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SUMMARY 

Multiscale modeling techniques are playing an ever increasing role in the effective design of 

complex engineering systems including aircraft, automobiles, etc. Lightweight cellular lattice 

structures (CLSs) gained interest recently since their complex structure, composed of a network of 

interconnected strut members, can be fabricated by additive manufacturing (AM). However, 

uncertainties in the fabricated strut members of CLSs are introduced by the layer-by-layer 

manufacturing process. These fine scale uncertainties influence the overall product performance 

resulting in inaccurate predictions of reality and increased complexity in simulations. In this 

research, a multi-level upscaling and validation framework is established that will enable accurate 

estimation of the performance of AM-fabricated CLSs under uncertainties. An improved stochastic 

upscaling method based on Polynomial Chaos Expansion (PCE) is employed to quantify and 

propagate the uncertainties across multiple levels efficiently. The upscaling method is integrated 

with a hierarchical validation approach to ensure that accurate predictions are made with the 

homogenized models. The u-pooling method is incorporated with the Kolmogorov-Smirnov test 

as the validation metric to efficiently use the limited experimental data during validation. The 

framework is applied to representative examples to demonstrate its efficacy in accurately 

characterizing the elastic properties of CLSs under uncertainties. The framework is also used to 

show its applicability in designing CLSs under uncertainties without the use of expensive 

simulations and optimization processes. The proposed framework is generalized to apply to any 

complex engineering structure that incorporates computationally intensive simulations and/or 

expensive experiments associated with fine scale uncertainties.  
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CHAPTER 1. INTRODUCTION 

The main goal of this dissertation is to establish approaches for efficient uncertainty quantification 

and propagation across multiple scale levels for realistic modeling of cellular lattice structures 

(CLSs) fabricated by additive manufacturing (AM). In this chapter, CLSs, design approaches, 

multiscale modeling methods, uncertainty effects, and verification and validation (V&V) concepts 

are introduced to identify the research question and formulate corresponding hypotheses.     

Advances in science and engineering have enabled more complex research efforts 

regarding the computational modeling and design of complex engineering materials and structures. 

It is even possible to investigate the effects of details at very small scales (e.g. atomistic scale, 

nanoscale, microscale etc.) on the overall performance of the engineering systems. With the rapid 

advances in computational power and capabilities, the current surge of interest is to utilize the 

computational models efficiently to design complex microstructural materials that can satisfy the 

design requirements of the engineering structures or systems, which would not be possible with 

the traditional materials selection approach [1]. CLSs are one of these complex microstructural 

materials that gained interest in the design of lightweight and high strength engineering 

applications. Recent advancements in AM techniques made it possible to fabricate their complex 

structures which consist of a network of interconnected strut members.  

However, the introduction of the fine scale details and uncertainties into the modeling 

process is rapidly increasing the complexity of the computational models of engineering systems 

or structures. Furthermore, uncertainties in material properties, geometry, manufacturing 

processes and operational environments are critical at all scales [2]. In AM-fabricated lattice 

structures, there exist increased uncertainties in fabricated material properties and geometry at 
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microscopic levels due to the layer-by-layer manufacturing process which will eventually effect 

all scale levels. The common challenge, which hinders the use of computational models that 

incorporate the microscopic level details and uncertainties, is the huge computational expense 

associated with the analysis of the heterogeneous material behavior to evaluate the final structure 

responses. Hence, traditional one-scale physics-based models are neither feasible nor efficient for 

modeling and simulation of such complex structures due to the increased computational 

complexity when fine scale uncertainties are involved. To overcome the complexity issue and to 

simplify the computational models used for predicting reality, multiscale modeling techniques are 

implemented for the design of materials, products, and systems. Moreover, there is a trade-off 

between the simplicity of the computational models and the prediction accuracy, which 

necessitates the use of V&V approaches along with the multiscale modeling techniques to evaluate 

the prediction accuracy. Hence, the increased demand for developing computational models that 

account for small scale level uncertainties will require designers to develop efficient multi-level 

uncertainty quantification and validation methodologies to predict reality accurately. 

The organization of this chapter starts with an introduction to CLSs, which can be 

fabricated in a range from nanoscale to macroscale using AM techniques in Section 1.1. In Section 

1.2, computational design approaches that utilize topology optimization and multiscale modeling 

processes for cellular lattice structures are described. An introduction and literature review to 

multiscale modeling techniques, which have been extensively used in the last few decades to 

simplify the computational complexity in modeling and designing materials and structures at 

various scale levels, is provided in Section 1.3. In Section 1.4, a literature review and a discussion 

are presented about the issue of uncertainties in the lattice structures fabricated by AM.  In Section 

1.5, V&V definitions are introduced, and general approaches used in literature to evaluate model 
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predictions are reviewed. Based on these introductions, the research questions are identified, and 

hypotheses are formulated in Section 1.6. This chapter is completed by discussing how the 

following chapters in the dissertation relate to the research questions in Section 1.7.  

 

1.1. Cellular Lattice Structures (CLSs) 

Nature presents highly efficient materials and systems for handling any condition in its 

environment. Natural materials and structures such as human and animal bone and wood are strong 

enough to withstand the environmental conditions and have minimum weight to allow any 

necessary movement. When the internal structure of bone (Figure 1.1(a)) or tree (Figure 1.1(b)) is 

analyzed, it is seen that nature produces a porous cellular structure, which includes material only 

in the important regions of the part to attain a lightweight but still strong structure.  

 

              (a)                                                                            (b) 
(a) Bone cellular structure. (b) Bamboo tree cellular structure. 

Figure 1.1. Natural materials. 

Cellular structures or materials, which mimic these natural structures, have long been investigated 

and shown to possess unique combinations of low weight, high stiffness, and strength, and 

substantial energy absorption [3]. These materials have been promising potential in engineering 

applications since light weight, and strong structures are of interest for a variety of industries, 

including biomedical, automotive and aerospace [4]. Also, when designed properly, open gaps in 
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the material structure can be exploited for active cooling or energy storage, providing unique 

opportunities for multi-functionality [5]. 

The concept of cellular structures used in engineering applications can be divided into two 

categories as (1) stochastic cellular structures and (2) non-stochastic cellular structures [4]. 

Stochastic cellular structures are also known as stochastic foams, which have random variations 

in the size of cells and therefore cannot be characterized by a single unit cell as shown in Figure 

1.2(a). Non-stochastic cellular structures, on the other hand, are characterized by a unit cell that is 

repeated throughout the structure. Those with a unit cell that is repeated in two directions are 

known as prismatic structures such as honeycombs (Figure 1.2(b)) while those with a unit cell that 

is repeated in three directions are referred to cellular lattice structures (CLSs) (Figure 1.2(c)). CLSs 

are also known as micro-truss materials or mesostructured materials in the literature.  

 

                               (a)                                                  (b)                                         (c) 
(a) Stochastic foam, (b) Honeycomb structure (c) Cellular lattice structure 

Figure 1.2. Types of lightweight cellular structures  

Among these cellular structures, CLSs offer inherent advantages over foams due to their ability to 

provide lighter and stronger structures [6], [7]. Stochastic foams, which have random cellular 

architectures, possess some beneficial properties such as specific surface area but the inefficient 

distribution of the constituent results in low mechanical properties such as stiffness, strength, and 

energy absorption [3]. Introducing order as in CLSs can substantially improve material utilization 
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and resultant mechanical properties. CLSs can be fabricated using conventional manufacturing 

techniques such as casting, forming and textile techniques [8]. Unfortunately, the complexity of 

these cellular CLSs is a big issue for these conventional manufacturing techniques since they 

involve very complex nodal geometry (e.g. fillet, radii, and thickness variations). The available 

CLSs are either cast in multiple steps or built using a tooled approach, which makes only a small 

number of cells per unit of time possible for production [9].  

AM techniques have gained attention recently since they enable the fabrication of complex 

structures. AM, which is also known as 3D printing, is a layer-based manufacturing process where 

the parts are fabricated by adding material [10]. AM-fabricated parts were used as nonfunctional 

prototypes for years, produced primarily for visual purposes in initial product development. Recent 

developments in AM allow parts of high complexity, such as CLSs, to be built in relatively short 

time-scales. As technology has advanced, AM has seen vast improvements in its potential ability 

to serve more and more industrial customers. The quality of the parts produced by AM techniques 

has also started to be on par with or better than that of conventional methods for parts with high 

complexity [11]. For instance, the selective laser melting (SLM) process fabricates lattice-based 

structures with enhanced quality that conventional manufacturing techniques cannot provide [12]. 

Hence, AM techniques are now being used to fabricate parts that satisfy real world applications or 

production requirements [13]. Complex and lightweight structures such as air ducts used in 

military jet fighters can be designed as a single component using AM techniques, instead of being 

assembled with multiple parts fabricated by conventional techniques [14]. Cellular components 

with tailored microstructures can also be additively manufactured with a high level of quality for 

bone replacement implants [15], [16]. Thus, improvements in AM technology have also enabled 

the fabrication of custom CLS designs with complex shapes for industrial applications [17]. 
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There exist several different printing processes in AM area. Therefore, the fabricated CLSs 

can have a characteristic cell length in the range of nanoscales to millimeter scales depending on 

the AM technique used. For instance, material extrusion processes (e.g. Fused Deposition 

Modeling (FDM)) and Selective Laser Sintering (SLS) processes can produce CLSs in millimeter 

to centimeter scale due to their limited resolution. Selective Laser Annealing (SLA) can make 

millimeter scale lattice cells with the high surface quality compared the processes mentioned 

above. These AM techniques use plastic-based materials in the fabrication of the structures. Metal-

based AM techniques also exist such as SLM and Electron Beam Melting (EBM) processes which 

can fabricate CLSs at micrometer and millimeter scales. Since metal parts have highs strength, an 

extensive literature exist on the investigation of metal CLSs [13]. Recent advancements have also 

enabled the fabrication of the nanoscale and microscale CLSs. Some of the techniques are the 

technique of self-propagating photopolymer waveguides to create Ni-based ultralight micro-

lattices [18], microstrereolithography that is capable of fabricating simultaneously strong and 

ultralight metal- and ceramic-based micro-lattices [19], Photonic Professional TPL-DLW System 

that can fabricate nanoscale polymer CLSs [20], and pyrolysis technique that enables the shrinkage 

of glassy carbon CLSs from microscale to nanoscale [21]. A summary of the recent AM methods 

that can fabricate nanoscale CLSs is given in [22]. The possibility of fabrication of the CLSs using 

a wide variety of AM techniques foster researchers to develop simulation-based design 

optimization processes for custom material and structure design as described in Section 1.2.   

 

1.2. Design of CLSs via Topology Optimization 

The design of CLSs has seen rapid development during the last decades, both in research and 

industrial applications due to their mechanical advantages and emerging availability of production 
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using AM techniques. CLS performance can be customized by simply altering the cross-sectional 

properties of the interconnected struts without changing the overall dimensions of the structure. 

Computational models are used with optimization algorithms to design the cross-sectional 

properties of the strut members. The extension of design optimization to the optimization of 

material layouts is known as topology optimization [23]. Topology optimization operates on a 

fixed FE mesh of either discrete or continuum elements to optimally distribute material in the 

material layout.  Discrete topology optimization is also known as ground structure optimization 

[24], where the topology problem is solved by determining the optimum number, the position, and 

the mutual connectivity of structural member elements. In ground structure optimization, a ground 

structure, which is a grid of all elements connecting the nodes in the design space, is optimized 

selecting optimal cross-section parameters of the ground structure truss members [25]. Each 

member in the ground structure is modeled as truss or beam elements, and each element is 

associated with a design variable that defines the element size or its contribution to entire topology. 

The converged optimization result is supposed to drive the value of all the design variables either 

close to the lower and upper limits so that a certain topology is defined. The simplicity of truss or 

beam elements and their prediction capability for lattice structure performance allow the use of 

automated design processes to efficiently optimize the topology of the lattice structures using 

optimization algorithms. 

Ground structure optimization of the lattice structures requires often hundreds or thousands 

of members, which hinders the optimization process due to the high computational cost. Hence, 

most optimization research has been done using two-dimensional (2D) example structures due to 

the limitations set by the available computational power [26], [27]. Moreover, the effectiveness of 

the optimization process is dependent on the optimization algorithm. Global optimization methods 
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such as simulated annealing (SA) and genetic algorithm (GA) are usually provide effective 

solutions for different problem formulations and constraints. However, these algorithms have the 

issue of high computational time especially when the number of variables becomes too large. Chu 

et al. [28] compare the performance of a global optimization algorithm, namely particle swarm 

optimization (PSO) and a gradient-based algorithm, namely Levenberg-Marquardt (LM) method, 

on the optimization of 2D lattice structures and show that the gradient-based optimization method 

can reach the optimal solution faster. It is also shown that the computational time of the 

optimization process increases with an increase of design variables, which are the cross-sectional 

properties of the beam elements in the structure.  

In recent years, the 3D applications that can be fabricated by AM techniques have been the 

focus of researchers due to the increased computational power. Wieding et al [29] implemented 

the optimization process of the 3D bone scaffold design with lattice cells using the beam element 

FE model to match the bone elastic modulus. One notable method that deal with the large scale 

discrete optimization problems for AM-fabricated lattice structures was proposed by Stankovic et 

al [30]. This method is based on the application of the optimality criteria [31], which enables the 

use of minimum potential energy of the overall system obtained directly from the FE analysis of 

the structure for the sensitivity analysis in the optimization process. Thus, a reduction in the 

computational cost can be achieved in the discrete topology optimization process [30]. 

Nevertheless, when a very large number of members exist, the required memory for solving the 

FE model at each iteration increases the computational cost dramatically [32]. Hence, discrete 

topology optimization is still limited in finding high quality solutions for large-scale structures of 

10,000 or more members due to the convergence to the local minima. To decrease the number of 

design variables, the structure can be designed with periodic lattice cells and/or surrogate modeling 
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methods are preferred since those strategies mitigate the computational cost [33], [34]. The 

computational advantage of periodic lattice structure optimization is also utilized by many 

researchers in a hierarchical multiscale design process that incorporates ground structure 

optimization at mesoscale or lattice cell level with macroscale (or product) level simulations to 

also design the overall product dimensions [35]. Although the periodic lattice structure approach 

can decrease computational cost, efficient optimized structures are obtained only when evenly 

distributed loads are applied to the structure; the structure is over designed when the applied load 

on the structure is not uniform.  

To overcome the increased computational cost of the conventional ground structure 

optimization method for non-periodic lattice structures, a size matching and scaling (SMS) method 

has been developed [36], [37]. The SMS method matches the optimized lattice cell to the stress 

information obtained from the solid body FE analysis of the structure. Then, a two-variable 

optimization process is used to determine the structure’s minimum and maximum cross-sectional 

properties so that the computational cost can be mitigated compared to the cost of the ground 

structure approach due to the dramatic decrease in the number of design variables. To overcome 

the problems of handling multiple loading conditions for lightweight discrete lattice structure 

designs, Al-Zahrani et al. [38] proposed the relative density mapping (RDM) method, which 

utilizes the relative density information obtained from continuous topology optimization process 

to identify the members in the optimal lattice topology and to compute the diameter of each 

individual member in the lattice structure. This method significantly reduces the computational 

cost of optimization process compared to grounds structure optimization and SMS methods since 

it only requires the continuous topology optimization results and completely eliminates the time 

consuming size optimization process of the lattice structure members. Even though the SMS and 
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RDM methods provide considerable computational cost reduction, the performance of the 

optimized structures is still limited compared to the performance of the structures obtained from 

the conventional ground structure optimization process [38].  

As different from the optimization processes mentioned above for the problems with fixed 

topology, moving size or connections are also considered in the lattice structure optimization. 

Brackett et al. [39] proposed a design methodology to generate lattice structures with varying cell 

size rather than fixed, having the performance dependent on the orientation of the structural 

elements, which was stated to be challenging to determine. Ning and Pellegrino [40] introduced a 

size distribution field using multiple optimization steps was implemented to control the lattice 

microstructure of the lightweight sandwich beam designs. Delaunay triangulation was used to 

reduce the number of control variables to a manageable size. The sandwich structure is optimized 

for sizing with the best topology solution obtained. Shea and Smith [41] determines the optimal 

topology, shape, and member sizes using graph grammars and simulated annealing methods for 

transmission tower designs with lattice structures.  

The truss or beam elements, used in modeling the strut members of the lattice topology in 

the above mentioned optimization processes, ignore the effect of joints of struts on the product 

response. Hence, the designed structure may result in inaccurate prediction compared to the 

fabricated design of the models. This issue can be eliminated when solid FE elements are used in 

the modeling of the lattice materials. However, using solid elements for modeling the entire 

structure hinders the optimization process because a large number of solid elements are required 

to model the structure. Homogenization-based topology optimization, proposed first by Bendsøe 

and Kikuchi [42], can alleviate this computational burden caused by the solid elements. This 

approach utilizes a multiscale modeling technique to simplify the simulations by discretizing the 
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global structure domain into hexahedral solid elements. Each solid element in the global structure 

model represents a composite material with a microstructure that has a rectangular void (i.e. a 

simple cubic lattice cell) with a size parameter (and a rotation parameter) of the void that produces 

a density value for the corresponding element. (i.e. a large void means a low material density and 

vice versa). A homogenization method is utilized for each global element to model the detailed 

microstructure with some homogenized properties. Then, these homogenized properties are used 

at the global structure model instead of modeling the detailed microstructure of each element in 

the optimization to find the corresponding densities of elements for the given objective functions 

and constraints [43]. The details of the homogenization-based topology optimization and a more 

detailed literature review are given in Chapter 2. Since the multiscale modeling and 

homogenization approaches are crucial for the design of CLSs using homogenization-based 

topology optimization process, a general introduction to these concepts is provided in Section 1.3. 

  

1.3. Multiscale Modeling and Homogenization 

1.3.1. Multiscale Modeling 

Multiscale modeling is used to describe a material domain or a system by multiple models that 

focus on different scales of resolution. The current surge of interest for multiscale modeling is due 

to the growing need in various engineering fields to solutions to problems in different scales to 

obtain more reliable designs and to mitigate the computational complexity. Rapid advances in 

computational capabilities have made it possible to investigate the effects of details at finer scales 

on the overall performance so that multiscale modeling techniques can be used for the design of 

materials, structures, and systems. In particular, the information based on defects, microstructure, 

and their interaction from the atomic scale is passed to micro-scale and eventually to macro-scale 
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by bottom-up multi-scale modeling strategies [44]. Efficient multiscale modeling methods have 

been utilized in a wide range of engineering applications in the literature such as modeling the 

vapor deposition process in chemical engineering [45], modeling the tissue perfusion in biomedical 

engineering [46], flow analysis in the geotechnical engineering [47], etc. Multiscale modeling 

methods have also been used in the design processes of materials and mechanical components to 

develop more reliable structures and products by utilizing the detailed fine scale information [48]-

[51]. Various deterministic multiscale modeling techniques in solid mechanics area, which attempt 

to develop linking mechanisms between the fine scale and coarse scale constitutive equations by 

using explicit definitions, have been developed including variational multiscale method [52], 

heterogeneous multiscale method [53],[54], multiscale finite element method [55], etc.  

Existing multiscale techniques used in various disciplines can be classified into two 

different strategies as (1) concurrent multiscale modeling and (2) hierarchical multiscale modeling 

[56], [57]. In concurrent multiscale modeling techniques, the individual scale analyses are fully 

coupled and used concurrently. The information needed by the macroscale or coarser scale models 

are computed from the finer scale models during the computation of the coarser scale models. The 

concurrent nature of the computations provides more accurate predictions, but these techniques 

are often computationally more expensive than the hierarchical approaches since all computations 

are carried out concurrently [50].  

In hierarchical multiscale modeling techniques, some properties or information required 

for the macroscale model are computed using separate fine scale models without coupling. More 

specifically, the physical system’s deterministic effective parameters, i.e. properties, constants, or 

representative unit processes, are calculated at finer scales transferred up through scales to form 

effective or equivalent parameters by using scale-linking mechanisms which are called upscaling 
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or homogenization techniques [58]. The individual scale analysis that is performed separately from 

the other scales allows for a simpler technique than the concurrent technique for information 

exchange across scales. Moreover, when considered in design processes, distinct objectives might 

exist at each level of the hierarchy, which requires individual analysis of models at different scales 

[1]. Therefore, hierarchical multiscale modeling techniques have been widely used in literature for 

mechanical analysis [59] and design [49]. [50]. Homogenization-based topology optimization 

[42], introduced in Section 1.2, is an example of using multiscale modeling approach in the design 

of CLSs. It utilizes a simplified model with homogenized properties that represent a microscopic 

level material in the design optimization process.  

 

1.3.2. Upscaling/Homogenization 

Upscaling, or homogenization, is a way of substituting a heterogeneous material with microscopic 

details to model the material as a continuum with homogenized properties. In bottom-up 

hierarchical multiscale modeling techniques with multiple scale levels of interest, if the 

homogenized material properties can be determined at one level using a homogenization method, 

then a constitutive law that can explain how the material behaves with these homogenized 

properties can be used at the subsequent scale level. Thus, simplified models defined by some 

homogenized or effective material properties can be used in product design and analysis rather 

than modeling the entire domain with detailed fine scale information.  

The earliest homogenization methods are called analytical or classical homogenization 

methods [60], which have been developed to predict homogenized material properties of matrix-

inclusion problems using the theory of continuum micromechanics, such as Eshelby method [61] 

and its extensions like Mori-Tanaka method [62] and self-consistency methods [63]. Various 
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methods of volumetric averaging such as the Voigt [64] and Reuss [65] models have also been 

proposed. In the studies such as Gibson and Ashby [3], Wang and McDowell [66], [67], closed-

form expressions for the effective material properties are provided for several 2D lattice cells and 

honeycombs. These analytical homogenization methods are developed based on many 

assumptions such as periodicity and the uniformity of the material, and there exist many 

restrictions on the geometry, on the type of the microstructure, etc. To eliminate these limitations, 

computational homogenization methods, which are based on the finite element (FE) method of the 

representative volume element (RVE) or the unit cell model of the microstructure, have been 

developed [68]. The homogenized tensors are determined from the fine scale FE analysis responses 

using some analytical upscaling formulations such as asymptotic homogenization method [69], 

discrete homogenization method [70], reduced order homogenization method [71], etc.  

The application area of computational homogenization methods is not restricted to matrix-

inclusion problems since detailed microstructure of the material can be modeled in the FE model 

of the RVE. Hence, the computational homogenization methods have also been used to 

characterize the material properties of the cellular structures. Of these studies related to the cellular 

structures, most of them focus on employing computational homogenization methods to determine 

the deterministic effective material properties of unit cells for multiscale analysis [72], [73]. 

Hutchinson and Fleck [74] and Elsayed and Pasini [75] introduced matrix-based techniques to 

characterize the material properties of 2D lattice cells.  Vigliotti and Pasini [70] extended this 

approach to the analysis of three-dimensional 3D lattice cells. These studies generally assume the 

lattice elements behave like beam or truss elements, which cannot capture the deformation of the 

material at the cell joints and has inaccurate results for increasing values of relative density.  
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As stated in Section 1.2, shell elements to model 2D lattice structures and solid FE elements 

to model 3D lattice structures are utilized to address the issue of modeling with beam or truss 

elements. Bendsøe and Kikuchi [42] used shell elements for modeling the 2D square lattice cell 

and utilized asymptotic homogenization method in homogenization-based topology optimization 

method. On the other hand, the lattice structures with designed microstructural materials that has 

intermediate densities that cause problems when those are fabricated with the conventional 

manufacturing techniques because of the limitations of the fabrication techniques. With the current 

advancements in the AM area it is now possible to fabricate these intermediate densities which 

produce the optimized lattice cells. Hence, recently the homogenization-based topology 

optimization is utilized by many researchers in the design of medical implants. Arabnejad and 

Pasini [76] implemented the asymptotic homogenization method to derive the closed-form 

expressions of the effective material properties for various 2D lattice cell types for the whole range 

of relative density. In a following study, Khanoki and Pasini [77] integrated this homogenization 

approach with optimization process of lattice-based structures for the multiscale design of 

orthopedic hip implants. The optimization process is similar to the topology optimization with 

homogenization that is first introduced by Bendsøe and Kikuchi [42] in the sense that the relative 

densities are found for discretized regions in the structure during the optimization process. The 

homogenized properties are used at macroscopic level FE analysis of the hip implant geometry to 

generate a graded lattice material.  

Although the homogenization-based topology optimization enables the design of CLSs in 

a computationally efficient manner, there exist increased variations and uncertainties at the strut 

level in the microstructure and geometry induced by the AM process parameters. These fine scale 

details and uncertainties are needed to be considered in multiscale modeling process of the CLSs 

http://www.sciencedirect.com/science/article/pii/0045782588900862
http://www.sciencedirect.com/science/article/pii/0045782588900862
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to have the desired performance from the AM-fabricated lattice structures. Existing studies on CLS 

area, on the other hand, have rarely utilized a multiscale modeling technique to account for the 

uncertainty effects at a small scale levels resulting from AM fabrication of lattice structures. The 

challenges of available engineering analysis and design processes when the fine scale uncertainties 

are considered is discussed in Section 1.4.   

 

1.4. Uncertainties in Engineering Analysis and Design 

A true representation of the uncertainties is crucial for the accurate characterization mechanical 

performance of the engineering structures with computational models because the different 

representation of the uncertainties may lead to different interpretations of the given system. 

Primarily the uncertainty in a system can be divided into two categories as “Aleatory uncertainty” 

and “Epistemic uncertainty.” The former is also known as irreducible uncertainty or the inherent 

uncertainty of the system while the latter is the uncertainty due to the lack of knowledge and/or 

data. Epistemic uncertainty can be reduced when more information is gathered for the present state 

of the system. However, aleatory uncertainty inherently exists and therefore cannot be reduced. 

For example, when the diameter of each layer fabricated to build a strut member of a CLS is 

measured, there will be a certain statistical distribution of the data. Such statistical information, 

gathered from experiments for an uncertain variable, are in the definition of aleatory uncertainty.  

In this dissertation, we limit our scope and research for the case where only aleatory 

uncertainty is considered. As it cannot be reduced, aleatory uncertainty should be quantified to be 

able to account for its effect on the predictions made by the computational models. If sufficient 

data is available, aleatory uncertainty can be quantified using a probability density function (PDF) 

that provides a parametric distribution model (Gaussian, Gamma, Extreme value, etc.) for the 



17 

 

statistical data of an uncertain variable. The parameters of a PDF are estimated by fitting the 

distribution to the underlying available statistical data. More details about uncertainty 

quantification methods are provided in Chapter 2 while this section is continued with the review 

of computational modeling of CLSs under uncertainties. 

   

1.4.1. Uncertainties in Computational Modeling of CLSs  

In the area of CLSs fabricated by AM technologies, the uncertainty effects of process parameters 

on the fabricated strut members result in a discernable mismatch between the mechanical 

performances of the simulated and fabricated structures. The reason is that the fabricated struts 

that comprise the CLSs have uncertainties and imperfections in material and geometry due to the 

limited resolution and inherent uncertainties in the process parameters of the AM techniques. 

Accordingly, additional efforts are required to estimate the performance of the additively 

manufactured structures accurately. Cansizoglu et al. [79] show the effect of build angle and 

orientation on overall material properties of lattice structures fabricated by the EBM process. 

Parthasarathy et al. [80] experimentally prove that the diameters of the struts in the lattice-based 

scaffolds fabricated by EBM process differ from the diameter values of their 3D CAD models. 

Harryson et al. [81] report that the members (i.e. struts) of lattice structures in AM-fabricated 

implants have a rough texture with varying cross-sections, which result in inaccurate FE model 

predictions if not considered. However, the computational models of the designed lattice structures 

will not account for the material imperfections such as microporosity and the variations on the 

strut geometry such as the surface roughness by their nature. Additional efforts are needed to 

account for these details in the computational models. Cahill et al. [82] show that the FE models 

of lattice-based scaffolds that consider the rough surface caused by the SLS process on the strut 
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members resulted in better predictions than the models with smooth strut surfaces when compared 

to experimental results (Figure 1.3(a)). Similarly, Campoli et al. [83] and Ravari et al. [84] consider 

the geometric variations in the strut’s diameter along their length in FE models of the lattice 

structure specimens and show that the incorporation of variations improves model predictions.  

Although the computational models of the lattice structures that considers the geometric 

variations produce improved predictions compared to the reality, tremendous amounts of 

computational effort are needed to solve these detailed lattice structure models as the complexity 

of the model increases dramatically. To overcome this computational issue, several researchers 

attempt to investigate the mechanical behavior of the lattice structures at two sequential levels: (1) 

individual strut level (2) lattice level. Tsopanos et al. [85] and Gumruk et al. [86] show 

experimentally that the material properties obtained from tensile tests of individual struts differ 

from the material properties obtained from the tensile tests of the regular dog-bone shape 

specimens for the same material fabricated by SLM process. Hence, they utilized the material 

properties, obtained from strut level experiments with individual strut specimens, in the lattice 

structure FE model by assuming constant strut cross-sections (Figure 1.3(b)). Thus, the 

computational complexity that increases by considering the detailed variations in FE model of the 

lattice structure is mitigated while having improved accuracy. Doyle et al. [87] generate high-

resolution FE models of individual struts based on the micro-CT scan images obtained from the 

fabricated strut specimens by SLS process to capture the heterogeneity in mechanical properties 

and variations on the strut geometry. Suard et al. [88] implement the same FE model generation 

approach at strut level to investigate the surface roughness and the porosity in the struts fabricated 

by EBM process and to predict the effective strut diameter and elastic properties. Then, these strut 
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level effective properties are used in modeling the lattice cell model to simplify the characterization 

process of the overall material properties of the lattice structures (Figure 1.3(c)).  

 

                       (a)                                          (b)                                                     (c) 

(a) FEA of CLS without details (top) and FEA with details (bottom) [82]. (b) Two level modeling of CLSs 

fabricated by SLM [85], [86]. (c) Two level modeling of CLSs fabricated by EBM [88]. 

Figure 1.3. Computational modeling of CLSs 

Although the characterization of the equivalent or homogenized properties at strut level had 

produced improved predictions at lattice structure level compared to the predictions made without 

the strut level experiments, existing studies usually deal with the variations at strut level in a 

deterministic way and ignore the effect of uncertainties.  Moreover, fabricating single struts each 

time for experiments can be time-consuming and expensive. The designer should be able to expect 

to predict the mechanical properties of the lattice structures with minimal experimental cost and 

design time. Park et al. [89] develop a voxel-based FE model generation process of individual 

struts with the geometric variations on the strut surfaces o mimic the FDM process. The 

uncertainties of the fabricated layer diameters are considered in predicting the equivalent strut 
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diameters based on the simulation results of the voxel-based strut models. Similar to the work of 

Suard et al. [88], the equivalent strut diameter is used at the lattice level to estimate the effective 

elastic properties of the lattice structures with reduced complexity using a deterministic 

homogenization method. Although uncertainties are considered at strut level to find the equivalent 

strut diameters, the effective properties of the lattice structures are predicted again in a 

deterministic setting.  

Uncertainty, however, gains importance in lattice structure performance because there is a 

higher probability of introducing manufacturing error when lattice structures are fabricated by the 

AM processes. Since the length scale of the fabricated strut members of a lattice structure is usually 

very small, the mechanical responses of the fabricated structures will be much more sensitive to 

the unavoidable uncertainties. For this reason, unlike the aforementioned multi-level modeling 

approaches which use only the deterministic equivalent values for characterizing the effective 

properties of the lattice structures, the uncertainties are needed to be quantified at finer scale levels 

and propagated to the lattice structure level for more reliable predictions. In Section 1.4.2, the 

computational challenges of multiscale modeling techniques when fine scale uncertainties are 

considered are discussed.    

 

1.4.2. Multiscale Modeling under Uncertainty 

The multiscale modeling and homogenization methods described in Section 1.3 have found wide 

applications in the simulation and design of materials, (whether they are lattice structures or other 

materials such as composites) in a deterministic setting. On the other hand, uncertainties induced 

by the manufacturing processes on the material and geometry of the fabricated parts prevent to 

have a safe design that can perform according to the design specifications. Deterministic 
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approaches cause severe limitations when the randomness at fine scale should be taken into 

account for reliable designs since a fully resolved stochastic treatment of the problem would be 

computationally prohibitive. Consequently, stochastic analysis methods are integrated with the 

deterministic techniques to propagate the uncertainty information across scales [78].  Multiscale 

stochastic finite element method [90] and stochastic variational multiscale methods [91] are some 

examples that have been developed for stochastic multiscale modeling. A stochastic RVE (SRVE) 

can be used to characterize the homogenized material properties using an upscaling sampling 

scheme to determine the probability model of fine scale information [92], [93].  

These methods, on the other hand, have two main issues that increase the computational 

cost when uncertainties are considered. The first problem is that the upscaling processes used for 

multiscale modeling lack efficient computational techniques and usually require complex linking 

mechanisms; that penetrates the explicit governing equations at continuum level for the calculation 

of homogenized macroscopic parameters that can account for microscopic uncertainties [94], [95]. 

The lack of efficient computational techniques is compounded when these multiscale modeling 

techniques are used in the design optimization processes. The ‘curse of dimensionality’ in 

obtaining statistical moments for multiple random variables and the intense programming effort 

are the drawbacks for constructing such models. To address this computational issue, upscaling 

methods that will not require penetration of complex equations is needed.  

The upscaling process can also be achieved through optimization where the homogenized 

properties are found for a coarser FE model that can represent the fine scale model with 

uncertainties. The dimensionality in the optimization, on the other hand, should be reduced in these 

methods since a large number of sample values must be predicted to represent the uncertainties of 

the homogenized properties accurately. In that regard, Koutsourelakis [97] introduce a stochastic 
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upscaling method through optimization that utilizes the rate distortion theory, which enables the 

representation of the distribution of the homogenized input variable with a relatively small number 

of sampling points. Even though this approach provides a dimension reduction in the optimization 

process, the accuracy of the results is questionable as it attempts to represent the distribution of a 

small number of samples. Arnst and Ghanem [98] utilize Polynomial chaos expansion (PCE) [99] 

to reduce dimensionality for predicting the homogenized data in the upscaling process through 

optimization. Since these methods for upscaling through optimization eliminate the use of complex 

explicit equations to find homogenized properties, they are promising to be used at multiple levels 

to characterize the properties of lattice structures with fine scale uncertainties.  

The second issue is that the multiscale modeling techniques usually deal with the 

homogenization at the microstructure level of the material. Uncertainties that exist at the scale 

levels finer than the microscale levels are typically ignored in the homogenization process since 

including all of the fine scale details and uncertainties into the microstructure model involve 

enormous computational complexity. The solution to this problem is to decompose the 

microstructure into different levels and propagate the uncertainties between scales by utilizing 

homogenization methods at multiple levels. For instance, Shokrieh and Rafiee [100] investigate 

the material properties of a composite material, i.e. a carbon nanotube reinforced polymers, in four 

different levels to propagate the uncertainties at the nanoscale level to the final macroscale level. 

Different upscaling approaches are utilized for homogenization at each scale level since different 

laws exist for various scales, which increase the computational complexity of the multiscale 

modeling techniques. Hence, the lack of efficient computational techniques and homogenization 

methods still offers research opportunities which needed to be explored.  
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Overall, the uncertainties induced by the AM process parameters have a considerable effect 

on the overall product performance, but the current simulation and experimental efforts are not 

effective for the certification of CLSs fabricated by AM under uncertainties. Therefore, it is 

essential to deliver an improved upscaling framework that accurately quantifies the effects of input 

uncertainties at multiple scale levels. The framework should also be able to propagate the 

uncertainties from one scale level to another without requiring an excessive computational cost. 

Moreover, efficient validation techniques will be needed to assess the accuracy of predictions 

made by the multiscale modeling techniques used for uncertainty propagation across multiple 

levels. Thus, these multiscale modeling techniques can be integrated into the design process of the 

structures to account for the finer scale uncertainties. The verification and validation approaches 

used in prediction assessment of computational models are introduced in Section 1.5.   

 

1.5. Verification and Validation (V&V) in Computational Modeling 

Over the last two decades, validation and verification (V&V) of computational models has been 

the focus of a significant number of study and a relatively large literature exists and expanding 

[101], [103]. The consistency and the distinction in the definitions of verification and validation 

terms is well established today as provided by science and engineering communities such as the 

American Institute of Aeronautics and Astronautics (AIAA) guide for fluid mechanics [102], the 

American Society of Mechanical Engineers (ASME) guide for Computational Solid Mechanics 

[103], etc. Although the V&V application areas show variety, the definitions are general: Simply 

stated, verification is the accuracy assessment of a simulation model by known exact mathematical 

models, while validation is the evaluation of the model predictions by the real world [101]. 
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More importance is given to the validation processes in the literature for assessing the 

reliability of computer predictions since verification is often an achievable possibility due to the 

today’s powerful computers while the validation is the major challenge for the computational 

models [104]. The fundamental validation strategy involves identification and quantification of 

the error and uncertainty in the computational models, estimation of experimental uncertainty, 

comparing the computational results with the experimental data by a validation metric, and finally 

measuring the difference by a rejection criterion (i.e. a threshold value of the validation metric) to 

assess the validity of the model [101]. For the complex systems under consideration, on the other 

hand, the true validation experiments are difficult, expensive or impractical to conduct at the 

system level. Therefore, the validation process can be divided into several phases of increasing 

complexity, beginning with low-level unit problems, then benchmark cases, then subsystem cases, 

and finally the complete system [103]. When the validation of models is very difficult or 

impractical because of the limited knowledge of physical characteristics or material properties, 

calibration or parameter estimation with statistical methods gains importance in the validation 

assessment. This procedure is represented by a validation pyramid [105] starting with calibration 

model at the bottom, and the prediction model at the top of complex systems. The complexity and 

the cost of experiments increases as we move up (i.e. approaching the prediction) and the pyramid 

gets narrower, showing that the number of experiments decreases from bottom to top with 

increased complexity.  

One key fundamental step in V&V efforts is to quantitatively assess the comparison of the 

model predictions with corresponding experimental observations using a validation metric. 

Various types of quantitative metrics have been proposed over the years for the validation of 

computational models. Oberkampf [101], Liu et al. [106], and Ling and Mahadevan [107] have 
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attempted to collect and discuss various validation metrics. Depending on the nature or form of 

the model output and experimental data, the validation metric may involve comparison of means 

or variances or even two probability distributions. Hypothesis testing methods have been explored 

to make a decision (model is accepted or rejected) based on a test statistic method according to the 

differences between the moments or distributions of the model and experiment results for model 

validation assessment in recent literature [108], [109], etc.  Among these metrics, the area 

validation metric [101], which measures the area between two CDFs, is shown to be superior to 

the existing validation metrics in many papers [106] - [109]. Ferson et al. [110] extended the use 

of area validation metric for the cases of multiple validation sites and proposed the u-pooling 

method to assess the global predictive capability of a model. Li et al. [111] introduced new 

validation metrics that allows the use of the u-pooling method for the cases when there are more 

than one responses and when the responses are correlated.  

Validation of multiscale models proceeds in a similar model to the validation process of 

the complex systems; ideally, experimental validation would occur at each scale level simulated 

(e.g. macroscale and microscale). Because of the important role that validation plays in interpreting 

the results of computational studies, it is desirable to develop multiscale modeling strategies and 

the validation methods concurrently. Accordingly, some studies are found in the literature that 

implement validation processes for multiscale modeling. Farrell and Oden [112] utilizes the above-

mentioned validation pyramid method at atomic scale level for the validation of a coarse-grained 

model that represent the atomistic scale at a coarser scale. Oden et al. [113] present a multiscale 

system validation approach for polymeric materials, but this approach only replaces the physical 

calibration experiments with the micro scale model outputs (called “virtual experiments”) and 

replace the validation experiments with outputs of a hybrid model that includes both molecular 
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model and finite element model. Oskay and Fish [114] presented a calibration and validation 

framework wherein the input parameters used in the microscopic level homogenization method 

are calibrated using the macroscopic level experiments. These multiscale model validation 

approaches indicate that validation of the fine scale models can currently be done using either 

detailed fine scale simulations or macroscopic level experiments since the finer scale level (e.g. 

microscopic level) experiments are not usually available. Hence, when the validation of models or 

simulations of multiple levels of scales is of interest, development of effective validation 

approaches for fine scale models is still a largely open problem. 

 

1.6. Research Questions and Hypothesis 

The goal of this dissertation is to develop an efficient multi-level upscaling and validation 

framework for quantification of uncertainties at small scale levels of complex structures/materials, 

and for the propagation of these uncertainties to the macroscopic level computational models that 

will be used in mechanical analysis and design of complex engineering structures for accurate 

prediction of reality.  For this study, we constrain our analysis of complex structures to cellular 

lattice structures (CLSs) fabricated by AM techniques, which are being used in recent engineering 

applications due to their light weight and high strength characteristics. However, the framework is 

generalized to apply to any complex engineering structure that incorporates computationally 

intensive simulations and/or expensive experiments under uncertainties.  

As stated in Section 1.4.1, since a large variety of uncertainties exist at the strut level of 

the CLSs due to the layer-by-layer manufacturing process, evaluating the structure performance 

using direct simulations of the final structure with fine scale details is computationally infeasible. 

Moreover, the current simulation and experimental efforts in this area are not effective for the 
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certification of CLSs fabricated by AM under uncertainties. To be able overcome this 

computational issue, we need to concentrate on the trade-off between two goals that determine the 

efficiency of the developed computational models: “minimizing the complexity” and “maximizing 

the accuracy.” Instead of simulating all of the details at once, multiscale modeling processes with 

upscaling/homogenization methods are utilized in the literature to address this trade-off. However, 

as stated in Section 1.4.2, there are two main computational issues with the upscaling methods: (1) 

The homogenized properties are often determined by complex linking mechanisms that link the 

fine scale domain with a coarser scale domain defined by explicit governing equations. (2) The 

available multiscale modeling techniques usually deal with the homogenization at one scale level 

of the material. Hence, when the increased uncertainties at fine scales (e.g. on the strut members 

induced by AM at the microscopic level) are considered in multiscale modeling, these multiscale 

modeling techniques still possess increased computational complexity. This computational burden 

becomes much greater when the multiscale modeling techniques are used in the design 

optimization due to the repetitive (or iterative) nature of these processes. To address these issues, 

the following research question is formed as the Research Question 1:  

 

Research Question 1: How can we efficiently quantify and propagate the fine scale 

uncertainties to predict the performance of human scale structures? 

 

An answer to this question will provide us a multi-level upscaling framework that will enable the 

quantification of uncertainties at small scale levels and propagation of them to the macroscopic or 

human scale level with minimal computational effort. We hypothesize that an improved 

homogenization method that is based on the upscaling through optimization approach described 
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in Section 1.4.2 can eliminate the use of complex linking mechanisms to provide the 

homogenization of the fine scale domain with propagated uncertainties in a computationally 

efficient manner. In upscaling through optimization, the homogenized properties of the coarse 

scale model are found with an optimization algorithm that matches the fine scale model responses 

with the coarse scale model responses. Hence, a simulation-based coarse scale domain FE model, 

which can represent the fine scale domain FE model with some homogenized properties, can be 

constructed without penetrating the explicit governing equations of the coarse scale domain. PCE 

is used to handle the dimensional complexity while quantifying the uncertainties of the 

homogenized properties in the upscaling method. An effective objective function to match the fine 

and coarse scale model responses is also integrated into the upscaling method, along with a hybrid 

optimization algorithm to reach the optimum solution quickly.  

Moreover, for accurate quantification of the uncertainties on the final structure 

performance, the small scale level uncertainties in the material properties (e.g. porosity) and in the 

geometric properties (e.g. surface roughness, diameter, etc.) must be quantified based on the 

statistical data of the fine scale input variables. For this purpose, it is hypothesized that in the 

improved upscaling method, the fine scale input uncertainties can be quantified using parametric 

distribution models. Then, these quantified uncertainties can be utilized in the generation of fine 

scale FE models and propagated to the lattice structure level FE models through the upscaling 

method, which can be used at each level of interest sequentially. More details about these 

improvements in the proposed upscaling method are explained in Chapter 3. Thus, the 

uncertainties of the homogenized properties can be quantified efficiently at each level of interest 

and propagated across multiple levels sequentially from bottom up with the proposed upscaling 

method. Then, Hypothesis 1 to address Research Question 1 is:   
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Hypothesis 1: A multi-level simulation-based upscaling method based on PCE can enable 

the efficient quantification and propagation of uncertainties at each scale level sequentially. 

 

Our general goal is not only to establish principles for constructing a meaningful multi-level 

upscaling framework that preserves the key properties of the fine scale models on which they are 

based but also to develop a meaningful validation approach for the prediction accuracy assessment. 

In a hierarchical multi-level modeling framework, the validation should be conducted at each level 

of interest to evaluate the accuracy of the predictions made when the homogenized properties are 

used in the simulation. However, the scale of the lower levels is too small, and experiments are 

usually very expensive or impossible. Furthermore, the level of the available experiments may be 

different from the level of the homogenization in such a hierarchical modeling approach. 

Alternatively, a limited number of experiments may exist at the same level, which may not be 

sufficient to evaluate the predictions under uncertainty. Hence, we need to formulate a validation 

approach that can leverage from the available experimental data in the most efficient way to 

minimize the experimental cost in evaluating the prediction accuracy of computational models 

used in the multi-level upscaling method. This leads to the following question formed as Research 

Question 2: 

 

Research Question 2: How can we improve the prediction accuracy of computational 

models used at multiple levels while minimizing the experimental cost? 
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For a hierarchical multi-level modeling framework, a top-down decomposition of the system or 

product at macroscale level into multiple sub-levels (e.g. mesoscale, microscale, etc.) requires a 

hierarchical validation approach similar to the validation pyramid approach [105] used for 

complex engineering systems. However, at finer scale levels, it is difficult or impractical to 

implement physical experiments since the scale is too small to physically model. Therefore, in the 

multi-level modeling, the validation with experimental results is performed at the levels where the 

validation experiments could be achieved. At a level of scale where the experiments are not 

available, we hypothesize that we can use a “pre-validation” step, in which a different fine scale 

model than the one used in the upscaling process (e.g. a larger size of the model at the same level) 

will be employed for the validation of the homogenized properties. This step can increase the 

confidence in the predictions made at the level where the experiments are not available. For 

example, micro-CT scan images of the experimental specimens can be used to reconstruct the 

computational models at the levels where the experiments are not possible and to quantify the 

uncertainties of input parameters used in the modeling process. This approach will enable the 

validation of the predictions of the generated models with those of the reconstructed models at 

small scales where the individual physical experiments are not available so that a generalized 

validation step that can be used at each level can be developed.  

Another way of using the available experimental data in the most efficient way is to utilize a 

validation metric that can make a decision about the validity of the predictions by accounting for 

the number of experiments. For this purpose, we hypothesize that the u-pooling method, which is 

based on the area validation metric [110], can be integrated with a hypothesis testing method that 

considers the number of experiments for making a decision. Thus, the number of experiments can 

be increased by considering multiple validation sites in the evaluation of the accuracy, and a 
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decision criterion can be set correctly regardless of the available number of experimental data, 

which is the issue of the existing validation metrics.  This metric can be used at any level as the 

validation metric that will allow for the user to quantify the validity of the model without requiring 

time-consuming approaches and different validation metrics. The details of the validation 

approach will be given in Chapter 4. Hypothesis 2 to address Research Question 2 is: 

 

Hypothesis 2: The experimental cost can be reduced by using a hierarchical validation 

approach integrated with an efficient validation metric.  

 

Once the multi-level upscaling and validation of a lattice structure is achieved, the model 

predictions can be used in designing lattice structures to eliminate the expensive simulations in the 

design process. For this purpose, we need to integrate the multi-level upscaling method into a 

design framework which will enable accurate prediction of reality while designing the cellular 

lattice structures. Hence, to accurately and efficiently design a lattice structure by accounting for 

the small scale details and uncertainties, the last research question of this dissertation is presented 

as Research Question 3:  

 

Research Question 3: How can the proposed multi-level upscaling framework be used for 

the realistic design of complex engineering structures? 

 

To answer the Research Question 3, we hypothesize that a stochastic meta-modeling technique 

can be developed based on the upscaling method predictions on the homogenized properties of 

given lattice cell types. More specifically, the uncertain homogenized properties of the lattice cells 
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are determined in terms of PCEs using the proposed multi-level stochastic upscaling method for 

various density values of the corresponding lattice cell. Then, a meta-model can be developed for 

each PCE coefficient using the pre-calculated PCE coefficient values at some densities as the 

training data. This developed meta-model can be used to design lightweight CLSs to match the 

target properties so that the use of expensive simulations in design can be eliminated while 

achieving a realistic prediction of the effective properties of the CLS designs. Thus, the use of the 

proposed multi-level upscaling and validation approach for the design of the CLS will prove the 

efficacy of the proposed approach in engineering design problems. The details of this procedure 

as well as an application example that is designed to match the target elastic modulus are given in 

Section 5. Hence Hypothesis 3 is: 

 

Hypothesis 3: The proposed framework can be used for developing a stochastic meta-

model to predict the homogenized properties of CLSs with the propagated uncertainties that will 

be employed in the design of engineering structures.    

 

1.7. Current Research 

The goal of the current research is to efficiently quantify the fine scale uncertainties induced by 

the manufacturing process at small scale levels and propagate them to the final structure level for 

realistic prediction of the designed structure performance. To achieve this goal, a multi-level 

upscaling and validation framework is proposed in this dissertation. The proposed framework 

utilizes an efficient uncertainty quantification approach with an improved stochastic upscaling 

method. The upscaling method finds the homogenized properties using the simulation-based fine 

scale and coarse scale models and the PCE to efficiently propagate the quantified fine scale 
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uncertainties across multiple levels and finally to the end structure model. The improved upscaling 

method is integrated with the validation pyramid approach for the assessment of the prediction 

accuracy at each scale level. A validation metric is also proposed to achieve the comparison of 

model predictions with experimental data for minimal experimental cost while evaluating the 

predictions made at each level of scale in terms of accuracy. Thus, the current research establishes 

a multi-level upscaling and validation framework for efficient uncertainty quantification and 

propagation in the modeling process of lattice structures. The proposed framework is generalized 

to apply to any complex engineering structure that incorporates computationally intensive 

simulations and/or expensive experiments associated with fine scale uncertainties. 

This proposed framework is also used for design by developing meta-models of 

homogenized properties of CLSs fabricated by AM with propagated uncertainties from the fine 

scale levels. In existing design approaches, the homogenized properties of a CLS are estimated in 

a deterministic setting by applying a homogenization method to the model of a lattice structure 

with continuum level elements. However, since a discernable mismatch is seen between the 

performance of the designed lattice structure and that of fabricated one using AM, the increased 

uncertainty effects of process parameters on the strut members must be considered in an efficient 

way. Thus, a multilevel uncertainty quantification and validation approach are developed and 

integrated into the design of lattice structures to accurately predict the reality and to eliminate the 

use of expensive simulations in design. The following chapters describe important aspects of the 

proposed framework for uncertainty quantification and validation of the cellular lattice structures, 

which will result in the accurate design of lattice structures with efficient PCE-based meta-models. 

In Section 1.8 the organization of the dissertation is described. 
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1.8. Thesis Organization 

The organization of chapters of the dissertation is given in Table 1.1. In Chapter 1, an introduction 

along with literature review is provided about CLSs, the design of these structures using topology 

optimization methods, and the concept of multiscale modeling, homogenization, and verification 

and validation. Uncertainty in of complex structures, specifically in cellular structures fabricated 

by AM processes, are also introduced. The challenges of the modeling approaches, which are to 

be addressed when uncertainties are considered, are discussed. The chapter is ended by presenting 

the research questions and the corresponding hypotheses.   

 

Table 1.1. Organization of the Dissertation 

Chapter 1 Introduction 

Chapter 2 State of the Art 

Chapter 3 Improved Stochastic Upscaling Method 

Chapter 4 Multi-level Validation Approach 

Chapter 5 Application of Upscaling Method to Design CLSs  

Chapter 6 Conclusion and Future Work 

 

In Chapter 2, the state of the current research in the fields of uncertainty quantification and 

propagation is described, and the theoretical foundations are introduced. The technical description 

of the homogenization methods used in the multiscale modeling processes of materials and the 

basics of the ones that are the most prevalent are also provided. Moreover, boundary conditions 
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used in the homogenization processes are discussed. Verification and validation of computational 

models are introduced, and the current state of the validation metrics utilized in the assessment of 

prediction accuracy are also discussed. The literature and the theory of the optimization approaches 

to design the cellular lattice structures are provided. In the light of the presented state of the art, 

the reasons are discussed in details to justify why the suggested methods are utilized in the 

proposed upscaling and validation framework.   

In Chapter 3, the detailed explanation of the theoretical framework for the stochastic 

upscaling method through optimization is provided. The improvements proposed to provide a 

computationally efficient upscaling approach for uncertainty quantification and propagation is 

explained in detail. In particular, the formulation of the optimization process in the stochastic 

upscaling method and the proposed exponential loss function for effective matching of responses 

are described. The justifications of using PCE as the dimension reduction method in the upscaling 

approach are discussed. The general framework of the improved upscaling method and the multi-

level upscaling approach are presented. The applicability and efficacy of the proposed upscaling 

method are demonstrated by utilizing it for three engineering examples including the evaluation 

of the accuracy of various objective functions in a simple bar example, reliability assessment of a 

lattice-based storage tank design, and uncertainty quantification and propagation at multiple levels 

for lattice structure specimens fabricated by a material extrusion process. These examples are used 

to validate the Hypothesis 1 for the Research Question 1. 

In Chapter 4, the multi-level validation framework that utilizes the idea of validation 

pyramid is introduced in detail. The formulation of the proposed validation metric that integrates 

the u-pooling method and the Kolmogorov-Smirnov test in quantitative prediction assessment is 

also discussed and the proposed validation framework integrated with the upscaling method used 
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at each level sequentially is introduced. The general multi-level upscaling and validation 

framework is used for accurate uncertainty quantification and propagation of two lattice structure 

examples fabricated by material extrusion and selective laser melting processes. The efficacy of 

the proposed framework is demonstrated for predicting the lattice structure performance under 

uncertainty in these examples. These examples are used to validate the Hypothesis 2 proposed to 

address Research Question 2. 

In Chapter 5, the applicability of the proposed upscaling and validation framework in 

designing CLSs is demonstrated. A PCE-based metamodeling approach is developed to eliminate 

the use of expensive simulations in the design of cellular lattice structures. This approach is utilized 

to generate the meta-model for the elastic modulus of a lattice cell fabricated by SLM process 

based on the quantified uncertainties by the proposed upscaling method. An illustrative example 

of micro-aerial vehicle fuselage design, which validates the efficacy of the proposed framework, 

is shown to match the target elastic modulus based on the developed PCE-based meta-models. 

This example was used to validate the Hypothesis 2 for the Research Question 3. 

In Chapter 6, the main points outlined in the dissertation along with the contributions of 

the proposed framework are summarized. The limitations of the current research are discussed, 

and some indications for possible future work are provided.  
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CHAPTER 2. STATE OF THE ART  

In this chapter, state of the art in research related to the uncertainty quantification, validation, 

multiscale modeling and design of CLSs are presented along with the theoretical foundations. The 

methods used in the literature are reviewed to address the main issues in computational analysis 

and design of cellular lattice structures, identified in Chapter 1, as decreasing the computational 

complexity and experimental cost for (1) uncertainty quantification at fine scales (2) 

upscaling/homogenization for material characterization with propagated uncertainties (3) 

systematic validation at multiple scale levels (4) realistic design of CLSs by accounting for 

uncertainties. This review is presented in six sections. In Section 2.1 and Section 2.2, the most 

widely used methods are introduced for the uncertainty quantification and propagation in 

computational models, respectively. In Section 2.3, upscaling/homogenization concept is 

introduced, the available approaches are described in three categories, the boundary conditions 

used in modeling the fine scale details are reviewed, and their advantages and disadvantages are 

discussed to address the identified challenges. In Section 2.4, verification and validation 

approaches are described in general, and the state of the art review of the validation metrics used 

for the prediction assessment is provided, and the challenges are revised. In Section 2.5, the 

theoretical foundations of the deterministic and stochastic topology optimization processes 

employed in the design of lattice structures are described along with the issues existing regarding 

the computational efficiency when the uncertainties induced by AM processes are considered in 

the design. The summary of this chapter is given in Section 2.6.  
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2.1. Uncertainty Quantification 

Uncertainty Quantification (UQ) term could encompass the whole field of statistics since the term 

defines the process of identifications, quantitative characterization, and reduction of uncertainties 

in computational and real world applications [101]. The UQ can be viewed as two different types 

of coupled components. The first one is the inverse assessment of the input uncertainty where the 

parametric uncertainties are estimated based on available statistical data. The second one is the 

forward propagation of the input uncertainty, defined by statistical parameters and distribution 

models using inverse assessment of the input uncertainty, to quantify the model output 

uncertainties using computational models [115]. Both cases should be considered in modeling the 

uncertainties in the analysis and design of materials and/or structures. The focus of this research 

is to develop a framework for both the uncertainty quantification of input parameters and 

uncertainty propagation to model outputs as well as across multiple scale levels in a bottom-up 

fashion. To differentiate between these two components (i.e. uncertainty quantification and 

propagation), in this study, “Uncertainty Quantification” term is used only for the first case, i.e. 

the inverse uncertainty assessment of random input variables. “Uncertainty Propagation” term is 

used for the second case, i.e. the forward propagation of the uncertainty to model outputs. Hence, 

these two are reviewed in two separate sections, i.e. uncertainty quantification is discussed in this 

section while the uncertainty propagation is reviewed in Section 2.2.  

The quantification of uncertainties for the random input variables is considered in two 

different categories depending on the direct availability of the statistical data. In cases where the 

experimental measurements or the statistical data are available for a random input variable of the 

model, the uncertainty is expressed as a probability distribution with some statistical parameters 

or as interval boundaries of uncertain data. This uncertainty quantification process is called 
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“statistical modeling” of the random input variables. In cases where the experimental 

measurements or the statistical data are not directly available for the input variable but available 

for the output variable of the model, uncertainty quantification for the random input variable is 

accomplished by so-called “parameter calibration.” In parameter calibration, an optimization 

process is used to find the statistical parameters of the random input variable of the model that 

minimize the discrepancy between the available statistical data of the output and the output data 

calculated by the model with predicted input parameters. In the analysis and design under 

uncertainty, uncertainty quantification of input parameters is necessary since the uncertainty 

propagation can be achieved using the quantified statistics of the input variables. Hence, if the 

input variable distribution and parameters are not known, either statistical modeling or parameter 

calibration methods are used to quantify the uncertainties of the input variables depending on the 

given data.  

 

2.1.1. Statistical Modeling of the Input Uncertainties 

Statistical modeling is the process of finding the statistical parameters and distribution model for 

the available uncertain data. The simplest modeling procedure is to calculate the arithmetic mean 

and the standard deviation of the data. For a random variable X with the probability density 

function (PDF), denoted by p(x), the r-th statistical moment is calculated by  


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The mean of X is calculated for r = 1   
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which is also known as the average or the expected value E(.) for a continuous variable. In the case 

where the random variable X takes discrete random values from a finite data set, i.e. X = {x1, x2, 

… , xn}, having the corresponding probabilities p(x) = {p1, p2, …, pn}, the expected value of the 

random input variable can be defined as  
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by averaging the expected values, Eq. (2.3) can be written as 
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Thus, the mean or average is the sum of the numerical values for each particular value of 

the random variable in the statistical data divided by the total number of data. The mean is also 

used to describe the central tendency of a random variable. That means the mean is the distance 

from the origin to the centroid of the PDF.  

Standard deviation is calculated as a measure that is used to quantify the amount of 

variation or dispersion of a set of statistical data values. For a continuous random variable, the root 

square of the statistical moment equation (Eq. (2.1)) when m = 2, gives the standard deviation of 

the random variable X. In the discrete random variable case, the standard deviation is given by 
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where the square of σ is the variance of the data. Once the mean and standard deviation are 

calculated the distribution model can be assumed as a normal distribution in the simple case. This 

assumption is true based on the Central Limit Theorem (CLT) if the sufficiently large number of 

data is available [2]. CLT states that regardless of the underlying distribution, the arithmetic mean 

of a sufficiently large number of iterates of independent random variables will be approximately 

normally distributed. 

Although this assumption gives some information about the uncertainty, the underlying 

distribution may differ from the normal distribution in many cases. Hence, considering other 

distribution models or types is necessary for a more accurate uncertainty quantification process. 

Various distribution models are available to fit on a given statistical data (e.g. Gaussian or Normal, 

Lognormal, Gamma, etc.). For the fitting distribution models to the uncertain data and selecting 

the best-fitted distribution model, two statistical modeling methods exist; by goodness-of-fit 

(GOF) tests or by model selection methods.  

 

2.1.1.1. Goodness-of-fit (GOF) Tests 

The GOF tests are based on a hypothesis testing method such as Cramer-von Mises [116], 

Anderson-Darling (A-D) test [117], and Kolmogorov-Smirnov (K-S) test [118]. In these 

hypothesis testing methods, a hypothesis is established by stating that a given data set with a 

specific cumulative distribution function (CDF) accurately represents a true population. This 

hypothesis is then evaluated by comparing the predicted CDF and the empirical CDF (ECDF) of 
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the statistical data. ECDF of a random variable X with independent and identically distributed (iid) 

observations X = {x1, … , xn} is calculated by  





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where I(.) is the indicator function that is equivalent to 1 if xi ≤ x or 0 in other cases. Once the 

ECDF is calculated for the given data, a difference between this ECDF and a theoretical CDF is 

measured in terms of a statistic. The hypothesis is accepted only if the statistic calculated from the 

data is less than a threshold value that is determined as a function of the significance level and 

sample size; otherwise, it is rejected. 

The Cramer-von Mises test [116] is based on the integrated difference between an 

empirical CDF and a predicted CDF, weighted by the predicted PDF. It is known a very powerful 

method, but its application is limited to the symmetric and right-skewed CDFs [119]. The A-D test 

is another hypothesis testing method used widely to quantify uncertainties of input variables. The 

A-D test is found to be a powerful test since it can consider the tails of the distribution in the 

statistic calculation [120]. The issue with the A-D test is that it requires different critical values 

dependent on the type of the distribution being tested. On the other hand, K-S test critical values 

are independent of the type of the distribution being tested, which makes the K-S test more suitable 

for testing an unknown distribution. Hence, although A-D hypothesis test is known to be more 

accurate from K-S test, the applicability of K-S test for any distribution model makes it a better 

choice [121] than the other test methods. 
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Kolmogorov-Smirnov (K-S) Test 

 The K-S test is used to check whether an ECDF differs from a predicted theoretical CDF 

by evaluating the maximum vertical distance between the two CDFs. The maximum distance, 

denoted by dKS is calculated by  

)()(max xFxFd ME
x

KS   (2.7) 

where FM(x) and FE(x) are the predicted CDF and the ECDF of the statistical data, respectively. 

Since dKS is a random variable, the CDF of dKS is related to a significance level α as  

    1KSKS ddp  (2.8) 

for the confidence level, 1 – α. Here, 


KSd is a critical value obtained from a standard mathematical 

table presented by Haldar and Mahadevan [122]. The maximum difference between FM(x) and 

FE(x) of the ith sample xi, for i = 1, 2,  …, n is calculated as  

)()(max
1

iMiE
ni

KS xFxFd 


 (2.9) 

If the maximum difference dKS calculated from samples is smaller than 


KSd  based on the 

significance level α, the null hypothesis that the given samples come from the hypothesized CDF 

is accepted; otherwise, it is rejected. Similarly, the p-value also can be used to test the null 

hypothesis. The p-value is a measure of how much evidence we have against the null hypothesis 

and calculated as the CDF value of dKS. If the p-value is larger than α then the null hypothesis is 

accepted; otherwise, it is rejected. The test accepts the null hypothesis more strongly when the p-

value is greater. In the K-S test, since dKS is known to follow the Kolmogorov distribution, the p-

value is calculated from the Kolmogorov CDF at dKS [118]. Accordingly, using the calculated p-
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values for various distribution models, a hypothesized CDF with the highest p-value is selected as 

the best fitted marginal CDF in the K-S test.  

Although the K-S test can make a decision regardless of the underlying distribution type, 

since GOF tests are based on an acceptance/rejection criterion, they are more suitable to decide 

whether a distribution type fits or not rather than evaluating the fitting performance of different 

distribution types. Hence, GOF tests are preferred more on comparing whether two CDFs come 

from the same distribution or not while the model selection methods are preferred to select the best 

candidate distribution model for a given statistical data. 

 

2.1.1.2. Model Selection Methods 

Model selection methods select the appropriate distribution model that gives the minimum 

information loss value among different candidate models. An information loss value is calculated 

for various distribution models, and the one that has the minimum information loss is selected as 

the distribution type. A candidate distribution model is fitted to the available data based on 

Maximum Likelihood Estimation (MLE) [123] using the likelihood functions of the distribution 

models to find the corresponding optimal statistical parameter values. The goal in MLE is to 

identify the statistical parameter values that describe the data for a selected distribution type. Given 

a set of parameter values θ of an unknown PDF, a joint density function of an iid sample is  

)|(...)|()|,...,( 11  nn xpxpxxp   (2.10) 

If we assume {x1, … , xn} are fixed parameters of the function and θ are the unknown 

variables, this function is called the likelihood: 
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It is usually more convenient to work with the logarithm of the likelihood function, called 

the log-likelihood: 

    |ln|ln 
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xpX 


L  (2.12) 

The estimated parameters  of the distribution model are found by maximizing ln  X|L

. The hat over θ indicates that it is an estimation. This estimation method is defined MLE of  : 

 

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





 X|ln  max arg ˆ 


L  (2.13) 

 For many models, MLE can be found as an explicit function of the observed data. 

However, for other models, no closed-form solution to the maximization problem is known or 

available. In those cases, MLE is found using optimization methods [123].  

To select the most plausible distribution model representing the data out of ND given types 

of distribution models, Dj, where j = 1, 2, …, ND, the maximum ln L value for each model is 

compared to each other as the information loss (IL) value. According to the Bayes’ theorem, the 

likelihood is denoted by Lj = p(X | θj, Dj) for each model. Then, for the distribution types Dj, that 

give a better fit to the data, the likelihood factor p(X | θj, Dj) will be higher. Hence, the best model 

is chosen maximizing an objective function ILMLE(Dj | X) over j that is defined by  

̂

̂



46 

 

   jjjMLE XpXIL DLD ,ˆ| ln ln|   (2.14) 

The use of MLE in model selection by Eq.  (2.14) favors the distribution models with more 

statistical parameters, which makes it inefficient for selecting the best-fitted distribution [125]. To 

overcome this issue, various information loss evaluation methods such as Akaike information 

criterion (AIC) [126], Akaike information criterion correction (AICc) [127] and Bayesian 

information criterion (BIC) [124] are developed based on the MLE method. They show the 

difference in the calculation of the information loss value. AIC and AICc consider the number of 

statistical parameters kp in the computation while the BIC method also considers the number of 

samples, n, in the calculation of information loss.  

AIC is proposed to determine the distribution type based on MLE as  

    jpjjjAIC kXpXIL ,2,ˆ| ln2|  DD   (2.15) 

where kp is the number of estimated parameters of the j-th candidate distribution function. Based 

on the minimum AIC value among various distribution fits on the data, the optimal distribution is 

selected. AICc method has a modified term in the evaluation of AIC value thus improves the 

accuracy of the AIC when the number of samples is small [127].  
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kn

kk
kXpXIL DD   (2.16) 

Bayesian Information Criterion (BIC) is similar to AIC that use MLE function. BIC also 

considers the number of samples, n in the calculation of the information loss 
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    nkXpXIL jpjjjBIC ln,ˆ| ln2| , DD   (2.17) 

Bayesian update method is another method that shows the difference from these methods 

in the sense that the weight of each candidate distribution function is calculated by integrating the 

likelihood function over a distribution parameter. Bayesian formulation is given by  

 
   

 IXp

IpIXp
IXp

jj

j
|

| ,|
,|

DD
D   (2.18) 

where I refer to prior information.  IXp j ,|D is the likelihood function,  Ip j |D is the probability 

of observing the prior information on the j-th candidate distribution, and  IXp |  is the 

normalization constant based on any relevant additional knowledge I.  IXp |  is considered as a 

constant it can be ignored, and a weight for each candidate distribution can be calculated as based 

on the Bayesian formulation as  

 
 

 
 

dbaxfW ijj ),(),,(|
1

 (2.19) 

where fj indicates the value of the PDF of the j-th candidate distribution in given data xi; a and b 

are the values of parameters of the j-th candidate distribution calculated from the mean μ and 

standard deviation σ of the data. )(/1    represents the prior information on the mean of the 

candidate distribution, and  is the Lebesgue measure, representing the interval length of  . 

After calculating the weights of each candidate model, they can be converted to a normalized 

weight by  
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Through a relative comparison of the weight of each candidate distribution, wj, the distribution 

with the highest weight is selected as the most appropriate model for the given data [128]. 

Although the Bayesian method is very effective on the selection of the distribution, its increased 

computational complexity compared to the other MLE based methods hinders its application [129]. 

MLE-based methods are preferred due to their simplicity. Among these model selection methods, 

BIC is known as having a higher convergence to the true model since it also considers the 

number of samples in the calculation of the information loss [127], [130]. Hence, in this study 

BIC is utilized for the uncertainty quantification of the input variables from the available 

uncertain data. Once various distribution types of distributions are fitted to the data and the 

corresponding information loss values are calculated using BIC, the distribution type with the 

smallest information loss value is chosen as the best fit for the data of the homogenized variable. 

The candidate parametric distributions, which are considered in model selection for 

uncertainty quantification, are Uniform, Normal, Lognormal, Gamma, Exponential, Weibull, 

Gumbel, and Extreme Type II distributions. These are the distribution types most frequently used 

in engineering [2]. The PDF, mean and variance formulations of these distributions are given in 

Table 2.1.  
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Table 2.1. Marginal PDFs, Mean, and Variance of various distributions.  
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Uniform 
minmax

1

xx 
 2

minmax xx 

 12

)( 2

minmax xx 

 

Normal 






 


2

2

2

)(
exp

2

1







x

 

  
2  

Lognormal 






 


2

2

2

)(ln
exp

2

1

b

ax

xb 
 

2/2bae 

   22 2 1 bab ee   

Gamma 













b

a

ba
x

a

a exp
)(

11

 
ab  

2ab  

Exponential )exp( axa    
2a  

Gumbell 














 




b

xa

b

xa

b
expexp

1

 

ba 5772.0  
2

2

6
b



 

Weibull 





























 bb

a

x

a

x

a

b
exp

1

 











b
a

1
1

 

22 2
1 










b
a

 

Extreme 

Type-II 






























 aa

x

b

x

b

b

a
exp

1

 











a
b

1
1

 



























bb
b

1
1

2
1 22

 

 

  

1a



50 

 

2.1.2. Parameter Calibration 

Calibration is known as the inverse characterization of the unknown statistical parameters 

of random input variable based on the available statistical data of the output or response.  Usually, 

the statistical parameters of a random input variable (e.g. material properties) of a computational 

model are predicted by an optimization process to match the computed responses with the available 

experimental measurements. In that regard, calibration is required to find the input variables when 

the experimental observations or statistical data is available for the output data. A calibration 

process as an inverse characterization process using optimization methods is necessary for 

estimating the input parameters of the computational models since there is no closed form equation 

of the input variable exists in terms of the known response. The model updating formulation for 

calibration is given by  

eXYXY ME  )ˆ,()(   (2.21) 

where )ˆ,( XYM denotes the computational model response that depends on the input variable(s) 

denoted by X with parameters θ, and YE(X) is the known output data or experimental observations. 

The calibration process eliminates the possible errors between the available data and 

computational model predictions, denoted by e since a match between the experimental and model 

outputs is desired in the calibration to find the unknown parameters of the input variables of the 

model. Hence, it is also known as an inverse problem.  

Calibration process falls into two broad categories as Bayesian and frequentist, and both 

methods have their advantages and disadvantages [131]. The Bayesian method is built upon the 

Bayesian parameter estimation process that updates the parameters based on a prior. However, the 
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prior can be difficult to determine and therefore absolute conclusions cannot be made. In 

frequentist processes, the statistical tests or model selection methods such as MLE and BIC can be 

utilized to quantify the input variable uncertainties in terms of a parametric distribution model. 

The frequentist approach may produce errors which may not be controlled, but it avoids the 

Bayesian prior and therefore provide a less subjective conclusion. Moreover, the frequentist 

approaches are easier to implement and therefore preferred over the Bayesian approach [132].  

The statistical modeling processes explained in Section 2.1.1 can also be considered as the 

calibration processes since in the model selection processes, the input parameter values of a 

distribution model are determined from the known statistical data in an optimization process using 

MLE. The calibration process that is defined in this section, on the other hand, focuses on the cases 

when the statistical data is available for the output or response variable of a physical system rather 

than the input variables. Unlike the direct distribution fit to data by MLE, first, the computational 

model is used to compute the responses with the prediction of the input variable parameters. Then 

a comparison between the experimental measurements and the model outputs is performed at each 

iteration in the optimization process for calibration. This calculation of the model outputs using 

the computational model increases the computational cost of the MLE process. Because MLE has 

to be utilized for fitting various types of distribution models to determine the best fit using the 

model selection methods such as BIC method, the computational demand of the calibration process 

increases dramatically.  

As the calibration process enables the prediction of the unknown input uncertainties based 

on the available output uncertainties using a computational model, it can be considered as a 

backward propagation of the uncertainties (i.e. from outputs to inputs). Therefore, uncertainty 

propagation methods such as Polynomial Chaos Expansion (PCE) [99] can be used alternatively 
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for calibration to represent the distribution of the unknown input data instead of a parametric 

distribution model in the calibration process. PCE can approximate a distribution with 

deterministic constants that are independent of the distribution type. Thus, only one calibration 

process will be sufficient to find the deterministic constants that quantify the input variable 

uncertainties. PCE was originally proposed by Ghanem and Spanos [133] to represent the 

propagated uncertainties on the model response, but it was suggested to use in the stochastic 

calibration processes of input variables as well [134], [135]. The details of the PCE is given in 

Section 2.2.3 as it is considered as an uncertainty propagation method.  

  

2.2. Uncertainty Propagation 

Once the uncertainties of the input variables are quantified using model selection or parameter 

calibration processes, uncertainty propagation is achieved for the probabilistic analysis of a 

problem using the computational model to predict the uncertain response or output variable. The 

uncertainty propagation methods can be categorized as the non-intrusive sampling methods (e.g. 

as Monte Carlo sampling (MCS) [136], Latin Hypercube sampling (LHS) [137], Stochastic 

Expansions such as PCE [133], etc.) and intrusive methods (e.g. first- and second-order reliability 

methods, stochastic finite element method, etc.). The non-intrusive methods have the advantage of 

generating sampling points directly without considering the system equations explicitly. In other 

words, sampling methods can be used with black-box models to propagate the input uncertainties. 

This section presents the main sampling-based uncertainty propagation methods and discusses 

their strengths and weaknesses. More information about the intrusive methods can be found in [2].   
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2.2.1. Monte Carlo Sampling (MCS) 

Monte Carlo method takes its name from the famous casino in Monaco. It is developed for the 

randomness and iterative procedure in gambling in casinos. Nowadays, it is used in a broad area 

to handle the randomness in any problem. Inverse transform method is used to generate random 

variables from the specified PDF in MCS. When the CDF, FX(x), of a random variable, X, is 

known, the numerical value of FX(x), denoted by u is in the interval of [0,1]. Then, according to 

the inverse transform method, the inverse cumulative function is used to find the value of the 

random variable: 

)(1 uFx X

  (2.22) 

where u is the uniformly distributed random variable generated between 0 and 1. The 

corresponding target distribution CDF is used in Eq. (2.22) to obtain the random number for the 

random variable [2]. This process of sampling value generation of the random input variable is 

depicted in Figure 2.1. Once the sample for the random input variable is generated by Eq. (2.22), 

the random value of the response of the computational model can be calculated as the final step of 

the MCS process.  

The computation procedure of MCS is as follows 

1) Generate a uniformly distributed random variable sample u between 0 and 1.  

2) Calculate the CDF of the sample from standard uniform distribution CDF. 

3) Calculate the random variable sampling value from the inverse CDF of the target 

distribution of the random variable. 

4) Conduct simulations using the generated sampling set.  
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Figure 2.1. Monte Carlo sampling method using inverse probability theory [2] 

 

The computational cost of MCS can be expensive if high accuracy is desired since a large number 

of sampling set is required. Therefore, variance reduction techniques such as LHS are integrated 

to reduce the computational cost while increasing the accuracy.    

 

2.2.2. Latin Hypercube Sampling (LHS) 

LHS is a special form of MCS, in which the distribution of a random variable is subdivided into n 

equal probability intervals including one analysis point each so that there are randomly mixed n 

analysis points. After this process is done for each random variable, the randomly selected n values 

are associated with others at random. Figure 2.2 represents the steps of LHS method. 

The regularity of probability intervals on the probability distribution function ensures that each of 

the input variables has all portions of its range represented, resulting in relatively small variance 

in the estimates as well as less computational cost for the analysis.  
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a) Step 1: Divide the distribution into n non-overlapping intervals and select one value at random for each 

interval. b) Step 2: Repeat the first step for all random variables. c) Step 3: Associate n values for each 

random variable with the ones for other variables at random [2].  

Figure 2.2. Latin hypercube sampling basic steps.  

 

2.2.3. Polynomial Chaos Expansion (PCE) 

Polynomial Chaos Expansion (PCE) is considered as a stochastic expansion method, which is a 

very efficient tool for uncertainty propagation. It was first introduced as the homogeneous chaos 

by Wiener [99]. The purpose is to project a random variable onto a stochastic space with 

deterministic constants by introducing a series of orthogonal polynomials. When a random variable 

is denoted by X(η), where η represents the randomness, PCE for a general random process can be 

written in the form 
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where ),...(
1 niin  denote the Askey-chaos orthogonal polynomials of order n in terms of the 

random variables ),...(
1 niii   . For notational simplicity, the expansion can be truncated to a 

finite number of terms and written as 





P

i

iibX
0

))(()(   (2.24) 

where bi and ))(( i  are one-to-one correspondences between the coefficients ),...(
1 niii bbb   and 

the functions ),...(
1 niin  , respectively. The orthogonal polynomials, Φn and the type of random 

variables, n , is chosen depending on the type of distribution of the random process. The Askey-

scheme expansion is introduced as a generalized PCE, which enables the use of appropriate 

orthogonal polynomials and random variables depending on the type of the stochastic process. The 

orthogonal polynomials are listed in Table 2.2 for various distribution types.   

Table 2.2. Representation of different distributions by PCE and underlying random variables [2] 

Distribution type Askey chaos (Φn) Range 

Gaussian Hermite-chaos (-∞, ∞) 

Gamma Laguerre-chaos [0, ∞) 

Beta Jacobi-chaos [-1,1] 

Poisson Charlier-chaos - 

Uniform Legendre-chaos [-1,1] 
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When the random process is Gaussian (i.e. normal) as in most cases, the polynomials Φn are 

Hermite polynomials and random variables n  are a set of Gaussian random variables. Hermite 

polynomials can also be used in PCE for non-Gaussian random processes. Although a greater order 

of PCE is required to present the non-Gaussian random process using Hermite polynomials 

accurately, it eliminates the dependency of the PCE on the distribution type. When normal 

distribution is used, the random variable   has a standard normal distribution, N~[0,1]. When we 

consider a one-dimensional PCE, the random variable is written by using the Hermite polynomials: 
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where bi, i = 0,1,2,..,P, are unknown coefficients and the set{Φi} contains the Hermite polynomials 

in the random variable  . The one-dimensional Hermite polynomials are defined by  
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 (2.27) 

The advantage of the PCE is that the mean and standard deviation of the random variable 

can also be computed. Once the deterministic coefficients are determined, the mean of the random 

variable can be calculated by substituting the PCE in Eq. (2.25) into Eq. (2.1) when m = 1 
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Since b0 = 1 and   dpi )()( 0 for every i > 0 

0bX   (2.29) 

 Similarly, the variation of the random variable is calculated using the second statistical 

moment from Eq. (2.1) 
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Considering the orthogonality property of Hermite polynomials, i.e. 1)(
2
 i

, and 

substituting Eq, (2.29) into Eq. (2.30) with gives 
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Finally, the standard deviation of the random variable X is found as the root square of the 

summation of the PCE coefficients except the first one [138]: 

 
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iX b
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2  (2.32) 

In PCE given by Eq. (2.25) the unknown coefficients, bi, must be determined to represent 

the stochastic process. These coefficients can be determined using intrusive or non-intrusive 
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methods. It has been utilized in Spectral Stochastic Finite Element Method (SSFEM) as 

uncertainty characterization method by Ghanem and Spanos [133] in an intrusive manner, i.e. the 

uncertainties are introduced explicitly into the FE equations. The intrusive application of PCE can 

provide an accurate representation of uncertainty, but the underlying governing equations or partial 

differential equations must be explicitly expressed. That means intrusive methods require access 

to modification of the analysis codes. However, the explicit expression of the equations might not 

always be possible. For example, the system at fine scale can be so complex that it cannot be 

explained with equations or accurate response can only be found by experimentation.  

For these situations, non-intrusive methods, which treat the analysis code as a “black-box,” 

are convenient to represent the uncertainty. Hence, the non-intrusive methods are preferred to 

implement so that the governing equations of the system can be treated implicitly. In that regard, 

probabilistic collocation method has been introduced by Tatang [139] to project the stochastic 

system responses onto the PCE. In this method, the deterministic coefficients of the PCE are 

determined using the model outputs at selected collocation points or sampling points of input 

variables. A stochastic response surface method has been proposed by Isukapalli [140]. The partial 

derivatives of the model outputs with respect to the model inputs are considered in this method to 

overcome the limitation of the probabilistic collocation method for large-scale models. Zein et al. 

[138] introduce an optimization-based algorithm that can generate a small size of sample points 

that can represent the uncertainty in estimating the PCE coefficients. Choi et al. [2] utilized a 

regression-based PCE method in Reliability-based Design Optimization process along with LHS 

to determine the collocation points such that the entire distribution can be represented efficiently 

with fewer sampling points. In this method, once the values of the output variable, YM = {y1
M, … 

, yn
M}, are calculated from the computational model simulation for the generated samples of the 
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input variables in the RBDO process, the coefficients of PCE of the output variable are computed 

by solving the following linear least squares problem: 
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Thus, the uncertainties in the input variables of the computational model are propagated to the 

output variable with the use of PCE. Then, in estimating reliability, the samples of the output 

variable are generated through the PCE rather than using expensive simulations of the 

computational model. Nevertheless, a new PCE for the response is required to be estimated at each 

iteration as the response alters. This process still involves using the expensive simulations 

repeatedly at each iteration, which makes the optimization process inefficient. Coelho et al. [142] 

proposed a PCE-based meta-modeling approach to reducing the number of expensive simulations. 

PCE coefficients of the response are estimated over a range of interest of the deterministic design 

variables. Then, a meta-model of the PCE coefficients with respect to the design variables is 

generated using kriging interpolation. In the further studies, moving least squares interpolation 

[143], and spline functions [144] are utilized to achieve the mapping between the design variables 

and the PCE coefficients bk. Then, these meta-models can substitute the actual expensive model in 

the reliability computation phase, and thus help in reducing the total cost of reliability calculation. 

This approach of PCE-based meta-modeling is adopted in this research to develop the meta-

models that can predict the stochastic homogenized coarse scale input variables that will be 

used in the design of CLSs.   

The efficient use of nonintrusive methods for PCE projection has also enabled researchers 

to implement the PCE in inverse parameter calibration processes described in Section 2.1.2. When 
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PCE is used in calibration, the uncertainties in the physical system outputs from experiments 

propagate through the inverse model. In the PCE-based calibration process, the deterministic 

coefficients of the PCE have to be calculated for the input variable(s) instead of estimating the 

statistical parameters and the distribution model. Assume that the relation of the input variable(s) 

and the response of a physical process is represented as 

 )(XfY   (2.34) 

where Y is the known system responses (observed data) and f(.) is the system governing equations 

or the computational model (e.g. FE model). To identify the input variables, the inverse solution 

of the direct problem given in Eq. (2.34) needs to be solved, i.e.  

)(1 YfX   (2.35) 

In the case of availability of the linear explicit models (.)1f  that links the input variables 

with the output variable, the input variable values can be explicitly calculated for uncertainty 

quantification. However, an explicit formulation of (.)1f  is not possible when nonlinear and/or 

black-box computational models are used, which is the case when FE modeling technique is used. 

In this case, the problem is treated as an inverse problem, and the calibration process is used to 

find the optimal statistics of the input variables that minimizes the error between the known 

responses and predicted responses from Eq. (2.34). To reduce the dimensionality of the calibration, 

process the unknown input variable can be projected onto a PCE. Thus, the PCE representation of 

the unknown input variables transforms the optimization problem into a problem of determining a 

set of unknown deterministic PCE coefficients.  
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This process has been used by researchers in uncertain material property characterization 

problems using the experimental data [134], [135], [141]. Knowing that the application of the PCE 

can be generalized with Hermite polynomials and Gaussian process for any distribution model, it 

is possible to approximate the uncertainties in input variable using PCE with deterministic 

coefficients. Thus, the problem of uncertain input variable identification in the calibration process 

is shifted to the determination of the PCE coefficients for the input variables. The idea of inverse 

problem with PCE projection of the unknown input variable has also been used for upscaling to 

find the effective properties of a coarse scale model in a multiscale analysis problem [98]. The use 

of PCE is very promising in multiscale modeling to reduce the computational complexity 

while propagating the uncertainty to the unknown input variables. Hence, in our work, the 

computational efficiency of this PCE-based upscaling process is improved to make it 

applicable for uncertainty quantification and stochastic homogenization at multiple scale 

levels of additively manufactured CLSs.  

 

2.3. Upscaling/Homogenization for Multiscale Modeling 

Multiscale modeling is the process to investigate the material/structure domain at multiple scale 

levels to increase the speed of calculations in characterizing properties of materials and/or 

predicting overall structure performance instead of modeling all the details at once. Upscaling, or 

homogenization, or finding the effective medium, is used in multiscale modeling to substitute a 

heterogeneous property region with fine scale details with an equivalent homogeneous region at a 

coarser scale with an effective or homogenized property value. In the geophysical community, 

substituting a fine scale medium with a coarse scale one is referred to as “finding the effective 

medium.” In the seismic community, it is called “upscaling” and in solid mechanics, the general 
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term used is “homogenization” [145]. Hence, these terms can be used interchangeably as they refer 

to the same concept. 

The objective of homogenization in solid mechanics is to develop equivalent continuum 

that has the same average mechanical response as the actual material for upscaling the information 

to find the effective properties of the material [146]. Homogenization is a very widely used strategy 

in multiscale modeling for material characterization of the heterogeneous materials at micro and/or 

macro scale especially for the composite materials. The small scale material behavior is often more 

complicated than that of a coarser scale model. This complexity and the limited computational 

resources make it impractical to perform all-in-one modeling and analysis that include all details 

of the smaller scales. It becomes necessary to build models which will result in valuable 

computational savings that greatly simplifies the pre-processing stage of the analysis to find 

effective material properties. Instead of performing a full-scale analysis of the entire domain, 

effective properties of the materials are determined by averaging the local behavior of the small 

scale structure of the material using upscaling/homogenization methods. Then, the structure is 

modeled as a homogeneous material at macroscale considering only the effective properties.   

Homogenization methods utilized in the multiscale modeling of materials/structures can 

be classified into three areas: (1) Analytical homogenization methods, (2) Computational 

homogenization methods (3) Upscaling through optimization.  

 

2.3.1. Analytical Homogenization Methods 

Among numerous methods to predict the effective properties of materials a variety of analytical 

methods have been developed for homogenization. The simple bounds on the effective elastic 

moduli can be determined by the averaging approaches of Voigt [64] and Reus [65]. The Voigt 
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upper bound on the effective/homogenized elastic modulus, EV, of a mixture of Nm material phases 

is predicted by 





N

i

iiV EfE
1

 (2.36) 

where fi and Ei denote the volume fraction and the elastic modulus of the ith constituent, 

respectively.   

The Reuss bound of the effective elastic modulus, ER is given by 
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Eq. (2.36) is considered as the upper bound of the elastic moduli since there is no way of 

having a stiffer mixture of constituents than this simple arithmetic average of the individual 

constituent moduli given by the Voigt bound. Eq. (2.37) is considered as the lower bound of the 

elastic moduli since again there is no way of having a softer mixture of constituents than this 

harmonic average of the individual constituent moduli given by the Reuss bound [146].  

Eshelby’s method [61], which considers a homogeneous equivalent inclusion to the 

original inclusion, is considered the start of homogenization approaches. The homogeneous 

equivalent inclusion is assumed to have an appropriate strain, called the equivalent transformation 

strain, such that the stress field is the same with the actual inclusion. Assuming the strain is uniform 

within the inclusion, the stress in the inclusion σI can be calculated by  

 TCMI C    (2.38) 
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where CM are the components of the elasticity tensor of the matrix material, εC is the constraining 

strain relative to the initial shape, εT is the transformation strain. Eshelby has shown that the 

constraining strain εC can be described in terms of the transformation strain εT using the equations 

TC S   (2.39) 

The Eshelby tensor, S, is a fourth rank tensor determined using Poisson’s ratio of the 

inclusion material and the inclusion’s aspect ratio. Finally, the stress in the inclusion is determined 

by substituting Eq. (2.39) into Eq. (2.38) and simplifying 

  TMI ISC    (2.40) 

where I is the components of the fourth-rank identity tensor. The Eshelby’s solution is based on 

the assumption that the inclusion is in the unbounded space (i.e. infinite space). This assumption 

also means that the constituents are not influenced by each other. Hence, this method is only 

applicable to the very low volume fraction of heterogeneous materials [147]. Mori-Tanaka method 

[62] and Self-consistent method [63] are improved versions of the Eshelby’s method that can be 

applied to the higher volume fraction of materials with inclusions. Analytical homogenization 

methods have been used for homogenized property characterization in multiscale modeling of 

engineering applications modeled with composite materials [148].   

Analytical formulations to find the effective properties of CLSs have also been developed 

in the literature. In these formulations, truss or beam deflection theory is used to model the 

mechanical behavior of the strut members in the CLSs, and the elastic constants of the lattice cells 

are determined by solving the deformation and equilibrium problems. Gibson and Ashby [3] show 

that the cellular structures have the following relationship in general:  
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where Eh and E0 are the homogenized elastic modulus and the bulk material elastic modulus, 

respectively. C is a constant dependent on the cell geometry,  is the density of the lattice cell, 

and 0 is the density of the bulk material of which the lattice structure is made. Deshpande et al. 

[6] use the linear elastic stress versus strain relationship to formulate the analytical expression of 

the elastic modulus of the octet-truss lattice structure. The maximum value of the elastic modulus 

Eh is formulated as 
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  (2.42) 

where E0 denotes the elastic modulus of the bulk material, and D and l denote the strut diameter 

and strut length, respectively. Gumruk et al. [86] present the analytical formulation of the initial 

compression modulus (Eh) of a body-centered cubic (BCC) lattice cell as follows:  
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where L denotes the lattice cell size.    

These kinds of analytical methods are very convenient to calculate the homogenized 

properties of materials; however, these are established based on many simplifications and 

assumptions. For example, analytical homogenization approaches such as Eshelby method ignore 

the consideration of the size and position of the inclusions, which leads to inaccurate results. The 

analytical formulations of CLSs utilize beam deflection theory, which cannot capture the 
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deformation of the solid material at the cell joints. Hence computational homogenization methods 

are developed as explained in Section 2.3.2.  

 

2.3.2. Computational Homogenization Methods 

Computational homogenization approaches are proposed to use an FE model of the material 

microstructure with details of the heterogeneity [149]. Since it is based on the FE modeling, any 

size or orientation of the inclusions can be considered in the analysis. Hence, it is applied to 

characterizing the heterogeneous materials with macroscopically and statistically homogeneous 

structure [150]. 

2.3.2.1. Representative Volume Element (RVE) 

Computational homogenization methods are based on the concept of a representative volume 

element (RVE). An RVE can be defined as the smallest fundamental building blocks, also called 

repeating unit cell for a material with a periodic microstructure with the assumption of a volume 

containing a very large (mathematically infinite) set of microscale elements [152], [153]. When 

RVEs are assembled side by side into an infinite array, it forms the heterogeneous material with 

periodic microstructure. The assumption of the homogenization for an RVE is that since each RVE 

is indifferent from the next, the response of the entire array under macroscopically uniform loading 

is identical to the response of an arbitrary RVE under the same loading. For the selection of the 

optimal size of the RVE, the following two criteria have to be satisfied[151]. First, the RVE must 

be sufficiently small with respect to the dimensions of the macroscale structure so that it can be 

considered as a material point in the equivalent homogeneous continuum. Second, it must be large 

enough with respect to the scale of the inclusion phase to have elastic properties independent of 

the loading condition [152].  
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This concept of homogenization through an RVE is shown in Figure 2.3 for a 

heterogeneous medium in the domain x with a porous microstructure subjected to the traction t 

at the traction boundary t . As can be seen on the left side in Figure 2.3, a lattice structure can be 

considered as the fine scale heterogeneous medium in the computational homogenization methods 

because any geometry and inclusions (i.e. voids in the case of lattice cell) can be modeled using 

FE modeling techniques as the fine scale RVE. The unit cell is assumed to be periodically repeated 

inside the medium of each point xx . This heterogeneous material can be replaced by a 

homogeneous medium   with some predicted effective properties by any upscaling or 

homogenization method [154].   

 

 

A fine scale computational model of the RVE of the heterogeneous medium can be generated with a complex 

structure (left). A homogenization approach is used to find the corresponding homogenized properties at a 

coarser scale that can represent the fine scale heterogeneous medium (right) 

Figure 2.3. Illustration of the computational homogenization process.  

 

In computational homogenization approaches, a linking mechanism between the fine scale RVE 

and the homogenized coarse scale domain is required for upscaling. Usually, the continuum level 

constitutive laws are used to estimate the homogenized properties at a coarse scale. For elastic 
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materials, Hill [152] shows that this upscaling process can be achieved by assuming that the 

average of the product of the stress and strain tensors at fine scale equals to the product of their 

averages at a coarse scale. This condition is called Hill-condition and given by  

εσεσ ::   (2.44) 

where the bar above the symbols stands for the averaging operator. The Hill condition can be 

generalized to heterogeneous materials [150] 

    
Γ

Γd  0)()(0:: xεxunσxtεσεσ  (2.45) 

where Γ is the boundary of an RVE and t, u, n, x are the traction, displacement, normal and 

position vector, respectively. This condition is satisfied for an infinite homogeneous body, but for 

a finite heterogeneous body, the applied boundary conditions have an influence on the predicted 

effective properties. Therefore, the periodicity of the RVE necessitates the use of appropriate 

boundary conditions which will represent the entire structure. Since these boundary conditions are 

applied on the RVE, and subsequently, the averaged response of the RVE is used in the 

homogenization process to determine the effective properties, the choice of the boundary 

conditions requires a thorough motivation.  

 

2.3.2.2. Boundary conditions on RVE 

The commonly used boundary conditions in micromechanics to satisfy this condition are three 

types of uniform boundary conditions [150], [153], [154]. The first one is called kinematic uniform 

boundary condition (KUBC), also called Dirichlet or essential boundary condition. In KUBC, 

uniform displacements are applied to the boundary of an RVE: 
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x         ,  xxεxu 0)(  (2.46) 

where ε0 is the applied constant strain tensor prescribed on the RVE. Then, based on the Hooke’s 

law the homogenized stiffness tensor is given by 

  KUBC εCσ 0  (2.47) 

The second one is called static uniform boundary condition (SUBC), which is also called 

Neumann boundary condition, where uniform tractions are prescribed on the edges  

x         ,  xnσxt
0)(

 (2.48) 

where σ0 is the given constant stress tensor prescribed on the RVE. For KUBC the homogenized 

compliance tensor is introduced by  

  SUBC σSε 0  (2.49) 

where the compliance tensor is the inverse of the stiffness tensor.  

An RVE is called to be well-defined when the responses under KUBC and SUBC boundary 

conditions coincide [146]. In addition to these two uniform boundary conditions, mixed uniform 

boundary condition (MUBC) is introduced as the combinations of the KUBC and SUBC, inspired 

by the fact that in experimental set-ups, it is very difficult to realize the uniform boundary 

conditions [150], [155].  

             0 x xx εxunσxt
00 )()(

 (2.50) 
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In fact, the case of uniaxial tensile conditions, where in one part of the specimen, 

displacements are prescribed whereas on the remaining part of the sample, forces are prescribed, 

belongs to the family of mixed boundary conditions [156]. Hazanov and Huet [150] show that 

KUBCs and SUBCs provide the bounds for the stiffness tensor for MUBC and effective elasticity 

tensor  

  KUBCeffSUBC CCS 1

 (2.51) 

Hence, it is seen that the KUBC overestimate the effective moduli whereas the SUBC 

underestimate the effective moduli.  The reason is explained as follows: When a displacement is 

applied to the one face, it constrains the boundary on the other face to keep the relative 

displacement constant according to the strain on that boundary. Hence, a displacement boundary 

condition applied to the RUC will not be appropriate since it will result in the flat surface remain 

flat after deformation. However, the deformation of the surface of an RVE in a periodic structure 

cannot remain flat after deformation. If boundary surfaces are forced to be flat while it has to 

deform to have a wavy surface due to the periodicity, it will be over constrained, and the result 

will be different. 

 

2.3.3.3. Periodic boundary conditions (PBCs) 

Periodic boundary conditions (PBCs) are established for this purpose by considering the 

deformation of an RVE relative to a fixed global coordinate system when the material exhibits a 

periodic microstructure [157], [158]. In PBC, the displacement u(x0) of a particular point x0 is 

considered within an arbitrary reference RVE relative to the global coordinate system with the 

coordinates x. Since all RVEs are identical, this point has its mirror images in every RVE from 
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which it is separated by a multiple of some characteristic distance L that does not depend on the 

particular location x0. The characteristic distance L that separate image points between adjacent 

RVEs defines, in fact, the microstructural scale length of the RVE (see Figure 2.3). We now 

consider the mirror image of the point in an RVE adjacent to the reference RVE and write 

displacement components of that point to first order in L as follows: For a square-shaped RVE 

with a length scale L (Figure 2.3) the PBCs are specified by 

LεxuLxu  0)()(  
(2.52) 

where nL L . For an RVE with random microstructure, PBCs given in above equations with the 

appropriate constraints must be applied directly to the RVE. Proceeding to the RVE boundary, the 

displacement difference between any two equivalent points (x, x+L) ϵ S separated by the 

characteristic microstructural length L can be related to the average strain components ε0 . The 

vector L that defines the characteristic microstructural scale of the investigated RVEs is associated 

with the three pairs of unit cell faces in 3D case. In addition, tractions, t, must be continuous across 

the adjacent RVEs at the characteristic or equivalent points so that  

)()( xtLxt   (2.53) 

Eqs. (2.52) and (2.53) define the PBCs that hold for and RVE with an arbitrary 

microstructure, which need to be applied in the micromechanical analysis of an RVE. Xia et al. 

[159] prove that the traction equation is automatically satisfied by only using the displacement 

equation in a displacement-based FE method. Hence, only Eq. (2.52) is necessary to apply PBC 

on RVE.  
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PBCs can provide reasonable estimates of the effective properties even if the 

microstructure does not have the actual periodicity [160]. It was also shown that PBCs provide 

better approximations of the effective properties for the small size of RVEs because PBC estimates 

are always bounded by the estimates of PUBC and KUBC [160]. PBC was also found to be 

providing better solution compared to the MUBC in both elastic and plastic behavior of the 

material [7].  

Once the fine scale RVE is modeled with the appropriate boundary conditions, the 

homogenized model at coarse scale should be defined. For elastic materials, the generalized 

Hooke’s law for the homogeneous material is written as  

εCσ  eff   (2.54) 

alternatively, in matrix form  

klijkl

eff

ij ε Cσ 
 

(2.55) 

where the stress and strain tensors are found by the volume averages over the RVE, given by 


V

ijij dVσ
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σ )(
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(2.56) 


V

ijij dV
V

)(
1

)( xx 
 

(2.57) 

To find these volume averages, a displacement-based FEM can be used. When 

displacement-based FEM is used to model the RVE with PBC, the global stiffness equation is 

given by  
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}{}]{[ FUK   (2.58) 

where [K] is the system global stiffness matrix, {U} and {F} are the global displacement and 

global nodal force vectors, respectively. When the displacements are defined as the boundary 

conditions on RVE, above equation produces the corresponding forces based on the global 

stiffness matrix constructed based on the element type and material used in FEA.  When we assume 

a uniform strain field as boundary conditions, the displacement field on the boundary of an RVE 

is given in the matrix form: 

jiji Lu 0

 
(2.59) 

for ith direction. When 0εij is applied as a constant strain, the average of effective macroscopic 

strain 
ij is the same as the applied constant strain, i.e. 

ijij  0  in volume average strain equation 

Eq. (2.57). Then the PBC equation in Eq. (2.53) can be written as  

iii uuLu 0)()(  xx
 (2.60) 

Since L is constant for each pair of the parallel boundary surfaces, with specified ε0

, the right side 

of Eq. (2.60) becomes constants and such equations can be applied in the FEA as nodal 

displacement constraint equations. Then the global stresses can be obtained from the stress 

distribution on the RVE calculated by FEA through Eq. (2.56). 

By using Gauss’s theorem this volume integration can be transformed to surface integration 

over the entire boundary surfaces [159]. Thus, instead of the volume average of stresses, the 

resultant reaction forces on the boundary surfaces in an FEA can be used to calculate the average 

stress on jth boundary surface as follows: 
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where Aj is the area of the jth boundary surface and (Pi)j is the ith resultant traction forces in each 

direction on the jth boundary surface. Then, to find the effective constants in the macroscopic 

stiffness matrix, the global stress-global strain relation of the periodic structure can be written as  

}]{[][  k  (2.62) 

where k is the effective macroscopic stiffness matrix.    

In the above formulation of homogenization process, the homogenized constitutive model 

constants are found by inverting the Eq. (2.62), which imposes computational complexity. For 

instance, assume that a 2D RVE will be modeled as an isotropic elastic material, which is the 

simplest case of Hooke’s law. Then, it would be sufficient to apply the PBCs under tensile 

conditions by prescribing displacement on surfaces in one direction (e.g. surfaces in y2 direction 

for the RVE in Figure 2.3). Since the boundary conditions represent a tensile or compressive 

configuration, the following holds: 022  , 012  , 012  . Then, the stiffness tensor is a fourth 

order tensor in 2D and gives the material constants by the constitutive equation of Hooke’s law: 

                                                     
eeD  :4   (2.63) 

from Eq. (2.63), the effective Young’s modulus and Poisson’s ratio of the isotropic material is 

simply obtained by  
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where E is the effective Young’s Modulus, v is Poisson’s Ratio, I is the second order unit tensor, 

and 4I is the fourth order unit tensor. Then, the following expressions for effective Poisson’s ratio 

and elastic modulus are readily obtained:  
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   (2.65) 

As seen, even for this simplest case, the complex tensors are needed to be solved. For 

more complicated constitutive models (e.g. viscoelastic or plastic material models) the 

computational cost working with such tensor is a burden. The complexity also increases 

when homogenization methods with more advanced linking formulations are utilized such 

as asymptotic homogenization method [42], [76], discrete homogenization method [70], etc. 

Furthermore, a thoroughly motivated selection of a constitutive model at the macroscopic 

level remains difficult. 

 

2.3.3. Upscaling through Optimization 

As stated in Section 2.3.2, the computational demand of the homogenization methods is high 

because of the inherent complex linkage formulations that are based on the continuum theory. In 

a deterministic sense, a simple alternative to these homogenization methods is to use the calibration 

process described in Section 2.2 (or the inverse material characterization process) for upscaling a 

fine scale model to a coarser scale model with homogenized properties. This method can also be 

called parameter retrieval through optimization, where the homogenized material at coarse scale 

is treated as a black-box function rather than directly solving the explicit constitutive model 

equations. When black-box functions are used such as FEM, direct solution for the homogenized 
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properties is not available since the black-box functions are not invertible. Hence, an optimization 

process is utilized to find the optimal homogenized properties that enable the matching of the 

homogenized model responses with the fine scale model responses.  

This process is similar to the calibration process described in Section 2.2 since the 

computational model input parameters (i.e. coarse scale model) is predicted based on existing 

observations or measurements (i.e. fine scale model responses). The application of the 

homogenization through optimization is seen when fine scale uncertainties are considered in 

homogenization [97] and [98]. The inverse material property characterization method is also called 

the stochastic upscaling method [97] as the uncertain homogenized properties at an upper (or 

coarser) scale is determined based on the lower scale (or finer scale) uncertainties of the material. 

In Figure 2.4, the flowchart of this upscaling method through optimization is depicted for a 

deterministic case for a complex plate example introduced in [98]. 

 

Figure 2.4. Flowchart of the upscaling method through optimization with the complex plate example in [98]. 

 

In this upscaling method, there exist three main steps. In the first step, the fine scale model of the 

structure is constructed with detailed information of the material as  FMFMFM XfY   where the 
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responses YFM are calculated with the functional relationship fFM(.) using the input variables XFM. 

In the complex plate example shown in Figure 2.4, the fine scale model is an FE model of 2 skin 

plates, three longitudinal ribs and twelve elongated L-shaped members that are connected with the 

adhesive material [98]. In the second step, a corresponding coarse scale model  CMCMCM XfY   

is developed, which is a simple FE model homogenized properties XCM. In Figure 2.4, a Bernoulli 

beam is used as the coarse scale model which represents the fine scale model. The third step is the 

optimization. As stated in Section 2.2, because the coarse scale model cannot be reversed 

explicitly, it is treated as an inverse problem where a parameter retrieval process through 

optimization is applied. Specifically, an initial guess is made for XCM and the corresponding coarse 

scale model responses YCM are calculated. Then, error or difference between the fine and coarse 

scale responses is calculated. If the error is minimized using an optimization algorithm, the 

homogenized values of XCM are obtained. Otherwise, XCM values are refined. The coarse scale 

model responses are calculated again, and the error is minimized by repeating this process.  

As stated earlier, this upscaling process through optimization is very promising to 

mitigate the computational cost of the homogenization methods that has complex linking 

formulations with explicit governing equations at the coarse scale. Stochastic upscaling 

methods introduced in existing references such as [97], [98] to consider the effects of 

uncertainties at the fine scale levels on the homogenized properties also imply that this 

approach has a potential to use in material characterization in a multiscale modeling 

framework. Another advantage of the stochastic upscaling process is that it enables the 

calibration of the coarse scale FE model input variables based on the fine scale details. Thus, 

when these homogenized input variables are used at a subsequent level, for which the fine 

scale model is generated using the coarse scale FE model of the lower level, any numerical 
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errors can be eliminated that may occur when the other homogenization processes are used. 

The stochastic upscaling method through optimization is improved in this research to be able 

to use it as a multi-level uncertainty quantification approach for the efficient design of 

cellular lattice structures. 

 

2.4. Verification & Validation (V&V) 

Verification and Validation (V&V) process of computational models have seen a large interest for 

the last two decades because V&V procedures are the primary means of assessing accuracy in 

computational models. As can be viewed in the following figure verification is defined as the 

accuracy assessment of a computational model by known exact mathematical models while the 

validation is defined as the evaluation of a computational model by the real world experiments.  

 

Figure 2.5. Relation of the verification and validation with the computational model 

 

2.4.1. Verification in Computational Modeling  

Computational models are developed to predict the outcome of the problem for which the 

mathematical models are not explicitly available or too complicated. A mathematical model of a 

physical problem usually comprises a set of partial differential or integral equations with 
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associated boundary conditions and constitutive equations. The mathematical model for a physical 

process, on the other hand, can model relatively simple cases since the complexity of the model 

dramatically increases for complicated cases. Therefore, computational models, which are the 

numerical implementation of the mathematical model, are developed to be able to solve the 

problems. For example, we can have the explicit mathematical expression for a one-dimensional 

beam bending problem, while for a three-dimensional crossbar under bending these mathematical 

expressions are too simple to have accurate results. Hence, a finite element model of the cross-bar 

is developed as a computational model to predict the behavior of the bar. This computational model 

has the fundamentals of the mathematical expression for the simple beam bending case, and it 

enables the application of the expression for the complicated situations. Hence, it is expected that 

the computational model should give very accurate results for the simple case when the results are 

compared with the mathematical expression. A verification process is implemented to check the 

accuracy of the computational model against the mathematical model. In a more general definition, 

verification is the characterization of the numerical approximation errors associated with a 

computational model to evaluate its predictive capability [103].   

The verification process can be divided into two categories. The first one is the code 

verification that determines whether the computer program or the code can correctly implement 

the intended algorithms. For code verification, the correct solution of the intended algorithm must 

be known. Since it is very challenging to have this exact or correct solution, usually simplified 

model problems are chosen. Code verification addresses both the correctness of the chosen 

numerical algorithm and the correctness of the written source code to ensure there are no coding 

mistakes. Since coding mistakes can be eliminated when they are identified, their effects on the 

numerical solution are tough to estimate. To minimize the errors due to the coding errors or 
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mistakes, good software engineering practices and specific techniques for scientific computing 

software should be employed. Various code verification techniques have been proposed and can 

be checked for further understanding [101]-[103],[162],[163]. 

The second category is the solution verification (or calculation verification) which 

ensures a given computational model simulation of a mathematical model is sufficiently accurate 

for the intended use. In other words, solution verification is implemented for the computational 

model(s) that will be used to make the prediction for a particular problem. It depends on the code 

verification because code verification ensures that the numerical algorithm is consistent and 

convergent and mistake-free. Once the code verification is done, the solution verification can 

ensure that the simulations will converge to the exact solution of the mathematical model for the 

intended application or problem. In solution verification, the main focus is to estimate the 

numerical errors that occur when a mathematical model is discretized and solved using the 

computational model. Hence, the solution verification is carried out in terms of the responses or 

outputs to find the numerical error.  Solution verification can be performed by using the 

computational model itself to produce high-resolution reference solutions. For instance, the 

computational model can be investigated with various size of meshes or different arrangement of 

the mesh elements. Such studies enable to assess the rate at which self-convergence is achieved in 

the responses thus the error is estimated and controlled for the chosen resolution or discretization.  

Numerical errors can arise due to the round-off, statistical sampling, iteration, and 

discretization. Round-off errors occur because of the use of finite digits. It can be reduced by using 

more significant digits in the computation. Due to the advancements in the computational power, 

the round-off errors can be avoided since it has a very small effect compared to the other error 

types. A very practical approach to assessing the effects of the round-off error on a simulation 
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prediction is to run the simulation with the desired precision, then re-run the simulation with larger 

precision and compare the solutions. The precision level is chosen when the residuals can no longer 

be reduced due to round-off error [101].  

Statistical sampling error is another error to be estimated in verification. For stochastic 

analysis, some realizations are needed to determine the mean quantity of the response. The 

statistical sampling error can be estimated by assessing the convergence of the desired system 

response quantities with the increased number of realizations, iterations or time steps. If the 

number of realizations is the case, for example, the simple approach is to estimate the mean value 

of the different number of realizations and compare the running average with a true average which 

is estimated for a very large number of realizations.  Then, the smallest number of realization 

which produces a sufficiently small error compared to the actual average is determined as the 

number of realizations. A better approach would be to determine a stopping criterion for the 

realizations based on the convergence of the standard deviation of the response. A desired 0.02% 

error can be considered for this purpose [164].  

Discretization error arises because the spatial domain is decomposed into a finite number 

of nodes/elements. For complex scientific computing problems that involve nonlinearities, 

geometric complexity, multi-physics and multiple scales, generating an appropriate mesh to solve 

the problem is often inadequate. Therefore, it is often the largest numerical error and is difficult to 

estimate for practical problems. Iteration errors occur when an iterative method is used to solve 

the system of algebraic equations resulting from the discretization of the mathematical model. 

Iterative methods are often required for the cases where nonlinear discretization employing 

implicit algorithms are used. Even for the linear discretization direct solution methods can be used, 

but if there exist a large number of unknowns, iterative methods are more efficient than the direct 
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methods. When iterative methods are utilized, an iterative convergence approach is necessary to 

find the difference between the current numerical solution at iteration k and the exact solution of 

the discrete equations. In most cases, the exact solution is not available, and therefore, a 

convergence criterion in terms of the difference, 
1k

h , (either absolute difference in Eq. (2.66) or 

relative difference in (2.67)) between successive iterates is calculated: 
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where 
1k

hf  and 
k

hf are the responses at iteration k+1 and k, respectively. This iteration 

convergence checking approach can also be used to check the mesh convergence to evaluate the 

discretization error as well. In that regard, denser meshes are generated for the same model and 

the difference from the previous coarser mesh result is computed using Eq. (2.66) alternatively, 

(2.67). If sufficient convergence is achieved, at iteration k, the corresponding mesh size is used in 

the simulations. Numerical errors can be neglected if they are sufficiently small. In the cases when 

the numerical errors are relatively high and certain, then these errors can be removed from the 

numerical simulations by considering a bias error. If the numerical errors are not known as certain 

those can be treated as epistemic uncertainties, which are the uncertainties due to a lack of 

knowledge of the actual value of the error. Moreover, depending on the contribution of the 

quantitative assessment of the errors, the code is revised by focusing on the reason to decrease that 

error type. 
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2.4.2. Validation in Computational Modeling 

Validation is a way of assessing whether or not the model prediction is within some tolerance 

determined by the user based on the application when compared to the quantitative observations 

or measurements for a physical system or experiment. Hence, the available physical observations 

are crucial to any validation assessment. However, experimental data are often expensive 

especially for complex systems. The validation experiments, therefore, should be chosen to 

provide optimal information for the validation of the computational models. In the case of complex 

systems hierarchical validation processes are preferred [102], [103]. The hierarchical validation 

process can be considered as a validation pyramid depicting the increasing complexity of the 

physical scenarios [105]. In Figure 2.6, the validation pyramid approach is shown for an aircraft 

structural design.  

 

Figure 2.6. Validation pyramid approach for an aircraft structural design [105] 
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The left side of the pyramid has the experiments with increasing complexity while the right 

side has the corresponding computational models. At the lowest level of the pyramid, a calibration 

process described in Section 2.2 is achieved for subcomponents of the system based on simple 

experiments. Combinations of subcomponents are then tested against more complicated models 

which have less number of experimental repetitions. At the highest level of the pyramid, if there 

exist some experimental observations for the complete system, the validation test is achieved for 

the full model.  

In Figure 2.7, the flowchart of the V&V process at each level of interest taken from the 

ASME V&V guide [103]  is demonstrated. The left side of the flowchart depicts the computational 

model, while the right side is the experiments. Once the code verification and solution verification 

are completed for the computational mode, the uncertain simulation responses or outputs are 

obtained by utilizing uncertainty quantification methods described in Section 2.1 and Section 2.2.  

Then, a comparison with the validation experiments should be made. One key fundamental 

challenge in V&V efforts is to compare the model predictions with corresponding experimental 

observations given uncertainties in both. This step is critical because it defines how the model will 

be challenged against the physical data depending on the intended use of the model.  

The comparison can be conducted qualitatively or quantitatively. Qualitative methods 

often involve the comparison of the computational model against experiment results graphically 

with histogram, box plots, and scatter plots to make a subjective judgment on whether the 

computational model has sufficient accuracy for its intended applications. However, those do not 

quantify the degree of agreement and therefore are insufficient for validation. A validation 

assessment method should be able to answer the question whether the computational model 

accurately represents the reality as well as it should support whether the degree of confidence with 
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which we accept or reject a model is adequate for the intended model use. Statistics-based 

quantitative methods are needed for this purpose.  

 

Figure 2.7. Verification and Validation flowchart at each level of complex systems 

 

A validation metric or a measurement system can provide a quantitative assessment of the 

comparison. By definition, a validation metric provides a quantitative measure of agreement 
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between the predictions of a computational model and physical experiment outputs. The output of 

a validation metric is compared to the validation requirement to assess whether or not the 

agreement is sufficient. If the metric value is larger than the given threshold, then the model 

predictions are accepted, and the next level of interest can be performed. If the metric value is 

smaller than the given threshold, then the model predictions are rejected. Then the model has to 

be revised, and validation has to be done again until sufficient agreement is obtained based on the 

validation metric. Because uncertain quantities are involved, care must be taken to choose the 

response quantities and validation metric so that the model is correctly and sufficiently challenged. 

Since the validation metric is the key element of the validation, it is explained in a separate section 

in Section 2.4.3.  

 

2.4.3. Validation Metric 

This review investigates several validation metrics proposed in the literature to address both 

accuracy and adequacy requirements for model V&V. There is no correct way to define a 

validation metric, but for selecting a validation metric, there exist some key considerations or 

features. First of all, it should be determined what the model is being asked to predict (depending 

on the intended use of the top-level model) as well as what types of experimental data are available 

or needed. Second, the metric should be a quantitative measure of the agreement between 

predictions and experiments. It should also provide the same assessment for any user or decision 

maker independent from their individual preferences, meaning it should be objective. Another 

desirable feature of a validation metric is the ability to account for the uncertainties in the 

predictions and physical observations. A validation metric is desired to consider a statistical 
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confidence level associated with the amount of available experimental data. The validation metric 

should measure the agreement when there are multivariate responses and multiple validation sites.  

  

2.4.3.1. Classical Validation Metrics 

Various types of quantitative metrics have been proposed over the years for the validation of 

computational models. Oberkampf and Barone [165], Liu et al. [106] and Ling and Mahadevan 

[107] have attempted to collect and discuss various validation metrics. Depending on the nature or 

form of the model output and experimental data, the validation metric may involve comparison of 

means or variances or even two probability distributions. When mean and standard deviations are 

compared, simply the estimated error is given by the difference between the predicted mean and 

the mean of test results. For instance, we can measure the mismatch between model responses (YM) 

and experimental observations (YE) by defining a metric, dE, as  

  )()(),( EMEMEME YEYEYYEYYd   (2.68) 

where E denotes the expectation (or the mean) of the corresponding random response, which can 

be calculated using Eq. (2.4). This idea can be generalized for a higher order of moments and the 

equality in a higher order moment implies equality in the lower order moments. Another metric is 

an average relative error which is defined as the ratio of the absolute value of the difference 

between two mean values and the mean of the test results. 

These metrics assume that the mean and standard deviation of both model and experiment 

results can be obtained accurately. In real, on the other hand, the number of experiments is not 

sufficient to accurately determine the statistic parameters of the outputs (e.g. when epistemic and 

aleatory uncertainties exist). Hence, these methods do not work well when a few experiments 
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and/or simulations are conducted for validation. In addition, the use of moment matching is simple, 

but a subjective decision criterion is required to evaluate the metric result. Hypothesis testing 

methods or Goodness of fit tests explained in Section 2.1 have been explored for model validation 

assessment in recent literature to address these issues [108], [166]. In this method, a Boolean 

decision is given (model is accepted or rejected) based on a test statistic method according to the 

differences between the moments or distributions of model and experiment outputs. The decision 

is made between the plausibility of two hypotheses: First, the null hypothesis, denoted by H0, 

represents something (usually null hypothesis is formulated as the model prediction being equal to 

an observation) that is believed to be accurate. Second, the alternative hypothesis, denoted by H1, 

represents the opposite hypothesis to null hypothesis H0 (usually the alternative hypothesis is 

formulated as model prediction being not equal to the observation). In classical hypothesis testing, 

a test statistic T is defined as a function of the difference between some estimators of observation 

and prediction, and then the actual value of statistic t is estimated based on the validation data. The 

test statistic follows a certain distribution such as t distribution, F distribution, etc. Thus, a 

corresponding probability (p-value) that the test statistic falls outside a range defined by the 

computed value of the test statistic under the null hypothesis is calculated. The p-value is an 

indicator of how good the null hypothesis is because a better Ho corresponds to a higher probability 

of the test statistic falling outside the range. The null hypothesis is rejected if the computed p-value 

is less than a significance level (α) and thus the model is rejected.  

There are various test statistics used in hypothesis testing methods. When normally 

distributed outputs are assumed, the mean and variances are compared and tested using t-test 

statistic and F-test statistic, respectively [106]. The problem of these classical hypothesis testing 

methods is that for validation of entire distribution, it is not adequate to compare only the first two 
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moments. Moreover, when only one physical experiment data point is available at each validation 

site, the hypothesis testing is not applicable because the mean and variance of the physical 

observations cannot be calculated with only one sample [106]. Hence, the hypothesis testing is 

used to compare the differences between the two CDFs using other test methods such as Anderson-

Darling (A-D) test [117], Kolmogorov-Smirnov (K-S) test [118] and Cramer-von Mises test [116], 

which were described in Section 2.1. Even though these methods are simple to estimate, the 

problem of hypothesis testing is that it only allows a Boolean decision (accept or reject) and does 

not quantitatively measure the discrepancy between predictions and observations [107].  

Zhang and Mahadevan [167] applied Bayesian hypothesis testing and the Bayes factor 

metric for validation of limit state-based reliability prediction models. In Bayes approach, the 

statistical parameters such as mean are treated as random variables and updated by the experiment 

data. If we observe k failures out of n tests in our model to predict the failure probability p for a 

physical system, then the Bayes factor metric is derived as 

knk ppkknnnB  )1()!)!/(!)(1(  
(2.69) 

When B > 1.0, it is concluded that the model predicts well the experiments. The Bayes 

factor metric has been extended to the validation of more generalized outputs [168]. When the null 

hypothesis H0 defines that the model is true and alternative hypothesis H1 is defined as the opposite 

of H0, the Bayes factor metric is the ratio of posterior distributions of two hypotheses of the model 

prediction [168]. Rebba and Mahadevan [169] introduced the equality-based formulation 

 DmDm yyHyyH  :,: 10  and the interval-based formulation 

   DmDm yyHyyH :,: 10
 for Bayesian hypothesis testing, where ym is the model 
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prediction for a particular input x and yD is the test value. Bayes factor metric can identify the 

acceptance of a model even when only one observation is available [106]. However, the Bayesian 

metrics are affected by the subjective choice of the prior. It would be more useful for a decision 

maker to have a direct, objective and quantitative measure of the “reliability” or probability of 

success of the model. Also, using simple probabilities to express the validation results would be 

easier to interpret than the aforementioned complicated probability metrics or Bayes factors. 

Simple metrics are preferred for this reason. Another motivation for the use of simple metrics for 

comparison is that one can avoid the debate over major philosophical differences between 

frequentist and Bayesian hypothesis testing while performing model validation. Moreover, similar 

to the classical hypothesis test, Bayesian hypothesis methods are also only suitable for reaching a 

yes or no conclusion for model selection. They cannot quantitatively assess the accuracy of a model 

by measuring the discrepancy between model predictions and experiments while distance based 

methods can be used for model selection as well as for quantifying the model error to update the 

model prediction in practical validation activities.  

A frequentist’s metric [106] can be used to overcome the drawbacks of the classical and 

Bayesian hypothesis metric methods. The distance between the mean of predictions and 

experiment results is measured, and a confidence interval of test data can be constructed based on 

the standard deviation of the test data (s) and compared with the metric result (i.e. the estimated 

error in the model, ê .  











N

s
Nte

N

s
Nte )1(ˆ,)1(ˆ

2/2/ 

 

(2.70) 



92 

 

In this confidence interval, )1(2/ Nt  is the 2/1  quantile of the t distribution for v = 

N-1 degrees of freedom. The metric can be the average absolute error metric mentioned before. If 

the error is smaller than the confidence interval then the model is accepted as adequate [101], 

[170]. In this metric, the decision criterion of accepting or rejecting a model is separate from the 

metric itself since no null hypothesis is used. Thus, it allows for the one to objectively quantify the 

variation of the error while making a decision separate from the metric itself. Nevertheless, the 

confidence interval requires at least two experiments. That means it is not usable if there is only 

one experiment (because N-1 becomes zero if there is one experiment). Also, if only mean values 

are used, the metric cannot account for the variation of the model and experiment results. This 

issue might lead a wrong decision about the model if the means are the same, but the variations 

are different.  

A simple validation metric, called the z-metric, which quantifies the difference between 

uncertain model and test results in the form of a simple measure of error, is proposed by Ref. [171]. 

Since the model and experimental results are both random variables, the z value of the metric will 

be a random variable. The CDF of the z-metric is used to calculate the probability that the 

computed error is acceptable (not greater than a specified amount) since the error and probability 

are related in the CDF. A smaller error corresponds to a smaller probability that the error will be 

met. Rebba and Mahadevan [169] proposes a model reliability metric in which a simple validation 

metric is defined as )(   dPr , which can also estimate the model reliability. This metric 

indicates that the probability that the difference d between experiment result and model prediction 

is within a small interval. A confidence requirement c is determined to accept the model prediction 

only when cdP  )(  . Even though the variability is accounted for the validation of these 

methods, the details of the distributions (i.e. higher order moments) can be ignored.  
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For a distribution model, it is not always easy to know what statistics are relevant for a 

particular application and therefore, the entire distribution must be considered in a validation 

metric.  One of the very popular approaches is the maximal probability, i.e., vertical difference 

between the two CDFs given by Eq. (2.7) that defines the K-S statistical test for comparing 

distributions. Another widely used measure of discrepancy is the Kullback-Leibler divergence (i.e. 

relative entropy) [172]: 


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where x is the random variable (i.e. the response), the probability function p represents the 

observations from experiments, and the probability function q denotes the observations from 

model predictions. Relative entropy is commonly used in information theory and also in physics 

to measure the entropy of the distribution p with respect to the distribution q. L1 norm and L2 norms 

are also utilized to consider the entire CDF. L1 norm is known as the sum of the absolute 

differences between the model predictions and experimental observations:   





n

i

iEiML yyd
1

,,1  (2.72) 

The average of the L1 norm can also be used, which is called “mean absolute error” (MAE): 
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L2 norm, which is the square root of the sum of the square of the differences, is given by: 
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In the least squares minimization given by (2.33), the L2 norm formulation without the 

square root is utilized. The average of it is also a widely used error checking method and called 

“mean squared error” (MSE) or “squared distortion”: 
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These metrics, given in Eqs. (2.72)-(2.75), are also used in statistical modeling and 

calibration processes outlined in Section 2.1 and 2.2, and in the stochastic upscaling methods 

through optimization described in Section 2.3.3 to evaluate the result in the optimization processes 

for predicting the input properties by minimizing the differences between the target or 

experimental responses and model responses.  

 

2.4.3.2. Area validation metric 

Despite the extensive use of the metrics above in the validation processes, these metrics cannot be 

applicable when the number of experiments and simulations differ from each other. One validation 

metric that can be used to overcome these drawbacks is using the “area validation metric” [110]. 

The area between the CDF of the model output denoted by F and the CDF of the experiment output 

denoted by Sn is calculated as the measure of mismatch between them. Mathematically, the area 

between the curves is the integral of the absolute value of the difference between the functions 
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The stochastic prediction from the model can be characterized as a CDF, F(x) where x 

denotes the predicted variable.  For discrete case, the CDF is referred to as an empirical CDF, and 

it is built by the data set including the discrete values of the variable x, i.e. observations. ECDF is 

a non-decreasing step function with a constant vertical step size of 1/n where n is the sample size 

of the data set. The locations of the steps correspond to the values of the data points. The 

distribution for the data xi, i=1,2,…,n, is given by Eq. (2.6). An ECDF is an exact representation 

of the distribution of the data when it is discrete, regardless of the amount of data hence a better 

modeling of distribution of discrete data opposed to a continuous CDF. It does not require any 

assumptions to represent the data, for instance, as is needed to construct a histogram of a data set. 

Moreover, it preserves all the statistical features of the distribution such as its scatter, dispersion, 

central tendency, location, etc. [101].  

Unlike the validation metrics in hypothesis testing methods and the reliability-based 

methods, the area metric has no probability interpretation. It is merely the difference between the 

entire distributions (i.e. CDFs) of predictions and experiment results; its physical unit is the same 

as the quantity of interest. Therefore, the area validation metric can be viewed as a direct measure 

of prediction error. [110]. A large area difference indicates that the disagreement between the 

model predictions and the experimental measurements is high. Since the area metric has the 

physical unit of the quantity of interest and represents the prediction error of a model, the threshold 

of model rejection/acceptance can be set up based on the error tolerance limit in the prediction 

domain. Moreover, the area metric can be used even when only a few data points from 
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computational models or experiments are available. The lack of experimental data can also cause 

a larger area metric value. It is also applicable when the simulation and experimental 

measurements are given by a p-box [101].  

 

2.4.3.2. u-pooling method 

When the data is sparse at multiple validation sites, the agreement between two distributions can 

be measured by using the u-pooling method introduced by Ferson et al. [110] as an extension of 

the area metric to multiple validation sites. It allows o assess the global predictive capability of a 

model by pooling all the physical experiments at multiple validation sites into a single aggregated 

metric using the probability integral transformation (PIT) theory [173]. In PIT, if Y is a random 

variable or response of a model with its CDF, FY(y), then the CDF values of Y denoted by U = 

FY(y) follows a standard uniform distribution (i.e. U ~ Uniform(0,1)).  

The illustration of the u-pooling method for two validation sites ( 2VSn ) corresponding 

to two prediction CDFs (.))(k

MF  where VSnk ,...,1 is given in 0. Let the experimental observations 

for each validation site are denoted by )}({ )()( jyY k

E

k

E   where 
)(1 k

E,...,nj  and
)(k

En  is the number 

of experimental observations at kth validation site. In 0, the first validation site has two 

experimental observations 2)1( En , i.e. )}2()1({ )1()1()1(

EEE ,yyY  , while the second validation site has 

one experimental observation 1)1( En , i.e. )}1({ )2()2(

EE yY  . For each experimental observation

)()( jy k

E , a corresponding u-value is calculated using the corresponding prediction CDF model: 

))(( )()( jyFu k

E

k

Mt  , T,...,nt 1  (2.77) 
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where Tn  denotes the total number of experimental observations at all validation sites calculated 

by 



VSn

k

k

ET nn
1

)(
. As seen in Figure 2.8(a), there exist three experimental observations 3Tn  in 

total. Then, the ECDF of the u-values is calculated using Eq. (2.6). According to the probability 

integral transformation, if the model CDFs accurately predicts the experimental observations, then 

the ECDF of the u-values must follow a standard uniform distribution (SUD). Thus, the ECDF of 

the pooled u-values is compared with the CDF of the SUD to make a decision for validation of the 

predictions as shown in  Figure 2.8(b). This comparison can be made by the area validation metric 

given by Eq. (2.76).  

 

 

(a) Calculate the CDF values (u values) of each experiment response from the prediction CDF of 

corresponding validation site. (b) Comparison of the ECDF of all u values with the CDF of SUD. 

Figure 2.8. Illustration of the u-pooling metric  

 

Area metric and the u-pooling method can be used for validating a single response model as well 

as a model with multiple uncorrelated responses. However, they are not appropriate for validating 

multiple correlated responses [106]. Li et al. [111] introduces two new metrics, namely PIT metric 
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and t-pooling metric. In PIT metric, the joint CDF of model responses and multivariate 

experimental observations are transformed into a univariate CDF and a random data sequence 

following the multivariate PIT theorem to make a comparison between the empirical CDF of the 

data sequence and the PIT distribution of the joint CDF of model responses. The other method, t-

pooling metric, allows for pooling observations of multiple responses observed at different 

validation sites similar to the u-pooling method. It compares the empirical CDF of the twice 

transformed observations with the standard uniform distribution.  

The distinctive disadvantage of area validation metric is that it is challenging and/or 

subjective to determine a model acceptance threshold. Because the metric value has the same unit 

as the responses, for different applications, the analyst must decide the threshold to accept the 

model based on his/her beliefs. The u-pooling metric overcomes this drawback since the area 

metric value in u-pooling is always between 0 and 0.5, where 0 indicates a perfect match and 0.5 

indicates the worst match. Thus, it allows quantifying the discrepancy between experiments and 

computational model, and the model acceptance is determined with respect to the accuracy 

requirement of the problem. Nevertheless, the accuracy requirement is determined by the 

allowable error based on practical needs and the application, and the area metric threshold 

does not account for the number of available experiments while making a decision of 

accepting or rejecting the model predictions.  

 

2.5. Topology Optimization 

Cellular lattice structures (CLSs) find a wide application area from aerospace parts to medical 

implant scaffolds where light weight and high stiffness is required. The current computational 

approaches to design CLSs are based on the topology optimization process. Hence, in the 
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following subsections, the theory discrete and continuous topology optimization, and Reliability-

based topology optimization are described.  

 

2.5.1. Deterministic Design Optimization 

Advances in the computational abilities allow for designers to use optimization methods in the 

design process of the complex engineering systems. With the rapid development of technology, 

these methods are integrated with the computational tools so that they can be usable in the early 

design stage. Thus, more efficient, economical and creative products can be produced. 

Optimization is used in every aspect of human life from daily activities to industrial applications. 

As a simple daily example, people optimize their way to go to work; students optimize their weekly 

schedule by choosing the courses that benefit the most. As an industrial application, companies 

design automobiles having high efficiency as well as having better performance. Without an 

optimization, it is not possible to find an optimum solution. 

Optimization finds broad applications in automotive, aerospace, construction and 

manufacturing industries. In engineering problems, in particular, mathematical programming 

techniques are used as optimization methods. The problem must be formulated as a system whose 

performance is controlled by some input variables and specified by a well-defined objective 

function. The goal of optimization is to search for the minimum (or maximum) of the objective 

function f(X) of a problem to find the best value for each design variable Xi, ni ,...,1 , that it 

depends on. A vector of the design variables,   n

n RXXXX  ,...,, 21 in the n-dimensional design 

space R, represents a single design for a set of values where n denotes the number of design 

variables in the optimization problem. The problem is bounded by some constraints regarding 
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geometry, performance, safety, cost, and manufacturability. These constraints can have inequality 

and/or inequality form. Engineering optimization processes provide the best design that satisfies 

all the constraints and bounds while minimizing the objective function. A generalized 

mathematical formulation of the optimization problems can be presented as follows:  

iablesdesign var of vector :                                              XGiven  

function objective  :    )(                                             thjXf j
 

constraint  inequality  :   )(                                             thkXgk  

constraintequality    :    )(                                             thlXhl  

 

},...,,{                                   21 nXXXXFind     to  

fj njXfMinimize ,...,2,1              ),(     Maximize)(or     

gk njXgS ,...,2,1        ,0)(                            atisfy      (2.78) 

hl nlXh ,...,2,1         ,0)(                                              

niXXX u

ii

l

i ,...,2,1    ,                                           

where nf, ng, nh, n, are the number of objective functions, equality constraints, inequality 

constraints, and design variables, respectively. 
l

iX  and 
u

iX  are the lower and upper bounds on the 

design variable iX .  

This formulation is not unique and may show differences depending on the application area 

and the problem. The optimization is not only used for the design of engineering applications. 

Statistical modeling techniques (section 2.1), calibration processes (section 2.2) and stochastic 

upscaling methods (Section 2.3.3) also utilize optimization processes for modeling purposes.  

Therefore, there is not a unique optimization formulation to be able to solve all optimization 
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problems. For example, if there is a single objective function with a few design variables, 

traditional methods can be used such as graphical solution method. However, real world 

engineering problems are too complex to be able to design with a few design variables. In topology 

optimization process there is a high number of design variables that are needed to be considered 

in the design. Hence iterative optimization algorithms are utilized to find the optimal design where 

the design variables are updated automatically based on the solution of the model [174]. 

 

2.5.2. Stochastic Design Optimization 

It is important to consider the uncertainties in material properties, external loading, and boundary 

conditions, etc. in the computer-aided design stage. The traditionally used safety factors do not 

usually lead to an optimal design for a given level of safety because different safety factor values 

are required for various structural members or different failure modes. Recently, probabilistic 

approaches are coupled with design optimization methods to design structures that achieve desired 

objectives even when uncertainties are present. The design optimization processes that account for 

uncertainties can be grouped into two main classes: Robust design optimization (RDO) and 

reliability-based design optimization (RBDO).  

 

2.5.4.1. Robust design optimization (RDO):  

RDO is one of the widely used approaches, which aims at reducing the variability of the structural 

performance caused by regular fluctuations in the design parameters. The practical concept of 

robust design was first proposed by Taguchi, and a review of Taguchi methodology is given by 

Tsui [185]. Simply, the robust optimization consists of considering the objective function means 
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(μ) and standard deviations (σ) as objectives to be minimized. Then, in robust optimization 

formulation, the minimization part of Eq. (2.78) is written as:  

fff njMinimize
jj

,...,2,1      ,       
 

(2.79) 

Thus, the structural robustness is assessed by a measure of the performance variability 

around the mean.  

 

2.5.4.2. Reliability-based design optimization (RBDO):  

When the uncertainties are often described by probability distributions, a reliability-based 

approach can be a more convenient option to evaluate the worst case scenario and the probability 

of failure. Hence, RBDO [2] is utilized that minimizes the objective function of the optimization 

problem while considering probabilistic constraints instead of the conventional deterministic 

constraints in contrast to robust design optimization methods.   The formulation of a general RBDO 

process can be written as 

},...,,{                                   21 xxxXFind     to  

fj njXfMinimize ,...,2,1              ),(     Maximize)(or  
 

(2.80) 

gkRkk nkPXGPS ,...,2,1        ,0),(                            atisfy    , 
 

 

where Gk(.) represents the limit state function, ξ denotes the uncertain variables, PR,k denotes the 

specified probability of failure level. The limit state function can be formulated as  

),(),(),(  XSXRXGk   (2.81) 
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where R is the resistance and S is the response of the system that is investigated. The structure is 

known as safe when Gk ≥ 0 while it fails when Gk < 0. When sampling methods are used, the result 

of limit state function for each sampling set is evaluated based on this criterion. The number of 

samples that falls into the failure regions are divided by the total number of samples to calculate 

the failure probability. Then, the probability constraints are evaluated in RBDO. Hence, the 

probability of failure of a structure is an indication of times the structure violates its permissible 

safety limits. Deterministic equality and inequality constraints, given in Eq. (2.78), can also exist 

in the RBDO formulation in Eq. (2.81).  

 

2.5.3. Topology Optimization 

The extension of design optimization to the optimization of material layouts is known as 

topology optimization. Topology optimization operates on a fixed FE mesh of either continuum 

or discrete elements to optimally distribute material in the material layout. In the continuum 

element-based topology optimization, the shape of the external and internal boundaries and the 

density of each continuum element in the structure are optimized using a homogenization method. 

In the discrete element-based topology optimization, the problem is solved by determining the 

optimum number, position, and mutual connectivity of structural member elements [23]. Additive 

manufacturing techniques allow for the manufacturing of complex structure designs, obtained by 

the continuum or discrete element-based topology optimization processes [175].  

Uncertainties can also be considered in the topology optimization processes described in Section 

2.5.3. Robust topology optimization (RTO) has been studied to minimize the expected value and 

variance or standard deviation of the compliance or total strain energy of the structure that satisfies 

the volume constraint [186]. Reliability-based topology optimization (RBTO) has also been 
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studied where the deterministic compliance value of the structure is minimized under a reliability 

constraint [187]. The flowchart of both deterministic and reliability-based optimization approaches 

are given in Figure 2.9. 

 

 

Figure 2.9. Flowchart of deterministic and Reliability-based topology optimization 

 

2.5.4. Discrete Topology Optimization 

In the discrete topology optimization approach, a ground structure, which is a grid of all elements 

connecting the nodes in the design space, is optimized by selecting the optimal cross-section 

parameters of the ground truss members. Hence, this method is also called ground structure method 

[176]. Each truss member in the structure is associated with a design variable that defines the 

element size or its contribution to the entire topology. Hence, the design variables are usually the 

thickness, diameter, or the area of the cross-section of each truss member.  

In the optimization process, FEA is invoked, and the information required by the objective 

function is evaluated at each iteration. Truss or beam elements are used in the FE modeling of the 
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lattice structure for the ground structure optimization. The FEA formulation for beam elements is 

given by 

    UKF  (2.82) 

    FredKU 
 (2.83) 

where F denotes the force vector, K the global stiffness matrix, U the displacement vector, and 

Kred the reduced global stiffness matrix after applying the boundary conditions. The global 

stiffness matrix K is formed by the element stiffness matrices after applying global coordinate 

transformations. A simple formulation for ground structure optimization is to find the stiffest 

structure by minimizing the compliance (C) of the structure as the objective. The compliance to 

minimize is calculated from the FEA formulation by   

KUUU TTFC   (2.84) 

One constraint that is considered in the ground structure optimization process is that the 

volume of the lattice structure is to be less than or equal to a maximum allowable volume, denoted 

by Vallow and given by 





n

i

allowii VLA
1

0

 
(2.85) 

where Ai denotes the cross-sectional area of each element i and Li is the length of that particular 

element.  When circular cross-sections are used in the modeling of truss members in the ground 

structure, for example, the diameter of each element (Di) can be considered as the design variables.  

Then, the cross-sectional area for the circular cross-sections is calculated by π·Di
2/4 for each 
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element i to find the volume of the lattice structure. This constraint can also be written in terms of 

weights by simply multiplying the volume by the density of the material.   

Also, in the optimization formulation, to satisfy an allowable stress limit (Sallow) for the 

truss members in the lattice structure, a stress constraint can be defined by  

0max  allowSS
 

(2.86) 

where Smax denotes the maximum von Mises stress calculated in the lattice structure. Thus, the 

ground structure optimization can be formulated from Eq (2.78) as  

                   

0                    

0
4

    subject to

    Minimize
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(2.87) 

where Dl and Du denote the lower and upper bounds for the design variables respectively. The 

converged optimization result is supposed to drive the value of all design variables close to the 

lower and upper limits so that a definite topology is defined.  

Ultimately, the ground structure approach is considered as a size optimization problem, 

where the cross-sectional parameters of lattice members are continuous design variables. The 

cross-sections of the members are sized to support the applied loads on the structure. At the end 

of the optimization process, each of the truss members can either exist or vanish depending on the 

problem boundary conditions. This decision is achieved by setting the lower bound of the cross-
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sectional parameters is near zero (e.g. Dl = 0.001) and the members with cross-sections near zero 

are removed after the optimization to obtain the optimal material layout.  

 

2.5.5. Continuum (Homogenization-based) Topology Optimization 

Bendsøe and Kikuchi [42] introduced the topology optimization process based on the Cheng and 

Olhoff’s approach [177] that finds the optimal thickness distribution of elastic plates, as an 

alternative to the shape optimization process [178]. Topology optimization was defined in [42] as 

“the shape optimization problems are transformed to material distribution problems using 

composite materials.” In that regard, topology optimization process is a shape optimization process 

that finds the optimal material distribution based on the use of an artificial composite material with 

microscopic voids under given macroscopic boundary conditions. The microscopic optimal void 

distribution is considered using the asymptotic homogenization method [161] to determine the 

macroscopic constitutive equations of the material with microscopic material constituents instead 

of the shape optimization by the boundary variations of a structure. In the topology optimization 

approach, a 2D composite material in microscopic scale, which is a solid material including square 

voids in its center [42], or a layered material (i.e. mixture of two materials) [179] can be described 

by a density function that can take values in the range of [0,1] depending on the size of the void. 

This density function can be generalized for any material including voids by calculating the 

volumetric density by the ratio of the void volume to the entire element volume. The use of square 

voids is the simplest choice of composites, and more complicated microstructures show similar 

performance resulting no apparent benefit [179]. Thus, the optimal topology is determined by 

filling the design space with this microstructure material with a void or removing the material from 

the design space in the optimization process depending on the macroscopic boundary conditions.  
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In other words, if the initial design is considered as a block of space, this space is filled with 

material in the topology optimization, or if the initial design is considered as a block of material, 

the material is removed from the block in the topology optimization [179]. In fact, both are 

considered simultaneously at each iteration based on the density function to find the optimal layout 

of the structure.   

Consider that a mechanical body structure occupies a reference domain Ω in R3 with a 

boundary Γ as shown in Figure 2.3. Let the body is subjected to body forces f and boundary 

tractions t on boundary ΓT and displacements on boundary ΓD. For optimal design for minimum 

compliance, the continuum topology optimization formulation is given by 

 
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(2.88) 

where U and F are the global displacement and force vectors, respectively. K is the global stiffness 

matrix, ue and ke are the element displacement vector and stiffness matrix, respectively. X is the 

vector of design variables (i.e. densities), Xmin is a vector of minimum relative densities to avoid 

the singularity. n is the number of elements used to discretize the design domain; p is the 

penalization power, V(x) and V0 are the material volume in the optimization and the allowable 

design domain volume [180].  

The FE model in Eq. (2.88) comprises continuum level elements, which require the 

material properties as the inputs in the FEA. The continuum topology optimization process is 

depicted in  Figure 2.10 with the example taken from [42]. For a periodic medium with known 
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microstructure, the material properties of the periodic microstructure must be obtained at the 

continuum level using a homogenization process during the optimization. Homogenization 

processes are, on the other hand, computationally expensive to use at each iteration for each 

element in the finite element analysis of the macroscopic structure. Hence, before the optimization, 

the homogenization process is applied to find a continuous relation between the density and the 

effective material properties. To achieve this relation in a computationally efficient manner, the 

homogenized material properties are determined for certain density values (Figure 2.10(a)) and a 

curve is fitted to have a continuous variation of the material density and material properties (Figure 

2.10(b)). The relationship between the homogenized elasticity tensor and the density is given by 

 
(2.89) 

where ρ is the density of the cell, which is a function of the cross-sectional parameters (e.g. 

diameter or thickness) of the struts.  In the optimization process, each element in the finite element 

model of the domain will have a design variable (i.e. a density value). Then, the material properties 

corresponding to this density value for each element is calculated using the curve fit in the analysis 

at each iteration during the optimization process (Figure 2.10(c)). The topology optimization, 

which is conducted based on the homogenization process, provides an optimal design that includes 

microstructures that have varying densities (Figure 2.10(d)).  

The intermediate densities are, on the other hand, difficult or impossible to produce using 

the traditional manufacturing techniques. Hence, strategies to eliminate the intermediate densities 

are introduced. Bendsøe and Kikuchi [42] introduced a lumping process to determine if the element 

should be fully solid or void instead of having intermediate densities. In the lumping process, a 

cut-off value is defined for the material density to enable the design with only fully solid and void 

)(ijklijkl EE 
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elements (Figure 2.10(e)). Bendsøe [179] utilized an artificial density function between [0,1] with 

a power-law equation. Then Eq. (2.89) is written as 

ijkl
p

ijkl EE 0)(    (2.90) 

where E0
ijkl denotes the elasticity tensor of the main material used to manufacture the 

microstructure and p is a penalization power value introduced to have a design with only fully 

solid and void elements. The density of the material is defined as a continuous variable, i.e. 0≤ρ≤1. 

This approach is known as direct approach [179] or more commonly as Solid Isotropic Material 

with Penalization (SIMP) approach [181], [182]. The reason for the latter description is that an 

isotropic material is considered to simplify the optimization process [182]. In this case, the 

elasticity matrix-density relation can be written in terms of the elastic modulus E0 of the material 

with a constant Poisson’s ratio, independent of density. Then Eq. (2.90) is written as  

0EE p

ee 
 

(2.91) 

where e represents the element number. Thus, the homogenized elasticity modulus of each element 

e is calculated by this simple artificial equation in the optimization process. This design is also 

called black and white design where void elements are represented by white and the solid elements 

are represented by black color (Figure 2.10(e)). The penalization value, p, in Eq. (2.91) must be 

sufficiently high to obtain a black and white design. For large values of p, the intermediate densities 

give a small stiffness which can then be considered as void elements. It is usually chosen as p≥3 

to penalize the intermediate densities [183].   
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(a) Homogenization is performed for a set of density values at microscopic level and (b) a functional relation 

is established, (c) Topology optimization is conducted on macroscale FEA to find the optimal densities of each 

continuum level element under boundary conditions, (d) Optimal lattice topology is obtained at the end of 

optimization (e) Optimal material topology when a lumping process is used. 

Figure 2.10. Continuum topology optimization with homogenization [42].  

 

The topology optimization also involves working with anisotropic materials. However, 

considering anisotropy increases the design variables required to describe the structure as well as 

increases the requirements of the finite element code [183].  For example, the rotation of the square 

void is considered in 2D optimization process in [42] and both the rotation and two edge length of 

the rectangular voids are considered in [184], in which the edge values and the rotation angle of 

the voids are the design variables instead of the density alone for each element.  
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2.5.6. Reliability-based Topology Optimization (RBTO) 

As seen in Figure 2.9, in RBTO, the stochastic constraints or stochastic objective functions are 

evaluated in addition to the deterministic topology optimization. Hence, the RBTO problem 

involves minimizing the compliance subject to a given allowable volume constraint of the material 

and the reliability constraints. The design variable is considered as the deterministic density values 

for each continuum level element. Then, the formulation of the RBTO problem is given by  
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(2.92) 

The random variables denoted by ξ are considered as the external loads of the structure and 

the geometric dimensions, while the design variables X (i.e. the densities of material in each of the 

finite elements) are considered as deterministic [187]. The compliance C was calculated 

deterministically in the topology optimization process.  As different from the above formulation 

Kim et al. [188] minimized the volume of the structure under the reliability constraint of maximum 

displacement in the structure while Luo et al. [189] used a reliability constraint of maximum stress 

in the structure. On the other hand, the compliance of the structure calculated also have 

uncertainties, which are needed to be considered as in the robust optimization process. For this 

purpose, several alternatives of the topology optimization formulation were implemented. For 

example, Tootkabani et al. [190] set the weighted sum of the expected value and standard deviation 

of the compliance as a constraint while minimizing the weight of the structure under the 
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uncertainties exist in material properties. Torii et al. [191] utilized the robust topology optimization 

where the weighted sum of the mean and standard deviation of the compliance was minimized 

with a reliability constraint. It is seen that various alternative formulations are available for the 

topology optimization when considering the uncertainties.  

 

2.5.7. Multi-level Homogenization-based Topology Optimization 

Traditionally, topology optimization has been applied to design macroscopic structures where a 

black-and-white material distribution is determined [180] as mentioned in the previous section. In 

recent years, an ever-increasing research interest is seen in multi-level material design and 

optimization. Specifically, the original homogenization-based topology optimization proposed by 

Bendsoe and Kikuchi [42] was expanded by assuming that a cellular material can be designed with 

a second-level or microscale level design problem at each continuum level element of the 

macroscopic level structure. Theocaris and Stavroulakis [192] utilized a certain set of cellular 

structures at microscale level, for which the homogenized elastic moduli were computed by 

analytic or numerical homogenization techniques, to seek the optimal microscale material 

arrangements in the topology optimization process at the macroscale level. Rodrigues et al. [193] 

introduced a hierarchical scheme of topology optimization where a second level topology 

optimization problem is carried out at the microscale level to optimize the material microstructure. 

Two coupled topology optimization problems are solved: The outer problem deals with the spatial 

distribution of material at the macroscopic scale while the inner problem finds the microstructure 

topology. Thus, a different microstructure for each element at the macroscale can be achieved in 

this approach. Coelho et al. [194] extended this approach for the application of 3D structures, and 

Xia et al. [195] extended its use for nonlinear cases. Liu et al. [196] proposed a similar two-level 
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topology optimization process where a uniform material microstructure is determined at 

microscale that periodically repeats for every macroscale element unlike the approach in [193]-

[195] where the microstructure of the material shows the difference for each macroscale element. 

Andreasen and Sigmund [197] utilized a similar multi-level topology optimization to design 

poroelastic actuators. A state-of-the-art review and some recent developments in this field can be 

found in the review article [198] and the references therein.  

 

2.5.8. Uncertainties in CLS Design 

Although the existing studies provide successful applications of the topology optimization process 

for multi-level material and structure design, deterministic multi-level optimization processes are 

carried out in the literature. Uncertainties, on the other hand, is required to be considered if reliable 

or robust designs are needed. In that regard, Guo et al. [199] introduced a multiscale robust 

optimization model considering applied load as a bounded uncertain variable with unknown 

probability information. A uniform microstructure that repeats periodically for each macroscale 

element is considered as similar to the approach introduced in [193]. The goal is to minimize the 

worst case structural compliance under available material volume constraint to find the optimal 

material distribution in the micro and macro scale levels concurrently.  

Uncertainties also exist in fine scale material and geometry properties, which are should 

be taken into account during the multi-level design process. The downside of the above mentioned 

multi-level design approaches using hierarchical or multi-level topology optimization is the high 

computational burden because the homogenization method is required for each element to find the 

homogenized properties of the microstructure during optimization [198]. When the uncertainties 

are considered the computational demand increases dramatically as the repetitive analysis of the 
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model is required to model the uncertainty. An analytical representation or surrogate modeling of 

homogenized properties of the microstructure will not be possible since the underlying 

microstructure topology is not known at the beginning of the design process. Moreover, the 

continuity of the material in the optimized microstructure and for different continuum level 

elements may not be achieved when the topology optimization is used to determine the 

microstructures for each macroscale element [200].  

To overcome the computational issues of these hierarchical topology optimization 

approaches, a database that gives the relation of the effective material properties of pre-defined 

cellular lattice cells with the element densities can be utilized instead of optimizing the 

microstructure with topology optimization. The database can be used to generate a continuous 

function of the homogenized properties based on various microstructure types as implemented in 

deterministically implemented in [192]. Or analytical formulations can be created for a certain 

number of pre-determined lattice cell type as a database, then the best lattice cell type can be 

chosen in the optimization process for each element based on this database by means of 

interpolation schemes. In fact, the original topology optimization proposed by Bendsoe and 

Kikuchi [42] and later used by Khanoki and Pasini [77] utilizes an analytical model of only one 

predetermined lattice cell type that produces the homogenized material properties such as the one 

given by Eq. (2.90). Thus, the macroscale model in the optimization uses directly the approximated 

effective material properties of the lattice cell without solving the computationally expensive 

microscale level lattice cell model. This functional relationship can be found for various lattice 

types and used in the optimization process to identify the optimal material layout.  

Although the use of pre-determined lattice types for designing the material layout is a very 

efficient procedure, these existing studies are carried out in a deterministic setting. The 
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approximated models will not provide good predictions when uncertainties of material and 

geometric properties are taken into consideration. More specifically, when AM techniques are used 

for fabrication of these designs with optimized lattice cells, although the lattice cell strut cross-

sectional parameters such as diameter values are set deterministically in the CAD model, the 

material and geometry of the AM-fabricated struts will have uncertainty due to the layer by layer 

manufacturing process. That means the same CAD model with the same deterministic strut 

diameter value(s), will have different material properties and strut diameters when 

repeatedly fabricated by the same AM technique with the same AM process parameters. 

Therefore, even if the design variables are deterministic, there will be uncertainty in the density 

values of each continuum level element of the macroscale level structure as well as in the 

homogenized material properties of the lattice cells. Eventually, the uncertainty in the geometry 

and material properties will influence the overall response of the structure, and the corresponding 

model will produce uncertain results. Therefore, the uncertainties at the strut level need to be 

propagated to the lattice level and should be utilized in the topology optimization. However, the 

functional relationships between the density and homogenized material properties, given by 

Eq. (2.90), would not produce accurate results when these uncertainties are considered.  

In those cases, stochastic meta-models can be developed to predict homogenized properties 

with the propagated the uncertainties across multiple levels. Thus the computational demand can 

be reduced significantly especially when the uncertainties are involved. To the best knowledge, 

this is a relatively new field that there has been very limited research. Many potential developments 

can be achieved for either optimization, multiscale modeling or model reduction. In this research, 

the applicability of the proposed upscaling method, which can accurately propagate the 

uncertainties while estimating the homogenized material properties, in developing such a 
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stochastic meta-model approach is demonstrated. Specifically, a PCE-based metamodeling 

approach is developed using the upscaling method predictions for the uncertainty of homogenized 

material properties of lattice cells. Then, this metamodeling approach can be used in matching the 

target properties of the engineering applications to eliminate the expensive simulations and tedious 

optimization processes. The details of the application of the proposed upscaling method to the 

design of lattice structures are given in Chapter 5.  

 

2.6. Summary 

In this chapter, state of the art in uncertainty quantification and propagation approaches, multiscale 

modeling and homogenization approaches, verification and validation techniques, and design 

optimization approaches are examined. The stochastic upscaling method through optimization is 

identified as the upscaling or homogenization procedure of choice for propagating uncertainties 

across multiple levels. Based on the benefits and limitations of the existing research, the BIC 

method is shown to be appropriate for uncertainty quantification of input variables with parametric 

distribution models. The main issues in the current validation metrics are also discussed, and the 

potential of the u-pooling method is reviewed. The lattice structure design approaches using 

topology optimization are described in detail, and the issues regarding the computational 

complexity when uncertainties are involved are discussed. The necessity of the simulation free 

design approaches is also explained, and the applicability of the PCE-based upscaling method for 

this purpose is discussed.  

The organization of the remaining of this dissertation is as follows: The details of the 

proposed stochastic upscaling method with the improvements made for better computational 

efficiency are provided in Chapter 3 along with the application examples that shows its 
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applicability at one scale level as well as multiple scale levels. In Chapter 4, the proposed multi-

level validation approach for prediction accuracy assessment is introduced. Two lattice structure 

applications fabricated by two different AM process are provided in detail to demonstrate the 

efficacy of the proposed approach. The application of the proposed multi-level upscaling method 

in the design of CLSs is demonstrated in Chapter 5.  
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CHAPTER 3. IMPROVED STOCHASTIC UPSCALING 

METHOD 

The objective of this chapter is to develop methodologies to address the Research Question 1 in 

Chapter 1. A computationally efficient upscaling technique is formulated that enables the 

uncertainty quantification and propagation at multiple levels of scales as stated in Hypothesis 1. 

Then, its efficacy is evaluated by implementing the method for engineering examples. In Section 

3.1, the theoretical framework of the stochastic upscaling method through optimization inspired 

by the work of Arnst and Ghanem [98] is established and the proposed improvements to increase 

its computational efficiency to be able to implement it as a general uncertainty quantification and 

homogenization method are introduced in Section 3.2. The flowchart of the improved upscaling 

method is developed and described in Section 3.3. In Section 3.4, the proposed multi-level 

upscaling framework is explained in general terms so that it can be used for not only lattice 

structures but also any other related engineering problem. Some application examples of the 

improved upscaling method are demonstrated for one level and two level upscaling processes in 

Section 3.5. Specifically, the efficiency of the proposed objective function, the applicability of the 

PCE for distribution types other than Gaussian distribution, and the effectiveness of the improved 

upscaling process when used for reliability estimation of the lattice-based structures are 

demonstrated with detailed examples. The proposed multi-level upscaling framework is 

implemented for the characterization of the overall elastic material properties of lattice structure 

specimens fabricated by a material extrusion process with the propagated uncertainties to evaluate 

its efficacy.   
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3.1. Stochastic Upscaling Method  

There exist a wide variety of stochastic homogenization methods that considers the analytical 

integration of the stochasticity into micro-continuum theory. A straightforward and robust way is 

to utilize sampling methods for the deterministic homogenization methods to obtain the 

distribution of the effective properties. As stated in Section 2.3.3, stochastic upscaling methods, 

which utilize optimization to find the homogenized input variables of a coarse scale model, are 

introduced in existing references such as  [97], [98] to consider the effects of uncertainties at the 

fine scale levels on the homogenized properties. The advantage of upscaling methods through 

optimization is that they can apply to any application and scale level of interest because the black-

box computational models at fine and coarse scales can be utilized. Thus, the homogenized 

properties can be estimated without penetrating the underlying governing equations. Moreover, 

the upscaling process eliminates the need for complex linking formulations between fine and 

coarse scale models because it is treated as an optimization problem.  

In the stochastic upscaling method, the statistical data of the homogenized property that 

represents its statistical distribution is to be found unlike the deterministic upscaling approach 

explained in Section 2.3.3 that finds only one value of the homogenized property by matching the 

coarse scale and fine scale model outputs through an optimization process (Figure 2.4). Hence, in 

the optimization process, the probabilistic performance of the coarse scale model response is 

matched with that of the fine scale model response instead of matching only one response value at 

each scale in the optimization process. The general steps of the stochastic upscaling method are 

depicted in Figure 3.1 for a lattice structure model at fine scale, which will be defined by 

continuum level elements at a coarser scale. 
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Similar to the deterministic upscaling process in Figure 2.4, the stochastic upscaling processes 

introduced in  [97] and [98] consists of three main steps, as shown in Figure 3.1. The first step is 

constructing the fine-scale model of the given system or structure and computing the quantities of 

interest or responses. The second step is to build a coarse-scale model that can accurately represent 

the fine-scale model in a reduced dimension. The final step is the homogenization procedure via 

an optimization process to match the probabilistic performance of the fine and coarse scale 

responses. Consequently, the optimum homogenized input variable samples of the coarse-scale 

model that will enable the homogenization of the fine-scale heterogeneity are determined. The 

details of these three steps are given in the following sub-sections. 

 

Figure 3.1. Stochastic upscaling through optimization 

 

3.1.1. Constructing the Fine Scale Model 

The stochastic fine-scale model is constructed in the first step to obtaining the fine-scale responses 

based on fine scale input variables with uncertainties. Let the fine-scale input variable vector is 

denoted by XFM and its uncertainty is expressed by θ. Let the response of the fine-scale model is 

denoted by YFM , and its uncertainty due to input uncertainties is represented by ω. The response 

data can be obtained using the input variable by either experimentation or a computational model 
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of the actual physical system such as a black-box FEM solver. In either case, the uncertain response 

of the fine scale model can be written as a function of the random input variable(s) of the form 

))(()(  FMFMFM fY X  (3.1) 

where fFM(.) denotes the computational model function or the experimentation. For the stochastic 

process, the MCS method can be used for generating the sampling set of the input variables and 

computation of the response values for each sampling point. Then, the fine scale response samples 

are denoted by )}({)( jFMFM yY   where FMnj ,...,1 and nFM denotes the number of samples. 

Each evaluation of Eq. (3.1) implies a call to the black-box FEM solver for each sampling point 

and provides the corresponding response sample )( jFMy   at fine scale. Then, this data is used to 

infer a lower-dimensional description of the fine scale model that captures the evolution of the 

system at a coarser scale. 

 

3.1.2. Constructing Coarse Scale Model 

A coarse scale model is identified as the second step to determine the homogenized input 

parameters that will correspond to the heterogeneous fine scale variables to represent the high 

dimensional fine scale model with a lower-dimensional (coarse scale) model that retains the 

responses. There is no restriction for identifying the coarse scale model since different models can 

represent the same fine scale model appropriately. The important point is that a simpler model 

results in a lower computational cost, which is desired. Depending on the complexity of the fine 

scale model, either the same geometry or a simpler geometry can be selected to represent the fine 

scale model with homogenized parameters. A black-box FEM solver or a simple analytical model 

can be used to obtain the coarse scale model response.  
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Let the homogenized input variable vector for the coarse scale model be denoted by XCM, 

and its uncertainty is expressed by η. Similarly, let the response of the coarse-scale model is 

denoted by YCM, and its uncertainty due to input uncertainties is represented by ~ . This stochastic 

response at coarse scale can be computed as a function of the input variable vector  

))(()~(  CMCMCM fY X  (3.2) 

where fCM(.) denotes the black-box computational model at coarse scale. For the stochastic process, 

the MCS method can be used for generating the sampling set of the input variables and 

computation of the response values for each sampling point. Then, the coarse scale response 

samples are denoted by )}~({)~( jCMCM yY   where CMnj ,...,1 and nCM denotes the number of 

samples at the coarse scale. Each evaluation of Eq. (3.2) implies a call to the black-box FEM solver 

for each sampling point and provides the corresponding response sample )( jCMy   at coarse scale. 

The unknown input variable samples are needed to be determined to have the equality of the coarse 

scale responses with the fine scale responses.  

 

3.1.3. Optimization Formulation based on Probability Theory 

The third step of the stochastic upscaling process is to identify the unknown homogenized 

variables (XC (η)) of the coarse scale model. To predict the homogenized input variables that can 

compute the responses at the coarse scale, the upscaling methods attempts to find the equality 

between the fine scale and the coarse scale models responses. In other words, homogenized coarse 

scale random input variables XC (η) are predicted such that  
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))(())((  CMCMFMFM YY XX   (3.3) 

This equality given by Eq. (3.3) can be achieved by evaluating the expected value of the 

information loss between the fine scale (target) model and the coarse scale model outcomes. In 

this work, a probability-based formulation is described to solve the equality in Eq. (3.3). Let the 

random response Y takes on various values y within the range  y . A random response or 

variable is represented by an uppercase letter, and its particular value is represented by a lower 

case letter. The bold uppercase letter represents a vector of the random variables or responses. Let 

the information loss between the fine and coarse scale responses is denoted by U(YFM, YCM) for a 

given XCM. Since the responses are random variables, the information loss is also a random 

variable. There can be different outcomes, i.e. Uu  corresponding to different probabilities 

defined by a probability density p(u). According to the probability theory, an expected value of 

the information loss for a given XCM can be determined by the integration of the information loss 

and its pdf for the continuous case as 

 duupyyuYYUEU CFCMFMCM )(),()),(()(X  (3.4) 

Analytical evaluation of this equation is difficult when the function integral is not available 

in closed form. However, the expected value can easily be estimated by generating Monte Carlo 

or Latin Hypercube samples for a random input variable )}(),...,1({ CMCMCMCM nxxX   where nCM 

is the number of samples, which is equivalent to the number of fine scale model samples, i.e. nCM 

= nFM = n. Once the coarse scale model responses are obtained as )}(),...,1({ CMCMCMCM nyyY  , the 

information loss is calculated for each sampling point in the response vector as 

     )}(),...,1({)(),.(,..,)1(),1(),( nuunynyuyyuYYU CMFMCMFMCMFM   having the corresponding 
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probabilities p1, …, pn. Then, the expected value of the information loss for a certain number of 

simulations can be defined as  

)(...)1()],([)( 1 nupupYYUEU nCMFMCM X  (3.5) 

In short, Eq. (3.5) can be written as  
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by averaging the expected values, Eq. (3.6) becomes 
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n
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If there are several possible preferences for the input variables, decision makers prefer a 

smaller expected value of the information loss to a greater expected value. In this case, if 

 ))(( iU CMX are the expected values of the different preferences  (2),...(1),)( CMCMCM i XXX   then 

the expected values are assessed by  

)(2)((1))(  (2)(1) CMCMCMCM UU XXXX   (3.8) 

 In other words, Eq. (3.8) indicates that a possible choice of XCM is preferred to another 

possible choice of CMX
~

if and only if )
~

()( CMCM UU XX  . Generalizing this approach, a decision 

maker chooses the optimal design to  

)(min CMU
CM

X
X

 (3.9) 
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This selection can be achieved by using an optimization procedure to find the optimal 

homogenized XCM that minimizes the objective depending on the difference between the fine scale 

quantity of interest, YFM, and the corresponding coarse scale quantity of interest, YCM. Then, the 

statement of the optimization procedure can be represented by 





n

j

CMFMCM ju
n

YYU
CMCM 1

)(
1

 min arg),(  min arg)~(
XX

X   (3.10) 

Here, ῆ denotes the estimated random quantities of the unknown homogenized input 

variables. This optimization process is also known as a stochastic inverse problem since the goal 

of this procedure is to find the unknown input values and distributions using the known response 

values and distributions [201]. In inverse engineering problems, the optimal input variables are 

determined by finding the expected output, (i.e. displacement, stress, temperature, etc.) as close to 

the target or desired output. This procedure can be utilized in multiscale modeling for upscaling 

the heterogeneity at fine scale to a coarse scale model in a nonintrusive manner [98]. 

 

3.2. Improvements on Stochastic Upscaling Method 

3.2.1. Quantification of Fine Scale Input Uncertainties 

In the stochastic upscaling method, it is crucial to accurately represent uncertainties of the 

fine scale input variables, denoted by XFM. to be able to have accurate predictions of the fine scale 

responses, YFM in Eq. (3.1). When the statistical data of the input variables are available (through 

experimental measurements or existing references), the uncertainty quantification methods 

described in Section 2.1 can be utilized. Uncertainty quantification using parametric distribution 

models with defined statistical parameters of a random variable enables the generation of the 
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statistical samples from its distribution model using sampling methods easily for the simulations 

of the fine scale model. Zhang et al. [203] shows that fitting different distributions to the data can 

change the result; especially, the probability of failure of a structure is the concern of the structural 

analysis or design. Hence, it is important to determine the optimal stochastic parameters and 

distribution type to represent the distribution of the variable with high accuracy. As stated in 

Section 2.1, BIC method given by Eq. (2.17) is a straightforward and efficient method for 

uncertainty quantification of available statistical data. The number of samples, n, and the number 

of stochastic parameters, k, are taken into account for the evaluation of goodness of fit via BIC, 

thus, providing a better judgment for determining the optimal distribution [129]. In BIC method, 

the MLE approach in Eq. (2.13) is used to identify the statistical parameters of the candidate the 

distribution models, and the best-fitted distribution model for the data of a fine scale input variable 

is determined by comparing the information loss calculated by Eq. (2.17).   

 

3.2.2. Proposed Objective Function – Exponential Loss Function 

For different situations, different objective functions that can describe the predicted information 

loss on the outcome of the corresponding preference can be used. The objective function to match 

the fine and coarse scale model outputs in the upscaling process is crucial since the convergence 

of the optimization algorithm is dependent on how well the objective function is defined. A 

continuous objective function is desired in the optimization process to find the optimal point. If 

the objective function is discrete, the optimization algorithms may not work well. On the other 

hand, many different distance metrics can be used as an objective function. It is common to utilize 

the MAE or MSE distance metrics given in Eqs. (2.73) and (2.75), respectively to calculate the 

information loss in the optimization process. For n number of samples, those can be written with 
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the notations of the fine and coarse scale responses and the expected value of information loss in 

Eq. (3.7) is given by  
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MSE is also known as the squared distortion and used in the stochastic upscaling process 

for homogenization in [97] and as a least square minimization in inverse problems in [201]. 

Another option for the information loss calculation is to use relative entropy (Eq. (2.70)) as 

suggested in [98]. Shell [202] also utilizes the relative entropy for finding effective properties of 

fluid flow in the multiscale analysis. If the PDFs of fine and coarse scale responses are denoted by 

p(YFM) and p(YCM), the relative entropy is given by [98] 
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Moreover, Arnst and Ghanem [98] suggested using the moment matching method given by 


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)()(  (3.14) 

where r ={1,…,m} are the degree of the moments, and M denotes the moment of the response at 

the coarse and fine scales.  

The objective function must penalize the non-optimal points greatly so that the minimum 

or maximum point can be reached quickly. In this research, to increase the computational 
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efficiency by enabling the fast convergence of the optimization process to an optimal point, a more 

efficient objective function called “exponential loss function” is employed. The exponential loss 

function is the exponential of the negative squared difference between the fine and coarse scale 

outputs of interest and is given by  

2)(
),( FMCM YY

FMCM eYYU


  (3.15) 

When the exponential loss function in Eq. (3.15) is substituted into (3.7) the expected value 

of the exponential loss is written as 
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where ()Û  defines the expected value of the exponential loss, yFM and yCM are evaluated by using 

the fine and coarse scale models given by Eq. (3.1) and Eq. (3.2), respectively. The fine scale 

model given by Eq. (3.1) can also be based on physical experiments instead of FEM simulations. 

In this case, the target fine scale responses are obtained using the experimental observations, which 

corresponds to the calibration process described in Section 2.2. The benefit of the exponential loss 

function given by Eq. (3.16) is demonstrated by comparing results obtained by using the other 

objective functions described above in the examples provided in Section 3.5.1 and Section 3.5.2.  

 

3.2.3. Dimension Reduction using PCE 

As stated earlier, in the deterministic upscaling through optimization, only one value for each 

homogenized variable is determined in this optimization process in Eq. (3.10). In the stochastic 

upscaling method, when sampling methods are utilized for the uncertainty representation, on the 
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other hand, the number of responses at the fine scale is dependent on the number of sampling 

points, n, as seen in Eq. (3.16). Since there must be a coarse scale response corresponding to each 

fine scale response to evaluate the objective function, the number of samples at the coarse scale 

must be equivalent to the number of samples at the fine scale. Hence, the number of design 

variables is equal to the number of samples, n. In other words, the values for the sampling data are 

to be found in the optimization process rather than one single value of the homogenized input 

variable(s). For an accurate representation of the probability densities, the number of samples is 

required to be high (e.g. 1000 samples are used in [98]).  However, the computational cost of the 

optimization process increases dramatically with a large number of sampling data since n number 

of design variables has to be updated at every iteration during the optimization process. Hence, a 

dimension reduction approach is required to reduce the computational complexity during the 

optimization process of the stochastic upscaling method.  

The easy solution to this computational issue is that the first two moments (i.e. mean and 

variance) of the unknown homogenized input variable can be considered as the unknown 

parameters to simplify the problem rather than considering all of the unknown sampling data in 

the optimization process. In that regard, in the optimization process, those unknown moments are 

initiated and used to generate the sampling data based on an estimated distribution model. Then, 

for each sampling set, the simulation of the coarse scale model is performed to calculate the 

corresponding response value. Once the responses are obtained for each sampling point, those are 

compared with the fine scale responses. If they match sufficiently, then the moments are saved. 

Otherwise, new values of the moments are determined based on the optimization algorithm and 

these steps are repeated.  
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The issue with the use of moments to reduce dimensionality is that those may not be 

sufficient to accurately model the homogenized variable distribution if only the first two moments 

are utilized. More than two moments of the homogenized variable (e.g. third and fourth moments 

that defines the skewness and kurtosis of distribution, respectively) can be considered to represent 

the input distribution accurately. For either case, on the other hand, knowledge about the type of 

the distribution of the homogenized input variable is required to generate the input sampling points 

based on the parametric distribution model and to calculate the coarse scale model response. In 

inverse problems, the distribution type of the homogenized variable is unknown since the only 

known information in the upscaling process is the fine scale response data. To address this issue, 

various distribution models could be fitted, and the upscaling process could be achieved for each 

distribution model to find the one that gives the most accurate coarse scale model responses when 

compared to the fine scale responses. However, this process would require multiple upscaling 

processes to be carried out, which increases the computational burden. Hence, it is often difficult 

to predict the distribution model of the unknown homogenized input variable, and thus the 

accuracy of the resulting coarse scale model might be worsened [98]. 

Koutsourelakis [97] introduced an upscaling method that utilizes the rate distortion theory, 

which enables the representation of the distribution of the homogenized input variable with a 

relatively small number of sampling points at a coarser scale. Even though this approach provides 

a dimension reduction in the optimization process, the accuracy of the results is questionable as it 

attempts to represent the distribution of the homogenized variable with a small number of samples. 

Another approach is to project the homogenized input variable onto a PCE after constructing the 

coarse scale model as suggested by Arnst and Ghanem [98]. In this case, the PCE representation 

of a coarse scale input variable is given by  
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where bk are the undetermined coefficients of the Pth order PCE (k = 0,1,…,P), and Φk denotes 

orthogonal polynomials. Here, ῆ denotes the estimated random quantities of the unknown 

homogenized input variable. Depending upon the type of random variables, , the orthogonal 

polynomials can be selected from Table 2.2. As stated in Section 2.2.3, Hermite polynomials with 

standard normal samples ~N(0,1) can be used as a generalized PCE to represent any distribution 

model. Then, the only unknown parameters in the optimization process become the deterministic 

coefficients, bk. Thus, in the optimization process, only a few PCE coefficients bk are determined 

instead of the sampling points. The homogenized coarse scale input variable data, XC, are found 

by using the optimal PCE coefficients in Eq. (3.17). By substituting Eq. (3.17) into Eq.  (3.2), the 

coarse scale model can be described by  
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where  are generated by MCS from N(0,1) [98].  By substituting Eq, (3.18) into Eq. (3.15), the 

corresponding exponential loss function becomes 
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where k = 0,…,P are the number of coefficients. Eq. (3.19) is integrated into Eq. (3.16) so that the 

expected value of the exponential loss to be maximized as the objective function in the 

optimization process is given by 
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Then, the optimization formulation given in (3.10) is reformulated as 
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This optimization procedure implies that the expected value of the exponential loss in Eq. 

(3.20) is at its maximum when all the coarse scale response values are equivalent to the 

corresponding fine scale response values. To achieve this maximization, the design variables, b, 

(i.e. the PCE coefficients) are changed during the optimization in a way that the coarse scale 

response values calculated by Eq. (3.18) are as close as possible to the fine scale response values 

during the optimization. Consequently, the coarse scale model can accurately approximate the fine 

scale responses using the estimated homogenized input variable to maximize the expected value 

of the information loss in Eq. (3.20). 

The optimization using Eq. (3.21) can be performed without any constraints; however, we 

hypothesize that additional moment-based constraints can be introduced to increase the 

convergence speed and accuracy for the stochastic parameters at the coarse scale (e.g., mean, 

standard deviation, etc.). If the distance between the moments of the computed fine and coarse 

scale responses is less than a pre-defined value, ε, the corresponding constraint can be written as   

 )()( FMrCMr YMYM  (3.22) 
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where r is the degree of the moment, and M denotes the moments of the responses at the coarse 

and fine scales. The pre-defined value ε should be chosen appropriately to obtain a satisfactory 

convergence. In Eq. (3.22), the ith order moments of a random variable Y with a PDF of pY(y) can 

be derived by Eq. (2.1) where the mean µY is given by Eq. (2.2). Thus, the final optimization 

statement proposed in this research can be defined as finding the optimal PCE coefficient values, 

b, by maximizing the expected value of the exponential loss function in Eq. (3.20) such that it 

satisfies the moment constraints:  

 )()(         

)(        
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 (3.23) 

3.3. Flowchart of the Improved Stochastic Upscaling Method 

 In this section, the flowchart comprising the basic steps of the proposed upscaling method is 

presented. The improved upscaling method has four main steps as different from the original 

upscaling method shown previously in Figure 3.1. One additional step is included to quantify the 

input uncertainties of the fine scale model. The proposed upscaling method flowchart for the ith 

level of interest among N number of levels is depicted in Figure 3.2, and the four steps are 

explained in the following subsections.  

 

3.3.1. Step 1) Fine Scale Model Inputs 

The first step of the upscaling flowchart involves the uncertainty quantification of the fine scale 

model inputs. This step is necessary to have an accurate fine scale model that will be used in the 

upscaling process if the uncertainties of the input variables at fine scale are not known. 
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Experimental measurements or existing references can be used to collect the statistical data for the 

input variables of the fine scale model. Once the statistical data of the input variables are collected 

from experimental measurements or existing references, BIC method is utilized to identify the 

statistical parameters and the distribution model that provides the best fit for the data of each fine 

scale input variable in iFM ,X . 

 

Figure 3.2. Improved stochastic upscaling flowchart 
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3.3.2. Step 2) Fine Scale Model  

The fine scale model given by Eq. (3.1) can be constructed using either experimentation or FEM 

or analytical equations. Experiments are very difficult or impossible to conduct if the level of scale 

is small (e.g. microscale level). Similarly, modeling the fine scale details with analytical equations 

is usually not possible. Hence, numerical modeling techniques such as FEM is preferred to 

construct the fine scale model. Once the fine scale input uncertainties are quantified using BIC 

method in step 1, the samples of the fine scale input variables are generated from the corresponding 

distribution models (Figure 3.2). These generated samples of the input variables are used in the 

fine scale model to propagate input uncertainties to the fine scale responses.  

In the improved stochastic upscaling method LHS is used to generate the samples instead 

of MCS, which was used in the existing upscaling methods (i.e. [98]). LHS will enable the accurate 

propagation of the input uncertainties to the fine scale responses with a fewer number of samples 

as explained in Section 2.2. The appropriate number of samples, n, which will accurately represent 

the distribution of the fine scale response is determined by checking the convergence of the mean 

and standard deviation of the calculated response for the various number of samples as described 

in Section 2.4.1. Once the optimal number of samples are determined, the fine scale responses are 

obtained from the fine scale model simulations for input samples generated by LHS. 

 

3.3.3. Step 3) Coarse Scale Model 

At the coarse scale, the input variables, XCM, which will represent the homogenized values for fine 

scale inputs, are determined as shown on the right side of Figure 3.2. The coarse scale model is 

constructed to introduce the functional relation between the homogenized variables and the 

responses. To reduce the dimensionality, PCE is utilized for the homogenized input variables as 
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given in Eq. (3.17). As stated earlier, Hermite polynomials with uncertain values from standard 

normal distribution ξ are used in PCE since it can represent any distribution with deterministic 

PCE coefficients so that the necessity of determining the underlying distribution becomes trivial. 

If there exist more than one homogenized variables to be found, a separate PCE is constructed for 

each homogenized variable and corresponding PCE coefficients become the variables to be 

determined in the optimization process. 

The accuracy of the PCE representation dependent on how well  samples are generated. 

In the existing upscaling method [98],  samples are generated for random variable ξ in PCE using 

MCS (or LHS in the proposed method) before the optimization loop. Then these generated ξ 

samples are utilized in the upscaling process to find the homogenized property values. However, 

when the upscaling is run again for the same fine scale data, a new sample set of  is generated, 

which will be different from the previous one. A different order of PCE may be necessary for each 

generation of  sample set to accurately represent the fine scale model due to the randomness of 

the generation of the  samples. This randomness increases the computational complexity as the 

upscaling process must be repeated to find the optimal PCE order and coefficient values.  

A better option proposed in this study is to extract  information from the known fine scale 

responses as  

 
FMFM YYFMY  /  (3.24) 

This approach was initially introduced for the accurate propagation of the known input 

uncertainties to the unknown system response when the system response is projected onto a PCE 

with Hermite polynomials [2]. Since the unknown system response is known as a function of the 
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known input variables, the input uncertainties can be propagated to the response using this method. 

A similar functional relationship exists in upscaling approach between the unknown homogenized 

input variables and the known fine scale model responses. That is, the unknown homogenized 

coarse scale input variables can be calculated as a function of the known model responses, which 

is an inverse functional relationship. Hence, this approach can be used in the upscaling process to 

propagate the response uncertainties to the unknown homogenized variables. When used in PCE, 

the uncertain values  calculated by Eq. (3.24) provides the propagation of the uncertainty of fine 

scale responses to the coarse scale homogenized properties, thus enabling the accurate 

representation of the fine scale data with the constructed coarse scale model.  

Another important issue in PCE projection is that the optimal number of coefficients in 

PCE must be determined for accurate estimation of the homogenized variables at the coarse scale. 

For the evaluation of the optimal truncation order, a convergence criterion must be used. The weak-

Cauchy convergence criterion [92] is employed in the developed framework. The truncation order 

is equivalent to the number of coefficients. According to this criterion, first, an optimal truncation 

order q is guessed, and an order m is constructed, where m = q+1, q+2. Then, the PCE is written 

with the order of q approximation and the corresponding order of m approximation as follows:  
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The L2 norm or squared difference between the two approximations gives a measure of 

error to determine the optimal order of gPCE by 

 2)()( mq XXe    
(3.26) 
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where e denotes the measure of error. If e is sufficiently small, that means the result does not 

change when the order of PCE increases. Thus, the optimal truncated order of gPCE is determined. 

 

3.3.4. Step 4) Optimization 

As shown on the right side of Figure 3.2, the PCE coefficients, b, are initiated to start the 

optimization. In the optimization step, the coarse scale inputs are computed with PCE, using the 

estimated coefficients, b, as design variables, and the coarse scale responses are calculated by the 

coarse scale model. Then, the objective function, which is the expected value of the exponential 

loss between coarse and fine scale responses, is computed using Eq. (3.20). If there are moment 

constraints in the optimization statement, those are calculated as discussed in the previous section. 

When the convergence is achieved for both the objective function and the constraints, the optimum 

design variables (i.e. PCE coefficients, b) are obtained for the homogenized coarse scale input so 

that the coarse scale model that represents the fine scale properties is attained. Otherwise, the 

design variables, b, are updated, and the optimization step is repeated as presented on the bottom 

side of Figure 3.2.  

The optimization algorithm used for the optimization process is crucial to find the optimal 

point efficiently. The existing methods utilize global optimization methods such as simulated 

annealing in [97] and genetic algorithm (GA) in [98]. However, as stated in [98], these global 

optimization algorithms are very slow to converge to the optimal point although they do not have 

the issue of being trapped in local optima. To overcome the computational issue, gradient-based 

methods can be used, but those are more likely to get trapped in local optima. In this framework, 

a hybrid procedure of a gradient-based method, namely SQP, and a global optimization algorithm, 

namely GA, is utilized for the optimization procedure to improve the computational efficiency. In 
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general, the SQP method is sensitive to the choice of the initial guess. It may often lead to a 

convergence failure and can get trapped in local optima since it is a gradient-based optimization 

algorithm. To overcome these disadvantages, first, GA is used to perform a preliminary search in 

the solution space for determining the initial point. The computational cost of GA is reduced by 

using a high tolerance value for objective function evaluation since the proposed process only 

needs to locate the neighborhood of the global optimal solution. Then, SQP is applied to refine the 

GA solution so that the objective function quickly converges towards the potential global 

optimum. The efficiency of the hybrid procedure is evaluated in the application examples in 

Section 3.4.  

 

3.4. Multi-level Stochastic Upscaling Framework 

As mentioned in the introduction, when there exist large geometric uncertainties in the finer scales 

of a structure, modeling by using detailed geometries is neither feasible nor efficient with the 

existing modeling and analysis techniques. The solution is to describe the structure by multiple 

models that focus on different levels of scales and to enable linking with the subsequent level from 

bottom up. In the proposed multi-level framework, the improved upscaling process explained in 

the previous section and shown in the flowchart in Figure 3.2, is repeatedly utilized at multiple 

scale levels of interest (i=1,2…,N), where N is the smallest scale level as depicted in Figure 3.3, 

to identify the overall homogenized properties (XCM,1) at the largest scale level with efficient 

uncertainty propagation.  

In Figure 3.3, i denotes the level of scale that the upscaling process is implemented. The 

outputs at fine and coarse scale are denoted by YFM,i and YCM,i for each level. It should be noted 

that for the sake of simplicity, the uncertainty parameters of the input and output random variables 
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such as θ, ω, η and ῶ are omitted from the notations of the variables in the sequel. This framework 

shown in Figure 3.3 starts with the smallest scale level of interest defined by i=N and the upscaling 

flowchart in is repeated at each scale level. The homogenized coarse scale input variables (XCM,i), 

which are determined at one level by the upscaling process given in Figure 3.2, are used at the 

subsequent larger scale level as the input variables of the fine scale model, (i.e. XCM,i = XFM,i-1 as 

seen in Figure 3.3). This process is repeated at each level until eventually the overall homogenized 

properties XCM,1 are identified at the final level, i=1. This multi-level upscaling procedure is 

implemented in the Section 3.5.4 to the example of the characterization of homogenized structural 

properties of the AM-fabricated lattice-based cellular structure.  

 

 

Figure 3.3. Multi-level stochastic upscaling framework 

 

3.5. Validation Examples of Improved Upscaling Method 

The improved upscaling method is used for three application problems at one scale level and one 

lattice structure example at two scale level to demonstrate its efficiency and accuracy. In the first 

problem, the efficacy of the proposed objective function (i.e. the exponential loss function) over 

the objective functions used in literature is demonstrated for a random variable with known PCE 

coefficients. In the second example, the efficacy of the improved upscaling method is compared 

with the existing upscaling methods used in the literature, i.e., the upscaling method with rate 

distortion theory [97], generalized methods of moments [98], and relative entropy [98], [202] for 
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an elastic bar example with heterogeneous material at fine scale. This example also exhibits the 

efficient homogenization of the heterogeneous stochastic fine-scale material at the coarse scale, 

while the geometry remains the same. It is also shown in this example that the Hermite polynomials 

can be used for distributions different from Gaussian. In the third example, the presented method 

is utilized for the reliability estimation in the multiscale design of a hydrogen storage tank. This 

example demonstrates how the proposed method can be applied to a practical engineering problem 

with a high number of random variables. The computational burden due to the repetitive 

simulations of the complex lattice structure model of the storage tank at a fine scale is decreased 

significantly by the homogenization of the material and geometry with a simpler and accurate 

representative coarse-scale model. In the last example, the multi-level upscaling framework is 

utilized for material characterization of CLSs fabricated by material extrusion to show its efficacy 

in prediction capability compared to the experimental results.  

 

3.5.1. An Example to Analyze the Proposed Objective Function 

The first example investigates the effectiveness of the proposed exponential loss function by 

comparing the plot of the function for the parameter space of PCE coefficients with the plot of the 

existing objective functions. It is assumed for this example that the coarse scale homogenized 

property is known and represented by the following first order PCE  

210CMX  (3.27) 

where  are generated from the standard normal distribution. That is the two coefficients of the 

PCE are known to be 100 b , 21 b . Moreover, it is known that 25 samples are available as 

follows and represented by this PCE projection of the homogenized property:  
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EC = [5.874647 7.062636 7.342557 7.668426 8.25839  

 8.433907 8.728871 8.949994 9.167294 9.392595  

 9.602803 9.829377 10.05609 10.18138 10.34734  

 10.52961 10.84077 11.12732 11.21508 11.50672 

 11.95405 12.20175 12.36421 13.22063 14.19648] 

 

Now we assume that the PCE projection of this data is not known. We want to find the optimal 

PCE coefficients using an optimization procedure. Then, it is expected that the value of the 

objective function must be at its minimum when 100 b , 21 b  since the data was drawn from 

Eq. (3.27). We can plot a mesh grid of all possible solutions to the PCE coefficients based on the 

objective function value instead of an optimization process. For this purpose, first, a design space 

of 100 samples was uniformly generated using LHS from the range of [0,20] for b0 and the range 

of [0,4] for b2. Then, for each b0, b1 coefficient values, the values of the random variable XCM were 

calculated using the 1st order PCE given by  10 bbXCM . The number of generated random 

variables  using LHS was 25 from N(0,1).  

Three different objective functions are utilized for this example, namely mean absolute 

error (MAE), squared distortion or MSE, and the proposed exponential loss function. The objective 

function values were calculated for each sampling data and plotted to see how the objective 

function behaves for various values of the coefficients. The MAE was calculated using Eq. (3.11) 

and the plots of results are given in Figure 3.4. Similarly, the squared distortion was calculated 

using Eq. (3.12) and the plots of results are given in Figure 3.5. Finally, the expected value of the 

proposed exponential loss was calculated using Eq. (3.16) and the plots of results are given in 

Figure 3.6.  
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                              (a)                                                    (b)                                         (c) 

Figure 3.4. (a) Plot of PCE Coefficients vs absolute difference (b) PCE coefficient b0 (c) PCE coefficient b1 

 

                              (a)                                                    (b)                                         (c) 

Figure 3.5. (a) Plot of PCE Coefficients vs squared distortion (b) PCE coefficient b0 (c) PCE coefficient b1 

 

                              (a)                                                (b)                                            (c) 

Figure 3.6. (a) Plot of PCE Coefficients vs exponential loss (b) PCE coefficient b0 (c) PCE coefficient b1 
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The results in these figures indicate that the objective function becomes minimum when b1 = 10 

and b2 = 2 as expected. On the other hand, it is seen that the optimal points can more clearly be 

found when the exponential loss is used because the plots in Figure 3.6 has steeper surfaces than 

the ones in Figure 3.4 and Figure 3.5 towards the optimal point. This can be attributed to the fact 

that the exponential loss function penalizes the non-optimal points more severely than the other 

objective functions. For this reason, it is expected that the exponential loss function will enable 

finding the optimal point much more quickly than the other functions in the optimization process. 

Also, it will not have a convergence issue to a non-optimal point since the change of the function 

is much steeper as seen in Figure 3.6. Thus, this example proves that the use of exponential loss 

function is a better choice to use in the optimization step of the upscaling method. 

  

3.5.2. One-Dimensional Elastic Bar  

The proposed upscaling procedure is applied to a one-dimensional linear elastic bar which was 

originally presented by Koutsourelakis [97]. The bar, shown in Figure 3.7 has a unit length (L = 

1) with the unit cross-sectional area (A = 1). The left end of the bar is fixed so that it cannot move 

in any direction. A horizontal unit force (F = 1) is applied to the end cross-section on the right. 

Step 1. Fine scale input uncertainties 

In step 1 of the proposed upscaling method, the input variable uncertainties are to be quantified 

for the fine scale model. The governing equation, for which the fine scale and coarse scale models 

are generated to model the elastic bar for the displacement y(x) is given by 
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where E denotes the Young’s Modulus of the material and x is the length of the bar from the fixed 

end in [0,1]. At fine scale, it is assumed that the Young’s Modulus of the bar is the heterogeneous 

input variable with uncertainty. The random variability of E(x) is formulated as 
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(3.29) 

where ϕ is the phase angle and the constant x0 is used to control the length scale of heterogeneity. 

The uncertainty of the Young’s Modulus is due to the phase angle, ϕ, which is assumed to be 

quantified by a parametric distribution model, i.e. uniform distribution in [0, 2π]. 

 

Figure 3.7. One-dimensional bar subjected to axial force F 

 

Step 2. Fine scale model 

In step 2, the fine scale model of the elastic bar is constructed. The bar was discretized to N = 

1,000 beam elements with equal length, and each element was assumed to have a different Young’s 

Modulus, E(x), for which the sample values were generated by Eq. (3.29) with the quantified 

uncertainties of the phase angle, ϕ. The distance, x, is the length of the part of the bar between the 
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center point of the element and the fixed end. The constant, x0, was assumed to be equivalent to 

10. For each element, n = 1,000 samples of ϕ were generated to account for the uncertainty of the 

Young’s Modulus. Then, the tip displacement at x = 1, was computed from the fine scale model 

simulation for each sample set. 

 

Step 3. Coarse scale model 

In step 3, the coarse scale model is constructed as a homogenous linear elastic bar, consisting of 

only one beam element with a homogenized Young’s Modulus value. A simpler analytical 

formulation can be derived to calculate the tip displacement at the coarse scale (YCM) by deriving 

Eq. (3.28) with the boundary conditions of 0)0( y  and 1)1( 1  F
dx

dy
E x : 

CCM EY /1  (3.30) 

where EC denotes the homogenized Young’s Modulus for the elastic bar at the coarse scale. During 

the upscaling procedure, EC was written as a PCE so that only the coefficients, b, of the 

polynomials become the design variables in the optimization process. Legendre polynomials are 

selected as the basis of the PCE since the PDF of the input variable (i.e. phase angle ϕ) is the 

uniform distribution. The first few terms in the Legendre Polynomials set {Φ} are given by 

 

} ,...)157063(
8

1
 

3),3035(
8

1
 ),35(

2

1
 ),13(

2

1
 , ,1{}{

35

2432



 





 (3.31) 

 Thus, the random variability of EC at the coarse scale can be written in terms of PCE, 
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Step 4. Optimization for upscaling 

The random ξ values are generated by using a uniform distribution between [-1, 1] to use in 

Legendre polynomials (Table 2.2). In step 4 of the upscaling process, the coarse scale displacement 

values were computed by using Eq. (3.30), and the expected value of the exponential loss function 

given by Eq. (3.16) was maximized with no constraints. 

The upscaling procedure was conducted for the different orders of the Legendre 

polynomials to find the optimum number of coefficients to represent EC accurately with the PCE. 

Figure 3.8(a) and Figure 3.8(b) depict the optimal values of the objective function corresponding 

to the different order of P for the PCE and the number of total iterations (GA+SQP) in the 

optimization, respectively.  

 

(a) convergence of the objective function (b) number of iterations 

Figure 3.8. Results for the different order of PCE  

 

It can be seen from Figure 3.8(a) that the exponential loss value converges when P=3. Hence, P=3 

is used as the guessed truncation order in Eq. (3.32). The error values were also computed using 
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the weak-Cauchy convergence criterion given by Eq. (3.25). The obtained error values were 4E-

12 for fourth and fifth order expansions. It is seen that there is no significant change in the 

exponential loss function value after the third order. Moreover, the computational cost increases 

with the increase of the order of the polynomial, as can be seen from Figure 3.8(b), since more 

coefficients are required to be optimized. Based on these observations, the PCE can be truncated 

at the order of 3 for minimal computational effort.  

Once the optimum order of the PCE was determined, the homogenized Young’s Modulus 

value was estimated by the upscaling procedure. It is known that the exact or target homogenized 

Young’s Modulus is given by the following equation [97] 

 cos5.01)( xET  (3.33) 

The statistical data obtained for the homogenized Young’s Modulus with the proposed 

upscaling method are compared with the target distribution calculated by Eq. (3.33) as shown in 

Figure 3.9. The continuous line in the figure represents the exact values for the Young’s Modulus 

while the histogram represents the homogenized data with the upscaling method. It is seen that the 

optimal distribution of the homogenized Young’s Modulus matches well with the exact values.  

 

Figure 3.9. Accuracy comparison of Young’s Modulus distribution 
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3.5.2.1. Comparison of displacement results with existing methods 

To evaluate its performance, the averaged squared distances (i.e. the error) between the exact 

values, ET, and estimated values, EC, are computed by  
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The obtained value of the averaged distance is 1.5E-5, which is small enough to conclude 

that the coarse scale homogenized approximation determined by the upscaling procedure for 

Young’s Modulus is accurate. Thus, the homogenized values can be used to compute the 

displacements with the coarse scale model. The cumulative distribution functions (CDFs) of the 

displacement values at the coarse scale calculated in the upscaling process are compared with the 

fine scale results as shown in Figure 3.10(a). These results are compared with the results given in 

[97] and shown in Figure 3.10(b). 

 

(a) Improved upscaling method (b) Upscaling with distortion theory [97] 

Figure 3.10. Comparison of fine and coarse scale displacement CDFs  
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As seen in Figure 3.10(a) the CDF of the coarse scale displacement, computed by the homogenized 

Young’s Modulus value, is almost identical to the CDF of the fine scale results. Figure 3.10 (b) 

shows, on the other hand, the coarse scale results obtained from the existing upscaling method 

with distortion theory [97] have slight deviations from the fine scale results. Hence, it is seen that 

the improved upscaling method gives better approximation compared to the existing method. The 

averaged squared distance value for the displacements was obtained as 5.6E-6 from Eq. (3.34). 

Although very high accuracy was achieved, the moments calculated for the displacement results 

were not accurate enough in comparison with the fine scale moment results as seen in Table 3.1. 

Hence, the first three moments were used as the additional constraints and the optimization was 

performed again. The relative error values, given in Table 3.1, are very small when constraints are 

used, while they rise when constraints are not used. Also, adding moment constraints decreased 

the number of iterations from 37 to 30 in the optimization while the averaged distance value 

remained the same. Hence, it is seen that the constraints facilitate finding the optimal solution more 

quickly with better accuracy. 

Table 3.1. Comparison of the (%) relative errors for the first three moment results  

 1st moment 2nd moment 3rd moment 

w/o constraints (%) 1.1E-3 1.3E-2 1.7E-1 

with constraints (%) 1.5E-9 1.25E-8 6.4E-10 

 

To validate the accuracy of the proposed method, existing multiscale modeling schemes in the 

literature were implemented for the same structure. The same pre-determined initial point with GA 

was used for all different objective functions for better evaluation in this comparison. The average 
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squared distances (d) were computed by using Eq. (3.34) for displacement results. The obtained 

results are summarized in Table 3.2. 

Table 3.2. Comparison of the results for different upscaling methods 

 Iter(SQP) Time (sec) d (Eq. (3.34)) 

Proposed Method 30 0.75 5.6E-5 

Distortion Theory  20 0.65 1.29E-4 

Relative Entropy  15 0.53 1.1E-2 
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 2 Moments 9 0.46 2.6E-3 

3 Moments 31 0.72 2E-4 

4 Moments 33 0.75 3.1E-3 

 

As shown in Table 3.2, the average squared distance value is at its lowest value when the proposed 

method is used. For the generalized methods of moments [98], the computational time and the 

iteration numbers are comparable with the proposed method’s results, but error (d) values are 

greater than the proposed method. The errors calculated for the distortion theory [97] and relative 

entropy [98] give closer values to the proposed method but still the proposed method has the 

highest accuracy with comparable computation time. The optimization time for the existing 

objective functions was shorter than the proposed method since the objective function converges 

earlier than the optimal point as seen in Table 3.2. The proposed exponential loss function, on the 

other hand, has a much smaller d value, which means that it can eliminate early convergence in 

the optimization and finds a better optimal point since exponential loss penalizes the non-optimal 

points more severely than the existing methods as shown in the first example. At this point, it is 

also reminded to the reader that the same hybrid optimization technique (i.e. GA and SQP) is used 
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for these different methods in this comparison. If the optimization techniques, which were 

proposed for these methods in the literature (i.e. only GA in [98] and Simulated Annealing in [97]), 

were used, the convergence time for the existing methods would be much higher than the proposed 

method.  

It should be noted here that the large portion of the iterations in the optimization was 

performed by GA due to its inherent randomness and slow convergence rate. Although the 

tolerance value was high (1E-2) for GA, the number of iterations for GA was 51 while the SQP 

iterations were only 30 for a third-order PCE. The exponential loss value was computed as 0.9981 

with GA, and it was maximized to 0.9999 by SQP. To achieve a similar level of accuracy by using 

only GA, the tolerance value had to be decreased to 1E-12, and even after 2,111 iterations the 

exponential loss value was 0.9998. It is evident that the iteration number using the hybrid algorithm 

of GA and SQP is much lower than that of GA, which proves the statement in the previous 

paragraph.  

Consequently, these results validate that the proposed upscaling procedure does not only 

accurately estimate coarse scale parameters, but also provides computational efficiency due to the 

low computation cost of proposed optimization technique. 

 

3.5.2.2. Effectiveness of Hermite polynomials for PCE projection 

The final study of this problem involves the applicability of the Hermite polynomials for any 

distribution type. As stated in PCE explanation, Hermite polynomials can be used for any type of 

distribution, but the relatively greater order of PCE is required if the distribution is not normal. 

The same procedure explained above was utilized to determine the optimal order of PCE based on 

the exponential loss function result using the Hermite Polynomials given in Eq. (2.27). The random 
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ξ values were generated from N(0,1) with LHS since Hermite polynomials were used. The average 

value of the exponential loss and the number iterations for the different order of PCEs are depicted 

in Figure 3.11.  

 

(a) convergence of the objective function (b) number of iterations 

Figure 3.11. Results for the different order of PCE with Hermite Polynomials  

 

As seen in Figure 3.11(a), the convergence in the objective function value is obtained after the 4th 

order PCE. It is seen that the convergence occurs for a greater order of PCE when compared to the 

results given in Figure 3.8(a) for Legendre Polynomials. The number of iterations to find the 

optimal PCE coefficient is also increased compared to Figure 3.8(a). The objective value was 

0.9999 for a 3rd order PCE with Legendre polynomials while the same value was obtained for a 5th 

order PCE when Hermite Polynomials are used. Although a higher order PCE was required for 

accurate prediction with Hermite polynomials, these results show that the applicability of the 

Hermite Polynomials is not restricted only to the normal distribution since it can accurately make 

a prediction for this case where the parameter is not normally distributed as in this example. This 

result verifies the statement that Hermite polynomials can be used for any distribution type 

although a larger of PCE is required. Thus, it is concluded that Hermite polynomials can be used 

in PCE without concerning about the distribution type of the parameter that is projected on PCE.   
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3.5.2.3. The effectiveness of generating ξ values with Eq. (3.24) 

When Hermite polynomials are used in PCE, instead of randomly generating the ξ values from the 

standard normal distribution using MCS or LHS, the known responses of the fine scale model can 

be used to obtain those values. That is, ξ values can be obtained using the formulation in Eq. (3.24) 

when Hermite polynomials are used as proposed in the improved upscaling method. The same 

example was solved by this approach, and the objective function values for the different order of 

PCEs are depicted in Figure 3.12. 

 

Figure 3.12. Objective function values when ξ values were obtained using Eq. (3.24) 

 

As seen in Figure 3.12, a 3rd order PCE with Hermite polynomials was sufficient to have a 

high accuracy in the upscaling process as the objective function value is converging after this point. 

It is seen that this approach provides good accuracy with a smaller order of PCE compared to the 

results in  Figure 3.11 where random sampling was used. Hence, Eq. (3.24) is recommended to 

use in the improved upscaling process.  

 

3.5.3. Multiscale Reliability Analysis of a Hydrogen Storage Tank 

The coarse scale model with homogenized properties can be used for reliability assessment of the 

application so that the fine scale heterogeneity and randomness are taken into account with low 
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computational effort. To estimate the probability of failure for accurate reliability assessment, first, 

samples are generated using the stochastic parameters of homogenized input variables by MCS, 

and the coarse scale model is repeatedly called to compute the response for each sample. Second, 

the limit state function, which defines the failure and safe regions for a design domain, is evaluated 

for each response. Then, the probability of failure is calculated by the ratio of the number of 

samples that are in the failure region and the total number of samples. Since a coarse scale model 

is used for reliability estimation, the computational effort of MCS can be reduced dramatically. 

The presented upscaling method is utilized for the reliability estimation a hydrogen storage tank 

that is designed using lattice cells as the inner lining in [34] as shown in Figure 3.13.  

Hydrogen is a promising energy source that has about three times greater energy content 

by weight than gasoline. However, it is challenging to store enough hydrogen since a significant 

amount of space is required. The available compressed hydrogen tanks for the light-duty vehicular 

applications are larger and heavier than the design requirements. A possible solution is to utilize 

cellular lattice structures as the inner lining of a rigid hydrogen storage tank as shown in Figure 

3.13. The weight of the tank can be significantly decreased while a reliable design of the storage 

tank is obtained to store sufficient amount of hydrogen at high pressure [34], [35]. However, the 

high number of random variables at fine scale due to the complexity of the geometry and the 

heterogeneity of the material increases the computational effort dramatically for the reliability 

estimation. Therefore, the proposed multiscale framework is applied for the probabilistic failure 

analysis of the storage tank design at coarse scale using homogenized geometry and material 

properties to reduce the computational cost.  
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Figure 3.13. Hydrogen storage tank: (a) cross-section of the tank; (b) optimized unit cell [34]. 

  

Step 1) Fine Scale Input Variable uncertainties 

The length (h) of the given storage tank in Figure 3.13(a) is 1.35 m, its inner radius (r) for the 

cylindrical portion of the tank is 0.3 m, and the wall thickness (tw) is 8.29 mm. In the optimal unit 

cell, shown in Figure 3.13(b), the black colored truss members have a 10 mm2 area of the cross-

section (A1) while the cross-sectional area of gray colored ones (A2) is 7 mm2. It is assumed in this 

study that the quantified uncertainties of random variables at fine scale are as given in Table 3.3. 

Step 2) Fine scale Model 

The fine scale FE model of the lattice structure for the cylindrical portion of the tank is illustrated 

in Figure 3.14. The trusses in the lattice structure are made of carbon composite (HM graphite 

fiber). The inner and outer walls are made of carbon epoxy material, which have the properties 

listed in Table 3.3. For each stochastic parameter, 1,000 MCS samples were generated, and the 

fine scale FE model was simulated for each parameter set. The maximum displacement of the tank 

wall caused by the pressure of the hydrogen was used as the quantity of interest of the fine scale 

model in the upscaling procedure. When the detailed FE model is considered as the fine scale 

model, it can be upscaled to a simpler solid coarse scale model so that the reliability estimation 

can be achieved with trivial computational cost. 
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Table 3.3. Statistical parameters and distribution types of random input variables at fine scale for the 

hydrogen storage tank 

Parameter Distribution Mean Std Dev 

Pressure, Pin (MPa) Lognormal 25.4 2.54 

Graphite 

fiber 

E (GPa) Normal 379 37.9 

v Normal 0.2 0.01 

Carbon 

epoxy 

v12 Normal 0.27 0.0162 

v23 Normal 0.54 0.0324 

v13 Normal 0.27 0.0162 

E1 (GPa) Weibull (147, 13.23) 

E2 (GPa) Weibull (10.3, 0.927) 

E3 (GPa) Weibull (10.3, 0.927) 

G12  (GPa) Weibull (7, 0.56) 

G23 (GPa) Weibull (3.7, 0.296) 

G13 (GPa) Weibull (7, 0.56) 

Area 1, A1, (mm2) Uniform [9.8, 10.2] 

Area 2, A2, (mm2) Uniform [6.8, 7.2] 

Wall thicknesses, t, (mm) Extreme Value (1.5, 0.45) 
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Figure 3.14. Fine-scale FE model of the mesostructured hydrogen tank 

 

Step 3) Coarse Scale Model 

At the coarse scale, a homogenous wall geometry and material were predicted using the upscaling 

method. The maximum displacement values at coarse scale can be computed using a simple 

analytical model of the tank pressure 
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where Pin denotes the internal pressure on the wall, r is the radius of the tank and tw is the thickness 

of the wall. For the upscaling process, either the Young’s Modulus, ECM, and the Poisson’s Ratio, 

vCM, can be treated as two different design variables, or KCM=(2-vCM)/ECM can be considered as 

one homogeneous input variable. Both cases were studied in the upscaling process to compare the 

efficacy of the method.   

First, one homogeneous input variable, KCM, was determined by utilizing the proposed 

upscaling procedure. To reduce the number of design variables, the random variability of 

homogenous KCM is represented by the gPCE as 



160 

 





P

k

kkCM bK
0

)(  (3.36) 

Thus, the coefficients, b, of the gPCE become the design variables and the first three 

moments are used as constraints in the optimization process. To determine the optimum number 

of coefficients that represent KCM accurately, the upscaling procedure is conducted for different 

orders, P, of the Hermite polynomials. The weak-Cauchy convergence criterion given by (3.25) 

was used to calculate the error values between the results of the different order of PCEs. P=4 is 

used as the guessed truncation order in Eq. (3.26). The obtained error value was 9.4E-6 for the first 

order expansion while it was 2.1E-9 for both second and third order expansions. As seen, there is 

no significant change after second order. Moreover, the number of iterations was 53 for the first 

order PCE while it was 54 for the second order and increases to 83 when a third and fourth order 

PCE was used. Based on these observations, the PCE can be truncated at the order of 2 for 

minimum computational effort and maximum accuracy.  

For the case of two variables, the random variability of homogenous ECM and vCM is 

represented by the gPCE as 
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Thus, the coefficients denoted by vectors b and c become the design variables in the 

optimization process and ECM and vCM are homogenized separately. Since it was found that 
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accurate estimations could be made by a 2nd order gPCE in the previous case, the same order was 

also used for both ECM and vCM, as well.  

 

Step 4) Optimization for upscaling 

The PDFs of the displacements obtained by the upscaling procedures with one homogenized 

variable and two homogenized variables are compared with the PDF of the fine scale quantities of 

interest as shown in Figure 3.15. 

 

 

Figure 3.15. PDF results of the quantities of interest at both scale levels 

 

It is observed that the results are very close to the fine scale results for both cases. The averaged 

distance value, calculated by Eq. (3.34) with the output values (i.e. displacements), was 1.15E-4 

when KCM was used as one homogenized variable; while it was 1.75E-4 for the case of two 

homogenized variables. Both models provide high accuracy for the quantities of interest. The 

computation time of the responses at the coarse scale was 3.36 and 4.33 seconds for the cases of 
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one variable and two variables, respectively, while the calculation of the responses at fine scale 

was about an hour. It is seen that depending on the requirements of the problem, the geometry and 

the material can be homogenized either separately or as one variable and a very efficient coarse 

scale model, which takes into account the fine scale heterogeneity, can be created using the 

proposed upscaling procedure. Also, the number of iterations for one variable was 54 while it was 

98 for the case of two variables. The reason for the increase in iterations is due to the doubled 

number of design variables which is related to the procedure of determining PCE coefficients for 

two homogenized variables. This result shows that the computational cost increases when the 

number of homogenized variables is increased for the coarse scale.  

Since the case of one homogenized variable gave better accuracy, it was used at coarse 

scale for the reliability estimation of the storage tank. For reliability assessment, a limit state 

function, G, is defined based on the requirement. G was defined as the difference between the 

coarse scale model response, which is the maximum displacement of the storage tank wall, ymax, 

and the maximum allowable displacement, yallow for the tank. 

maxyyG allow 
 

(3.39) 

For reliability estimation, 100,000 samples were generated using MCS for the 

homogenized input variable (KCM), and the maximum displacement results for each sample were 

calculated using the coarse scale model. After evaluating the limit state function for each response, 

the probability of failure (Pf) of the structure was predicted for different maximum allowable 

displacement values (yallow) as listed in Table 3.4. For the validation, true Pf values were computed 

at fine scale by generating 100,000 samples for each fine scale random input variable with the 

stochastic parameters in Table 3.3. The results of the presented method are compared with the 
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different methods in literature (i.e. rate distortion theory [97], generalized methods of moments 

[98], and relative entropy [98]) and with fine scale model results in Table 3.4. The mean squared 

error (MSE) values are calculated using Eq. (3.34) and compared in Figure 3.16. 

 

Table 3.4. Probability of Failure values for maximum displacement 

Displacement Limit (mm) 1.75 2 2.25 2.5 2.75 

Fine Scale (Target) 0.23614 0.05642 0.00971 0.0015 0.00015 

Proposed Method 0.23748 0.05921 0.01055 0.00155 0.00014 

Distortion Theory 0.25306 0.06633 0.0118 0.00125 0.00011 

Relative Entropy 0.26382 0.06302 0.00905 0.00075 0.00006 
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 2 Moments 0.20507 0.06409 0.02164 0.00703 0.00212 

3 Moments 0.23967 0.06006 0.01117 0.00161 0.00017 

4 Moments 0.23165 0.05349 0.00863 0.0011 0.00013 

 

 

Figure 3.16. Comparison of mean squared error values for different methods 

 



164 

 

The results in Table 3.4 show that the proposed upscaling method gives the most accurate Pf values 

to the target values for various displacement limits and corresponding probability levels, thus 

providing the lowest MSE values as presented in Figure 3.16. Generalized method of moments 

with 3 and 4 moments provide the closer results than the other methods when the displacement 

limit is 2 mm and 2.75 mm. However, when the displacement limit is 1.75 mm, 2.5 mm and 2.75 

mm, the Pf results of proposed method is clearly more accurate than the existing methods. In 

addition to lower error values, the computational cost of the proposed upscaling method was found 

to be less than the other existing methods, as it had been proven in the first example. The 

computational time to estimate the reliability at the coarse scale was about 10 seconds at the coarse 

scale, while it was about 65 hours at the fine scale. Comparing the values show that the coarse 

scale model gives conformal and accurate results while reducing the computational requirement 

drastically.  Thus, it can be concluded that the proposed upscaling method is a viable tool for 

reliability estimations.  

 

3.5.4. Multi-level Upscaling of CLSs Fabricated by Material Extrusion  

The multi-level upscaling framework explained in Section 3.4 is applied for the 

characterization of homogenized structural properties of the AM-fabricated CSLs, shown in Figure 

3.17. To conduct the material characterization of AM-fabricated cellular structures using the 

proposed method, tensile test specimens were fabricated in a Stratasys® Fortus 400mc using the 

ABS-M30 material presented by Park et al. [89]. The center of the specimens was modeled as 

lattice structures by periodic simple cubic (SC) unit cells with 5x5x5mm dimensions having 1.5 

mm strut diameters in each unit cell as illustrated in Figure 3.17(a). The cubic unit cell was rotated 

counterclockwise about the Y axis by 15, 30, and 45 to fabricate four different lattice structures 
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as shown in Figure 3.17(b). In-house tensile tests were conducted for these AM-fabricated 

structures. These actual experimental data were utilized to demonstrate the effectiveness of the 

proposed multi-level upscaling procedure.  

 

(a) Dimensions of the lattice structure. (b) Four lattice structure type with different rotation angles 

Figure 3.17. Fabricated lattice structures for the tensile test.  

 

The lattice structures fabricated by material extrusion comprise struts that have variations at each 

layer (Figure 1.3). The proposed multi-level modeling framework is used to relieve the difficulty 

of modeling of these variations with details of geometric uncertainties while preserving the 

accuracy of the results by utilizing proposed multi-level upscaling process with two levels of scales 

(N=2); i=1 refers to the macroscale level (i.e. lattice level), and i=2 refers to the mesoscale level 

(i.e. strut level), as seen in Figure 3.18. At mesoscale level, the purpose is to determine the 

homogenized structural element variables, denoted by XCM,2 such as the homogenized diameters 

of each strut in the structure, by utilizing the upscaling process. Then, at the macroscale level, 
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instead of modeling every strut in the structure with details of variations, the struts are modeled by 

the homogenized diameters identified at the mesoscale level so that the overall homogenized 

structural properties denoted by XCM,1 can be determined at this level by utilizing a second 

upscaling process. The details of the proposed framework will be provided in the subsequent 

sections. All of the input and output variables that were used in the proposed multi-level upscaling 

framework of lattice-based cellular structure in Figure 3.18 are listed in Table 3.5 to clarify the 

following descriptions.  

3.4.5.1. Mesoscale (Strut) Level Upscaling 

The scope of the mesoscale level is to identify the homogenized structural element variables, such 

as the homogenized diameters of each strut in the cellular structure, denoted by XCM,2. The strut 

level upscaling is demonstrated in Figure 3.18 with i = 2. 

Step 1) Fine scale input uncertainties 

For upscaling at the mesoscale level in the multi-level modeling of lattice structures, first, the 

uncertainties of fine scale input variables, which corresponds to the uncertainties with the 

structural elements (i.e. struts in the lattice structures), are identified. These input variables are 

denoted by XF,1 in Figure 3.18 and include the structural properties that comprise the struts such 

as the layer thickness, the layer diameter, the angle of the strut, etc.  

The fabricated cellular structures have struts with different rotation angles (Figure 3.17(b)). 

These struts have deviations in geometry due to the uncertainties in the FDM manufacturing 

process. For the mesoscale level upscaling process, the uncertainties in the geometric variables of 

the struts are predicted and quantified based on the fabricated structure experiments. Stochastic 

input variables, used to describe the fine scale strut geometry of an angled strut with a circular 
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cross section, are illustrated in Figure 3.19. These variables will have uncertainties due to the 

process parameters. 

 

Figure 3.18. Proposed multi-level stochastic upscaling framework for cellular structures 

 

Table 3.5. Descriptions of input and output variables at each level for the multi-level upscaling of lattice-

based cellular structures 

 Input Description Output Description 

M
es

o
sc

a
le

 (
S

tr
u
t)

 

L
ev

el
 

Fine scale 

FEM 
XFM,2 

Strut material and geometry 

properties, (layer thickness, 

layer diameter, angle, etc.) 

YFM,2 
Total reaction 

force 

Coarse scale 

FEM 
XCM,2 Homogenized diameters  YCM,2 

Total reaction 

force 

M
a

cr
o

sc
a

le
 

(S
tr

u
ct

u
re

) 
L

ev
el

 

Fine scale 

FEM 

XFM,1 Homogenized diameters  

YFM,1 
Total reaction 

force 
X’FM,1 Material properties of struts 

Coarse scale 

FEM 
XCM,1 

Homogenized Young’s 

modulus and Poisson ratio 
YCM,1 

Total reaction 

force 

 

 



168 

 

 

Figure 3.19. Geometric variables that possess uncertainty on struts due to the process parameters 

 

The expected geometry of a strut with circular cross-section, which has a rotation angle,  

about Y axis is shown in Figure 3.19(a). Due to the uncertainties caused by process parameters, 

the strut fabricated by the FDM process is obtained as in Figure 3.19(b). When the deposited layers 

are closely observed as in Figure 3.19(c), it is seen that the fabricated geometry has excess portions 

and missing portions (gaps) after deposition of layers due to the resolution effect of layer thickness, 

t. Therefore, the overall diameter of a fabricated strut, D, is different than what is expected or 

designed. In Figure 3.19(d), a layer of a fabricated strut is depicted with exaggerated dashed lines. 

It should be noted that the deviations on the circular pattern shown are not as bad as it is seen in 

this figure for the fabricated structures but the drawing has been exaggerated to merely illustrate 

the deviations on the layers more clearly. Also, the details of the deposition path in the layer are 

not shown in this figure for simplicity. Additional details of the effect of the deposition parameters 

on the geometry of the layer can be found in Refs. [204], [205]. In the FDM process, the precision 

errors of process parameters such as road width, air gap, and raster orientation create uncertainties 

on the cross-sectional shape of each layer shown in Figure 3.19(d). Moreover, there are other 

precision issues such as the transition points where the start and end points of the deposition on 

each layer create a slight geometric discontinuity defect as shown darker in Figure 3.19(d) on the 
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dashed line.  Consequently, the diameter of each deposited layer will be an uncertain input variable 

that affects the overall diameter of the strut.  

Furthermore, inherent errors on the positioning of the nozzle head cause deviations for the 

position of the center of each layer. These deviations are taken into consideration as the deviation 

on the X axis, represented by x, and deviation on the Y axis, represented by y, in Figure 3.19 

(d). The build angle, , is also an uncertain parameter since the nozzle head positioning errors 

create a cumulative change in the build angle, represented with  in Figure 3.19 (b). Air gap 

errors, shrinkage errors caused by the temperature and errors of deposited material thickness 

induce uncertainty on the thickness of each layer, t. The deviation on the thickness due to the 

uncertainties is shown with t in Figure 3.19(d). The deposited strut length, L, also has 

uncertainties, causing deviations in length, represented by L due to these process parameters 

errors.  The uncertainties of these geometric input variables are quantified based on the fabricated 

specimens, and corresponding uncertainty parameters are summarized Table 3.6. COV denotes the 

coefficient of variation. The material properties of ABS-M30 material, given in Table 3.6, have 

been determined by actual experiments [89] and no porosity in the struts is considered for this 

example. All random variables at fine scale are assumed to be normally distributed. 
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Table 3.6. Statistical parameters of the input variables at fine scale 

Uncertain Geometric Properties   

Variable Unit Symbol Mean COV 

Diameter mm D 1.5 0.025 

Angle about Y degree Y 0,15,30,45,90 0.01 

Angle about X degree X 90 0.01 

Thickness mm t 0.178 0.015 

Deviation on X mm dx 0.1 0.05 

Deviation on Y mm dy 0.1 0.05 

Length of Strut Mm L 2.5 0.02 

Thickness mm T 0.178 0.015 

Uncertain Material Properties   

Variable Unit Symbol Mean COV 

Young’s Modulus MPa E 2039 0.04 

Poisson’s Ratio - v 0.3 0.04 

 

Step 2) Fine Scale Model 

All of the uncertainties mentioned above must be taken into account while modeling the struts in 

a cellular structure. Since it will be a tedious and infeasible procedure to include all of the details 

at the cellular structure level, first, the effect of these parameters are modeled at the mesoscale 

level for individual struts. To utilize the proposed upscaling process to determine the homogenized 

variables, a fine scale model of the struts and a corresponding coarse scale model that can represent 

it with homogenized variables are required. In this study, FEM is used as the modeling technique 

for both fine and coarse scale models to show that the proposed method can effectively identify 
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the homogenized input variables in a non-intrusive manner. The implicit formulation for the FEM 

is given by   

uKf  ][
 

(3.40) 

where K is the stiffness matrix of the element used in FEM. f and u denote the force vector and 

displacement vector, respectively. At the fine scale, a voxel-based FE modeling procedure that 

accounts for the uncertainties of geometrical input parameters of deposited struts is utilized for the 

struts. The generated model involves the FEM of 8-node brick elements. Each deposited layer of 

a fabricated strut is filled with these brick elements with a 0.075mm mesh size in X and Y 

directions based on the uncertainty information of the input variables. The mesh size in the Z 

direction is the same as the layer thickness, which is 0.178mm.  

A sampling method is then utilized to generate the data of the random input variables at 

the fine scale (XFM,2) using the stochastic parameters. Specifically, a stratified sampling scheme, 

LHS is used as proposed to generate nFM,2 number of sampling points. Ultimately, the input 

uncertainties are propagated by a tensile test simulation of this fine scale FEM (the bottom part of 

the strut is fixed, and a displacement is applied on the top surface as shown in Figure 3.20), and 

the total reaction force is obtained as the fine scale output variable, YFM,2, for each sampling point.  

The individual FE models of each strut with different angles, required for the four types of 

cellular structures, are created. For the structure with the unit cells of 0 rotation angle in Figure 

3.17(b), horizontal struts along the X and Y axes (i.e. 0 angle struts), and vertical struts (i.e. 90 

angle struts) on the Z axis are modeled. Similarly, for 15 rotated cellular structure, 0 struts on 

the Y axis, and 15 and 75 rotated struts on the XZ plane are modeled. For 30 rotated cellular 
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structure, 0 struts on the Y axis, and 30 and 60 rotated struts on the XZ plane are modeled. 

Moreover, for 45 rotated cellular structure, 0 struts on the Y axis, and 45 rotated struts on the 

XZ plane are modeled. Once the strut models are generated at different rotation angles, each model 

is rotated about the Y axis such that the struts will be vertical on the Z axis. The struts are rotated 

to facilitate the FEA since it enables conducting the tensile test simulation for each strut on the Z 

axis. An FEA for the tensile test for each sampling point for each strut is carried out by constraining 

the points at the bottom part of the model and applying a displacement of 1mm on the tip of the 

strut as shown in Figure 3.20. The total reaction force value at the fixed bottom part of the strut is 

obtained by FEA and corresponds to the fine scale output denoted by YFM,2 in  Figure 3.18.   

 

 

Figure 3.20. Mesoscale (i.e. strut) level upscaling for homogenized diameter 

 

To determine the optimum number of sampling points, the accuracy of the mean and standard 

deviation of the reaction force for the strut at 90º are compared for various numbers of samples as 

illustrated in Figure 3.21. It is seen that the mean and standard deviation starts to converge after 
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200 simulations. Hence, the number of simulations can be taken as 200. On the other hand, the 

number of simulations was determined to be 500 at strut level to have a better approximation in 

the responses. Thus, for each strut at different angles, 500 samples of input variables are generated 

by LHS, and FEA is conducted to obtain the distribution of response at the fine scale.  

 

Figure 3.21. Mean value (left) and standard deviation (right) of the response for various number of samples 

 

Step 3) Coarse scale model 

In the third step of the upscaling process at the mesoscale level, a coarse scale FEM that can 

represent the fine scale FEM with homogenized parameters is constructed at the mesoscale level. 

It is preferred to use a relatively simple FEM technique that can accurately represent the detailed 

fine scale model to minimize the computational burden of repetitive simulations in the upscaling 

procedure. Hence, the struts are represented by a linear elastic beam element model at coarse scale, 

and the homogenized diameter of the strut at the coarse scale model is defined as the unknown 

homogenized input variable, denoted by Dh in Figure 3.20. The homogenized diameter 

corresponds to the homogenized input variable denoted by XCM,2 in Figure 3.18. It was assumed 

that the material properties at the coarse scale (i.e. elastic modulus and Poisson’s ratio) are the 

same as the fine scale properties. Similar to the fine scale model, the bottom part is fixed, and a 

displacement of 1mm is applied to the tip of the coarse scale model. Since the fine scale models 
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are rotated to an angle of 90º, the same coarse scale model can be used for each fine scale strut 

model. The coarse scale output is the total reaction force and is denoted by YCM,2 in Figure 3.18.  

To reduce the dimensionality of the random quantities in the optimization process, the uncertainty 

of the homogenized diameter is projected onto a second order PCE 
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Thus, only the PCE coefficients, denoted by b are found in the optimization. Since the fine 

scale input parameters are assumed to be normally distributed, it is expected that the Hermite 

polynomials will provide sufficient accuracy for this problem. The uncertain values of ξ are 

obtained from the fine scale responses using Eq, (3.24). The PCE coefficients are initialized, and 

the total reaction force is calculated as the coarse scale output variable, YCM,2, by implementing a 

tensile test simulation of the coarse scale FEM.  

 

Step 4) Optimization for upscaling 

In the fourth step of the upscaling process given by Figure 3.18, the optimization of Eq. (3.20) (i.e. 

matching the probabilistic performance of YFM,2 and YCM,2) is conducted to determine the optimal 

PCE coefficients of the homogenized variables. The coarse scale PDF results of responses, 

obtained after optimization for each strut with 90º, 75º, 60º, 45º, 30º, and 15º rotation angles, were 

compared with the fine scale PDF results in Figure 3.22, and the error values were calculated by 
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where yFM,i(j) and yFM,i(j) denote the fine and coarse scale responses at the jth sampling point for n 

number of samples, respectively. As seen in Figure 3.22, the PDF of coarse scale responses is very 

close to the PDF of fine scale responses. The error values are on the level of 10-4
, which proves 

that the upscaling is achieved with a very high accuracy for all struts with different rotation angles.  

 

Figure 3.22. PDF plots of fine scale and coarse scale responses for struts with various angles and 

corresponding error values 

 

3.4.5.2. Macroscale Level Upscaling 

The upscaling process that is used at the macroscale level can be presented when i = 1 in  Figure 

3.3 and summarized on the right side of Figure 3.18. The uncertain homogenized diameters, which 

have been determined at the mesoscale level, are introduced at the macroscale level as the fine 

scale input variables, and the overall material properties of a coarse scale model are determined 

for the AM-fabricated parts using the stochastic upscaling technique, thus enabling an efficient 

multi-level structural property characterization procedure.  
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Step 1) Fine Scale Input Uncertainties 

The statistical data of the homogenized variables, XCM,2 (i.e. the strut diameters), which were 

obtained at the mesoscale level by the upscaling process, are introduced at the macroscale level as 

the fine scale input uncertainties of the fine scale model and are represented by XFM,1. There are 

additional random input variables at the fine scale of the macroscale level, which is independent 

of the mesoscale level such as material properties of struts. Those are represented by X’FM,1 in 

Figure 3.18.  In the first step of macroscale level, the optimal distribution type and the statistical 

parameters of the homogenized variables that will be used at the macroscale level are determined 

by BIC for input uncertainty quantification at the fine scale. Different distribution types are fitted 

to the homogenized diameter data for this purpose. Six candidate distributions, i.e. Normal, 

Lognormal, Gamma, Gumbell, Frechet, and Weibull distributions, were chosen to fit the reaction 

force data using MLE by adjusting the stochastic parameters. Since Generalized extreme value 

(GEV) distribution can represent the last three distributions, it can be utilized for the estimation of 

Gumbell, Frechet, and Weibull distributions. Then, the goodness of fit of each distribution is 

calculated by BIC given in Eq. (2.68) to pick the best candidate of distribution that fits the data. 

The distribution type, which has the smallest BIC value, gives the best fit for the data of the 

homogenized diameter obtained by the upscaling procedure. The BIC values for strut diameters 

with different rotation angles are listed in Table 3.7 with bolded values for the best-fitted 

distributions. The optimal distribution types and the corresponding mean and standard deviation 

values for homogenized diameters are given in Table 3.8. The PDFs of the fitted distributions are 

illustrated in Figure 3.23 for 900 strut.  
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Table 3.7. BIC values for different type of distributions 

Distribution Normal Lognormal Gamma GEV 

0° Strut -1.9609E+03 -1.9612E+03 -1.9612E+03 -1.9500E+03 

15° Strut -2.0680E+03 -2.0671E+03 -2.0675E+03 -2.0569E+03 

30° Strut -1.9825E+03 -1.9832E+03 -1.9831E+03 -1.9781E+03 

45° Strut -2.0485E+03 -2.0475E+03 -2.0479E+03 -2.0375E+03 

60° Strut -2.0665E+03 -2.0669E+03 -2.0669E+03 -2.0564E+03 

75° Strut -2.0455E+03 -2.0454E+03 -2.0455E+03 -2.0366E+03 

90° Strut -1.8359E+03 -1.8378E+03 -1.8373E+03 -1.8332E+03 

 

Table 3.8. Distribution type and the stochastic parameters for homogenized strut diameters 

Strut Angle Distribution  Mean Dh (mm) Standard Deviation (mm) 

0° Strut Lognormal 1.4483 0.0337 

15° Strut Normal 1.3610 0.0302 

30° Strut Lognormal 1.3446 0.0329 

45° Strut Normal 1.3294 0.0308 

60° Strut Lognormal 1.3161 0.0303 

75° Strut Gamma 1.3074 0.0309 

90° Strut Lognormal 1.4086 0.0381 

 

As listed in Table 3.8, 15 and 45 struts have a normal distribution, the 75 strut has a gamma 

distribution, and the remaining struts have lognormal distributions based on the BIC results. Also, 
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the diameter values of struts in the fabricated lattice structures were measured using a digital 

caliper to compare the homogenized diameter values obtained by the upscaling method with the 

diameters of actually fabricated struts. An average diameter value for each strut was obtained by 

the measurements and compared with homogenized diameter values in Figure 3.24.  

 

 

Figure 3.23. Histogram and fitted distributions for the homogenized diameter of the 90 strut 

 

 

Figure 3.24. Comparison of homogenized diameter values with the measured diameter values 

 

The largest measured diameter value was 1.45mm for 0 strut and the diameters of the other struts 

were less than or equal to 1.4mm. These measured results prove that the uncertainties caused by 
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manufacturing process parameters have a considerable effect on the geometry of fabricated struts 

and therefore must be taken into account for the modeling. The homogenized diameter values are 

predicted very closely to the measured diameter values as seen in Figure 3.24. The error values 

between the mean homogenized value, which were obtained by accounting for the uncertainties in 

the FEM of the mesoscale level, and the measured average value for each strut with different 

rotation angles, were calculated using Eq. (3.42). The largest error was calculated as 1.7% for the 

75 strut when the errors were converted to percentage values. These results show that the 

mesoscale level upscaling procedure provides an accurate estimation of the diameter values of 

struts. Thus, the distribution of the results from tensile tests can be approximated by using only a 

single variable, i.e., strut diameter, with its own distribution at macroscale level for structural 

property characterization of lattice-based cellular structures. 

 

Step 2) Fine Scale Model 

In the macroscale level upscaling process, once the fine scale input uncertainties are quantified, 

the second step is to construct a fine scale FEM to model the details of the cellular structure. Since 

the coarse scale homogenized parameters obtained by the mesoscale level upscaling process are 

the shared variables between mesoscale and macroscale levels (i.e. XCM,2 = XFM,1), a coarse scale 

model at the strut level that can correspond to the fine scale model of the macrostructure level is 

chosen to achieve accurate calibration of mesoscale level input parameters with the macroscale 

level model and homogenized parameters. Linear elastic beam elements were used at the fine scale 

for the FEM of the cellular structures built by 0, 15, 30, and 45 degree rotated square unit cells, 

as shown in Figure 3.25. 
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Depending on the rotation angle of the struts in the lattice model, the corresponding 

homogenized strut diameter distribution and its parameters from Table 3.8 are used in the fine 

scale simulations. For instance, when the rotation angle of the unit cells in the lattice structure is 

0, there are only 0 and 90 struts in the lattice structure, as shown in Figure 3.25. Therefore, the 

homogenized diameter values obtained at the mesoscale level for 0 and 90 degree struts are used 

as the random input variables of the lattice structure with 0 rotation angle. A similar procedure is 

followed for the other lattice structures with different angles.   

 

Figure 3.25. Fine scale model of lattice structures with various rotation angles 

 

The samples for random input variables are generated by LHS using the statistical parameters for 

the homogenized input variables obtained quantified in step 1. The fine scale input variables with 

quantified uncertainties are denoted by a hat over the input variable symbol, i.e., X̂FM,1 in Figure 

3.18. Tensile test simulations were performed by fixing one end and applying an axial 

displacement on the other end of the lattice structures, while randomly varying the input variables 
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to generate an expected distribution of the total reaction force at the fixed end of the structure as 

the fine scale output, YFM,1.  

A convergence analysis for the mean and standard deviation of the fine scale response was 

again conducted to determine the optimal number of sampling points using the lattice structure 

FEM with 0 rotation angle. The convergence was obtained at about 200 samples. Hence, 200 

sampling points were generated for input variables, and FEA was conducted for each lattice 

structure type at fine scale to obtain the responses that was used in the macroscale level upscaling.  

 

Step 3) Coarse Scale Model 

In the third step, the coarse scale model at the macroscale level is constructed. The main purpose 

of the upscaling is to determine the unknown homogenized elastic properties of the lattice 

structures (i.e. Young’s Modulus and Poisson’s Ratio). Based on the upscaling process, it is 

determined that the distribution of outputs (i.e. total reaction force, YCM,1) from tensile tests on the 

lattice structure can be approximated using a solid block of material using 3D isotropic solid mesh 

elements (i.e. 8-node brick element) as the coarse scale FEM. Since the solid elements have elastic 

material properties, i.e. Young’s Modulus (Eh) and Poisson’s Ratio (vh), as the input parameters, 

these can be considered as the homogenized unknown input variables, XCM,1 in Figure 3.18. It was 

shown with a bold character since there are two input variables which make it a vector. It should 

be noted that the FDM fabricated lattice structures can show anisotropy since the build direction 

used to fabricate the structure can affect the material properties. However, since the physical tensile 

test experiments were conducted only in the X direction of the fabricated structures in Figure 3.17, 

only the isotropic elastic material properties (i.e. properties only in X direction) were determined 

in this study.  
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Similar to the upscaling process at mesoscale level, the homogenized coarse scale input 

variables are projected onto the PCE using for dimension reduction in the optimization process. 

Since there are 200 sampling points, the optimization procedure will attempt to find 200 Young’s 

Modulus and 200 Poisson’s ratio values corresponding to each sample point. In order to reduce 

the number of design variables, the random variability of Eh and vh are projected onto the PCE as 
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Thus, only the coefficients, b and c of the PCEs are determined in the optimization. The 

number of coefficients, P1, was taken as 3 and P2 was taken as 2 in the optimization process, thus, 

reducing the number of design variables from 400 to 5. The uncertain values of ξ are obtained from 

the fine scale response data, XFM,1, using Eq, (3.24). The PCE coefficients are initialized and the 

total reaction force is calculated as the coarse scale output variable, YCM,1, by implementing a 

tensile test simulation of the coarse scale FEM.  

 

Step 4) Optimization 

In the fourth step, the unknown PCE coefficients of the homogenized coarse scale input variables, 

XC,2, are determined by matching the probabilistic performance of the coarse scale output, YC,2, 

and the fine scale output, YF,2, by utilizing the optimization process.  Once the optimization process 

was implemented for each lattice structure with different angles, the PDFs of the responses at fine 
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and coarse scale were obtained. The corresponding errors between coarse scale and the fine scale 

results are also calculated by Eq. (3.42) and summarized in Table 3.9.  

Table 3.9. The error values calculated for coarse scale model predictions 

Structure 0° Angle 15° Angle 30° Angle 45° Angle 

Error 4.60E-05 1.70E-05  3.91E-05 4.14E-05 

 

As can be seen from the error results in Table 3.9. the homogenized input parameters of the coarse 

scale model that were obtained by the upscaling procedure can enable highly accurate computing 

of the PDF of the responses. As a result, the coarse scale model and the homogenized material 

properties can be used to represent the lattice structures.  

 

5.4.5.3. Comparison of homogenized lattice material properties with experiments 

Once the lattice level upscaling process is completed, the coarse scale model can be used to predict 

the lattice structure experiments. For this purpose, the distribution types and stochastic parameters 

of the predicted statistical data of the homogenized Young’s Modulus and Poisson’s ratio values 

are determined using the BIC method.  

Different distribution types (i.e. Normal, Lognormal, Gamma, and GEV) are fitted to the 

homogenized Young’s Modulus and Poisson’s ratio data to evaluate the goodness of fit of these 

distributions using BIC. The BIC values for different distribution types are listed in 0 with bolded 

values that shows the optimal distribution types. The corresponding distribution types determined 

based on these BIC values, the mean and standard deviation values for homogenized material 

properties are listed in Table 3.11. 
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Table 3.10. BIC values for different type of distributions 

Structure Variable Normal Lognormal Gamma GEV 

0° Structure 

Eh 1.8251E+02 1.8234E+02 1.8240E+02 1.8259E+02 

vh -1.3418E+03 -1.3434E+03 -1.3429E+03 -1.3415E+03 

15° Structure 

Eh -1.2148E+02 -1.2168E+02 -1.2162E+02 -1.1584E+02 

vh -1.6840E+03 -1.6844E+03 -1.6843E+03 -1.6783E+03 

30° Structure 

Eh -3.7692E+02 -3.7686E+02 -3.7689E+02 -3.7054E+02 

vh -1.3625E+03 -1.3617E+03 -1.3621E+03 -1.3561E+03 

45° Structure 

Eh -5.8341E+02 -5.8305E+02 -5.8317E+02 -5.8146E+02 

vh -1.3407E+03 -1.3387E+03 -1.3394E+03 -1.3387E+03 

 

Table 3.11. Distribution type, mean and standard deviation estimated for homogenized variables for each 

lattice structure with different rotation angle 

Structure Variable Distribution Mean Standard Deviation 

0° Structure 

Eh Lognormal 131.6355 0.3727 

vh Lognormal 0.2735 0.0082 

15° Structure 

Eh Lognormal 33.5542 0.1743 

vh Lognormal 0.3257 0.0035 

30° Structure 

Eh Normal 14.4642 0.0921 

vh Normal 0.2116 0.0078 

45° Structure 

Eh Normal 7.5350 0.0460 

vh Normal 0.2440 0.0083 
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As given in Table 3.11, the material properties of the lattice structures with 0 and 15 rotation 

angles have lognormal distributions and the others have normal distribution. The mean values of 

the homogenized Young’s Moduli are compared to the experimental results that were obtained 

from actual tensile tests of the lattice structures fabricated by FDM in Figure 3.26.  

 

The standard deviations for experimental results are as follows: 0o Structure: 2.31 MPa, 15o Structure: 2.36 

MPa, 30o Structure: 0.62 MPa, 45o Structure: 0.03 MPa. 

Figure 3.26. Comparison of Young’s Modulus results for each lattice structure.  

 

Three lattice structure tensile test specimens were fabricated for each angle (i.e. 0o, 15o, 30o, 45o 

structures) and the average of Young’s Modulus values were obtained from actual experiments. In 

addition, deterministic Young’s Modulus results are compared with the results obtained without 

using the stochastic upscaling process in Figure 3.26. In this case, since our target while fabricating 

the structures is to have 1.5 mm diameters, the lattice structure FE models were generated with 

beam elements using 1.5mm diameters for the struts. Then, the deterministic effective Young 

Modulus values of the lattice structures were calculated by dividing the axial stress on the surface 

of the structure by the axial strain, without using the proposed upscaling procedure to see the effect 

of the upscaling procedure and uncertainty quantification on the prediction of material properties. 
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As can be seen in Figure 3.26, the Young’s Modulus values decrease when the build angle 

of the unit cells is increased, and the simulation results agree well with the trend of the 

experimental results. It is observed that when there is no rotation (i.e. for the lattice structure with 

0 rotation angle), the Young’s Modulus of the structure is at least three times greater than the one 

obtained for the structures with rotation angles. This is the result of occurrence of more 

disconnected nodes on the lattice structure when the rotation angle increases. In addition, the 

results show that the homogenized values obtained by the upscaling procedure are closer to the 

experimental results than the values obtained without the upscaling procedure. For a better 

comparison of the results, the error between the experimental results and the FEA results were 

calculated for each structure using Eq. (3.42) with n=1 and listed in Table 3.12.  

Table 3.12. Comparison of errors (Eq. (3.42)) for the overall Young’s Modulus values 

Structure 
0 

Structure 

15 

Structure 

30 

Structure 

45 

Structure 

With Upscaling 0.14 0.11 0.13 0.18 

Without Upscaling 0.25 0.28 0.69 0.28 

 

 

Compared with the Young’s Modulus values obtained without the proposed multi-level upscaling 

procedure, there is a significant reduction in the errors when the proposed method is utilized. The 

lowest difference in errors occurs for the structure with 45 rotation angle, and even for that case, 

the error reduction is about half of the error occurred when the proposed upscaling procedure is 

not used. The reduction in the diameter values caused by the uncertainties due to the manufacturing 

process parameters is not taken into account in the simulations without the upscaling method, thus 

resulting in greater errors in the estimation of overall material properties of fabricated structures. 
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Thus, the results prove that the proposed multi-level upscaling method provides an efficient 

estimation of material properties by accounting for the uncertainties at the mesoscale level.  

 

3.6. Summary 

In this chapter we introduced an improved stochastic upscaling method, which constructs an 

accurate and computationally efficient coarse scale model, to facilitate the engineering analysis at 

multiple scale levels by representing the heterogeneity and propagating uncertainty at fine scale to 

the end product performance with homogeneous input parameters. The BIC method for fine scale 

input uncertainty quantification, and the exponential loss function that can enable the match 

between the fine and coarse scale model responses in an efficient way were integrated into the 

stochastic upscaling method through optimization that utilizes the PCE method to represent the 

homogenized properties with reduced dimensionality under uncertainties. In addition, a hybrid 

procedure using both GA and SQP for solving the optimization for upscaling is integrated into the 

proposed method to improve the computational efficiency of the optimization step. In Section 3.5, 

the effectiveness of the proposed approach for uncertainty quantification and propagation has been 

validated thorough two elastic structural problems at one scale level and one lattice structure 

example at multiple scale levels, involving uncertainty and heterogeneity at finer scales due to the 

AM process. A significant reduction in computational cost is obtained since (a) the simulation-

based optimization with exponential loss function is computationally less demanding and more 

accurate than the other existing objective functions (Section 3.3.1); (b) the introduced moment 

equality constraint provides a bounded design space so that better convergence speed is expected; 

(c) the PCE can reduce the number of variables to accurately model uncertainties; and (d) a hybrid 

GA and SQP algorithm can reach a global optimum with a quick convergence rate.  
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The comparison of the coarse-scale solution with the fine-scale full solution, which is used 

as a reference, provided efficient results when fine scale random input variables had either non-

Gaussian distribution or Gaussian distribution for the examples with complex geometry and 

heterogeneous material properties at fine-scale levels. When the fine scale model is presented with 

more complicated coarse scale models, which may have more than one input variable, the 

application of the proposed method may be more challenging due to a higher number of design 

variables, as shown in the upscaling process of the hydrogen storage tank design. On the other 

hand, accurate solutions were obtained regardless of the complexity of the coarse-scale model. In 

conclusion, accurate reliability assessment is achieved since the fine scale complexity and 

heterogeneity can be represented by computationally efficient coarse scale models without losing 

accuracy by utilizing the proposed upscaling technique. 

The efficacy of the presented multi-level upscaling framework has been shown on the 

material characterization of lattice structures that are fabricated with the FDM process in Section 

3.5.4. PCE has been utilized to deal with the uncertainties in the diameter of the struts in the lattice-

based cellular structures as well as the overall material properties of the structures. The developed 

multi-level technique has shown that the uncertainties that propagate from one level to another can 

be quantified efficiently. The actual test results of fabricated parts are integrated into the modeling 

procedure. The applied procedure has successfully identified the homogenized diameters and 

material properties while ensuring accurate matching of responses between fine and coarse scale 

models. It has been shown that the presented method is critical for the property characterization of 

additively manufactured cellular structures for which the analysis conducted without using the 

method would be computationally prohibitive due to the uncertainties at fine scales.  
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As mentioned earlier, although the example of this research is based on the cellular 

structures fabricated by the FDM process, the presented multi-level upscaling framework can be 

utilized as a general multiscale modeling procedure for any multiscale engineering application. 

The presented procedure has significant potential to effectively certify additively manufactured 

cellular structures, thus enabling the use of the AM-fabricated parts for critical applications such 

as parts in aircraft, vehicles, and medical products. 

Further reduction of the errors can be achieved when the upscaling processes is 

implemented for homogenizing not only the strut diameters but also the strut material properties 

at strut level by considering the porosities in the fabricated struts. Moreover, a systematic 

validation approach is required to evaluate the predictive accuracy of the computational models 

used in the upscaling process. In Chapter 4, a validation approach is introduced for this purpose.  
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CHAPTER 4. MULTI-LEVEL VALIDATION APPROACH 

This chapter deals with addressing the Research Question 2 in Chapter 1 to be able to improve the 

prediction accuracy in upscaling approach with minimal experimental cost. As stated in Hypothesis 

2, a hierarchical validation approach has been proposed to establish an accurate prediction of 

reality from the multi-level upscaling process. Specifically, the validation pyramid concept [105] 

is adapted to the multi-level upscaling process to introduce a hierarchical multi-level validation 

approach. In the proposed approach, first, the stochastic upscaling method is used for the 

homogenization of the geometry and material properties at each scale level of interest. The next 

step is the validation process, in which the experimental data is used to build confidence that the 

coarse scale model with homogenized properties can accurately predict the responses. The 

proposed framework of the hierarchical validation approach is described in Section 4.1. 

 In Section 4.2, an improved validation metric is proposed that integrates the so-called u-

pooling method [110] with the Kolmogorov-Smirnov (K-S) test [118] for the quantitative 

assessment of the model predictions to use the available experiments in the most efficient way. 

The proposed metric both enables the assessment of the model performance for multiple validation 

sites and constructs an unbiased decision criterion while considering the number of available 

experiments based on the test statistic. The flowchart of the validation step used in the validation 

pyramid after upscaling step at each scale level is described in Section 4.3.  Thus, the developed 

validation framework targets to minimize the required experimental cost while maximizing the 

model adequacy by applying the upscaling and validation steps at each scale level in bottom-up 

multiscale strategies. In Section 4.4, CLS specimens fabricated by AM techniques (i.e. by material 

extrusion and SLM processes) are used as the application examples to present the efficacy of the 
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presented approach.  Ultimately, this research will enhance confidence in employing the developed 

multi-scale models to accurately predict the process path that will give the desired combination of 

properties in designs of engineering applications. 

 

4.1. Multi-Level Validation and Upscaling Framework  

The stochastic upscaling method introduced in Chapter 3 enables the use of black-box 

computational models at multiple scale levels to model the CLSs fabricated by AM. In that 

approach, a top-down decomposition of the system or product at a macroscale level into multiple 

sub-levels (e.g. mesoscale, microscale, etc.) also requires a hierarchical validation approach to be 

developed. Hence, it is hypothesized here that the validation pyramid approach introduced by Ref. 

[105] for complex engineering systems can be adapted to validate the computational models across 

multiple scale levels. The corresponding multi-level validation framework, which is based on the 

concept of the validation pyramid approach, is illustrated in Figure 4.1 for the application to the 

CLS example fabricated by FDM process that is discussed in Section 3.4.5.   

In Figure 4.1, i represents the level of scale. The human scale level (e.g. an aircraft 

component) at the top of the pyramid is given by i=0 and defined to be the prediction level. This 

level involves the component or system that will be designed or analyzed with the computational 

models. The prediction level model is decomposed into multiple sub-levels to simplify the 

computational models. Then, the upscaling process is used to pass the information at the finer 

scales to the macroscale level from bottom to top. The first level is given by i=1 in Figure 4.1 and 

called the macroscale level. Simple coupon level experiments are utilized for validation at this 

level since those experiments are usually available. For the CLS example, this level corresponds 

to the validation of the lattice level computational model with the tensile test of the lattice structure 
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specimen. To account for finer scale details in the FE models, a mesoscale level, defined by i=2, 

is also utilized where the individual struts are modeled with detailed uncertainties of strut geometry 

and material. The mesoscale level can be broken down even further to microscale and/or atomistic 

scale levels (i = 1,2,…,N) if necessary. Once the validation is achieved for the predictions at each 

level of interest from bottom to top, validated computational model at macroscale level, (i.e. i=1) 

is used for design or analysis of the engineering application at the prediction level. 

 

Figure 4.1. Multi-level validation approach with the application to the modeling of CLSs. 

 

Differing from the existing validation pyramid approach, where only one calibration and 

multiple validation steps are used, in the proposed approach, the calibration and validation steps 

are used at each scale level of interest in an increasing hierarchy of models. The actual validation 

pyramid framework starts with a calibration process at the bottom of the pyramid to identify the 
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input parameter values of the model. In the proposed multi-level modeling approach, this 

corresponds to an upscaling (or homogenization) process in which the homogenized input 

parameters are determined for the model that will be used in the subsequent scale level. In the 

proposed approach, the stochastic upscaling method presented in Chapter 3 is used to determine 

the homogenized properties, as well as to quantify the uncertainties at each scale level.  

This upscaling procedure is desired because homogenized parameters and the 

corresponding coarse scale model at one level (e.g. mesoscale level) are used at a higher scale level 

(e.g. macroscale level) to simplify simulations. In Figure 4.1, the input variables are denoted by X, 

where subscripts FM and CM represent the fine scale model and the coarse scale model at one 

level, respectively. The fine scale model, which is upscaled to a coarser scale, can either be a 

physical experiment or a detailed computational model. In the upscaling step of the validation 

approach, the fine scale models are considered as the ground truth and the homogenized properties 

of the coarse scale models are found by the upscaling method. The smallest representative model 

is chosen in the upscaling step of the corresponding level to minimize the computational effort.  

Once the homogenized properties (XCM,i) are predicted for the coarse scale model using the 

upscaling approach at one scale, validation experiments are needed to ensure that the coarse scale 

models corresponding to each level function properly. For this purpose, the experiments in the 

validation step are designed to challenge the computational model. Hence, a model that is different 

and/or more complex from the one used in the upscaling process is preferred to ensure the validity 

of the assumptions made for developing the prediction model. The homogenized inputs estimated 

by the upscaling process are used to model the experimental specimen with the coarse scale model. 

The coarse scale model outputs are compared with the experimental measurements for validation. 

However, one issue in the multiscale model validation process is that it is usually difficult or 
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impractical to implement physical experiments at scales finer than the macroscale level since the 

scale is too small to physically model. Then, the validation for the predictions of the coarse scale 

model with homogenized properties can be performed at the scale levels where the validation 

experiments can be achieved.  

At scales where the experiments are not available or very expensive, a “pre-validation” 

step is introduced to increase the confidence of the computational models. In this step, the fine 

scale modeling approach is used instead of the validation experiments, which also allows for the 

decrease of the experimental cost. Similar to the validation step, a model that is different from the 

one used in the upscaling step and that can challenge the coarse scale model predictions at the 

same level is determined by the user. Thus, the validation methodology will have the generic steps 

for each scale level of interest and can be used in the validation of the computational models used 

in a bottom-up multiscale modeling process. It should be noted here that the pre-validation step 

does not guarantee that the predictions of the model are valid or accurate at the level where the 

experiments are not available since it is not a validation process with experiments; but, it gives 

some insight on the prediction level of the model. To use the pre-validation step at finer scale 

levels, one has to know that experiments are available at least at the macroscopic level (i=1). 

Otherwise, using the pre-validation step at each scale level without any experiments will not 

provide any validation for the models used in the multiscale modeling process. Hence, the highest 

level (i.e. level of macroscale) experiments are crucial for the proposed validation approach to 

evaluating whether the multi-level upscaling procedure adequately considered the interactions at 

all levels from bottom up. Then, at each level in the proposed validation pyramid, if the prediction 

outcomes agree with the experimental outcomes, the next level validation process will be 

processed. Otherwise, the computational model is modified until the desired values are attained. 



195 

 

Once the proposed validation framework is implemented successfully at each scale level, the 

validated computational models can be used at the prediction level shown in Figure 4.1 at the top 

of the pyramid (i=0) for analysis or design of the product of interest. Additional validation and 

accreditation steps can be introduced at this component or system level if the experiments are 

available, as discussed in [105].  

 

4.2. Proposed Validation Metric 

To quantitatively evaluate the validity of the computational models at each level of the validation 

pyramid and to use the available experimental data in the most efficient way, an appropriate 

validation metric is to be chosen. One important criterion that needs to be considered while 

choosing the validation metric is that more than one different validation sites can exist that output 

the same response parameter. The u-pooling method described in Section 2.4.3.2 is used in this 

research to assess the predictive capability of the models in the case of multiple validation sites.  

The u-pooling method is advantageous over other validation metrics as it pools all of the 

observations at multiple validation sites into one distribution, which should follow SUD if an 

accurate prediction is made. Thus, the number of available experimental data can be increased in 

the validation process even if a small number of experiments are available. Ferson et al. [110] 

proposed to use the area metric described in Section 2.4.3.1 to evaluate the distribution of 

predictions obtained by the u-pooling method. However, in the area validation metric, a threshold 

value must be determined by the decision maker as a decision criterion to accept or reject the 

model predictions. This criterion will not give an unbiased decision based on the number of 

experiments. In other words, if the number of experiments is not sufficient, the area metric may 

result in making a wrong decision for the validation of the model [106]. Hypothesis testing 



196 

 

methods can be applied to the u-values to address this drawback of the area metric [110]. Among 

various hypothesis testing methods, the K-S test has the advantage of the applicability for any type 

of distribution as described in Section 2.1. Hence, we propose to use the K-S test to evaluate the 

predicted distribution by the u-pooling method instead of using the area metric. The K-S test can 

establish an acceptance/rejection criterion based on the number of available experimental 

observations or measurements. The K-S test uses the maximum distance between the target CDF 

and the predicted CDF to decide whether the predicted CDF is accepted or not as described in 

Section 2.1. When the u-pooling method is used, for ith scale level, the maximum distance, denoted 

by dKS, is calculated by  

)()(max ,, uFuFd iECDFSUD
u

iKS   (4.1) 

In the modified K-S test for the u-pooling method, if the u values are found to be drawn 

from the CDF of the SUD (FSUD(u)), then the null hypothesis is H0 = 0 (i.e. the model is not 

rejected); otherwise H0 = 1 (i.e. the model is rejected) at a significance level of α according to 

Kolmogorov’s distribution [118]. Since the K-S test statistic is calculated based on the number of 

experiments, it will provide an unbiased decision criterion in the validation process.  

 

4.3. Flowchart of the Proposed Validation Step 

The flowchart of the validation step in the validation pyramid at each level of interest with the 

proposed validation metric is shown in Figure 4.2.  
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Figure 4.2. Flowchart of the proposed validation step  
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The proposed validation step has five steps as follows: 

Step 1: Once the upscaling step is completed at the ith scale level in the validation pyramid, 

the validation model is determined. The validation model is expected to be different from the 

model used in the upscaling step to challenge the prediction model.  

Step 2: On the right side of the flowchart in Figure 4.2, the physical experiments are 

conducted for each validation site iVSnk ,,...,1 . If the physical experiments are available, the 

observation data set )}({ )(

,

)(

, jyY k

iE

k

iE   are collected where )(

,,...,1 k

iEnj   and )(

,

k

iEn denotes the number 

of experiments at the kth validation site. If physical experiments are not available, a fine scale 

model of the validation model that is known as ground truth is generated as the pre-validation 

model. Then the fine scale model responses )}({ )(

,

)(

, jyY k

iFM

k

iFM   are collected as the experimental 

data of the pre-validation step where )(

,,...,1 k

iFMnj   and )(

,

k

iFMn denotes the number of fine scale 

model simulations at the kth validation site. 

Step 3: On the left side of the flowchart in Figure 4.20, for each validation site, the 

computational model (i.e. the coarse scale model) is simulated for the validation model with 

homogenized properties obtained from the upscaling step. The coarse scale model responses 

)}({ )(

,

)(

, jyY k

iCM

k

iCM   are collected where )(

,,...,1 k

iCMnj  and )(

,

k

iCMn denotes the number of coarse scale 

model simulations at kth validation site. Then, the CDF models of the coarse scale responses at 

each validation site are constructed, i.e.  )()(

,

)(

, jyF k

iCM

k

iCM
. The BIC method is proposed to use for 

estimating the best fitted distribution model to the coarse scale responses at each validation site.  

Step 4: The u-pooling method is utilized to calculate the u-values of the experimental 

observations from the CDF models of the coarse scale responses predicted by BIC, i.e. 
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 )()(

,

)(

, jyFu k

iE

k

iCMt  . Then, all of the u-values are transformed into one distribution using the ECDF 

formulation given in Eq. (2.6) and the ECDF of u-values is obtained as  tiECDF uF , . 

Step 5: The ECDF of u-values  tiECDF uF , is compared with the CDF of the SUD 

 )(

,

k

iCMSUD YF  based on the validation metric (i.e. the K-S test). The maximum vertical distance 

between these two distributions is calculated as the K-S test statistic. If the predicted CDF is 

accepted based on the K-S test, then the coarse scale model and its homogenized input parameters 

obtained in the upscaling step are passed onto the next level of interest in the multi-level validation 

approach. Otherwise, the assumptions of computational models at the current level are revised 

until accurate predictions are made.  

 

4.3. Validation Example 1 - CLS fabricated by FDM 

The proposed multi-level upscaling and validation framework is applied for the elastic material 

property characterization of an AM-fabricated CLS described in Section 3.4.5. For this example, 

only 00 lattice structure shown in Figure 3.17(a) fabricated in a material extrusion process (i.e. 

Stratasys® Fortus 400mc FDM machine) using ABS-M30 material is considered. The specimens 

are made of a space-filling polyhedral, the so-called simple cubic (SC) cell, which has vertical and 

horizontal struts in a cubic cell as shown in shown in Figure 3.17(a). Each cell has dimensions of 

5×5×5 mm with 1.5 mm strut diameters and fills a space of 20×20×50 mm in the specimen.  

In the example in Section 3.4.5, only the geometric uncertainties on the fabrication of layers 

were considered. Along with geometric uncertainties, the irregularities in the material properties 

at strut level are also needed to be taken into account for a better representation of the CLS with 

the FE modeling techniques. Hence, in this study, a modeling process is developed that considers 
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both the geometric and material irregularities at strut level. The proposed multi-level validation 

approach is used to quantitatively assess the predictions made by the models for predicting the 

effective elastic properties of the CLS. With accurate model predictions, it would be possible to 

reliably use the multiscale models in engineering design.   

The ultimate goal of the multi-level upscaling and validation approach for this example is 

to be able to consider the mesoscale level (i.e. strut level) geometric and material imperfections 

and uncertainties when modeling the SC cellular lattice structure (SC-CLS). Eventually, each SC 

cell in the structure will be modeled as a solid continuum element with homogenized elastic 

properties so that the computational cost can be decreased when designing engineering parts using 

lattice materials while still considering the uncertainties at the finer scale levels. In the application 

of multi-level upscaling process for this CLS example, two different scale levels are considered. 

At the mesoscale level (i=2), the individual struts are modeled with detailed variations, while at 

macroscale level (i=1), the lattice cell is modeled using the homogenized strut properties with 

uncertainties propagated from the strut level. To show the applicability of the proposed validation 

approach, two computational model alternatives are considered at each scale level. The first 

models for both mesoscale and macroscale levels correspond to the models that were used in the 

multi-level upscaling of the CLSs presented in Section 3.4.5. That is, only the geometric 

irregularities at strut level are considered in the first models. The second model at strut level 

includes also the material imperfections. The details of the computational models used in the 

upscaling and validation process at each level are given in the following subsections. 
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4.3.1. Computational Models used in the Proposed Framework 

4.3.1.1. Strut level (mesoscale level) models 

The flowchart of developing the fine scale models of the struts is shown in Figure 4.3. 

There exist two strut models considered in this study. The first model is called Strut Model 1, 

which consists of only the geometric uncertainties (i.e. Steps (1)-(4) in Figure 4.3). As stated in 

Section 3.4.5, there exist uncertainties in the geometry of struts because the cross-sectional area of 

the struts that make the unit cells is not perfectly constant when fabricated by AM processes. They 

vary within a certain range depending on the parameters that are used during the AM process. 

Thus, the diameter of each cross-section for each layer deposited in the FDM process, the angle of 

the strut about the X and Y axis, and the deviation of the FDM printing tip in the X and Y axis are 

considered as the uncertain input geometry variables for the fine scale model of Strut Model 1 with 

the quantified uncertainties listed in Table 3.6. 

For Strut Model 1, deterministic elastic material properties of the ABS material are used at 

each simulation in the sampling procedure. That is, the mean values of the material properties 

given in Table 3.6 are used in the fine scale FEA, but the material uncertainties, such as the 

variation of material properties and porosity, are not included. Thus, only the effect of geometric 

uncertainties are considered to find the homogenized diameter of the struts in the upscaling 

process. A fine scale FE modeling technique that fills each deposited layer of the fabricated strut 

with voxel elements (i.e. 8-node brick elements) is used to accurately model the geometric 

uncertainties in the strut cross-sections as shown in Figure 4.3. Once the voxel model is generated 

with geometric uncertainties, FE simulation of the model is performed.  
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Figure 4.3. Flowchart of the strut level fine scale model generation process 

 

Strut Model 2 includes also the second type of irregularities, i.e. the material imperfections such 

as porosity that occurs due to the path the material extrusion process follows. The material 

microstructure is simplified to contain voids in the strut that are considered to arise during the 

fabrication process using the material extrusion process. In addition, the porosity occurs inside the 

struts after the outer circumference of each layer is deposited. To mimic this behavior of material 

extrusion, the porosity is included as voids that are equivalent to the size of voxel elements, as 

illustrated in the second part of Figure 4.3. (i.e. in steps (5)-(8)). The coordinates for the center 
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point of each void are randomly generated such that the voids will be one thickness value inside 

the outer circumference at each deposited layer. Then, the corresponding voxel elements covered 

by these voids are automatically taken away in the finite element model. In this study, it was 

assumed that the struts fabricated by the FDM process have 15% porosity with a coefficient of 

variation (COV) value of 0.1. The porosity of the strut is simply calculated by the fraction of the 

total volume of the voids in the strut to the total volume of the strut model. The random void 

generation and element removal process are preformed until the target porosity value is reached 

for each sampling point. Although attributes such as orientation and circumference for irregular 

voids are ignored, the simplified model with voids still allows for accurate determination of the 

effective elastic material properties. In addition to the porosity, the material properties of the strut 

FE model (i.e. elastic modulus and Poisson’s ratio) are assumed to have uncertainty with the 

statistical parameters given in Table 3.6.  

For Strut Model 2, the modeling process starts with the generation of the strut by 

considering only the geometric uncertainties, i.e. steps (1)-(4) in Figure 4.3. The strut FE model 

generated in the first part with geometric uncertainties is retained and material properties of the 

voxel elements are changed based on the uncertainty of the material properties in steps (5)-(8) in 

Figure 4.3. A stratified sampling scheme, LHS, is used to generate n number of sampling data for 

the uncertain parameters. All uncertain input variables given in Table 3.6 are assumed to be 

following a normal distribution. Their standard deviations can be determined by multiplying their 

mean values by the corresponding COV values the variables. 

For both Strut Models 1 and 2, one of the planes in the loading direction was displaced 

such that a homogenized strain of εFM = 0.1% is created in the strut FE model. The plane opposite 

to the displaced plane is fixed in the direction of the load to achieve tensile test simulation.  A 
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relatively small length of strut, i.e. Lstrut = 2.5 mm, is considered to reduce the computational 

complexity. The thickness and length of the strut was considered as deterministic variables as it 

was found that the change of these does not affect the response.  

Ultimately, the total reaction force on the top face of the strut model is obtained from the 

FE simulation for each sampling point as the fine scale output denoted by )(1,1 jyFM for Strut Model 

1 and )(1,2 jyFM for Strut Model 2. Once the fine scale responses are obtained for each strut model, 

the stochastic upscaling method is used to determine the homogenized diameter and elasticity 

modulus of the struts. The struts are modeled by using beam elements for the homogenized coarse 

scale model in the upscaling process. Both the homogenized diameter and elasticity modulus are 

projected onto a 2nd order PCE in the upscaling process. Strut Model 1 (i.e. the model with only 

the geometric uncertainties) is used first to determine the homogenized diameter for each strut 

model with different angles. Then, Strut Model 2 (i.e. the model with both geometric and material 

uncertainties) is used to determine the homogenized elasticity modulus for each strut model. 

4.3.1.2. Lattice level (Macroscale level) models 

At the macroscale level, the homogenized properties from the strut level are passed onto two 

different fine scale models generated using the commercial FEM software. For Lattice Model 1, 

the fabricated CLS shown in Figure 4.4(a) is modeled using beam elements as the fine scale model 

as seen in Figure 4.4(b). It should be noted that the struts on the outer faces of the CLS are 

fabricated such that their cross-sections are semicircles as seen in Figure 4.4(a). It is usually 

difficult to model the strut with a semicircle cross-section using beam elements as the available 

cross-section models in Abaqus include the modeling option of entire circular cross-section. To 

simplify the modeling process of these struts on the outer faces of CLS for Lattice Model 1, the 
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cross-sections of these struts are modeled as full circles with the half of the corresponding strut 

diameter values. Moreover, the beam elements cannot account for the details of the connection 

points of the struts as seen in Figure 4.4(b). These drawbacks of the beam elements can be 

eliminated when solid continuum elements are used instead of the beam elements. Hence, for the 

Lattice Model 2, the CLS is modeled by 3D solid elements as seen in Figure 4.4(c). For both 

modeling techniques, one of the planes in the loading direction was displaced such that a strain of 

0.1% is created in the CLS models. The plane opposite to the displaced plane is fixed in the 

direction of the strain to mimic the tensile test. Thus, only the mechanical properties associated 

with loading in the loading direction are presented. 

 

(a) Fabricated CLS (b) Lattice Model 1 with beam elements (c) Lattice Model 2 with solid geometry. 

Figure 4.4. FE models of the CLS specimen  

 

The FE model of the entire CLS with solid continuum elements is computationally very expensive. 

Hence, a lattice cell model that can represent the entire structure with a smaller number of unit 

cells is desired for Lattice Model 2. To determine the smallest fine scale Lattice Model 2 size that 
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gives accurate results, a convergence study is performed with the different number of unit cells. 

The deterministic effective elastic modulus of the SC lattice material with 1.5 mm strut diameter 

is calculated for models having a different number of SC cells. Periodic boundary conditions 

(PBCs) are applied on the unit cell FE model. PBCs force the displacements of the nodes on each 

surface to be the same as those of the corresponding nodes on the opposing face; thus, representing 

the spatial periodicity of the deformation field of the entire structure for a unit cell model. A strain 

of 0.1% is applied in one direction to simulate the tensile test. Quadratic tetrahedral elements are 

used to mesh the structure. The effective elastic modulus is calculated for a corresponding coarse 

scale model with hexagonal solid elements that has the same size as the unit cells for each model 

and compared in Figure 4.5.  

 

Figure 4.5. Results for solid element-based CLS models with different number of SC cells.  

 

One can see that the simulation time of the entire model (i.e. 4×4×10) is significantly higher than 

that of the other models (~101 min). The computation time can be decreased by a smaller model 

with PBCs as seen in Figure 4.5. In addition, it is seen that all models provide similar results to the 

target model of the entire structure for the effective elastic modulus. Based on these results, since 

the model with one-unit cell has a very small computation time value, it is determined for Lattice 
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Model 2 that only one-unit cell model will provide sufficient accuracy when predicting the 

effective elastic modulus of the lattice structure under tensile test conditions.  

A mesh convergence study is also conducted to determine the optimal size of the mesh 

elements. The computation time and effective elastic modulus values are given Figure 4.6 for 

various mesh sizes. It was found based on these results that a mesh size of 0.375 mm is appropriate, 

as the computation time increases dramatically for smaller mesh size values while the elastic 

modulus results converge. This mesh size corresponds to the quarter of the dimeter (i.e. 0.25×D). 

This mesh size is used when modeling the unit cell with solid elements. 

 

Figure 4.6. Mesh convergence of unit cell FE model with quadratic tetrahedral elements. 

 

4.3.2. Results of Upscaling and Validation Steps 

4.3.2.1. Results at strut level 

For the predictions of Strut Model 1, (i.e. strut model with only geometric uncertainties), the 

homogenized diameters, that were previously found by using the upscaling method for seven 

different rotation angles (i.e. 0˚, 15˚, 30˚, 45˚, 60˚, 75˚, 90˚ strut angles) are compared with 

experimental measurements in Figure 3.24. These experiments at different validation sites (i.e. 

different rotation angles) can be pooled into one distribution the using u-pooling method. Thus, 
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this example shows how the number of experiments can be increased in validation process by 

using multiple validation sites. There are 
)(k

En = 10 experimental measurements for each strut with 

different rotation angles (i.e. for each validation site) obtained using a digital caliper from the 

fabricated CLS in different angles. Thus, there are nVS,1
 = 7 validation sites and nT = 70 

measurements in total. 

 Once the distribution type and statistical parameters are determined using the BIC method 

after upscaling the homogenized diameters, the u-pooling method is utilized to pool all of these 

experimental measurements into one global metric. In the u-pooling process, the CDF values of 

the measured diameter values (i.e. u values) are calculated by using the corresponding model CDF 

determined by BIC in Table 3.8 at each validation site. As mentioned earlier, it is expected 

according to the u-pooling method that the ECDF of these u values of the experimental data should 

follow a uniform standard distribution CDF if the prediction models are accurate. ECDF of the 

experimental measurements is compared with the SUD in Figure 4.7.  

 

 

Figure 4.7. ECDF plot of u-pooling results for homogenized diameters for Strut Model 1. 
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Both the maximum distance and area metric between the target SUD and the ECDF of the u values 

were calculated in this study to compare the decision results made by the K-S test and the area 

metric. For the area metric, a threshold value of 0.1 is determined to make a decision about the 

model predictions. The maximum distance was calculated as 0.1454 for the K-S test while the area 

metric was calculated as 0.0561. Since the area metric value is less than the threshold value of 0.1, 

the predictions made by Strut Model 1 is accepted. Similarly, the computational CDF models are 

not rejected by the K-S test based on the maximum distance with a significance level of 0.05. 

Hence, it is concluded that the predictions made by Strut Model 1 and the upscaling step can be 

used at the lattice level.  

For Strut Model 2, the uncertainty in the material properties and material porosity are also 

introduced to the fine scale models. Since the homogenized diameter values are determined for 

Strut Model 1, only the homogenized elastic modulus are determined for Strut Model 2. The 

upscaling is performed to find the homogenized elasticity modulus values for only 0˚ and 90˚ struts 

because the target CLS for this study only have struts with these rotation angles. Once the 

upscaling completed, the predictions made by coarse scale model with these homogenized 

diameter and elastic modulus is to be validated. However, there are no experiments at the strut 

level to validate the predictions made by the coarse scale model with material uncertainties. Hence, 

the proposed pre-validation step is used to increase the confidence in the predictions of the model. 

In that regard, the fine scale strut model with material and geometry uncertainties is considered as 

the ground truth model in the pre-validation step as illustrated in Figure 4.8. The pre-validation 

model is determined as a longer strut model with a strut length of L = 10 mm than the upscaling 

model. In the pre-validation model the bottom end of the strut was fixed in all directions to have a 

different scenario from the model used in the upscaling process. The tensile strain is applied on 
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the top end surface of the strut model and the lateral movements of the top surface are also fixed. 

If the homogenized properties are predicted with sufficient accuracy, the coarse scale model 

simulation should give close predictions to the predictions of the pre-validation fine scale model 

with the same boundary and loading conditions.  

 

Figure 4.8. Validation pyramid for strut level with pre-validation step 

 

The coarse scale model considered to represent this pre-validation fine scale model is generated 

with the same length using two different modeling techniques, i.e. beam elements and solid 

quadratic tetrahedral elements with constant diameter throughout the strut. Solid elements are used 

instead of a beam element, which is used in the coarse scale model of the upscaling process, 

because at the next level (i.e. at the lattice level), the same type of solid elements are considered 

to model the lattice cells. Since 0.25xD has been determined as the optimal mesh size for the lattice 
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structure, the same mesh size is used to model the strut at coarse scale.  The optimal distribution 

types and statistical parameters for homogenized elasticity moduli are predicted as listed in Table 

4.1 using BIC method to use in the pre-validation coarse scale models.  

 

Table 4.1. Static parameters for homogenized elastic moduli at strut level. 

Structure Mean (MPa) Standard Deviation Distribution 

0° Strut 1608.707 67.664 Lognormal 

90° Strut 1698.362 71.489 Lognormal 

 

The tensile test simulations were performed for both 0˚ and 90˚ struts and the reaction force values 

were obtained for each simulation. Only 50)(

1, 
k

FMn simulations were performed for the fine scale 

model of the pre-validation step due to the increased computational complexity when L=10 mm. 

Thus, nVS,1 = 2 validation sites and nT = 100 pre-validation measurements were found in total. To 

compare the effectiveness of the area metric and the K-S test depending on the number of 

experiments, the number of fine scale simulations for each pre-validation site was decreased to 

10)(

1, k

FMn (i.e. nT = 20) and 20)(

1, k

FMn  (i.e. nT = 40). At a coarse scale, 200)(

1, k

CMn  simulations 

were performed and BIC was used to predict the distribution types and the statistical parameters 

of the reaction force values. The u-pooling method was used again to predict the CDF values (i.e. 

u values) of the fine scale responses. The ECDF of the u values are plotted in Figure 4.9 and the 

decision results are listed in Table 4.2 for three different nT values. The area metric threshold is 

reduced to 0.05 for this pre-validation step since the fine scale model is used as the ground truth 

model.  
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                                            (a)                                                                   (b) 

(a) Results for Strut Model 1 (i.e. beam element model at the coarse scale), (b) Results for Strut Model 2 (i.e. 

solid quadratic tetrahedral element model at the coarse scale). 

Figure 4.9. ECDF plots of u-pooling results for the pre-validation step  

 

Table 4.2. Decision results for pre-validation step 

 
nT

 Maximum 

Distance 
p-value Area Metric 

K-S Test 

Decision 

Area Metric 

Decision 

Beam 

Element 

Model 

20 0.2171 0.2621 0.0553 Accept Reject 

40 0.1117 0.6591 0.0420 Accept Accept 

100 0.0821 0.4848 0.0256 Accept Accept 

Solid 

Element 

Model 

20 0.2659 0.0974 0.0734 Accept Reject 

40 0.1409 0.3701 0.0656 Accept Reject 

100 0.0859 0.4275 0.0343 Accept Accept 

 

The CDF plots in Figure 4.9 and the maximum distance and area metric results in Table 4.2 for 

both coarse model techniques reveal that the prediction model is getting closer to the target 

distribution with an increasing number of experiments. This means that a favorable prediction was 
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made by the coarse scale models even if the number of experiments are 20; otherwise, the results 

would not approach to the target distribution. That also means that the metric distance should 

follow an increasing trend when the number of experiments are decreased if the predictions are 

correct. For the highest number of experiments (i.e. nT = 100), the prediction model is accepted by 

both the area metric and the KS-test. If the predictions were accepted for the highest number of 

experiments, it is expected that the predictions made for a smaller number of experiments should 

also be accepted because the predictions are close the target distribution for a high number of 

experiments. However, when the number of experiments decreases, the area metric (the existing 

method) rejects the models because the resulting metric value becomes greater than the threshold 

value of 0.05 as seen in Table 4.2. In other words, these were rejected because the threshold value 

is the same for all three cases while the metric value increased with the decrease of number of 

experiments.  

On the other hand, the K-S test in the proposed method accepts all three cases since the 

decision is made based on the number of experiments. That is, when a smaller number of 

experiments exists, the K-S test increases the threshold value as expected. In the area metric, on 

the other hand, the decision criterion value is 0.05 for all cases. Therefore, the models with a 

smaller number of experiments are rejected. The decision maker has to make a subjective change 

in the threshold value if the available number of experiments is a small number. However, since 

the K-S test considers the number of experiments in the decision criterion, it provides an unbiased 

decision without requiring further change of the criterion. These results show the effectiveness of 

the K-S test over the area metric in terms of the dependency on the number of experiments. Hence, 

according to these results, the coarse scale model predictions can be accepted using K-S test even 

if the number of experiments are very small as expected. Moreover, since both the beam element 
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model and the solid element model provide very close results to the fine scale model and accepted 

by both K-S test and area metric for nT = 100, it is concluded that the predicted homogenized 

properties with upscaling process can be used for both coarse scale models at the next level (i.e. at 

the macroscale level) for lattice upscaling process.  

The model selection capability of K-S test metric (i.e. maximum distance metric) and area 

metric is investigated next. At the pre-validation step, better predictions are expected to be made 

when beam elements are used as the coarse scale model compared to the solid element model 

simply because the same beam element model is used in the upscaling process to predict the 

homogenized properties. As seen in Table 4.2, for 100 experiments, both the maximum distance 

metric and the area metric values, calculated for the beam element model predictions, are lower 

than those calculated for the solid element model predictions. That means the beam element model 

makes better predictions than the solid model as expected. However, the maximum distance metric 

values calculated for beam element and solid element model predictions are so similar (i.e. 0.0821 

and 00859, respectively). The reason of similar values when using the distance metric is that the 

maximum distance considers the point that has the maximum distance. Area metric, on the other 

hand, gives a distinctive difference when metric values are compared for both models (i.e. 0.0256 

for beam element model and 0.0343 for solid element model) since the entire distribution is 

considered. Hence, based on area metric values, it is clear that the beam element model makes 

better predictions than the solid model.  

Area metric provides a more reliable comparison among different model predictions since 

it considers the entire distribution in calculation of the metric.  The advantage of area metric, which 

is shown in existing studies as its capability of choosing the best among multiple models  [106], 

[107] is proven in this example as a discernible difference is obtained between both models. 
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Another advantage of the area metric in model selection is that the area metric can be back-

propagated to the actual unit of the response to investigate the deviation of the model results from 

the experimental observations, as introduced by Ferson et al [110]. Thus, it is concluded based on 

these observations that K-S test should be used to accept or reject models due to its dependency to 

the number of experiments while area metric should be used if deciding among multiple models 

accepted by the K-S test. Finally, although the beam element model makes better predictions 

according to the area metric, rather than selecting one of those, both model predictions are passed 

onto the next level to compare prediction results with the real physical experiments at lattice level.   

4.3.2.2. Results at lattice level 

As mentioned previously, in Lattice Model 1, the entire CLS is modeled using beam elements, 

while a unit cell model is generated using solid continuum elements in Lattice Model 2 at the fine 

scale. The number of samples is determined as 200)(

1, k

FMn for the fine scale simulations at lattice 

level for both Lattice Model 1 and Lattice Model 2. In the multi-level upscaling process, three 

different modeling approaches were utilized: In the first modeling approach, the homogenized 

diameter values, obtained from Strut Model 1 and given in Table 3.8, are used in Lattice Model 1. 

The material properties are assumed to be deterministic, which means no material property 

uncertainty effect occur at strut level. In the second and third modeling approaches, both the 

homogenized diameters and elastic moduli obtained from Strut Model 2 are used in Lattice Model 

1 and Lattice Model 2, respectively. The homogenized elastic moduli given in Table 4.1 are used 

in the fine scale model. Once the reaction force distribution is obtained from the fine scale 

simulations at the lattice level, the upscaling procedure is utilized to obtain the homogenized elastic 

modulus (Eh) of the SC lattice cell. For the coarse scale model used in the upscaling process, each 
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SC cell is represented by a solid hexahedral continuum element that accepts the homogenized 

elastic modulus as the material property. Once the upscaling process is completed, the distribution 

type and statistical parameters of the homogenized material properties are predicted using the BIC 

method and are listed in Table 4.3.  

Table 4.3. Statistical parameters for homogenized material properties at lattice level. 

Model Variable Mean Standard Deviation Distribution 

Strut Model 1 - Lattice Model 1 Eh 131.6355 0.3727 Lognormal 

Strut Model 2 - Lattice Model 1 Eh 110.5065 2.9409 Normal 

Strut Model 2 - Lattice Model 2 Eh 115.4676 5.5123 Lognormal 

 

Once the upscaling process is completed at lattice level, the next step is the validation of the coarse 

scale model results with the experiments for the tensile test specimen as shown in Figure 4.10. For 

the validation step at the macroscale level, there are nT = 3 physical validation experiments for the 

SC-CLS specimens. The coarse scale validation model that corresponds to the experiment model, 

at the validation step, is generated with hexahedral solid elements using the homogenized elastic 

moduli in Table 4.3 estimated by the upscaling step at the lattice level.   

Since the coarse scale model has solid hexahedral elements corresponding to each SC cell 

in the CLS, a large sampling size can be generated with trivial computational cost. Hence, the 

distributions of the reaction force of the coarse scale models are obtained from 200 simulations. 

BIC is used to predict the distribution of the reaction force for each coarse scale model. Then, the 

u-pooling results of the experimental measurements are determined using the distributions of each 

prediction model. The decision results are given in Table 4.4 for both the K-S test and area metric; 
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the distributions are shown in Figure 4.11. A threshold value of 0.1 is considered for area metric 

to make a decision. 

 

 

Figure 4.10. Validation pyramid at lattice level 

 

Table 4.4. Decision results of macroscale level validation  

Model Max. Distance p-value Area Metric 
KS-Test 

Decision 

Area Metric 

Decision 

Strut Model 1 – Lattice Model 1 1 1.1E-16 0.5 Reject Reject 

Strut Model 2 – Lattice Model 1 0.5940 0.1527 0.2877 Accept Reject 

Strut Model 2 – Lattice Model 2 0.5026 0.3274 0.1794 Accept Reject 
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Figure 4.11. ECDF plots of u-pooling results used in validation. 

 

As can be seen in Figure 4.11, the predictions made by both Lattice Models 1 and 2 that use Strut 

Model 2 follow the target distribution despite the small number of experiments. Lattice Model 1 

that uses Strut Model 1, however, fails to follow the target distribution. The results in Table 4.4 

reveal that this model is rejected by both decision criteria. The reason that Strut Model 1 is rejected 

is that no material imperfections and uncertainties at the strut level are considered in the modeling 

process. Therefore, the predicted mean value of the homogenized elasticity modulus (Eh = 131.64 

MPa) is found to be far greater than the other model predictions as also seen in Table 4.4. These 

results also show that Strut Model 2 gives more favorable predictions at the lattice level as the 

CDF’s obtained by using the predictions made by Strut Model 2 follow the target SUD as seen in 

Figure 4.11. These results also support the decision made at the pre-validation step of mesoscale 

level since at the pre-validation step the predictions of Strut Model 2 have been accepted while 

Strut Model 1 predictions were rejected. Hence, it can be concluded that even though the strut level 

experiments were not available for Strut Model 2, the pre-validation step at mesoscale gives an 

initial judgement about the model appropriateness. Then, the macroscale level validation step 

provides the final judgement for the validation of the models.  
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In addition, the results in Table 4.4 indicate that the area metric rejects all models if 0.1 is 

used as the threshold value. However, as stated earlier, the prediction CDF’s shown in Figure 4.11 

based on Strut Model 2 follows the target distribution, as expected from a true prediction model. 

In fact, if a few number of samples were drawn from a distribution and their CDF was plotted, a 

very similar result to the CDF’s of the lattice models based on Strut Model 2 would be obtained. 

In that case, since the samples were drawn from the actual distribution, the CDF would follow the 

target distribution with a large stair shape, as the CDF of the lattice models based on Strut Model 

2 follows in Figure 4.11. Hence, it is expected that the predictions made by Strut Model 2 are more 

likely to be accepted.  The area metric threshold value of 0.1 must be increased by the user to take 

these observations into consideration for accepting these models. That is, a subjective evaluation 

of the results is required to change the threshold of area metric. The K-S test, on the other hand, 

accepted the predictions made by these models, as expected, since the decision criterion is adjusted 

in K-S test based on the number of experiments. Thus, these results reveal that the K-S test works 

well as an unbiased decision criterion in the proposed validation process due to its dependency on 

the number of experiments.  

Finally, in this example, there are two accepted lattice models by K-S test that can be used 

for further predictions. A question that arises for this case is “which of these accepted models is 

more accurate?” To evaluate their accuracy, the area metric results can be compared as suggested 

in the strut level validation step where the predictions of the strut level models are evaluated. As 

seen in Table 4.4, the area metric value for Lattice Model 1 is larger than that for Lattice Model 2 

(i.e. the fine scale lattice model with solid elements), indicating model 2 makes better predictions 

compared to the experimental results. The same result is obtained when the maximum distance 

metric values are compared; but, the difference is much larger for the area metric as in the case at 
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strut level, which proves again that area metric is more favorable to use for model selection. The 

reason of a greater metric value for Lattice Model 1 could be that the beam elements cannot model 

the links of struts accurately. The structure stiffness is expected to be less than the actual since the 

links of the struts do not reflect the real part links when beam elements are used. Therefore, the 

homogenized elastic modulus of Lattice Model 1 is lower than that of Lattice Model 2 as given in 

Table 4.4. Thus, it is concluded that predictions made by Strut Model 2 and Lattice Model 2 (i.e. 

quadratic tetrahedral solid element-based modeling) should be chosen to model the lattice structure 

according to the proposed validation approach.  

 

4.4. Validation Example 2 - CLS Fabricated by SLM 

4.4.1. Materials and Methods 

The recent advancements in metal-based AM technologies make it capable to fabricate strong, 

lightweight and complex lattice-based engineering structures. The SLM process gained interest for 

fabrication of metal CLSs since it enables the complete melting and fusing of the metal powder 

particles together to obtain almost fully dense parts. A laser source selectively scans a powder bed 

in the SLM process according to the CAD-data of the part to be produced. Different metal-based 

materials can be used in SLM such as titanium alloy (Ti6Al4V), stainless steel (SS316L), and 

aluminum alloy (AlSi10Mg), which will enable the design of customized CLSs.  

The CLS specimens used in this example have body-centered cubic (BCC) lattice cells, 

which are comprised of diagonal struts that unite in the center of the cubic cell as shown in Figure 

4.12(a). The strut diameter D and length L are modeled to be 0.5mm and 4mm, respectively for 

each BCC unit cell. The complete lattice structure has n=3 BCC cells in each direction, which 
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gives the overall dimensions of 12x12x12 mm3. The corresponding lattice structure model, filled 

by 3x3x3 BCC unit cells, is modeled in the commercial FE modeling software Abaqus as shown 

in Figure 4.12(b). This BCC lattice structure is fabricated using SLM 280 HL machine with 

Al10SiMg material powder (also called CL31) and with 50 μm layer thickness as seen in Figure 

4.12(c). 

 

(a) BCC lattice cell, (b) CAD model of the test sample, (c) SLM-fabricated CLS with repeating BCC cells. 

Figure 4.12. The CLS specimen designed with BCC lattice cells  

 

In the previous example in Section 4.3, the uncertain input variables at the smallest scale level (i.e. 

at strut level) are assumed to have normal distributions, which may not be realistic. A through 

uncertainty quantification approach for the input variables is necessary before predicting the 

homogenized properties using the upscaling method. Hence, in this study, BIC method is utilized 

to quantify the strut level fine scale uncertainties induced by the AM process. Specifically, the 3D 

solid models of the fabricated struts are reconstructed using a computer tomography (CT) scanner 

(Zeiss metrotom 800, Georgia Institute of Technology, USA) to collect the statistical data for the 

uncertain input variables of the fine scale strut model. These strut level uncertainties are then used 

in combination with high resolution models that capture the real strut geometry and microstructure 

to predict the macroscale properties of the CLSs. Computer simulations and experimental 
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measurements, which are two interrelated approaches are used to gain knowledge of the strut level 

irregularities and porosity and their correlation to macroscopic strut properties. In that regard, a 

three-dimensional voxel–based model generation procedure was used to generate and simulate the 

strut fine scale models using the quantified uncertainties in a sampling method. The modeling 

process with quantified uncertainties enables the generation of the realistic strut models without 

using the fabricated strut specimens. Thus, the experimental cost at strut level can be minimized. 

The accurate knowledge and prediction of the overall mechanical properties, in particular the 

overall elastic modulus of the lattice material, is of considerable importance to the designer and is 

the primary focus of the present work.  

 

4.4.2. Multi-Level Validation and Upscaling Framework 

A strut model reconstruction process based on the CT-scan data is integrated into the multi-level 

upscaling and validation approach introduced in Section 4.1 to analyze the overall material 

properties of the lattice structures accurately accounting for the strut level uncertainties. The 

proposed multi-level validation framework, which is based on the concept of the validation 

pyramid approach, with the strut model reconstruction step is illustrated in Figure 4.13 for the 

application to the CLS described in the Section 4.4.1.  
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Figure 4.13. Validation pyramid for lattice structure with uncertainty quantification step at the bottom  

In Figure 4.130, the lattice structure model is decomposed into multiple sub-levels as mesoscale 

level (i.e. strut level, i = 2) and macroscale level (lattice level, i = 1) to simplify the computational 

models. The multi-level upscaling process is used to pass the information at the finer scales to the 

macroscale level from bottom up. At the bottom of the pyramid the uncertainties of the material 

and geometric properties of the struts are quantified based on the strut models reconstructed from 

the fabricated parts using the CT-scan images. Once the statistical data are gathered for the strut 

properties from the measurements made on the reconstructed strut models, the BIC model selection 

method is utilized for uncertainty quantification of the gathered statistical data for the fine scale 

model input variables at the strut level. The strut fine scale model is generated using these 

quantified uncertainties and the FE simulations are conducted on this fine scale strut model. Then, 

the upscaling method is implemented at strut level to predict the homogenized coarse scale model 
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input variables denoted by XCM,2. For the BCC lattice specimen, the homogenized diameter and 

the elastic modulus of struts are considered as the homogenized variables at strut level. For 

validation at strut level, the reconstructed models from the scanned images are simulated and the 

predictions are used as the pre-validation experimental data. The corresponding coarse scale 

models are generated with the predicted homogenized input variables and the validation process 

described Figure 4.2 is implemented to evaluate the validity of the coarse scale model predictions.  

This process ensures that the generated strut model can mimic the reconstructed models, 

and thus the coarse scale model can be used at the lattice cell level with the homogenized strut 

level properties which become the fine scale model input variables, i.e. XFM,1 = XCM,2. Once the 

upscaling method is utilized at lattice level to find the homogenized coarse scale model properties 

XCM,1, the validation process described in Figure 4.2 is implemented at the top of the validation 

pyramid for the fabricated lattice specimens. The physical compression tests are conducted on the 

fabricated specimens and the experimental results are compared with the FEA results of the coarse 

scale model with predicted properties at the lattice level validation step.  The details of these steps 

are given in the following sections.  

 

4.4.3. CT Scanning and 3D model Reconstruction 

The 3D model of the fabricated lattice structure is reconstructed through the scanned 2D slice 

images data using a reconstruction process depicted in Figure 4.14. The first step of this 

reconstruction process is to collect the 2D scanned images (Figure 4.14(a)). High resolution scans 

of the fabricated lattice structures were conducted using a computer tomography (CT) scanner 

(Zeiss metrotom 800, Georgia Institute of Technology, USA) at a resolution of approximately 

13.53 μm. Prior to 3D model construction, it is necessary to perform image pre-processing for all 
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of these 2D slice images to ensure accurate quantification of the structure of the specimen. An 

appropriate segmentation algorithm is to be implemented to identify whether each pixel is 

occupied by solid or void in these 3D slice images. This segmentation process will allow to 

accurately model the porosity and the surface roughness of the struts in the structure. The solid 

and void phase can be distinguished by thresholding based on the gray level histograms of the 

images determined by the MATLAB Image Processing Toolbox since the difference between the 

densities of voids and solid part is large as shown in Figure 4.14(b). For each images the gray level 

histograms show two histograms based on the gray level of the pixels; darker gray areas show the 

voids (the histogram on the left) while the lighter gray areas show the solid pixels (the histogram 

on the right in Figure 4.14(b)).  

A manual threshold can be set between these two histograms to separate the void and solid 

pixels for each image. However, setting a manual thresholding value may cause some inaccurate 

identification of voids since the pixels for voids may be considered as solid and vice versa. In 

addition, the threshold might be different for each slice image. To overcome these drawbacks of 

the manual thresholding process, a widely used automated process, namely Otsu method [206], is 

used in this study for segmentation. Once the gray level histogram for each 2D image data is 

evaluated in this segmentation process, the serial binary images are generated based on the 

calculated threshold values as seen in Figure 4.14(c). A comparison of the segmented binary image 

with the scanned image is given Figure 4.15.  
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Figure 4.14. Schematic diagram of the 3D model reconstruction process using the 2D scanned image data 

 

 

Figure 4.15. (a) CT-scan image for one layer, (b) Zoomed image of scanned data, (c) Zoomed segmented 

binary image 

 

The 3D models generated from the CT-scan images can reveal plenty of information to quantify 

the uncertainties in the lattice microstructure and geometry. By analyzing the reconstructed 3D 

models, the features of the SLM-fabricated lattice structures such as internal defects and volume 

of solid struts can be determined. The presence of both porosities inside the material and the 

variations on the strut cross section geometry are visible in Figure 4.15. The uncertainties in 

material and geometry have to be quantified since those will influence the overall mechanical 

behavior of the material. For this purpose, the segmented binary images are combined to generate 

the 3D voxel model of the lattice structure specimen. The segmented binary images are converted 
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to a high resolution FE mesh with 8-noded hexahedral voxel elements as shown in Figure 4.14(d) 

using an in-house developed MATLAB algorithm that converts the binary image information to 

the voxel model. Then, the individual strut models, Figure 4.14(e), are extracted to quantify the 

uncertainties at strut level that will be used in the upscaling method. 

 

4.4.4. Morphological Analysis of Fabricated Struts for UQ 

In reconstruction of the 3D model of lattice structures, the CT-scan images were manipulated to 

have an element length of 27.06 μm to reduce the computational cost of the reconstruction process. 

It only takes 45 minutes to reconstruct the entire 3D model when 27.06 μm element size is used 

on an 8-core Intel i7 desktop computer. The reconstructed model with 27.06 μm consists of 

10,580,902 elements, which is still very large for a simulation run due to large memory 

requirement of the entire lattice structure model. On the other hand, when individual struts are 

extracted from this model (Figure 4.14(e)), the model size is appropriate to make morphological 

analysis since the struts include about 35,000 elements with 27.06 μm.  

Hence, individual strut models were extracted from the reconstructed lattice models. 

Analyses were performed on these struts to characterize the uncertainties of the surface 

irregularities (or roughness). As seen in Figure 4.14(e), there are irregularities along the outer 

surface of the struts and porosities in the fabricated struts shown as darker spots. These 

irregularities of strut surfaces and porosities will be the reason of the local heterogeneities leading 

to a lower stiffness and lower compressive strength of the material. Moreover, it will complicate 

the accurate prediction of mechanical properties by analytical models and FEA. The strut level 

uncertainties are investigated in terms of three main variables in this study: (1) the strut diameter 

uncertainty, (2) the strut angle uncertainty that gives the deviation from the center of each 
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fabricated layer, and (3) the porosity in the strut material. The combination of the uncertainties of 

the first two variables will result in the surface roughness in the voxel-based strut model. The 

uncertainty of the porosity in the fabricated struts is investigated in terms of the pore volume and 

pore size (i.e. the equivalent spherical diameter, defined as the diameter of a sphere of the same 

volume). Then, the BIC method is utilized for determining the distribution type and statistical 

parameters of these uncertain input variables that will be used to generate the voxel-based strut FE 

model for stochastic upscaling method.  

4.4.4.1. Uncertainty quantification of strut diameter 

Uncertainty quantification of the diameter of the strut layers is very important, since it has 

influence on both strut surface irregularities and strut material properties. Two methods are used 

in this study to have measurements; measurements from the reconstructed 3D models of the struts 

and measurements using a Vernier caliper. Measurements obtained from both methods are 

compared and justifications are given in uncertainty quantification of the strut diameter. For 

comparisons, uncertainties are considered as the standard deviation from the average measured 

diameters. For uncertainty quantification, BIC method is used to determine the optimal distribution 

type and statistical parameters of the strut diameter.  

Fabricated Strut Diameter Measurements based on reconstructed 3D Model 

Struts that form the BCC unit cells have an angle of 35.2640 from the horizontal plane 

circular cross-sections.  In order to generate a circular cross section perpendicular to the axis 

passing through the origin of an angled strut, the lateral layer cross sections that are fabricated in 

the layer by layer manufacturing process must be elliptical as seen in the CT-scan image in Figure 

4.15. A stair shape occurs while building the circular struts in the SLM process because the layers 
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sliced in the CAD model of the part are built from bottom to top one by one and combined together 

to form the physical circular struts in the SLM process. The elliptic cross-section of each layer has 

two radius values, namely, the long radius (rlong) and the short radius (rshort) as shown in Figure 

4.16(a). The stair-shape profile that exists to be able to achieve the continuity of the strut in the 

layer by layer AM process is depicted in Figure 4.16(b). 

 

Figure 4.16.  (a) Fabricated ellipsoidal cross-section (b) The stair shape during the fabrication of struts 

The radius (r) at any point in a 2D ellipse cross-section geometry given by 0 (a) is calculated by 

the following equation:  
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where θ denotes the angle between the radius at the point of interest and the long radius. To achieve 

a circular cross-section for the strut, the short diameter, De,short, and long diameter, De,long, of the 

ellipsoid cross-sections in Figure 4.16(b) are calculated from the circular strut cross section 

diameter Ds based on the strut angle denoted by αs as follows 
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where the subscript e represents the elliptic cross-section. In the generated the BCC cells, the struts 

have αs = 35.2640 angle with the lateral plane in the 3D printing process and the target model 

diameter of each strut is Ds,t = 0.5mm. Then, the short target strut diameter of the elliptic cross-

sections should be De,t,short = 0.5 mm based on Eq. (4.3) and the long diameter should be De,t,long = 

0.866 mm according to Eq. (4.4) where subscript t denotes the target value. A voxel element-based 

strut model can be generated layer by layer using these diameter values and a circular cross section 

of the strut with a diameter value of Ds,m =0.5 mm can be obtained as shown in Figure 4.17(a). 

This resulting model verifies that Eq. (4.3) and Eq. (4.4) can be used to predict the diameter values 

of the elliptic cross sections of each layer in the fabricated strut with target diameter.  

 

(a) Target elliptic cross-section that produces the circular strut (b) Fabricated elliptic cross-section obtained 

from the 3D reconstructed strut models 

Figure 4.17. Elliptic cross-section of a reconstructed strut model 
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On the other hand, it is observed from the reconstructed 3D model of the SLM-fabricated lattice 

structure using the scanned images that the fabricated struts are not circular as can be seen on the 

right-hand side in Figure 4.17(b). Rather, two distinctive diameter values are measured in the 

directions perpendicular to each other as a long diameter and short diameter denoted by Ds,m,long 

and Ds,m,short , respectively. In these notations, the subscript m denotes the reconstructed model 

measurements for the diameter values. The fabricated long strut diameter Ds,m,long and short strut 

diameter Ds,m,short were measured for 15 struts extracted from the reconstructed 3D models to 

quantify the uncertainties in the fabricated strut diameters. Diameter values were measured at 

different positions of the struts from bottom to top in its length direction to observe the variation 

throughout the strut length. 144 measurements were made from 15 struts in total. It was found 

from these measurements that the short diameter has an average value of Ds,m,short = 0.672 mm 

while the long diameter has an average diameter of  Ds,m,long = 0.784 mm as shown on the right-

hand side of Figure 4.17(b).  

Since there exist two different diameters, we can consider an ellipsoid for the fabricated 

strut cross-sectional shape rather than circular. Then, the measured short and long dimeter values 

of the fabricated elliptic layers should match with the ones calculated by Eqs. (4.3) and (4.4), 

respectively. The short diameter of the elliptical cross-sections on each fabricated layer is 

calculated as De,m,short = 0.672 mm by setting Ds = Ds,m,short = 0.672 mm in Eq. (4.3). If the fabricated 

struts have elliptic cross-sections with these measured short and long diameters instead of the 

circular ones, then it is expected that the long diameter of the elliptic cross-section of each 

fabricated layer, De,m,long, can be calculated by Eq. (4.4) by setting Ds = Ds,m,long = 0.784 mm. This 

assumption gives the result of De,m,long = 1.358 mm from Eq. (4.4).  
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To justify these calculations when it is assumed that the strut cross-section is ellipsoid, 

measurements are also made on the elliptic diameters of each layer of the reconstructed models as 

shown on the left hand side in Figure 4.17(b) at different locations in the direction of the strut 

length. It was found from these measurements that the average value of the short ellipse diameter 

is De,m,short = 0.671 mm, which is almost identical to Ds,m,short value calculated by Eq. (4.3). This 

shows that the experimental measurements validate the use of Eq. (4.3) to calculate the short 

diameter. Moreover, the measurements of the long ellipse diameter on the fabricated strut has an 

average of De,m,long =1.371 mm as shown on the left hand side ellipse geometry in Figure 4.17(b). 

This value has 0.9% difference from the De,m,long value calculated from Eq. (4.4) as 1.358 mm, 

which shows a very close agreement to the value obtained from the model measurements. Thus, 

these results show that Eq. (4.4) can be used to calculate De,m,long, which justifies the assumption 

that the fabricated struts have an elliptic cross-section rather than a circular one.   

The stair step shape is also clearly seen from the reconstructed strut models obtained from 

the fabricated struts in Figure 4.18(a). The stair step occurs because each layer is fabricated to 

satisfy pre-specified inclined angle of the strut as stated earlier. As indicated by Yan et al [207] 

with the image in Figure 4.18(b), during the fabrication process by SLM, additional melted 

particles are bonded on the direction of long diameter of the stair shape profile. The stair shape 

and the resulting partially or totally melted metal particles bonded on the layer during the 

fabrication process influence the surface quality of the SLM-fabricated parts greatly [208]. Hence, 

these bonded particles are the cause of the rough surfaces and corrugations observed on the lattice 

structures. This effect is mainly seen in the direction of the long diameter of the elliptic cross-

section of each layer to ensure firm bonding of the layers since the short diameter direction does 

not have any inclined angle as can be seen in Figure 4.18(a). Hence, the reason of having a %0.9 
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difference with the calculated and measured long diameter values could be these bonded particles. 

These effects could also be the reason of the elliptic strut cross-section as well since the increase 

of the long diameter at each layer leads to a non-circular cross-sectional shape. To mitigate the 

effect of the stair step, a smaller layer thickness is preferred in the SLM process; but this also 

increases the time required to complete the fabrication [209]. 

 

(a) stair shape profile in the reconstructed 3D model of fabricated strut by SLM, (b) High magnification 

picture of the strut [207] and 

Figure 4.18. Stair shape profile on a fabricated strut. 

Comparison of diameter values with experimental measurements 

In addition to the diameter measurements made on the reconstructed models, the 

experimental strut dimeters of the SLM-fabricated struts were measured using a Vernier caliper 

for 50 different struts from the cellular lattice structure specimens. Only one measurement could 

be made for each strut since the length of the struts were small to distinguish the position of the 

caliper on the strut. It was found that the cross section of the strut has two distinctive diameter 

values similar to the reconstructed model measurements. These experimental measurements are 

given in Figure 4.19(a). The mean and standard deviation values of these experimental struts 

diameters were plotted in Figure 4.19(b) and compared with the measurements made from the 

reconstructed model.   
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(a) Fabricated strut diameter measurements using Vernier caliper (b) Comparison of measured experimental 

diameters using a caliper and measured diameters from the reconstructed 3D model 

Figure 4.19. Fabricated diameter measurements  

 

These results in Figure 4.19(b) show very close agreement between the experimental and model 

measurements. It is seen that the experimentally measured values of both the short and long 

diameters are slightly greater than the ones measured from the reconstructed models. The reason 

of these slight differences could be the round-off errors during experimental measurements and 

errors because of the voxel-based reconstruction of the model. The average of the short dimeter of 

the strut was found to be Ds,exp,short = 0.685 mm from the measurements made by Vernier caliper 

on 50 different struts in the structure. When compared to the model measurements of the short 

diameter, Ds,m,short, there is only 1.8% difference, The standard deviations from the experimental 

and model measurements were found to be 0.0186 and 0.0193, respectively, indicating that the 

standard deviation of the short diameter is very small in the SLM-fabricated struts.  

The long diameter of the strut was also measured using the caliper from the specimens and 

the average diameter was found to be Ds,exp,long = 0.795 mm, which was close to the model 
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measurement average calculated as Ds,m,long = 0.784 mm. This means the measurements from the 

reconstructed model and from the experimental specimens have only a difference of 1.1%. This 

small difference indicates that the reconstructed models can accurately represent the test specimen 

geometry. The standard deviation of the experimental long diameter measurements was calculated 

to be 0.0327 mm, which was two times larger than the standard deviation of the small diameter. 

The reason of the larger deviation in long dimeter is again the stair step effect where additional 

particles are bonded in the direction of the long diameter to achieve the firm connection between 

layers. In addition, the standard deviation calculated for the long diameters from the model 

measurements was 0.0561. This value is larger than the standard deviation of the experimental 

measurements. This increase can be explained by the fact that the model measurements are also 

made at different locations in the direction of the strut length and that the long strut diameter has 

also additional variation depending on the spatial location on the struts. This spatial variation could 

not be captured by the caliper measurements since the strut length was not long enough to have 

different measurements in the length direction of the struts. Hence, since both experimental and 

model measurements agree well, the model measurements can be used in uncertainty 

quantification. Moreover, it can be concluded that the measurements made on the reconstructed 

voxel models should be preferred to be able to quantify the uncertainties accurately since the 

caliper measurements can only provide a rough variation estimate. Thus, the optimal distribution 

types and statistical parameters of the input variables that will be used in fine scale strut model 

generation are predicted using BIC method for the measured data from the reconstructed models.  

BIC method for Uncertainty Quantification of Strut Diameter 

The optimal distribution types and statistical parameters of the short and long diameters of 

the fabricated struts are determined using the BIC method by fitting normal, lognormal, gamma, 
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and generalized extreme value (GEV) distributions to the measured data from the reconstructed 

models as depicted in Figure 4.20. The BIC method indicates that a lognormal distribution gives 

the best fit to the measured data for both short diameter and long diameter. The resulting statistical 

parameters of the short and long diameter distributions are listed in Table 4.5. 

      

 

(a)                                                                         (b) 

Figure 4.20. Distributions of the short (a) and long (b) diameters of the strut cross section  

 

Table 4.5. Distribution and statistic parameters for dimeter values in struts 

Parameter Distribution Parameter a Parameter b 

Short Diameter Lognormal -0.3984 0.0277 

Long Diameter Lognormal -0.2456 0.0704 

 

Quantification of the difference of fabricated diameter from the target model diameter 

When the lognormal distribution parameter values given in Table 4.5 are used, the mean value 

of the short diameter was calculated as 0.672 mm according to the lognormal distribution mean 

value formulation in Table 2.1. The difference between the target diameter (i.e. Ds,t = 0.5mm) and 
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the obtained dimeter (Ds,m,short = 0.672 mm) from the fabricated struts is calculated as δs,short = 

0.172mm. As seen, there is an increase in the diameter value for the SLM-fabricated struts.  

This observation about the increased strut diameter for the SLM-fabricated structures were 

made by several researchers, as well. Yan et al. [207] investigated gyroid structures fabricated by 

SLM with SS316L material and found about 0.08 mm constant increase in the thickness for 

different size of diameters compared to the fabricated diameters. Van Bael et al. [208] investigated 

the Ti6Al4V porous structures fabricated by SLM and found an increase of 0.112 mm compared 

to the designed value. Hollander et al. [210] found a 0.150 mm increase in the strut thickness when 

fabricated by SLM. Qiu et al. [211] show for struts fabricated by SLM using AlSi10Mg material 

that the thickness or diameter increase can show difference depending on the processing 

parameters used in the fabrication process. They found that the fabricated diameter can be two 

times larger than the target diameter depending on the processing parameter values used in the 

fabrication process. Based on these observations given in the literature, the increase of the diameter 

that was measured about 0.172mm in this study is reasonable and can be considered for any 

dimeter value used for designing the CLSs when constant processing parameter values are used. 

This difference can be added to the target diameter value for the voxel model generation of struts 

in the modeling process. Then parameters a and b are determined based on the formulations given 

in 0 for the lognormal distribution.  

Similar to the short diameter, the mean value of the long diameter was calculated from 0 for 

lognormal distribution using the determined parameter values given in Table 4.5 as Ds,m,long = 0.784 

mm which gives a δs,long = 0.284 mm difference from the target diameter (i.e. Ds,t = 0.5mm). This 

difference value will be added to the target diameter to calculate the long diameter of the elliptic 

layers (De,long) for voxel model generation. Thus, Eq. (4.3) and Eq. (4.4) are modified to find the 
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mean values of short and long elliptic diameters of each layer that will be used in the voxel model 

generation as 

shortstsshorte DD ,,,    (4.5) 
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longsts
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D
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 Similar to the assumption of constant diameter increase, the standard deviation of the strut 

diameter will be assumed to be constant for different strut sizes. Thus, the same standard deviation 

value calculated by the formulation in 0 using the Parameter a and b values in Table 4.5  for 

lognormal distribution can be used for any size of diameter in voxel-based strut model generation. 

The mean, standard deviation, and the diameter difference values for short and long diameters are 

listed in Table 4.6. Then, these parameters can easily be used in a sampling method to generate 

strut diameter values in the voxel model generation process using the underlying lognormal 

distribution. This process of generating strut models for different diameter values is used in 

Chapter 5 to develop a meta-model for the homogenized elastic modulus of the BCC lattice cell 

fabricated by SLM.  

Table 4.6. Mean, standard deviation, and difference ( s ) values of the diameters 

Parameter Mean ( ,sD ) sss DD   ,  Standard Deviation 

Short Diameter 0.672 mm 0.172 mm 0.0193 mm 

Long Diameter 0.784 mm 0.284 mm 0.0561 mm 
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Uncertainty Quantification of strut diameter for different strut angles 

The relation between the diameter and the strut build angle is also needed to be quantified 

for voxel model generation. Since only one angle value is used in the fabricated BCC cells in this 

study, an assumption for the relation between the strut diameter and angle can be made based on 

the literature. Although the materials used in the literature are different from AlSi10Mg, the same 

SLM process is used for the fabrication of struts. Hence, a general opinion about the strut diameter 

change with the change of strut angle can be obtained from the literature. Van Bael et al. [208] 

indicates that fabricated vertical struts (i.e. 900 angle with respect to the horizontal build plane) 

have smaller diameter values than the struts fabricated in the BCC structure (i.e. with 35.2640 angle 

with respect to the horizontal build plane). Besides, in both cases, the fabricated diameter was 

found to be larger than the target diameter. Shen [212] also finds 14% larger diameter values for 

350 struts than the 900 struts when the largest diameter of the strut cross-section is measured for 

both angle values. Moreover, it was found in the literature that 900 struts have almost circular cross 

sections [213]. The increase in the diameter with the decrease of the strut angle is because of the 

stair-shape effect regardless of the material type in SLM process.  

If 14% increase is also considered in our study, the long diameter of the 900 strut is 

calculated as 0.674mm (i.e. 84% of 0.784mm), which is very close to the value of the short 

diameter mean value given in 0. That means, with the assumption that a circular diameter is 

fabricated at 900 strut angle, the increase of strut diameter can be considered as the value found in 

our study (i.e. 0.172mm) for 900 strut angle. Moreover, it will be assumed that the fabricated strut 

diameter remains the same as the short diameter value, which is determined by Eq. (4.5) for any 
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degree of struts. Since the 900 strut will have a circular cross-section, 172.0s  mm will be added 

to the target diameter to find the fabricated diameter.  

For strut angles different from 900, the long diameter mean values can be assumed to be 

linearly increasing with the decrease of the angle up to 35.2640 strut angle because of the increase 

of the stair shape effect. Hence, the difference in long diameter mean value, longs,  will be 

equivalent to the difference in short diameter mean value 172.0, shorts  at a strut angle of 900 and 

linearly increase to the value of 284.0, longs , found for 35.2640 in this study, when the angle is 

decreased up to 35.2640. Thus, the difference value, longs, , for a strut angle (αs) between 900 and 

35.2640 can be determined by using a linear interpolation process as follows 

  284.0264.35
264.3590

284.0172.0
, 




 slongs 

  

(4.7) 

Since a linear increase is assumed, the long diameter can be predicted for the angle values 

smaller than the 35.2640, as well. On the other hand, SLM process requires support structure to 

build overhang section if its angle from the horizontal is less than a certain degree. Hence, the 

cellular structures with low strut angles from the horizontal (usually lower than 300) could not be 

built using the SLM process because overhanging struts led to the occurrence of serious 

deformation [214]. This limitation in the fabrication of CLSs have been investigated previously by 

a few researchers. Santorinaios et al [215] studied the manufacturability of cellular lattice 

structures with SLM process that only consist of vertical and diagonal cross struts since the SLM 

process cannot build horizontal struts. Hence, lattice unit cells that do not possess struts with small 

angles are preferred to design cellular lattice structures. Yan et al. [207], [214] investigated the 
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design and manufacturability of a unit cell type called “Schoen Gyroid” referred to as gyroid unit 

cell to enhance the geometrical capability of the SLM process. This unit cell has circular and 

smooth struts and a spherical core as different from the other lattice types with straight beam-like 

struts. The self-supported property of this unit cell types provides the capability of manufacturing 

the CLS without the need of support structure and without considering the strut angle in the SLM 

process. Mullen et al. [216] used BCC unit cell geometry, which includes straight circular beam-

like struts because of its suitability for SLM fabrication process since it does not have any 

horizontal or low angle strands that are difficult to build.  BCC seems to be the only symmetric 

lattice structure without horizontal or low angle struts, therefore, it is possible to fabricate BCC 

lattice structures in the SLM process without requiring support structure. 

  

4.4.4.2. Uncertainty Quantification of Strut Angle  

As stated in the beginning of Section 4.4, the surface roughness can be considered as a combination 

of the deviation of the diameter and deviation of each layer from the center based on the actual 

strut angle. Therefore, in addition to the quantification of the strut diameter uncertainties, the 

uncertainties in the strut angle of fabricated struts also need to be quantified from the reconstructed 

models to understand its effect on the strut surface irregularities.  

Measurements of strut angle deviation from the reconstructed models 

The models of the fabricated struts reveal that the strut angle deviation is large on the long 

diameter side because the build angle is determined on this side where the stair shape effect is 

seen. Hence, the measurements for the strut angle deviation are made in the long diameter 

direction.  In the reconstructed voxel models of the fabricated struts, full ellipse cross-sections are 

not fabricated for some top and bottom layers to achieve the integrity of the strut as seen in Figure 
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4.21(a). The red regions of the strut in Figure 4.21(a) shows the layers that have partial elliptic 

cross-sections, while the green region have the full elliptic cross-sections. The deviation in the 

strut angle for each layer can be measured for the fully fabricated layers. Hence, the full elliptic 

cross-section portions of the struts are extracted to analyze the angle deviation.  

 

 

               (a)                                                        (b)  

(a) Elliptic section of the strut model (b) Calculation of the strut angle deviation of the fabricated elliptic cross 

section centers. Dashed line shows the actual center of the strut and the red dots are the centers of the 

elliptical cross-sectional layers fabricated in SLM 

Figure 4.21. Elliptic section of the strut model.   

 

Moreover, the deviation or the roughness on the surface of a strut is a combination of the angle 

deviation and the strut diameter deviation. To be able to differentiate these two deviations, the 

deviation of the angle should be determined as the deviation from the actual center points of the 

layers rather than the deviation on the edges as shown in Figure 4.21(b). In that regard, a deviation 

variable δx is defined to characterize the deviation of the angle. To calculate δx, first, each layer’s 

target center coordinate value in the long diameter direction is calculated using the target strut 

angle (i.e. αs = 35.2640) as depicted by the dashed line in Figure 4.21(b). Then, each fabricated 
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layer’s center value is calculated from the reconstructed voxel model from the layer diameter, as 

depicted by the red dots in Figure 4.21(b). The difference between these two center values for each 

voxel layer is calculated as the deviation parameter, δx. Then, the build angle can be calculated 

with respect to the horizontal direction using the center coordinate values of each layer. The 

deviation, δx, values are depicted in Figure 4.22 for one strut. The deviations correspond to a mean 

value of δxmean = 0.0177 mm as shown with the dashed line.  

 

 

Figure 4.22. Angle deviation values for each voxel layer of a strut. 

 

Uncertainty Quantification of the Strut Angle based on the measurements 

The deviation parameter δx is calculated for 15 different struts using the aforementioned 

procedure. Then, for each layer, the fraction of the vertical length between the corresponding layer 

and the bottom layer to δx value is calculated. The inverse tangent of this fraction value gives the 

angle of the corresponding layer with respect to the build plane. The histogram of the angle of 

fabricated layers is depicted in Figure 4.23. Four different distribution types are fitted to the 

empirical data of the angle as seen in Figure 4.23. According to the BIC method, normal 

distribution is the best fit to the empirical data. The corresponding statistical parameters are listed 

in Table 4.7. 
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Figure 4.23. Distribution of the strut angle 

 

Table 4.7. Distribution and statistic parameters for angle in struts 

Parameter Distribution Parameter a Parameter b 

Strut Angle Normal 34.898 1.2294 

 

Since it follows a normal distribution, parameter a corresponds to the mean angle value, which is 

calculated as 34.8980
, while the parameter b corresponds to the standard deviation, which is 

1.22940
. Compared to the target diameter value of αs = 35.2640, there is a difference of 1.04% with 

the mean angle value. This small difference shows that a good accuracy in respect of strut angle is 

achieved for the fabricated struts. Hence, the target strut angle can be used in the voxel model 

generation process as the mean value of the strut angle and the normal distribution is used to 

generate angle values for each generated layer.  
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Uncertainty for different strut angles 

The assumptions made for uncertainties of different diameter values in the Section 4.4.4.1 

can also be considered for the uncertainties of the angle, as well. In that regard, parameter a value 

for the angle that follows normal distribution is set equal to the target strut angle value. In addition, 

parameter b value given in Table 4.7 as 1.22940 is assumed to be the same for any strut angle. 

Then, these predicted parameters are used in the voxel model generation process to introduce the 

uncertainty in the strut angle at each layer. Thus, the roughness on the strut surface can be 

introduced to the voxel generation process as the uncertainty of the angle for each layer with 

parameters in Table 4.7 as well as the uncertainty of the diameter with parameters in Table 4.6. 

Relationship of the geometrical irregularities with the process parameters 

In this study, constant values of process parameters are used to fabricate the lattice structure 

specimens with the SLM process. Since the processing parameters are not the concern of this study, 

the quantification of the effects of the processing parameters on the diameter and porosity of the 

lattice structures are not studied and left as the future work. However, if necessary, the relation of 

the uncertain strut model parameters and the process parameters such as beam energy and laser 

power can be made based on the literature. For example, Van Bael et al. [208] found that the 

diameter obtained in the SLM process increases logarithmically with the increase of the beam 

energy parameter value up to a certain maximum diameter value. This maximum diameter is 

directly linked to the diameter of the melt pool, which, in turn is governed by the diameter of the 

melt isotherm that is produced by the beam. Qiu et al [211] indicates that the increase of laser 

power at a fixed laser scanning speed increased the diameter of the strut with a nearly linear 
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relationship. The authors also observed that the diameter of strut decreases with the increase of the 

laser scanning speed logarithmically at a fixed laser power.  

 

4.4.4.3. Porosity and Pore Size Analysis 

SLM process tends to produce defects in the material in the form of pores when melting layer by 

layer. Two porosity variables are defined and quantified: (1) Porosity, and (2) Pore Size Diameter. 

The mechanical properties and performance of the fabricated parts are strongly affected by the 

quantity and morphology of these pores in the material. The pores can come from either the 

atomization process to form the aluminum powder or the melting during the fabrication process. 

The CT-scan images obtained from this study and the 3D reconstructed models reveal that the 

pores are spherical in the struts as seen in Figure 4.14(e). It is seen in the reconstructed strut models 

at first sight that the range of pore sizes appears to be randomly distributed. More careful statistical 

analysis of such images are necessary to have a true quantification of the distribution of density 

and tendency of pores.  

Porosity Distribution 

The porosity can quantitatively be determined from the reconstructed strut models. The 

porosity of the structure is defined as the volume fraction of the pores in the structure. It can be 

measured by the ratio of the volume of the voxels that are void in the strut to the total volume of 

voxels in the reconstructed strut models. Thus, the porosity formulation can be given by 

poresolid

pore

VV

V




  

(4.8) 
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where Vpore denotes the volume of the void voxel elements and Vsolid denotes the volume of the 

solid voxel elements in the reconstructed model.   

The porosity was first calculated for the entire CLS using Eq. (4.8). To calculate the total 

volume of the pores, two voxel models were reconstructed from the CT-scan images. First, the 3D 

model was reconstructed with the porosities. For this reconstruction process, the binary images 

were created such that the pixels corresponding to the void regions are represented by zeros while 

the solid pixels were represented by ones. Second, the 3D model was reconstructed through the 

binary images that do not include the porosities. For this latter case, the pixels with porosity (i.e. 

with zeros) in the binary images are found and replaced by solid (i.e. with ones) to eliminate the 

porosity inside the structure. Then, the difference of the total volume values of these two models 

(i.e. 209.66mm3 for the first model and 211.24mm3 for the second model) is calculated as the 

volume of the pores in the structure. This value is divided by the volume of the second model that 

does not have porosities to calculate the porosity value of the fabricated CLS. It was found that the 

entire structure has a porosity value of 0.75%.  

This high resolution model cannot be used for detailed pore size diameter analysis due to 

its high demand of memory as mentioned previously. Hence, individual struts shown in are 

extracted from the reconstructed 3D model. The purpose of using separate struts is to have a better 

understanding of the distribution of the porosity and quantify the uncertainties that will be used in 

the fine scale model generation at strut level. The mean porosity value obtained from 90 different 

strut models is found to be 0.91% with a coefficient of variance (cov) value of 0.28. From the high 

resolution results, it can be seen that overall volume fraction of pores measured for the scanning 

process is low and less than 1%. The low value of porosity has a small effect on the elastic 

properties of the struts. However, it must be still considered to have accurate results. In addition, 
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for plastic and fatigue analysis it can have a crucial importance. The distribution of the porosity is 

given in Figure 4.24. BIC is implemented and found that the porosity distribution is better 

described with a gamma distribution with the given parameters in Table 4.8.  

 

 

Figure 4.24. Porosity distribution in fabricated struts 

 

Pore Size Diameter Distribution 

The size of the pores is determined by calculating the corresponding equivalent spherical 

diameter of the pores. For this purpose, first, the number of voxel elements in each pore in each 

strut is collected from the 3D reconstructed strut models. The distribution of the number of voxels 

in each pore is shown for 19 strut models in Figure 4.25(a). 
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                                       (a)                                                                              (b) 

(a) Distribution of the number of void voxels in each pore for each strut, (b) Distribution of pore diameter. 

Figure 4.25. Pore size distribution 

 

Then, the equivalent spherical diameter that gives the total volume of the void voxels in each pore 

is calculated and the equivalent diameter distribution for all of the samples is given in Figure 

4.25(b). This combined distribution of all samples can be used to calculate the mean pore diameter. 

This study shows that the majority of the pore sizes can range from 0.03mm to 0.150mm with a 

mean pore diameter of Dp = 0.06mm and a few exist above 0.150 mm in size. In the measurements 

performed here, the pixel density value of the void within a pore was much less than that of solid 

aluminum background. Although this feature gives a good contrast, this can still be an issue for 

detecting small pores in the cross-sections. This is because when a defect is too small their 

morphology cannot be accurately represented as a pore equivalent to one voxel size will appear as 

a cube. Hence, the reconstructed model cannot detect very small pores (i.e. less than 27.06 μm in 

diameter). However, this would be expected to generate only a slight underestimate since such 

small pores contribute little to the overall volume. The large pores, on the other hand, have more 

importance for the mechanical responses of the structures, which have been identified by the 

current modeling resolution.  
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It is seen from Figure 4.25(b) that the pore size distribution is skewed to the left. The reason 

is that more than 30% of the pores correspond to the pores with only one voxel element which 

corresponds to an equivalent sphere diameter of 0.034 mm. Few pores are found to be larger than 

0.12 mm (less than 5%). The pore diameter and distribution was found to be consistent with the 

literature [217], [218]. In addition to normal and lognormal and gamma distributions, an 

exponential distribution fit is also applied along with as the shape of the distribution looks 

exponential as seen in Figure 4.25(b).  

The BIC results indicate that a lognormal distribution has a better fit than the normal and 

exponential distributions. On the other hand, the left side of the fitted lognormal distribution should 

not be considered since no porosity exist for a dimeter smaller than 0.034mm. Hence, a truncated 

lognormal distribution with the calculated parameters in Table 4.8 can be used as the distribution 

of the pore diameter. This information of the pore diameter distribution can be used for generating 

the porosity in the strut fine scale models. If the generated pore size is smaller than 0.034mm a 

new value is generated from the lognormal distribution until this value falls into the truncated 

region of the distribution.  

Spatial Distribution of pores in the 3D space 

The 3D reconstructed strut models show that the pores are found with proximity to the 

center of the struts. Moreover, it was seen that the pores are randomly distributed throughout the 

struts since the spherical porosity that exists in the initial powder cause the porosity in the structure 

during the forming process. Hence, we can assume a uniform distribution for the spatial 

distribution of the center position of the pores in the range of strut dimensions. To generate the 

pore centers in the voxel model generation process, first the element number in the voxel model 
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that will correspond to the center of the pore is randomly generated. Then the distance of the center 

of the element to the strut surfaces are measured based on the minimum and maximum parameters 

in 0 denoted by Parameter a and Parameter b for the pore center location. Since the pores are 

observed inside the strut (i.e. there is no partial pores on the strut surface), these bounds will allow 

to generate the pores inside the diameter. A small tolerance value of 0.05 was also added and 

subtracted from minimum and maximum bounds to guarantee that the generated pores will not 

concede with the strut surface. In the direction of strut length on the other hand there exist partial 

pores as seen in the strut models in Figure 4.14(e). Therefore, no limitations in the direction of 

strut length are set for the center location of the pores except to be inside the strut limits.  

 

Table 4.8. Distribution and statistical parameters for porosity and pore size in struts 

Parameter Distribution Parameter a Parameter b 

Porosity Gamma 12.5925 0.0007184 

Pore Diameter Lognormal -2.9242 0.4371 

Pore Center Location Uniform -Ds/2+Dp/2+0.05 Ds/2-Dp/2-.0.05 

 

Finally, it should be noted that the effect of process parameters on porosity was not considered in 

this study since only one set of process parameters were used to fabricate the lattice specimens. 

There exist several studies on the other hand investigating the process parameters effect on the 

porosity in the SLM-fabricated parts. These studies show that changing the machine settings can 

greatly change the distribution and density of pores [217], [219]. If necessary, the existing studies 

can be used to quantify the relationship between the pore parameters and the process parameters 

as this is left as a future study.  
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4.4.5. Strut Level Upscaling Step 

A fine scale FE modeling technique that fills each deposited layer of the fabricated strut with voxel 

elements (i.e. 8-node brick elements) was used to accurately model the geometric and material 

uncertainties in the strut for mimicking the SLM fabrication process. The uncertainties quantified 

in Section 4.4.4 with BIC method for the strut level input variables were used with the 

corresponding distributions and statistical parameters given in Table 4.5, Table 4.6, Table 4.7, and 

Table 4.8 to generate the statistical samples of fine scale model. The fine scale model mesh size is 

set to 0.05412 mm at strut level due to the high computational time and memory requirements of 

the finer mesh sizes. The length of the strut that will be used in the upscaling method is modeled 

as l = 1 mm to further decrease the computational demand of fine scale model generation process. 

These simplifications have a very slight effect on the prediction accuracy, as will be shown in the 

strut level validation step.  The mean of the Poisson’s ratio and elastic modulus is set to v = 0.33 

and E = 65GPa, respectively, with a coefficient of variation of 0.05 for AlSi10Mg material. The 

number of simulations is determined to be 200 after a convergence analysis of the mean and 

standard deviation of the reaction force (F) obtained from the fine scale model (Figure 4.26) 

 

Figure 4.26. The convergence of mean value (left) and standard deviation (right) of the reaction force 
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In order to accurately model the effect of both the geometry and material uncertainties on the 

homogenized diameter and elastic modulus, the fine scale model generation process involves a 

two-step procedure as shown in Figure 4.27. In the first upscaling process, the fine scale model is 

generated by considering uncertainties only in the geometric parameters such as strut diameter and 

angle. This model is called Strut Model 1 as shown in Figure 4.27. The material is assumed to be 

deterministic with the mean values of elastic modulus and Poisson’s ratio at each sampling point. 

Then the reaction force on the top surface of the model is calculated as the fine scale output denoted 

by yFM1,2(j) in elastic FEA when a tensile strain of 0.1% is applied at each sampling point 

j=1,2,…,n, where n is the total number of samples. These results are used in the upscaling process 

to find the uncertainties of the homogenized diameter, Dh. In the coarse scale model, known 

deterministic values of elastic material properties are used while the diameter of strut modeled by 

a beam element is the unknown parameter. Thus, only the effect of geometry uncertainties is 

propagated to the homogenized diameter while assuming that both the fine and coarse scale models 

have the same bulk material properties. 

The generated fine scale strut models are retained for each sampling point and the 

uncertainties in the material properties, such as elastic modulus and porosity, are introduced to the 

strut model (i.e. Strut Model 2 in Figure 4.27). It was observed from the reconstructed strut models 

that the pores are randomly distributed in the struts but there are no partial pores on the strut 

surface. Hence, the pore centers are randomly generated such that they can exist inside the strut 

models. A sampling method will be a useful tool to generate the porosity in the strut models. In 

the generation of the pores in Strut Model 2, at each sampling point, first a porosity value is 

generated from its distribution given in Table 4.8 using LHS. Then, a random number rj in the 
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range of the number of elements in the generated strut model is initially used to generate the center 

coordinates of each spherical voids within the strut model. This is denoted by 

),...,,( 21 nrrrr    (4.9) 

where rj is the location (xj, yj, zj) in the coordinate system for the jth pore in the strut, which will 

have n pores in total. The diameter value of the corresponding pore is also randomly generated 

from the pore diameter distribution given in Table 4.8. The pores are generated in the strut such 

that the total porosity value generated initially is met. For this purpose, the volume of the pore is 

calculated and summed to the existing volume of the pores after each trial. If the location of the 

center of the pore is out of the determined bounds, then a new number is generated. The random 

number generation process continues until eventually the total porosity reaches the target porosity 

value. The number of pores denoted by n is determined in the end of this random generation 

process. 

Once Strut Model 2 is generated, the reaction force on the top surface of the model is 

calculated in FEA as the fine scale outputs denoted by )(2,2 jyFM  under a tensile strain of 0.1%. 

The opposite plane is fixed in the loading direction as shown in Figure 4.27. Then, a second 

upscaling step is used for Strut Model 2 with the results 2,2FMY   obtained from the fine scale model. 

The coarse scale model is generated as a beam element with the homogenized diameter values 

from the first upscaling step while the unknown coarse scale model elastic modulus is determined. 

Thus, the effect of material uncertainties is propagated to the homogenized elastic modulus. The 

upscaling procedure is implemented for 200 samples considering a second order PCE for the 

representation of the homogenized variables. Once the homogenized diameter and elastic modulus 
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data are identified in the upscaling step, the validation of the homogenized model is performed as 

explained in Section 4.4.6. 

 

 

Figure 4.27. Strut level upscaling step. 
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4.4.6. Strut Level Validation Step 

The goal of the strut level validation is to evaluate the accuracy of the predictions made by the 

coarse scale model at strut level with the homogenized diameter and elastic modulus against the 

results of these reconstructed models from CT-scan images. The FEA of 20 reconstructed strut 

models were carried out under a tensile strain of 0.1% and the reaction forces were obtained as the 

validation data. In these validation models, the lateral degrees of freedoms at the top and bottom 

surfaces of struts were also fixed in the FEA of struts. These reconstructed strut models have a 

length of 1.7 mm and a mesh size of 27.06 μm, which is finer than the mesh size of 54.12 μm used 

in the fine scale models in the upscaling method. Thus, the validation model will be different from 

the upscaling model to challenge the problem.  

For validation, the corresponding coarse scale model of the struts with homogenized 

properties were created using beam elements and simulated under the tensile test boundary 

conditions described above. Before generating the coarse scale strut model in the validation step, 

the uncertainties of the homogenized properties were quantified using the BIC method. The 

distribution types and statistical parameters of the homogenized properties are listed in Table 4.9.  

Table 4.9. Statistical parameters and distribution types for the homogenized strut properties  

Homogenized Property Mean Standard Deviation Distribution 

Diameter (mm) 0.6375 0.00686 Normal 

Elastic Modulus (GPa) 63.541 2.4415 Normal 

 

These statistical parameters were used to generate the samples for the homogenized properties of 

the coarse scale strut model that is used in the validation step. The coarse scale model reaction 

force values are collected from 200 simulations to generate the prediction CDF using BIC method. 
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The proposed validation metric, along with u-pooling and the K-S test, were used to evaluate of 

the validity of the predictions made by the FE model. The u values of 20 reconstructed model 

results are computed using the prediction CDF. The ECDF of the u values are compared with the 

target distribution in Figure 4.28.  

 

Figure 4.28. Strut level validation results with reconstructed models. 

 

As seen in Figure 4.28, the u-pooling results agree well with the target SUD. The 

confidence level α was set to 0.05 and the maximum distance between the two distributions was 

found to be 0.1818, which produces a p-value of 0.4686. Since the p-value is greater than the α 

value, K-S test accepts the predictions. Thus, it is concluded according to the K-S test that the 

coarse scale strut model developed based on the quantified uncertainties has a good accuracy and 

can be used for developing the lattice level fine scale model.  

 

4.4.7. Lattice Level Upscaling Step 

At lattice level, the upscaling method is utilized again for the lattice cell model to find the 

homogenized coarse scale model properties XCM,1. The uncertain parameters of the homogenized 
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diameter and elastic modulus are used to model the struts in the fine scale lattice model with 

smooth and constant cross-sections. At fine scale, three FE modeling approaches with quadratic 

tetrahedral elements are investigated to predict the effective elastic modulus of the fabricated CLS 

(Figure 4.29). It was observed that the fabricated specimens have missing struts on the corners of 

the structure that occur during the removal process of the specimen from the SLM machine (Figure 

4.29(a)). To account for their effect on the overall elastic modulus of the fabricated CLS, the 

simulation of the lattice structure was carried out by removing the corner struts from the entire 

lattice structure FE model (Figure 4.29(b)). In addition, the FE model of the entire CLS (Figure 

4.29(c)) is simulated for a comparison. However, these models are still computationally very 

expensive even if homogenized strut properties are used. Hence, a unit BCC cell (Figure 4.29(d)) 

is considered as the lattice level fine scale model.  

 

 

(a) Fabricated CLS using SLM. (b) Fine scale model of the CLS with missing corner struts to have a realistic 

modeling of the fabricated structure. (c) Fine scale model of the entire CLS that is represented by the unit cell 

model. (d) Fine scale model of the CLS using only one BCC cell to decrease the computational cost. 

Figure 4.29. FE models of the CLS fabricated by SLM.  
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Periodic boundary conditions (PBCs) were applied on the unit cell FE model. A compression strain 

of 0.1% was applied in one direction to simulate the experimental procedure. The resulting reaction 

forces were obtained from the FE analyses. Quadratic tetrahedral elements were used to mesh the 

structure. A mesh convergence study was conducted to determine the optimal size of the mesh 

elements before using the fine scale model in the upscaling process. The deterministic values were 

used for the diameter and material properties in the mesh convergence study. It was found that a 

mesh size that was equivalent to a quarter of the diameter (i.e. 0.25xD) was appropriate based on 

the mesh convergence study. 

A prediction accuracy study is needed to check if the unit cell model can produce accurate 

results when compared to the model of the entire CLS. The unit cell model and the lattice structure 

model were generated using the mean values of the homogenized diameter and elastic modulus of 

the struts given in Table 4.9. The resulting reaction forces were obtained from their deterministic 

FE analyses. At the coarse scale, each unit cell is represented with one hexahedral solid element 

with the same cell dimensions. This corresponding coarse scale model of the unit cell, which 

consists of only one hexahedral element with the BCC cell dimensions, was also simulated with 

PBCs. The elastic modulus value of this coarse scale model that enables the match between the 

coarse scale model reaction force and fine scale model reaction force was determined under a 

compression strain of 0.1%. Similarly, the coarse scale model of the entire lattice structure was 

generated by 3x3x3 hexahedral solid elements to determine the corresponding coarse scale model 

elastic modulus. The elastic modulus value of the corresponding coarse scale model (Eh) for each 

fine scale lattice model was normalized by dividing by the bulk material elastic modulus, E0=65 

GPa, and compared in Figure 4.30.   
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Figure 4.30. Normalized elastic modulus results obtained by three fine scale modeling approaches.  

 

The results in Figure 4.30 show that the lattice structure model with missing corners, which is the 

model of the fabricated specimens, have the smallest elastic modulus value. The relative modeling 

error compared to the entire lattice model prediction was found to be 4.5%. It was also found that 

the unit cell model with PBCs produce an elastic modulus value greater than that of the entire 

lattice structure model. The relative error between the unit cell model and the lattice structure 

model was calculated as 6.3%. Furthermore, the relative error between the unit cell model and the 

lattice model with missing corner struts was 10.5%. That means at the lattice level, the 

homogenized statistical elastic modulus data of the CLS, which will be used in the validation step 

to compare with the experiments, can be found as 89.5% of the homogenized elastic modulus data 

found by upscaling method with the unit cell model. This modeling error between the unit cell 

model and the lattice model with missing struts will be accounted for the prediction of the realistic 

mechanical performance of the fabricated CLS under uncertainties. 

Once the modeling error is determined deterministically, the stochastic upscaling method 

is implemented for the unit cell model to quantify the uncertainty of the homogenized elastic 
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modulus of the CLS specimen. The fine scale model of the CLS, which is the unit BCC cell with 

PBCs, is simulated for 200 samples generated for the homogenized strut properties using LHS. 

For each sample, the diameter and elastic modulus of each strut in the unit cell was assumed to be 

the same but changing with the sampling point depending on the distributions of the homogenized 

strut diameter and elastic modulus given in Table 4.9. The total reaction force value on one face 

of the unit cell is obtained as the fine scale response, YFM,1. A hexahedral brick element at the same 

size as one BCC cell is modeled with PBCs as the coarse scale model and the corresponding elastic 

modulus is projected onto a second order PCE. The unknown elastic modulus data of the coarse 

scale model is obtained from the PCE predicted using the upscaling process.  

 

4.4.8. Lattice Level Validation Step 

In order to identify the elastic properties of the BCC lattice structure specimens fabricated by SLM, 

a standard quasi-static uniaxial compression test was conducted. Experiments were carried out on 

as-fabricated lattice structure samples at room temperature using an Instron 5566 testing system. 

The force (Fexp) and change in gauge length (i.e. compressive strain) were recorded as the 

experimental results. Uniaxial compression engineering stress, σ, was calculated as the ratio of the 

force to one surface area, Alattice = 144 mm3 of the specimen. Then, the effective elastic modulus 

(Elattice) was calculated through the compression tests by  

  
(4.10) 

where ε is the compression engineering strain, σa is the stress at εa and σb is the stress at εb. Strains 

were taken as εa = 0.01 and εb = 0.025 from the linear region of the compression curves of four 
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lattice structure experiments shown in Figure 4.31. The mean and standard deviation of the 

experimental elastic modulus were calculated and compared in Table 4.10 with the ones calculated 

from the lattice level upscaling method that considers the modeling error. The mean value of the 

predicted data has only a 1.3% difference when compared to the experimental results, agreeing 

well with the experiments. For the elastic modulus data obtained from the lattice level upscaling 

method, the BIC method is used to predict the corresponding distribution type and the statistical 

parameters, as listed in Table 4.10.  

 

 

Figure 4.31. Compression test curves of four lattice structure specimens. 

 

Table 4.10. Statistical parameters for the homogenized properties of BCC cell 

Lattice Elastic 

Modulus (MPa) 
Mean 

Standard 

Deviation 
Distribution Parameter a Parameter b 

Experiment 153.0045 8.1848 - - - 

Upscaling 154.1038 9.4339 Gamma 267.9302 0.575164 
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In order to evaluate the predictive capability of the coarse scale model of the lattice structure, the 

predicted responses from the compression simulation of the lattice structure must be compared to 

the experimental results rather than evaluating the predicted homogenized elastic modulus. For 

this purpose, a coarse scale model of the entire lattice structure specimen was generated, as 

illustrated at the top level of the validation pyramid in Figure 4.13. 200 samples were generated 

for the homogenized elastic modulus, and compression simulations were carried out for the coarse 

scale lattice model. A compression strain of 0.1% was applied in the simulations and the reaction 

force ( )1(

1,CMY ) was obtained from 200 simulations. The BIC method was used to predict the 

distribution model of the reaction force data. The experimental reaction force values for 0.1% 

strain were obtained from the compression curves of experiments. There exist ne=4 experiments 

performed for one validation site (i.e. nV=1), which gives nT=4 experimental results in total. Then, 

the inverse CDF values of these four experimental reaction force values were calculated as the u-

values from the predicted CDF of the reaction force. Empirical CDF of the u-values is calculated 

and compared with the SUD in Figure 4.32(a). The K-S test was implemented for the u-pooling 

results obtained from three different modeling approaches, i.e. entire lattice model, unit cell model, 

unit cell model by accounting for the modeling error. For the latter case 10.5% modeling error is 

taken into consideration for finding the homogenized elastic modulus of the lattice cell after the 

upscaling step. Then, the coarse scale model in the validation step is simulated using the predicted 

elastic modulus that accounts for the modeling error. The results for the K-S test are listed in Table 

4.11 for each modeling approach.  

The results in Figure 4.32(a) show that the ECDF predictions made by the unit cell model, 

shown by the dash-dot line, largely deviates from the target distribution if the modeling error is 

not considered. On the other hand, the CDFs of the full lattice model predictions and unit cell 
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model predictions with modeling error, tend to follow the target distribution, as shown by dotted 

line and solid line, respectively.  According to the K-S test results in Table 4.11, the CDFs of all 

models are accepted as the corresponding p-values are smaller than the α value, which is set to 

0.05. The reason is that the K-S test decision is made by accounting for the number of experiments. 

For a small number of experimental results, the K-S test enlarges the acceptance margin. Hence, 

for one validation site where there are only four experimental results, a large acceptance margin is 

calculated, which accept the predictions of all three models. In addition, the full lattice structure 

and unit cell models with modeling error have very close K-S statistic values (0.3157 and 0.3207, 

respectively), which are smaller than the value obtained for the unit cell model without the 

modeling error. This means that the former two models provide better predictions. However, since 

the K-S test statistic values are very close for these two, a comparison between them is not possible 

for one validation site. Thus, these observations suggest that using one validation site where only 

four experimental results exist may not be effective in prediction assessment. The number of 

experiments must be increased to have more reliable decisions; however, this will increase the 

experimental cost. A better method is to use multiple validation sites from the same experiments, 

i.e. to obtain experimental results for different strain values.  

For this purpose, three validation sites are considered (i.e. nVS = 3) to increase the number 

of experimental observations. The coarse scale model of the CLS specimen was simulated for three 

compression strain values, which are in the elastic region of the compressive curves obtained from 

the experiments: (1) A compression strain of 001.0)1(

1, CM  was applied and the reaction force data 

( )1(

1,CMY ) was obtained from 200 simulations. (2) A compression strain of 01.0)2(

1, CM  was applied 

to obtain the reaction force data ( )2(

1,CMY ) as the second validation site. (3) A compression strain of 
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025.0)3(

1, CM  was applied to compute the reaction force data ( )3(

1,CMY ) as the third validation site. 

These three strain values are considered because the first one was used in the upscaling process to 

predict the homogenized elastic modulus while the second and third ones were used to calculate 

the experimental elastic modulus value by Eq. (4.10). There exist four experimental reaction force 

values ne = 4 for each validation site, which gives nT = 12 experimental results in total. Then, the 

u-pooling method was used to find the ECDFs of all validation sites for three modeling approaches. 

Those results are compared with the SUD in Figure 4.32(b). Then, the K-S test was implemented 

and the decision results for three validation sites are listed in Table 4.12. 

    

 

(a) ECDF results with only one validation site, i.e. 001.0)1(

1, CM . (b) ECDF results with three validation 

sites, i.e. 001.0)1(

1, CM , 01.0)2(

1, CM and 025.0)3(

1, CM . 

Figure 4.32. U-pooling results for the lattice structure models  
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Table 4.11. K-S test results for one validation site, i.e. 001.0)1(

1, CM  

 

Table 4.12. K-S test results for three validation sites, i.e. 001.0)1(

1, CM , 01.0)2(

1, CM , and 025.0)3(

1, CM . 

 

As seen in Figure 4.32(b), similar to the one validation site results, the ECDF of the unit cell model 

predictions, shown by dot-dash line, also deviates largely from the target distribution for three 

validation sites. Unlike the case of one validation site, on the other hand, the ECDF of the full 

lattice model, shown by dotted line, also deviates from the SUD for three validation sites. Only 

the ECDF of the unit cell model that accounts for the modeling error, shown by the solid line, has 

the following trend with the SUD. Hence, the results given in Table 4.12 show that K-S test 

accepted only the predictions made by the unit cell model with the modeling error considered. The 

K-S statistic value is also the smallest for the unit cell model with the modeling error (i.e. 0.2226). 

The CDFs of the full lattice structure model predictions and unit cell model predictions for three 

validation sites are rejected as the calculated p-value is smaller than α=0.05 value. Thus, it is clear 

that the unit cell model that accounts for the modeling error can predict the reaction forces 

Model K-S Statistic p-value Decision 

Unit Cell  0.6087 0.0606 Accept 

Full Lattice Structure 0.3157 0.7207 Accept 

Unit Cell with Modeling Error 0.3207 0.7044 Accept 

Model K-S Statistic p value Decision 

Unit Cell 0.7632 8.26E-4 Reject 

Full Lattice Structure 0.4182 0.0204 Reject 

Unit Cell and Modeling Error 0.2226 0.5211 Accept 
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accurately for three different strain values in the elastic region of the compression curve of the 

lattice structure, while the other models fail to make accurate predictions.  

These results clearly show the advantage of the proposed validation approach that utilizes 

multiple validation sites and the K-S test: Having multiple validation sites was very effective in 

minimizing the experimental cost and distinguishing model predictions because there were twelve 

experimental results in this example, which narrowed down the acceptance margin of the K-S test, 

and also enabled a better representation of the CDFs even though only a few physical experiments 

are conducted. Thus, these results prove that the proposed methodology that utilizes the uncertainty 

quantification approach using the 3D strut models reconstructed by the CT scan images, the 

stochastic upscaling method, and the proposed validation approach used at multiple levels of scales 

provides an accurate prediction of the mechanical behavior of SLM-fabricated CLSs with minimal 

experimental cost. 

 

4.5. Summary 

Local geometric variations and uncertainties of the struts have considerable effect on the effective 

material properties of the CLSs. The realistic design of a CLS is therefore only possible when 

accurate material data is available. On the other hand, gathering accurate material data that is used 

in the design can be costly. To address this issue, a multi-level validation methodology is presented 

in this chapter. In Section 4.1, the multi-level validation framework that integrates the validation 

pyramid approach with the stochastic upscaling method is described. In Section 4.2, the proposed 

validation metric based on u-pooling method and K-S test is introduced. In Section 4.3, the 

flowchart of the validation step used at each scale level from bottom up is described. The efficacy 

of the presented validation framework has been shown on the material characterization of a simple 
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cubic (SC) – cellular lattice structure (CLS) specimen fabricated by material extrusion process in 

Section 4.4. In this example, the input uncertainties of the strut level fine scale model are assumed 

to be normally distributed. Two different strut level models and two different lattice level models 

are considered in the prediction of the homogenized material properties of the CLS to investigate 

the applicability.    

The developed multiscale validation approach has shown that at the strut level, Strut Model 

2, which includes both geometric and material imperfections of the fabricated struts, is the accepted 

strut model for the lattice structure. Both Lattice Models 1 and 2 are accepted at macroscale level 

based on the validation experiments. Moreover, it was found that Lattice Model 2, in which the 

lattice is modeled using quadratic tetrahedral solid elements instead of the beam elements, provides 

better agreement with the target distribution. Thus, the applied procedure successfully identified 

the homogenized diameters and material properties while matching the responses between fine and 

coarse scale models accurately. 

The SC-CLS example shows that the K-S test can provide an unbiased decision criterion 

since its statistic is calculated based on the number of experiments. It is shown that the area metric 

fails to make a correct decision when the number of experiments is small since the threshold for 

the decision criterion is chosen as a constant value by the designer. However, the area metric is 

preferred to provide a better comparison between different alternative models that are validated 

based on the K-S test. Thus, it is concluded based on these observations that the K-S test is very 

useful when making a decision for the validation of the computational models with minimized 

experimental cost, while the area metric can be used to determine the most accurate model if there 

is more than one accepted model based on the K-S test.  
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In Section 4.5, the proposed multi-level validation and upscaling approach is utilized for 

BCC lattice structure specimen fabricated by SLM process along with the strut level uncertainty 

quantification process using micro-CT scan images. To minimize the experimental cost, as a non-

destructive experimental technique, the micro-CT scan was successfully applied to obtain cross-

sectional images of lattice structures fabricated by the SLM process. The reconstructed 3D dataset 

from preprocessed 2D images were applied to characterize the uncertainties on the geometric 

variations on the strut surface and the pore structure in strut material. The uncertainties on the 

struts were identified based on the individual strut models reconstructed from the CLS specimens 

instead of the additionally fabricated individual strut specimens, which greatly decreased the 

experimental cost and effort to characterize the strut level properties. The corresponding 

uncertainties on the strut diameter, angle, and porosity are successfully quantified with parametric 

distribution models using the BIC method and used for fine scale FE model development of struts 

to achieve inherent relationships of pores and strut geometry. Thus, it became possible to generate 

and simulate a realistic 3D strut model of the fabricated structure using the statistical sampling 

method to minimize the experimental cost.  

The applied upscaling procedure has successfully identified the homogenized diameters 

and elastic moduli at both strut level and lattice structure level while ensuring the accurate 

matching of the responses between the fine and coarse scale models. The simulated lattice 

structures with homogenized properties obtained from the upscaling process gave a good estimate 

with test data obtained for the fabricated CLS specimens when the modeling error is considered in 

computations. These observations show that a systematic validation approach that accounts for 

uncertainties with minimal experimental cost is critical for accurate predictions from the multi-

level upscaling process of the CLSs. The use of multiple validation sites enables the evaluation of 
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the prediction capability of models with more experimental observations, even if the number of 

physical experiments is limited. The u-pooling method enabled the comparison of all of the 

validation sites with the target distributions at the same time, which greatly facilitated the 

validation process by minimizing the experimental cost. Although the presented CLS example is 

fabricated from the SLM process, the proposed approach can be applicable to the most AM 

processes and is not limited to specific materials. The presented upscaling method for uncertainty 

quantification and multi-level validation procedure have significant potential to effectively certify 

the additively manufactured CLSs while minimizing the experimental cost, thus enabling the 

efficient consideration of uncertainties in the design of the AM-fabricated parts for critical 

engineering applications.  
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CHAPTER 5. APPLICATION OF UPSCALING METHOD TO 

DESIGN CLS 

5.1. Introduction 

The objective in this chapter is to address the Research Question 3, which is posed to investigate 

the applicability of the proposed multi-level upscaling method for designing lattice structures. As 

stated in Hypothesis 3, the upscaling method can be utilized to develop a PCE-based meta-model 

of the homogenized material properties of the lattice structures with the quantified uncertainties. 

This stochastic meta-model can then be used to match the target modulus of an engineering 

structure as an application example to show the benefit of the proposed approach.  

As AM offers a wide range of design possibilities, for better performance under the 

conflicting requirements, optimization methods are desirable to be able to design the optimal 

structure of CLSs. Hence, there has been some progress on using optimization to solve the CLS 

design problems as explained in Section 2.5. Topology optimization can be used to design optimal 

structures for particular purposes by minimizing a suitable objective on the topology without any 

constraint on the porosity.  

Despite the advantages of AM techniques to fabricate the designed CLSs with complex 

geometry, the designed mechanical performance of the CLSs show difference compared to the 

AM-fabricated CLS performance. The reason is the variations on the geometry and imperfections 

in the materials due to the layer-by-layer manufacturing process. These effects not only produce a 

deterministic difference but also induce increased uncertainties on the performance of the 

fabricated CLSs. More specifically, when AM techniques are used for fabrication of these designs 
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with optimized lattice cells, although the lattice cell strut cross-sectional parameters such as 

diameter values are set deterministically in the CAD model, the material and geometry of the AM-

fabricated struts will have uncertainty due to the layer by layer manufacturing process. Therefore, 

the details of the variations and imperfections have to be considered while developing the 

computational models used in the optimization processes to accurately predict the fabricated CLS 

performance. However, these details increase the computational burden and prohibits the design 

of CLSs using optimization methods especially when the uncertainties are involved.  

The aim of this chapter is to show the applicability of the proposed multi-level upscaling 

framework for designing CLSs that does not require the computationally expensive optimization 

process while efficiently accounting for the uncertainties induced by the AM process. The 

theoretical foundations of the PCE-based meta-modeling approach is presented in Section 5.2. The 

effect of the unit cell size and the porosity on the homogenized elastic modulus of the CLS was 

investigated with the quantified uncertainties at multiple scale levels using the stochastic upscaling 

method to develop the meta-model in Section 5.3. The developed meta-model approach is utilized 

for the lightweight design of the fuselage structure of a micro-aerial vehicle (MAV) as an 

application example to match the target elastic modulus of an existing design in Section 5.4. 

 

5.2. PCE-based Meta-Model Approach 

Homogenized coarse scale input variables determined by the proposed stochastic upscaling 

method involves uncertainties represented by the PCE. Therefore, conventional meta-modeling 

techniques, which are trained by using deterministic input and response data are not applicable 

when the training data involves uncertainties. In order to overcome this problem, in this research, 

a PCE-based metamodeling approach, which was first introduced for RBDO problems by [142], 



273 

 

[143], is adapted for the prediction of the homogenized properties with uncertainties. In RBDO, 

the PCE-based meta-models substitute the actual expensive model in the reliability computation 

phase, and thus help in reducing the total cost of the calculation of the reliability of the response. 

Unlike the approach in [142]-[144] that use this PCE-based metamodeling approach to eliminate 

the expensive model evaluations while predicting the probability of failure of the response of the 

structure, our purpose is to eliminate the expensive model evaluations in the upscaling method to 

find the homogenized properties of the lattice cell for the optimal design with the quantified 

uncertainties in the fabricated strut members. This PCE-based meta-modeling technique is very 

suitable in our framework since the upscaling method quantifies the uncertainties of homogenized 

properties using PCE representations. Thus, with the PCE-based meta-models of the homogenized 

properties, the uncertainties can be propagated to the macroscale level FEA without requiring the 

expensive simulations of the computational models.  

In the RBDO problems the stochastic structure response is dependent on some 

deterministic design variables denoted by X as described in Section 2.5.4.2. with Eq. (2.80). 

Similarly, in the context of designing CLSs, the uncertain homogenized properties (i.e. the coarse 

scale input variables), denoted by XCM, which are estimated by the upscaling method, depend on 

some deterministic design variables, X, defined for the created CAD model of a CLS. Then, the 

PCE representation of a coarse scale homogenized input variable given by Eq. (3.17) in the 

upscaling method is rewritten as follows:  





P

k

kkCM XbXX
0

)()(),(   (5.1) 
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where the coefficients (b) are found by the upscaling approach as explained in Section 3.1. To 

develop the PCE-based meta-modeling approach, first the PCE projection of the homogenized 

input variable XCM is established for a set of design variables X in the design variable domain with 

the corresponding random variables ξ. Let the design variable sets in the variable domain is 

denoted by   qiXX i ,...,2,1,)(   where q is the total number of generated design variable sets. 

Then, the PCE models of the homogenized variable for the corresponding design variables are 

given by 


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CM XbXX
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)()()()( )()(),(   (5.2) 

The random variable samples for each corresponding design variable set are denoted by 

  s

i

j

i nj ,...,2,1,)()(    where ns is the number of samples generated to represent uncertainties. 

In matrix form, this leads to: 
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 (5.3) 

or, in compact form: 

)( )(),( XbXXCM ξΦξ   (5.4) 
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where ξ is the common set of random samples for each corresponding design variable set in all 

PCE developments. Once the PCEs are developed for each design variable set generated in the 

variable domain using the upscaling method, the PCE coefficients can be retrieved by  

),( )()( ξξΞ XXXb CM  (5.5) 

where Ξ is the mapping between the deterministic design variables X and the PCE coefficients b. 

This mapping can be built using various function approximation methods or meta-modeling 

methods (e.g. Kriging [142], moving least squares interpolation [143], spline interpolations [144], 

etc) based on the stored PCE coefficients and design variables. In this study, Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) [223] is used due to its simplicity in one dimensional 

problems compared to the existing methods for function approximation. The functional 

relationship of each PCE coefficient can be represented by  
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where fP(X) denotes the meta-model developed by PCHIP method for the kth PCE coefficient in 

Eq. (5.2). In compact form, this is shown by  

)(Xfb   (5.7) 

Once the meta-models are developed for the PCE coefficients, the coefficient values at a 

given design point X* can be estimated on-the-fly using Eq. (5.6) to reconstruct the PCE 

representation of the corresponding homogenized variable XCM: 
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 This approach of using meta-models for PCE coefficient estimation at a design point is 

shown in Figure 5.1 for one dimensional input space. Thus, the computational cost can be mitigated 

by avoiding the expensive simulations for estimating the homogenized properties at the 

corresponding the design variable points.  

 

Figure 5.1. Approximation of the PCE coefficients of homogenized variable for a design point X* using PCE-

based meta-modeling approach. 

 

5.3. PCE-based Meta-Model for BCC Lattice Cell 

The BCC lattice cell fabricated by SLM is of the consideration of this chapter to develop the meta-

model for its homogenized elastic modulus. Two deterministic design variables on the lattice cell 

CAD model are considered for CLS design: The lattice cell model density, ρM, and the lattice cell 

size, LM. For the design of the BCC lattice cell, the diameter of each strut in the cell is assumed to 

be the same as the fabrication angle of the struts in BCC cell are all equivalent. Then, one diameter, 

DM, can be calculated from the density of the unit cell, ρFM to generate the lattice cell model for 

the given cell length.  

Since uncertainties induced by the AM process parameters exist on the strut geometry and 

material of the lattice cells, it is important to consider these uncertainties in the computer-aided 
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design stage to have accurate solutions. The stochastic upscaling method and the PCE-based meta-

model approach described in Section 3.3 and Section 5.2, respectively are implemented as 

illustrated in the framework in Figure 5.2 to characterize the elastic modulus of the BCC lattice 

cell with uncertainties. 

 

 

Figure 5.2. Multi-level PCE-based meta-model development framework.  

 

The flowchart involves 7 steps to develop the PCE-based meta-models of the effective 

elastic modulus of the lattice cell with propagated uncertainties from the strut level: 
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Step (1). Choose the lattice type that will be used in the metamodeling approach: The BCC 

lattice cell described is used in this study.  

Step (2). Generate a set of model density values, ρM
(j), in the range of [0,1] for a given 

lattice cell length: The density values generated in this study are ρM
(j)={0, 0.05, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 1} for lattice cell length values LM = {1, 2, 3, 4, 5, 7.5, 10}.  

Step (3).  Calculate the model diameter values, DM
(j), corresponding to each model density 

value ρM
(j): The model diameter values are required to generate the CAD model of the lattice cell 

that will be used for FE analysis for the corresponding density value. To calculate the 

corresponding diameter for each density, first a function approximation process is performed. For 

this purpose, the lattice cell CAD model is generated with various diameter values. The 

corresponding lattice cell volume of each generated model is obtained from Abaqus software and 

divided by the total cubic cell volume to calculate the corresponding density. Then, the diameter 

values and corresponding density values are saved as a database. The diameter values, DM
(j) for 

the corresponding density values, ρM
(j), generated in Step 2 are calculated by interpolating using 

PCHIP method [223] based on this database. 

Step (4). Apply the stochastic upscaling method described in Section 3.1 at strut level for 

each model diameter value, DM
(j), calculated in Step (3):  The upscaling method is utilized at strut 

level to predict the homogenized strut diameter DCM,2, and strut elastic modulus, ECM,2, (where 

subscripts CM and 2 stands for the coarse scale model and strut level, respectively) of a coarse 

scale model that can represent the fine scale strut model. The two step upscaling process described 

in Section 4.4.5 and shown in Figure 4.27 is used. 
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Then, the model diameter data DM, calculated in Step (3), and the corresponding PCE 

coefficients obtained in strut level upscaling step are used to construct the meta-models. PCHIP 

method is used as the meta-model approach as stated in Section 5.2. The PCE-based meta-models 

are developed to predict the homogenized diameter, DCM,2, and elastic modulus, ECM,2, at strut 

level. These homogenized variables can be estimated for a given model diameter, 
*

MD , using Eq. 

(5.8):   
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where f2(.) and g2(.) denote the meta-models for DCM,2 and ECM,2, respectively.  

Step (5). Apply the stochastic upscaling method described in Section 3.3 at lattice level for 

each DM
(j)

 value calculated in Step (3): The upscaling method is utilized at lattice level to predict 

the homogenized elastic modulus, ECM,1, (where subscripts CM and 1 stands for the coarse scale 

model and lattice level, respectively) of a coarse scale model that can represent the fine scale lattice 

cell model. The upscaling process produces the PCE representation of the homogenized elastic 

modulus ECM,1 for each DM
(j) value at lattice level. This lattice-cell model is generated with the 

homogenized diameter and elastic modulus predicted at strut level for each DM
(j). The lattice level 

upscaling step for BCC cell fabricated by SLM is described in Section 4.4. 

Then, the model density data ρM, determined in Step (2), and the corresponding PCE 

coefficients obtained in lattice level upscaling step are used to construct the PCE-based meta-

model of the homogenized elastic modulus ECM,1. PCHIP method is used as the meta-model 
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approach as stated in Section 5.2. The constructed meta-models for each PCE coefficient (Eq. 

(5.6)) are stored to formulate the PCE of the homogenized modulus for the desired model density,

*

M , that will be used in the design of CLSs. These homogenized variables can be estimated for a 

given model density, 
*

M , using Eq. (5.8):   
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where (.)3f is the meta-model for ECM,1.  

If necessary, these steps are repeated for various lattice cell sizes, LM, and also for various 

lattice cell types that can be considered in the design of CLSs. In contrast to the deterministic 

relationships between the homogenized values and densities found in the existing studies [42], 

[77], the stochastic relationships are established with PCE expansions using the proposed 

approach. The corresponding three meta-models given on the right hand side of Figure 5.2 are 

explained in the following sub-sections.  

 

5.3.1. Deterministic Relationship between the Model Density and Diameter 

As stated in Step 3 of the proposed framework in Figure 5.2, to calculate the corresponding 

diameter, DM
(i), for each density, ρM

(i), the solid CAD model of the lattice cell is used. The CAD 

model of the lattice cell generated for a diameter value can give the accurate volume as opposed 

to the analytical formulations, which are developed based on some assumptions to simplify the 

formulation. For instance, Gumruk et al. [86] formulated an analytical formulation of the relative 

density for BCC lattice cell   
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(5.12) 

where θ is the strut angle with respect to the lateral plane, which is 35.2640 for the BCC cell. The 

curve obtained from this analytical equation that shows the change of density with the aspect ratio 

D/L is plotted in Figure 5.3.  

This curve obtained by Eq. 6.12 is compared with the CAD model results. For this purpose, 

the lattice cell CAD model is generated with various diameter values, DM
(j), such that the density, 

will be in ρM
(j) = [0,1] for the unit cell sizes in L = [1,10]. The corresponding lattice cell volume of 

each generated model is obtained from Abaqus software and divided by the total cubic cell volume 

to calculate the corresponding density. It was found that the aspect ratio DM/L remains the same 

for different L values. Hence, the aspect ratio values and corresponding density values are saved 

as a database. PCHIP interpolation method can be used to calculate the aspect ratio value for a new 

density value. In Figure 5.3, the plotted curve obtained from the interpolation method agrees very 

well with the curve plotted using the CAD model predictions. The curve from the analytical 

equation (Eq. (5.12) give good predictions for density values less than 0.2, which was also shown 

by Gumruk et al. [86], but largely deviates from the CAD model curve when the density value is 

greater than 0.2. Hence, the PCHIP interpolation method is to be preferred predict the diameter 

value for a given density value and lattice cell size in Step 3 of the proposed meta-modeling 

approach.  
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Figure 5.3. Comparison of the aspect ratio vs density curves obtained from CAD model, PCHIP interpolation 

method and analytical equation in Eq. (5.12).  

 

5.3.2. Homogenized Properties without Uncertainties 

Before implementing the proposed approach, a deterministic study is conducted to find the 

functional relationship between the design variables (i.e. the model density and lattice cell size) 

and the homogenized elastic modulus of the BCC lattice cell. This is the conventional way used in 

[42], [77], to eliminate the expensive FE simulations in designing CLSs where the AM effects 

such as uncertainty are not considered on estimating the homogenized elastic modulus of the lattice 

for a given density. For the model density values ρM
(j) determined in Step 2 of Section 5.3, the strut 

diameter values are calculated from the PCHIP method in given Figure 5.3. The CAD model of 

the BCC unit cell for each corresponding diameter is generated in Abaqus. Then, the FEA of the 

unit cell model structure is carried out with PBCs and the corresponding deterministic effective 

elastic modulus is obtained for the coarse scale model. The response surface of the design 

variables, i.e. unit cell size and model density is depicted in Figure 5.4(a). The homogenized elastic 
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modulus Eh is normalized by the bulk material elastic modulus, E0. (e.g. for AlSi10Mg material E0 

= 65 GPa).  

 

(a) The response surface of the normalized modulus. (b) The contour plot of the response surface. White lines 

denotes the contour lines of the normalized modulus. (c) The plot of model density vs. normalized modulus.  

Figure 5.4. Functional relationship between the design variables and the homogenized elastic modulus 

normalized by E0  

It is seen from Figure 5.4(a) that the normalized homogenized modulus increases from 0 to 1 with 

the increase of the density as more material exist in the cell when the density increases. On the 

other hand, the unit cell size, L, appears to be making no change in the homogenized elastic 

modulus. This is more visible in the contour plot given in Figure 5.4(b), where the normalized 

modulus contours are straight lines for various density values. Therefore, a functional relationship 

between the density and normalized modulus of the lattice cell can be developed (Figure 5.4(c)) 

independent from the lattice cell length. The fitted curve is obtained by fitting the PCHIP method 

to the training data.  

 

5.3.3. Homogenized Properties with Uncertainties 

Although this deterministic process described in Section 5.3.2 is computationally very efficient to 

design CLSs as suggested previously in [42], [77], the fabricated structure modulus will differ 
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from the designed structure because the AM processes induce variations and uncertainties on the 

fabricated geometry and material properties. To overcome this issue, the proposed framework 

depicted in Figure 5.2 is utilized for developing the functional relationship between the design 

variables used for generating CAD models and the homogenized properties at strut level and lattice 

cell level. At the strut level, the quantified uncertainties of the fine scale model input variables in 

Section 4.4.4, given in Table 5.1, are used in generating the strut level fine scale model of the 

SLM-fabricated BCC lattice structures.  

 

Table 5.1. Distributions and statistical parameters of input variables quantified at strut level using BIC 

Parameter Distribution Mean Standard Deviation 

Short Diameter (mm) Lognormal DM
(j)+0.172 0.0193 

Long Diameter (mm) Lognormal DM
(j)+0.284 0.0561 

Strut Angle (0) Normal 34.898 1.2294 

Porosity Gamma 0.0091 0.0025 

Pore Diameter (mm) Lognormal 0.0594 0.0283 

 

As seen in Table 5.1, the short and long diameters that are used to generate the fine scale strut 

model have an increase of 0.172mm and 0.284mm, respectively. These increase values were 

obtained from uncertainty quantification process on the fabricated lattice structures with DM = 

0.5mm in Section 4.4.4. Existing studies [207], [208] that studied the increase of strut diameter in 

the SLM-fabricated lattice structures show that the increase is constant for different size of 

diameters for the same processing parameters. Hence, the increase values in Table 5.1 are used for 

any model dimeter value for the fine scale model generation of struts in the upscaling process as 

stated also in Section 4.4.4.1. The corresponding PCE coefficients of the homogenized diameter 
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and homogenized elastic modulus of the coarse scale strut models are determined using the 

upscaling method for each model diameter value, DM
(j). Then, the meta-models (i.e. PCHIP 

method) are developed to find the PCE coefficients of the homogenized strut level properties for 

a given value of the model diameter DM
* (Eqs. (5.9) and (5.10)). The homogenized modulus is 

projected onto a second order PCE (i.e. P = 2), which represent the uncertainty with three chaos 

coefficients (i.e. b0, b1, and b2) for each value of model diameter in the upscaling method. The 

corresponding meta-models for the PCE coefficients of the homogenized diameter and the 

normalized elastic modulus at strut level are illustrated in Figure 5.5. 

 

 

(a)-(c) Curves for homogenized diameter DCM,2 (d)-(e) for normalized elastic modulus ECM,2 

Figure 5.5. Meta-models of PCE coefficients at strut level.  
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The mean and standard deviation of these homogenized properties can be determined from the 

PCE meta-models in Figure 5.5 using Eqs. (2.29) and (2.32) in Section 2.2.3, respectively. The 

last coefficient values in Figure 5.5(c) and Figure 5.5(f) are too small that those can be ignored in 

the PCE representation. Then the first coefficient gives the mean and the second coefficient gives 

the standard deviation of the homogenized properties at strut level.  

Once the strut level meta-models are developed, those can be used to quantify the 

uncertainties of the input variables of the fine scale model at the lattice level in the upscaling 

process in Step 5 in Figure 5.2. The uncertain homogenized elastic modulus of the BCC lattice cell 

is projected on a second order PCE (i.e. P = 2 in Eq. (5.12)), which represents the uncertainty with 

three chaos coefficients (i.e. b0, b1, and b2) for each value of the lattice cell model density ρM
(i) and 

the cell size L in the upscaling method. The resulting PCEs obtained for all of the design variable 

values (i.e. model density and cell size) show that the last coefficient is either zero or very small. 

That means the uncertainty of the homogenized modulus can be represented by only using the first 

two chaos coefficients. Hence, the PCE-based meta-models are developed for coefficients b0 and 

b1. The contour plots of the normalized PCE coefficients by the bulk elastic modulus E0 are 

illustrated in Figure 5.6. 

For a one-dimensional PCE with Hermite polynomials used in this study, the mean and 

standard deviation of the normalized elastic modulus simplifies to 0bE  and 1bE   from Eqs. 

(2.29) and (2.32), respectively. These results imply that the contour plots given in in Figure 5.6(a) 

and  Figure 5.6(b) represents the mean and standard deviation of the normalized modulus of the 

fabricated BCC lattice structure, respectively. In this case, it is seen that the contours of the mean 

of the modulus in Figure 5.6(a) show differences when compared to the contour plot of the 
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modulus in Figure 5.4(b) where the uncertainties are not considered. The comparison of these 

figures indicates that the elastic modulus shows dependence to the lattice cell length when the 

homogenization process accounts for the uncertainties as opposed to the deterministic case in 

Figure 5.4(b) where no dependence is seen to the lattice cell length.  

 

Figure 5.6. Contour plots of normalized PCE coefficients with respect to design variables (a) Contour plot for 

normalized b0 (b) Contour plot for normalized b1. 

 

In addition, the comparison with the deterministic case in Figure 5.4(b) indicates that the 

homogenized modulus at the same model density value increases when the lattice length is 

decreased. In other words, we need to decrease the model density of the lattice cell if we decrease 

the lattice length to have the same elastic modulus. The decrease of the homogenized modulus is 

more discernable for smaller lattice cells (e.g. L < 5 mm) as can be seen in Figure 5.6(a). For 

instance, to have the same normalized modulus of 0.2, for L = 10 mm and 5mm lattice size values 

from the fabricated lattice structure, the model density ρM must be about 0.57 and 0.56, 

respectively. However, to obtain the same modulus for the fabricated lattice cell with L = 2mm, 

the model density must be about 0.42. These observations show that the modulus of the fabricated 
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lattice cell with L=2mm is 25% less than the modulus of fabricated lattice cell with L = 10mm; 

while the fabricated lattice cell with L = 5mm has 2% less modulus than that of L = 10mm. These 

observations from Figure 5.6(a) suggest that at the same density value the influence of the 

manufacturing process is greater for the smaller lattice cell size values. The reason of this 

observation can attributed to the following: As we reduce the lattice cell size the diameter of the 

struts also reduces to have the same density. However, the difference between the fabricated strut 

diameter and the model diameter remains the same although the strut dimeter decreases. That 

means the ratio of the fabricated strut diameter and the model diameter is larger in a smaller lattice 

cell size, which will increase the overall elastic modulus of the lattice cell.  

A similar trend is also seen for the standard deviation of the modulus given in Figure 5.6(b). 

A changing trend occurs on the other hand in the region of density values closer to 1 for the 

standard deviation: As the lattice cell size decreases the standard deviation remains similar or 

decreases. The reason for that is the void region in the unit cell is getting too small which results 

in smaller geometric uncertainties leading to less changes in the deviation of the elastic modulus 

of the unit cell.   

Finally, a general increase in the elastic modulus is observed for the case that accounts for 

the manufacturing uncertainties given in Figure 5.6(a) compared to the deterministic case in Figure 

5.4(b). Hence, the results prove that the influence of the AM process must be considered in the 

material characterization of the designed CLSs. 
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5.4. Design of Micro-Aerial Vehicle (MAV) Fuselage 

5.4.1. Problem Definition 

Micro-aerial vehicles (MAVs) are critical in military operations for surveillance in hazardous 

areas. Their components such as the fuselage and the wings should be designed by lightweight and 

strong materials so that the MAVs can have high performance in endurance, landing, and take-off. 

The fuselage of an MAV is used as the example structure to show the applicability of the proposed 

meta-model approach in designing lattice structures without using any tedious simulations and 

optimization processes. The geometry of the fuselage is taken from [37], [38] and the important 

geometry parameters are shown in Figure 5.7. 

 

Figure 5.7. The geometry of the half of the MAV fuselage with its dimensions 

 

The existing design of MAV fuselage is made of the lightweight ABS material which has an elastic 

modulus of 1960 MPa. Our goal in this study is to match this target modulus (Et = 1960 MPa) by 

the BCC lattice cell fabricated by SLM for a periodic lattice structure design of the fuselage. The 

lattice design will be fabricated by an aluminum alloy, namely AlSi10Mg material which has an 

elastic modulus of E0 = 65 GPa in SLM process. Aluminum alloy cellular structures are used for 

many applications in automotive, railway, and aerospace industries such as car body structures, 
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motorway sound insulation, heat exchangers, and lightweight conformal pressure tanks [220]. 

Ashby et al. [221] show that aluminum cellular structures offer much stiffer and lighter structural 

parts than the equivalent parts that are made of steel. Hence, recently, the aluminum alloy 

AlSi10Mg have been used in SLM process to fabricate CLSs and are the current interest [214], 

[219], [222]. For the MAV fuselage design, we assume that the design with aluminum material 

and periodic lattice structure instead of using solid plastic material will provide a better impact 

performance. We also expect the CLS design to be a lighter design than the solid fuselage design. 

Moreover, the proposed approach will provide a lattice-based design without requiring the 

expensive simulations and optimization processes. 

For this purpose, the PCE-based meta-models, developed by PCHIP interpolation method 

to generate the contour plots in Figure 5.6, can be utilized in design of engineering structures with 

periodic CLSs to match a target modulus, Et, by an appropriate choice of the model density and 

unit cell length. When we have a target modulus to match, first, the normalized target modulus is 

calculated by the ratio of the target modulus, Et, and the modulus of bulk material, E0. Then, at a 

desired unit cell size, the corresponding model density, ρM, of the lattice cell that corresponds to 

this normalized modulus value is read from Figure 5.6(a) (or from the meta-model of the first PCE 

coefficient, b0). The standard deviation of the normalized modulus can also be predicted from 

Figure 5.6(b) (or from the meta-model of the second PCE coefficient, b1) for the determined model 

density.  

The diameter that will be used to generate the lattice cell model, DM, should also be 

determined that corresponds to the calculated model density. For this purpose, the PCHIP function 

approximation developed to generate the curve of model density, ρM, vs. model aspect ratio, DM/L, 

in Figure 5.3 is used. If the model diameter is greater than the minimum diameter that can be 
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fabricated by the AM process, then the design is accepted. Otherwise, the unit cell size is changed 

and the above-mentioned process is repeated. If the design is accepted, the corresponding mean 

value of the fabricated porosity of the designed lattice cell can also be estimated as follows: First, 

the model diameter, DM is used in the meta-model developed to predict the first PCE coefficients 

of the homogenized diameter, DCM,2, which produces the curve in Figure 5.5(a) at strut level. The 

predicted homogenized diameter can also be considered as the fabricated diameter, Dfab, since it is 

used in the lattice level upscaling process to predict the homogenized elastic modulus of the 

fabricated lattice cell. Then, the fabricated density, ρfab, that corresponds to this fabricated diameter 

value is estimated using again the developed PCHIP function of model density, ρM, vs. model 

aspect ratio, DM/L, in Figure 5.3. Finally, the porosity of the fabricated CLS design can be 

estimated by γ = (1- ρfab).   

This process of target modulus matching is implemented to design a micro-aerial vehicle 

fuselage with BCC lattice cells to demonstrate the applicability of the proposed approach. 

 

5.4.2. Results for MAV Fuselage Design 

When the lattice structure is considered to be fabricated using AlSi10Mg material, the 

normalized modulus to match with the target modulus of fuselage design will be Et/E0 = 0.0302. 

This normalized modulus value will be used in Figure 5.6 to find the density of the lattice structures 

that matches the target elastic modulus. Before implementing the proposed approach, it is 

important to choose a lattice cell size that can fit into the dimensions of the fuselage geometry 

before designing the lattice cell. First, a lattice cell size of L = 2mm is considered in the fuselage 

design because a small cell size allows for the lattice cells to conform to the structure’s geometry 

without losing geometrical details. The model density of the BCC cell that matches the fabricated 
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elastic modulus of 1960 MPa was estimated to be ρM = 0.183 from the meta-model of the first PCE 

coefficient (b0) for L = 2 mm given in Figure 5.6(a). This model density value produced a model 

diameter value of DM = 0.405 mm when calculated from Figure 5.3. However, this design is not 

desired because the model diameter is less than the minimum diameter value of 0.5 mm that can 

be fabricated using the SLM process considered in this study. 

Therefore, the length of the lattice cell was increased to have a model diameter that could 

be fabricated. Two different lattice cell sizes were considered for designing the fuselage: (1) If the 

unit cell size is desired to be L = 4 mm, the density of the lattice cell model that will match the 

target modulus is obtained as ρM = 0.236. (2) If the unit cell size is desired to be L= 8 mm, the 

model density to match the target modulus is obtained as ρM = 0.262. The corresponding results 

obtained by the proposed approach for both cases are listed in Table 5.2. 

 

Table 5.2. Estimated results to match the target modulus of Et =1960 MPa 

 L = 4 mm L = 8 mm 

 Proposed Deterministic Proposed Deterministic 

Target Et (MPa) 1960 1960 1960 1960 

Mean of Fabricated Eh (MPa) 1960 3578 1960 2900 

Standard deviation of Fabricated 

Eh (MPa) 
131.85 222.65 114.95 174.8 

Model Density ρM 0.236 0.304 0.262 0.304 

Model Diameter DM (mm) 0.939 1.088 1.992 2.176 

Fabricated porosity (1 - ρfab) 0.698 0.628 0.708 0.665 

Fabricated Diameter Dfab (mm) 1.084 1.231 2.123 2.305 
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As seen in Table 1, the diameters used to generate the lattice cell models, DM, were 

estimated to be DM = 0.939 mm, and DM = 1.992 mm from the function approximation in Figure 

5.3 for L = 4 mm and L = 8 mm, respectively. These values were found to be greater than the 

minimum diameter value of 0.5 mm that could be fabricated by the SLM process used in this study. 

Hence, both designs can be fabricated and the CAD models of the designed structures for both cell 

size values with BCC lattice cells are illustrated in Figure 5.8(a) and Figure 5.8(b), respectively. 

The corresponding STL files can be used to fabricate the designed fuselage structures by the SLM 

process using the AlSi10Mg material.  

 

(a) Designed fuselage model with conformal BCC lattice cells with L = 4mm, (b) Designed fuselage model with 

conformal BCC lattice cells with L = 8mm. 

Figure 5.8. Lattice-based design of MAV fuselage 

 

The lattice-based fuselage designs that match the target modulus (i.e. 1960 MPa) were also done 

for the deterministic case where the influence of manufacturing uncertainties was not considered. 

The corresponding results are compared with the proposed approach in Table 1. The function 

approximations developed to generate the contour plot in Figure 5.4(b) were used in this 
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deterministic case to find the model density value that corresponds to the target modulus of 1960 

MPa. As can be seen from Table 1, the predicted model density values are identical for both 

L=4mm and L=8mm, i.e. ρM = 0.304. Since the influence of the manufacturing process is not 

considered in the deterministic case, to have the same target modulus, the density of the lattice cell 

should be the same as explained in Section 5.3.2 and as shown in Figure 5.4(b).  

Moreover, the fabricated structure moduli of these deterministic designs were estimated 

using the PCE-based meta-models as 3,578 MPa and 2,900 MPa for L=4 and L=8mm, respectively 

(Table 5.2). It is seen that if the deterministic design approach is used and the designed fuselage 

structure is fabricated by the SLM process, although the modulus of the CAD model matches the 

target, the fabricated structure modulus is different from the target modulus of 1960 MPa. 

Furthermore, the fabricated densities were estimated as ρfab=0.372 and ρfab=0.335 that produce 

porosity values of 62.8% and 66.5%, respectively. The proposed method, on the other hand, 

estimates the fabricated densities to be ρfab = 0.292 and ρfab = 0.302 for L = 4 mm and L = 8 mm 

(Table 5.2), which correspond to a fabricated porosity value of about 70% for both fuselage 

designs. Compared to the deterministic approach, these results prove that a lighter design is 

achieved while the target modulus is matched. Thus, accounting for the manufacturing 

uncertainties for matching the target modulus will help create a realistic design that satisfies the 

design targets in terms of modulus and porosity. 

One question that should be addressed is whether one of these designs would be preferable 

over the other. A comparison on the standard deviations of the elastic modulus values, estimated 

for both designs as given in Table 1, reveals that the design with L= 8mm should be preferred 

because its standard deviation is smaller than that of the design with L = 4mm. The reason is that 

the diameter of the struts that are fabricated in SLM for the design with L = 8 mm is greater than 
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the diameter of the design with L = 4mm (Table 5.2). The increase of the diameter simply provides 

less variation in the fabricated struts by the SLM process so that a more robust design can be 

obtained if a larger diameter value is determined for design. Thus, when the design of the fuselage 

structure is repeatedly fabricated, less variation in overall elastic modulus can be obtained, which 

leads to a more consistent design that matches the target modulus.  

 

5.4.3. Validation of Designed CLS performance 

Once the lattice-based fuselage design with L = 8mm (Figure 2(b)) is determined as a better design 

option, we need to evaluate the validity of the predicted results by comparing its performance 

under the impact loadings with the target model, which is the solid model with the ABS material. 

In order to validate the performance of the designed fuselage structure, the simulation of the lattice 

design for L = 8mm can be performed under the loading and boundary conditions given in Figure 

3 [37], [38]. The obtained results for these lattice designs can also be compared with the simulation 

results of the existing solid model with ABS material under the same loading and boundary 

conditions. The fuselage has two loadings: The weight of the motor in the front, FMotor = 5.9 N and 

the weight of the tail in the rear, FTail = 2.7 N. These loads are the scaled loads by a factor of ten 

to model the impact loading on the fuselage. The contact area between the ground and the bottom 

of the fuselage is fixed in all directions as this is the impact zone. Since only half of the fuselage’s 

geometry is modeled, symmetry boundary conditions were applied on the symmetry surface. The 

FE model of the target solid fuselage structure with ABS material was generated with a mesh size 

of 3mm using the hexahedral solid elements. For the lattice design, the fabricated diameter value, 

estimated by the proposed meta-modeling approach (Table 5.2), was used to generate the FE model 

used in the simulations to account for the SLM process uncertainties. The generated lattice model 
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is meshed using quadratic tetrahedral solid elements in Abaqus since those provide a better 

agreement with reality as discussed in Chapter 4 for the CLS examples compared to the beam 

element-based models.  

 

 

Figure 5.9. Loading and boundary conditions on the fuselage geometry [37] 

 

Since the modulus of the target solid model is aimed to be matched for designing the lattice 

structure, it is expected that the lattice design obtained by the proposed approach should have a 

deflection behavior similar to the solid model. Hence, the maximum deflection values were 

obtained from simulations of the lattice design model and the target model, and are listed in Table 

2 for comparison.   

 

Table 5.3. Results of the simulations for MAV fuselage design 

 Deflection (mm) Weight (kg) 

Solid - ABS 0.0211 0.305 

Lattice – L = 8 mm 0.0173 0.158 

 

5.4.4. Discussions 

The maximum deflection result of the designed lattice model was found to be 0.0173 mm as seen 

in Table 2. This result was slightly smaller than the deflection result of the target solid model with 
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ABS material which was obtained as 0.0211 mm. Since our goal in designing the lattice structure 

was to match the target modulus of the solid model with ABS material, a similar deflection 

behavior would be expected from the lattice design. The slight decrease of the deflection in the 

lattice design can be attributed to two reasons. First, the solid element-based lattice model used to 

validate the performance of the designed lattice structure required a tremendous computational 

effort. Therefore, a coarse mesh was used, which results in slightly increased stiffness. Therefore, 

less deflection can be obtained from simulations. Although a coarse mesh was used, the simulation 

required 30Gb of memory to run as the model meshed with quadratic tetrahedral elements had 

about 1.7 million nodes. It took about 40 minutes to complete the simulation in Abaqus on an Intel 

i7 5960x processor when 4 cores were activated. The computational demand also shows that using 

such detailed simulations for the realistic design and analysis of the lattice structures would not be 

possible to design the lattice-based fuselage structure. Hence, it is validated in terms of 

computational cost from the solid element-based lattice model simulation results that the proposed 

method performs well to match the target modulus while eliminating these expensive simulations 

required to design lattice-based structure. 

The second reason of having a smaller deflection result from the lattice design is that the 

lattice structure model generation process slightly increases the mass at the intersection points of 

the struts. Hence, a slight increase in the overall modulus of the structure is expected, which results 

in a slightly smaller deflection result as obtained in this example. Nevertheless, since this was an 

expected result, the comparison of the simulation results of the designed lattice structures with the 

target solid model validates that the approach of matching the target modulus produces an effective 

lattice-based design of the MAV fuselage. Moreover, it is seen from Table 5.3 that a significant 

reduction in weight was also obtained with the lattice design as the solid model has a weight of 
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0.305 kg while the weight of the lattice design fabricated by AlSi10Mg material using SLM was 

predicted to be 0.158 kg. These results show that the fabricated lattice-based design will have a 

weight of half of the existing design with ABS material, which provides a very lightweight design 

of the MAV fuselage. Hence, these results suggest that the lattice structure determined by the 

proposed approach can be used to replace the solid fuselage design with a lightweight but still 

strong structure. 

In Section 5.4.2, it was found that the lattice design with the cell size of 8 mm was a more 

robust design compared to the lattice design with the cell size of 4mm since a larger diameter value 

is determined for the former lattice design to match the modulus. It should be noted, on the other 

hand, that this observation does not mean that a larger diameter is always a better solution. Because 

a larger lattice size will be required to have the same modulus when we increase the diameter 

value, after some point, the lattice cell size will not fit in the overall fuselage geometry. Moreover, 

the conformity of the geometry might be lost with the increase in the lattice cell size because for 

larger cell sizes the curvatures on the geometry cannot be modeled accurately due to the long 

straight strut members. In that regard, a smaller cell length (e.g. the design with L = 4mm) will 

provide a better conformity with the curved geometry than a larger cell length (e.g. the design with 

L=8mm) as can also be seen when Figure 5.8(a) compared with Figure 5.8(b). Although the 

geometry conformity was not an issue for this MAV fuselage example, this might impact the 

performance of the designed structure depending on the application. Nevertheless, for the fuselage 

example the lattice design with L = 8 mm was chosen as it provided a comparable performance 

with the target solid model.    

Another issue that should be pointed out is that the conformal design of the lattice cell in 

the fuselage geometry may compromise the target elastic modulus of the designed lattice cell as 
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the homogenization is achieved for cubic cells. In other words, a better conformity could result in 

a better match of the target modulus for the conformal lattice structure. In the conformal design, 

the cubic geometry of the lattice is slightly skewed to conform the geometry, which may lead some 

difference in the predicted value of the elastic modulus. This could also be a reason that the lattice 

model has a slightly smaller deflection result than the target solid model although the same elastic 

modulus was targeted. Nevertheless, the conformity of the lattice cells enables the integrity of each 

unit cell in the designed structure as opposed to the non-conformal designs, which will have 

missing struts and partial unit cells in the geometry resulting in a worsening effect in the structure 

performance. Further study is necessary for the investigation of the effect of the conformal 

geometry on the elastic modulus along with the validation of the designed structures with 

experiments on the fabricated designs.  

 

5.5. Summary 

In this chapter, the application of the proposed multi-level upscaling and validation approach is 

presented for designing cellular lattice structures without using the computationally expensive 

simulation-based optimization processes while matching the realistic elastic modulus of the 

fabricated lattice structure with the target elastic modulus. In Section 5.2, the proposed PCE-based 

meta-modeling approach that considers the AM process effects on the fabricated CLSs by using 

the stochastic upscaling method is introduced. In Section 5.3 the flowchart to develop the meta-

models is described and is utilized for BCC lattice cell. The effect of unit cell size and unit cell 

model density on the fabricated lattice cell elastic modulus that involves uncertainties has been 

examined, evaluated and compared with predicted results when uncertainties were not considered. 

A contour plot of the BCC lattice cell based on the PCE-based meta-models with varying cell 
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length and cell density is developed that gives the fabricated effective modulus as the output. This 

contour plot is used to find the desired effective modulus of the lattice cell to be used in the design 

of the lattice-based MAV fuselage design in Section 5.5. The design of the lattice structure is 

obtained without requiring the tedious optimization processes and FE simulations. The results 

demonstrated that the effects of the AM-process on the strut level are needed for a reliable 

evaluation and realistic design of the cellular lattice structures. Thus, the use of the proposed PCE-

based meta-modeling approach has been proven to be a useful approach to design cellular lattice 

structures with desired realistic elastic properties under the uncertainties.  
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

In this chapter, the dissertation is concluded by summarizing the main points of the research. The 

contributions of the proposed research are summarized in Section 6.1. The limitations of the 

current work are discussed in Section 6.2. The possible future work to address the limitations and 

open new ways for research is suggested in Section 6.3.  

6.1. Contributions 

An extended summary of the main points and research questions in this dissertation are given in 

Section 6.1.1, and the contributions are summarized in Section 6.1.2. 

6.1.1. Extended Summary 

The main goal of this dissertation is to develop a computationally efficient modeling framework 

for uncertainty quantification and propagation in complex cellular lattice structures fabricated by 

AM. The framework is generalized to be applicable also to any complex engineering structures 

that require expensive simulations and experiments under uncertainties. There are increased 

uncertainties at small scales of complex engineering structures (e.g. in the strut members of cellular 

lattice structures when fabricated by AM techniques), which may greatly impact the accuracy and 

reliability of human scale structure predictions. Therefore, it is crucial that the small-scale 

uncertainties must be properly accounted for in the computational models used in analysis and 

design of engineering applications. However, considering these small scale uncertainties in direct 

modeling of the final structure to have accurate predictions is neither feasible nor efficient due to 

increased complexity.  
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Typically, the multiscale modeling approach is utilized to alleviate the complexity 

associated with the fine scale details and uncertainties. In multiscale modeling, instead of modeling 

all the details at once, upscaling/homogenization methods are used to model the fine scale details 

with continuum level constitutive laws that can explain how the material behaves with some 

homogenized properties. Then, the homogenized properties are used for a simplified model of the 

structure in engineering analysis and design. However, the multiscale modeling techniques usually 

focus on the homogenization at one scale level of the material structure, which can still be 

computationally infeasible when finer scale uncertainties are also considered in the modeling 

process. Even if the homogenization can be achieved at multiple scale levels, the existing 

homogenization methods used in multiscale modeling consist of complex linking mechanisms that 

link the fine and coarse scale domains. Furthermore, these methods usually penetrate the explicit 

formulations of the coarse scale domain (e.g. the explicit formulations of continuum level 

constitutive laws). Hence, there can be significant computational costs when these methods are 

used to account for uncertainties.  

As a result, an effective framework for uncertainty quantification is required that can 

efficiently account for the fine scale uncertainties in predicting final structure to address these 

issues. This led us to pose the following Research Question 1:  

Research Question 1: How can we efficiently quantify and propagate the fine scale 

uncertainties to predict the performance of human scale structures? 

In the light of these constraints, a multi-level stochastic upscaling method through 

optimization was hypothesized to serve our purpose. This method treats the homogenization 

problem as an inverse optimization problem where the unknown homogenized input properties are 
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determined through probabilistic response matching of fine and coarse scale models. This way, 

black-box functions (e.g. FE modeling approach) can be used to develop both fine and coarse scale 

domain models, which eliminates the penetration of the explicit formulations. PCE was chosen as 

the dimension reduction method in the upscaling method because it can represent the uncertainty 

of a homogenized property with a few deterministic coefficients. PCE also allows for the 

representation of any distribution models when Hermite polynomials are used in its formulation, 

thus eliminating the issue of choosing an appropriate distribution model for the unknown 

homogenized input variable before the optimization. BIC method is integrated into the stochastic 

upscaling method for parametric modeling of the fine scale input uncertainties that will be used in 

fine scale response predictions. The exponential loss function is proposed to use in the optimization 

step of the upscaling method as the objective function since it can allow for the optimization 

algorithm to reach the optimal point quickly. Moreover, a hybrid optimization procedure of GA 

and SQP is utilized in the upscaling process to find the global optimal point quickly without being 

trapped at the local minima. This improved stochastic upscaling framework was introduced in 

Chapter 3 along with application examples at one level and multiple levels to demonstrate the 

benefits of the proposed improvements.  

Current approaches for multiscale modeling under uncertainties include only the 

uncertainty from the homogenized properties. The homogenized model properties may not be an 

accurate representation of the structure as they ignore the effect of the discrepancy of the model 

from reality. Therefore, in a hierarchical multi-level upscaling process, a validation step should 

also be conducted at each level of interest to evaluate the accuracy of the predictions made by 

computational models where the homogenized properties are used. However, in a multi-level 

approach, the level of the available experiments may be different from the corresponding level of 
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the upscaling. The reason is that at small scale levels, the scale is too small and experiments are 

usually very limited and expensive. The experiments may be available only at the larger scale 

levels. Hence, along with developing an efficient stochastic upscaling technique, meaningful 

validation processes must be investigated to use the available experimental data in the most 

effective way for the prediction accuracy assessment at multiple levels. This led us to pose the 

following Research Question 2: 

Research Question 2: How can we improve the prediction accuracy of computational 

models used at multiple levels while minimizing the experimental cost? 

The validation approaches are well established for complex engineering systems such as 

validation pyramid approach where the complex system can be divided into multiple simple sub-

levels to increase the availability of the experiments. The validation pyramid approach starts with 

a calibration process at the bottom of the pyramid where the model input variables are estimated 

based on the experiments of simple models. Then the validation step is utilized for a different 

model from the calibration model using a validation metric to compare the model predictions with 

experimental observations. Additional validation steps can be done with the increased level of 

complexity of the models from bottom to up. We hypothesize in this research that this validation 

pyramid approach can be adapted to the multi-level upscaling approach. In that regard, at each 

scale level, the stochastic upscaling method is utilized to estimate the input homogenized 

properties of the coarse scale model at the bottom of the pyramid. Then, the validation step is 

achieved by comparing the experimental observations with the corresponding coarse scale model 

responses for a different model from the one used in the upscaling step with the experimental 

observations. As stated earlier, unlike the complex systems, where experiments are cheaper and 

available for simpler sub-level models, experiments at small scale levels are not available or 
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expensive in the multi-level modeling. To minimize the experimental cost, we hypothesize that a 

“pre-validation” step can be used at scale levels where the experiments are not available. The goal 

is to utilize the validation metric for the comparison of the responses obtained for a different fine 

scale model from the one used in the upscaling step with the responses of the corresponding coarse 

scale model with homogenized properties. Although the pre-validation step does not guarantee the 

validation at the corresponding scale level, it will be able to challenge the coarse scale model 

predictions. Thus, it will enable the increase of the confidence of accepting the predictions because 

the coarse scale model with the predicted homogenized properties is used for a different model. 

To be able to utilize this approach, on the other hand, the experiments must be available at least at 

the final scale level for validation with the real world. Thus, the requirement of the experiments 

can be decreased which can address the Research Question 2.  

Moreover, we hypothesize that a validation metric that integrates the u-pooling method 

with K-S test can also enable the minimization of the experimental cost. The u-pooling method 

allows for the evaluation of the experimental observations made at multiple validation sites at one 

combined distribution. Thus, the number of samples in predictions assessment can be increased 

without requiring additional experiments. The K-S test accounts for the number of experiments 

when making a decision to accept/reject predictions based on the distribution obtained by the u-

pooling method. Thus, it enables making trustable decisions in the predictive capability of the 

computational models even if there is a small number of experiments available.  

In Chapter 4, the proposed validation approach was explained in detail and utilized for two 

lattice structure examples. The first example was for SC lattice structure fabricated by the material 

extrusion process with ABS material. The experimental data were available from the tensile test 

of the fabricated specimens. At strut level, the pre-validation step was utilized because individual 



306 

 

strut experiments were not available. The advantage of the validation metric that includes the u-

pooling method and K-S test was shown by investigating the results for a different number of 

experiments. The second example was the BCC lattice structure fabricated by SLM process with 

AlSi10Mg material. For this example, the proposed multi-level upscaling and validation approach 

was implemented starting from the quantification of uncertainties at strut level using the 

reconstructed strut models from the CT-scan images. Experiments were available only for the 

lattice level specimens in this example. To minimize the experimental cost, the individual strut 

models were extracted from the reconstructed lattice specimen models. These strut models were 

used to quantify the input uncertainties. Furthermore, those were simulated to compare the 

responses with the coarse scale model with homogenized properties predicted by the upscaling 

method in the pre-validation step. Thus, the predictive capability of the upscaled model is 

investigated by experimentally generated strut models without requiring additional strut level 

experiments. Then, the lattice level coarse scale model predictions were evaluated by comparing 

with physical compression test results using the proposed validation metric. The advantage of 

using multiple validation sites in increasing the number of experimental observations in the 

predicted distribution with the same number of experiments using the u-pooling method was 

clearly demonstrated. Thus, it was proven that the proposed validation approach stated in 

Hypothesis 2 could be employed for the validation of prediction accuracy in the multi-level 

upscaling framework with minimal cost.  

Once the proposed multi-level uncertainty quantification with upscaling and validation 

framework was proven to produce good results in the application examples, the applicability of 

the upscaling method in the design process of cellular lattice structures was shown. For this 

purpose, we pose the following Research Question 3: 
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Research Question 3: How can the proposed uncertainty quantification approach be used 

for the realistic design of complex engineering structures? 

We hypothesize that a PCE-based metamodeling technique developed based on the 

homogenized properties obtained by the upscaling process can be used in designing cellular lattice 

structures. In Chapter 5, the applicability of the developed approach was shown in designing an 

MAV fuselage with BCC lattice cell to match the target elastic modulus. Since the proposed multi-

level upscaling approach is utilized beforehand, the uncertainties induced by the manufacturing 

process on the predicted homogenized elastic modulus of the lattice structure can be captured 

effectively. To develop the meta-model, the PCE coefficients of the homogenized elastic modulus 

were predicted by the upscaling method for various densities of the BCC lattice type. Then, the 

PCE coefficients of the homogenized elastic modulus that matches the target elastic modulus were 

estimated using the developed meta-model. The application examples demonstrated that the 

proposed method could provide a simulation-free design of cellular lattice structures with 

quantified uncertainties. For our specific purpose, we chose the design of an MAV fuselage as the 

example applications.  

 

6.1.2. List of Contributions  

In this dissertation, many critical challenges have been addressed in the area of uncertainty 

quantification and computational modeling of cellular lattice structures fabricated by AM 

techniques. The specific contributions and their respective explanations are listed below: 

Uncertainty quantification at multiple scale levels using a simulation-based upscaling 

method: The main contribution of this research is that a comprehensive framework is proposed 
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and validated to quantify and propagate uncertainties at fine scales induced by AM process to 

accurately predict the statistical performance of the final structure. The reason of developing this 

framework is that the uncertainties existing at small scale levels complicate the computational 

modeling of the cellular lattice structures when considered for accurate predictions. Since the 

homogenization or upscaling methods available are usually based on complex, explicit equations, 

it would be an issue to implement them due to increased complexity. Moreover, the explicit 

constitutive laws at the continuum level are required to be determined for which the homogenized 

properties will be predicted. We propose to use a simulation-based upscaling method, where the 

user only needs to create the fine scale and coarse scale black-box functions to find the 

homogenized properties without penetrating the underlying governing equations. The use of black-

box functions also allows for the implementation of the proposed upscaling method for uncertainty 

quantification and property characterization of any complex engineering structures.  

For the lattice structure examples used in this dissertation, the fine scale model of the 

individual struts was represented by a simple beam element model as the coarse scale model at the 

strut level upscaling process. The fine scale lattice model at the lattice level was represented by a 

solid hexahedral element as the coarse scale model in the upscaling process. Thus, instead of 

penetrating the explicit governing equations of the coarse scale models, the responses obtained 

from the coarse scale FE models are used to predict the corresponding homogenized properties. 

This process also allows for the calibration of the homogenized properties that will be used at the 

subsequent level. For instance, the solid hexahedral elements are used to model the entire lattice 

structure at the macroscopic level, hence predicting the homogenized properties using a solid 

hexahedral element in the upscaling process will eliminate any modeling errors that could occur if 
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any other modeling strategy were utilized. The following contributions are also included to 

facilitate the computations in the stochastic upscaling method.  

Parametric uncertainty representation of fine scale input variables using BIC method 

based on reconstructed strut models to minimize the experimental cost: The input 

uncertainties of the fine scale model are the most crucial part of the upscaling/homogenization 

process to have accurate predictions of the homogenized properties. Inadequate representation of 

these uncertainties may result in inaccurate predictions during multi-level upscaling when 

propagated across multiple scales. Hence, the input uncertainties must be characterized first based 

on experiments. For this purpose, in this study, the 3D individual strut models were reconstructed 

from the micro-CT scan of the fabricated lattice structure specimens rather than using the 

fabricated individual struts to decrease the experimental cost. It was observed that these 

reconstructed strut models provide sufficient accuracy when collecting the statistical data 

regarding the input variables of the strut at the fine scale such as diameter, angle, and porosity as 

shown in Chapter 4 for the SLM-fabricated lattice structure example.  

Moreover, the BIC method is integrated into the upscaling method to use in parametric 

modeling of the available statistical data of the fine scale input variables. BIC is based on the MLE 

method, which utilizes a simple optimization process to find the optimal statistical parameters of 

a distribution model that can fit the statistical data. BIC also accounts for the number of statistical 

parameters and number of samples in the selection of the appropriate distribution model, which 

enables an accurate representation of the uncertainties. Thus the parametric distributions can be 

used in the generation of the fine scale model that is used for predicting the fine scale responses in 

the upscaling method.  



310 

 

Dimension reduction in the optimization step of the stochastic upscaling method using 

PCE: In deterministic upscaling method through optimization, only one unknown variable that 

represents the homogenized input is estimated by matching the fine and coarse scale model 

responses. When uncertainties are involved, on the other hand, the randomness of the unknown 

homogenized input is represented by samples that can produce the distribution of the input. Hence, 

the unknown samples must be estimated, which increases the computational cost of the 

optimization in the upscaling. The statistical parameters that can generate those unknown samples 

can be predicted for the homogenized input to reduce the dimensionality. We also need to know 

about the underlying distribution, from which the samples of the homogenized input are generated, 

to calculate the corresponding coarse scale model responses at each iteration in the optimization 

to compare with the known fine scale responses. This issue was eliminated in this study by 

projecting the homogenized input onto a PCE, where the randomness is represented by a few 

deterministic coefficients. The use of PCE in the stochastic upscaling method was inspired by the 

work in [98] for upscaling the uncertainties at one scale level.  

One contribution included to the upscaling method is that the Hermite polynomials are 

used in the PCE representation to represent any distribution type. It is shown in Chapter 3 that this 

approach eliminates the necessity of determining the distribution model of the homogenized input 

during the optimization process. Moreover, the random samples required in the PCE representation 

of the homogenized input of the coarse scale model is proposed to be generated based on the known 

fine scale responses using Eq. (3.24) as opposed to the proposed PCE-based upscaling method in 

[98] where those samples are generated randomly. Thus, as shown by the examples in Chapter 3, 

the uncertainties of the fine scale model are propagated on the coarse scale model accurately. 



311 

 

Faster convergence of the optimization in upscaling using exponential loss function 

and a hybrid optimization algorithm of GA and SQP: It was hypothesized that the convergence 

of the optimization in the upscaling process could be increased by using an effective objective 

function used to compare the coarse and fine scale response. The results in Chapter 3 in the first 

example revealed that an exponential loss function penalizes the non-optimal points more severely 

than the existing objective functions. Thus the optimization algorithm can converge to the 

optimum point more quickly. Moreover, to eliminate the computational burden of the global 

optimization methods SQP is used after some iterations are done by GA. Since SQP is a gradient-

based optimization approach, it has the issue of trapping the local minima although it is 

computationally faster than the global optimization methods. Therefore, using first the global 

optimization method of GA allows to approach the global minima, and SQP enables a more rapid 

convergence to the optimal point.   

Validation metric with the u-pooling method and K-S test to minimize the 

experimental cost: The accuracy of the predicted results using the homogenization methods is 

still questionable because usually a simple deterministic comparison with the mean value of the 

effective properties obtained by experiments is performed. Since the number of experiments is 

limited, the experimental results do not provide an accurate mean value. Moreover, only a 

comparison between the predicted and experimentally obtained homogenized properties is made 

without investigating the applicability of the homogenized model in predicting the structure 

response. Available statistical validation metrics do not provide an acceptance/rejection criterion 

based on the number of experiments, and therefore a large number of experiments is required 

which increases the experimental cost.  In the validation of model predictions, on the other hand, 

the goal should be to minimize the experimental cost. This goal can be achieved by finding ways 
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to use the available experiments in the most efficient way. The contribution of this study is the 

proposed validation metric that integrates u-pooling method with K-S test which can achieve 

accuracy assessment minimal experiments at each scale level of interest. The u-pooling method is 

a widely accepted procedure in the validation because it enables the pooling of the available 

experimental data into one combined distribution even if the experiments are done at multiple 

validation sites. Thus, the number of samples to generate the distribution can be increased even if 

the number of experiments is not sufficient, which eventually provide a better representation of 

the model predictions. The combined distribution must follow a standard uniform distribution 

according to the probability integral transformation method. Thus the discrepancy from the SUD 

will provide how much the predictions are accurate. Moreover, to minimize the experimental cost, 

we need to find ways that would not be affected by the change of the number of samples so that a 

reliable decision can be made even if a few experimental data are available. K-S test is promising 

in that sense because the decision is made by accounting for the number of samples. Hence, the 

integration of the u-pooling method with K-S test is proposed in this study to use as the validation 

metric to be able to use the available experimental data in the most efficient way.   

Validation pyramid approach for a hierarchical validation at multiple levels: The 

validation pyramid approach that is introduced to enable validation of complex systems is adapted 

for the prediction assessment of the computational models used in the multilevel upscaling 

approach. The validation pyramid suggests finding the unknown input variables of the 

computational model with simplified models by a calibration process. Then, for a different model 

used in the calibration process is considered in a subsequent validation process to challenge the 

predicted input variables. This approach is also utilized in the multi-level upscaling approach for 

validation. In that regard, first, the homogenized input variables of the coarse scale model are 
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determined using the stochastic upscaling method, which corresponds to the calibration step in the 

validation pyramid. Once the homogenized input variables are estimated, the validation step can 

be implemented. For this purpose, a different model from the one in the upscaling process is 

determined at the same scale level, and the coarse scale model is developed with the predicted 

homogenized input variables. The validation is performed using this coarse scale model. The 

predicted coarse scale model responses are compared with the experimental data using the 

proposed validation metric. This approach enables a better evaluation of the prediction capability 

of the homogenized model since a different model from that utilized in the upscaling method is 

considered. Moreover, the corresponding response predictions are evaluated in the validation step 

as opposed to the existing multiscale modeling approaches where only a comparison is made 

between the predicted and experimentally obtained homogenized properties. Thus, the proposed 

validation approach evaluates the response predictions of the structure model rather than 

evaluating merely the homogenized property predictions. 

Considering the uncertainty effects in the design of lattice structures using the 

developed PCE-based meta-model approach: The next step after validating the predictions 

made by the multi-level upscaling approach is to utilize these predictions in designing cellular 

lattice structures to have the effect of uncertainties in the fine structure performance. To show the 

applicability of the proposed approach in designing lattice structures, the PCE-based meta-model 

approach is suggested to predict uncertain homogenized properties in this research which is 

inspired by the work done by Coelho et al. [142], [143] for the reliability estimation in the 

optimization of engineering structures. In designing lattice structures, this approach allows for the 

prediction of the PCE coefficient values of the homogenized property at the macroscopic level, 
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thus eliminates the tedious simulations required to find the samples of the homogenized property 

in the traditional sampling-based approach.  

To show the applicability of this PCE-based meta-model method in designing CLSs, it was 

implemented for the design of a micro-aerial vehicle fuselage. The goal was to match the target 

elastic modulus of an existing fuselage with that of BCC lattice cells for a lightweight design. The 

PCE-based meta-model for the BCC cell was developed based on the training data, which include 

the PCE coefficient predictions from the proposed multi-level upscaling and validation approach 

for various density values of the BCC lattice cell. Then, the lattice model density value that 

produces the target modulus is predicted using the PCE-based meta-model along with the 

corresponding uncertainties. Thus, when the CAD model of the designed CLS with the estimated 

model density value is used for fabricating the structure, this approach allows for the accurate 

prediction of the fabricated modulus of the designed CLS. This process eliminates the expensive 

simulation and optimization processes to match the target modulus since a predetermined meta-

model is used in design, as well as enables the accurate prediction of the realistic homogenized 

properties since the uncertainties are propagated by the upscaling method.    

In Section 6.2, the limitations of the current work are highlighted, and in Section 6.3 

possible further work that can help address these limitations are suggested.  

  

6.2. Limitations 

The limitations of the work presented in this dissertation are discussed in this section.  

Types of uncertainties considered: In this research, only the aleatory uncertainty was 

considered, where it is assumed that enough data is available to generate the probability density 
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functions (PDFs) of the random variables. Epistemic uncertainties, on the other hand, can also be 

available, which is ignored in the proposed framework.  

The number of samples to generate the random responses: In all examples in this 

dissertation, a high number of samples (i.e. at least 200 samples) were considered to generate the 

random response from fine scale and coarse scale responses. Although effective methodologies 

are provided to quantify uncertainties, the number of samples can still impose increased 

complexity, especially for the fine scale model simulations due to the repetitions of the simulations 

for each sampling point.  

PCE representation: In all examples considered in this dissertation, it was assumed that 

only one response is available from the computational models. The one-dimensional PCE are 

sufficient to represent the uncertainty of the homogenized properties when only one response is 

available. On the other hand, more than one response might exist in some applications, in which 

case a higher dimension of the PCE might be required for accurate representation of the 

homogenized properties. For example, when plastic deformation is considered the reaction force 

obtained from the fine scale simulation will differ at different strain values. In those cases, the one-

dimensional PCE may result in a poor accuracy in the representation of the homogenized 

properties.   

Anisotropic properties of lattice cells: In the provided examples, it was assumed that the 

lattice structure properties are isotropic, i.e. the properties are the same in all directions. This 

assumption would be reasonable for the AM processes such as FDM, SLS, or SLM as the 

variations are about 10% in both modulus and strength when the process parameters are chosen 

properly [33]. However, in some AM processes such as inkjet 3D printing, the effect of orientation 
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on the mechanical properties sometimes reach 30% which has been investigated in Stratasys 

Object500 Connex3 [224]. Besides, although the isotropic material properties can provide good 

accuracy in the former processes, the type of lattice cell as well as the uncertainties induced by 

AM process may still impose anisotropy in the predicted properties. Hence, the assumption of the 

isotropic properties can be a limitation of the proposed modeling approaches for accurate 

uncertainty quantification and characterization of the macroscopic level material properties.   

Limitations of the Validation approach: The validation approach utilized in this research 

at multiple levels performs a comparison for the model of the test specimens. In reality, on the 

other hand, the designed structure will be different from the model of the test specimens used in 

the validation. For example, the design example of MAV fuselage was obtained using the 

upscaling method but the accuracy of the predicted results need to be evaluated by comparing with 

fabricated designs. Hence, additional validation steps are required with more complex models to 

be able to evaluate the accuracy of the predictions made by the coarse scale models with the 

homogenized properties obtained by the upscaling process.   

Effect of process parameters and build direction on the uncertainties: In the examples 

used in this study, only one set of values of the AM process parameters were considered. Hence, 

the accurate predictions made by the upscaling approach are limited to only those process 

parameter values. When different parameter values are in consideration, those will change the 

quantified uncertainties and eventually the overall performance of the fabricated structures.   

In Section 6.3, some suggestions are proposed to address these limitations and to improve 

the uncertainty quantification approach presented in this dissertation. Some areas are also 

suggested which can be investigated in the future related to the proposed approach.  
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6.3. Future Work 

Many researchers have worked in the field of multiscale modeling by accounting for the 

uncertainties in the area of composite materials, but the research in the field of cellular lattice 

structures fabricated by AM techniques is still in its infancy. This dissertation aims to bridge that 

gap so that the uncertainties induced by AM processes can be quantified efficiently in the multi-

level modeling of the cellular lattice structures to predict their mechanical performance. Besides, 

a generalized framework with decreased computational complexity is presented in this study so 

that it can be applicable for complex structures and materials other than the lattice structures. The 

following suggestions are provided in this section for future research so that the knowledge base 

for uncertainty quantification, multiscale modeling, and validation of models is advanced which 

will enable the efficient modeling and design of engineering applications.  

Modeling the epistemic uncertainty: As stated in Section 6.2, the epistemic uncertainties 

are ignored in the current framework of the uncertainty quantification approach. On the other hand, 

uncertainties due to lack of knowledge can exist especially in the small scale levels, which may 

impact the final structure performance. For instance, the elastic modulus of the strut level fine 

scale models is taken from the literature in this study and assumed to have normal distribution to 

generate samples in simulating the fine scale strut models. In reality, the elastic modulus of the 

material deposited in AM machine to create the strut members of the lattice structure may vary 

depending on the material supplier of the AM machine, and therefore it may be an epistemic 

uncertainty. Hence, methodologies should be investigated and developed to quantify and model 

the epistemic uncertainty in the prediction of homogenized properties using the proposed multi-

level upscaling approach.  
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A validation metric under epistemic uncertainty: When the epistemic uncertainties at 

fine scale levels are considered, then the influence of these uncertainties on the coarse scale model 

response that is used to predict the experiments at one scale level should also be investigated. In 

this case, the proposed validation metric should be improved to be able to account for the epistemic 

uncertainties in the quantitative assessment of the predictions. For example, if an interval-based 

modeling of the epistemic uncertainties at the fine scale is considered, the corresponding response 

of the coarse scale model will have a probability box (p-box), which represents the uncertainty by 

two probability distributions on the bounds of the interval [101]. In this case, the applicability of 

the K-S test should be extended to make a decision on a p-box. One way of achieving this could 

be to use the proposed approach in [225] where the K-S test is extended to make a comparison 

between two sampling data of interval values and the observed measurements.  

Efficient sampling methods to decrease the number of required samples: The number 

of samples used to generate the distribution of a random variable is the most important 

computational bottleneck in the sampling based uncertainty propagation. Although the LHS 

approach provide a reduction in the number of samples for accurate representation of the 

uncertainty of a random variable compared to the MCS method, research is required to develop 

more efficient methods to decrease the number of samples further.  

Non-linear Finite Element Analysis Methods: The current work focused on the 

uncertainty quantification of the linear elastic homogenized properties and linear static elastic 

analysis, in which only one or two properties are homogenized. In cases when the individual strut 

members of the lattice structures encounter to buckling, simple linear FEM modeling of the 

members is not accurate and geometrical nonlinearity should be considered. More investigation in 

this area should be conducted. The plastic behavior of lattice structures should also be investigated 
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under the quantified uncertainties to use the proposed upscaling method in applications where 

excessive deformation is seen such as impact simulations. In those cases, more than one 

homogenized variable is needed to be predicted for non-linear analysis to accurately capture both 

the elastic and plastic behavior of the lattice structures with a simplified coarse scale model. For 

instance, Ramberg-Osgood method given by the following equation requires four parameters to be 

predicted under the uncertainties:  
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(6.1) 

where S denotes the stress, ε denotes the strain. This coarse scale model has the corresponding four 

variables; E and Sy denote the elastic modulus and yield strength of the material, respectively and 

α and n are the plasticity constants. One issue when plastic behavior is considered is that the fine 

scale FEA will be solved at multiple strain levels to identify the stress-strain curve. Then, the one-

dimensional PCE representation may not be sufficient to predict these homogenized variables 

because there will be more than one response on which the homogenized variables are dependent. 

One solution that can be considered as a future work would be to utilize a higher dimensional PCE 

in the upscaling process, in which the uncertainty is propagated from the fine scale responses at 

multiple strain levels. In that regard, the fine and coarse scale model responses can be compared 

at multiple strain levels, and the summation of the exponential loss function values at each strain 

level is used in the optimization step of the upscaling process to determine the homogenized input 

variables Sy, α, and n. Once the upscaling is completed, the proposed validation metric can pool 

the experimental measurements at the corresponding strain levels for a lattice specimen into one 

distribution to compare with the coarse scale model predictions. More investigation is required for 
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the application of the upscaling method in predicting the homogenized properties that can predict 

the plastic behavior of lattice structures.  

Considering failure mechanisms in lattice structures: In this research, only the linear 

elastic behavior of the lattice structures was investigated assuming no failure mechanisms. The 

goal was to demonstrate the general procedure of uncertainty quantification of the lattice 

structures. Future work should be focused on incorporating different mechanical behavior 

phenomenon into the upscaling method such as fatigue, creep, crack propagation, etc. that can 

occur in the lattice structures based on the application type.  

Predicting the anisotropy of the properties: The layer by layer fabrication process 

induces some dependency of the mechanical properties of the fabricated components on the build 

orientation as stated in Section 6.2. In order to have a better accuracy from the homogenized 

properties, research should be done to characterize the anisotropic properties at the macroscopic 

level. Moreover, efficient computational models are needed to model the material with the 

predicted anisotropic properties. 

Design-specific validation: The proposed approach is used for validation by the 

experimental results of the fabricated test specimens at the lattice level. In the design process with 

the validated models using the proposed PCE-based metamodel approach, the realistic prediction 

of the properties is achieved with the quantified uncertainties. Although the use of predicted 

properties of the lattice structure used in Chapter 5 in design gives a good estimation of reality, 

simulations that account for the realistic loading through the surrounding would provide a 

complete picture. Moreover, additional design-specific validation of the designed structures should 
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be done to certify the final product performance. These detailed simulations of the designed part 

and the design-specific validation approach should be investigated as a future work.  

Application of the proposed methodology for other material types: The proposed 

methodology is presented in this dissertation for uncertainty quantification of cellular lattice 

structures fabricated by AM. As this methodology generates material specific relationships 

between the fine and coarse scale models, there are numerous possibilities for the application of 

this method. It can also be used to predict the macroscopic level material properties of various 

types of other materials with complex microstructures (e.g. composite materials) as it requires only 

the black-box functions of the fine and coarse scale models. Moreover, as the proposed 

methodology utilizes the high-resolution 3D scan images of the material for uncertainty 

quantification at small scale levels, it can be extended to quantify uncertainties at the smaller scale 

levels than the strut level in AM-fabricated lattice structures where a highly heterogeneous nano- 

or micro- scale structure can exist by nature (e.g. with different phases of the material, with 

porosity, etc.).   

Process-Structure-Property relationship: In this dissertation, only the quantification of 

the uncertainties in the material structure was conducted to identify its mechanical properties 

efficiently. This process corresponds to the structure-property (SP) relationship. On the other hand, 

the variations and uncertainties of the properties of an engineering material or structure occur 

because of the manufacturing process parameters. Hence, in addition to the SP relationship, the 

specific manufacturing processes used to form and shape the materials microstructure (i.e. process-

structure (PS) relationship) need to be investigated in order to achieve the desired product 

performance.  Future research should include developing novel computational tools that can be 

used to predict the effect that processing will have on the structure of the materials (i.e. PS 
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relationship) and developing the means to integrate these tools with the various SP models. Thus, 

the collection of process-structure (PS) and structure-property (SP) linkages data can be achieved 

especially for (but not limited to) the additively manufactured lattice structures. This research will 

also allow for the development of an integrated, stochastic multi-level modeling framework to 

predict the PSP linkages so that the risks in the design processes of structure topologies can be 

mitigated by quantifying and propagating uncertainties in various length scales. 

Extending the design approach under uncertainties utilizing the upscaling method: 

The design procedure introduced in Chapter 5 is efficient to match the target elastic modulus 

without requiring any expensive optimization processes. Depending on the application, on the 

other hand, the design of the material layout based on the macroscopic boundary and loading 

conditions might be required. In those cases, the topology optimization is utilized, which is based 

on homogenization methods to estimate the homogenized elastic modulus of each continuum level 

element that corresponds to its density [42], [77]. When the fine scale uncertainties are considered, 

these deterministic relationships fail to provide accurate predictions. Hence, the proposed PCE-

based meta-model approach that is developed based on the predictions made by the stochastic 

upscaling method is promising to be able to account for the uncertainties in the topology 

optimization process. A reliability-based topology optimization or robust topology optimization 

process can be developed by integrating the proposed meta-model approach into the topology 

optimization process as a future study. Thus, the applicability of the proposed method can be 

extended to the design of structures where the uncertainties are crucial in the design processes.  
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