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SUMMARY

Autonomous airdrop systems exhibit significant improvements over their un-

guided counterparts due to the addition of control mechanisms and real-time feed-

back. Increased landing accuracy comes with a high dependence on accurate sensor

measurements (primarily GPS) and a consistent nominal system and environment.

Unfortunately, airdrop systems represent a highly uncertain class of aerial vehicles

where operation at off-nominal, degraded conditions is the norm and not the excep-

tion. Degraded conditions are caused by numerous effects including: parafoil rigging

changes caused by canopy opening shock, parafoil damage during canopy inflation,

parafoil canopy collapse, payload mass and inertial loading imbalances, human rig-

ging errors, etc. Additionally, the loss of GPS feedback due to environmental causes

(urban or canyon environments blocking the signal or causing multi-pathing issues)

and active GPS denial by tech savvy adversaries present a second classification of

degraded flight. These issues must be addressed to aid the continued expansion of

the parafoil technology for delivery and re-entry purposes.

This work applies two solutions to overcome the problems of physical degraded

flight conditions and loss of GPS feedback. A highly adaptive control law is embedded

at the core of the new guidance, navigation and control (GNC) algorithm to identify

system dynamics and control sensitivity through the use of a discrete nonlinear Ham-

merstein dynamic model. All model parameters are estimated in-flight to maintain a

high level of landing accuracy under a large range of degraded flight conditions. In

addition, an analysis into the feasibility of radio frequency (RF) beacons as a redun-

dant feedback system to GPS is analyzed. Novel GNC algorithms are introduced to

handle the limited feedback that RF beacons provide in comparison to the rich data

xiii



embedded in GPS. Performance of the proposed autonomous algorithms are tested

through rigorous simulation of a validated flight dynamic model and experimental

testing on a small scale autonomous parafoil and payload system.

xiv



CHAPTER I

INTRODUCTION

Airdrop technology has revolutionized the delivery of supplies for both military and

humanitarian operations. Dropped from carrier aircraft above the desired target,

supplies can be delivered to disaster locations, contested war zones, or generally

difficult to reach locations in a short period of time. The bulk of cargo delivered in

theater uses ballistic (unguided) parachutes dropped en masse from low flying C-17

and C-130 aircraft. The calculated aerial release point (CARP) is based on estimated

atmospheric wind conditions from the ground to aircraft, carrier vehicle velocity,

and nominal descent rate of the airdrop system [6]. Accuracy is primarily ensured

through low altitude releases as round parachutes are drag dominant devices that are

susceptible to being blown off target due to errors in the atmospheric wind estimate.

Figure 1.1(a) provides an example of an unguided airdrop delivery where the U.S.

Air Force supplied nearly 70,000 lbs of food and water to victims of the earthquake

in Haiti in 2010 [1]. In military operations, there is great risk involved with flying

low enough to ensure accurate delivery of unguided systems. The development of

autonomously guided and controlled airdrop vehicles addresses the need for both

high release altitude and high landing precision capabilities.

1.1 Overview of Precision Airdrop

The next era of airdrop systems use sensor feedback and onboard actuators in con-

junction with guidance, navigation, and control (GNC) algorithms to actively steer

the aerial vehicle to the desired impact point (IP). The field of guided airdrop sys-

tems was originally studied by Kane in the early 1960s using a modified ballistic

parachute [7] and then in the late 1960s by Knapp and Barton who used a directional

1



(a) (b)

Figure 1.1: Examples of different airdrop technologies: (a) Mass low altitude deploy-
ment of ballistic airdrop systems [1]; (b) NASA X-38 test vehicle [2].

radio frequency beacon for the recovery of a 150 pound sounding rocket nose cone [8].

In the 1970s, Goodrick et al. [9–11] proposed an improved homing technique and

analyzed current state of the art hardware to enable a field implementable guided

system. When military grade GPS signal quality was made available to public and

private enterprises in 2000, more advanced GNC schemes could be developed given

position, velocity, and time (PVT) data available for feedback control. GNC devel-

opment was accelerated starting in 1997 with the precision airdrop system (PADS)

sponsored by the U.S. Army and Air Force. The goal of the project (and that of

its successor [12]) was aimed at enabling high altitude, accurate delivery of cargo up

to 10,000 lbs [13]. Similar research was conducted by the National Aeronautics and

Space Administration (NASA) for an emergency crew re-entry vehicle for the inter-

national space station. Development of the X-38 vehicle shown in Figure 1.1(b) ran

from 1999 to 2003, and among several things, was used to study the construction and

safety of canopies ranging in size from 750 ft2 to 7500 ft2 [14–16]. These government

projects initiated a spark in GPS guided parafoils that has led to many advances in

GNC algorithms and system controllability for improved landing accuracy [17–23].
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Figure 1.2: Typical flight profile for modern precision airdrop systems.

While details of each approach differ, each follows the general methodology outlined

in Figure 1.2. Using similar CARP estimation methods as unguided systems, guided

airdrop vehicles are released upwind of the target and use its control authority to

overcome errors in the a priori atmospheric wind estimates to accurately reach the

IP. After deployment, the vehicle flies towards the target and maintains local prox-

imity to the target upwind of the target until sufficient altitude has been lost to land

at the IP.

Current airdrop research focuses on advancing one or more of the following ele-

ments: accuracy, cargo survivability, and cost. While some projects approach these

three elements through the integration of control authority and GNC algorithms into

conventionally ballistic round parachutes [24, 25], most research focuses on ram-air

parafoils which generate both lift and drag. Ram-air parafoils use openings at the

front of the airfoil to inflate with static pressure to form an arc anhedral wing with

3



Figure 1.3: Modern guided, ram-air parafoil.

a classic airfoil cross section design. While more expensive to manufacture than bal-

listic round chutes, parafoils benefit strongly from their ability to penetrate the wind

in addition to both lateral and longitudinal control authority. Longitudinal control

for parafoil and payload systems implies the ability to change the ratio of forward

airspeed to descent rate, termed glide slope, and reaches 4:1 for some fielded systems.

Figure 1.3 shows the configuration of a modern precision airdrop vehicle. Actua-

tors, sensors, and processing power are located in the airborne guidance unit (AGU).

General rigging lines connect the canopy to the AGU with control lines connecting

the actuators to the trailing edge brakes. The payload is suspended below the AGU

through a gimbal joint to ensure rotation motion is not passed to the rest of the

structure. Inflation of the low porosity rip-stop nylon canopy is controlled by the

addition of a mini drag chute (slider) attached to the riser lines. The slider passively

forces the canopy to inflate in a center outward fashion, slowing the inflation event

and mitigating high shock openings of the canopy.
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Lateral and longitudinal control authority for precision airdrop systems is conven-

tionally achieved through symmetric and asymmetric deflection of the trailing edge

brakes [23, 26], but weight shift [27] and upper surface canopy spoilers [28] have also

been analyzed. Pure longitudinal control can be achieved through variable canopy in-

cidence angle by changing the aerodynamic angle of attack [22,29–31]. This method

is more effective than symmetric brake control but difficult to implement on large

scale systems due to the required actuation force.

1.2 Susceptibility to Degraded Conditions

Almost all guided airdrop systems rely on GPS and a variety of onboard sensors

for feedback for control algorithms to steer the system to the target. These control

algorithms are designed to control mathematically derived dynamic models which

predict the actual flight characteristics of the system. Development of these guided

systems require extensive system identification in which entire flights are conducted

with open loop commands chosen to characterize aerodynamic parameters and control

sensitivity mappings. However, as a result of the very nature of parafoils as a flexible

and redeployable system, they are severely prone to changes in flight dynamics which

decreases the ability of the control algorithm to steer the system accurately. Two

examples of guided parafoil systems which had canopy cells rip during deployment

are presented in Figure 1.4 and classify just one of the failure modes experienced by

airdrop systems.

In the initial development of guided parafoil technology for the NASA X-38

project, damage mitigation was a priority concern as human life was in the balance.

However, as the technology transitioned to military applications for cargo delivery,

damage mitigation was scaled back to reduce manufacturing cost for mass produc-

tion [15]. While the aforementioned case of torn canopy cells appears to be a relatively
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(a) (b)

Figure 1.4: Autonomous airdrop system with ripped (a) upper surface canopy and
(b) right canopy cells caused by high shock loading during inflation [3].

extreme failure, the aerial vehicle is still controllable but exhibits flight dynamics sig-

nificantly different from the modeled behavior which causes the GNC algorithm to

be unable to steer the vehicle to the target. Other identified failure modes include

the slider getting caught preventing full inflation of the canopy, tension knots in the

canopy risers changing the rigging geometry, human induced errors, and changes in

fabric porosity due to age, use, and ultraviolet light exposure. In this context, human

error is primarily concerned with the rigging and connection of the parafoil to the

AGU. It is not uncommon for the control lines to get switched causing a control re-

versal or be spooled backwards onto the actuator resulting in a significantly different

control mappings. These failure modes can cause slight to extreme variation of the

actual system dynamics from the expected model dynamics rendering non-adaptive

control algorithms ineffective at controlling the guided airdrop system.

There is significant work in the literature relating to the compensation of unmod-

elled dynamics to the control architecture of many aerial vehicles or flexible struc-

tures. Adaptive neural networks are commonly used to characterize and reject the

error between measured and expected dynamic response of a vehicle [19, 20, 32, 33].
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Using the trained neural network, control effort is modified to improve system per-

formance. Additionally, several articles have studied onboard estimation of vehicle

airspeed [22, 34–36]. An incorrect vehicle airspeed can easily destabilize the naviga-

tion state estimator as airspeed, horizontal atmospheric winds, and heading are all

closely coupled. Changes in airspeed can be induced by variations in canopy construc-

tion alone and more severely impacted by canopy damage or incorrect cargo weight.

Adaptive turn rate control was studied [3, 19, 20] in order to improve the tracking

ability of the lateral controller or overcome significant turn rate biases exhibited by

the physical system. However, the current state of the art algorithms are still un-

able to handle the high level of dynamic uncertainty that these vehicles exhibit. A

summary of key deviations in nominal flight dynamics and current solutions in the

airdrop literature are outlined in Table 1.1. Potential sources of physical degradation

that could induce such flight perturbations are also characterized and listed in the

legend at the bottom of Table 1.1. Note that while several modes have solutions, they

are not necessarily generic enough to combine to generate a large scale solution to all

forms of damage.

An additional dilemma for guided airdrop systems is their extreme dependence on

GPS information for feedback control. This can limit airdrop applications as a robust

and reliable GPS signal is not always available in certain operational scenarios. Urban

and natural canyons can induce multipath propagation and obscured satellite issues

that can degrade GPS signal quality and deny the ability of a receiver to achieve GPS

lock. Additionally, technology that allows adversaries to overpower the extremely low

level signal strength (L1, L2, and L5 signals employ received signal strengths of -157.7

dBw, -160 dBw and -154 dBw, respectively [37]) by swamping a GPS receiver in noise

is becoming more common. As a result, future missions have a significant need for a

secondary or redundant feedback source to reduce dependence on GPS information.

To accomplish this, the airdrop system must be augmented with additional sensor
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Table 1.1: Examples of how deviations in nominal flight dynamics manifest from
modes of physical degradation.

Deviations in Flight Dynamics Possible Source of
Deviation

Solutions Proposed
in Literature

Change in vehicle airspeed A,B,C,D,F,G [22,34–36]

Change in control sensitivity

(including turn bias) A,B,C,D,E,G [3,19,20]

Unidirectional Control Authority A,D,E —

Control reversal D —

Legend:
A: Torn canopy cells
B: Partially collapsed canopy, not fully inflated canopy
C: Change in canopy geometry due to tension knots or broken rigging lines
D: Human rigging error
E: Faulty actuator, broken control line
F: Aged canopy material
G: Incorrect payload weight

types (e.g., vision, digital terrain data, star mapping, etc.) to provide the typical

types of data expected of a GPS receiver.

Research in the field of aerospace guidance systems has identified multiple solu-

tions to the GPS blackout problem, summarized in Table 1.2. The most commonly

implemented is vision based navigation which uses landmark detection, image recog-

nition, or field of view motion to construct an estimate of the vehicle position and

velocity [38–43]. Vision algorithms are often run in conjunction with dead reckon-

ing methods based on the integration of inertial measurement units (IMUs) [44].

The fusing of visual and IMU data requires careful calibration of sensors making

self-calibration and correction methods an active area of research [45]. Additionally,

aerial image matching compares real time images with a bank of preloaded satellite

images of the drop zone for position estimates [46]. While these technologies are

viable for use in guided airdrop, several key limitations currently exist that prevent

field implementation. Vision feedback is limited to daytime operations with relatively
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Table 1.2: Potential feedback sources for GPS denied airdrop systems

Sensor Main Advantages Main Disadvantages

Commercial
IMU

Low cost Poor signal quality

Tactical IMU Low signal to noise ratio Weight, cost

Barometer Accurate altitude measure-
ments, low cost

Requires calibration

Vision System Advanced algorithms en-
able position and velocity
feedback

Requires high quality cam-
era, computationally intensive,
typically requires with IMU

RF Beacon
(Range)

Range and radial velocity
enables better observabil-
ity in comparison to direc-
tional beacon

Requires setup at IP, broad-
casts location, cost

RF Beacon
(Radioloca-
tion)

Low cost Requires setup at IP, broad-
casts location

minimal clouds, smoke, or fog in the airspace above the drop zone (DZ). Addition-

ally, the performance limitations of commercial grade IMUs and the weight and cost

limitations of tactical grade IMUs make their integration infeasible.

An alternative method is through radio frequency (RF) beacons which can record

range measurements based on time of flight [47–49] or relative heading to the bea-

con via radiolocation methods [50, 51]. This field has seen a large amount of work

associated with low cost and short range sensors for localization of robots in indoor

environments [52, 53]. These strategies often focus on using a large set of beacons

and advanced estimation methods to handle poor accuracy or limited range of the

beacons. Long range beacons like the original LORAN system [54] provide global

coverage but very poor resolution. Recent advances in beacon technology provide

medium range beacon systems that provide high precision range and velocity mea-

surements over 1km [55,56]. Additionally, beacons placed at the target can transmit
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signals at sufficient power to decrease their susceptibility to signal jamming. This

provides an avenue to reanalyze and expand beyond early guided airdrop solutions

presented by Kane et al. [7], Barton et al. [8], Goodrick et al. [9–11].

Autonomous Underwater Vehicles (AUV) have made particularly strong use of

beacons. Potential solutions exist for the marine application problem through use

of a range measurements from a single location [40, 47, 49, 57]. Radio beacon signals

are commonly blended with other sensor data streams (such as a barometric pressure

sensor for altitude measurements) to calculate a navigation solution [58]. The analogy

of UAV position estimation in an unknown underwater current and guided airdrop

is striking giving RF beacon technology strong promise to become relevant to the

airdrop community again.

1.3 Contributions of the Thesis

The overarching goal of this thesis is to expand upon the achievable flight conditions

in which a precision airdrop system can be used to accurately deliver supplies to a

location. The field currently shows a high dependence on nominal flight conditions

and GPS lock for feedback which are far from guaranteed in real world applications.

Many failure modes and various forms of GPS loss or denial exposes a general lack of

robustness to the conditions in which airdrop systems can accurately reach the target.

This thesis proposes a two part method to overcome these issues: an adaptive control

algorithm and the inclusion of a radio frequency beacon to airdrop operations.

1. Adaptive Control: Development of a highly adaptive GNC algorithm capable

of in-flight system identification to guarantee accurate landing capabilities of a

controllable precision airdrop system subject to degraded flight conditions.

2. Radio Frequency Beacon: Integration of a single radio frequency beacon broad-

casting from the desired impact point to provide a navigation solution to GPS

denied vehicles and ensure landing accuracy given limited feedback.
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In order to satisfy the above objectives, a simulation and experimental based

approach is taken. A sophisticated simulation environment was developed including

a 6 degree of freedom parafoil and payload model and a high fidelity wind field model

that captures relevant low and high frequency variations in the air mass. Details

of these models are presented in Chapter II. A conventional, GPS based GNC is

presented in Chapter III from which portions of the GNC algorithms proposed in this

work are based upon. The simulation model is based on a small-scale, custom built

parafoil and payload system discussed in Chapter IV. Chapters V and VI present

the in-flight system identification and compares the effect of damage on the landing

accuracy several adaptive GNC algorithms. Methods using RF beacon technology to

overcome GPS blackout are presented in Chapter VII. Conclusions and future work

are presented in Chapter VIII.
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CHAPTER II

PARAFOIL FLIGHT DYNAMIC MODEL

This section details the simulation model created to develop and validate guidance,

navigation, and control algorithms prior to experimental flight testing. Many dynamic

models for airdrop systems have been presented in the literature from 3 degree of free-

dom (DOF) models which decouple lateral and longitudinal motion [59–61] to 9 DOF

models which account for different orientations of the payload with respect to the

canopy [21, 62, 63]. This work considers a 6 DOF parafoil and payload configuration

as it is the simplest model that can accurately model observed behavior of experi-

mental systems. Typically, higher DOF models are used for non-conventional rigging

configurations or when the vehicle is tethered to a second system. An comparison

and overview of higher DOF models is presented by Gorman and Slegers [64].

The remainder of this section details the derivation of the flight dynamic model

using a Newton-Euler approach. Additionally, a sensor and atmospheric model are

presented which can be used in conjunction to generate noise and turbulence observed

in experiential flight testing. The combination of all three models is commonly re-

ferred to as the complete simulation environment.

2.1 Nomenclature

In this work, standard aerospace nomenclature is used including the use of right

handed North (I) - East (J) - Down (K) (NED) reference frame orientation. Position

vectors from point a to b are denoted by r̄a→b and the velocity of point b with respect

to frame A is defined as V̄b/A. Measure numbers of vectors are enclosed with curly

brackets {·} while matrix expressions are enclosed with square brackets
[
·
]
. Trans-

formation matrices are represented as
[
Tαβ
]

which represents the conversion from the
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β to the α frame. Single axis rotational transformations about axis I and angle η,

R
(
Ī , η
)
.

The measure number operators CA (·) extracts measure numbers from a vector

and the skew symmetric cross product operator SA
[
·
]

is used to represent the cross

product of two vectors through matrix multiplication. Given ā and b̄ expressed in

frame A, the cross product can be defined as:

ā = axĪA + ayJ̄A + azK̄A

b̄ = bxĪA + byJ̄A + bzK̄A

CA

(
ā× b̄

)
= SA

[
ā
]
b̄ =


0 −az ay

az 0 −ax

−ay ax 0



bx

by

bz


(2.1)

Last, several shorthand notations are used. CG defines the vehicle center of gravity

and CP defines the aerodynamic center of pressure. Trigonometric functions are also

abbreviated as follows.

sα , sin(α)

cα , cos(α)

tα , tan(α)

(2.2)

2.2 Dynamic Model of a Parafoil and Payload System

This work considers a 6 DOF model prescribing inertial translation of the CG (x,

y, z) and body orientation described by Euler angles (φ, θ, ψ). A cross section

representation of a rigid body parafoil and payload system is presented in Figure

2.1. The body reference frame (B) is attached to the vehicle based on its orientation

with respect to the North-East-Down (NED) Inertial reference frame. The canopy

reference frame (C) is rotated from frame B through angle Γ, [TCB] = R
(
J̄B,Γ

)
.

This 6 DOF model assumes that once the canopy is inflated it behaves like a rigid

body implying no relative motion between the payload and canopy. Deflection of the
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Figure 2.1: 2D representation of a parafoil and payload system

control surfaces, termed trailing edge brakes, are considered as a superposition onto

the rigid canopy model.

2.2.1 Kinematics

Kinematics prescribe the relationship between the derivatives of the inertial position

and orientation with respect to the body velocity and angular rate. For translation,

the velocity of the center of mass, V̄cg/I is expressed in both the inertial and body

frame.

V̄cg/I = ẋĪI + ẏJ̄I + żK̄I = uĪB + vJ̄B + wK̄B (2.3)

The transformation from inertial to body frame is conducted through a series of body

fixed 3-2-1 Euler angle rotations depicted graphically in Figure 2.2. The vehicle carry

(V) and no-roll (N) frames are found through single axis rotations . Based on the

Euler rotations, all terms of Equation (2.3) can be converted into the inertial frame

to identify the total transformation matrix [TIB].
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Figure 2.2: Graphic representation of the 3-2-1 Euler transformation from Inertial to
Body reference frames.


ẋ

ẏ

ż

 =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ



u

v

w

 =
[
TIB
]

u

v

w

 (2.4)

An identical approach is taken for the Euler angle derivatives. Here the Euler

derivatives are expressed in a mixed frame format based on the graphic in Figure 2.2.

ω̄B/I = φ̇ĪB + θ̇J̄N + ψ̇K̄I = pĪB + qJ̄B + rK̄B (2.5)

Using frame relations to convert all reference frames in Equation (2.5) to the body

frame, we get the following relationship.
φ̇

θ̇

ψ̇

 =


1 sφtθ cφtθ

0 cφ −sθ

0 sφ/cθ cφ/cθ



p

q

r

 (2.6)

Note that as a result of having a mixed frame definition of the derivative of Euler

angles, the transformation matrix in Equation (2.6) is not orthonormal, aka T−1 6=

T T .

2.2.2 Dynamics

The impact of aerodynamic loads and gravity on the flight characteristics of the

parafoil and payload system are considered through the application of the Newton-

Euler method. Inertial derivatives of V̄cg/I and ω̄B/I expressed in body reference frame

are computed using the vector derivative transport theorem to yield the sum of the
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forces and moments equations below.

mācg/I = ΣF̄ →


u̇

v̇

ẇ

+ SB
[
ω̄B/I

]

u

v

w

 =
1

m


X

Y

Z

 (2.7)

dH̄B/I

dt
= ΣM̄ →

[
IB
]

ṗ

q̇

ṙ

+ SB
[
ω̄B/I

][
IB
]

p

q

r

 =


L

M

N

 (2.8)

In the above equations, m is the total vehicle mass and
[
IB
]

is the inertia matrix about

the center of mass. {X, Y, Z}T and {L,M,N}T represent the sum of the forces along

and moments about the {ĪB, J̄B, K̄B}T axes. The forces and moments considered in

this work consist of gravity (W), payload aerodynamics (PA), canopy aerodynamics

(CA), and apparent mass (AM). The last term is an aerodynamic phenomenon that

adds additional forces and moments onto a body due to the acceleration of the fluid

(air) in which a body traverses [26,65,66]. For systems such as parafoils that exhibit

low mass and inertia compared to their volume, these effects can significantly impact

the flight and turn rate dynamics.
X

Y

Z

 =


XW

YW

ZW

+


XPA

YPA

ZPA

+


XCA

YCA

ZCA

+


XAM

YAM

ZAM

 (2.9)


L

M

N

 = SB
[
r̄cg→p

]

XPA

YPA

ZPA

+


LCA

MCA

NCA

+ SB
[
r̄cg→C

]

XCA

YCA

ZCA


+


LAM

MAM

NAM

+ SB
[
r̄cg→C

]

XAM

YAM

ZAM

 (2.10)
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The remainder of this section details how these individual forces are computed and

finally, how all elements of Equations (2.7) and (2.8) can be combined to solve for the

derivatives of body velocity and angular rate.

Gravitational forces act upon the CG of the combined parafoil and payload system,

given by Equation (2.11). 
XW

YW

ZW

 = mg


−sθ

sφcθ

cφcθ

 (2.11)

For the payload, only aerodynamic drag is considered. This calculation requires

the velocity of point P to be given with respect to the atmosphere, V̄P/A. The

aerodynamic velocity of point P is found using the velocity of the CG and angu-

lar velocity of the body from which the elements of the wind are subtracted. As

discussed in Section 2.4 below, the atmospheric wind is comprised of both slowly

varying translational flows and stochastic disturbances due to high frequency tur-

bulence. {VWx, VWy, VWz}T denotes the total atmospheric wind velocity along the

inertial axes.

V̄P/A = ũP ĪB + ṽP J̄B + w̃P K̄B (2.12)

CB

(
V̄P/A

)
=


u

v

w

− SB
[
r̄cg→P

]

p

q

r

−
[
TBI
]

VWx

VWy

VWz

 (2.13)

Given the aerodynamic velocity, the payload drag is calculated based on Equation

(2.14) where ρ is the atmospheric density, Sp is the surface area, and CD,p is the drag

coefficient. 
XPA

YPA

ZPA

 = −1

2
ρSpCD,p‖V̄P/A‖


ũP

ṽP

w̃P

 (2.14)

Aerodynamic lift and drag on the canopy is computed at point C (see Figure
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2.1) which represents the mean center of pressure for the canopy. Similar to payload

aerodynamics, the aerodynamic velocity of point C is required and transformed into

the canopy frame (aligned with the airfoil) in order to calculate the angle of attack

and side slip angle.

V̄C/A = ũC ĪC + ṽC J̄C + w̃CK̄C (2.15)

CC

(
V̄C/A

)
=
[
TCB

]


u

v

w

− SB
[
r̄cg→C

]

p

q

r

−
[
TBI
]

VWx

VWy

VWz



 (2.16)

Based on these equations velocity, the canopy speed Ṽ , angle of attack α, and side

slip β can be computed.

Ṽ = ‖V̄C/A‖ (2.17)

α = arctan(w̃C , ũC) (2.18)

β = arcsin(ṽC/Ṽ ) (2.19)

Provided canopy angle of attack in addition to left (δl) and right (δr) trailing

edge brake deflections, the aerodynamic lift and drag coefficients are defined based on

Equations (2.20) - (2.21). The individual left and right brake deflections are mapped

to asymmetric (δa) and symmetric (δb) brake metrics to decouple the effect of the

control surfaces into the lateral and longitudinal channels, respectively. Definition of

these mappings are provided in Equations (2.22) - (2.23).

CL = CL,0 + CL,αα + CL,α3α
3 + CL,δbδb+ CL,αδbαδb (2.20)

CD = CD,0 + CD,α2α
2 + CD,δbδb+ CD,α2δbα

2δb (2.21)

δa = δr − δl (2.22)

δb = 0.5(δr + δl) (2.23)

Additionally, canopy incidence angle Γ is considered as a longitudinal control input as

it directly effects the canopy angle of attack. Nominal incidence angle is varied across
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the total actuator range, ∆Γ, by a nondimensional control parameter δΓ ∈ [0, 1] as

defined below.

Γ = Γnom + δΓ∆Γ (2.24)

Aerodynamic forces acting upon the CP are prescribed in Equation 2.25 where

lift, drag, and side forces are transformed from the aerodynamic frame (one aligned

with the aerodynamic velocity) to the canopy frame through a single axis rotation,[
TCA

]
, R(J̄C , α). Side force is based on the model parameter CY β, and the canopy

surface area is given by Sc. Additionally, the offset nature of these forces from the

CG enduces a moment and is captured in Equation (2.10).
XCA

YCA

ZCA

 =
1

2
ρṼ 2Sc

[
TBC

][
TCA

]

−CD

CY ββ

−CL

 (2.25)

Since all aerodynamic forces are only considered to act at the CP, the effects of a 3-

dimensional, dihedral wing are accounted for through canopy aerodynamic moments.

These stability moments mainly provide angular rate damping to match experimental

flight testing. These moments are dependent on the angular velocity of the canopy

with respect to the atmospheric winds expressed in the canopy frame, given by Equa-

tion (2.26).

ω̄B/A = p̃ĪC + q̃J̄C + r̃K̄C (2.26)

CC

(
ω̄B/A

)
=
[
TCB

]

p

q

r

 (2.27)

Aerodynamic roll Cl, pitch Cm, and yaw Cn moment coefficients are defined based

on the canopy angular rates and the effect of both symmetric and asymmetric brake.

Equations (2.28) - (2.30) define the typical yaw-roll coupling and the impact that
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asymmetric brake has on the turn rate behavior of the vehicle.

Cl = Clββ +
b

2Ṽ
(Clpp̃+ Clrr̃) + Clδaδa (2.28)

Cm =
c̄

2Ṽ
Cmq q̃ + Cmδbδb (2.29)

Cn = Cnββ +
b

2Ṽ
(Cnpp̃+ Cnrr̃) + Cnδaδa+ Cnδa2δa

2 (2.30)

The canopy aerodynamic moments can be calculated in Equation (2.31) using the

moment coefficients, canopy span b, and nominal chord length c̄.
LCA

MCA

NCA

 =
1

2
ρṼ 2Sc

[
TBC

]

bCl

c̄ Cm

bCn

 (2.31)

Finally, the apparent mass effects of the canopy are addressed. Apparent mass

forces stem from the constant acceleration of displaced air in which the vehicle moves.

It has been characterized that these forces have non-negligible effects on low weight to

volume systems which can significantly complicate the dynamics [26,65,66]. However,

these references also show that the displaced fluid can be represented by manipulat-

ing the mass matrix of the vehicle. This is defined as the apparent mass
[
IAM

]
=

diag(A,B,C) and apparent inertia
[
IAI
]

= diag(IA, IB, IC) of the vehicle. In this

work, apparent mass is considered to act on the CP of the canopy with principal axes

aligned with the canopy reference frame. Apparent mass effects, defined in Equa-

tions (2.32) - (2.33), are based on the acceleration of the CP and angular velocity

of the canopy with respect to the atmosphere. Note that atmospheric parameters

are assumed to vary slowly such that their time derivatives can be neglected and the

apparent mass and inertia matrices must be rotated into the body frame based on

Equations (2.34) - (2.35).
XAM

YAM

ZAM

 = −
[
IAM

]′


u̇

v̇

ẇ

− SB
[
r̄cg→C

]

ṗ

q̇

ṙ

−
[
TBI
]

V̇Wx

V̇Wy

V̇Wz



 (2.32)
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LAM

MAM

NAM

 = −
[
IAI
]′

ṗ

q̇

ṙ

 (2.33)

[
IAM

]′
=
[
TBC

][
IAM

][
TBC

]T
(2.34)[

IAI
]′

=
[
TBC

][
IAI
][
TBC

]T
(2.35)

By substituting the equations associated with gravity, payload aerodynamics,

canopy aerodynamics, and apparent mass into Equations (2.7) - (2.8), the govern-

ing equation of motion is given. Note that all apparent mass effects are captured

in the modified mass matrix and result in a coupling between the translational and

rotational dynamics. Additionally,
[
I3x3

]
is a 3x3 identity matrix and the total force

and moments effects are given in Equations (2.37) - (2.38).

m[I3x3

]
+
[
IAM

]′ −
[
IAM

]′SB[r̄cg→C]
SB
[
r̄cg→C

][
IAM

]′ [
IB
]

+
[
IAI
]′ − SB

[
r̄cg→C

][
IAM

]′SB[r̄cg→C]




u̇

v̇

ẇ

· · ·

ṗ

q̇

ṙ



=


B1

· · ·

B2



(2.36)

B1 = −mSB
[
ω̄B/I

]

u

v

w

+


XW

YW

ZW

+


XPA

YPA

ZPA

+


XCA

YCA

ZCA

 (2.37)
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B2 = −SB
[
ω̄B/I

][
IB
]

p

q

r

+ SB
[
r̄cg→p

]

XPA

YPA

ZPA

+


LCA

MCA

NCA


+ SB

[
r̄cg→c

]

XCA

YCA

ZCA

 (2.38)

2.3 Sensor Model

To make informed control decisions and adapt to changing flight conditions, accurate

feedback must be available. Sensors considered in this work are GPS, barometric

altimeter, and a canopy mounted MEMS IMU to provide heading rate needed by the

adaptive control algorithm. Relevant beacon signals including spherical range, RB,

radial rate, ṘB, and relative heading to beacon, ψB, are generated by manipulating

aforementioned sensor data to focus on GNC development instead of beacon hardware

integration. Realistic measurements are generated in Equation (2.39) by corrupting

state parameters, yk, with exponentially correlated Gaussian noise, nk.

vk = yk + nk

nk = e−∆t/τnk−1 + εk
√

1− e−2∆t/τ

εk ∼ N(0, σn)

(2.39)

Time constant τ and standard deviation σn are chosen based on commercial off-the-

shelf sensors and listed for each sensor in Table 2.1.

2.4 Atmospheric Wind Model

Atmospheric wind is modeled by superimposing an altitude varying mean wind field

with a high frequency turbulence model to generate a realistic wind field. This com-

bined method simply and effectively captures low altitude wind fields identified during

experimental flight testing. Low frequency, large scale wind features are generated
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Table 2.1: Sensor error parameters

Sensor: Measurement Standard Deviation Time Constant

GPS: Horizontal Position 2.0 m 20 s

GPS: Horizontal Velocity 0.2 m/s 20 s

Altimeter: Vertical Position 3.0 m 1 s

Altimeter: Vertical Velocity 0.2 m/s 1 s

Canopy IMU: Heading Rate 5.0 deg/s 0.5 s

Figure 2.3: Horizontal wind shear profile.

by a horizontal wind shear model. This altitude dependent wind field is presented

in Figure 2.3 where parameters are variable between flights and constant during a

particular flight. By statistically varying the magnitude and direction of both the

upper and lower wind vectors, a rich variety of physical scenarios can be constructed.

Note that parameter variation is slightly constrained to match experimental data

collection which exhibits a correlation between wind speed magnitude and the direc-

tion change of the wind shear. Large wind magnitudes tend to have smaller shear

direction changes while low wind magnitudes are prone to large direction changes.
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(a) (b)

Figure 2.4: (a) Low wind magnitude wind field presenting high levels of direction
change; (b) High wind magnitude with low wind shear direction change.

This phenomena is presented in Figure 2.4 through two experimentally collected wind

fields. Additionally, due to the horizontal spatial variability of thermals and sinks,

the vertical winds are not modeled.

To capture high frequency, small scale components of the wind, turbulence is gen-

erated according to the Dryden turbulence spectrum given by MIL-STD-1797A [67]

(See Table 54). High frequency changes of the wind acting across the control vol-

ume of the vehicle induce rotational gusts. Also note that several conventions exist

with separate altitude domains [68]. This work focuses on low altitude turbulence

modeling (below 1000 ft by definition) which is the primary domain of experimental

flight test operations. Gust velocities are computed along the body axes and ro-

tated to align with the inertial NED coordinate system. Turbulence parameters are

calculated by driving discrete filters with unit-variance and independent white noise
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signals, ηi ∼ N(0, 1).

ug(k + 1) =

(
1−∆t

V0

Lu

)
ug(k) +

√
2∆t

V0

Lu
σuη1 (2.40)

vg(k + 1) =

(
1−∆t

V0

Lv

)
vg(k) +

√
2∆t

V0

Lv
σvη2 (2.41)

wg(k + 1) =

(
1−∆t

V0

Lw

)
wg(k) +

√
2∆t

V0

Lw
σwη3 (2.42)

pg(k + 1) =

(
1−∆t

2.6√
2Lwb

)
pg(k) +

√
2∆t

2.6√
2Lwb

1.9√
2Lwb

σwη4 (2.43)

qg(k + 1) =

(
1−∆t

πV0

4b

)
qg(k) +

π

4b
(wg(k + 1)− wg(k)) (2.44)

rg(k + 1) =

(
1−∆t

πV0

3b

)
rg(k) +

π

3b
(vg(k + 1)− vg(k)) (2.45)

In Equations (2.40) - (2.45), V0 is the vehicle airspeed and Lu, Lv, and Lw de-

fine the turbulence length scales which are altitude dependent. At higher altitudes,

large length scales imply long time constants for the discrete filter resulting in slow

variations in the turbulence. Near ground level, the length scales are shortened and

time constants are reduced resulting in higher levels of variance. These length scale

parameters are defined in MIL-STD-1797A [67] (Figure 266) for altitudes below 1200

ft and given in Equation (2.46). Note that scaling parameters are defined for SI units

resulting in SI turbulence velocities and angular rates, though given in the reference

material in Imperial units.

Lu = 2Lv =
h

(0.177 + 0.0027h)1.2

Lw = 0.5h

(2.46)

Additionally, the standard deviation of the horizontal components of the Dryden

turbulence model vary with respect to altitude while the vertical standard deviation

is held constant and left to the user as an input parameter.

σu = σv =
σw

(0.177 + 0.0027h)0.4
(2.47)

An example simulated wind field is presented in Figure 2.5 which shows the under-

lying wind shear model (dashed line) in addition to the total wind field which includes
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Figure 2.5: Simulated Horizontal wind shear profile.

Dryden turbulence (solid line). It can be observed that while thermals and sinks were

not modeled in the underlying model, the turbulence model added segments of flight

where there were up and down drafts around 0.5 m/s. Additionally, the impact of

altitude dependent length scale can be seen by the increase in stochastic behavior

near ground level.
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CHAPTER III

SMALL-SCALE EXPERIMENTAL PLATFORM

3.1 Vehicle Description

Simulated and experimental results are obtained using a small-scale parafoil and

payload system shown in Figure 3.1. This small-scale, remote controlled vehicle was

designed to provide an elegant alternative to full size airdrop system testing which

requires guided payloads to be dropped from manned aircraft. The key benefit of this

system is that it can be hand launched from ground level and flown under power until

a desired release altitude is reached at which time the motor is turned off and the GNC

algorithm is given control of the vehicle. This simulated drop method significantly

aids the development, testing, and validation of novel GNC algorithms.

The chassis of the vehicle is equipped with an autopilot, servo motors, electric

brushless motor, speed controller, and battery. Additionally, a small coin cell powered

wireless MEMS IMU is lcoated in the canopy to provide heading rate feedback. A

schematic of the primary computer electronics used for the small-scale flight vehicle is

presented in Figure 3.2. The autopilot uses an PIC32MX family microcontroller with

clock speed of 80MHz to handle wireless communications, sensor measurements, and

GNC calculations at 4Hz. Flight data is stored in EEPROM memory and transmitted

to a base station computer in real time via a 2.4 GHz XBee wireless link.

The vehicle is actuated via two high torque servo motors which enable lateral

control of the vehicle through trailing edge deflection of the canopy. Power is provided

from a 6000 mAh lithium polymer battery, sufficient to power the system over two

complete flights. A rear mounted motor and propeller are included to enable ground

launches and the simulated drop method. Last, a high torque servo winch is installed
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(a) (b)

(c)

Figure 3.1: Small-scale parafoil and payload system.

to control canopy incidence angle. This not only enables longitudinal control of the

aircraft, but is necessary to trim the flight behavior during powered flight.

3.2 System Identification Procedure

This section outlines a procedure used to match the flight dynamic model to the

characteristics exhibited by the experimental platform. A graphic overview of the

method is presented in Figure 3.3. System identification is based on the extraction

of data from steady state maneuvers, notably segments of constant differential brake
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Figure 3.2: Flight electronics used in the small-scale precision airdrop system.

inputs resulting in constant turn rate. These segments enable the atmospheric winds

to be characterized and decoupled from the airspeed of the vehicle by solving the

underdefined vector diagram illustrated in Figure 3.4 based on measured GPS sig-

nals. Measured ground velocity during these segments have a sinusoidal nature as

the aerial vehicle velocity vector combines both constructively and destructively with

the atmospheric wind velocity depending on the vehicle heading. In each segment,

airspeed and atmospheric winds are assumed constant to enable identification. Addi-

tionally, the side slip angle β is typically small for parafoil and payload systems which

results in the assumption that heading angle is approximately equal to the azimuthal

angle (ψ ≈ χ0). The atmospheric wind components, VWx and VWy, can be identified

by solving for Equation (3.1) based on the work done by Ward et al. [4].
ẋm1 − µẋ ẏm1 − µẏ

...
...

ẋmN − µẋ ẏmN − µẏ


VWx

VWy

 =
1

2


(V m

1 )2 − µV 2

...

(V m
N )2 − µV 2

 (3.1)
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Figure 3.3: Strategy to characterize aerodynamic parameters from steady-state flight
data [4].

Figure 3.4: Vector diagram illustrating the combined vehicle and atmospheric veloc-
ities [4].
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Here, (ẋmi , ẏ
m
i ) represent the measured horizontal velocity components, (V m

i )2 is the

squared velocity magnitude, and µα is the average value of parameter α in the set

i = 1 · · ·N . Finally, the airspeed of the parafoil and payload system, V0, can be

estimated using the measured GPS data and horizontal wind estimates.

V0,i =
√

(ẋmi − VWx)2 + (ẏmi − VWy)2, V0 = µV0 (3.2)

One major difficulty of the system identification process is the lack of observability

of the vertical atmospheric winds from the desecent rate of the vehicle. As a result,

descent rate of the vehicle is averaged over an entire flight (for a constant longitu-

dinal ) to reject the influences of atmospheric thermals and sinks. This requires the

assumption that the vehicles descent rate does not change due to lateral turn rate

commands which is reasonable as a turn rate limit of 15 deg/s does not significantly

change the roll angle of the vehicle.

By varying both asymmetric brake and canopy incidence angle, the entire flight

regime of the aircraft can be characterized to estimate the lift and drag performance

in addition to the control sensitivity. Identified steady state data (turn rate, descent

rate, and airspeed) is used to balance the lateral and longitudinal force diagrams

presented in Figure 3.5. Total vehicle lift and drag, denoted L and D respectively,

can be computed using Equations (3.3 - 3.6).

γ = tan−1

(
ż

V0

)
(3.3)

L′ = Wcos(γ) (3.4)

L =

√
(L′)2 + (mV0ψ̇)2 (3.5)

D = Wsin(γ) (3.6)
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Figure 3.5: Decomposition of lift and drag forces for a parafoil in a steady turn [5].

3.3 Characterized Model Parameters

A series of experimental flights were conducted to characterize the behavior of the

small-scale parafoil and payload system. For each flight, the canopy incidence angle

was held constant and the various asymmetric brake commands were held to estimate

steady state turn rate. Canopy incidence angle was varied from flight to flight to

explore the entire operating regime of the vehicle. Flights were conducted in the

early morning when atmospheric winds (particularly vertical winds) were mildest.

The aforementioned system identification procedure was used to fit experimental data

to the simulation model parameters detailed in Chapter II. A list of model parameters

is presented in Tables 3.1 - 3.2.

Lateral and longitudinal control sensitivities were also characterized. This is nec-

essary to build the simulation model and to provide the control algorithm with the

mappings to effectively track a desired command. The lateral control mapping is

shown in Figure 3.6(a) where a left turn bias is exaggerated as the canopy incidence

angle rotates to the nose up position (associated with δΓ = 1). This nonlinearity is a

result of slight inconsistencies in the rigging geometry of the canopy. The longitudinal

response of the vehicle shown in Figure 3.7(a) is assumed to only vary as a result of

changing incidence angle. The influence of asymmetric brake commands on airspeed

is minimized by enforcing a constant symmetric brake level by splitting a desired δa
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Table 3.1: Mass and Geometry parameters of a small scale airdrop system.

Parameter Value Units

Total Mass, m 2.7 kg

Canopy Span, b 1.8 m

Canopy Chord, c̄ 0.75 m

Nominal Incidence Angle, Γnom -25 deg

Incidence Angle Range, ∆Γ 13 deg

Payload Drag Area, Sp 0.01 m2

Inertia, Ixx 1.93 kg-m2

Inertia, Iyy 0.57 kg-m2

Inertia, Izz 0.37 kg-m2

Inertia, Ixz 0.104 kg-m2

Apparent Mass, A 0.05 kg

Apparent Mass, B 0.35 kg

Apparent Mass, C 1.85 kg

Apparent Inertia, P 0.07 kg-m2

Apparent Inertia, Q 0.06 kg-m2

Apparent Inertia, R 0.046 kg-m2
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Table 3.2: Aerodynamic parameters of a small scale airdrop system.

Coefficient Value Coefficient Value

CL,0 0.0 Cl,r 0.0

CL,α 3.9 Cl,δa 0.0

CL,α3 20.0 Cl,p -0.1

CL,δb 0.0 Cm,q -2.5

CL,αδb 0.39 Cm,δb 0.0

CD,0 0.153 Cn,β 0.02

CD,α2 2.4 Cn,p 0.0

CD,δb 0.043 Cn,r -0.11

CD,α2δb 2.062 Cn,δa 0.005

CY,β -1.0 Cn,δa2 0.0

CD,p 0.5

between the left and right actuators. Longitudinal performance indicates that glide

slope varies from approximately 2 to 3 across the range of incidence angles.
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Figure 3.6: Lateral performance of the small-scale airdrop vehicle. Dots represent
experimental measurements and the surface is a 2nd order fit of the data.

Figure 3.7: Longitudinal performance of a small-scale airdrop system. Dots denote
experimental measurements and lines are simulation results.
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CHAPTER IV

OVERVIEW OF A CONVENTIONAL GPS-BASED

AUTONOMOUS ALGORITHM

This chapter details the fundamental aspects of a guidance, navigation, and control

algorithm used for precision airdrop systems when GPS feedback is available. This

chapter provides an introduction to guided airdrop strategies and algorithms which

enable autonomous control. Many of these ideas are leveraged or expanded upon in

the remaining chapters.

At a basic level, the guidance algorithm conducts path planning based on the cur-

rent state estimates. The navigation algorithm uses GPS measurements to estimate

the vehicle position, velocity, heading direction and rate in addition to atmospheric

winds. The control algorithm acts upon current state parameters and desired param-

eters provided by guidance to steer the vehicle along a desired path. More detail on

each of these methods are presented in the following sections.

4.1 Guidance

The guidance algorithm uses vehicle state and atmospheric estimates from the nav-

igation algorithm to compute a set of desired paths to accurately reach the IP. To

aid path planning, a wind based reference frame (WF) is established which is as-

sociated with the drift expected from the influence of the horizontal components of

the atmospheric winds. Utilizing the wind based reference frame is advantageous as

it decouples the absolute system movement into no wind flight conditions and the

drift caused by atmospheric winds. This moving reference frame attempts to capture

the impact of the winds from ground level to the vehicle altitude to characterize the
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Figure 4.1: Visual representation of the wind based reference frame. It is offset
from the inertial origin by an amount (∆x,∆y) and rotated to align with the wind
direction.

zero effort miss of a non-gliding ballistic parachute. With perfect wind knowledge, a

ballistic system located at the origin of the wind based reference frame will descend

and drift with the atmospheric winds and land precisely at the IP. Additionally, the

frame is rotated from the N-E-D inertial frame to align the îWF axis with the wind

direction expected at ground level. A diagram outlining relation between the inertial

and wind based reference frames are presented in Figure 4.1.

This method was initially proposed by Goodrick et al. [10] and more recently by

Jann [34] who calculated the expected wind drift, (∆x,∆y), based upon the integral

of the wind profile and descent rate from ground level to the payload altitude, h.

∆x =

∫ h

0

VWx(z)

ż(z)
dz

∆y =

∫ h

0

VWy(z)

ż(z)
dz

(4.1)

Here, VWx(z), VWy(z), and ż(z) are the horizontal wind velocity components in the

inertial frame and the vehicle descent rate, respectively. The formula in Equation

(4.1) can be simplified by assuming constant descent rate for the system which is

normally an excellent assumption for airdrop systems [69, 70]. Using an estimate of

the wind profile, a set of altitude - averaged wind components (V̄Wx, V̄Wy) are defined
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which represent the bulk average of the wind profile from the current altitude to the

ground.

V̄Wx =
1

h

∫ h

0

VWx(z)dz

V̄Wy =
1

h

∫ h

0

VWy(z)dz

(4.2)

The position of the parafoil and payload system in the wind based reference frame

is calculated based on the inertial position, expected wind drift, and remaining time

aloft, Trem.

Trem =
h

ż
(4.3)xWF

yWF

 =

 cos(ψW ) sin(ψW )

−sin(ψW ) cos(ψW )


xI + TremV̄Wx

yI + TremV̄Wy

 (4.4)

It is important to note that vertical atmospheric winds are not used to shift the

wind based reference frame as thermals and local sinks have a high amount of spatial

variability and often do not persist throughout the entire flight. The orientation of

the wind based reference frame is rotated using the four-quadrant arctangent of the

current estimated horizontal atmospheric wind components.

ψW = atan2(VWy, VWx) (4.5)

Path planning conducted by the guidance algorithm occurs within the wind based

reference frame. The following sections detail the logic used which is broken into four

phases: initialization, loiter, approach, and flare.

4.1.1 Initialization

During this phase, initial estimates of the horizontal wind components and vehicle

airspeed are computed. This provides an initial condition for the navigation algorithm

which will continue to estimate state quantities after the initialization period. This

method is an online implementation of the system identification procedure presented

in Section 3.2. Equation (3.1) is solved in real time using a standard Kalman filter.
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The turn length is chosen to be approximately equal to a full turn of 2π such that

the estimation error is bounded by the GPS velocity measurement error [4]. At the

end of this open loop flight segment, the vehicle enters the loiter phase.

4.1.2 Loiter

After the initialization phase, the system can define the wind based reference frame

which is constantly updated as the wind changes as a function of space and time.

During this phase, the parafoil and payload system flies through a set of figure eight

turns in order to maintain position relative to the target. This is accomplished by

defining waypoints that are at the tips of ‘T’ shaped reference line that extends

downwind of the IP in the wind based reference frame. The T-approach was proposed

by Jann [34] and is shown in Figure 4.2. The vehicle uses Dubins path planning to

reach the desired waypoints from its current location and heading. Dubins paths

minimize the flight distance with three maneuver elements: initially turning at a

constant rate in the direction of the next waypoint, flying straight to approach the

waypoint, and when near the waypoint, turning to match desired heading defined by

the waypoint [34, 69, 71]. When commanding figure eight turns, the system always

turns upwind when reaching waypoints, preventing large drifts downwind.

Figure 4.2 illustrates the path planning during transition from initialization to

figure eight turns. The key is to study the geometry of the situation by analyzing

Dubins path options with circles of set radius (one at the starting location and one at

the end) and the straight line that is tangent to both circles. The algorithm analyzes

four paths the system could take, turning left or right from the current location and

approaching the final location turning either left or right (Figure 4.2 only shows 2

of these options). The shortest total distance is the path chosen by the guidance

algorithm, denoted by the solid line in Figure 4.2, one of the three suboptimal paths

is also shown as the dashed line.

39



Figure 4.2: Visualization of Dubins path planning transitioning from the left waypoint
to the right.

During the entire loitering period, the altitude required to reach the target from

the current location is computed. The instantaneous distance to the target is defined

by the arc of the circle required to turn from the current heading to point at the

target and the straight line between the end of this turning circle and the target.

L = |dψ|R + ‖x̄1 − x̄T‖ (4.6)

Here, dψ,R, x̄1, and x̄T are the change in heading, turning radius, the coordinates

at the end of the turn, and the coordinates of the landing target. Flight distance is

converted to the required height based on the estimated descent rate and airspeed

using Equation (4.7).

hREQ = L
ż

V0

(4.7)

When the current altitude equals hREQ, the system switches into the approach phase.
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4.1.3 Approach

This section deviates from the figure eight holding pattern and attempts to fly upwind

towards the target along the stem of the ‘T’. An offset target is introduced that is

downwind of the desired impact point which ensures that the end of the trajectory is

a straight line segment up the stem of the ‘T’ with the vehicle pointed into the wind.

For a vehicle with only lateral control authority as presented here (longitudinal control

is only recently becoming feasible for large scale systems [5]), some adjustments to

this trajectory can be made if the system is going to reach the offset target with too

much or too little altitude. If the system has too much altitude, the system commands

a short doublet maneuver (a left-right turn combination) until the excess altitude is

lost and hREQ = h. If the system has too little altitude, the offset target is abandoned

early, and the system flies directly to the landing point.

4.1.4 Flare

The goal of the landing maneuver is to minimize the kinetic energy of the system

just before impact. Below a preset altitude threshold the vehicle is commanded to fly

upwind, even if it means turning away from the target. This stresses the importance

of accurately lining up downwind of the target during the approach phase. Prior to

impact, full symmetric brakes are applied to flare the canopy into pre-stall conditions

which decreases the forward airspeed and minimizes the potential for the payload to

roll after impact.

4.2 Navigation

For guided parafoil and payload systems, the important states to estimate are the

atmospheric winds and vehicle position, velocity, heading angle and rate. After the

open loop initialization procedure generates an initial estimate of these parameters,

the navigation algorithm continues to propagate them forward in time. We assume
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that GPS is available to provide 3-dimensional measurements of position and velocity.

The horizontal and vertical positions and velocities are directly measured which al-

low filtered estimates to be generated through a standard Kalman Filter. For simplic-

ity, presentation of the standard Kalman Filter is presented in terms of the generalized

coordinate q which represents the North (x), East (y), and vertical (z) coordinates.

Equation (4.8) defines the state propagation to estimate the current a priori (-) es-

timate given the previous a posteriori (+) value which is corrupted by the process

noise, w. q
−
k+1

q̇−k+1

 = A

q
+
k

q̇+
k

+

wqwq̇
 , A =

1 ∆t

0 1

 (4.8)

The error covariance propagation, Kalman gain, and error covariance update are

defined sequentially as:

P−k+1 = AP+
k A

T +Q (4.9)

Gk = P−k+1

(
P−k+1 +R

)−1
(4.10)

P+
k+1 = (I −Gk)P

−
k+1 (4.11)

where Q and R represent the process and measurement noise covariance, respectively.

Since the state matrix A does not change with state or time, Equations (4.9)-(4.11)

can be executed offline to identify the stead-state, constant Kalman gain. Q and R

are defined by Equation (4.12) with process and measurement noise variances listed

in Table 4.1.

Q =

0 0

0 Qq̇

 , R =

σ2
q 0

0 σ2
q̇

 (4.12)

Using the measured quantities from GPS (denoted by superscript m), updated

state estimates are provided using Equation (4.13).q
+
k+1

q̇+
k+1

 =

q
−
k+1

q̇−k+1

+G

q
m
k+1 − q−k+1

q̇mk+1 − q̇−k+1

 (4.13)
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Table 4.1: Process and measurement noise variance values.

Qq̇ (m/s)2 σq (m) σq̇ (m/s)

North and East Pos. and Vel. 2.0 2.0 0.2

Vertical Pos. and Vel. 1.0 3.0 0.5

An extended Kalman Filter is used to estimate the horizontal wind components

and vehicle heading angle and heading rate. This filter varies from the stationary

Kalman filter as the gain must be calculated at every time step. The state transition

matrix is given in Equation (4.14) and assumes slowly varying vehicle heading rate

and atmospheric winds. The nonlinear measurement model is presented in Equation

(4.16) which relates measurable ground velocity to state parameters.

x̄−k+1 = Ax̄+
k + wk (4.14)

x̄k =



VWx,k

VWy,k

ψk

ψ̇k


, A =



1 0 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1


, wk =



wVWx

wVWy

0

wψ̇


(4.15)

ȳk = g(x̄−k ) + nk (4.16)

ȳk =

ẋkẏk
 , g(x̄k) =

VWx,k + V0cos(ψk)

VWy,k + V0sin(ψk)

 , nk =

nẋnẏ
 (4.17)

The extended Kalman filter is a linear estimator and requires linearized models of

the observer dynamics. As such, g(x̄k) is linearized about the current state.

Ck =
∂g(x̄k)

∂x̄k

∣∣∣∣
x̄k

=

1 0 −V0sin(ψk) 0

0 1 V0cos(ψk) 0

 (4.18)

The error covariance propagation, Kalman gain, and error covariance update for
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Table 4.2: Process and measurement noise variance values.

Parameter Value Units

QVW 0.25 (m/s)2

Qψ̇ 0.03 (rad/s)2

σV 0.25 (m/s)

the extended Kalman filter is given below.

P−k+1 = AP+
k A

T +Q (4.19)

Gk = P−k+1C
T
k

(
CkP

−
k+1C

T
k +R

)−1
(4.20)

P+
k+1 = (I −GkCk)P

−
k+1 (4.21)

The updated state estimates can be calculated using Equation (4.22) after computing

the k + 1 Kalman gain.

x̄+
k+1 = x̄−k+1 +Gk

(
ȳmk − g(x̄−k+1)

)
(4.22)

Finally, the process and measurement noise covariance matrices are presented in

Equation (4.23) with parameter values listed in Table 4.2.

Q =



QVW 0 0 0

0 QVW 0 0

0 0 0 0

0 0 0 Qψ̇


, R =

σ2
V 0

0 σ2
V

 (4.23)

4.3 Control

Airdrop systems are typically controlled using left and right trailing edge brake de-

flection. This increases drag on a specific side of the canopy, inducing lateral turning

control through a skid turn. The steering controller presented here uses a nonlinear
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PI controller to track a commanded heading angle. The proportional component is

nonlinear to reduce the control effort when the heading error is small. A commanded

turn rate (ψ̇c) is generated based on the heading error between the current desired

heading (ψdes) supplied by the guidance algorithm and the estimated heading filtered

by the navigation algorithm, ψk.

∆ψk =
ψdes − ψk

∆ψmax
(4.24)

ψ̇c =


ψ̇max for ∆ψk ≥ 1

−ψ̇max for ∆ψk ≤ −1

ψ̇max∆ψk
√
|∆ψk| else

(4.25)

From the desired turn rate, asymmetric brake deflection, δac, is determined based

on an a priori control mapping. This expression is supplemented by a bias term

identified by the integral controller to allow the vehicle to fly straight under no pro-

portional control.

δac = f(ψ̇c) + δabias (4.26)

δabias = KI

k∑
i=1

(
ψ̇c(i)− ψ̇k(i)

)
(4.27)

It should be noted that δac is a parameter that varies in the span [−1, 1] signifying

the maximum turning effort in both left and right directions. This asymmetric brake

parameter is then converted into the individual brake deflection of the left and right

trailing edge, δlc and δrc, respectively.

δlc = δbc −
1

2
δac (4.28)

δrc = δbc +
1

2
δac (4.29)

Here, symmetric brake level, δbc, is included in order to command a flare. With a

nominal, non-zero asymmetric brake, each actuator only needs to act over a portion

of the needed brake differential, leading to faster actuator response. This method

reduces the impact of asymmetric brake on the nominal airspeed of the airdrop system
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during turning, making path planning computationally more efficient. Only under

flare in the final stage of the guidance algorithm, does the symmetric brake level

change in order to slow the system to near stall prior to landing. Additionally note

that based on these definitions, δlc and δrc are mapped from 0 to 1 which is the

minimum to maximum range of the brake actuators.

4.4 Example Autonomous Flight

An example simulation based flight trajectory is shown in Figure 4.3 to highlight all

4 stages of the guidance algorithm. A 3 m/s constant wind field blows due North

and the vehicle is initialized upwind (South) of the IP which is standard operating

procedure. On the right, the vehicle trajectory is plotted in the wind based reference

frame where the T-shape loiter pattern and approach is clearly visible. On the left, the

trajectory is plotted in the inertial frame to exhibit how the loiter pattern is stretched

out to account for the expected wind drift of the vehicle. The vehicle accurately aligns

the approach phase into the wind and only slightly overshoots the IP which could be

mitigated through the implementation of longitudinal control.
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Figure 4.3: Example trajectory of an autonomous airdrop system plotted in the (a)
inertial and (b) wind relative reference frames.
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CHAPTER V

A METHOD FOR IN-FLIGHT IDENTIFICATION OF

HIGHLY UNCERTAIN SYSTEMS

Most advances in the field of precision guided airdrop systems focus on improved

landing accuracy and robustness to atmospheric winds. However, there is a growing

need to address the high levels of variability that is observed in the performance

of these soft and flexible aerodynamic vehicles. The Conventional GNC algorithm

presented in Section 4 has a basic form of adaption as it can successfully characterize

deviations in the vehicle airspeed and turn rate bias that occur each flight. Airspeed

estimation ensures a convergent navigation solution and the identified turn rate bias

improves the heading controller. However, this adaptive behavior is insufficient with

high levels of uncertainty in vehicle flight dynamics.

An example flight simulation is presented in Figure 5.1 that highlights the suscep-

tibility of conventional GNCs for precision airdrop systems to variation in the model

dynamics. In this flight, the vehicle turn rate sensitivity is doubled causes poor head-

ing and heading rate tracking behavior and lands approximately 90m from the target.

The initialization algorithm over estimated airspeed by 10% due to the high turn rate

during the initialization period and twice the vehicle entered a steep spiral which

cannot always be recovered from in practice. Finally, the integral bias term δabias

in Figure 5.1(c) adapts aggressively but cannot bring the turn rate dynamics under

control. Overall, the inability to handle this type of damage or many others stresses

the need for more adaptive control.

Precision airdrop systems present a great opportunity for system identification

because precise tracking is not required at altitude. The loiter period by definition
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(a) (b)

(c)

Figure 5.1: Simulated results of the Conventional GNC applied to a vehicle with
above nominal turn rate sensitivity.
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is a time where they vehicle waits for enough altitude to be lost in order to fly

towards and land at the IP. This phase can be re-purposed to explore and characterize

the vehicle control sensitivity and dynamic response. When the system transitions

to approach, the identified characteristics of the vehicle can be exploited to ensure

accurate tracking and precision landing.

Generally, there are two classifications for adaptive systems, direct and indirect.

Direct adaptive systems internally adapt parameters to drive the output error to zero

through feedback. At the root of these algorithms is a requirement that the sign of

the control authority is known for convergent behavior. As this is not guaranteed

based on the problem statement, the focus is placed on indirect adaptive systems

which take a data driven approach by analyzing input and output data. This data is

used to characterize a model which is then used to control the system.

Flight time, and hence identification time, is capped based on the release altitude.

To accomplish in-flight system identification, a model is need that has sufficient com-

plexity to capture the dynamic behavior but has a simple enough form to ensure

convergence over a short period of flight time. Model selection is aided by knowledge

of the typical flight behavior of parafoil systems. The vehicle response to a given in-

put is relatively linear as shown in Figure 5.2a whereas the response level to varying

inputs can show significantly nonlinear behavior as in 5.2b.

One model that well represents this is the Hammerstein model. The Hammerstein

model is a specific type of nonlinear model which splits the plant into two elements:

a linear, time-invariant dynamic block and a static (or memoryless) nonlinear block.

Figure 5.3 shows an illustration of the model where inputs ū(t) can be scaled and/or

mixed by the Static Nonlinear Mapping (SNLM) to generate an intermediate, nonlin-

ear control parameter v̄(t). The intermediate inputs excite the Linear, Time-Invariant

Dynamics (LTID) to produce the system response ȳ(t). This model captures the gen-

eral characteristics of a precision airdrop system in a simple and concise manner,
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(a)

(b)

Figure 5.2: (a) Simulated parafoil dynamic response to a step asymmetric brake input
commanded at t = 40 sec; (b) Identified control mappings from flight testing of two
20 ft2 canopies [5].

Figure 5.3: Graphic representation of a Hammerstein Model.

greatly simplifying the system identification typically need (see Section 3.2). If the

model identification time can be reduced sufficiently then the dynamic behavior and

control sensitivity of the vehicle can be characterized in-flight for a fully adaptive

control algorithm.

Many different representations of the Hammerstein model have been explored in

the literature. The LTID block has been represented by autoregressive (ARX &

ARMAX), output error (OE), and finite impulse response (FIR) models [72–76]. The

order of the dynamic model is often selected a priori based on known characteristics

of the system to which it represents. Similarly, the form of the SNLM depends

heavily on the application and has seen both parametric and nonparametric methods

to approximate it. Nonparametric models offer more generality over parametric ones,

but can require significantly more computation.
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With the parafoil system in mind, this work selects the model dynamics to be

represented by an nth order OE model given in Equation (5.1) and the SNLM is

represented nonparametrically. This general form of the SNLM ensures robustness to

various control mappings and coupling effects that may occur in a degraded condition.

G(z) =
α1z

−1 + . . .+ αnz
−n

1 + β1z−1 + . . .+ βnz−n
(5.1)

As a final note, one key benefit of the Hammerstein model is the flexibility of how

it can be expanded to higher number of inputs and outputs. In a simple and concise

manner, the Hammerstein model accounts for the direct and cross channel correlations

between input and output signals. There are also a clear benefits to expand past a

lateral only (SISO) controller. Glide slope control has been implemented in several

recent works [22, 29–31] and can significantly boost accuracy by reducing under and

over shooting the target.

To enable in-flight glide slope estimation and control, accurate measurements of

the airspeed and descent rate of the vehicle are required. While this isn’t particu-

larly challenging for many fixed wing aircraft, precision airdrop systems are limited

in weight allowance and require rugged design to survive potentially hard impacts

at landing. As a result, pitot tubes and many other common airspeed measurement

devices are ill-suited to this application. Equipped with only GPS, barometric al-

timeter, and heading rate feedback from a MEMS Inertial Measurement Unit (IMU),

the navigation algorithm cannot observe time-varying airspeed, vehicle descent rate,

or vertical atmospheric winds. Of particular importance is the descent rate of the

vehicle. With only inertial measurements, the effects of flying into and out of thermal

columns in the wind can dominate the control authority of the parafoil leading to

failed identification. Improvements in sensing can unlock these currently unobserv-

able velocity components of the longitudinal channel.

For the benefit of future expansion, the model identification problem is presented
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for MIMO systems but focuses the application of the method towards the SISO prob-

lem of pure lateral control of a precision airdrop system.

5.1 Hammerstein Model Identification

There are many algorithms for Hammerstein model identification, specifically for

unique model representations. The classic methodology by Narendra and Gallman

[10] independently optimized the LTID and SNLM elements by iteratively assuming

one is constant or known while optimizing the other. The method proved convergence

on several trail functions but Stocia [11] further studied the method by noting the con-

ditions when this method provided divergent results. Since the original identification

method, several new iterative methods have been proposed [77, 78] which improve

the stability of the iterative approach. In addition, researchers have used stochas-

tic methods [79–81], overparameterization methods [75, 82–85], and separable least

squares methods [74, 86] to estimate the Hammerstein model. Stochastic methods

leverage the properties of white noise to separate the linear and nonlinear elements

but suffers if the noise is colored. Overparameterization uses an explicit representa-

tion of the SNLM to generate closed form solutions of the input-output relationship

in terms of both the LTID and SNLM parameters to allow dual estimation. The

separable least squares solution decouples the LTID identification from the SNLM by

exciting the system with a quasi-randomly oscillating square wave. This only linearly

excites the SNLM and has persistent excitation for a linear system ensuring quality

parameter estimation.

While many of these are viable identification procedures, the separable least

squares method is ideally suited to the estimation of airdrop systems and will be

used here. The LTID can be realized initially through an open loop process similar

to the current Initialization procedure (Section 4.1.1). Then, the remainder of the

flight is available to improve the SNLM estimate.
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5.1.1 Linear Time-Invariant Dynamics

The key to separating the two elements of the Hammerstein model is through the use

of a pseudo-random binary sequence (PRBS) or a square wave of changing frequency.

A PRBS signal switches between two values ±c for some c 6= 0 in a deterministic,

though uncorrelated fashion. As a result of only being excited by two input levels,

the SNLM acts as a static gain (two points define a line) and the constant gain can

be solved simultaneously with the LTID system. In fact, the value of the static gain

is irrelevant as Hammerstein models are known to have non-unique solutions due to

the multiplication of the two elements. For a 2x2 MIMO system, this is represented

in Equation (5.2) where γ1 and γ2 represent non-zero scaling factors to be selected by

the control designer. y1

y2

 =

G11(z)
γ1

G12(z)
γ2

G21(z)
γ1

G22(z)
γ2


γ1f1(u1, u2)

γ2f2(u1, u2)

 (5.2)

To characterize the dynamics, each input channel is individually excited by a

PRBS signal. During stage 1 (PRBS on the 1st channel), the linear function PRBS(c)

switches between ±c causing the control input and intermediate nonlinear control to

be characterized as follows.

u1(k) = PRBS(c), u2(k) = 0 (5.3)

v1(k) = f1(PRBS(c), 0) = PRBS(f1(c, 0)) (5.4)

v2(k) = f2(PRBS(c), 0) = PRBS(f2(c, 0)) (5.5)

As only two values pass through the SNLM, the response can be approximated by

linear functions.

v1(k) = b11 + η11u1(k) (5.6)

v2(k) = b21 + η21u1(k) (5.7)
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Figure 5.4: Linear approximation of an example SNLM under PRBS input.

Here, bij and ηij represent the offset and slope of the line that approximates the re-

lationship between the ith output and jth input. A 1-dimensional illustration of this

approximation is shown in Figure 5.4 but exists between every input u(k) and inter-

mediate control v(k). Additionally, due to the non-uniqueness discussed in Equation

(5.2), the scaling parameters γ have a similar role as the direct channel sensitivity

(ηij|i = j). As a result, the direct channel sensitivity is assumed equal to 1 and the

γ parameter is chosen after realization of Ḡ(z) and is discussed later in this section.

b21 = p1b11 (5.8)

η21 = q1η11 (5.9)

Here pi and qi represent the ratio of cross channel to direct channel steady state bias

and control sensitivity of the linear SNLM approximation, respectively. With this

relationship, the ith model output can be estimated as:

yi(k) = Gi1(z)v1(k) +Gi2(z)v2(k) (5.10)

= Gi1(z)(b11 + u1(k)) +Gj2(z)(p1b11 + q1u1(k)) (5.11)

= (Gi1(z) + p1Gj2(z))b11 + (Gi1(z) + q1Gj2(z))u1(k) (5.12)

= Si1(z)b11 +Hi1(z)u1(k) (5.13)

Using the PRBS input, an input-output relationship is derived which enables a new

dynamic model, Hi1(z), to be identified. This sub-realization of the LTID model is
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Figure 5.5: Decomposed realization of the LTID block under PRBS input.

represented in Figure 5.5. Note that H(z) takes the same form as G(z) given in Equa-

tion (5.1). Considering Equation (5.13) for each input and output, the relationship

between H̄(z) and Ḡ(z) is given as follows.H11(z) H12(z)

H21(z) H22(z)

 =

G11(z) G12(z)

G21(z) G22(z)


 1 q2

q1 1

 (5.14)

H̄(z) = Ḡ(z)Q̄; Ḡ(z) = H̄(z)Q̄−1 (5.15)

This method not only allows estimation of the LTID before the SNLM, but splits

the problem into a series of SISO identification problems which can be solved in

parallel for each output from a given input. By sequentially exciting each input

channel with the PRBS sequence, each element of H(z) can be identified.

To solve Equation (5.13), we make use of the fact that both S(z) and H(z) have

the same denominator as they are linear combinations of the same elements elements

of Ḡ(z) matrix of transfer functions. Additionally, since b11 is a constant the influence

of S(z) only adds a static gain. Multiplying Equation (5.13) by the denominator of

H(z) generates an equation governing the system output in terms of the unknown

model parameters.

yj(k) = −
n∑
s=1

βi1s yj(k − s) +
n∑
s=1

αi1s u1(k − s) + b11

n∑
s=1

αi1s (5.16)

yj(k) = −
n∑
s=1

βi1s yj(k − s) +
n∑
s=1

αi1s u1(k − s) +B11 (5.17)

This can be rewritten in vector form using the data and parameter vectors, φi1(k)

and θi1, respectively.

yj(k) = φTi1(k)θi1 (5.18)
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φi1(k) = {u1(k), . . . , u1(k − n),−yi(k − 1), . . . ,−yi(k − n), 1}T (5.19)

θi1 = {αi11 , . . . , αi1n , βi11 , . . . , β
i1
n , Bi1}T (5.20)

The parameter vector is estimated by optimizing the cost of the quadratic error

criterion over the span of N measurements.

J(θ) =
N∑
k=1

[yi(k)− ŷi(k)]2 (5.21)

=
N∑
k=1

[yi(k)− φTi1(k)θ̂i1]2 (5.22)

The resulting linear least squares estimation problem can be solved recursively using

an extended Kalman filter (5.23) - (5.25).

G(k) = P (k − 1)φi1(k)[φi1(1)TP (k − 1)φi1(k − 1) +R(k)]−1 (5.23)

θ̂i1(k) = θ̂i1(k − 1) +G(k)[yi(k)− φTi1(k)θi1(k − 1)] (5.24)

P (k) = [I −G(k)φi1(k)T ]P (k − 1) (5.25)

Here G(k) is the Kalman gain, R(k) is the process noise, and P (k) is the covariance

matrix. Initial conditions for θ̂i1(0) are based on a nominal system model.

The LTID model identification process can be performed across all outputs simul-

taneously to calculate each θ̂i1 vector. The PRBS command is then applied to the

remaining inputs sequentially, completing the estimation of the sub-dynamic model

H̄(z). Based on Equation (5.14), the parameters q1 and q2 are selected to reconstruct

the transfer function matrix Ḡ(z), provided q1q2 6= 1. Jeng and Huang [86] proposed

two options for the selection of qi with the goal of improving the controllability of the

resulting system. The first method decouples the steady state response of model by

selecting qi such that the gain of the diagonal elements of Ḡ(z) are zero. The second

method drives the system towards diagonal dominance which simplifies the design of

a multiloop decentralized controller [87].
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This work applies the method of steady-state decoupling in order to drive the ma-

jority of the constant, steady-state information into the SNLM instead of embedded

in the dynamic equations. This implies that qi are selected in order to drive |Gji| = 0

for i 6= j. By defining |H̄(z)| as a matrix of the gain of each individual transfer

function (and similarly for |Ḡ(z)|), Equation (5.14) is solved where each matrix is

replaced with the magnitude equivalent.

|G12(z)| = |H12(z)|+ q1|H22(z)| (5.26)

|G21(z)| = |H21(z)|+ q2|H11(z)| (5.27)

q1 = −|H12(z)|
|H22(z)|

; q2 = −|H21(z)|
|H11(z)|

(5.28)

This unique solution of the LTID sub-system removes the cross channel gain in the

LTID but accounts for their effects in the SNLM based on the definition of qi as

the relationship governing the ratio between cross and direct channel linear control

sensitivities.

The initial realization Ḡ(z) is used to address the non-uniqueness between the

dynamic and static nonlinear blocks. The parameters γ1 and γ2 given in Equation

(5.2) are selected to drive the gain of the diagonal elements of Ḡ(z) to unity, again

to push steady state data to the SNLM.

γ1 = |G11(z)|; γ2 = |G22(z)| (5.29)

The resulting linear dynamic model captures both the direct and cross channel

effects while having a system gain equal to the identity matrix. A linear estimate of

the SNLM is given as:

v1(k) = v1,0 + γ1u1(k) + γ2q2u2(k)

v2(k) = v2,0 + γ1q1u1(k) + γ2u2(k)

(5.30)

where vi,0 are the zero input biases calculated from the offset terms, B11 and B22,
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defined in Equations (5.16 - 5.17).

v1,0 =
γ1B11∑n
i=0 α

11
i

v2,0 =
γ2B22∑n
i=0 α

22
i

(5.31)

Here, α11
i represents the numerator coefficients of the LTID sub-system transfer func-

tion H11(z).

Finally, note that as a result of Ḡ(z) having gain equal to the identity matrix, the

nonlinear control inputs are equal to the desired stead state output of the system,

ȳd(k). This implies that the SNLM is not just a nonlinear scaling and mixing function,

but an explicit representation of the control mapping of the vehicle and Equation

(5.30) provides a first order estimate.

5.1.2 Static Nonlinear Map

The goal of this section is to improve upon the initial linear estimate of the static

nonlinear map calculated in Equation (5.30) by using real-time input and output

data. Since this approach does not assume a structure to the SNLM based on a

priori knowledge, the estimation method at its core is non-parametric. To solve this,

several articles that use the PRBS identification method highlight that once the LTID

are known, the intermediate control signal v̄(k) can be estimated by applying the

inverse dynamics to the output measurements [74, 76]. Assuming Ḡ(z) is invertible,

the intermediate control is simply v̄(k) = Ḡ(z)−1ȳ(k). This enables a series of points

(u(k), v(k)) to be directly compared and the form estimated in either a parametric

or non-parametric fashion.

There are several problems associated with generating v̄(k) from ȳ(k). First, the

realization of a non-minimum phase system for Ḡ(z) significantly complicates the

computation. One solution is to convert the model into a minimum phase system us-

ing an all-pass filters [88]. This approximates the original transfer function with one

where the non-minimum phase zeros are replaced with their conjugate pair inside the
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Figure 5.6: Representation of method used to generate a real-time comparison of the
input-output relations.

unit circle. The new all-pass system has identical magnitude behavior but introduces

a phase difference which can add significant error to a series of input-output data used

to realize the mapping. Second, inverted models can have lead-compensator charac-

teristics which amplify high frequency components in the signal, notably measurement

noise. While these methods are viable depending on the system being characterized,

the need for a fast, in-fight, and robust method limits their application.

A significantly simpler option is available by re-framing the problem. First, note

that as a result of the unity gain of the LTID block, any signal passed through the dy-

namics will only experience a phase delay but not steady state scaling. Furthermore,

a constant value passed through Ḡ(z) is unchanged. As a result, the entire static

nonlinear function can be passed through the dynamics without scaling or phase de-

lays. Instead of removing the phase dynamics from the measured output as would

be done through dynamic inversion, this method adds phase to the input command

to estimate the delayed input command, ūF (k). Figure 5.6 depicts how the phase

delayed input signal can be compared to the measured system response to improve

the estimate of the SNLM.

One of the primary benefits of this method is that it allows for the control sen-

sitivity mapping to be characterized in the parameter domain instead of temporally.
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All steady state and dynamic data is passed into the SNLM estimator whereas con-

ventional parameter estimation of parafoil systems is purely based on time-averaged,

steady state data. At this point it should be noted that to properly characterize

the nonlinear behavior of the SNLM, sufficient parameter exploration must be con-

ducted. Given a stream of phase matched input and output data entering the SNLM

estimator, any parametric or non-parametric method can be used to model the control

sensitivity.

As far as the general identification problem is concerned, this method for the

characterization of the SNLM concludes the model identification process. Model

fitting of this data is highly specialized based on the number of inputs/outputs and

how much of the parameter space needs to be explored to achieve the goals of the

GNC algorithm. Further detail on modeling the lateral only data stream sent to the

SNLM estimator used in this work is presented in the following Section.

5.2 Hyperadaptive Guidance, Navigation, and Control

This section details extensive expansions to guided airdrop flight software to embed

the Hammerstein model and identification process at the core of the GNC. Expan-

sions include a pre-initialization input check, an expanded initialization for airspeed

and LTID estimation, control considerations using a variable control mapping, and

improved path planning.

For the lateral-only GNC developed here, the mathematical formulation of the

previous section can be simplified to the SISO case. The control input is taken as

the asymmetric deflection of the trailing edge brake (u1 = δa) and the output is the

measured heading rate (y1 = ψ̇). The assumed form of the dynamic transfer function

which governs the turn rate response is chosen to be first order. Analysis into higher

order models characteristically lead to over fit data or systems dominated by the first

order pole. Additionally it was noted that adding a short delay of one time update
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to the first order model reduced RMS error.

G(z) =
α2z

−2

1− β1z−1
(5.32)

The following sections detail the novel hyperadaptive GNC designed to handle a

large range of flight behavior. At its core are many of the underlying elements of

the Conventional GNC presented in Chapter 4, including an unchanged Navigation

algorithm. For brevity, the following section focus on the key updates and relies

heavily on the concepts presented previously.

5.2.1 Guidance

Within the guidance algorithm, two major updates were implemented to integrate the

hyperadaptive architecture with the strategies employed for precision landing. First,

the initialization phase was expanded to include a pre-initialization phase to ensure

sufficient turn rate response to conduct the initialization procedure. The initialization

phase itself was expanded to simultaneously estimate the constant vehicle airspeed,

horizontal components of the atmospheric winds, and the linear turn rate dynamics.

Second, path planning was updated to account for the influence of slow turn rate

dynamics on the ability to track conventional Dubins paths.

5.2.1.1 Updated Initialization

The pre-initialization phase is essential to find an input command that sufficiently

excites the turn rate response for airspeed estimation but does not over actuate the

vehicle causing a spiraling descent. The principle of this approach is a sweep of the

control input until a viable turn rate is identified. The initial turn rate command

is chosen to be conservative in case of highly sensitive turn rate response. During

this phase, if the measured turn rate is outside of the desired bounds (|ψ̇(k)| < ψ̇L,

|ψ̇(k)| > ψ̇U) then the input command is varied linearly to attempt to find the optimal

turn rate, ψ̇max which is the desired constant turn rate used by the path planning
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algorithm (15 deg/s).

da(k) = γ

∣∣∣∣ ψ̇max,gdψ̇(k)

∣∣∣∣da(k − 1) (5.33)

The value of da is changed monotonically until either the exit condition is reached or

the maximum input command is reached. If the latter occurs, the input command is

switched to a conservative input of the opposite sign and the process repeats. This

relatively blind controller is computed at a low frequency to ensure the measured

output has sufficient time to respond to a change in command.

The initialization phase begins when sufficient steady state turn rate is generated.

Similar to the conventional GNC, the initialization begins with a constant control

input period to estimate the vehicle airspeed and horizontal components of the atmo-

spheric wind. It is important to note that this algorithm only depends on the heading

change and not the sign of which is not guaranteed.

One of the primary benefits of the PRBS approach to the identification of the

Hammerstein model is that it can be combined with the maneuver required to run

the airspeed and wind estimation algorithm. This saves altitude by using the first

constant control segment of the PRBS as the command for the airspeed estimator.

After the vehicle airspeed and initial estimates of the atmospheric winds are gener-

ated, the navigation algorithm presented in Section 4.2 continues to propagate state

estimates including the atmospheric winds. Additionally at this point, the guidance

algorithm can define the vehicle’s heading and position in the wind based reference

frame (Equation (4.4)). To ensure the vehicle maintains a tight proximity to the

target, the second segment of the PRBS command is used to align the heading to-

wards the target as defined in the wind based reference frame. This only applies in

cases where the second control input produces sufficient turn rate, (|ψ̇(k)| > ψ̇L).

The combination of these first two commands represents a long doublet input. The

remaining inputs of the PRBS have shorter switching times to ensure sufficient expo-

sure to the dynamic response. If full turn control authority is is available, the final
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input sequence results in a weaving maneuver generally aligned towards the target.

5.2.1.2 Updated Path Planning

After the LTID model has been estimated, the system exits open loop control and

enters the loiter phase. This phase and the remaining phases of the guidance strategy

have relatively minimal updates except for an improvement to Dubins path planning.

As discussed in Section 4.1.2, Dubins paths are characterized by three maneuvers: a

turn at constant turn rate toward the desired waypoint, a segment of straight flight

and when close to the waypoint, a second turn at constant turn rate to match the

desired heading. These ideal paths assume instantaneous changes in turn rate. When

applied to vehicles with fast turn rate dynamics, the tracking error is primarily driven

by the disturbance of atmospheric winds. However, as the turn rate dynamics slow,

the assumption for instantaneous changes in heading rate becomes problematic and

introduces error to the landing accuracy.

This work proposes a modification to the standard Dubins algorithm [71] to include

the distance traveled while transitioning between straight and circular flight. This

transition is governed by the settling time of the turn rate dynamics which were

previously identified. Used both for tracking waypoints and estimating the altitude

margin, these updates provide pathing solutions that the vehicle is capable of tracking.

An illustration of the current flight distance to the target is presented in Figure 5.7.

The solid line presents the modified Dubins path which adds segments PA and EF

to transition the vehicle between the circular turn rate and the turn rate constraints.

Points A and E each represent the new initial and final location used by the regular

Dubins path as now all of the assumptions of the algorithm have been satisfied.

The calculation of the transition paths PA and EF is performed using the schematic

insert in Figure 5.7. The initial offset (∆x,∆y) is calculated using an approximation

that the turn rate acceleration is equal to the ratio of heading rate change to the
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Figure 5.7: Comparison of regular and modified Dubins path planning algorithms.

dynamic settling time, Ts.

ψ̈ =
∆ψ̇

Ts
(5.34)

Double integration of this function yields the change in heading expected over the

maneuver, ∆ψ0. This is based on the direction of the 1st turn, characterized by s1,

and the current turn rate given by ψ̇0.

∆ψ0 =
1

2
(s1ψ̇max + ψ̇0)Ts (5.35)

Finally the offset point A is defined using a small angle approximation for ∆ψ0.

x̄A,WF = x̄P,WF + ∆xêt + ∆yên (5.36)

∆x = V0Ts (5.37)

∆y = V0Ts∆ψ (5.38)

65



Here, êt and ên represent the tangent and normal vectors defined by the Frenet -

Serret (FS) basis vectors [89]. Transformation from the WF to FS reference frame is

accomplished by a single axis rotation about ẑWF by the heading angle in the WF

frame ψgd.

Calculations for the final offset EF are based on the final waypoint constraints

but follow an identical strategy.

5.2.2 Control

Major updates replace the static turn rate controller which depends on a priori control

mappings with an algorithm that focuses on the exploration and exploitation of the

static nonlinear map (SNLM). Using the data driven approach presented in Section

5.1.2, the control input δa is filtered by the LTID model to align the phases of the

input and output signals. The key benefit is that this approach allows the input

and output signals to be compared in the parameter space of the SNLM instead of

depending on time averaged, steady state data. As a result, the control authority can

be estimated entirely in-flight and used to improve the tracking and landing accuracy

of the vehicle.

5.2.2.1 Estimation of the Control Sensitivity Mapping

This work uses a dynamic table look up approach to characterize the SNLM, graph-

ically represented by a piecewise linear fit of the data that is passed into the SNLM

estimator. In a concise and computationally cheap manner, this method is flexible

to adapt to many nonlinearities that may be the resultant of degraded conditions

including deadbands and control reversal.

The linear piecewise function is comprised of N continuous line segments in to

characterize the (δa, ψ̇) parameter space using measurements of (δaF , ψ̇m). Each

segment in the set j = 1...N is defined by the two endpoints (aj, bj) & (aj+1, bj+1).

The values of aj are assumed to be fixed and it is the task of the estimation algorithm
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to find the optimal values of bj. Each line segment is constrained by the continuity

constraint in Equation (5.41) to yield the governing linear equation below.

ψ̇ = fj(δa); aj ≤ δa < aj+1 (5.39)

=
bj(aj+1 − δa) + bj+1(x− aj)

aj+1 − aj
(5.40)

fj(aj+1) = fj+1(aj+1) (5.41)

This series of equations is moved into parametric vector form to enable a recursive

solution of bj.

ψ̇(k) = φT (k)θ (5.42)

φ(k) =

{
0, ..., 0,

∂fj(δa)

∂bj

∣∣∣∣∣
δa=δaF

,
∂fj(δa)

∂bj+1

∣∣∣∣∣
δa=δaF

, 0, ..., 0

}T

(5.43)

θ = {b1, ..., bN+1}T (5.44)

The parameters are updated using an extended Kalman filter which is identical to

the estimation problem set up and discussed in Equations (5.22), (5.23) - (5.25).

Selection of the proper values of ai is very important to the success of this linear fit

and the control algorithm. If the N + 1 endpoints are stretched across the parameter

domain δa ∈ [−1, 1], then systems with very high control sensitivity have poor

resolution. In addition, segments with relatively few data points within its endpoints

tend to have very high variance which can greatly increase the impact of measurement

noise on the turn rate mapping. Knowledge of the vehicle and the paths generated

by the GNC provide insight into proper selection. Due to Dubins path planning

the primary regions of control are around the points ψ̇ = {0,±ψ̇max}. Similarly, the

region around 75% of ψ̇max typically has significantly fewer data points in comparison

to other segments. The optimal region to place endpoints was characterized to be

associated with the turn rate values ψ̇SNLM,0 = {−1,−1/3, ..., 1/3, 1}ψ̇max.

When this algorithm is initialized at the start of the loiter phase, the values of bj

are set based on ψ̇SNLM,0 and the parameters aj are estimated using the linear estimate
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Figure 5.8: Block diagram representation of the control strategy used in the hyper-
adaptive GNC.

of the SNLM in Equation (5.30). As the map evolves, it is important to periodically

recalculate the aj terms based on the current mapping such that it continues to

represent the domain of ψ̇SNLM,0. Updates to aj occur at a low frequency (at the

conclusion of any Dubins constant turn rate segment) and the covariance matrix of

the recursive least squares estimator is boosted to account for the shift in parameters.

5.2.2.2 Control of Hammerstein Systems

The common control strategy for Hammerstein systems is to cancel out the effects

of the SNLM and control the linear dynamic system, G(z) [90–92]. This strategy

is presented in Figure 5.8 and implemented here to track the desired heading rate

that is commanded from guidance algorithm. However, it is important to note that

the SNLM estimate cannot blindly be inverted to generate a valid control mapping.

It is assumed that ψ̇ = f(δa) is a function which enabled parameterization of the

mapping, but the inverse is not guaranteed due to potential nonlinear behavior.

Issues with invertability of the SNLM are resolved by using a map handler which

approximates the SNLM with an invertible function. Any non-monotonic behavior is

removed from the mapping by placing a deadband across the region. This prevents

the control algorithm from commanding a δa value within this region and effectively

68



Figure 5.9: a) Graphical representation of the SNLM estimator; b) Control mapping
characterized by the Map Handler.

excludes the complicated control behavior from the operating regime of the flight

controller. An example of how a non-monotonic mapping estimated in the SNLM is

converted by the map handler and inverted into the control mapping, δac = f−1
MH(ψ̇c)

is shown in Figure 5.9.

5.2.3 Example Autonomous Flight

The Hyperadaptive GNC is applied to the same degraded vehicle with higher than

nominal control sensitivity as tested previously with the Conventional GNC in Figure

5.1. The added robustness (via the pre-initialization check) and adaptive nature of

the controller enable the degraded system to effectively estimate the wind and land

approximately 6m from the target as shown in Figures 5.10 and 5.11. The combined

airspeed and LTID estimation period estimates airspeed within 3%, and due to the

vehicle remaining within the turn rate bounds, this constant airspeed estimate well

characterizes the entire flight. The LTID estimation of the model parameters in Fig-

ure 5.11(a) show that the turn sensitivity is initially characterized as bias until both

left and right turns are commanded and the values jump to near their final value.

Additionally, the SNLM accurately tracked the identified behavior as shown in Fig-

ure 5.11(d). The task was relatively trivial in this case as the linear approximation
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generated during estimation of the linear dynamics also well characterized the pre-

dominantly linear control mapping. The primary cost of this improved robustness to

damage is an initialization phase which uses almost 200m of altitude, twice that of

the Conventional GNC.
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(a)

(b)

Figure 5.10: Simulated flight of the Hyperadaptive GNC steering a vehicle with
increased control sensitivity.
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(a)

(b)

(c)
(d)

Figure 5.11: Simulated flight of the Hyperadaptive GNC steering a vehicle with
increased control sensitivity.
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CHAPTER VI

A COMPARISON OF ADAPTIVE GNC ALGORITHMS

The goal of this chapter is to analyze the impact of damage on the landing accuracy

of several precision airdrop guidance, navigation, and control algorithms. A series

of degraded conditions are imposed upon the vehicle which deviate the performance

away from the nominal conditions. Small deviations such as turn rate bias to extreme

degradation such as control reversals and different left and right turn rate performance

are induced on the vehicle. Extensive simulation results are presented for the hyper-

adaptive GNC in addition to two algorithms used commonly in the field of guided

airdrop systems which present the current state-of-the-art autonomous algorithms.

Flight test results using the small-scale airdrop system are presented to validate the

proposed algorithm and conclude the chapter.

Two comparator GNC algorithms are studied to directly compare the hyperadap-

tive GNC presented in Chapter 5 to currently fielded flight software. The first is

the Conventional GNC presented in Section 4. While limited in its adaption, this

algorithm estimates vehicle airspeed and turn rate bias along with the horizontal

components of the atmospheric wind. The initialization estimation algorithm miti-

gates the impact of changing airspeed on the Navigation algorithm which can exhibit

poor tracking or even divergent results when airspeed error is introduced. The sec-

ond algorithm, termed the XFly GNC, upgrades the turn rate PI controller with a

Model Reference Adaptive Controller (MRAC) to estimate both turn rate bias and

linear control sensitivity. This method is expected to handle more types of damage

than the conventional GNC but can only linearly approximate the turn rate response.

More details on this method, including the derivation of the MRAC controller, are
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presented in Appendix A. An overview of the adaptive capabilities of each algorithm

is presented in Table 6.1.

Table 6.1: Adaptive capabilities of three GNC algorithms.

Adaptive Capability Conventional XFly Hyperadaptive

Airspeed X X X

Horizontal atmospheric wind X X X

Turn rate bias X X X

Turn rate sensitivity (linear) - X X

Turn rate sensitivity (nonlinear) - - X

Control reversal - - X

Speed of Dynamic response - - X

To analyze the capabilities of the aforementioned adaptive GNC algorithms, a

series of example trajectories in the presence of damage build off of the initial simula-

tions presented thus far. After, an extensive trade study into the impact of different

damage metrics are system performance is characterized. This chapter concludes with

flight test results using the small-scale system.

6.1 Example Damage Cases

Details on the strategies and robustness of each algorithm is presented through sim-

ulation testing of four degraded flight conditions. The first linearly scales the vehicle

turn rate sensitivity as depicted in Figure 6.1(a). This has been presented for the

Conventional and Hyperadaptive GNC algorithms in Figures 5.1 and 5.10, respec-

tively. The second example considers a change in control sensitivity that only effects

one side of the turn rate mapping, shown in Figure 6.1(b). This asymmetric change

in turn rate response broadly characterizes types of damage that only impact one side

of the canopy or one actuator. The third damage case studies the impact of a control

reversal on the adaption laws as it can have destabilizing results. Finally, the fourth
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Figure 6.1: Depictions on how the control authority can be rotated (a) symmetrically
and (b) asymmetrically to represent various types of degraded flight conditions.

damage case explores changes in the speed of the dynamic turn rate response which

must be accommodated by adaptive path planning.

For brevity, focus is placed on the XFly and Hyperadaptive GNC algorithms

as results for the Conventional GNC show consistent trends in potential for poor

initialization and difficulty tracking the desired heading rate due to errors in the a

priori control mapping (Figure 5.1).

6.1.1 Linear Control Sensitivity

This section presents the results of the XFly GNC algorithm applied to a vehicle with

a change in linear control sensitivity to accompany the previous analysis for the Con-

ventional and Hyperadaptive GNC algorithms in Figures 5.1 and 5.10, respectively.

This class of damage can result from issues such as incorrect payload weight or a new

canopy/actuator configuration. Simulation results for the XFly GNC algorithm is

provided in Figures 6.2 and 6.3 for the same damage conditions. At the start of the

flight, the open loop initialization phase commands the nominal input, generating a

high turn rate of 30 deg/s, double the maximum desired turn rate of the vehicle. The
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(a)

(b)

(c) (d)

Figure 6.2: Simulated flight of the XFly GNC steering a vehicle with increased control
sensitivity.
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(a) (b)

Figure 6.3: Simulated flight of the XFly GNC steering a vehicle with increased control
sensitivity.

high turn rate of the initialization period deviates from the desired flight regime due

to a lack of a pre-initialization phase and results in a 10% error in airspeed estimation.

Slow adaption of the MRAC gain is allowed during initialization but does not change

the commanded signal. Once the vehicle turns in both directions (starting at t ≈ 65

sec), the MRAC parameters converge to near their final value and the tracking error

is minimized, enabling the vehicle to accurately track Dunbins paths and land only

16 meters from the target.

Overall, both the XFly and Hyperadaptive GNCs are able to adapt to this type of

error quickly and through very different approaches. The Conventional GNC however,

showed poor tracking behavior as the ability to vertically offset the control mapping

using δabias cannot account for the slope change of the turn rate response.

6.1.2 Asymmetric Control Sensitivity

The example case presented here is for a scenario when the control sensitivity to turn

left is greatly reduced. This damage case generally characterizes degraded conditions

that only significantly impact one side of the canopy such as the example damage

presented in Figure 1.4(b). This is the first method that extends beyond the adap-

tive capabilities of both comparator GNC algorithms as indicated in Table 6.1. Even
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though the right turn mapping is nominal for the positive turn direction, the Con-

ventional GNC can exhibit tracking error in both directions due to unstable adaption

of the turn rate bias δabias.

The simulation results of the hyperadaptive GNC applied to this damaged vehicle

model are presented in Figures 6.4 and 6.5. The guided airdrop system is initially

placed upwind of the target following standard industry practice and uses the entire

flight to estimate the control mapping and dynamic response. Figure 6.4(a) shows the

effect of pre-initialization update at t = 3s where the control input is increased above

the initially conservative command. With the initial turn rate between the desired

limits (ψ̇L > |ψ̇init| > ψ̇U), the airspeed and LTID estimation algorithms accurately

characterize the steady state longitudinal behavior and the lateral turn rate dynamics.

Note that as a result of the control softening on the left side, the vehicle does not

actually command a substantial left turn. This does not effect the estimation of the

turn rate dynamics (associated with β1), but the linear approximation of the SNLM.

Figure 6.5(a) shows that the linear approximation is not representative of the actual

mapping and only aligns near the commanded values used in LTID identification

(pts. A and B). This error does not impact the final landing accuracy because

poor tracking behavior at altitude is acceptable assuming there is sufficient altitude

margin. Accurate tracking of the Dubins path is only crucial during the final stages

of flight when the entire flight has been used to characterize the SNLM estimate.

After initialization, the time period from approximately t = 60→ 130 s is used to

update the SNLM on the side of positive control authority. This shifts the estimate

of the SNLM down from the linear estimate to align with the measured response.

When the vehicle first commands a left turn at t ≈ 130 s, significant tracking error

populates the SNLM estimator with points in the region of (δa, ψ̇) = (−.4,−8) deg/s

as shown in Figure 6.5(b). This causes the SNLM estimate to update the mapping
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(a)

(b) (c)

Figure 6.4: Simulated flight of the Hyperadaptive GNC steering a vehicle with asym-
metric turn rate response.
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(a) (b)

Figure 6.5: SNLM Estimate for a vehicle with asymmetric turn rate response after
(a) estimation of the LTID parameters and (b) the conclusion of the flight.

towards the proper negative turn rate which is achieved in under 10 seconds. Indepen-

dently updating each segment in the parameter space enables an accurate nonlinear

approximation of the vehicle turn rate response that well approximates the applied

nonlinear behavior.

In comparison, results of the XFly software is presented in Figures 6.6 and 6.7.

After initialization, the vehicle only commands right turns and straight flight until

t ≈ 95s.At this point, the MRAC estimate accurately matches the nominal model

which governs the positive turn rate response. The first left turn from approximately

t = 50 → 95s, exposes the nonlinearity. The adaption is forced to match the turn

rate response with a single linear function causing the turn rate gain to decrease and

turn rate bias increase. The final control mapping estimate shown in Figure 6.7(c) is

a linear average of the damaged control mapping. This incorrect estimate shows poor

tracking behavior as commanded left and right turns excite a -8 deg/s and +25 deg/s

turn, respectively, which deviates from the assumption in Dubins path planning that
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all turns are conducted at ψ̇max = 15 deg/s. The resulting trajectory in Figure 6.6(d)

shows the wide left turns and sharp right turns that cause the vehicle to land over

100m from the target.
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(a)

(b) (c)

Figure 6.6: Simulated flight of the XFly GNC steering a vehicle with asymmetric
control sensitivity.
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(a) (b)

(c) t ≈ 50s (d) t = end

Figure 6.7: MRAC estimates generated by the XFly GNC steering a vehicle with
increased control sensitivity.
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(a) (b)

Figure 6.8: Simulated trajectory of the XFly GNC acting on a vehicle with a control
reversal.

6.1.3 Control Reversal

The issue of control reversal presents a large problem for many adaptive controllers.

The MRAC in the XFly software adapts the control gains based on the sign of the

control effort which is assumed to be positive. Figures 6.8 and 6.9 depict a simulation

where the XFly GNC is used to control a vehicle with inverted control authority. The

turn rate gain update Equation (A.9) is always negative as a result of the control

reversal (excluding the effects of measurement noise). As a result, the estimate of the

turn rate gain steadily decreases to zero as shown in Figures 6.8(a). This inversely

causes the control sensitivity to grow unbounded and the actuators saturate. This

induces a tight spiral that is effectively maintained until the system crashes in to

the ground. This is characterized in Figure 6.9(c) when the descent rate jumps to

approximately 12 m/s due to the lift vector of the canopy no longer being aligned to

counter the effects of gravity.

One of the clear benefits to the hyperadaptive strategy is the independence from
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(a)

(b)

(c)

Figure 6.9: Simulated trajectory of the XFly GNC acting on a vehicle with a control
reversal.
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(a)

(b)

Figure 6.10: Simulated trajectory of the hyperadaptive GNC acting on a vehicle with
a control reversal.

the sign of the control authority. This data driven approach is able to characterize the

control reversal and land accurately at the target as shown in Figure 6.11 - 6.10. The

LTID estimation characterizes the control reversal by estimating a negative turn rate

gain (α2) in Figure 6.11(d). The resulting linear approximation of the SNLM captures

the control reversal and the SNLM estimator is used to further adapt to any potential

nonlinear behavior. Additionally, the ability to accurately track the desired heading

ensures the vehicle stays within the turn rate limits to accurately track airspeed,

descent rate, and the horizontal components of the atmospheric winds.
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(a) (b)

(c) (d)

Figure 6.11: Simulated flight of the hyperadaptive GNC steering a vehicle with in-
verted control sensitivity.
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Figure 6.12: Simulation of the hyperadaptive GNC showing the modified Dubins
paths used to calculate the flight distance to the offset target.

6.1.4 Slow Turn Rate Response

The final case focuses on estimation of the turn rate dynamics and the adaptive

path planning algorithm in the hyperadaptive GNC. It is expected that the modified

Dubins algorithm will provide more feasible paths for the vehicle to track. This is

the most important when calculating the altitude margin to transition from loiter

to approach. The altitude margin, hMargin and altitude required to reach the offset

target hReq, which govern this transition directly depend on the path length, L. Any

error in path length results in an altitude shortage or surplus when landing at the

target. Figure 6.12 shows the original and modified Dubins paths used to estimate

the flight distance from the current position at points A to the offset target (point D).

Calculation of the altitude margin using Equation (6.1) and the modified Dubins path
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planning algorithm identified point A as the transition to approach. This used the

estimated settling time (Ts = 3.3s) to identify a transition length of 18.2m between

points AB and CD. The unmodified Dubins calculation was used to connect points

B and C to estimate a total path length of 227.4m, only a 3% error from the actual

path flown by the vehicle. The original Dubins algorithm is used to fly from point A

to D which represents the non-adaptive calculation. The Dubins algorithm applied

from points A to D estimate a path length of 183.3m, a 22% error from the actual

path flown. This also results in a positive altitude margin of 16.7m implying that

the system would not have transitioned to approach and would not have reached the

target.

hMargin = h− hReq = h− L ż

V0

(6.1)

Additional simulation results for this example trajectory are presented in Figure

6.13. Most notable is the SNLM estimator in Figure 6.13(d) which shows data points

lotted using both the nominal system model and the identified LTID model. The

phase difference between the nominal and true system cause arching streaks in the

figure due to the phase lag of the output. By characterizing the LTID, the noise fed

to the SNLM estimator is reduced, improving the turn rate estimate.

Overall, the hyperadaptive GNC is accurately able to capture many forms of

degraded conditions by using a data driven approach. From the pre-initialization

phase to the SNLM estimator and map handler, this algorithm is significantly more

robust to the uncertainty frequently apparent in experimental flight testing of parafoil

systems. The natural ability to adapt to control reversals and capture nonlinear effects

of the control sensitivity give strong justification for this algorithm over the MRAC

controller in the XFly GNC.
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(a)

(b) (c)

(d)

Figure 6.13: Simulated flight of the hyperadaptive GNC on a vehicle with slow turn
rate response.
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6.2 Parameter Trade Study

This section delves further into the relative capabilities of the three adaptive GNC

algorithms by randomly varying a series of parameters to add high levels of model

uncertainty. The goal is to stress test each algorithm to define a point at which dam-

age makes an algorithm ineffective at achieving precision landing. Seven parameters

are considered which cover a wide array of potential damage scenarios and influence

both steady state and dynamic behavior of the precision airdrop system. Generally

speaking, these forms of damage fall into two categories. The first are direct modifi-

cations to the simulation model to induce a change in flight behavior such as changing

the canopy incidence angle to cause the system to fly with a different steady state

airspeed and descent rate (Figure 3.7). The second are modifications to the turn rate

sensitivity mappings which significantly effects the turn rate behavior of the vehicle.

A list of the damage parameters and their effect on the vehicle response is given

in Table 6.2. Parameters 2 - 6 all manipulate the steady state turn rate response of

the vehicle. Focus is placed here because the guidance structure of the autonomous

algorithm also relies heavily on steady state response. Initial analysis of damage

parameters 2-4 and 7 were used to present the example flight trajectories shown in

the previous sections. Parameter 5 introduces a deadband in the control mapping

of the vehicle. This nonlinear modification is presented in Figure 6.14 where the

variables δaDB and ψ̇DB define the width and turn rate location of the deadband,

respectively.

These linear and nonlinear modifications of the turn rate mapping are imple-

mented by scaling the asymmetric brake command from the GNC to elicit the de-

sired response from the simulation model. This is implemented in Equation (6.2) by

calculating the desired damaged turn rate response fDamage(δac) and solving for the
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input to the simulation based on the known simulation control sensitivity, fSim().

δaSim = f−1
Sim(fDamage(δac)) (6.2)

This method provides the flexibility to study a large range of flight conditions which

result from a variety of sources of actual damage. As a final note, this method was

chosen for its general nature after confirming that it matched simulation results where

damage was included by modifying the lift/drag characteristics of elemental strips of

the canopy as done by Culpepper et al. [3].

Finally, the 7th parameter modifies the actuator dynamics to influence the speed

of the turn rate dynamics. The typical fast response rate of the small-scale system

is be slowed by over an order of magnitude to capture effects such as differences in

wing loading, linear size of the system, or actuator degradation [26].

Table 6.2: List of parameters and their impact on the response of the dynamic model.

Parameter Varied Induced Change in Model

1. Incidence Angle, Γ Airspeed, V0 & descent rate ż

2. Turn Bias, TR0 ψ̇(δa = 0) 6= 0

3. Sensitivity Scaling Figure 6.1(a)

4. Asymmetric Sensitivity Scaling Figure 6.1(b)

5. Deadband, δaDB & ψ̇DB Figure 6.14

6. Control Reversal δaSim = −δac
7. Actuator Time Constant, τa Speed of turn rate dynamics

6.2.1 Single-Parameter Variation

The effects of individual damage parameters on the ability of the adaptive GNC

algorithms to steer the vehicle to the target is tested through a series of Monte Carlo

trade studies. For each parameter, 250 simulated flights were run for each GNC

to characterize the impact of a given uncertainty on the algorithm and the landing
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Figure 6.14: Nonlinear mapping that introduces a deadband of width δaDB at a given
turn rate ψ̇DB.

accuracy of the system. The simulations use an altitude independent constant wind

field instead of the simple-shear wind field. This allows a better correlation between

the damage parameters and landing accuracy of the vehicle since significant error can

be introduced due to low altitude wind shears [93]. The Monte Carlo trade study

randomly varies the wind magnitude, direction, and turbulence across each flight.

The vehicle is positioned at an altitude of 500m and located upwind of the target

following standard industry practice. The study also randomly varies the value of the

damage parameter (except the control reversal which is a binary parameter) to study

how the degree of damage impacts the landing accuracy.

The accuracy of precision airdrop systems is evaluated using the circular error

probable (CEP). This metric is defined as the radius of a circle centered at the IP at

which a given percentage of landings reside within. Primary accuracy is denoted by

50% CEP (equivalent to the median miss distance) and 90% CEP characterizes the

extent of impacts with large miss distances. Landing statistics for each damage case

is presented collectively at the end of this section in Table 6.3.
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6.2.1.1 Nominal

The nominal case is presented first to define a baseline accuracy of each algorithm

on a vehicle without damage. Results of the Monte Carlo simulation are plotted

in Figure 6.15 where the dots represent the landing location of each flight. The

algorithms all show similar results with 50% CEP values of 13.1m, 10.5m and 12.7m

for the Conventional, XFly, and hyperadaptive GNC algorithms, respectively. It is

important that all algorithms work similarly under nominal conditions as it is ideally

the most common flight scenario. Note that these CEP values are relatively low for

this vehicle as a result of the simplified mean wind field.

Figure 6.15 does show a slight difference in landing pattern of each algorithm.

The Conventional and XFly dispersions show a close alignment to the downwind axis

implying the algorithms consistently reach the offset target before flying into the wind

and landing at the target. A slightly wider dispersion in the crosswind direction is

noted for the hyperadaptive GNC due to two primary factors. First, measurement

noise can cause slight errors in the SNLM estimate, particularly near zero where the

map is allowed to be most flexible. This can introduce a small tracking error in

the final stages of flight which causes the system to miss in the crosswind direction.

Second, the hyperadaptive guidance algorithm is based on many parameters char-

acterized in-flight instead of being predefined through extensive tuning (such as the

location and altitude of the offset target). As a result, error in parameter estimates

is propagated more heavily through the flight. However, the total impact of these

issues do not represent a significant change in accuracy and while they may slightly

degrade the nominal performance, they provide the robustness necessary to handle

large amounts of model uncertainty.
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(a) Conventional GNC (b) XFly GNC

(c) hyperadaptive GNC

Figure 6.15: Landing dispersions of three adaptive GNC algorithms controlling the
nominal vehicle model.
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6.2.1.2 Incidence Angle

When incidence angle is used to change the steady state airspeed and descent rate

of the vehicle, all algorithms can adapt to the full range of airspeeds commanded

(approximately ±1 m/s). The algorithms had a 50% CEP of 13.2m, 9.7m, and

13.2 m for the Conventional, XFly, and hyperadaptive algorithms respectively. This

indicates a negligible difference in comparison to the nominal vehicle indicating that

all methods are able to reject the effects of uncertain airspeed on the landing accuracy.

Note that this is achieved by the airspeed estimation algorithm including all methods.

Without this estimation algorithm, errors in airspeed can destabilize the navigation

algorithm.

Figure 6.16 shows each algorithm with a generally flat response to changes in the

nominal airspeed as expected. More interesting is the error associated with the wind

estimate and airspeed expected at the specified incidence angle. Figure 6.17 plots the

airspeed error as |V nv
0 −V0(Γ)| which indicates that the hyperadaptive algorithm is the

most prone to airspeed error which also has the greatest impact on landing accuracy.

The higher variation in airspeed estimates is due to the initialization occurring at turn

rates between 10 and 25 deg/s (defined by the pre-initialization algorithm) instead

of the finely tuned 15 deg/s of the Conventional and XFly algorithms. This error

has a greater impact on the final landing accuracy for the hyperadaptive algorithm

due to guidance calculations using more estimated data instead of specifically tuned

parameters.

6.2.1.3 Turn Rate Bias

The next damage scenarios induces constant turn rate biases in the flight behavior of

the vehicle. As expected, effects of turn rate biases also present a relatively minimal

challenge to all algorithms. Each method explicitly attempts to characterize the

turn rate biases as they are one of the most common errors. The Conventional and
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Figure 6.16: Landing accuracy dependence of three adaptive GNC algorithms on the
vehicle airspeed uncertainty

(a) Conventional GNC (b) XFly GNC (c) Hyperadaptive GNC

Figure 6.17: Landing accuracy dependence of three adaptive GNC algorithms on the
accuracy of airspeed estimate.
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(a) Conventional GNC (b) XFly GNC (c) Hyperadaptive GNC

Figure 6.18: Monte Carlo results characterizing the relationship between imposed
turn rate biases and the landing accuracy of each GNC algorithm.

XFly algorithms do this directly by characterizing δabias and the hyperadaptive GNC

through the re-seeding of the SNLM deltaa values estimate to ensure the map captures

effects around ψ̇ = {0,±ψ̇max}. Landing results also indicated almost no increase in

median miss distance over the nominal system with the 50% CEP results of 14.1m,

10.6m, and 13.2m for the Conventional, XFly, and hyperadaptive GNC algorithms.

6.2.1.4 Control Sensitivity (linear)

This damage scenario presents the first case where the accuracy of the adaptive GNC

algorithms can start to degrade. The limits to the linear scaling of the control sensi-

tivity are confined between a 50% softening and a 250% stiffening of control authority.

Figure 6.19 illustrates the trends in landing accuracy observed when the control sen-

sitivity is scaled. First, the conventional GNC has a clear trend that landing error

increases with increased deviation from the nominal mapping. However, we see that

the band of acceptable uncertainty for this GNC extends from 75% to 150% of the

nominal control sensitivity. This indicates that the Conventional algorithm is more
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susceptible to a decrease in control authority than an increase, as long as it isn’t in-

creased to the point where the initialization breaks down (starting at approximately

170%). The XFly algorithm is able to maintain a high level of accuracy across most

of this parameter space but fails at high sensitivity due poor initialization. The pre-

initialization phase is used to remove this influence from the hyperadaptive algorithm

and it works effectively to have consistent landing accuracy, independent of the linear

control sensitivity.

Aggregate landing statistics for the linear change in control sensitivity charac-

terized 50% CEP values of 26.9m, 14.4m, and 13.3m for the Conventional, XFly,

and hyperadaptive GNC, respectively. These values represent a 105%, 34%, and 5%

decrease in landing accuracy. More dramatic is the increase in 90% CEP due primar-

ily to high control sensitivity. 90% CEP increased from the nominal configuration

483%, 308%, and 5% for the three algorithms, respectively. The combination of the

pre-initialization phase and adaptive control mapping provide the hyperadaptive algo-

rithm with the robustness to be insensitive to the control effectiveness of the vehicle.

6.2.1.5 Asymmetric Control Sensitivity

The asymmetric change in control sensitivity introduces nonlinear behavior to the

turn rate control sensitivity by linearly scaling only one side of the control mapping

(chosen randomly). An initial analysis of this damage type was presented in Section

6.1.2 for each algorithm. This is expanded by randomly varying the amount the con-

trol sensitivity changed, varying from 25% to 100% of the nominal control sensitivity.

Only softening of the control response is considered (implying more control input is

needed for a given output) because the previous section characterized that the pri-

mary issue of increased sensitivity is failed initialization which has been sufficiently

analyzed. At 25% turn rate sensitivity, a command 4 times greater than nominal is
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(a) Conventional GNC (b) XFly GNC

(c) Hyperadaptive GNC

Figure 6.19: Monte Carlo results of three adaptive GNC algorithms controlling a
vehicle with uncertain control sensitivity.
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necessary to produce the desired turn while at 100%, the nominal, linear turn rate

response is generated.

Figure 6.20 depicts the dependence of landing accuracy on the amount of non-

linearity introduced to the system. For the Conventional GNC, the decreased turn

rate response significantly impaired the ability to track the desired heading. At large

levels of output softening (< 40% nominal) the controller can go unstable and induce

spiral behavior. Large changes in the estimate of the control bias attempts to align

the nominal map with the current measured response. This only attempts to match

the current turn rate sensitivity which can exacerbate errors when the control input

is changed, potentially exciting spiral behavior. The XFly software starts to show

significant issues below 50% asymmetric control softening as a result of being unable

to represent the nonlinear behavior. Finally the hyperadaptive algorithm is indepen-

dent to this form of model uncertainty implying that the SNLM estimator sufficiently

captures the nonlinear behavior to ensure landing accuracy.

Aggregate landing results from the trade study indicate that the Conventional,

XFly, and Hyperadaptive GNC algorithms have 50% CEPs of 37.5m, 17.1m, and

12.8m, respectively. The number of large misses also increased for the first two

algorithms indicating their lack of robustness to this form of model uncertainty.

6.2.1.6 Control Reversal

Control reversals present a significant challenge to almost all feedback systems. With-

out proper characterization, this induces unstable lateral performance and the vehicle

often enters an uncontrollable spiral into the ground as shown in Figure 6.9 for the

XFly GNC. This case is not uncommon in practice because human induced errors can

cause the rigging lines for the trailing edge brakes to be connected to the opposite

actuator.

The landing dispersion for each GNC applied to a vehicle with a control reversal

101



(a) Conventional GNC (b) XFly GNC

(c) Hyperadaptive GNC

Figure 6.20: Monte Carlo results of three adaptive GNC algorithms controlling a
vehicle with uncertain asymmetric left and right control sensitivity.
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is presented in Figure 6.21. Over an order of magnitude increase in miss distance was

noted for both the Conventional and XFly GNC algorithms with 50% CEP values of

346.4m and 102.2m, respectively. The control reversal also greatly effected large scale

misses with 90% CEP values of 539.5m and 177.1m. The Hyperadaptive algorithm

still maintains nominal accuracy with a 50% CEP of 14.5m and a 90% CEP of 31.8m.

Additionally, the XFly results can be deceiving as the controller quickly destabilizes

and enters into a spiral, drifting quickly down to the ground. Due to the constant

mean wind field and an initialization upwind from the target, the unstable vehicle

naturally tends towards the target. In more realistic conditions with shifting wind

fields, the landing accuracy is expected to decrease further.

6.2.1.7 Deadband

The deadband nonlinearity is the final damage case that modifies the lateral control

sensitivity. This is an important damage configuration to study as it removes the

control effectiveness over a given range of asymmetric brake inputs. It also represents

the mapping generated by the map handler if the SNLM estimator characterized

non-monotonic behavior. This presents two primary obstacles. First, the greater the

length of the deadband, the more nonlinear the mapping becomes. Second, there is

a delay in response associated with crossing the deadband that makes it difficult to

track a heading rate near ψ̇DB.

The simplicity of the Conventional GNC provides significant insight into the dif-

ficulties of controlling precision airdrop vehicles with deadband behavior. Figure

6.22(a) characterizes the effects of the deadband function on landing accuracy of the

vehicle. The contour plot is based on the landings within the 90% CEP range to char-

acterize the effect of the deadband. Flights with greater miss distance are represented

in Figure 6.22(a) by black asterisk markers which are dominated by scenarios in which
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(a) Conventional GNC (b) XFly GNC

(c) Hyperadaptive GNC

Figure 6.21: Monte Carlo landing dispersions characterizing the effects of a control
reversal on three adaptive GNC algorithms
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the deadband consumed the entire nominal control mapping of the conventional al-

gorithm. Results indicate that the landing accuracy is most impacted by deadbands

located near ψ̇ = 0, decreasing the effectiveness of the controller during approach

which is the most vital time to be accurate. Increasing δaDB also increased the miss

distance due to more nonlinear effects. When the deadband is applied above 8 deg/s,

the majority of the turn rate mapping is continuous (from the opposite maximum

turn direction to the deadband) and the bias estimator can update δabias to shift

the a priori turn rate mapping to align with the majority of the deadband nonlinear

control mapping, improving landing accuracy.

The impact of deadbands on the XFly and Hyperadaptive GNC algorithms is more

difficult to quantify as it doesn’t sufficiently induce errors greater than the baseline

error. Results of Monte Carlo analysis on all algorithms found that the Conventional,

XFly, and Hyperadaptive GNC algorithms have 50% CEPs of 45.1m, 18.1m, 14.9m,

respectively. All methods suffer from deadbands located near ψ̇ = 0, regardless of

whether they are characterized by the adaptive algorithm or not. Analysis of the

results identified that the primary improvement of the Hyperadaptive over the XFly

GNC is improved crosswind miss distance as shown in Figure 6.24. The crosswind

miss is most closely related to the effectiveness of the lateral heading controller which

aligns towards the IP during approach. The ability of the Hyperadaptive GNC to

most effectively match the damage turn rate mapping is shown in Figure 6.23. The

improved characterization of the deadband enables the controller to more quickly

move through the region, limiting the adverse effects on the heading controller.
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(a) (b)

Figure 6.22: Monte Carlos results of the Conventional GNC applied to a precision
airdrop system with deadband behavior.

(a) Conventional GNC (b) XFly GNC (c) Hyperadaptive GNC

Figure 6.23: Monte Carlos results of three adaptive algorithms analyzing the effect
of deadband length on accuracy of SNLM estimate.
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(a) Conventional GNC

Figure 6.24: Monte Carlos results of three adaptive algorithms controlling a vehicle
with a deadband nonlinearity.

6.2.1.8 Slow Actuators

The final damage scenario slows down the servo actuators to replicate a change in

dynamic behavior associated with a different wing loading or linear scaling of the

vehicle being controlled [26]. Both the Conventional and XFly GNC algorithms are

blind to changes in vehicle dynamic response. Note that some increase in error is

expected for all algorithms due to the fact that the vehicle is less agile and can not

react as quickly to disturbances such as atmospheric turbulence.

Landing results for each algorithm indicated a small but consistent decrease in

accuracy. The 50% CEPs are 15.4m, 17.5m and 15.9m for the Conventional, XFly,

and Hyperadaptive GNC algorithms, respectively. While the results are relatively

similar for each algorithm, the benefits of estimating the dynamics online are clear in

Figure 6.25. Both the Conventional and XFly GNC algorithms exhibit greater miss

distance when the actuator time constant is increased. Landing error for slow vehicles
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lumped downwind of the IP indicating that the vehicle consistently lacked the altitude

to reach the target signifying an error in how the altitude margin is calculated.

The hyperadaptive algorithm overcomes this issue by estimating the settling time

of the turn rate dynamics and including their effects in the Dubins path planning

algorithm (Section 5.2.1.2). When the system response slows, the assumption in the

original Dubins algorithm of instantaneous transition between straight and circular

flight breaks down. The updated Dubins algorithm uses the results of the estimated

LTID settling time, shown in Figure 6.25(d) to estimate the additional flight distance

traveled while transitioning between straight and circular flight. This provides feasible

paths for the identified vehicle and ensures an accurate calculation of the altitude

margin for precise landing.

The compiled statistical results of each algorithm and form of damage is presented

in Table 6.3. The percent chance in landing accuracy is presented to quantify the

impact of damage on the GNC algorithm in comparison to the nominal case. Results

indicated that all methods were able to track changes in vehicle airspeed and constant

turn biases. However, as the damage becomes more complex, the landing accuracy of

the Conventional and XFly GNC algorithms steadily decrease. The worst results for

these two methods is for the control reversal when over an order of magnitude increase

in the miss distance was noted due to the unstable lateral tracking controller. The

Hyperadaptive algorithm only shows moderate increase across the parameters tested

with worse results coming from changing the actuator speed.
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(a) Conventional GNC (b) XFly GNC

(c) Hyperadaptive GNC (d) Hyperadaptive GNC

Figure 6.25: Monte Carlo analysis of three adaptive GNC algorithms to uncertainties
in the speed of the turn rate response.
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6.2.2 Multi-Parameter Variation

To conclude the simulation based trade studies, the algorithms are stress tested by

allowing all damage parameters to be varied simultaneously and including realistic

winds. The binary control reversal parameter was left out of the study to provide a

more even comparison of the algorithms. When the control reversal is engaged for

the Conventional and XFly cases, the landing accuracy becomes less dependent on

the (unstable) GNC and more on the wind characteristics and initial location. As

a result, the landing accuracy of the Conventional and XFly GNC algorithms are

slightly more conservative, particularly the 90% CEP.

Landing dispersions for the Conventional, XFly, and Hyperadaptive algorithms

controlling a highly uncertain precision payload system are presented in Figure 6.26.

Results indicated the algorithms have 50% CEPs of 74.6m, 34.5m, and 27.9m, re-

spectively which shows a three fold improvement in the Hyperadaptive GNC over the

Conventional GNC. Table 6.4 presents the landing statistics for both the nominal and

highly uncertain vehicle configurations in the presence of realistic wind fields. The

conventional GNC experienced a 288% rise in 50% CEP and over 400% increase in

90% CEP when uncertainty was introduced to the vehicle. The turn rate sensitivity

adaption of the XFly GNC reduced the effect of uncertainty, but still exhibited a

100% decrease in landing accuracy for both landing metrics. Finally, the Hyperadap-

tive GNC was the most robust to the model uncertainty with an increase of 41% and

33% for the 50% and 90% CEPs.

6.3 Flight Testing Results

The final validation for the Hyperadaptive GNC is through experimental flight test-

ing. The small-scale system described in Chapter 3 is used as a testbed to implement

studied forms of degraded flight in a real-world environment. In addition to the nom-

inal vehicle configuration, software modifications external to the GNC were used to
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(a) Conventional GNC (b) XFly GNC

(c) Hyperadaptive GNC

Figure 6.26: Multi-parameter Monte Carlo landing dispersions of three adaptive GNC
algorithms tested on a vehicle with highly uncertain dynamics.
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Table 6.4: Landing statistics for the multi-parameter Monte Carlo simulation

GNC 50% CEP
Change vs.
Nominal

90% CEP
Change vs.
Nominal

Conventional (Nominal) 19.2m - 50.9m -

XFly (Nominal) 17.4m - 51.9m -

Hyperadaptive (Nominal) 19.8m - 57.7m -

Conventional (Damaged) 74.6m ↑ 288% 163.59m ↑ 410%

XFly (Damaged) 34.5m ↑ 98% 100.2m ↑ 93%

Hyperadaptive (Damaged) 27.9m ↑ 41% 76.7m ↑ 33%

implement a control reversal, asymmetric control sensitivity, and decreased actuator

speed cases tested in the parameter study. These tests change both the control sensi-

tivity mapping and the turn rate dynamics to accurately gage the algorithm’s ability

to handle a large range of model uncertainty. The final test case was implemented

on a second parafoil and payload system, shown in Figure 6.27. This second vehicle

had a different payload mass, canopy size and material rigidity, and shortened servo

actuation arms to reduce the control sensitivity. This system was controlled by the

Hyperadaptive algorithm tuned for the regular system and provides a great test for

the Hyperadaptive algorithm.

Flight testing was conducted south of Atlanta, GA in a large wooded clearing

across all times of the day to test the algorithms in typically calm morning winds

and more turbulent afternoon conditions. The results of 51 flights across all case

studies are presented in Figure 6.28(a) with individual landing metrics listed in Table

6.5. Aggregate results of the Hyperadaptive GNC indicate a 50% CEP of 35.9m and

90% CEP of 69.0m. This aligns well with the multi-parameter simulation testing

which had a 50% and 90% CEP of 27.9m and 76.7m, respectively. As a reference,

the Conventional GNC controlling only the nominal system had a 50% and 90%

CEP of 27.3m and 48.6m, respectively. Degraded conditions were not applied to the
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Figure 6.27: Second parafoil and payload system used to flight test the hyperadaptive
GNC. Termed the Irish canopy due to the color selection.

Table 6.5: Experimental flight test results for the Hyperadaptive algorithm.

Vehicle Configuration Number of Flights 50% CEP 90% CEP

Nominal 11 21.2m 66.3m

Control Reversal 11 44.4m 55.8m

Asymmetric Control Sensitivity 9 42.4m 63.4m

Slow Actuators 11 59.5m 90m

2nd Vehicle 9 21.5m 43.0m

Combined 51 35.9m 69m

Conventional controller as recovery of the aircraft could become difficult. As a result,

the two metrics cannot be directly compared but the decrease in landing accuracy of

only 32% is minimal in comparison to the expected results of the Conventional GNC

in similar scenarios.

Further detail on the Hyperadaptive airspeed and LTID estimation results are

presented in Figure 6.29. Airspeed estimates show relative consistency for the first

three cases which are all tested on the primary vehicle. The case for slow actuators

(also applied to the primary vehicle) noted a slight decrease in the average airspeed
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(a) (b)

Figure 6.28: Experimental Landing results of the (a) Conventional GNC and (b)
Hyperadaptive GNC algorithms.

estimated. The 2nd vehicle also exhibited a significantly higher airspeed but did not

cause significant impact on the landing accuracy. Similarly, the influence of slowing

the actuator response was captured by an increased estimate of settling time that was

used to improve path planning.

Finally, the set of SNLM estimates for each flight condition is presented in Fig-

ure 6.30. The cases highlight the variability noticed in flight testing. First, true

atmospheric winds and non-white noise can inject more variability into the estimate.

Second, there are more deviations than just the underlying turn rate sensitivity map-

ping. Experimental flights such as the top estimate of the Nominal case (Figure

6.30(a)) was run after rigging lines of the canopy were damaged during flight test op-

erations and redone. A slight error re-rigging the canopy caused an almost 10 deg/s

positive turn rate bias. This was noted from the flight log and the rigging lines were

modified to re-trim towards nominal flight. These mappings were able to sufficiently

capture the steady state control mappings of the vehicle to provide accurate landings

in the presence of high vehicle uncertainty.
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(a)

(b)

Figure 6.29: Experimental results of the airspeed and vehicle dynamic model estima-
tors.

116



(a) Nominal (b) Control Reversal

(c) Asymmetric Nonlinearity (d) Slow Actuators

(e) 2nd Vehicle - Irish Canopy

Figure 6.30: Experimental results of the SNLM estimator.
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CHAPTER VII

GUIDANCE, NAVIGATION, AND CONTROL OF GPS

DENIED AIRDROP SYSTEMS

The accuracy of autonomously guided airdrop systems is highly dependent on the

quality and richness of available feedback signals. Since first being made available to

the public in 1983, GPS has been the focus of autonomously guided vehicles. After

significant development using GPS, current guided airdrop systems cannot function

successfully without it.

This work aims to revitalize the application of beacon technology for use in aerial

cargo delivery by conducting a study into the viability of both range to target and

direction to target as a source of feedback. Additionally, an onboard barometer

provides altitude above ground. A schematic of a dropzone configured for beacon

guided airdrop systems is presented in Figure 7.1. The beacon is assumed to be the

origin of the inertial coordinate system and the desired impact point. Beacon range,

RB, is the spherical distance of the vehicle from the beacon and relative heading to

beacon, ψB, is the angle between the vehicle’s heading and horizontal position vector,

r̄B, and z is the altitude above ground level.

The available signals are combined into two sets for GNC development and anal-

ysis: method 1 with {ψB, z} feedback and method 2 using {RB, z} feedback. Unlike

GPS, these data sets do not fully define the vehicle position in the Inertial space

and limits the ability to estimate the atmospheric winds. Fundamental concepts to

the GPS based algorithms such as the wind fixed reference frame are intractable

presenting the need for a new approach. This is accomplished though novel beacon-

based GNC algorithms which strategically mitigate the effects of limited feedback
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Figure 7.1: Spherical polar representation of the drop zone for beacon feedback con-
trol.

and maintain precision landing capabilities in GPS denied scenarios.

7.1 Beacon-based Guidance, Navigation, and Control

Both beacon-based methods use a lateral control algorithm to steer the vehicle using

deflection of the trailing edge brakes. Similar to the conventional GNC algorithm

presented in Chapter 4, the commanded turn rate is used to calculate the asymmetric

brake command, δac, based on an a priori turn rate mapping f(). The limited state

feedback requires a more conservative control algorithm over the highly adaptive

method presented previously. However, potential avenues to fuse adaptive control

strategies with beacon-based guidance and navigation is discussed below.

δac = f(ψ̇c); δac ∈ [−1, 1] (7.1)

A saturation limit of 15 deg/s is placed on the commanded turn rate to ensure exces-

sive rocking or spiral behavior is not excited. The command turn rate is calculated

by the guidance and navigation algorithms, presented for each method in the sections

below.
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7.1.1 Method 1: {ψB, z} Feedback

The use of relative heading to the beacon and altitude above ground reanalyzes the

initial work done in the field of guided airdrop systems [7, 8]. Relative heading can

be measured in real-time using any a direction-sensing antenna like Watson-Watt

antenna which uses orthogonal dipole antennas to conduct radiolocation [51]. This

method provides high measurement rates over scanning monopole antennas used pre-

viously [7, 8].

The {ψB, z} method is considered to have the most limited state observability.

Both distance to target and atmospheric winds which represent the primary met-

ric to minimize and the greatest disturbance, respectively, are unobservable. Given

limited parameters of importance, a basic strategy of homing towards the target is

implemented. The control logic always attempt to align the vehicle heading with

the direction of the RF beacon. Equations (7.2) & (7.3) calculate the heading error

fraction and commanded turn rate, respectively. Here, ∆ψmax is a tuning parameter

defined as the heading error at which the maximum turn rate is commanded, and

ψB,des = π.

∆ψk =
ψB,des − ψB,k

∆ψmax
(7.2)

ψ̇c =


ψ̇max for ∆ψk ≥ 1

−ψ̇max for ∆ψk ≤ −1

ψ̇max∆ψk
√
|∆ψk| else

(7.3)

This controller provides excellent tracking towards the beacon when the system is

far from the IP and loiters in a circular pattern near the IP for the majority of the

descent. These loops are created when the vehicle reaches the IP and the heading

error becomes maximum causing a 360 degree turn to re-orient towards the target.

Without an estimate of the vehicle’s position with respect to the target, the algorithm

is unable to coordinate reaching the IP when the vehicle altitude tends to zero. As a

result, the vehicle remains in the circling pattern until landing.
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7.1.2 Method 2: {R, z} Feedback

This algorithm uses measurements of spherical range from the IP and altitude above

ground to steer the vehicle to the target. The use of beacon range instead of relative

heading provides a direct metric to minimize improving the accuracy. This enables

the vehicle to time the landing event to be when the system reaches the IP. This

is conducted through a two stage homing and loiter guidance strategy in which the

vehicle attempts to either home towards or maintain a constant distance from the

target. During a typical flight, the algorithm uses homing to reach the dropzone, the

loiter phase to maintain proximity to the IP, and will re-enter homing to land at the

target.

After deployment, the system enters homing in which the maximum inward radial

velocity is tracked to reach the target. The inward velocity of the vehicle depends

on the heading of the vehicle and the effects of the atmospheric winds. A bang-bang

controller is used to track inward direction because a change in the vehicle’s inward

velocity can only be used to find the magnitude heading error, but not the sign of the

error. This controller switches between maximum left and right turn rate to enforce

an oscillation around the inward direction. The control effort is reversed when the

radially inward acceleration goes negative indicating that the vehicle is tending away

from correct heading. The controller is tuned to track the maximum inward velocity

which can vary as a result of changing atmospheric wind conditions.

When the vehicle is aligned towards the target during homing, an estimate of

the radial component of the atmospheric winds is calculated by comparing the radial

velocity and assumed vehicle airspeed. Though this estimate is subject to errors from

a misalignment between vehicle heading and radial direction during the oscillatory

approach, it significantly aids in the transition to the loiter period.

During the loiter period the vehicle maintains proximity to the target by flying in

a large circular trajectory with radius rL and centered at the IP. To transition from

121



homing to the loiter path, a 90-degree turn must executed at the transition radius

to ensure the vehicle range is close to the loiter radius at the conclusion of the turn.

The transition radius is given in Equation (7.4) where the final term is associated

with the drift of the vehicle due to atmospheric winds.

rT = rL + rTR

(
1− π/2

V0

VWr

)
(7.4)

Once in loiter, a proportional derivative (PD) controller is used to track the loiter

path and reject errors induced primarily by atmospheric winds. A zero error turn

rate associated with the curved path is added to the heading controller (Equation

(7.5)).

ψ̇c = ψ̇L +KP (r − rL) +KDṙ (7.5)

ψ̇L =
V0

rL
(7.6)

The atmospheric winds directly impact the radial distance and rate of the vehicle

which allows their effects to be minimized the PD controller even though they are

unobservable. Similar to the previous scheme, this guidance strategy requires the

vehicle to penetrate any headwinds to fully circle the desired impact point which

limits this method to atmospheric wind speeds at or below the vehicle airspeed. This

is generally not a requirement for systems with full GPS feedback which can decouple

the atmospheric wind from the total vehicle motion and land accurately at the target

if they are deployed sufficiently upwind of the IP.

The system re-enters homing when the current altitude is equal to the altitude

required to reach the target, defined by the radial distance, airspeed, and descent rate.

This metric is similar to the altitude margin, but does not account for the influence

of atmospheric winds making it a worse predictor.

ztransition = r
ż

V0

(7.7)

This transition point is defined independent of the atmospheric winds making the
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approach to the target and overall landing accuracy heavily dependent on the low

altitude atmospheric winds.

7.2 Simulated and Experimental Results

To study the capability of the proposed beacon based algorithms, a series of simulation

and experimental tests were conducted. Simulation results focused on Monte Carlo

tests where parameters of the atmospheric wind model were changed between flights

such that wind magnitudes varied from 0 to 6 m/s and the angle between the upper

and lower air masses varied from 0 to 180 degrees. Experimental flight testing was

conducted in a large wooded clearing with gently rolling hills outside of Atlanta, GA.

The RF beacon-based algorithms are benchmarked against the landing capabilities

of the Conventional GPS-based GNC algorithm presented in Chapter 4. Monte Carlo

simulations and experimental flight test results of the Conventional GPS algorithm

are presented in Figure 7.2. This conventional GPS-based algorithm exhibited 50%

and 90% CEPs in simulation of 22.2m and 43.3m, respectively. Experimental results

closely match with 50% CEP of 27.3m and 90% CEP of 48.6m. Note that the axes

of Figure 7.2 are aligned with the wind direction such that a vehicle approaching the

target into the wind would be traveling down the vertical axis.

7.2.1 {ψB, z} Feedback

The {ψB, z} algorithm is simple in nature with only a homing controller used to

fly directly towards the target. The system is able to quickly align with and track

the inward direction during the initial approach but transitions into a turning loiter

phase to maintain proximity to the target. An example simulation of the {ψB, z}

algorithm is presented in Figure 7.3 with the trajectory plot zoomed to near the

target for clarity. The tracking error becomes maximum when the vehicle reaches the

target near t = 35s and the system enters the turning phase. After only two loops,

the vehicle approach to the target is aligned with the wind. This occurs because
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(a) (b)

Figure 7.2: Landing dispersion of GPS based feedback algorithm in (a) simulation
and (b) experimental flight testing.

the vehicle heading, not course direction (direction of the ground track velocity), is

aligned to the target. The wind constantly perturbs the vehicle downwind of the

target resulting in the inward trajectory aligning anti-parallel with the wind vector.

When the vehicle flies over the target, the heading error becomes maximum and the

vehicle makes a sharp turn to reorient towards the target.

This algorithm, though simple in nature, exhibits beneficial emergent behavior.

The unobservable atmospheric wind magnitude regulates how much a given looping

trajectory is stretched downwind of the target. This governs the maximum distance

the vehicle gets from the IP, effectively creating an upper bound on the final miss

distance. For slow atmospheric winds, the stretching behavior is not pronounced and

the vehicle creates a flower pedal shaped trajectory around the IP. As atmospheric

wind speed increases, the upper bound increases but also increases the probability

the vehicle will land into the wind. Intuitively this occurs because the vehicle spends
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(a)

(b)

Figure 7.3: Example simulated trajectory of the {ψB, z} feedback algorithm
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Figure 7.4: Percent of landings aligned with the wind as a function of low altitude
wind speeds.

longer flying towards the target than turning to re-orient towards it. The time re-

quired to re-orient is constant (based on the 15 deg/s maximum allowed turn rate)

whereas the time to fly towards the target increases as oncoming head winds slow the

ground speed of the vehicle.

A Monte Carlo simulation analysis was conducted to evaluate the accuracy of

this feedback method and provide quantitative justification of the emergent behavior.

Results presented in Figure 7.4 indicate that the vehicle lands aligned with the wind

under 20% of the time in low winds and approximately 30% of the time with greater

wind speeds. While not nearly as effective as the Conventional GPS at aligning with

the wind, this emergent behavior helps payload survivability.

Landing accuracy of the algorithm itself is shown in Figure 7.5 with both simula-

tion and experimental results. Simulation results indicate that the {ψB, z} feedback

algorithm has a 42.2m 50% CEP and 90.0m 90% CEP. This represents a decrease

in accuracy over the concurrently tested GPS algorithm by 91% and 108%, for each

CEP metric respectively. Experimental results of 52 landings show similar results

with a 48.2m 50% CEP and 88.2m 90% CEP. As expected, a large number of misses

occur along the downwind axis which primarily are associated with flights that land

flying toward the target.
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(a) (b)

Figure 7.5: Landing dispersion of the {ψB, z} feedback algorithm based on (a) simu-
lation results and (b) experimental flight testing.

7.2.2 {R, z} Feedback

Using beacon range instead of beacon heading, this algorithm is able to improve accu-

racy by actively timing when to land at the target. An example simulated trajectory

of an airdrop system employing this GNC algorithm is presented in Figure 7.6. The

vehicle is deployed upwind of the target following standard airdrop procedure and

immediately enters a turn to find the maximum inward velocity. The vehicle aligns

towards the target t = 22s when the switching controller being to oscillate as shown

in Figure 7.6(b). After, the system accurately homes towards the target and transi-

tions smoothly to the loiter period. During loiter, the PD controller is able to reject

the effects of the atmospheric winds by tracking the circular path. The loiter ra-

dius was selected at 90 m based on a simulation parameter study which identified a

trade-off between minimizing loiter radius and maximizing nominal control effort. A

small loiter radius minimizes the distance the vehicle must fly during the final stage
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(a)

(b)

(c) (d)

Figure 7.6: Simulated trajectory of an autonomous airdrop system employing {R, z}
feedback in a windy environment.
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of homing, minimizing the impact of the wind on the final landing point. However,

a small turn radius also increases the turn rate necessary to maintain the circular

path (ψ̇loiter in Equation (7.6)) and limits the amount of control authority the PD

controller has available before actuator saturation. The final homing period is able

to fly towards the target but lands short and downwind of the target.

The accuracy of the {R, z} beacon feedback method has been extensively tested

in simulation through Monte Carlo analysis described above and experimental flight

testing. Results of each analysis are presented in Figure 7.7. In simulation, the {R, z}

beacon system has a 50% CEP of 25.9 m and 90% CEP of 62.3 m. These results

indicate only a 21% decrease in accuracy when the beacon system is used instead of

GPS and a 36% improvement over the {ψB, z} controller. 53 drops were conducted

during experimental flight testing resulting in a 50% CEP landing accuracy of 24.3m

which closely matches and validates the simulation results. As noted previously,

the landing accuracy of this algorithm is heavily dependent on the unobservable

low altitude winds. The correlation between miss distance and low altitude winds is

presented in Figure 7.8. As expected, the system is most accurate when ground winds

are mild. At high atmospheric wind magnitudes, the vehicle can be perturbed off of

the loiter trajectory. In this case, the vehicle re-enters homing but cannot always

return to the target based on the altitude.

The aggregate results of the beacon-based methods are presented in Table 7.1.

Overall, the beacon methods are able to maintain high levels of landing accuracy

with limited feedback. The effect of the unobservable winds are minimized or used

advantageously, though these methods cannot consistently land into the wind.
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(a) (b)

Figure 7.7: Results of the {R, z} beacon feedback method tested in (a) simulation
and (b) experimental flight testing.

Figure 7.8: Dependence of landing accuracy on low altitude wind speeds for the {R, z}
beacon feedback method.
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Table 7.1: Landing statistics for Beacon-based GNC algorithms.

GNC Type
Simulation Experimentation

50% CEP 90% CEP 50% CEP 90% CEP

Conventional GPS 22.2m 43.3m 27.3m 48.6m

Method 1: {ψB, z} 42.2m 90.0m 48.2m 88.2m

Method 2: {RB, z} 26.9m 56.2m 24.3m 56.3m
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Conventional guidance, navigation, and control strategies depend heavily on GPS

feedback and an a priori nominal vehicle model to steer the precision airdrop system

to the target. However, the assumption that GPS feedback is available and that the

vehicle performs similar to nominal known behavior is not valid in degraded scenarios

which can have significant negative impact on the landing accuracy of the vehicle.

This thesis has expanded the set of degraded conditions that a guided airdrop system

can successfully negotiate through creation of a novel adaptive control scheme and

development of guidance schemes using a radio frequency beacon signal.

A hyperadaptive guidance, navigation, and control algorithm was developed to

overcome high model uncertainty typically exhibited by airdrop systems. At its core

is a model identification algorithm that can fully characterize the vehicle turn rate

dynamics and control sensitivity mapping during the course of a single flight. This

method presents a data-driven, non-parametric approach to modeling the control sen-

sitivity to handle a wide array of damage. Additionally, estimation of the dynamic

response enabled an improved Dubins path planning algorithm to always provide

feasible paths to the control algorithm. Extensive simulation results and flight test

data shows that the hyperadaptive GNC is robust to all forms of model uncertainty

introduced. Minimal to no loss of landing accuracy was noted for changes in atmo-

spheric winds, vehicle airspeed, turn rate biases, actuator speed, and many linear

and nonlinear changes to the control sensitivity mapping including non-monotonic

and deadband behavior.
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As a comparison, two GNC algorithms based on currently fielded flight software

were studied. Both algorithms performed equivalently for small levels of damage

which result in changes to the vehicle airspeed or turn rate bias. However, as more

heavily damaged situations are considered, the comparison algorithms show decreas-

ing accuracy. The worst performance resulted from considering a control reversal

where over an order of magnitude decrease in landing accuracy was noted. This

commonly induced human errors destabilizes the comparator algorithms causing un-

desired spiral behavior but the data-driven approach of the hyperadaptive algorithm

is not affected. When compared directly using a highly uncertain airdrop vehicle,

the hyperadaptive algorithm most successfully rejected damage, exhibiting a 40% de-

crease in landing accuracy in comparison to the nominal vehicle. The comparison

algorithms were more adversely affected with 100% and 300% increases in the me-

dian miss distance. Due to instability of control reversals, the impact on 90% CEP

is even greater. After extensive flight simulation of the hyperadaptive algorithm,

over 100 experimental flight tests were conducted on a small-scale vehicle to test the

hyperadaptive algorithm. The computation requirements of this algorithm were ac-

tively controlled to ensure the ability to run in real-time on a 80MHz microprocessor.

Flight test data indicated only a 30% decrease in landing accuracy when controlling

highly uncertain vehicle in comparison a conventional GNC tested of a vehicle with no

damage. Additionally, when applied to the nominal vehicle, the hyperadaptive GNC

showed very comparable landing accuracy to that of a GNC tuned specifically for

that vehicle implying no base accuracy loss by switching to a fully adaptive system.

A beacon-based strategy was employed to overcome situations where GPS is un-

available or severely degraded. Two novel GNC algorithms were developed to strate-

gically use limited information to home towards and land near the target. These

methods were tested through extensive simulation analysis and over 50 experimental
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flight tests for each algorithm. Very close alignment was noted between the simu-

lation and experimental results, validating the testing procedure and exposure to a

large variety of wind fields. With radial range, the beacon-based algorithm can sense

the radial component of the wind while homing, loiter in proximity to the target and

land with only a slight decrease in landing accuracy as compared to a GPS-based

algorithm. The main disadvantage is the inability to coordinate a landing into the

wind which could hamper payload survivability. The second beacon-based strategy

analyzed heading to the beacon as a source of feedback. Far from the target this

provides excellent homing, and once at the target, flies in a looping pattern until

landing. This simple procedure exhibits beneficial emergent behavior that aligns the

approach to the target into the wind vector. This method experienced a 90% decrease

in landing accuracy in comparison to a GPS-based algorithm but still provides a high

level of accuracy in situations where GPS is not available.

8.2 Future Work

The work presented here has several limitations and areas for improvement. A list of

key developments for this project are:

1. The current hyperadaptive scheme requires the ability to turn both left and right

at the desired maximum turn rate. Expanded logic to handle scenarios where

the vehicle can only turn in one direction should be investigated. The algorithm

can be expanded to include Dubins paths with unidirectional constraints as

explored by Choi [94] and the SNLM estimator can identify when this guidance

constraint needs to be employed.

2. Improvements to the control strategy can also be studied. The estimation of

the linear dynamic model opens the door to more advanced control algorithms.

Model predictive control is the most commonly applied method in the litera-

ture for application with Hammerstein models [90,91,95,96] and has also been
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studied for the precision airdrop system [97,98].

3. Research that advances the sensing and feedback capabilities for airdrop systems

can enable both the hyperadaptive and beacon algorithms to be expanded.

(a) With improved feedback, many of the steady state longitudinal parameters

could be estimated and controlled in real time. This would take advantage

of the landing accuracy improvements gained with dual channel control.

(b) Preliminary work on a full state observer for beacon-based feedback shows

promise, but depends on high quality inertial heading measurements for

good tracking behavior. This strategy has been analyzed for autonomous

underwater vehicles [48,49,57,100] and is viable for precision airdrop sys-

tems, but does exhibit observability issues when the vehicle is aligned to

the target [57]. If developed, this method could provide a truly redundant

feedback method for GPS blackout as it enables the same guidance and

control algorithms to steer the vehicle to the target.

4. Finally, there is potential to use the hyperadaptive strategy with a variety of

conventionally non-adaptive GNCs because the core Hammerstein model iden-

tification algorithm and integration process is modular. This includes strategies

employing optimal path planning and even beacon-based navigation. As long as

an airdrop vehicle is equipped with heading rate feedback, the lateral turn rate

mapping procedure can be employed. This aligns well with the beacon heading

method{ψB, z} because it only depends on an accurate mapping of the control

sensitivity to land near the target.
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APPENDIX A

XFLY ADAPTIVE FLIGHT SOFTWARE

The XFly GNC incorporates an Model Reference Adaptive Controller (MRAC) into

the Conventional GNC flight software presented in Chapter 4. The PI heading con-

troller can apply a constant offset to the a priori turn rate sensitivity mapping f(ψ̇c)

but cannot account for changes in the form or linear gain of the function. The MRAC

approximates the turn rate mapping as a linear function and updates the parameters

to drive the tracking error to zero.

δac = f(ψ̇c) + δabias (A.1)

δac ≈ δaGainψ̇c + δabias (A.2)

An illustration of the controller is presented in Figure A.1 where both control

parameters are updated by studying the error between the reference model turn rate

and measured turn rate. This controller assumes the plant takes a linear form given

as:

ψ̇ = αδa+ ψ̇0 (A.3)

To drive the error to zero, the controller must become an inverted estimate of the

plant. Inspection of the error given in Equation (A.5) reveals the optimal values of

the control parameters. For convenience, the two control parameters are combined

into a parameter vector θ̄ = [δaGain, δabias]
T .

e(θ̄) = ψ̇ − ψ̇m (A.4)

= α(θ1ψ̇c + θ2) + ψ̇0 − ψ̇m (A.5)

θ∗1 = 1/α; θ∗2 = −ψ̇0/α; (A.6)
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Figure A.1: Block diagram of Model Reference Adaptive Controller.

Convergence to the optimal parameters is accomplished using the quadratic error

criterion.

J(θ̄) =
1

2
e(θ̄)2 (A.7)

The goal of the parameter update is to decrease the error by updating the parameters

in the direction of the negative gradient of J(θ̄). This definition ensures Lyapunov

stability by having a positive definite cost function and negative cost derivative [101].

The parameter derivative can be calculated using the error sensitivity, ∂e/∂θ̄.

dθ̄

dt
≡ −γ ∂J(θ̄)

∂θ
= −γe∂e(θ̄)

∂θ̄
(A.8)

Solving Equation (A.8) yields the parameter update laws which are converted to the

discrete domain for digital implementation.

dθ1

dt
= −γ1αψ̇c

(
ψ̇ − ψ̇m

)
(A.9)

dθ2

dt
= −γ2α

(
ψ̇ − ψ̇m

)
(A.10)

Given that α is an unknown parameter, it can be combined with the adaption gain,

γ.
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