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SUMMARY 

 

 Substantial experimental and numerical efforts on the characterization of propellant 

injection, mixing, and combustion processes at near- and super-critical conditions have 

recently led to improved understanding of the intrinsic mechanisms involved. Most 

existing studies, however, have been focused on shear coaxial injectors with light fluids, 

such as hydrogen and methane, as fuel. The situation with swirl injectors using kerosene, 

such as those broadly used in Russian rocket engines like the RD-0110, RD-107/108, and 

RD 170/180, has not been explored in detail. These engines operated at pressures much 

higher than the critical pressures of propellants, leading to the extreme nonlinearity and 

complexity of physical phenomena and therefore severe challenge to experimental 

diagnostics and numerical simulations. 

 In this dissertation, we establish a unified theoretical and numerical framework, 

which deals with supercritical flows and combustion over the entire range of fluid 

thermodynamic states of concern. Turbulent closure is achieved using the large-eddy-

simulation (LES) technique. A steady laminar flamelet approach is implemented to model 

turbulence/chemistry interactions. Thermodynamic properties, including density, enthalpy, 

and specific heat at constant pressure, are evaluated according to the modified Soave-

Redlich-Kwong equation of state and fundamental thermodynamic theories. Transport 

properties, including thermal conductivity and dynamic viscosity, are estimated according 

to an extended corresponding-state principle. The numerical scheme is preconditioned 

along with a dual-time-stepping integration using finite-volume approach. Finally, a multi-

block domain decomposition technique associated with the message passing interface of 

parallel computing is applied to facilitate computational speed. 

 The ensuing framework is first applied to study the three-dimensional flow 

dynamics of a liquid oxygen swirl injector at supercritical pressure. The complex flow 
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structures are visualized and explored for the first time. A fluid transition region is defined 

to distinguish dense fluid from light gas at supercritical pressure according to density-

temperature property diagram. This transition region becomes broader with increasing 

pressure but degenerates into a sharp interface at subcritical pressure. Various mechanisms 

dictating the flow evolution, including Kelvin-Helmholtz instability, centrifugal instability, 

center-recirculating flow, helical instability, and their interactions are studied using the 

spectral analysis and proper orthogonal decomposition technique. The longitudinal 

hydrodynamic instability is found to play a dominant role in the oscillatory flowfield. The 

helical mode is amplified and resonant with the acoustic wave at the characteristic 

frequency of 4.8 kHz. A parametric study is made to examine the pressure and temperature 

effects on the injector performance, such as film thickness and spray cone angle. The 

results are also compared to predictions from classical hydrodynamics theories to acquire 

direct insight into the flow physics involved. 

 Next, the mixing and combustion characteristics of liquid oxygen (LOX)/kerosene 

bi-swirl injectors are investigated under a supercritical condition typical of contemporary 

rocket engines. Emphasis is placed on the near-field flow and flame development 

downstream of the inner swirler. The flame is stabilized by two counter-rotating vortices 

in the wake region of the LOX post that is covered by the kerosene-rich mixture. Various 

geometric parameters, including the recess length, LOX post thickness, and kerosene 

annulus passage, are examined to explore their influence on mixing and combustion 

dynamics. The recess region advances the interaction of LOX and kerosene and thus 

improves the mixing efficiency. A larger post thickness results in a higher spreading angle 

of the LOX film and intersects the kerosene film, thereby facilitating mixing in the recess 

region. The width of the kerosene annulus passage significantly affects the flow evolution; 

a wider passage increases the spreading angle of the liquid film and advances the center-

recirculating zone to an upstream location. Increasing the annulus width or post thickness 

might induce the initially lifted-off flame to attach to the injector post surface. This flame 



 xx 

attachment could increase the heat flux from hot products to the post surface. In order to 

achieve the optimal injector performance, future studies have to be performed to determine 

values of the group of recess length, post thickness, and kerosene annulus width. 

 Counterflow diffusion flames of general fluids are also studied using a unified 

framework, which is capable of capturing ignition and extinction characteristics in a wide 

range of pressures. An improved two-point flame-controlling continuation method is 

employed to solve the singularity problem at the turning points on the flame-response curve 

(the S-curve). Both oxygen/hydrogen and oxygen/hydrocarbon mixtures are systematically 

investigated over a pressure range of 0.5-200 atm. General similarities are developed in 

terms of flame temperature, species concentrations, flame thickness, and heat-release rate 

for all pressures under consideration. This suggests that the flame behaviors at high 

pressure can be evaluated by their counterpart at low pressure. The common features for 

the n-alkane family are identified. The flame properties of a given hydrocarbon fuel can be 

predicted from those of another hydrocarbon fuel at the same flow conditions. Tabulation 

of pressure-dependent flame properties can be achieved by mapping the flame solution at 

a given pressure, according to the correlations in the normalized strain-rate space, even if 

the extinction strain rate is not available beforehand. This will significantly improve 

computational efficiency for combustion models using tabulated chemistry, such as the 

flamelet, FGM, and FPI models. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivation 

 Understanding the fundamental physicochemical mechanisms associated with 

mixing and combustion of cryogenic propellants in a supercritical environment, in which 

both the pressure and temperature exceed the thermodynamic critical states, have long been 

matters of serious practical concern in combustion science and technology [1, 2], mainly 

due to the necessity of developing high-pressure combustion devices, such as liquid-

propellant rocket, gas turbine, and diesel engines. The liquid fuels and/or oxidizers are 

usually delivered by an injector assembly to combustion chambers at a subcritical 

temperature, which then undergo a sequence of processes at pressure and temperature 

levels well above the thermodynamic critical points of the substances as shown in Table 

1.1. Here LOX represents liquid oxygen. Under these conditions, the propellants are heated 

and transit into the supercritical state. The mixing and combustion processes exhibit many 

features distinct from those under subcritical conditions, thereby rendering conventional 

approaches developed for the devices operating at low pressures invalid. 

 

Engines SSME RD-170 Vulcain 2 

Propellants LOX/H2 LOX/Kerosene LOX/H2 

Chamber Pressure (MPa) 20.6 24.5 11.7 

Chamber Temperature (K) 3700 3676 3500 

Thrust at sea level, (MN) 1.78 7.55 0.9 

Specific Impulse (Vacuum) 453 338 431 

Burning Time (seconds) 480 150 600 

  

Table 1.1: Propellants and chamber operating conditions for selected LREs 
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 Table 1.1 shows three representative contemporary rocket engines, which operate 

at supercritical conditions. Table 1.2 lists the critical temperature and pressures of typical 

propellants for the reference. Successful missions require very high engine reliability, 

energy efficiency, and pose severe challenges to the design of the Thrust Chamber 

Assembly. Combustion instability has been recognized as one of the most challenging 

difficulties encountered in the development of liquid rocket engines [3]. In spite of 

extensive research on this subject, current understanding is not sufficient to support 

combustor design and optimization. Most of the engine developments relied on an 

expensive and time-consuming trial and error process. A successful design for one 

application may fail in another due to subtle difference in system characteristics or 

operating conditions.  

 

Propellants O2 H2 CH4 H2O CO2 He N2 RP-1 

Tc (K) 154.6 32.97 190.5 647 304.3 5.19 126.2 662.0 

Pc (MPa) 5.04 1.29 4.60 22.1 7.38 0.23 3.39 2.17 

 

 Recent advances in modeling and simulations make it possible to examine 

important physicochemical processes of a candidate design and provide guidance in design 

optimization. With the assistance of appropriate numerical and analytical tools, substantial 

cost reduction in sub-scale and full-scale tests can be achieved to help develop next 

generation of liquid rocket engines with better performance and higher reliability. Thus, it 

is necessary to establish a unified theoretical and numerical framework, upon which the 

effects of known processes and design attributes can be studied and assessed by advanced 

modeling and simulation techniques. 

 Modeling high-pressure mixing and combustion processes numerically poses an 

array of challenges that include all of the classical closure problems in turbulent reacting 

flows and a unique set of problems caused by the introduction of thermodynamic non-

Table 1.2: critical properties of typical pure substance 
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idealities and transport anomalies. The flow Reynolds number increases with pressure, and 

Kolmogorov scale decreases with Reynolds number according to Kolmogorov universal 

equilibrium theory. This scale reduction has a direct impact on flow evolution and raises 

the computational load to resolve key flow processes. Furthermore, near the critical point, 

propellant mixture properties exhibit liquid-like densities, gas-like diffusivities, and 

pressure-dependent solubilities. Surface tension and enthalpy of vaporization approach 

zero, and isothermal compressibility and specific heat increase significantly. These 

phenomena, coupled with extreme local property variations, have a significant impact on 

the evolutionary dynamics exhibited by a given system. 

 The complexity of the problem outlined above is numerically demanding, and a 

variety of uncertainties exist with regard to closure. This dissertation represents an attempt 

to address key issues related to modeling and understanding fluid dynamics and underlying 

fundamental physicochemical processes at supercritical conditions.  

1.2 Literature Review 

1.2.1 High-Pressure Fluid Injection, Mixing, and Combustion 

Jet Injector 

 Researchers and scientists in Europe and the United States have conducted many 

studies on cryogenic fluid injection under supercritical conditions. Because the rocket 

engines developed in these countries primarily implement impinging jet injectors (F-1 

engine for the Saturn V) or shear coaxial injectors (SSME and Vulcain engine). Extensively 

experimental studies were conducted to visualize the flow and flame structures using 

optical diagnostic techniques, including shadowgraph, excited CH, OH 

chemiluminescence, and planar laser induced fluorescence (PLIF) of OH. The extreme 

operating conditions and working environment of contemporary rocket engines pose severe 

challenges on experimental measurements. In spite of limitations of flow visualization and 
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data acquisition techniques, experimental efforts on the characteristics of propellant 

injection, mixing, and combustion processes at near-critical conditions have led to a better 

qualitative understanding of the fundamental mechanisms involved [4-8] in the last few 

decades.  

 It was found that shear-coaxial injection processes in liquid rocket engines exhibit 

two distinct modes of combustion. At subcritical pressures, injected liquid jets undergo the 

classical cascade of processes associated with atomization. Dynamic forces and surface 

tension promote the formation of a heterogeneous spray that evolves continuously. As a 

consequence, spray flames are formed and lifted away from the injector post in a manner 

consistent with the combustion mechanisms exhibited by local drop clusters. As the 

chamber pressure approaches or exceeds the critical pressure of a particular propellant, 

however, injected liquid jets undergo a transcritical change of state as interfacial fluid 

temperatures rise above the critical temperature of the local mixture. For this situation, 

diminished inter-molecular forces promote diffusion-dominated processes prior to 

atomization, and jets vaporize in the presence of exceedingly large thermophysical 

gradients. Well-mixed diffusion flames evolve and are anchored by small but intensive 

recirculation zones that exist in the shear-layers between adjacent propellant streams. 

 In parallel to experimental studies, attempts were made both theoretically and 

numerically to explore the underlying mechanisms of high-pressure fluid mixing and 

combustion. Oefelein and Yang [9] modeled two-dimensional mixing and combustion of 

oxygen and hydrogen streams at supercritical conditions using large-eddy-simulation 

technique and outlined the fundamental difficulties associated with modeling mixing and 

combustion processes at near-critical conditions. Zong et al. [10] conducted a 

comprehensive numerical study of nitrogen injection and mixing under supercritical 

conditions. The model accommodates full conservation laws and general-fluid 

thermodynamics and transport phenomena. All the thermophysical properties were 

evaluated directly from fundamental thermodynamics theories over the entire regime of 
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fluid states of concern. Furthermore, a unified treatment of numerical algorithms based on 

general fluid thermodynamics was established to improve computational accuracy and 

efficiency.  

 Oefelein [11] studied the thermal characteristics of oxygen/hydrogen shear-coaxial 

jet flames at supercritical pressure. Significant real-gas effects and transport anomalies 

occurs in colder regions of the flow, while ideal-gas thermodynamic and transport 

characteristics are dominant in the flame zone. The flame anchors itself in the interfacial 

region of high shear between the liquid oxygen core and annular hydrogen jet as shown in 

Fig. 1.1. The vortical expansion of low-density hydrogen stream induces strong 

recirculating backflow in the vicinity of the LOX-post. Inside this recirculation zone is an 

unsteady stagnation point that provides the flame-holding mechanism. Zong and Yang [12] 

later studied near-field and flame dynamics of LOX/methane shear-coaxial injectors. The 

LOX/methane flame is anchored between two counter-rotating wake recirculating zones, 

unlike LOX/hydrogen flame close to the LOX jet boundary because of high-diffusivity of 

hydrogen.  

 

  

Figure 1.1: Schematic of flame-holding mechanism for oxygen-hydrogen shear-

coaxial injection. 
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 The extinction limits of the flame generated around the LOX jet boundary were 

studied by Juniper et al. [13] by constructing a one-dimensional counterflow diffusion 

flame model. The results indicated that the flame was fairly stable in the near injector 

region and could not easily be extinguished by the strain rate, even at a very low hydrogen 

stream temperature. Since the typical strain rates encountered in rocket engines were 

insufficient to punch a hole in the flame, the edge of this diffusion flame sheet should be 

stabilized behind the lip of the LOX post. Following this suggestion, a two-dimensional 

simulation was performed to investigate the flame stabilization mechanism behind a step 

over a liquid reactant surface [14]. It was reported that the most influential parameter 

regarding flame stabilization was the height of the step with respect to the flame thickness. 

If the flame was thicker than the step, it could not remain in the recirculation zone behind 

the step and was readily blown off.  

 Masquelet et al. [15] simulated the LOX/H2 combustion in a subscale muti-injector 

liquid rocket engine. A sub-grid eddy break-up (EBU) model was used to limit chemical 

reaction rates with a mixing rate dependent on the dissipation rate of turbulent eddies. Heat 

flux along the chamber wall showed deviation from experiment measurements. Masquelet 

and Menon [16] later studied the GOX/GH2 combustion of a single-element shear coaxial 

injector. Chemical reactions were calculated directly from the resolved temperature and 

species, without consideration of turbulence/chemistry interactions. The three-dimensional 

results captured the trend of heat flux profile of the experimental data, and were much 

better compared to their two-dimensional cases. 

Swirl Injectors 

 Swirl injectors have recently drawn increasingly attention in the rocket community 

in US to achieve efficient mixing and combustion in many propulsion and power-

generation systems [17, 18], especially those developed in Russia. The swirling motion can 

improve flame stability by producing toroidal recirculation zones and reduce combustion 
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length by inducing high rates of the ambient fluid entrainment and fast mixing [19, 20]. 

Design of injectors highly affects the occurrences of combustion instability in the 

combustion chamber, because all feedback couplings of combustion chamber with other 

engine components take place through the injection process [21, 22].  

 Compared to jet injectors, swirl injectors in liquid-propellant rocket engines 

distinguish themselves in several aspects [23]. First, the non-uniform mixing of propellants 

in the jet core region is avoided and the intraelement mixing is significantly improved 

because of the outward spreading of the liquid spray. High mixing efficiency is, thus, 

possible even for a large injector flowrate. Second, the large flow passage in a swirl injector 

renders the atomization characteristics to be less sensitive to manufacturing errors. The 

injector is also less susceptible to choking and cavitation. Third, the injected fluid is 

discharged into the chamber as a hollow spray cone. The thickness of the liquid film 

becomes thinner as it swirls and spreads outward. Most existing studies [24-27] on swirl 

injectors has focused on liquid film thickness, spray cone angle, liquid sheet breakup, and 

mixing efficiency under various controlling parameters such as backpressure and recess 

length. The fluid dynamics inside swirl injectors have been much less investigated.  

 Bazarov and Yang [21] applied linear theory to study the dynamics of swirl 

injectors and showed that the overall response function of a swirl injector can be 

represented by transfer characteristics of each individual element of the injector, the 

coupling of pressure and velocity pulsations in the tangential entries causes not only 

fluctuations of liquid free surface propagating at the speed of axial velocity component, 

but the energy disturbance in the form of fluctuations of circumferential velocity 

component propagating through the entire liquid layer in both the radial and axial 

directions. Richardson et al. [28] implemented a nonlinear model based on the boundary 

element method to evaluate the dynamic response of swirl injectors and compared their 

computational results with those of the linear theory [21]. Ismailov and Heister [29, 30] 

performed both analytical linear theory and nonlinear numerical computations to 
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investigate wave reflection and resonance inside the swirl injector using abrupt 

convergence resonance model and conical convergence resonance model. Injector 

responses at resonant conditions behave as a quarter-wave oscillator. The dimensions of 

vortex chamber and mass flow rates have strong effects on injector responses, while the 

nozzle convergence angle and nozzle length have negligible effects on injector responses.  

 The above studies were studied under inviscid flow conditions. The pressure and 

temperature of working fluids were not explicitly specified. Thermodynamic properties of 

injection fluids and their variations at various pressures and temperatures were also not 

taken into account. Liquid rocket engines normally operate at pressures much higher than 

critical pressures of liquid propellants, hence accurate property evaluations are critical in 

numerical simulations. Cho et al. [31] conducted an experimental study on surface 

instability of cryogenic nitrogen swirling flow at both sub- and supercritical conditions. 

They found the different mechanisms of flow instability between cryogenic fluids and 

water swirl flows. The former is dominated by precessing vortex core (PVC) in the center-

recirculation zone (CTRZ) while the latter is caused by Kelvin-Helmholtz instability. For 

the nitrogen swirling flow, the phase change and subsequent density change differs and 

flow characteristics, such as the behavior of the downstream flow, spray angle, wavelength, 

and propagation velocity, change dramatically when the ambient pressure varies from 

subcritical to supercritical conditions.  

 Zong and Yang [32] first studied cryogenic fluid dynamics of swirl injectors at 

supercritical conditions. Liquid oxygen (LOX) was injected tangentially into a simplex 

swirl injector and mixed with gaseous oxygen in the chamber in the two-dimensional 

axisymmetric flow configuration. The internal flow pattern was divided into three different 

regimes with distinct characteristics, developing, stationary, and accelerating regimes. 

Hydrodynamic instabilities in the LOX, acoustic waves in the gaseous core, shear layer 

instabilities, and center recirculation zone induced by sudden expanding swirling film at 

the injector exit were identified and analyzed comprehensively. Huo et al. [33] further 
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extended the study by imposing external forcing to pulsate the mass flow rate at the 

tangential inlet. External forcing drives the flow to fluctuate at its forcing frequency and 

suppresses other frequencies of fluctuations generated by the original non-pulsated flow. 

However, these axisymmetric studies failed to provide azimuthal variations of flow 

properties and three-dimensional vortex-stretching mechanism. The propagation of 

hydrodynamic waves in azimuthal direction was thus not included. Huo et al. [34] have 

shown that the importance of three-dimensional flow effects in the swirl injector, which 

motivates the present study. 

 Understanding the dynamics of swirling fluid injection is a prerequisite of exploring 

flow physics and flame dynamics of swirl coaxial injectors, which are actually encountered 

more frequently in practical applications. Various injector parameters and chamber 

conditions have been examined to explore the injector mixing and combustion 

characteristics [35-40]. Sasaki et al. [35] performed a cold experiment of water/nitrogen 

swirl coaxial injectors at room conditions. Special attention was given to the effect of the 

center post recess, which tends to narrow the spreading angle and cause a deformation of 

the spray cone. Han et al [36] investigated the recess effects of the center element on the 

mixing characteristics of a swirl coaxial injector using water and kerosene. Four different 

recess numbers in the range of 0.71-1.37, defined as the ratio of the recess length to the 

post thickness, were considered. The mixing efficiency and propellant mass distribution 

were found to be very sensitive to the recess length. The Sauter mean diameter decreases 

slightly with increasing recess length and can be correlated with the empirical equations.  

 The aforementioned studies were conducted at low pressures without considering 

the effects of the elevated pressures typically encountered in operational liquid-propellant 

rockets engines. And most existing studies at high pressures have been focused on shear 

coaxial injectors using simple fluids, hydrogen and methane as fuel propellant. The 

investigation of swirl coaxial injectors using kerosene, which have been broadly used in 
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Russian rocket engines such as Rd-0110 and RD-107/108, are less-well documented in 

terms of experiments and numerical simulations.  

 Kim et al. [41] showed that as the recess length of injector post for a liquid oxygen 

(LOX)/kerosene bi-swirl injector increases the mechanism of propellants’ mixing shifts 

from external mixing to internal mixing. The latter mechanism significantly improves the 

mixing and combustion efficiency. Ahn et al. [42, 43] conducted a set of experiments to 

study combustion characteristics of LOX/kerosene bi-swirl coaxial injectors at near-critical 

and transcritical conditions. They found that the longer injector recess promotes the 

interactions of propellants and improves combustion performance, and that the injector 

recess scarcely affects the pressure fluctuation at supercritical pressure while it might 

induce strong low-frequency combustion instability at subcritical pressure. The lack of 

flow visualization and enough data in these experimental studies restricts our 

understanding on detailed flame dynamics and flame-holding mechanism for swirl coaxial 

injectors at supercritical pressure.  

1.2.2 Counterflow Diffusion Flames of General Fluids 

 High-pressure cryogenic propellant combustion in liquid rocket engines poses 

various scientific and technological difficulties, including injection optimization, ignition, 

flame stabilization, and combustion instabilities. The whole process is so complicated that 

its mechanism cannot be thoroughly understood without extensive theoretical and 

experimental works on simplified configurations under well-controlled conditions. 

 Laminar counterflow flames have been extensively studied by means of analytical, 

experimental, and numerical techniques, and flame behaviors and burning properties have 

been characterized for a wide variety of fuel and oxidizer combinations under a broad range 

of flow conditions[44, 45], due to their geometrical simplicity. When the flame temperature 

or burning rate (or any variable that characterizes the completeness of reactions, such as 

mass fractions of major combustion products) of a reactive system is plotted as a function 
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of the corresponding Damköhler number (or any variable that measures the strength of 

external flow stretching, such as the strain rate or scalar dissipation rate), an S-shaped 

relationship, commonly known as an S-curve, is obtained. This phenomenon can be 

attributed to the exponential dependence of the chemical reaction rate on temperature [46, 

47]. Here, the Damköhler number is defined as the ratio of the flow time scale to the 

chemical time scale. An S-curve covers all the possible steady chemical states that a given 

reacting mixture can achieve. It also reflects the response of a given chemical state to 

changes in the local aerothermal condition in a flame zone. An S-curve can thus be used to 

characterize the evolution of a flame subject to continually varying flow conditions, 

including ignition, extinction, and instability [48, 49].  

 Figure 1.2 shows a schematic diagram of an S-curve. The zero Damköhler number 

(Da) condition represents the frozen limit, corresponding to pure mixing of reactants. 

Along the lower branch (the weakly reacting flow branch), the chemical reaction rate 

increases with the Da number. Ignition occurs at Da = Daign, where the heat generation 

exceeds the heat loss in a steady state [46]. The flame temperature increases suddenly and 

takes a value in the upper branch. The reaction-sheet limit is attained as the Da number 

approaches infinity. When the Da number is progressively decreased along the upper 

branch, the flame is extinguished at Da = Daext. Along the unstable middle branch, the 

flame temperature decreases with increasing Da number, a situation considered unphysical. 

The S-curve becomes monotonic, with a unique solution when the activation energy is 

smaller than a critical value [50]. Such a condition, however, is unlikely to occur in most 

practical systems, because of the large activation energies for common fuels.  
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 Linan [50] performed an asymptotic analysis of counterflow diffusion flames using 

a one-step reaction mechanism over various segments of the S-curve: the frozen ignition 

regime, the partial burning regime, the premixed flame regime, and the near-equilibrium 

regime. Numerical methods were later developed to study one-dimensional counterflow 

flames with detailed chemical mechanisms [51-53]. These studies, however, focused only 

on the upper branch of the S-curve. Giovangigli and Smooke [54] applied the arc-length 

continuation method of Keller [55] in flame calculations to solve the singularity problem 

at the extinction point, and generated a complete S-curve. An alternative method, known 

as the flame-controlling method, was proposed by Nishioka et al. [56] to treat the same 

problem. Recently, the FlameMaster code [57] and the CHEMKIN-PRO package [58], 

using the arc-length approach and the flame-controlling method, respectively, were 

developed to study the flame response throughout the entire S-curve. Those studies, 

however, were carried out at room conditions based on an ideal-gas assumption.  

 Many practical combustion devices operate at pressures well above the 

thermodynamic critical points of injected fuels [1]. Ribert et al. [59] incorporated general 

fluid properties into an existing code (DMCFs) [60] to investigate counterflow diffusion 

Figure 1.2: Schematic diagram of a folded S-shaped flame response 
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flames of hydrogen and oxygen in the pressure range of 10-250 atm. Both subcritical and 

supercritical conditions for the steady-burning branch of the S-curve were considered. 

Phenomenological dependence of the heat release rate on pressure and strain rate was 

established in the form of q~ pa . Cryogenic inlet temperatures were also discussed for 

a fixed pressure and strain rate, and the pressure dependence of the extinction strain rate 

was explored.  

 Recently, Lacaze and Oefelein [61] have performed two-dimensional simulations 

of opposed jet flames of oxygen and hydrogen at supercritical pressures. Results were 

benchmarked against those in Ref. [15]. Similar observations were made of the effects of 

inlet temperature, pressure, and strain rate on the flame properties. Supercritical flames in 

the pressure range of 53-90 atm with strain rates of 5×104 - 5×106 s-1 were found to exhibit 

very limited variation in flame temperature (±3%) and major species profiles in the 

mixture-fraction space. A chemistry tabulation model was developed to reproduce the 

flame results with detailed chemistry. The studies described here ([59] and [61]) considered 

only the upper branch of the S-curve. The extinction point was not identified, due to 

numerical challenges. No flame solution beyond the extinction point was obtained, and the 

behavior of the unstable burning branch of the S-curve was not investigated. 

 Existing studies of high-pressure counterflow diffusion flames mainly focus on the 

oxygen/hydrogen system. Limited attention has been given to hydrocarbon fuels, which 

are used for a vast majority of combustion devices, including gas-turbine, liquid-rocket, 

and diesel engines. Pons et al. [62] studied the pressure effects of oxygen/methane flames. 

A fast-chemistry assumption was applied to derive scaling factors for characterizing flame 

properties. The analysis employed ideal-gas thermophysical properties with supercritical 

inlet temperatures. Pons et al. [63] later studied mass transfer and combustion in 

transcritical non-premixed oxygen/methane counterflows. Real-fluid properties were 

employed by extending the standard Chemkin package to the transcritical regime. The 

flame was established in the light-gas region adjacent to the sharp density gradient in the 
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transcritical zone. The work only considered the effect of inlet temperature on the flame 

structure at a pressure of 7 MPa under stable burning conditions. A more complete 

investigation of the flame behaviors, including extinction characteristics, is needed for a 

broad range of pressures and strain rates. 

 Heavy hydrocarbon combustion with air in a counterflow setting has been the 

subject of many studies. Li and Williams [64] performed both experimental and numerical 

investigations of diffusion and partially-premixed air/n-heptane flames. It was concluded 

that a reduced mechanism of 36 species and 180 reactions is insufficient for accurate 

prediction of intermediate species. Seiser et al. [65] explored the extinction and auto-

ignition of n-heptane counterflow flames at atmospheric conditions. The effect of strain 

rate was found to be more influential on the low-temperature chemistry than on the reactant 

temperature. Efforts were also made to develop more detailed chemical mechanisms for n-

heptane oxidation. Curran et al. [66] developed a comprehensive mechanism consisting of 

556 species and 2540 reversible reaction steps, which was verified for pressures up to 42 

atm. This mechanism was further modified and extended for C8-C16 normal alkanes [67], 

and will be used in the present work. Most of previous studies operated at either low 

pressures or low strain rates for diluted fuel and air. Furthermore, reduced chemical 

mechanisms were often employed. A systematic investigation into the flame properties 

under a wide range of flow conditions is yet to be performed. 

1.3 Research Objectives 

 The primary objective of this dissertation tends to improve the understanding of the 

fundamental processes of cryogenic swirling fluid injection, mixing, and combustion of 

LOX and kerosene under supercritical conditions using large eddy simulation. The 

theoretical model is based on full-conservation laws of mass, momentum, energy, and 

species, and accommodates real-fluid thermodynamics and transport phenomena over the 
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entire range of fluid states of concern. The work will be decomposed into three parts: LOX 

swirling flow injection, LOX/kerosene mixing, and LOX/kerosene combustion. 

 The complex three-dimensional flow structures and dynamics of LOX swirling 

flow are explored for the first time using the spectral analysis and proper orthogonal 

decomposition technique at supercritical conditions. LOX at a subcritical temperature is 

injected into a supercritical environment. Various underlying mechanisms dictating the 

flow evolution, including Kelvin-Helmholtz instability, centrifugal instability, center-

recirculating flow, helical instability, and their interactions are studied. A parametric study 

is performed to examine the pressure and temperature effects on the injector design 

attributes, such as film thickness and spray cone angle. 

 The mixing and atomization characteristics of LOX/kerosene swirl coaxial 

injectors at supercritical conditions are investigated using the geometric prototype of 

RD0110 rocket engine. Both LOX and kerosene are injected at a subcritical temperature. 

The different behaviors of flow evolution and liquid film breakup will be recognized at 

supercritical conditions. Various geometric parameters, including recess region, post 

thickness, and kerosene annulus width, are examined to explore their influence on mixing 

efficiency and flow dynamics. Important information of selection criteria of injector design 

attributes will be provided for the optimum injector performance. 

 The combustion characteristics of LOX and kerosene swirl coaxial injectors are 

numerically investigated with operating conditions encountered in contemporary liquid-

propellant rocket engines using large-eddy-simulation technique along with laminar 

flamelet library approach. The emphasis is placed on the region just downstream of the 

injector element. The flame-holding mechanism are discussed in detail. The influence of 

various geometric parameters, including recess region, post thickness, and kerosene 

annulus width, are further examined on combustion performance in terms of the capability 

to the thermal protection of the injector solid surface. The pressure fluctuation field is 
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explored in the combustion chamber near the recess region for different injector 

configurations. 

 Another objective of the current thesis is to explore the fundamental flame 

behaviors of general fluids in a counterflow configuration. A theoretical and numerical 

framework is established to study counterflow diffusion flames for general fluids over the 

entire thermodynamic regime. The formulation accommodates fundamental 

thermodynamics and transport theories, along with detailed chemical mechanisms. Both 

steady and unsteady burning branches of a complete flame-response curve (the S-curve) 

are considered. An improved two-point flame-controlling continuation method is 

employed to solve the singularity problem at the turning points on the S-curve. Both 

oxygen/hydrogen and oxygen/N-Alkane Hydrocarbons (CH4-C16H34) flames are 

systematically investigated over a pressure range of 0.5 – 200 atm. The flow strain rate 

covers from a small value to extinction value. The general flame similarities in terms of 

flame temperature, flame thickness, species concentrations, reaction rates, and heat release 

rate, are explored in a normalized strain-rate space for the entire range of pressures under 

consideration.  

1.4 Dissertation Outline 

The dissertation is organized into 9 chapters. Chapter 2 describes the theoretical 

formulation of governing equations as well as auxiliary equations to close the problem. 

Chapter 3 presents the numerical framework, which is discretized using a preconditioned, 

density-based, finite-volume methodology. The overall numerical accuracy is second-order 

in time and fourth-order in space. Chapter 4 investigates the flow dynamics of LOX swirl 

injectors at supercritical pressure in a three-dimensional space, the underlying physics and 

flow instabilities are analyzed. Chapter 5 studies the cold-flow mixing characteristics of 

LOX and kerosene bi-swirl injectors with various geometries. This is followed by the study 

of combustion of LOX and kerosene in Chapter 6, in which the near-field flow and flame 
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development are discussed and the flame stabilization mechanism is identified. The 

suggestion is given for the selection of important injector design attributes to achieve the 

best performance. Chapters 7 and 8 systematically investigate counterflow diffusion flames 

of general fluids: oxygen/hydrogen and oxygen/n-alkanes hydrocarbon mixtures, 

respectively. Finally, the conclusions of this dissertation and recommendations for the 

future work are provided in Chapter 9. 
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CHAPTER 2  

THEORETICAL FORMULATION 

2.1 Governing Equations 

 The theoretical formulation is based on the full conservation equations of mass, 

momentum, energy, and species concentrations in Cartesian coordinate systems. In fluid 

mechanics, assuming continuum and negligible body forces, the differential form of 

Navier-Stokes equations are given by 
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i

u

t x

 
 

 
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(2.4) 

here i, j, and k are indexes of spatial coordinate, summation, and species. For a Newtonian 

fluid with Stokes' hypothesis, the viscous stress tensor, σij in Eq. 2.2 is expressed as 

2
 .

3
ji k

ij ij ij ij ij
j i k
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x x x
      
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(2.5) 

 The Dufour effect, which is the heat flux due to concentration gradient, is generally 

very small and thus neglected in the current study. Then qj in Eq. 2.3 is defined as 

,
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j k k k j
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(2.6) 
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 The specific total energy is defined as the sum of specific internal energy and 

kinetic energy, given by 

 ,
2
j ju u

E e 
 

(2.7) 

where the specific internal energy is calculated from specific enthalpy, pressure, and 

density, given by 

 ,
p

e h


 
 

(2.8) 

where h is determined by the mixture concentration and partial-mass based enthalpies, , 

for which the definition will be given later.  
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 The chemical source term in Eq. 2.4 is determined from the selected chemistry 

kinetics. For an elementary reaction mechanism, with L-step reaction and N species, 
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(2.10) 

the reaction rate constants of the forward and backward reactions, kfl and kbl, may take the 

following form according to the modified Arrhenius’s equation: 

   exp /  .b
l l l uk T AT E RT 

 
(2.11) 

The net production rate for each species in a multi-step mechanism is given by 

     
1 1 1
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  

 
    (2.12) 

 In non-premixed combustion studies, mixture fraction is an important conserved 

variable and often used. The definition of mixture fraction is not unique. In a two-feed 

system, mixture fraction is simply defined as the ratio of the local mass originating from 

the fuel (denoted by 1) to total mass (with mass from the oxidizer stream denoted by 2), 

ˆ
kh
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  

(2.13) 

 Although the definition based on Eq. 2.13 is straightforward, it becomes ambiguous 

when there are multiple inlets. In such a case, a more general definition based on elemental 

conservation is used. If aij denote the number of atoms of element j in a molecule of species 

i, then the mass of all atoms j in the system of interest is given by: 

1

 .
N

ij j
j i

k i

a MW
m m

MW
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Dividing Eq. 2.14 by the total mass, one has the mixture fraction of element j as: 
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m a MW
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It is obviously that Zj is a linear function of species, Yi. Multiplying Eq. 2.4 by 

ij j ia MW MW  and summing over all the species, we have: 
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(2.16) 

The source term vanishes because of the conservation of chemical elements. If we assume 

that the mass diffusivity for all the species equal to D, the balance equation becomes 
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 .j kk k
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(2.17) 

For hydrocarbon fuels ( ), the coupling function can be defined as: (Burke and 

Schumann 1928):  

2 2

2  ,C OH

C H O O

Z ZZ

mMW nMW MW
  





 (2.18) 

where β is a conserved scalar. It can be normalized between 0 and 1 to obtain Bilger’s 

(1988) definition of the mixture fraction: 

m nC H
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From Eq. 2.17 and Eq. 2.19, one can get the transport equation for the mixture fraction: 
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(2.20) 

2.2 Simplified Equations for Counterflow Configuration 

 Figure 2.1 shows the physical model of a counterflow diffusion flame produced by 

two opposed fluid jets issuing from two circular nozzles [59, 61]. The configuration 

produces an axisymmetric laminar flowfield with a stagnation plane in the middle. The 

theoretical formulation for this type of flames has been well established for ideal gases [54, 

56]. The present study extends previous analyses by incorporating general-fluid 

thermodynamics and transport theories, such that a unified framework can be constructed 

to treat the flame response for real fluids over a complete S-curve, including both the 

steady- and unstable-burning branches.  

 

 

 

 

 The governing equations for steady-state axisymmetric problems in cylindrical 

coordinates are simplified as: 

flame

stagnation 

plane

x

r
H2 O2

Figure 2.1: Schematic diagram of a counterflow diffusion flame. 
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Continuity: 
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Radial-momentum: 
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 A stream function, 2 ( )r F x , which satisfies the continuity equation, is 

employed to reduce the governing equations to a set of ordinary differential equations [52].  

2r u rF
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We further assume that the temperature and species mass fractions are only functions of  

and introduce a new variable,   /G dF dx , the system equations are further simplified as 

follows, 
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Radial momentum: 

x
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where   is the molecular viscosity. 𝐻 is defined as  
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where the partial-mass enthalpy of species k, ˆ
kh  is calculated based on fundamental 

thermodynamics theories to account for real-fluid effects [68]. At the ideal-gas limit, 

,
ˆ
k p kdh C dT , with ,p kC being the specific heat capacity of species . The energy equation 

then degenerates to the version given in Ref. [52].  

2.3 Equation of State and Thermophysical Properties 

 In order to close the aforementioned governing equations, thermodynamic and 

transport properties require to be defined and an equation of state (EOS) is needed to 

correlate pressure, temperature, and density. Property evaluation based on ideal-gas model 

is not valid any more at high-pressure situations. An equation of state that can handle real-

fluid properties must be selected. The thermodynamic properties have to be evaluated in a 

consistent manner to provide a unified treatment of real-fluid thermodynamics. In this 

section, the selected equation of state is first presented, and then real-fluid thermodynamics 

treatment, including the derivatives appearing in the preconditioning matrix are 

summarized. 

k
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2.3.1 Soave-Redlich-Kwong EOS 

 The commonly used EOS for computing real-fluid properties under high-pressure 

conditions includes Benedict-Webb-Rubin (BWR) [69], Peng-Robinson (PR)[70], and 

Soave-Redlich-Kwong (SRK) [71]. All of them can predict thermodynamic properties of 

vapor and liquid phases with excellent accuracy. In the present study, SRK EOS is 

implemented to evaluate the derivative terms in thermodynamic relations, and BWR EOS 

accompanied with an extended corresponding state principle is used to estimate transport 

properties, which will be discussed in a later section. The formula of SRK EOS is given 

by, 

2
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MW b MW MW b
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(2.33) 

where a and b account for the attractive and repulsive forces between molecules.  is a 

modeling parameter and a function of temperature and acentric factor. For a mixture, these 

parameters are expresses as, 
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where is the mole fraction of species i. The product  in Eq. 2.34 is given by, 

(1 )ij ij i j i j ija aa   
 

(2.36) 

where  is the binary interaction coefficient. ai , bi, and other parameters are determined 

by critical properties and expressed as follows, 
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20.48508 1.5517 0.15613i i iS     
 (2.41) 

Here i  represents the acentric factor of species i. For hydrogen, to account for the 

quantum-gas behavior, Eq. 2.30 is modified as, 

2
1.202exp( 0.30228 )H rT  

 
(2.42) 

This correlation is expected to be accurate for hydrogen at temperature higher than 83K, 

applicable in liquid rocket.  

2.3.2 Thermodynamic Properties 

 Thermodynamic properties can be derived directly from fundamental 

thermodynamic relations, which are valid for all thermodynamic states. These properties 

are generally taken as the sum of the low-pressure limit value using ideal-gas model and a 

departure function accounting for the dense-fluid corrections at high pressures. Taking 

advantage of the path-independence of state properties, specific internal energy, enthalpy, 

entropy, and specific heat capacity can be calculated as: 

0
2 2

( , ) ( ) ,0

T

p T p
e T e T d

T






  
           

  (2.43) 

0
2

1
( , ) ( ) ,

p

0 p
p T

T
h T h T dp

T

  
          

  (2.44) 

0
0 2

1
( , ) ( , ) ,0

T

p
s T s T d

T






  
          

  (2.45) 

0
0

22

22 2
( , ) ( ) .p V

TT

T p T p p
C T C T d

TT






                         


 

(2.46) 



 26 

The subscript 0 refers to an ideal state at low-pressure limit and the integral terms are the 

departure functions. All the partial derivatives in these relations can be calculated from 

SRK EOS as described in the previous section, and the resultant forms are expressed as 

follows, 
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where the derivative ( )/a T    is given in Appendix C. 

2.3.3 Partial Molar and Partial Density Properties 

For an ideal gas mixture, the properties are simply the sum of molar-weighted properties. 

However, at high-pressure conditions, the mixture properties, such as specific internal 

energy, specific enthalpy, and specific volume, are complex functions of temperature, 

pressure and chemical species. Partial molal properties for an extensive variable X, is 

defined as: 
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where n is the mole number. Partial molar properties are defined as: 
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 Early works in high-pressure droplet vaporization and combustion [72, 73] 

indicated that partial molar properties have to be used to get reliable results. This is easily 

understood by taking the mixture of water and ethanol at room conditions as an example. 

The mixture volume (non-ideal mixture) of 1 mL water and 1 mL ethanol is less than 2 

mL. In other words, the mixture property V, is not equal to the sum of molar-weighted 

volumes of water and ethanol. Partial molar properties have to be used to get accurate 

mixture properties in such situations. 

However, in most CFD codes the flow properties are evaluated based on mass or 

density instead of mole number, making the evaluation of partial molar properties 

inconvenient. The concept of partial mass and density properties were introduced by Lafon 

et al. [74] and Meng [75] to overcome these problems. 

 Any partial mass property 𝜙 in a mixture is dependent on pressure, temperature, 

and species mass fractions: 
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Accordingly, the partial mass property is defined as 
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Partial density property is defined in a similar manner: 
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Here the independent variables change from pressure, species mass fractions to species 

densities. The relation between a partial mass and the partial density properties can be 

derived from fundamentals of thermodynamics [75], given by: 
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As an example of partial mass and partial density variable application, partial mass 

enthalpy is given by: 
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(2.56) 

2.4 Transport Properties 

 In addition to the modification of thermodynamic properties, transport properties 

are needed to be evaluated accurately by taking into account high-pressure effects. 

Accurate calculation of transport properties, including dynamic viscosity, thermal 

conductivity, and binary mass diffusivity, is very important for fluid mixing and 

combustion characteristics. They not only determine the flow dynamics, but also the heat 

and mass transfer rates [76].  

 As originally proposed by van der Waals in 1873, the law of corresponding states 

conclude that equilibrium properties can be related to the critical properties in a universal 

manner [77]. It expresses that the reduced P-V-T relationships are the same for all 

substances. The property of any fluid can be thus estimated by relating to its counterpart 

of a reference substance, whose properties can be easily obtained [78]. Chung et al.'s 

method [77], which also falls into the corresponding state theory category, is used in the 

current study for its good accuracy, relative simplicity, availability of parameters, and 

consistency in evaluating dynamic viscosity and thermal conductivity for high-pressure 

fluid mixtures. As for the binary mass diffusivity, as discussed by Poling et al. [77], there 

are few proposed methods to account for high-pressure effect on the diffusion coefficients, 

the Takahashi method is used in the current study. 

2.4.1 Dynamic Viscosity and Thermal Conductivity 
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 Dynamic viscosity and thermal conductivity of mixtures at high pressures are 

calculated using Chung et al.'s method, upon which the general formulations are derived 

from elementary kinetic theory. Extensions were made to account for various effects that 

are not included in the derivation. The resulting formulation provides a consistent 

procedure to estimate mixture dynamic viscosity and conductivity at high pressures. 

 According to elementary kinetic theory, the mass diffusivity D, dynamic viscosity 

 , and thermal conductivity λ, are proportional to the average molecular speed v and mean 

free path L,  
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Assuming a rigid, no interacting sphere model for molecules, the viscosity relation is given 

by: 

1/2 1/2

2
26.69  ,

T M



 (2.60) 

where    = viscosity, μP 

 M = molecular weight, g/mol 

 σ = hard-sphere diameter, Å 

If the effects of molecular interaction are taken into account, viscosity can be derived as: 

1/2 1/2

2
26.69  ,

v

T M






 (2.61) 

where v  is the collision integral, which can be calculated if the potential energy of 

interaction is given.  
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 A factor Fc is added to account for molecular shapes and polarities of dilute: 

   1/2 1/2

2 2/3
26.69 40.785  ,c c

v c v

F MT F MT

V
 

 



 (2.62) 

where  Vc = critical volume, cm3/mole 

 41 0.2756 0.059035c rF      

 
* **( ) B DT FT

v A T Ce Ee      , viscosity collision integral 

 A = 1.16145, B= 0.14874, C = 0.52487, D = 0.77320, E = 2.16178, F = 2.4378 

 * 1.2593 rT T  

 ω = accentric factor 

 
1/2

131.3
(VT )r

c c

dip
dip  , dimensionless dipole moment 

 κ = special correction for high highly polar substances, like alcohols and acids 

For gas mixtures at low pressures, mixture properties are used to evaluate viscosity: 

   1/2 1/2

2 2/3
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m
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
 (2.63) 

Mixing rules to give mixture properties used in Eq. 2.63 are given by: 
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3
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 (2.69) 

 .m i j ij
i j

xx 
 

(2.70) 

The combining rules are: 

1/30.809  ,ii i ciV  
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 30.809  ,cm mV 
 

(2.82) 

1.2593  ,cm
m

T
k

 
  

   
(2.83) 

where Tc is in K, Vc is in cm3/mol, and dip is in debyes. 

To account for high-pressure effect on the viscosity of pure gas, a correction coefficient is 

added to Eq. 2.51 and is given by: 
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*
2/3

36.344
 ,c

m
c

MT

V
   (2.84) 

 
  

1/2*
1* **

2 6  ,c
v

T
F G E y

    
   (2.85) 

 ,
6

cV
y




 
(2.86) 

 
1 3

1 0.5
 ,

1

y
G

y





 

(2.87) 

  54
1 2 1 3 1

2
1 4 2 3

1 /
 ,

E yE yE e y E Ge EG
G

EE E E

    
   

(2.88) 

   1 2** 2 * *
7 2 8 9 10exp  ,E y G E E T E T

     
  (2.89) 

4  .i i i i r iE a b c d     
 

(2.90) 

where the coefficients given by Table 2.1. 

Finally, for high-pressure mixtures, mixture properties in Eqs. 2.84-2.90 are used to 

calculate the mixture viscosity. 
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i ai bi ci di 

1 2.4166E+0 7.4824E-1 -9.1858E-1 1.2172E+2 

2 -5.0924E-1 -1.5094E+0 -4.9991E+1 6.9983E+1 

3 6.6107E+0 5.6207E+0 6.4760E+1 2.7039E+1 

4 1.4543E+1 -8.9139E+0 -5.6379E+0 7.4344E+1 

5 7.9274E-1 8.2019E-1 -6.9369E-1 6.3173E+0 

6 -5.8634E+0 1.2801E+1 9.5893E+0 6.5529E+1 

7 9.1089E+1 1.2811E+1 -5.4217E+1 5.2381E+2 

 

 

Thermal conductivity is derived in a similar manner. The final expression for thermal 

conductivity is given by: 

 1 2 1/2
2 6 7 2

31.2
 .rG B y qB y T G

M


  



  (2.91) 

With  λ = thermal conductivity, W/(m·K) 

Table 2.1: Coefficients to calculate Ei in Eq. 2.90. 

i ai bi ci di 

1 6.324 50.41 -51.68 1189 

2 1.21x10-3 -1.154 x10-3 -6.257 x10-3 0.03728 

3 5.283 254.2 -168.5 3898 

4 6.623 38.10 -8.464 31.42 

5 19.75 7.630 -14.35 31.53 

6 -1.900 -12.54 4.985 -18.15 

7 24.28 3.450 -11.29 69.35 

8 0.7972 1.117 0.01235 -4.117 

9 -0.2382 0.06770 -0.8163 4.025 

10 0.06863 0.3479 0.5926 -0.7270 

 

 

Table 2.2: Coefficients to calculate Ei in Eq.2.97. 
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 λ° = low pressure gas viscosity, N·s/m 

 M’ = molecular weight, kg/mol 

 3 1/2 2/33.586 10 (TM) /c cq V    

    1 0.215 0.28288 1.061 0.26665 / 0.6366 1.061  ,z z          
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(2.96) 

4  .i i i i r iB a b c d     
 

(2.97) 

where the coefficients listed in Table 2.2. 

2.4.2 Binary Mass Diffusivity 

 At low pressures, the product Dp or Dρ are nearly constant and independent on 

species composition. However, it is not the case for high-pressure mixtures. Due to lack of 

experimental data for binary mass diffusivity, there are only a few estimation methods. In 

this study, lower-pressure values of binary mass diffusivity are evaluated with Fuller et 

al.'s empirical correlation, recommended by Poling et al. [77]. Then a very simple method, 

which is also a corresponding-state method, suggested by Takahashi is adopted in the 

current study to account for high-pressure effect.  

 At low pressures, the binary mass diffusivity is given by Fuller et al. [77], 

   

1.75

21/3 1/31/2

0.00143
 ,ij

ij v vi j

T
D

pM


      

(2.98) 



 35 

where ijD  is binary mass diffusivity with unit of cm2/s, v  is found for each component 

by summing atomic diffusion volumes, which is tabulated in Poling et al. [77], Table 11-

1). The data of interest are listed in Table 2.3. 

 

Atoms 
Diffusion volume 

increments 
Molecules Diffusion volumes 

C 15.9 O2 16.3 

H 2.31 Air 19.7 

O 6.11 CO 18.0 

N 4.54 CO2 26.9 

Aromatic Ring -18.3 H2O 13.1 

 

 

 Then high-pressure correction is evaluated based on Takahashi's correlation, which 

is given by: 

 
 ,  ,ij

r r

ij

D p
f T p

D p
 

 

(2.99) 

 where the superscript + indicates the low-pressure values given by Eq. 2.98. The 

function  ,r rf T p  represents a pressure scaling factor, and is given by Fig. 2.2. The 

combining rules to calculate the reduced temperature and reduced pressure are given by: 

, ,  ,c i c i j c jT xT x T 
 

(2.100) 

, ,  .c i c i j c jp x p x p 
 

(2.101) 

Table 2.3: Diffusion volumes for selected atoms and molecules. 
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2.5 Turbulence Closure: Larger-Eddy-Simulation 

 Although turbulence has been studied for more than ten decades after Osborne 

Reynolds’ experiments, it is still a big challenge in fluid mechanics due to its strong 

nonlinear behavior [79]. Numerical simulations of turbulent motions fall into three major 

categories: Direct Numerical Simulation (DNS), Reynolds-Aaveraged Navier-Stokes 

Equation (RANS), and Large-Eddy Simulation (LES) [80]. 

 DNS is the most straightforward method. The governing equations are discretized 

with enough resolution and solved numerically; it resolves the smallest scales of motion 

and does not require any modeling. This makes it possible to compute and visualize any 

quantity of interest, and it has been a very useful research tool to obtain insight on detailed 

kinematics and dynamics of turbulent flows [81]. DNS has been applied to supercritical 

mixing layers [82, 83] and combustion studies [84] to reveal physical and/or chemical 

processes that would not have been possible with other approaches. The database created 

by DNS can be used to validate existing turbulent models and turbulent/combustion 

models. However, the implementation of DNS requires extensively computational 
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Figure 2.2: Correlation for high-pressure diffusivity using Takahashi method 
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resources. To resolve all scales of motion in three-dimensional space, the number of grid 

points are proportional to 9/4
LRe , e.g., 9 billion grid points for LRe = 10000. Therefore, DNS 

is limited to small Reynolds number flows and is infeasible for industry-interested 

applications. 

 In contrast to DNS, RANS has been commonly applied method to solve turbulent 

flow problems, especially in engineering applications. In RANS, only statistical quantities, 

i.e., the ensemble or time-averaged mean quantities are predicted. The effect of all the 

scales of motion is modeled (except for Unsteady-RANS, in which coherent motions are 

partially resolved) [80]. Although RANS is inherently less expensive and has moderate 

success in industrial applications, it fails to account for a very wide range of scales. Based 

on Kolmogorov's hypothesis, at sufficiently high Reynolds number, the small-scale 

motions are statistically isotropic and tend to be universal to model [85]. However, the 

large-scale motions are strongly dependent on flow conditions and geometric boundaries, 

thus it is impossible for RANS to achieve a universal model that can cover a range of scales 

in turbulent flows [79]. 

 As a trade-off between the accuracy and computational cost of RANS and DNS, an 

intermediate technique known as Large-Eddy Simulation (LES) has been developed. LES 

features higher accuracy than RANS, while it requires much less computational effort 

compared to DNS. In LES, energy-containing large-scale motions are fully resolved with 

the grid and filter employed, while the effect of the smallest-scale motions of turbulence is 

modeled [79]. Since the small-scale motions are more isotropic and universal, they can be 

modeled in universal manner with much less adjustments in model coefficients, as 

compared with the turbulent models for RANS simulations. The demanding computational 

cost to resolve all scales of motions explicitly and accurately in DNS is avoided.  

 LES seems promising to solve turbulent flow problems. However, difficulties arise 

near the wall region, where a series of important events occur. The production and 

dissipation of turbulent kinetic energy achieve peak values at less than 30 wall units [85]. 
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The energy-containing scales depend on Reynolds number, but the growth of the small 

scales is prohibited by the presence of the wall, making the exchange mechanisms between 

large and small scales different from unconstrained flows. To capture the important energy-

production events in the near-wall layer, an extremely fine grid is necessary, especially for 

high Reynolds number flows. Based on Chapman’s estimate [86], the boundary layer is 

divided into outer and inner layers; the number of grid points scale with Re0.4 for the outer 

layer; however, it scales with Re1.8 for the inner layer. So for a boundary layer flow with a 

Reynolds number of 106, 99% of the grid points are required to resolve the inner layer, 

whose thickness is only about 10% of the boundary layer. As pointed out by Piomelli [79], 

the wall layer modeling is probably the most urgent challenge when it is intended to apply 

LES to industrially interested flows. Wall-modeled LES (WMLES) have been studied by 

many researchers. Cabot [87] and Balaras et. al. [88] used two-layer boundary layer 

equations to model the near-wall region in LES of wall bounded shear flows. Spalart [89] 

proposed a Detached-Eddy Simulation (DES). It used Spalart-Allmaras turbulence model 

or k-omega SST model for the Reynolds stress and the sub-grid stress modeling. DES has 

been applied to massively separated flows and seems promising for wall bounded flows. 

More discussion on wall layer models can be found in review papers by Piomelli [79] and 

Spalart [89].  

 In the current study, the LES technique is used to achieve turbulent closure. The 

small-scale motions are not resolved in LES; however, based on the energy cascade 

analysis, it is in this range of scales that viscous dissipations drain turbulent kinetic energy 

to internal energy. This part of turbulent motions has to be modeled with appropriate SGS 

models.  

2.5.1 Filtered Governing Equations 

 In LES, large-scale motions, which carry most of the kinetic energy are fully 

resolved, while small-scale motions, which are more universal and appropriate to model, 
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are simulated with SGS models. To separate the large-scale motions from the small-scale 

ones, a low-pass filtering operation is performed explicitly or implicitly. A filtered (or 

resolved) variable is defined as, 

       ,ff f G d


  x x x x x
 

(2.102) 

where G is the filter function and satisfies ( ) 1G d  x x . The filter function determines the 

size and structure of the small scales. Leonard [90] indicated that if G is only a function of 

, the differentiation and filtering operations could commute with each other. 

Although for stretched grids, the commutation between filtering and differentiation is not 

strictly valid [91, 92], the commutation error is usually neglected for moderately stretched 

grids [93, 94]. The modeling error is found to be generally smaller than the discretization 

error [93]. One of the most commonly used filter functions, the box filter, which is also 

used in the current study, is defined as: 

   1
 .

V

f f d
V 


 x x x

 

(2.103) 

With the box filter, any filtered quantity is simply its average in the control volume. A 

detailed description of properties of various filters can be found in standard textbooks [85]. 

Based on the Favre-averaging [95], any instantaneous variable (f) can be expressed as the 

sum of a Favre-averaged filtered scale ( f ) and a sub-filter scale ( f ) 

 ,f f f    
(2.104) 

where 

 .
f

f 

  

(2.105) 

Since 0f    and 0f   , the filtering operation in LES is different from the conventional 

Reynolds averaging in time domain. The filtered Favre-averaged mass, momentum, 

xx 
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energy, mixture fraction, and progress variable transport equations in conservative form 

can be written as 

0 ,i
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u
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 
 
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(2.106) 
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(2.110) 

where the SGS terms are defined as: 
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 The SGS stress term , SGS energy flux term , and SGS scalar flux terms 

, and , result from filtering the corresponding convective terms. The SGS 

viscous work term , comes from correlations of the velocity field with the viscous 
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stress tensor. The resolved-scale progress variable production rate , is also unclosed. 

The modeling of these SGS terms is discussed in detail in the following subsections. 

 In addition to the conservation equations, the equation of state must also be filtered. 

By introducing the compressibility factor, Z, the alternative form of EOS can be written as  

1

Z N
u k

u
k k

RT Y
p R ZT

MW MW


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Filtering Eq. 2.117 gives us 
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(2.118) 

For ideal gas without heat release, the correlations (second term in the right hand side) in 

the filtered equation of state can be neglected [96]. This may not be true for high-pressure, 

real-fluid mixtures. However, due to the difficulty and uncertainty in modeling those 

correlations, they are neglected without justification. 

 The filtered total energy,  can be approximated as 
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2.5.2 Subgrid-Scale Model 

 In LES, the unresolved motions of sub-grid scales have to be represented by an 

appropriate SGS model. Most of SGS models use the concept of eddy viscosity, , which 

is similar to dynamic viscosity but generally with much higher value. Using eddy viscosity, 

the subgrid viscous shear stress can be written as, 

2  ,
3
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where is the symmetric part of velocity gradient tensor,  1
/ /

2ij i j j iS u x u x     . In 

the following section, two commonly used SGS models are introduced. 

2.5.2.1 Algebraic Smagorinsky Model 

 The Smagorinsky SGS model [97] has been widely used because of its simplicity 

and good accuracy. The eddy viscosity is obtained algebraically to avoid solving additional 

equations. The model uses the equilibrium hypothesis, which claims that the small-scale 

motions with much short time scales can rapidly adjust to the flow perturbations and 

recover equilibrium nearly instantaneously. A balance equation between turbulent kinetic 

energy production and viscous dissipation thus exists: ij ij vS . Followed by this 

assumption, the Smagorinsky model is written as, 

 2  ,t SC S  
 

(2.121) 

2  ,ij ijS S S
 

(2.122) 

3
1 2 3  ,  

 (2.123) 

where  is the filter width, which is usually proportional to the grid size. The coefficient 

Cs can be determined from a priori test on decaying isotropic turbulence [98] with Cs=0.16. 

Erlebacher et al. [99] extended the above model to compressible flows, 

2
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2( ) ,SGS
I ij ijk C D S S   (2.126) 

where the dimensionless quantities CR and CI represent the compressible Smagorinsky 

constants. The Van-Driest damping function (D) is used to take into account the 

inhomogeneities near the wall [100], and is expressed as 

ijS


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  2
1 exp /25  ,D y  

 
(2.127) 

where /y yu v
  and u  is friction velocity. 

 The subgrid energy flux term 
sgs
jH  is modeled based on the gradient transport 

assumption 

1

2

SGS
jSGS t t

i j
t i t i i i

uH h k
H u

Pr x Pr x x x

   
        

 
 

 

(2.128) 

where Prt represents the turbulent Prandtl number, and a standard value 1.0 is used. The 

SGS viscous work term, 
sgs
ij , is neglected due to its small contribution to the total energy 

equation [79, 101]. 

The convective mixture fraction flux term is usually approximated as 

sgs t
j

t j

f

Sc x





 


 

(2.129) 

where Sct is the turbulent Schmidt number. However, the use of the gradient transport 

assumption for reactive species is questionable.  

 The algebraic Smagorinsky model described above is the most widely used model 

in LES. However, as pointed out by Germano et al. [102], it has several limitations. First, 

the optimal model constant must be changed for a different class of flows. The model does 

not have the accurate limiting behavior near the wall [103]. The SGS stress does not vanish 

in laminar flow and the model is found to be very dissipative in the laminar/transition 

region. In addition, the model does not account for the backscatter of energy from small to 

large scale, which has been shown to be of importance in the transition region. 

2.5.2.2 Dynamic Smagorinsky Model 

 The dynamic model introduced by Germano et al. [102] improves some of the 

aforementioned deficiencies in algebraic models. The dynamic model uses the assumption 

of scale invariance by applying the coefficient measured from the resolved scales to the 
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SGS range. It calculates the model coefficients dynamically from the information already 

contained in the resolved velocity field during the simulation. Apply the test-filter , with 

characteristic  (typically, ), to the equations of motion, one obtains filtered 

governing equations similar to Eqns. 2.106-2.110, but replacing  with 

, yields the sub-testscale stress Tij, defined as: 

 .ij i j i jT uu u u  
 

(2.130) 

Formally, the dynamical procedure is based on the Germano identity [104] 

 .
ij

SGS
ij ij i j i jL T uu u u     

 
(2.131) 

The following expressions can be derived for the dynamic evaluation of CR and CI using 

the least square minimization approach of Lilly [105] for the momentum SGS stress tensor. 

1
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kl kl kl kl

L M M M
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M M M M
 

 

(2.132) 

kk
I

L
C 

 
 

(2.133) 

The forms of Mij, β and α are given as follows 

ij ij ijM = - 
 

(2.134) 

2ˆ2 (S S )
3
ij

ij ij kkS


    
 

(2.135) 

22 (S S )
3
ij

ij ij kkS


    
 

(2.136) 

222 S 
 

(2.137) 

2
2ˆ2 S  

 
(2.138) 

The same idea can be applied to model SGS turbulent stress to dynamically calculate the 

turbulent Prandtl number and Schmidt number in Eq. 2.128 and Eq. 2.129. 

G

 2 

/f f  /f f 
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2.6 Turbulence/Combustion Models 

 In LES, although the energy-carrying eddy motions are resolved with sufficient grid 

resolution, motions of small scales, such as the Kolmogorov scale, are not resolved, which 

plays a crucial role in reactant mixing at molecular levels. The chemical reaction rate is a 

very strong nonlinear function of local species concentration and temperature at the 

molecular level, which are highly dependent on the turbulent mixing. Chemical reactions 

release heat and alter species concentration and temperature gradients of the smallest 

turbulent eddies, which in turn change the turbulent mixing process. Chemical reaction 

occurring at different time scales may interact with turbulence eddies of different 

length/time scales, which further complicates the picture. The interaction of these two 

processes occurs at length scales from the smallest turbulent scales to much larger inertial 

sub-range scales, which cannot be completely resolved in LES studies. The physical 

processes associated with these interactions are modeled with turbulent combustion 

models.  

 There are several combustion models for the LES of non-premixed turbulent 

combustion. The most straightforward way is to evaluate the filtered reaction rate from the 

filtered quantities, without consideration of the sub-grid interactions of turbulence and 

chemistry. This method has been used by several researchers due to the simplicity [9, 106].  

 Conditioned Momentum Closure (CMC) was developed by Klimenko [107] and 

Bilger [108] independently for non-premixed turbulent combustion. Variables of interest 

are conditioned with mixture fraction before the Favre averaging to obtain conditional 

moment equations. CMC has been used in homogenous and boundary layer flows. With 

those applications, CMC can be related to flamelet equations [47]. However, this method 

solves conditional species equations for all species; the computational cost increases with 

the number of species, which may become prohibitively costly when detailed chemical 

mechanism is used.  
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 The Linear-Eddy Model (LEM) was developed by Kerstein [109, 110] has been 

used by the author, Menon and colleagues [111, 112]. The one-dimensional laminar 

reactive scalar field is combined with stochastically independent rearrangement events to 

mimic turbulence/chemistry interactions. However, this model suffers from prohibitive 

computational costs in applications. The Monte Carlo method for PDF transport equations 

was developed by Pope and extensively tested in RANS and LES [47]. However, the 

formulation is very complicated, and the computation cost is considerably high for even a 

moderate number of species. Dynamically thickened flame was developed by Légier et al. 

[113] for both premixed- and non-premixed combustion. This model can account for 

unsteady combustion such as extinction, re-ignition etc. However, it has similar difficulties 

when detailed chemistry is used. Flamelet concept proposed by Peters [47] has been 

extensively studied. The steady flamelet model is chosen in the current study to account 

for turbulence/chemistry interactions and identify the flame stabilization mechanism for 

supercritical combustion.  

2.6.1 Laminar Flamelet Model 

 The basic assumption of the laminar flamelet model is that the chemical time scales 

are shorter than that of the smallest turbulent eddies: Kolmogorov scales. Consequently, a 

turbulent flame can be envisioned as a synthesis of thin reaction zones (i.e., flamelets) 

embedded in an otherwise inert turbulent flow field. The inner structure of the flame can 

be handled separately from turbulent flow simulations. Instead of directly treating the 

reactive scalar (i.e., species concentration), the focus is placed on the identification of the 

flame surface in the flow-field, which can be obtained by solving the conservation equation 

of the mixture fraction together with the mass, momentum, and energy equations.  

 The flame thickness is smaller than the grid size employed in LES and is not 

actually resolved. Therefore, the filtered species mass fraction of the 
thi  species, ( , )iY x t , 

in each computational cell should be evaluated by convoluting the state relationships, 
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( , )i stY f  , with the SGS Filtered Density Function (FDF) of mixture fraction, ( )P f , and 

the SGS FDF of scalar dissipation rate, ( )stP  , as shown below:  

1

0 0
( , ) ( , ) ( ) ( ) .i i st st stY x t Y f P P f d df


    

 
(2.139) 

It should be noted that a statistical independence is intrinsically assumed in Eq. 2.139 

between the SGS variations of mixture fraction and scalar dissipation. The unresolved SGS 

fluctuation of the mixture fraction is commonly represented by a presumed β-shaped 

Probability Density Function (PDF) parameterized by the filtered mixture fraction and its 

SGS variance, which takes the following form, 

1 1
2 (1 )

( ; , ) ( ),
( ) ( )

f f
P f f f

 
   

 

 

 
   

(2.140) 

where  is the  -function. The parameters   and   are defined as 
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( 1),

f f
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(2.141) 
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f f
f
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
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(2.142) 

The SGS variance of mixture fraction, 
2"f , is modeled based on the scale similarity 

assumption [114], 

"2 2( ) / ,bf K f f  
 

(2.143) 

where  is a model constant chosen as 3. It has been validated by many researchers that 

the -function PDF provides an excellent estimation of the SGS mixture fraction 

distribution for non-premixed reacting turbulent flows [115]. For simplicity, the SGS FDF 

of the scalar dissipation rate, ( )stP  , which is typically assumed to be a lognormal, is 

considered as a Dirac peak at the filtered scalar dissipation rate. Further investigation is 

bK


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required to validate this assumption. The filtered rate of scalar dissipation, , is modeled 

based on the eddy viscosity approach as suggested by Girimaji and Zhou [116]  

2( )( ) .t

t j j

f f

Sc Sc x x

 
 

 




 

(2.144) 

 The thermo-chemistry state relation is established through a steady-state flamelet 

approach. Taking advantage of the fact that the flamelet library only needs to be calculated 

once for every specified case, chemistry kinetics with any number of species and reaction 

steps can be used for the establishment of the flamelet library. The flamelet library should 

cover a broad range of strain rates, from near chemistry equilibrium to near-extinction 

limit. For all the calculations, the pressure is fixed at the same as the application; and the 

inlet temperatures of the fuel and oxidizer take the corresponding inlet temperature of the 

application cases. Consistent with the flamelet assumption, the corresponding scalar 

dissipation rate, , for each solution is evaluated as a function of filtered mixture fraction. 

The solutions are then integrated based on Eq. 2.139 and tabulated as functions of , , 

and . The calculated filtered mixture fraction, mixture fraction variance, and the scalar 

dissipation rate from LES simulation are used to determine the appropriate entry in the 

table. 

2.6.1.1 Steady vs Unsteady Flamelets 

 In the present study, the flamelet library is generated from steady-state laminar 

counterflow diffusion flames. Thus, the species profile does not include the history effect 

of the chemical reactions, i.e. the time taken to achieve the steady state flame profile. In a 

real turbulent flame, slow chemistry reactions, such as CO oxidation, take a much longer 

time compared to other reactions. Following Peters’ argument, if the scalar dissipation rate 

is changing slowly enough so that the change of chemical reactions can follow the pace of 

the local flow variations, the steady flamelet is a valid assumption [47]. Otherwise, the 





 f

2"f
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unsteady effect may become important. According to Pitsch et al. [117], it is valid to apply 

a steady flamelet within the range of 30 nozzle diameter from the fuel nozzle exit. Extreme 

caution must be taken in the further downstream, where the scalar dissipation rate becomes 

small and the chemistry may not be fast enough to follow the flow variations. In the current 

study, the focus is on the near field of the injector faceplate and the unsteady effect is not 

expected to be significant. 

2.6.1.2 Differential Diffusion Effect 

 Unit Lewis number is assumed to achieve the mixture fraction equation [47]. It is 

interesting to know how much accuracy of numerical solution is sacrificed by this 

assumption. The effect of differential diffusion has been examined by Pitsch and Peters 

[118]. They found that the existence of a laminar region in the near field of the jet exit 

causes the differential diffusion effect, which is only important within a 10-diameter 

distance from the jet exit. However, the temperature and the species concentration 

distributions are influenced by the differential diffusion effect farther downstream. This is 

not assessed in the current study for several reasons. First, hydrocarbon fuels feature a 

Lewis number closer to unity, compared to hydrogen, which will make the differential 

diffusion less important than that in hydrogen flames. Second, the differential diffusion 

effect itself is still an open research issue. There are model and numerical uncertainties 

associated with the evaluation of this effect; a simple inclusion of this model does not 

guarantee a better prediction. For simplicity and ease of discussion of the model validity 

and its performance in supercritical applications, this effect is not addressed in the current 

study. Finally, in the process of building the flamelet library, the differential diffusion 

effect is considered within the model used herein [119]. However, in the LES study, the 

unit Lewis number is assumed.  

2.6.1.3 Scalar Dissipation 
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 As pointed out by Poinsot and Veynante [120], the effect of external mixing 

(turbulent flow) is lumped into the scalar dissipation rate, while chemistry is decoupled 

from the flow and retrieved from the lookup table. Consequently, the scalar dissipation rate 

accounts for the effect of turbulent mixing as an external parameter on the laminar flamelet 

structures. The procedure to estimate this variable directly affects the chemical species 

distribution, the flame structure, and the combustion dynamics. Instead of assuming a pre-

assumed shape of scalar dissipation as proposed by Peters, the scalar dissipation as a 

function of the mixture fraction is calculated from the laminar counterflow flamelets, which 

are generated in physical space using a one-dimensional code [121, 122]. This is different 

from Pitsch's methods, which are conducted in the mixture fraction space, and the 

dependence of scalar dissipation is modeled by an exponential function of the mixture 

fraction. 

 Although the laminar flamelet method is easy to implement and fairly inexpensive, 

it has several drawbacks. Firstly, the mixture fraction essentially does not carry information 

about the chemical reaction state. The flamelet method uses the scalar dissipation rate as 

an additional parameter to account for the flame stretching and quenching effect. However, 

the scalar dissipation rate does not provide a unique mapping from the mixture fraction to 

the corresponding chemical state. A pure mixing of fuel and oxidizer cannot be accounted 

for in the flamelet method if the local scalar dissipation is smaller than the quenching limit. 

This drawback is due to the lack of information regarding the local chemical state in the 

flow field. The Flamelet/Progress-Variable (FPV) method is able to overcome the 

limitations of the flamelet method by incorporating an additional transport equation for 

tracking a scalar in the form of a progress variable. This method has been developed to 

account for extinction, ignition, and unsteady mixing effect [123]. It will be interesting to 

examine the performance of these two methods in the future work. 
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CHAPTER 3  

NUMERICAL METHODOLOGY 

 

 Numerical simulations of supercritical injection, mixing, and combustion bear a 

series of difficulties. This chapter outlines the intrinsic challenges and the corresponding 

methodologies to handle these problems. The numerical scheme, with a unified treatment 

of real-fluid thermodynamic properties, is capable of solving the three dimensional 

governing equations in a general curvilinear coordinate system. The solver uses finite 

volume approach with structured grid system. To obtain time-accurate solutions, the 

preconditioned dual-time-stepping technique, with a Runge-Kutta integration in pseudo-

time iterations, is used to resolve the numerical difficulties associated with low-Mach 

number flows. The resulting numerical scheme is TVD-assured, fourth order accurate in 

space and second order accurate in time. MPI-parallelization is used to expedite the 

calculation and reduce the turnaround time. 

3.1 Preconditioning Scheme for Real-Fluid Mixtures 

 The three-dimensional, unsteady, Favre-filtered governing equations listed in 

Chapter 2 can be re-written in a vector form: 

     - - -
 

t x y z

  
   

   
v v nE E F F G GQ

H,
 

(3.1) 

where the vectors n v nQ, E, F, G, E , F , G ,and H are defined as: 

 , , , , ,  ,
T

u v w E f     Q
 

(3.2) 

  2, , , , ,  ,
T

u u p uv uw E p u uf       E
 

(3.3) 

  2, , , ,  ,  ,
T

v uv v p vw E p v vf       F
 

(3.4) 
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  2, , , , ,  ,
T

w uw vw w p E p w wf       G
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(3.8) 

 0,0,0,0,0,0  ,
T

H
 

(3.9) 

where the superscript stands for the transpose of the vector. 

 There are two severe numerical challenges in solving these equations for high-

pressure mixing and combustion. First, thermodynamic non-idealities and transport 

anomalies take place as the fluid transits from subcritical to supercritical conditions. 

Treating these abnormal changes in a manner consistent with the intrinsic characteristics 

of the numerical algorithm presents a major obstacle. Second, the rapid variation of the 

fluid state and wide range of characteristic time and length scales pose the well-known 

stiffness problem. The stiffness of the system results from: 1) ill-conditioned eigenvalues; 

2) competing convective and diffusion processes; and 3) pressure singularities in the 

momentum equation. 

 The Mach number in present simulations is relatively small, and thus the dynamic 

pressure is negligibly smaller than the static pressure (high-pressure situations). This could 

cause the computer round-off error override the dynamic pressure in the momentum 

equation, i.e., the pressure singularity problem. To overcome this difficulty, the static 

pressure is decomposed into a constant reference pressure and a gauge pressure [124, 125],  

T
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0  .gp p p 
 

(3.10) 

 Here the averaged pressure in the flowfield is generally selected as the reference 

pressure, while the gauge pressure is the fluctuating part induced by unstable flow motions. 

With this decomposition,  is replaced with  in the momentum equations. To solve the 

ill-conditioned eigenvalue problem, let us look at the following equations: 

+ 0 ,
   

  
   

A B C
Q Q Q Q

t x y z  
(3.11) 

where / A= E Q, / B= F Q, and / C= G Q are the Jacobian matrices. Analysis 

shows that the eigenvalues of matrix A is: 

1 2 3,4,5,6, ,  .u+c u c u     
 

(3.12) 

 In low Mach number flows, 1M , the ratio of the largest eigenvalue to the 

smallest one is close to inverse of Mach number, indicating that the eigenvalues are order 

of magnitude different. For a given CFL number, the maximum local time step determined 

by the largest eigenvalue hence is extremely small, resulting in a very slow convergence. 

It becomes unacceptable for even lower-Mach number or time accurate simulations.  

 To cure the eigenvalue disparity problem in low Mach number flows, the time-

derivative preconditioning method [124-127] are implemented associated with the 

methodologies developed by Meng and Yang [68] for handling general fluid 

thermodynamics, to take full account of the thermodynamic non-idealities and transport 

anomalies in the whole fluid state of concern. Zong and Yang [128] made further 

improvement by changing primitive variable h to T, getting rid of the cost intensive 

computation associated with iterative calculations to get temperature from enthalpy. A 

unified treatment of thermodynamic properties and associated preconditioning matrix 

makes the numerical scheme accurate, robust, and efficient.  

 The basic idea of the preconditioning method is to add a pseudo time differential 

term in Eq. 3.1, with multiplication factor of a preconditioning matrix: 

p gp
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     - - -
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     
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(3.13) 

 , , , , ,
T

u v wT fgZ= p  .
 

(3.14) 

If  is chosen carefully so that the eigenvalues of these matrixes are of the same order of 

magnitude, the resulting equations have well-conditioned eigenvalues and converge 

efficiently in all Mach number flows. When pseudo time approaches infinity, (steady state 

solutions are achieved with respect to pseudo time), the original governing equations are 

recovered. It can be seen that the efficiency of preconditioning method is largely 

determined by the selection of the preconditioning matrix.  

 Following Zong [129], the transfer matrix is derived (see Appendix B) as: 

T





Q
 .

Z  
(3.15) 

In this matrix, a common term   ,
/

iT Y
p   can be related to speed of sound and specific 

heat capacity ratio: 
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(3.16) 

a2 is replaced with β to define the preconditioning matrix, 
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where is the total specific enthalpy,   ,
/ ,

i
T p y

T     /f f   , and /fE E f  . 

 is defined as 
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1 ( 1)

a


 

   

(3.18) 

where   (0 1  ) is the preconditioning factor. Unlike the definition of preconditioning 

matrix by other researchers, all of the off-diagonal terms in Eq. 3.17 have been retained. 

By keeping these terms, the unaltered system is identically restored as 1  ; 

1
lim  .T



 

(3.19) 

 The conditioned governing equations in the pseudo-time space are characterized by 

the new Jacobian matrices, 1 1 1, , and v v vA B C     , the eigenvalues of which are given 

by: 
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(3.20) 

where U represents , , and  in x-, y- and z-direction, respectively. If 𝜀 is small enough, 

the first two eigenvalues can be of the same order of magnitude as others. Note that no 

th



u v w
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assumption is made to the form of the equation of state, it can be applied to any fluid state 

without loss of accuracy. 

3.1.1 Determination of the Preconditioning Factor 

 From the definition of the preconditioning matrix, and the resulting system 

eigenvalues, it is clear that the effectiveness of the preconditioning method is totally 

determined by the choice of the preconditioning factor, . The value of  in each 

computational cell is crucial to get well-conditioned eigenvalues and thus the fast 

convergence of the numerical scheme. 

 Various time scales are associated with each computational cell in each direction, 

due to local flow convection, acoustic propagation, momentum, and thermal and mass 

diffusion processes. These processes have to be taken into account when choosing the 

preconditioning factor. The non-dimensional numbers characterizing the time scales 

associated with these physical processes are CFL number, Mach number, von Neumann 

number, cell Reynolds number, Prandtl number, and Schmidt number.  

 The CFL number, which characterizes the local convective propagation rates in the 

three coordinate directions are defined as: 

( )( ) ( )
,  ,  ,yx z

x y zCFL CFL CFL
x y z

        
  

    
(3.21) 

where , ,  are the maximum eigenvalues in each direction, respectively.  

 The von Neumann number, which characterizes the diffusion propagation rates, is 

defined as: 

2 2 2
, , ,x y zVNN VNN VNN

x y z

       
  
    

(3.22) 

 The cell Reynolds number, which indicates the ratio of local velocities to 

momentum diffusion velocity, is defined as: 

 

( )x  ( )y  ( )z 
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Re , Re , Re ,x y z

u x v y w z

  
  

  
 

(3.23) 

 If the respective quantities Re, RePr, and ReSc exceed unity in one of directions, 

the convection velocity is larger than the corresponding velocity scale, thus convective 

effects dominant and the conservation equations exhibit a hyperbolic character. For this 

situation an inviscid criterion must be employed. If Re, RePr,or ReSc are less than or equal 

to unity, diffusive effects dominate, a parabolic character is exhibited and a viscous criteria 

must be employed. 

 The final preconditioning factor is selected based on the methodology developed 

by Choi and Merkel [124], Buelow et al. [130], and Venkateswaran and Merkel [131]. 

Optimal values are specified locally as: 

min[1,max( , )] .inv vis  
 (3.24) 

The subscripts refer to the inviscid and viscous preconditioning factors, respectively. The 

criteria employed to evaluate these terms are discussed below. 

3.1.1.1 Inviscid Preconditioning Factor 

 In the limit of infinitely large Reynolds numbers, or inviscid flows, following Choi 

and Merkle [124],  is assigned a value proportional to the local Mach number to ensure 

that the pseudo acoustic speed and flow velocity are of the same order of magnitude. To 

achieve correct limiting behavior, as Mach number approaches zero (e.g. in the stagnant 

region), a minimum value (typically 
510 ) is used. The resulting preconditioning factor is 

defined as: 

2

2

,          ;

2 ,     1 ;

1,            1 .
inv

M

M M

M

 

 

 


  
   

(3.25) 


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In inviscid flows, Eq. 3.25 gives minimal disparity in system eigenvalues and optimal 

damping rates. The convergence rate is primarily dependent on the local pseudo CFL 

number, which is determined by the stability criterion.  

3.1.1.2 Viscous Preconditioning Factor 

 In regions where diffusion processes are important, the effect of diffusion on the 

preconditioning factor has to be considered. Buelow et al. [130, 132] have conducted a 

variety of studies to determine an optimal viscous preconditioning factor for the Navier-

Stokes equations. Results from stability analysis indicate that three different requirements 

must be addressed in order to specify a generalized criterion. For high cell Reynolds 

numbers ( ) the acoustic wave speeds should be scaled to the same order of 

magnitude as the particle speeds, as is accomplished by the inviscid preconditioning factor 

defined above. For low cell Reynolds numbers ( ) and high acoustic cell Reynolds 

numbers ( ) the diffusion rates should be scaled to the same order of magnitude 

as the acoustic speeds. For low cell Reynolds numbers and low acoustic cell Reynolds 

numbers, the diffusion rates should be scaled to the particle speeds. The only way to satisfy 

these conditions simultaneously is to define a viscous preconditioning factor that is 

dependent on the Fourier wavenumber. Such a definition is not appropriate for 

implementation in a CFD code. To overcome the difficulties outlined above, a 

preconditioning factor based on local length scales which is tuned to damp the low 

wavenumber modes has been developed. This definition requires a priori assumption of the 

orientation of dominating convective and diffusion processes within a given grid 

configuration and the choice of  is somewhat more involved. In three dimensions, there 

are three possible CFL numbers, and two possible VNN numbers, and six possible values 

of . The most restrictive of the CFL and VNN numbers are usually chosen for stability 

Re 1

Re 1

Re/ 1M

vis

vis
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reasons and these values are the most likely candidates for determining . Some freedom 

does exist, however, in how  is evaluated. 

 In practice, the grid system is stretched near the wall, so that predominating 

diffusion processes, which is in a direction normal to the predominating convective 

processes, are resolved. Under these conditions, the rate limiting diffusion processes 

typically coincide with the maximum von Neumann number in a given cell. To retain the 

benefits of the time step given by Eq. 3.21, this quantity must be optimized with respect to 

the minimum CFL number. In three-dimensions, this is achieved by: 1) equating Eq. 3.21 

with Eq. 3.22; 2) solving for respective values of ; and 3) choosing the largest of the 

three values obtained. Performing this operation yields an expression of the form 

22 2

2 2 2 2 2 2 2 2 2

( 1)( 1) ( 1)
max , ,  ,

x y z

y yx x z z
vis

vu w

u a v a w a

    


  

  
  

      

(3.26) 

where  
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max( , , )  ,
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1
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 
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




 

(3.27) 

This equation takes into account the effects of momentum, energy, and mass diffusion 

processes on the overall convergence rate. 

3.2 Spatial Discretization 

3.2.2 Finite Volume Approach 

 The conservation laws of fluid motion presented in Chapter 2 can be expressed in 

differential or integral form. The former can be solved by finite differencing approach, but 

it has inherent difficulties associated with irregular gird system [133]. Integral methods, 

vis

vis


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including finite volume and finite element methods, can ensure the conservation of 

properties in each computational cell. In the current study, finite volume approach is thus 

implemented. 

 To utilize the finite-volume approach, the governing equations are integrated over 

the control volume  enclosed by the surface S in the physical domain as 

     
0. v v v

V
dV

t x y z

       
      

     
 

E E F F G GZ Q
Γ H  (3.28) 

The generalized control volume in a structured grid system is a hexahedron formed by eight 

nodes as shown in Fig. 3.1. where , , and  are area unit vectors normal to the 

surfaces in the -, -, and -directions, respectively. In order to enhance numerical 

efficiency and minimize the complexity arising from the irregular shape of the 

computational mesh, a grid transformation is made to convert a curvilinear coordinate 

system in the physical space into a uniform grid system in the computational space.  
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Figure 3.1: Schematic of three-dimensional computational cell 
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 Upon applying the Gauss’ divergence theorem over a hexahedral cell as shown in 

Fig. 3.1, Eq. 3.28 can be re-written as: 

( )  ,
V S S S V

dV dS dS dS dV
t

 
       

     
  

     
Z Q

Γ W n W n W n H  (3.29) 

where  

       .       W E E i F F j G G k
 

(3.30) 

S , S , and S  are the surface areas that are perpendicular to the surface vectors ,  

and , respectively. These areas can be combined with the area unit vectors ,  and

into a vector form given by: 

   

   

   

 ,

 ,

 .

x y z

x y z

x y z

S S n S i S j S k

S S n S i S j S k

S S n S i S j S k

     

     

     

   

   

   
 

(3.31) 

And the unit area vectors are related to cell surface areas as 

 
 
 

   

   

   

/  ,

/  ,

/  .

x y z

x y z

x y z

n S i S j S k S

n S i S j S k S

n S i S j S k S

  

  

  

    

    

    

 (3.32) 

The surface vectors and the cell volume can be calculated directly from the grid points 

[134]: 
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(3.33) 
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Assuming that the increments ===1 in the body-fitted coordinate system and 

substituting Eq. 3.30 and Eq. 3.32 into Eq. 3.29 yields the following governing equation in 

the general coordinates  

     
1/2, , , 1/2, , , 1/2

1/2, , , 1/2, , , 1/2
 ,

i j k i j k i j k

v v v
i j k i j k i j kt

  

  

  
        

  
     

Z Q
Γ E E F F G G H  (3.34) 

where the vectors E ,F ,G ,E ,F , and Gv v       are defined as  
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   
   
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(3.35) 

The quantities 2/1,,,,,2/1,,,2/1,,,,2/1,,,2/1,  kjikjjikjikjikji  G,F,F,E ,E , and 2/1,,, kjiG  

represent the numerical fluxes associated with each cell interface. S
~

 represents cell surface 

areas per cell volume. In fact, the above analysis describes the transformation of a 

quadrilateral cell with a volume V in x-y-z coordinates to a cubic cell with unit volume in 

the general coordinate (i.e., -- coordinates). 

 To accelerate convergence, the pseudo-time integration is based on the local time 

step in the computational domain. The maximum pseudo-time increment  of each cell 

can be evaluated by 

 ,  

     

  

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  
 

     
 

(3.36) 

where 





 63 

 ,
( ) ( ) ( ) /

 ,
( ) ( ) ( ) /

 .
( ) ( ) ( ) /

x x y y z z

x x y y z z

x x y y z z

CFL V

S S S S

CFL V

S S S S

CFL V

S S S S



   



   



   


     


     


     

 
 

 


 

 


 

 
 

(3.37) 

3.2.3 Evaluation of Inviscid Fluxes 

 Different approaches in evaluating the numerical fluxes lead to disparate numerical 

characteristics. In the central difference scheme, the convective flux at a cell face in the -

direction can be written as 

, 1/2,

1ˆ (Z ) (Z )  ,
2

L R
i j      E E E

 
(3.38) 

 The above equation corresponds to the stencil illustrated in Fig. 3.2. The 

superscripts L and R represent the left and right cells, respectively. Depending on how these 

terms are evaluated, a wide variety of central and upwind schemes can be obtained. 

According to Rai and Chakravarthy [135], the numerical flux in Eq. 3.34 is computed as 

, 3/2, , , 1/2, , , 1/2, ,(4)
, 1/2, , , 1/2, , 1/2, ,

2
 ,

24

i j k i j k i j k
i j k i j k i j k

E E E
E E

  
  

  
    

 

  
    (3.39) 

where  is the flux limiter. This term switches the truncation error associated with the 

flux-difference from fourth-order accuracy when , to second-order accuracy when 

. To evaluate Eq. 3.38 for this desired accuracy, the left and right state terms (ZL, 

ZR) in Eq. 3.39 must be computed using the same or higher order accuracy. For uniform 

grid system, these terms are written as follows to facilitate easy switching and make the 

scheme TVD (total-variation-diminishing). 
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(3.41) 

, , 1,  .i j i j i jZ Z Z  
 

(3.42) 

These stencils are fifth-order accuracy ( ), third-order accuracy 

( ), and first-order accuracy ( ), respectively. The present 

work utilizes second-order overall accuracy for spatial discretization with the exception of 

first order accuracy close to the physical boundaries. The third-order accurate evaluation 

of the left and right states is thus employed. The fluxes in -, and -directions can be 

computed in a similar fashion as above.  

 In practical applications, non-uniform grids are generally used. If the same 

procedure is used to evaluate the left and right state terms, Taylor series expansion shows 

that there is a truncation error of first order. This will significantly reduce the overall order 

of accuracy of the numerical scheme. Extremely refined grids are used to diminish such 

side effect.  

1,1 )2()4(  

1,0 )2()4(   0,0 )2()4(  
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 Fosso et al. [136] proposed higher-order accurate compact interpolation for 

curvilinear finite volume schemes to take into account the effect of grid non-uniformity. 

The values of interest at cell surfaces can be estimated from the cell average values in its 

neighborhood, by applying Taylor series expansion and solving the linear equations. 

Appropriate boundary treatment procedures have been developed for multi-block 

applications. However, this method is more expensive due to extra calculations of the 

surface values in each iteration. The current study compromises by mimicking the so-called 

Cartesian-like scheme using curvilinear abscissa scheme in the cited work. Instead of 

implicit equations, explicit equations are obtained to improve the numerical accuracy of 

spatial differencing for convective flux evaluation.  

3.2.4 Evaluation of Viscous and SGS Fluxes 

 A three-dimensional auxiliary cell is shown schematically by the dash-dotted lines 

in Fig. 3.3. The viscous fluxes need to be evaluated at the center of the cell faces, i.e., 

 for the viscous flux in the axial direction. Using divergence theorem and 

applying it to a small control volume , the viscous fluxes can be approximated as 

kji ,,2/1

V

 

Figure 3.2: Schematic diagram of the stencil used in evaluating inviscid flux terms in 

the plane. 
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(3.43) 

Applying the above formulation to the auxiliary cell at ( ) gives 
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Similarly 
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Figure 3.3: Schematic diagram for a three-dimensional auxiliary cell. 
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Note that  in the above equations are elements of the viscous flux vectors, , , or 

. Physical variables with one-half indices need to be interpolated from the quantities at 

the neighboring cell centers and are given by 

1/2, 1/2, , , 1, , 1, 1, , 1,

1/2, , 1/2 , , 1, , 1, , 1 , , 1

1
( ) ,

4
1
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(3.47) 

The evaluation of SGS fluxes follows a similar procedure as for the viscous and diffusive 

fluxes. 

 The viscous term evaluation procedure outlined above results in lower order of 

accuracy for non-uniform grids for reasons similar to the convective flux terms. However, 

in large Reynolds number flows, convection is dominant, and the effect of grid uniformity 

is neglected in the current study. Further study is warranted to consistently improve the 

numerical accuracy.  

3.2.5 Evaluation of Artificial Dissipation 

 Artificial dissipation plays a crucial role in the stability of a numerical scheme. The 

form of dissipation terms must be higher order of accuracy that that of the numerical 

scheme to keep their magnitude minimal. For the present case, the numerical differentiation 

of the flux vectors is fourth-order accurate in the core region of the computational domain. 

Accordingly, the artificial dissipation is fourth-order accurate. The accuracy order of the 

numerical scheme decreases near the physical boundary, and the artificial dissipation also 

goes to a lower order. The form of numerical dissipation is quite often a blending of second- 

and fourth-order dissipation terms. The second-order terms are used near shock waves and 

flame zones to prevent spurious oscillations, while the fourth-order terms are important for 

stability and convergence. The standard dissipation model can be written as 

f vE vF

vG
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where 
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(3.49) 

  correspond to the coefficients of the second-, fourth- and sixth-order 

accurate artificial dissipation terms and in the present formulation, . 

 Even though the standard dissipation model has been proven to be reasonably 

effective in many cases, there are strong motivations for reducing the numerical dissipation 

being produced. The standard model also has difficulties in hypersonic flows and in density 

stratified supercritical fluids with steep discontinuities as it occurs in the present case. A 

scalar dissipation model was constructed by Swanson and Turkel [137] and by Jorgenson 

and Turkel [138] to overcome the above difficulties. In their model 

3
(2) (4)

1/2, , 1/2, , 1/2, , 1/2, , 1/2, , 3
1/2, , 1/2, ,

( ) ( )  .i j k i j k i j k i j k i j k

i j k i j k

Z Z
    

 

 
 

 
     

 
d  (3.50) 

The modified eigenvalues are given by 

1 2 3 4 5 6 ( ) ,            
 

(3.51) 

where  is the spectral radius of the flux Jacobian matrix . 

(2) (2)
1/2, , 1, , , , 1, , 2, ,max( , , , ) ,i j k i j k i j k i j k i j k        

 
(3.52) 

1, , , , 2, ,
, ,

1, , , , 1, ,

2
 ,

2
i j k i j k i j k

i j k
i j k i j k i j k

p p p

p p p
  

 

 


 
 

(3.53) 

 (4) (4) (2)
1/2, , 1/2, ,max 0, (  ,i j k i j k    

 
(3.54) 

(2) (4)1 1 1 1
~ , ~  .

4 2 64 32
  

 
(3.55) 
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The first term on RHS given in Eq. 3.50 is nonlinear. Its purpose is to introduce an entropy-

like condition and to suppress oscillations in the neighborhood of shock discontinuities. 

This term is small in the smooth portion of the flow field. The switch  is important 

near discontinuities, in which large pressure gradients exist. For high-pressure fluid mixing 

and combustion, however, this switch is tuned to include temperature or density gradients 

other than pressure gradients, as pressure may still be uniform across the boundary between 

different fluid layers. The fourth-order term is basically linear and is included to damp 

high-frequency modes and allow the scheme to approach a steady state. Only this term 

affects the linear stability of the scheme and is reduced to zero near the discontinuity. 

 Although effective, the scalar dissipation model results in much dissipation and 

probably contaminates the accuracy of the simulation. Because the scalar dissipation model 

uses the same artificial dissipation coefficient for all the equations regardless of the actual 

wave speeds, resulting in excessive smearing. This situation deteriorates in locations where 

the local preconditioning factor is not optimized such that the eigenvalues of the Jacobian 

matrix are in different orders of magnitude. Furthermore, the scalar dissipation is not 

conservative, and leads to mass conservation problem in practice. 

 To overcome the difficulties with the scalar dissipation model, matrix dissipation 

formulations are derived for real-fluid mixture systems following Swanson and Turkel 

[137] and by Jorgenson and Turkel [138]. To demonstrate the procedure of adding matrix 

artificial dissipation, backward differencing in time is applied to the governing equations, 

giving: 

 1
 ,ma a

t x y x t





     

      
      

Z E F G
Γ T Q

 
(3.56) 

or equivalently: 

    ''
,

1
k k k diff k kuY r v

r
MWY m

x r
  

 
  

   
(3.57) 

kji ,,
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where 3/ 2a ,  12 /2n n  Q Q , and , ,v v vA B  and C  are Jacobian matrices defined 

as / , / , /v v v     A E Z B F Z C G Z. They are derived as following: 

 
 

 
           

 

p x y z T f

x p x y z T f

y p x y z T f

z p x y z T f

p t p t x t y t z T t T f t f

p x y z T f

U l l l U U

l uU U ul ul ul uU uU

l vU vl U vl vl vU vU

l wU wl wl U wl wU wU

h h U hl uU hl vU hl wU h h U h h U

fU fl fl fl fU f U

 
   
  
 
  


     

  

     

     

     

     

        

      

 .






 

(3.58) 

If we replace l with  we can get , ,  and v v vA B C ,respectively. 

 At this point, the eigenvalues and eigenvectors of the preconditioned system can be 

derived. Let 

0 0 0

0 0

0 0
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 (3.59) 

where 
,

3 3
1

2 2
i

p

T Y
t p t

   




                 
. Then can be derived as: 
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(3.60) 

where  
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(3.62) 
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The eigenvalues are: 

1,2,3,6 Ub 
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(3.63) 

The left and right eigenvectors, which correspond to each of the eigenvalues are given by: 
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. 

 Following Swanson and Turkel [137], the matrix dissipation term in  direction is 

given by: 


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1/2 1/2 ,i i i  AD d d
 (3.66) 
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(3.68) 

where  1 2 3 4 5 6, , , , ,diag      Λ . The half point values are evaluated using Roe 

averaging technique. To avoid numerical difficulties caused by zero artificial viscosity at 

stagnation points or sonic regions, the eigenvalues are limited by:  

      max , , with max , 1,6 .i i n iV i      A A
 

(3.69) 

The higher-order term is not helpful to TVD or upwinding property, but is intended to 

eliminate high frequencies and accelerate numerical convergence.  

The artificial dissipation coefficient is based on the following switch: 
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(3.70) 

where 
(2) (4)1 1 1 1

, , 0.05 0.5
4 2 64 32

        . The resulting scheme is TVD given 

the switches above. 

3.3 Temporal Discretization 

 The physical time derivatives in Eq. 3.34 are evaluated by backward differencing 

(2)
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1 1
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   

(3.71) 

The coefficient  and function  in Eq. 3.71 can be specified to any level of temporal 

accuracy desired. In the current work, a three-point backward difference with second-order 

accuracy is employed. For this situation 

1
1

3 1
,  (4 ) .

2 2
n na Q Q   

 
(3.72) 

The superscripts  and denote iterations within the pseudo-time domain (inner-loop) 

and physical time domain (outer-loop), respectively. The physical time term  can be 

linearized as 

1 1 .m m mQ Q T Z     (3.73) 

Substituting Eq. 3.71 and Eq. 3.73 into Eq. 3.34 yields the following discretized system 
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 A fourth-order Runge-Kutta (RK-4) scheme is used to solve the governing equation 

3.74 in the pseudo-time space due to its higher temporal accuracy and relatively larger CFL 

number requirement (i.e.,  for an Euler calculation using RK-4). A thorough 

investigation of the stability characteristics of the RK-4 method, based on convection of 

the turbulence energy-spectrum, has been performed by Apt and Yang [139] to establish 

its creditability and accuracy. Using the four-step Runge-Kutta scheme, each pseudo-time 

integration is completed through four consecutive intermediate steps, as given below 
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(3.76) 

Superscripts ‘m’ and ‘m+1’ stand for the solution at the ‘mth’ and ‘(m+1)th’ pseudo-time 

steps, respectively. The coefficients , , and  can be varied to obtain a variety of 

schemes with different stability properties. The standard four-step scheme has the 

following values (Jameson, 1983) 

1 2 3

1 1 1
, ,  .

4 3 2
    

 
(3.77) 

The iteration begins from pseudo-time steps (inner-loop). At convergence in pseudo-time 

step, the solution proceeds one physical time step (outer-loop). 

3.4 Boundary Conditions 

 In all cases considered, second-order accurate boundary conditions are 

implemented. The inlet and exit conditions are specified using the method-of-

characteristics (MOC). Adiabatic and noslip conditions are imposed at the solid wall. 

Elsewhere conditions are specified using second-order extrapolated values. These 

conditions produce zero normal gradients with respect to pressure, velocity, temperature, 

and species mass fraction. 

3.4.1 Characteristic Boundary Conditions 

1 2 3
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 At the inlet and outlet boundary, care must be taken when specifying the numerical 

boundary conditions. One has to ensure that the unphysical spurious wave reflections are 

avoided at the boundary and the flow is capable of relaxing to ambient conditions in the 

prescribed ways, which can be satisfied using the MOC proposed by Poinsot and Lelef 

[140]. In the absence of a significant diffusion processes, the MOC method provides correct 

number of conditions that must be specified, as well as conditioned information from the 

interior domain. 

 Implementation of the MOC procedure involves diagonalizing the governing 

system to a quasi-one-dimensional characteristic form 

1 1 1 1

1

[ ( )]  

( ) ( )  .

                          

m

S LM T D Z LM
t

E F G
aQ H

x y z t







   
      



    
     

    

 

(3.78) 

All of the terms in Eq. 3.78 are evaluated at cell centroids using the finite difference 

methodology. The term  is the vector of specified boundary conditions. The term L is a 

selection matrix that singles out the desired characteristics at respective boundaries. The 

Jabobian matrix  is defined as /S Z  . 

 In the absence of significant diffusion processes, the MOC procedure dictates the 

correct number of conditions that must be specified at each boundary and provides well-

conditioned information from the interior domain. In this study, the conditions imposed at 

the inlet and exit planes remain subsonic. At the inlet, there is one outgoing characteristic 

and N+3 conditions must be specified. Here the temperature, velocity, and species 

concentrations are employed assuming fully-developed turbulent channel flow. These 

conditions are given by 



S
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(3.79) 

where , , , and , , …,  represent the specified values of velocity 

components, temperature, and species mass fraction, respectively. At the exit, there are 

N+3 outgoing characteristics and one condition must be specified. Here a far-field pressure 

condition is simulated using the methodologies proposed by Rudy and Strikwerda [141], 

Poinsot and Lele [140], and Baum et al. [142]. 

 To simulate the far-field boundary the incoming characteristic given by Eq. 3.78 is 

modified to provide a nonreflecting outflow condition. The equation of interest is given by 

the selection matrix 

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
 .

0 0 0 0 0 0 0
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   

(3.80) 

Associated with this equation is the term 

2
2 2

1
 ,

u p u
a

a x x  
(3.81) 

which characterizes the time variation of the normal component of acoustic waves that 

propagate from an infinitely distant downstream source into the computational domain. 

refu refv refw refT 1ref
Y 1refNY 
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The term  is the acoustic eigenvalue given by Eq. 3.20. Conceptually, a perfectly non-

reflecting subsonic outflow condition can be obtained if this term is set equal to zero. 

Specifying such a condition, however, eliminates the information provided by the acoustic 

waves and leads to an ill-posed problem. To simulate this information Rudy and Strikwerda 

[141], Poinsot and Lele [140], and Baum et al. [142] proposed that Eq. 3.81 be replaced 

with the term 

2 ( ) ,k k p p
 

(3.82) 

where  is a constant that determines the speed with which the average pressure in the 

computational domain relaxes towards the imposed pressure at infinity . This condition 

introduces small amplitude acoustic waves using scaling arguments that are based on 

known quantities at the exit. Rudy and Strikwerda [141] proposed that optimal values of 

 are given by  

2 2

2 2

(1 )
2  .

(1 ) 4c

a M
k

x u a
 

(3.83) 

 The factor presented here has been modified from that given by Rudy and 

Strikwerda [141] to accommodate the dual-time preconditioned system. Here  

represents the maximum Mach number in the computational domain,  is the 

characteristic axial length of the domain,  is the local preconditioning factor, and  is 

the local speed of sound. The term  is a scaling factor used for optimization. Poinsot and 

Lele [140], and Baum et al. [142] have shown that values ranging from 0.25 to 0.5 provide 

the best results. When lower values are specified, solutions tend to drift away from the 

reference pressure. When larger values are specified, flow oscillations are introduced. 

 To implement the MOC methodology with the far field pressure condition 

described above, the  outgoing characteristics are selected and the incoming 

characteristic is modified by replacing the incoming wave amplitude given by Eq. 3.81. 

These conditions are given by  
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(3.84) 

The far-field pressure condition has been shown to be effective in reducing reflections at 

the subsonic exit boundary and is relatively accurate and stable. 

3.5 Parallel Implementation 

 Since the explicit time-stepping numerical scheme is applied in the current study, 

only the data from neighboring cells instead of the whole computational domain were 

required during the calculation of variables in each cell. Since the data dependence is weak, 

the domain decomposition technique is best suited for this kind of application. It is also 

commonly implemented in distributed-memory parallel computer systems. In the field of 

computational fluid dynamics (CFD), it is generally referred to as mesh partitioning, based 

on the geometric substructure of the computational domain. In the domain-decomposition 

technique, the physical domain is divided into several sub-domains. Variables in each cell 

are updated to the next time step simultaneously. In order to calculate the spatial derivatives 

at the sub-domain boundaries, ghost cells or halo data around the computing cells are 

introduced. Figure 3.4 shows an example of a two-dimensional sub-domain with ghost 

cells. Because the variables in the ghost cell are updated in another sub-domain, message 

passing is required to synchronize data between different sub-domains. The 

communication overhead is directly proportional to the volume-to-surface ratio of the grid 

system in that sub-domain. Maximizing the computation-to-communication ratio leads to 

higher parallel execution efficiency. 
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 High Performance Computing (HPC) clusters used to conduct the large-scale 

computations required in the current studies. The in-house program is highly paralleled, 

and each decomposed sub-domain is computed by one CPU core. Communication at the 

domain boundary is made through a message passing interface (MPI).  

 

 

 

 

 

 

  

 

Figure 3.4: Schematic of a two-dimensional sub-domain with ghost cells. 

Computing cells Ghost cells
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CHAPTER 4  

SWIRL INJECOR FLOW DYNAMICS  

 Swirl injectors have been broadly used in contemporary liquid-propellant rocket 

engines to achieve efficient mixing and combustion, but the understanding of injector flow 

physics and dynamics at supercritical conditions is still very limited. This chapter intends 

to improve such understanding by carrying out a systematic three-dimensional numerical 

study of simplex swirl injector under supercritical condition using LOX as the oxidizer. 

We are going to characterize the three-dimensional flow structures and underlying physics 

for the first time and explore various instability mechanisms dictating fluctuations of flow 

properties.  

4.1 Physical Configuration and Flow Conditions 

 Figure 1a shows the prototype of the liquid-liquid bi-swirl injector of concern 

originating from the RD-0110 engine, which powered the third stage of the Soyuz space 

vehicle. LOX and kerosene are injected tangentially through six cylindrical inlets, 

respectively. In this chapter, we only consider the inner swirler, i.e., the pure LOX 

injection, and remove outer swirler in the coaxial annulus. Figure 1b shows the major 

components of the inner swirler: tangential inlets, a vortex chamber, and a discharge 

nozzle. The baseline geometry and operating conditions are listed in Table 4.1, where Rv 

and R represent the radii of the vortex chamber and discharge nozzle, respectively, and L 

the injector length. Tin, T0, p0, and m  denote the inlet temperature, ambient temperature, 

ambient pressure, and mass flow rate, respectively.  
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(a) (b)  

 

 

Rv (mm) R (mm) L (mm) Tin (K) T0 (K) p0 (atm) �̇� (kg/s) 

4.5 2.7 22.7 120 300 100 0.15 

 

  

The computational domain includes the injector interior (8.4R in the axial direction) and a 

downstream region (25R with 7.4R in the axial and radial directions, respectively). The 

noslip and adiabatic boundary conditions are applied at the injector solid surface. At the 

inlets, the azimuthal and radial velocities are determined from the given mass flow rate and 

swirl strength. The pressure is automatically obtained from radial momentum equation. A 

broadband noise with a Gaussian distribution is superimposed onto the inlet velocity 

components to provide the turbulence at an early stage. The disturbances are produced by 

the Gaussian random-number generator with an intensity of 5% of the mean quantities, 

which is sufficient to trigger the instability inherent in the flowfield. At the downstream 

boundary, the non-reflecting boundary conditions based on characteristic equations 

proposed by Poinsot and Lelef [143] are applied to avoid undesirable wave reflection by 

extrapolation of primitive variables from the interior region. A reference pressure is applied 

to preserve the average pressure in the computational domain. 

4.2 Results and Discussion 

Figure 4.1: LOX/kerosene bi-swirl injector of RD-0110 engine. 

Table 4.1: Baseline geometry and operating conditions. 
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4.2.1 Grid Independence Study 

 The baseline mesh system has 5 million cells, of which 1.7 million cells locate 

within the injector. The meshes are clustered near the wall, mixing layer, and immediately 

downstream of the injector to resolve steep gradients in these regions. The smallest grid 

size in the radial direction is 5 μm, compared to the Taylor scale of 8.4 μm at the injector 

exit. The computational domain is divided into 636 blocks with each computed on a single 

processor. Figure 4.2 shows the distribution of blocks. The physical time step is 10-6 ms 

and the Courant-Friedrichs-Lewy (CFL) number is 0.4. 

 

 

 
  

 

 In order to ensure the appropriate accuracy of underlying flow physics with the 

aforementioned grid resolution, a grid independence study is performed as the validation 

procedure. Since enormous computation cost is required for a finer three-dimensional grid 

system, an axisymmetric study is conducted with the identical grid resolution in radial and 

axial directions. Periodic boundary conditions are specified in the azimuthal direction. A 

finer mesh, which doubles the number of cells in both axial and radial directions, is studied 

as the comparable case.  

Figure 4.2: Distribution of blocks in the whole computational domain. 
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 Figure 4.3 shows the radial distributions of mean density (ρ), temperature (T), and 

velocity components (ux and u) for two grid systems near the injector exit. The maximum 

derivation of all flow properties is less than 5%. In addition, it is found that the relative 

errors of spreading angle and liquid film thickness are lower than 3%, and that the 

frequency spectrum of the pressure field indicates an identical dynamic behaviors. 

Therefore, the current grid system is believed to capture the main characteristics of the 

LOX injection and mixing process. 

 

 

 

4.2.2 Supercritical Fluid Regions 

 Figure 4.4 shows the instantaneous distribution of the oxygen density field in both 

longitudinal and transverse views. LOX is tangentially introduced at a subcritical 

temperature (120 K) into the vortex chamber, which is initially occupied by gaseous 

oxygen (300 K). The swirl-induced centrifugal force produces a large pressure gradient in 

Figure 4.3: Radial distributions of time-averaged flow properties at the axial location 

x/R = 8.3 for two grid systems: solid line: baseline; dashed line: finer mesh. 
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the radial direction, leading to the LOX film flowing along the injector wall. A low-density 

gaseous core forms in the center region due to the conservation of mass and angular 

momentum. The density varies smoothly from liquid-like dense fluid near the wall to gas-

like dense fluid near the centerline along the radial direction. A natural question is how to 

distinguish the fluid states of liquid-like and gas-like.  

 

 

 

 

 
(a)     (b) 

  

 The idea can be conceived from the density-temperature property diagram as shown 

in Fig. 4.5. At subcritical pressures, a distinctive interface separates the dense-liquid phase 

Figure 4.4: Instantaneous distribution of the density field in longitudinal and 

transverse views, p=100 atm. 

Figure 4.5: Density (a) and density gradient (b) of oxygen as a function of temperature 

at various pressures. 
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from the light-gas phase when the temperature increases (e.g., p = 20 atm). Such interface 

corresponds to the infinite value of the density gradient with respect to temperature in Fig. 

4.5b. At supercritical pressures, however, a finite value of the maximum density gradient 

exists, and it represents the sharpest change of fluid density. A fluid transition region is 

thus defined as the regime where the density gradient is not less than the 90% of its 

maximum magnitude. As indicated in Fig.4.5a, the transition region (green lines) connects 

the fluid in a liquid state (blue lines) with the fluid in a gaseous state (pink lines). It becomes 

wider with the increasing pressure, but degenerates into a sharp interface as the pressure 

decreases to subcritical values. 

 For p = 100 atm, the upper and lower bound of density values for the transition 

region are 645 and 450 kg/m3, respectively. Figure 4.6 shows the temporal evolution of 

density distributions at different axial locations. The area enclosed by the two solid curves 

represents the transition region. It becomes larger as the LOX film convects downstream.  
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4.2.3 Instantaneous Flow Field 

  

(a)  

Figure 4.6: Temporal evolution of density distributions at different axial locations, ∆t 

= 0.06 ms, p=100 atm. 
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(b)  

 

 Figure 4.7a shows the instantaneous distribution of density field interpolated with 

two density iso-surfaces (ρ = 532 and 250 kg/m3). The strong swirling motion and its 

associated centrifugal force produce large pressure gradients in the radial direction and a 

low-pressure core near the centerline, leading to the LOX film flowing along the wall. The 

low-density gaseous core in the center forms because of the conservation of mass and 

angular momentum. The axial velocity increases significantly through the converging 

nozzle. As a consequence, the thickness of the LOX film in the vortex chamber is larger 

than that in the discharge nozzle due to mass conservation. The density iso-surfaces are 

corrugated by various flow instabilities in the injector, leading to the wavy structures of 

the liquid film. Figure 4.7b shows the iso-surface of the azimuthal velocity at 4 m/s. The 

central gaseous core is highly wrinkled due to the interaction of hydrodynamic and acoustic 

instabilities. Helical instability is observed near the injector exit and disappears further 

downstream due to the decay of swirling motion.  

Figure 4.7: (a) Instantaneous distribution of density field with two iso-surfaces: ρ = 

532 and 250 kg/m3; (b) iso-surface of azimuthal velocity at 4u   m/s; p=100 atm 
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 Figure 4.8 shows the snapshot of the vorticity magnitude at different cross-sectional 

views. The flow evolution exhibits several distinct features. The flowfield is essentially 

irrotational in the LOX film and central gaseous core due to the small velocity difference 

in these regions. Strong vorticity zones concentrate in the wall boundary layer and in the 

mixing layer between dense liquid and light gas. The flow expands at the injector exit and 

the swirling motion decays rapidly along the axial distance. According to the radial 

momentum balance,  

2

c

p u
~ f ~

r r
 

  
(4.1) 

 where cf  represents the centrifugal force and u  the azimuthal velocity. The decrease of 

azimuthal velocity renders pressure to recover in the downstream region, and the resultant 

positive pressure gradient tends to decreases axial velocity and eventually generates the 

center-recirculating flow, a phenomenon commonly called vortex breakdown. This causes 

dynamic distribution of vorticity at the injector near-field. The vorticity layer, generated 

by the flow detachment from the injector rim, subsequently rolls, tilts, stretches, and breaks 

Figure 4.8: Instantaneous snapshot of vorticity magnitude at different cross-sectional 

views, 100p  atm. 
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up into small eddies. These eddies interact and merge with the surrounding flow and finally 

dissipate further downstream. The temporal evolution of the flowfield permits insight into 

the vortex breakdown phenomenon. Figure 4.9 shows the instantaneous streamlines on a 

longitudinal plane, spatially averaged in the azimuthal direction, during a typical flow 

period. As the small bubble separates from its parent, it travels downstream and eventually 

coalesces with the large vortex bubble in the downstream.  

 

 

 

 Vorticity dynamics plays an essential role in the description of turbulent flows. To 

identify the major mechanisms responsible for vorticity production/destruction under 

supercritical conditions, the budget of vorticity magnitude is examined to quantify the 

overall vorticity variation. The transport equation for vorticity magnitude follows the form 

     1Dw w
  2w w u - 2w w u  - 2w p  + 2w

Dt

    
              

 (4.2) 

where w is the vorticity and   the viscous stress tensor. The four terms on the right-hand 

side represent the effects of vortex stretching/tilting, volume dilatation, baroclinic torque, 

and viscous dissipation, respectively. For a cryogenic fluid under supercritical conditions, 

severe property variations occur when the swirling liquid is heated by the ambient gas. 

Both the volume dilatation and baroclinic torque become significant in determining 

vorticity transport. Figure 4.10 shows the radial distributions of azimuthally-averaged 

Figure 4.9: Temporal evolution of spatially-averaged streamlines, 006t .   ms, 

100p  atm. 
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vorticity budget normalized by the bulk velocity and momentum thickness at three different 

axial locations. Vortex stretching/tilting is dominant for the shear-layer vorticity 

production in the vortex chamber ( / 1nx R  ) and discharge nozzle ( / 5nx R  ). In the 

injector near-field ( / 9nx R  ), however, both of volume dilatation and baroclinic torque 

are significant in the outer shear-layer, where the LOX film mixing with ambient gaseous 

oxygen. 

 

 

 

4.2.4 Characteristics of Wave Propagation 

 For a liquid swirler, a disturbance at the inlet causes the fluctuation of the liquid 

free surface, which then propagates downstream both longitudinally and azimuthally. 

Figure 4.11 shows the the iso-surface of the azimuthal velocity at 22 m/s in the phase space, 

in which the physical domain is unwrapped in the azimuthal direction. Generally, a flow 

variable can be expressed by a Fourier series in the cylindrical coordinate system ( , , x r ), 

    im
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m
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  
 

(4.3) 

where mg  is the Fourier coefficient and m  the azimuthal wave number. 0m  represents 

the axisymmetric mode, and the others ( 0m ) the helical modes. In the vortex chamber 

(x <= 10.4 mm), three helical waves coupled with small-scale structures are observed, 

Figure 4.10: The radial distributions of vorticity magnitude spatially averaged in the 

azimuthal direction at three different axial locations, 100p  atm. 
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indicating that the helical mode 3m  dominates the flowfield. The later section will 

demonstrate that this specific helical mode is triggered by the excited acoustic wave with 

the same frequency. In the discharge nozzle, the higher axial velocity accelerates the spiral 

structure, leading to the bend-over of the wave shape. The helical waves are distorted by 

the strong axial shear-layer because of the large velocity difference between the LOX film 

and gaseous core.  

 

 

 

 

 

  

 To understand the propagation mechanisms, hydrodynamic waves in longitudinal 

and azimuthal directions are analyzed separately. Figure 4.12 shows the temporal evolution 

Figure 4.11: Iso-surface of azimuthal velocity at 22u   m/s in azimuthal phase space 

( 0 2~ ), 100p atm. 

Figure 4.12: Temporary evolution of the density iso-surface at 532s   kg/m3, 

100p  atm. 
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of the density iso-surface at 532  kg/m3. The spiral shape forms in the vortex chamber, 

while the cone-shaped surface is produced with ligaments in the discharge nozzle. This 

difference might be related to the Kelvin-Helmholtz (KH) shear-layer instability in the 

fluid transition region. The flow motion is swirl-dominated with a small axial momentum 

in the vortex chamber, and hence the axial KH instability is relatively weak and induces a 

smooth iso-surface. The axial velocity of the LOX film significantly increases through the 

converging nozzle, leading to the strong KH instability in the discharge nozzle. In addition, 

the baroclinic effect resulting from the misalignment of the density gradient and pressure 

gradient can induce the flow instability. The significance of these effects can be determined 

from the vorticity transport budget as described in the previous section. The calculated 

propagation speed for the longitudinal wave is approximately 30 m/s. For an inviscid, 

incompressible flow with the neglect of the radial velocity and assumption of an 

infinitesimal film thickness compared to the wavelength, the form of the wave speed bears 

a close resemblance to that for shallow-water wave propagation [21] and can be expressed 

explicitly as, 

2 2 2 2

3 2
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x
m m

u R R r
a

r r

  
   

    

(4.4) 

here inu , inR , and mr  represent the inlet velocity, swirling arm, and radius of the liquid film 

surface, sespectively. The computed wave speed by Eq. 4.4 is 37 m/s, which overweighs 

the current simulation result. This can be explained by the neglect of fluid compressibility 

and viscous effects in Eq. 4.4. 
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 Figure 4.13 shows the temporal evolution of density distributions at 10x mm in 

the transverse direction. The azimuthal wave speed in the transition region is 27.4 m/s. 

According to the inviscid theory, the azimuthal wave speed can be approximated as, 
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(4.5) 

It gives the azimuthal wave at a speed of 33 m/s, which is slightly larger than the current 

value. The characteristic frequency of the helical mode 1m  is found to be 1.6 kHz if 

one traces the fluid particle in a period. Given the frequency of the helical mode 1m , 

the frequencies of all helical modes can thus be obtained by, 

1

0.62mf m   kHz, 1 2, 3, ...m ,    (4.6) 

Therefore, the frequency of the dominant helical mode 3m  is 4.8 kHz according to Eq. 

4.6. 

4.2.5 Injector Flow Dynamics 

 The injector dynamics involve intricated flow processes covering a wide range of 

time and length scales. Quantitative information can be obtained using spectral analysis. 

Figure 4.14 shows the selected probe positions in the LOX film that are used for spectral 

analysis. These positions are well-distributed in the vortex chamber, discharge nozzle, and 

immediately downstream of injector. To ensure the probed data statistically meaningful, 

Figure 4.13: Temporal evolution of density distributions at 10x  mm, 100p  atm. 
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the time histories of pressure fluctuations at probes 1, 8, 10, and 11 along the flow passage 

are presented in Fig. 4.15. It is observed that the pressure at these locations oscillates 

periodically and that the data are reasonable for spectral analysis. The time period of 

hydrodynamic wave in the longitudinal direction is estimated at 1.1 ms, corresponding to 

the frequency of 0.9 kHz.  

 

 

Figure 4.14: Probe positions within the liquid film inside the injector and near the 

injector exit. 
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 Figures 4.16-19 show the power spectral densities of pressure oscillations at 

different locations along the injector. Flow instabilities are quantitified and decomposed 

into various modes. The high-frequency modes with small wavelengths are confined in the 

vortex chamber because of wave reflection between the headend and conical convergent 

section, while low-frequency modes with long wavlengths are able to transmit to the 

discharge nozzle. Most of flow disturbances thus remain in the vortex chamber, leading to 

the relatively small amplitude pressure fluctuations in the discharge nozzle as shown in 

Fig. 4.19. Two dominant modes at the frequency of 0.9 kHz and 0.6 kHz are observed at 

all probe positions inside the injector. The former is closely related to the longitudinal 

hydrodynamic wave, while the latter may be related to the radial wave induced by 

centrifugal instability.  

Figure 4.15: Time histories of pressure fluctuations at four different probe locations. 
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Figure 4.16: Power spectral densities of pressure fluctuations at four different 

locations (probe 1-4) in the vortex chamber. 

Figure 4.17: Power spectral densities of pressure fluctuations at four different 

locations (probe 5-8) in the vortex chamber. 
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 The injector configuration can be acoustically treated as a quarter-wave resonator 

and characterized by a formula of the natural frequency, 

 4f c / L l 
 (4.7) 

where L  is the injector length, c  is the speed of sound, and l  is the correction factor and 

is taken as 06. R . In the present study, the temperature of oxygen varies from subcritical to 

Figure 4.18: Power spectral densities of pressure fluctuations at four different 

locations (probe 9-12) in the nozzle. 

Figure 4.19: Power spectral densities of pressure fluctuations at four different 

locations (probe 13-16) near the injector exit. 
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supercritical along the radial direction. The speed of sound changes accordingly. Figure 

4.20 shows the oxygen sound speed as a function of temperature at various pressures. It 

first decreases and then increases with the increasing temperature. The average speed of 

sound, estimated as 470 m/s, is used to compute the acoustic frequency, which turns out to 

be 4.8 kHz. The acoustic wave drives the specific helical mode 3m  with the same 

frequency (4.8 kHz) in the vortex chamber. The flow motion becomes broadband and no 

dominant oscillation can be found due to the strong interactions of the outer shear layer 

and the center recirculation zone near the exit of injector. Shear-layer and centrifugal 

instabilities are coupled with acoustic instability, incurring that the spectral contents 

become very rich and are characterized by several different frequencies in various regions.  

 

 

 

 The injector flow dynamics are further explored using the proper orthogonal 

decomposition (POD) technique, which is an empirical mathematical technique capable of 

extracting dynamically significant structures from the flowfield of concern. For a given 

flow property,  ,f tx , the POD analysis can determine a set of orthogonal functions, 

 j x , 1 2j , , ...   , such that the projection of  f ,tx  onto the first n  functions, 

Figure 4.20: Speed of sound of oxygen as a function of temperature at various 

pressures. 
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has the smallest error, defined as  ˆE || f f || . Here x  is the spatial coordinate in the 

three-dimensional space and  ja t  represents the temporal variation of the thj  mode. 

 E   and || ||  denote the time average and -norm2L  in the space, respectively. The scalar 

function f  can be extended to a vector F  by introducing an appropriate inner product. A 

more complete discussion of this subject can be found in Refs. [144] and [145]. This 

chapter mainly focuses on the pressure-fluctuation field, p' . In order to capture all possible 

characteristic modes related to pressure oscillations, the POD analysis was conducted for 

p'  with the full-scale three-dimensional database containing 333 snapshots of the 

flowfield within the injector. The time interval between snapshots is 30 μs, compared to 

the iterative time step of 1 μs employed in the numerical simulations. The size of the 

database is around 300 GB, so extensive computer storage space is required for the POD 

analysis.  

 Figure 4.21 shows the energy distribution of POD modes according to the pressure-

fluctuation field. Mode 1 occupies 74% of total energy and the first six modes capture more 

than 80% of the total energy of the oscillatory field. Figure 4.22 shows the frequency 

spectra of the time-varying coefficients  ja t  of these modes. The first three modes are 

closely related to hydrodynamic instability waves with two dominant frequencies, 0.6 and 

0.9 kHz, whereas the other three modes share the dominant frequency of 4.8 kHz.  
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 Figure 4.23 shows the spatial distribution of the first six POD modes of oscillatory 

pressure field on a longitudinal plane. The first mode shape exhibits a descending trend 

along the axial direction with a maximum at the headend. The second and third modes 

show the similar pattern to the first mode but with much weaker strength and different 

phase angle. The fourth, fifth, and sixth modes also have the similar shape with different 

phase angle, and are closely related to the acoustic and helical waves as illustrated 

Figure 4.21: Energy distribution of POD modes of pressure oscillations, 100p  atm. 

Figure 4.22: Frequency spectra of time-varying coefficient of first six POD modes of 

pressure oscillations, 100p  atm. 
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previously with the characteristic frequency of 4.8 kHz. Figure 4.24 shows the spatial 

distributions of modes 1 and 4 on the transverse plane. A uniform pressure distribution of 

mode 1 in the circumferential direction (axisymmetric mode, m=0) implies that the 

disturbance propagates mainly in the longitudinal direction. The pressure difference in the 

radial direction caused by the swirl-induced centrifugal instability represents the radial 

wave. The well-organized wave shape for mode 4 with three periods in a circle further 

confirms the appearance of helical mode 3m . 

 

 

 

 

 

 

 

4.2.6 Effects of Flow conditions and Geometry 

Figure 4.23: Spatial distributions of the first six POD modes of oscillatory pressure 

field on longitudinal ( x r ) plane within injector, 100p  atm. 

Figure 4.24: Spatial distributions of mode 1 and mode 4 of oscillatory pressure field 

on transverse ( r) plane within injector. 
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 The effects of chamber pressure and temperature on the injector dynamics are 

studied in this subsection. Table 4.2 lists the detailed information for five cases of concern. 

Cases 1-4 operates at different conditions with the same three-dimensional (3D) geometry, 

while Case 5 has the same operating conditions as Case 2 but with an axisymmetric 

configuration.  

 

Case Geometry p (atm) T (K) Th (mm) h (mm) 2(deg) 

1 3D 69 300 0.809 0.446 107.1 

2 3D 100 300 0.612 0.419 104.0 

3 3D 200 300 0.532 0.392 102.1 

4 3D 100 600 0.514 0.500 103.1 

5 Axisymmetric 100 300 0.392 0.324 97.9 

 Inviscid Theory   0.431 96.5 

 

 

 

 
  

 

Table 4.2: Effects of injector geometry and flow conditions on LOX film thickness 

and spreading angle at injector exit. 

Figure 4.25: Distributions of azimuthally-averaged density field for Cases 1-4. 
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 Figure 4.25 shows the distributions of the azimuthally-averaged mean density for 

Cases 1-4. The density in the gaseous core increases with pressure, whereas it decreases 

significantly as the temperature varies from 300 to 600 K. At p = 200 atm, the minimum 

density of oxygen in the chamber exceeds 260 kg/m3. Figure 4.26 shows the distributions 

of the magnitude of azimuthally-averaged density gradient for Cases 1-4. The density 

gradient in the central gaseous core is close to zero. The radius of the gaseous core 

decreases with increasing pressure. The steep density gradient zone is extended into a 

broader area downstream of the injector as the pressure increases. As the chamber 

temperature changes from 300 to 600 K, the steep density gradient zone decays drastically 

but the central gaseous core grows remarkably.  

 

 

 

 Figure 4.27 shows the mean flow properties of density and axial velocity for Cases 

2 and 5 to study the effect of geometry. The results of Case 2 are spatially-averaged in the 

Figure 4.26: Distributions of the magnitude of azimuthally-averaged density for 

Cases 1-4. 
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azimuthal direction. It can be observed that the axisymmetric case has a larger spreading 

angle than the 3D case. One reason may lie in that the axisymmetric simplification restrains 

the LOX film to develop in the radial and axial directions, while the vortex stretching and 

tilting mechanism occurring only in the 3D case enables the vigorous flow dynamics in the 

azimuthal direction other than radial and axial directions. The liquid film spreads outwardly 

farther in the radial direction for the axisymmetric case and hence induces the larger 

spreading angle. It is noted that the density of the gaseous core is higher for the 3D case. 

This is contributes to the smaller spreading angle for the 3D case. As shown in Fig. 4.28, 

the recirculating zone is closer to the center line for the 3D case, and carries more dense-

liquid off the main stream, which flows back into the injector and cools down the gaseous 

core. In addition, the axisymmetric study predicts slightly larger axial velocity of the LOX 

film due to the lack of significant viscous dissipation when the flow goes along the spiral 

wall passage as in the 3D case. The liquid film thickness is therefore thinner in the 

axisymmetric case according to the conservation of mass. 

 

 

Figure 4.27: Distributions of time-averaged density and axial velocity for Cases 2 and 

5. 
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 As discussed previously, the distinct interface between liquid and gas phases 

occurring at subcritical pressures is replaced by a continuous transition region at 

supercritical pressures. The liquid-film thickness must thus be defined in a different way 

Figure 4.28: Distributions of time-averaged temperature field interpolated by 

streamlines. 

Figure 4.29:Distributions of local maximum density gradient in the radial direction 

as a function of axial coordinate, (a) within the injector; (b) downstream of the 

injector. 
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at supercritical pressures. Huo et al. [33] introduced two ways to identify the film thickness 

for a given axial location. One is defined as the distance between the surface of maximum 

density gradient and the injector wall along the radial direction. The other is the distance 

between the surface of critical temperature and the injector wall. Figure 4.29 extracts the 

location of the maximum density gradient in the radial direction as a function of axial 

coordinate. The liquid film thickness at the injector exit is listed in Table 4.2 for all cases. 

The film thickness increases slightly with the increasing pressure for 3D cases. The film 

thickness for axisymmetric case (Case 5) is thinner than that for the 3D case (Case 2). The 

absence of swirling structures in the azimuthal direction for the axisymmetric study induces 

the less momentum loss at the injector wall and hence higher axial velocity of the liquid 

film, leading to a thinner film because of the conservation of mass. The film thickness 

based on the critical temperature is also included in Table 4.2. Although the method of the 

critical temperature predicts a higher flame thickness than that of the maximum density 

gradient, the trend of variation of film thickness with pressure is similar for both of 

methods. The estimation from classical inviscid theory is also provided for comparison, 

which assumes the injector characteristics are solely determined by a geometric constant, 

K, regardless of the operating conditions. This assumption turns out to be relatively rough 

since the film thickness show the distinction among different operating conditions. 

 Figure 4.29b also includes the information of the spray cone angle, which 

determines the efficiency of atomization and mixing. Here the spray cone angle is defined 

as twice of the angle between the dotted curve and the axial axis in the chamber. It is seen 

that the chamber pressure has the negligible influence on the cone angle, while the higher 

chamber temperature (Case 4) renders a slightly smaller cone angle. It is noteworthy that 

the axisymmetric study (Case 5) yields a much higher cone angle than the 3D studies 

(Cases 1-4). The reason for this has been explained in the previous section. Table 4.2 also 

provides the spreading angle calculated by velocity components at the injector exit, 

 xtan u / u . The angles for the 3D studies are larger than those for both axisymmetric 
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study and inviscid theory. This is not physically meaningful, indicating that the angle 

computed by velocity components might not provide a proper presentation of film 

spreading. Instead, the angle visualized by the curves of maximum density gradient 

exhibits the consistent behavior of spreading and is useful to explore the influences of 

various parameters. 

 

4.3 Conclusion 

 A systematic investigation of swirling flow dynamics has been conducted at 

supercritical conditions. Various fundamental instability mechanisms determining the flow 

dynamics have been examined by implementing the spectral analysis and proper 

orthogonal decomposition technique. The interface, representing the phase change from 

dense liquid to light gas at subcritical conditions, disappears at supercritical pressures and 

is replaced by a transition region in which density varies smoothly and continuously with 

temperature. The hydrodynamic instability in the longitudinal direction is dominant across 

the injector, and the azimuthal wave at mode 3 resonates with acoustic wave at 4.8 kHz 

and amplifies itself significantly compared to other modes. The converging section reflects 

the waves back into the vortex chamber and only allows part of waves with long 

wavelengths to transmit to the discharge nozzle.  

 A parametric study is made to examine the pressure and temperature effects on the 

injector design. The gaseous core decreases with the increasing pressure. The liquid film 

thickness increases slightly with pressure and is consistent with the prediction by the 

inviscid theory. The axisymmetric study estimates a much smaller film thickness and larger 

spreading angle than the 3D studies due to the lack of flow dynamics in the azimuthal 

direction. The spreading angle defined by the maximum density gradient provides more 

physical interpretation of liquid spreading than the traditional definition by the ratio of 

axial and tangential velocity component. The spreading angle is nearly independent of the 
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pressure. The current study will provide the important information for the future research 

on the mixing and combustion of swirling injection flows at supercritical conditions. 
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CHAPTER 5  

MIXING CHARACTERISTICS OF LIQUID OXYGEN/KEROSENE 

BI-SWIRL INJECTORS 

 

 In Chapter 4, we investigated the dynamics of the swirling injection of pure LOX, 

which basically represents the behaviors of mono-propellant injectors. In practice, we deal 

with bi-propellant injector configuration more frequently, such as injectors used in RD-

0110 and RD-170 engines. Most existing experiments and numerical simulations have been 

focused on shear coaxial injectors with simple propellants, such as H2/O2 and CH4/O2. Very 

limited information is available on the mixing and combustion dynamics of bi-propellant 

swirl injectors in rocket operating conditions, which is typically at pressures much higher 

than the critical pressures of the propellants, leading to the extreme nonlinearity and 

complexity of physical phenomena and therefore severe challenge to experiments. In this 

chapter, a numerical study is carried out to investigate the mixing and atomization 

characteristics of liquid oxygen/kerosene bi-swirl injectors at supercritical conditions. This 

is followed by the study of combustion dynamics in Chapter 6. The theoretical and 

numerical framework have been described in detail in Chapter 2. Various geometric 

parameters, including recess region, post thickness, and kerosene annulus width, are 

examined to explore their influence on mixing efficiency and flow dynamics.  

5.1 Physical Configuration and Flow Conditions 

 The prototype of the bi-swirl injector has been introduced in Chapter 4. Instead of 

considering the inner swirler only, we recover the original injector by adding the outer 

swirler, in which kerosene is injected tangentially through a coaxial annulus.. Figure 5.1 

exhibits the longitudinal plane view of the injector, providing the major components: 

tangential inlets, a discharge nozzle, a vortex chamber, and a coaxial annulus. The baseline 

geometrical parameters are summarized in Table 5.1, where Rv, R, Rin, 1, and Rin, 2, denote 
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the radii of vortex chamber, discharge nozzle, LOX, and kerosene tangential inlets, 

respectively. ∆r, l, h, and L represent the lengths of coaxial annulus, recess region, post 

thickness, and injector in the axial direction, respectively. The injector operating conditions 

including chamber pressure (p0) and inlet properties are listed in Table 5.2.  

 

 
 

Rv (mm) R (mm) Rin, 1, (mm) Rin, 2 (mm) ∆r (mm) l (mm) h (mm) L (mm) 

4.5 2.7 0.85 0.35 0.5 1.5 0.8 24.2 

 

 

p0 (MPa) Tin, 1 (K) Tin, 2 (K) �̇�1 (kg/s) �̇�2 (kg/s)  

10 120 300 0.15 0.065  

  

 The computational domain includes injector interior (8.4R in the axial direction) 

and a downstream region ( 25R  and 8R in axial and radial directions, respectively). 

Because of the enormous computational effort required for calculating the flow evolution 

in the entire regime, only a cylindrical sector with periodic boundary conditions specified 

in the azimuthal direction is treated. The noslip and adiabatic boundary conditions are 

applied at the injector solid surface. At the inlets, the azimuthal and radial velocities are 

determined from the given mass flow rate and swirl strength. The pressure is automatically 

obtained from radial momentum equation. At the downstream boundary, the non-reflecting 

boundary conditions based on characteristic equations proposed by Poinsot and Lelef [143] 

Figure 5.1: Longitudinal plane view of the injector. 

Table 5.1: Geometric param.eters of the baseline swirl coaxial injector 

Table 5.2: Chamber pressure and inlet conditions. 
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are applied to avoid undesirable wave reflection by extrapolation of primitive variables 

from the interior region. A reference pressure is applied to preserve the average pressure 

in the computational domain through small-amplitude acoustic waves originating from a 

virtual boundary.  

5.2 Results and Discussion 

 Kerosene is a complex mixture of alkanes, aromatics, and cycloalkanes, widely 

used in aircraft engines. The average chemical formula for kerosene differs from one 

source to another. The three-component surrogate model [146, 147], n-decane/n-

propylbezene/n-propyl-cyclohexane (74%/15%/11% by volume), was shown to yield the 

best agreement with the jet-stirred reactor data and is implemented in the present study.  

5.2.1 Grid Independence Study   

Grid Level Smallest Gird Size (μm) Grid Points (million) Blocks 

1 8 0.1 93 

2 4 0.4 372 

3 2 1.6 372 

4 1 6.4 1488 

 

 In order to guarantee the appropriate numerical resolution and accurate flow 

physics, a grid independence study is undertaken to determine the required spatial 

resolution. Four different levels of mesh resolutions are examined and the detailed 

information is listed in Table 5.3. The grid size reduces into half as the grid level elevates 

by one. Since the grid size decreases exponentially, the iterative time step must decrease 

accordingly to ensure the convergence. The total number of grid points increase from 0.1 

(level 1) to 6.4 million (level 4). The whole computational domain is divided into blocks, 

and each block is computed by one CPU core. For Grid Level 4, the resolution is close to 

Table 5.3: Four levels of grid resolutions. 
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direct numerical simulation because the grid size is nearly equivalent to the Kolmogorov 

scale. 

 

 

 Figure 5.2 shows the instantaneous snapshots of the density field superimposed by 

the second invariant of the velocity gradient tensor [148], Q, defined as 

 2 2
/2Q S    to identify the vortical structures in the flow field. Here  and S  

represent the antisymmetric and symmetric components of the velocity gradient tensor. 

Similarities in terms of flow patterns, LOX film thickness, and spreading angle, are 

observed among the four grid levels. The small vortical structures can be captured even 

from the coarsest grid (Level 1). With the increasing grid resolution, the finer vortical 

Figure 5.2: Instantaneous snapshots of the density field superimposed by a positive 

Q-isocontour (solid line) at 108 s-2 for increasing grid resolutions. 
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motions representing smaller turbulent eddies are recognized in the center gaseous core 

and the LOX/kerosene mixing zone in the injector near-field. 

 

 

 

 In order to show the sensitivity of flow statistics to the grid resolution, the radial 

distributions of representative time-averaged flow properties, including axial velocity ( xu

), temperature (T ), kerosene mass fraction ( Fy ), and density () at / 10x R , were 

compared for different grid resolutions as shown in Fig. 5.3. The coarse grid Level 1 shows 

the significant difference from other grid levels. Although the slight distinction occurs for 

Level 2, the averaged properties are nearly insensitive to the grid resolution starting from 

Level 2. To ensure the flow information captured accurately in the following study, the 

grid system of Level 3 is selected as a tradeoff between computational accuracy and 

burden. 

5.2.2 LOX/Kerosene Mixing and Flow Dynamics 

Figure 5.3: The radial distributions of time-averaged flow properties at the axial 

location ( / 10x R ) for increasing grid resolutions. 
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 The swirling flow dynamics for injectors without a coaxial flow have been 

investigated rigorously in Chapter 4, in which the flow evolution of the LOX film is similar 

to the flow pattern of the inner swirler as shown in Fig. 5.4. The strong swirling motion 

and its associated centrifugal force produce large pressure gradients in the radial direction 

and induce a low-pressure core around the centerline, leading to the LOX film flowing 

along the injector wall. The low-density gaseous core in the center forms because of the 

conservation of mass and angular momentum. As the LOX stream exits from the central 

injector, a spreading conical liquid sheet forms and impinges with the kerosene stream. 

Consequently, LOX and kerosene mix efficiently and transport downstream.  

 

 

Figure 5.4: Temporal evolution of density field for the baseline (Case I). 
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 Figure 5.5 presents the time-averaged density, temperature, and axial and tangential 

velocity components near the injector exit. The temperature changes gradually from a 

subcritical state at the wall ( 120 K, / 1T r R  ) to a supercritical state in the center (

300 K, / 0T r R  ). A fluid transition region exists, unlike a sharp interface between a 

liquid and a gas occurring at subcritical pressures. Followed by this transcritical change of 

fluid state, the density varies smoothly from a large value in the LOX film to a small value 

in the gaseous core. On the contrary to the LOX film, the kerosene stream fully occupies 

the annulus passage due to the confinement of upper and lower walls. The flow in the 

kerosene passage ( / 1.3r R ) appears to be fully developed. The distributions of density 

and temperature are nearly uniform and the maximum of axial and azimuthal velocities 

locate at the annulus centerline. In the LOX passage, however, the velocity maximizes in 

the LOX film, followed by the shear-layer between the LOX and center gaseous core. The 

flow then reverses its direction near the centerline because of the center-recirculating flow. 

 

Figure 5.5: Radial distributions of time-averaged density (), temperature (T ), axial 

( xu ), and azimuthal velocity ( u ) components near the injector exit ( / 8.3x R ). 
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 The LOX film in the center injector is intrinsically unstable and characterizes three-

dimensional hydrodynamic instabilities, leading to the film oscillations longitudinally and 

circumferentially. The circumferential mode, however, cannot be obtained in the present 

axisymmetric simulation. Figure 5.6 shows a close-up view of the density evolution near 

the LOX film for the baseline case, implying the presence of the longitudinal mode. The 

wave develops and convects downstream. The calculated wave speed is approximately 23 

m/s in the discharge nozzle ( 4.5 / 8.4x R  ), where the time-averaged thickness of the 

LOX film is nearly a constant. 

  Figure 5.7 shows the instantaneous distributions of axial velocity, tangential 

velocity, and vorticity magnitude. The axial velocity of the LOX film in the vortex chamber 

starts with a low value near the injector headend and increases substantially through the 

converging nozzle, indicating significant transfer from angular momentum to axial 

momentum. This explains that the thickness of the LOX film in the vortex chamber is much 

Figure 5.6: Close-up view of temporal evolution of density field near liquid-oxygen 

film for the baseline (Case I). 
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bigger than that in the discharge nozzle because of mass conservation. Large vortical 

structures occur at various locations, including the injector solid surface, shear-layer, and 

LOX/kerosene mixing regions. The shear-layer region coincides with the fluid transition 

region, in which the volume dilatational and baroclinic effects are considerable in vorticity 

production other than vortex the stretching and tilting effect as shown in Chapter 4. 

 

 

 

 

 Figure 5.8 shows a close-up view of density evolution in the vicinity of the injector 

post. The LOX and kerosene streams emanating from the injector interact dynamically in 

the recess region. The kerosene stream occupies the majority of the recess region and cover 

the LOX post, while the LOX stream spreads upwards to form a strong mixing layer, in 

which the film surface is highly wrinkled by the shear-layer-induced flow instability. The 

Figure 5.7: Instantaneous distributions of temperature, axial velocity, and vorticity 

for the baseline. 
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traditional liquid breakup process at supercritical conditions does not occur and is replaced 

by large-scale turbulent mixing, along with which the LOX and kerosene mix fairly 

efficiently by coherent structures and propagate downstream. 

 

 

 

5.2.3 Parametric Study 

 

Case Number 
Annulus Length  

( r , mm) 

Post Thickness  

(h, mm) 

Recess Length  

(l, mm) 

I (Baseline) 0.5  0.8  1.5  

II 0.5  0.8  0.0  

III 0.5  1.3  1.5  

IV 1.0  0.8  1.5  

 

 

 As shown in Fig. 5.8, LOX and kerosene mix together in the recess region, where 

the cone-shaped LOX film is formed and intercepts the incoming kerosene film to achieve 

efficient mixing. The geometry of injector may impact the mixing characteristics. 

Parametric studies are conducted in this section to explore the influence of recess region, 

post thickness, and kerosene annulus width on the mixing characteristics. Table 5.4 lists 

Figure 5.8: Close-up view of density evolution in the vicinity of injector post. 

Table 5.4: The geometrical parameters of four cases. 
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the controlling parameters of four cases. Case I, considered as the baseline case, is 

compared with other cases. The recess region is removed in Case II, while the post 

thickness is larger in Case III and the kerosene annulus wider in Case IV.  

 

 

 

 
 

 

 Figure 5.9 shows the instantaneous snapshots of density and kerosene mass fraction 

for Case II. The significant difference from the baseline (Case I) can be recognized. The 

absence of recess region clearly delays the mixing and elongates the mixing area in the 

Figure 5.9: Instantaneous distributions of density and kerosene mass fraction for 

Case II. 

Figure 5.10: Streamlines of time-averaged flowfield for four cases. 
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further downstream, therefore diminishing the mixing efficiency. The spreading angle of 

LOX stream becomes smaller. This can be observed clearly from the time-averaged flow 

streamline in Fig. 5.10, where the center-recirculating bubble for Case I is steeper and 

closer to the injector exit than that for Case II. The advance mixing process in the recess 

region reduces the size of recirculation zone in the vicinity of injector post and produces 

two separate recirculating zones near the upper-left wall of the chamber rather than one 

bulk bubble in Case II.  

 

 

 Figure 5.11 shows the time-averaged distributions of kerosene mass fraction for 

four cases in the vicinity of the injector post. It is seen that the kerosene film covers the 

LOX post only in Case I. The spreading conical LOX sheet blocks the incoming kerosene 

stream, which has to adjust its direction. The restriction of upper surface of the annulus 

imposes the kerosene stream to only turn downwards in the recess region before its 

expansion in the injector downstream in Case I. However, because of the absence of the 

recess region in case II, the kerosene stream spreads both upwards and downwards in the 

downstream, leaving insufficient amount of kerosene near the LOX post. The recess region 

Figure 5.11: Time-averaged distributions of kerosene mass fraction at injector near-

field for four cases. 
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enhances the interaction of propellants and enriches the dynamics of the injector near-field, 

therefore improving the mixing efficiency.  

 

 

 

 Figure 5.12 shows the instantaneous snapshots of density and kerosene mass 

fraction for Case III. For the larger post thickness in Case III, the spreading angle is higher 

and the stagnation point in the center-recirculating zone shifts to a higher radial position as 

shown in Fig.5.10. This larger angle in turn imposes the LOX film to intercept the kerosene 

film more efficiently in a broader area. The main stream of kerosene is divided into two 

branches, one flows along with the LOX stream while the other flows along the chamber 

wall. The detached bubble in Case I is pushed by the kerosene stream to the chamber wall 

in Case III.  

 A shown in Fig. 5.11, a considerable layer of the kerosene film in Case I conceals 

the LOX post and can potentially protect it from overheat in case of combustion. For the 

thicker post, however, the propellants mixture near the lower portion of the injector post is 

close to be stoichiometric. The strong heat flux generated from combustion could possibly 

damage the injector post surface. Interesting research can be done to determine an optimum 

thickness of the injector post to achieve the balance of both efficient mixing and post 

protection.  

Figure 5.12: Instantaneous distributions of density and kerosene mass fraction for 

Case III. 
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 The effects of the kerosene annulus width is also explored. Figure 5.13 shows the 

instantaneous distributions of density and kerosene mass fraction for Case IV. The 

spreading angle increases with the annulus width, and the center-recirculating bubble 

Figure 5.13: Instantaneous distributions of density and kerosene mass fraction for 

Case IV. 

Figure 5.14: Temporal evolution of density field for Case IV. 
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slightly shifts upstream accordingly, which leads to significant amount of the mixture 

downstream recirculating into the central injector. Similar to Case III, the kerosene stream 

is divided into two branches and does not cover the LOX post as it does in Case I. Figure 

5.14 shows the temporal evolution of density field for Case IV. It can be seen that much 

longer time is required for the kerosene film to reach the fully-developed state in the 

annulus. At the initial stage of flow evolution, the thickness of the kerosene stream is 

smaller than the annulus width, leading to a gaseous core next to the lower annulus surface. 

The kerosene stream is then intercepted by the cone-shaped LOX spreading sheet and turns 

its flow direction. After the enough accumulation in the recess region, kerosene flows back 

into the annulus and eventually occupies the whole annulus in a fully-developed state at t 

= 7.95 ms, compared to t=5.82 ms for Case I. The complex flow structures in Case IV 

introduce additional shear-layer in the annulus and increase the momentum loss. 

5.3 Conclusion 

 The injection and mixing characteristics of the LOX/kerosene bi-swirl injectors 

have been numerically investigated at supercritical conditions. The theoretical formulation 

incorporates real-fluid thermophysical properties into the conservation laws to render a 

unified treatment for a fluid at any state. The accuracy of numerical resolution was tested 

through the grid independence study. The flow similarities were observed for different 

levels of grid resolution. The finer vortical structures were obtained as the grid size 

decreases. The mixing characteristics and flow dynamics were discussed in depth. The 

recess region significantly improves the mixing efficiency by advancing the interaction of 

propellants. The spreading angle of the LOX film increases, as either the post thickness or 

the annulus width increases. The larger spreading angle enables the LOX film to intercept 

the kerosene film in a more effective way, therefore facilitating the mixing. But the thicker 

post may face a significant amount of heat flux from the hot products in the combusting 

condition due to the lack of coverage of the kerosene film. Although the wider annulus 
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requires a longer time to reach a fully-developed state in the annulus, it shifts the 

recirculation bubble upstream and recirculates the propellant mixture into the center 

injector, which could stabilize the combustion in the reacting flows. In the process of 

industrial design, these parameters must be selected carefully to achieve the desired injector 

performance.  
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CHAPTER 6  

SUPERCRITICAL COMBUSTION OF LOX/KEROSENE BI-SWIRL 

INJECTORS 

 

 In Chapter 5, the injection and mixing characteristics of LOX and kerosene mixture 

were investigated with various geometries. Further study is required to examine if these 

geometries affect the combustion efficiency in a similar way. Existing experimental studies 

could only provide limited qualitative information of properties due to the extreme 

conditions in case of combustion, which motivates the present study. This chapter is the 

continuing research of previous chapters by studying the combustion characteristics of 

LOX and kerosene using the same configuration. The emphasis is placed on the region just 

downstream of a bi-swirl injector element. The flame stabilization mechanism will be 

studied for the first time for the various liquid swirl coaxial injectors at supercritical 

conditions. The flow and flame structures at injector near-filed will be explored 

extensively. The pressure fluctuation field characterizing the flame dynamics will also be 

discussed in detail. 

6.1 Physical Configuration and Flow Conditions 

 The configuration implemented in this chapter is identical to that described in 

Chapter 5. The schematic and relevant operating conditions were shown in Fig. 5.1 and 

Table 5.1, respectively. Four cases with different geometries listed in Table 5.3 are 

conducted. The setup of boundary conditions is similar to the mixing case. Please refer to 

Sec. 5.1 for more details. 

6.2 Results and Discussion 

 The detailed information of the theoretical and numerical framework have been 

described in Chapters 2 and 3. Turbulence /chemistry interactions are treated by the laminar 



 127 

flamelet model. Combustion process of aviation fuels, such as kerosene, is very intricate 

due to the complex hydrocarbon mixtures. It is generally necessary to apply the much less 

complex surrogate mixtures to model the kerosene combustion. A three-component 

surrogate fuel [149], n-decane/n-propylbenzene/n-propylcyclohexane (74%/15%/11% 

mol), was shown to be the most appropriate for simulating the experiments. The laminar 

flamelet library is established through the tabulation of solutions of counterflow diffusion 

flames. A skeletal mechanism with 106 species and 382 reactions developed by Wang et 

al. [150] is implemented because of its high accuracy in predicting global combustion 

characteristics. 

 Table 6.1 summarizes these four cases with the same operation conditions. Case I, 

regarded as the baseline case, is compared with other cases. The recess region is removed 

in Case II, while the post thickness is larger in Case III and the kerosene annulus wider in 

Case IV. The following sections will discuss the flow and flame structures for the baseline 

first and then analyze the geometric effects on the combustion characteristics through the 

comparisons of four cases. Suggestion will be given on the future injector design for the 

optimal mixing and combustion performance. 

 

Case Number 
Annulus Width  

( r , mm) 

Post Thickness  

(h, mm) 

Recess Length  

(l, mm) 

I 0.5  0.8  1.5  

II 0.5  0.8  0.0  

III 0.5  1.3  1.5  

IV 1.0  0.8  1.5  

 

6.2.1 Baseline Case 

 Figure 6.1 provides a global view of temperature and OH mass fraction 

distributions for the baseline case (Case I). It can be seen that liquid propellants emanating 

from the inlets meet and ignite in the recess region. The flame is highly wrinkled by various 

Table 6.1: Geometrical parameters of four cases 
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turbulent eddies in the combustion chamber. Hot products from combustion reverse the 

flow direction near the centerline and flow back into the center injector, potentially 

preheating the LOX stream.  

 

 

Figure 6.1: Instantaneous flow snapshot of distributions of temperature and mass 

fraction of OH for Case I in a global view. 
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 Figure 6.2 shows the instantaneous snapshot of flow properties, including 

temperature (T), mixture fraction (Z), density (), and mass fraction of H2O (yH2O) for the 

baseline case in a close view of injector inside and near-field. The flow evolution of liquid 

film in the central and coaxial injectors is very similar to that occurring in the cold-flow 

environment. The LOX stream flows along the viscous wall due to the swirl-induced 

centrifugal force, leading to the formation of a thin LOX film and a central gaseous core. 

The thickness of the LOX film can be determined by the mass conservation. The surface 

of the LOX stream oscillates in a small amplitude due to hydrodynamic instabilities. 

Contrary to the LOX stream, the kerosene stream fills up the whole annulus and becomes 

fully-developed before leaving the annulus.  

Figure 6.2: Instantaneous flow snapshot of distributions of temperature, density, 

mixture fraction, and mass fraction of H2O for Case I. 
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 Figure 6.3 shows the instantaneous distributions of temperature, volumetric heat 

release rate, and flame index at injector near-field and downstream. Here the flame index 

is defined as:    / | || |FO F O F OZ Y Y Y Y     , which is used to distinguish premixed flames 

from diffusion flames according to Takeno et al [151]. Positive values of FOZ  represent 

premixed flames while negative values represent diffusion flames. As shown in Fig. 6.3c, 

the overall flame field is diffusion-dominated and separates kerosene and oxygen. The 

negative heat release rate represents a large amount of energy taken out from combustion. 

It is noted that a significant area exists for positive heat release near the post surface and 

injector faceplate. The positive value represents endothermic reactions of kerosene 

Figure 6.3 Instantaneous distributions of temperature, volumetric heat release rate, 

and flame index at injector near-field and downstream 
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decomposition process, where small hydrocarbons are generated and quickly oxidized in 

the further downstream. The overall integrated heat release rate is about -3.0 x 105 kW/kg. 

The further analysis on correlation between heat release and other flow parameters are 

undergoing and the corresponding combustion response function will be determined.  

 

 

  

 Figure 6.4 shows the radial distributions of time-averaged density, temperature, and 

velocity components at the injector exit. It is found that the distributions of temperature 

and density in the annulus are uniform and that the distributions of axial and azimuthal 

velocity components are nearly symmetric, corresponding to the fully-developed flow as 

Figure 6.4: Radial distributions of time-averaged density, temperature, axial, and 

azimuthal velocity components near the injector exit (x/R=8). 
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shown in Fig. 6.2, which is potentially beneficial to the thermal protection of the annulus 

wall. In the central injector, however, non-uniform property distributions are observed. The 

axial velocity becomes negative as r/R < 0.63. The gaseous core initially with a temperature 

of 300 K is heated up to 900 K by this reversal flow of the hot products from the 

downstream chamber. The oxygen temperature gradually increases from a subcritical 

temperature (120 K) at the wall to a supercritical temperature (900 K) in the gaseous core, 

indicating a transcritical change of state. In the meantime, the oxygen density varies 

smoothly from a liquid-like state to gas-like state as the distance from the wall increases. 

 

 

 

 

 The temperature distribution in Fig. 6.2 reveals that a diffusion-dominated flame 

emanates from the recess region and propagates downstream along the surface of LOX 

stream. A wake region consisting of hot combustion products separates LOX from 

kerosene streams. Figure 6.5 shows the comparison of instantaneous distributions of the 

mixture fraction for combustion and cold-flow cases. Significant differences are observed 

in the recess region and chamber. Figure 6.6 exhibits the zoom-in view of mixture fraction 

Figure 6.5: Comparison of instantaneous distributions of the mixture fraction for (a) 

combustion and (b) cold-flow environments. 
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field in the vicinity of the injector post. The kerosene stream expands downwards and 

occupies the major part of the recess region for the cold-flow case. However, the downward 

movement of the kerosene stream is inhibited by the expansion of hot products in the flame 

zone for the combustion case, so that the kerosene-rich mixture only cover the injector post 

wall and upper part of the recess region. The large-scale vortices, taking place at the 

interfacial surface of LOX and kerosene in the cold-flow case, are pushed by hot products 

to the kerosene annulus and significantly enhance the mixing of the kerosene and hot 

products. In the chamber, the hot products further drives the kerosene stream flowing along 

the chamber wall, unlike the cold-flow case that develops a well-distributed mixture 

propagating downstream.  

 

 

 

 

 Flame stabilization is a critical issue in the combustor design. Figure 6.7 shows the 

time-averaged distributions of temperature and axial velocity interpolated by flow 

streamline. The study [9, 152] has shown that the flame is stabilized by the recirculation 

flow downstream of the LOX post for a shear coaxial injector with cryogenic propellants. 

This recirculating flow acts as a hot-product pool providing energy to ignite incoming 

propellants. Similar phenomenon is observed for a swirl coaxial injector in the present 

study. The flame initiates and anchors in the recess region close to the injector post, where 

two counter-rotating recirculation zones are formed as shown in Fig. 6.7. The flame is 

Figure 6.6: Zoom-in view of distributions of the mixture fraction for (a) combustion 

and (b) cold-flow environments at the injector exit. 
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herein stabilized in this low-velocity and high-temperature region. The recirculating flows 

are also generated at the left wall of the chamber and near the centerline and play an 

important role in stabilizing combustion by preheating incoming kerosene and LOX, 

respectively. The center-recirculating flow, closely related to vortex breakdown as shown 

in Chapter 4, carries significant amount of heat flux back to the central injector to enhance 

the preheat effect. This explains the tremendous increase of temperature in the gaseous 

core as shown in Fig. 6.4. 

 

 

 

 

Figure 6.7: Time-averaged distributions of temperature and axial velocity 

interpolated by flow streamline at the injector near-field. 
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6.2.2 Parametric Study 

 This session will investigate various geometric parameters that might influence the 

performance of mixing and combustion. Emphasis is given on recess region, post thickness, 

and kerosene annulus width, which were regarded as the important factors for the injector 

mixing characteristics in the previous cold flow studies. 

6.2.2.1 Effect of Recess Region  

 

 

 

 

 In Fig. 6.8, the influence of recess region on flame characteristics is examined. The 

kerosene film penetrates further downstream in the chamber in Case II, compared to Case 

I with a recess region. The mixing of kerosene and LOX thus occurs externally in Case II, 

Figure 6.8: Instantaneous flow snapshot of distributions of temperature, density, 

mixture fraction, and mass fraction of H2O for Case II. 
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while it starts internally in the recess region in Case I. This justified the previous finding 

that the presence of recess region advances the propellants’ mixing and improves the 

combustion efficiency [41] remarkably. The recess region behaves like an undisturbed 

combustion chamber, which keeps propellants well-mixed and ignited in an area close to 

the injector and flame insensitive to the disturbances in the chamber. Furthermore, the 

outward spreading angle of kerosene film is much smaller in the absence of recess region 

in Case II, and this is disadvantageous to the thermal protection of the left wall of the 

chamber, as will be discussed in the later session.  

6.2.2.2 Effect of Post Thickness  

 

 

 

Figure 6.9: Instantaneous flow snapshot of distributions of temperature, density, 

mixture fraction, and mass fraction of H2O for Case III. 
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 Figure 6.9 shows the instantaneous distributions of flame properties at a larger post 

thickness for Case III. Similar to results of cold-flow studies, the spreading angle in Case 

III is larger, which improves the mixing of LOX and kerosene and leads to a steeper flame 

shape than in Case I. The left wall of the chamber is covered by the cold kerosene stream, 

which can avoid overheating of the corner-recirculation of hot products. However, the 

kerosene film fails to cover the whole injector post as it does in Case I, and the bottom 

portion of the post has a mixture ratio close to stoichiometry. The flame is thus closely 

attached to the lower tip of the injector post, which is exposed to a considerable amount of 

heat release from combustion and is easy to be destroyed. This thickened injector might be 

regarded as an improper design for the consideration of thermal protection. Nevertheless, 

it is promising that a critical injector post thickness between Cases I and III can be found 

to achieve an optimum performance with larger spreading angle and full coverage of 

injector post by kerosene film. 

6.2.2.3 Effect of Kerosene Annulus Width 

 Figure 6.10 shows the instantaneous distributions of flame properties for Case IV 

with a larger annulus width. It was found that much longer time is required for the kerosene 

film to reach a full-developed state in the annulus in Chapter 5. The flame is fully attached 

to the injector post and tends to fluctuate with the motions of eddies. As shown in Fig. 6.11 

on the temporal evolution of the flame field, the flame is, initially anchored to the post, 

accumulated in the recess region, then carried into the annulus by swirling eddies, and 

eventually extinguished by incoming cold kerosene stream. This unstable flame behavior 

might generate and modify the flow oscillations in the injector. Similar to Case III, the 

exposure of injector post to the hot products is potentially destructive to the injector 

assembly if the cooling process is not sufficient for a real combustor system. 
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Figure 6.10: Instantaneous flow snapshot of distributions of temperature, density, 

mixture fraction, and mass fraction of H2O for Case IV. 

Figure 6.11: Temporal evolution of the flame field for Case IV. 
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 Figure 6.12 shows the time-averaged distributions of mixture fraction at the injector 

near-field for four cases. It is clearly seen that the spreading angle for Case II is the 

smallest, while the kerosene film for other cases tend to flow along the chamber wall, which 

protects the wall from overheating by the recirculation of hot products. The temperature 

profile at the chamber wall in the radial direction in Fig. 6.13 yields that the wall heat load 

for Case II is much higher than other cases. This indicates that the existence of recess region 

significantly reduces the heat flux from combustion to the chamber wall and therefore 

alleviates the load of cooling channels. 

 

 

 

Figure 6.12: Time-averaged distributions of mixture fraction at the injector near-field 

for four cases. 
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6.2.2.4 Near-field Flame Dynamics 

 The oscillatory flowfield was carefully investigated to gain insight into the driving 

mechanism for acoustic oscillations. A number of probes were placed at various locations 

to record the flow motions. Figures 6.14 and 6.15 show the pressure fluctuations ( 'p ) 

downstream of the LOX post, denoted by the black dot in the time and frequency space, 

respectively. The pressure oscillates periodically due to the strong interactions of vortices 

and their coupling effects with the flame. The maximum amplitude of the relative pressure, 

defined as 0'/p p , is less than 10% for all cases, but the amplitude in Cases II and IV is 

considerably higher. The power spectral density reveals the same dominant frequency (6.47 

kHz) for Cases I, III, and IV, corresponding to the vortex shedding frequency. This can be 

explained by the similar velocity profiles of these cases with the recess region emanating 

from the inner swirler, which induce similar inner shear layers between the LOX stream 

and the hot products. The absence of the recess region seems to shift the dominant motion 

to the high-frequency regime. The variation of the kerosene annulus width has a negligible 

effect on the dominant vortex-shedding frequency, but it determines the amplitude of 

fluctuation. Further analysis on heat-release-rate oscillations induced by acoustic and 

Figure 6.13: The radial distributions of the chamber wall temperature for all cases. 
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vortical perturbations will be represented in subsequent work to study underlying flame 

responses.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Time history of relative pressure oscillations in the flame zone for all 

cases. 

Figure 6.15: Frequency spectra of pressure oscillations in the flame zone for all cases. 
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6.3 Conclusion 

 This chapter provides a systematic investigation of flow evolution and flame 

dynamics under various injector geometries. The flame is stabilized by two counter-

rotating recirculation flows containing hot combustion products in the recess region, which 

plays a significant role in not only accomplishing efficient mixing and combustion but 

providing thermal protection of the injector faceplate. Decreasing the annulus width or post 

thickness might induce the initially attached flame to detach from the injector post surface. 

Consistent with results of cold-flow studies, the spreading angle increases as either the post 

thickness or the kerosene annulus width increases. But neither of them can sustain a 

completely thermal protection of the injector post surface. The larger annulus width 

produces the largest amplitude of pressure oscillations and introduces flame in the lower 

surface of the annulus, potentially leading to unstable combustion. In order to achieve the 

optimal combustion performance, further parametric studies have to be performed to 

determine values of the group of recess length, post thickness, and kerosene annulus width. 
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CHAPTER 7  

COUNTERFLOW DIFFUSION FLAMES: OXYGEN/HYDROGEN 

MIXTURES 

 Laminar counterflow flames have been extensively studied under different flow and 

boundary conditions, due to their geometrical simplicity, fundamental flame behaviors and 

burning properties. For a reactive system with large activation energy, the flame response 

displays an S-shaped curve with respect to Damköhler number. This curve can be used to 

characterize the evolution of a flame subject to continually varying flow conditions, 

including ignition, extinction, and instability. Existing studies on counterflow diffusion 

flames of general fluids only considered the steady burning branch of S-shaped curve and 

failed to capture the extinction and ignition characteristics. Although the FlameMaster [57] 

and CHEMKIN-PRO package [58], using the arc-length approach and the flame-

controlling method, respectively, were developed to study the flame response throughout 

the entire S-curve, they are limited to ideal gases. 

 This chapter is going to investigate the responses of oxygen/hydrogen flames based 

on the theoretical framework established in Chapter 2. Within this general framework, the 

flame solution for real fluids would be obtained over a complete S-curve with detailed 

chemical mechanisms. Results will shed light on flame behaviors over the entire fluid 

thermodynamic regime, from compressed liquid to ideal gas through the transcritical state. 

Results can also be implemented to generate chemistry tables for supercritical combustion 

models using tabulated chemistry, such as the flamelet approach in Ref. [12].  

 The operating pressure ranges from 0.5 to 200 atm. The inlet temperatures of 

oxygen and hydrogen considered here are between 120-300 K and 20-300 K, respectively. 

Detailed information about the flame structures and heat release characteristics is obtained 

for strain rates of 102-108 s-1. The major contributions of the present study include: (1) 

flame solutions for real fluids are extended to the entire S-curve; (2) a theoretical analysis 
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is derived from the conservation equations to quantify the dependence of the heat release 

rate on pressure and strain rate, as well as the effect of pressure on the extinction strain 

rate; and (3) general flame similarities are established in a normalized strain-rate space for 

the flame temperature, flame thickness, species concentrations, reaction rates, and heat 

release rate. 

7.1 Theoretical and Numerical Framewrk 

7.1.1 Theoretical Formulation 

 The present study extends previous analyses by incorporating general-fluid 

thermodynamics and transport theories, such that a unified framework can be constructed 

to treat the flame response for real fluids over a complete S-curve, including both the 

steady- and unstable-burning branches. The governing equations were discussed in Chapter 

2. It is noted that enthalpy is used instead of temperature in the energy equation, given that 

the enthalpy is a sole function of temperature for general fluids. SRK EOS introduced 

previously is implemented to close the formulation.  

 Full account is taken of general-fluid thermodynamics and transport over the entire 

temperature and pressure regimes of concern. The thermodynamic properties, such as 

enthalpy, Gibbs energy, and specific heat capacity, are derived directly from fundamental 

thermodynamic theories. They are expressed as the sum of an ideal-gas property at the 

same temperature and a thermodynamic departure function accounting for dense-fluid 

correction [1]. Transport properties, such as viscosity and thermal conductivity, are 

estimated using the method of Chung et al. [153]. The binary mass diffusivity is obtained 

by the Takahashi method calibrated for high pressure conditions [154]. The 

implementation and validation of the property evaluation schemes are outlined in Refs. [1] 

and [155]. 

7.1.2 Boundary conditions 
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 Boundary conditions must be specified properly. Two types of boundary conditions 

are typically applied. Dixon-Lewis et al. [51] assumed a stagnation-point potential flow at 

the boundaries by linearly correlating the radial and axial velocities with a constant strain 

rate. Kee et al. [52] considered a uniform (plug) flow at the nozzle exit by specifying zero 

radial velocity. Chelliah et al. [53] showed that the plug-flow boundary condition is more 

suitable for counterflow burners. It is thus employed in the present study. 

 At the fuel inlet, 

 0
2
F F

F k k k k F

u
F ,G ,T T , uY YV uY


      

 
(7.1) 

 At the oxidizer inlet, 

 0
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O O
O k k k k O

u
F ,G ,T T , uY YV uY


      

 
(7.2) 

where the subscripts F and O denote the fuel and oxidizer streams, respectively. The 

distance between the two inlets is fixed to L = 2 cm, with the fuel inlet at x = 0 and the 

oxidizer inlet at x = L. It is worth noting that the velocity boundary condition in [15] and 

[18] is specified in such a manner that its gradient corresponds to the strain rate of concern. 

The strain rate in the current work, however, is treated as an eigenvalue of the numerical 

system, not an input parameter. 

7.1.3 Numerical Methods 

The governing equations can be written in the following vector form, 

   0L 
 

(7.3) 

where  1 1 1 1   1           J J J J k,J J N J N J N J N k,J NF ,G ,H ,T ,Y , ,F ,G ,H ,T ,Y             includes all 

primary variables at the grid points and 𝐿 is a differential operator. The subscript J is the 

grid index and N is the number of grid points. For a given chemical mechanism involving 

K species, the total number of differential equations is  3N K . A modified Newton 

iteration method is implemented to solve these equations. 
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 Equation 7.3 represents a well-posed two-point boundary-value problem. The 

flame solution along the steady branch of the S-curve has been previously obtained for 

ideal gases [54, 56] and real fluids [59, 63]. When the strain rate reaches its extinction limit, 

a numerical singularity appears, leading to a serious difficulty in convergence. A two-point 

flame-controlling continuation method [56] is employed to overcome this challenge, as 

illustrated in Fig. 7.1. Given an initial solution denoted by the solid line in Fig. 7.1a, two 

control points (XL, XR) are selected on both sides of the peak temperature, with known 

temperature values (TL, TR). Applying a temperature change at the two control points gives 
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T
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Figure 7.1: a) Schematic of two-point temperature-controlling continuation method, 

solid line: initial solution, dashed line: new solution; b) Changes of temperature 

distribution applying two-point temperature-controlling method, solid line: VF = 105 

cm/s, dashed line: 136 cm/s, dash-dotted line: 200 cm/s, dash-dot-dotted line: 301 

cm/s. 
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rise to a new flame solution denoted by the dashed line. The temperature changes are 

negative in Fig. 7.1a, that is, Δ 0LT   and Δ 0RT  . As a result, the maximum flame 

temperature decreases while the fuel inlet velocity and strain rate increase. Figure 7.1b 

shows typical numerical results. The maximum flame temperature continues to decrease 

and finally reaches a critical point where extinction occurs, corresponding to Daext as 

shown in Fig. 2.1. Near the extinction point, further decreases in the temperatures at the 

two controlling points result in a monotonic decrease in the maximum flame temperature. 

The flame solution then moves smoothly from the upper branch to the middle branch. 

 Since two internal boundary conditions have been applied at the controlling points, 

two boundary conditions must be released to render the governing equations well posed. 

In the present work, dummy equations are added for H and Fu  at every grid point except 

the two controlling points. The mathematical formulation follows. 

 At controlling point XL, 

    0  R, fix R R, fix

dH
,J ;J T J T ,J J

dx
  

 
(7.4) 

 At controlling point XR, 

     0  L, fix L L, f
F

ix,J J ;T J T ,J J
du

dx
   

 
(7.5) 

where the subscripts R and L denote the control points on the right and left hand sides of 

the flame, respectively. The subscript fix denotes a fixed point in the flowfield.  

7.2 Results and Discussions 

The theoretical and numerical framework outlined above is used to study the S-curve 

response of hydrogen-oxygen counterflow diffusion flames over a broad range of pressures 

and strain rates. The chemical kinetic mechanism developed by Li et al. [156] is employed; 

it consists of 8 species  2 2 2 2 2 2             H ,H,O,O ,OH,HO ,H O,H O
 
and 19 reversible elementary 

reactions. This mechanism has been validated against experimental data for shock tubes, 
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flow reactors and laminar premixed flames over a temperature range of 298-3000 K, a 

pressure range of 0.3-87 atm, and an equivalence ratio range of 0.25-5.0. It should be noted 

that the present study covers pressures up to 200 atm, and flame temperatures over 3000 

K. An improved kinetics scheme is warranted for higher pressures and temperatures. For 

reference, the critical pressures and temperatures for oxygen and hydrogen are listed in 

Table 1.2.  

7.2.1 Model Validation  

 As part of model validation, a hydrogen-oxygen counterflow diffusion flame at 1 

atm is first considered. The strain rate, defined based on the maximum velocity gradient on 

the fuel side [53], is a = 500 s-1. The inlet temperatures are fixed at 300 K. Four different 

approaches are employed. The baseline case is an ideal-gas approach modeled using the 

CHEMKIN package. Case II employs the SRK EOS with ideal-gas property evaluation. 

Case III incorporates the SRK EOS and real-fluid thermodynamics. Case IV 

accommodates a full treatment of real fluids, including the SRK EOS, thermodynamic, and 

transport properties.  
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 Figure 7.2 shows the temperature profiles obtained from the four different 

approaches. They are nearly identical for the first three cases with a maximum flame 

temperature of 3022 K. For Case IV, the flame shape is slightly different in the fuel-rich 

region, and the maximum flame temperature is 11 K higher. The difference appears to be 

negligible. Results indicate that the SRK EOS and real-fluid property evaluation schemes 

are implemented properly. The fluid behavior at the ideal-gas limit is recovered accurately. 

Although not shown here, flame structure results from the present numerical scheme and 

the CHEMKIN code are almost identical in terms of species and heat release distributions. 

Such close agreement validates the present analysis. 

 

 

 

 

 

 The property evaluation scheme must be examined carefully. Fluids often 

experience thermodynamic and transport anomalies when they are injected from a 

compressed-liquid state into an environment where the temperature and pressure exceed 

their critical values, especially at pressures close to the critical point [14]. Figure 7.3 plots 
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Figure 7.3: Validation of thermodynamic and transport properties of oxygen against 

NIST data. p = 100 atm. Lines: the present numerical scheme; symbols: NIST data. 
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thermophysical properties showing good agreement with the NIST database for oxygen at 

100 atm, over a temperature range covering both the subcritical and supercritical regimes. 

The compressibility factor is significantly smaller than unity at low temperatures, which is 

not the case for the ideal gas condition.  

7.2.2 S-Curve Flame Response 

 The flame response to the variation of the flow strain rate is investigated over a 

broad pressure range of 0.5-200 atm. The inlet temperatures of oxygen and hydrogen vary 

from 120-300 K and 20-300 K, respectively. The flame characteristics over the entire fluid 

thermodynamic regime, from compressed liquids to ideal gases, are examined 

systematically. As an example, Fig. 7.4 shows the temperature profiles at 50 atm with a 

strain rate of 10004 s-1. Significant differences between the results of the ideal-gas (I) and 

real-fluid (IV) approaches are observed. 
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7.2.2.1 Effect of Pressure and Strain Rate 

 Figure 7.5 shows the maximum flame temperature as a function of strain rate at 

various pressures. The solid and dashed lines are real-fluid and ideal-gas (CHEMKIN) 

results, respectively. They match closely. The weakly reacting (lower) branch shown 

schematically in Fig. 1 is not present here, due to the low inlet temperature of 300 K, which 

is well below the ignition point. A complete S-curve response can be obtained with a higher 

inlet temperature [56]. The maximum flame temperature remains almost constant at low 

strain rates, and starts to decrease progressively until the extinction point is reached. At 

low strain rates, the Da number is large. Chemical reactions have sufficient time to release 

thermal energy to balance heat loss. Further increase in the strain rate renders the flow 

residence time comparable to the chemical reaction time. The resultant incomplete 

combustion results in a lower flame temperature. The heat generation eventually reaches a 

point that cannot overcome the heat loss; the flame comes to a sharp extinction. For a given 

strain rate, the maximum flame temperature always increases with increasing pressure.  

 

 

 

 

 Figure 7.6 shows the effect of strain rate at various pressures on the total heat 

release rate per unit area, defined as  
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(7.6) 

A linear relationship is observed on log-log scales. Along the stable burning (upper) 

branch, the heat release rate first increases linearly with the strain rate, then reaches a 

maximum (indicated with dots in Fig. 7.6), and finally decreases, before the flame is 

extinguished. At the extinction point, the variation of the heat-release rate with respect to 

the strain rate becomes infinite, producing a mathematical singularity. Further decrease of 

the strain rate beyond this point reduces the heat release rate. The unstable burning (lower) 

branch shows an inverse behavior as compared to the upper branch. This result appears to 

be the first of its kind obtained beyond the extinction limit for high-pressure conditions 

using a real-fluid approach.  

 

 

 

 

 The heat-release rate profiles indicate a strong similarity for different pressures. 

Careful data analysis shows that the heat-release rate in the upper (stable burning) branch 

of the S-curve can be correlated with pressure and strain rate 𝑎 as q~ pa . The same 
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relationship was previously obtained by Ribert et al. [59] and Lacaze and Oefelein [61], 

but the physical meaning of the relationship has not yet been clearly explained. In addition, 

the pressure effects on the maximum flame temperature and species concentrations are yet 

to be addressed. A theoretical analysis is thus developed in the present study by means of 

the energy and species conservation, in order to provide direct insight into observed 

phenomena.  

 When the strain rate is significantly smaller than the extinction value, exta  (that is, 

the flow time is much greater than its chemical counterpart and the Da number is large), 

the flame is diffusion-controlled. An order of magnitude analysis of the energy 

conservation in Eq. 2.24 shows that the heat flux is primarily driven by conduction rather 

than mass diffusion. Furthermore, these two terms are greater than the convection term by 

at least two orders of magnitude. Both findings are corroborated by the present numerical 

results. With the neglect of higher-order terms, the energy balance between heat production 

and heat loss by conduction becomes 

K

k
k 1

W ωˆM 0k k

d dT
h

dx dx




   
 


 

(7.7) 

Integrating Eq. 7.7 throughout the flame zone, we have  

2
10

L K ˙

k k k
k

ˆ T
q MW h dx



    


 

(7.8) 

where   is the average thermal conductivity, T  the mean temperature in the flame zone, 

and   the flame thickness. The left-hand side of Eq. 7.8 represents the rate of chemical 

energy release per unit flame area. In a diffusion-controlled flame, k kMW  in the species 

equation, Eq. 2.25, is determined by the molecular diffusion process represented by 

  /k kd YV dx , with the convection term /k xudY d  being an order of magnitude smaller. 

A dimensional analysis suggests that   2/ ~ /k kd YV dx D   . Assuming a Lewis number 

of unity, the thermal diffusivity, / pc  , becomes identical to the mass diffusivity D. 
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In the flame zone, ˆ
k ph c T  Substitution of these terms into the left hand side of Eq. 7.8 

gives /q T , which is the same as the right hand side of Eq. 7.8. The thermal 

conductivity varies with temperature as mix~ T / MW . The right hand side of Eq. 7.8 

becomes  15.

mixT / MW . The flame thickness can be correlated with the mass diffusivity 

and strain rate as a~ D/ [2], where the mass diffusivity D depends on temperature and 

pressure in the form of  15.

mixD~T / p MW , according to gas kinetics theories [157]. 

Incorporation of the above expressions into Eq. 7.8 leads to  

075

025

.

.
mix

T
q ~ pa

MW
 

(7.9) 

 This relationship was previously derived by Poinsot and Veynante [120] based on 

assumptions of infinitely fast chemistry and constant density. The present study addresses 

this issue from a different perspective. For a given reactive system, the flame temperature 

and mixture molecular weight are relatively insensitive to pressure. Equation 7.9 reduces 

to q~ paand recovers the phenomenological correlation introduced by Ribert et al. [59]. 

The present work provides a theoretical basis for the heat-release relationship with pressure 

and strain rate. 

 As indicated by Fig. 7.5, the maximum flame temperature at low strain rates 

depends weakly on pressure as 0045.T ~ p . The mixture molecular weight changes slightly 

with the strain rate and pressure, with the maximum deviation being less than 20% over 

the conditions of concern. It is thus assumed to remain constant to first approximation. 

Equation 7.9 becomes 

0534.

q
~ a

p  
(7.10) 

Normalization of the strain rate by its extinction value, exta , gives  
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0534 05. .
ext ext

q a
~

p a a
 

(7.11) 

 

 

 

 

 

 Figure 7.7a shows the scaled heat release rate,  0534 05. .
extq q/ p a , as a function of 

the reduced strain rate, exta a . All the curves collapse to a single profile. The correlation 

works well even near the extinction point, especially for pressures greater than 2 atm. The 
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Figure 7.7: Scaled heat release rate q  as function of normalized strain rate rate ( exta/a

). (a) new scale, Eq. 7.11; (b) old scale,  extq/ paq . 
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same information with a simplified version of the scaled heat release, 
extq q pa , is 

given in Fig. 7.7b. The difference between the two scaled heat releases appears to be quite 

modest, although Eq. 7.11 offers slightly improved agreement. The importance of the 

present analysis is twofold: (1) the physical basis for the heat-release dependence on 

pressure and strain rate is established directly from the conservation laws, and (2) a general 

correlation for the heat-release rate is obtained.  

 The general correlation for heat release in Eq. 7.11 suggests that the flame 

behaviors at high pressures can be predicted based on those at low pressures. To further 

clarify the existence of such a flame similarity, results for the flame thickness, temperature, 

species concentrations, and reaction rates are examined over a broad range of strain rates 

and pressures. Figure 7.8 shows the temperature distributions at three different pressures 

and strain rates. Although the flame thickness and maximum flame temperature for the 

three cases are quite different, due to the combined effect of pressure and strain rate, they 

bear intrinsic similarities. To this end, we first align the flames by shifting the location of 

the maximum flame temperature to x = 0, normalize the x-coordinate by 075.T pa , and 

then normalize the flame property of interest with respect to its maximum value for a given 

flame. The results are given in Fig. 7.9. The normalized profiles of temperature, mass 

fractions of H2O, OH, and H, and reaction rates of H2O and OH are almost identical for 

different pressures and strain rates. A strong similarity in the flame profiles exists, 

especially for pressures greater than 10 atm.  
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 Figures 7.8 and 7.9 show the results of only three selected strain rates and pressures. 

It is desirable, however, to confirm the similarities of flame structures over a wide range 
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Figure 7.9: Normalized flame temperature, mass fractions, and reaction rates at 

different pressures and strain rates, 1 atm 101a   s-1 (red lines), 10 atm 1076a  .
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of flow conditions. Figure 7.10 presents four different types of flame thickness,  , defined 

based on the half maximum width of the temperature and mass fractions of H2O, OH and 

H, respectively, as functions of the normalized strain rate exta a . The pressure covers a 

range of 1-200 atm, and the flame thickness is scaled by 1 extpa . Identical profiles for 

the flame thickness are obtained over the entire S-curve.  
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 The flame structures feature a similar trend for temperature and species. Figure 7.11 

shows the maximum temperature and mass fractions of combustion products in the flame 

zone as functions of the normalized strain rate exta a . All the flame quantities are 

normalized with respect to their largest values over the entire S-curve. For example, the 

maximum flame temperature is normalized by its highest value at the limit of zero strain 

rate. The normalized maximum flame temperatures for various pressures fall onto a single 

profile at low strain rates, but start to deviate at larger strain rates ( 0 1 ext. a  for high pressures 

and 0 01 ext. a  for 1 atm). The H2O and OH mass fractions exhibit strong similarities for the 

stable burning branch of the S-curve, except for the 1 atm case. The situation with the H 

radical, however, is quite different. The largest value of the maximum H mass fraction in 

a flame ( ,maxHY ) occurs at a high strain rate, and the normalized profiles collapse for exta a

>0.1. For low strain rates ( exta a  <0.01), ,maxHY  profiles are flat at all pressures. A careful 

examination of ,maxHY  profiles suggests a different scaling strategy. For each pressure, 
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Figure 7.11: Normalized maximum temperature and mass fractions of H2O, OH, and 

H in the flame as functions of normalized strain rate( exta/a ) at different pressures. S: 

stable burning branch, U: unstable burning branch. 
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,maxHY  can be renormalized in terms of two extreme values over the stable burning branch, 

 ,maxH S
Y and  ,maxH L

Y  as follows: 

 
   

H,max H,max S
H,max

H,max H,maxL S

Y Y
Ŷ

Y Y





 

(7.12) 

 where the subscripts S and L outside the parentheses denote the smallest and largest 

values on the upper branch of the s-curve, respectively. The scaled  H,maxŶ p
 
at different 

pressures have different profiles, but all the profiles can be expressed as the sum of the 

profile at 1 atm and a Gaussian distribution as follows: 

   
1H,max H,max  atm

ˆ ˆY p Y G p 
 

(7.13) 

where  

 
 

2
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extlog a aC
G p exp





      
   

(7.14) 

The mean and standard deviation are 1.4  and 0.8 , respectively. The coefficient 

C  is a function of pressure, 

 0046 0636C . . log p p   with 0 1 atmp  . (7.15) 

Figure 7.12 shows  H,maxŶ p  and    H,maxŶ p G p . The scaling given by Eq. 7.13 

collapses the results at various pressures and strain rates perfectly.  
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 Similarly, the maximum flame temperature can be scaled as 

 
   

max max S
max

max maxL S

T T
T̂

T T





 

(7.16) 

where  max S
T  and  max L

T  represent the smallest and largest maximum flame temperature 

on the upper branch of the s-curve.  maxT̂ p  can be correlated with the profile at 200 atm 

and a Gaussian distribution in the following form 

   
200max max  atm

ˆ ˆT p T G p 
 

(7.17) 

where the standard deviation 𝜎 remains 0.8 for all pressure conditions, but the mean 𝜇 and 

the coefficient C are pressure-dependent, as listed in Table 7.2.  maxT̂ p  and 

   maxT̂ p G p are also shown in Fig. 7.12. The maximum temperature profiles at different 

pressures thus become identical. Consequently, correlations for flame solutions at different 

pressures can be established for all species concentrations, as well as the flame temperature. 

Results for a given pressure can thus be mapped from those at another pressure.  
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Figure 7.12: Renormalized maximum mass fraction of H radical, H,maxŶ  , and 

temperature, maxT̂  , in the flame zone. 
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p, atm C/√𝟐𝝅 𝝁 

1 -0.5 0.8 

10 -0.3 0.65 

50 -0.15 0.6 

100 -0.05 0.15 

 

 

 Figure 7.13 shows the maximum reaction rates for different species, normalized by 

their respective highest values over the entire S-curve, as a function of normalized strain 

rate. Almost all the curves collapse, except for slight deviations at low pressures for the 

unstable burning branch.  

 Detailed flame information at a given pressure can be mapped to another through 

the scaling relationships discussed above. With this general flame similarity, the database 

size for chemistry tabulation can be significantly reduced, provided the reference quantities 

(either at the equilibrium states with low-strain rates, or close to the extinction points) are 

available for normalizations. Figure 7.14 shows the maximum flame temperature and mass 

fractions of H2O, OH, O, H, HO2, and H2O2 at the chemical equilibrium state (zero strain 

rate) as a function of pressure. Linear relationships are obtained for all variables on either 

a semi-log or a log-log scale. The increase of the flame temperature with pressure may be 

attributed to the suppression of dissociation reactions at high pressures. The maximum 

mass fraction of OH remains almost independent of pressure. Figure 7.15 shows the 

maximum values of flame properties at extinction strain rates. Results bear close similarity 

to those at the equilibrium state (see Fig. 7.14).  

 

Table 7.1: Scaling constants for renormalization of maximum flame temperature. 
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Figure 7.15: Maximum values of flame temperature and species mass fractions as 

functions of pressure at extinction strain rate. 
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 Figure 7.16 shows the strain rates and flame temperatures at the extinction points 

over a pressure range of 0.5-200 atm. The extinction strain rate increases almost linearly 

with pressure on a log-log scale 
133.

exta ~ p , for p ≤ 10 atm. The relationship becomes less 

pressure dependent at high pressures with 
07.

exta ~ p
. The extinction flame temperature can 

be approximately scaled with pressure in the form 007.
f ,extT ~ p  for p ≤ 2 atm, and 

012.
f ,extT ~ p  for higher pressures. 

 At the extinction point, the chemical and flow time scales are of the same order of 

magnitude, and the flame is kinetics-controlled. The present analysis shows that the 

dependence of the reaction order, n, on pressure has a value of 2.2 for 5p atm . It 

decreases to 1.7 at high pressures. If we assume that the molecular weight of reaction 

products mixMW is independent of pressure, and h  is linearly proportional to T , with some 

straightforward manipulations, Eq. (14) becomes:  

1n
exta ~ ~Tp






 
(7.18) 
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Substitution of the pressure dependence of the flame temperature leads to 13.
exta  ~ p at 0.5 

atm and 08.
exta  ~ p  at 200 atm. The correlation shown in Fig. 16 is thus derived analytically. 

The extinction strain rate exta at a given pressure can be estimated based on the value at 1 

atm, in accordance with Eq. 7.18. For hydrogen and oxygen flames, approximately, 

exta ~ p over the entire pressure range considered in the present study. 

 

 

 

 Figure 7.17 shows the maximum reaction rates for selected species over the entire 

s-curve in the pressure range of 1-200 atm. The information is used to normalize the 

reaction rates in Fig. 13. The slopes for O2, H2, H2O and OH are almost the same, with an 

approximate value of 2.0. The increase of reaction rate renders the flame increasingly 

resistant to flow strain at high pressures. The decreased slope for H with increasing pressure 

may be attributed to the suppressed dissociation reactions at high pressures.  

7.2.2.2 Effect of Inlet Condition 

 Figure 7.18a shows the flame structures at 100 atm with different inlet temperatures 

in both the subcritical and supercritical regimes. The difference in the flame location results 

from the variation of the inlet velocity for a given strain rate of a = 20000 s-1. To facilitate 

comparison, the flames are aligned by shifting the location of the maximum flame  
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temperature to x =0. The result is shown in Fig. 7.18b and Fig. 7.18c for the temperature 

and species mass fraction distributions, respectively. The difference in maximum flame 

temperature among the three cases appears to be very small. The first case (

2 2
300H OT T K  ) features a slightly wider flame and a higher maximum flame 

temperature (3771 K), while the third case (
2 2

20    120 H OT K,T K  ) has the smallest flame 

thickness and lowest maximum flame temperature (3740 K). The second case (

2 2
300    120 H OT K,T K  ) has a maximum flame temperature of 3764 K. 

 

 

 

 Figure 7.19 shows the effect of the strain rate on the flame temperature at p = 100 

atm. The decrease of the oxygen inlet temperature from 300 to 120 K has only a small 

effect on the flame temperature (less than 10 K), over the entire S-curve.  

7.3 Conclusions 

 A general study has been performed to explore the effect of strain rate on 

counterflow diffusion flames for real fluids over the entire thermodynamic regime. The 

work covers all three burning branches of an S-curve. The formulation accommodates 

fundamental thermodynamics and transport theories, along with detailed chemical 
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mechanisms. As a specific example, oxygen/hydrogen flames were systematically 

investigated for pressures in the range of 0.5-200 atm and strain rates of 102-108 s-1. The 

major conclusions are as follows. 

1. An analytical model was developed to corroborate and refine a previously observed 

relationship between the heat-release rate and pressure and strain rate in the form of 

0534.q~ p a . The heat release rate, when normalized with respect to 0 534.
extp a , 

correlates well with the normalized strain rate ( exta a ).  

2. As suggested by the heat-release relationship, intrinsic flame similarities are 

demonstrated for such properties as flame temperature, flame thickness, species 

concentrations, reaction rates, and heat release rate at different pressures. These properties, 

when normalized properly, collapse to single profiles in the normalized strain-rate space (

exta a ).  

3. The extinction strain rate, a major reference parameter in the flame similarity analysis, 

is clearly identified. It exhibits a quasi-linear relationship with pressure, a phenomenon 

which can also be explained analytically. Tabulation of pressure-dependent flame 

properties can be achieved by mapping the flame solution at a given pressure, according to 

the correlations in the normalized strain-rate space, even if the extinction strain rate is not 

available beforehand. This will significantly improve computational efficiency for 

combustion models using tabulated chemistry, such as the flamelet, FGM, and FPI models. 

4. Cryogenic inlet temperature appears to affect only the flame location, and has a 

negligible effect on the flame structure over the entire S-curve. Consequently, the ideal-

gas flame solutions can be used for fluids at supercritical conditions. 
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CHAPTER 8  

COUNTERFLOW DIFFUSION FLAMES: OXYGEN/N-ALKANE 

HYDROCARBONS (CH4-C16H34) 

 

 Existing studies of high-pressure counterflow diffusion flames mainly focus on the 

oxygen/hydrogen system. Limited attention has been given to hydrocarbon fuels, which 

are used for a vast majority of combustion devices, including gas-turbine, liquid-rocket, 

and diesel engines. The purpose of chapter is to explore the characteristics of counterflow 

diffusion flames of oxygen and hydrocarbon fuels. A wide range of n-alkanes (CH4-C16H34) 

will be treated under both subcritical and supercritical conditions. In this chapter, we are 

going to extend the general framework using in oxygen/hydrogen mixtures in Chapter 7 

and accommodates detailed chemical kinetics and fluid properties of hydrocarbon fuels. 

Emphasis will be given to the effects of pressure, inlet temperature, and strain rate on the 

flame structures and burning behaviors, including extinction, heat-release rate, and flame 

temperature, as well as the temperature and species distributions. The flame response over 

the entire S-curve will be obtained, and general correlations will be developed 

systematically.  

8.1 Problem Description 

 The physical model of concern is a counterflow diffusion flame generated by two 

opposing fluid jets issuing from two circular nozzles, as shown in Fig.1.2. This 

axisymmetric geometry significantly simplifies the governing equations to a quasi-one-

dimensional framework[158]. The theoretical framework was introduced in detail in 

Chapter 2, and applied to study the oxygen/hydrogen system over a wide range of 

thermodynamic fluid states and flow conditions in Chapter 7. The formulation 

accommodates the conservation equations of mass, momentum, species, and energy, and 
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takes full account of general-fluid thermodynamics and transport phenomena. 

Thermodynamic properties, including enthalpy, specific heats, and internal energy, are 

derived from fundamental thermodynamic theories. They are expressed as the sum of an 

ideal-gas property at the given temperature and a departure function accounting for dense-

fluid corrections. The latter requires a robust equation of state that correlates density and 

temperature with pressure. A modified Soave-Redlich-Kong (SRK) equation of state [71] 

is employed because of its easy implementation and validity over a broad range of fluid 

states. Transport properties are determined by means of the corresponding-state principles.  

 The integrated theoretical model and numerical method is capable of treating the 

flame responses for general fluids over the entire S-curve, including both the stable and 

unstable branches [121][121][121][121][121][121]. The singularity problem at the turning 

points (extinction and ignition) is circumvented using an improved two-point flame-

controlling continuation method. The flame solution can transit smoothly across these 

turning points. The setup of boundary conditions was described in Chapter 7. The flow 

strain rate is defined as the absolute maximum velocity gradient in the flowfield, which 

generally occurs in the mixing zone on the fuel side. 

8.2 Results and Discussion 

 Counterflow diffusion flames of oxygen and n-alkane hydrocarbon fuels (CH4-

C16H34) are investigated systematically. Emphasis is focused on the effects of inlet 

temperature, pressure, and strain rate on the flame characteristics. As benchmarks, detailed 

behaviors of oxygen/methane and oxygen/n-heptane systems are analyzed at both 

subcritical and supercritical conditions. A general correlation is then obtained to identify 

the common features of the n-alkane family (CH4-C16H34). Table 8.1 lists the critical 

properties of oxygen, hydrogen, and selected n-alkane fuels (Linstrom and Mallard, 2014). 
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Reactants Tcr, K pcr, atm Vcr, cm3/mol 

O2 154.6 49.8 73.4 

H2 33.2 12.8 65.0 

CH4 190.6 45.6 98.6 

C7H16 540.0 27.0 428.0 

C12H26 658.2 17.9 754.0 

C16H34 722.0 13.8 1034.0 

 

8.2.1 Oxygen/Methane System 

 Table 8.2 provides the chemical kinetic mechanisms employed in the present study 

for oxygen and n-alkane fuels. The oxygen/methane chemical scheme developed by 

Petersen et al. [159] consists of 38 species and 190 reaction steps. It was validated against 

shock-tube experiments at pressures up to 260 atm, temperatures as low as 1040 K, and 

equivalence ratios up to 6. The mechanisms for C2H6-C16H34 were validated with pressures 

up to 80 atm and temperatures in the range of 650-1600 K. 

 

Fuels Number of Species Number of Reactions Reference 

H2 9 21 Ó Conaire et al. [160] 

CH4 38 190 Petersen et al. [159] 

C2H6 155 689 Marinov et al. [161] 

C3H8 155 689 Marinov et al. [161] 

C4H10 155 689 Marinov et al. [161] 

C5H12 560 2538 Curran et al. [66] 

C6H14 560 2538 Curran et al. [66] 

C7H16 560 2538 Curran et al. [66] 

C8H18 691 2992 Westbrook et al. [67] 

C10H22 952 3899 Westbrook et al. [67] 

C12H26 1078 5056 Westbrook et al. [67] 

C14H30 1666 6476 Westbrook et al. [67] 

C16H34 2115 8157 Westbrook et al. [67] 

 

Table 8.1: Critical properties. 

Table 8.2: Reaction Mechanisms of O2 with H2 and n-alkanes (CH4~C16H34) 
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 As a validation procedure, the property evaluation scheme is examined carefully. 

Figures 8.1 and 8.2 show the calculated compressibility factor (Z), density (), specific 

heat at constant pressure ( pC ), and thermal conductivity ( ) for oxygen and methane, 

respectively. They match closely with the NIST data [162]. The temperature range covers 

both the subcritical and supercritical regimes. The property anomalies in the vicinity of the 

critical point [1] are clearly observed. The abrupt variations at the subcritical pressure (20 

atm) arise from the phase change from dense liquid to light gas. This phenomenon 

disappears, however, at supercritical pressures, rendering smooth and continuous 

transitions with the temperature.  

 

 

 

 Figure 8.3 shows the distributions of thermophysical properties in the flame zone 

with oxygen and methane inlet temperatures of 120 and 300 K, respectively. The pressure 

is 100 atm and the flow strain rate is 90 s-1. The compressibility factor varies rapidly from 

0.3 to 1.0 in a thin region on the oxygen side when the local temperature increases across 
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NIST data. Lines: the present scheme; symbols: NIST data. 
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the critical point of 154.6 K. The corresponding density drops sharply from 1.0 to 10-4 

g/cm3. Similar phenomena occur for other thermodynamic and transport properties. In spite 

of such steep changes of fluid properties in the low-temperature region on the oxygen side, 

the oxygen stream heats up rapidly and behaves like a perfect gas before entering the flame 

zone. 
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 Figure 8.4 shows the flame structures at 100 atm with three different oxygen inlet 

temperatures of 120, 300, and 500 K, covering both the subcritical and supercritical 

regimes. The methane inlet temperature remains fixed at 300 K and the strain rate is 

1000a s-1. In spite of the distinct distributions of flow properties with different oxygen 

inlet temperatures in the physical space, the property distributions in the mixture-fraction 

space collapse into single profiles, especially in the flame zone. The case with 
2

500OT  K 

features a slightly wider flame. The distribution of heat-release rate exhibits two peaks and 

one valley. The latter is caused by dominant effects of pyrolysis-type reactions that occur 

endothermically on the fuel side. Figure 8.5 shows the effect of the oxygen inlet 

temperature on the flame extinction at two different pressures. The extinction strain rate 

moderately increases almost linearly with increasing 
2OT , whereas the maximum flame 

temperature at extinction remains nearly constant. Overall, the oxygen inlet temperature 

has a negligible effect on the flame structure, as can be predicted using an ideal-gas 

assumption. If the inlet temperature falls in the cryogenic fluid range (e.g., 
2

120OT  K), 
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real-fluid effects must be taken into account to accurately capture the local flow 

development.  
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Figure 8.5: Effects of oxygen inlet temperatures on extinction properties, (a) strain 
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 Figure 8.6 shows the distributions of the temperature and mass fractions of oxygen 

and methane throughout the flowfield at pressures of 1-150 atm. The inlet temperature is 

set to 300K for both reactants, and the flow strain rate is fixed at 1000 s-1. The peak flame 

temperature increases progressively with pressure, while the flame thickness decreases 

significantly with increasing pressure. Methane and oxygen are consumed completely in 

the flame region, a situation referred to as intensively stable burning. Because of the 

variation of the flame thickness with pressure, the temperature and species fields exhibit 

distinct profiles in the physical space.  
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 The situation in the mixture-fraction space shown in Fig. 8.7, however, becomes 

fundamentally different with all the data collapsed to a single distribution, regardless of the 

pressure. Seshadri and Peters [163] divided a methane-air diffusion flame into three distinct 

zones: the fuel-consumption zone, the water-gas shift, and the H2-CO oxidation zones. In 

the present study, the fuel-consumption zone on the methane side is clearly displayed in 

Fig. 8.7a. The mass fractions of H2 and CO reach their maxima where the methane 

concentration diminishes. The H2-CO oxidation layer is located on the oxygen side, where 

the maxima of H2O and CO2 concentrations occur. The mass fractions of the intermediate 

species shown in Fig. 8.7c reveal different behaviors with respect to pressure. While the O 

and H concentrations decrease with increasing pressure as radical recombination reactions 

are strengthened, the OH concentration does not indicate such a monotonic trend, because 

of the competition of chain-branching and radical-recombination reactions at high 

pressure. As a result, in the mixture fraction space, the major species exhibit similar 

behaviors, while those of the intermediate species are distinctly distributed with pressure. 

The latter play a crucial role in determining heat-release properties through radical 

reactions. 
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 Figure 8.8 shows the maximum flame temperature as a function of strain rate at 

various pressures. The inlet temperatures for both methane and oxygen are fixed at 300 K, 
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and the momentum fluxes at the two boundaries are set to be equal, in order to place the 

stagnation plane at the center for all cases. The stable (upper) and unstable (middle) burning 

branches of the S-curve are obtained. The weakly reacting (lower) branch is not present 

here because the inlet temperature of 300 K is well below the ignition point.  
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 The flame behaviors bear close similarity to those of the oxygen/hydrogen system 

discussed in Chapter 7, in which detailed physical explanations are provided. For a given 

strain rate, the maximum flame temperature increases with pressure as a result of the 

reduced dissociation associated with endothermic reactions. The maximum flame 

temperature remains almost constant at low strain rates, and starts to decrease progressively 

until the extinction point is reached. At low strain rates, the chemical time scale is much 

smaller than the flow time scale. Thermal energy released by chemical reactions overrides 

heat loss. A further increase in the strain rate, however, renders the flow time scale 

comparable to its chemical counterpart. The ensuing heat loss leads to a lower flame 

temperature and eventually to flame extinction. 

 Figure 8.9 shows the effects of pressure on the peak flame temperature and flow 

strain rate at the extinction point. The extinction strain rate is almost linearly proportional 

to pressure, up to 50 atm. Its rate of increase then drops slightly after this point. At low 

pressures (p < 50atm), the extinction is dominated by second-order chain-branching 

reactions. The chemical time scale is inversely proportional to pressure; a linear 

relationship thus exists between the extinction strain rate and pressure [164]. At high 

pressures (p >50atm), the crossover temperature characterizing radical-recombination 

reactions increases faster than the peak temperature for chain-branching reactions. Radical-

recombination reactions consequently play a more influential role and cause the bend-over 

of the curve. The peak flame temperature at extinction extT increases with increasing 

pressure in a manner similar to that for the equilibrium flame temperature eqT , as listed in 

Table 8.3. Power-law relationships can be established between the peak flame temperature 

and pressure: 00474
eq

.T ~ p  in equilibrium, 00383.
extT  ~ p  at extinction. This information will 

be employed in the scaling analysis of the heat-release rate. Figure 8.10 shows the flame 

response along the S-curve for the oxygen/hydrogen and oxygen/methane systems at 50 

atm. The extinction strain rate for hydrogen (~107 s-1) is an order of magnitude larger than 
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that for methane (~106 s-1). The oxygen/hydrogen flame is significantly more resistant to 

the flow straining than its oxygen/methane counterpart. This may be attributed to the 

greater thermal and mass diffusivities and faster kinetics of hydrogen. 

 

Pressure (atm) 1 5 10 20 50 100 150 

eqT  (K) 2953 3174 3268 3370 3566 3650 3741 

extT  (K) 2594 2699 2769 2854 3011 3060 3111 
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 In order to extract more information about extinction characteristics at different 

pressures, the distributions of temperature and species concentrations at the extinction 
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point are plotted in the mixture-fraction space, as shown in Fig. 8.11. The inlet 

temperatures are 
2 4

300O CHT T   K. The extinction flame temperature increases with 

increasing pressure. Figure 8.11a indicates that unburned oxygen penetrates into the 

methane stream at extinction, and the methane reacts completely in the flame zone. The 

oxygen penetration declines at higher pressures, which explains the increase in peak 

temperature with increasing pressure. Figures 8.11b and 8.11c present the mass-fraction 

distributions of major and minor species at extinction. The production of H2O and CO2 

increases with pressure, whereas production of other species, such as CO, O, OH, and H, 

decreases. High flame temperature tends to facilitate the decomposition of oxygen, which 

outweighs the reduction of oxygen dissociation at high pressure and consequently results 

in decreased presence of oxygen across the flame. The H2-CO oxidation is intensified at 

high pressure, leading to increased H2O and CO2 concentrations and lower concentrations 

of other species, as evidenced in Figs. 8.11b and 8.11c.  
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(a)  

(b)  

 

 Figure 8.12a shows the global heat-release rate q  as a function of the strain rate 

over a pressure range of 1-150 atm. The result is obtained by integrating the local heat-

release rate over the entire flame zone. In the stable-burning (upper) branch of the S-curve 

at a given pressure, the heat-release rate increases linearly with the strain rate because of 

the increased mass flow rate. It reaches a maximum and then decreases toward the 

extinction point. The behaviors near the extinction point are well captured. The heat-release 

rate in the unstable-burning (lower) branch is also obtained for the first time for the 
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oxygen/methane system using a real-fluid approach. The results in Fig. 8.12b confirms the 

previous finding of Pons et al. [62] that q~ pa  in the stable-burning branch except for 

the region in the vicinity of the extinction point. A similar trend for the oxygen/hydrogen 

system was observed by Ribert et al. [59] and Huo et al. [121].  
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 To identify intrinsic flame similarities at different pressures, a scaled heat-release 

rate, defined by  extq/ paq , is plotted as a function of a normalized strain rate, exta/a , 

as shown in Fig. 8.13a. The profiles very nearly collapse to a single curve. Huo et al. [121] 

developed a scaling analysis and found that to obtain a more accurate result, an additional 

pressure exponent accounting for the effect of pressure on the peak flame temperature 

should be included, 

0 75

0 25

.
eq

.
mix

T
q ~ pa

MW
 

(8.1) 

Substitution of the pressure dependence of the flame temperature, 00474
e

.
q ~ pT , into the 

above equation gives the following correlation for the heat-release rate. 

0536.q~ p a  (8.2) 

Figure 8.13b shows this new scaled heat-release rate,  

0536.
extq/ pq a

 
(8.3) 

allows for the collapse of all the heat-release rate profiles to a single function of the 

normalized strain rate, exta / a . This flame similarity implies that the heat-release behaviors 

at high pressure can be obtained from their counterparts at low pressure through proper 

scaling analysis.  



 188 

 

 

 Like the heat-release rate, the flame thickness  , defined as the full width at half 

maximum of the temperature distribution, correlates well with the product of pressure and 

flow strain rate, pa , as shown in Fig. 8.14. In the stable burning (upper) branch (except in 

the vicinity of the extinction point), the flame thickness exhibits the following trend, 

1 a ~  / p
 

(8.4) 

 The strong flame similarity at various pressures can be further consolidated using 

a scaled flame thickness, ext
ˆ pa , and a normalized flow strain rate, exta / a  [121]. 

Figure 8.15 shows the result. Similar correlations exist for major-species distributions, as 

elaborated by Huo et al. [121] for the oxygen/hydrogen system. The flame characteristics 

at high pressure can be predicted from the corresponding results at low pressure. 
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8.2.2 Oxygen/n-Heptane System 

 N-Heptane, C6H14, is a primary reference fuel for the study of combustion in 

internal combustion engines, due to its zero octane rating. The detailed chemical 

mechanism developed by Curran et al. [66], including 560 species and 2538 reversible 

reactions, is employed in the present study, as listed in Table 8.2. This mechanism has been 

validated against experimental data obtained from flow reactors, shock tubes, and rapid 

compression machines over the pressure and temperature ranges of 3 to 50 atm and 650 to 

1200 K, respectively. To avoid complexities associated with fuel vaporization, the inlet 

temperature remains at 600 K or above in the present study.  

 

a/aext

=


pa
ex

t

10-4 10-3 10-2 10-1 100100

101

102

103

104

5
1atm

100

10
20
50

150

Figure 8.15: Scaled flame thickness ext
ˆ pa  as a function of normalized strain 

rate ( exta/a ). Oxygen/methane system with 
2 4

300O CHT T   K. 



 190 

 

 

 Figure 8.16 shows the variation of the compressibility factor with pressure and 

temperature. At 600K, the compressibility factor reaches as small as 0.4 for p = 60 atm. It 

approaches unity when the temperature exceeds 900 K. As noted previously [59, 121], the 

real-fluid effect takes place only in the region close to a low-temperature, high-pressure 

inlet. The fluid essentially behaves like an ideal gas when it approaches the flame zone. In 

light of this, the real-fluid property evaluations are neglected here for simplicity. Figure 

8.17 shows the distributions of the temperature and mass fractions of major species. n-

Heptane first decomposes to intermediate species of C2H2 and C2H4, and then produces H2 

and CO on the fuel side. The maximum of H2O and CO2 mole fractions occurs close to the 

oxygen side. 
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 Figure 8.18 shows the effects of the inlet temperature on the flame properties, 

including the maximum flame temperature, flame thickness, and heat-release rate, at 

various pressures. The flow strain rate remains fixed at 1000 s-1. As in the oxygen/methane 

system, the disparities of flame properties for different inlet temperatures appear to be quite 

modest at a given pressure, indicating the negligible influence of the inlet temperature on 

the flame response.  

 

 Figure 8.19 shows the variations of the heat-release rate and flame thickness as a 

function of strain rate over the pressure range of 1-200 atm. Only the results for the stable 

burning branch of the S-curve are presented. The flame behaviors near the extinction point 

and in the unstable burning branch can be captured following the same approach for the 

oxygen/methane system. The heat-release rate increases linearly with the strain rate, and 

the flame thickness decreases in a linear manner. As in the oxygen/methane system, the 

heat-release rate and flame thickness correlates well as, q~ pa  and 1 a ~  / p . The 

former correlation can be further modified to account for the pressure dependence of the 

peak flame temperature, as described in the previous section.  
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 Substitution of the flame temperature-pressure relation obtained from Fig. 8.18a, 

0045.
eqT ~ p , into Eq. 8.1 gives the following correlation of the heat-release rate for the 

oxygen/n-heptane system, 

0534.q~ p a  (8.5) 

 The pressure exponent of 0.534 coincides with that of the oxygen/hydrogen system 

[121]. An identical scaling can thus be achieved for the flame thickness and heat-release 

rate using Eqs. 8.4 and 8.5, respectively, in the normalized strain rate space. The intrinsic 
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similarities of the flame response are obtained for the oxygen/n-heptane system in a broad 

range of pressures and strain rates.  

8.2.3 Oxygen/ n-Alkane (CH4-C16H34) Systems 

 The common features of oxygen/methane and oxygen/n-heptane flames suggest 

that the same kind of flame similarities may be applied to the entire n-alkane family (CH4-

C16H34). Table 8.2 lists the detailed chemical mechanisms of the n-alkanes employed in the 

present study. Figure 8.20 shows the compressibility factors for n-dodecane (C12H26) and 

n-hexadecane (C16H34) in the pressure-temperature space. The compressibility factor 

approaches unity when the temperature exceeds 800 K and the pressure is smaller than 100 

atm. For simplicity, all the calculations are conducted at this inlet temperature, with the 

ideal-gas equation of state implemented for property evaluations.  

 

(a)  (b)  

 

 Figure 8.21 shows the flame properties as a function of the number of carbons in 

the n-alkane fuel molecule. Also included is pure hydrogen. The strain rate is set to 1000 

s-1 and the pressure to 10 atm. Hydrogen has a much higher maximum flame temperature 

and a wider flame zone, as well as greater heat release, than all members in the alkane 
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family. The flame thickness for the n-alkanes is nearly the same regardless of the number 

of carbons. The peak flame temperature increases slightly with increasing number of 

carbons from 3350 K for CH4 and levels off at 3800 K when the carbon number exceeds 

5. The heat-release rate experiences a sharp increase from methane to ethane, and then 

decreases gradually to saturate at n-pentane. The flame properties of heavy hydrocarbons 

(C5-C16) are nearly identical. Light hydrocarbons exhibit distinct flame behaviors, mainly 

due to the variation of the carbon-hydrogen mass ratio, which changes significantly when 

the number of carbons varies from 0 to 5. Although not shown here, the flame thickness 

and heat-release rate of all hydrocarbon fuels can be correlated with pressure and strain 

rate in a manner similar to those of methane and n-heptane. The flame properties at high 

pressure can be obtained from their counterpart at low pressure. 
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 Figure 8.22 shows the scaled flame thickness ( C pa ) as a function of the 

number of carbons in the n-alkane fuel molecule. The scaled flame thickness remains 

nearly constant for all hydrocarbons at the given pressure and strain rate. The flame 

properties of a given hydrocarbon fuel can be evaluated by those of another hydrocarbon 

fuel at the same flow conditions. The validity of scaling and similarity becomes even 

greater if the carbon numbers of the two hydrocarbons of concern are higher than 5. This 

finding can be effectively used to considerably improve computational efficiency for the 

modeling of oxygen/hydrocarbon turbulent flames using tabulated chemistry. 
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8.3 Conclusion 

 A systematic investigation of counterflow diffusion flames of oxygen and n-alkanes 

(CH4-C16H34) has been conducted. The numerical framework incorporates fundamental 

thermodynamics and transport theories for general fluids, detailed chemical mechanisms, 

and an improved flame-controlling continuation method. The flame response over the 

entire S-curve is explored under a broad range of pressures, flow strain rates, and inlet 

temperatures. The main conclusions are as follows: 

 (1) The inlet temperature yields insignificant effects on the flame structure; ideal-

gas flame solutions can be used for fluids at supercritical conditions. 

 (2) For the oxygen/methane system, the flow strain rate at the extinction point 

increases linearly with pressure up to 50 atm, but the rate of increase decreases beyond this 

point. The extinction characteristics for other n-alkanes follow a similar trend. 

 (3) The flame thickness of all hydrocarbon fuels is inversely proportional to the 

square root of the product of pressure and strain rate, ~ pa , and all profiles of scaled 
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Figure 8.22: Flame thickness parameter ( C pa ) as a function of number of 

carbons in the n-alkane fuel molecule. Oxygen/hydrogen and oxygen/n-alkanes 

systems with p = 10 atm, 
2

800O FuelT T   K, and a = 1000 s-1. 



 198 

flame thickness collapse to a single curve in the normalized strain-rate space ( exta / a ). At 

a given pressure and strain rate, the scaled flame thickness ( C pa ) of all hydrocarbon 

fuels has nearly identical value. 

 (4) The global heat-release rate is proportional to the square root of the pressure-

weighted strain rate, q~ pa , or more precisely proportional to 0536.p a  for methane and 

to 0534.p a  for n-heptane, when the pressure effect on the peak flame temperature is taken 

into account. With this correlation, the profiles of the scaled heat-release rate for all 

pressures under consideration overlap completely as a function of the normalized strain 

rate, exta / a .  

 The similarities of flame properties among the n-alkane family suggest that the 

flame solutions of any n-alkane at a given pressure can be predicted from those of another 

n-alkane at another pressure provided that the value of pa is the same. This will 

significantly improve the computational efficiency of turbulent combustion modeling 

using tabulated chemistry.  
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CHAPTER 9  

CONCLUSIONS 

 

 This dissertation established a unified theoretical and numerical framework, which 

is capable of studying supercritical fluid flows and combustion over the entire range of 

fluid thermodynamic states of concern. Turbulent closure is achieved using LES. A steady 

laminar flamelet approach is implemented to model turbulence/chemistry interactions. 

Thermodynamic properties, including density, enthalpy, and specific heat at constant 

pressure, are evaluated according to the modified Soave-Redlich-Kwong equation of state 

and fundamental thermodynamic theories. Transport properties, including thermal 

conductivity and dynamic viscosity, are estimated according to an extended corresponding-

state principle. The numerical scheme is preconditioned along with a dual-time-step 

integration using finite-volume approach. Finally, a multi-block domain decomposition 

technique associated with the message passing interface of parallel computing is applied 

to facilitate computational speed. 

 The ensuing framework was first applied to study the three-dimensional flow 

dynamics of a liquid oxygen swirl injector at supercritical pressure. The complex flow 

structures are visualized and explored for the first time .Various fundamental instability 

mechanisms determining the flow dynamics were examined by implementing the spectral 

analysis and proper orthogonal decomposition technique. The interface, representing the 

phase change from dense liquid to light gas at subcritical conditions, disappears at 

supercritical pressures and is replaced by a transition region in which density varies 

smoothly and continuously with temperature. The hydrodynamic instability in the 

longitudinal direction is dominant across the injector, and the azimuthal wave at mode 3 

resonates with acoustic wave at 4.8 kHz and amplifies itself significantly compared to other 

modes. A parametric study is made to examine the pressure and temperature effects on the 

injector design. The gaseous core decreases with the increasing pressure. The liquid film 
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thickness increases slightly with pressure and is consistent with the prediction by the 

inviscid theory. The axisymmetric study estimates a much smaller film thickness and larger 

spreading angle than the 3D studies due to the lack of flow dynamics in the azimuthal 

direction. The spreading angle defined by the maximum density gradient provides more 

physical interpretation of liquid spreading than the traditional definition by the ratio of 

axial and tangential velocity component. The spreading angle is nearly independent of the 

pressure.  

 The injection and mixing characteristics of the LOX/kerosene bi-swirl injectors 

were also investigated at supercritical conditions. The accuracy of numerical resolution 

was tested through the grid independence study. The flow similarities were observed for 

different levels of grid resolution. The finer vortical structures were obtained as the grid 

size decreases. The mixing characteristics and flow dynamics were discussed in depth. The 

recess region significantly improves the mixing efficiency by advancing the interaction of 

propellants. The spreading angle of the LOX film increases, as either the post thickness or 

the annulus width increases. The larger spreading angle enables the LOX film to intercept 

the kerosene film in a more effective way, therefore facilitating the mixing. Although the 

wider annulus requires a longer time to reach a fully-developed state in the annulus, it shifts 

the recirculation bubble upstream and recirculates the propellant mixture into the inner 

swirler, which could stabilize the combustion in the reacting flows. In the process of 

industrial design, these parameters must be selected carefully to achieve the desired injector 

performance.  

 Near-field flame dynamics under various injector geometries were systematically 

investigated. The flame is stabilized by two counter-rotating recirculation flows containing 

hot combustion products in the recess region, which plays a significant role in not only 

accomplishing efficient mixing and combustion but providing thermal protection of the 

injector faceplate. Decreasing the annulus width or post thickness might induce the initially 

lifted-off flame to detach from the injector post surface. Consistent with results of cold-
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flow studies, the spreading angle increases as either the post thickness or the kerosene 

annulus width increases. But neither of them can sustain a completely thermal protection 

of the injector post surface. The larger annulus width produces the largest amplitude of 

pressure oscillations and introduces flame in the lower surface of the annulus, potentially 

leading to unstable combustion. In order to achieve the optimal combustion performance, 

further parametric studies have to be performed to determine values of the group of recess 

length, post thickness, and kerosene annulus width. 

 A general study was performed to explore the effect of strain rate on counterflow 

diffusion flames for real fluids over the entire thermodynamic regime. The species of 

interest covered oxygen/hydrogen mixtures and oxygen/n-Alkane Hydrocarbons (CH4-

C16H34). An improved two-point flame-controlling continuation method is employed to 

solve the singularity problem at the turning points on the flame-response curve (the S-

curve). Intrinsic flame similarities were demonstrated for such properties as flame 

temperature, flame thickness, species concentrations, reaction rates, and heat release rate 

at different pressures. The correlation between the heat release rate and the product of 

pressure and strain rate was modified by including the pressure-dependence of flame 

temperature. The profiles of the scaled flame thickness and heat release rate collapse to a 

single curve in the normalized strain-rate space. Tabulation of pressure-dependent flame 

properties can be achieved by mapping the flame solution at a given pressure, according to 

the correlations in the normalized strain-rate space, even if the extinction strain rate is not 

available beforehand. This will significantly improve computational efficiency for 

combustion models using tabulated chemistry, such as the flamelet, FGM, and FPI models. 

Cryogenic inlet temperature appears to affect only the flame location, and has a negligible 

effect on the flame structure over the entire S-curve. Consequently, the ideal-gas flame 

solutions can be used for fluids at supercritical conditions. 
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APPENDIX A 

PROPERTIES OF THE FAVRE AVERAGE 

 

The Favre average is defined as, 
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Based on the definition, we have  
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The relation between Favre averaged and Reynolds averaged variables is given by: 
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We also have ffff
~~
  , then 

 .f f   
(A.5) 

By definition, we have fff
~~~~
  , so 

 .f f  
(A.6) 

Another important relation is given by:  
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(A.7) 
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APPENDIX B 

THERMODYNAMICS RELATIONSHIPS 

 

 The thermodynamic relations, such as those for evaluations of specific internal 

energy, specific enthalpy, and specific heat capacities, and those for evaluations of 

preconditioning and Jacobian matrices, are presented in this Appendix.  

 The partial density internal energy ( ie~ ) of species i  will be derived. We first need 

to find the expression for the internal energy ( e ). From the fundamental thermodynamic 

theory, we have  
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where the subscript 0 indicates a reference ideal state at a low pressure. 

 Utilizing the modified SRK equation of state and the partial derivative relation Eq. 

2.38-2.40, Eq. B.1 is integrated, which leads to the following relationship 
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where the partial derivative 
T

Ta



 
 is presented in Appendix C. 

 According to the definition for the partial-density property, the partial-density 

internal energy ( ie~ ) can be expressed as  
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 In addition, utilizing Eq. B.3, the internal energy of a mixture can be related to the 

partial-density internal energy as  
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Based on the definition of enthalpy, 
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Apply the partial-density derivative on both side of Eq. B.5, 
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which is equivalent to Eq. B.7 
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Substituting Eq. B.7 into Eq. 2.55, the following relation concerning the partial-mass 

enthalpy ( ih ) can be established  

,

,

 .j

j i

j

i i
i T

T Y

p

TT p
h e

p




 




 
    

   
   

  

 (B.8) 

 Next, we begin to find the expressions for the constant-volume and constant-

pressure heat capacities based on the SRK equation of state. 

 The definition of constant volume heat capacity is  
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Utilizing Eq. B.2, it is straightforward to find  
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 Following fundamental thermodynamic relationships, the constant-pressure heat 

capacity can be expressed as  
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 In order to find the chemical potential, the partial-density and partial-mass entropy 

have to be derived first 
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Based on the definition of partial density entropy, it is found  
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The partial mass entropy can be further related to the partial density entropy as 
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where the partial mass volume is  
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The chemical potential of species i can be calculated as  
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The partial derivatives regarding chemical potential can be expressed as  
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 (B.18) 

 When the mixture fraction equation instead of the species equations is solved for 

chemistry closure, the derivative of any scalar   with respect to the mixture fraction is 

evaluated based on the chain rule, shown as following. 

1

1, ,, ,

,
j i

N
i

i iT p T pT p Y

Y

f Y f

 







     
           
  (B.19) 

where   ,
/i T p

Y f  is obtained from the flamelet library, that is, it is dependent on the local 

flame structures. 

 Next, we want to derive the partial derivatives needed in the calculation of the 

precondition and Jacobian matrices. First, a thermodynamic relationship correlating 

pressure as a function of temperature, density, and mass fractions is derived. According to 

thermodynamics, each intensive property will depend on 1N  other intensive variables 

in a mixture. We begin with the following relation 

( , ),ip p T   (B.20) 

where 1, ,i N . Here we are interested in the differential form, it can be expressed as  

1 ,

.
i j i

N

i
i i T

p p
dp dT d

T  







   
        

  (B.21) 

Rearrange it, we have 
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Since i iY 
 

.i i id Yd dY     (B.23) 

Substituting Eq. B. 9 into Eq. B. 8 leads to following expression 

,
iT Y idp A dT A dY A d     (B.24) 

where 
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 (B.25) 
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 (B.27) 

A very useful formulation can be derived from Eq. B. 10, which is 
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 (B.28) 

Next, a thermodynamic relationship correlating internal energy as a function of pressure, 

density, and mass fractions is derived. We begin with the following one 

( , ),ie e T    (B.29) 

where Ni ,,1 , and e  is the internal energy per unit mass. Its differential form can be 

written as 

1 ,

.
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i i T

e e
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
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  (B.30) 
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Based on the definition of partial density properties, it is recognized 

,

,
j i

i
i T

e
e  (B.31) 

which is the partial density internal energy of species i  in the mixture. The first derivative 

in Eq. B. 11 is the constant volume heat capacity vC . Substituting the partial density 

internal energy of each species into Eq. B. 11 leads to the following expression 

1

.
N

v i i
i

d e C dT ed  (B.32) 

Inserting Eq. B. 9 into Eq. B. 12, 

1 1

.
N N

v i i i i
i i

d e C dT e dY eYd   
 

     (B.33) 

Since  eddeed  , the following expression is easily derived 
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Substituting Eq. B. 13 into Eq. B. 14, we can establish  
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  (B.38) 

Based on fundamental thermodynamic theories, the following relation can be obtained 
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2

1
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p
dh de dp d
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    (B.39) 

Substituting Eq. B.15 into Eq. B.16, the following expression is derived after some 

straightforward manipulations 
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According to the definition in thermodynamics, we recognize that the coefficient TD  

equals to the constant pressure heat capacity pC of a fluid mixture, 

1,

1
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  (B.44) 

Finally a relationship regarding the speed of sound in the mixture is derived. According to 

the definition of the speed of sound 

2
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.
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p
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
 

  
 (B.45) 

Based on the Eq. B.10, the following expression is obtained in a straightforward manner. 

, , ,

.
ii i is Y s Y T Y

p p T p
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 (B.46) 

Given 
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( , , ),is s T Y  (B.47) 

where .1,1  Ni   

After utilizing some fundamental thermodynamic relationships, the following differential 

form of Eq. B.19 can be obtained 
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Based on Eq. B.20, the following expression is further derived  
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 (B.49) 

Substituting Eq. B.21 into Eq. B.18, an expression of the speed of sound in the general 

fluid mixture is established as 
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, ,

 .
i i

p

vs Y T Y

Cp p
a

C 
    

        
 (B.50) 

Equations B.24, B.35, B.40, and B.50 are the important thermodynamic relationships 

required in evaluating the preconditioning and Jacobian matrices. 
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APPENDIX C 

DERIVATIVE EXPRESSIONS IN SRK EOS 

 

 In SRK EOS, the terms a  and ijija  are a function of temperature. The derivative 

of a  with respect to temperature is given as  

1 1
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The second derivative of parameter a  to temperature is  
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 212 

 
2 2

2 3
, ,,

1 1
1 1  .

2 2
i i i

i
c i c ic i

S S T
S

T TT TT T

   
          

 (C.3c) 

The variable i  for species H2 ( 2H ), is treated differently since hydrogen is a quantum 

gas. The derivative of this variable is  
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APPENDIX D 

JACOBIAN MATRICES 

 

 The Jacobian matrices employed in Chapter 3 are defined as follows. 

D.1 Jacobian of Primitive Variables 

The Jacobian of primitive variables /T Q Z   is given by  
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where the coefficients pA , TA , 
iYA , pB , TB , and 

iYB  are defined in the Appendix B. The 

terms te  and th  denote total energy and total enthalpy, respectively. 

2 2 21
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D.2 Convective Flux Jacobians 

 The Jacobian matrix / A E Z is given by  

where xl  , yl  , and zl  represent the three scalars in the direction vector x y zl l l  l i j k . If 

we replace l with any of the following vectors, we can get the Jacobian matrices
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