channel. 

Here we see as time progresses, the fouling layer forms across the entire length of the 

period. The rate at which this occurs varies spatially, resulting in a non-uniform thickness 

of the layer with the thickest and thinnest sections located on the front and back of the wall 

peaks, respectively.  

In order to understand the mechanisms driving this formation, we first examine the 

fouling layer along the top wall at 4totalt T , the thickness of which is provided in Figure 

6.2 (a). Here, the thickness, flt , is defined as the distance, normalized by h , from the wall 

to surface of the fouling layer in the direction normal to the wall. In this plot we see that 

early in the formation of the layer, three areas of increased thickness develop along the 

wall, which together cover approximately half its length, from 0.1x l   to 0.6x l  . In 

the following discussion, we will refer to these peak-like formations in the layer as dunes 

to avoid confusion as we have previously defined peaks to refer to a section of the wall. 

The largest of these dunes covers the entire front side of the wall peak (defined as 

[0.25,0.5]x l ). The second tallest dune covers a portion of the backside, while the 
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smallest dune is positioned along a section of the furrow. Along the remaining section of 

the wall, the fouling layer maintains a nearly uniform thickness. 

 

Figure 6.1 – Fouling layer formation along single wall period near inlet of channel 

with A = 0.5, L = 4 and P = 2500. 

The increased thickness of the fouling layer forming these dunes is a result a larger 

rate of particle deposition along this section of the wall. This larger deposition rate is due 

to the increased thermal gradients at this location, which induce larger thermophoretic 

particle velocities acting in the direction of the wall. Because of the following relationship 

between the thermophoretic velocity, tV  and the local temperature, T : 
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the local Nusselt number along the wall, which is given by: 
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serves as an accurate representation of the distribution of thermophoretic velocities near 

the wall (the bulk mean temperature of the fluid only decreases slightly across the length 

of the period). The distribution of the local Nu, representing the thermophoretic velocities 

near the wall, can be seen in the plot provided in Figure 6.2 (b), which contains the local 

Nusselt number, Nul , across the length of the top wall of the channel period. In this figure, 

we provide Nul  at 0t   to show the thermophoretic velocity distribution leading to the 

formation of the layer obtained at 4totalt T  shown in Figure 6.2 (a). Furthermore, to 

provide a more accurate representation of Nul  which exhibits time-periodic oscillations 

from the unsteady flow, the values of Nul  are obtained from an average of fifty samples 

taken at intervals of 2000totalT . Here we can see that, initially as layer begins to form, the 

distribution of Nul  contains a single peak, which covers the same location along the 

channel wall as the fouling layer dunes. Furthermore, the center of the peak corresponds to 

the location of the thickest deposit. Additionally, the remaining length of the channel, 

where the thickness of the layer is constant, contains nearly uniform values of Nul . 
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Figure 6.2 – Plots showing the (a) thickness of the fouling layer at 4totalt = T , and (b) 

the local Nusselt number and wall shear stress at t = 0 along the top wall of a single 

channel period. Values obtained from a period near the inlet of a channel with 

0.5A  , 4L   and P = 2000. Short dashed black line indicate position of the upper 

wall at each value of x l  (not to scale).  

While the larger growth rates at the location of the dunes is due to the increased 

thermal gradients there, the formation of three dunes rather than one is a result of the wall 

shear stress induced by the flow. A plot of the normalized wall shear stress, w , along the 

upper wall of the channel at 0t   is provided in Figure 6.2 (b) along with Nul . Here, like 

Nul , the distribution of w  is obtained from time averaged values. As discussed 

previously, the normalization for the shear stress is chosen such that for a straight channel, 

1w  , while negative values indicate shear acting in the x  direction. In this figure, we 

see that the shear stress has two maxima (in terms of absolute value) with each acting in 

opposing directions.  
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The left maximum, located in the valley between the left and center dunes at 

0.25x l  , has a value of 0.93w    indicating that it acts in the upstream direction. As 

particles with diameters of 210pd   nm, which have a normalized critical shear stress of 

0.82cr  , deposit at this location along the wall, they are immediately removed from the 

surface by the large shear stress depositing further upstream along the wall. This continues 

as the particle travels along the wall in the x  direction until it reaches a location with 

sufficiently low shear stress, resulting in a decreased rate of deposition at this section of 

the channel and the formation of the valley between the two dunes.  

Although all particles sheared from the wall at the location of the valley eventually 

deposit at the location of the left dune, the size of this dune is significantly smaller than 

that of the center one. This is due to two causes, one being that the largest thermophoretic 

particle velocities and therefore the highest deposition rates are located along the section 

of the wall covered by the center dune. The second cause is that the vortices in the channel 

furrow act as a barrier, keeping the bulk flow along the center of the channel from reaching 

the section covered by the left dune. This can be seen in Figure 6.3 which contains the 

streamlines along a single wall period near the inlet of the channel at 0t  . Similar to the 

plots of w  and Nul , the streamlines are calculated from the velocity field which is 

averaged from 15 samples spaced 500totalT  apart. In this figure we see that a stagnation 

point exists on the front side of the wall peak where the flow traveling along the center of 

the channel, which we refer to as the bulk flow, reattaches to the wall and continues 

traveling downstream. The majority of the particles are contained in this bulk flow, while 

only a small portion of the particles enter into the furrow through either the limited 
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convection into the furrow caused by the motion of the vortices, or thermophoresis. It is 

this small portion of particles that is able to deposit at the location of the left dune, while a 

significantly larger amount are able to deposit along the section of the wall peak where the 

bulk flow has reattached. Along the backside of the wall peak, the location where the bulk 

flow detaches ( 0.6x l  ) coincides with the thickness of the fouling layer leveling off. As 

with the reduction in the thickness of the left dune, this is due to the reduced concentration 

of particles in the fluid filling the furrows compared with that of the bulk flow. 

 

Figure 6.3 – Streamlines from the time averaged velocity field in a single wall period 

near the inlet of a channel with = 0.5A , = 4L , and P = 2000.  

Similar to the left maximum of w  at 0t   shown in Figure 6.2 (b), the maximum 

on the right, located in the valley between the center and right dunes at 0.5x l  , has a 

value of 1.8w  . Because the magnitude of the shear stress here is nearly twice that of the 

left maximum, the largest diameter of particles capable of remaining attached to the wall 

is reduced from 190 nm to 150 nm. Despite this reduction, the thickness of the fouling layer 

is comparable to the thickness of the left valley due to the high concentration bulk flow 

traversing this section of the wall (as seen in Figure 6.3). As with the left valley, larger 
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diameter particles that deposit in the location of the right valley undergo successive 

deposition and removal until reaching an area of sufficiently low shear stress. During this 

process, the particle travels along the wall in the x  direction resulting in the formation of 

the right dune, which, due to the increased particle flux, is approximately 60% taller than 

the dune on the left. 

Positioned between the two maxima in w  is the center dune, which is the tallest of 

the three. The topmost point of this dune is located at 0.35x l   which corresponds with 

both the largest thermophoretic velocities as well as the stagnation point where 0w  . 

Furthermore, as this is where the particle laden bulk flow reattaches to the wall (see Figure 

6.3), the fluid contains the highest concentration of particles at this location, which 

decreases as particles entrained in the fluid deposit as the flow travels along the length of 

the wall peak before detaching. The combination of these three effects leads to this location 

having the largest fouling layer growth rate, which results in this dune containing over 40% 

of the total area of the layer along the top wall of the channel period. The remaining section 

of the channel wall not covered by the dunes experiences a negligible shear stress. 

However, a minimal amount of particles deposit at this location due to the lower 

thermophoretic velocities and lower concentration of particles in the surrounding fluid. 

This lower concentration is due both the effect of the vortices as discussed previously as 

well as the large deposition rate near the wall peak reducing the number of particles 

available to deposit, resulting in this section experiencing the lowest rate of growth. 
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Figure 6.4 – Plots showing the (a) thickness of the fouling layer at 4totalt T  (dotted 

line) and 2totalt T  (solid line), and (b) the local Nusselt number and wall shear stress 

at 0t   (dotted lines) and 4
total

t T  (solid lines) along the top wall of a single channel 

period. Values obtained from a period near the inlet of a channel with A = 0.5, L = 4 

and P = 2000. Short dashed black line indicate position of the upper wall at each value 

of x l  (not to scale). 

The fouling layer thickness continues to increase as additional particles deposit along 

the walls of the channel. This can be seen in Figure 6.4 (a), which contains a plot of the 

layer thickness along the top wall at 2totalt T . In this figure we have included the 

previous thickness at 4totalt T  for comparison. Here, we see that between 4totalt T  and 

2totalt T , the thickness of the fouling layer along the center dune increased significantly 

compared to that of the remaining dunes. Specifically, during this time-span the average 

change in the normalized thickness is 0.0051, 0.018 and 0.0064 for the left, center and right 

dunes, respectively. When compared with the growth of the layer from 0t   to 4totalt T

, we find that these changes in thickness represent decreases of 62% (left), 31% (center) 



  

150 

and 64% (right) in the growth rates. Furthermore, the average thickness of the remaining 

length of the wall increased by 0.0070 (a reduction of 27%), which is slightly higher than 

that of the two smaller dunes, indicating a change in the conditions that previously led to 

their formation. 

The thermal resistance of the fouling layer is proportional to the layer thickness. 

Therefore, as the fouling layer grows, its effect on the distribution of thermophoretic 

velocities near the surface does as well. This can be seen in Figure 6.4 (b), which contains 

a plot of Nul  across the surface of the fouling layer at 4totalt T  (solid red line) along 

with the initial distribution across the wall at 0t   (dotted red line). Here we see that the 

insulating effect of the fouling layer causes the local Nusselt number along the section of 

the dunes to reduce from its peak-like shape with a maximum value of 65.9 at 0.35x l   

to a nearly plateau-like shape with a maximum of 25.6 at 0.28x l  . This indicates a 

significant reduction in the thermophoretic velocities of the particles near this portion of 

the wall, resulting in the reduction of the fouling layer growth rate.  

To understand how the distribution of Nul  is altered by the formation of the fouling 

layer, it is necessary to examine how the layer influences the distribution of its constituent 

terms. The distribution of the surface temperature, s , the bulk mean temperature, m , the 

temperature gradient, d dn , and Nul  along the top wall are provided in Figure 6.5. Here, 

   w in wT T T T     represents the normalized temperature and d dn  is the 

temperature gradient normalized according to: 
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At 0t   (Figure 6.5 (a)), before a fouling layer has formed, the surface temperature is 

equivalent to the wall temperature. Furthermore, the bulk mean temperature of the fluid 

decreases monotonically from 0.77m   to 0.71m   across the length of the period. This 

results in the nearly identical shapes of Nul  and d dn , which contain a single peak. The 

maximum values of d dn  and Nul coincide with the reattachment point of the bulk flow, 

which contains the highest fluid temperatures and, therefore, the largest thermal gradients. 

At 4totalt T , the formation of the fouling layer along the wall leads to the complex 

distribution of Nul  caused by the layer’s effect on the surface temperature and thermal 

gradient as seen in Figure 6.5 (b). Here, we see that, with the surface no long coinciding 

with the location of the wall, s  possess a shape similar to that of Nul  at 0t  . 

Furthermore, a local minimum in d dn  is found at the location of its previous maximum 

( 0.36x l  ). As discussed above, this location coincides with the reattachment point of the 

high temperature bulk flow, which induces the largest thermal gradients at 0t   when 

0s  . The large thermal gradients, in turn, cause this location to contain the thickest 

deposit layer at 4totalt T  and, as a result, the largest thermal resistance between the 

surface and the wall. This large thermal resistance acts to insulate the surface from the wall, 

causing the surface temperature to approach that of the hot bulk flow and d dn  to develop 

a local minimum at this location. With the surface at the reattachment point unable to 

conduct heat from the fluid to the cooled wall, the fluid maintains its high temperature as 
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it travels across the surface in opposite directions from this location. As a result, d dn  

contains a maximum value on both the left and right of the minimum location where the 

surface temperature is lower due to the thinner layer.  

 

Figure 6.5 – Plots showing the surface temperature, s
 , the thermal gradient, d dn

, and the local Nusselt number along the top wall and the bulk mean temperature, m


, along the length of the channel period at (a) 0t   and (b) 4totalt T . Values 

obtained from a period near the inlet of a channel with A = 0.5, L = 4 and P = 2000. 

Note, d dn  rescaled by 10 in (b). 

On either side of the three dunes, the values of Nul  at 4totalt T  are slightly higher 

compared to those obtained at 0t  . As with the development of the two maxima in d dn  

discussed above, this is due insulating effects of the fouling layer at the location where the 
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bulk flow reattaches to the surface. Outside of the dunes, the increase in the temperatures 

of the fluid near the surface are sufficiently high to induce marginally larger values of Nul  

than those found at 0t  . Although the local Nusselt number increases slightly, like the 

section of the wall covered by the dunes, this portion of the upper wall also experiences a 

decrease in the growth rate of the fouling layer. The decrease is a result of the insulating 

effects of the fouling layer causing a decrease in the magnitudes of the thermal gradients 

within the fluid. This, in turn, reduces the rate at which thermophoresis transports particles 

from the fluid at the center of the channel, where the concentrations are highest, to the 

vicinity of the wall where the can deposit along the wall. 

Unlike Nul , the development of the fouling layer has limited effect on the shear 

stress along the surface, which we will continue to refer to as the wall shear stress. This 

can be seen in Figure 6.4 (b), which contains a plot of w  across the surface at 4totalt T  

(solid blue line) along with the initial distribution at 0t   (dotted blue line). Here we see 

that the formation of the fouling layer causes the left maxima to decrease from 0.93w    

( 0.26x l  ) to -0.86 ( 0.28x l  ), while the right maxima decreases from 1.8w   (

0.46x l  ) to 1.7 ( 0.45x l  ). These represent decreases of 7.5% and 5.1%, respectively. 

The slight decreases in the shear stress is the result of the fouling along the entire length of 

the channel increasing the friction along the wall, which is evidenced by the friction factor 

increasing by 5.1% from 0.092f   to 0.097. This increased friction leads to reduced fluid 

velocities and, subsequently, reduced wall shear stresses. Furthermore, the reduced inertia 

of the fluid causes the location of the maxima to shift closer to the stagnation point at 

0.34x l  . 
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Although the portion of the wall covered by the left and right dunes continues to 

experience an increased thermal gradient compared to the section of the wall with uniform 

thickness, it is no longer sufficient to overcome the elevated shear stress. As a result, the 

increase in the thickness along these two dunes is slightly lower than that of the uniform 

thickness section. The section covered by the center dune, on the other hand, continues to 

undergo the largest fouling layer growth rate due to it the negligible shear stress at its 

center, along with the large thermophoretic velocities, as evidenced by the high values of 

Nul  at the surface. Furthermore, the location where the bulk flow reattaches to the surface 

remains at the center of the dune, resulting in this fluid near this location containing the 

largest particle concentrations. Because the center dune experiences the majority of the 

particle deposition, the percent of the total fouling layer area contained in the left, center 

and right dunes changes from 11%, 43%, and 13% at 4totalt T  to 9.8%, 45% and 11% at 

2totalt T , respectively. The percent of the area found along the remaining length of the 

wall increases from 31% at 4totalt T  to 34% at 2totalt T .  

As the fouling layer continues to grow, the deposition of particles follows a trend 

similar to that found at 2totalt T . This can be seen in Figure 6.6 (a), which contains a plot 

of the layer thickness along the top wall at 3 4totalt T . Again, we have included the 

previous thicknesses at 4totalt T  (dotted line) and 2totalt T  (long dashed line) for 

comparison. Here, we see that between 2totalt T  and 3 4totalt T , the center dune 

continues to experience significantly higher rates of deposition compared with the 

remaining length of the fouling layer. Specifically, during this time-span the average 

change in the normalized thickness is 0.017 for the center dune and 0.0045 for the 
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remaining length of the wall. These increases in the thickness represent decreases of 6.0% 

and 32% in the growth rates of layer at these two locations compared with the rates 

observed at 2totalt T . 

 

Figure 6.6 – Plots showing the (a) thickness of fouling layer at 4totalt T  (dotted line), 

2totalt T  (long dashed line) and 3 4totalt T  (solid line), and (b) Nul  and w
  at 0t   

(dotted lines), 4totalt T  (long dashed lines) and 2totalt T  (solid lines) along the top 

wall of a single channel period. Values obtained from a period near the inlet of a 

channel with A = 0.5, L = 4 and P = 2000. Short dashed black line indicates position 

of the upper wall at each value of x l  (not to scale). 

As the thermal resistance of the fouling layer continues to increase with its increasing 

thickness, the thermophoretic velocity of particles near the surface continues to decrease. 

This can be seen in Figure 6.6 (b), which contains a plot of Nul  and w  across the surface 

of the fouling layer at 0t  , 4totalT  and 2totalT . Here we see that the effect of the thicker 

fouling layer causes further decreases in Nul  leading to the maximum value of Nul  

reducing from 25.6 at 4totalt T  to 12.5 at 2totalt T . As with the distribution of Nul  for 
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4totalt T , a local minimum in Nul  exists at the thickest point in the center dune for 

2totalt T . Furthermore, the local maxima in Nul  on either side have continued to shift 

away from this point to the edges of the center dune at 0.25x l   and 0.50x l  , which 

correspond to local minima in the fouling layer thickness.  

As before, the continued growth of the fouling layer has limited effect on the shape 

of the wall shear stress distribution as seen in Figure 6.6 (b). Here, we see that w  maintains 

its two regions of elevated shear stress corresponding to the locations of the valleys in the 

fouling layer. Although w  retains a similar shape, the growing fouling layer is beginning 

to induce noticeable deviations from the initial distribution. Specifically, the change in the 

magnitude of the two maxima (in terms of absolute value) and the location between the 

two maxima where 0w  . Examining the location of 0w  , we find that its slight shift 

to left corresponds to an identical shift in the peak of the center dune. The slow migration 

of the center dune peak is the result of the larger values of Nul  on the left face of the center 

dune, resulting in a slightly larger growth rate on that side. It is this small difference in the 

growth rate that causes the peak in the center dune, and subsequently the location of 0w   

to undergo a slow shift leftward.  

Examining the change in the magnitude of the two maxima, we find that the left and 

right maxima, respectively, decrease from 0.86w    and 1.7w   at 4totalt T  to -0.82 

and 1.5 at 2totalt T . The 4.5% decrease in the maximum on the right is smaller than the 

previous decrease between 0t   and 4totalt T , while the 14% decrease in the right 

maximum is larger than before. As with the previous decrease, this is partially due to the 
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increased friction along the entire length of the channel reducing the fluid velocities. This, 

however, does not fully account for the 14% reduction seen in the right maximum. The 

additional decreases in the right maximum are the result of increased depth and reduced 

width of the valley between the center and right dunes. Because of the changes in its shape, 

fluid streamlines are unable to remain close to the surface, traveling over the valley rather 

than along it, causing the additional reduction in the magnitude of the shear stress along 

this section. Furthermore, the reduced shear stress in this location leads to slightly larger 

velocities of the fluid, increasing the shear stress on either side of the valley. This reduction 

in the shear stress does not occur on the left side of the center dune as the additional growth 

of the fouling layer does not result in the depth of the left valley increasing. 

As discussed with the fouling growth at 2totalt T , the non-zero shear stresses along 

the section of the wall covered by the left and right dunes acts to offset the elevated 

thermophoretic velocities. Because of this, the portion of the wall not covered by dunes 

experiences an average increase in thickness of 0.0049 while the left and right undergo 

average increases of 0.0034 and 0.0038 respectively. Furthermore, as the low shear stress 

and elevated thermophoretic velocities along the center dune, coupled with its location 

coinciding with the reattachment point of the bulk flow continues to produce the highest 

growth rates at the section of the wall covered by this dune. This results in the portion of 

the fouling layer area contained in the center dune to increase from 45% 2totalt T  to 48% 

at 3 4totalt T . 
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Figure 6.7 – Plots showing the (a) thickness of fouling layer at 2totalt T  (long dashed 

line), totalt T 3 4  (dotted line), and total
t T  (solid line), and (b) lNu  and w

  at 

totalt T 4  (long dashed lines), 2totalt T  (dotted lines) and totalt T 3 4  (solid lines) 

along the top wall of a single channel period with A = 0.5, L = 4 and P = 2000. Short 

dashed black line indicates position of the upper wall at each value of x l  (not to 

scale). 

The continued deposition of particles from 3 4totalt T  to totalt T  leads to the 

accentuation of three features in the distribution of the fouling layer, which were previously 

difficult to distinguish from their surroundings. These include the formation of two dunes 

located at the ends of the wall and a narrowing of the dune near its maximum value. These 

can be seen in Figure 6.7 (a) which contains a plot of the layer thickness along the top wall 

at 2totalt T , 3 4totalT  and totalT . In this figure, the new dunes on the left and right edges 

of the wall can be seen along the regions spanning  0,0.1x l  and  0.9,1x l , 

respectively. Along with the accentuation of these features, we can see that the growth of 

the fouling layer continues to follow a trend similar to that observed at 3 4totalt T . 
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Specifically, the continuing decrease in the average growth rate of the fouling layer. During 

this time span the surface of the center dune increased by an average of 0.016, while the 

remaining length of the fouling layer get an average of 0.0042, representing decreases of 

6.7% and 22%, respectively.  

Although the initial formation of the dunes at the left and right ends of the top wall 

could be seen at 3 4totalt T , these dunes remained smaller than the three which formed 

early in the development of the layer. This is due the initially high deposition rate in the 

location of the three initial dunes, reducing the particle concentration inside the furrow. As 

the fouling layer develops, the deposition rate decreases, increasing the particle 

concentration in the furrow. With higher concentrations, more particles are able to deposit 

along the furrow wall to form these new dunes. We will refer to these as the far left and far 

right dunes, while continuing to use left, center and right to refer to three initial dunes. At 

totalt T , the far left and far right dunes reach a maximum thickness of 0.0279 at 0.04x l   

and 0.0317 at 0.96x l  , respectively, while the maximum thickness of the left dune is 

0.0278.  

Early in the development of the fouling layer, the large thermophoretic velocities 

along the wall peak acted to create a single wide section of increased particle deposition, 

while two regions of elevated shear stresses etched valleys into the deposits. The 

combination of these opposing mechanisms led to the formation of three dunes (left, center 

and right) rather than a single wide one. Furthermore, the peak of the center dune is located 

at a stagnation point where 0w  , while the valleys on either side are positioned at the 

maximums in the shear stress distribution. The sections of the wall containing the far left 
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and right dunes, on the other hand, experience negligible shear stress and low 

thermophoretic velocities in the nearby particles. This can be seen in Figure 6.7 (b), which 

contains the distribution of Nul  and w  along the upper wall of the channel period at 

4totalt T , 2totalT  and 3 4totalT . Furthermore, the valley to the right of the far left dune at 

0.1x l   is located at a stagnation point where 0w  . This indicates that, rather than 

forming from the wall shear stress relocating deposited particles to the peak where the shear 

is lower, these dunes form as a result of the advection induced by the vortices in the furrow. 

  

Figure 6.8 – Streamlines from the time averaged velocity field in a single period near 

the inlet of a channel with A = 0.5, L = 4 and P = 2000.  

Inside the furrow along the top wall a large vortex occupies the majority of the area 

while a second smaller vortex fills the remaining area at the top of the furrow. The vortices 

can be seen in Figure 6.8.which displays the streamlines from the time averaged velocity 

field in a single period near the inlet of the channel. Here, the velocity field is averaged 

from 10 samples spaced 500totalT  apart. In this figure, we see that the stagnation point 

corresponding to the edge of the small upper vortex near the inlet of the channel period 

coincides with the valley to the right of the far left dune at 0.1x l  .  
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Particles entrained in the fluid near the wall, which are sufficiently far away from the 

stagnation point experience convective and thermophoretic velocities acting parallel and 

perpendicular to the wall, respectively. This results in the thermophoretic deposition of 

particles as they are convected along the wall. Closer to this point, the convective velocities 

begin to act away from the wall in the opposite direction of thermophoresis. With the 

reduced thermal gradients along this section of the wall, the thermophoretic velocity of the 

particles is insufficient to overcome convection, resulting in a decreased deposition at the 

location of the stagnation point. This leads to a growth rate which increases with the 

distance from the stagnation point, forming the right half of the far left dune and the 

adjoining valley seen in Figure 6.7 (a). The increase in the growth rate moving to the left, 

away from the stagnation point, continues until 0.04x l  , where the peak of the dune is 

located. Beyond this location, with convection acting parallel with the wall, the growth rate 

of the fouling layer is governed by the thermophoretic velocity of the particles. As a result, 

the growth rate of the layer decreases with the decreasing Nul  from 0.04x l   to 0x l   

forming the left half of the far left dune.  

In the right upper furrow, particles entrained in the upper vortex are carried upstream 

into the channel period from the neighboring period to the right. Due to the curvature of 

the furrow wall, streamlines in this vortex rapidly diverge from the location of the 

stagnation point as they approach the wall (see Figure 6.8). This results in the convective 

velocity diverting the majority of the particles entrained in the upper vortex away from the 

stagnation point on their approach to the wall. Because of this, the location of the highest 

concentration of particle deposition is shifted away from the stagnation point to 0.96x l 

. Here, the increased deposition leads to the formation of the far right dune. Beyond this 
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location the growth rate slows from decreasing thermophoretic velocities (indicated by the 

decreasing Nul ), forming the right side of the dune.  

The third featured accentuated by the growing fouling layer is the narrowing of the 

peak in the center dune. This occurs as the fluid streamlines are unable to follow along the 

wall of the growing dune. As a result, particles traveling in the streamlines near the surface, 

which are increasingly dominated by convection along the growing dune, are carried away 

from the wall, following the streamlines. Further along the dune, the streamlines return to 

their close proximity with the surface. This causes a decrease in the deposition of particles 

where the streamlines divert from the wall and an increase where they return. As discussed 

previously, the diverting streamlines also cause an abrupt change in the shear stress at that 

location. Comparing the shear stress distribution at 3 4totalt T  and the fouling layer 

thickness at totalt T  (Figure 6.7 (b)), we find that the location of reduced deposition which 

forms the narrowed peak corresponds to an abrupt decrease in the shear stress at 0.38x l 

. Furthermore, the neighboring section of increased deposition corresponds to increasing 

values of the shear stress, signifying the streamlines have returned close to the surface. 

This indicates that, starting around 3 4totalt T , the shape of the flow causes a reduction in 

the deposition near 0.38x l  , which results in a narrowing of the peak of the center dune 

seen at totalt T .  
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Figure 6.9 – Plots showing distribution of (a) fouling layer thickness (b) local Nusselt 

number and (c) wall shear stress along top wall of a single period near the inlet (left) 

and at the center (right) of a channel with A = 0.5, L = 4 and P = 2000. 

Further along the channel near its center we find similar trends in the distributions of 

the fouling layer along the top wall to that seen near the inlet. This can be seen in Figure 

6.9, which contains plots of the distributions of flt , Nul  and w  along the top wall of a 

period near the inlet and center period of the channel. Here, we see that in the center period, 

the fouling layer continues to develop three separate dunes along the peak of the wall. 

However, the thickness of the fouling layer is lower at this location further along the 

channel than it is near the inlet. This is due to a decreased growth rate of the fouling layer 

resulting from the decreasing concentration of particles in the fluid along the length of the 

channel. Along with the lower growth rate, slight variations in the shape of the distribution 

form as the layer develops. Specifically, the left and right dunes in the center period grow 

outward, away from the center dune as they increase in height, while those near the inlet 

grow vertically. As with the fouling layer, the wall shear stress and local Nusselt number 
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also contain similar distributions with only slight variations between two channels. 

Although these differences exist, the overall similarity between the effect of the developing 

and fully developed flow on the formation of the fouling layer indicates that, given 

sufficient time, the fouling layer will form in a similar manner regardless of its distance 

from the inlet.  

6.3.2 Influence of Wall Amplitude 

In order to investigate the influence of the wavy wall amplitude, we probe the fouling 

layer formation and its subsequent effects on the flow and heat transfer at wall amplitudes 

of 0.25A , 0.5 and 0.75. Here, we fix the period length and driving pressure in each of 

the three channels at 4L   and 2000P  , respectively. Examining the fouling layer 

formation at totalt T , we find that all three amplitudes contain a peak at the location where 

the particle laden bulk flow reattaches to the top wall. This can be seen in Figure 6.10, 

which contains the fouling layer thickness along the top wall near the inlet of the channel 

at 2totalt T  and totalt T . Here, we see that for 0.25A , in the initial stages of the 

fouling layer formation, the right dune discussed previously does not form along the wall. 

Instead, this channel develops two shorter, wider peaks with the larger of the two located 

on the front side of the wall peak, while the smaller is located on the backside. Furthermore, 

the remaining section of the wall develops a nearly uniform layer. With the additional 

growth in the layer at totalt T , the valley between the dunes fills with deposits, resulting 

in the layer containing a single dune spanning nearly half the width of the wall and covering 

both sides of the wall peak. 
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Figure 6.10 – Fouling layer thickness along top wall of period near inlet of channel at 

(a) totalt T 2  and (b) total
t T  for various amplitudes. Period length and driving 

pressure fixed at L = 4 and P = 2000, respectively. 

As the amplitude of the channel increases, both the center and right dunes narrow as 

their height increases. This can be seen in the thickness distribution along the channel with 

0.75A . Furthermore, the effects of the smaller vortices forming in the furrow of the 

channel become more pronounced, leading to large variations in the thickness of the 

fouling layer along the wall of the furrow. Moreover, the fouling layer in the channel with 

0.75A  maintains a similar shape as it continues to grow from additional deposition. 

The differences between the distributions along the wall of these three channels is a 

result of the differing flow patterns induced by the geometries. In small amplitude channels, 

the rapid shedding of vortices pulls fluid from the bulk flow along the center of the channel 

into the furrows. As discussed in Chapter 5, by bringing hot fluid into the cool furrow, the 

vortices act to enhance the heat transfer along a larger region of the wall. This wider region 
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of enhanced heat transfer can be seen in Figure 6.11, which contains the distributions of 

Nul  at 0t   and totalt T . Similarly, these vortices also bring fluid containing high 

concentrations of particles into the furrow, resulting in a more uniform distribution of the 

fouling layer.  

 

Figure 6.11 – Local Nusselt number along top wall of period near inlet of channel at 

t  0  (solid lines) and total
t T  (dotted lines) for various amplitudes. Period length and 

driving pressure fixed at L = 4 and P = 2000, respectively. 

When the channel amplitude is increased, vortices trapped in the furrow inhibit the 

transport of fluid from the bulk flow into the furrow. This acts to narrow the section of the 

wall which experiences enhanced heat and mass transfer, leading to the narrower peak in 

the distribution of Nul  as well as the center dune in the fouling layer. In spite of these 

differences in the shapes of the distributions, their average values are similar before the 

development of the fouling layer. Specifically, the averages for the three channels are 

,Nu 23.3l avg  , 22.9 and 23.1 for 0.25A , 0.5 and 0.75, respectively.  

Because the location of increased deposition coincides with that of the enhanced heat 

transfer, as the fouling layer develops it acts to even out heat transport along the wall. This 
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occurs for all three wall amplitudes, resulting in the nearly uniform distributions of Nul  in 

Figure 6.11 at totalt T (dotted lines). Here, the average Nusselt numbers are reduced to 

,Nu 5.8l avg  , 5.8 and 7.9 for 0.25A , 0.5 and 0.75, respectively. These reductions 

correspond to average fouling layer thicknesses of 0.041, 0.039 and 0.035.  

 

Figure 6.12 – Wall shear stress along top wall of period near inlet of channel at t  0  

(solid lines) and total
t T  (dotted lines) for various amplitudes. Period length and 

driving pressure fixed at L = 4 and P = 2000, respectively.   

Figure 6.12 contains the wall shear stress distributions along the top wall for the three 

different amplitude channels at 0t   (solid lines) and totalt T  (dashed lines). Here we see 

that, as with the heat transfer enhancement and particle deposition, the motion of the 

vortices along the furrow in the 0.25A  amplitude channel induces a wider area of 

elevated shear stresses. Furthermore, as the frictional losses are less significant in the 

smaller amplitude channel, the average velocity is higher for a given driving pressure, P . 

Because of this, the channel with 0.25A  has the largest average magnitude of the wall 

shear stress at , 0.48w avg  , while those for 0.5A   and 0.75 are , 0.38w avg   and 0.20, 

respectively. After the formation of the fouling layer, however, the channel with 0.25A
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experiences the largest reduction in its shear stresses, with its average decreasing to 

, 0.48w avg  . The average wall shear stress for 0.5A  , on the other hand, decreases to 

, 0.32w avg   while the shear stress in the 0.75A  channel remains at 
, 0.20w avg  . 

Furthermore, this distribution of the wall shear stress in the channel with 0.75A  remains 

nearly constant as the fouling layer develops.  

 

Figure 6.13 – Distribution of particle sizes deposited along top wall of period near 

inlet at total
t T  for various wall amplitudes with L = 4 and P = 2000. Black line 

representing particle distribution at the inlet included for comparison.  

Figure 6.13 contains the distributions of particles sizes along the top wall near the 

inlet of the channel for the three different amplitude channels at totalt T , along with the 

distribution of particles sizes entering the channel. Here, we see that due to the wall shear 

stresses, particles with diameters of 210pd   nm are unable to deposit along the wall. This 

narrows the distribution, increasing the relative amount of smaller diameter particles 

compared to the inlet distribution. Comparing the distributions for the three wall 

amplitudes, we find that the increasing shear stresses associated with smaller amplitudes 
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act to further narrow the range of particle sizes. However, this narrowing is minimal due 

to the three channels inducing wall shear stress distributions of similar magnitude.  

 

Figure 6.14 – Plot showing the time distributions of soot
F  and 

dp
F  for channels with 

amplitudes of A = 0.25, A = 0.5 and A = 0.75. Period length and driving pressure fixed 

at L = 4 and P = 2000, respectively. 

Over the course of its development, the fouling layer occupies similar areas in each 

of the three channels. This can be seen in Figure 6.14, which contains the time distributions 

of sootF  and dpF  in each channel. Here,      100soot soot channelF t A t A  , is the percent of 

the total area of the channel occupied by the fouling layer, while 

       100dp dep totalF t N t N t   is the percent of the total particles entering the system, 

which have deposited along the wall. Comparing sootF  in each channel, we find that the 

fastest growth rate occurs in the channel with 0.25A  while 0.75A  has the slowest. 

Near 0.25 totalt T  and 0.35 totalt T  the growth rate slows for 0.25A  and 0.5A  , 

respectively. The channel with 0.75A , on the other hand, retains a nearly constant 
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growth rate. As a result, at totalt T  the fouling layer occupies 3.5%, 3.5% and 3.6% of the 

total area of the channel for 0.25A , 0.5 and 0.75, respectively. The growth rates at 

totalt T  suggest that with continued fouling, 0.75A  will occupy the largest area, while 

0.25A  will occupy the smallest.  

Although the fouling layers at totalt T  possess nearly identical areas, the total 

number of particles passing through the channel decreases with increasing amplitude. This 

is a result of the reduced flowrates found in larger amplitude channels for a given driving 

pressure. Because of this, the total number of particles passing through the channel by 

totalt T  is 95.4 10 , 92.3 10  and 88.6 10  for 0.25A , 0.5 and 0.75, respectively. In 

order to account for the differences in particle throughput we compare the percent of the 

current total throughput which have deposited, dpF . Using this measurement, we find that 

with a maximum of 11.5dpF  , the channel with 0.75A  experiences the largest 

percentage of particles depositing onto its walls, while the channel with 0.25A , with a 

maximum of 5.03 , has the smallest. This indicates that the amplitude of the walls has a 

large influence of number of the particles depositing on the wall.  
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Figure 6.15 – Time distributions of the mean Nusselt number and heat exchanger 

effectiveness in channels with amplitudes of A = 0.25, A = 0.5 and A = 0.75. Period 

length and driving pressure fixed at L = 4 and P = 2000, respectively. 

To compare the effects of fouling on the heat transfer performance, we provide a plot 

showing the time distributions of the mean Nusselt number and heat exchanger 

effectiveness in Figure 6.15. Here we see that, as discussed previously, the Nusselt number 

decreases due to the insulating effects of the growing fouling layer. For the channels with 

0.25A  and 0.5A  , the distributions of Num  follow similar trajectories decreasing 

from Nu 24.5m   to 5.76 and Nu 22.9m  to 5.70, respectively. The channel with 

0.75A , on the other hand, decreases at a much slower rate starting from Nu 24.0m   at 

0t   and reducing to 7.74 by totalt T . Furthermore, the effectiveness of this channel 

decreases only slightly throughout the development of the fouling layer reducing from 

1   to 0.97, while the effective decreases from 0.95   to 0.80 for 0.5A   and from 
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0.74   to 0.57 for 0.25A . The 0.75A  channel is able to maintain its effectiveness 

through the large contact times resulting from its lower flowrates. As a result, in the un-

fouled channel, the fluid temperature reaches that of the walls at a location upstream from 

the outlet of the channel. The length of the channel beyond this location, therefore, remains 

free of deposits early in the layer formation allowing it to provide cooling as the channel 

fouls upstream. This “reserve capacity” allows for the channel to maintain its effectiveness 

as fouling occurs at the cost of lower throughput. For 0.25A  and 0.5A  , which do not 

possess this “reserve capacity”, the effectiveness decreases at a similar rate.  

 

Figure 6.16 – Time distribution of friction factor and thermal-hydraulic performance 

factor in channels with amplitudes of A = 0.25, A = 0.5 and A = 0.75. Period length 

and driving pressure fixed at L = 4 and P = 2000, respectively. 

As the fouling layer grows along the wall, it narrows the channel, increasing the 

friction factor f . This can be seen in Figure 6.16, which contains the time distribution of 

the friction factor and thermal-hydraulic performance factor,  , for each of the three 
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channels. Here, we see that, as expected, the friction factor increases with the wall 

amplitude. Unlike other properties of the flow, however, the friction factor for all three 

amplitude channels remains nearly constant. Although the friction factor undergoes 

minimal increases, the significant decrease in Num  acts to reduce the thermal-hydraulic 

performance of the channels. As discuss in the previous chapter, this factor provide a more 

complete description of the channels performance, by including the effects of increased 

losses induced along with the heat transfer enhancement. Using this performance factor, 

we seen that, before fouling occurs, the channel with 0.5A   performs slightly worse than 

a straight channel at the same pressure drop ( 0.96   versus 1  ), while the channel 

with 0.75A  performs significantly worse at 0.51  . Furthermore, over time their 

performance decreases further compared to an un-fouled straight channel. The channel 

with 0.25A  initially outperforms a straight channel with 1.82  , but as the heat 

transfer enhancement is reduced by fouling, this reduces to 0.41   at totalt T . 

Comparing the development of the fouling layer and its subsequent effects on the 

flow for channels containing wall amplitudes of 0.25A , 0.5A   and 0.75A  with 

4L   and 2000P  , reveals each has advantages as well as disadvantages. For 0.25A

, the larger shear stress induced along the wall, coupled with lower thermal gradients in the 

fluid from the higher flowrate leads to a significantly smaller percentage of particles 

depositing along the wall. The benefits from the higher flowrate, however, are coupled with 

a lower residence time of the fluid resulting in a smaller effectiveness of the channel.  

The channel with 0.75A , conversely, experiences a larger percent of the particles 

entrained in the fluid depositing due to its lower flowrate and wall shear stress. 
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Furthermore, with its significantly higher friction factor, the large amplitude channel 

provides a suboptimal thermal-hydraulic performance without deposits, which worsens as 

the fouling layer develops. The lowered flowrates, on the other hand, provide the channel 

with “reserve capacity” for the given conditions, which mitigates the effects of the fouling 

layer formation on the effectiveness of the channel. However, this “reserve capacity” can 

be achieved with smaller amplitude channels by increasing their total length. Conversely, 

results discussed in Chapter 5 suggest that large amplitude channels are not capable of 

achieving 1   due to viscous losses. 

Similar to 0.75A , the channel with 0.5A   suffers from poor thermal-hydraulic 

performance even before a fouling layer develops. Furthermore, after the formation of the 

fouling layer it continues to be outperformed by the channel with 0.25A . Aside from the 

lower effectiveness resulting from the higher flowrates, the channel with 0.25A  

experiences the lowest total growth, and the largest thermal-hydraulic performance of the 

three amplitudes. This indicates that smaller amplitude channels are best suited to reduce 

the effects of the growing fouling layer.  

6.3.3 Influence of Driving Pressure 

In order to investigate the influence of the driving pressure, we probe the fouling 

layer formation and its subsequent effects on the flow and heat transfer at pressure drops 

of 1500P  , 2000 and 2500. Each pressure drop was applied to a channel with 0.25A  

and 4L   as this geometry was determined to outperform channels containing larger 

amplitudes. Examining the fouling layer formation at totalt T  we find that the distribution 

of the fouling layer thickness remains similar at each pressure drop. This can be seen in 
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Figure 6.17 which contains the distribution of the fouling layer thickness along the top wall 

for all three pressure drops. Here we see that the thickness of the layer varies slightly along 

the surface of the center dune, but remains comparable across the remaining length of the 

channel period. 

 

Figure 6.17 – Plot showing the fouling layer thickness along top wall of period near 

the inlet of channel at total
t T  for various pressure drops with L = 4 and A = 0.25. 

With the fouling layer forming similar distributions along the wall for each driving 

pressure in the channel, the total area occupied by the fouling layer follows comparable 

trajectories as well. This can be seen in Figure 6.18, which contains the time distributions 

of sootF  and dpF  for each pressure drop in the channel. Here we see that, despite an increase 

from Re 700  at 1500P   to Re 930  at 2500P  , the area occupied by the fouling 

layer remains comparable for all three pressures throughout its development. Furthermore, 

the difference in dpF  for these driving pressures remains 1%  as well, with the largest 

percentage of particles depositing along the channel with the lowest pressure drop. 
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Figure 6.18 – Plots showing the time distributions of soot
F  and 

dp
F  in a channel with 

L = 4 and A = 0.25 at pressure drops of P = 1500, P = 2000 and P = 2500. 

In order to understand how the fouling layers develop at similar rates despite the 

difference in flowrates, we examine the time distributions of the mean Nusselt number at 

each pressure drop. These distributions are provided for along with those of the 

distributions of the heat exchanger effectiveness in Figure 6.19. Here we find that, as 

expected, the initial Num  increases with increasing driving pressure. However, before the 

fouling layer reaches 2% of the channel area this difference in Num  becomes negligible 

with its value in all three flows decreasing to Nu 5.8m  . This difference in the heat transfer 

enhancement from 0t   to 4totalt T  corresponds to the early development of the fouling 

layer where the growth rate increases with increasing pressure drop. After 4totalt T , 

when Num  is similar for the three pressure drops, the growth rates become similar as well 

with the lines slightly offset from the initial rates.  
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Figure 6.19 – Plots showing the time distributions of mNu  and   at pressure drops of 

P = 1500, P = 2000 and P = 2500 in a channel with L = 4 and A = 0.25. 

Despite the lower residence time of the flow for higher pressure drops, the heat 

transfer enhancement induced by the larger flowrates is sufficiently large to achieve outlet 

temperatures lower than that found at 1500P  . As a result, the heat transfer effectiveness 

in the un-fouled channel is 0.73  , 0.74 and 0.75 for 1500P  , 2000 and 2500, 

respectively. As the channel fouls and the heat transfer enhancement equalizes, the 

effectiveness for the larger driving pressures quickly drops below that of the smaller 

channel. Although the flow produced by 2500P   provides the lowest effectiveness by 

totalt T , its value is only 5.3% smaller than that found at 1500P  . Specifically, the final 

values of the effectiveness, which are averaged over the last 40 points to account for 

oscillations in the values, are 0.59  , 0.57 and 0.56 for 1500P  , 2000 and 2500, 

respectively. 
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Figure 6.20 – Plots showing the time distributions of the friction factor and the 

thermal-hydraulic performance at pressure drops of P = 1500, P = 2000 and P = 2500 

in a channel with L = 4 and A = 0.25. 

Comparing the friction factor induced by each of the three pressure drops, we find 

similar distributions for each. This is expected, as we found in Chapter 4 that once the flow 

is sufficiently far into the unsteady regime, the friction factor depends heavily on the 

amplitude rather than the driving pressure. For 2000P   and 2500P  , the distributions 

increase steadily over time, while for 1500P   the friction factor experiences large 

oscillations. These oscillations, which are also found in the distribution of the effectiveness 

for this pressure drop, are the result of the unsteady flow induced by the geometry. 

Although the flows at each pressure drop oscillate from the effect of the wavy walls, the 

larger flowrates at 2000P   and 2500P   require longer distances to fully develop. As 

this developing flow is not spatially periodic, the average values across the channel 

experience minimal oscillation in their values. At 1500P  , however, the flow develops 

further upstream along the channel, resulting in a larger portion of the channel containing 
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spatially periodic flow. This leads to the oscillations along this section of the channel 

dominating the averages across the entire length of the channel. Furthermore, the growth 

in the fouling layer creates additional disturbances, which are amplified in the unstable 

flow, leading to increasing amplitude of the oscillations as well as the change in their 

period.  

As with the heat transfer enhancement, the thermal-hydraulic performance is 

smallest for the lowest pressure drop at 0t  . However, as the fouling layer forms along 

the wall, the performance at 2500P   decreases at the fastest rate, with that for 2000P   

decreasing at a slightly slower rate. This results in the channel with 1500P   having the 

highest performance at 0.43   after the fouling layer develops, while 2000P   and 

2500P   have performance values of 0.41   and 0.38  , respectively. This is due to 

the heat transfer enhancement equalizing between the pressure drops, while the largest 

pressure drop continues to experience the largest relative friction factor compared to a 

straight channel.  

Unlike the amplitude of the channel walls, the driving pressure has little effect on 

both the fouling layer formation as well as its effects subsequent effects on the system. At 

1500P   the thermal-hydraulic performance is slightly larger and the total area of the 

fouling layer is slightly smaller than those found at 2000P   and 2500P   after the 

fouling layer develops. However, this is coupled with a lower throughput into the channel. 

The flow at 2500P  , on the other hand, achieves an effectiveness within 6% of that found 

at 1500P   while also experiencing similar values in its thermal-hydraulic performance 
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and fouling layer growth rate. Furthermore, this occurs at a throughput more than 30% 

larger than that found at 1500P  .  

6.3.4 Influence of Wall Period Length 

In order to investigate the influence of the wall period length, we probe the fouling 

layer formation and its subsequent effects on the flow and heat transfer in channels with 

period lengths of 3L  , 4 and 5. For each period length, the wall amplitude and driving 

pressure were fixed at 0.25A  and 2500P  , respectively, as these values were 

previously determined to provide optimal conditions. Examining the fouling layer 

formation at totalt T  we find that the distribution of the layer thickness varies significantly 

with the period length. This can be seen in Figure 6.21 which contains the distribution of 

the fouling layer thickness along the top wall for all three L . Here we see that the fouling 

layer continues to experience the largest deposition along the front side of the wall peak, 

leading to the formation of a large dune. The height and width of this dune, however, varies 

significantly across the different period lengths, with both its width and height decreasing 

with L . This is due to the relative amplitude of the channel walls increasing as the length 

decreases. As a result, the fouling layer in the channel with 3L   appears similar to those 

found in the larger amplitude channels discussed previously. 
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Figure 6.21 – Plot showing the fouling layer thickness along top wall of period near 

the inlet of channel at total
t T  for various values of L with A = 0.25 and P = 2500. 

When comparing the total area of the fouling layer, we find significant variations in 

the area throughout the fouling layer development. This can be seen in Figure 6.22 which 

contains the time distributions of sootF  and dpF  for each of the three channel geometries 

being investigated. In this plot we can see that initially, the fouling layers for all three 

period lengths grow at similar rates until 10totalt T  when the rate for 5L   begins to 

slow. This is followed soon after with a decrease in the channel with 3L  , leading to the 

4L   containing the largest area. At 0.55 totalt T , a noticeable increase in the growth rate 

for 3L   occurs, while those in the other two channels continue to gradually decrease. This 

results in the channel with 3L   occupying the largest fraction of the total channel area, 

followed by 4L   and then 5L   with the smallest. 
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Figure 6.22 – Plot showing the time distributions of soot
F  and 

dp
F  in channels of 

various wall period lengths with A = 0.25 and P = 2500. 

Comparing the fraction of the total particles deposited, we find that the sudden 

increase in the growth rate for 3L   corresponds to a slight deviation in its distribution of 

dpF  with that of 4L  . This does not account for the large change in the growth rate, 

however. Because dpF  only represents the fraction of the particles which deposit, provide 

a plot of the time distribution of the total number of deposited particles in each of the three 

channels in Figure 6.23. Here we seen that for 4L   and 5L  , the rate at which particles 

are depositing decreases at the wall fouls, while for 3L   the rate remains constant. 

Furthermore, as the fouling layer develops the changes it induces changes in the flow 

leading to an increase in the deposition of larger diameter particles. The can be seen in 

Figure 6.24, which contains the distribution of particle sizes deposited on the wall for 3L 

. Here, we see that after 2totalt T , the deposition rate of particles with diameters of 

130nmpd   and 150nmpd   increases. With this increase, coupled with the still constant 
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rate of total particle deposition, the growth rate of the fouling layer begins to increase as 

seen in Figure 6.22. 

 

Figure 6.23 – Plot showing the total deposition of particles along the wall in channels 

of various wall period lengths with A = 0.25 and P = 2500. 

 

Figure 6.24 – Plot of the distribution of particle diameters deposited along the wall of 

a channel with A = 0.25, L = 3 and P = 2500. 

Comparing the heat transfer enhancement for the three period lengths, we find that 

for the un-fouled channels, 5L   has the largest value of Num  followed by 3L   and 

4L   has the lowest. This can be seen in Figure 6.25, which contains the time distributions 

of the mean Nusselt number and heat exchanger effectiveness for the three channels. Here 
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we see that for all three channels, the distributions of Num  undergo similar decreases in 

value as the fouling layer grows. This results in 5L   maintaining its significantly larger 

values of Num  compared to that of the other channels. Due to the increased flowrate 

associated with longer periods, the channel with 3L   produces the largest values of the 

heat exchanger effectiveness, while the channel with 5L   produces the lowest. Unlike 

the similar values of the effectiveness seen for different driving pressure, the distributions 

for the three period lengths differ significantly. This is because, along with decreasing the 

flowrate, the shorter period length of the walls for 3L   acts to increase the relative wall 

amplitude, changing the flow structures found within channel. 

 

Figure 6.25 – Plot showing the time distributions of mNu  and   in channels of 

various wall period lengths with A = 0.25 and P = 2500. 
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Figure 6.26 – Plot showing the time distributions of f  and   in channels of various 

wall period lengths with A = 0.25 and P = 2500. 

Comparing the effect of the fouling layer on the friction factor for the three channels 

we find that, as expected, f  increases with decreasing period length. As discussed above, 

this is due to the larger relative wall amplitude for channels with smaller L . Because of 

the fouling layer acts to reduce the effective height of the channel, the friction factor of the 

flow increases as the layer grows. This is most pronounced in the channel with 4L  , 

which increases by 16% by totalT T , while the channels with 3L   and 5L   increase by 

6.3% and 6.1%, respectively. The large increase seen for 4L  , however, does not have a 

significant impact on the thermal-hydraulic performance of the channel as it follows a 

similar trajectory that of 3L  . Additionally, the thermal-hydraulic performance found for 

5L   undergoes a similar decrease. However, due to its larger initial value, the channel 

retains a significantly higher performance factor of 0.70   at totalT T  compared to the 

channels with 3L   and 4L  , which decrease to 0.35   and 0.38  , respectively. 
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With its smaller growth rate coupled with a higher thermal-hydraulic performance, 

the channel with 5L   provides a substantially greater resistance to fouling compared to 

the two channels with smaller L . Moreover, this resistance is coupled with a total 

throughput which is 14% larger than that found in the channel with 3L  . Specifically, the 

channels contained flows with Reynolds numbers of Re 860 , Re 932  and Re 982  

for 3L  , 4L   and 5L  , respectively. Furthermore, with comparable thermal-

hydraulic performance, a smaller growth rate and an 8% greater throughput, the period 

length of 4L   also provides a greater resistance to fouling compared to 3L  . This 

indicates a strong dependence of a channels resistance to the development of a fouling 

layer, and its effects on the flow and heat transfer. 

6.4 Summary 

Due to the interplay between the convective velocities induced by the unsteady flow, 

thermophoretic velocities induced by varying thermal gradients along the wall, and a non-

uniform wall shear stress, the deposition of particles forms a fouling layer of varied 

thickness across each period of the channel. This varied thickness consists of two regions, 

one containing thick dune-like deposits located along the wall peak, and the other 

containing thinner more uniform deposits located along the wall furrow. The region 

containing thick deposits is characterized by large thermal gradients and wall shear 

stresses, while the region with thinner deposits contain lower thermal gradients and 

negligible stresses.  

The thick deposits along the wall peak are the result of the elevated thermophoretic 

velocities induced by large thermal gradients along this section of the wall, coupled with 
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high concentrations of particles found in the surrounding fluid. This results in the rapid 

formation of a layer, which is shaped by the large shear stresses induced by the high 

velocity fluid traveling along the center of the channel. The resulting shape created by these 

effects takes the form of two or more dunes, with the largest located just before the center 

of the wall peak. In the furrows of the channel, the effect of the vortices reduces both the 

thermal gradients as well as the particle concentration in the region, resulting in the reduced 

deposition along the wall. 

By concentrating the flow along the center of the channel, the wavy walls are able to 

produce larger wall shear stresses along the wall peaks compared to a straight channel at 

an identical pressure drop. As this region corresponds to that of the largest thermal 

gradients, this helps to reduce the deposition rate of larger diameter particles. However, 

due to the existence of a stagnation point where the flow reattaches to the wall, the shear 

stress is unable to reduce the deposition along the entire section of the wall experiencing 

elevated deposition. This results in the formation of the valleys and dunes characterizing 

the formation along the wall peak.  

By systematically varying the wavy wall amplitude and period as well as the pressure 

gradient driving the flow, we were able to determine how these parameters influence the 

fouling layer formation. For the wall amplitude and period length, we determined that 

channels containing smaller relative amplitudes ( A L ) are able provide the optimum 

conditions for mitigating the effects of the fouling layer formation. This is due to the larger 

thermal-hydraulic performance produced by these channels, coupled with a similar fouling 

layer growth rate and higher throughput achieved in these channels for a given pressure 
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drop. The pressure gradient in the range of 1500 2500P   has limited influence on the 

formation of the fouling layer and its subsequent effects on the system. However, these 

small differences are found in flows with varied throughput. Therefore, larger pressure 

gradients, with their similar resistance to fouling at a higher throughput offers better 

performance than a flows driven by lower pressure drops. 

The insights gained from this research provide vital information necessary for the 

design of heat exchangers which are more resistant to the effects of fouling. Furthermore, 

the model developed for these investigations serves as a framework which will be extended 

to further examine the fouling layer formation in EGR heat exchangers. 
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CHAPTER 7. CONCLUDING REMARKS 

In this dissertation we have studied the fluid flow, heat transfer enhancement and 

particle deposition occurring in an asymmetric wavy walled channel. Our investigations 

were conducted using a two-dimensional numeral model which utilized the lattice 

Boltzmann method, finite differences and Brownian dynamics to model the fluid flow, heat 

transfer and particle motion, respectively. Furthermore, we developed a fully coupled 

model for simulating the early stages of a growing fouling layer that results from particles 

depositing along the wall. These methods were implemented using the OpenCL© 

framework, which allowed for computational acceleration using GPUs. Our research used 

a stepwise approach first investigating the effect of the wavy walled geometry on the fluid 

flow, followed by an examination of the heat transfer enhancement and concluded by 

studying the particle transport and fouling layer formation along the walls. 

In our investigation the effect of these channels on the fluid flow, we systematically 

examined how the structures of the flow as well as its stability are influenced by the 

amplitude and period of the wavy walls as well as the driving pressure. From this, we were 

able to determine the minimum pressure drops necessary to achieve unsteady as well as 

chaotic flows in the channel. Our investigations revealed that the transitions to each of the 

unsteady flow regimes exhibits a nontrivial dependence on the channel wall amplitude. The 

transition is related to an interplay among fluid inertia, disturbances introduced by wavy 

walls, and channel confinement. For small amplitude channels, the unsteady flow is 

characterized by vortex shedding and the absence of trapped vortices. In channels with 

larger wall amplitudes, confinement effects result in the trapping of vortices, which 
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oscillate within the furrows as shed vortices combine with them. Lastly, we showed that 

the geometry of the channel induces significant friction coefficients compared to a straight 

channel. Further, we demonstrated that the friction coefficient is nearly independent of the 

driving pressure when the flow is unsteady. 

Using the insights gained from our examination of the fluid flow, we systematically 

investigated the effects of these same parameters on the heat transfer enhancement induced 

by the geometry. In the course of this research we determined that, while large amplitude 

channels outperform channels with smaller amplitudes in terms of heat transfer 

enhancement at low Reynolds numbers, once the flow becomes unsteady this difference in 

performance becomes negligible. Furthermore, we found that when comparing channels in 

terms of their thermal-hydraulic performance, smaller amplitude channels outperform 

larger amplitude channels. This is due to the increased viscous losses induced by the large 

amplitude channels.  

Using the knowledge gained when investigating the flow and heat transfer 

enhancement in this geometry our research concluded with an examination of the fouling 

layer development in a wavy walled heat exchanger channel. Using our computational 

model, we studied the mechanisms driving the early formation of deposits along the wall. 

Here we found that the complex interactions between the flow structures, heat transfer 

enhancement and shear stress distribution generated by the wavy geometry induces a 

complicated fouling layer structure. Furthermore, we examined how the period and 

amplitude of the wavy walls, as well as the driving pressure influence the formation of 

these deposits. In the course of these investigations we determined that, as with the heat 



  

191 

transfer enhancement, small aspect ratio ( A L ) wavy walled channels provide the greatest 

resistance to the effects of fouling. 

The results from this research have impacts not only in EGR heat exchanger design, 

but on a wide range of engineering applications. This includes mixing and heat transfer in 

microscale devices which are incapable of achieving turbulent mixing, as well as designing 

more efficient general purpose heat exchangers were fouling may or may not be a 

significant issue. Furthermore, our computational model has provided a more 

comprehensive understanding of the physics governing the early fouling layer 

development. 

Although this model contains significant improvements compared to previous 

models for simulating the fouling layer development in wavy walled channels, continued 

development is still necessary. This includes the extension of the model to three 

dimensions, as well as the inclusion of models for turbulence and the transport and 

condensation of hydrocarbons. This improved model can be utilized for further 

investigation into the fouling of wavy walled EGR heat exchangers. Moreover, a 

systematic examination of a wide range of complex geometries, such as converging-

diverging channels, corrugated pipes and ribbed plates, is necessary to determine the 

geometry best suited for use in EGR coolers.9 This task, which would be prohibitively 

expensive if performed experimentally, could be accomplished using this computational 

model. Furthermore, as heat exchanger fouling impacts many different industries, these 

investigations should be extended to examine other forms of fouling beyond the particulate 

fouling found in EGR coolers. These include biological, scaling, crystallization, corrosive 
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as well as chemical fouling.146 As of now, many consider heat exchanger fouling to be the 

major unsolved problem in heat transfer.147 However, with the ever increasing power and 

speed of computers, computational modeling is well poised to tackle the monumental task 

of solving this problem. 

 

 

. 



  

193 

REFERENCES 

1  R. C. Xin and W. Q. Tao, "Numerical Prediction of Laminar-Flow and Heat-

Transfer in Wavy Channels of Uniform Cross-Sectional Area," Numerical Heat 

Transfer, vol. 14, pp. 465-481, 1988. 

2  A. M. Jacobi and R. K. Shah, "Air-side flow and heat transfer in compact heat 

exchangers: A discussion of enhancement mechanisms," Heat Transfer 

Engineering, vol. 19, pp. 29-41, Oct-Dec 1998. 

3  V. Hessel, H. Lowe, and F. Schonfeld, "Micromixers - a review on passive and 

active mixing principles," Chemical Engineering Science, vol. 60, pp. 2479-2501, 

Apr-May 2005. 

4  L. S. Ismail, R. Velraj, and C. Ranganayakulu, "Studies on pumping power in 

terms of pressure drop and heat transfer characteristics of compact plate-fin heat 

exchangers-A review," Renew. Sust. Energ. Rev., vol. 14, pp. 478-485, Jan 2010. 

5  M. S. Abd-Elhady, T. Zornek, M. R. Malayeri, S. Balestrino, P. G. Szymkowicz, 

and H. Muller-Steinhagen, "Influence of gas velocity on particulate fouling of 

exhaust gas recirculation coolers," International Journal of Heat and Mass 

Transfer, vol. 54, pp. 838-846, Jan 31 2011. 

6  N. Epstein, "Elements of particle deposition onto nonporous solid surfaces 

parallel to suspension flows," Experimental Thermal and Fluid Science, vol. 14, 

pp. 323-334, May 1997. 

7  C. H. He and G. Ahmadi, "Particle deposition with thermophoresis in laminar and 

turbulent duct flows," Aerosol Science and Technology, vol. 29, pp. 525-546, Dec 

1998. 

8  M. Abarham, J. Hoard, D. Assanis, D. Styles, E. Curtis, and N. Ramesh, "Review 

of soot deposition and removal mechanisms in EGR coolers," SAE Technical 

Paper2010. 

9  J. Hoard, M. Abarham, D. Styles, J. M. Giuliano, C. S. Sluder, and J. M. Storey, 

"Diesel EGR cooler fouling," SAE Technical Paper2008. 

10  T. Nishimura and S. Matsune, "Mass transfer enhancement in a sinusoidal wavy 

channel for pulsatile flow," Heat and Mass Transfer, vol. 32, pp. 65-72, Nov 

1996. 

11  M. S. Abd-Elhady, M. R. Malayeri, and H. Müller-Steinhagen, "Fouling problems 

in exhaust gas recirculation coolers in the automotive industry," Heat Transfer 

Engineering, vol. 32, pp. 248-257, 2011. 



  

194 

12  H. M. Kim, S. K. Park, K. S. Cho, H. M. Wang, D. H. Lee, D. K. Lee, et al., 

"Investigation on the flow and heat transfer characteristics of diesel engine EGR 

coolers," International Journal of Automotive Technology, vol. 9, pp. 149-153, 

Apr 2008. 

13  R. Zhan, S. T. Eakle, J. W. Miller, and J. W. Anthony, "EGR system fouling 

control," SAE Technical Paper2008. 

14  R. Zhang, F. Charles, D. Ewing, J.-S. Chang, and J. Cotton, "Effect of diesel soot 

deposition on the performance of exhaust gas recirculation cooling devices," SAE 

Technical Paper 0148-7191, 2004. 

15  J. Hoard, J. Giuliano, D. Styles, S. Sluder, J. Storey, S. Lewis, et al., "EGR 

Catalyst for Cooler Fouling Reduction," DOE Diesel Engine-Efficiency and 

Emissions Reduction, Detroit, MI, pp. 1-22, 2007. 

16  I. J. Sobey, "Flow through Furrowed Channels .1. Calculated Flow Patterns," 

Journal of Fluid Mechanics, vol. 96, pp. 1-26, 1980. 

17  K. D. Stephanoff, I. J. Sobey, and B. J. Bellhouse, "On flow through furrowed 

channels. Part 2. Observed flow patterns," J. Fluid Mech., vol. 96, pp. 27-39, 

1980. 

18  A. M. Guzman and C. H. Amon, "Transition to Chaos in Converging Diverging 

Channel Flows - Ruelle-Takens-Newhouse Scenario," Physics of Fluids, vol. 6, 

pp. 1994-2002, Jun 1994. 

19  A. M. Guzman and C. H. Amon, "Dynamical flow characterization of transitional 

and chaotic regimes in converging-diverging channels," J. Fluid Mech., vol. 321, 

pp. 25-57, Aug 25 1996. 

20  C. H. Amon, A. M. Guzman, and B. Morel, "Lagrangian chaos, Eulerian chaos, 

and mixing enhancement in converging-diverging channel flows," Physics of 

Fluids, vol. 8, pp. 1192-1206, May 1996. 

21  A. M. Guzman, T. A. Aracena, M. J. Cardenas, and R. A. Escobar, "Heat transfer 

characteriastics and enhancement in symmetric wavy channels in a frequency-

doubling transition scenario," Proceedings of the Asme/Jsme Thermal 

Engineering Summer Heat Transfer Conference 2007, Vol 2, pp. 691-698, 2007. 

22  A. M. Guzman, M. J. Cardenas, F. A. Urzua, and P. E. Araya, "Heat transfer 

enhancement by flow bifurcations in asymmetric wavy wall channels," Int J Heat 

Mass Tran, vol. 52, pp. 3778-3789, Jul 2009. 

23  A. M. Guzmán, T. A. Aracena, F. A. Urzua, and R. A. Escobar, "Flow 

Bifurcations and Transition Scenarios in Confined Flows: Channel Geometry and 

Operational Parameter Dependency," in ASME 2006 International Mechanical 

Engineering Congress and Exposition, 2006, pp. 309-316. 



  

195 

24  A. M. Guzman, R. A. Hormazabal, and T. A. Aracena, "Heat Transfer 

Enhancement Due to Frequency Doubling and Ruelle-Takens-Newhouse 

Transition Scenarios in Symmetric Wavy Channels," Journal of Heat Transfer-

Transactions of the Asme, vol. 131, Sep 2009. 

25  K. J. Cho, M. U. Kim, and H. D. Shin, "Linear stability of two-dimensional steady 

flow in wavy-walled channels," Fluid Dyn. Res., vol. 23, pp. 349-370, Dec 1998. 

26  A. Cabal, J. Szumbarski, and J. M. Floryan, "Stability of flow in a wavy channel," 

J. Fluid Mech., vol. 457, pp. 191-212, Apr 25 2002. 

27  C. Canuto, Spectral methods : evolution to complex geometries and applications 

to fluid dynamics. Berlin ; New York: Springer, 2007. 

28  C. C. Wang and C. K. Chen, "Forced convection in a wavy-wall channel," 

International Journal of Heat and Mass Transfer, vol. 45, pp. 2587-2595, Jun 

2002. 

29  G. Wang and S. P. Vanka, "Convective Heat-Transfer in Periodic Wavy 

Passages," International Journal of Heat and Mass Transfer, vol. 38, pp. 3219-

3230, Nov 1995. 

30  T. Nishimura, "Oscillatory Flow and Mass-Transfer within Asymmetric and 

Symmetrical Channels with Sinusoidal Wavy Walls," Heat Mass Transfer, vol. 

30, pp. 269-278, Apr 1995. 

31  T. Nishimura, A. Tarumoto, and Y. Kawamura, "Flow and Mass-Transfer 

Characteristics in Wavy Channels for Oscillatory Flow," International Journal of 

Heat and Mass Transfer, vol. 30, pp. 1007-1015, May 1987. 

32  T. Nishimura, H. Miyashita, S. Murakami, and Y. Kawamura, "Effect of Strouhal 

Number on Flow Characteristics in a Symmetric Sinusoidal Wavy-Walled 

Channel for Oscillatory Flow," Journal of Chemical Engineering of Japan, vol. 

22, pp. 505-511, Oct 1989. 

33  T. Nishimura, H. Miyashita, S. Murakami, and Y. Kawamura, "Oscillatory flow 

in a symmetrical sinusoidal wavy-walled channel at intermediate Strouhal 

numbers," Chem. Eng. Sci., vol. 46, pp. 757-771, 1991. 

34  T. Nishimura, S. Murakami, and Y. Kawamura, "Mass-Transfer in a Symmetrical 

Sinusoidal Wavy-Walled Channel for Oscillatory Flow," Chemical Engineering 

Science, vol. 48, pp. 1793-1800, May 1993. 

35  T. Nishimura and N. Kojima, "Mass-Transfer Enhancement in a Symmetrical 

Sinusoidal Wavy-Walled Channel for Pulsatile Flow," International Journal of 

Heat and Mass Transfer, vol. 38, pp. 1719-1731, Jun 1995. 



  

196 

36  T. Nishimura and S. Matsune, "Vortices and wall shear stresses in asymmetric 

and symmetric channels with sinusoidal wavy walls for pulsatile flow at low 

Reynolds numbers," International Journal of Heat and Fluid Flow, vol. 19, pp. 

583-593, Dec 1998. 

37  I. J. Sobey, "Oscillatory flows at intermediate Strouhal number in asymmetric 

channels," J. Fluid Mech., vol. 125, pp. 359-373, 1982. 

38  Y. Sui, C. J. Teo, P. S. Lee, Y. T. Chew, and C. Shu, "Fluid flow and heat transfer 

in wavy microchannels," Int J Heat Mass Tran, vol. 53, pp. 2760-2772, Jun 2010. 

39  Y. Sui, C. J. Teo, and P. S. Lee, "Direct numerical simulation of fluid flow and 

heat transfer in periodic wavy channels with rectangular cross-sections," Int J 

Heat Mass Tran, vol. 55, pp. 73-88, Jan 15 2012. 

40  Y. Sui, P. S. Lee, and C. J. Teo, "An experimental study of flow friction and heat 

transfer in wavy microchannels with rectangular cross section," International 

Journal of Thermal Sciences, vol. 50, pp. 2473-2482, Dec 2011. 

41  L. Gong, K. Kota, W. Q. Tao, and Y. Joshi, "Parametric numerical study of flow 

and heat transfer in microchannels with wavy walls," J. Heat Trans.-T. Asme, vol. 

133, p. 051702, May 2011. 

42  K. Stone and S. P. Vanka, "Numerical study of developing flow and heat transfer 

in a wavy passage," J Fluid Eng-T Asme, vol. 121, pp. 713-719, Dec 1999. 

43  K. M. S. S. P. Vanka, "Numerical Study of Flow and Heat Transfer in Wavy 

Passages," University of Illinois at Urbana-Champagne, Technical Report TR-

118, 1997 1997. 

44  T. A. Rush, T. A. Newell, and A. M. Jacobi, "An experimental study of flow and 

heat transfer in sinusoidal wavy passages," International Journal of Heat and 

Mass Transfer, vol. 42, pp. 1541-1553, May 1999. 

45  H. M. Metwally and R. M. Manglik, "Enhanced heat transfer due to curvature-

induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels," 

International Journal of Heat and Mass Transfer, vol. 47, pp. 2283-2292, May 

2004. 

46  T. Nishimura, Y. Kajimoto, A. Tarumoto, and Y. Kawamura, "Flow Structure and 

Mass-Transfer for a Wavy Channel in Transitional Flow Regime," J Chem Eng 

Jpn, vol. 19, pp. 449-455, Oct 1986. 

47  J. H. Zhang, J. Kundu, and R. M. Manglik, "Effect of fin waviness and spacing on 

the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores," 

International Journal of Heat and Mass Transfer, vol. 47, pp. 1719-1730, Apr 

2004. 



  

197 

48  R. M. Manglik, J. H. Zhang, and A. Muley, "Low Reynolds number forced 

convection in three-dimensional wavy-plate-fin compact channels: fin density 

effects," International Journal of Heat and Mass Transfer, vol. 48, pp. 1439-

1449, Apr 2005. 

49  R. K. Shah and D. P. Sekulic, Fundamentals of heat exchanger design: John 

Wiley & Sons, 2003. 

50  M. Ahmed, M. Yusoff, K. Ng, and N. Shuaib, "The effects of wavy-wall phase 

shift on thermal-hydraulic performance of Al 2 O 3–water nanofluid flow in 

sinusoidal-wavy channel," Case Studies in Thermal Engineering, vol. 4, pp. 153-

165, 2014. 

51  Y. Bravo, J. L. Lázaro, and J. L. García-Bernad, "Study of Fouling Phenomena on 

EGR Coolers due to Soot Deposits. Development of a Representative Test 

Method," SAE Technical Paper 0148-7191, 2005. 

52  R. Zhan, S. T. Eakle, J. W. Miller, and J. W. Anthony, "EGR system fouling 

control," SAE International Journal of Engines, vol. 1, pp. 59-64, 2008. 

53  M. Abd-Elhady, C. Rindt, J. Wijers, and A. Van Steenhoven, "Particulate fouling 

in waste incinerators as influenced by the critical sticking velocity and layer 

porosity," Energy, vol. 30, pp. 1469-1479, 2005. 

54  M. S. Abd-Elhady, C. C. M. Rindt, J. G. Wijers, A. A. van Steenhoven, E. A. 

Bramer, and T. H. van der Meer, "Minimum gas speed in heat exchangers to 

avoid particulate fouling," International Journal of Heat and Mass Transfer, vol. 

47, pp. 3943-3955, Aug 2004. 

55  C. S. Sluder, J. Storey, M. J. Lance, and T. Barone, "Removal of EGR Cooler 

Deposit Material by Flow-Induced Shear," SAE International Journal of Engines, 

vol. 6, pp. 999-1008, 2013. 

56  C. Paz, E. Suarez, M. Concheiro, and J. Porteiro, "Experimental study of soot 

particle fouling on ribbed plates: Applicability of the critical local wall shear 

stress criterion," Experimental Thermal and Fluid Science, vol. 44, pp. 364-373, 

Jan 2013. 

57  M. Abarham, J. Hoard, D. N. Assanis, D. Styles, E. W. Curtis, N. Ramesh, et al., 

"Numerical modeling and experimental investigations of EGR cooler fouling in a 

diesel engine," SAE Technical Paper 0148-7191, 2009. 

58  M. Abarham, P. Zamankhan, J. W. Hoard, D. Styles, C. S. Sluder, J. M. Storey, et 

al., "CFD analysis of particle transport in axi-symmetric tube flows under the 

influence of thermophoretic force," International Journal of Heat and Mass 

Transfer, vol. 61, pp. 94-105, 2013. 



  

198 

59  H. Teng and G. Regner, "Particulate fouling in EGR coolers," SAE International 

Journal of Commercial Vehicles, vol. 2, pp. 154-163, 2009. 

60  A. Warey, S. Balestrino, P. Szymkowicz, and M. R. Malayeri, "A One-

Dimensional Model for Particulate Deposition and Hydrocarbon Condensation in 

Exhaust Gas Recirculation Coolers," Aerosol Science and Technology, vol. 46, 

pp. 198-213, 2012. 

61  C. Paz, E. Suárez, A. Eirís, and J. Porteiro, "Development of a predictive CFD 

fouling model for diesel engine exhaust gas systems," Heat Transfer Engineering, 

vol. 34, pp. 674-682, 2013. 

62  M. Paz, E. Suarez, M. Concheiro, and J. Portherio, "CFD transient simulation of 

fouling in an EGR cooler in a diesel exhaust environment," in Proceedings of 

International Conference on Heat Exchanger Fouling and Cleaning, 2013, pp. 

247-254. 

63  T. Han, A. Booth, S. Song, D. Styles, and J. Hoard, "Review and A Conceptual 

Model of Exhaust Gas Recirculation (EGR) Cooler Fouling Deposition and 

Removal Mechanism," in Procceding of Internal Conference on Heat Exchanger 

Fouling and Cleaning, 2015. 

64  A. R. Razmavar and M. R. Malayeri, "A Simplified Model for Deposition and 

Removal of Soot Particles in an Exhaust Gas Recirculation Cooler," Journal of 

Engineering for Gas Turbines and Power-Transactions of the Asme, vol. 138, Jan 

2016. 

65  H. Teng and G. Regner, "Characteristics of Soot Deposits in EGR Coolers," SAE 

International Journal of Fuels and Lubricants, vol. 2, pp. 81-90, 2009. 

66  M. J. Lance, C. S. Sluder, H. Wang, and J. M. Storey, "Direct measurement of 

EGR cooler deposit thermal properties for improved understanding of cooler 

fouling," SAE Technical Paper2009. 

67  M. J. Lance, C. S. Sluder, S. Lewis, and J. Storey, "Characterization of field-aged 

EGR cooler deposits," SAE International Journal of Engines, vol. 3, pp. 126-136, 

2010. 

68  K. A. Strebel, "Simulations of Thermophoretic Deposition in Wavy Channels," 

Master of Science in Mechanical Engineering, Mechanical Engineering 

Department, University of Illinois at Urbana-Champaign, Urbana, Illinois, 2010. 

69  K. Nagendra, D. K. Tafti, and A. K. Viswanathan, "Modeling of soot deposition 

in wavy-fin exhaust gas recirculator coolers," Int. J. Heat Mass Tran., vol. 54, pp. 

1671-1681, Mar 2011. 

70  N. Krishnamurthy, "Investigation of Fouling in Wavy-Fin Exhaust Gas 

Recirculators," Master of Science in Mechanical Engineering, Mechanical 



  

199 

Engineering Department, Virginia Polytechnic Institute and State University, 

Blacksburg, Virginia, 2010. 

71  K. O. W. Group, "The opencl specification," Version, vol. 1, p. 8, 2008. 

72  S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: 

Oxford University Press, 2001. 

73  A. J. C. Ladd and R. Verberg, "Lattice-Boltzmann simulations of particle-fluid 

suspensions," J. Stat. Phys., vol. 104, pp. 1191-1251, Sep 2001. 

74  C. K. Aidun and J. R. Clausen, "Lattice-Boltzmann method for complex flows," 

Annu. Rev. Fluid Mech., vol. 42, pp. 439-472, 2010. 

75  S. Chen and G. D. Doolen, "Lattice Boltzmann method for fluid flows," Annu Rev 

Fluid Mech, vol. 30, pp. 329-364, 1998. 

76  J. Hardy, Y. Pomeau, and O. D. Pazzis, "Time Evolution of a Two-Dimensional 

Classical Lattice System," Physical Review Letters, vol. 31, pp. 276-279, 1973. 

77  N. A. Gershenfeld, The nature of mathematical modeling. Cambridge ; New 

York: Cambridge University Press, 1999. 

78  D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models 

: An introduction. New York: Springer, 2000. 

79  U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-Gas Automata for the Navier-

Stokes Equation," Physical Review Letters, vol. 56, pp. 1505-1508, Apr 7 1986. 

80  G. McNamara and G. Zanetti, "Use of the Boltzmann equation to simulate lattice-

gas automata," Physical Review Letters, vol. 61, pp. 2332-2335, 1988. 

81  F. J. Higuera and J. Jimenez, "Boltzmann approach to lattice gas simulations," 

Europhysics Letters, vol. 9, pp. 663-668, 1989. 

82  Y. H. Qian, D. Dhumieres, and P. Lallemand, "Lattice Bgk Models for Navier-

Stokes Equation," Europhysics Letters, vol. 17, pp. 479-484, Feb 1 1992. 

83  S. Y. Chen, H. D. Chen, D. Martinez, and W. Matthaeus, "Lattice Boltzmann 

Model for Simulation of Magnetohydrodynamics," Physical Review Letters, vol. 

67, pp. 3776-3779, Dec 30 1991. 

84  D. Dhumieres, "Generalized Lattice-Boltzmann Equations," Rarefied Gas 

Dynamics: Theory and Simulations, vol. 159, pp. 450-458, 1994. 

85  I. Ginzburg, "Lattice Boltzmann modeling with discontinuous collision 

components: Hydrodynamic and advection-diffusion equations," Journal of 

Statistical Physics, vol. 126, pp. 157-206, Jan 2007. 



  

200 

86  I. Ginzburg, "Equilibrium-type and link-type lattice Boltzmann models for 

generic advection and anisotropic-dispersion equation," Advances in Water 

Resources, vol. 28, pp. 1171-1195, Nov 2005. 

87  E. G. Flekkoy, "Lattice Bhatnagar-Gross-Krook Models for Miscible Fluids," 

Physical Review E, vol. 47, pp. 4247-4257, Jun 1993. 

88  X. He, S. Chen, and G. D. Doolen, "A novel thermal model for the lattice 

Boltzmann method in incompressible limit," Journal of Computational Physics, 

vol. 146, pp. 282-300, Oct 10 1998. 

89  M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, "Lattice Boltzmann 

simulations of liquid-gas and binary fluid systems," Phys Rev E, vol. 54, pp. 

5041-5052, Nov 1996. 

90  X. He, S. Chen, and R. Zhang, "A lattice Boltzmann scheme for incompressible 

multiphase flow and its application in simulation of Rayleigh–Taylor instability," 

Journal of Computational Physics, vol. 152, pp. 642-663, 1999. 

91  Q. Zou and X. He, "On pressure and velocity boundary conditions for the lattice 

Boltzmann BGK model," Physics of Fluids (1994-present), vol. 9, pp. 1591-1598, 

1997. 

92  M. Bouzidi, M. Firdaouss, and P. Lallemand, "Momentum transfer of a 

Boltzmann-lattice fluid with boundaries," Phys. Fluids, vol. 13, pp. 3452-3459, 

Nov 2001. 

93  A. J. C. Ladd, "Numerical simulations of particulate suspensions via a discretized 

Boltzmann-equation. Part 1. Theoretical foundation," Journal of Fluid Mechanics, 

vol. 271, pp. 285-309, Jul 25 1994. 

94  M. N. Ozisik, Finite difference methods in heat transfer. Boca Raton: CRC Press, 

1994. 

95  S. Patankar, Numerical heat transfer and fluid flow: CRC press, 1980. 

96  J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational fluid 

mechanics and heat transfer, 2nd ed. Washington, DC: Taylor & Francis, 1997. 

97  S. A. M. Karimian and A. G. Straatman, "A thermal periodic boundary condition 

for heating and cooling processes," International Journal of Heat and Fluid Flow, 

vol. 28, pp. 329-339, Apr 2007. 

98  K. E. Torrance, "Computational heat transfer," Computational heat transfer. 

99  G. Karniadakis and R. M. Kirby, Parallel Scientific Computing in C++ and MPI: 

A Seamless Approach to Parallel Algorithms and Their Implementation: 

Cambridge University Press, 2003. 



  

201 

100  R. Verberg, J. M. Yeomans, and A. C. Balazs, "Modeling the flow of 

fluid/particle mixtures in microchannels: Encapsulating nanoparticles within 

monodisperse droplets," Journal of Chemical Physics, vol. 123, p. 224706, Dec 8 

2005. 

101  H. C. Ottinger, Stochastic processes in polymeric fluids. Berlin: Springer-Verlag, 

1996. 

102  R. Verberg, A. Alexeev, and A. C. Balazs, "Modeling the release of nanoparticles 

from mobile microcapsules," J Chem Phys, vol. 125, p. 224712, Dec 14 2006. 

103  A. Messerer, R. Niessner, and U. Poschl, "Thermophoretic deposition of soot 

aerosol particles under experimental conditions relevant for modem diesel engine 

exhaust gas systems," Journal of Aerosol Science, vol. 34, pp. 1009-1021, Aug 

2003. 

104  D. Mehta, T. Alger, M. Hall, R. D. Matthews, and H. Ng, "Particulate 

Characterization of a DISI Research Engine using a Nephelometer and In-

Cylinder Visualization," SAE Technical Paper 0148-7191, 2001. 

105  P. A. Lakshminarayanan, Y. Shi, R. D. Reitz, and Y. V. Aghav, Modelling Diesel 

Combustion: Springer Netherlands, 2010. 

106  C. Housiadas and Y. Drossinos, "Thermophoretic deposition in tube flow," 

Aerosol Science and Technology, vol. 39, pp. 304-318, Apr 2005. 

107  L. Talbot, R. K. Cheng, R. W. Schefer, and D. R. Willis, "Thermophoresis of 

Particles in a Heated Boundary-Layer," Journal of Fluid Mechanics, vol. 101, pp. 

737-758, 1980. 

108  E. Cunningham, "On the velocity of steady fall of spherical particles through fluid 

medium.," Proceedings of the Royal Society of London Series a-Containing 

Papers of a Mathematical and Physical Character, vol. 83, pp. 357-365, Mar 

1910. 

109  C. Davies, "Coagulation of aerosols by Brownian motion," Journal of Aerosol 

Science, vol. 10, pp. 151-161, 1979. 

110  G. Marsaglia and W. W. Tsang, "The ziggurat method for generating random 

variables," Journal of statistical software, vol. 5, pp. 1-7, 2000. 

111  B. Dahneke, "The capture of aerosol particles by surfaces," Journal of colloid and 

interface science, vol. 37, pp. 342-353, 1971. 

112  G. A. Somorjai and Y. Li, Introduction to surface chemistry and catalysis: John 

Wiley & Sons, 2010. 



  

202 

113  B. E. Lee, C. A. J. Fletcher, S. H. Shin, and S. B. Kwon, "Computational study of 

fouling deposit due to surface-coated particles in coal-fired power utility boilers," 

Fuel, vol. 81, pp. 2001-2008, Oct 2002. 

114  C. Thornton and Z. M. Ning, "A theoretical model for the stick/bounce behaviour 

of adhesive, elastic-plastic spheres," Powder Technology, vol. 99, pp. 154-162, 

Sep 15 1998. 

115  K. L. Johnson and H. M. Pollock, "The Role of Adhesion in the Impact of Elastic 

Spheres," Journal of Adhesion Science and Technology, vol. 8, pp. 1323-1332, 

1994. 

116  K. Johnson, K. Kendall, and A. Roberts, "Surface energy and the contact of 

elastic solids," in Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences, 1971, pp. 301-313. 

117  M. J. Lance, H. Bilheux, J.-C. Bilheux, S. Voisin, C. S. Sluder, and J. Stevenson, 

"Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits," SAE 

Technical Paper 0148-7191, 2014. 

118  H. Rosen and T. Novakov, "Identification of Primary Particulate Carbon and 

Sulfate Species by Raman-Spectroscopy," Atmospheric Environment, vol. 12, pp. 

923-927, 1978. 

119  M. Soltani and G. Ahmadi, "On particle adhesion and removal mechanisms in 

turbulent flows," Journal of Adhesion Science and Technology, vol. 8, pp. 763-

785, 1994. 

120  M. O'neill, "A sphere in contact with a plane wall in a slow linear shear flow," 

Chemical Engineering Science, vol. 23, pp. 1293-1298, 1968. 

121  M. Matyka, Z. Koza, and Ł. Mirosław, "Wall orientation and shear stress in the 

lattice Boltzmann model," Computers & Fluids, vol. 73, pp. 115-123, 2013. 

122  N. S. Altman, "An introduction to kernel and nearest-neighbor nonparametric 

regression," The American Statistician, vol. 46, pp. 175-185, 1992. 

123  D. Leighton and A. Acrivos, "The lift on a small sphere touching a plane in the 

presence of a simple shear flow," Zeitschrift für angewandte Mathematik und 

Physik ZAMP, vol. 36, pp. 174-178, 1985. 

124  F. P. Incropera, Fundamentals of heat and mass transfer. Hoboken: John Wiley, 

2007. 

125  K. Park, D. B. Kittelson, M. R. Zachariah, and P. H. McMurry, "Measurement of 

inherent material density of nanoparticle agglomerates," Journal of Nanoparticle 

Research, vol. 6, pp. 267-272, 2004. 



  

203 

126  A. S. Dorfman, Conjugate problems in convective heat transfer: CRC Press, 

2009. 

127  D. A. Yuen, L. Wang, X. Chi, L. Johnsson, W. Ge, and Y. Shi, GPU solutions to 

multi-scale problems in science and engineering: Springer, 2013. 

128  Nvidia, "CUDA Programming guide," ed, 2008. 

129  B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous 

Computing with OpenCL: Revised OpenCL 1: Newnes, 2012. 

130  "Bolt: A C++ template library optimized for GPUs," ed, 2014. 

131  D. B. Thomas, "The MWC64X random number generator," ed, 2011. 

132  E. K. Donald, "The art of computer programming," Sorting and searching, vol. 3, 

pp. 426-458, 1999. 

133  H. M. Metwally and R. M. Manglik, "Enhanced heat transfer due to curvature-

induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels," 

Int J of Heat Mass Tran, vol. 47, pp. 2283-2292, May 2004. 

134  A. Cabal, "Stability of wall-bounded flow modified due to the presence of 

distributed surface roughness," Ph.D. Doctoral dissertation, Applied Mathematics, 

University of West Ontario, Ontario, 1999. 

135  R. K. Shah and A. L. London, Laminar flow forced convection in ducts : a source 

book for compact heat exchanger analytical data. New York: Academic Press, 

1978. 

136  C. Housiadas, F. E. Larrode, and Y. Drossinos, "Numerical evaluation of the 

Graetz series," International Journal of Heat and Mass Transfer, vol. 42, pp. 

3013-3017, Aug 1999. 

137  F. Takens, "Detecting strange attractors in turbulence," in Dynamical systems and 

turbulence, Warwick 1980, ed: Springer, 1981, pp. 366-381. 

138  N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, "Geometry from a 

time series," Physical review letters, vol. 45, p. 712, 1980. 

139  A. M. Fraser and H. L. Swinney, "Independent coordinates for strange attractors 

from mutual information," Physical review A, vol. 33, p. 1134, 1986. 

140  G. P. Williams, Chaos theory tamed: Joseph Henry Press, 1997. 

141  D. Ruelle and F. Takens, "On the nature of turbulence," Communications in 

mathematical physics, vol. 20, pp. 167-192, 1971. 



  

204 

142  S. Newhouse, D. Ruelle, and F. Takens, "Occurrence of strange AxiomA 

attractors near quasi periodic flows onT m, m≧ 3," Communications in 

Mathematical Physics, vol. 64, pp. 35-40, 1978. 

143  N. Mohamed, B. R. Wided, E. Mohamed, M. Abd el Karim, and B. Mohamed, 

"Numerical Investigation on the Fluid Flow and Heat Transfer in the Entrance 

Region of Wavy Channel," Enrgy Proced, vol. 36, pp. 76-85, 2013. 

144  B. R. Munson, T. H. Okiishi, and W. W. Huebsch, Fundamentals of fluid 

mechanics, 6th ed. Hoboken, NJ: J. Wiley & Sons, 2009. 

145  C. C. Wang and C. K. Chen, "Forced convection in a wavy-wall channel," Int J 

Heat Mass Tran, vol. 45, pp. 2587-2595, Jun 2002. 

146  T. R. Bott, Fouling of heat exchangers: Elsevier, 1995. 

147  S. Kakac, Boilers, evaporators, and condensers: John Wiley & Sons, 1991. 

 

  



  

205 

VITA 

Zachary Grant Mills was raised in Athens, Georgia. He received his B.S. in 

Mechanical Engineering from the Georgia Institute of Technology in 2011, where he 

continued with his Ph.D. studies. Zach has worked with the Complex Fluids Modeling and 

Simulation Group under the direction of Dr. Alexander Alexeev since 2011. Zach's 

research interests are in all aspects of computational mechanics from numerical algorithms, 

software development, and data analysis to solve interdisciplinary problems in engineering 

and physics. 

 


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	CHAPTER 1. INTRODUCTION
	1.1 Background
	1.1.1 Fluid Flow
	1.1.2 Heat/Mass Transfer
	1.1.3 Heat Exchanger Fouling

	1.2 Objectives
	1.3 Thesis Overview

	CHAPTER 2. METHODOLOGY
	2.1 Lattice Boltzmann Method
	2.1.1 Historic overview of the LBM
	2.1.2 Implementation of the LBM
	2.1.3 Boundary Conditions and Determination of Boundary Nodes

	2.2 Finite Difference Thermal Model
	2.2.1 Spatial Derivatives
	2.2.2 Boundary Conditions
	2.2.3 Iterative Solver for System of Equations

	2.3 Brownian Dynamics Model
	2.3.1 Particle Properties
	2.3.2 Thermophoretic Forces
	2.3.3 Particle Deposition and Removal Models
	2.3.3.1 Sticking Probability Model
	2.3.3.2 Shear Removal Model

	2.3.4 Inlet Boundary Conditions

	2.4 Fouling Model
	2.4.1 Surface Relocation in Shift Step
	2.4.2 Lattice Boltzmann Update Step
	2.4.3 Finite Difference Thermal Model Update Step
	2.4.4 Brownian Dynamics Model Update Step

	2.5 GPU Computing
	2.5.1 The OpenCL Programming Framework
	2.5.2 Open Source Libraries

	2.6 Simulation Parameters
	2.6.1 Simulation Domain
	2.6.2 Geometric and Fluid Parameters
	2.6.3 Heat Transfer Parameters
	2.6.4 Fouling Layer Development Parameters


	CHAPTER 3. VALIDATION
	3.1 Lattice Boltzmann Model
	3.2 Finite-Differences Thermal Model
	3.3 Brownian Dynamics Model
	3.4 Fouling Layer Model

	CHAPTER 4. FLUID FLOW
	4.1 Introduction
	4.2 Computational Setup
	4.3 Analysis Methods
	4.4 Results and Discussion
	4.4.1 Steady Flow Structures
	4.4.2 Time Periodic Flow Structures
	4.4.3 Transition To Unsteady Flow
	4.4.4 Route to Chaos
	4.4.5 Frictional Losses

	4.5 Summary

	CHAPTER 5. HEAT TRANSFER
	5.1 Introduction
	5.2 Computational Setup
	5.3 Results and Discussion
	5.3.1 Steady Flow Regimes
	5.3.2 Unsteady Flow Regime
	5.3.3 Heat Transfer Enhancement

	5.4 Summary

	CHAPTER 6. FOULING LAYER DEVELOPMENT
	6.1 Introduction
	6.2 Computational Setup
	6.3 Results and Discussion
	6.3.1 Physics of Fouling Layer Formation
	6.3.2 Influence of Wall Amplitude
	6.3.3 Influence of Driving Pressure
	6.3.4 Influence of Wall Period Length

	6.4 Summary

	CHAPTER 7. CONCLUDING REMARKS
	REFERENCES
	VITA

