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SUMMARY 

 Micro/nanoscale thermal radiation is of great importance in advanced energy 

systems, nanomanufacturing, local thermal management, and near-field imaging. It 

concerns both electromagnetic wave interactions with micro/nanostructured materials that 

could create unique far-field radiative properties as well as near-field radiative heat transfer 

between close objects. This dissertation explores the capability of micro/nanostructured 

plasmonic metamaterials and two-dimensional (2D) materials to control far- and near-field 

thermal radiation. The major goals are to (1) study the coherent far-field radiative 

properties of plasmonic metamaterials for thermal radiation control; (2) design unusual far-

field thermal radiative properties by using the emerging 2D materials; (3) use 2D materials 

to enhance photon tunneling and near-field radiative heat transfer. 

A 2D grating/thin-film periodic nanostructure is studied to utilize magnetic 

polaritons (MPs) and surface waves, including surface plasmon polaritons and Wood’s 

anomaly, to create wavelength-selective thermal emission and improve the efficiency of 

thermophotovoltaics. Deep metallic gratings are investigated for their coherent radiative 

properties due to MPs in different wavelength ranges. The scalability of the MPs is 

scrutinized to reveal the role of kinetic inductance for resonances in nanometer and 

micrometer scale. The polarization dependence of the diffraction efficiency and radiative 

properties of anisotropic periodic surfaces is examined.  

A graphene-covered deep metal grating is investigated where MPs in gratings 

couple with graphene. The coupled resonances are studied in visible and near-infrared 

range with an emphasis on the enhanced absorption in graphene. The plasmonic coupling 

between graphene ribbon array and metal gratings is explored in mid- and far-infrared. A 
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natural phononic hyperbolic 2D material, hexagonal boron nitride (hBN), is used with 

metal gratings to achieve perfect wavelength-selective absorption caused by coupling 

between hyperbolic phonon polaritons with MPs. Trapezoidal gratings made of hBN is also 

studied for its ability to support broadband perfect absorption. The directional hyperbolic 

phonon polaritons are inspected for its capability to create resonance absorption in 

resonators with different shapes.  

The near-field heat transfer and photon tunneling between graphene, hBN films, 

and van der Waals heterostructures assembled by them are studied based on fluctuational 

electrodynamics. A hybrid polariton in the heterostructure, surface plasmon-phonon 

polariton, is discussed for its contribution to the near-field heat transfer. The effects of the 

thickness of hBN film, the chemical potential of graphene, as well as a second layer of 

graphene on the backside of the heterostructure, are investigated. 

 The results obtained from this thesis provide a better understanding of the radiative 

properties of various micro/nanostructured plasmonic metamaterials and 2D materials.  

The insights from combining metamaterials, micro/nanostructures with various 2D 

materials may open a new route to better control both near- and far-field thermal radiation. 

This dissertation can benefit a wide spectrum of applications with a desire of thermal 

radiation control, such as personal thermal management, radiative cooling, thermal 

imaging, solar energy harvesting, as well as thermophotovoltaics. 
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CHAPTER 1 

INTRODUCTION 

 Thermal radiation originates from random fluctuations of the charges or atoms in 

matters. Because of this nature, radiation from a thermal source, such as an incandescent 

light bulb or the sun, is usually incoherent: It is broadband and weakly directional. 

However, at the beginning of 21st century, researchers found that the thermal radiation 

from a periodically patterned grating surface with a period smaller than the typical 

wavelength of the thermal radiation can be coherent over many wavelengths in a well-

defined direction [1-3]. This finding initiated the adventure to explore new structured 

materials to control thermal radiation. Various subwavelength micro/nanostructure or 

electromagnetic metamaterials are proposed that can tailor optical and radiative properties 

both spectrally and directionally [4-7].  

Metamaterials are artificially structured materials that can control and manipulate 

wave propagations such as light, phonons, and sound. The ability comes from the unit 

structures that are typically smaller than the wavelength of the interacting waves. Similar 

to a material whose properties are governed by its constitute atoms or molecules, an 

metamaterial attains its properties from the unit structure, which acts like the ‘atom’ in 

metamaterials. Therefore, their properties can be very different from the constituent 

materials [6]. Electromagnetic metamaterials are the ones that can manipulate the 

propagation of photons. Although a lot of structures are categorized as electromagnetic 

metamaterials, they are typically periodic engineered subwavelength structures with 

optical or radiative properties beyond or have not yet been found in conventional materials.  
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Research in electromagnetic metamaterials becomes increasingly important for their 

widespread applications [3], such as photodetectors [8-10], band-pass filters and 

extraordinary optical transmission [11-14], negative refraction [15-19], anomalous 

reflection [20,21], cloaking [22-25], surface-enhanced Raman spectroscopy [26], medical 

therapy [27], thermophotovoltaics (TPV) emitter and absorber [28-31], photovoltaic and 

solar thermal technology [32-36], structural color printing [37], as well as radiative cooling 

[38].  

Tailoring radiative properties using metamaterials generally relies on various 

resonance modes or surface waves in these micro/nanostructures. Among them are gratings 

that support surface phonon polaritons (SPhPs) [2] or surface plasmon polaritons (SPPs) 

[39-41], hyperbolic metamaterials that can empower hyperbolic modes and epsilon-near-

zero modes [42-44], and metal/dielectric/metal structures and deep gratings that can enable 

magnetic polaritons (MPs) [45-47]. Meanwhile, various structures like photonic crystals 

[48] and nanowire arrays [49] are also extensively studied for their unique radiative 

properties. As one kind of electromagnetic metamaterials, plasmonic metamaterials exploit 

plasmons, a collective oscillation of charge carriers, to achieve coherent absorption or 

transmission. SPPs [39] and magnetic (plasmon) polaritons  or MPs [50-52] are two types 

of resonances that enable these amazing applications. They are produced by coupling an 

incident photon with a plasmon inside the structure. Due to the ability to confine light in 

small scale, SPPs and MPs are able to create unique spectral and directional radiative 

properties that are desired in applications such as energy harvesting [1,3,53], imaging [54], 

bio and chemical sensing [55], and optoelectronics [56].  
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The thermal radiative properties of micro/nanostructured plasmonic metamaterials can be 

tremendously different because of MPs and SPPs compared to the radiate properties of the 

materials in the structures. In the past decades, SPPs and MPs have been studied in visible 

and microwave wavelength regions, but the role of MPs and SPPs in plasmonic 

metamaterials for thermal radiation control are still not fully understood.  

On the other hand, emerging two-dimensional (2D) materials [57,58], including 

graphene [59-63], hexagonal boron nitride (hBN) [64], transition metal dichalcogenides 

[65], and recently emerged black phosphors [66], offer exciting new elements to construct 

micro/nanostructures with unique optical and radiative properties. Take graphene as an 

example. With a layer of carbon atoms arranged in a honeycomb lattice, graphene exhibits 

unique electronic, thermal, mechanical, and optical properties [67-69]. Since its discovery 

in 2004 [59], graphene has been extensively studied for potential applications in 

nanoelectronics, optoelectronics, plasmonics, transformation optics, and energy 

conversion [70-77]. Unlike in conventional solids where electrons are described by the 

Schrödinger equation, electrons in graphene are governed by the Dirac equation for 2D 

relativistic fermions [78]. It enables saturation absorption in the visible and near-infrared 

region, and low-loss, actively tunable surface plasmons in mid- and far-infrared region 

[59,61,67], which have been demonstrated for their ability to control thermal radiation [79]. 

In addition, natural hyperbolic 2D materials like hexagonal boron nitride (hBN) [60,64,80-

82] can support plentiful phononic resonance modes that could be used to create unusual 

radiative properties. Moreover, since the 2D materials are easily assembled with 

nanostructures, the resonances in 2D materials and the above-mentioned resonances in 
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metamaterials could interact with each other and plentiful coupling effects may open more 

pathways to control radiative properties [83].  

Accompanied with the far-field radiation are the thermal evanescent field that 

exponentially decays away from their surface. This field is also initiated by the fluctuations 

of charge carriers in matters. In the far field, only the propagating waves can survive and 

transfer power from one object to the other. It leads to an upper bound of radiative heat 

transfer, which is the well-known blackbody limit predicted by Planck’s law. However, 

when two objects are brought within a distance that is comparable to the characterized 

thermal radiation wavelength, the evanescent waves of the two objects can couple and 

create pathways for photon energy to tunnel, leading to a radiative heat flux that can be 

orders of magnitude larger than the far-field blackbody limit. This is the so-called super-

Planckian heat transfer and is of critical importance in applications such as energy 

harvesting, thermal management, near-field imaging, and local heating and cooling [84-

88]. The large radiative heat flux in near field is attributed to the tunneling of evanescent 

waves or photon tunneling, and enhancing the near-field heat transfer process is essentially 

seeking ways to improve the photon tunneling effect [89,90]. It has been demonstrated that 

photon tunneling effect can be significantly enhanced when coupled resonance modes like 

SPPs and SPhPs are excited [91,92]. 2D materials like graphene have been investigated for 

enhancing near-field thermal radiation due to SPPs supported by graphene [93-95]. 

However, the possibility of using emerging 2D materials like hBN and heterostructures 

constructed by different 2D materials to enhance photon tunneling is still unclear. These 

2D materials and heterostructures made of them may enable plentiful new resonance modes 

that have great potential to enhance the photon tunneling effect and near-field heat transfer. 
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Optical and radiative properties essentially describe the way that light interacts with 

matters [3]. When the characteristic length of the material or structure is much larger than 

the wavelength of light, the polarization and vector attributes of light may be neglected, 

and radiative properties in this scale can be solved using ray-tracing or geometrical optics 

[96,97]. However, to calculate the radiative properties of subwavelength periodic 

nano/microstructured surfaces, Maxwell’s equations have to be solved to fully consider the 

vector and polarization characters of electromagnetic waves [98]. Recent advances in 2D 

materials put new challenges on the numerical modeling of the optical and radiative 

properties due to their atomically thin thickness and natural anisotropy, especially when 

2D materials are combined with periodic nanostructures. 

This dissertation aims to study the thermal radiative properties of 

micro/nanostructured plasmonic metamaterials and different 2D materials in both far and 

near field. The objectives are to (1) investigate the radiative properties of MPs and SPPs in 

micro/nanostructured plasmonic metamaterials and their practical applications, including 

the far-field radiative properties of SPPs and MPs in 2D nanostructures for 

thermophotovoltaics applications, the underlying mechanism of MPs in deep gratings, and 

polarization dependent radiative properties of anisotropic metamaterials; (2) explore the 

radiative properties of nanostructures made of 2D materials as well as the coupling effect 

between 2D materials, such as graphene and hBN, with deep metal gratings;  and (3) study 

near-field heat transfer and photon tunneling between 2D materials and their 

heterostructures. 

This dissertation is organized as follows. Chapter 2 presents a theoretical 

background of SPPs and MPs, dielectric function models of 2D materials and metals, as 
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well as calculations of near-field radiative heat transfer. Chapter 3 introduces an anisotropic 

rigorous-coupled wave analysis (RCWA) algorithm that can model multilayer periodic 

micro/nanostructures involving anisotropic materials. Chapter 4 discusses the radiative 

properties of SPPs and MPs in metal/dielectric/metal structures and deep gratings and the 

applications of tailored thermal radiative properties with an emphasis on 

thermophotovoltaics. The polarization dependence of the radiative properties of 

anisotropic metamaterials is also discussed. Chapter 5 presents the unusual radiative 

properties of hybrid structures constructed with plasmonic gratings and 2D materials 

including graphene and hBN.  The underlying mechanisms are discussed with an emphasis 

on the coupling effect between 2D materials and gratings. Additionally, the radiative 

properties of a trapezoidal gratings made of hBN are discussed to demonstrate the 

uniqueness and potential of hyperbolic materials in controlling thermal radiation. In 

Chapter 6, the near-field heat transfer and enhanced photon tunneling between 2D materials 

and their heterostructures are demonstrated. Chapter 7 summarizes the findings and 

conclusions of this dissertation and recommends some future research directions. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 This Chapter covers the basics of surface plasmons, magnetic polaritons, 2D 

materials, as well as near-field radiative heat transfer. In section 2.1, fundamentals of SPPs 

are discussed. The dispersion and field plots are illustrated with an example of a periodic 

grating.  Section 2.2 introduces MPs and LC circuit models. MPs in deep metal gratings 

are used as an example. The features of MPs as well as the prediction method are covered. 

Section 2.3 presents the dielectric functions of 2D materials including graphene and hBN. 

Fundamentals of graphene surface plasmons and hyperbolic materials are discussed. 

Finally, in section 2.4, the chapter is concluded with an introduction of near-field radiation 

and essential equations to calculate photon tunneling probability. 

 

2.1 Surface Plasmon Polaritons 

Generally speaking, the reason for the unique optical and radiative properties of the 

micro/nanostructures is the excitation of various polaritons. Polaritons are quasiparticles 

resulting from strong coupling of electromagnetic waves with an electric or magnetic 

dipole-carrying excitation. One of such excitations is plasmons, which are quasiparticles 

associated with oscillations of plasma, i.e., a collection of charged particles inside materials. 

External electromagnetic waves can couple with surface plasmons (SPs), which is a 

collective oscillation of surface charges, to form a surface plasmon polariton or SPP [40,99]. 

SPPs have been intensively studied for applications in lithography [100], chemical and bio 

sensing [101], extraordinary optical transmission [99], and optical communication [102]. 

Upon the excitation of SPPs, the charges close to the surface are driven by the electric field 
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and oscillate back and forth intensively. The field of a SP is confined near the surface with 

the amplitude exponentially decaying away from the interface. Not only is a surface wave 

induced propagating along the interface with an amplitude exponentially decaying away 

from the interface [39,40,99,103-105], but the oscillation of charges also dissipates the 

electromagnetic energy into heat, creating strong absorption at the resonance frequency.  

SPPs are non-radiative surface waves since the required wavevector is larger than 

the free space wavevector and they do not couple with propagating electromagnetic waves 

in vacuum [3]. This can be seen from the magnitude of the wavevector of the SPs on a 

metal-dielectric interface that is expressed as [3] 

 1 2
SP 0

1 2

k
 

 



k   (2.1) 

where 0 0k c  is the magnitude of the wavevector in vacuum, and  and  here are the 

dielectric functions of the dielectric and metal, respectively. Note that Eq. (2.1) are for 

nonmagnetic materials and transverse magnetic waves (TM waves or p polarization). For 

transvers electric waves (TE waves or s polarization), the excitation of SPs requires a 

magnetic material with negative permeability. The wavevector of the electromagnetic 

waves must have a tangential component equal to kSP to excite SPPs. Since SPk  is greater 

than 0k , high index prisms can be used to increase the wavevector of the incident waves 

so that SPs can couple with incident light to excite SPPs [3,39,106]. Another method is to 

take advantage of the diffracted light by periodic micro/nanostructures, as will be explained 

in the following. 
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Figure 2.1 Schematic of the 1D grating with a period , height or depth h, ridge width w, 

and trench width b. The equivalent LC circuit model is also shown with the capacitance C 

and inductance L. The wavevector kinc of the incident plane wave is in the x-z plane at an 

angle  with respect to the z-axis. 

 Consider a one-dimensional (1D) silver (Ag) grating on a semi-infinite Ag substrate 

shown in Figure 2.1. The grating has a periodicity in the x-direction described by  = 1.7 

m. The grating height h = 0.1 m and the trench width b = 0.595 m. The incident plane 

wave is a TM wave with an oscillating magnetic field in the y-direction. The optical 

properties of Ag are obtained using a Drude model [3,96] 

  
 

2
p

i


  

  
 


  (2.2) 

where the used parameters are plasma frequency 16
p 1.39 10  rad/s   , scattering rate 

132.7 10  rad/s   , and high-frequency constant 3.4  . For this 1D grating, the 

Bloch-Floquet condition, which will be explained more in the next Chapter, gives 
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, ,inc 2x m xk k m   . Thus, the dispersion relation can be folded into the region for 

/xk    and SPPs can be excited on a grating surface with propagating waves in air. 

Figure 2.2(a) shows the folded dispersion relation of SPPs for the given Ag grating. The 

intersections of the folded dispersion with the vertical axis identify the location where SPPs 

can be excited for a normal incidence, as shown in Figure 2.2(b). The excitation of surface 

polaritons is responsible for the dips in the reflectance, whose frequency locations agree 

well with predictions of the dispersion curves. Figure 2.3 illustrates an instantaneous field 

distribution of the SPP at  = 5727 cm1 corresponding to the first reflectance dip in Figure 

2.2(b). The colors represent direction and magnitude of the magnetic field and the arrows 

show the electric field. It is clear that this SPP is a surface wave with a wavelength that is 

equal to the period of the grating. Note that this surface wave is a standing wave, as will 

be discussed later in Chapter 5. 

 

 

Figure 2.2 (a) Folded dispersion of SPPs for a Ag grating with  = 1.7 m, h = 0.1 m, 

and b = 0.595 m. (b) Normal reflectance of TM waves for a Ag grating with the same 

geometries with (a). 
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Figure 2.3 Instantaneous field distribution at the excitation of SPP at  = 5727 cm1 for a 

Ag grating with  = 1.7 m, h = 0.1 m, and b = 0.595 m. The incident wave is at normal 

direction and TM-polarized. Color represents the relative magnetic field and the arrows 

show the electric field.   

Note that  and  in Eq. (2.1) need to have different signs. For typical metal, since 

has a negative real part whose magnitude is much larger than , the dispersion of SPP 

very close to the light line, which is 0 0k c . On the other hand, in some cases where  

has a positive real part, another type of surface waves that has a similar dispersion called 

Wood’s anomaly (WA) may be supported. Wood’s anomaly occurs when a diffraction 

order shows up at the grazing angle, and its dispersion can be expressed as , 0mn kk , 

which is essentially the light line [14]. Both SPP and WA can be used to tailor the optical 

and radiative properties, as will be shown in Chapter 4. 
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2.2 Magnetic Polaritons and LC Circuit Model 

According to Lenz's law, the time-varying magnetic field can create an oscillating 

current loop, which generates a magnetic field that opposes the driven magnetic field. A 

similar effect happens in micro/nano plasmonic metamaterials and causes resonances with 

a strong diamagnetic feature, which are referred to as magnetic polaritons in this work. 

Magnetic polaritons or MPs represent the strong coupling between the magnetic resonance 

inside a micro/nanostructure and the external electromagnetic waves [29,45,50,107-109]. 

This type of resonance was initially discovered and experimentally demonstrated in split-

ring resonator [110], metal-rod pairs [111], and fishnet structures [112] that are possessed 

of negative permeability in microwave region. The resonance wavelength can be well 

explained by inductor-capacitor (LC) circuit models [113,114]. The following introduces 

the LC models that are used to predict the resonance wavelength of MP resonances.  

Take the metal grating shown in Figure 2.1 as an example. When the incident wave 

has an oscillating magnetic field that is along the y-direction, i.e., TM waves, a current loop 

is induced around the trench and the equivalent LC circuit model shown in the inset can be 

used to predict the resonance condition. In the model, the dielectric (typically vacuum, with 

a positive   ) in the trenches serves as a capacitor while the surrounding material (typically 

metal, with a negative   ) acts as an inductor. Thus, to apply the LC models requires 

careful analysis of the inductance and capacitance in the circuit.   

Since the walls on both sides of the groove are close to each other, mutual 

inductance mL  needs to be considered. It can be evaluated from the parallel-plate 

inductance formula and written as 

 m 0

hb
L

l
   (2.3) 
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where 0 is the permeability of vacuum and l is the length in the y-direction that can be set 

to unity for 1D gratings. The other contribution of the inductance comes from the kinetic 

energy of charges since charge current must accelerate to create the currents [113]. Thus, 

kinetic inductance Lk is introduced and added to the mutual inductance to form the total 

inductance in the circuit. It can be obtained from the frequency-dependent complex 

impedance of the metal: 

 k k kZ R i L    (2.4) 

where   is the angular frequency. The impedance can be expressed as  k effZ s A , 

where s is the total length of the current path in the metal and Aeff is the effective cross-

section area of the induced electric current. For the deep grating structure, 2s h b   and 

effA l , where  / 2    is the penetration depth of electric field, in which   is the 

extinction coefficient., 0i    is the electrical conductivity. After some 

manipulations, the following expression can be obtained:   

 

 
k 2 2 2

0

2
=

h b
L

l



    




 
  (2.5) 

The capacitance of the vacuum inside the trench can be approximated by 

 0

hl
C c

b
   (2.6) 

where cʹ is a numerical factor between 0 and 1 accounting for the nonuniform charge 

distribution between the ridges of the grating [52,115]. Since resistance elements do not 

affect the resonance frequency, only the imaginary part of the total impedance of the LC 

circuit is considered and can be expressed by 
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 tot k m 2

1
Z i L L

C




 
   

 
  (2.7) 

By setting tot 0Z  , one obtains the magnetic resonance wavelength as 

  R 0 k m2 c L L C     (2.8) 

where c0 is the speed of light in vacuum. For other structures like slit array and metal-

dielectric-metal structures [29,50], the inductance and capacitance in the circuits can be 

obtained in a similar way. 

 

2.3 Graphene Surface Plasmons and Hyperbolic 2D Material hBN  

The radiative properties of graphene can be described by its sheet conductivity s , 

which consists of the contribution from intraband (Drude-like term) and interband 

transitions, i.e., s D I    , respectively [116]: 
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and 
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G Ge
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   

   
   (2.10) 

where        B B Bsinh cosh coshG k T k T k T       . Here, e is the electron 

charge,  is the reduced Planck constant, is chemical potential,   is relaxation time, T 

is temperature, and Bk  is the Boltzmann constant. Since  can be tuned by electrical gating 

or chemical doping, the optical properties of graphene can be actively tuned [59]. Figure 

2.4 illustrates the effect of  . As the plot shows, in the visible and near infrared, interband 

transitions dominate and graphene shows a wavelength-independent conductivity 
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 2
s 0 4e   , making graphene has no plasmonic response but has a wavelength-

independent absorptivity of about 2.3% [67]. In the mid- and far- infrared region, graphene 

can support highly-confined SPs.  

For a graphene sheet surrounded by media with dielectric functions 1  and 2  on 

each side of graphene, respectively, the dispersion of the graphene surface plasmon 

satisfies  

 s1 2

2 2 2 2
0GSP 1 0 GSP 2 0

i

k k k k

 

 
  

 
  (2.11) 

where GSPk  is the wavevector for the plasmon and 0  is the permittivity of vacuum. 

Figure 2.5 shows a schematic of graphene SPs. In the mid- and far-infrared region, the 

intraband transitions dominate and the conductivity can be approximately expressed in a 

Drude-like model [117] 

 
2

s 2 1

e

i

 






  (2.12) 

In this wavelength region, if graphene is surrounded by vacuum, i.e. 1 = 2 = 1, the 

dispersion can be simplified as [70]  

 0 0
GSP 1 2

0 ss 0

4 2i
k

c

 


 
     (2.13) 

where 0  is the vacuum permeability.  

As a material that has a similar lattice structure with graphene, hBN has been used 

as an ideal dielectric substrate (bandgap ~5.9 eV) supporting high-quality graphene 

[118,119]. While 2D plasmonic materials and semiconductors have been studied 

extensively because of their potential applications in microelectronic, optoelectronic, and  
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Figure 2.4 Sheet conductivity of graphene at different  based on Eq. (2.9) and (2.10). 

photonic devices [83], few studies have yet explored the radiative properties anisotropic 

phononic materials, especially for materials like hBN that is a hyperbolic material.  

Hyperbolic materials refer to uniaxial materials whose axial and tangential 

permittivities have opposite signs. The isofrequency surfaces obey a hyperbolic shape 

instead of a closed sphere for common isotropic materials. Subsequently, these materials 

can support propagating modes with very large tangential wavevectors that possess unique 

applications in sub-wavelength imaging [120-122] and heat transfer [43,123-125]. The 

hyperbolic response of hBN is mainly caused by its optical phonon vibrations. The real 

 

Figure 2.5 Schematic of graphene surface plasmon (GSP). 
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part of the dielectric function of hBN is shown in Figure 2.6. The two mid-infrared 

Reststrahlen bands due to the optical phonon modes are evident. The in-plane phonon 

modes ( TO,   = 1370 cm-1 and LO,   = 1610 cm-1) and out-of-plane phonon modes 

( TO,  = 780 cm-1 and LO,  = 830 cm-1) contribute to the in-plane (E lies in the x-y plane, 

denoted by ⊥) and out-of-plane (E parallel to the optical axis or the z-direction, denoted by 

||) dielectric functions, respectively [82]: 

 

2 2
LO, TO,

, 2 2
TO,

1
i

 
 

 

 
 

   
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 
  
   

  (2.14) 

where   = ,   . The other parameters used are , 2.95  , 
14 cm  , , 4.87   , 

and 15 cm 
  . Since the damping coefficients  are rather small, the dielectric function 

becomes negative between the TO and LO phonon modes, making the in-plane and out-of-

plane dielectric functions of hBN possess opposite signs in either Reststrahlen band. In the 

lower Reststrahlen band, 0z     and 0x y       , hBN has Type-I hyperbolicity, 

while in the upper Reststrahlen band, 0x y     and 0z   , hBN holds Type-II 

hyperbolicity [126]. Meanwhile, in the two regions with hyperbolicity, loss is negligibly 

small. 

The hyperbolic regions allow propagating waves with unbounded wavevectors as 

can be seen from the isofrequency surface for an uniaxial medium with the optical axis in 

the z-direction [43]: 

 

2 2 2 2
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x y z
k k k

c


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
    (2.15) 
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Figure 2.6 In-plane and out-of-plane dielectric function of hBN: (a) the real part and (b) 

the imaginary part. The two hyperbolic regions are shaded and marked with the 

corresponding type of hyperbolicity. 

where  , ,x y zk k kk  represents the allowed wavevector. If loss is neglected, in the 

frequency ranges that possess hyperbolicity, Eq. (2.15) becomes a hyperboloid and both kx 

and kz can theoretically be infinitely large. Note that Eq. (2.15) is for extraordinary waves 

or TM waves. For transverse electric or TE waves, the isofrequency surface becomes a 

sphere described by 
2 2 2

0c k , thus hBN behaves the same as an isotropic material 

with the ordinary dielectric function. 

 

2.4 Theory of Near-Field Radiative Heat Transfer 

Based on the fluctuation-dissipation theorem, thermal emission is originated by the 

random motions of the charges inside a medium, which generates a fluctuating current. The 

correlation function of the thermally generated random currents for an anisotropic, local, 
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and nonmagnetic medium with time-reversal symmetry at local thermal equilibrium can be 

expressed as [3] 

            * 04
, , , ,i k ikJ J T


        


       r r r r r  (2.16) 

Here, subscript i and k denote vector components, ik   is the imaginary part of the dielectric 

tensor component. ik  is the Kronecker delta and   r r  or      is the Dirac 

delta function indicating spatial or temporal incoherence, respectively. For an isotropic 

medium, ik ik    . The electric and magnetic field generated by the random currents can 

be obtained using the dyadic Green functions together with Eq. (2.16). The near-field 

radiative heat flux, which is the Poynting vector component perpendicular to the interface, 

between two media with temperature T1 and T2 is then given as [3] 

      1 22 0 0

1
, , ,

4
q T T d d       
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 
        (2.17) 

where (,T) is the average energy of Planck’s oscillator,   designates the magnitude of 

the wavevector in the x-y plane, and ( , )    is the photon tunneling probability (also 

called energy transmission coefficient).  includes the contributions from both the 

transverse electric waves (TE wave or s-polarization) and transverse magnetic waves (TM 

wave or p-polarization) and can be expressed as [127] 
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Here kz0 is its z-component of wavevector in vacuum.  0
1

2
1 2

zik d
e


 D I R R  is a Fabry-

Pérot type denominator representing the multiple reflections inside the vacuum cavity, and 

1R  and 2R  are the 2 × 2 reflection coefficient matrices: 

 

   
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1 2
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=
ss sp

ps pp

r r

r r

 
 
 
 

R ，   (2.19) 

 including both the co-polarization ( ssr  and ppr ) and cross-polarization ( spr  and psr ) 

components. 

 

  



 21 

CHAPTER 3 

TWO-DIMENSIONAL ANISOTROPIC RIGOROUS COUPLED-WAVE 

ANALYSIS  

 In this Chapter, a two-dimensional rigorous coupled-wave analysis is presented that 

can calculate radiative properties of multilayer periodic structures made of anisotropic 

materials. The core equations are presented with the steps of matrix manipulations that are 

used to solve the radiative properties and field distributions. The methodology to calculate 

the local power dissipation density are discussed. This chapter ends with a discussion on 

the convergence of the program. 

 Maxwell’s equations describe the way electromagnetic waves propagate in a certain 

medium. Together with the constitutive relations from which the permittivity and 

permeability of the medium can be obtained, radiative properties can be attained by 

studying how light interacts with the medium. Numerical methods are usually used to 

simulate the radiative properties of periodic structures since analytical solutions are seldom 

available due to the complex geometries [98]. The most popular modeling methods may 

include the finite-difference time-domain (FDTD) or Yee’s method [128,129], the finite 

element method (FEM) [130], and the rigorous-coupled wave analysis (RCWA) method 

[131].  

 FDTD is a time domain method that uses wideband sources and computes a 

wideband response in one run, whereas RCWA is a frequency domain method that has to 

calculate the system response for each frequency point. If a very narrow band response is 

of the interest, a very large number of timesteps may be required [130]. Meanwhile, the 

properties of the material, i.e. the permittivity and permeability, can be expediently 
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expressed as a function of the frequency in the frequency domain, but in the time domain 

it is more challenging since a convolution is implied [98]. FEM can be used in both time 

and frequency domain. All three methods are widely used. Commercial software such as 

Remcom’s XFDTD and Lumerical’s FDTD solutions, as well as a free-software package 

[132], are based on FDTD. COMSOL’s RF Module and Ansoft’s HFSS are examples that 

use FEM, while RCWA programs are also accessible online free of charge [133,134]. 

FDTD and FEM methods discretize the structure or computation domain with mesh 

or grid and numerically solve the quantity of interest associated with each element or cell. 

For structures with small dimensions like 2D materials, accrete simulation using FEM and 

FDTD may become very challenging and time-consuming since the dimension of the mesh 

needs to be very small in the out-of-plane direction, especially when structures with small 

characteristic lengths coexist with large structures, like the hybrid structures with 2D 

materials and micro/nanostructures. On the contrary, RCWA is a semi-analytical method 

that does not require a discretization of the structure. Instead, the electric or magnetic field 

in the structure are expressed as a Fourier series with the coefficients to be solved using 

boundary conditions. Since mesh is not needed, RCWA has advantages in modeling the 

structures that contain extremely small geometries.  

RCWA has been widely used in modeling the radiative properties of periodic 

structures. However, most available RCWA algorithms are for isotropic materials only. 

Anisotropic RCWA has been studied by different researchers starting from the 1990s after 

the widely-used isotropic RCWA for one-dimensional (1D) grating was proposed in 1981 

[131]. Glytsis and Gaylord [135] formulated RCWA for 1D anisotropic gratings, but the 

algorithm may have convergence issues for highly conducting metal gratings because of 
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the way that Fourier factorizations were calculated. Later, Li [136,137] reformulated the 

algorithm with the correct Fourier factorization rules. Continuous effort has been devoted 

and more general algorithms have been formulated to consider 2D arbitrary lattice 

configurations and permittivity tensor [138-140]. However, most of these works are 

intended to solve impressively general problems and thus are very complex and formidable 

to be implemented. The present study provides an easy-to-implement algorithm that allows 

the modeling of a 2D multilayered periodic structure made of biaxial materials with a 

diagonal permittivity tensor. In the following, an easy-to-implement algorithm to model a 

2D multilayered periodic structure made of biaxial materials with a diagonal permittivity 

tensor are summarized. This algorithm is an extension of the public available RCWA code 

[134], which has been presented in other work [14,141-143]. It also serves as a theoretical 

background of the later sections since the resonance mechanisms are easier to be 

understood in the frequency domain. 

The 2D anisotropic multilayered periodic structure is schematically shown in 

Figure 3.1. The periodicity is characterized by x and y, which are the periods in the x- 

and y-directions, respectively. Each layer in the structure can be either a grating or a 

continuous film by adjusting the lateral dimensions lx and ly, and its thickness is jd . In the 

schematic, the first layer is a 2D grating and the rest are films. The medium where the 

wave is incident, the intermediate layers (total N layers), and the semi-infinite substrate 

can be categorized as Region I, II, and III, respectively, as indicated in the schematic. The 

incident medium with a dielectric function I  (refractive index nI) is usually vacuum or 

lossless dielectric and set to be isotropic. The incident wave with an electric field Einc is 

assumed to be linearly polarized and with a unit magnitude. The plane of incidence  
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Figure 3.1 Illustration of the numerical model for general 2D periodic multilayer structures 

consisting of anisotropic materials.  

indicated in transparent gray color is the plane determined by the z-axis and the incident 

wavevector  inc ,inc ,inc ,inc, ,x y zk k kk . A polar angle the angle between kinc and the z-

axis and azimuthal angle the angle between the x-axis and the plane of incidenceare 

used to depict the direction of kinc 
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  (3.1) 

where k0 = /c0 is the wavevector (magnitude) in vacuum with c0 being the speed of light 

in vacuum and  being the angular frequency. Polarization angle  is defined as the angle 
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between the electric field and the plane of incidence. With these definition, Einc can be 

written as 

 
 

   

inc cos cos cos sin sin

cos cos sin sin cos cos sin

x

y z
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 

  
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  (3.2) 

Thus, a TE wave means 90    and a TM wave means 0   . Since all the radiative 

properties concerned in this dissertation are spectral properties, the word “spectral” is 

omitted in the description of the radiative properties. According to Kirchhoff’s law [3], the 

directional emittance is equal to the directional absorptance, which is one minus the 

directional-hemispherical reflectance if the substrate can be treated as opaque. This will be 

true for all the senarios considered in this dissertation. Therefore, 1 R       for 

either TE- or TM-wave incidence [29]. The problem becomes how to numerically calculate 

the reflectance of the emitter structure for any given wavelength, angle of incidence, and 

polarization status. 

In Region I, the electric field contains the incident and reflected fields and the 

expression is the same as the isotropic RCWA [144]: 

   r
I inc ,inc ,inc ,inc , , ,exp exp r

x y z mn x m y n z mn

m n

ik x ik y ik z ik x ik y ik z     E E E  (3.3) 

The time-harmonic term, exp(it), is omitted hereafter. The second term on the right-

hand side is the reflected wave. r
mnE  is the complex amplitude of the (m, n) order reflected 

wave and its transverse wavevector components are determined by the Bloch-Floquet 

condition [135]:  
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where m and n denote the diffraction orders in the x- and y-directions, respectively, and 

they can take both positive and negative numbers. The z-components of the wavevector is  
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  (3.5) 

In each layer of Region II, both the electromagnetic field and the dielectric function 

are expressed as Fourier series based on the periods in the x- and y-directions. The materials 

of each layer are assumed to be nonmagnetic and thus the dielectric function of the layer 

can be described by a location-dependent permittivity tensor 
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where j is the number of the layer in the structure ranging from 1 to J. Generally, 

i      is a complex number with    and    being its real and imaginary part, 

respectively. The electric and magnetic field can be expressed as 
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The unknowns  mn zχ  and  mn zγ  can be related by the following equations based on 

the Maxwell’s equations, II 0 II 0i  E H  and II 0 II 0i   H E , where 0 and 

0 are the permeability and permittivity of vacuum, respectively: 
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  (3.8) 

where p and q are two integers. The superscripts ord and inv indicate the coefficients of 

the Fourier series for the component of   and its inverse, respectively [142]: 
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and 

 
 

inv
, 0 0

1 1 1 2 2
exp d d

,

x y

m n
x y x y

m n
i x y x y

x y

 




    
    

       
    (3.10) 

These formulas work for each directional component. The inverse of the dielectric function 

is used for the sake of fast convergence of the algorithm according to the Fourier 

factorization rule [136]. Note that different dielectric function components are used in Eq. 

(3.8) because of the anisotropy of the material. When all three components of the dielectric 

tensor are equal, Eq. (3.8) degenerates to the isotropic scenario presented in [142].  
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Equation (3.8) can be written in a matrix form 
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and  is a real positive number between 0 and 1 used for fast convergence in 2D structure 

calculations. 1 or 0 is used respectively for structures with a periodicity only in the x or y-

direction. X
K  and Y

K  are diagonal matrices. The equations can be further simplified as 
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      
 

X

X
Ω

X X
  (3.14) 

where 
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 
 

   

1
1

1

1

11

1
1

=

11

X X xX
zY

x

y y
X

y
Y

zX Y Y
x xy

Y




 



 










   
    
           
   
 

   
               

  
    

M
K K E K

K E
D E M

K
Ω

E
E K

K K K B M EM

K

  (3.15) 

with two matrices defined as 1Y Y
z
 D K E K I  and 1X X

z
 B K E K I . The coupled-

wave equations of above-mentioned equation are solved by finding the eigenvalues and 

eigenvectors of Ω : 

    0 0

2

, ,1
1

e el l

MN
k z d k zj j j

y mn mn l l
l

z W C C
 

  



  
     (3.16) 

    0 0

2

, ,2
1

e el l

MN
k z d k zj j j

x mn mn l l
l

z W C C
 

  



  
     (3.17) 

where M = 2mmax +1 and N = 2nmax +1 are the total number of diffraction orders with mmax 

and nmax being the maximum diffraction order in the x and y directions, respectively. W  is 

the eigenvector matrix of Ω , and  ’s are the corresponding eigenvalues. Meanwhile, 

    0 0

2

, ,1
1

e el l

MN
k z d k zj j j

y mn mn l l
l

z V C C
 

  



  
     (3.18) 

    0 0

2

, ,2
1

e el l

MN
k z d k zj j j

x mn mn l l
l

z V C C
 

  



  
     (3.19) 

where   1
1 11 1 12 2

 V Q W ΞQ W  and   1
2 21 1 22 2

 V Q W ΞQ W . Ξ  is a diagonal 

matrix with  ’s being its diagonal terms. The subscript numbers associated with the 

matrices indicate submatrices that are used for convenience. The first number is associated 

with the division of rows while the second number, if present, is associated with the 
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division of columns. 

 The substrate (Region III) in general can be a biaxial medium. A transmitted plane 

wave (forward-propagating wave) in this region with an in-plane wavevector  , ,,  x m y nk k  

can have two different , t
z mnk . If the electric field is  , , ,, ,t t t t

mn x mn y mn z mnE E EE , then 

based on the Maxwell’s equation [145], one obtains 

 

 

2
2 2

III, 0 , , , , , ,
,

2
2 2

, , III, 0 , , , , ,

2 2 2
,, , , , III, 0 , ,

0

t t
x y n z mn x m y n x m z mn t

x mn

t t t
x m y n y x m z mn y n z mn y mn

tt t
z mnx m z mn y n z mn z x m y n

k k k k k k k
E

k k k k k k k E

Ek k k k k k k







 
   

  
    
  
      
 

(3.20) 

To have nontrivial plane-wave solutions, the determination of the matrix has to be zero and 

four solutions can be obtained. Two solutions of ,
t
z mnk  that correspond to the two forward 

propagating waves [137] are used to express the electric field in Region III as 

  III , , , , , ,

o,

expt t
mn mn x m y n z mn

m n e

E ik x ik y ik z  
 

   E p   (3.21) 

in which 

     

   

 

2 2
2 2 2 2 2 2

III, 0 , , , 0 III, , , , , ,

2
2 2 2

, , , , , , , , III, 0 , ,

2
2 2 2

, , , , , , , III, 0 , , ,

t t
y x m z mn z x m y n y n z mn

t
mn mn x m y n z mn x m y n z x m y n

t t t
x m y n z mn x m z mn y x m z mn

k k k k k k k k

N k k k k k k k k

k k k k k k k k

 

  

  

 





  
      

  
 

   


        

p 




 

 (3.22) 
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is the polarization vector for the electric field with diffraction order (m, n) and  is the 

index for the two forward propagating waves. For uniaxial medium, o and e correspond to 

the ordinary and extraordinary waves, respectively. Note that ,mnN  is a coefficient that 

normalizes ,mnp . The magnetic field can be obtained based on Maxwell’s equations. 

 The boundary conditions require that the tangential components of the electric 

and magnetic field are equal. At z = 0, one obtains 

 0 1

2
1 1 1

0 0 , ,1

1

(cos cos sin sin cos ) ( )l

MN
k d

m n mn y mn l l

l

R W C e C
        



      (3.23) 

 0 1

2
1 1 1

0 0 , ,2

1

(cos cos cos sin sin ) ( )l

MN
k d

m n mn x mn l l

l

R W C e C
        



      (3.24) 

 
, 0 1

,

,inc ,inc
0 0 0 0

0 0

2
, , , ,, 1 1 1

, ,1
0 0 1

(cos cos cos sin sin )+ (cos sin )

( ) ( )
z mn l

z mn

z x
m n m n

r MN
mn x x m mn y y nx m k d

mn x mn l lr
l

k k

k k

k R k R kk
R i V C e C

k k k



          

 






   

  (3.25) 

and 

 

 
, 0 1

,

,inc ,inc
0 0 0 0

0 0

2
, , , , , 1 1 1

, ,2
0 0 1

(cos sin ) (cos cos sin sin cos )

( ) ( )
z mn l

z mn

y z
m n m n

r MN
y n mn x x m mn y y n k d

mn y mn l lr
l

k k

k k

kk R k R k
R i V C e C

k kk



          

 



  


   

  (3.26) 

They correspond to  I, 1,y yE E , I, 1,x xE E , I, 1,y yH H , and I, 1,x xH H , respectively, 

and mn  is the Kronecker delta. They can be written in matrix form 
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,inc ,inc

,inc ,inc

(cos cos sin sin cos )

(cos cos cos sin sin )

[ (cos cos cos sin sin )+ (cos sin )]

[ (cos sin ) (cos cos sin sin cos )]

z x

y z

k k

k k

k k

k k

    

    

      

      

 
 


 
 

 
 
 

   
 



m0 n0

m0 n0

m0 n0

m0 n0

x y

δ δ

δ δ

δ δ

δ δ

I 0

0 I

K K

K

1,1 1 1,1

1,2 1 1,2 1

1,1 1 1,1 1

1,2 1 1,2

i i

i i

 
 

  
                          

 
 

2 2 +
yx Iz

-
Iz Iz x

2 2
y Iz x y

Iz Iz

W X W

R W X WK + K C

K V X VR C

V X VK + K K K

K K

  (3.27) 

where jX  is a diagonal matrix with diagonal elements equal to  0exp l jk d . Similarly, 

we can match the boundary conditions at the interfaces between j and j +1 layer, with j 

varying between 1 to J 1. In matrix form, we obtain 

 

,1 ,1 1,1 1 1,1

,2 ,2 1,2 1 1,2 1

,1 ,1 1,1 1 1,1 1

,2 ,2 1,2 1 1,2

j j j j j j

j j j j j j j j

j j j j j jj j

j j j j j j

i i i i

i i i i

  

   

   

  

   
   

   
   

          
      
       

+ +

- -

W W X W X W

W W X C W X W C

V V X V X VC C

V V X V X V

  (3.28) 

At z = 
1

J
jj

d
  , one obtains 

 

,1 ,1

,2 ,2

,1 ,1 , ,

,2 ,2 , ,

J J J

J J J J o

J J J eJ

J J J

i i

i i

  
                        

        

o,y e,y

+
o,x e,x

o e-
III z o,x x o,z III z e,x x e,z

o e
y o,z III z o,y y e,z III z e,y

p pW W X

p pW W X C T

V V X TK p K p K p K pC

V V X K p K p K p K p

  (3.29) 

Using these equations, the unknowns can be solve through matrix manipulations. If we 

define 
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1

1

J

J





 
 
  

   
    

   

o,y e,y

o,x e,x

o e
IIIz o,x x o,z IIIz e,x x e,z

o e
y o,z IIIz o,y y e,z IIIz e,y

p p

p pf

g K p K p K p K p

K p K p K p K p

  (3.30) 

and  

 

,1 ,1

,2 ,2

,1 ,1

,2 ,2

J J

J J
J

J J

J J

i i

i i

 
 
 
 
 

  

W W

W W
O

V V

V V

  (3.31) 

so that 

 

,1 ,1

,2 ,2

,1 ,1

,2 ,2

J J J

J J J
J

J J J J

J J J

i i

i i

 
 

        
 

  

W W X

W W X I 0
O

V V X 0 X

V V X

  (3.32) 

Thus, 

 

1
,1 ,1

1
,2 ,2 1 11

,1 ,1 1 1

,2 ,2

J J J

J J JJ J o J
J

J J J J e J JJ

J J J

i i

i i




 

 

 
                                  

  

+

-

W W X

W W XC f T I 0 f
O T

V V X g T 0 X gC

V V X

  (3.33) 

where  
T

o eT = T T . If we define 

 
1

1

J J
J

J J





   
   
   

-1a f
= O

b g
  (3.34) 

and  

 J J J
-1

T = b X T   (3.35) 

then we can obtain 
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1
J J J J

J J J J
J JJ

      
       

        

+ -1
-1 A

-

C I 0 a a b X
b X T T

0 X b IC
  (3.36) 

Substitute this matrix equation to the right-hand-side of Eq. (3.28), we have 

 

,1 ,1 ,1 ,1

,2 ,2 ,2 ,2

,1 ,1 ,1 ,1

,2 ,2 ,2 ,2

J J J J J J

J J J J J JJ JJ J J
J J

J J J J J J JJ

J J J J J J

i i i i

i i i i

   
                             

       

+ -1

-

W X W W X W

W X W W X WC fa b X
T T

V X V V X V gIC

V X V V X V

  (3.37) 

Therefore, 

 

1,1 1,1 1

1,2 1,2 1 1

1,1 1,1 1 1

1,2 1,2 1

J J J

J J J J J
J
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J J J

i i

i i

  

   

   

  

 
                 

  

+

-

W W X

W W X C f
T

V V X gC

V V X

  (3.38) 

where 
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,2 ,2 ,2
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,2 ,2
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J J J J JJ J J

J J J J J J J JJ J J J

J J JJ J J J J J

J J J
J J J J J

i i i

i i
i

 
   
                   
        

-1

-1-1

-1

-1

W (I + X a b X )W X W

W X W W (I + X a b X )f a b X

V X Vg I V ( I + X a b X )

V X V
V ( I + X a b X )

 (3.39) 

This matrix equation has the same form with the last set matrix of equation; therefore we 

can follow the same procedure and finally get a matrix equation for R and T1: 
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,inc ,inc

,inc ,inc

(cos cos sin sin cos )

(cos cos cos sin sin )

[ (cos cos cos sin sin )+ (cos sin )]

[ (cos sin ) (cos cos sin sin cos )]

z x

y z

k k

k k

k k

k k

    

    

      

      

 
 


 
 

 
 
 

   
 



m0 n0

m0 n0

m0 n0

m0 n0

x y

δ δ

δ δ

δ δ

δ δ

I 0

0 I

K K

K

 
 
 
     

     
    
 
 
 
 

2 2
yx Iz 1

1
Iz Iz 1x

2 2
y Iz x y

Iz Iz

RK + K f
T

K gR

K + K K K

K K

  (3.40) 

 

We can rewrite this equation in a simpler form: 

  
     
     
     

1 1 1
1

2 2 1

A B f
+ R = T

A B g
  (3.41) 

Thus 

    
   

-1
-1 -1

1 1 2 1 1 2 2 1 1T = g - B B f A - B B A   (3.42) 

and 

  -1
1 1 1 1R = B f T - A   (3.43) 

Note that a, b, and O can also be defined in each layer. Matrix T can be obtained by using 

Eq. (3.35) 

 1 1 1 1 1J J J J   -1 -1 -1
-T = b X b X b X T   (3.44) 

If the substrate is isotropic, which is true for the cases discussed in this work, the diffraction 

efficiency for each order of the reflected and transmitted waves can be expressed as 
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22 , ,

R, s, p,
I I

Re + Re
cos cos

r r
z mn z mn

mn mn mn

k k
DE r r

k k 

   
   
   
   

  (3.45) 

 
22 , , I

T, s, p,
I I IV

Re + Re
cos cos

t t
z mn z mn

mn mn mn

k k
DE t t

k k



  

   
   
   
   

  (3.46) 

where subscripts p and s represent the components for TM and TE waves with respect to 

the output plan known as the plane of diffraction [146]. It should be noted that since the 

beam output plane is different from the plane of incidence, in general the polarization status 

of the diffracted waves will be different from the incident wave. The directional-

hemispherical reflectance and transmittance can be obtained by summing up the diffraction 

efficiencies for all orders:  

 R, T,    and    mn mnR DE T DE    (3.47) 

The field distributions can be obtained as well. 

 To illustrate the local absorption profile inside the structure, the local power 

dissipation density in W/m3 can be calculated based on [147] 
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in which E is the complex electric field obtained from RCWA. The absorptance of a certain 

volume or layer can be calculated by the ratio of the absorption inside the volume over the 

incident power [148,149]: 
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The denominator is the incident power on area A at a polar angle Using Eq.(3.49), the 

absorptance inside a certain volume can be retrieved. The integration over the whole 
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structure yield the same absorptance with 1RT.  

 The numerical accuracy of RCWA is dependent on the number of the diffraction 

orders and the Fourier expansion terms to synthesize the profile of the grating and they are 

related with each other. Referring mmax and nmax to the highest diffraction orders in the x 

and y directions, respectively, since max maxm m m     and max maxn n n    , the total 

number of diffraction orders used in the calculation is MN = (2mmax + 1)×(2nmax + 1) and 

the Fourier expansion terms will be (4mmax + 1)×(4nmax + 1) in total. Thus, one can simply 

investigate the effects of the number of diffraction orders on the accuracy. As more orders 

are used, the accuracy improves, however, both the memory required and the processing 

time consumed in the calculation increase dramatically. Thus, a convergence check was 

conducted to determine the number of diffraction orders needed to yield accurate results 

using reasonable computational time and resource.  

 

Figure 3.2 Schematic of the structure for the 2D grating/thin-film nanostructure.  
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 In order to test the convergence and evaluate the computational cost, a test run is 

conducted. Figure 3.2 is a schematic of the 2D grating/thin-film structure considered. The 

grating is made of rectangular tungsten (W) patches whose lateral dimensions are lx and ly 

with a height h and periods x and y. The periodic arrays of patches are on a thin dielectric 

film SiO2 of thickness d that is deposited on a tungsten substrate. In the test, the geometric 

parameters are fixed as follows: 600 nmx y    , 300 nmx yl l  , and 

60 nmh d  . The groove widths (i.e., the lateral distances between patches) are 

300 nmx yw w  . All the materials are isotropic and the dielectric functions are from 

[150].  

 Figure 3.3(a) shows the calculated normal emittance with different numbers of 

diffraction orders. In the calculation, mmax and nmax are set to be the same because same 

patterns are used along the x and y directions. It can be seen that, in the spectral region 0.3 

m ≤ ≤ 2.0 m, the emittance barely changes when the value of mmax is increased from 

 

Figure 3.3 Convergence test results: (a) normal emittance spectra calculated with different 

orders; (b) reflectance at  = 2.3 m calculated with different orders. 
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25 to 30. Hence, mmax = 25 can be used for this structrue. However, for 2.0 m <  ≤ 3.0 

m, the calculated emittance is lower for mmax = 40 than mmax = 30, especially around 

m. The reflectance at m is shown in Figure 3.3(b) as a function of mmax 

to further study the numerical convergence. The reflectance changes within 3% when mmax 

is increased from 35 to 50. The processing time scales with mmax to the sixth power ( 6
maxm

), and it takes 140 min to calculate each single point for mmax = 35 using a dual eight core 

XEON E5-2687W workstation. Hence, mmax = 35 may be used for 2.0 m <  ≤ 3.0 m 

considering the time consumption. FDTD method is also used to verify the calculated 

results. For 1D structures, the computation time is much more less and on the order of 

seconds for each data point and mmax = 50 to 100 is typically sufficient. However, for highly 

conductive materials, more orders may be needed. Convergence test is conducted for all 

the structures studied in this dissertation. 
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CHAPTER 4 

RADIATIVE PROPERTIES OF MICRO/NANOSTRUCTURED PLASMONIC 

METAMATERIALS  

This chapter covers the radiative properties of micro/nanostructured plasmonic 

metamaterials. Section 4.1 focuses on a 2D grating/thin-film periodic nanostructure that 

can thermally excite MPs, SPPs, and Wood’s Anomaly to create polarization-independent 

and wavelength-selective emittance for thermophotovoltaic applications. Section 4.2 

studies the MPs in deep metal gratings. The role of kinetic inductance, the scalability of 

MPs, and the relationship between cavity modes and MPs are discussed. In the end, Section 

4.3 investigates the polarization dependence of anisotropic periodic metamaterials. An L-

shape structure is used as an example, where the excitation of MPs dependents on the 

polarization of the incidence. 

 

4.1 Two-Dimensional Grating/Thin-Film Periodic Nanostructure 

Thermophotovoltaic (TPV) systems convert thermal energy directly into electricity 

and hold promise in waste heat recovery, solar energy harvesting, and space applications 

[28,151,152]. A TPV system is environmentally-friendly and requires two key 

components: an emitter that gives out radiation by receiving thermal energy from various 

heating sources, and a TPV cell that can generate electricity by absorbing incident photons 

from the emitter. The main challenges for such a technique are low conversion efficiency 

and power generation. Near-field thermal radiation has been proposed for the enhancement 

of TPV power generation by bringing the emitter and receiver in close proximity [153,154]. 

However, there exist technological barriers for utilizing nanoscale TPV systems in the near 
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future. To improve efficiency of TPV systems, a more appealing way is to use a selective 

TPV emitter, which emits photons in a certain spectral range that matches with a specific 

TPV cell, because only when the photon energies are higher than the bandgap of the 

semiconductor material used in the TPV cell, the absorbed radiant energy can produce 

electron-hole pairs and thus generate electricity [3,28]. On the other hand, if the photon 

energies are too high, the conversion efficiency becomes too low. Usually, the emitter 

radiates energies in a broad spectral region and much of the energies are at longer 

wavelength with insufficient photon energies to produce electron-hole pairs. While band-

pass filters may be used to improve the overall efficiency, this method is cumbersome and 

overheating of the filter may become problematic [155-157]. Therefore, wavelength-

selective emitter is crucial to improve the conversion efficiency and power generation of 

TPV systems [32,158].  

Micro/nanostructures of wide profile diversity are able to tailor thermal radiation 

by utilizing different physical mechanisms. Not only one-dimensional (1D) gratings 

[159,160], V-groove gratings [161], and photonic crystals [162-164], but also various two-

dimensional (2D) micro/nanostructures have been investigated as promising selective TPV 

emitters. Heinzel et al. [165] manufactured 2D wavelength-selective emitters for the near-

infrared spectral range, but the emittance exhibited directional dependence. Pralle et al. 

[166] fabricated 2D gold gratings that can emit over selected wavelengths in the mid-

infrared. Similarly, Sai et al. [167-169] experimentally demonstrated the potentials of 2D 

concave tungsten surface gratings as TPV emitters whose emittance is enhanced by 

exciting cavity resonances. Chen and Tan [142] designed a 2D convex tungsten grating 

structures as TPV emitters. Multilayer micro/nanostructures have also been proposed to 



 42 

control thermal radiation [170-178]. Recently, Wang and Zhang [29] used a 1D tungsten 

trilayer grating/thin-film nanostructure as a selective TPV emitter by taking advantage of 

MPs, which are resonant responses based on the excitation of induced current loops in the 

structure by incident electromagnetic waves [5,45,50,52,109,179]. The emittance can be 

enhanced in the desired spectral range by exciting MPs and SPPs [40,53,180-182]. 

An ideal TPV emitter should not only be wavelength-selective, but also desired to 

be polarization-insensitive so that high emittance for both polarizations can be achieved. 

However, since only TM waves can excite MPs and SPPs in the 1D grating/thin-film 

configuration, application of the emitter is somewhat limited. Here, a 2D trilayer structure 

is proposed as a wavelength-selective and polarization-insensitive TPV emitter. The 

structure is the same as the one shown in Figure 3.2. The grating is made of rectangular 

tungsten (W) patches whose lateral dimensions are lx and ly with a height h and periods x 

and y. The periodic arrays of patches are on a thin dielectric film SiO2 of thickness d that 

is deposited on a tungsten substrate. The geometric parameters are fixed as follows: 

600 nmx y    , 300 nmx yl l  , and 60 nmh d  . 

Figure 4.1 compares the normal emittance spectra calculated for the 2D structure 

and for the 1D grating/thin-film structure discussed in Ref. [29] for both TE and TM 

waves. The radiative properties are calculated by RCWA and the orders are chosen based 

on the previous convergence test. The emittance spectrum for plain tungsten is also shown 

to help explain some of the peaks observed in the nanostructures. The emittance spectrum 

matches well with the In0.2Ga0.8Sb p-n junction TPV cell, which has a bandgap g  around 

2.1 m [28]. As mentioned previously, a higher emittance at g   and lower emittance  
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Figure 4.1 Normal emittance spectra of the 2D structure and a 1D structure for both TE 

and TM waves, along with that of plain tungsten. 

at g   is desired to improve the conversion efficiency. Since the TPV emitter 

temperature usually is less than 2000 K, the effect of emittance at wavelengths shorter than 

0.5 m on the conversion efficiency is much weaker according to Planck’s blackbody 

spectral distribution. Therefore, it is desired to enhance the emittance in the wavelength 

region from 0.5 to 2.1 m. Note that the geometric parameters, such as the grating period 

and patch dimensions, can be adjusted to enhance emittance spectrum for use with other 

TPV cells with different bandgaps [28,183]. 
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The normal emittance is independent of polarization for the 2D structure due to 

symmetry. The emittance spectrum of the 1D grating/thin-film structure for TE waves is 

similar to that of plain tungsten except for the peak at 0.6 m, which is due to Wood’s 

anomaly [142]. Several small peaks located near 0.4, 0.6, and 1.4 m are associated with 

the interband transitions of tungsten [45, 46]. The peak near 0.6 m does not appear in the 

spectra for the 2D structure or the 1D structure with TM waves. The emittance spectrum 

for the 1D structure with TM waves and that for the 2D structures are very similar, both 

contain two major emission peaks (near 0.7 and 1.8 m) that do not exist in the spectra for 

the TE wave or plain tungsten. The overall emittance at normal direction is the average of 

those for TE and TM waves. As an example, the normal emittance  = 1.7 m for the 2D 

structure is 0.85 and the emittance averaged over the two polarizations for the 1D structure 

is only 0.58. Therefore, the throughput and efficiency of the TPV system can be 

significantly improved with the 2D grating/thin-film structure. The underlying mechanisms 

for the two highest emittance peaks, which elevate the whole emittance spectra, will be 

explored in the following section.  

The emittance peaks at  = 1.83 m is due to the coupling of the magnetic resonance 

inside a micro/nanostructure with the external electromagnetic waves or magnetic plasmon 

polariton. When the MP is excited, the magnetic field is strongly enhanced in the dielectric 

layer inserted between the tungsten grating and tungsten substrate, as shown in Figure 4.2. 

The electric field and current density vectors, denoted by the arrows, are the instantaneous 

values at t = 0, while the magnetic field, represented by the color contour, is the square of 

relative amplitude. The maximum value of 
2

inc/yH H  is 26.0 as compared to 25.8 for the 

1D structure (not shown here), suggesting that the magnitude of enhancement is about the  
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Figure 4.2 The electromagnetic fields and current density distribution in the 2D structure 

for TM waves at normal incidence and  = 1.83 m. The fields are calculated at y = 0 in 

the x-z plane. The color shows the relative magnitude of the y component of the magnetic 

field. The vectors show the direction and magnitude of (a) the electric field and (b) current 

density. Note that mmax = nmax = 40 was used in the calculation. 

same in both 1D and 2D structures. Also, the coupling between the metal patch and the 

substrate becomes weaker and the enhancement decrease as the slide parallel to the x-z 

plane is moved towards the patch edges. The emittance peak is higher for the 1D structure 

(TM waves) than for the 2D structure. It is interesting to note that even though the area 

under the tungsten grating for the 2D structure is only half of that for the 1D structure, the 

emittance can still be significantly enhanced with a peak near 0.93 when MP is excited. 
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An inductor-capacitor (LC) model, where the dielectric is regarded as a capacitor 

and the metal is treated as an inductor, was used by Wang and Zhang [29] to predict the 

MP resonance frequency. Since the resistance elements will not affect the resonance 

frequency, they are usually neglected for simplicity. The 2D structure has the same cross 

section as the 1D structure in the x-z plane. The same LC model can be used to predict the 

MP resonance frequency for the 2D structure, because the length in the y direction merely 

cancels out. The MP resonance wavelength can be obtained to be 1.87 m by zeroing the 

impedance of the circuit, which is in good agreement with the RCWA calculation. The 

electric field vectors were used to illustrate the antiparallel currents in the metal above and 

below the dielectric spacer [29,115]. However, the electric field vectors do not form a 

closed loop [47]. As shown in Figure 4.2(a), the directions of the electric fields in the metal 

and dielectric layer are against each other. According to Lenz’s law, the induced current 

should form a loop that will create a diamagnetism effect. In the following, the local current 

density vector is analyzed to illustrate that the current indeed forms a loop. 

The electrical conductivity of a material is frequency dependent and is related to 

the dielectric function as [3] 

 0i i         (4.1) 

where ′ and ′′ are the real and imaginary parts of the conductivity, is the angular 

frequency, and 0 is the vacuum permittivity. The current density vector is related to the 

electric field vector by J E . Complex vector variables are used in the RCWA 

computational algorithm. However, only Re(E) represents the actual electric field. 

Similarly, only Re(J) represents the actual current density, which can be expressed as the 

sum of the conduction current and displacement current. Therefore, 
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 cond dispRe( ) Re( ) Im( )     J J J E E  (4.2)
 

The sign of the current density depends on the relative magnitude of these two terms. Figure 

4.2(b) shows the current density vectors Re(J), which do form a closed loop, in a unit cell  

of the 2D nanostructure. While the induced current always forms a closed loop, the 

directions of the current flow and electric field may or may not be the same. 

 The electric fields and current densities at four locations are calculated to illustrate 

how their signs vary in the metal and dielectric regions in the particular case studied here. 

The results are shown in Table 4.1, where locations 1 and 2 are on the left and right, 

respectively, of the dielectric layer and locations 3 and 4 are in the metal grating and 

substrate, respectively. For locations 1 and 2,     and displacement current is the 

dominant contribution to the current density. Since   is negative, dispJ  will be in the 

same direction as the imaginary part of E. Additionally, the x component of E is negligibly 

small in these locations. Because the real and imaginary parts of Ez have the same sign, it  

 

Table 4.1 Numerical values of the electric field and current density at t = 0 for the four 

locations in Figure 4.2. For locations 1 and 2, the z components of the current density and 

electric field vectors are given; while for locations 3 and 4, their x components are given. 

No. 

x 

(nm) 

z 

(nm) 

Re(E) 

(V/m) 

Im(E) 

(V/m) 

' 

(S/m) 

'' 

(S/m) 

Jcond 

(A/m2) 

Jdisp 

(A/m2) 

Re(J) 

(A/m2) 

1 -95 -85 3.1 2.42 0.12 1.9×104 0.38 4.6×104 4.6×104 

2 95 -85 3.1 2.42 0.12 1.9×104 0.38 4.6×104 4.6×104 

3 5 -45 0.24 0.81 1.8×105 3.6×105 4.3×104 2.9×105 2.5×105 

4 5 135 0.39 0.36 1.8×105 3.6×105 6.9×104 1.3×105 6.2×104 
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can be inferred that the displacement current is in the same direction as the electric field. 

For locations 3 and 4, the electric field is almost parallel to x and only Ex needs to be 

considered. For tungsten at this wavelength,  and     are both positive and on the same 

order of magnitude. From the RCWA calculation, the real and imaginary parts of Ex share 

the same sign. According to Eq. (4.2), the conduction and displacement current densities 

must have opposite signs. Since the magnitude of the displacement current density is 

greater than the conduction current density, the full current density follows the direction of 

the displacement current density, which is opposite to the electric field in the x direction. 

In general, the real and imaginary parts of the electric field may not have the same sign. 

Thus, it is possible for the current density and electric field in the dielectric layer to have 

different signs. Similarly, depending on the signs of the electric field and conductivity, the 

current density and electric field in the metal region can have the same or different signs. 

Nevertheless, the current flow always forms a closed loop. Since the instantaneous electric 

field vectors oscillate with time, the direction of the arrows may reverse but should always 

be antiparallel. 

Figure 4.3 shows the emittance spectra of the 2D structure at different polar angles 

for both TM and TE waves for 0   . It can be seen that the location of the emittance 

peak near 1.83 m changes little with for both TE and TM waves, because the resonance 

frequency of MPs only depends on the geometric structure and materials involved. For TE 

waves, MPs are excited by the x component of the magnetic field. The patterns are the 

same in both the x and y directions; thus, it is expected that the MP resonance frequency 

does not change. Furthermore, the peak emittance remains nearly the same even though  

is increased to 60° for TM waves similar to what has been observed previously for 1D 
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Figure 4.3 Emittance spectra of the 2D structure at different polar angles for: (a) TM waves; 

(b) TE waves. 

structure. For TE waves, however, since the x component of the magnetic field is 

decreasing as  increases, the field enhancement becomes weaker at larger polar angles. 

Hence, the emittance peak associated with the MP decreases as  increases, as shown in 

Figure 4.3(b). The location of the emittance peak near  = 0.7 m at  = 0 shifts in 

wavelength as  changes.  

The emittance peak around  = 0.7 m of the 2D structure emittance spectrum on 

Figure 4.1 is because of the excitation of Wood’s anomaly or WA. Only TM waves can 

cause a high Wood’s anomaly emittance peak for 1D gratings, but it can be accomplished 

for both TE and TM waves for 2D gratings. This peak is not due to SPP since the dielectric 

function of tungsten has a positive real part between 0.24 to 0.92 m [150]. At longer 

wavelengths, however, the real part can go negative and SPPs can be excited. Following 

the Bloch-Floquet condition shown in Eq. (3.4), the tangential component of the 

wavevector of the (m, n) order of the diffracted waves can be expressed as 
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Figure 4.4 Emittance contour plots of the 2D grating/thin-film structure from RCWA 

calculations along with the SPP dispersion relations: (a) TM waves; (b) TE waves.  
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where the subscript ‖ denotes the component in the x-y plane. To excite WA or SPPs, the 

diffracted wavevector must be equal to that of the surface wave.  

Figure 4.4 shows the contour plot of the emittance for the 2D structure at TM waves 

in terms of wavenumber and the x component of the free-space wavevector, calculated by 

the 2D RCWA. The oblique bright bands indicate the emittance enhancement due to SPPs 

or WAs, while the flat bright band around 5400 cm1 is due to the excitation of MP as 

discussed previously. It can be seen that the SPPs and WAs have strong directional 

dependence, but the MP resonance frequency is insensitive to the polar angle. The lower-

right corner beyond the light line is simply left blank. The contour plots are calculated with 

mmax = nmax = 15 here with the 2D RCWA to save the computation time. The results are 

sufficiently accurate at wavenumbers higher than approximately 7000 cm1, which is the 

major region of interest for surface waves. Relatively larger errors (but still within 5%) 

exist at wavenumbers below 7000 cm1 when compared to the results calculated with mmax 

= nmax = 25 at normal incidence. Finite-difference time-domain (FDTD) method is also 

used to verify the contour plots obtained from the 2D RCWA at 60    and the results 

compare well with each other. At polar angles exceeding 60 , the computational time 

required for the FDTD to calculate the emittance spectra increases significantly. Thus, 

RCWA with fewer orders should be considered to be both reasonable and practical for 

generating the contour plots.  
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The effect of the periodicity in the x direction can be analyzed by considering n = 

0 in Eq. (4.3). In this case, surface waves (can be SPPs or Wood’s anomaly) can be excited 

along the x direction once the following dispersion relation is satisfied: 

 sw inc

2
sin

x

m
k k


 


  (4.4) 

This dispersion relation is solved with different m values (2, 1, 0, and 1) for surface 

waves excited between air and tungsten, and the resonance frequencies are marked as 

circles on Figure 4.4(a). These circles follow well the bright emittance band obtained from 

the 2D RCWA calculation. Since SPPs are quite close the light line, the solutions are 

essentially the dispersion for Wood’s anomaly. Losses in tungsten can broaden the 

emittance peak, which has been verified by using a simple 1D tungsten grating without 

SiO2 film, although the results are not shown here.  

 For 2D periodic grating structures, the periodicity (y) in the y direction can affect 

surface waves as well. Take m = 0 and 0n   for simplicity. The incident wave will be 

diffracted into the y direction. The electric field of the reflected waves will have a 

component along the y axis even though the incident wave does not carry an electric field 

in the y direction. When m = 0, the dispersion relation of the surface waves becomes 
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The solutions of this equation are marked on Figure 4.4(a) with triangles and they agree 

well with the emittance band obtained from the 2D RCWA. Within the considered ranges 

of frequency and wavevector, only the surface waves associated with n = ±1 shows up 

when m = 0. This branch will fold with the grating period x  in the x direction and show 



 53 

up as 1,  2m     orders. However, these higher orders also do not show up in the contour 

plot due to the intrinsic losses of tungsten. At wavelengths shorter than the grating period 

of 0.6 m, the peaks become complicated because higher-order SPPs, Wood’s anomaly, 

and higher-order MPs can couple with each other [105], and losses in tungsten make it 

difficult to identify the peaks. 

For TE incident waves, the periodicity in the y direction plays a crucial role to excite 

surface waves. Figure 4.4(b) shows the emittance contour of the 2D structure for TE waves. 

The plot is extended beyond the first Brillouin zone (i.e., /xk   ) and lines with polar 

angles 30    and 60  are identified. The lower-right region beyond the light line is left 

blank. For TE wave incidence with 0   , the order n must not be zero since yk  must 

have a nonzero real part for SPPs to propagate in the y direction. As can be seen from 

Figure 4.4(b), besides the flat MP resonance, a resonance band is also observed whose 

resonance frequency increases with kx. This branch is identified as the surface waves with 

m = 0 and n = ±1 and can be calculated from Eq. (4.5) as shown by the triangles. Higher- 

 

Figure 4.5 Polar plots of the emittance at  = 0°, 90°, 180° or 270° for several given 

wavelengths. The left half is for TM waves and the right half is for TE waves. 
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order SPP branches can also be predicted but cannot be discerned from the contour plot. 

Moreover, Wood’s anomaly may exist especially for the m = 1 and n = 0 order, although it 

is not clear. The above discussions explain the shift of the surface wave peaks shown in 

Figure 4.3. the Emittance peak shifts toward longer wavelength as the polar angle increases 

for TM waves while for TE waves, the peak location shifts toward shorter wavelengths 

with increasing polar angles. 

The effect of the polar angle and azimuthal angle on the emittance of the 2D 

structure is also investigated at  = 0.5, 1.0, 1.6, 1.8 and 2.2 m. The first four wavelengths 

fall in the wavelength range for TPV cells that high emittance is desirable. However, low 

emittance is desired at  2.2 m and beyond. Figure 4.5 is a polar plot of the emittance 

with respect to at the azimuthal angle  = 0°. The left and right sides of the plot show the 

emittance for TM and TE waves, respectively, since can only vary from 0° to 90°. This 

plot is also valid for  = 90°, 180°, or 270°, due to the symmetry of the structure. The  

 

Figure 4.6 Polar plots of emittance at  = 45° for several given wavelengths. The left half 

is for TM waves and the right half is for TE waves. Only the results for 0 90     is 

shown since the emittance has an eight-fold symmetry with respect to  .  
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emittance is above 0.7 for polar angles less than 40° for both TM and TE waves in the 

desired wavelength range. For  = 2.2 m, the maximum emittance is about 0.3, which will  

further decrease at longer wavelengths. Based on the previous analysis, the emittance peak 

around 38° at  = 1 m for TM waves and that around 35° at  = 0.5 m for TE 

waves are due to the excitation of surface waves. The MP excitation results in high 

emittance at  = 1.8 m for a large range of polar angles, especially for TM waves. 

The effect of  on the emittance is studied by fixing  = 45°, and the results are 

shown in Figure 4.6. The azimuthal angle can vary from 0° to 360°. However, due to the 

symmetry of the 2D structure, the emittance polar plots for both TE and TM waves have 

an eight-fold symmetry. Hence, only the emittance for 0° <  < 90° is shown. Again, the 

left side displays the emittance for TM waves (0°) and the right side displays the 

emittance for TE waves (0°). For the wavelengths in the desired range, the emittance 

is higher than 0.78 and 0.64 for TM and TE waves, respectively. For  = 2.2 m, the 

emittance is lower than 0.35 for both polarizations at all azimuthal angles, which again 

shows the wavelength selectivity and angle independence of the emittance of the 

nanostructure. As mentioned previously, the geometric parameters can be tuned to fit TPV 

cell materials with different bandgaps. Surface waves depend on the grating period. For 

MP resonances, a larger lateral dimension of patches can result in the red shift of the 

emittance peak. Also, increasing the thickness of the dielectric layer will decrease the MP 

resonance wavelength. These properties can be used in the design of practical TPV emitters 

once the TPV cell materials and properties are known. 

In conclusion, this work theoretically demonstrates the advantages of using a 2D 

periodic array of tungsten patches over a thin dielectric film coated on a tungsten substrate 
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as a high-performance TPV emitter. The normal emittance of this 2D nanostructure is 

wavelength-selective and polarization-independent. The mechanisms of excitations of MPs 

and surface waves in the 2D structure are elucidated. The current density vectors are 

analyzed to show that when MP is excited, the induced current indeed forms a loop. 

Furthermore, it is shown that high emittance can be achieved in the desired spectral region 

for both polarizations with the 2D nanostructure in a large range of polar and azimuthal 

angles. The detailed analysis and findings from this study not only will help understand the 

mechanisms that can be used to tailor the emittance for the proposed 2D structure, but also 

will facilitate the design and optimization for plasmonic nanostructures for applications in 

TPV systems and solar cells. 

 

4.2 Deep Metal Grating Structures 

As mentioned before, since thermal radiation is generated by the thermal motion of 

charged particles in matter, it is usually incoherent. Researchers have put significant effort 

towards controlling thermal radiation for applications such as solar cells [161,184-186] and 

thermophotovoltaic (TPV) systems [28,29,142,160,167], in which it is desired to have a 

receiver (or emitter) that can absorb (or emanate) radiation only in certain wavelength 

regions. The work done in the previous chapter is a good example. One-, two-, or three-

dimensional (1D, 2D, or 3D) micro/nano periodic structures of wide profile diversity and 

dimensionality can enable tailoring the radiative properties for developing spectral 

selective absorbers and emitters [141]. As a matter of fact, 1D and 2D gratings have been 

extensively investigated both theoretically and experimentally.  
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Hesketh et al. [1,187] experimentally demonstrated the resonance in the emission 

spectra with 1D doped-Si deep gratings, and explained them with an acoustic analog of the 

organ pipe mode. Later, Maruyama et al. [188] used the cavity resonance modes to explain 

the resonance conditions in 2D-microcavity gratings. Sai et al. [167] and Kusunoki et al. 

[189] also experimentally demonstrated resonances in similar structures as cavity modes. 

Though the cavity resonance theory has successfully explained the resonances in the 

certainty periodic structures [190], it cannot predict the maximum (or cutoff) resonance 

wavelength in a grating with narrow slits or trenches. As an example, the resonance 

wavelength can be about ten times the grating depth (or height) [107] while the cavity 

resonance formulation yields a maximum resonance wavelength four times the grating 

depth. Finite inductance [191,192], coupled SPPs [193,194], and trapped modes theory 

have been used to explain the mechanisms of resonances and the increase of the cutoff 

wavelength in gratings [195], grating/thin-film structures [47], holes [191], and slits [192]. 

Mattiucci et al. [107] evaluated the impedance of the grating using coupled SPP modes and 

successfully predicted the emittance of grating structures with the metamaterial effective 

media approach. However, the resonance peaks could not be obtained explicitly. Pardo et 

al. [108] explained the funneling of light into narrow grooves etched on a metal surface as 

a result of magnetoelectric interference, but did not quantify the resonance condition. To 

guide the engineering design of the nanostructures [159], it is desirable to develop simple 

models to the predict resonance wavelength for certain kind of structures.  

The theory of MPs has successfully been used to predict the resonances in metallic 

grating/thin-film structures [29,144] and narrow slit arrays [50]. Wang and Zhang [52] also 

used the excitation of MPs to explain the phonon-mediated resonances in SiC deep 
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gratings. In addition, MP resonance has been used to explain the responses in the structures 

mentioned in [107,108]. Since the resonance in deep gratings shows different geometry 

dependence in different wavelength ranges, it is worthwhile to explore the possibility of 

using MPs to explain the anomalous maximum wavelength in deep gratings for various 

materials and spectral regions. In this work, the inductor-capacitor (LC) circuit model 

[114,115] is used to predict the fundamental MP resonance mode in deep gratings.  

The 1D metallic grating structure considered in this work is the same as illustrated 

in Figure 2.1. The region below the grating is made of the same material and thick enough 

to be treated opaque. Consider radiation incident from air (medium above the grating) to 

the grating. Due to the high reflectivity of the metallic material, the reflectivity of the 

grating is generally high except when resonance occurs that can cause a sudden reduction 

of the reflectance (i.e., increase of the absorptance or emittance). The cavity resonance 

model has often been used to explain the emittance peaks for 2D grating or cavity structures 

[167,188,189]: 
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  (4.6) 

where l, m, and n are integers (0, 1, 2, …), and ,  ,  and x y zL L L  define the cavity 

dimensions. For a 1D grating, Ly is infinitely long such that only Lx and Lz (which are 

referred as b and h in Figure 2.1 can affect the resonance wavelengths. The maximum  
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Figure 4.7 Emittance for Ag deep gratings with  = 400 nm, h = 200 nm, and b = 5 nm: 

(a) Normal spectral emittance; (b) Contour plot of the emittance in terms of the 

wavenumber and parallel component of the wavevector. The vertical line with kx = 0 

represents normal direction and the diagonal represents grazing angle or light line. 

value of lmn is called the cutoff wavelength and can be determined by setting l = n = 0 in 

Eq. (4.6), resulting in a resonance wavelength ( R ) that is four times the grating height 

(4h). However, this value may be much smaller than the resonance wavelength in a deep 

grating with a high aspect ratio (h/d), as shown in the example below. 

Figure 4.7(a) shows the normal emittance spectrum TM waves for a Ag grating 

with  = 400 nm, h = 200 nm, and b = 5 nm. The emittance spectrum is characterized by a 

peak as high as 0.85 at the wavelength of 2.74 μm . The emittance enhancement is 

remarkable since the emittance is less than 0.005 for a smooth Ag surface at this 

wavelength. Note that R  for this mode is nearly 14 times the grating height. This 

resonance cannot be explained by SPP or Wood’s anomaly since both of which would 

occur at much short wavelengths on the order of period. Furthermore, the high emittance 

is almost omnidirectional as seen from the contour plot displayed in Figure 4.7(b), which  
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Figure 4.8 (a) The electromagnetic field and (b) current-density distribution in the Ag 

grating with the same parameters as for Figure 4.7 at R 2.74 μm   . The color contour 

shows the relative magnitude of the y component of the magnetic field. The vectors show 

the direction and magnitude of the electric field in (a) and current density in (b). Note that 

positive z-direction is downward. 
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shows the directional spectral emittance in terms of the wavenumber and parallel 

wavevector inc sinxk k  . Emittance values at kx = 0 (i.e., along the ordinate) correspond 

to normal incidence with an emittance peak located at 3650 cm1. A quantitative 

explanation is given below using the MP model that takes account of the geometry and 

materials properties. 

 Under a time-varying magnetic field parallel to the y-direction, an oscillating 

current is produced around the grooves in the x-z plane, forming a MP. Figure 4.8(a) and 

(b) show the electromagnetic and current-density field when the resonance occurs in the 

aforementioned Ag grating. The x-y plane is at the interface between the grating and air; 

besides, x = 0 is located at the center of a trench. The electric field and current-density 

vectors, denoted by the arrows, are the instantaneous values at time t = 0, while the 

magnetic field, represented by the color contour, is the square of the relative amplitude. 

Since the instantaneous electric and current-density field vectors oscillate with time, the 

direction of the arrows may reverse. The big arrows show the general direction of the 

vectors. The electric field at the opening is greatly enhanced and decays nearly linearly 

towards the bottom. 

The current-density vectors are obtained from J E  where   is the complex 

electrical conductivity of the material at the given location [3], and they form a closed loop 

around the trench. The electric current consists of two parts: displacement current and 

conduction current. The conduction current is directly related to the real part of E, which 

is the instantaneous electric field. However, the displacement current is related to the 

imaginary part of E. As it turned out, the signs of the current and field differ in the Ag wall, 

as indicated by the big arrows. Therefore, the current forms a closed loop while the electric  
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Figure 4.9 Relative charge density distribution along the side walls of the trench for the 

grating. Note that z = 0 is the opening and z = 200 nm is the bottom of the grooves. 

field does not, as has been discussed in the previous work. The strongest magnetic 

enhancement corresponding to the closed current loop is at the bottom of the trench, where 

the magnitude of magnetic field is more than 30 times that of the incident waves, showing 

a strong diamagnetic effect. The magnetic fields oscillate and the current loop varies from 

clockwise to counterclockwise and vice versa. Figure 4.9 shows the relative surface charge 

density distribution on the left and right surfaces of the trench at t = 0 calculated by 

  e 0 1 2    n Ε E  (4.7) 

where 0 is the electric permittivity of vacuum; E1 and E2 are the electric fields on either 

side of the surface, and n is a unit normal vector to the surface from side 1 to side 2. The 

charge density is normalized by c which is the charge density at the center of the surface 

(z = 100 nm). The sign and magnitude of the charge density also change with time. 
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Corresponding to the electric field in Figure 4.8(a), when the resonance happens, charges 

tend to accumulate at the upper corner of the grating and this in turn creates a strong electric 

field.  

 Based on the closed current loop, an equivalent LC circuit model [29,50,52,114] 

shown in Figure 2.1 is used to predict the magnetic resonance condition. The numerical 

factor c  in Eq. (2.6) is between 0 and 1 accounting for the nonuniform charge distribution 

between the ridges of the grating [52,115]. If the charges are uniformly distributed on the 

surfaces around the trench, cwould be 1 and Eq. (2.6) would degenerate to the capacitance 

between two infinitely long parallel plates. The actual charge distribution is complicated 

as shown in Figure 4.9 and the non-uniform charge density distribution suggests the 

existence of fringe effect [196]. If the charge were linearly distributed along the surfaces 

on both sides of the grooves and the charge density increases from zero at the bottom to a 

maximum at the opening of the grating, then c  would be 0.5. Without using a full-wave 

model, c  can be taken as an adjustable parameter that is about 0.5. As an example, if 

0.5c   is used, the LC model yields a resonance at R 2.78 μm  , which agrees well with 

the RCWA simulation. By using an effective parameter c , one could still evaluate the 

capacitance of the cavity by a simple formula and thus make it possible to capture the 

fundamental physics with a simple model. Note that l does not show up in the Eq. (2.8). 

This may also explain why the resonance wavelength predicted for a 1D grating is similar 

for a 2D grating with the same geometry in the x-z plane. Since the thickness of the plates 

is much greater than  , each groove can be considered as an isolated unit. 

The emittance contour shown in Figure 4.10 demonstrates the effect of the trench 

width on the resonance frequency of the Ag grating with  = 400 nm and h = 200 nm. The  
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Figure 4.10 (a) Emittance contour of Ag gratings with  = 400 nm and h = 200 nm 

calculated by RCWA, where the diamond marks indicate the resonance conditions 

predicted by the LC model; (b) Ratio of the kinetic inductance to the magnetic inductance 

(Lk/Lm) calculated at the MP resonance. 

major bright band is attributed to the fundamental MP mode that is the focus of the present 

study and the other bands are higher-order MP modes. At sufficiently large trench width, 

the dispersion curve tends to become flat (not shown in the figure), but bends toward lower 

wavenumbers when the trench width decreases, suggesting a significant dependence of the 

resonance frequency on the trench width in deep gratings. The green diamond marks 
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indicate those predicted from the LC model in this and the rest contour plots. It can be seen 

that the LC model agrees very well with the dispersion curve determined from the full-

wave RCWA calculation. When the trench width is narrow, the resonance wavelength 

increases significantly with decreasing trench width, resulting in a cutoff wavelength that 

can be more than 10 times the grating height. This effect is further explained by comparing 

the magnitude of the inductances in the LC model as discussed in the following. 

According to Eqs. (2.3) and (2.5), for a 1D deep grating with fixed period and 

height, mL  depend linearly on the trench width b but is independent of the frequency. 

However, kL  depends little on b due to the fact that 2h >> b, but depends strongly on the 

frequency or wavelength. On the other hand, the capacitance is inversely proportional to b 

based on Eq. (2.6). According to Eq. (2.8), if kL  is negligible compared with mL , the 

resonance wavelength depends on the product of mL C , which is independent of b. The 

ratio kL / mL  at the MP resonance is plotted in Figure 4.10(b) as a function of b under the 

condition showing in Figure 4.10(a). In this case, kL  is much greater than mL . A large 

kinetic inductance shifts the resonance to longer wavelengths according to Eq. (2.8). As 

the trench width increases, mL  increases and the ratio kL / mL  becomes smaller and 

subsequently the resonance frequency increases and eventually reaches a constant that is 

independent of b.  

The effects of the kinetic inductance on the resonance wavelength can be better 

understood if we consider similar MP resonances in different frequency ranges. Figure 

4.11 shows MPs in three deep gratings with the same aspect ratio but the dimensions are 

increased by a scaling factor (SF) of 10, 100, and 1000 compared with those for  
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Figure 4.11 Emittance contours and LC model predictions (shown as diamonds) of Ag 

gratings when the geometric dimensions are scaled up compared with the based case in 

Figure 4.10(a): (a) SF = 10; (b) SF = 100; and (c) SF = 1000. 
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Figure 4.10. The different shapes of the dispersion curves are due to the different frequency 

dependence of the dielectric function of Ag. For metals in the long-wavelength region, 

   , resulting in a decrease of kL / mL  as the dimensions (and wavelength) are scaled 

up. With large SF values, resonances are very weak and cannot exist toward the left end of 

the emittance contour. As shown in (b) and (c), the resonance frequency is essentially 

independent of the trench width. In the low frequency limit, Lk is negligible and Eq. (2.8) 

yields an asymptotic value for the resonance wavelength: 

 A 0 m2 2c L C h c      (9) 

which gives A 4.4h   for 0.5c   and is close to that predicted from the cavity mode.  

 The values of the physical properties corresponding to the resonances are listed in  

Table 4.2 for the MP modes different wavelength ranges. The value of c  listed in the table 

is treated as an adjustable parameter to match with the MP resonance peaks for each scaling 

factor, but is assumed to be independent of the trench width. It can be seen that c  is very 

close to 0.5 and the LC model agrees with the RCWA calculation well as demonstrated in 

 

Table 4.2 Physical properties for MP resonances in Ag gratings with different scaling 

factors. The base case for SF = 1 is the same as for Figure 4.10. 

SF 
Wavenumber 

(cm1) 

Wavelength 

(m) 

Lk 

(Wb/A) 

Lm 

(Wb/A) 

C 

(C/V) 
c  

Q-

factor 

1 3650 2.74 1.101020 1.261021 1.721010 0.49 14.9 

10 877.4 11.4 1.0910 1.261019 1.561010 0.44 16.3 

100 115.2 86.8 7.8310 1.2610 1.591010 0.45 19.2 

1000 11.92 838.9 4.6510 1.261015 1.571010 0.44 25.4 
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Figure 4.10(a) and Figure 4.11. The last column of the table shows the Q-factor, which is 

the ratio of the resonance frequency over the full width at half maximum of the emittance 

peak for MP resonance. A large Q-factor indicates a relative sharp peak or more coherent 

thermal emission. It can be seen that the Q-factor increases with the scaling factor or 

resonance wavelength. The reason needs further exploration. 

Since for the aforementioned deep gratings with the aspect ratio more than 20, even 

though the Bosch process [197] and nanoimprint lithography [198] could be used, the 

fabrication of the structure is still very challenging. For a practical structure for thermal 

emission control, structures with a somewhat larger trench width is certainly designed if 

high emittance can still be achieved. For Ag gratings with  = 4 m and h = 2 m, when 

b > 0.5 m, the resonance becomes very weak as shown in Figure 4.12. For example, for 

b = 0.8 m, the peak emittance is only 0.07, which is too small for use as a thermal emitter. 

Note that Ag has a very high extinction coefficient and the electromagnetic field can only 

penetrate inside by a very short distance. Strong field coupling between the two sides of 

 

Figure 4.12 Emittance contours with LC model predictions marked as diamonds of (a) Ag 

gratings with  = 4 m and h = 2 m; (b) doped Si gratings with the same period and 

height. 
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the trench happens only when the trench is very narrow. Additionally, since the relative 

penetration depth ( /  ) decreases as  increases, it is even more difficult for the field to 

couple and create MP resonance at longer wavelengths. 

The aforementioned problem can be alleviated by using heavily-doped Si because 

of its smaller plasma frequency and relatively small extinction coefficient as compared to 

Ag. Since the field can penetrate deeper into doped Si, it may be easier for the two surfaces 

in the trench to couple at a relatively large distance. The dielectric function for p-type doped 

Si is taken from [199], assuming the temperature is at 300 K with a doping concentration 

21 310  cm
. Figure 4.12(b) shows the emittance contour for doped Si with the same 

geometries as for (a). The resonance is much stronger and broader for 0.25 m < b < 1 m 

with doped Si than with Ag. The broadening effect is due to the large scattering rate or 

resistance of doped Si compared to Ag. The MP resonance becomes weaker if b is increased 

to beyond 1 m. 

Figure 4.13 shows the emittance spectra for doped Si gratings with different scaling 

factors so that the MPs are excited in different wavelength ranges. The grating with 

parameters  = 400 nm, h = 200 nm, and b = 80 nm is not included, because doped-Si does 

not exhibit metallic behavior in the near-infrared. The physical properties at the MP modes 

are listed in Table 4.3. Due to the effect of the kinetic inductance, the resonance wavelength 

is shifted to 5.6 times the grating height in Figure 4.13(a) and the ratio drops to 4.7 in (d). 

Note that the resonance wavelength in (d) is about 1 cm, indicating the scalability of MPs 

up to the microwave region. One could also argue that the MP model merely predicts the 

cavity modes when the kinetic inductance is negligible. It appears that the kinetic 

inductance is the key for the coupled SPPs between the two sides of the grooves. 
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Figure 4.13 Emittance spectra for doped Si deep gratings with the base geometry (SF = 1) 

of  = 4 m, h = 2 m, and b = 0.8 m and for different scaling factors: (a) SF = 1; (b) SF 

= 10; (c) SF = 100; and (d) SF = 1000. 

Furthermore, one could use the waveguide mode to explain the guided wave nature for 

deep gratings. All the explanations appear to be consistent but are from different aspects. 

The advantage of using the LC model is due to its simplicity and ability to explain the 

resonance behavior with scalability and for different materials. Relatively lower Q-factors  
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Table 4.3 Physical properties for MP resonances in doped Si gratings with different scaling 

factors. The base case corresponding to  = 4 m, h = 2 m, and b = 0.8 m. 

SF 
Wavenumber 

(cm1) 

Wavelength 

(m) 

Lk 

(Wb/A) 

Lm 

(Wb/A) 

C 

(C/V) 
c  

Q-

factor 

1 908 11.1 4.2710 2.0110 1.421011 0.64 2.0 

10 103 97.2 1.3410 2.011016 1.321011 0.59 2.9 

100 10.5 952 4.1210 2.0110 1.271011 0.57 3.5 

1000 1.06 9420 1.3010 2.011012 1.241011 0.56 3.8 

 

listed in Table 4.3 indicate the broadening effect of doped Si due to its high electrical 

resistance, showing a difference of MP resonances with doped Si gratings with those in Ag 

deep gratings. 

The adjustable c  values listed in Table 4.3 are very close for the four cases. The 

value 0.64 is also used for the LC model prediction in Figure 4.12(b), which agrees well 

with the full-wave simulation. It should be mentioned that 0.5c   is used in the 

predictions in Figure 4.12(a). Since trench width covers a wide range, the LC model 

predictions with a fixed c value may deviate somewhat from the full-wave simulation 

when b is greater than 1 m [200]. Also, the value of c is related to the choice of the 

penetration depth used in Eq. (2.5) to evaluate the kinetic inductance. Even the field 

penetration depth works well in previous discussions, the penetration depth is only an 

approximation and, for some lossy materials, the power penetration depth might be more 

reasonable. Take the 2D tungsten grating thermal emitter in [142] as an example, the 

normal emittance spectrum is very similar for the 1D grating with the same geometric 

parameters in the x direction and extended to infinite in the y direction, as shown in Figure 
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4.14 . The optical properties of tungsten are obtained from [150] and linear interpolation is 

used between adjacent data points. The advantage of using a 2D nanostructure over 1D 

nanostructure is that it allows high emittance, particularly near 1.5 m, for both 

polarizations [144]. The emittance peak at 1.55 μm  is direction independent for TM 

waves and the resonance wavelength is 7.6 times of the grating height. From the charge 

density and field distribution (not shown here), it can be convinced that MP resonance is 

responsible for this peak. Furthermore, one can use 0.58c   to well predict this MP 

resonance wavelength by using the power penetration depth (which is half of the electric 

field penetration depth) to evaluate the kinetic inductance. In addition, if one uses the 

power penetration depth to evaluate the kinetic inductance for doped Si gratings, the c  

listed in Table 4.3 for SF = 1 would be 0.55 and closer to 0.5. On the other hand, the c  

values for other cases listed in Table 2 change little since Lk/Lm is very small. 

 

Figure 4.14 Emittance spectra for 1D and 2D tungsten gratings with  = 400 nm, h = 200 

nm, and b = 80 nm. The 2D grating has the same geometries in both x and y directions. 
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Deep cavity gratings can also be used to create high broadband emittance. Unlike 

the coupling between non-periodic grating and waveguide mode [201] or some other 

symmetric-braking structures [202], MPs are highly localized and insensitive to the grating 

period. However, since MPs are sensitive to the height and width of the cavity, one may 

achieve broadband emittance by distribute cavities with different geometries within one 

period that can excite MPs at different frequencies. Similar structures have been 

investigated by researchers previously [160,185,203]. For those structures, the effective 

medium theory cannot be applied to calculate the emittance due to the complex geometric 

structures and full-wave simulation would be required.  

One should note that the MP resonance does not exist for TE waves in 1D deep 

gratings. Even though the cavity mode explained by Eq. (4.6) is supposed to work for both 

TE and TM waves [159], the resonances associated with the height dimension do not show 

up for TE waves. This is because tangential component of electric field has to be continuous 

across the boundary of the trench, at least the first order resonance associated with the later 

dimension of the trench should exist (that is, l cannot be zero) for TE waves. Take the case 

in Figure 4.12(a) with b = 0.8 m as an example, the normal emittance of spectrum for TE 

waves only show a cutoff wavelength around 1.6 m, which is due to the resonance in the 

x direction associated with the trench width [159]. Similar results were obtained for slit 

array gratings [14], where the cavity modes or trapped modes can enhance the 

transmittance [204-206]. 

In conclusion, this study demonstrates that MPs can provide a convincing 

explanation of the fundamental resonance in deep gratings. By employing a simple LC 

model, the resonance wavelength can be quantitatively predicted. Due to the effect of the 
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kinetic inductance, the cutoff wavelength can be extended to more than ten times the 

grating height for very narrow grooves. The cutoff wavelength predicted by the 

conventional cavity resonance model agrees with the prediction of MPs only when the 

kinetic inductance is negligibly small compared with the mutual inductance. Ag and doped 

Si are considered and the resonance frequency can be scaled from near-infrared to 

microwave region by scaling the grating geometries. The MP model can also explain the 

thermal emission peak in 2D tungsten grating emitters. Caution should be taken when 

choosing the penetration depth and the constant c  for high-loss materials. This study 

further clarifies one of the underlying mechanisms of optical resonance in deep gratings, 

which can benefit the future design of thermal emitters based on 1D and 2D grating 

structures. 

 

4.3 Anisotropic Metamaterials 

 Periodic micro/nanostructures of varies shapes have been used in metamaterial 

design [144,207-225] to manipulate light propagation. For metamaterial absorbers 

designed for energy harvesting purpose, patterns with polarization-independent radiative 

properties may be preferred [159,207,211,218,226]. However, some shapes can induce 

polarization-dependent response and can be used to design metamaterials with polarization 

control ability. These structures have recently attracted a lot of attention for their potential 

applications in plasmon-enhanced solar cells [216], nonlinear optics [227], holography 

[228], chemical sensing [229], one-way transmission [230,231], anomalous refraction [20], 

and Fano resonances [232]. Polarization-dependent emissivity can also be achieved using 

anisotropic metamaterials since the emissivity is equal to the absorptivity following 
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Kirchhoff’s law [233]. Knowledge of thermal radiative properties are critical for 

applications such as material processing and spacecraft thermal insulation. Since the 

absorptivity can be obtained from the reflectance and transmittance by energy balance, the 

emissivity as a function of polarization angle can be calculated once the polarization-

dependent reflectance and transmittance are known. To determine their radiative properties 

of metamaterials with anisotropic shapes, it is important to understand the polarization-

dependent reflectance and transmittance. 

 The reflectance and transmittance exhibit an extreme when eigenmodes are excited 

[234,235], and for other polarizations, the reflectance and transmittance can be 

decomposed to that of the eigenmodes. Thus, it is critical to identify the eigenmodes 

associated with those shapes. To excite the eigenmodes, the incident wave should not only  

 

Figure 4.15 Illustration of the L-shape metal/dielectric/metal metamaterial: (a) Schematic 

of the plane of incidence, incident wavevector, electric field vector, polar angle  , 

azimuthal angle  , and polarization angle   (b) the x-y plane view of the structure. Here, 

 and x y   are the period in the x and y directions, respectively,  and x yl l  are the length 

in the x and y directions, w is the width of the L shape, h is the thickness of the gold pattern, 

and d is the thickness of the Al2O3 dielectric film. The ground plane is assumed to be gold 

and semi-infinity. 



 76 

at the eigenfrequency but also with the right polarization status. For the perfect metallic 

rod, the two eigenmodes can be excited at two eigenfrequencies when the electric field of 

incident wave is along the long and short axis, respectively, and those two polarizations status 

are the two eigenpolarizations. However, identifying the eigenpolarization can be very difficult 

when the shapes are asymmetrical. 

 Consider the film-coupled metamaterial structure shown in Figure 4.15 under 

illumination of a linearly polarized plane wave. If the L shape is symmetric in the x and y 

direction (i.e., with respect to the diagonals), the reflectance of the TE and TM waves is 

equal for normal incidence. However, when the polarization angle  , which is the angle 

between the plane of incidence (POI) and the electric field of the incident wave, is rotated, 

the reflectance extrema appear at 45° and 135° [236], which are the eigenpolarizations of 

the symmetric structure. On the other hand, if the arms of the L shape are not equal ( x yl l ), 

the dependence on polarization angle becomes more complicated and it becomes difficult 

to identify the eigenpolarizations. Though the matrix method for anisotropic medium 

[237,238] may be applied for metamaterials analysis, obtaining the matrix can be difficult 

and it is more convenient if the reflectance and transmittance can be directly used to 

identify the eigenpolarizations. Thus, it is important to explore the relationship between 

the reflectance (transmittance) and the polarization angle for general anisotropic 

metamaterials.  

 For isotropic nonmagnetic materials, the reflectance of a linearly polarized wave 

with a polarization angle   can be related to the reflectance of TE wave and TM wave by 

2 2
TE TMsin cosR R R    , and the relation TM TER R R   holds according to the 

Fresnel’s coefficients [3]. However, these rules are not applicable for anisotropic 
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metamaterials. The polarization-dependent reflectance or transmittance of anisotropic 

metamaterials has been observed by a number of researches [208,209,213-216,223,234]. 

Chen et al. [213] investigated plasmonic switching and electromagnetically induced 

transparency (EIT) with complex patterns. Cao et al. [214] studied the hybridized modes 

in a tri-rod nanostructure and polarization-dependent transmission. Husu et al. [234] 

discussed the eigenmodes in symmetric L-shape metamaterials based on the field 

distributions, but the way to identify the eigenmodes from reflectance (or transmittance) 

for asymmetric shapes has not been addressed. Sung et al. [223] experimentally 

demonstrated polarization dependence and birefringence effects of a symmetric L-shape 

metamaterial. Nevertheless, the relationship between the reflectance (or transmittance) and 

the polarization angle for general anisotropic metamaterials is still unclear.  

 In the present work, analytical expression of the reflectance or transmittance of a 

linearly polarized incident plane wave is derived as a function of the polarization angle. 

The reflectance or transmittance extrema are presented. A three-polarization-angle method 

is proposed to obtain the reflectance or transmittance for any polarization angle using the 

reflectance or transmittance of TE, TM, and another polarization status.  

 For reflection analysis, as shown in Figure 4.15(a), the direction of a linearly 

polarized incidence is characterized by the incident wavevector i
k  with polar angle   and 

azimuthal angle  , while polarization angle          describes the polarization 

status based on the angle between the POI and the electric field. Thus, TE and TM incident 

waves correspond to 90    and 0 , respectively. Due to the near-field coupling effect, 

the reflected wave generally has a different polarization status with the incident wave 

[146,239] and is generally elliptically polarized. Note that the focus of this study is on the 
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reflection or transmission not the polarization status. For a plane wave with arbitrary 

polarization incident from vacuum to a medium, the incident and reflected electric fields 

can be expressed as [237,240]: 

    i i i iˆ ˆ exps pA A i i t  E s p k r   (4.8) 

    r r r rˆ ˆ exps pB B i i t  E s p k r   (4.9) 

where superscripts i and r denote incidence and reflection, respectively, ŝ  and p̂  are the 

unit vectors in the electric field direction for TE (s-polarized) and TM (p-polarized) waves, 

respectively. It can be shown that  

 
ˆˆ

ˆ ˆ   and   
ˆˆ

 
 

 

k z s k
s p

k z s k
  (4.10) 

for either incident or reflected waves. Those two vectors can be used to describe the 

polarization status of incident and reflected waves, no matter they are linearly polarized or 

elliptically polarized. The general Fresnel’s coefficients are defined by  

 /r B A     (4.11) 

where  = s,p and = s,p. The co-polarized reflection coefficients are ssr  and ppr , while 

the cross-polarized reflection coefficients are spr  and psr . The first and second subscripts 

describe the polarization status of the incident and reflected waves, respectively. For 

isotropic medium, no cross polarization can occur thus 0sp psr r  . Due to the anisotropy 

of the medium, in general, the reflected wave contains both s and p components though the 

incident wave is either purely s- or p-polarized. Therefore, the reflectance consists of 

contributions from both TE and TM waves.  For incidence with polarization angle   and 

unit field amplitude, one obtains (by omitting the exponents) 
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 i i iˆ ˆsin cos   E s p   (4.12) 

    r r rˆ ˆsin cos sin cosss ps sp ppr r r r       E s p   (4.13) 

Thus, the power reflectance is 

 

 2 2
TE

2 2
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sin cos sin cos

sin cos s
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in 2

ss ps sp pprR r r r

R R R

    
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 

 





  (4.14) 

Here,
2 2

TE sp ssR r r   and 
2 2

TM pp psR r r   are the reflectance for TE and TM 

waves, respectively, and    * *
C Re Ress ps pp spR r r r r  , which is generally nonzero but can 

be either positive or negative due to cross polarization. Note that the incidence medium 

discussed here is assumed lossless and all the materials are nonmagnetic. Equation (4.14) 

can be recast as 

  sin 2A RR       (4.15) 

where  
2 2

TM TE C4A R R R    is the amplitude and  TE TM 2RR R is the 

average reflectance for TE and TM waves. The phase  ,       is determined by  

 CTM TEsin     and     cos
2

RR R

A A
 


    (4.16) 

Thus, the reflectance is a periodic function of the polarization angle with a period of  . 

This is expected since the response of the structure under an illumination polarized at 

   can be obtained by that of  with a phase delay of . Thus the reflectance (or 

transmittance to be shown later) is the same. The reflectance averaged over all polarization 

angles is the same as the reflectance for an unpolarized (or randomly polarized) incident 

wave, viz. 
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 unpolarized

1

2
R d RR






 
    (4.17) 

Thus, the reflectance of an unpolarized wave is equal to the average reflectance of TE and 

TM waves. In fact, for any two linearly polarized incident waves with orthogonal 

polarizations, their reflectance average is equal to the reflectance of an unpolarized wave. 

 Another interesting conclusion is that, due to the phase  , the reflection extrema 

do not necessary occur at TE or TM polarization incidence. Based on Eq. (4.15), the 

reflection maximum and minimum actually occur at 1 / 4 / 2     and 2 1 / 2    , 

respectively. After identifying the polarization status of the reflectance extrema, the 

reflectance for any polarizations can then be simply decomposed into the two reflection 

extrema as 

    2 2
max 1 min 1cos sinR RR          (4.18) 

where maxR R A   and minR R A   are the reflection maximum and minimum, 

respectively. R  follows an ellipse with a major axis of max2R  and a minor axis of  min2R . 

Equation (4.18) is similar to decomposing the electromagnetic field, and thus offers a 

handy method for the calculation of the reflectance of an arbitrary polarization. Also, it can 

be seen that the difference of the polarization angles of the two reflection extrema is always 

90°. If the reflectance of TE and TM waves are identical, i.e., RTE = RTM, then 0   or  , 

so that the two reflection extrema occur at 45    and 135°, respectively. However, it 

cannot be identified that which one corresponds to the maxima because   can be either 0 

or   depending on the sign of CR . If CR  is positive, then 0   and the maxima occurs 

at 1 45   ; if CR  is negative, then    and the maxima occurs at  1 45     or 135 . 
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Figure 4.16 Normal reflectance (i.e. 0  and 0     ) contours obtained from FDTD 

simulations for the two metamaterials as shown in Figure 4.15 with the following 

parameters: d = 140 nm, h = 100 nm, 3.2 μm,x y     1.7 μm,yl   and 0.85 μmw  . 

The two metamaterials have different x-direction lengths as follows: (a) the metamaterial 

with 1.7 μmxl  ; (b) the metamaterial with 1.275 μmxl  . 

 As an example, Figure 4.16 plots the normal reflectance contours for the two 

structures as a function of the wavelength and polarization angle. The geometric structure 

is based on Figure 4.15 and the parameters are as follows. Both of the metamaterial 

structures consist a dielectric layer (Al2O3) of thickness d = 140 nm, sandwiched between 

an L-shape patterned 100-nm-thick gold layer and a gold ground plane that is opaque. The 

top metallic pattern repeats periodically in the x and y directions with the same period 

3.2 μmx y    . Also, the width w = 0.85 m and y-direction length ly = 1.7 m for 

both structures. The only difference of the two structures lies in the x-direction length: lx = 

1.7 m for Figure 4.16(a) and lx = 1.275 m for Figure 4.16(b). This difference results in 

different polarization dependence between the two structures. The dielectric function of 

gold is obtained from [150] and the refractive index of Al2O3 is set to 1.6, which is a good 

approximation of sapphire in the spectral range of interest.  For the normal incidence in the 
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considered wavelength range, only zero-order diffraction (specular reflection) contributes 

to the reflectance, since all high-order terms are evanescent modes that are confined to the 

near-field regime of the subwavelength structure. The commercial Lumerical Solutions 

FDTD software was used to compute the reflectance of the metamaterial structures. Figure 

4.16 shows the strong polarization dependence of the reflectance, especially at the 

wavelengths when the two resonances are excited. Details of the MPs that are responsible 

for the resonance absorption will be discussed later. For Figure 4.16(a), the first and second 

resonances are at 5.7 and 8.1 m, respectively, and they shift to 4.9 and 7.0 m in (b) for 

the asymmetric L-shape structure due to the effect of a shorter arm length in the x direction. 

The polarization-dependent reflectance at the resonance wavelength is shown in the 

following as illustration of the previous analysis and the three-polarization-angle method. 

 The structure with x yl l  is symmetric along the diagonals; thus, the reflection 

extrema occur at 45  and 135     as mentioned before. Furthermore, the reflectance of 

TE and TM waves is expected to be identical at normal incidence. This can be seen from 

Figure 4.16(a) at 0   and 90°. For wavelengths 5.7 and 8.1 m, the value of RTE, RTM, 

and RC can be obtained based on the reflection coefficients. For both wavelengths, RTE is 

equal to RTM, however, CR  = 0.470 for 5.7 μm   and CR  = 0.457 for 8.1 μm  . 

Thus, based on the previous discussion, the reflection maximum is at 135    for 

5.7 μm   but 45° for 8.1 μm  . For the second structure, since the symmetry is broken, 

the reflectance of TE and TM are not equal any more as shown in Figure 4.16(b). Thus, the 

reflection extrema occur at other polarization angles other than 45° or 135°. Using the 

Fresnel’s reflection coefficients from the simulation, one can calculate and show that the 
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reflection maxima maxR  occurs at 110° for 4.9 μm   and 18.6° for 7.0 μm  , as 

shown by the reflection contour in Figure 4.16(b). 

 Moreover, the polarization dependence of reflectance can be determined from the 

reflectance of three different polarization angles in the range 0    . For example, if 

RTE, RTM and R   are known, where    is a polarization angle between 0° and 90°, the 

term CR  can be solved from Eq. (4.14). Furthermore, since the phase   can also be 

determined, one can easily identify the polarization status of the reflectance extrema and 

then determine the eigenpolarizations. For instance, the reflectance for the second structure 

at 7.0 μm   and 45    is 0.774. Using this value together with RTE and RTM, one can 

obtain RC = 0.289, which is the same as obtained from Fresnel’s reflection coefficients. 

Furthermore, max 0.964R  , min 0.006R  , and 1 18.6    can also be determined. Then 

the reflectance as a function of polarization angle can be accurately obtained using either 

Eq. (4.14), (4.15) or (4.18), as shown in Figure 4.17 with markers. If the reflection spectra 

for TE, TM, and another polarization can be obtained from simulations or experiments, 

then the same calculation can be repeated for each wavelength and thus the reflection 

contours shown in Figure 4.16 can be reproduced based on the three-polarization-angle 

method. 

 For a semitransparent subwavelength periodic structure, under the same incident 

wave as described by Eq. (4.8) and illustrated in Figure 4.15(a), the transmitted electric 

field can be expressed as 

    t t t tˆ ˆ exps pC C i i t  E s p k r   (4.19) 

where the superscript t denotes transmission, and ˆ ˆ and s p  are defined in terms of the 
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wavevector of the transmitted wave similar to the reflected wave. The general Fresnel’s 

transmission coefficients are defined by /t C A   , where  = s,p and = s,p. For 

incidence with polarization angle   and unit field amplitude as expressed in Eq. (4.12), one 

obtains 

    t t tˆ ˆsin cos sin cosss ps sp ppt t t t       E s p   (4.20) 

Thus, the power transmittance is [3,146] 

 

 

Figure 4.17 Simulated normal reflectance as a function of the polarization angle at the 

resonance wavelengths 4.9 and 7.0 μm  for the metamaterial associated with Figure 

4.16b. Reproduced reflectance from the simulated reflectance for 0   , 90   ,  and 

45    using the three-polarization-angle method are shown with markers. 
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where   is the dielectric function and zk  is the z component of the wavevector. By 

defining 
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Equation (4.21) can be written as 

  2 2
TE TM Csin cos sin 2TT T T       (4.25) 

Here, TET  and TMT  are the transmittance for TE and TM waves, respectively. Since Eq. 

(4.25) has the same form as Eq. (4.14), all the previous discussion for reflection can be 

repeated for the transmittance. Hence, the transmittance is also a sinusoidal function of the 

polarization angle.  

 Two metamaterial surfaces in vacuum environment made of L shapes are used to 

demonstrate the transmittance as a function of the polarization angle in the same coordinate 

as with the reflectance analysis. Those metamaterial surfaces are made of the same L shape 

gold patterns as shown in Figure 4.15, without the dielectric layer and the ground plane. 

The normal transmittance contours are shown in Figure 4.18(a) and (b) for lx = 1.7 m and 

1.275 m, respectively, keeping the period, thickness, and y-directional length the same as 

for Figure 4.16. The resonance at 3.2 μm   is due to SPPs [144], and the other two 
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Figure 4.18 Normal transmission contours obtained from FDTD simulations for the two L-

shape metamaterial surfaces. The two structures are made of the same L-shape gold 

patterns as shown in Figure 4.15, without the dielectric layer and the ground plane: (a) The 

metamaterial surface with 1.7 μmxl  ; (b) The metamaterial surface with 1.275 μmxl  . 

resonances can be attributed to the localized plasmonic resonances associated with the L 

shape [234]. Due to the relatively short arm in the x direction, the two localized resonances 

shift toward shorter wavelengths in Figure 4.18(b) compared with Figure 4.18(a). Due to 

symmetry, the transmittance extrema in Figure 4.18(a) occur at 45  and 135    , but they 

are at about 110  and 20     for Figure 4.18(b) at 3.2 μm  . These results can be also 

obtained with three-polarization-angle method from the transmittance of TE, TM, and 

another polarization. The contour plots can thus be reproduced if the transmittance at three 

different polarization angles is known at each wavelength. The procedure is similar to that 

for the reflectance and will not be repeated here. Note that the above analysis is valid for 

all incident directions, not just the normal direction, even though the reflectance and 

transmittance contours shown here are for normal incidence. 

 The above discussion assumes that only the zero-order (specular) diffracted wave 

is propagating wave, while all high orders are evanescent waves that do not carry energy 
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in the far field. As discussed next, this assumption is not necessary and the diffraction 

efficiency for each order as well as the directional-hemispherical reflectance for diffracted 

waves also follow similar trend. This still holds for practical fabricated structures as long 

as scattering due to surface roughness, inhomogeneity, and other irregularities is negligibly 

small. 

 

 

Figure 4.19 Polarization-dependent reflectance and DEs of the propagating orders at 

incident direction 45  and 0      for the metamaterial corresponding to Figure 4.16b 

at 4.9 μm  . Markers are reproduced by the three-polarization-angle method using the 

simulated DEs and reflectance at 0   , 45°, and 90°. 
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At large incident angles, the two-dimensional periodic metamaterial structure shown 

in Figure 4.15 can reflect multiple propagating waves that are not necessarily in the POI, but in 

the planes of diffraction [144,146]. These diffraction orders may be denoted as m and n in the 

x and y directions, respectively. If the incident wave is described by Eq. (4.12), then the electric 

field of the mn-th reflected order can be expressed as 

    r r r
, , , , ,ˆ ˆsin cos sin cosmn ss mn ps mn mn sp mn pp mn mnr r r r       E s p   (4.26) 

where ˆ ˆ and  mn mns p  are defined similar to ˆ ˆ and s p  but are in terms of the wavevector of 

the mn-th reflected order. Thus the diffraction efficiency (DE) can be obtained as [146] 
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Equation (4.27) has the same form as Eq. (4.14) and therefore, the DE for each order is a 

sinusoidal function of the polarization angle with a period of  . However, the phase and 

diffraction efficiency extrema would in general be different for different orders, though the 

diffraction efficiency extrema still occur at a pair of orthogonal polarization status for 

different orders. For example, Figure 4.19 illustrates the DE as a function of polarization 

angle for the second structure with 0  and 45     . In this direction, the (0, 0) and (1, 

0) order of the reflected wave are propagating and they have different phases as the figure 
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shows. The directional-hemispherical reflectance (DHR), or simply reflectance, can be 

obtained by adding the DE of each order: 

  r
,

2 2
T T

,

E M Csin cos sin 2mn

m n

R D R R RE         (4.28) 

where TER , TMR , and CR  are the summation of TE,mnR , TM,mnR , and C,mnR  of all orders. 

Therefore, TER  and TMR  are the reflectance of TE and TM waves, respectively. Equation 

(4.28) is similar to the case where only one order is propagating and thus the DHR is always 

a sinusoidal function. Similarly, the DHR and DE can be reproduced by using three-

polarization-angle method from the DHR and DEs of three different polarizations. For 

instance, the makers in Figure 4.19 show the reproduced results by using the reflectance 

and DEs for TE, TM, and 45   . The results obtained from the three-polarization-angle 

method match the results of direct simulations exactly. 

For semitransparent metamaterials that have multiple transmission orders, if the 

incident wave is expressed as Eq. (4.12), the transmitted electric field for the mn-th order can 

be obtained by  

    t t t
, , , , ,ˆ ˆsin cos sin cosmn ss mn ps mn mn sp mn pp mn mnt t t t       E s p   (4.29) 

where ˆ ˆ and mn mns p  are defined similar to ˆ ˆ and s p  but are in terms of the wavevector of 

the mn-th transmission order. Thus, the DE for transmitted waves is [146] 
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Figure 4.20 Normal reflectance contours for some metamaterials made by replacing the L 

shapes in Figure 4.15 with a different pattern: (a) equilateral triangles; (b) squares; (c) 

regular pentagons. 
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Equation (4.30) has the same form as Eq. (4.27) and thus the conclusions for reflection 

DEs also hold for transmission DEs.  

 Furthermore, since the reflectance is a sinusoidal function of the polarization angle, 

if three different polarization angles that have the same reflectance can be found in the 

range 0    , then RTE = RTM and RC = 0. Thus the reflectance becomes independent of 

polarization angle. For instance, the L-shape pattern in Figure 4.15 is replaced by regular 

polygon patterns as shown in the insets of Figure 4.20(a) to (c), where an equilateral 

triangle, a square, and a regular pentagon pattern are used, respectively. Due to the 

symmetry, the reflectance at normal incidence is expected to be equal when the electric 

field of the incident wave is along the directions of 45° and 135°. A third polarization angle, 

e.g., 90°, can be used to check the polarization dependence. As it turned out, the normal 

reflectance is polarization independent; this is also confirmed by the contour plots shown 

in Figure 4.20 obtained from the FDTD simulations. Other symmetrically patterned 

structures like crosses [217] and fishnet [226] also exhibit polarization independence. 

Similar rules also hold for semitransparent anisotropic metamaterials whose transmission 

is of interest. In the next, we will explore the mechanism of the two resonances in Figure 4.16(a). 

 As Figure 4.16(a) shows, the first and second resonances are at  = 5.70 m and 

8.13 m, respectively. The instantaneous electromagnetic field distributions are shown in 

Figure 4.21. These electromagnetic field profiles are for the plane in the middle of dielectric  
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Figure 4.21 Electric field contour at each resonant wavelength in the middle plane of the 

dielectric spacer with varying polarization angles. The contour shows the relative 

magnitude of the z component of the electric field. (a-d)  = 5.7 m and (e-h)  = 8.13 m. 

spacer at the resonant wavelength under illuminations of different incidence with varying 

polarization angles. The magnitudes of incident electric wave are all unit. The contour 

shows the z component of the electric field normalized by the magnitude of the incident 

electric field and the vectors show the direction and magnitude of the magnetic field. Also, 

the length of the arrows indicates the magnitude of the instantaneous magnetic field and 

the scale bar for the magnetic fields is the same for all plots. The wavelengths of incidence 

are  = 5.70 m and 8.13 m in a-d and e-h, respectively. Also, the polarization angles are 

0  45  90 ,  and  135   ， ， . Although it does not show here, the case for polarization angle 

180    was calculated, and the fields are pointing to the opposite direction at each space 

point for both the electric and magnetic field as compared with the case for 0   , since 

180    can be treated as 0    with an additional   phase delay.  
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Since the electromagnetic field at 45    can be obtained by linearly adding the field 

shown in Figure 4.21(a) and (c) with an amplitude modulation of 2 2 , the resonance in 

(b) is enhanced. Similarly, the field at 135    can be obtained by linearly adding the 

field shown in (c) with an amplitude modulation of 2 2 and the field for 180    with 

the same amplitude modulation. Since the field for 180    is pointing to the opposite 

direction compared with (a), the magnetic fields cancel out with each other and resonance 

effect is suppressed at 135    as shown in (d). This is the reason why at  = 5.70 m the 

emittance peak is maximized at 45   . Similar explanation can be applied to understand 

the polarization dependence at  = 8.13 m. However, at this wavelength, the magnetic 

field in (e) and (g), are generally pointing to opposite directions. Also, the magnetic field 

in (g) and the case for 180   , respectively, are pointing to the same direction, resulting 

in that the resonance is enhanced in (h) but annihilated in (f). Therefore, the emittance peak 

is maximized at 135    for  = 8.13 m. Therefore, 45   and 135 are the 

eigenpolarizations of the resonance at  = 5.70 m and 8.13 m, respectively.  

 

 

Figure 4.22 Schematic of the equivalent LC circuit. 



 94 

 The two resonances at  = 5.70 m and 8.13 m can be explained using a LC circuit 

shown in Figure 4.22. For wavelength  = 5.70 m, the eigenpolarization suggests that the 

current is oscillating at 45   , while for  = 8.13 m, the current is along 135   . The 

parameters used in the LC model are evaluated based on the field distribution at resonances. 

For the resonant wavelength  = 5.70 m, the mutual and kinetic inductance and 

capacitance can be evaluated as 
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For the inductance calculation, the length l is assumed to be curved along the diagonal, and 

also the characteristic length is defined along the diagonal. For the capacitance, the area of 

L-shape pattern used. For the resonant wavelength  = 8.13 m, the parameters can be 

expressed as 
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The optimized parameters c’ for the L-shape pattern metamaterial can be obtained as 0.25 

and 0.23 for fitting the resonant wavelengths  = 5.70 m and 8.13 m, respectively. 

Consequently, this explanation with the LC circuit model is valid for the L-shape 

metamaterial. Thus, the two emittance peaks are due to two eigenmodes of the structure, 

which are MPs. 

In conclusion, the reflectance and transmittance of a linearly polarized wave are 

shown to be sinusoidal functions of the polarization angle. The two reflectance (or 

transmittance) extrema occur at a pair of orthogonal polarization status called 

eigenpolarizations. For an arbitrary polarization status, the reflectance, transmittance as 

well as diffraction efficiency of each diffracted order can be determined using the three-

polarization-angle method. The two eigenmodes in the L-shape structure is due to MPs 

with different eigenpolarizations. This work helps the understanding of the polarization 

dependence of reflectance or transmittance of anisotropic nanostructures and facilitates the 

investigation of the eigenmodes in metamaterial structures and their potential applications 

for polarization control. 

  



 96 

CHAPTER 5 

RADIATIVE PROPERTIES OF 2D MATERIALS AND THE COUPLING WITH 

METAMATERIALS  

 In this chapter, the micro/nanostructured 2D materials and their coupling with 

plasmonic metamaterials are investigated regarding their radiative properties. Section 5.1 

studies a hybrid structure constructed with a monolayer graphene on a deep grating. 

Primary focus is in the visible and near-infrared range, where graphene shows a 

wavelength-independent real conductivity. Section 5.2 investigates a metal grating covered 

by a graphene ribbon array, where MPs and graphene plasmons in ribbons couple 

significantly to create unique radiative properties. Section 5.3 demonstrates another hybrid 

structure constructed with hyperbolic material, hBN, with metal gratings. The coupling 

between hyperbolic phonon polaritons and MPs are investigated. In Section 5.4, a 

trapezoidal grating made of hBN is studied to take advantage of its hyperbolic response 

that can enable broadband perfect absorption. This Chapter ends with Section 5.5, where 

the resonance effect of the directional hyperbolic phonon polaritons are scrutinized in hBN 

resonators with different shapes.  

 

5.1. Graphene-covered Metal Gratings in the Visible and Near-infrared  

 As a layered 2D material with carbon atoms arranged in a honeycomb lattice, 

graphene has unique electrical, mechanical, and optical properties [61,70]. Unlike 

conventional metals, the electrons in graphene are massless quasiparticles (Dirac fermions), 

which exhibit a linear energy-momentum dispersion. Its linear energy dispersion relation 

implies a vanishing of the effective mass of the carriers, and a remarkably high carrier 
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mobility reaching 200,000 cm2 V1s1 at room temperature for both electrons and holes.[59] 

This high mobility makes graphene a great candidate for ultrafast optoelectronic devices 

such as transistors [241] and photodetectors [242-245] in the visible and near-infrared 

(NIR) range. In the visible and near-infrared (NIR) region, interband transitions can happen 

in doped graphene and photons absorbed generate electron-hole pairs, creating electrical 

signals for photodetection. This makes graphene a potential material for the construction 

of an ultrafast photodetector, considering its high carrier mobility. However, because of its 

atomically thin thickness, the absorptance of graphene is only about 0.023 in this spectral 

region, and is related to the fine structure constant [67]. High absorption is also preferred 

for graphene-based optical antennas [73] and solar cells [75]. This minimal absorptance 

substantially hinders these applications; therefore, enhancing the absorption of graphene 

has drawn much attention recently. 

 The chemical potential of graphene can be changed through electrical gating or 

chemical doping and the optical properties of highly doped graphene resemble those of 

Drude-type materials in mid- to far-infrared region [246]. In this case, the graphene 

absorption can be improved by taking advantage of its plasmonic response and can also be 

tuned by changing its chemical potentials [61,247]. One can make patterned graphene 

resonator and excite plasmons associated with them. For example, Thongrattanasiri et al. 

[68] demonstrated total light absorption by critical-coupling in a single round-patterned 

sheet. Fang et al. [248] showed tunable enhanced absorption in graphene nano-disk array 

from 0.03 to 0.30 by exciting local plasmonic resonances. Graphene can also be shaped to 

ribbons [94,249] to enhance its absorption since graphene surface plasmons can be excited 

in ribbons [250-252]. Graphene patch arrays of cross shapes [253] and square shapes [254] 
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have also been demonstrated for absorption enhancement. In addition, graphene can be 

used together with other structures such as gratings and photonic crystals to enhance its 

absorption [255-262]. For example, Gao et al. [263] and Zhan et al. [264] utilized a 

dielectric surface-relief grating to excite the surface plasmon wave in graphene, which also 

enhanced graphene absorption.  

 The above-mentioned plasmonic responses, however, cannot be excited in the 

visible and NIR region to enhance graphene absorption because the optical property of 

graphene is dominated by the interband transition. One way to enhance graphene 

absorption in this frequency region is to employ a microcavity that enables light to pass 

through the graphene sheet multiple times to improve the absorption of graphene [244]. 

Another way is to utilize the plasmonic oscillations associated with optical nanoantennas 

that can create a localized strong electric field [73,74,245,265-267]. While the attenuated 

total reflection configuration setup can also be employed to enhance absorption near the 

critical angle [268], the enhancement is generally not very significant. It should be noted 

that guided resonances in dielectric gratings [269,270] can create an enhanced electric field 

to boost graphene absorption, through critical coupling using photonic crystals [271], and 

may achieve total absorption. However, the enhancement achieved by this mechanism is 

usually narrowband and highly directionally sensitive.  

 In this work, a method of enhancing the absorptance of graphene is presented by 

using a deep metallic grating, which can enable a strong localized electric field at the MPs 

and SPPs. Figure 5.1 illustrates the structure of the graphene-covered deep gratings. The 

one-dimensional (1D) grating is made of silver (Ag) and the geometric parameters are 

period  , height h, and trench width b. When the plane of incidence is the x-z plane, the  
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Figure 5.1 Schematic of the graphene-covered 1D grating nanostructure for a plane TM 

wave incident at an angle of . The top medium and the trench region are assumed to be 

vacuum or air, and the bottom Ag region is assumed to be opaque or semi-infinite.  

wavevector of an incident plane wave does not have a y-component and can be expressed 

as inc 0 0ˆ ˆ ˆ ˆ  sin  cos  x zk k k k    k x z x z , where   is the incidence angle and 0k  is the 

wavevector in vacuum. For the 1D grating considered here, since the wavevectors of all 

the diffracted waves lie in the x-z plane, the electromagnetic field is independent of y and 

no resonance excitation occurs in the y-direction. Here, the incident medium is assumed to 

be vacuum or air (but with the same dielectric property as that of vacuum). The graphene 

monoatomic layer lies at the top surface of the gratings at z = 0. Only TM waves are 

considered in this study, since MPs and SPPs can only be excited when the magnetic field 

is in the y-direction for the 1D grating. The metal under the grating region is assumed to 

be sufficiently thick for it to be opaque. Therefore, the incoming radiation will be either 

reflected or absorbed, and the absorptance can be indirectly calculated from one minus the 

reflectivity.  

 RCWA is used to calculate the reflectivity of the structure as well as the field 

distribution, with sufficient Fourier expansion orders to ensure convergence. In the 
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simulation, the dielectric function of Ag, Ag , is modeled with the Drude model mentioned 

before, while graphene is modeled as a ultrathin layer with a thickness   according to an 

equivalent dielectric function [70]: 

 s

0

( ) 1 i


 
 

 


  (5.1) 

where s , 0 , and are the sheet conductivity, the vacuum permittivity, and the angular 

frequency, respectively. Another method is to model graphene as a 2D conductive film 

with a sheet conductivity s , which induces a surface current along graphene and thus 

modifying the boundary conditions for the magnetic field. Those two methods yield 

identical results as long as   is chosen to be sufficiently small to ensure convergence 

[271,272]. In this study, graphene is treated as a thin film with an isotropic dielectric 

function so that the above presented RCWA algorithm can be directly employed without 

modifying the boundary conditions. In the calculation,   = 0.3 nm is chosen to ensure 

convergence. The following parameters are used in all the calculations presented in this 

work: chemical potential  = 0.3 eV , relaxation time 
1310  s  , and temperature T = 

300 K. With these parameters, Bk T   is satisfied, the interband contribution is 

manifested by a step function feature and the conductivity at photon energies above the 

threshold at 2   is dominated by interband transitions [116]. This yields a purely real 

conductivity 2
s I 4e    when photon energy is greater than 0.6 eV, which 

corresponds to a wavenumber of 4762 cm1 (or wavelength of 2.1 m). Since the frequency 

region of interest in the present work is in the visible and near-infrared region, the 

conductivity of graphene is essentially a constant equal to 2 4e .  
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Figure 5.2 Comparison of the absorptance of the graphene-covered and plain Ag grating 

with h = 200 nm,  = 400 nm, and b = 30 nm at incidence angle  = 10° for TM waves. 

The absorptance spectra for the plain and graphene-covered structure are shown in 

for TM waves at incidence angle  = 10 in terms of the wavenumber. The absorptance is 

for the whole structure and calculated from one minus the reflectance that is predicted by 

RCWA. In the simulation, the geometric parameters of the Ag grating are set to  = 400 

nm, b = 30 nm, and h = 200 nm. These are the default values used in the present study 

unless otherwise specified. To realize a structure with such geometries, one could 

separately fabricate graphene using chemical vapor deposition on a copper foil and the 

grating structure by e-beam lithography with a lift-off process. Then, graphene could be 
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transferred onto the grating to form the desired structure. There exist three distinct peaks 

in the absorptance spectra located at wavenumber   = 6700 cm1 (1.49 m), 18350 cm1 

(545 nm), and 20930 cm1 (478 nm). The value in parentheses indicates the corresponding 

wavelength. As will be explained later, these peaks are associated respectively with the 

excitation of the fundamental MP (MP1), the second-order MP (MP2), and an SPP. Clearly, 

adding graphene can increase the peak absorptance significantly without shifting the peak 

locations. For a plain grating, the absorptance is only 0.21 at MP1, because of the weak 

coupling between the two side walls of in the trench as noted previously [46,148]. Higher 

absorptance of 0.66 and 0.57 can be obtained with the MP2 and SPP modes, respectively. 

With graphene coverage, the absorptance at the resonance wavenumbers is raised to 0.81, 

0.99, and 1.0 for MP1, MP2, and SPP, respectively. However, the fraction of energy 

absorbed by the graphene monolayer itself is not the same as the difference between the 

absorptance of the whole structure before and after the graphene is added, since the 

absorption is redistributed due to the coupling effect to be discussed.  

 The absorptance contours for the plain grating and graphene-covered grating are 

shown in Figure 5.3(a) and (b), respectively, in the reduce zone scheme for 0 xk    . 

The lower-right corner beyond the light line is left blank since no propagating waves exist 

in vacuum. The dispersion relations for different resonances, such as SPP or MPs with 

different orders, are manifested by the bright bands. The incidence angle is related to the 

parallel wavevector component xk  by 2 sinxk   , and the inclined solid and dashed 

white lines represent 10    and 40   , respectively. The contrast between the two 

figures clearly shows that graphene enhances the absorption when resonances are excited 

for all the spectral region and incidence angles. The fundamental order, the second order,  
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Figure 5.3 Absorptance contours for (a) plain Ag grating and (b) graphene-covered grating. 

The white solid and dashed lines indicate the incidence at  = 10° and  = 40°, respectively, 

and the intersections indicated by the dot markers correspond to the three absorption peaks 

shown in Figure 5.2. 
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and the third order of MPs are excited in the considered spectral region as indicated by 

MP1, MP2, and MP3, respectively. MPs usually show up as nearly flat lines because the 

excitation is insensitive to the incidence angle as has been discussed before. Note that these 

modes are conventionallycalled waveguide modes, while MP is used here to stress the 

magnetic response of these resonances. SPP resonances and their effects on the radiative 

properties of gratings have been extensively investigated by many researchers 

[12,104,144,159,273,274]. The lower and upper branches can be identified as 1 and +1 

orders of the SPP in the grating structures (as indicated in the contour above and below the 

sign “SPP”). The dots at the intersection of  = 10° line and MP1, MP2, and SPP (1 order) 

correspond to the three peaks in Figure 5.2. Note that the anti-crossing between SPP and 

MPs can break the continuous bright bands [275] and thus neutralize the absorption peak. 

The anti-crossing effects also cause some hybridization between MP and SPP. The SPP 

bands show a discontinuity at 0xk  , because two standing-wave solutions with different 

energies can be obtained, resulting in a bandgap [99,276].  

 

Figure 5.4 Absorptance contours at normal incidence for the (a) plain and (b) graphene-

covered Ag gratings in terms of the wavenumber and the grating height h. 
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 In addition, the enhanced absorption can be tuned by the geometry of the grating. 

Figure 5.4(a) and (b) illustrate the grating height effect on the MP resonances for plain 

gratings and graphene-covered gratings, respectively. The MP excitation wavenumber 

decreases as h increases, and graphene enhances absorption without changing the 

resonance frequencies. While these figures are for normal incidence, similar results can be 

obtained for other incident directions. The MP resonance frequency can also be tuned by 

changing the slit width and graphene also give rise to the absorptance without affecting the 

resonance frequency as demonstrated in Figure 5.5 [148]. When the period increases (with 

fixed h and b), the MP resonance condition will not change much due to their localized 

resonance nature, whereas the SPP resonance will shift to low frequencies [50]. Therefore, 

it is possible to tailor the grating geometries to enhance the absorption at the frequency of 

interest. Next, we focus on the mechanism of the enhanced absorptance. 

The enhanced absorption at the MP excitation is directly related with the 

electromagnetic field at the resonance. The time-varying magnetic field parallel to the y-

direction creates an oscillating closed current loop around the trench in the x-z plane, which 

 

Figure 5.5 Absorptance contour for the two structures with h = 200 nm and = 400 nm 

for varying b: (a) plain Ag grating; (b) graphene-covered Ag grating. 
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generates a highly localized magnetic field inside the trench according to Lenz's law [144]. 

Figure 5.6(a) and (b) show electromagnetic fields for the MP1 and MP2 resonances, 

respectively, at  = 10°. The arrows show the electric field while the contour indicates the 

magnitude of the magnetic field, and the same pattern is followed in later field plots. The 

magnetic field inside the trench in (a) is enhanced by more than twelve times compared 

with the incident, indicating the excitation of the fundamental mode of MP and showing 

the localization feature of the MP resonances [46].  

Not only the magnetic field is enhanced, but the electric field is also greatly 

enhanced at MP1 and MP2 resonances. The electric field is minimal in the Ag grating, 

except along the interface between Ag and vacuum, but is extremely strong in the trench 

 

 

Figure 5.6 The electromagnetic fields for (a) MP1 (cm) and (b) MP2 

(cm) at  = 10°. The contour shows the normalized magnitude of the magnetic 

field while the arrows indicate the direction and relative magnitude of the electric field. 
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Figure 5.7 The magnitude of the x-component of the electric field at / 2z    for plain and 

graphene-covered gratings at (a) MP1 (cm) and (b) MP2 (cm) 

resonances for  = 10°. 

especially at the trench opening as shown in Figure 5.6(a) and (b). At the opening, the x-

component of the electric field xE  dominates since the z-component is negligibly small. 

Figure 5.7(a) and (b) show xE  in the middle of graphene monolayer for MP1 and MP2, 

respectively. Note that the magnitude of the incident electric field is set to 1 V/m in the 

simulation. It can be seen that, for plain gratings, the electric field at the trench opening is 

enhanced by more than 20 times of the incident for MP1 and even higher for MP2. After 

covering graphene, the electric field is attenuated in both cases, and it can be inferred that 

adding graphene weakens the electric field. The result for normal incidence is almost 

identical. Note that for MP1, the electric field is negligibly small beyond the trench opening 

at 15 nm < x < 15 nm. The same cannot be said for MP2 for which the electric field is 

nontrivial beyond this range. This difference results in a different absorption profile in 

graphene as discussed in the following. 
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Figure 5.8 Power dissipation profiles for the two structures when  = 10°: (a,b) MP1 

resonance (cm) and (c,d) MP2 resonance (cm). The left (a,c) are 

for the plain Ag grating and the right (b,d) are for the graphene-covered grating. The unit 

of w  is 105 
3W/m  and the scale bar is not linear beyond 

5 36 10  W/m . 
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Figure 5.8(a) and (b) illustrate the power dissipation profiles calculated from Eq. 

(3.48) at MP1 resonance with = 10° for the plain grating and graphene-covered structure, 

respectively. For comparison, Figure 5.8(c) and (d) show the power dissipation at MP2 

resonance for the two structures. The contour describes the value of the power dissipation 

density and the same scalar bar is used for all four figures. The scale bar is not linear beyond 

5 36 10  W/m  to better show the absorption in grating. As shown in Figure 5.8(a) and (c), 

the incoming radiation is mainly absorbed near the surfaces of the trench walls especially 

at the corners. While displacement currents exist in vacuum, it does not contribute to 

absorption since there is no dissipation. For MP2, the enhanced electric field induces 

extremely high power dissipation up to 106 W/m3 at the four corners of the trench. After 

covering with graphene, however, the absorption by the grating is weakened for both 

resonance modes. It should be noted that the power dissipation inside graphene is 

extremely strong reaching 108 W/m3 for both MP1 and MP2. The shape of the power 

dissipation profile in graphene is similar to the electric field profile shown in Figure 5.7, 

i.e., high in the trench opening with two spikes at the grating edges. A distinction between 

MP1 and MP2 is that the graphene absorption is negligibly small beyond 15 nm < x < 15 

nm for MP1, while absorption beyond this range may not be neglected for MP2. 

The absorptance of graphene can be obtained exactly by evaluating Eq. (3.49). For 

1D gratings, a unit length in the y direction can be used such that Eq. (3.49) is evaluated in 

the x-z plane. Moreover, the integration in the x direction needs to be performed only in 

one period. It can be seen from Eq. (5.1) that the imaginary part of the dielectric function 

of graphene can be expressed as    s 0x,z        since s  is purely real in this 

region. Meanwhile, the electric field inside the graphene layer is essentially independent 
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of z. Therefore, the absorbed power in graphene can be expressed using its conductivity as 

follows: 

    s
/2

2

abs G
/2

,
2

xP w x z dV E x dx






     (5.2) 

Note that G indicates that the volume integration is carried out in graphene. The 

absorptance can be calculated by dividing Eq. (5.2) by the incident power. 

One can apply the Cauchy-Schwarz inequality to Eq. (5.2): 

  s

2
/2

abs

/2
2

xP E x dx







    (5.3) 

The right-hand side (RHS) gives the lower bound of the power dissipated in graphene. If 

the electric field in graphene is independent of x, the RHS of Eq. (5.3) will be equal to the 

exact expression of absP . In this case, the electric field forms an alternating voltage 

across the graphene and the power dissipation directly resembles the macroscopic form, 

2
RMS /V R . As to be shown in the next section, for MP resonances, the dissipation is 

concentrated only at the trench opening and the electric field across the trench can be 

approximated as uniform. The power dissipation can then be estimated by replacing the 

period  in the RHS of Eq. (5.3) with the trench width b [148].  

For MP1, the dissipation of graphene is mainly confined in the range 15 nm < x < 

15 nm. Furthermore, the lower bound absorptance of graphene can be obtained from the 

RHS of Eq. (5.3) by replacing the period  with the trench width b, which gives 0.66. The 

lower bound value agrees well with the exact value 0.68 for MP1. The integration of xE  

from –b/2 to b/2 in the RHS of Eq. (5.3) can be viewed as the alternating voltage drop 
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across the graphene, and sb  is the resistance of graphene at the trench opening [148]. 

The graphene layer behaves like a resistor that dissipates power, resulting in a good 

agreement between the exact absorptance and the lower bound. Though the graphene layer 

is very thin, it carries an intense current that can induce a significant dissipation or loss. 

For MP2, the absorptance for the whole graphene is 0.77, among which 0.65 is in the trench 

opening and 0.12 is due to the dissipation beyond the opening region due to the nontrivial 

electric field.  

Table 5.1 compares the absorptance for plain gratings and graphene-covered 

gratings at different resonances. For graphene-covered gratings, the absorptance of 

graphene and grating is also listed separately. The absorptance of the grating is evaluated 

directly from Eq. (3.49) by performing the integration in the grating and the substrate. At  

 

Table 5.1 Absorptance calculated from RCWA at the wavenumber corresponding to the 

resonance of different modes for incidence angle   0 (normal) and 10 with TM waves. 

The last two rows list the individual absorptance of the graphene sheet and the grating in 

the graphene-covered structure. 

 
 = 0°  = 10° 

MP1 MP2 SPP MP1 MP2 SPP 

Resonance 

wavenumbercm
6700 18490 24050 6700 18350 20930 

Plain grating 0.22 0.63 0.67 0.21 0.66 0.57 

Graphene-covered 

structure 
0.81 0.99 1.0 0.81 0.99 1.0 

Graphene only 0.68 0.78 0.69 0.68 0.77 0.80 

Grating only 0.13 0.21 0.31 0.13 0.22 0.20 
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MP2 resonance and  = 10°, the absorptance of the grating is 0.22 with graphene coverage. 

This is a significant reduction from that of 0.66 for a plain grating. On the other hand, the 

absorptance of graphene itself is boosted to 0.77, more than 33 times than 0.023 for a 

suspended graphene. Graphene can absorb more power than the Ag grating mainly because 

of two reasons. The first is that graphene is very lossy due to the interband transition. By 

assuming a thickness of 0.3 nm, the imaginary part of the effective dielectric function ( 

) for graphene is 6.6 at MP2 resonance, while  = 0.1 for Ag at the same frequency. The 

second reason is that MP resonances create a strong electric field at the trench opening that 

is about 15 times of that of the incidence waves, as shown previously. Interestingly, the 

electric field strength remains the same through graphene in the z-direction. Although the 

electric field strength is comparable to that in graphene at the surface of the grating, it 

decays exponentially into the grating with a penetration depth of approximately 12 nm. 

Therefore, even though the thickness of graphene is thousand times smaller than that of the 

grating, the absorptance of graphene can be greater than that of the grating.  

 The graphene absorptance is nearly independent of  for MP1 when  is smaller 

than 20°, but will decrease at large angles closer to the light line. For example, at  = 45°, 

graphene absorptance decreases to 0.58, though not shown in the table. Moreover, the 

graphene absorptance at MP2 shows a decreasing trend as the incident angle increases, 

especially beyond 15° where the effect of anti-crossing between MP2 and SPP (1 order) 

occurs.  

The MP resonance in deep gratings can be described by an inductor-capacitor (LC) 

circuit model as shown before.  The metal grating severs as an inductor with an inductance 

LAg and the trench acts like a capacitor with a capacitance C. One can obtain the 
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Figure 5.9 The impedance of graphene in the LC circuit model versus wavelength. 

fundamental resonance wavelength for the uncovered grating as MP 0 Ag2 c CL  . To 

consider the effect of graphene on the resonance, additional impedance should be added 

into the LC circuit. Figure 5.8(b) suggests that only the graphene across the trench opening 

may be involved in the effective circuit. The additional impedance introduced by the 

graphene layer can be evaluated by 

 G G G sZ R i L b      (5.4) 

Figure 5.9 shows the real and imaginary part of the impedance of the graphene sheet, where 

the inset shows the modified LC circuit for the graphene-covered grating. Note that s  is 
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dominated by the interband contribution I , when the photon energy is greater than the 

interband threshold 2 [277]. Taking  = 0.3 eV, this corresponds to a wavelength of about 

2.1 m. Therefore, at the MP1 resonance wavelength 1.49 m, the impedance becomes a 

pure resistance 4
G 4.9 10R    . This makes the graphene layer behave like a pure 

resistor across the trench, where a strongly enhanced local electric field exists when MPs 

are excited. Since RG is large, the imaginary part of the total impedance of the circuit shown 

in Figure 5.9 does not change with the graphene overlay. Therefore, the resonance 

wavelength can still be expressed as MP 0 Ag2 c CL   even with the presence of 

graphene. However, the graphene layer does add resistance to the circuit, making the 

resonance peaks broader (lower Q factor). The same argument holds for higher-order MPs 

and SPPs.  

As can be seen from Table 5.1, SPP results in nearly complete absorption by the 

graphene-covered grating structure, while both the resonance wavenumber and graphene 

absorptance are strongly angular dependent. The angular dependence of the resonance 

frequency can be understood by the negative slope of the 1 order SPP dispersion curve 

shown in Figure 5.3. SPPs produce a longitudinal surface wave that propagates along the 

interface between the dielectric and the metal. Figure 5.10(a) shows the electromagnetic 

field for the plain grating at the SPP resonance at 
124050 cm   and for normal incidence. 

Note that graphene-covered structure exhibits similar field distribution (not shown), except 

that the magnitude of the magnetic field is about half of that for the plain grating. Strong 

electric field along the surface of the grating is generated as indicated by the arrows. It can 

be seen that the field strength exponentially decays away from the interface; this is a 
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Figure 5.10 (a,b) Electromagnetic field of the plain grating; (c,d) power dissipation 

contours of plain grating; (e,f) power dissipation contours of graphene-covered grating. 

The left figures (a,c,e) are for normal incidence at the SPP resonance cm and 

the right figures (b,d,f) are for  = 10° at the SPP resonance cm. The unit of 

w  is 105 
3W/m , and the scale is not linear beyond 

5 36 10  W/m . 
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distinguished feature of SPPs. Meanwhile, the field along the surface of the grating shows 

a standing wave pattern with clear nodes and antinodes. At normal incidence, the incident 

photon can couple with two surface plasmons: one is the +1 order with a wavevector 

sp 2k    (right traveling) and the other is the 1 order branch with sp 2k     (left 

traveling). The two surface waves form a standing wave [276], whose wavelength is nearly 

equal to the period of the grating. Interestingly, there are some waveguide or MP features 

inside the deep trench or optical cavity when SPP is excited. It can be seen from Figure 

5.10(a) that the field distribution inside the trench is similar to that of MP2 shown in Figure 

5.6(b). This implies the SPP resonance is not a pure SPP mode, but a hybridization of a 

standing surface wave and a localized resonance mode; which has been addressed in the 

literature for similar structures [273]. 

Figure 5.10(b) shows the field distribution of the plain grating at the SPP resonance 

and  = 10°, where the 1 order SPP is excited at 
124050 cm  . This resonance is 

actually a hybridization of a propagating surface wave (SPP) and a localized resonance 

(MP2). The magnetic field displays two antinodes in the trench, while standing waves 

appear along the grating surface. Furthermore, the left side of has stronger field 

enhancement than the right side. Figure 5.10(c) and (d) show the power dissipation 

contours for the plain deep grating at normal and 10° incidence, respectively. The 

absorption along the surface of the grating in (c) shows a standing wave pattern with clear 

nodes and antinodes, which correspond to the magnetic field shown in (a). However, the 

standing wave feature does not present in (d). Meanwhile, on the two walls of the trench, 

the absorption contour is similar with that of MP2 shown in Figure 5.9(c) for both normal 

and oblique incidence case due to the hybrid nature of the resonance.  
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Figure 5.10(e) and (f) depict the power dissipation contour for structures covered 

by graphene. They are similar to (c) and (d) but the absorption of the grating is attenuated. 

Unlike in the case with MPs, the absorption of graphene for SPPs is significant not only in 

the trench opening but also along the surface of the grating (indicated by the bright white 

line). This is the reason why the absorptance distribution between graphene and grating is 

very sensitive to the incidence angle. For example, graphene has an absorptance of 0.69 at 

normal incidence and this value increases to 0.80 at  = 10°. It can be further boosted to 

0.82 at  = 14°. The directional dependence can be attributed to the stronger 

electromagnetic field near the trench opening for oblique angles. The absorption at the 

grating surface beyond the trench appears not as strong in Figure 5.10(d) as in Figure 

5.10(c), but is higher at the corners of the trench opening as indicated by the two brighter 

spots at the corners. Therefore, a stronger electric field is generated near the trench opening 

and the graphene is able to absorb more at oblique incidence than at normal incidence. 

However, when the incidence angle is greater than 20°, the absorption peak of SPP 

becomes trivial due to anti-crossing, and thus, the graphene absorption due to SPP becomes 

much weaker or may disappear at large angles. 

To further understand graphene absorption at SPPs, the power dissipation along 

the center line of graphene at / 2z    is shown in Figure 5.11. At normal incidence, the 

standing wave feature is clearly shown beyond the trench and the dissipation in the trench 

opening resembles the feature of MP2. Detailed calculation shows that the absorptance of 

graphene at the trench opening is 0.2, whereas the left portion ( 200 nm 15 nmx    ) 

and right portion (15 nm 200 nmx  ) of graphene have the same absorptance of 0.245. 

Thus, the standing surface wave dominates the graphene absorption enhancement. At  =  
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Figure 5.11 Power dissipation density profile across the middle of the graphene layer when 

the SPP resonance is excited at normal incidence and  = 10°. 

10°, the absorption profile is no longer symmetric. The graphene at the trench opening 

absorbs 0.49 of the incoming power, while the left and right portion contributes to the 

absorptance by 0.18 and 0.13, respectively. Therefore, the enhanced field near the trench 

opening is indeed the major contribution of the enhanced graphene absorption. Therefore, 
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SPP resonance at oblique incidence can greatly enhance graphene absorption, even better 

than MPs, due to its hybrid nature. 

In conclusion, this work theoretically demonstrates enhancement of graphene 

absorption by metal gratings. The excitation of MPs and SPP resonances can enhance the 

absorptance of graphene up to 0.80, without affecting the resonance frequency or 

dispersion in gratings. Due to the different nature of MP and SPP in the nanostructures, the 

enhanced graphene absorption is insensitive to the incidence angle for MPs when it is not 

close to the SPP dispersion line. On the contrary, the SPP-enhanced graphene absorption 

depends strongly on the direction of incidence. The enhanced graphene absorption at MP 

resonances is localized at the trench opening. At the SPP resonance, however, surface 

waves contribute more to the enhancement at the normal incidence while the localized field 

near the trench opening contributes more at oblique angles. The understanding gained from 

this work may facilitate the development of graphene-based photodetecting, energy 

harvesting, as well as plasmonic devices. 

 

5.2 Graphene-covered Metal Gratings in the Mid- and Far-infrared 

The previous work focuses on the visible and near-infrared range. The following 

discusses the plasmonic coupling in mid- and far-infrared range. Plasmons are collective 

oscillations of charge carriers and they play a critical role in optoelectronics and 

metamaterials applications. Graphene can support highly-confined surface plasmons in the 

infrared region with relatively low loss compared to traditional plasmonic materials 

[61,117,278,279]. The strong coupling between the incident photon and the plasmons in 

graphene results in a polariton, which creates coherent absorption or transmission desired 
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in applications such as energy harvesting and optical detection [94,251,261,271,280]. To 

excite polaritons with the photons incident from vacuum, graphene can be patterned into 

different periodic resonators such as ribbons [250,281-283], disks [248,284-286], and cross 

shapes [253]. In particular, graphene ribbon arrays [250,282,283] have attracted extensive 

attention recently. The electrons in the ribbons can be driven by external electromagnetic 

waves and oscillate inside the ribbon, forming surface plasmons that can induce a 

resonance absorption. Meanwhile, the optical properties of graphene ribbons can be tuned 

by controlling its chemical potential, resulting in tunable plasmonic resonances in the 

infrared region [252,287,288].  

In spite of these advantages, high resonance absorptance that is desired in the above-

mentioned applications is difficult to achieve solely with graphene ribbon array due to its 

atomically thin thickness, especially for high-order resonances [250]. Thus, there is a need 

to explore novel ways that can enhance the plasmonic resonances in graphene structures 

like periodic ribbons. In the visible and near-infrared region, graphene has no plasmonic 

responses but has very high loss. Thanks to this lossy property, the absorptance of graphene 

can be enhanced by placing graphene into an environment with strong electric fields to 

enhance its absorption, as has been demonstrated in the previous work. However, in the 

mid- and far-infrared, plasmons in graphene can strongly couple with the nanostructures 

and gratings to form a new hybrid plasmonic system [289-291]. For example, the plasmons 

in graphene can be launched and controlled by the plasmonic dipole resonance of metal 

nanoantennas [292]. This coupling phenomenon offers a novel route for the enhancement 

of plasmonic resonances in graphene and its nanostructures.  

This work demonstrates that the localized polaritons, i.e., MPs, in deep metal  
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Figure 5.12 (a) Schematic of the hybrid grating-graphene ribbon plasmonic structure. (b) 

The absorptance spectrum for a plain Ag grating, a free-standing ribbon array, and a ribbon-

covered grating (r = b). The geometries for the grating are given in the figure. 
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gratings, can strongly couple with the surface plasmons in graphene sheets and ribbons. 

The geometric arrangement of the graphene ribbon-grating hybrid structure is illustrated in 

Figure 5.12(a). The grating is periodic in the x-direction and extended infinitely in the y-

direction. It has a period  , trench width b, and grating height h. Unless specified, the 

geometries are fixed as 4 μm  , 300 nmb  , and 2 μmh  . The width of the ribbons 

is r ( r b ); noting that when r = b, the edges of ribbons will be in physical contact with 

the grating as shown in the schematic. The cases where they are not in contact will be 

discussed later. The ground plane is assumed to be thick enough to be treated as opaque. 

The grating and ground plane are chosen to be silver (Ag). The optical properties of 

graphene include the contributions from the interband and intraband transitions [116]. In 

the mid- and far-infrared region, the intraband transitions dominate and the conductivity 

can be approximately expressed in a Drude-like model as expressed in Eq. (2.12). The 

chemical potential can be tuned by electrical gating or chemical doping, and thus offering 

an active way to control the optical properties of graphene ribbons. In this study, otherwise 

specified,   = 0.3 eV and 
1310  s   are used. For TM waves, as discussed before, the 

oscillating magnetic field in the y-direction induces a current loop around the trench of the  

 

Figure 5.13 (a) Plain Ag grating and (b) graphene ribbon covered Ag grating and their 

corresponding LC circuit models. 
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grating, which generates a highly localized magnetic field inside the trench and forms an 

MP. The absorptance spectra of the plain and ribbon-covered structure are shown in Figure 

5.12(b). For the plain grating, the MP resonance is at 1041 cm1 with an absorptance of 

0.35. After coving ribbons on the grating, the absorptance is boosted to 0.94 and the 

resonance shifts to 1086 cm1, indicating a strong coupling between graphene and the 

grating. The spectrum of the free-standing ribbon array without the grating is also given 

for comparison. In this case, the ribbon plasmon gives rise to a small absorption peak 

around 650 cm1. It will be discussed later that the grating can alter the dispersion of the 

graphene plasmons by changing the phase shift of the plasmon waves at the edges of the 

ribbons. 

The resonances with and without graphene can be modeled using the equivalent 

circuit method. Similar as before, metal and dielectric are treated as inductors and 

capacitors, respectively, as shown in Figure 5.13. The impedance of the graphene ribbon 

can be obtained as 

 rib rib rib
s s

= =Re Im
r r

Z R i L i
l l


 
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Im means taking the imaginary part. Note that near the coupled resonance frequencies, the 

impedance of graphene and Ag is dominated by its inductance term, thus, in the LC circuit, 

only the inductance is kept. The inductance L is LAg for plain gratings and equals to 

 Ag rib Ag ribL L L L  for the ribbon-covered structure since the two inductors are in 
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parallel. The factor in the capacitance formular, c , is taken as 0.5. By solving the natural 

frequency of the LC circuit, the model yields a resonance frequency of 1047 cm1 without 

the graphene ribbon and 1093 cm1 with the graphene ribbon. The red shift caused by 

graphene is because graphene ribbons serves as an inductor across the trench that lowers 

the total inductance in the circuit. However, the reason for the absorptance enhancement 

cannot be explained by the LC model that does not consider loss. To further elucidate the 

enhanced absorption, the ribbon plasmon is discussed next. 

As discussed before, surface plasmons for TM waves can propagate along the x-

direction with low loss in a continuous, free-standing graphene layer. The plasmons in 

ribbons, however, cannot propagate freely but are reflected back on the ribbon edges with 

a phase shift  . The reflection of plasmon waves in various graphene nanostructures has 

been previously studied [293,294]. Recently, it is found that this phase shift is /4 for free-

standing ribbons in vacuum [295,296]. Once the reflection phase shift is known, the 

resonance in suspended graphene ribbons can be described by a Fabry-Pérot model: 

  GSPRe k r m      (5.7) 

where integer m denotes the resonance order and Re takes the real part of the complex 

quantity. By substituting Eq. (2.13) into Eq. (5.7), the resonance condition of suspended 

ribbons in vacuum ( 1 2 = 1  ) can be expressed explicitly as [296] 
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At normal incidence, the plasmon initiated from the two edges of the ribbon are out of 

phase, and thus only the plasmons associated with odd m’s can show up. The plasmons  
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Figure 5.14 The absorptance contour of a free-standing graphene ribbon array with 

4 μm  and  = 0.3 eV, where the dashed lines are the predictions of Eq. (5.8) with   

= /4. 

with even m’s can only occur at oblique incidence since in-phase plasmons can be excited 

from the two edges [296]. 

Figure 5.14 shows the absorptance () contour of a suspended graphene ribbon arrays 

at normal incidence obtained by using RCWA. Continuous graphene sheet can be 

simulated as a thin isotropic layer with an effective dielectric function that is related to its 

conductivity as discussed before. However, graphene ribbons are difficult to be modeled 

in a similar way due to convergence issues [297]. Here, an approximate boundary condition 
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is used [297], in which the graphene ribbons is treated as a period surface conductivity 

pattern that modifies the boundary conditions of the magnetic field. The dashed lines, from 

bottom to top, are the predictions from Eq. (5.8) with m = 1, 3, 5, and 7, respectively. The 

frequency of the resonance is inversely proportional to r . Note that the highest 

absorptance occurs for m = 1 at r   2 m with a value near 0.35. For the other branches 

with higher orders, the absorption by graphene ribbons is rather small. As will be shown 

next, metal gratings can significantly enhance these ribbon resonances. 

Figure 5.15 compares the absorptance contours at normal incidence for four different 

configurations versus the trench width. The plain gratings support MP resonances in the 

considered frequency range as shown in (a). The frequency of the MP increases with b and 

reaches an asymptotic value when b > 0.25 m. The absorptance diminishes at large trench 

widths due to the poor coupling of the evanescent waves between the two side walls in the 

trench, as has been discussed before. The dot markers are the predictions of the LC model. 

The absorptance contour stays the same if the graphene ribbon is covered only on the ridges 

of the grating, as shown in (b). The graphene ribbons appear to have no effect on the 

resonance since they are in contact with the metal on one side. On the contrary, if the 

ribbons are suspended above the trench openings, as the case in the inset of (c), the 

plasmonic resonances of the ribbons show up and the absorptance becomes more plentiful. 

The bright bands that exhibit a dependence on 1 b are caused by the plasmons in ribbons. 

Note that when the grating trench is changing, r changes accordingly so that the edges of 

the ribbons are always in touch with Ag. Although the shape of these bands is similar to 

those in Figure 5.14, the ribbon resonances in Figure 5.15(c) cannot be predicted with Eq. 

(5.8) using the reflection phase shift /4. In fact, since the edge is touched with Ag instead  
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Figure 5.15 Compilation of the absorptance contours for four different structures when 

4 μm  , 2 μmh  , and  = 0.3 eV fixed and b changes: (a) Plain Ag grating; (b) 

Graphene ribbons covering the Ag grating ridges; (c) Graphene ribbons covering the trench 

opening (r = b); and (d) Continuous graphene sheet covering the whole grating. The round 

markers are the predictions of the LC model and the diamond markers are the predictions 

of Eq. (5.8). 

of vacuum, the tangential component of the electric field (Ez) at the edges need to vanish 

at the boundary due to the high conductivity of Ag, resulting in a phase shift of  for the 
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plasmon waves. This can be further justified by the excellent agreement between the 

simulation and the prediction results of Eq. (5.8) with     , which is demonstrated in 

Figure 5.15(c). Note that the plasmons are all associated with odd m’s since the incidence 

is normal.  

Covering the grating by a continuous graphene, as illustrated in Figure 5.15(d), yields 

the same absorptance contour as Figure 5.15(c). Again, the portion of the graphene on the 

ridges has little contribution on the resonance. Thus, in terms of absorptance, continuous 

graphene is equivalent to a periodic ribbon array suspended over the grating trenches. Since  

 

Figure 5.16 The power dissipation density at the coupled resonance when b = 0.3 m: (a) 

for the whole structure and (b) across the middle of the graphene. (c) The modulus of Ez at 

the location beneath the graphene inside the trench. 
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the fabrication of the structure with continuous graphene on grating can be realized with 

the existing fabrication technique [289], it provides a realistic way to experimentally 

achieve the coupling between MP and plasmons in ribbon array. The branches for ribbon 

plasmons are intersected with the MP and the absorptance at the intersection points are 

enhanced significantly, indicating a strong coupling between the MP and the ribbon 

plasmons. The spectrum at b = 0.3 m contains a strongly coupled resonance at  = 1086 

cm1 and has been shown in Figure 5.12(b). The absorption by the graphene ribbons, to be 

shown next, can be significantly enhanced at this resonance. 

Figure 5.16 illustrates the power dissipation profile at the coupled resonance when b 

= 0.3 m. The grating is covered with a continuous graphene. The absorption in grating at 

the coupled resonance, as demonstrated in Figure 5.16(a), is mainly confined at the surface 

of the trench. This is due to the short penetration depth of electric field in the metal that is 

only about 10 nm. The absorption in the graphene, however, is concentrated in the portion 

that is on the trench opening. This further justifies that the graphene in contact with the 

grating ridges plays little role on the resonance. Note that the scale bar is chosen in a way 

such that the absorption of the grating can be clearly seen. The detailed absorption 

distribution in graphene is shown in (b) according to the dissipation density along the 

middle of the graphene layer. Due to the interference effect of the plasmonic waves, the 

dissipation exhibits a standing-wave pattern at the trench opening and is symmetric with 

respect to the x = 0 plane. Note that the electric field is dominated by its x-component in 

the graphene. The portion of energy absorbed by the graphene is calculated to be 72%, 

which is greatly boosted from 8% for a free-standing graphene ribbon with r = 0.3 m 

when the first-order plasmon is excited at normal incidence, as shown in Figure 5.14. The  
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Figure 5.17 (a) The absorptance contour at  = 50° for the structure with ribbons covered 

at the trench opening (r = b), where the dashed lines are the predictions from Eq. (5.8). (b) 

The absorptance contour for a grating with b = 1 m showing dependence on the transverse 

wavevector. 
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last figure is the real part of zE  close to the lower surface of graphene layer at the coupled 

resonance. Note that Ez vanishes at the edges. The phase shift across the trench,  GSPRe k r

, equals 2in agreement with Eq. (5.7) when m = 1. 

Figure 5.17(a) illustrates the contour plot of the absorptance when the incidence angle 

is fixed at 50° with varying trench width while the ribbon width remains the same as the 

trench width (r = b). Compared with Figure 5.15(c), Figure 5.17(a) exhibits additional 

bright bands corresponding to the even-order plasmons. The predictions from Eq. (5.8) are 

shown as dashed lines, which agree well with the direct simulation. Moreover, the 

resonance frequencies of the MPs and the ribbon plasmons, compared to the normal 

incidence case, change little at  = 50° due to their localized resonance feature. Figure 

5.17(b) illustrates the absorptance contour of a grating with b = 1 m when the x-

component of the wavevector of the incidence,  0sinxk c  , changes. The folded 

bright bands are the SPPs between the interface of silver grating and the vacuum [144]. 

The ribbon plasmons associated with odd m’s can be excited at all incident angles while 

the even ones show up only at the oblique incidence. However, the absorptance bands are 

all flat, indicating that they are insensitive to the incidence angle. The MP resonance at 

around 1000 cm1 is also insensitive [46] to kx so that it can omnidirectionally couple with 

the plasmons in the ribbons that are around the same frequency.  

The previous discussions are for the scenarios where the graphene ribbons are in 

contact with the top surface of the Ag grating, i.e., the elevation between graphene ribbons 

and the grating (t) is zero. In the applications where the chemical potential of graphene 
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Figure 5.18 (a) Graphene above Ag grating with an elevation t. (b) The absorptance contour 

for the structure shown in (a) when t changes. (c) Graphene ribbons above Ag grating with 

an elevation t. (d) The absorptance contour for the structure shown in (c) when t changes. 

need to be tuned by electrical gating, a dielectric layer may be inserted between the grating 

and graphene to prevent the flow of electrons between them [287]. It is expected that the 

coupling strength may deteriorate or even vanish when t increases. Figure 5.18 

demonstrates this transition for normal incidence with b = 0.3 m, where the graphene is 

lifted in vacuum with respect to the ridges of the grating (without using a dielectric layer). 

For continuous graphene shown in Figure 5.18(a), the coupling strength deteriorates once 

the graphene sheet detaches from the grating as shown in Figure 5.18(b). The resonance 
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frequency shifts slightly to lower frequencies when t increases. When t exceeds about 1.5 

m, the asymptotic value is reached at 1041 cm1, which is the frequency of the MP 

resonance for a plain grating, though not shown here.  

The scenario becomes more complicated for the ribbon covered grating shown in 

Figure 5.18(c). Three resonance branches are identified on Figure 5.18(d). The coupled 

resonance, which is the middle branch, degenerates to the MP resonance of the plain 

grating at 1041 cm1 when t increases, similar to the previous continuous graphene case. 

The upper and lower branches are associated with the plasmons in the ribbon array. When 

the ribbons are in contact with the grating, the strong resonance at 1086 cm1 is due to the 

coupling of the MP in grating and the plasmon in ribbons with m = 1 and    . Once 

the ribbon array is detached, the phase shift of the plasmon upon reflection at the edges is 

no longer –. Due to the sudden change of  , the plasmon in ribbons associated with m 

= 1 shifts to lower frequencies and create the lower branch and the plasmon associated with 

m = 3 generates the upper branch. This also explains why the lower branch disappears at 

small t values. The graphene ribbon plasmons recover the case of a free-standing ribbon 

array when t is very large. The asymptotic resonance frequencies for the upper and lower 

branches are 1272 cm1 and 664 cm1, respectively, which are obtained from Eq. (5.8) 

using / 4   . Thus, the phase shift is dependent on t. Due to the effect of grating, the 

two branches gradually approach the asymptotic values as the elevation increases.  

When the ribbons are moved down into the grating trench, the magnitude of the 

absorptance and the resonance condition will change. Figure 5.19 demonstrates this trend 

in which p is used to describe the elevation difference between the ribbon and the surface 

of the grating. The geometries of the grating are 4 μm  , 300 nmb  , 2 μmh  , and  
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Figure 5.19 (a) Schematic of graphene ribbon-covered grating with 4 μm  , b = 300 

nm, 2 μmh  , and 0.3 eV  .  (b) Absorptance spectra for different p. 

 

0.3 eV  . When p increases, the resonance frequency shifts to lower frequencies. 

Besides, the magnitude of the absorptance decreases as p increases, since the electric field 

is weaker away from the opening of the grating, resulting in less power dissipation and 

absorption.   

 

Figure 5.20 (a) Graphene ribbons covered Ag grating with ribbon width r < b. (b) The 

absorptance contour for the structure shown in (a) when r changes. 
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The coupling phenomena can also be significantly modified by the width of the 

ribbon. Figure 5.20(a) illustrates the structure where r is narrower than the trench width, 

which is fixed at 0.3 m. The graphene ribbons are centered at the trench openings with t 

= 0. The continuous absorption branch for the graphene plasmon associated with m = 1 

splits when crossed with the MP branch, as shown in Figure 5.20(b). There appears to be 

mode splitting or anti-crossing between the MP and ribbon plasmon branches near r = 0.11 

m, when the ribbon edges are not in contact with the grating. There exists an upper branch 

that corresponds to m = 3, as shown in Figure 5.20(b). The dashed lines represent the 

predictions of Eq. (5.8) with / 4    for m = 1 (lower branch) and 3 (upper branch, 

respectively. It can be seen that the predicted ribbon plasmon dispersions agree well with 

the simulation for a small r but deviate when r gets larger. This deviation may be caused 

by the change of reflection phase shift, which is /4 at small r and varies when the edges 

of the ribbons get closer to the silver trench walls. The m =1 branch disappears at r   0.3 

m since   approaches  , and similar reason holds for t = 0 in Figure 5.18(d).  

Besides the geometry factors, the chemical potential of graphene can also modify 

the coupling picture by changing the dispersion of the graphene plasmons. For example, 

Figure 5.21 shows the absorptance spectra for the structure shown in Figure 5.12(a) with 

various . The case when  = 0.3 eV corresponds to the solid spectrum in Figure 5.12(b). 

If  changes to 0.28 eV or 0.32 eV, the ribbon plasmon shifts to a slightly lower or higher 

frequency, respectively, and the coupling strength decreases as the peak absorptance 

becomes lower. When  further decreases to  = 0.2 eV, two bumps at 871 cm1 and 1164 

cm1 occur that are due to the plasmons associated with m = 1 and 3, respectively.  



 136 

 

Figure 5.21 The absorptance spectra of the structure shown in Figure 5.12(a) with different 

graphene chemical potentials. 

However, neither of them can couple with the MP, whose absorptance drops down to about 

0.4. Similarly, at  = 0.5 eV, the plasmon in ribbons associated with m = 1 moves to 

1412cm1 and totally decouples with the MP. Note that there is a slight shift of MP 

resonance at different  and this can be understood with the equivalent LC model [298]. 

Therefore, the chemical potential can be tuned to control plasmons in the ribbons to couple 

or decouple with the MP resonance in the grating. If the interband transitions dominate the 
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conductivity of graphene, the ribbon will couple with MPs in grating without affecting the 

resonance frequency of the MPs, as has been discussed before.  

In conclusion, this work demonstrates that the MPs in Ag grating can couple with the 

plasmons in ribbon arrays, resulting in greatly enhanced absorption of ribbons. The 

graphene ribbon acts as an inductor in the equivalent LC circuit and shifts the MP 

resonance to higher frequencies. In contrast to the free-standing ribbon arrays, the 

reflection phase shift becomes – when the ribbon edges are in contact with silver. The 

coupling effect deteriorates when the ribbons are elevated above the gratings. The width of 

the ribbon can be adjusted to create two coupled resonances at the same time. Furthermore, 

the chemical potential of graphene may be tuned to control the coupling between the two 

resonances. It is noted that graphene covered ridges has negligible effect and the resulting 

absorptance spectrum for a continuous sheet of graphene covered gratings is essentially the 

same as graphene ribbon arrays at the trench openings. Findings from this study shed light 

on the plasmonic coupling between graphene ribbons and metal gratings and may facilitate 

the design of next-generation optoelectronic systems based on graphene nanostructures.  

 

5.3 Metal Gratings Covered by Hyperbolic Materials 

Not only graphene but also hyperbolic 2D materials can be used together with 

plasmonic structures to create unusual properties such as perfect absorption. Perfect 

absorption is of critical importance in applications such as energy harvesting, radiative 

cooling, and photodetection applications [10,28,33,34,36,38,175,299]. Different kinds of 

metamaterials and micro/nanostructures have been proposed to achieve perfect absorption 

by utilizing various resonance modes. Among them are gratings that can support SPPs 
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[41,144] or surface phonon polaritons (SPhPs) [2], metal/dielectric/metal structures and 

deep metal gratings that can enable MPs [45-47,211,300-303], nanoparticles and 

nanoantennas that can create localized surface plasmon polaritons (LSPPs) [232], and 

hyperbolic metamaterials that can empower hyperbolic modes and epsilon-near-zero 

modes [42,44,304]. These resonances or modes can couple with incident light and capture 

the energy of the incident waves efficiently [31]. Besides these metamaterials and 

nanostructures, 2D materials such as graphene and black phosphors offer enormous novel 

ways to create electromagnetic resonances because of their unique plasmonic properties 

[58,285]. Various nanostructured resonators and ribbons using 2D materials have been 

demonstrated to support localized surface plasmon resonances [94,305,306]. However, 

with an atomically thin thickness and relatively short light-matter interaction path, it is 

difficult to achieve perfect absorption in standalone 2D material nanostructures. 

A promising way is to combine 2D materials with nano/microstructures. The 

previous works in this chapter demonstrate that 2D materials covered micro/nanostructures 

and metamaterials can provide a new route to achieve perfect absorption. Moreover, Piper 

and Fan [271] utilized critical coupling in graphene/photonic crystals hybrid structures to 

achieve perfect absorption. Zhu et al. [307] used a similar mechanism to construct angle-

selective perfect absorbers consisting of graphene and a chalcogenide layer atop a mirror. 

Plasmonic optical nanoantennas with different shapes can also be hybridized with 2D 

materials to capture light efficiently [74,265]. While 2D plasmonic materials and 

semiconductors have been studied extensively because of their potential applications in 

microelectronic, optoelectronic, and photonic devices [83], few studies have yet explored 

the potentials of using phononic 2D materials to achieve perfect absorption through 
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coupling with nano/microstructures, especially for hBN that is a hyperbolic material. 

Considering that hBN can endure a temperature of 1500 °C in air [308], accomplishing 

strong absorption or emission bands in the infrared region with hBN films holds great 

significance for high-temperature energy harvesting applications [36]. 

As explained previously, hyperbolic materials refer to uniaxial materials whose 

axial (extraordinary) and tangential (ordinary) permittivities have opposite signs. Owning 

to its optical phonon vibrations, hBN naturally possesses two mid-infrared Reststrahlen 

bands that have hyperbolic response [64,126]. Because of the hyperbolicity, hBN films 

support multiple orders of low-loss hyperbolic phonon-polariton (HPP) waveguide modes 

[81,82] that can potentially be utilized to achieve perfect absorption. However, since the 

lateral wavevectors of these modes are much larger than the magnitude of the wavevector 

in vacuum, HPPs cannot be excited directly by the incident waves from vacuum. Thus, 

hybridizing hBN with periodic structures can possibly match the wavevectors required by 

HPPs and achieve strong absorption induced by phonons. Furthermore, hBN exhibits 

inverted hyperbolic response since the phonon vibrations are in perpendicular 

crystallographic directions [126], making it an ideal material to explore the basic coupling 

phenomena between hyperbolic materials and other resonances such as plasmonic 

polaritons in nano/microstructures.  

This work reports a numerical investigation of the possibility to achieve perfect and 

near-perfect absorption in a hybrid structure consisting of an hBN film and a metal grating. 

The geometric arrangement of the hBN/metal grating hybrid structure is illustrated in 

Figure 5.22. The 1D grating is made of silver (Ag) with a period Λ in the x-direction and 

extends infinitely in the y-direction. Its trench width is b and height is h. The thickness of  
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Figure 5.22 Schematic of the hBN/metal grating hybrid structure, where the Ag grating 

period, height, and trench width are , h, and d, and the thickness of the hBN is d. The LC 

circuit model is overlaid on the hybrid structure. 

the covered hBN film is denoted as d. The substrate of the grating structure is also Ag and  

assumed to be semi-infinite. In reality, a Ag film whose thickness is much greater than the 

photon penetration depth can be deposited on another supporting substrate. Thus, the 

directional (spectral) absorptance of the structure,  can be calculated by R, where 

R is the directional-hemispherical reflectance of the whole structure that can be calculated 

using RCWA. 

 The hyperbolic regions allow waves with unbounded wavevectors to propagate as 

can be seen from the isofrequency surface in Eq. (2.15). For ky = 0, the isofrequency 

surface can be drawn in kx-kz plane as shown in Figure 5.23. For both Type-I and Type-II 

regions, at very large k , the allowed wavevectors approach the asymptotic lines described 

by z xk k     (neglecting loss). In this case, the Poynting vector (i.e., energy 

propagation direction of the polaritons) is orthogonal to the isofrequency curve. The 



 141 

 

Figure 5.23 Isofrequency curves for (a) Type-II and (b) Type-I hyperbolic regions. S 

represents the Poynting vector and is the angle between S and the z-axis. 

polariton propagating angle is defined as the angle between the Poynting vector and the z-

axis and is approximately equal to [120-122] 

   arctan


 



 
  

 
 

  (5.9) 

Equation (5.9) suggests that at a given frequency, there exists a unique propagation 

direction inside the hyperbolic material at sufficiently large lateral wavevectors.  
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For an hBN film, HPPs are supported in the two Reststrahlen bands or hyperbolic 

regions. Their dispersion can be obtained from the reflection coefficient of TM waves for 

an hBN film of a thickness d suspended in vacuum: 

 
 12 12 21 23 ,2

21 23 ,2

+ 1 exp(2 )
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1 exp(2 )
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r r r r ik d
r

r r ik d

 


  (5.10) 

where indexes 1 and 3 are vacuum and 2 indicates the hBN film. The reflection coefficients 

between the vacuum and hBN or vice versa are given by 
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where a = 1 or 2 and  
1 2

2 2
, , 0 , ,z b b b bk k       with b being 1, 2 or 3 is the z-

component of the wavevector in hBN or vacuum. For vacuum, one can set 1    . 

The poles of Eq. (5.10) indicate the dispersion of HPPs in hBN films that can be seen by 

the bright bands from the contour plots of the imaginary part of r in kx- space [82], as 

shown in Figure 5.24(a) and (b) for a 30 nm-thick hBN film in the frequency ranges near 

the higher and the lower hyperbolic regions, respectively. Multiple orders of HPPs exist in 

both hyperbolic regions and more orders are excited with thicker hBN films. Alternatively, 

when kx >> k0, the dispersion based on 21 23 ,21 exp(2 ) 0zr r ik d   can be approximated by 

[81] 
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Figure 5.24 Contour plots showing Im(r) of a 30-nm-thick suspended hBN film in vacuum 

near (a) the upper (Type-II) hyperbolic region and (b) the lower (Type-I) hyperbolic region. 

The predictions from Eq. (5.12) are overlaid as dashed curves. 

where integer p indicates the order of the HPPs. The plus and minus signs are chosen 

respectively for the higher and lower hyperbolic bands based on the shape of the dispersion 

curves [82]. The prediction from Eq. (5.12) is overlaid on the contour plot as broken lines 

in Figure 5.24 with the corresponding p. Note that p = 1 yields negative kx in the lower 

hyperbolic region and thus is not shown. Clearly, Eq. (5.12) provides a convenient 

description of HPPs and will be referred to in later discussions. Since the HPPs have 

sufficient large wavevectors, Eq. (5.9) is valid and thus different orders of HPPs at the 

same frequency have the same energy flux propagation direction, as will be further 

demonstrated.  

Figure 5.25 shows the absorptance spectra of plain gratings (dashed lines) and 

hBN-covered Ag gratings (solid lines) calculated based on the anisotropic RCWA 

algorithm for TM waves. Unless specified otherwise, the wave is incident normal to the x-

y plane and the plane of incidence is set as the x-z plane. Since the considered structures  
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Figure 5.25 Absorptance spectra of plain Ag gratings (dashed lines) and hBN-covered Ag 

gratings (solid lines): (a) h = 1.76 m, (b) h = 2.4 m, and (c) h = 0.88 m. The other 

parameters are 4 μm  , 300 nmb  , and d = 30 nm. The absorptance spectrum of a 

suspended 30-nm hBN film in vacuum is also shown in (a). 
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are one-dimensional gratings and the electric field for TM waves is in the x-direction; 

therefore,  and ky = 0. The dielectric function of Ag is calculated using the 

introduced Drude model. Throughout the modeling, the parameters are set as Λ = 4 μm, b 

= 300 nm, and d = 30 nm, while h is allowed to change. Such grating geometries can create 

excitations of MPs in the infrared region as demonstrated before [46], but Λ and b can be 

other values to make MPs in the infrared. In Figure 5.25(a), (b), and (c), h is 1.76 m, 2.4 

m, and 0.88 m, respectively. One absorptance peak can be identified on each plain Ag 

grating spectrum, and this peak is caused by the excitation of MP resonances similar to the 

scenarios discussed before. Since in Ag gratings, a high absorptance peak due to MP relies 

on an efficient coupling between the surface waves on the trench walls that can be achieved 

only when the trench is very narrow, for trench width b = 300 nm, the absorptance peaks 

are far from unit in Figure 5.25. High absorptance is difficult to achieve with thin hBN 

films either, as demonstrated by the absorptance spectrum of a suspended 30-nm hBN film 

in Figure 5.25(a). Only a small absorptance peak at TO,   is obtained, since no HPPs can 

be excited with propagating waves in air. However, after covering the hBN film on the Ag 

grating, perfect absorption ( = 1) and near-perfect absorption (= 0.99) can be achieved 

at  = 1436 cm-1 and  = 818.7 cm-1 as shown in Figure 5.25(a) and (b), respectively. These 

two high absorptance peaks fall in the hyperbolic regions of hBN, while the absorption 

peak (= 0.94) at  = 1333 cm-1 shown in Figure 5.25(c), is slightly below the higher-

frequency hyperbolic region. The origin of these high absorption peaks and other peaks on 

the spectra will be elucidated in the following.  

Figure 5.26(a) and (b) exhibit the absorptance contours for plain and hBN-covered 

gratings, respectively, with respect to the wavenumber and grating height. Two bright 
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Figure 5.26 Absorptance contours of (a) plain Ag gratings and (b) hBN-covered Ag 

gratings in terms of frequency and the grating height. The parameters are 4 μm  , 

300 nmb  , and d = 30 nm. The predictions from the LC circuit model are shown as round 

markers on both plots. The horizontal white lines in (b) show the two hyperbolic regions. 
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branches due to excitation of MPs show up in (a). The fundamental MP modes, 

corresponding to the lower branch, can be predicted using the LC circuit model as has been 

previously discussed. The predicted results are shown in (a) as round markers, giving a 

good agreement with RCWA calculation. The upper branch correspond to higher-order MP 

and will not be discussed further [50]. With the hBN, the fundamental resonance branch in 

(b) has a noticeably different shape compared to that in (a). A disconnection close to TO,   

occurs and high absorptance is achieved inside the two hyperbolic regions as well as at 

frequencies that are slightly lower than TO,  . The spectra presented in Figure 5.25 are 

representatives of the high absorptance in different frequency ranges achieved at specific 

grating heights. Note that the hyperbolic regions are indicated between two white 

horizontal lines. The fundamental modes can be predicted by adding ZhBN in the LC circuit, 

as shown in Figure 5.22. However, ZhBN takes different formula in different frequency 

ranges. 

The frequency-dependent impedance of hBN can be obtained from 

 hBN effZ S A , where S is the length along the current path, 0i    is the 

electrical conductivity, and Aeff is the effective cross-section area [52]. Similar to the 

graphene-covered case discussed before, in the grating trench, the hybrid structure possess 

an electric field that is very similar to that of MPs in plain gratings. Thus, only the part of 

hBN that across the trench opening participates in the LC circuit, i.e., S = b. The penetration 

depth of the electric field in hBN is much greater than d and thus effA sd , where s is the 

length in the y-direction that can be set to unity for one-dimensional gratings. The electric 

field near the trench opening in hBN is dominated by its x-component [148,149], indicating 

that the conductivity should be evaluated based   of hBN. The real part of ZhBN is the 



 148 

resistance and it is negligibly small in the frequency regions of interest. The imaginary part 

of ZhBN can be positive or negative since   takes different signs depending on frequency, 

meaning that hBN can serve as a capacitor or inductor [114,309]. In the upper hyperbolic 

region,   is negative due to the in-plane phonon vibrations as shown in Figure 2.6, and 

hBN acts like an inductor across the trench opening with an inductance 
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On the other hand, outside the higher-frequency hyperbolic region,   is positive and hBN 

provides a capacitance 
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Equations (5.13) and (5.14) can be obtained based on ZhBN.  

After all the elements in the circuit are known, the resonance frequency can be 

obtained as  
1

0 tot tot2 c L C 


  [310]. In the upper hyperbolic region, LhBN and LAg are 

in parallel, yielding  tot Ag hBN Ag hBNL L L L L  and totC C . The total inductance is 

reduced by hBN compared to plain gratings and thus the fundamental resonance in the 

hybrid structure shifts to frequencies higher than those in plain gratings as shown in Figure 

5.25(a). Outside the hyperbolic region, ChBN and C are connected in parallel, yielding 

tot AgL L  and tot hBNC C C  . This makes the total capacitance larger, shifting the MP 

resonance to lower frequencies, as demonstrated in Figure 5.25(b) and (c). The LC model 

(round markers) matches the RCWA simulation very well, as shown in Figure 5.26(b). The  
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Figure 5.27 Local power dissipation density profile at  = 1436 cm-1 corresponding to the 

high-absorptance resonance in Figure 5.25(a): (a) Zoomed-in profile showing the details 

inside the hBN film, (b) The dissipation profile (enlarged by one order of magnitude) of 

the structure. The scale bar is in MW/m3 with an upper limit 1 MW/m3, beyond which w is 

displayed with white color. The propagation angle is illustrated on (a). Note that the x 

and z scales are readjusted to show the profile clearly. 

good agreement justifies that the fundamental resonance is a coupled resonance, which has 

some unique features depending on the frequency range. 
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Figure 5.27 shows the local power dissipation profile at the perfect-absorption peak 

shown in Figure 5.25(a), which lies in the high-frequency hyperbolic region, where Figure 

5.27(a) displays a zoomed-in view of the hBN film and the unit of the contour scale for w 

is MW/m3. For Figure 5.27(b), w is multiplied by a factor of 10 to show the dissipation 

near the surface of the Ag groove clearly. For example, at the trench bottom, the actual 

value is w  0.019 MW/m3 in Ag. In the calculation, the magnitude of the incident electric 

field is 1 V/m. It can be seen that dissipation is mainly at the surface of the grating, similar 

to previous observations of metal gratings at MP resonances. The absorption in the hBN 

film is much stronger than in the grating. The maximum w in hBN is 2.4 MW/m3, which 

exceeds the upper limit of the scale bar. The absorptance of the hBN film can be obtained 

as 0.91 following Eq. (3.49), suggesting that most of the incident power is absorbed by the 

hBN film. 

As can be seen from Figure 5.27(a), the dissipation profile follows a zigzag path in 

the hBN film that is symmetric about the middle of the trench, indicating that the power is 

nonuniformly absorbed in the film. This dissipation profile is a unique feature of the HPP 

waveguide modes [120-122]. Due to the diffraction of the grating, electric fields with large 

wavevectors are generated and they excite the hyperbolic polaritons in the hBN film. The 

polaritons predominantly initiate from the two corners of the grating because of the highly 

concentrated electric field therein that is about 50 times that of the incident waves. The 

polariton rays propagate inside the film with a fixed angle of  = 65.7 as described by Eq. 

(5.9) and experience a total internal reflection on the top surface of the hBN film [121]. 

The predicted angle matches Figure 5.27(a) well, even though loss is neglected Eq. (14). 

Furthermore, the period of the zigzag pattern in the x-direction can be derived as 2 tand   
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based on the wavevector of the polaritons. It should be noted that multiple orders of HPPs 

are excited simultaneously at the resonance frequency due to grating diffraction. For a 

specific frequency, according to Eq. (5.12), the wavevectors of the multiple HPPs form an 

arithmetic progression with a common difference  /xk d     . Thus, these 

HPPs produce an interference pattern with a spatial period 2 xk  [121], which is the 

same as the above-obtained period in real space, providing a complementary way to 

understand the periodic zigzag pattern. Due to the weak loss of hBN, these HPPs dissipate 

power as they propagate inside the film and gradually vanish. The weak loss of hBN 

enables a long propagation length that is an advantage of hBN in subdiffractional focusing 

and imaging applications over other hyperbolic metamaterials constructed with metallic 

nanowires or metal/dielectric multilayers [120-122]. The unique directional propagation of 

the polaritons allows multiple reflections and long light-matter interaction distances, giving 

rise to the strong absorption in hBN.  

Figure 5.28 illustrates a similar local power dissipation profile, which corresponds 

the high-absorptance resonance at  = 818.7 cm1 (in the lower hyperbolic region) in Figure 

5.25(b). The dissipation in hBN is again much stronger than in Ag, reaching 8 MW/m3 at 

the two corners of the grating and 84% of the incident power is dissipated in hBN with a 

zigzag dissipation pattern with 72.4   . Due to higher loss at this resonance, the HPPs 

survive a relatively shorter propagation distance. Based on the above analysis, the 

dissipation profile at the perfect and near-perfect absorption in hyperbolic regions 

possesses both features of a MP and HPPs. Therefore, these resonances are hybrid 

hyperbolic phonon-plasmon polaritons formed by strong coupling between plasmonic MP 

in the metal grating and HPPs in the hBN film.  
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Figure 5.28 Local power dissipation density profile at  = 818.7 cm-1 corresponding to the 

high-absorptance resonance in Figure 5.25(b): (a) Zoomed-in profile, (b) The dissipation 

profile (enlarged by one order of magnitude) of the structure. The scale bar is in MW/m3 

with an upper limit 1 MW/m3, beyond which w is displayed with white color. 

 The scenario of the near-perfect absorption at  = 1333 cm-1 shown in Figure 

5.25(c) is different from the above discussion since it is not in the hyperbolic regions. 



 153 

 

Figure 5.29 (a) Local power dissipation density contour at  = 1333 cm-1 corresponding to 

the near-perfect resonance in Figure 5.25(c).  The scale bar is in MW/m3 with an upper 

limit 0.5 MW/m3, beyond which w is displayed with white color. (b) Local power 

dissipation density profiles of the top (z = 0 nm), the middle (z = 15 nm), and the bottom 

(z = 30 nm) of the hBN film. 

Figure 5.29(a) shows the dissipation profile at this resonance. Here, the absorption in the 

hBN film is concentrated within the portion that is across the trench opening of the grating. 

The scale bar is nonlinear beyond 0.5 MW/m3 to show the dissipation profile in the grating 

is again due to the excitation of MP [148,149]. One can obtain the absorptance of hBN to 

be 0.72, which is more than 3 times of the value in the Ag grating (i.e., 0.22). The main 

reason for this high absorptance is an enhanced electric field near the trench opening when 

a MP is excited; this is very similar to the high absorptance in graphene-covered metal 

gratings discussed before [46,148,149]. Since the electric field strength decays gradually 

away from the trench opening, w becomes progressively smaller in hBN film as illustrated 

in Figure 5.29(b), showing the dissipation profiles at different height in the film. At the 
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bottom of the hBN film, w shows two spikes at the two corners of the grating due to the 

highly concentrated electric field therein. This strong electric field is also important to the 

zigzag dissipation profile of the hyperbolic phonon-plasmon polaritons as discussed 

before. Therefore, the strong absorption is a result of hybrid phonon-plasmon polaritons.  

The general effect of the geometric parameters can be understood using the above-

mentioned LC circuit model. For example, if d becomes larger, in the upper hyperbolic 

region, based on Eq. (5.13), the inductance of hBN decreases and pushes the coupled 

resonances to higher frequencies, and vice versa in frequency range that hBN is a capacitor. 

However, one may have noticed that, there exist some flat bright bands in the two 

hyperbolic regions in Figure 5.26(b) that cannot be explained by the LC circuit. In fact, 

they are HPPs excited by the electric field with large wavevectors due to grating diffraction. 

This can be seen more clearly if the hBN film becomes thicker, as demonstrated in Figure 

5.30(a) and (b), in which d is 60 nm and 100 nm, respectively. The above-discussed perfect 

and near-perfect absorption appear again and the flat bright bands also become clearer. 

These flat bands are discrete and become sparser in frequency when the d becomes larger, 

indicating that the hyperbolic phonon polaritons are excited at specific frequencies instead 

of the whole hyperbolic region. This effect can be understood by the wavevectors of HPPs 

described in Eq. (5.12). Since multiple orders of HPPs are excited and the wavevectors are 

matched trough grating diffraction based on Eq.(3.4), the common difference of the 

wavevectors of the HPPs, xk , must be a multiple of 2  :  

 
2

m
d

 


 


  (5.15) 

Thus, diffraction order m has to satisfy  
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Figure 5.30 Absorptance contours of hBN-covered Ag gratings: (a) d = 60 nm and (b) d = 

100 nm. The other parameters are 4 μm  and 300 nmb  . The white lines show the two 

hyperbolic regions. 
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




    (5.16) 

Since   is frequency dependent, only at specific frequencies can m take integer 

numbers, yielding discretized frequency for the excitation of the hyperbolic polaritons. 

This is very different with the scenario where the structure is not periodic since continuous 

high wavevectors can be created [122]. Take the case in Figure 5.30(b) as an example, in 

the upper hyperbolic region, the first five excited polariton bands possess frequencies (from 

low to high) 1395, 1414, 1434, 1451, and 1468 cm-1. Equation (5.16) yields 1396, 1415, 

1436, 1457, and 1467 cm-1 at m = 5, 7, 9, 11, and 12, respectively, matching the simulation 

results well. The discrepancy may be caused by the metal grating that could affect the 

dispersion of the hyperbolic polaritons slightly.  

Note that Eq. (5.16) is a necessary condition that has to be satisfied along with other 

requirements to fully predict the condition of the excitation of the hyperbolic polaritons. 

For example, the wavevector of a certain diffraction order should also match the needed 

wavevector descried by Eq. (5.12). However, Eq. (5.16) provides useful information to 

understand the observed hBN film thickness effect. Since d is in the denominator, a thicker 

film makes m smaller at a certain frequency and, thus, the frequency interval between 

satisfactory m becomes larger and the excited polariton bands tend to be more separated 

from each other in frequency as shown clearly in Figure 5.30. Similarly,  in the numerator 

can affect the excitation condition of hyperbolic polaritons in a reverse manner, though not 

shown here. Meanwhile, in the upper hyperbolic region, when the frequency increases and 

approaches LO,  ,   becomes close to zero and thus   increases drastically. 

Therefore, many satisfactory m’s occur within a smaller frequency range, making the flat 
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bands denser in the upper hyperbolic region close to LO,  . Similar trend happens in the 

lower hyperbolic region when the frequency is closer to TO, , where   increases 

drastically. When excited hyperbolic polaritons are coupled with the MP in grating at a 

certain grating height, the hybrid polaritons push the absorptance higher compared to that 

of uncoupled hyperbolic polaritons at other grating heights. Therefore, the hBN film 

thickness, the grating height, and period can all be used to control the excitation condition 

of the hybrid hyperbolic phonon-plasmon polaritons. Since the propagation angle of the 

HPPs depends on the frequency, these geometry parameters can be used to manipulate the 

location of the absorption in hBN films. Moreover, the excitation of hybrid polaritons is 

insensitive to the incident direction. For example, calculations show that when the 

incidence angle is changed to 30, the high-absorptance peaks shown in Figure 5.25(a), (b), 

and (c) shift slightly to 1430 cm1, 819.7 cm1, and 1331 cm1, respectively, with the 

corresponding absorptance being 0.99, 0.98, and 0.93. The propagation direction of the 

HPPs of the first two hybrid polaritons is in consistent with the slightly changed resonance 

frequencies.  

Practical experiments may have some discrepancies with the theoretical ideal 

structure. For example, fabricated metal gratings may not be perfectly flat and leave a 

vacuum gap between hBN film and grating. However, such an imperfection may not 

significantly alter the results since no identifiable difference are found in the three spectra 

shown in Figure 5.25 when a 1-nm gap between hBN and metal gratings is present, though 

not shown here. Meanwhile, the corners of the fabricated grating may not be as sharp as 

the ideal case, and thus the electric field would be expected to be somehow weaker around 

the grating edges. Such gratings may still be able to concentrate an electric field that is 
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strong enough to launch a strong HPP in hBN and achieve high absorption, but the excited 

polariton may be less distinguishable with lower spatial contrast. The above-discussed 

unique properties enabled by the hybrid hBN film and grating micro/nanostructures have 

potential applications in sub-wavelength imaging [122] and surface-enhanced Raman 

spectroscopy [26]. Considering that gratings made of high-temperature materials like 

tungsten [144] and SiC [52] also support MPs, the design presented here could be used to 

build stable perfect absorbers or spectral selective emitters for high-temperature 

applications [36]. 

In conclusion, this work demonstrates perfect and near-perfect absorption in 

hBN/metal grating hybrid anisotropic structures due to hybrid phonon-plasmon polaritons. 

The hybrid polaritons can be explained with an LC circuit model in which hBN behaves as 

either an inductor or capacitor depending on the frequency range. In the two hyperbolic 

regions of hBN, HPPs strongly couple with localized MPs, forming hybrid hyperbolic 

phonon-plasmon polaritons and boosting the absorptance. The majority of the power is 

dissipated inside the hBN film with a tunable location-dependent absorption profile. 

Outside the hyperbolic regions, the optical phonons in hBN can strongly couple with MPs 

and hBN dissipates significant power because of its intrinsic loss and the strong electric 

field produced by MP resonances. The height of the grating, the trench width, as well as 

the hBN film thickness, can be used to tune the perfect and near-perfect absorption to 

different frequencies. This work reveals the possibility of using hyperbolic 2D materials to 

achieve perfect absorption and sheds light on a new route to construct hybrid structures 

with unique radiative properties for sub-wavelength imaging and high-temperature energy 

harvesting.  
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5.4 Trapezoidal Gratings Made of Hyperbolic Materials 

 The previous work demonstrates a way to achieve perfect absorption at a specific 

wavelength using hyperbolic material hBN. However, for some applications such as energy 

harvesting, photodetection, chemical sensing, and color filtering, wavelength-selective 

broadband absorption may be much more desired to improve the efficiency and 

functionality [311-313]. In fact, hyperbolic materials can be engineered to efficiently 

absorb a broadband of radiation.  

 Various methods and structures have been proposed to achieve broadband 

absorption. Inspired by the high absorption of localized resonances like MPs at a single 

wavelength, one can put multiple localized resonators with different resonance 

wavelengths together. Such designs have been demonstrated using complex gratings [160], 

metal/dielectric/metal structures with a cluster of separated metal patches as the top layer 

[211], and structures assembled by nanoparticles of different sizes [314]. Nanowires made 

of different semiconductor materials such as doped silicon and indium phosphide can also 

support broadband absorption especially in visible range, which is important for solar cell 

applications [304,315,316]. Recently, it is found that metamaterials made of alternating 

layers of metal and dielectric can support broadband absorption when sculpted into a 

tapering sawtooth shape, thanks to the effective hyperbolic response [34,317,318]. Proper 

metals and dielectrics can be chosen to achieve broadband absorption in a desired 

frequency range, as long as hyperbolic responses are present. However, since this type of 

metamaterials involve depositing or etching metals and dielectrics that need to be 

controlled precisely, fabrications are typically very challenging [319]. Therefore, it is of 

great significance to explore whether natural hyperbole materials can be directly used to  
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Figure 5.31 Schematic of the hBN trapezoidal grating.  

achieve broadband absorption. Since various natural hyperbolic materials have been found 

that preserve hyperbolic response covering the whole visible and infrared range [320], such 

exploration becomes even more significant.   

 This work uses hBN as an example to demonstrate that broadband absorption can 

be achieved in trapezoidal gratings made of natural hyperbolic materials. Figure 5.31 

shows a schematic of the proposed structure. The hBN grating is periodic in the x-direction 

with a period and extended to infinity in the y-direction In each period, hBN is shaped 

to an isosceles trapezoid with the height, short and long bases being h, tt, and tb, respectively. 

The optical axis of hBN is in the z-direction. The substrate is made of silver (Ag) and is 

thick enough to be treated as opaque. Therefore, the incident light will be either reflected 



 161 

or absorbed, and the absorptance can be indirectly calculated from one minus the 

reflectivity. The incidence is a plane wave from vacuum and the plane of incidence is the 

x-z plane. The wavevector of the incident wave can be expressed as 

inc 0 0ˆ ˆ ˆ ˆ  sin  cos  x zk k k k    k x z x z , where   is the incidence angle and 0k  is the 

magnitude of the wavevector in vacuum. 

 Figure 5.32 displays the absorptance of the proposed structure for TM waves (with 

an oscillating magnetic field in the y-direction) when h = 10 m,   = 3 m, tt = 0.04 m, 

and tb = 2 m. In the calculation, the trapezoid is divided into 100 layers in the z-direction.  

 

Figure 5.32 Absorptance of the structure shown in Figure 5.31 at normal incidence. The 

parameters are h = 10 m,   = 3 m, tt = 0.04 m, and tb = 2 m. 
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Figure 5.33 Field plots at different resonance wavelengths: (a-d)  = 6.63 m or  = 1508 

cm1, (e-h)  = 7 m or  = 1429 cm1, and (i-l)  = 7.2 m or  = 1389 cm1. The first 

column is the power dissipation density, the rest three columns show the magnitude of 

magnetic field, the x-component of electric field, and the z-component of the electric field, 

respectively. Values larger than 3000 W/m3 are shown in white color in the plots for w. 

The electric and magnetic field are normalized using the incidence, whose electric field is 

1 V/m. The surface profile of the hBN trapezoid and the Ag substrate is delineated using 

dashed lines in the power dissipation contours.  
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It is clear to see that the absorptance is close to unity in a broad wavelength range from 

about 6.2 m to 7.2 m, which is the Type-II hyperbolic region of hBN. The absorptance 

spectrum shows a sharp drop at the edges of this range, which indicates the broadband high 

absorptance is a result of the hyperbolic response of hBN.  

 To explain the mechanisms of the broadband absorption, the field plots at three 

different wavelengths are presented in Figure 5.33. The three rows are for  = 6.63 m, 7 

m, and 7.2 m, respectively, and the four columns show the power dissipation density 

(w), magnetic field (H), the x-component of the electric field (Ex), and the z-component of 

the electric field (Ez), respectively. The absorptance at these wavelengths all equal to one. 

At the  = 6.63 m, only the upper part of the hBN trapezoid is lightened as shown in (a), 

indicating the majority of the power is dissipated there. When the resonance wavelength 

becomes longer, the dissipation profile moves down toward the bottom of the trapezoid, as 

shown in (e) and (i). Based on Eq. (3.49), it is found that for all three cases, almost all the 

power is dissipated inside the hBN trapezoid and the substrate absorption is negligibly 

small. The dissipation contours show a clear standing wave feature with relatively longer 

wavelength toward the bottom and the field plots echoes this pattern well. The field plots 

also reveal the resonances are highly localized and, thus, coupling between neighboring 

hBN trapezoid can be neglect. As shown next, these resonance features can be understood 

by considering the modes allowed in a hyperbolic waveguide. 

 Considering a waveguide made of an uniaxial anisotropic materials whose 

dielectric tenser are described by   and   that is similar to hBN, as shown in Figure 

5.34. The cladding material is lossless with a dielectric function of 2. The core material 

width is denoted as t. For TM waves, the dispersion of the waveguide can be expressed as  
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Figure 5.34 Schematic of a hyperbolic waveguide. The waveguide is made of an uniaxial 

materials with a dielectric tensor in the same form as hBN. 
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where 
2 2

,2 2 0xk k   and  2 2
1 0xk k      are the x-component of 

wavevector in vacuum and the waveguide, respectively, with  being the z-component of 

the wavevectors in both regions [317]. Figure 5.35 shows the obtained dispersion 

relationship of the fundamental waveguide mode at t =  0.2, 0.6, 1, 1.4, and 1.8 m when 

the core material is hBN. Loss is neglected when solving the dispersion curves. One can 

see that, for a specific core width, the group velocity, g 02v c d d   , is positive at small 

, meaning that the power is flowing toward positive z-direction. However, the group 

velocity gradually decreases as  increases and finally becomes zero at the top of the 

dispersion curve, after which vg becomes negative. The top point of the dispersion curve 
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thus indicates a slow light effect, meaning the power of the wave is trapped inside the 

waveguide [34,317]. Therefore, a hyperbolic waveguide with a specific core width can 

effectively trap the power flow at a certain wavelength, and when t becomes larger, the 

slow light effect can be generated at lower frequency.  

 For the trapezoidal grating considered, since the coupling between neighboring 

hBN is negligible, each of the hBN trapezoids can be viewed as a waveguide with a varying 

core width. For a specific incident wavelength, the incident wave enters the hBN trapezoid 

from the narrower end and the power can propagate downward. Since the core width 

becomes larger, vg decreases gradually as the power flows down. At a certain t, vg becomes 

zero and the power is trapped at this location without further flowing due to the slow light 

effect. For a longer wavelength or smaller wavenumber, the slow light effect happens at a 

wider core width. For example, for  = 6.63 m ( = 1508 cm1),  slow light effect can 

happen at t = 1 m, which matches well with the field plots shown in Figure 5.33(a) where 

the power is trapped at near the middle of the trapezoid. For  = 7 m ( = 1429 cm1) and 

 = 7.2 m ( = 1389 cm1), the slow light effect occurs at t = 1.44 m and 1.73 m, 

respectively, corresponding well to the previous observations in the dissipation contours 

and field plots in Figure 5.33. At a specific t, the waveguide supports two modes with 

different . The standing wave patterns are created due to interference effect of these two 

waves. Since the spatial period of interference patterns is inversely proportional to the 

difference between the two , the hot spots in the contour plots in Figure 5.33 are larger at 

the location that supports slow light effect where the difference between the two 

degenerates to zero [317]. This difference tends to be larger toward the top of the 

trapezoid where t becomes smaller, resulting in shorter spatial periods there.  
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Figure 5.35 Dispersion relationship of the waveguide modes in a hyperbolic waveguide 

made of hBN. 

 Considering the absorption requires a slow light effect, one can engineer the 

absorption band by designing the shape of the trapezoid. Figure 5.36 demonstrates such an 

example, where only the top half or the lower half of the trapezoid of the structure in Figure 

5.32 is present. For both scenarios, h = 5 m and  = 3 m. The solid line shows the case 

where the top half of the hBN trapezoid exists with t extending from 0.04 m to 1 m, 

corresponding to a wavelength range from  = 6.22 m to 6.63 m that slow light effect 
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can be supported. Therefore, the high broadband absorptance can be achieved merely 

within this range as the spectrum shows. Similarly, the lower half of the trapezoid supports 

slow light effect for wavelengths from 6.63 m to 7.29 m and, thus, the high absorptance 

is supported within this band as the dashed spectrum indicates. The high absorptance peak 

at 6.2 m is beyond the hyperbolic region potentially caused by the epsilon-near-zero effect. 

Since natural hyperbolic materials have been found in the wavelengths ranging from 

ultraviolet to microwave range, one may use proper trapezoid shape to achieve high 

absorptance over any desired wavelength range as along as the material has a hyperbolic 

response. Note that since the slow light effect requires a Type-II hyperbolicity, the featured 

broadband absorptance may not be achieved in Type-I hyperbolic region. 

 

Figure 5.36 Absorptance of trapezoidal gratings when only the top half or the lower half 

of the trapezoid of the structure in Figure 5.32 is present. For both cases, h = 5 m and  

= 3 m. The solid line represents the case where tt = 0.04 m and tb = 1 m, while the 

dashed line is when tt = 1 m and tb = 2 m. 
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 Since the resonances are highly localized, the broadband absorptance is insensitive 

to the incident direction, as demonstrated in Figure 5.37. The absorptance spectrum 

maintains its broadband feature nearly omnidirectionally and the absorptance is still higher 

than 0.8 over a broadband even at 80   . When  becomes larger, absorptance decreases 

possibly due to the difficulties for the incident wave to couple with the waveguide modes. 

This angle insensitivity is of great importance for energy harvesting applications. 

Moreover, since the 1D structure can achieve broadband absorption only for TM waves, 

one may use isolated hBN pyramids, which is a two-dimensional counterpart of the 

proposed hBN grating, to obtain high broadband absorption for both polaritons. 

Furthermore, the substrate plays little role in the high broadband absorption since almost 

all the power is absorbed inside hBN. This has been justified by taking away the Ag 

substrate and the suspended hBN trapezoidal grating yield almost unchanged absorptance 

spectrum, though not shown here. Therefore, in real fabrication, the substrate may be 

chosen with no strict requirements.  

 In conclusion, this work demonstrates that trapezoidal hBN gratings can achieve 

high broadband absorptance in its Type-II hyperbolic region. The mechanism is attributed 

to a localized resonance that caused by a slow light effect in hyperbolic waveguides. The 

absorption is nearly omnidirectional and the absorption bandwidth can be engineered by 

using different shapes of trapezoid. The results in this work may pave the way to utilize 

natural hyperbolic materials to achieve broadband absorption, which will benefit a wide 

spectrum of applications including solar thermal conversion, radiative cooling, and 

photodetection. 
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Figure 5.37 Absorptance of the trapezoidal grating with the same geometries as the 

structure shown in Figure 5.32. 

   

5.5 Resonance Absorption by Hyperbolic Polaritons 

 The previous work demonstrates a way to achieve perfect absorption using 

trapezoidal hBN gratings due to the slow light effect. However, the analysis is based on a 

prerequisite that each hBN trapezoid is high enough to be considered as a waveguide. If 

the height of the grating becomes smaller, one can expect that the waveguide explanation 

may not work anymore. This work focuses such a case. It turns out that new phenomena 

occur when the hBN trapezoid becomes shorter. 

 The considered grating structures are the same as shown in Figure 5.31. The hBN 
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grating is 1D and with a period in the x-direction and extends to infinity in the y-

direction In each period, hBN is shaped to a trapezoid with the height, short, and long 

bases being h, tt and tb, respectively. The optical axis of hBN is in the z-direction. The 

substrate is made of silver (Ag) and is thick enough to be treated as opaque. Figure 5.38 

shows the absorptance spectrum when  = 3 m, tt = 0.04 m, and tb = 2 m that are the 

same as the previous work, but the grating height is shortened to h = 1 m. In the 

calculation, the trapezoid is divided into 100 layers in the z-direction. Compared to Figure 

5.32, the broadband high absorptance changes to several isolated absorptance peaks, 

indicating that the short trapezoid cannot be approximated as a waveguide any more.  

 

Figure 5.38 Absorptance of a trapezoidal grating shown in Figure 5.31 at normal incidence. 

The geometric parameters are h = 1 m,   = 3 m, tt = 0.04 m, and tb = 2 m. 
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 To explore the mechanisms, the power dissipation plot is calculated at the first, 

third, and fifth predominant absorptance peaks at = 6.56 m ( = 1523 cm-1),  = 6.86 

m ( = 1459 cm-1), and  = 7.05 m ( = 1419 cm-1), as shown in Figure 5.39(a), (b), and 

(c), respectively. The power dissipation contours show a very different feature compared 

to Figure 5.33. The interference pattern disappears and some straight bright rays show up 

inside the hBN trapezoid. The absorptance at the these three wavelengths are  = 0.8, 0.98, 

and 0.93 and integration calculations show that almost all the power is absorbed inside 

hBN for all the cases, demonstrating the localized feature of the resonances. For all 

scenarios, the dissipation toward the top of the trapezoid is stronger, indicating a 

concentrated electric field therein. Actually, due to local scattering, electric field with high 

wavevectors are produced near the sharp edge of trapezoid [120], and HPPs can be 

launched predominantly from the two upper edges. This can be justified by a close analysis 

on the direction of the strips, which agrees well with the propagation angle of the HPPs 

predicted by Eq. (5.9). Based on this picture, the resonance conditions can be predicted as 

shown next. 

 Consider a trapezoidal resonator shown in Figure 5.40. The dashed lines show the 

trajectory of the two branches of HPPs initiated from the two corners of the top base. The 

HPPs experience total internal reflections on the sides, and based on the field plots, they 

end at the bottom corner of the trapezoid to form a resonance. Note that the reflection of 

the HPPs on the sides of the trapezoid are not specular but anomalous, meaning that the 

reflection of HPPs are not affected by the slope of the sides and the polaritons reflect as if 

the sides are vertical, as has been experimentally justified in a similar cone nanostructure 

[321]. Based on the geometries and the propagation angle of HPPs given in Eq. (5.9), 



 172 

 

Figure 5.39 Power dissipation contours in the structure same as in Figure 5.38: (a) = 6.56 

m or  = 1523 cm-1; (b) = 6.86 m or  = 1459 cm-1; and (c) = 7.05 m or  = 1419 

cm-1. The dashed line with an arrow shows the directional propagation of HPPs (one 

branch) inside the trapezoidal resonator. The white dashed line shows the interface below 

which is the Ag substrate. 
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one can obtain the order of the resonances, which equals the number of reflections HPPs 

experienced on the sides [321]: 
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  (5.18) 

This order is associated with the resonance in the z-direction. Since propagation angle  

depends on wavelength, only at a specific wavelength can the right-hand-side take integer 

values, yielding a way to predict the resonance conditions. Based on this method, the 

predicted wavelengths for the first five orders (i.e. n = 1 to 5) are 6.56 m, 6.68m, 

6.83m, 6.95m, and 7.03m, which correspond well with the simulated absorptance 

that peaks at 6.56m, 6.72m, 6.86m, 6.97m, and 7.05m. The three resonances 

shown in Figure 5.39 are the first three odd orders. The excellent agreement again justifies 

that the resonance is caused by the directional propagation of HPPs.  

 

Figure 5.40 Directional propagation of HPPs in trapezoidal resonators. The height of the 

trapezoid is h and the short and long bases are tt and tb, respectively. The dashed line with 

an end arrow indicates the trajectory of the HPPs, which corresponds to order n = 4. 
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Figure 5.41 Absorptance of the trapezoidal grating with the same geometries as the 

structure shown in Figure 5.38. 

 Since the resonances are localized, they show little sensitive to the incidence angle, 

as demonstrated in Figure 5.41. The resonances can be excited almost omnidirectional by 

the incident light. Note that the resonances associated with lower orders are excited at 

shorter wavelengths or higher frequency. This is very different with traditional cavity 

resonances and a similar anomalous scaling law was demonstrated in a metal-dielectric 

multilayer hyperbolic metamaterials [322]. Moreover, since the directional propagation of 

HPPs can also happen in Type-I hyperbolic region [120], similar resonance effect is 

supported between 12.1 m to 12.8 m where hBN possesses Type-I hyperbolicity, though 

not shown here. This is another difference compared to the previously discussed broadband 

absorption that can be supported only in Type-II hyperbolic region.  
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Figure 5.42 Propagation angle of HPPs in the Type-II hyperbolic region of hBN. 

 One may have noticed that the absorptance between 6.2 m to 6.5 m is not high 

even though this range is in the hyperbolic region. This is because the considered trapezoid 

possesses a base angle of 45.6 , and HPPs initiated from the top corners have to have a 

propagation angle larger than this value to propagate inside the resonator. Since increases 

with wavelength as shown in Figure 5.42,   needs to be longer than about 6.5 m, at which 

 = 45.6 , to form a resonance inside the resonator. This indicates a way to use the shape 

of the resonator to tune the absorptance spectrum. In fact, one can use resonators of other 

shapes to manipulate the HPPs and create resonances at a desired wavelength, as shown 

next.  
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Figure 5.43 Absorptance of a hBN grating shown in Figure 5.31 at normal incidence. The 

geometric parameters are  = 3 m and h = tt = tb = 2 m. 

 Figure 5.43 shows the absorptance of a hBN grating shown in Figure 5.31 with  

= 3 m and h = tt = tb = 2 m at normal incidence. In this case, the hBN grating strips has 

a square cross section. The resonance peaks can be clearly identified on the absorptance 

spectrum. The local power dissipation contours for the three dominate peaks at = 6.29 

m ( = 1591 cm-1),  = 6.41 m ( = 1560 cm-1), and  = 6.56 m ( = 1524 cm-1) are 

displayed in Figure 5.44 (a), (b), and (c), respectively. The resonance peak at  = 7.32 m  
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Figure 5.44 Power dissipation contours in the structure same as in Figure 5.43: (a) = 6.29 

m or  = 1591 cm-1; (b) = 6.41 m or  = 1560 cm-1; and (c) = 6.56 m or  = 1524 

cm-1. They correspond to mode (3,1), (3,2), and (3,3), respectively. The dashed line with 

an arrow shows the directional propagation of HPPs. The electric field of the incident 

waves is 1V/m. 
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is very close to TO,   and possibly caused by the high loss of hBN around this frequency. 

Since it is beyond the hyperbolic region, it will not be further discussed. One can clear see 

that the square resonators show Fabry–Pérot-like resonances inside with notes and 

antinodes in both the z- and x-directions. The order of the resonances can be denoted as 

(m,n), where m and n respectively denote the resonance order in the x- and z-directions. 

Under this convention, the order of the previous discussed resonances in trapezoid shape 

can be denoted as (1, n) based on the field plots. Note that resonances with m > 1 also exist 

in trapezoid resonators [317,319], but the fundamental modes cause the absorptance peaks 

as analyzed before. However, for the square shape resonator, absorptance peaks associated 

with high order resonances can be seen and the orders of the three resonances in Figure 

5.44 can be identified based on the dissipation field plots as (3,1), (3,2), and (3,3), 

respectively. Based on the field plots, in order to form such a resonance, the direction of 

the HPPs for resonance (m,n) needs to satisfy 

  tan
n

m
     (5.19) 

This provides a method to predict the resonance wavelength. Based on this equation, the 

wavelengths of the three resonances are obtained as  = 6.27 m, 6.39 m, and 6.55 m, 

respectively, which agree well with the simulation and justify the previous analysis based 

on directional HPPs. Note that (5.19) does not contain any geometric parameters of the 

resonator, indicating a possibility to create resonators with similar shape but different 

dimensions to resonate at the same wavelength. 

 In conclusion, this work demonstrates that hyperbolic materials such as hBN can 

be used to build resonators with wavelength-selective absorption. The resonances are 

caused by the directional propagation of HPPs, and the resonance wavelength can be well 
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predicted based on the shape of the resonator. Different resonators with the same shape but 

different sizes may be designed to resonate at the same frequency. This methodology may 

be used to design wavelength-selective emitters or absorbers based on hyperbolic 

resonators made of natural hyperbolic materials. Since this method is expected to be valid 

as long as hyperbolic response is present, various natural hyperbolic materials that have 

been found can be used to achieve such resonance absorption in different frequency ranges, 

and thus can benefit various applications such as photodetection, color filters, and energy 

harvesting. 
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CHAPTER 6 

NEAR-FIELD HEAT TRANSFER BETWEEN 2D MATERIALS  

In this chapter, the near-field radiative heat transfer between 2D materials and their 

heterostructures are theoretically investigated based on fluctuational electrodynamics. 

Specifically, van der Waals heterostructures assembled by graphene and hBN are studied 

for their capability to enhance photon tunneling. The results are compared with the 

scenarios where only graphene monolayers or hBN films are present. The geometric effects 

and the chemical potential of graphene are investigated. A second layer of graphene on the 

backside of the heterostructure is further explored for its impact on the near-field heat 

transfer of the heterostructure. 

 

6.1 Near-Field Heat Transfer Between Graphene/hBN Heterostructures 

The well-known diffraction limit in optical imaging is caused by the disappearance 

of evanescent waves in the far field, which contain fine feature information of the sample 

surface and are critical for constructing images with high resolution [323]. The decay of 

the evanescent waves at large distances not only reduces the imaging resolution, but also 

limits the radiative heat transfer between two objects in the far field. Thermal radiation is 

initiated by the fluctuational motion of charges inside materials at above absolute zero 

Kelvin and contains both propagating and evanescent waves [3,89]. If the distance between 

two media is greater than the characteristic wavelength of thermal radiation, i.e., in the far 

field, only propagating waves generated by one medium can reach the other and contribute 

to radiative heat transfer. The disappearance of evanescent waves in the far field limits the 

radiative heat transfer to a rate that cannot exceed the blackbody limit governed by the 



 181 

well-known Stefan-Boltzmann law. The limited radiative heat transfer greatly hinders the 

application where thermal radiation plays a major role, such as radiative energy harvesting, 

thermal management, and local heating and cooling [84,86-90]. To overcome this limit, 

the evanescent waves have to be collected, which can be done by enabling photon 

tunneling. 

When two objects are at a distance comparable to or shorter than the characterized 

thermal radiation wavelength, i.e., in the near-field regime, the forward and backward 

evanescent waves can couple with each other and open paths for photons to tunnel through. 

This phenomenon is called photon tunneling and since there are more tunneling photons 

than propagating photons, the radiative heat transfer rate can be enhanced to orders of 

magnitude higher than the blackbody limit. The huge radiative heat flux in the near field 

opens the door to various applications like thermal rectification [85], thermophotovoltaics 

[76,153], noncontact refrigeration [324], and information processing [325]. Since a large 

heat transfer is of critical importance in these appealing applications, continuous efforts 

have been devoted to exploring innovative optical materials that can enhance photon 

tunneling. 

Surface modes, such as SPPs or SPhPs, have been demonstrated to mediate photon 

tunneling between metallic surfaces and polar materials [91,92]. Nanostructures like 

photonic crystals, nanowire arrays, and gratings can effectively behave as hyperbolic 

metamaterials, which support propagating waves with large wavevectors and thus enhance 

photon tunneling [43,125,127,326]. Two-dimensional (2D) materials can enable plentiful 

resonances [57,58,61,65,272,310,327] to facilitate photon tunneling. For example, 

graphene supports SPPs that can enhance photon tunneling between graphene sheets 
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[328,329]. Graphene SPPs can also couple with the hyperbolic modes in nanowires, 

resulting in nearly perfect photon tunneling [95]. When graphene is patterned to ribbons, 

hyperbolic plasmons can be excited that can significantly enhance photon tunneling than 

with continuous graphene [94,330]. As a natural hyperbolic material, hexagonal boron 

nitride (hBN) can support multiple orders of phonon-polaritonic waveguide modes in its 

two infrared Reststrahlen bands [60,64,126], as discussed before. Recently, it has been 

demonstrated both theoretically and experimentally that van der Waals heterostructures 

assembled by graphene and hBN can support surface plasmon-phonon polaritons (SPPPs), 

which are resulted from the strong coupling between the phonon polaritons in hBN and the 

surface plasmons in graphene [80-82]. It is still a question whether SPPPs can enhance 

photon tunneling between such heterostructures and enable a higher heat flux than other 

2D materials like graphene. Meanwhile, since graphene has been proposed for a number 

of promising nano-electronic applications, and hBN is an ideal substrate supporting high-

quality graphene owing to its planar hexagonal lattice structure [118,119], it is imperative 

to explore the effect of hBN on graphene regarding radiative heat transfer performance.  

The present study theoretically investigates SPPPs in enhancing the photon 

tunneling between graphene/hBN heterostructures. Figure 6.1(a) shows the configuration 

of near-field radiative heat transfer between two aligned heterostructures separated by a 

vacuum gap of d. Each heterostructure contains a monolayer graphene covered on a hBN 

film with a thickness denoted as h. The upper one is the emitter with a relatively higher 

temperature T1 and the lower one is the receiver with a lower temperature T2. Graphene is 

modeled with its sheet conductivity, s , that includes the contributions from both the 

interband and intraband transitions. Here, 
1310  s   is chosen for all the calculations.  
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Figure 6.1 (a) Schematic of near-field radiative heat transfer between two graphene/hBN 

heterostructures. (b) Illustration of the regions for calculating the reflection coefficients. 

The near-field radiative heat flux q is calculated based on fluctuational 

electrodynamics using dyadic Green’s functions based on Eq. (2.17). The photon tunneling 

probability includes contributions of both polarizations, that is,  ,    =  ,s    + 

 ,p   . For the scenario interested here, since the optical axis of hBN is in the z 

direction, the cross-polarization components vanish. Thus, Eq. (2.18) can be rewritten as 
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  (6.1) 

where j is for either s or p polarization, rj signifies the corresponding reflection coefficient, 

and Im takes the imaginary part [127]. The magnitude and z-component of the wavevector 

in vacuum are denoted as 0k and kz0, respectively.  

The reflection coefficient of TM waves for the graphene/hBN heterostructure takes 

the following form 
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where 1, 2, and 3 are the indexes for the vacuum region above hBN film, the hBN film 

region, and the vacuum region below hBN film, respectively, as defined in Figure 6.1(b). 

Also, the reflection coefficient between the vacuum and hBN or vice versa can be obtained 

by 
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  (6.3) 

if there is a graphene layer in between media a and b, where a = 1 or 2 and b = 1, 2 or 3. 

The effect of graphene is included as a current sheet. If there is no graphene in between 

media a and b, then, 
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In Eqs. (6.3) and (6.4), 0  is the vacuum permittivity and  
1 2

2 2
, , 0 , ,z b b b bk k       

with b being 1, 2 or 3 is the z-component of the wavevector in a given region. For regions 

with isotropic medium like regions 1 and 3, 1 3 1       . For TE waves, the 

reflection coefficient can be expressed as 
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where 
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and 
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Here, is the permeability of vacuum and b (b = 1, 2 or 3) is the relative permeability 

for region b, which is unit for all regions since the materials are all nonmagnetic. Note that 

in Eqs. (6.5) to (6.7),  
1 2

2 2
, , 0z b bk k    since TE waves are ordinary waves in the 

hBN film. As mentioned before, the near-field radiative heat transfer is dominated by TM 

waves. Equations (6.2) and (6.5) can also be used for structures with only graphene by 
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setting 23 0r  . They can also be used for the structure without graphene, with one 

graphene sheet as shown in Figure 6.1, or with a graphene monolayer on both sides of the 

hBN film to be discussed later. An alternative method can also be used is to treat graphene 

sheet as a layer of thickness  = 0.3 nm with an effective dielectric function

 eff s 01 i      [70]. Both methods yield essentially identical results with less than 

 

Figure 6.2 Comparison of the radiative heat flux as a function of gap spacing d between 

the heterostructures shown in Figure 6.1(a), graphene monolayers (same structures without 

the hBN film), and hBN films (same structures without graphene). The temperatures of the 

emitter and receiver are set at 300 and 0 K, respectively. The film thickness is h = 50 nm 

and the chemical potential of graphene is = 0.37 eV. 
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0.5% in the predicted total heat flux. The analytical expressions of the reflection 

coefficients presented here not only help elucidate the fundamental mechanisms of the 

coupled plasmonic resonances (to be discuss later), but also can save a lot of simulation 

time once implemented in the numerical algorithm. 

Figure 6.2 compares the heat fluxes between a pair of graphene sheets, hBN films 

with h = 50 nm, and the heterostructures shown in  Figure 6.1(a). The chemical potential 

of graphene is set to 0.37 eV, according to a previous experiment [81]. In the calculations, 

the temperature of the emitter and receiver are set as T1 = 300 K and T2 = 0 K, respectively. 

However, the optical properties of graphene and hBN are evaluated at room temperature 

of 300 K. In terms of the radiative heat flux, the heterostructure outperforms the other 

configurations, especially at small gap distances. At d = 10 nm, the heterostructure yields 

q = 800 kW/m2 that is more than twice of that between graphene monolayers or hBN films, 

which are 305 and 212 kW/m2, respectively. When d exceeds about 200 nm, the heat flux 

for the heterostructures is very close to that between suspended graphene sheets, indicating 

a negligible effect of the hBN film. Note that the radiative heat flux between blackbodies 

(in the far field) is 459 W/m2, which is orders of magnitude smaller than the near-field heat 

flux shown in Figure 6.2. 

The mechanism for the enhanced heat transfer between the heterostructures can be 

elucidated by the contours of photon tunneling probability displayed in Figure 6.3 for the 

three scenarios. Note that for the structures considered in this work, p s   since the 

polaritons discussed here can only be excited for TM waves, which are the dominating 

contribution to the near-field radiative flux. The bright bands shown in Figure 6.3 indicate 

efficient photon tunneling due to the excitation of different polaritons, corresponding to the  
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Figure 6.3 Photon tunneling probability contours for different structures: (a) graphene 

monolayers; (b) hBN films; and (c) heterostructures shown in Figure 6.1(a). The dashed 

lines indicate the two Reststrahlen bands of hBN. The parameters are d = 20 nm, h = 50 

nm, and = 0.37 eV. 
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dispersion curves where the denominator of p  in Eq. (6.1) approaches zero. The two 

bands in Figure 6.3(a) correspond to the symmetric (lower frequencies) and asymmetric 

(higher frequencies) branches of the coupled SPPs between two graphene sheets. They are 

the major contributors to the high near-field heat flux between graphene [330]. For hBN 

films shown in Figure 6.3(b), multiple phononic waveguide modes can be identified in 

each Reststrahlen band between the horizontal dashed lines. However, there exist strong 

tunneling branches outside the two Reststrahlen bands for the heterostructure, as shown in 

Figure 6.3(c). These additional polaritons, identified as SPPPs, are one kind of hybrid 

polaritons resulted from the coupling between surface plasmons in graphene and phonon 

polaritons in hBN [81,82]. Note that similar to the Figure 6.3(a), each order of the polariton 

bands in (b) and (c) splits into two branches. The mechanism of hybrid polaritons and their 

impact on near-field radiative transfer are elaborated in the following. 

The hybrid polaritons in the heterostructure can be categorized into two kinds 

depending on whether they are inside or outside the Reststrahlen band of hBN. Specifically, 

the dispersion of the hybrid polaritons take two expressions based on the dielectric function 

of hBN [82] 
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  (6.8) 

When 2 2 0  ， ， , the isofrequency contour of hBN is hyperbolic and the hybrid 

polaritons are referred to as hyperbolic plasmon-phonon polaritons (HPPPs) [81] since they 

preserve the hyperbolic-waveguide-mode features as in an uncovered hBN film. Integer n 
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denotes the resonance order. Here, 2 2i    ， ，  and the plus or minus sign is chosen 

based on the shape of the HPPPs bands [82]. If s  is set to zero, the first expression in Eq. 

(9) recovers the dispersion for the waveguide modes in hBN films. When 2 2 0  ， ， , the 

isofrequency contour of hBN becomes elliptic, and SPPPs can be supported in the three 

frequency regions below, between, and above the two Reststrahlen bands, as shown in 

Figure 6.3(c). Unlike HPPPs, SPPPs are surface modes with a strong plasmonic 

characteristic when they are not so close to the Reststrahlen bands [81]. If s  is set to zero 

(i.e. without graphene), the second expression in Eq. (6.8) yields a negative  since 

,2 0  , suggesting that hBN films cannot support any resonances outside the two 

Reststrahlen bands. This provides an explanation why the resonances only exist within the 

Reststrahlen bands as Figure 6.3(b) shows. 

It is worth pointing out that, the second expression in Eq. (6.8) does not require an 

anisotropic substrate to yield a valid solution. Thus, phononic polaritons in films made of 

isotropic polar materials like SiO2 and SiC could also couple with SPPs in graphene to 

form a hybridized polariton, whose dispersion can be obtained by setting 1  . Similar 

phenomena were demonstrated for the coupling between SPPs in graphene or thin metal 

layer with the SPhPs supported by semi-infinite polar material substrates [331,332]. 

Moreover, a prominent feature that can be identified in Figure 6.3(c) is the mode flatting 

when the SPPPs approach either Reststrahlen band near TO . This is caused by the 

anticrossing effect or mode repulsion between SPPs in graphene and waveguide modes in 

hBN, and same effect was found to exist between SPPs in a thin metal layer and SPhPs in 

isotropic polar substrates [331]. Because of this effect, the two hyperbolic Reststrahlen  
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Figure 6.4 Spectral heat flux between two graphene monolayers, hBN films, and 

graphene/hBN heterostructures. The parameters used are the same as for Figure 6.2. 

bands break the otherwise continuous SPPPs into three regions in frequency, allowing high 

density of state to occur at some band edges and boosting the photon tunneling, as will be 

discussed in the next. 

If Eq. (2.17) is integrated over   only, the result is the spectral heat flux, which is 

shown in Figure 6.4 for the three configurations with d = 20 nm. It can be seen that the heat 

flux for hBN structures is mainly contributed by the waveguide modes, and the spectral 
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heat flux is nearly zero outside the two Reststrahlen bands. Graphene plasmons cover a 

frequency range up to 
146 10  rad/s  as shown in Figure 6.3(a), and thus the spectral heat 

flux between graphene sheets has a nontrivial value over a broad band but fades away at 

high frequencies due to the frequency dependence of the Planck oscillator. The 

heterostructure combines the features of graphene and hBN film, and also shows a high 

spectral heat flux in the regions outside the Reststrahlen bands due to SPPPs, indicating 

that the major contribution to the radiative heat transfer between the heterostructures comes 

from SPPPs instead of HPPPs. The peak around 
141.4 10  rad/s  is caused by the high 

density of state [333] of the SPPPs near TO, , as indicated by the flat dispersion in Figure 

6.3(c), which is a result of the above-mentioned anticrossing effect. The flat dispersion 

allows high- modes to exist and makes the term  
0

, d    


  in Eq. (2.17) greater, 

leading to an increase in the spectral heat flux. However, the anticrossing effect plays the 

opposite role and suppresses the heat flux in the hyperbolic regions. As shown in Figure 

6.3(b), the waveguide modes in hBN film are able to be supported when  is about 150k0. 

In contrast, the anticrossing causes an early truncation of the HPPPs, as shown in Figure 

6.3(c), and these modes disappear at about 100k0. Similar effect was observed for the 

anticrossing between graphene SPPs and SPhPs in SiC and SiO2, where SPPs truncate the 

SPhPs at large wavevectors [332,334]. This early truncation results in a lower spectral heat 

flux for the heterostructures in the two hyperbolic bands compared to the hBN films, as 

indicated in Figure 6.4.  

The effect of loss on the hybrid polaritons are investigated by setting the loss of one 

of the materials to zero, though not shown here. When the graphene is assumed to have no 



 193 

loss, calculations show that the contribution of SPPPs to the spectral flux becomes much 

less because the bands of SPPPs are much narrower. However, when the loss of hBN is set 

to zero, SPPPs are not affected too much, and the spectral heat flux is still very similar to 

Figure 6.4. HPPPs can extend to larger wavevectors in this case, but the spectral heat flux 

in the two hyperbolic regions drops since the bandwidth of HPPPs decreases. 

 

Figure 6.5 Photon tunneling probability contours for different graphene/hBN 

heterostructures. The gap distance is fixed at 20 nm and the other parameters are as follows: 

(a) h = 200 nm and = 0.37 eV; (b) h = +∞ (semi-infinite) and = 0.37 eV; (c) h = 50 nm 

and = 0.2 eV; and (d) h = 50 nm and = 0.6 eV. 
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The photon tunneling can be controlled by h since a thicker film allows higher 

orders of HPPPs to present at lower . The upper panel of Figure 6.5 demonstrates this 

effect, in which the hBN film is changed to be 200 nm in (a) and semi-infinite in (b). 

Compared to the scenario in Figure 6.3(c) when h = 50 nm, more orders of HPPPs show 

up in Figure 6.5(a) and they eventually merge to a continuous band when the hBN layer 

becomes semi-infinite. However, the SPPPs do not experience significant changes. This 

can be understood since SPPPs are surface modes featured with a strong localized field on 

the interface of heterostructure that has graphene. The field intensity evanescently decays 

away from the interface and, thus, making the hBN film thicker has little effect on SPPPs. 

Since the enhanced heat flux is mainly due to the contribution of SPPPs, a thicker hBN 

film brings a slight increase in the heat flux, yielding 537 and 547 kW/m2 for Figure 6.5(a) 

and (b), respectively, compared to 513 kW/m2 for the case in Figure 6.3(c). This effect may 

offer a passive way to modify photon tunneling to some extent. Note that calculations show 

that the penetration depth in hBN is smaller than 300 nm over the spectral range with high 

spectral heat flux [335], and thus a thicker film exceeding 300 nm would bring little effect 

to near-field heat transfer.  

On the other hand, a lower  can push the SPPPs to larger wavevectors as indicated 

Eq. (6.8), and thus can affect the tunneling probability significantly. Figure 6.5(c) and (d) 

show the tunneling probability when is changed to 0.2 and 0.6 eV, respectively. The 

SPPP bands become flatter in (c) and steeper in (d) compared to Figure 6.3(c), and thus, q 

becomes 1131 kW/m2 and 249 kW/m2, respectively. The huge increase at  0.2 eV is 

attributed to the flat dispersion that allows the SPPPs to extend to larger   values. The 

same reason holds for the decrease of heat flux at  0.6 eV. Note that this does not mean 
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the maximum heat flux can be achieved at  0 eV because at this chemical potential, 

interband transitions dominates in the near-infrared region in which graphene does not 

support SPPs anymore [148,149]. Calculations show that the maximum heat flux occurs at 

around  0.1 eV with q = 1700 kW/m2. Since  can be changed by electrical gating [61], 

this effect may offer a potential way to actively control photon tunneling.  

The photon tunneling probability can be further enhanced by placing an extra 

graphene layer on the other side of the graphene/hBN heterostructure. In this case, both 

sides of the hBN film are covered with graphene and the graphene on the backside can 

modify coefficient 23r  such that additional solutions exist that can zero the denominator of 

p , as shown in Figure 6.6. Compared to Figure 6.3(c), two new branches of SPPPs occur 

 

Figure 6.6 Photon tunneling probability contour for the graphene/hBN/graphene 

heterostructure. 
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outside the two hyperbolic Reststrahlen bands. These SPPP branches further enhance 

photon tunneling as demonstrated by the spectral heat flux shown in Figure 6.7, and the 

total heat flux q is increased to 643 kW/m2 (a 25.3% increase for the same structure with 

only one side covered graphene). Note that the chemical potentials of the two graphene 

layers in this example are the same and they can be actively changed to tune the SPPPs as 

discussed previously. However, they do not have to be the same and may be controlled 

independently to allow more active tunability.  

 

Figure 6.7 Comparison of the spectral heat flux for the graphene/hBN and 

graphene/hBN/graphene structures. The parameters are d = 20 nm, h = 50 nm, and = 0.37 

eV. 
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In conclusion, this work demonstrates that graphene/hBN heterostructured optical 

materials can enhance photon tunneling and outperform graphene or hBN film in terms of 

achieving high near-field radiative heat transfer, thanks to the hybrid modes SPPPs. The 

SPPPs enhance the spectral heat flux outside the two Reststrahlen bands and can be 

controlled by the thickness of the hBN film and the chemical potential of graphene. Placing 

an additional graphene layer on the other side of the hBN film further enhances the heat 

transfer between the heterostructures by allowing extra SPPP branches. The findings in this 

work may facilitate the design of systems utilizing near-field thermal radiation with 

passively and actively tunable photon tunneling based on graphene and hBN.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

This dissertation studies the radiative properties of various plasmonic 

nanostructures and 2D materials. Thanks to the excitation of various polaritons such as 

MPs and SPPs, diverse micro/nanostructures can be designed to control the optical and 

radiative properties for different practical application purposes. The emerging 2D materials 

provide even more plentiful resonances that can couple with the polaritons in the 

micro/nanostructures to yield exotic optical and radiative properties. Nano/micro 

structured 2D materials possess unusual properties such as broadband perfect absorption. 

Heterostructures of 2D materials enables hybrid polaritons that can enhance the photon 

tunneling and near-field heat transfer.  

 Anisotropic RCWA is summarized as a promising and competitive method to 

model periodic micro/nanostructures compared to FDTD and FEM. It can simulate the 

radiative properties and the field distribution in the frequency domain. Because of its 

meshless nature, it has advantages of modeling structures with small characteristic length 

like 2D materials. A 2D metal/dielectric/metal structure can be used to achieve wavelength-

selective emittance that can be used to improve the efficiency of TPV system. MPs, SPPs, 

and WAs are responsible for the selective emittance spectrum. Different with a 1D grating, 

the 2D structure is insensitive to the polarization angle. Metal gratings can be used to excite 

SPPs and MPs. The wavevector of SPs can be compensated by the diffraction effect and 

thus help the incident electromagnetic wave to couple with the SPs to form a SPP. 

Localized resonance, MPs, can be excited inside the trench of the grating and LC model 

can be used to model the resonance frequency. Three-polarization-angle method is 
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discussed as a method to deduct the polarization of the eigenmodes from the reflectance or 

transmittance of three arbitrary polarization angles. The method may benefit the design of 

optical and radiative properties with polarization dependence.  

Graphene can be used to tune radiative properties. By using a graphene/metal 

grating hybrid structure, strong absorption can be achieved in different frequency range. In 

the visible and near-infrared region, graphene couples with MPs and SPPs in grating and 

enhances the absorptance of the structure significantly without affecting the original 

resonance condition of MPs and SPPs. The majority of the power is dissipated by graphene, 

and that can be favorable in ultrafast optoelectronic applications. In the mid- and far-

infrared, graphene ribbon plasmons strongly couple with MPs in gratings to create a hybrid 

resonance with significantly high absorptance. The coupled resonance can be tuned by 

electrical gating or chemical doping of graphene. Perfect absorption is achieved in 

hBN/metal grating hybrid anisotropic structures due to hybrid phonon-plasmon polaritons. 

In the two hyperbolic regions of hBN, HPPs strongly couple with localized MPs, forming 

hybrid hyperbolic phonon-plasmon polaritons and achieving strong absorption. The 

majority of the power is dissipated inside the hBN film with a tunable location-dependent 

absorption profile. Trapezoidal hBN gratings can achieve high broadband absorptance in 

its Type-II hyperbolic region due to a localized resonance that is caused by a slow light 

effect in hyperbolic waveguides. The absorption is nearly omnidirectional and the 

absorption bandwidth can be engineered by using different shapes of trapezoid. Hyperbolic 

materials can also be used to build resonators with wavelength-selective absorption 

resulted from directional propagation of HPPs. Different resonators with the same shape 



 200 

but different sizes may be designed to resonate at the same frequency and the resonance 

wavelength can be well predicted based on the shape of the resonator. 

This dissertation has enhanced the understanding of the radiative properties of 

micro/nanostructured plasmonic metamaterials and 2D materials. It is hoped that other 2D 

materials such as black phosphorus, silicene, and borophene can also be integrated with 

micro/nanostructures to achieve desired unusual properties. Moreover, since the plasmon-

phonon coupling phenomena involves optical phonon, it is interesting to further study the 

light absorption and heat transfer in the hybrid structures. Other natural materials that 

possess hyperbolic response in visible and infrared range may be further explored to 

achieve broadband and resonance absorption. It is also hoped that structured 2D materials 

can provide even more plentiful routes to enhance photon tunneling and near-field heat 

transfer. 
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