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dUe,ss Steady state incremental elastic strain energy 

dUf Incremental fracture energy 

dUf,ss Steady state incremental fracture energy 

Up Plastic strain energy 

dUp Incremental plastic strain energy 

dUp,ss Steady state incremental plastic strain energy 

u Displacement 

v Vertical displacement 

VCCT Virtual Crack Closure Technique 
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dW Incremental external work 

dWss Steady state incremental external work 
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ξ Multiplier of stress in Anand’s viscoplasticity 
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SUMMARY 

Packaging for high-performance computing requires multiple logic and memory 

dies assembled on a single substrate.  Such a 2.5D package demands a large (≥35x35mm) 

and ultra-thin (≤100μm) substrate with asymmetric build-up, high density wiring, and 

ultra-fine pitch interconnects (≤35μm).  Glass is an ideal substrate material for such 

packages due to its excellent electrical properties, tailorable coefficient of thermal 

expansion (CTE), high mechanical rigidity, availability in large and thin panel form, and 

smooth surface for fine line fabrication.   However, glass packages do have challenges, 

such as glass cracking due to dicing-induced defects and RDL stresses as well as debonding 

of copper redistribution layers (RDL) from the smooth glass surface.  To address these 

challenges, there is a need to understand plasticity effects on thin film adhesion, the role of 

dicing defects on glass cracking, and process-induced stresses due to RDL.  However, the 

existing literature does not adequately address several of these. 

The objectives of this research are to understand the fundamental factors that 

contribute toward the cracking of glass and debonding of RDL, to design and demonstrate 

thermo-mechanically reliable 2.5D glass packages, and to develop design and process 

guidelines for such reliable glass packages.  This work studies how RDL stresses propagate 

dicing-induced defects into cohesive cracks as well as interfacial delamination, how 

geometry and process modifications could mitigate such failures, demonstrates prototypes 

that are reliable through processing and thermal cycling, and develops design guidelines 

for current and future glass packages.  As part of experimental validation, stresses in glass 

caused by RDL are measured through birefringence and are correlated to modeling.  
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Warpage is predicted using sequential finite-element modeling that mimics the fabrication 

process, and shadow moiré measurements are used to validate the package warpage and 

thus, the model predictions.  Various dicing methods and the associated dicing defects are 

comprehensively quantified, and are used to reduce the chance for glass cracking.  Based 

on the findings of this work, test vehicles are designed and their reliability is demonstrated 

through 1000 thermal cycles.  To enable a wider design space, three alternative solutions 

to glass cracking, edge coating, two-step dicing, and laser dicing, are proposed, analyzed, 

and demonstrated.  An innovative method to determine the critical energy release rate for 

peeling of a copper thin film from a glass substrate is developed, and the developed 

technique is employed to enhance adhesion of copper wiring.  In addition, general design 

and process guidelines for mechanical reliability, which are applicable to other packaging 

applications, such as mobile substrates, filters for RF, and power, are developed. 
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CHAPTER 1. INTRODUCTION 

1.1 Strategic Need for Advanced Packaging 

1.1.1 Introduction to 2.5D Packaging 

 In the simplest form of a microelectronic device, there is a silicon die or chip with 

integrated circuits (ICs) for each function (such as memory, logic, and radio frequency 

(RF)) and each of these chips is given its own package (Figure  1a).  Since each chip is in 

a different package, this set-up is easy to implement but limits performance and consumes 

more power because the connections between the active devices are long.  To address this, 

multi-chip modules (MCMs) were designed to have multiple dies on a large substrate.  The 

concept of shortening the connections was taken further with system-on-chip (SoC, Figure  

1b), in which multiple die functions were placed on a single large die and packaged.  

However, placing all die function on a single die poses challenges to fabrication yield and 

the stresses in the package, and thus, the MCM concept was reused with new technology 

and called system-in-package (SiP, Figure  1c).  It is possible to combine SiPs in various 

ways for additional performance and size benefits, including package-in-package (PiP) and 

package-on-package (PoP).  

 Up to this point, both ICs and packages have been two-dimensional (Figure  2a).  

While transistors continued to shrink at a rapid rate [1], the connections were slower to do 

so, and impeding the performance and power consumption which would lead to better 

devices.   To solve this, engineers turned to the third dimension.  Previously limited by 

production capabilities and cost, through-silicon vias (TSVs) and thinner dies (100 µm or 
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Figure  1 – (a) Individual package layout, (b) system-on-chip (SoC) package, and (c) 

multi-chip module (MCM) or system-in-package (SiP) (credit: [2]). 

 

less) enabled vertical connections, drastically improving package performance.  Stacking 

multiple dies for a true 3D IC (Figure  2c) is the eventual target, although cost and yield 

pose significant hurdles.  Furthermore, the risk is extremely high because 3D is 

revolutionary rather than evolutionary.  As such, an evolutionary approach was taken, 

called 2.5D, in which an interposer was added between the dies and substrate (Figure  2b). 

This was first demonstrated in production by Xilinx Inc. in 2011 [3].  In 2.5D, the interposer 

has finer routing between the dies than is capable with substrate technology and vertical 

connections to package.  Compared to MCM, 2.5D interposers have higher connection 

(bump) density and routing density (Figure  3).  Historically, MCMs were built on ceramic 

substrates, while 2.5D typically uses an organic substrate and silicon interposer.  Recently, 

3D packages have been used for high bandwidth memory [4].  However, there are 

challenges and costs associated with 3D ICs and their use is application dependent. 

 

Figure  2 – (a) 2D IC, (b) 2.5D, and (c) 3D IC (credit: [2]). 

 

(a) (b) (c)

(a) (b) (c)
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Figure  3 – Comparison of 3D IC packages (credit: [5]). 

 

 An example application need for this type of packaging is the modern day graphics 

processing units (GPUs), which are required to transmit data rates in the hundreds of 

gigabytes per second (GB/s) and do trillions of floating point operations per second 

(“FLOPS”) to produce high resolution moving images or do deep learning.  To meet the 

required calculation capacity, silicon dies are fabricated with increasing density of 

transistors (up to 10,000,000 transistors per mm2), the die size is increased (up to 1000 

mm2), wiring density is increased, and interconnect pitch is decreased (down to 40 µm).  

An example of this is Advanced Micro Devices, Inc.’s Fiji chip [6, 7], which is the GPU 

in RadeonTM Fury product line, shown in Figure  5. 
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Figure  4 – AMD’s RadeonTM Fury GPU showing (a) overhead view of package, (b) 

cross section of package, and (c) SEM of die region (credit: [6]). 

 

1.1.2 Need for a Glass Package 

 Fundamentally, the role of a package is to connect and protect the IC.  The 

performance of the IC is directly affected by the electrical properties of the package and 

indirectly affected by the thermal properties, which limit the amount of power a device can 

use.  Physically, the device must be able to survive environmental conditions, such as 

temperature, moisture, and impact.  The routing density (Figure  3) depends on the substrate 

(a)

(b)

(c)
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material, the dielectric polymer which insulates the routing, and the processes used to 

deposit the routing.  The connection density (Figure  3) depends on the bonding technology, 

such as wire bonding, surface mount technology (SMT) reflow, or thermo-compression 

bonding, each of which have requirements on pitch, throughput, and cost.  Additionally, a 

package must be manufacturable, which requires capital investment (e.g. tools) and process 

development.  Yield is one of the primary concerns in high-performance applications [8].  

On top of all this, the cost of packaging is sought to be as low as possible. 

Table  1 – Comparison of substrate core material options (adapted from [9]). 
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 Different materials are compared for a 2.5D interposer core in Table  1.  Organic 

materials are primary limited by the routing density.  Metals have a high CTE relative to 

silicon, creating a CTE mismatch with the ICs which typically built on single crystal 

silicon.  Single crystal silicon is the most common option for high-performance interposers.  

While polycrystalline silicon is a cheaper alternative, the presence of grain boundaries 

negatively influences the electrical performance and stability of the silicon.  While 

ceramics have been used previously and for hermetic applications, they have a high cost. 

 As a possible candidate for microelectronic packaging substrate, glass [10, 11] is 

an electrical insulator with very low electrical loss and high resistivity [12], making it ideal 

for RF applications [13-15].  The glass transition temperature of glass is well above the 

process temperatures used to fabricate ICs and packages so glass has good high-

temperature properties.   In comparison to traditional substrate materials such as FR-4, 

glass has high modulus which allows for thinner substrates with low warpage [16].  The 

CTE of glass is tailorable based on the chemical composition, enabling a balance between 

different reliability aspects [17].  Glass can be fabricated with a smooth surface, which is 

ideal lithography [18-20] and producing low resistance transmission lines.  The tailor CTE 

and low warpage enable fine pitch I/Os [21, 22].  Furthermore, glass has low cost potential 

due to its panel scalable processes [23], making glass an alternative to silicon interposer 

technology, such as chip-on-wafer-on-substrate (CoWoS).  Panel scalable process, also 

known as panel level fabrication, means that glass substrates can be fabricated using 

substrate level technology rather than more expensive wafer fabrication technology and is 

critical to the relevance of glass-based packages. 
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Figure  5 – Cross section schematic of ultra-thin 2.5D glass interposer. 

 

Table  2 – 2.5D substrate packaging metrics and state of the art. 

Metric Target State of the Art 

Substrate 

Core thickness 100 μm 400 μm 

TPV 

diameter/pitch 
20-30/50 μm  60/130 μm 

Line pitch/width 4/2 μm 6/3 μm 

μvia 

diameter/pitch 
4/20 μm 8/40 μm 

Build-up layers 4/0/2 4/0/2 

Process 
Double-side semi-

additive process 

Double-side semi-

additive process 

Chip-level 

Interconnections 

Min. bump pitch 35 μm 40 μm 

Die Size 10 x 10 mm (2x) 596 mm2 + smaller 

Process TCB TCB 

Board-level 

Interconnections 

Solder joint pitch 0.65 mm 0.8 mm 

Body size ≥ 35 x 35mm 30x30mm 

Process Mass reflow Mass reflow 

Cost Lower Low 

 

 Work at the 3D Packaging Research Center aims to develop an ultra-thin 2.5D 

interposer test vehicle demonstrator which is superior to the current state of the art by using 

Glass Interposer

Silicon Die Silicon Die
First Level 

Interconnections
Underfill

Second Level 

Interconnections

Solder Resist 

Passivation

Redistribution 

Layers (“RDL”)

Through Glass 

Vias (TGVs)
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a glass substrate as an enabling technology (Figure  5).  For a 2.5D application with 

multiple logic and memory dies that is directly mounted to the board, large body size with 

ultra-fine RDL and vias, as well as ultra-fine pitch interconnects are desired [24-27].  The 

relevant metrics to achieve these goals are identified and the target metrics are compared 

to the existing state of the art in Table  2.  These metrics define the possible connection 

density, routing density for a package, die size, package size, processes, and cost, which 

are the critical factors in choosing a package technology. 

1.2 State-of-the-Art Ultra-thin 2.5D Glass Packages 

 To build a 2.5D glass package (as illustrated in Figure  5 and with the target 

specifications in Table  2), there are three major components: RDL (in-plane wiring), 

through vias (vertical wiring), and assembly (making connections to die and board).  This 

section gives an overview of the current state of 2.5D glass packaging for each of these 

areas, each of which come with their own challenges, in addition to the challenges of 

integrating the individual materials and components to the complete package, which are 

briefly discussed in Section 1.3. 

 The goal of RDL is to route the electrical signals, power, and ground in-plane.  RDL 

is primarily composed of two materials, one conducting and another insulating.  Copper is 

the present choice for the conducting material due to its low resistance, low cost, and ability 

to be processed.  Insulation is often done using polymers, which can be applied through 

spin coating for liquids or lamination for dry films.  Dry film dielectric polymers, such as 

polyimide and Ajinomoto’s ABF GX-92 [28], are preferred for substrate fabrication for 

their electrical insulation capabilities, lower clean room fabrication requirements, and cost.  
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RDL is characterized by how large of dimensions is required, as smaller lines, spaces, and 

micro-via diameters allow more bandwidth which translates into fewer layers, better 

reliability, and lower cost.  The amount of current required is also a factor in line size.  As 

of 2017, RDL on glass using panel level processes have been demonstrated down to 2 µm 

micro-via diameter, 2 µm line, and 2 µm space using embedded trench and semi-additive 

process methods [29-33], although state-of-the-art packages use less aggressive 

dimensions (Table  2) for reliable fabrication. 

 The purpose of through-glass vias (TGVs) is to create an electrical connection 

through the substrate core to drastically shorten interconnection for better performance.  To 

create a TGV, a hole must be formed first and then filled with a conductive material.  The 

holes can be through holes, meaning they are all the way through the glass, or blind holes, 

meaning the backside of the glass must be thinned down to expose the holes.  In comparison 

to TSVs [34-37], the insulator is not necessary because the glass core is an insulator.  Also, 

polishing a TGV after formation is only required for blind holes.   

 The two general ways to form a hole in glass are etching and laser drilling.  While 

etching is an attractive process due to the parallel formation of many holes, glass 

unfortunately has no etching isotropy, and therefore requires additional preparation such 

as photosensitive glass and exposure [38], to use etching.  Different types of lasers can be 

used to cut glass, each with varying power and pulse times to create holes with a minimum 

diameter, hole depth, taper, and sidewall roughness.  The most commonly used types of 

lasers to drill holes in glass are the CO2 laser and the UV excimer laser.  CO2 lasers have 

been demonstrated to have 60 µm diameter at 145 µm thick glass [39, 40].  UV excimer 

lasers have been demonstrated to have 10 µm diameter in 100 µm thick glass [41].  Other 



 10 

hole formation methods, such as electrical discharge [42] have also been used and 

picosecond lasers [43]. 

 After TGVs have been drilled, the hole must be plated for electrical connection, 

either conformally or fully.  Conformal plating is cheaper while fully filled vias offer better 

thermal performance [44].  Early TGV filling was done through sputtered seed layer with 

copper plating or copper or silver paste printing, however, there were concerns with 

throughput and mechanical integrity [45].  More recently, wet, panel-level processes which 

incorporate electro-less plating with direct metallization to the via sidewall have been 

developed [45, 46]. 

 Traditional assembly of a package includes first attaching the silicon chip to the 

substrate, then attaching the chip-substrate package to a system board.  However, 

alternative approaches, such as substrate to board first followed by die attach, do exist [25].  

Chip assembly is driven by the need to ultra-fine pitch, which is approximately 40 µm 

today using microbumps (also known as copper pillars) [22, 47].  Chip-level 

interconnections are often underfilled to improve reliability and formed using thermo-

compression bonding.  Assembly to board is driven by reworkability, reliability, and cost 

with pitches around 0.4 mm today.  This is most commonly done using a controlled 

collapse chip connection (C4) formed using surface mount technology [48].  Assembly on 

glass is similar to traditional assembly, although there are key differences.  First, as glass 

is more thermally insulating, different process conditions must be developed [21].  Also, 

glass has a variable CTE, which can be used to further optimize the bonding process and 

system level reliability [17, 49].  Second, glass is elastic but brittle, so any existing warpage 

in the substrate prior to assembly will exist after assembly as well.  Also, the more rigid 
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nature of the substrate may influence deformation during the pressure stages of thermo-

compression bonding. 

1.3 Technical Challenges for Ultra-thin 2.5D Glass Packages 

 This section acknowledges the wide range of technical challenges associated with 

ultra-thin 2.5D glass packages before delving into the specific challenges that this 

dissertation focuses on.   

 The range of challenges facing 2.5D glass packaging stem from the competing 

objectives, multidisciplinary physics, and scale of integration involved in microelectronics.  

At a very high level, microelectronic hardware aims to deliver high performance at low 

power and low cost.  These three goals are often at a trade-off: increasing power increases 

performance, increasing cost increases performance, and increasing cost decreases power.  

The physics involved in microelectronic systems range from electrical to thermal to 

mechanical.  Furthermore, these systems are interconnected and show trade-offs.  General 

examples include higher power giving better electrical performance but requiring more 

heat to be dissipated and a larger package providing more performance but more warpage 

and reliability concerns.  Microelectronic systems have a wide-ranging scale, from the 

nanometer size transistor to the centimeter sized packaged to the decimeter sized overall 

device.  Thus, there are many challenges arising from the multiple layers of complexity.  

However, this work focuses on RDL. 

 There are numerous challenges related to RDL specifically and to the integration 

of RDL within a package.  As RDL is characterized by the minimum dimensions for micro-

vias, lines, and spaces, there are fabrication challenges, electrical design challenges, and 
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reliability challenges.  Fabrication challenges for RDL often include alignment, 

undercutting, adhesion, and process variability.  Common electrical design challenges for 

RDL are impedance matching, return loss, insertion loss, and cross talk.  Work on electrical 

design for ultra-thin 2.5D glass packages can be found in [12, 20, 26].  At the material level 

for reliability, RDL faces interfacial debonding challenges.  At the system level for 

reliability, RDL plays significant roles in glass cracking after singulation and warpage.  

Using double-sided fabrication techniques, glass has been demonstrated to have low 

warpage at the package level [50, 51].  Board-level reliability of glass has been studied as 

well [48, 52].  There is on-going work at the 3D Packaging Research Center into system 

level reliability [17, 49]. 

1.3.1 Glass Cracking 

 To fabricate a glass interposer or substrate, RDL is formed by sequential deposition 

of polymer and copper on glass panels.  These processes have different conditions which 

include parameters such as temperature, time, pressure, atmosphere, and preparation, as 

applicable, which are optimized through process development.  Thermo-mechanical 

stresses develop in the substrate due to CTE mismatch between the dielectric polymer, 

conductive wiring, and glass upon thermal excursions.   

 Once fabricated, glass panels must be singulated into individual substrates by a 

mechanical or other dicing method.  Such singulation or dicing could create large enough 

defects [53], that when combined with stresses from RDL, could lead to crack propagation 

ultimately resulting in glass substrate cracking or “SeWaRe” [54], illustrated in Figure  6a.  
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Glass substrate cracking can occur immediately, following dicing (Figure  6b), or later, 

during operation or reliability testing (Figure  6c). 

 

Figure  6 – (a) Illustration of 2.5D glass package cracking technical challenge, (b) 

2.5D glass substrates cracking immediately after dicing, and (c) acoustic microgrpah 

of 2.5D glass substrates cracking during thermal cycle reliability testing. 

 

 This challenge arises due to the brittle nature of glass, as identified in Table  1.  The 

brittle nature of glass is one of the major challenges, if not the single biggest one, to using 

Thermal 

Cycling

(a)

(b)

(c)
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glass for packaging.  For glass to be a viable option for 2.5D packaging, the cost must be 

considered, and therefore, the panel level fabrication is critical.  Also, since the 

fundamental purpose of a package is to act as wiring between the silicon die and system, 

the RDL is mandatory.  Thus, there are two critical components, panel singulation and 

stress from fabrication, which cause a systematic challenge to glass packaging. 

1.3.2 Interfacial Debonding of Redistribution Layers 

 The interface between materials is often weaker than the bulk and package 

substrates are, in essence, multilayer thin films on a supporting substrate.  The copper used 

for RDL wiring is deposited on glass or dielectric polymer.  Glass has a smooth surface to 

enable ultra-fine lines, but that reduces the ability to mechanically anchor copper or 

dielectric.  In addition, glass is chemically inert, making it difficult to create a strong ionic 

bond with.  As such, substrates are prone to failure of the interface, or delamination [55-

57], as seen in Figure  7.  Polymer laminated glass has better adhesion than bare glass, 

although it requires additional material, increasing the cost of the substrate.  Thus, adhesion 

must be considered when designing the RDL. 
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Figure  7 – Copper peeling from bare glass (credit: Bernhard). 
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CHAPTER 2. LITERATURE REVIEW 

 Section 1.2 provided an overview of the state-of-the-art for 2.5D glass packages 

and Section 1.3 highlighted challenges, specifically, glass cracking due to RDL stress and 

dicing defects and interfacial debonding of RDL.  This section focuses on the existing 

fundamental knowledge relating to addressing those challenges and identifies the gaps that 

should be addressed. 

2.1 Brittle Fracture Mechanics 

 To predict whether a crack will propagate in glass due to RDL stress, a fracture 

mechanics approach is taken.  This approach compares the cohesive material’s resistance 

to fracture with the local stress or energy at the crack tip.  This approach was first used by 

Griffith in 1921, who noted that, due to energy conversation, energy went into the crack 

tip when a new crack surface was formed [58].  Irwin [59, 60] later developed a more 

convenient form of the energy approach, defining the energy release rate, which is a 

measure of the energy available for an increment of crack extension, 

 𝐺 =  −
𝑑Π

𝑑𝐴
 (1) 

where 𝑑Π is the change in the potential energy of the body and dA is the incremental area 

of crack extension.  The potential energy of the body is defined as, 

 Π =  𝑈 − 𝐹 (2) 

where U is the strain energy stored in the body and F is the external work [61-63].  The 

strain energy is comprised of into elastic (Ue) and plastic (Up) components.   
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 Crack growth occurs when the energy release rate reaches the critical energy release 

rate, Gc.  Whether a crack grows stably or unstably depends on the change in the energy 

release rate relative to body’s resistance to crack growth as a crack grows, known as a crack 

resistance curve or R curve [61, 63].  Controlled experiments can either be displacement 

or load controlled; displacement controlled tests are often used because they have the 

benefit of being stable.  However, in engineering applications, the applied load is often 

predetermined by another source. 

 Since glass is a brittle material, it can be assumed to be perfectly elastic and the 

Linear Elastic Fracture Mechanics (LEFM) approach can be applied.  In a polar coordinate 

system, the stress intensity factors (SIF) along θ = 0 (Figure  8) are, 

 𝐾 = lim
𝑟→0

𝑌𝜎√2𝜋𝑎 (3) 

where Y is a geometry adjustment factor, 𝜎 is normal stress for mode I, in-plane shear stress 

for mode II, and out-of-plane shear stress for mode III, and 𝑎 is the initial crack size [62, 

63].  Eq. (3) predicts infinite stress at the crack tip (r = 0), but the stress must be finite in 

real materials, and near the crack tip, some yielding occurs.  The LEFM approach deals 

with this local yielding around the crack tip with the plastic zone correction, which says 

that all yield occurs within a contained region.  This plastic zone has a radius, 

 𝑟𝑝 =
1

𝜋
(
𝐾𝐼
𝜎𝑦
)

2

 (4) 
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where 𝐾𝐼 is the mode I stress intensity factor and 𝜎𝑦 is the yield strength [63, 64].  When 

using Eq. (3), the geometry factor can be estimated from a table based on empirically 

gathered data (e.g. [65]). 

 

Figure  8 – Two-dimensional crack tip coordinate system and plastic zone (shape not 

to scale). 

 

 When a local stress intensity factor, KI, KII, or KIII, reaches the material’s critical 

stress intensity factor, KIC, KIIC, or KIIIC, respectively for mode I or opening fracture (Figure 

10a), mode II or in-plane shearing fracture (Figure 10b), and mode III or out-of-plane 

shearing fracture (Figure 10c), the crack propagates [61].  Mode I has the lowest fracture 

resistance and is the most common mode of fracture.  Two-dimensional analysis (e.g. 

assuming plane stress or plane strain) ignores mode III.  The mode mixity between mode I 

and mode II, which is a measure of the mode II to mode I loading acting on the crack, is 

defined by, 
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 𝛹 = tan−1 (
𝐾𝐼𝐼
𝐾𝐼

) (5) 

assuming an isotropic, elastic solid [66]. 

 It is also possible to evaluate the energy release rate using a path independent 

contour integral approach, also known as J-integral [67, 68], which was originally 

developed for nonlinear materials.  In two dimensions, J integral is defined as, 

 
𝐽 =  ∮ (𝑊(𝜀)𝑑𝑦 − 𝒕 ∙

𝜕𝒖

𝜕𝑥
𝑑𝑠)

𝛤

 
(6) 

where Γ is the counterclockwise curve surrounding the crack tip, x and y are in in-plane 

directions (as shown in Figure  9), u is the displacement vector, ds is the infinitesimal 

distance along the path, t are the tractions, and W(𝜀) is the strain-energy density defined 

as, 

 𝑊(𝜀) =  ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀

0

 (7) 

where 𝜎𝑖𝑗 and 𝑑𝜀𝑖𝑗 are the stress and strain tensors, respectively [68].  The approach 

idealizes elastic-plastic deformation as nonlinear elastic, which allows the analysis of 

unloading, and greatly extends beyond the limits of LEFM.  It also assumes time 

independent processes with no body forces and small strains.  Rice applied deformation 

plasticity (or nonlinear elasticity) to the analysis of a crack in a nonlinear material and 

showed that the nonlinear energy release rate could also be written as an independent line 

integral [68].  Hutchinson [69] and Rice and Rosengren [70] also showed that J uniquely 
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characterizes stresses and strains in a nonlinear material.  For a linear, brittle, isotropic 

material, such as glass, J is equal to the strain energy release rate, G [71]. 

 

Figure  9 – Two-dimensional crack tip and J integral contour. 

 

 Evaluation of stress intensity factors or strain energy release rates can be done using 

the analytical equations or numerical methods.  Due to the complexity of problems, 

numerical methods are often employed, such as finite difference [72], finite element (FE) 

[73], boundary elements [74], and peridynamics [75].  Of these techniques, the FE method 

(FEM) is the most developed and widely used for fracture analysis because it is generally 

the most accurate, stable, and efficient method.  Within the FEM, the stress intensity factor 

[76] and J contour integral [77, 78] approaches have been implemented.  In the case of a 

free edge stresses in a laminate structure, the finite element method has been shown to 

match analytical results and believed to be accurate except at the two closest elements to 

the crack tip [79].  
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Figure 10 – (a) Mode I opening fracture, (b) mode II in-plane shearing fracture, and 

(c) mode III out-of-plane shearing fracture. 

 

 Brittle materials such as glass often fail due to the largest defect.  This phenomenon 

can be characterized using Weibull distributions (e.g. [80]).  Typical fracture 

characterization tests include Single Edge Notched Tension, Single Edge Notched Bend, 

Center Cracked Tension, Double Edge Notched Tension, and Compact Specimen (Figure 

11) [61, 63, 65].  For glass in particular, Corning has developed novel tests including ring-

on-ring (Figure 12a) [81, 82] and two-point bending (Figure 12b) [83].  These tests are 

useful for large area or long cables which have defect sizes based on the manufacturing 

process, but are less suited towards polymer laminated glass with defects induced by 

subsequent processing.  Glass with larger, measurable defects has been shown to have 

consistent fracture resistance [84-87].  

 Borosilicate glass, which is the type of glass used for ultra-thin 2.5D glass 

packaging, has been studied extensively, and the resistance to fracture, KC, is known to be 

0.8 MPa√m in air, although the value is higher in a vacuum and lower, 0.4 MPa√m, when 

(a) (b) (c)
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Figure 11 – Stress intensity factor tests (credit: [61, 65]). 

 

 

Figure 12 – (a) Ring-on-ring test schematic (credit: [82]) and (b) two point bend test 

schematic (credit: [83]). 

 

exposed to water, as seen in Figure 13 [86, 88].  Increasing the moisture content of air is 

known to decrease the fracture resistance of glass at a particular crack velocity, as shown 

in Figure 14 for soda-lime glass [89, 90]. 

  

(a) (b)



 23 

 

Figure 13 – Critical stress intensity factor for different types of glasses in water 

(credit: [86, 88]). 

 

 

Figure 14 – Crack propagation velocity as a function of stress intensity factor for 

soda-lime glass in air with varying moisture content (credit: [89, 90]). 

 



 24 

 Prediction of glass cracking can be done through a stress based approach or an 

energy based approach if the defect size and applied stress is known.  However, the defect 

size correlates to the singulation method and is not well understood.  The stress, which 

comes from the RDL, must still be determined as well.  Overall there is a lack information 

connecting the dicing defects in glass, the amount of stress, and crack propagation in glass 

which must first be addressed before RDL can be designed and demonstrated to prevent 

glass cracking.  Thus, there is a gap between the existing knowledge in mechanical 

engineering and how to apply it to the proposed technology. 

2.2 Dicing-induced Defects 

 Several methods exist for singulating a glass panel, such as blade dicing, score and 

break, and laser dicing.  The industry standard for panel or wafer singulation is high 

precision blade dicing [91, 92], which is applicable to silicon, organics, and ceramics.  

These methods use physical ablation of the material, leaving defects on the free edge.  

Other dicing options include lasers, plasma, and stealth dicing, or a combination of these 

depending on the substrate material and build-up [93, 94].   

 Score and break is a common practice for cutting glass in which the glass is first 

scored along a straight line either through a physical scratch or with a laser, and then the 

glass is broken along the weakened line, either by physical bending or thermal stress.  

However, the double sided RDL technology makes it difficult to physically score or bend 

the samples.  Any laser scoring must be applicable to the RDL technology, which is to say 

the laser must be able to penetrate the RDL.   



 25 

 Lasers have been used for RDL ablation and via drilling, though their use as a dicing 

process has been limited.  Lasers have been used in conjunction with blade dicing on silicon 

wafers to clear the street prior to the blade dicing to protect the back end of line layers on 

the silicon wafer.  To make micro-vias between RDL layers, CO2 or UV lasers may be used 

to drill through the dielectric polymer.  Lasers have also been shown and optimized to drill 

TGVs [39-41]. 

 While there are several potential technologies for singulating glass panels, the 

resulting defect size is not well known [95-97].  Furthermore, how these defect sizes 

correlate to failure is not well understood either.  Thus, there is a gap between the existing 

technologies and strategic need.  

2.3 Free-edge Effect and Glass Stresses Due to Redistribution Layers 

 The free-edge effect has been studied in several applications, particularly layered 

structures of plies of fiber reinforced plastics or other materials (also known as laminates).  

There exists a stress concentration between two adjacent dissimilar layers due to the CTE 

mismatch and thermal excursions.  Experimental [98], analytical [99-102] and numerical 

[79, 103-106] approaches, including the finite element method [105, 106], have been taken 

to address this problem.  Approaching the free-edge, the in-plane stresses and shears go to 

zero, as they must for a free edge with no traction.  The out-of-plane stress, which are near 

zero in the bulk of the material, increase drastically near the free edge and are compressive 

but smaller in magnitude in between the bulk and free edge.   
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Figure 15 – (a) 𝝈𝒛 along center of top layer (z = (3/2)h), (b) 𝝉𝒙𝒚 along center of top 

layer (z = (3/2)h), (c) 𝝈𝒛 along 0/90 interface (z = h), (d) 𝝉𝒙𝒚 along 45/-45 interface (z 

= h) (credit: [99]). 

 

 Stresses are related to the applied tractions and while it is possible to analytically 

estimate the tractions based on CTE mismatch, the time and history dependence of the 

RDL make it difficult to obtain an exact answer.  It is desired to directly measure the stress 

in the glass, both in the bulk and at the edge, however, it is impossible to directly measure 

stress because stress is non-physical.  Instead, it is most common to measure strain and 

analytically calculate the corresponding stress, however, the processing sequence to 

fabricate a glass substrate makes it impossible to measure strain by conventional means, 

such as a strain gage.  Instead, other properties are turned to.  As a non-crystalline material, 

(a) (b)

(c)

(d)
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x-ray methods, such as x-ray diffraction, cannot be used.   On the other hand, glass is 

transparent, and as light passes through the glass, the light is polarized, as illustrated in 

Figure 16.  This polarization can be related to the difference in the secondary principal 

stresses in the material and the refractive index of the material through the stress-optic law, 

known as birefringence stress measurement [107].  The difference in the secondary 

principal stresses is a scalar value, which does not sufficiently define the three-dimensional 

stress state required for a fracture mechanics approach.  To define the stress state, previous 

work has taken birefringence measurements from multiple angles [108, 109].  However, 

this approach is not fully applicable to a sample with non-transparent RDL on the top and 

bottom.  For example, if RDL were on the top and bottom (xz-plane Figure 16), then the 

light could rotate around the y-axis but would be severely limited rotating about the x-axis.  

Therefore, the sample is geometrically limited.  Thus, an alternative approach to match the 

measured birefringence stress to the stress field is desired which leverages the modeling to 

account for the geometrical limitations. 
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Figure 16 – A polarized wave passing through a medium, showing phase retardation 

(credit: Mellish). 

 

 Since glass is a photoelastic material, birefringence may be used to measure the 

stress in the material.  When light passes through a photoelastic material, the light is 

polarized based on the refractive index of the glass and the propagation direction of the 

light.  Maxwell observed that the indices of refraction were linearly proportional to the 

stress in the sample, known as the Stress-Optic Law, 

where 𝑛0 is the index of refraction of a material in unstressed state, 𝑛𝑖 are the principal 

indices of refraction which coincide with the principal stress directions, 𝑐1 and 𝑐2 are 

constants known as the stress-optic coefficients, and 𝜎𝑖 are the principal stresses.  To get 

the relative retardation between two principal directions (difference between refractive 

z

x

y

 𝑛1 − 𝑛0 = 𝑐1𝜎1 + 𝑐2(𝜎2 + 𝜎3) 

𝑛2 − 𝑛0 = 𝑐1𝜎2 + 𝑐2(𝜎3 + 𝜎1) 

𝑛3 − 𝑛0 = 𝑐1𝜎3 + 𝑐2(𝜎1 + 𝜎2) 

(8) 
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indices in the two principal directions), ∆𝑛𝑖𝑗, n0 is eliminated and 𝑐2 - 𝑐1 is called the 

relative stress-optic coefficient, c, resulting in, 

 

 Stressed photoelastic material acts as a temporary wave plate, so the relative 

angular phase shift (or relative retardation) of a wave passing through the material, Δ, can 

be related to changes in indices of refraction in the material resulting from principal stresses 

(𝜎1, 𝜎2, 𝜎3).  The relative retardation is defined as the difference between the phase shift in 

the two components of the optical wave.  If a beam of light is passed through a slice at 

normal incidence, the relative retardation accumulated along each of the principal stress 

directions can be related by, 

where 𝛿 is the length traveled by the wave and 𝜆 is the wavelength.  Combining Eq. (9) 

and (10) yields a relation between relative retardation,  

 
∆12=  

2𝜋𝑤𝑐

𝜆
(𝜎1 − 𝜎2) 

∆23=  
2𝜋𝑤𝑐

𝜆
(𝜎2 − 𝜎3) 

∆31=  
2𝜋𝑤𝑐

𝜆
(𝜎3 − 𝜎1) 

(11) 

 ∆𝑛12 = 𝑛1 − 𝑛2 = (𝑐2 − 𝑐1)(𝜎1 − 𝜎2) 

∆𝑛23 = 𝑛2 − 𝑛3 = (𝑐2 − 𝑐1)(𝜎2 − 𝜎3) 

∆𝑛31 = 𝑛3 − 𝑛1 = (𝑐2 − 𝑐1)(𝜎3 − 𝜎1) 

(9) 
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2𝜋∆𝑛23𝛿

𝜆
 

∆31=
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𝜆
 

(10) 
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where 𝑤 is the sample width (replacing 𝛿).   

 Thus, relative retardation (𝛥′) is linearly proportional to the difference between the 

two principal stresses (𝜎1
′, 𝜎2

′) having directions perpendicular to the path of propagation 

of the light beam.  These are related through the principal indices of refraction (∆𝑛𝑖𝑗), 

which are a change in the material that cause photoelastic retardation.  The retardation is 

measured experimentally by passing light through the photoelastic material and observing 

the polarization of the light. 

 For a general state of stress, by considering the change in index of refraction with 

direction of the light propagation in the stressed material, it can be shown that equation 

also applies to secondary principal stress (𝜎1
′, 𝜎2

′), 

 𝛥′ =  
2𝜋𝑤𝑐

𝜆
(𝜎1

′ − 𝜎2
′) (12) 

where prime indicates secondary axes [107].  The third principal stress, having a direction 

parallel to the propagation of the light beam, has no effect on the relative retardation.  These 

equations are widely used in photoelasticity analysis [107, 108, 110, 111]. 

2.4 Glass Strengthening Mechanisms  

 Typical methods to strengthen glass are coatings and surface treatments.  To reduce 

the chance of cracking, coatings provide structural support, are abrasion resistant, provide 

a moisture barrier, add compressive residual stress, and can fill flaws.  However, coatings 

are often limited by manufacturability.  Surface treatments alter the surface of the glass by 

healing flaws, creating compressive residual stresses, and/or dealkalizing the glass.  

Common surface treatments include flame polishing, acid etching, ion exchange 
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strengthening, and fluorine treatment.  Surface treatments may require a minimum 

thickness of glass [112] or harm the RDL.  Ion exchange strengthening (Figure 17) requires 

a minimum thickness of 400 μm, thicker than the ultra-thin glass substrates in this work.  

However, several of these approaches are not applicable to glass substrates.  For example, 

ion exchange requires sodium to exchange with potassium, however, sodium is not 

typically used in microelectronics due to electrical interference.  (The borosilicate glass 

used in this work is alkali-free.)  Also, ion exchange affects the glass surface, while this 

work focuses on cohesive cracking of the glass, which occurs below the surface.   

 

Figure 17 – (a) Before and (b) after ion exchange process (credit: Corning, Inc.). 

 

 Remelting or annealing glass (Figure 18) is not feasible because the dielectric 

polymers would degrade before the glass melting temperature is approached.  

 Thus, due to the limitations of surface treatments, annealing, and other methods, a 

surface coating which is applicable to ultra-thin glass substrates is desired to prevent glass 

cracking. 

(a) (b)
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Figure 18 – Temperature profile for annealing glass (credit: GOEL Process Systems 

Pvt. Ltd.). 

  

2.5 Thin Film Adhesion and Interfacial Debonding 

 For thin film adhesion or interfacial fracture mechanics, two of the important 

parameters are the critical strain energy release rate (GC), which describes the amount of 

energy used to create new surfaces per unit area during crack propagation, and the mode 

mix, which describes the loading conditions [66].  The mode mix is the proportion of 

tractions ahead of the crack tip in mode II relative to the proportion of tractions in mode I 

[113].  In thin film peel tests, a large plastic zone often forms around the fracture process 

region which dissipates much of the applied energy [114].  These large plastic effects can 

disrupt the stress distribution such that the stress intensity factor is no longer meaningful 

for characterizing the stress field.  Consequently, the mode mix for ductile fracture is not 

well defined.  Others have suggested alternative approaches to characterize the mode mix, 

such as crack tip slope angle [115] and the effective strain at the crack tip [114].  However, 

there remains no generally accepted characterization of the mode mix for large scale plastic 

fracture. 
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 Elastic-plastic approaches which attempt to account for plasticity include J-integral 

[67, 68, 71, 78].  However, J-integral has difficulty when the plastic zone reaches the 

boundary of the material, as is often the case for ductile thin films [116], and when 

unloading occurs, as in peel testing.  Previous work on analytical solutions for peel tests 

consider elastic-plastic analysis include [117, 118]. 

 Another approach to characterizing interfacial fracture is cohesive zone modeling 

(CZM), which uses cohesive zone potentials (also known as traction-separation law) to 

define the maximum stress, critical separation, and interfacial adhesion energy [119, 120].  

This approach assumes that the plasticity is contained within a plastic zone near the crack 

tip and does not dominate the behavior, commonly referred to as small scale yielding [64, 

121].  Wei and Hutchinson used a CZM approach which considered plasticity near the 

crack tip [122].  Martiny [123] used a multiscale elastic-plastic approach with CZM to 

consider plasticity near crack tip as well as in the peeling arm. 

 The FEM is a powerful numerical tool for modeling fracture processes, as it has the 

ability to model the mechanics of cracked bodies for which closed form solutions are not 

obtainable or are too complex for practical use.  Previous work utilizing numerical methods 

to analyze elastic-plastic peeling include [122-125].  Hadavinia used a node-release 

technique with a critical plastic strain fracture model to analyze structural adhesives 

between aluminum-alloy and steel substrates [125].   

 Two-step crack extension method involves comparing two independent models: 

one with crack length a, and another with crack length a+δa.  The strain energy release 

rate can then be computed using, 
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𝐺 = −

(U𝑎+δa − U𝑎) − 𝑃(Δ𝑎+δa − Δ𝑎)

𝑏δa
 (13) 

where P is the applied load, Δ is the displacement in the direction of the load at the point it 

is applied, b is the crack width, 𝛿𝑎 is the incremental crack length, and subscripts 𝑎 and 

𝑎 + 𝛿𝑎 a designate the properties at those crack lengths.  Although the crack extension 

method is appropriate for elastic systems, it fails to capture the accumulation of plastic 

work as the crack grows over the length δa and therefore can result in an overestimate of 

the G. 

 To characterize the interfacial adhesion strength, the interfaces must be 

experimentally tested.  The most common tests are bend tests (three- or four-point), double 

cantilever beam (DCB) tests, nano-indentation tests, scratch tests, pull tests, peel tests, and 

blister tests (Figure 19).  For thin film-substrate interfaces, bend tests and DCB tests require 

additional structural support, which means additional sample preparation and may require 

specific structure geometry for testing.  Scratch tests are notoriously difficult to extract 

quantified data from.  Blister tests require specific structure fabrication of a hole through 

the substrate.  Pull tests [126, 127] require a delaminated film, although they are 

straightforward to execute, fast to set-up and perform, and use no or minimal fixtures.  For 

these reasons, the peel test is common in the microelectronics industry, particularly for 

copper thin films on substrates.  Novel peel tests have also been developed, such as 

magnetically actuated peel test, which uses a permanent magnet and applies an external 

magnetic field to load the sample, leading to crack initiation and propagation between the 

thin film and substrate [55, 128, 129].  Due to the wide spread use [122, 130-132] and ease 
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of testing, it is desired to study interfacial adhesion through peel test.  However, the analysis 

for peel testing is often oversimplified and ignores plastic effects of the peeled film.  

 Thus a new technique is desired to determine the critical strain energy release rate 

from a peel test, which accounts for plastic energy dissipation and overcomes these other 

obstacles. 

 

Figure 19 – Interfacial adhesion strength tests (credit: [124]).   

  

2.6 Electrical Considerations for Interposer Design 
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 This section gives an overview of the electrical considerations for interposer design.  

The goal is to meet the data bandwidth requirements in Table  2.  To do this, the 

dimensions, structure (microstrip, embedded microstrip, or stripline), and electrical 

properties must be considered.  Wires are designed to produce 50 Ω impedance while 

considering the electrical performance, specifically reflection loss, insertion loss, and cross 

talk. 

 Sawyer [133] performed modeling for 2.5D glass interposers to target minimize the 

reflection loss and crosstalk while maximizing the insertion loss, with the target parameters 

shown in Table  3.  He performed a parametric routing study of die-to-die signal bus 

considering the via pad diameter, die escape line/space, and fan out/in pitch to determine 

the optimal spacing configuration at an interconnection pitch of 40 µm.  Then, 2D 

electromagnetic (EM) analysis was done for three wiring configurations to match the 

impedance to 50 Ω.  Table  4 shows the line width, line thickness, and dielectric thickness 

for each of the configurations.  Thinner widths are preferred since thinner lines lead to 

higher bandwidth.  Three-dimensional modeling was also performed on two die escape and 

fan-out patterns, which are illustrated in Figure 20.  From the three-dimensional analysis, 

matching the die escape lines (Figure 20a) requires thinner dielectric and achieves better 

impedance matching while die-to-die fanout (Figure 20b) requires thicker dielectric but 

has impedance mismatch.  Based on these potential designs, return loss (Figure 21) and 

insertion loss (Figure 22) were modeled as well.  The die-to-die fan-out matched design 

showed lower return loss and higher insertion loss, and therefore, the die-to-die fanout 

matched design with 2 µm line, 2 µm space for die escape, 5 µm line and 5 µm space for 

fan-in/out, and 6 µm dielectric thickness, was selected. 
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Table  3 – Electrical design targets for 2.5D interposer up to 20-25 GHz (credit: 

[133]). 

Reflection Loss < 15 dB 

Insertion Loss ≤ 2 dB 

Crosstalk  < 15 dB 

 

Table  4 – Two-dimensional line specifications for 50 Ω impedance matching for 

non-epoxy low loss (NELL) polymer and ABF GX-92 (credit: [133]). 

 
 

M1 Microstrip Embedded Microstrip Stripline Z0

W ILD (NELL) ILD (GX92) W ILD (NELL) ILD (GX92) W ILD1 (NELL) ILD1 (GX92)

2 µm 1.3 μm 1.3 μm 2 µm 1.7 μm 1.8 μm 2 µm 3.1 μm 3.4 μm

3 µm 1.9 μm 1.9 μm 3 µm 2.3 μm 2.5 μm 3 µm 4.2 μm 4.5 μm

4 µm 2.4 μm 2.5 μm 4 µm 3.0 μm 3.2 μm 4 µm 5.3 μm 5.5 μm

5 µm 2.9 μm 3.0 μm 5 µm 3.7 μm 3.9 μm 5 µm 6.2 μm 6.5 μm

6 µm 3.4 μm 3.5 μm 6 µm 4.3 μm 4.6 μm 6 µm 7.1 μm 7.5 μm
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Figure 20 – Three-dimensional analysis of two fan-out routing patterns for 50 Ω 

impedance matching, (a) die escape line matched and (b) die-to-die fanout matched 

(credit: [133]). 

 

 

Figure 21 – Three-dimensional EM analysis of return loss (credit: [133]). 
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Figure 22 – Three-dimensional EM analysis of insertion loss (credit: [133]). 

 

 To analyze cross talk, Sawyer created models of five striplines and demonstrated ≤ 

15 dB of cross talk with the nearest lines up to 20 GHz without a ground trace for ABF 

GX-92 and non-epoxy low loss polymer [133].  Additional data on the electrical design of 

2.5D interposers can be found in [12, 20, 26, 134]. 

 A 5 µm line and 5 µm space layout is sufficient to achieve 100 lines per mm, which 

means a 10.0 mm wide bus can achieve 128 GB/s in one signal routing layer for 50 ps rise 

and fall times.  Combined with the two additional copper layers for striplines and the 

symmetry required for warpage, this means a minimum of six metal layers are required to 

achieve the target specifications for an ultra-thin 2.5D package, as described in Table  2.  

The routing copper is designed to be 3-4 µm thick with 3 µm thick planes, the dielectric 

layers will be fabricated with film thicknesses of 10, 5, and 5 µm, and the passivation is 10 

µm.  (It should be noted that the dielectric polymers are not currently available at 

thicknesses less than 5 µm, even though Table  4 targets thicknesses less than 5 µm.)  Thus, 

the total build-up thickness for both types of polymer is 78 µm, as illustrated in Figure 23. 
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Figure 23 – Build-up thickness illustration from electrical design for 2.5D interposer 

with 128 GB/s in a 10.0 mm wide bus. 
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CHAPTER 3. OBJECTIVES AND APPROACH 

 The objectives of the proposed research are to understand the fundamental factors 

that contribute toward the cracking of glass and debonding of RDL, to design and 

demonstrate thermo-mechanically reliable 2.5D glass packages, and to develop design and 

process guidelines for such reliable glass packages.  The metrics for such 2.5D packages 

are defined in Table  2.  In particular, this work studies how RDL stresses propagate dicing-

induced defects into cohesive cracks as well as interfacial delamination, how geometry and 

process modifications could mitigate such failures, demonstrates prototypes that are 

reliable through processing and thermal cycling, and develops design guidelines for current 

and future glass packages.  As part of experimental validation, stresses in glass caused by 

RDL are measured through birefringence and are correlated to modeling.  Warpage is 

predicted using sequential finite-element modeling that mimics the fabrication process, and 

shadow moiré measurements are used to validate the package warpage and thus, the model 

predictions.  Various dicing methods and the associated dicing defects are comprehensively 

quantified, and are used to reduce the chance for glass cracking.  Based on the findings of 

this work, test vehicles are designed and their reliability is demonstrated through 1000 

thermal cycles.  To enable a wider design space, three alternative solutions to glass 

cracking, edge coating, two-step dicing, and laser dicing, are proposed, analyzed, and 

demonstrated.  An innovative method to determine the critical energy release rate for 

peeling of a copper thin film from a glass substrate is developed, and the developed 

technique is employed to enhance adhesion of copper wiring.  In addition, general design 
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and process guidelines for mechanical reliability, which are applicable to other packaging 

applications, such as mobile substrates, filters for RF, and power, are developed.  

 The following chapters outline the technical approach, results obtained, and the 

findings and recommendations from this work.   CHAPTER 4 describes the glass panel 

fabrication process, which is used throughout this work.  In CHAPTER 5 glass panel 

singulation methods, including blade dicing and laser dicing, are investigated, the defects 

from those dicing methods are quantified, and the methods to minimize dicing-induced 

defects are discussed.  In CHAPTER 6, glass packages are measured through birefringence 

and warpage measurements, and the experimental data are used to validate finite-element 

models, which are then used to study the stress in the glass due to RDL (Task 1b).  Based 

on CHAPTER 5 and CHAPTER 6, crack propagation in glass substrates is predicted using 

finite-element models and demonstrated through thermal cycling reliability experiments 

(Task 1c) in CHAPTER 7.  Then, in CHAPTER 8, the models are used to analyze and 

demonstrate glass cracking prevention (Task 2a) as well as develop design guidelines to 

prevent glass cracking.  In CHAPTER 9, alternative processes to prevent glass cracking 

for thicker build-ups are proposed, analyzed, and demonstrated (Task 2b).  Delamination 

of copper in glass packages is investigated in CHAPTER 10 to design RDL for interfacial 

adhesion (Task 3).  CHAPTER 11 concludes the work by extracting higher level 

conclusions and analyzing the viability of ultra-thin 2.5D glass packages as well as noting 

the scientific contributions and potential future work.  These tasks line up to the challenges 

identified in CHAPTER 2, as seen in Table  5. 
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Table  5 – Challenges and tasks for RDL reliability of 2.5D ultra-thin glass 

substrates. 

Challenges Tasks 

Glass cracking after 

singulation and during 

thermal cycle reliability 

testing 

1) Understand glass cracking 

  1a) Quantify dicing defects for various dicing methods 

  1b) Model and determine stress in glass due to RDL 

  1c) Predict cohesive crack propagation 

2) Demonstrate glass cracking prevention 

  2a) Prevention using industry standard processes 

  2b) Extended prevention using alternative processes 

Delamination of copper in 

glass packages 
3) RDL design for interfacial adhesion 
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CHAPTER 4. SUBSTRATE FABRICATION PROCESS 

To create glass substrates or interposers for ultra-thin 2.5D packages, glass panels 

were fabricated using class 1000 clean-room processes applicable to substrate fabrication.  

Figure 24 illustrates the fabrication process sequence for a glass panel.  Fabrication was 

done in collaboration with the 3D Packaging Research Center, including Ichiro Sato, 

Yutaka Takagi, Brett Sawyer, Yuya Suzuki, and Ryuta Furuya. 

Fabrication began with a 150 x 150 mm bare glass panel with a CTE of 3.3-9.8 

ppm/°C provided by Asahi Glass Co., Ltd., or Corning, Inc (Figure 24a).  The glass panel 

was cleaned and laminated with a layer of 5 – 22.5 μm dielectric polymer (Figure 24b).  

Dielectric polymers used include Ajinomoto’s ABF GX-92 and a non-epoxy low loss 

polymer.  To promote adhesion between glass and polymer, silane was deposited through 

an aqueous alcohol solution.  The polymer was cured in a conventional oven at 180 ºC.  

Copper traces were deposited through a semi-additive process (Figure 24c-h). The semi-

additive process started with an electroless copper seed layer (Figure 24c), on top of which 

dry film photoresist was laminated (Figure 24d), exposed and developed (Figure 24e), and 

then copper was electroplated (Figure 24f).  The photoresist was then stripped (Figure 24g) 

and the seed layer was etched, leaving 3 – 10 μm of copper, which was then annealed 

(Figure 24h).  This process was two sided, creating layers of polymer and copper traces on 

both sides simultaneously.   

 Then the dielectric polymer and semi-additive processes were repeated once to add 

a second layer of RDL on each side of the glass panel for a total of four metal layers (Figure 

24i-j), and if desired, were repeated twice for a third layer of RDL on each side of the glass 
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panel, for a total of six metal layers (Figure 24k-l).  Figure 25 shows an example set of 

masks used for fabrication of a 2.5D glass interposer.  To create six metal layers for this  

 

Figure 24 – Fabrication process sequence for glass panel. 
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Figure 25 – Example mask set for 2.5D glass interposer (credit: [133]). 
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demonstration, metal layers 1 and 2 were reused for layers 5 and 6 on the back side to 

minimize warpage. 

 Finally, an electroless nickel, electroless palladium, immersion gold (ENEPIG) or 

electroless nickel, immersion gold (ENIG) surface finish was applied and a dry film 

passivation was laminated (Figure 24m), exposed, developed, and cured (Figure 24n).  

Fabricated glass panels are shown in Figure 26 and Figure 27.  Details on the fabrication 

process to this point (prior to singulation) is summarized in Table  6. 

 

Figure 26 – 300 µm thick glass panel after fabrication, showing (a) the entire panel, 

(b) a full glass interposer prior to singulation, (c) passivation surface finish opening 

alignment and (d) close-up of passivation surface finish opening (credit: [133]).  

 Once all layers were deposited and patterned, the glass panels were then singulated 

into individual substrates by dicing methods.  More details on the dicing methods used can 

(a) (b)

(c) (d)
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be found in CHAPTER 5.  Depending on the size of the coupon, each panel had an 

appropriate array of substrates, such as a six by six array of 18.4 x 18.4 mm substrates or a 

four by two array of 30.0 x 37.5 mm substrates.   

 This fabrication procedure does not include TGVs, which were not present in the 

majority of samples. 

 

Figure 27 – (a) 100 µm thick glass panel after fabrication with coupon ID and (b) 

glass interposer with test structure identification (credit: [133]). 

 

(a)

(b)
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Table  6 – Substrate fabrication process details. 
Layer Process Condition 

1st layer Glass preparation Cleaning glass substrate   

    Silane treatment   

  Dielectric polymer 

lamination 

Combining with adhesion film   

  Laminating 200F - vacuum: 60s, pressure: 10s 

    Hot press 240F - 1min 

    Curing 180C - 60min 

  Electroless plating Clean and roughen surface   

    Electroless plating 34C - 20min 

    Anneal 110C - 30min 

  Photolithography Acid dip -> DI rinse   

    Drying   

    Laminating   

    Exposure   

    Development   

    Prasma treatment   

    UV cure   

  Electrolytic plating Cleaner -> DI rinse   

    Acid dip   

    Copper plating   

  Seed layer removal Stripping photoresist   

    Cu etching   

    Acid dip -> DI rinse   

    Anti-tarnish -> DI rinse   

    Anneal 180C - 30min 

  CZ Bondfilm   

2nd layer Dielectric polymer 

lamination 

Laminating 200F - vacuum: 60s, pressure: 10s 

  Hot press 240F - 1min 

    Curing 180C - 60min 

  Electroless plating Clean and roughen surface   

    Electroless plating 34C - 20min 

    Anneal 110C - 30min 

  Photolithography Acid dip -> DI rinse   

    Drying   

    Laminating DFR   

    Exposure   

    Development   

    Prasma treatment   

    UV cure   

  Electrolytic plating Cleaner -> DI rinse   

    Acid dip   

    Copper plating   

  Seed layer removal Stripping photoresist   

    Cu etching   

    Pd etching   

    Acid dip -> DI rinse   
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    Anti-tarnish -> DI rinse   

    Anneal 180C - 30min 

  CZ Bondfilm   

3rd layer 
Dielectric polymer 

lamination 

Laminating 200F - vacuum: 60s, pressure: 10s 

(if 

applicable) 
Hot press 240F - 1min 

    Curing 180C - 60min 

  Electroless plating Clean and roughen surface   

    Electroless plating 34C - 20min 

    Anneal 110C - 30min 

  Photolithography Acid dip -> DI rinse   

    Drying   

    Laminating DFR   

    Exposure   

    Development   

    Prasma treatment   

    UV cure   

  Electrolytic plating Cleaner -> DI rinse   

    Acid dip   

    Copper plating   

  Seed layer removal Stripping photoresist   

    Cu etching   

    Pd etching   

    Acid dip -> DI rinse   

    Anti-tarnish -> DI rinse   

    Anneal 180C - 30min 

  CZ Bondfilm   

Passivation Solder resist Laminating 140F - vacuum: 60s, pressure: 10s 

    Exposure   

    Development   

    Prasma treatment   

    UV cure   

    Post bake 150C - 60min 

    SR surface treatment   

    Acid dip   

 

  



 51 

CHAPTER 5. DICING PROCESES AND DICING-INDUCED 

DEFECTS 

 The two factors which interact to cause crack propagation are the defect size and 

the applied stress.  This chapter focuses on those defects and the dicing which causes them.   

 Since glass substrates are fabricated at the panel level, the panel must be singulated 

into individual coupons.  Mechanical dicing is an abrasion-removal process of materials in 

the dicing street, mimicking that of a saw, leaving a pock-marked surface (Figure 28).  The 

fixed abrasives in a dicing blade are diamond grits held together by bonding materials.  

During dicing, the blade makes contact with the sample while rotating at high speeds.  The 

abrasion debris is removed by water.  Any physical abrasion process, such as blade dicing, 

creates defects on the surface and potentially subsurface damage during the abrasion 

process. 

 

Figure 28 – Optical micrograph of a glass edge after dicing. 
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 In CO2 laser ablation, the panel is singulated into individual coupons by sequential 

laser ablation drilling along the dicing street. Any dicing technique which uses a laser to 

ablate the glass or cause sufficient damage to enable controlled breaking of the panel leaves 

a heat affected zone [135].  Because of its wavelength and relatively long pulses, the CO2 

laser is a thermal ablation process, whereas blade dicing is a physical abrasion process.  

Due to melting during the CO2 laser ablation process, the glass surface can heal previous 

flaws, creating a smoother surface compared to blade dicing.  However, thermal stresses 

caused by local heating and cooling, induced by the thermal ablation, known as the heat 

affected zone, can cause cracking during or after dicing.  Also, whereas blade dicing is 

done in cooling water, laser ablation is done in a dry air environment. 

 After dicing, the defect size must be quantified, however, the damage below the 

surface and optical nature of glass can make this characterization difficult.  The surface can 

be measured through physical or optical profilometry or atomic force microscopy, 

providing an estimate of the surface roughness.  To determine the subsurface damage, cross 

sectioning may be used, despite being destructive and time consuming.  Other subsurface 

measurement techniques, such as x-ray microscopy or scanning acoustic microscopy, are 

ineffective because glass is invisible to x-ray and the defects are very small.  It has been 

shown that subsurface damage can be correlated to the surface roughness [96].  Therefore, 

surface roughness was used as the metric of dicing quality for dicing processes and spot 

checked with cross sections.   
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5.1 Blade Dicing of Ultra-thin Glass 

 To study blade dicing of ultra-thin glass panels, two batches of glass panels were 

fabricated (Table  7).  These two batches had only polymer layers (no metallization 

patterns), mimicking the materials stack-up present in the dicing streets.  The samples were 

diced by Frank Wei and DISCO Corporation [53], and the surface roughness was measured 

through confocal microscopy.  In addition, the presence of cracking was determined 

through optical inspection. 

Table  7 – Design of experiments for optimizing blade dicing of ultra-thin glass 

(adapted from [53]). 
Sample Description Sample Structure Dicing Process DOE 

Batch 1 

• Two layers 

• Low (3.3ppm/°C) and 

high (9.8ppm/°C) CTE 
 

• Nine different 

blades 

• US cutting 

• Bevel cutting 

Batch 2 

• Four layers  

• Lamination layer 

material DOE 

• Low (3.3ppm/°C) CTE 

 

• Five different 

blades 

• Pulsed laser 

cutting 

• Polished cut 

 

 The first result showed that as physical diamond grit size of the blade decreased, 

the glass side wall line roughness generally decreased (Figure 29).  Blades with smaller 

diamond grits left smaller damages.  However, a grit size limit appears to exist, below 

which, cracks begin to form on diced glass edge.  This is because the material removal 

power of a saw blade also decreases as the diamond grit size decreases.  As a result, the 

blade would exert a high pressure on the glass panel workpiece, leading to cracks.  In the 

samples which cracked, the cracks always formed near the glass and bottom polymer 
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interface, even when the glass panel was flipped over and re-mounted, where the top and 

bottom polymer layers had been reversed.  This indicates that such cracks during blade 

dicing and result from the blade rotating downward into the sample to abrade the glass.  In 

general, this abrasion is considered a critical moment in the dicing process, contributing to 

chipping.  If a chosen blade did not have enough cutting power (e.g. the diamond mesh 

size is too fine), chipping near the bottom side could lead to glass cracking.   

  It should be noted even when no cracks form, the majority of defects occur at the 

glass and bottom polymer interface.  This indicates that the most likely initial defect 

position for all blade dicing cases is near the glass-polymer interface. 

 

Figure 29 – Glass sidewall line roughness, Ra, as a function of diamond grit size for 

blade dicing (adapted from [53]). 
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 Secondly, in addition to the diamond grit size, the blade bonding material type 

affects sample cracking behavior.  Figure 30 shows a summary of glass sidewall roughness, 

Ra (μm), separated by bond type.  For nickel bond blades, regardless of different diamond 

mesh sizes and sample compositions, cracking on the glass sample sidewalls always 

occurred regardless of the glass sidewall roughness.  Resin bond blade resulted in glass 

cracking during reliability tests at smaller diamond grit.  However, for samples cut with 

metal bond blades, no sidewall cracks were observed for a similar range of sidewall 

roughness as those of nickel bond blades.  As seen, dicing a glass sidewall with the same 

roughness can produce cracking or no cracking depending on the blade bond type.   

 

Figure 30 – Summary of glass sidewall roughness, Ra, from Table 27 (adapted from 

[53]). 
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 Based on this understanding, the metal bond blade producing the lowest glass 

sidewall line roughness and no sidewall cracks, MT101 (Dicing Blade 1 in Figure 30), is 

selected as the best-known method and used for all future blade dicing, representing the 

optimized dicing conditions.  Later cross sections showed the typical maximum defect size 

to be 5 μm for this optimized blade dicing, a marked improvement over the cracking caused 

by the unoptimized blade dicing process.   

 Table  8 details the optimized process parameters for blade dicing ultra-thin glass 

panels.  The process was demonstrated on three dicing saws by DISCO Corporation: a 

DAD321, a DAD3230, and a DAD3360, using three types of dicing tape with UV and non-

UV release methods and thicknesses ranging from 0.105 to 0.139 mm. 

Table  8 – Optimized process parameters for blade dicing glass. 

Blade MBT-A161-SD1500L25MT101 

by DISCO Corporation 

Blade Spec 52.6 × 0.08 × 40 mm (flange) 

Dressing 

Dress Board GC2000NB50  

by DISCO Corporation 

Spindle RPM 30,000 

Cut Mode A 

Dressing Cuts 10 mm/s x10 

20 mm/s x10 

Chop speed 0.1 mm/s 

Process Conditions 

Spindle RPM 30,000 

Feed Rate 1.0 mm/s 

Water: Blade 

            Shower 

            Curtain 

1.5 L/m 

1.0 L/m 

2.0 L/m 

Cut Depth ≤ 0.25 mm of glass per pass 

0.040 mm into tape 

Chop Speed 0.1 mm/s 
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5.2 Laser Dicing of Ultra-thin Glass 

 The CO2 laser ablation dicing process uses a CO2 laser with a wavelength of 9.4 

μm for the singulation of glass substrates with multiple polymer and copper layers on both 

sides.  The dicing was achieved using a two-stage process, (a) by applying a very low 

amount of energy to ablate the polymer and minimize any damage caused to the glass, and 

(b) then applying a larger and more focused amount of energy to dice through the glass.  

The CO2 laser process parameters such as laser power, pulse width, and repetition rate were 

optimized for cutting while causing very little stress to the glass. 

 Since the CO2 laser ablates the glass with sequential pulses, a pattern of striations 

is left along the surface (Figure 31).  While this produces a surface roughness, the actual 

glass surface is smoother than what is measured across a large area.  Furthermore, the glass 

surface is not planar after laser ablation (Figure 32), making it difficult to compare the 

surface roughness, even if it was quantified.  An initial defect size is desired, and so cross 

sections were performed to characterize the worst defect size and location.  Since no 

cracking was observed on the glass surface in all laser cut samples, random samples were 

chosen for cross sectioning.  From these cross sections, the typical maximum defect size 

was 3 μm. 

 Subsurface damage or weakness due to the heat affected zone was suspected after 

the thermal ablation process.  This was because after the thermal ablation, the glass rapidly 

cools, with the free surface cooling faster than the bulk of the glass.  The free surface would 

contract as it cooled, creating a compressive stress at the surface, while the glass behind it 

would be tensile to balance the compressive stress.  This concern was investigated through 
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cross sectioning samples; looking at the cross sections, no subsurface damage due to the 

heat affected zone was observed.  However, the glass was observed to locally deform, seen 

as a bulge on the top side of the glass in Figure 32.   

 

Figure 31 – Glass substrate edge after CO2 laser ablation dicing. 

 

 

Figure 32 – Cross section of CO2 laser ablation diced sample. 
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5.3 Dicing Methods Comparison 

 The dicing methods for ultra-thin glass panels are summarized in Table  9.  

Comparing unoptimized blade dicing, optimized blade dicing, and CO2 laser ablation 

dicing, blade and laser ablation methods are compatible with all materials used in glass 

substrates.  While copper is used for glass substrates, it is kept out of the dicing street.  In 

blade dicing, copper is ductile and sticks to the dicing blade, causing more friction while 

cutting and wearing the blade out faster.  In CO2 laser dicing, copper is extremely slow to 

ablate, making it impractical to cut through.  The street size for both dicing methods is 

relatively small. 

 From the observed defect size, the maximum stress at which the glass will crack 

can be calculated using Eq. (3) given the critical SIF and the geometry factor.  The critical 

SIF for borosilicate glass is 0.8 MPa√m in air and 0.4 MPa√m in water [86] (or the critical 

ERR is 7.9 J/m2 in air and 2.0 J/m2 in water).  This is important for blade dicing because 

blade dicing is done with water to remove the debris as the sample is diced, while laser 

dicing is done in air.  The geometry factor is approximated to be 1.12 based on an edge 

crack specimen under tension with a << W [65].   

 The stress which causes cracking is covered in more depth in CHAPTER 6 and the 

relationship between dicing defects, stress, and crack propagation is covered in CHAPTER 

7. 
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Table  9 – Comparison of dicing methods for ultra-thin glass panels. 

Material Compatibility 
Unoptimized 

Blade Dicing 

Optimized 

Blade Dicing  

CO2 Laser 

Dicing 

   Low-CTE Glass Good Good 

   High-CTE Glass Good Good 

   Non-epoxy Low Loss 

Polymer 
Good Good 

   ABF GX-92 Good Good 

   Solder Resist Passivation Good Good 

   Copper No No 

Street Size (μm) 100 40 

Surface Roughness (μm) 7.8 2.1 n/a 

Defect Size (μm) >100 (cracked) 5 3 

Predicted Stress Limit (MPa) 
40.3 (in air) 

20.1 (in water) 

127.4 (in air) 

63.7 (in water) 

232.7 (in air) 

116.3 (in water) 
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CHAPTER 6. REDISTRUBTION LAYER-INDUCED STRESSES 

 The two factors which interact to cause crack propagation are the defect size and 

the applied stress.  This chapter focuses on the stress in the glass and the RDL which causes 

that stress.  In the first part of this chapter, the stress in the glass is determined through 

birefringence measurements, which are then correlated to models.  In the second part of 

this chapter, warpage measurements are compared to modeling predictions as a secondary 

validation of the stress in glass packages. 

6.1 Stress Measurement Through Birefringence 

6.1.1 Experimental Fabrication 

 This section outlines the fabrication process of glass substrates from which 

birefringence stress measurements were taken.  For this work, a design of experiments was 

chosen to include different thicknesses of glass (100 and 300 µm), varying thicknesses of 

polymer (40, 80, and 120 µm total) and copper (0, 20, and 40 µm total), and different 

copper densities (50 and 75% in 1.0 mm wide lines) (Table 10). 

 Fabrication began with a bare glass panel, either 100 or 300 µm thick, which was 

cleaned and treated with an aqueous silane solution for improved adhesion between glass 

and polymer, and then a 20 µm dry film polymer was laminated and cured.  This work used 

Asahi Glass Co., Ltd’s EN-A1 for the glass and Ajinomoto’s Build-up Film GX92 as the 

dry film polymer.  This concluded the polymer-only samples (A and B in Table 10).  For 

samples with copper, a 10 µm of copper was deposited through a subtractive process by 

electroless plating a seed layer, electrolytic plating thick copper, patterning, and etching.  
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 Then, another lay of dielectric polymer was deposited on top of the copper, 

concluding the one metal layer per side samples (C and D in Table 10).  For samples with 

two layers of copper on each side, the copper deposition and polymer lamination were 

repeated (E and F in Table 10).  Having polymer cover the copper was important to protect 

copper and prevent delamination during birefringence measurement sample preparation. 

 After the panels were fabricated, they were diced into individual coupons by blade 

dicing.  The blade dicing was optimized for polymer laminated glass to have minimal 

defect size [53].  Examples of the resulting coupons with polymer only (no copper), 50% 

copper density, and 75% copper density, are shown in Figure 33.   

 In total, 20 panels were fabricated, two of each type.  From each 150 mm × 150 

mm glass panel, 30 coupons could be obtained. 

Table 10 – List of samples fabricated with ABF GX-92. 

Abbreviation 

Code 
Sample Description 

Number of 

Samples 

A 
100 μm borosilicate glass with 20 μm 

dielectric polymer 
6 

B 
300 μm borosilicate glass with 20 μm 

dielectric polymer 
6 

C 
100 μm borosilicate glass with 40 μm 

dielectric polymer and 10 μm copper 

6 (50% Cu) 

6 (75% Cu) 

D 
300 μm borosilicate glass with 40 μm 

dielectric polymer and 10 μm copper 

6 (50% Cu) 

6 (75% Cu) 

E 
100 μm borosilicate glass with 60 μm 

dielectric polymer and 20 μm copper 

6 (50% Cu) 

6 (75% Cu) 

F 
300 μm borosilicate glass with 60 μm 

dielectric polymer and 20 μm copper 

6 (50% Cu) 

6 (75% Cu) 
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Figure 33 – Three glass coupons after singulation, showing B with no copper (left), 

C with 75% copper (center), and C with 50% copper (right).  Scale is in cm. 

 

6.1.2 Birefringence Measurements 

 This section details the procedure to measure stress in the glass and the results 

obtained from those measurements.  Birefringence was chosen to measure the stress 

because glass is a photoelastic material.  Other approaches to measuring stress are limited 

when considering the materials and geometry in this case.  For example, the small geometry 

makes it difficult to use a strain gage and glass is transparent to x-ray, making x-ray 

diffraction techniques challenging. 

 After fabrication and dicing, the samples were prepared for birefringence 

measurement (Figure 34).  First, the samples were cut down to 300 µm width and then 

polished.  The sample was chosen to be 300 µm so that the transmissive light does not get 

attenuated too much and that the detectable retardation is smaller than a wavelength.  Then, 

the samples were measured with an Abrio® Micro Birefringence Measurement SystemTM.  

Measurements were taken with monochromatic light using a green filter over a region that 

included RDL with and without copper, if applicable.  The light was oriented normal to the 

CopperPolymer
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glass.  From the measurement, stress contours and the stress across the sample thickness 

were measured.   

 In the experimental set-up, the third principal stress, σ3, was parallel to the 

propagation of the light beam (z), and therefore, had no effect on the relative retardation.  

Eq. (12) was used to relate the relative retardation to the secondary principal stresses. 

 An example of the difference of the secondary principal stresses for F with 50% 

copper is shown in Figure 35.  The dark region is background behind the sample.  Under 

the copper, there is a greater relative retardation in the glass than outside, indicating that 

the difference in the secondary principal stress is higher in the glass under the copper than 

the dielectric polymer.  Also, near the top and bottom, the difference in stresses are 

observed to increase, as expected.   

 The stress across the sample in the middle of the copper region (indicated by the 

white dashed line in Figure 35) is plotted in Figure 36 and Figure 37. 

 It is seen that thinner glass has a higher difference in secondary principal stress in 

general, although that difference increases at the edge more in thicker glass.  The difference 

between 50% and 75% copper is negligible because the copper regions are wide.  In 

samples with smaller lines, the copper density is expected to make a larger difference. 
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Figure 34 – Sample preparation and birefringence measurement process. 

 

 

Figure 35 – Stress contour measured through birefringence for an F (50%) sample 

(300 µm glass coupon with 34 µm polymer and 10 µm copper). 
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Figure 36 – Comparison of the difference in secondary principal stresses along the 

white line in Figure 35 as measured through birefringence and predicted through 

modeling (part 1/2). 
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Figure 37 – Comparison of the difference in secondary principal stresses along the 

white line in Figure 35 as measured through birefringence and predicted through 

modeling (part 2/2). 

 

6.1.3 Model Correlation 

 This section discusses the finite-element models created to mimic the measured 

stress, which will then be used to predict crack propagation and create design guidelines in 

the subsequent sections. 

 Thermo-mechanical finite-element models were created in ANSYSTM 14.5 using 

the Solid185 element type.  The geometry of the models mimicked the samples described 

in Table 10, except for applying one plane of symmetry.  An example of such a model is 

shown for D with 75% copper in Figure 38.  In these models, the birefringence light was 
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oriented in the z-axis.  This means any birefringence measurement point includes all data 

along a line parallel to the z-axis.  To assist in validation, a mesh with rectangular elements 

was chosen and oriented with the coordination system (Figure 38).  Thermal boundary 

conditions are then applied to induce stresses through thermo-mechanical expansion.  The 

structural boundary conditions applied to the model are symmetry along the x = 0 face, the 

origin fixed in all directions, and one node at the top of the model fixed in z to prevent rigid 

body motion.  The material models used are given in APPENDIX I. MATERIAL 

MODELS.   

 From the solved models, the stress components were recorded and the secondary 

principal stresses of each element was calculated using Mohr’s circle rotation of a Cauchy 

stress tensor [110], 

 

𝜎1
′ =  

𝜎𝑥 + 𝜎𝑦

2
+ √(

𝜎𝑥 − 𝜎𝑦

2
)
2

+ 𝜎𝑥𝑦2 

𝜎2
′ =  

𝜎𝑥 + 𝜎𝑦

2
− √(

𝜎𝑥 − 𝜎𝑦

2
)
2

+ 𝜎𝑥𝑦2 

(14) 

Then, the secondary principal stress difference for all elements at the same xy location was 

averaged.  These results are plotted in Figure 36 and Figure 37.  The comparison of 

modeling and experimental secondary principal stresses are along a line in a copper region, 

shown in Figure 35 by the dashed white line and shown in Figure 38 by the dashed black 

arrow. 

 Reference temperatures of 150°C were used for glass and dielectric polymer and a 

reference temperature of 66°C was used for copper.  It should be noted that the copper’s 

reference temperature is entirely empirical.  The polymer’s reference temperature is 
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assumed to be about the glass transition temperature [28], and glass is set equal to the 

polymer.  Trends seen in the experimental results are reproduced in the modeling in the 

copper regions, such as higher stress near the edge and lower stress in the 300 µm than the 

100 µm glass samples. 

 

Figure 38 – Finite-element model geometry and mesh for birefringence comparison. 

 

6.2 Model Validation Through Shadow Moiré Warpage Measurements 

 In this section, warpage measurements from shadow moiré are compared to 

warpage predicted through modeling based on the fabrication process.  While this is not a 

direct validation of the stress in the glass, it serves as a verification that the stresses and 

strains being predicted in the package by the model are accurate. 

6.2.1 Shadow Moiré Warpage Measurements  

 The packages were fabricated using 100 µm thick glass substrates and thermo-

compression bonded (TCB) at 260 °C peak temperature to a silicon die.  A cross section 

schematic of the proposed glass ball grid array package is seen in Figure 39.  The glass 

substrates measured 18.4 × 18.4 mm and had a total of four metal layers.  A non-epoxy 
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low loss polymer was used as the dielectric.  More details on the fabrication process can 

be found in 2.6.  A 10 × 10 mm, 630 µm thick silicon die, which was bumped with tin-

silver solder, was assembled on the glass substrate by TCB with a tool head temperature 

of 280 °C and 50 MPa pressure for 5 seconds with the stage held at 70 °C by Dr. Vanessa 

Smet.  The temperature profile for the tool head during TCB is shown in Figure 40.  A B-

stage underfill was dispensed on the die and B-staged for 1 hour at 70 ºC prior to die 

assembly and the package was cured at 165 ºC for 3 hours after assembly.  Additional 

details on the TCB can be found in [22].  A silicon die assembled on a glass substrate with 

a B-staged underfill is shown in Figure 41. 

 

Figure 39 – Cross section schematic of a glass ball grid array package for smart 

mobile application. 
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Figure 40 – Tool head temperature and pressure profile used for thermo-

compression bonding. The stage is held at 70 °C throughout the process. 

 
 

 

Figure 41 – Silicon die assembled on a four-metal-layer glass substrate with B-

staged underfill. 

 

 Shadow moiré measurements were done using akrometrix’s TherMoiré PS200STM 

to determine the warpage of the die-substrate package.  Details on Shadow Moiré can be 

found in several publications [136-138].   

 An example shadow moiré collected for the Low-CTE Glass Sample at room 

temperature over the die region in is shown Figure 42.  The die region measurements were 

taken from the die side.  The warpage values are computed by looking at the maximum and 
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minimum out-of-plane displacements from the shadow moiré experiments.  For example, 

as seen in Figure 42, the die region has a positive displacement of 3 μm, while the substrate 

corners have a negative displacement of 5 μm, and thus, the overall warpage for this die-

substrate package is 8 μm.  The warpage was dome-shaped because the substrate contracted 

more than the die at room temperature.   

 Die warpage was determined as the difference of the die center height and the 

average corner height, and thus, the data for each sample at a given temperature is the 

average of four measured values.  Shadow moiré data (Figure 43) was collected over a 

temperature range of 25 to 260 °C, covering the range of temperatures experiences in a 260 

°C reflow cycle, which is necessary to attach the package to a system board.  The error 

margin of the tool and grating used is ± 1.5 μm.  The warpage is reported in µm as is typical 

for packaging applications.  In mechanics applications, curvature is more commonly used, 

and 8 µm of warpage at room temperature corresponds to a curvature of 6.4 × 10-7 µm-1 

over a 10 × 10 mm area. 

 It should be pointed out that at temperatures above 220 ºC, the solder is likely to be 

in molten state, and thus, will provide practically no mechanical coupling between the die 

and the substrate.  Therefore, at temperatures close to 220 ºC and above, the warpage will 

be minimal, as seen in Figure 43. 

 As seen, the die had a maximum warpage at room temperature, and this warpage 

continued to decrease as the temperature was increased toward the stress-free temperature.  

The stress-free temperature for the dielectric polymer on the glass substrate was 162 ºC, 

for the solder assembly was 220 ºC, and for the underfill cure was 160 ºC.   
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 More warpage analysis of glass packages can be found in [17, 49, 51, 139]. 

 

Figure 42 – Glass package at room temperature (die region shadow moiré 

measurement from die side) showing 8 μm warpage. 
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Figure 43 – Comparison of experimentally measured and model predicted die 

warpage for a glass package. 

 

6.2.2 Warpage Prediction and Validation 

 In parallel to experiments, finite-element models were created based on the 

fabrication and assembly processes to validate the stresses in the package.  The modeling 

was done parametrically in ANSYS™ 14.5, using plane-strain approximation.   

 Figure 44 shows a schematic of the plane-strain model for the Low-CTE Glass 

Sample.  The glass or organic substrate, the polymer layers, copper redistribution layers, 

solder interconnects, underfill, and silicon die were included in the models.  There were no 
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diagonal with symmetry boundary conditions on one side, as illustrated in Figure 44.  One 

node at the left bottom was fixed in y direction to prevent rigid body motion.  The fixed 

node was within the glass, as the glass is present from the beginning of fabrication, which 

is important for process modeling.  The material properties used in the model can be found 

in APPENDIX I. MATERIAL MODELS.  

 To mimic the actual fabrication process, element “birth” and “death” were used in 

the simulation model.  At the beginning of process simulation, only the glass core was 

present.   Therefore, the simulation started with “birthing” the glass panel, and “killing” all 

other layers or materials.  Such a “killing” or death means that such material elements were 

present in the model, however, with a modulus of elasticity that is six orders of magnitude 

less than other “birthed” materials.  Material elements were “birthed” sequentially with 

their actual properties at their stress-free temperature. 

 

Figure 44 – Example plane-strain model for the Low-CTE Glass Sample. 
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Figure 45 – Fabrication and assembly process temperature sequence used in birth 

and death modeling. 

 

 Figure 45 illustrates the solution steps for a four-metal-layer package.  As seen, 

starting from room temperature (step 1), the glass core was simulated to be heated to 160 

°C, the temperature at which the dielectric polymer was cured (step 2), the glass core and 

polymer was then simulated to be cooled to room temperature (step 3) and subsequently 

simulated to be heated to 40 °C (step 4), the temperature at which copper was electroplated.  

The process steps were repeated for the next two metal layers (steps 5-9).  These simulation 

steps completed the fabrication of the glass substrate with redistribution layers. 

 The next step was to simulate the flip-chip assembly process. The substrate with 

build-up layers was then simulated to be heated to 220 °C, the melting temperature of tin-

silver solder, to mimic the reflow assembly process, where the chip, solder, and chip pads 

were “birthed” (step 10).  The assembly was then uniformly cooled to the underfill cure 

temperature of 160 °C (step 11) and then further cooled down to room temperature (step 
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12).  This simulation mimics the B-staged underfill cure process.  Thus, the warpage of the 

assembly through the entire fabrication and assembly process simulation is captured. 

 The warpage predicted by the finite-element models was validated against warpage 

measured using shadow moiré.  Figure 43 shows two experimental samples and simulated 

die warpage data as a function of temperature.  Both experimental and simulated results 

show the maximum warpage at room temperature, and the magnitude predicted by the 

simulations agrees with the experimental data.  The model captures the decrease in warpage 

as the temperature is increased.  Since the agreement is good, the models are validated and 

the stresses will be used for crack propagation modeling. 
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CHAPTER 7. PREDICTING CRACK PROPAGATION IN GLASS 

SUBSTRATES  

 RDL deposited on glass creates thermo-mechanical stresses due to CTE mismatch 

and thermal excursions.  Near the free-edge, which has dicing-induced defects, these 

stresses become large, tensile stresses.  These stresses act as far-field stresses, trying to pull 

the glass open in mode I fracture.  Thus, RDL is suspected to create stresses responsible 

for propagation cracks from dicing-induced defects, however, the relationship between 

singulation method, defect size, RDL stress, and the likelihood of glass cracking as well as 

the threshold of what will cause cracking must be determined.  This chapter focuses on the 

stress as well as the relationship between RDL stresses and dicing defects to cause crack 

propagation.   

7.1 Initial Experimental Data 

 In the first part of the approach to developing a relationship between RDL stresses, 

dicing-induced defects, and crack propagation in glass substrates, initial experimental data 

collected was collected to study when glass cracking occurred.    

 The first set of samples was fabricated following the details outlines in 2.6, blade 

diced with an unoptimized blade, and reliability tested using the following procedure, 

which included precondition and thermal cycling (TC).  The preconditioning follows 

JESD22-A113F [140] and includes a 24 hour 120 °C bake, 60% relative humidity at 30 °C 

for 168 hours, and three 260 °C reflows.  The humidity conditions are Moisture Sensitivity 

Level 3, as specified in JEDECTM Standard 020D.1 [141].  However, the available humidity 
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chamber was not capable of achieving the temperature target while maintaining the 

required humidity level, so the temperature was kept at about 43 °C, making the test 

conditions more rigorous than normal MSL-3.  The TC is from -40 °C to 125 °C with 

fifteen minute dwells and fifteen minute ramps, following JESD22-A104D [142] the 

JEDECTM Standard on Temperature Cycling.  The time limits given in JESD22-A113F are 

followed. 

 

Figure 46 – Optical inspection of glass substrate edge to show failure classification: 

(a) pock marks after dicing (green), (b) interfacial delamination between glass and 

polymer (orange), and (c) cracking of glass substrate after interfacial failure (red). 

 

Samples were inspected after dicing (“t0”), preconditioning, and 50, 250, 500, and 

1000 temperature cycles.  Inspection was done using an optical microscope and a C-mode 

scanning acoustic microscope (CSAM).  Each corner from all edges were documented at 

all time steps.  Edges were inspected and any cracks were recorded.  CSAM images were 

taken at t0 and any subsequent time at which any damage was observed.  Based on this 

inspection, crack progress, if any, was documented and analyzed.  The samples were  
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Figure 47 – Experimental classification scheme. 

 

classified by using stop light colors as status indicators: Green indicates no failure.  Only 

dicing-induced pock marks were seen.  Yellow indicates some interfacial delamination 

between polymer and glass; however, no glass cracking was observed.  Red indicates glass 
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cracking.  Figure 46 shows micrographs for the three cases.  The classification scheme was 

later improved to be more detailed (Figure 47).  In both schemes, green, yellow, and red 

have the same meaning.   

 Measurements were collected after 50, 250, 500, and 1000 cycles based on early 

thermal cycling data collection.  Early data collection was done at every 50 cycles up to 

300 cycles and every 100 cycles after that.  If changes occurred, they were found to be 

most likely to occur at low numbers of cycles.  For practicality, the sample inspection rate 

was reduced at higher thermal cycles while maintained at low cycle numbers. 

 Figure 48a shows the schematic of the glass substrates and Figure 48b shows an 

overhead optical image after fabrication and dicing. Table 11 shows the details for this first 

set of samples, hereafter referred to as Batch 1.  As seen in this table, Batch 1 had two 22.5 

μm thick non-epoxy low loss polymer layers and two 10 μm thick copper layers on each 

side of the substrate.  Pullback is a change to the solder resist mask used in Batches 3a and 

3b, which will be discussed in a later section. 

 

Figure 48 – (a) Schematic of four metal layer glass substrate and (b) overhead 

optical image after fabrication and dicing. 

 

(a) (b)
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Table 11 – Details for Sample Batch 1. 

Sample Batch 1 

RDL Metal layers 4 

Glass thickness (μm) 100 

Non-epoxy low loss polymer thickness 

individual layer (μm) / total (μm) 
22.5 / 90 

Copper thickness individual layer (μm) / 

total (μm) 
10 / 40 

Pullback No 

Typical Dicing Defect Size (μm) >100 

Glass-Polymer Adhesion Treatment Aqueous silane 

 

 After dicing, some of the samples cracked immediately, while still on the tape, often 

seen in prior work.  For the samples that did not crack after dicing, the experimental results 

after preconditioning and 50 temperature cycles are shown in Table 12.  The samples are 

labeled by Batch Number-Sample Number, e.g. 1-A4 is Sample A4 from Batch 1.  In Table 

12, the samples are classified by using stop light colors described in Figure 46.   

Table 12 – Batch 1 experimental results from fabrication, dicing, preconditioning, 

and temperature cycling. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 50 

cycles 

1 – A4 Green Yellow Red 

1 – A5 Green Yellow Red 

 

 Two types of glass cracking were observed.  The first was cohesive cracking of the 

glass, which occurs during, or very shortly after, blade dicing.  The second was a result of 

a three-step process, which started with dicing defects, then the glass-polymer interface 

delaminated, and finally the crack kinked into the glass.  These two types of failures can 

be seen in Figure 49, Figure 50, and Figure 51.   Figure 50 and Figure 51 are scanning 
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electron microscopy images of a glass substrate edge and corner, respectively, after crack 

propagation.  

 

 

Figure 49 – Cohesive cracking of glass substrate. 

 

 

Figure 50 – SEM of glass substrate edge after crack propagation, showing dicing-

induced defects, delamination, and cohesive cracking of the glass. 

 

 From Table 12, the Batch 1 samples that did not crack after dicing, showed some 

interfacial delamination after preconditioning, and cracked after 50 temperature cycles, the 

first inspection point during TC reliability testing.  For the samples to pass the reliability 

criteria, they need to survive 1000 temperature cycles. 

polymer layers

cohesively cracked glass

exposed polymer

(no glass)

chipped glass



 84 

 

Figure 51 – SEM of glass substrate corner after crack propagation, showing 

delamination of glass-polymer interface. 

 

7.2 Numerical Modeling of Glass Cracking 

 Finite-element models were created using ANSYSTM 14.5 to predict the occurrence 

of glass cracking failure.  Figure 52 shows an example of the 2D plane-strain finite element 

model.  As seen, glass is the interposer core material, with copper and non-epoxy low loss 

polymer as build up materials, and solder resist passivation on the top and bottom.  The 

material properties used in the model are given in APPENDIX I. MATERIAL MODELS.  

The model employs symmetry at the left-hand side.  A dicing-induced horizontal flaw was 

introduced on the free edge on the right, which was placed 15 μm from the glass-polymer 

interface.   The models were constructed so that the location of flaw can be anywhere along 

the thickness of the glass.  However, based on experimental observations from blade diced 

cohesively cracked glass

exposed polymer

(no glass)
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samples, the crack is typically near the glass-polymer interface.  This flaw or defect was 

assumed to be a perfectly sharp crack and oriented horizontally.   

 A typical mesh is shown in Figure 53.  The mesh was refined near the free edge 

with constant element size near the crack tip.  A contour integral approach was used within 

the finite element software to calculate the energy release rate using J-integral.  The strain 

energy release rates obtained through the contour integral approach were cross checked 

using the Virtual Crack Closure Technique (VCCT) [76].  For the VCCT, the 

predetermined crack path was assumed to be straight forward into the glass for cracks in 

the glass. 

 If the dicing-induced defect happens to be at the interface between polymer and 

glass, then the propagation of the flaw or defect should be studied through interfacial 

fracture mechanics models.  Also, interfacial cracks may continue to propagate as 

interfacial cracks or may kink into the glass.  Interface cracks have been shown to kink into 

brittle materials [143], the criteria for doing so depends on the ratio of the critical energy 

release rate of the interface to the critical energy release rate of the material [144] and mode 

mix [113, 145].   

 Models were created to consider crack propagation during blade dicing of glass and 

crack propagation during thermal cycling reliability testing.  Details of the models are 

discussed in the following subsections. 
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Figure 52 – Finite element model geometry schematic. 

 

 

Figure 53 – (a) Example of finite element model mesh near free edge and (b) close-

up of crack tip (contour integral shown). 
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7.2.1 Model to Simulate Blade Dicing 

 Dicing is usually done in the presence of water.  When a glass interposer is exposed 

to water or moisture, it could cause interfacial delamination or glass cracking.  During 

dicing, the crack propagation is likely due to a lower fracture toughness of glass in the 

presence of water.  For example, the critical stress intensity factor of borosilicate glass 

drops from 0.8 MPa√m in air to about 0.4 MPa√m in the presence of water [86].  

 To investigate whether a crack will propagate through the glass horizontally during 

dicing operation in water, a second model was constructed to be compared to the model 

shown in Figure 52.  The second model had two substrates, with a partial dicing cut inserted 

between them and a layer of contact elements with fixed out of plane displacement below 

the model to represent the dicing table, as shown in Figure 54. This second model is “during 

dicing” while the first model, described in the previous section, is “after dicing.” The model 

is otherwise identical to the first, with a horizontal defect in the glass, normal to the free 

edge created by dicing.  Both models were run without solder resist passivation. 

 

Figure 54 – Finite element geometry for model simulating dicing. 
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 The “during dicing” model had two crack tips.  The larger crack, that is the cut 

made by the dicing saw, was vertical.  If the vertical crack propagates, the panel is 

considered diced.  This is the desired outcome of the dicing operation.  Creating a vertical 

crack in the glass instead of abrading it with a blade is known to produce a much cleaner 

surface.  The score and break method, which is commonly used to cut bare glass, does 

exactly that, by scoring the surface and then bending or locally heating the glass until it 

breaks.  The second crack tip was a defect at the free edge of the glass due to dicing abrasion 

and is oriented horizontally into the glass.  If this initial horizontal defect propagates into 

the glass, the sample will fail, and this will be an undesired outcome. 

 “During dicing” model consisted of a 60 μm vertical dicing cut into the 100 μm 

thick glass with a 5 μm horizontal defect from the cut edge of the glass.  It was seen that 

the energy release rate for crack propagation was 1.20 J/m2.  This number is less than 2 

percent different from the energy release rate for a horizontal crack in a fully diced glass 

substrate, as expected and as shown in Table 13. Since the results from the two models 

varied by less than two percent, the during dicing model, which included a larger area, two 

crack tips, and contact elements for tape support, was computationally expensive, and thus, 

all further analyses were done using the “after diced” model. 

Table 13 – Comparison of energy release rates from models during and after dicing. 

Model Gtotal (J/m2) 

During dicing 1.20 

After diced 1.19 

 

 Next, to investigate glass cracking failure during dicing, the simplified models of 

fully-diced glass substrates with edge flaws were run to simulate the dicing conditions.  
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The room temperature applied as a boundary condition because of the cooling water.  The 

obtained energy release rates were compared to the critical energy release rate of 

borosilicate glass in water, 1.98 J/m2.  The energy release rate as a function of initial defect 

size is shown in Figure 55.  Multiple models were constructed with a range of horizontal 

crack sizes and the energy release rate available upon polymer processing, copper 

annealing, and dicing was examined.  An initial defect size as small as 10 μm may be close 

enough to result in glass cracking failure for the 90 μm non-epoxy low loss polymer, 40 

μm copper sample.  This explains the on-tape failure observed prior to this work, which 

was cut with the original or unoptimized blade.   

 The mode mixity was found to be almost entirely mode I for all cases.  For example, 

Sample Batch 1 with a 50 µm crack has Ψ = 1.1° as calculated using a stress intensity factor 

approach and Eq. (5).  This is because the RDL is relatively thick compared to the glass 

and the stresses which cause fracture are due to the free-edge effect, and are primarily in 

the out-of-plane direction.  In addition, the experimental cracks were observed to propagate 

parallel to the glass-polymer surface, supporting the predominance of mode I. 

 Reducing the build-up thickness reduces the tensile stress on the free edge of the 

glass, and thus, simulations were run with reduced build-up layer thicknesses, as given in 

Table 14.  Results for the reduced thickness build-ups are shown in Figure 55, alongside 

Batch 1.  When thin build-up layers are used, as expected with lower stresses, cracks do 

not propagate even with large dicing defects. 
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Figure 55 – Energy release rate as a function of initial defect size during dicing for a 

cohesive crack in the glass substrate 15 μm from the glass-polymer interface 

simulating dicing. 

 

Table 14 – Details for Sample Batches 2a and 2b. 

Sample Batch 2a 2b 

Metal layers 4 4 

Glass thickness (μm) 100 100 

Non-epoxy low loss polymer thickness 

individual layer (μm) / total thickness (μm) 
17.5 / 70 10 / 40 

Copper thickness individual layer (μm) / 

total thickness (μm) 
10 / 40 5 / 20 

Pullback No No 

Typical Dicing Defect Size (µm) 5 5 

Glass-Polymer Adhesion Treatment Aqueous silane Aqueous silane 
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7.2.2 Model to Simulate Thermal Cycling 

 To investigate the failure during reliability testing, simulations were run to see if 

interfacial delamination between glass and non-epoxy low loss polymer would kink into 

the glass to result in glass fracture.    

 Figure 51 shows this delamination and kinking as observed through a SEM.  In the 

figure, the bulk of the glass remained on the bottom after separation, leaving no glass or 

small amounts of glass on the top.  The crack is seen to propagate at the glass-polymer 

interface and kink into the glass, but not into the polymer.  This raises a question of whether 

the crack originates from a dicing defect or from an interfacial debonding and kinks into 

the glass. 

 Models were constructed to predict the likelihood of crack propagation for the 

cohesive crack originating from dicing defects during thermal cycling reliability.  These 

models were similar to the simplified dicing model in Section 7.2.1 (Figure 52, Figure 53).  

In other words, they were a single glass substrate with defect in the free edge of glass and 

thermomechanical stresses from the RDL.  However, these models compared the maximum 

strain energy release rate during thermal cycling, which occurs at the coldest temperature 

during thermal cycling, to the critical strain energy release rate of glass while in air, 7.9-

8.9 J/m2 [86].  Figure 56 shows the predicted strain energy release rate. 

 Similar to the model to simulate blade dicing, all cases were found to be almost 

entirely mode I loading. 
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Figure 56 – Energy release rate at -40°C as a function of initial defect size for 

cohesive cracking of a glass substrate simulating thermal cycling reliability. 
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Batch 1 reaches the critical energy release rate at about 100 μm interfacial delamination.  

The energy release rate of Sample Batches 2a and 3a do not reach the critical energy release 

rate and Sample Batches 2b and 3b, which are the thinnest, have an even lower energy 

release rate.  Thus, a thicker build up leads to higher total energy release rate for any single 

initial defect size.  Sample Batch 1 is predicted to experience cracking failure, while the 

available energy of the thinner build up does not reach the critical energy release rate of 

glass.  As long as the available energy does not reach the critical energy release rate, glass 

cracking failure should not occur.  Thus, Sample Batches 2a, 2b, 3a, and 3b should not 

have cohesive glass cracking.  Based on these results, the thinner structures were chosen 

as a potential solution.  

 

Figure 57 – Schematic of cracking from glass-polymer interface into glass. 

 

Polymer

Glass

Semi-infinite crackθ

ω



 94 

 

Figure 58 – Energy release rate at -40 °C as a function of initial delamination size 

for a crack kinking into the glass substrate simulating thermal cycling reliability. 
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of room temperature and water exposure are more aggressive and, therefore, are the 

limiting factor around which design must consider.   

7.3 Dicing Optimization and Thinner Stack Up Experiments 

 The models suggest that with thinner polymer and copper layers, there should be 

less chances for cracking, and to prove this, two new Sample Batches, 2a and 2b, were 

fabricated, diced, and reliability tested following the details in the Appendices.  Sample 

Batch 2a had 17.5 μm thick non-epoxy low loss polymer for a total thickness of 70 μm, 

and 10 μm thick copper layers for a total thickness of 40 μm; Batch 2b had 10 μm thick 

non-epoxy low loss polymer for a total thickness of 40 μm and 5 μm thick copper layers 

for a total thickness of 20 μm.  Both structures followed the schematic in Figure 48 and 

full details are presented in Table 14.  In addition to the build-up thickness changes, a 

dicing optimization was performed (5.1 Blade Dicing of Ultra-thin Glass).  Prior to dicing 

optimization, the typical surface roughness was measured to be 2.1 – 7.8 μm; after dicing 

optimization, the typical surface roughness was 1.2 – 6.6 μm, though the actual defects 

were often larger, as measured through cross sectioning (Table  9). 

 The experimental results after dicing, preconditioning, 50 temperature cycles, and 

1000 temperature cycles for Batches 2a and 2b are shown in Table 15, which uses the color 

scheme indicator described in Figure 46.  
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Table 15 – Sample Batches 2a and 2b experimental results from fabrication, dicing, 

preconditioning, and temperature cycling. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 

50 

cycles 

After 

250 

cycles 

After 

500 

cycles 

After 

1000 

cycles 

2a – C3 Green Yellow Yellow Yellow Yellow Yellow 

2b – D4 Green Yellow Yellow Yellow Yellow Yellow 

2b – E5 Green Yellow Yellow Yellow Yellow Yellow 

 

 Similar to the first round of samples, the new samples showed pock marks after 

dicing and delamination after preconditioning.  However, at 50 temperature cycles, the 

glass substrate did not crack.  These samples continued thermal cycling and passed 1000 

cycles without glass cracking.   This demonstrates that thinner build-up, which is expected 

to develop lower stresses, reduce the available energy for crack propagation below the 

critical level, preventing crack propagation in glass.  The results confirm the modeling 

prediction for samples with non-epoxy low loss polymer that glass cracking is more likely 

to occur during dicing rather than during thermal cycling. 

 Although glass cracking was eliminated through thinner build-up layers, it was seen 

that there was some delamination at the glass-polymer interface with thermal cycling, and 

thus, a solution to eliminate delamination was desired.  
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CHAPTER 8. PREVENTING GLASS CRACKING DUE TO 

DICING-INDUCED DEFECTS AND REDISRIBUTION LAYER 

STRESSES 

 The first focus of this chapter is on demonstrating glass cracking prevention.  Once 

this is done and the understanding of glass cracking is validated, design guidelines to 

prevent glass cracking can be developed, which is the second focus of this chapter.  To 

prevent crack propagation, solutions must address the dicing-induced defect size and the 

stress caused by RDL stress.  By achieving a sufficiently low combination of these two 

factors, it is possible to prevent crack propagation in glass. 

8.1 Demonstration of Glass Cracking Prevention 

8.1.1 Adhesion Improvement and Solution Demonstration Using Non-epoxy Low Loss 

Polymer 

 While cohesive cracking of the glass was not seen with thinner build-up layers, 

large glass-polymer interfacial delaminations could ultimately result in cohesive cracking 

after kinking into brittle materials [143].  The  criteria for such kink and cohesive cracking 

depends on the ratio of the critical energy release rate of the interface to the critical energy 

release rate of the material [144] and mode mix [113, 145].  To improve adhesion of the 

glass-polymer interface, the fabrication process was changed to include a plasma clean 

(after the chemical cleaning and before silane treatment) and the silane application was 

changed from liquid to vapor.  The plasma clean roughens the surface of the glass, which 
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improves adhesion.  Vapor deposition of the silane, although expensive and time-

consuming, also improves adhesion compared to the liquid silane process.   

 To demonstrate a complete solution to glass cracking, two more sample batches 

were fabricated with the improved adhesion.  The optimized blade dicing was used.  

Sample Batch 3a had 17.5 μm thick non-epoxy low loss polymer for a total thickness of 70 

μm and 10 μm thick copper layers for a total thickness of 40 μm; Sample Batch 3b had 10 

μm thick non-epoxy low loss polymer for a total thickness of 40 μm and 5 μm thick copper 

layers for a total thickness of 20 μm.  Full details are presented in Table 16. 

Table 16 – Details for Sample Batches 3a and 3b (all dimensions are in μm). 

Sample Batch 3a 3b 

Metal layers 4 4 

Glass thickness (μm) 100 100 

Non-epoxy low loss polymer thickness 

individual layer (μm) / total (μm) 
17.5 / 70 10 / 40 

Copper thickness individual layer (μm) / 

total (μm) 
10 / 40 5 / 20 

Pullback (μm) 150 150 

Typical Dicing Defect Size (μm) 5 5 

Glass-Polymer Adhesion Treatment 
Plasma clean, 

vapor silane 

Plasma clean, 

vapor silane 

 

 At the free edge, the axial and interfacial shear stresses drop to zero to satisfy the 

boundary conditions.  The shear stress which causes delamination reaches a peak value at 

approximately the magnitude of the thickness and then drops to zero [146].  The thickness 

of the build-up can be reduced locally near the free edge by pulling back the build-up 

material, and thus, the magnitude of the stress can be reduced near the crack tip.  Pullback 

has more effect when more material is removed.  For practical fabrication, pullback was 

implemented on the solder resist only by changing the passivation mask to include a wide 
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dicing street.  The distance of the pullback is measured from the edge of the dicing street, 

as illustrated in Figure 59.   Sample Batches 3a and 3b had the solder resist pulled back 

from the dicing street by 150 μm.  The pulling back of solder resist reduces the energy 

available for crack propagation, as illustrated in Figure 55.  By comparing the energy 

release rate for identical samples without and with pullback (Batch 2a vs. Batch 3a and 

Batch 2b vs. Batch 3b), it is seen that the energy release rates are reduced by 10-20 percent 

when the initial defect size is below the pullback length.  When the initial defect size is 

greater than the pullback length, the energy release rates are near identical regardless of 

pullback.   

 

Figure 59 – Schematic of solder resist pullback.  Pullback distance is measured from 

the edge of the dicing street. 

 

 The effect of passivation pullback and full pullback distance is investigated during 

blade dicing by adding pullback to the model described in CHAPTER 7 and changing the 

length of the passivation pullback for a 10 μm crack, as shown in Figure 60 for Sample 

Batches 3a and 3b.  For both passivation samples, the available energy release rates start 

Pullback
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at the values seen in samples without pullback, which is Sample Batches 2a and 2b, 

respectively, and approaches an asymptotic value as the pullback length increases.  For the 

full pullback cases, the asymptotic values are zero because there is no build-up material 

remaining on the substrate.  However, larger pullback lengths mean no passivation is 

covering an area and no interconnections or lines can be made, wasting space on the 

substrate.  From these results, a 150 μm passivation pullback captures 87 percent of the 

benefit of a very large pullback for the thicker build-up structure and 95 percent of the 

benefit for the thinner build-up structure.  While larger pullbacks have more effect, the 

benefit comes at the cost of lost space, and thus is a compromise is made and the 150 μm 

passivation pullback is chosen for sample fabrication.  Expanding the pullback concept to 

include all layers, or full pullback, is studied in Section 9.2. 

 The experimental results after dicing, preconditioning, 50 temperature cycles, and 

1000 temperature cycles for Sample Batches 3a and 3b are shown in Table 17, which uses 

the status indicator color scheme detailed in Section 7.1 and Figure 46.  All samples from 

Batches 3a and 3b passed 1000 temperature cycles without any crack propagation in glass 

or delamination of the glass-polymer interfaces, fully demonstrating a solution to dicing-

induced glass cracking failures.  As an example, Figure 61 shows Sample 3b-F2 after 1000 

temperature cycles.  The pock mark dicing pattern was seen after dicing, however, no 

interfacial delamination or glass cracking was observed through 1000 cycles. 
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Figure 60 – Effect of passivation pullback and full pullback on energy release rate 

during dicing. 

 

Table 17 – Sample Batches 3a and 3b experimental results from fabrication, dicing, 

preconditioning, and temperature cycling. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 

50 

cycles 

After 

250 

cycles 

After 

500 

cycles 

After 

1000 

cycles 

3a – D1 Green Green Green Green Green Green 

3a – E2 Green Green Green Green Green Green 

3a – F1 Green Green Green Green Green Green 

3b – E2 Green Green Green Green Green Green 

3b – F1 Green Green Green Green Green Green 

3b – F2 Green Green Green Green Green Green 
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Figure 61 – (a) CSAM and (b) optical inspection of corners of Sample 3b-F2 after 

1000 temperature cycles. 
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8.1.2 Solution Demonstration Using ABF GX-92 

 To test whether the glass substrates would crack when using ABF GX-92 for the 

dielectric polymer, substrates fabricated following Section 6.1.1 were subjected to 

preconditioning and thermal cycle reliability testing following JEDEC standards.   

 To start the thermal cycling experiments, four glass substrates of each glass 

structure (Table 10) were selected after dicing, for a total of 40 glass substrates.  The 

preconditioning and reliability testing procedures used, including the inspection process, 

are outlined in Section 7.1 and Figure 47.   

 The results of the preconditioning and thermal cycling experiments are shown in 

Table 18.  As seen, most of the samples were classified as no or minor damage (green) 

after dicing.  While a few samples showed minor cracking or delamination (yellow), there 

is little consistency among which samples.  Therefore, samples which started with minor 

cracking or delamination (yellow) at t0 were included in Table 18 for the sake of 

completion, but were not included in the discussion or analysis in this paper..  In general, 

the results can be grouped based on total build-up thickness.  

 The polymer only samples (A and B), which have a total of 40 µm of build, passed 

preconditioning and thermal cycling up to 1000 cycles while showing very little change. 

 The samples with one layer of copper and two layers of polymer (C and D) passed 

preconditioning and thermal cycling up to 1000 cycles, and thus passed reliability.  

Between 500 and 1000 cycles, seven of the eight 300 µm glass substrates (D) showed small 

changes, while only four of the eight 100 µm glass substrates (C) showed small changes 

over the same number of cycles. 
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Table 18 – Thermal cycling reliability results for ABF GX-92. 

 
 

Glass 

thickness

Polymer 

Layers
Cu % t0 After precon 50 cycles 250 cycles 500 cycles 1000 cycles

A-2a 100 2 n/a Yellow Yellow Yellow Yellow Yellow Yellow

A-2b 100 2 n/a Green Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow

A-2c 100 2 n/a Green Green Green Green Green Green

A-2d 100 2 n/a Green Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow

B-1a 300 2 n/a Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow

B-1b 300 2 n/a Green Green Green/yellow Green/yellow Green/yellow Green/yellow

B-2a 300 2 n/a Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow

B-2b 300 2 n/a Green Green Green Green Green Green

C1-L (50%) 100 4 50 Green Green Green Green Green Green

C1-R (50%) 100 4 50 Green Green Green Green Green Green

C2-L (50%) 100 4 50 Green Green Green Green Green Green

C2-R (50%) 100 4 50 Green Green Green/yellow Green/yellow Green/yellow Green/yellow

C1-L (75%) 100 4 75 Green Green Green Green Green Green

C1-R (75%) 100 4 75 Green Green Green Green Green Green

C2-L (75%) 100 4 75 Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow

C2-R (75%) 100 4 75 Green Green Green Green Green Green

D1-R (50%) 300 4 50 Green Green Green Green Green Yellow

D1-L (50%) 300 4 50 Green Green Green Green Green Green/yellow

D2-R (50%) 300 4 50 Green Green Green Green Green Yellow

D2-L (50%) 300 4 50 Green Green Green Green Green Green

D1-R (75%) 300 4 75 Green Green Green Green Green Green/yellow

D1-L (75%) 300 4 75 Green Green Green Green Green Yellow

D2-R (75%) 300 4 75 Green/yellow Green/yellow Green/yellow Green/yellow Green/yellow Yellow

D2-L (75%) 300 4 75 Green Green Green Green Green Green/yellow

E1-R (50%) 100 6 50 Green Green Yellow/Red Red

E1-L (50%) 100 6 50 Green Green Yellow Red

E2-R (50%) 100 6 50 Yellow Yellow Yellow/Red Red

E2-L (50%) 100 6 50 Green Green/yellow Yellow Red

E1-L (75%) 100 6 75 Green Green Yellow Red

E1-R (75%) 100 6 75 Green Green Yellow Red

E2-L (75%) 100 6 75 Green Green Yellow/Red Red

E2-R (75%) 100 6 75 Green Green Yellow/Red Red

F1-R (50%) 300 6 50 Green Green Yellow Yellow Yellow/Red Red

F1-L (50%) 300 6 50 Green Green Yellow/Red Red

F2-R (50%) 300 6 50 Green Green Yellow Red

F2-L (50%) 300 6 50 Green Green Yellow Red

F1-R (75%) 300 6 75 Green Green Yellow Yellow/Red Yellow/Red Red

F1-L (75%) 300 6 75 Green Green Yellow/Red Red

F2-R (75%) 300 6 75 Green Green Yellow Red

F2-L (75%) 300 6 75 Green Green/yellow Yellow/Red Red

Details Results

Sample
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 The samples with two layers of copper and three layers of polymer (E and F) 

survived preconditioning but showed cracking and delamination by 50 cycles and most of 

the samples showed large failures by 250 cycles.   

 When considering only the C and D samples, the 50 and 75% copper samples 

showed similar trends.  Also, within E and F samples, the 50 and 75% samples showed 

similar trends.  This is hypothesized to be because copper is not near the initial crack 

location and the samples have similar total build-up thicknesses.  Since the cracks initiate 

at the corners and edges and the copper is at least 500 µm far away from the substrate edge, 

the local stress at the crack tip primarily comes from the dielectric polymer.  The local 

stress induced from the dielectric polymer correlates to the build-up thickness, similar to 

non-epoxy low loss polymer. 

 Based on the conclusions from CHAPTER 7, it was predicted that E and F samples 

would fail reliability testing.  Meanwhile, A, B, C, and D demonstrated prevention of glass 

cracking. 

8.2 Design Guidelines 

 While this work focuses on the mechanical reliability of glass packages, 

microelectronics are foremost electronic devices and are designed as such.  Fabrication and 

reliability can be thought of as constrictions on what may be built.  This section focuses on 

design guidelines to create reliable, ultra-thin 2.5D glass interposers, first calibrating 

numerical models and then combining with the constrictions for reliability while 

considering the electrical design as noted in Section 2.6. 
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8.2.1 Model Calibration 

 To predict crack propagation in glass substrates due to RDL stresses and dicing 

defects, 2D plane strain finite-element models were created for each of the sample 

structures (Table 10).  Material model details are given in APPENDIX I. MATERIAL 

MODELS.  A perfectly sharp crack is introduced to the glass free edge based on the 

measured dicing-induced defect size and the energy release rate is evaluated using a J-

integral approach  [68, 77].  Details on similar modeling with model geometries and meshes 

can be found in Section 7.2.  Thermal boundary conditions are applied to produce the stress 

measured in Section 6.1 for ABF GX-92. 

 The energy release rate was predicted for each sample structure at room 

temperature and the results are shown in Figure 62 (blue columns).  Samples with an energy 

release rate above 1.05 J/m2 (red line in Figure 62) are expected to crack while samples 

with an energy release rate below 0.87 J/m2 (green line in Figure 62) are expected not to 

crack based on the results in Table 18.  Between these two values, the results are unknown. 

 In addition to the modeling results, the thermal cycling experimental results are also 

shown in Figure 62.  The numbers at the top of the columns summarize the thermal cycling 

results at 1000 cycles.  From the figure, all samples predicted to have crack propagation 

were seen to fail in the thermal cycling experiment and none of the samples below the crack 

prediction line failed.  For the structures which were predicted to have no crack 

propagation, no samples failed during precondition or thermal cycling.  

 The models predict that the thicker glass substrates have slightly lower energy 

release rates than the thinner glass substrates.  This is because a thicker substrate reduces 
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the stress at the free edge, however, the effect is greatly reduced because the crack is 

modeled near (15 µm from) the glass-polymer interface.  The crack is modeled at this 

location because during blade dicing, the hard-soft interface causes the largest defects in 

the hard material.  When the crack is near the glass-polymer interface, the energy release 

rate depends more on polymer build-up thickness than the ratio of build-up thickness to 

substrate thickness.  Therefore, the energy release rate difference between the two samples 

is small and the experimental results show very similar results between difference 

thicknesses. 

 

Figure 62 – Energy release rate for each sample structure.  Samples above the red 

line are predicted to crack while samples below the green line are predicted not to 

crack.  Numbers above columns summarize thermal cycling results through 1000 

cycles. 

 

 While several models were run in CHAPTER 7 to analyze glass cracking, only the 

model with the highest likelihood to predict glass cracking was run for the design 

guidelines.  Also, ABF GX-92 had better adhesion to glass than non-epoxy low loss 
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polymer, so the interfacial delamination or crack kinking failure mode was not observed 

and only cohesive glass cracking should be considered.  

 This procedure is repeated with non-epoxy low loss polymer using the stresses 

measured in Section 6.2 and the thermal cycling reliability results in Sections 7.1, 7.3, and 

8.1.1.  From these samples, samples are observed to crack when the strain energy release 

rate is above 1.38 J/m2 and to not crack when the energy release rate is below 0.75 J/m2.  

While these values have a larger region of uncertainty because fewer build-up structures 

were tested, they agree with the values for samples with ABF GX-92. 

8.2.2 Design Guideline Recommendations for Glass Cracking 

 This section presents design guidelines to prevent glass cracking due to RDL 

stresses and dicing-induced defects and the methodology to produce those guidelines.  

These design guidelines apply to any package which uses a glass substrate or interposer, 

such as a high performance 2.5D interposer shown in Figure  5. 

 The methodology to create a design guideline has two parts.  The first part is to 

calculate the energy release rate from models with varying crack length and build-up 

thicknesses.  These models are similar to those discussed in Section 8.2.1, except they 

include 10 µm solder resist passivation on each side of the glass substrate; additional details 

on the finite-element models can be found in Section 7.2.  In the example presented, the 

fixed buildup thicknesses were 50, 80, 90, 100, 110, 120, 140, and 170 µm, and the crack 

sizes were 5, 10, 20, 50, 100, and 200 µm.  The second part is to interpolate the modeling 

results to estimate the crack size and build-up thicknesses for critical levels known to relate 

to glass cracking or glass cracking prevention.  These critical levels of the energy release 
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rate for structures with ABF GX-92 as the dielectric polymer were G = 1.05 J/m2 for crack 

propagation and G = 0.87 J/m2 for no crack propagation, based on Figure 62.  For structures 

with non-epoxy low loss polymer, they were G = 1.38 J/m2 and G = 0.75 J/m2, respectively, 

based on Sections 7.1, 7.3, and 8.1.1.  Then, a plot is created with three regions based on 

the energy release rate: below the no crack propagation level, above the crack propagation 

level, and above the no crack propagation level but below the crack propagation level.  

These three regions are colored green, red, and yellow, indicating the safe design region, 

the known bad design region, and the unknown design region, respectively. 

 Design guidelines were created for 100 µm glass substrates with copper and ABF 

GX-92 as the dielectric polymer with 10 µm thick solder resist passivation (Figure 63) 

following the methodology above.  These guidelines are viable for glass substrates with 

thicknesses of 100 µm and greater.  For glass substrates thinner than 100 µm, the ratio of 

the glass thickness to build-up thickness varies enough that the design guidelines should 

be recalculated considering the ratio of the glass thickness to the RDL thickness.  The 

dielectric polymer to copper thickness ratio was approximated as 2:1.  The initial crack size 

comes from the dicing process.  The industry-standard for substrate singulation is blade 

dicing and the smallest dicing defect that has been reported from blade dicing [53] is 

indicated in the figure by the vertical dashed line.  From the figure, there is a trade-off 

between total build-up thickness and dicing defect size.  Given the current state of 

optimized blade dicing, it is advisable to keep the total build-up thickness below a critical 

level.  The actual thickness will depend on the available process development kit and the 

target application, but it is advised to select a build-up thickness and singulation solution 

in the green region in Figure 63.  The build-up targeted for a 2.5D package with 128 GB/s 
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die-to-die bandwidth in 10.0 mm and 50 Ω impedance matching is identified by the 

horizontal dashed line in Figure 63.  This line is barely under the recommended safe target, 

and therefore, the design should be reliable.  However, due to process variations, it may be 

advisable to further reduce the thickness or employ alternative solutions that allow thicker 

build-up so that there is a larger allowable margin in fabrication. 

 

Figure 63 – Design guideline to prevent glass cracking due to RDL stresses and 

dicing-induced defects.  The guidelines apply for ≥ 100 µm thick 2.5D glass 

interposer using ABF GX-92. 

 

 Design guidelines were also created for 100 µm glass substrates with copper and 

non-epoxy low loss polymer as the dielectric polymer with 10 µm thick solder resist 
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100 µm thick or greater glass substrates.  The unknown region is much larger in Figure 64 

because the known cracking and crack prevention energy release rates for non-epoxy low 

loss polymer are further apart (1.38 J/m2 and 0.75 J/m2) than they are for ABF GX-92 (1.05 

J/m2 and 0.87 J/m2).  The safe region for non-epoxy low loss polymer is larger than the 

safe region for ABF GX-92 because non-epoxy low loss polymer has a smaller CTE 

mismatch leading to lower stress for similar build-up thicknesses. 

 

Figure 64 – Design guideline to prevent glass cracking due to RDL stresses and 

dicing-induced defects.  The guidelines apply for ≥ 100 µm thick 2.5D glass 

interposer using non-epoxy low loss polymer. 
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CHAPTER 9. PROCESS INNOVATIONS TO PREVENT GLASS 

CRACKING 

 While CHAPTER 8 focused on developing design guidelines to prevent glass 

cracking from dicing defects and RDL induced stresses by limiting the build-up thickness, 

CHAPTER 9 focuses on using alternative approaches to increase the build-up thickness 

and dicing defect size tolerance.  These alternative approaches are edge coating, two-step 

dicing, and laser dicing.  A fourth solution, etching with hydrofluoric acid to blunt the crack 

tips was also attempted, although no conclusive improvements were observed. 

9.1 Edge Coating 

 In this section, a coating (referred to as “edge protection”) is designed and 

demonstrated to prevent cracking induced by redistribution layer (RDL) stress and dicing 

defect in glass substrates for RDL build-up.  Edge coating is a protective layer of polymer 

located on the diced edge of the glass substrate where glass cracking originates from.  In 

Figure 65, a schematic of edge coating, illustrates the RDL layers on a glass substrate with 

edge coating on the diced edge. 
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Figure 65 – Finite element model for edge coated substrate. 

 

9.1.1 Fabrication Process for Edge Coating 

 The edge-coating process is an additional step which is added to the fabrication, 

dicing, and reliability testing discussed previously.  This step is done within two hours or 

less after dicing the glass panel into individual substrate coupons.  It is important that edge 

coating is applied as soon as possible after dicing to prevent any stress corrosion effects 

from occurring and possibly propagating a crack.   

 Edge coating can be applied by classic underfill dispense methods or overmolding.  

The process developed in this work is a classic underfill dispense method which applies a 

thin coating (approximately 25 μm maximum thickness) along the free edges.  To apply 

the coating, an underfill dispensing needle was used to paint the edges, applying material 
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cleaned by acetone and polymer was cured.  This completed the edge coating process, after 

which other assembly or reliability testing continued. 

 An underfill material, NAMICS’ XWUF-8600-16, was chosen for its ideal material 

properties, and cured at 165 °C for one hour.  It has sufficient viscosity and flowability to 

fill any existing defects and cracks.  It has ideal curing properties, that it shrinks to apply a 

compressive stress and its curing temperature will not cause damage to the dielectric 

polymer.  It has low moisture absorption, creating a hermetic seal over the glass.  

Furthermore, it has ideal mechanical properties, with a CTE of 58 ppm/°C to create 

compressive stress as temperature decreases from the curing temperature and a modulus of 

3.4 GPa and 0.06 GPa below and above the glass transition temperature, respectively. 

Figure 66(a) and (b) are cross sections of an edge-coated sample, with (b) showing a higher 

magnification of the free edge and edge coating.  In this sample, there was glass cracking 

prior to the application of edge coating.  The edge coating filled the very large crack and 

held the sample together. 

 The process is applicable for coupon-level chip assembly (as in this work) and for 

panel-level chip assembly (used in [20]).  In this work, the reliability testing is performed 

on bare substrates without assembly, though the process has been demonstrated for an 

assembled package as well (used in [48]). 
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Figure 66 – Cross section of edge coated sample which had a crack before edge 

coating was applied. 

 

9.1.2 Modeling of Edge Coating 

 Edge coating prevents crack propagation due to RDL build-up stresses and dicing 

defects by changing the stress state of the glass at the free edge, protecting the glass against 

moisture, and by filling existing flaws.  The stress state change is due to three reasons.  

First, by adding additional material, the geometry changes so that the polymer is now the 

free edge instead of the glass, thus altering the stress distribution near the glass free edge.  

Second, the polymer coating exerts a compressive force on the glass edge, making the glass 

less likely to crack.  This is primarily because the polymer has a CTE (58 ppm/°C below 

the glass transition temperature, 190 ppm/°C above the glass transition temperature) much 
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greater than the glass (3.3 ppm/°C), copper (17 ppm/°C), and dielectric polymer (23 

ppm/°C).  Below the cure temperature, the polymer contracts much more than the substrate, 

causing compressive force and stresses and reducing the chance of crack propagation.  

Also, polymers shrink when they are cured, as the polymer chains become increasingly 

crosslinked [147], increasing the compressive force on the glass free edge.  Third, in 

addition to changing the geometry, edge coating protects the glass against moisture by 

providing a physical barrier between the glass and moisture.  The critical energy release 

rate (GC) of borosilicate glass is strongly dependent on the environment; in air, GC is 8.0 

J/m2, but drops to 2.0 J/m2 in water [86].  Also, dicing creates defects in the glass substrate, 

which range from chipping to large cracks, such as in Figure 66.  By flowing into these 

defects by capillary action, edge coating fills the existing defects and cracks, then closes 

them upon shrinking. 

 To analyze the effectiveness of edge coating, 2D plane-strain models were 

constructed with and without edge coating.  Details on the without edge-coating model, 

which was used to understand and predict crack propagation due to RDL stresses and 

dicing defects, as well as material properties, can be found in [148].  Figure 65 shows the 

model geometry for an edge-coated substrate.  A crack was introduced normal to the free 

edge, 15 μm from the glass-polymer interface.  The crack was assumed to be perfectly 

sharp with no edge-coating material filling it.  Material properties for the edge-coating 

material are given in Table 33.  In both cases, a temperature boundary condition was 

applied and a J-integral approach was used to calculate the energy release rate (G) [68, 

148]. 
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 A comparison of edge-coated and not-edge-coated substrates were run using the 

models.  For the comparison, a four-metal-layer glass substrate with 17.5 μm thick non-

epoxy low loss polymer (70 μm total thickness) and 10 μm thick patterned copper (40 μm 

total thickness) was modeled.  The non-edge-coated samples were identical to Sample 

Batch 2a in Table 14.  Figure 67 shows an example of the out-of-plane stress in the glass 

for a 100 μm crack for (a) samples without edge coating and (b) samples with edge coating.  

The primary stress contributing to crack propagation is the out-of-plane stress and without 

edge coating, the stresses at the crack tip are higher.  

 

Figure 67 – Out-of-plane stress in the glass for samples (a) without edge coating and 

(b) with edge coating for a 100 μm crack (deformation is 5x exaggerated). 
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 The effect of edge coating was studied for increasing crack sizes to analyze the 

robustness of edge coating with respect to dicing defect sizes (Figure 68).  The lowest point 

in thermal cycling was chosen because the greatest stresses exist at this largest temperature 

excursion.  Without edge coating, G is about 7-8 J/m2 for the 100 μm flaw; this is close to 

GC.  With edge coating, G is about 1-2 J/m2 for the 100 μm flaw, which is much lower than 

GC, assuming that the edge coating does not fill the crack.   If edge coating filled the crack, 

the predicted energy release rate would be even lower at temperatures below the glass 

transition temperature of the edge coating material. 

 

Figure 68 – Energy release rate at -40°C as a function of initial crack size for 

substrates with and without edge coating. 
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9.1.3 Experimental Results for Edge Coating 

To demonstrate prevention of crack propagation in glass substrates using edge coating, 

four rounds of samples were fabricated.  The details of these structures are presented in 

Table 19.  These samples were fabricated, blade diced, edge coated, and tested for 

reliability.  The experimental results are presented in Table 20.  The results are categorized 

by the scheme described in Section 7.1 and Figure 46.  The edge-coated samples passed 

preconditioning without any failure, which indicates that above the curing temperature, 

when the edge coating material would expand, the material became viscous and soft and 

did not create enough opening stresses to cause crack propagation.  Without edge coating, 

samples from Batch E1 would completely fail and samples from Batches E2B, E2K, and 

E2H would show minor cracking and delamination [148].  However, when these samples 

were edge coated, all of them passed 1000 thermal cycles without any indication of failure.  

Thus, edge coating was demonstrated to prevent crack propagation in glass substrates due 

to RDL stress and dicing defects. 

Table 19 – Details for edge coated samples. 

Sample Batch E1 E2B E2K E2H 

RDL Metal layers 4 4 4 4 

Glass thickness 100 100 100 100 

Polymer thickness 22.5 17.5 17.5 10 

Copper thickness 10 10 10 5 

Pullback No No No No 
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Table 20 – Experimental results from fabrication, dicing, and temperature cycling 

for edge coating. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 

50 

cycles 

After 

250 

cycles 

After 

500 

cycles 

After 

1000 

cycles 

E1 – A1 Green Green Green Green Green Green 

E1 – A2 Green Green Green Green Green Green 

E1 – A3 Green Green Green Green Green Green 

E2B – B2 Green Green Green Green Green Green 

E2B – B3 Green Green Green Green Green Green 

E2K – D2 Green Green Green Green Green Green 

E2K – D4 Green Green Green Green Green Green 

E2H – D5 Green Green Green Green Green Green 

E2H – E4 Green Green Green Green Green Green 

 

9.1.4 Edge Coating Discussion 

 As with most coatings, the proposed edge coating technique is limited by 

manufacturability due to the manual nature of the edge coating process.  To implement 

edge coating on a larger scale, an overmolding procedure may be used.  Similarly, a fan-

out packaging process, in which the glass panel is singulated, then reconstituted, could also 

be considered. 

 However, while edge coating has been demonstrated to prevent glass cracking due 

to dicing-induced defects and RDL stress, edge coating may not be the ideal solution for 

three reasons.  First, the edge coating process is a manual process which, although it works 

well at the lab scale, may be limited in large scale manufacturing.  Second, edge coating 

requires additional fabrication steps at specific times during the fabrication process, which 

limits other design and processing options.  Third, edge coating is itself an additional 

process and added material, which has a cost.  Thus, alternative solutions are desired, which 

are designed and demonstrated in the next chapter.   
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9.2 Two-step Dicing 

 In CHAPTER 7, we discussed pulling back of build-up layers to reduce stress on 

the glass free edge and demonstrated pulling back of the photolithographic passivation 

layer with photolithography in CHAPTER 8.  Pulling back of all build-up material was 

expected to reduce the energy release rate based on the amount of material pulled back so 

a full pullback method, two-step dicing, is proposed.  Figure 69 is a micrograph of a two-

step diced sample from the top showing laser ablation on both sides with a mechanically 

diced street and Figure 70 is a cross section schematic of full pullback, showing the RDL 

pulled back from the dicing stress. 

 

Figure 69 – Two-step diced sample from the top. 
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Figure 70 – Finite element model for two-step dicing. 

 

9.2.1 Process for Two-step Dicing 

 In two-step dicing, the RDL was removed by laser ablating the build-up on the top 

side, flipping the panel over, and ablating the build-up on the bottom side.  To create 

pullback, the RDL removal must be larger than the dicing street.  To achieve this, the laser 

was tuned to ablate polymer without ablating glass and the ablation pattern accounted for 

misalignment by including a dicing street greater than 50 μm.  Dicing the glass was done 

by blade dicing.  Figure 71 shows a cross section of a two-step diced edge.  During the 

blade dicing, more damage was caused to the glass compared to traditional blade dicing 

because the glass was separated from the dicing tape and because the glass was bare.  

Separation from the dicing tape caused excessive vibrations during the sawing process 

because bare glass had no polymer to help protect the surface from chipping. 
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Figure 71 – Cross section of two-step diced sample. 

 

9.2.2 Modeling of Two-step Dicing 

 Two-step dicing was proposed as a solution to crack propagation of glass substrates 

due to RDL stress and dicing defects because it changes the state of stress at the crack tip, 

lowering the available energy [148].  At the free edge, the axial and interfacial shear 

stresses drop to zero to satisfy the boundary conditions.  The shear stress which causes 

delamination reaches a peak value at approximately the magnitude of the thickness and 

then drops to zero [98].  The thickness of the build-up can be reduced locally near the free 

edge by pulling back the build-up material, and thus, the magnitude of the stress can be 

reduced near the crack tip.  It was demonstrated in Figure 58 that pulling back the 

passivation reduces the energy release rate by 10-20 percent.  Pullback has more effect 

when more build-up material is removed, and thus, pullback of all deposited build-up 

material was proposed in two-step dicing. 
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 To analyze the effectiveness of two-step dicing, a 2D plane-strain model (Figure 

70) was created.  It was similar to the model without edge coating (Figure 52 and Figure 

53) and included pullback of all material from the free glass edge.  Using the model, the 

necessary crack length to reach an energy release rate of 2.0 J/m2 was calculated for three 

different cases.  These cases were 17.5 μm of polymer and 10 μm of copper with full 

pullback, 17.5 μm of polymer and 10 μm of copper with passivation pullback, and 22.5 μm 

of polymer and 10 μm of copper with full pullback; all cases had four metal layers.  The 

results are plotted in Figure 72.  As seen, when pullback is used, the allowable initial crack 

size increases with the pullback length.  Any larger initial crack size that falls on the right 

side of a curve will result in propagation of the crack, while any smaller crack size that 

falls on the left side of the curve will not propagate, and such a design will be reliable.  In 

other words, if the expected range of dicing defect size is known, then the curve can be 

used to decide the appropriate length of pullback.  The curve for 22.5 μm of polymer and 

10 μm of copper with full pullback is similar to the curve for 17.5 μm of polymer and 10 

μm of copper with full pullback, except that the polymer is thicker, and thus, the allowable 

crack size is smaller compared to the thinner build-up for the same pullback length.  Stated 

differently, for the same dicing defect size, 22.5 μm of polymer and 10 μm of copper with 

full pullback requires longer full pullback compared to 17.5 μm of polymer and 10 μm of 

copper with full pullback.  This longer full pullback is required due to higher stresses 

induced due to the thicker polymer.  At very thick build-ups, another type of failure, such 

as a crack kinking into the glass, may occur.  Build-ups which are thin enough to prevent 

glass cracking, such as four metal layers of 10 μm of polymer and 5 μm of copper, do not 

exhibit glass cracking, regardless of how large the initial defect size is, and therefore do 
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not require pullback.  Comparing the passivation pullback and full pullback cases for 17.5 

μm of polymer and 10 μm of copper, passivation pullback has much less effect on the 

allowable crack length.  The effectiveness of passivation pullback depends on the thickness 

of the passivation relative to the thickness of the entire build-up.   

 

Figure 72 – Design rule map for required pullback length to prevent glass cracking 

for blade dicing. 

 

9.2.3 Experimental Results for Two-step Dicing 

 To demonstrate prevention of crack propagation in glass substrates due to RDL 

defects due to two-step dicing, samples were fabricated as described with details in Table 

21, diced using two-step dicing, and reliability tested.  The results are presented in Table 

22 where the colors follow the scheme given in Section 7.1 and Figure 46.  Following two-
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step dicing, the samples all showed the same minor damage, described in the fabrication 

process, indicated by “green/orange” in Table 22 and seen in Figure 71.  None of these 

defects propagated during the preconditioning or thermal cycling reliability testing, and 

thus no “SeWaRe” occurred.  From this, two-step dicing was shown to reliably prevent 

crack propagation.  However, the process may be optimized to reduce damage during the 

two-step dicing process which comes from glass-tape separation and causes a large kerf. 

Table 21 – Details for two-step laser ablation diced samples. 

Sample Batch M2 

RDL Metal layers 4 

Glass thickness (µm) 100 

Polymer thickness individual 

layer (µm) / total (µm)  
17.5 / 70 

Copper thickness individual 

layer (µm) / total (µm) 
10 / 40 

Pullback (µm) >50 (full) 

Edge Coating No 

 

Table 22 – Experimental results from fabrication, dicing, and temperature cycling 

for two-step dicing. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 

50 

cycles 

After 250 

cycles 

After 500 

cycles 
After 1000 

cycles 

M2-D4 
Green/ 

Orange 

Green/ 

Orange 

Green/ 

Orange  

Green/ 

Orange 

Green/ 

Orange 

Green/ 

Orange 

M2-D5 
 Green/ 

Orange 

Green/ 

Orange  

Green/ 

Orange  

Green/ 

Orange 

Green/ 

Orange 

Green/ 

Orange  

M2-E4 
 Green/ 

Orange 

Green/ 

Orange  

Green/ 

Orange  

Green/ 

Orange 

Green/ 

Orange 

Green/ 

Orange  

M2-E5 
Green/ 

Orange  

Green/ 

Orange  

Green/ 

Orange  

Green/ 

Orange 

Green/ 

Orange 

Green/ 

Orange  
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9.3 Laser Dicing 

 As an alternative to blade dicing, CO2 laser ablation dicing is proposed to prevent 

crack propagation in glass substrates due to RDL stress.  In CO2 laser ablation dicing, the 

panel is singulated into individual coupons by sequential laser ablation drilling along the 

dicing street instead of blade dicing, leaving a pattern of striations along the glass surface 

(Figure 31).  

 Because of its wavelength and relatively long pulses, the CO2 laser is a thermal 

ablation process, whereas blade dicing is a physical abrasion process.  Due to melting 

during the CO2 laser ablation process, the glass surface can heal previous flaws and change 

shape (bulge on top side in Figure 32), creating a smoother surface compared to blade 

dicing.  However, thermal stresses caused by local heating and cooling, induced by the 

thermal ablation, known as the heat affected zone, can cause cracking during or after dicing 

(minor flaws in the free glass edge, Figure 32).  Also, whereas blade dicing is done in 

cooling water, laser ablation is done in a dry air environment.  Without the exposure to 

moisture, the GC of glass remains at 8.0 J/m2, compared to 2 J/m2 in water, making the 

glass less likely to crack. 

9.3.1 Process for CO2 Laser Ablation Dicing 

 CO2 laser ablation dicing process follows the previously outlined fabrication, 

singulation, and reliability testing sequence, except CO2 laser ablation dicing replaces 

blade dicing.  An all CO2 laser process with a wavelength of 9.4 μm was used for the 

singulation of glass substrates with multiple polymer and copper layers on both sides.  The 

dicing was achieved using a two-stage process, (a) by applying a very low amount of 
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energy to ablate the polymer and minimize any damage caused to the glass, and (b) then 

applying a larger and more focused amount of energy to dice through the glass.  The CO2 

laser process parameters such as laser power, pulse width, and repetition rate were 

optimized for cutting while causing very little stress to the glass. 

 It was observed that CO2 laser dicing has a degree of pullback, as seen in Figure 

32.  This is due to the difference in the ablation rate between the materials; polymer is 

removed much faster than the glass.  This effect is observed on the backside as well. 

9.3.2 Experimental Results for CO2 Laser Ablation Dicing 

 To demonstrate that CO2 laser ablation prevents crack propagation in glass 

substrates due to RDL stress, two rounds of samples were fabricated, diced using CO2 laser 

ablation, and tested for reliability.  Sample Batch L1 did not include edge coating and 

Sample Batch LE1 included edge coating.  Table 23 shows details of these structures; the 

colors used in the table follow the scheme given in Section 7.1 and Figure 46.  With blade 

dicing and no edge coating, these samples would crack and fail as shown in Table 12.  

However, when using CO2 laser ablation dicing, the samples passed 1000 thermal cycles 

reliability test (Table 24), demonstrating that higher stress build-ups can be diced with CO2 

laser compared to traditional blade dicing methods.  

 CO2 laser ablation can also be combined with edge coating for an even more robust 

solution.  This was done in Sample Batch LE1 and the results are presented in Table 25.  

As expected from combining the two proven solutions, the samples all passed 1000 thermal 

cycles. 
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Table 23 – Details for CO2 laser ablation diced samples. 

Sample Batch L1 LE1 

RDL Metal layers 4 4 

Glass thickness 100 100 

Polymer thickness 22.5 22.5 

Copper thickness 10 10 

Pullback No No 

Edge Coating No Yes 

 

Table 24 – Experimental results from fabrication, dicing, and temperature cycling 

for laser ablation dicing. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 50 

cycles 

After 

250 

cycles 

After 

500 

cycles 

After 

1000 

cycles 

L1 – D2 Green Green Green Green Green Green 

L1 – D3 Green Green Green Green Green Green 

L1 – E3 Green Green Green Green Green Green 

 

Table 25 – Experimental results from fabrication, dicing, and temperature cycling 

for laser ablation dicing and edge coating. 

Sample 

Batch - 

Number 

After 

dicing 

After Pre-

conditioning 

After 50 

cycles 

After 

250 

cycles 

After 

500 

cycles 

After 

1000 

cycles 

LE1 – D1 Green Green Green Green Green Green 

LE1 – E1 Green Green Green Green Green Green 

LE1 – E2 Green Green Green Green Green Green 

LE1 – F1 Green Green Green Green Green Green 

LE1 – F3 Green Green Green Green Green Green 

 

9.3.3 CO2 Laser Ablation Dicing Discussion 

 The downsides of CO2 laser ablation dicing include material limitations and street 

width.  Any dicing method must be able to cut through all materials used.  CO2 ablation is 

very slow to cut through copper, which can be a problem if there is particularly poor 

alignment.  The dielectric polymer, a non-epoxy low loss polymer, is compatible with CO2 
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laser ablation, and gets removed faster than glass.  In this work, the dicing street was 

observed to be 400 μm, though process optimization could reduce the street size to 25 to 

50 μm (via diameters down to 25 μm have already been demonstrated [39]).  
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CHAPTER 10. REDISTRIBTION LAYER RELIABILITY AND 

ADHESION OF COPPER LINES 

 This chapter focuses on the adhesion of fine copper lines to glass substrates aspect 

of RDL reliability.  As discussed in CHAPTER 1, interfacial failure may occur between 

the glass-copper or polymer-copper layer.  For the relevant applications, the interfacial 

strength is typically characterized through peel tests.  However, CHAPTER 2 highlighted 

the limitation in analysing peel test results and using them to predict interfacial failure.  In 

this chapter, the sequential crack extension method [124] is further developed and applied 

to develop design guidelines for adhesion of fine copper lines and RDL reliability. 

10.1 Sequential Crack Extension Method 

 Traditional application of crack extension often employs two separate models of 

different crack lengths and uses such two models to determine differences in energy and 

work to be able to determine the critical strain energy release rate [149].  In such an 

approach, the stress-strain history of the peeled segment from the shorter crack model is 

not appropriately incorporated in the peeled segment of the longer crack model. In the 

proposed approach, the stress-strain history of the peeled segment from the shorter crack 

model is carried forward as the crack propagates, and the critical strain energy release rate 

is automatically determined.  Although such an approach appears straight forward, it has 

not been adequately employed in literature due to computational intensity required to 

obtain a numerical solution. 
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 For the analysis of thin film interfacial delamination, the interface between the film 

and the substrate is represented as a set of coupled nodes as shown in Figure 73.  Under 

remotely applied loading, the crack is manually advanced by one element every load step 

by decoupling the nodes at the crack tip.  The changes in external work, elastic strain 

energy, and plastic work are then calculated until the incremental energy rates reach steady-

state values.  Unlike conventional crack extension, as mentioned earlier, this method 

preserves the plastic work accumulated along the debonding surfaces as the crack 

propagates. 

 

Figure 73 – Schematic for sequential crack extension.  Nodes within green boxes are 

coupled. 

 

 The energy conservation of a propagating crack is, 

 𝑑𝑊 = 𝑑𝑈𝑒 + 𝑑𝑈𝑝 + 𝑑𝑈𝑓 (15) 

where dW is the incremental external work, 𝑑𝑈𝑒 is the incremental elastic strain energy, 

𝑑𝑈𝑝 is the incremental plastic work, and 𝑑𝑈𝑓 is the incremental energy to create new 

surfaces or fracture energy.  This equation can be rearranged and integrated for the 

incremental energy to create new surfaces so that the strain energy release rate can be 

calculated.  Within the finite element framework, the external work per new crack area is 

evaluated for each crack length using, 

t = tn t = tn+1
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𝑑𝑊

𝑑𝐴 𝑖+1
=
𝑃(𝑣𝑖+1 − 𝑣𝑖)

𝑏(𝑎𝑖+1 − 𝑎𝑖)
 (16) 

where v represents the vertical displacement at the peel force location, a represents the 

crack length, P represents the peel force, b represents the sample width, and the subscripts 

denote the solution step number.  The elastic strain energy and plastic strain energy per 

new crack area are evaluated using, 

 

 
𝑑𝑈𝑒

𝑑𝐴 𝑖+1
=

𝑈𝑒,𝑖+1 − 𝑈𝑒,𝑖

𝑏(𝑎𝑖+1 − 𝑎𝑖)
 (17) 

   

 
𝑑𝑈𝑝

𝑑𝐴 𝑖+1
=
𝑈𝑝,𝑖+1 − 𝑈𝑝,𝑖

𝑏(𝑎𝑖+1 − 𝑎𝑖)
 (18) 

where Ue is the total elastic strain energy in the system and Up is the total plastic strain 

energy in the system, as evaluated within the finite element model.  Then, the model is 

solved repeatedly until these values reach steady state by applying the force which causes 

steady-state delamination.  The steady-state strain energy release rate can then be evaluated 

within the finite-element method as, 

 𝐺𝑠𝑠 = 
𝑑𝑊𝑠𝑠

𝑑𝐴
−
𝑑𝑈𝑒,𝑠𝑠

𝑑𝐴
−
𝑑𝑈𝑝,𝑠𝑠

𝑑𝐴
 (19) 

where 
𝑑𝑊𝑠𝑠

𝑑𝐴
, 
𝑑𝑈𝑒,𝑠𝑠

𝑑𝐴
, and 

𝑑𝑈𝑝,𝑠𝑠

𝑑𝐴
 are the steady-state incremental external work, steady-state 

incremental elastic strain energy, and asymptotic steady-state incremental plastic work per 

area of crack surface created, respectively.  The external work applied to cause fracture can 

be determined using the applied peel force and the distance traveled based on the 

experimental data.  Similarly, the elastic work and plastic work dissipation can be 

calculated across the entire finite-element model based on the stresses and strains.   



 134 

 Ideally, the mesh study would be performed to find a sufficiently refined mesh, 

however, the number of elements required to reach a converged state makes obtaining a 

solution require an unreasonably large amount of time and storage.  To overcome this, the 

model includes multiple regions with different mesh densities.  Within each mesh density, 

the crack is propagated until the strain energy release rate reaches steady-state for that 

particular mesh density.  There is a limit, or asymptote, to which the critical strain energy 

release rate converges as the mesh density increases.  By fitting the steady-state strain 

energy release rate as a function of mesh density, the asymptotic steady-state strain energy 

release rate can be determined and is considered to be the critical strain energy release rate, 

GC. 

 The general solution procedure is as follows: 

1. Ramp the vertical load P over several load steps and solve until reaching the 

designated value Pf.    

2. While maintaining P = Pf, decouple the pair of nodes at the crack tip and 

solve.  

3. Evaluate 
𝑑𝑊

𝑑𝐴
, 
𝑑𝑈𝑒

𝑑𝐴
, and 

𝑑𝑈𝑝

𝑑𝐴
 for the entire model (Eq. (16)-(18)). 

4. Repeat steps 2-3 until 
𝑑𝑊

𝑑𝐴
, 
𝑑𝑈𝑒

𝑑𝐴
, and 

𝑑𝑈𝑝

𝑑𝐴
 reach the steady-state values, 

𝑑𝑊𝑠𝑠

𝑑𝐴
, 

𝑑𝑈𝑒,𝑠𝑠

𝑑𝐴
, and 

𝑑𝑈𝑝,𝑠𝑠

𝑑𝐴
, respectively, for that mesh size.  Calculate 𝐺𝑠𝑠 for that mesh 

size (Eq. (19)). 

5. Move to a finer mesh and repeat steps 2-4 to determine 𝐺𝑠𝑠 for different mesh 

sizes. 
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6. Fit an exponential equation to 𝐺𝑠𝑠 for different mesh sizes and determine 𝐺𝑐 

from the asymptote. 

10.2 Example Sequential Crack Extension for 90-Degree Peel Test 

 This section presents an example calculation of the GC using the SCE method for a 

peel test performed at 90 degrees. The experiment details are presented first, followed by 

the SCE calculation. 

 This example uses an electroplated copper thin film on a borosilicate glass 

substrate.  To adhere the electroplated copper thin film to the glass substrate, the 130 µm 

thick glass substrate was first sputtered with a 100 nm titanium layer, which was then 

sputtered with a copper seed layer between 200 and 800 nm thick.  Copper was then 

electrolytically plated on the sputtered film to 10 µm thick at 2.0 amps per square 

decimeter.  An example peel test result from a 10 mm wide strip peeled for at least 20 mm 

is shown in Figure 74 [150].  The substrate moved at a fixed velocity of 5.08 m/s along a 

plane while a perpendicular force was applied and measured at the end of the film.  There 

was still a slight angle, resulting in an increasing peel force as seen in the figure.   The 

average peel force for steady state delamination was above 3.0 N/cm. 
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Figure 74 – Peel strength of 10 µm electroplated copper on borosilicate glass (credit: 

[150]). 

 

 To simulate this 90-degree peel test, a base 2D finite-element model was developed 

using ANSYSTM 14.5, from which the SCE method was applied.  As depicted in Figure 75, 

a ductile thin film with thickness h = 10 μm was modeled over an elastic substrate.  Since 

the sputtered titanium and copper layers are very thin, they are ignored in the analysis.  A 

vertical force per width of P/b = 3.0 N/cm was to the unit dimensional width and was 

applied at the free end of the film.  The bottom of the substrate was constrained in the 

vertical direction and the bottom left of the substrate was fully fixed.  The initially released 

strip length has a nominal length of anom = 100 μm.  In the experimental peel test, the 

sample dimensions are such that b >> h, so plane strain conditions were imposed in the 

finite element model. 
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Figure 75 – Domain for 2D plane-strain analysis of 90-degree peel test under 

constant applied load. 

 

 In these simulations, the glass substrate was modeled as isotropic and elastic with 

an elastic modulus of 77 GPa and a Poisson’s ratio of 0.22 and the copper film was treated 

as an elastic-plastic material with the stress-strain curve shown in Figure 76 which was 

implemented in using nonlinear isotropic-hardening Voce power law [151], where the yield 

strength is given by, 

 𝜎𝑒𝑞 = 𝑘𝑣 + 𝑅0𝜀̂
𝑝𝑙 + 𝑅∞ (1 − 𝑒−𝑏𝑣�̂�

𝑝𝑙
) (20) 

where 𝜀̂𝑝𝑙 is the accumulated equivalent plastic strain and the constants are an initial yield 

stress, kv, of 17.6 MPa, coefficient slope of the saturation stress, R0, of 135.0 MPa, a 

difference between the saturation stress and the initial yield stress, R∞, of 253.4 MPa, and 

the hardening parameter, bv, of 20.6.  Voce power laws have been used for thin film copper 

before [152, 153].  For this work, new parameters were fit based on experimentally 

measured stress-strain (Figure 76).  Although the film is known to have a residual stress 

[154], it is small (<10 MPa after annealing) compared to the yield stress during peeling, 

and therefore was ignored in this analysis.  

Glass substrate
anom

x

y 𝑃

𝑏Copper thinfilm
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Figure 76 – Stress-strain relationship for the copper thin film. 

 

 One continuous mesh was used for the finite-element model which consisted of 2D 

linear quadrilateral elements (PLANE182).  A meshing scheme was employed in which 

the mesh density was constant in the film thickness with increasing mesh density regions 

as the crack propagates as shown in Figure 77.  The initial crack propagation region is the 

largest region so that the model may reach a steady-state peel radius quickly.  The minimum 

length to reach the steady-state peel radius is based on the applied force, thin film material 

properties, and film thickness.  Within the first region of crack propagation (“A”), the 

elements were 2 μm and the total region length was 320 μm.  Since the propagation length 

is relatively long, a coarse mesh is used for computational efficiency.  Subsequent mesh 

refinements must be of sufficient length to reach a steady-state plastic incremental plastic 

work.  Since the size of the plastic zone was found to be relatively independent of the mesh, 

the subsequent mesh zones are all the same length.  The computation time required for 
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higher mesh densities is exponentially related to the mesh density because increasing the 

mesh density increases the number of elements and requires more solution steps to 

propagate the crack the same total length.  Thus, the mesh was refined to 1.0, 0.5, and 0.25 

μm in regions B, C, and D, respectively, and each region was 160 μm long. 

 

Figure 77 – Analysis domain and example finite-element mesh regions. 

 

 The model was solved using the general solution procedure outlined above.  The 

total equivalent plastic strain accumulated during the peel process is shown in Figure 78 

and the equivalent plastic strain accumulated from one node decoupling step in the film 

strip of a propagating crack is shown in Figure 79.  During the load ramp, the elements 
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around the initial crack tip become highly distorted and, as a result, a relatively large 

plastically strained region develops due to the stress concentration and the local bending 

of the thin film.  However, as the crack propagates away from its starting position under 

constant load, the intensity of the plastic region lessens around the growing crack tip until 

finally reaching a steady-state condition after sufficient crack growth.  A consistent residual 

plastic wake remains along the debonded interface. 

 

Figure 78 – The total accumualted equivalent plastic strain in the copper thin film 

for P/b = 3.0 N/cm. 
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Figure 79 – The accumulated plastic strain in the copper thin film over one cycle 

accumulated over one cycle showing where the plastic deformation occurs for P/b = 

3.0 N/cm. 

 

 The external work, elastic strain energy, and plastic work per increment of crack 

growth are shown in Figure 80.  The external work, elastic strain energy, and plastic work 

rates change as the crack propagates and they converge as the model reaches steady-state 

peeling.  When the crack propagates to a more refined mesh region, brief spikes in the 

energy rates occur, but do not affect the following trends and are thus disregarded.  These 

spikes occur because the mesh size changes quickly while a significant portion of the 

energy distribution occurs behind the crack tip, as seen in Figure 79.  In other words, for a 

few crack lengths between mesh sizes, the mesh size for dA calculation and the region over 

10-4 0.08
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which the energy is primarily being distributed do not align.  The external work, elastic 

strain energy, and plastic work per increment of crack growth then converge for that mesh 

size.  Once converged for a given mesh size, the steady-state energy rates varied by less 

than ±0.2 percent from the converged value.  The external work and elastic strain energy 

rates are seen to be insensitive to the element size reduction, but the steady-state plastic 

work rate is not, and therefore the steady-state strain energy release rate is not. 

 

Figure 80 – External work, elastic strain, and plastic strain energy rates as the crack 

propagates from an initial crack length, anom = 100 μm, under a peel force of P/b = 

3.0 N/cm for a 10 μm thick film.  Crack growth through regions A, B, C, and D 

correspond to element size, δa, of 2, 1, 0.5, and 0.25 μm, respectively. 

 

 The steady-state strain energy release rate during crack growth as a function of 

mesh density is shown in Figure 81, labeled “raw”.  This data was fit to an exponential 

function of the number of elements per layer.  Fitting was done using the “lsqcurvefit” 

DCBA
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function in MATLABTM R2014b and the results are plotted in Figure 81.  To more 

accurately fit the data, two models were run with different mesh sizes.  Due to the limits of 

computational power available, these models could not be combined into a single run.  

Thus, Figure 80, a single run, includes four mesh sizes, while Figure 81 has eight mesh 

sizes. 

 

Figure 81 – Steady state energy release rate as a function of mesh density. 

 

 As the number of elements per layer in the fit equation approaches infinity, 𝐺𝑠𝑠 

approaches a horizontal asymptote, which is treated as the critical strain energy release 

rate, GC.  From Figure 81, the GC was calculated to be 20.9 J/m2 for a peel strength of 3.0 

N/cm.  Copper thin films on other interfaces have reported GC’s of 0.6-110 J/m2 [55, 155-

157], with lower values on smooth, inert interfaces, such as silicon and silicon-oxide, and 

higher values reported for organics. 
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Figure 82 – (a) Tangential, (b) normal, and (c) shear stress fields near crack tip 

during steady-state peeling for P/b = 3.0 N/cm for a 10 μm film. 

(a) σxx

(b) σyy

(c) σxy

-364 362MPa
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 The stress fields in the film near the crack tip are shown in Figure 82.  The highest 

stresses occur at the crack tip, as expected from the stress concentration.  The tangential 

and shear stresses are significant compared to the normal stress, suggesting a strong Mode-

II component of the fracture process even for a 90-degree peel test.  This indicates a 

significant amount of energy is going into plastic work prior to crack propagation.  

However, an exact measure of the mode mix is not well defined when the plastic zone is 

on the order of the film thickness.  

 While this section demonstrates the SCE method, the method must still be 

compared to existing analysis techniques under comparable cases as well as some further 

discussion. 

10.3 Sequential Crack Extension Discussion 

 This section further examines the SCE method through case studies and discusses 

relevant aspects of the method. 

 It is difficult to compare the SCE method to existing methods to determine GC, such 

as VCCT [76, 77] or J-integral, due to the large plastic strains and unloading that occurs 

during thin film peel testing.  VCCT is formulated assuming that the work of closure is 

linear, an assumption which does not hold true for the example case above.  However, as 

the mesh size decreases, the total change of force and displacement become closer to linear.  

In addition, VCCT has been shown to be dependent on mesh size [113, 158].  With those 

warnings, Figure 83 shows GC calculated by SCE and VCCT for the above example; for 

both methods, GC approaches a similar asymptotic limit.  For peel tests with lower adhesion 

and less plasticity, the difference between SCE and VCCT decreases.  J-integral requires a 
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contour which is sufficiently large around the plastic zone to pass through the elastic region 

only [78].  However, since there may be a continuous plastic region from the top to the 

bottom of the thin film, it is impossible to evaluate J-integral.  

 When the crack initially begins to propagate, a large amount of plastic strain 

accumulates at the initial crack tip length.  This large amount of plastic strain remains 

throughout the SCE solution, as indicated by the arrow in Figure 78 by the bend in the film.  

To investigate the effect of this large strain, a modified version of the example SCE model 

was run, in which the peel force was applied until the model reached a steady-state peeling 

in the second mesh region (“B1”), and then the peel force was moved beyond the initial 

 

Figure 83 – Strain energy release rate calculated through SCE and VCCT as the 

crack propagates from an initial crack length, anom = 100 μm, under a peel force of 

P/b = 3.0 N/cm for a 10 μm thick film.  Crack growth through regions A, B, C, and 

D correspond to element size, δa, of 2, 1, 0.5, and 0.25 μm, respectively. 

 

DCBA



 147 

crack length (“B2”).  The resulting external work, elastic strain, and plastic strain energy 

rates as the crack propagates reach the same converged values for a given mesh size, as 

shown in Figure 84.  Since the converged values are the same regardless of whether the 

peel force is applied before or after the large-strain region, the large-strain region around 

the initial crack length does not affect the GC calculated with SCE. 

 

Figure 84 – External work, elastic strain, and plastic strain energy rates as the crack 

propagates, and subsequently moving the peel force location beyond the initial 

crack length (region B2). 

 

 The SCE method takes inputs of peel force per width, distance peeled, and material 

properties to calculate the critical strain energy release rate.  As such, the material 

properties act as a critical link between the peel test data and the critical strain energy 

release rate, and how those properties are represented in the finite-element model play an 

important role.  Since the copper is a ductile thin film with no anisotropy, a von Mises yield 

B1A B2
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surface is chosen.  In the example case above, an isotropic hardening law was chosen for 

plasticity for faster computational time.  A kinematic hardening law is also viable, and 

would result in more plastic work and less elastic strain per crack growth increment as the 

peeled film straightens to vertical.  To describe the yield surface movement, it is ideal to 

use a smooth function as this produces a more consistent relation between peel force and 

strain energy release rate.  This is because going between each linear yield stress regime 

impacts the asymptotic plastic work per crack growth and, consequently, the strain energy 

release rate.  While a bilinear model solves the fastest, it is less accurate than a multilinear 

or power law model.  A multilinear law may be used, though the more data points it 

contains, the smoother it is, leading to better results. 

10.4 Redistribution Layer Adhesion Discussion 

 Peel forces ranging from 0.5 to 5.0 N were simulated for a 10 µm thick electroplated 

copper film on a borosilicate glass substrate, following the SCE method.  From these 

simulations, critical energy release rate is plotted as a function of the peel force in Figure 

85.  From the plot, the critical energy release rate increases as the peel force increases, but 

are not quite linearly proportional.  This indicates that the critical energy release rate and 

peel force show similar trends and, thus, the qualitative data from peel tests may be 

interpreted in a relatively straight forward fashion for simple purposes. 
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Figure 85 – Relationship between critical strain energy release rate and peel force 

for a 10 µm electroplated copper film on a borosilicate glass substrate. 
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CHAPTER 11. CONCLUSIONS, CONTRIBUTIONS, AND 

OUTLOOK 

11.1 Conclusions  

 This work assesses the mechanical reliability of RDL for ultra-thin 2.5D glass 

substrates to address two reliability concerns related to RDL: cracking of the glass substrate 

and adhesion of RDL to the glass substrate. 

 For glass cracking, there are two primary contributing factors: dicing-induced 

defects and thermo-mechanical stresses induced by RDL.  Blade dicing is the industry 

standard dicing approach for panel-level fabrication, and this work optimized the blade 

dicing blade and recipe to produce a minimum defect size for polymer laminated glass.  

Although further reduction in defect size may be possible in the future, current optimized 

dicing technique will produce defects that are in the range of 5 to 10 µm, and thus, 

workaround is needed to reduce the residual stress and thus the chances of glass cracking.  

The stress induced by the RDL is a result of the CTE mismatch and temperature excursions 

relative to the fabrication process.  Given an electrical performance target including die-

to-die bandwidth over a length, the package is designed based on the available materials 

and panel level fabrication processes.  Considering this, the dominant factor for glass 

cracking is the total build-up thickness.  When the total build-up thickness is kept below a 

critical level, the glass substrate should not crack, and this work identified this level for 

typical layout designs to be around 75 – 80 µm for 100 µm thick glass panels.  Package 

design options, such as the dielectric polymer, copper distribution, and line layout, affect 
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the exact number.  This work also proposed, analyzed, and demonstrated passivation 

pullback to increase the available build-up thickness.  When possible, the most practical 

solution to glass cracking from dicing-induced defects and RDL stresses is to limit the total 

build-up thickness below the critical levels.  With the currently available materials and 

panel level processes, this work demonstrated that the target metrics for an ultra-thin 2.5D 

glass package (Table  2).  However, some designs may call for additional bandwidth 

requiring more metal layers and therefore thicker build-up.   

 For build-up layers that are sufficiently thick to cause glass cracking, this work 

proposed, analyzed, and demonstrated three alternative solutions.  Edge coating was 

demonstrated to be 100 percent reliable, although it has limitations in its processing and is 

considered only on a small scale.  Edge coating may become the preferred option if high 

volume fabrication can be developed.  Two-step dicing was demonstrated to pass as well, 

although the processing could be further improved.  Laser dicing glass panels was 

demonstrated to be 100 percent reliable for build-ups thicknesses up to 150 µm.  Thus, 

laser dicing is suggested for thicker build-ups. 

 By continuing to develop SCE, this work found the critical interfacial energy 

release rate to be correlated to the peel strength, and therefore, existing knowledge on peel 

strength data can be extended to the adhesion of copper lines.  This knowledge includes 

tenants such as copper adheres better to polymer laminated glass than bare glass, rougher 

surfaces are better than smooth surfaces for adhesion but worse for electrical performance, 

thicker lines are more likely to delaminate, copper deposition optimization, and annealing.  

The allowable thicknesses of copper for delamination are typically greater than the 

allowable build-up thickness for glass cracking unless all the copper is in a single layer.   
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Thus, while adhesion strength is important, glass thickness requirements are more stringent 

to prevent glass cracking.  The main advantages in improving adhesion strength are to 

enable lower cost (e.g. removal of a polymer layer by directly depositing copper on glass), 

improve material compatibility, or enable other processes. 

 While not directly studied in this work, it should also be noted that the adhesion of 

the dielectric polymer to the glass is important.  In addition to improving the handling of 

thin glass panels, polymer provides improved adhesion for copper deposition.  In the course 

of this work, ABF GX-92 was found to have superior adhesion to glass compared to non-

epoxy low loss polymer, and is therefore the preferred dielectric polymer for glass 

packages fabricated with panel level processes from a reliability point of view. 

 Overall, this work has assessed the RDL reliability of ultra-thin 2.5D glass 

packages fabricated using panel level processes and found the packages to be reliable, 

alleviating one of the great challenges facing glass substrates.   

11.2 Contributions 

 This work has assessed one of the critical challenges facing ultra-thin 2.5D glass 

packages and has made significant research contributions to 2.5D packaging as a whole.  

In particular, 

• This work has studied various dicing techniques, the defects that dicing induces, 

and developed an optimized dicing process for glass substrates. 
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• This work has characterized the stress in glass due to copper and dielectric polymer 

using birefringence, correlated the stress to theoretical models using an innovative 

approach, and validated the stress through shadow moiré warpage measurements. 

• This work has proposed, analyzed, and demonstrated thinner build-up structures 

and pullback techniques to mitigate delamination and demonstrated these to prevent 

glass cracking due to RDL stresses and dicing defects. 

• This work has proposed and demonstrated edge coating or encapsulation 

techniques, two-step dicing, and laser dicing as options to prevent glass cracking 

due to RDL stresses and dicing defects in structures with thick build-up. 

• This work has demonstrated a relationship between dicing defects, build-up stress, 

and glass cracking, developed a methodology to create design guidelines based on 

this relationship, and used this methodology to demonstrate ultra-reliable glass 

substrates.  

• This work has studied interfacial delamination of copper from glass through a 

modified numerical technique to account for large amounts of plasticity in 

combination with experiments. 

• This work has studied the individual failure modes to create design guidelines for 

RDL considering system level reliability and, furthermore, has assessed the 

viability of ultra-thin 2.5D glass interposers. 
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11.3 Future Work 

 Further development of ultra-thin 2.5D glass packages has several intriguing and 

challenges topics to push even further beyond state-of-the-art.  The following are example 

ideas pertaining to mechanical design of such packages: 

• Develop and implement a production level version of edge coating for glass 

cracking prevention.  This may be accomplished through overmolding the 

reconstituted, singulated glass panel. 

• Further optimize and implement high volume blade dicing of polymer laminated 

glass for production level glass interposers.  This should focus on increasing the cut 

speed from 1.0 mm/s to >10 mm/s while maintaining or lowering defect size. 

• Continued study of RDL adhesion, by characterizing and modeling the effect of 

trace width and routing line shape on strain energy release rate. 

• Further improvement in warpage control of large (≥ 20 × 20 mm) substrates by 

improving panel level fabrication processes.  This work should also consider the 

asymmetric layer stack-up of 2.5D interposer design.  Process improvement would 

have many significant benefits, including higher routing density. 

• Study the effects of high temperature and/or moisture to develop ultra-reliable glass 

packages suitable for harsh environments, such as under-hood automotive 

applications.  Due to the extremely high reliability requirements of automotive 

applications, further development of edge coating, two-step dicing, and laser dicing 

may be advised, particularly when considering a cold and wet environment. 
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 Other potential projects within mechanics of materials that this project covered but 

are not necessarily connected to ultra-thin 2.5D glass packaging: 

• Further refinement of the sequential crack extension method, primarily focusing on 

faster convergence of the critical strain energy release rate.  Other potential topics 

within SCE are residual stresses, multi-layered (nonhomogeneous) films, strain 

gradient hardening, comparison with cohesive zone formulation, and 3D 

implementation. 

• Investigate the phenomenon of interfacial debonding, cohesive cracking, and crack 

kinking between glass substrates with polymer and copper layers.  This work found 

that the brittle materials were prone to cohesive cracking, although ductile materials 

could be peeled.  Determine a generalized relationship describing when, how, and 

why this occurs that is consistent with previous bimaterial interface findings. 

• Explore thinner than ultra-thin (30 µm) glass for flexible electronics applications.  
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APPENDIX I. MATERIAL MODELS 

 EN-A1 glass from Asahi Glass Co., Ltd. (Table 26) and SWG3 from Corning Inc. 

(Table 27) are low-CTE borosilicate glasses.  CF-XX glass by Asahi Glass Co., Ltd.’s is 

high-CTE glass (Table 28).  

Table 26 – EN-A1 Glass from Asahi Glass Co., Ltd. material properties [159]. 

Property Value 

E (GPa) 77 

ν 0.22 

CTE (ppm/°C) 2.8-3.8 (see Figure 86) 

Stress Free Temperature (°C) 
(matched to dielectric polymer, 

see Table 30 and Table 31) 

 

 

Figure 86 – CTE of EN-A1 glass [159]. 
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Table 27 – SWG3 Glass from Corning Inc. material properties. 

Property Value 

E (GPa) 73.6 

ν 0.23 

CTE (ppm/°C) 3.17 

Stress Free Temperature (°C) 
(matched to dielectric polymer, 

see Table 30 and Table 31) 

 

Table 28 – CF-XX from Asahi Glass Co., Ltd material properties. 

Property Value 

E (GPa) 74 

ν 0.23 

CTE (ppm/°C) 9.8 

Stress Free Temperature (°C) 
(matched to dielectric polymer, 

see Table 30 and Table 31) 

 

Copper is modeled as a temperature independent, isotropic material in the elastic 

regime in most modeling (Table 29).  The stress-free temperature of copper was determined 

through birefringence measurements.   

Table 29 – Copper material properties (elastic regime). 

Property Value 

E (GPa) 117 

ν 0.34 

CTE (ppm/°C) 17 

Stress Free Temperature (°C) 66.5 

 

Two dry film dielectric polymers are used in this work, non-epoxy low loss polymer 

(Table 30) and Ajinomoto’s ABF GX-92, an epoxy based build-up material (Table 31).  

The reference temperatures were initially chosen based on the glass transition temperature 

and later updated based on birefringence measurement for ABF GX-92.  Hitachi’s FZ-

2700GA (Table 32) was used as solder resist passivation and NAMICS’ XWUF8600-16 

(Table 33) was used for edge coating.  The stress free temperature for FZ-2700GA and 
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XWUF8600-16 are both set to the material’s glass transition temperature.  The properties 

for XWUF8600-16 are vendor provided data. 

Silicon was modeled as anisotropic, linear elastic and temperature independent 

(Table 34).  The stress free temperature was chosen based on the melting or solidification 

point of solder.  The solder used was 96.5Sn-3.5Ag, which was modeled using Anand’s 

model [160, 161] for viscoplasticity (Table 35 and Table 36). 

Table 30 – Non-epoxy low loss material properties [162]. 

Property Value 

E (GPa) 
6.9 (𝑇 < 𝑇𝑔) 

0.7 (𝑇 > 𝑇𝑔) 

ν 0.3 

CTE (ppm/°C) 23 

Stress Free Temperature (°C) 162 

 

Table 31 – Ajinomoto Build-up Film (ABF) GX-92 material properties [28]. 

Property Value 

E (GPa) 
5 (𝑇 < 𝑇𝑔) 

0.1 (𝑇 > 𝑇𝑔) 

ν 0.34 

CTE (ppm/°C) 
39 (𝑇 < 𝑇𝑔) 

117 (𝑇 > 𝑇𝑔) 

Stress Free Temperature (°C) 150 

 

Table 32 – Hitachi’s FZ-2700GA solder resist passivation material properties [163]. 

Property Value 

E (GPa) 
3 (𝑇 < 𝑇𝑔) 

0.3 (𝑇 > 𝑇𝑔) 

ν 0.4 

CTE (ppm/°C) 
32 (𝑇 < 𝑇𝑔) 

95 (𝑇 > 𝑇𝑔) 

Stress Free Temperature (°C) 180 
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Table 33 – NAMICS’ XWUF8600-16 edge coating material properties. 

Property Value 

E (GPa) 
3.4 (𝑇 < 𝑇𝑔) 

0.06 (𝑇 > 𝑇𝑔) 

ν 0.4 

CTE (ppm/°C) 
58 (𝑇 < 𝑇𝑔) 

190 (𝑇 > 𝑇𝑔) 

Stress Free Temperature (°C) 136 

 

Table 34 – Silicon material properties [164]. 

Property Value 

E (GPa) 
169 (in-plane) 

130 (out-of-plane) 

ν 0.28 

CTE (ppm/°C) 2.6 (see Figure 86) 

Stress Free Temperature (°C) 220 

 

Table 35 – 96.5Sn-3.5Ag solder material properties base [165]. 

Property Value 

E (GPa) 58.9 

ν 0.4 

CTE (ppm/°C) 24 

Stress Free Temperature (°C) 220 

 

Table 36 – 96.5Sn-3.5Ag solder constants for Anand’s model for viscoplasticity [160, 

165]. 

Property Value 

s0 (MPa) 39.09 

Q/R (°C) 8900 

AA (1/s) 22300 

ξ 6 

mA 0.182 

h0 (MPa) 3321.15 

�̂� (MPa) 73.81 

nA 0.018 

aA 1.82 
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APPENDIX II. EXAMPLE RAW DATA OF THERMAL CYCLING 

RELIABILITY FOR GLASS SUBSTRATES 

 

Figure 87 – Batch 1 (NELL polymer) Sample E3 after 1000 thermal cycles. 
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Figure 88 – Batch 2a (NELL polymer) Sample C3 after 1000 thermal cycles. 
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Figure 89 – Batch 2a (NELL polymer) sample with high CTE glass after 1000 

thermal cycles. 
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Figure 90 – Batch 2b (NELL polymer) Sample E5 after 1000 thermal cycles. 
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Figure 91 – Two-step dicing (NELL polymer) Sample E4 after 1000 thermal cycles. 
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Figure 92 – Batch 3a (NELL polymer) Sample F1 after 1000 thermal cycles. 
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Figure 93 – Batch 3b (NELL polymer) Sample F2 after 1000 thermal cycles. 
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Figure 94 – Sample A-2b (ABF GX-92) at t0. 

 

(a) (b)

(c)

(d)

(e)(f)

(g)

(h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



 168 

 

Figure 95 – Sample A-2b (ABF GX-92) after 1000 thermal cycles. 
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Figure 96 – Sample C2-R (50%) (ABF GX-92) after 1000 thermal cycles. 
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Figure 97 – Sample D2-R (75%) (ABF GX-92) after 1000 thermal cycles. 
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Figure 98 – Sample F2-L (75%) (ABF GX-92) after 50 thermal cycles. 
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Figure 99 – Sample E1-L (50%) (ABF GX-92) after 250 thermal cycles. 
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