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SUMMARY 

 

Energy barriers encountered in intermolecular and interfacial interactions 

determine the kinetics and equilibrium outcome of a multitude of key physical, chemical, 

and biological processes. The free energy landscape, i.e. the strength and physical extent 

of interaction energies between molecules, dictates the specificity and affinity of biological 

interactions, which is an important parameter describing the development of novel 

molecular therapeutics. Knowledge of the energy landscape is also essential to understand 

the direction of a chemical reaction, the relative stability of intermediate and final states, 

and the corresponding reaction mechanisms. Hence determination of free energies has 

allowed for a number of new insights into chemical processes such as catalysis, phase 

transformations, and boundary lubrication mechanisms. 

Despite advances in measuring interaction forces, determining energy landscapes 

at nanometer dimensions remains a challenge. Computer simulations do provide a useful 

approach for estimating free energy landscapes and elucidating corresponding binding 

pathways, but only to the limit of the accuracy of the model potentials and the integration 

of the equations of motion. Indirect experimental approaches such as dynamic force 

spectroscopy measurements, though useful in determination of kinetic constants such as 

off rates and barrier widths, do not completely determine the shape or curvature of the 

energy landscape, nor can they detect the presence of intermediate metastable states. 

Metastable states are important as they are responsible for regulating energy transfer 

between initial and final states of a reaction. Detecting their presence is important to fully 

understand and predict complex biological interactions, such as characterizing the 



 xxv 

specificity of antibodies in recognition targeting. The steep gradients encountered in energy 

landscapes of adhesive interactions can also pose measurement difficulties since most 

conventional probing techniques are unable to sufficiently sample them without 

encountering snap-in binding instabilities. The emergence of ultrasensitive force detection 

techniques such as atomic force microscope (AFM) could prove invaluable in direct 

determination of energy landscapes since they combine excellent force and distance 

resolution with the ability to probe local interactions at nanoscale levels. 

The method we developed applies the Brownian (thermal) fluctuations to vibrate a 

sensitive cantilever through the energy profile between the tip and surface. By recording 

subtle deviations from the harmonic cantilever vibrations, and applying Boltzmann 

transformation techniques, the energy landscape is reconstructed.  

In this thesis, we have developed a technique using AFM to directly measure the 

free energy landscape of biological and interfacial interactions. The specific scientific 

contributions of this work are as follows:  

(i) Applied and validated a new weighted histogram analysis method (WHAM) 

which minimized errors of combining locally estimated Boltzmann energies 

to more accurately reconstruct energy landscapes of ligand receptor 

interactions across the entire reaction coordinate; 

(ii) Demonstrated that an enhanced stochastic sampling technique can greatly 

improve the accuracy of reconstructions of steep adhesive energy 

landscapes; and 



 xxvi 

 

(iii) Simulated the entire parameter space of the factors influencing energy 

landscape sampling to identify the optimal values that maximize landscape 

reconstruction accuracy.  

These techniques have been applied to measure the binding energy landscapes of 

ligand-receptor interactions in a biotin-avidin system. We have measured and analyzed the 

multiple energy wells that are characteristic of biotin-avidin bond formation. Through the 

use of stochastic excitations, we have also extended the applicability of our methods in 

measuring energy landscapes of strongly adhesive interfacial interactions with steep energy 

gradients, such as those encountered in Si3N4 and mica interfaces.  



 

1 

CHAPTER 1 

INTRODUCTION 

 

 The free energy landscape is a central quantity in biological sciences, materials 

sciences, and physical chemistry sciences. It governs the microscopic behavior of a system 

in the presence of thermal fluctuations. Free energy landscape of an interaction is defined 

as a function that describes the variation of the energy of the interaction over a number of 

collective variables called reaction coordinates, averaged over thermal fluctuations [1]. The 

progress of any microscopic process occurring in or near equilibrium is controlled by the 

free energy landscape of appropriately chosen reaction coordinates. For example, in ligand 

receptor binding, reaction rates can be determined through an Arrhenius transformation of 

free energy differences between bound and unbound states [2]. In practice, the reaction 

coordinate represents an experimental quantity that is used to follow the progress of an 

interaction.  

Analysis of the energy landscape also provides the fundamental biophysical 

framework for understanding the formation of structure in biological macromolecules, 

including the proper folding of proteins and nucleic acids, and ligand receptor binding [3-

6]. The utility of the landscape lies in the fact that one can, in principle, predict the 

folding/unbinding behavior of a molecule given its energy landscape. Energy landscapes 

are also dictate the specificity and affinity of biomolecular interactions [7]. The set of 

conformational changes undertaken by a ligand as it binds to a receptor, and the interaction 

energy that results, remains an elusive and important target for the identification of novel 

drugs [8] and understanding protein-mediated processes [9]. Of particular note, the 
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metastable binding states are responsible for regulating the energy transfer between the 

bound and unbound states during binding or folding [10], and are formed at local minima 

in the landscape. Understanding these local minima, both energy depth and extent along 

the reaction coordinate, will allow us to assess the multiple binding pathways that are 

available to the molecule to take before it binds to a complementary molecule or a substrate, 

resulting in better control over the rate of these binding processes [11]. As an example, 

these metastable states are known to play an important part in determining the specificity 

of antibodies in antigen recognition [12]. Since antibodies bind their specific antigen target 

with such high affinity (deep energy well), once locked into position they are effectively 

irreversible. However, finding this target requires reversible binding with many more non-

target sites of binding. Identifying the conformational changes that may occur during 

induced fit can be a critical step in the molecular proofreading process, which can only be 

accurately quantified through an energy landscape [13, 14].  

Although specific features of an energy landscape, such as heights and widths of 

barriers, can be characterized by various approaches [15-17], the entire shape of a complex 

landscape can be quite hard to determine. Computer simulation techniques do provide a 

useful approach for elucidating the complete binding pathway of proteins, but only to the 

limit of the accuracy of the model potentials and the integration of the equations of motion 

[18-20].  Conventional experimental processes fail to fully measure the free energies of 

dynamic processes such as ligand-receptor binding. Some techniques like surface plasmon 

resonance can measure the kinetic on and off rates of ensembles of particles. From the 

kinetic rates, the binding energy can be inferred [21]. Single molecule measurement 

techniques such as dynamic force spectroscopy (DFS) can partially measure an energy 
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landscape. In DFS, a force is applied to a ligand-receptor complex to enhance the 

dissociation of the bond/unfolding rates. Although, DFS can predict kinetic off rates 

(unbinding rates) and thus the depths of a well in an energy landscape by assuming two 

state binding models [3, 15, 22-27], it cannot determine entire shape of a complex 

landscape nor its curvature. Application of DFS is also very time consuming due to the 

necessity of high statistics and the low number of unbinding events corresponding to single 

molecule interactions in a single experimental run [28]. To determine off rates (unbinding 

rates), DFS retracts the force probe at a variety of rates to examine the rate dependent 

unbinding force and then estimates the off rate built upon Kramers diffusion theory [29] 

on a two state model. Furthermore, DFS cannot be used to characterize any protein 

structure or protein-ligand binding reaction that displays irreversibility – for example 

different folding and unfolding pathways – such as prion proteins and integrin catch bonds, 

since it looks only at unfolding and unbinding forces, ignoring refolding and rebinding 

forces [30]. In contrast, energy reconstructions using equilibrium methods demonstrated 

here use the Boltzmann distribution to measure the statistical distribution of all states and 

are capable of measuring entire energy landscapes, including metastable states. 

In this thesis, we have developed an equilibrium sampling technique using atomic 

force microscopy to directly map the entire free energy landscape of biological, chemical, 

and physical interactions. The method utilizes Brownian fluctuations of a microcantilever 

probe, which is brought into close proximity to the interaction potential of the substrate 

surface. By recording subtle deviations from the harmonic cantilever vibrations that are 

caused by proximity to the free energy landscape, the entire energy landscape can be 
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reconstructed. The reconstructions are performed in a model independent manner based on 

equilibrium positions of the tip, using Boltzmann distribution statistics. 

1.1 Organization of the Thesis 

This thesis focuses on thermal fluctuation aided measurement of free energy 

landscapes of biological and chemical interactions using both experimental and computer 

simulation approaches, with the goal to gain insight into interaction parameters, including 

binding energies, barrier widths, and curvatures for one and more energy wells.   

Chapter 2 provides the background of the thesis. It covers the tools and techniques 

that are used to perform direct measurement of energy landscapes. A review is then 

provided of the current scanning probe techniques, especially atomic force microscopy, 

that are used to probe the interactions in a quasi-equilibrium manner. This is followed by 

an extensive overview of the methods that currently exist for computing free energies or 

their differences, based on various aspects and properties of the free energy landscape. The 

background ends with description and details of the Brownian fluctuation method used in 

this thesis to measure free energy landscapes. 

Chapter 3 details the measurement of the energy landscape between ligands and 

receptors interactions, under near-equilibrium conditions. We have used atomic force 

microscopy to directly map the intermolecular energy landscape curve of biotin-avidin 

bonds and discriminate multiple energy wells. Our method uses the Brownian fluctuations 

of a sensitive microcantilever probe decorated with biotin that is in close and lasting 

proximity to an avidin coated substrate. By recording subtle deviations from the harmonic 

cantilever vibrations as it translates towards the substrate and then transforming these 
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fluctuations using a Boltzmann sampling methods, we have reconstructed entire energy 

landscapes of interactions, including short lived, metastable states. The reconstructed 

energy landscapes reflect both rare short-lived biotin-avidin interactions and the overall 

shape of the average energy landscape including the presence of multimodal energy wells.  

Our analysis reveals a key limitation of the equilibrium method, specifically that it cannot 

fully measure attractive potential wells with steep gradients. 

Chapter 4  addresses a key limitation of the equilibrium method, i.e. the inability to 

map the complete interaction in the presence of attractive forces with high gradients in 

comparison to cantilever stiffness, which produce a critical instability [31]. This is 

particularly a problem at small surface separations in which the attractive forces between 

tip and sample may exceed this value and cause the tip to snap to the surface prior to 

contact. This snap-in is a fundamental limitation to accurate energy landscape 

reconstruction because the tip is no longer moving in response to the energy landscape but 

rather at the inertial limit of the cantilever mass. A solution is proposed by enhancing the 

vibrational noise of cantilevers, which increases the range of the reaction coordinate being 

sampled. In turn, this enables the sampling of regions of large attractive interactions while 

the restoring force of the cantilever is still sufficient to avoid long-term binding to the 

surface. The enhanced vibrational noise can be defined in terms of effective temperature 

of the cantilever tip [32] and is supplied through a voltage signal to an on-chip actuator. 

The method uses Asylum’s iDrive magnetically actuated cantilevers, which uses a small 

oscillating current loop on the surface which is coupled with the magnetic field created by 

small magnet attached to the cantilever holder to create forces which cause the cantilever 

to oscillate. The current is supplied in the form of white noise with amplitude proportional 
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to the magnitude of current. By modulating the amplitude of white noise, we have enhanced 

the cantilever’s Brownian (thermal) fluctuations to allow it to vibrate through the energy 

profile between the tip and substrate surface, without getting trapped. By recording subtle 

deviations from the harmonic cantilever vibrations, the energy landscape was 

reconstructed. Using these techniques, we have demonstrated the direct mapping of 

interfacial free-energy potentials of steep potential wells of Si3N4-mica interactions in 

HPLC water at pH 7. 

 While we demonstrate the enhanced stochastic excitation approach in a simple 

energy landscape with only well, the approach is also valid for complex energy landscapes 

with multiple wells. Chapter 5 tests the enhanced stochastic approach via computer 

simulations of the behavior of a cantilever tip in a two well attractive potential field, using 

Brownian motion dynamics. We used the simulations to perform a parametric sweep of the 

different factors influencing measurement of energy landscapes (landscape parameters: 

barrier height and slope, probe parameters: stiffness and approach speed) and identified 

trends for optimal effective temperatures required to fully sample the energy landscape for 

each case.  

Chapter 6 serves as an opportunity to summarize the findings reported throughout 

the thesis and better put these results in context with one another. It also discusses the future 

directions of the research.  
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BACKGROUND 

 

This chapter covers the background on both the experimental and theoretical 

techniques that are combined to reconstruct the binding energy landscapes of ligand-

receptor interactions and nonspecific interactions between the tip and substrate using 

atomic force microscopy techniques. The chapter is divided in six sections. Section 2.1 

highlights the importance of energy landscapes for intermolecular interactions. Section 2.2 

describes in detail the different measurement techniques that are used to probe energy 

landscapes. Section 2.3 delves into the AFM and the force-distance mode that is used in 

this thesis to collect information about intermolecular interactions. Section 2.4 covers the 

dynamic force spectroscopy methods used to extract the kinetic parameters of the 

underlying energy landscape of an interaction. Section 2.5 covers the various equilibrium 

and nonequilibrium methods used to fully reconstruct the free energy landscape of the 

interaction. Section 2.6 presents the energy landscape reconstruction approach, using 

cantilever’s Brownian fluctuations, that is the basis of this thesis. 

2.1 Importance of Energy Landscapes 

In the last few decades, a series of experimental and theoretical advances has made 

it possible to obtain a detailed understanding of the mechanisms underlying many physical 

and biological binding interactions [33-40]. To explain these mechanisms, chemists, 

scientists and engineers have spent considerable effort studying the thermodynamics and 

kinetics of the processes by which these interactions took place. A tremendous amount of 

experimentation on protein structural stability and protein-ligand binding was aimed at 
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understanding the driving forces of these reactions, eventually learning that a 

macromolecule’s native structure is the one with the lowest – or nearly lowest – possible 

Gibbs free energy, and that all the information required for renaturation is contained in the 

amino acid sequence itself [41-44]. With the increasing power of computer technology and 

improvements in modeling of force fields, atomistic simulations have become increasingly 

important because of their ability to generate highly detailed and accurate descriptions of 

interactions [18, 19, 45-48]. In an attempt to organize these results, scientists 

conceptualized a pathway for binding/folding of biological molecules, formulating a 

phenomenological model for the off-rate after observing increased rates of bond 

dissociation under external force [23, 49-52], and formed the first models of single-

molecule kinetics.  

In the late 1980s, it was proposed that the most important aspect for understanding 

an interaction is a global overview of the reactants to product energy surface [5, 33, 53]. 

The global view would be particularly helpful for those interactions in which the 

organization of an ensemble of conformations and bonds creates a nuanced energy surface 

with many barriers and local minima, which is more descriptive than calculating only a 

few of the most prominent features resulting in an incomplete picture [54]. In such a case, 

a statistical description of the energy landscape could be used to describe the features of 

the interaction mechanism[55]. Together, this is the basis of the energy landscape theory. 

Energy landscape theory provides the fundamental framework for the modern 

description of all interactions. It has been experimentally validated primarily for structural 

self- assembly, or “folding,” of biopolymers like proteins and nucleic acids [5, 56]. The 

landscape encapsulates the critical properties of an interaction or binding/folding event, 
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including energy changes, barriers, intermediates, roughness or internal friction, alternative 

pathways or connecting states, and the rates of reaction [54, 57]. Mapping and 

understanding energy landscapes is thus a key goal in biochemistry, physical chemistry, 

and biophysics research. To this date, most research has been focused reconstructing 

protein folding phenomena and less on adhesion phenomena commonly seen in ligand-

receptor binding and tip-surface interfacial interactions. 

2.2 Experimental Methods to Probe Energy Landscapes 

Despite the importance of energy landscapes for understanding reaction 

mechanisms and the wealth of existing theoretical and computational work in landscape 

theory, few methods are capable of reconstructing energy landscapes quantitatively from 

experimental data. Ensemble techniques, including surface plasmon resonance (SPR) [58-

60] and calorimetry [61, 62], are commonly employed to extract thermodynamic and 

kinetic properties of small and macro-molecular structures and their interactions. SPR uses 

gold-coated glass functionalized with a monolayer of ligand, over which a solution 

containing its protein conjugate is flowed. Polarized light is reflected off of the glass, and 

protein-ligand binding causes small changes in the angle and intensity of the reflected light. 

The sensorgram data is fit with one- or two-state kinetic models to calculate the affinity 

and dissociation constants. Isothermal titration calorimetry begins with a ligand in solution, 

and the addition of its protein causes binding and a change in the solution temperature 

which is brought to equilibrium by a heating element before introducing more protein into 

the chamber. The thermodynamic properties and the dissociation constant are calculated 

from the binding isotherm. 
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Though these ensemble techniques are capable of measuring kinetics and free 

energy of binding, they are limited to bulk assays. Due to the large numbers of molecules 

involved in the measurements, they only determine average properties of an interaction. If, 

as is the case with protein-ligand binding and molecular folding, there exist barriers to 

reaching a final state, then ensemble techniques capture only the total enthalpy and energy 

required to transition from starting to final confirmations, and dissociation constants 

associated with each energy well are averaged to produce a single constant for the entire 

interaction. For information about interactions at the molecular scale, these techniques 

prove to be insufficient. 

Direct experimental measurement of the interactions between molecules and 

molecular assemblies has been achieved using techniques such as surface forces apparatus 

(SFA) [63, 64], biomembrane force probes [3, 65], optical tweezers [17, 66], and atomic 

force microscopes. The SFA has yielded considerable information about adhesion and 

friction between molecular assemblies, although these data are averaged over the large 

numbers of molecules within the 1 mm2 probing area, thus making it difficult to achieve 

microscopic levels of information [67].  Biomembrane Force Probes (BFP) were designed 

for quantification of single molecular bonds and ligand receptor binding on the surfaces of 

cells. The technique consists of using the deformation of a 10-20 µm vesicle under tension 

as a force sensor. The tension in the vesicle is controlled by a suction pipette that sets the 

hydrostatic pressure difference across its membrane. It is a versatile tool that can be used 

for a wide range of forces (0.1 pN to 1 nN). However, the bandwidth of the optical readout 

of the probe is limited to 1 kHz, which is insufficient to capture fast transitions in a ligand-

receptor binding events [68, 69].Optical tweezers use a focused laser beam to provide an 
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attractive or repulsive force (typically on the order of picoNewtons) to manipulate and 

study single molecules conjugated to a bead. Optical tweezers remain a popular choice to 

study folding landscapes of DNA hairpins attached to DNA handles [70], but they haven’t 

been used for ligand-receptor interactions due to relative large areas of the beads.  

 
In the context of energy landscape determination, atomic force microcopy (AFM) 

can be very useful for probing interactions between molecules or surfaces by exerting ultra-

small forces on sub-nanometer scales with high time resolution. AFM has been used for 

measurements of single protein-ligand interaction strength [3, 72, 73], chemical-interaction 

strength [74] and potential-energy profile [75] . Through its ability to position and move a 

sample in space with angstrom-level precision, high stability, and a wide range of speeds; 

and microfabricated AFM cantilevers with stiffness low enough for measuring molecular 

interactions, AFM has become a ubiquitous instrument for probing single molecule or 

localized interactions.  

2.3 Atomic Force Microscopy 

Many important biological and chemical processes occur on the length scale of 

nanometers with a time scale of milliseconds, yet few microscopies can operate in these 

domains. Scanning electron microscopy can image surfaces and biological structures with 

unprecedented detail [16]. However, it cannot observe physiological dynamics due to the 

sample preparation requirements. Atomic force microscopy (AFM) is a scanning probe 

measurement technique that can image surfaces with complex topographical features with 

nanometer scale resolution, in air and physiological environments, including DNA, cells, 

and cellulosic materials [76-78].  
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AFM was invented in 1986 by Binnig, Quate, and Gerber [79] wherein they 

demonstrated for the first time nanoscale imaging of insulators via a scanned flexible probe 

with a sharp tip. By employing a very small and sharp probe tip at the end of a small 

cantilever, they were able to measure ultrasmall forces caused by close proximity to the 

surface. The forces between the cantilever tip and the sample surface are composed of both 

attractive and repulsive components. The main contributions to the attractive forces are the 

Van der Waals force, electrostatic force, and short-range chemical forces including 

solvation, hydration and hydrophobic forces [80, 81]. The repulsive forces are very short-

range forces which include Pauli-exclusion repulsion and Coulomb interactions [82].  

During sample imaging, the deflection direction (towards vs away from the sample) 

is governed by the tip sample interaction (attractive vs repulsive). A diode laser is reflected 

off of the cantilever to strike a four-quadrant photodetector, which converts the motions of 

the cantilever to an electrical signal sent to a computer. The vertical deflections are 

recorded as the height of each pixel in the image. The sample is raster scanned underneath 

the tip as the cantilever base is raised and lowered to maintain a setpoint deflection 

(contact-mode imaging) or amplitude (tapping-mode imaging). The measured height data 

is plotted versus the x- and y-axis, rendering a three-dimensional image of the surface.  A 

schematic of AFM system is included below in Fig. 2.1. 
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Figure 2.1 Schematic of an atomic force microscopy (AFM) system. Adapted from 

Sulchek et al. [83] 

For imaging, the resolution depends strongly on the size and shape of the tip. The 

smaller and sharper the tip, the smaller the surface area sampled by the tip and smaller 

feature sizes can be detected. The most common type of AFM tip is made of silicon nitride 

(Si3N4) and is pyramidal in shape with a tip radii of ~10-60 nm [84]. Si3N4 cantilevers have 

very low force constants (~10 to 1000 pN/nm) relative to silicon cantilevers (~1 N/m), 

providing excellent force sensitivity while being a low-wear material, minimizing tip wear 

and distortion of AFM data [85]. Some samples are highly attractive in nature, causing the 

soft Si3N4 cantilevers to readily stick to the surface rather than follow the full attractive and 

repulsive shape of the energy surface. Stiffer silicon cantilevers can resist the overpowering 

van der Waals force, but with decreased force sensitivity – potentially missing subtle 
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shapes along the energy surface. Choosing the right cantilever resonance frequency is also 

important since high resonance frequencies in the hundreds of kHz require high data 

collection rates of almost 1 MHz (1 million samples per second) in order to capture all of 

the deflection information contained in the cantilever’s vibration. 

The AFM can be operated in either topographic or nontopographic modes [86]. The 

topographic modes aid in collection of images, whereas nontopographic modes are 

designed to measure other properties of the sample. In this thesis, the focus is on the 

nontopographic mode to collect force curves that describe the deflections of the cantilever 

under the influence of a force field. 

2.3.1 Force Spectroscopy Mode of AFM 

The AFM is also a powerful tool for sensitive force measurements, on the order of 

10 picoNewtons [87]. The softness of the AFM cantilever and the small radius of the AFM 

tip allow high sensitivity for smaller forces and the capability to probe local interactions at 

nanoscale levels [88, 89]. In force spectroscopy, the cantilever-tip assembly acts as a 

sensitive force sensor. The cantilever and the tip are moved towards the sample in the Z-

direction. A single movement cycle consists of the tip approaching the sample until it 

makes contact with the surface and then retracted again. The tip sample interaction force 

is recorded during the entire cycle. This is then repeated several times at the same spot and 

different locations to give a better statistical understanding of the interaction. AFM can 

directly measure the force between the atoms or molecules at the end of the probe and the 

surface. In ligand-receptor binding, the ligand is often immobilized on the AFM tip and the 

receptors are immobilized on the surface [90]. The presence of interaction forces causes 
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the cantilever to deflect and the deflections of the cantilever are recorded which gives rise 

to force-distance curves.  

Force curves provide quantitative information of interaction forces present between 

the tip and the sample by measuring the amount of force experienced by the cantilever as 

the tip approaches the sample surface. Fig. 2.2 shows a schematic of a typical force curve 

generated by the AFM.  

 

Figure 2.2 Schematic of a typical force-distance curve generated by an AFM system 

illustrating movement of the cantilever during its approach (black) and subsequent 

retraction (red) from the surface. The contact region is used to calibrate the deflection 

signal. Zero point of Z-distance axis is defined as the intersection of straight lines fitted to 
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section A-B and section D-E (shown by blue dotted lines). Arrows indicate the direction 

of progress of an AFM experiment 

During the approach phase, at position A, which is far away from the sample, there 

is no tip-sample contact. As the cantilever approaches the sample surfaces from A to B, 

long-range interactions, such as electrostatic interactions can be felt. At position B and 

during its movement from B to C, when tip is very close to the sample, short-range forces, 

such as Van der Waals or capillary forces, play a dominant role. At this distance, when the 

sum of the forces is attractive (pull-on force), the tip will jump to the surface (position C). 

This is called a snap-in event (C →D). During the snap-in event, the cantilever is essentially 

in a free-fall with its acceleration only governed by its dynamics and not by the tip sample 

interaction force fields. Thus, the approach binding curve cannot be used to accurately 

determine the adhesive interaction strength. Once the cantilever is in contact with the 

surface, the cantilever deflects further due to increasing force as the cantilever is pushed 

towards the sample and this gives rise to the linear part of the force curve (D →E). At this 

point, the stiffness and elastic response of the sample can be measured. The cantilever then 

retracts in the Z-direction (E →F) and force felt by the cantilever decreases. Adhesion 

forces keep the tip in contact with the sample and this leads to a negative deflection of the 

cantilever and results to a negative peak in the force curve (pull-off force at position F). 

The cantilever then breaks free from the surface (position G) and returns to its starting 

deflection (position H). The deflections measured during snap-in (C →D) are typically 

lower than pull-off (F →G). This is due to several reasons. First, the retraction/pull-offs 

force curves are recorded at much higher velocities than approach force curves, which 

translate to correspondingly higher forces due to dynamic effects [65]. Importantly, the 
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approach curve is not sufficient to sample the strong interactions with deep energy wells 

[32]. The depth of these energy wells is much higher than the thermal energy of the 

cantilever; therefore, upon entering the well, cantilever gets trapped at the bottom of the 

well, losing the opportunity to sample the well or subsequent interaction fully. This is also 

explained in Chapter 4.  

The raw data consists of voltages that are linearly proportional to the deflection of 

the cantilever. The part of the force-distance curve where the tip is in contact (position 3) 

is used to calibrate the deflection signal and convert it to nanometers, using deflection 

sensitivity values. The tip sample force F is then related to the cantilever’s deflection 

through Hooke’s law [85, 91]:  

 𝐹 = 𝑘𝑥 [2.1] 

where 𝑘 is the cantilever’s spring constant (N/nm), and x is the calibrated cantilever’s 

deflection. The tip sample distance (D) can then be calculated from the cantilever base to 

surface distance (𝑍#$%&'()*) and cantilever’s deflection (𝑥)	using the following relation 

(Fig. 2.3) 

 𝐷 = 𝑍#$%&'()* − 𝑥 [2.2] 
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Figure. 2.3 Schematic of an AFM cantilever tip deflecting towards surface from its 

equilibrium position (gray) under the action of an attractive force. The tip sample distance 

(D) is calculated by subtracting deflection (𝛿) from the cantilever base to surface distance 

(𝑍#$%&'()*), which is measured by the z-transducer signal 

Thus, the tip sample distance can change either from a movement of the Z actuator, 

or from a stable or dynamic change in cantilever deflection. The force-distance curve is a 

plot of the force versus the true tip-sample distance calculated from the raw data.  

2.3.2 Calibration of Force Curves  

The part of the force-distance curve where the tip is in contact with the surface is 

first used to calibrate the deflection signal in volts and convert it to nanometers. Because a 

tip in contact with an uncompressible surface follows the movement of the cantilever base, 

the slope of section D-E in a calibrated curve will be unity (see Fig. 2.2). Taking this into 
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account, calibration of the force-distance curves is performed by fitting a straight line to 

section D-E for each approach portion of the force-distance curve of the data set and 

dividing the scale of the y-axis of the curves by the average slope. The calibration of the 

zero point of cantilever base-surface distance (𝑍#$%&'()*) is obtained from the intersection 

of the line fitted from section D-E and the baseline section (shown as zero line in Fig. 2.2). 

This calibration will eliminate the effect of drift in the Z-direction. The baseline is fitted 

from sections A-B where there is negligible tip sample interaction.  

2.3.3 Determination of Spring Constant  

 The nominal values of cantilever’s spring constant k that are provided by the 

manufacturer are typically batch averaged values, and more accurate calibration of 

individual cantilever’s spring constants are necessary for sensitive and fluid based 

applications [92]. The most popular calibration method is the thermal noise method [93]. 

This method is based on measuring the free fluctuations of the cantilever, and hence it can 

be performed in liquid and actually in-situ during an experiment. This method involves 

measuring the cantilever’s mechanical response to thermal fluctuations including the 

diffusion of small particles (Brownian motion). The size of the fluctuations is measured by 

the AFM system by recording the cantilever’s vertical deflections over time and collections 

of these deflections are then analyzed. These deflections are analyzed by looking at the 

frequency dependence of the fluctuations. The greatest amplitude is usually seen around 

the cantilever’s resonance frequency. The resonance peak is then fitted with a Lorentz 

function and the area under the curve is used to estimate the energy in the resonance. 

Thereafter, the spring constant can be estimated by relating average cantilever deflections 

𝛿  obtained from Lorentz fit to data, cantilever’s spring constant (𝑘) and the energy of 
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resonance, using the equipartition theorem. The theorem states that the energy in any free 

mode of system is equal to the thermal energy at the absolute temperature of the system 

= ;
<
𝑘=𝑇 , where 𝑘= is Boltzmann constant and 𝑇 is the temperature of the system [94, 

95]. Thus the spring constant can be calculated as,  

 1
2 𝑘=𝑇 =

1
2𝑘 𝑥

<  [2.3] 

2.3.4 System Noise  

The limits of force sensing and force resolution in force spectroscopy are 

determined by the overall noise in the system, which includes the AFM, the sample, and 

the environment in which they are [96]. The sources of noise from the AFM include the 

thermal noise of the cantilever, mechanical vibrations of the components of the AFM, and 

electrical and optical contributions of the corresponding components in the system [97]. 

The noise determines the lower limit of force that the AFM can detect. The noise level of 

our instrument is 2.2 pN in a 1 kHz measurement bandwidth (AFMs are commonly ~ 10 

pN [91]). 

Thermal noise is directly related to the cantilever’ stiffness and its damping 

coefficient and inversely to its resonance frequency. Since all of the three cantilever 

properties are related to its dimensions, one way to achieve low noise cantilevers is to 

shrink all the dimensions sufficiently. [87]. Also smaller cantilevers allow for high signal 

to noise resolution [97]. Mechanical noise mitigation is achieved by placing the AFM on 

top of active dampeners and a large granite block that acts as a low- pass filter, then 

enclosing the entire system in an acoustic chamber that blocks ambient acoustic noise. 
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Systematic errors that also arise in the calculation of forces can be reduced through accurate 

estimation of the cantilever spring constant. 

2.4 Determination of Kinetic Parameters 

AFM pulling measurements can be very useful in determining kinetic properties of 

interactions. By applying an external mechanical force to a system, it is possible to enhance 

the dissociation of a bond to understand key properties of the dissociation landscape [3, 18, 

27, 98]. Broadly classified, these are called dynamic force spectroscopy techniques and 

have been used by multiple researchers to predict kinetic/unfolding properties of biological 

and chemical interactions [15, 24, 26, 27]. In 1978, Bell modeled the exponential increase 

in the rate of bond dissociation under external force and showed how an increasing force 

can change the energy landscape and lower the activation energy barrier [23] (Fig. 2.4).  

 

Figure 2.4. A schematic showing the effect of applied force (F) on bond dissociation. 

Applied forces tilt the energy landscape (dotted lines) and lower the activation energy 
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barrier thus enhancing bond dissociation, as compared to absence of any external forces 

(solid lines). Adapted from Lee et al. [99] 

When an external force is applied, the path from bound to unbound states can be 

modeled as a diffusive process along a preferential path over one or several confining 

energy barriers (Smoluchowsky diffusive model) [100]. The impedance of these energy 

barriers is described by the time of transit over the barrier and the force applied. In the limit 

of large statistics, the distributions of rupture times and forces follow a first-order Markov 

process [101] where time and force are tied together through the loading dynamics of the 

probe.  When pulled by an elastic spring probe, the loading dynamics are set by the pulling 

speed and the probe stiffness. Keeping this in mind, Evans [22] proposed a 2 state model, 

where he predicted that the unbinding force of a ligand-receptor bond should depend 

logarithmically on the loading rate as:  

 𝐹 𝑟 =
𝑘=𝑇
𝑥A

𝑙𝑛
𝑟𝑥A

𝑘1DD𝑘=𝑇
 

[2.4] 

 

𝐹 𝑟 	is the most probable rupture force [102] obtained by Gaussian fit to the histogram of 

the rupture forces data, 𝑥A, the location of the energy barrier, 𝑟, the loading rate, 𝑘= the 

Boltzmann constant, T the temperature and 𝑘1DD the off rate constant at zero force. The 

loading rate is defined as the product of slope of the rupture event (pN/nm) and the tip’s 

retraction speed (nm/s). A plot of the unbinding force vs. the logarithm of the loading rate 

usually gives rise to a straight line. The slope of the line is inversely proportional to 𝑥A and 

the vertical axis intercept of the line can be used to determine 𝑘1DD . Fig. 2.5 shows an 
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example of Bell-Evans fit of rupture forces data which is used to extract kinetic parameters 

of dissociation of amyloid β proteins. 

 

Figure 2.5. The solid line represents the results fit with the Bell−Evans model. The inset 

shows the reconstructed energy landscapes of misfolded Amyloid β dimers. Adapted from 

Lyubchenko et al. [103] 

 For an energy landscape with a single barrier, this would give rise to a 

simple linear force spectrum on the log scale. For systems involving more than one barrier, 

this will lead to multiple linear regimes in the force spectrum plot, with each linear regime 

corresponding to the overcoming of a single energy barrier along the unbinding pathway 

[3, 99, 104]. By varying the loading rate of the force applied, one can make emphasize 

different barriers to map the dissociation landscape of the system. This can provide detailed 

insight on the molecular dynamics of a ligand-receptor system.  

The Bell–Evans model, though frequently cited, assumes that 𝑘1DD scales linearly 

with exp	(𝐹𝑥A). However, this assumption has been shown to be an oversimplification 

[105]. The model assumes that the energy barriers are very sharp, and thus cannot 

determine the curvature of the energy landscape. The Dudko-Hummer–Szabo model [106] 
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modified the Bell–Evans model and applied Kramer's theory [29] to more rigorously 

extract kinetic parameters. The effect of molecular linkers can also be included in the 

Dudko model [106]. Dudko-Hummer-Szabo model is as follows: 

 
𝜏 𝐹 = 𝜏I 1 −

𝑎𝐹𝑥A
∆𝐺

;K;'
𝑒𝑥𝑝 𝛽∆𝐺 1 − 1 −

𝑎𝐹𝑥A
∆𝐺

;
'

 

𝜏 𝐹 =
𝜋
2 𝐹< − 𝐹 <

;/<

𝑟(𝐹)  

[2.5] 

where 𝜏 is the bond lifetime, 𝑎 is a power scaling factor corresponding to 1/2 for a cusp-

like barrier (for harmonic constraining potentials) , 3/2 for a “linear-cubic barrier”, and 1 

for a recovery of the Bell–Evans model, 𝜏I the intrinsic bond lifetime, 𝑥A the barrier width, 

𝑘, the Boltzmann constant, T the temperature, 𝛽 = 1
𝑘,𝑇 the inverse of Boltzmann 

energy,  and ∆𝐺 is the free energy of the landscape, where 𝐹<  is the mean squared rupture 

force at a given loading rate 𝑟(𝐹). Fitting the force spectroscopy data to the model allows 

us to determine the kinetic parameters. Fig. 2.6 shows a representative Dudko model fit to 

extract parameters from a protein unfolding experiment.  
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Figure 2.6. A Dudko model fit to extract the kinetic and thermodynamic properties of a 

protein unfolding experiment. Adapted from Dudko et al. [106] 

Recently Friddle, Noy and De Yoreo challenged the assumption made by earlier 

models that no reversible binding occurs during force experiments [97, 107]. Earlier 

theoretical modeling of driven bond-rupture processes began by recognizing these two 

primary states of the system, yet assumed that after the initial bond rupture, reverse 

transitions back into the bound state were negligible at experimental loading rates. This 

assumption was not always justified. In contrast, Friddle’s analysis which was based on 

the complete two-state system showed that reversible binding had real effects on the 

measured force and that  the case of irreversible emerged as a limit. They approximated 

the unbinding force <F(r)> for a N-bond system by the following equation: 

 < 𝐹(𝑟) >≅ 𝐹*T + 𝐹A𝑙𝑛 1 + 𝑒KV𝑅 𝐹*T , 

𝐹A =
𝑁𝑘=𝑇
𝑥A

, 𝑅(𝐹*T/𝑁) =
𝑟

𝑘1DD 𝐹*T/𝑁 𝐹A
, 𝐹*T = 2𝑘∆𝐺=Z	,	 

𝑘1DD 𝐹*T = 𝑘I𝑒
A [\]^_K

;
<`^_

a

 

[2.6] 
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where 𝐹*T is the equilibrium force for the bond/transducer system,  𝐹A the thermal force, 𝛾 

= 0.577 the Euler’s constant, 𝑘I the intrinsic unbinding constant, 𝑥A the barrier width, 𝑘, 

the Boltzmann constant, T the temperature, 𝛽 = 1
𝑘,𝑇 the inverse of Boltzmann energy, 

𝑘 the spring constant of cantilever and ∆𝐺=Z = 𝐺= − 𝐺Z is the free energy of binding 

relative to free energy of the cantilever. The above Friddle-Noy-De Yoreo reversible 

binding equation can be fitted to the either the raw data or most probable force data and 

free energy landscape parameters 𝑘1DD, 𝑥A , 𝐹*T and  ∆𝐺=Z can be estimated. Eq. (2.7) 

seamlessly describes the two-trends which are often observed in force spectroscopy data 

as well as the transition between them [108, 109]. In the limit of vanishing loading rate, 

the spectrum approaches the equilibrium force. Fig 2.7 shows a Friddle-Noy-deYoreo fit 

of the rupture force data of single ligand-receptor bonds to quantify the binding energy 

landscape of PAR1. 

 

Figure 2.7. Loading rate–dependent interaction forces of single ligand-receptor bonds are 

utilized to quantify the ligand-binding energy landscape of PAR1 to SFLLAN peptide, 

using a Friddle-Noy-de Yoreo model fit. Adapted from Alsteens et al. [110] 
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2.5 Reconstruction of Free Energy Landscapes 

In single-molecule force spectroscopy (SMFS) experiments, mechanical tension is 

applied across a single molecule so as to perturb its structure, and the extension of the 

molecule is measured as its structure changes under the applied load [111-113]. Various 

types of force probes have been used for SMFS, most commonly atomic force microscopes 

(AFMs), optical tweezers, and magnetic tweezers [111, 114]. The molecule is attached at 

one point to a force probe and at another point to a fixed surface (in AFM) or a second 

force probe (optical traps). The response of the molecule to applied force is subsequently 

measured in one of the four ways:  

(a) constant force, where fluctuations in extension are recorded as the load is held 

constant with a force clamp (Fig. 2.8A) 

(b) constant position, where fluctuations in both molecular extension and force are 

recorded as the probe is held at an unchanging position (Fig. 2.8B) 

(c) force ramp, where the molecular extension is recorded as the force is ramped up 

or down by moving the probe at a constant speed (Fig. 2.8C), and,  

(d) force jump, where the molecular extension is recorded after the force is changed 

abruptly to a different value (Fig. 2.8D).  
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Figure 2.8. (A) Constant-force mode measurement to record the fluctuating extension as a 

molecule unfolds and refolds while the force is clamped. (B) Constant-position mode 

measurement where both the extension and the force fluctuate as biomolecules 

bind/unbind. (C) Force-ramp mode measurement where molecules are made to unfold and 

refold at accelerated rates leading to a nonequilibrium process. (D) Force-jump mode 

where the force is abruptly jumped and then clamped at the new value. The extension then 

increases in steps as the molecule changes unfolds and refolds. Adapted from Woodside et 

al. [1]  

The first two methods record equilibrium fluctuations whereas the last two are 

nonequilibrium based, owing to the rapid force changes that cause state change in one 

direction only. Landscape profiles can be reconstructed, with varying degrees of success, 

using each of the measurement techniques, as will be elaborated upon in the following 

sections.  
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2.5.1 Reconstruction using Equilibrium Measurements 

2.5.1.1 Constant Force Measurements: Free energy is defined as the logarithm of the 

marginal probability density of the system in equilibrium corresponding to the chosen 

thermodynamic ensemble. Hence, to calculate a free energy we need to estimate the 

probability density ρ(x) (e.g. by constructing histograms) from constant force (F1/2) probe 

deflection data. The free energy landscape profile G(x) is found directly from P(x) by 

inverting the Boltzmann relation, up to a constant (C).  

 𝐺 𝑥 = −𝑘=𝑇𝑙𝑛 𝑃 𝑥 + 𝐶 [2.7] 

where kbT is the thermal energy. Eq. 2.7 is also known as inverse Boltzmann equation or 

transform. Note that G(x) is the total free energy of the system and includes the contribution 

of the force probes (AFM cantilever or the optical traps etc.). An essential requirement of 

this type of reconstruction is that the applied load be held constant over the full temporal 

bandwidth of the protein folding or molecular binding process.  

 Cleveland and co-workers first harnessed the Boltzmann relation to observe 

perturbations to the spring harmonic well by water ordering near calcite and barite surfaces 

[115]. Woodside et al. [116] later extended this approach using high resolution optical 

trapping measurements of the folding of DNA hairpins as a model system. 

Reconstructing energy landscapes using the inverse Boltzmann transform (Eq. 

2.11) for the constant force method poses many challenges. Firstly, the probe must have 

very low stiffness in order to register a deflection in response to changes in interaction 

force gradients. At constant forces, achieved through passive force clamps [117], 
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transitions between bound and unbound states become rarer as the energy barrier between 

the two states become higher. Hence, one needs to wait impractically long amounts of time 

in order to record sufficient bound-unbound equilibrium transitions of high energy states 

to have enough statistics to fully reconstruct the energy surfaces [118]. Since the effect of 

noise, particularly instrumental drift, also becomes more pronounced as the data collection 

time increases, the instrument must have extraordinary stability. Finally, the dynamics of 

the interaction are still convolved with the dynamics of the force probe. In order to recover 

the underlying free energy surface of the interaction, one needs to deconvolve the effect of 

the probe. Using a nonlinear iterative Fourier deconvolution procedure, the underlying 

intrinsic landscape of the interaction can be obtained [116, 119]. But the Fourier 

deconvolution procedure has its own set of limitations. Any experimental noise added to 

the deflection signal by the system after the convolution by probe will be greatly amplified 

when the Fourier transform of the signal is divided by the Fourier transform of the probe. 

Since the high frequency components of the probe are typically very small, the operation 

will result in a great amplification of high frequency noise in the resulting deconvoluted 

signal. Hence, only a limited range of frequency information can be correctly recovered by 

Fourier deconvolution, which restricts the resolution of the reconstructed landscape [116].  

2.5.1.2 Constant Position Measurements: A similar approach to landscape reconstruction 

can be applied to measurements where the position of the force probe is held constant, 

rather than the force. The system is again in equilibrium and inverse Boltzmann equation 

determines the total energy at any specified position. However, in constant position 

measurements, force varies linearly with the molecular extension owing to the finite probe 

stiffness. Measurements based on a constant probe position provide an advantage over 
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constant-force measurements with a zero stiffness probe. For sufficiently stiff probes, the 

motion of the probe tip over the energy landscape is constrained by the harmonic potential 

imposed, such that only a portion of the range of the reaction coordinate is explored in a 

given measurement. This constraint allows the probe to sample the states near the energy 

barrier more frequently than would otherwise occur. These are precisely the states that are 

the most influential for the energy landscape reconstructions, but also normally the least 

occupied. By sampling close to the energy barrier, it is possible to reconstruct the barrier 

accurately with lesser number of statistics. It has been shown that harmonically 

constraining the folding trajectories on DNA hairpins can lead to faster landscape 

reconstructions than constant force measurements [118]. Harmonically constrained 

trajectories can allow reconstruction techniques to be extended to landscapes with higher 

energy barriers and hence more infrequent cantilever tip transitions, than might be possible 

otherwise.  

2.5.2 Reconstruction using Nonequilibrium Measurements 

2.5.2.1 Force-Ramp Techniques: A key limitation of equilibrium-based approaches is that 

the necessary equilibrium to sample enough bound-unbound transitions is difficult to attain 

in experiments. For example, when the energy barrier is high, the equilibrium transition 

frequency may be so slow that the only practical approach is to observe transitions well 

away from equilibrium, by ramping or jumping the force [120-122]. To address such cases, 

alternative methods for reconstructing landscapes have been developed on the basis of 

nonequilibrium statistical mechanics.  
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These methods move a given molecular system between two terminal states by 

means of an external potential in force-ramp experiments, which perturbs the system far 

away from its equilibrium. The average mechanical work done to move the system is 

generally greater than the free energy of the system, due to work being dissipated in a 

nonequilibrium process. This is in accordance with the second law of thermodynamics. In 

1973 and in 1981, Kawasaki et al. [123] and Kuzovlev et al., [124] developed 

nonequilibrium partition identities and generalized fluctuation dissipation theorems, 

respectively to obtain equilibrium energies from nonequilibrium work. However, their 

statements were limited in application since they considered near equilibrium regimes, and 

were not applicable to truly irreversible systems. Then in 1997, C. Jarzynski presented a 

theoretical framework able to directly connect the exponential average of the external work 

performed during the molecular perturbation (W) and the corresponding free energy 

difference (∆𝐺).  

Using Jarzynski equality, one can average the work calculated during multiple 

nonequilibrium experiments with a Boltzmann weighting, in order to obtain free energy 

differences between the states. The Jarzynski equality (Eq. 2.8) cannot be directly used to 

calculate free energy landscape because it only gives the free-energy difference between 

two states, whereas energy landscape represents the evolution of free energy along a 

suitably chosen reaction coordinate. Hummer and Szabo [14] adapted the Jarzynski 

equality to energy landscape profile calculation using the weighted histogram method [21]. 

 < 𝑒KAe >= 𝑒KA∆f  [2.8] 
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[2.9] 

The term 𝐺I(𝑥) in this formula is the value of the Gibbs free-energy at a specific 

point x along the reaction path, W(t) is the work sample at time t and V(x,t) is the external 

potential (instantaneous deflection potential). This approach was tested experimentally by 

measuring DNA hairpins with optical tweezers [70]. This reconstruction agreed well with 

the constant-force reconstruction obtained before force probe deconvolution. However, the 

spatial resolution of the reconstruction was somewhat lower, owing to the coarse binning 

needed to produce well-defined work distributions, particularly near the barrier position. 

As a general rule, nonequilibrium methods typically require ever more data to recover 

equilibrium energies as the amount of dissipated work increases [125]. In particularly 

difficult cases, when the transition is far from equilibrium corresponding to high ramp 

speeds or soft probes, the reconstruction may become unreliable or incomplete for some 

values of the reaction coordinate.  

2.5.2.2 Force-Jump Techniques: In cases when it is difficult to obtain a reaction coordinate 

which can continuously describe the reaction progress [126], fluctuation theorems, which 

are based on continuous changes in control parameters, such as Jarzynski’s equality are not 

applicable. Zhang et al. [127] developed an alternative approach applicable to such 

discontinuous measurements, under the assumption of overdamped Langevin dynamics, 

which was based on inverting the nonequilibrium stationary probability density. Folding 

trajectories, starting in the unfolded state at xU and ending at xF, sample the probability 
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density P, obtained from integrating the Fokker–Planck equation associated with the 

Langevin dynamics, according to  

 
𝑃(𝑥) = 𝛼𝑒 KAf ^ 𝑒 Af l

𝐷(𝑦) 𝑑𝑦
^

^o
 

[2.10] 

for xF < x < xU, and P (x) = P(xU) for x ≥ xU. Here, α is a normalization constant, and D(x) 

is the coefficient for diffusion along the landscape profile. The landscape is then given by  

 𝐺 𝑥 = −𝑘=𝑇𝑙𝑛 𝑃 𝑥 − 𝑘=𝑇𝐷(𝑥[)𝑃(𝑥[)
𝑑𝑦

𝐷(𝑦)𝑃(𝑦)

^p

^
 

[2.11] 

for xF < x < xU . Comparing to the inverse Boltzmann equation (Eq. 2.8), the second term 

in Equation 2.11 corrects the free energy for the bias in the probability density arising from 

being out of equilibrium. Usage of the force-jump equations requires knowledge of D(x), 

which is difficult to obtain experimentally. However, the equation becomes independent 

of D whenever this diffusion coefficient is independent of x, an assumption often made in 

the literature for simplicity [128]. Moreover, the effect of the probe needs to be removed, 

which can be done through deconvolution process. Another potential complication is that 

qualitatively different binding pathways may be probed during rapid force quenches, when 

compared to measurements performed closer to equilibrium [129], and therefore the 

reconstructed landscapes may not be directly comparable.  

2.6 Reconstruction of Free Energy Landscapes using Brownian Fluctuations 

 The concept of using the cantilever’s Brownian noise to sample adhesive 

interactions with stiffnesses close to the probe stiffness was initially proposed by Cleveland 

et al. [115] who used the technique to show the presence of potential wells near calcite and 
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barite surfaces. They used the inverse Boltzmann equation (Eq. 2.7) for this purpose, which 

determines energies up to a constant value. The measurement was done at constant 

cantilever tip position and yielded limited information about the entire interaction profile. 

To obtain information about the entire profile, researchers obtained similar measurements 

at different tip sample distances and obtained corresponding energies at each tip position 

[130]. However, three problems still existed in obtaining the interaction energy landscape: 

(1) The harmonic energy contribution of the probe was included in the measured potential 

values, (2) Only relative energy values could be computed at each tip positon since the 

inverse Boltzmann equation calculates energy up to a constant value, and (3) Boltzmann 

based methods at fixed tip positions only allowed for sampling energy barriers up to 3-4 

kBT, i.e. sampling was limited by thermal energy of the probe itself.  

Computation of harmonic potential at any tip position required accurate knowledge 

of the position of the cantilever, and small errors in position could manifest in large errors 

of computed harmonic potential [131]. Willemsen et al. [132] addressed this problem by 

collecting multiple approach force curves to cover the entire range of tip positions, and 

averaging them to simulate a slow approach curve, through which they could accurately 

determine the position of the cantilever at any point in the measurement. However, this 

force curve averaging approach also averages out the transient states experienced in 

individual force curves, thereby leading to a loss of information. On the other hand, there 

was no clear method of objectively computing the constant in inverse Boltzmann equation, 

and subjective estimations of the constant led to errors as large as 25 kBT [133]. Some 

researchers entirely circumvented the issue of constant determination by computing forces 

instead of energies and developed a Brownian force profile technique to measure solvent 
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forces [80]. The solution to the third problem came from unexpected quarters, i.e., the 

computational simulation community who were trying to address a similar issue. Torrie 

and Valleu during their Monte-Carlo simulations had realized the inefficiency of a 

Boltzmann weighted sampling distribution for sampling complex energy landscapes in 

limited computational time [134, 135]. Hence they came up with an arbitrary sampling 

potential superimposed on Boltzmann sampling, which could provide enhanced sampling. 

They demonstrated the effectiveness of their approach, called Umbrella Sampling, via 

simulations on a Lennard-Jones system under wide range of temperature and density 

conditions.   

However, their method was limited to only a small window of the energy landscape, 

and no ideas were provided about combining the results of multiple window. Hence, their 

technique had limited applicability until Kumar et al. [136] proposed a weighted histogram 

technique which allowed molecular dynamics researchers to combine the potential energy 

results of multiple windows into an accurate combined estimate for the entire reaction 

coordinate, by minimizing errors of computed energies at the end of any two adjacent 

windows. Both Umbrella Sampling and Weighted histogram methods have been 

extensively applied in molecular dynamics simulations [48, 137], and, very recently, in 

experimental protein folding studies using optical traps [118], but not to measurement of 

adhesive energy landscapes using AFM. 

This section combines the experimental and simulation based approaches 

previously discussed to extract the free energy landscape of ligand-receptor interactions 

and that of bare tip-sample adhesive interactions. We employ an AFM cantilever to probe 

the interactions at very slow rates (v~200-300 pm/s), thereby achieving quasi-equilibrium 
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conditions. By moving the cantilever slowly and capturing high rate deflection information 

at each tip-sample position of the cantilever, we acquire sufficient statistics to reconstruct 

the entire energy profile. The reconstruction procedure uses the Boltzmann equation along 

with umbrella sampling techniques to reconstruct the total free energy landscape followed 

by the weighted histogram method to retrieve the underlying free energy landscape of the 

interaction. 

We employ the following approach to reconstruct free energies surfaces. The tip of 

the cantilever is brought into close proximity to the interaction potential of a substrate 

surface. As the cantilever fluctuates close to the surface, changes in cantilever’s deflection 

from its average position are caused by interaction between the probe tip and substrate 

surface. Adhesive energy landscapes contain large energy barriers along the reaction 

coordinate, which prevents an accurate sampling of the interaction. When the cantilever tip 

encountered such large barriers, the cantilever spring’s restoring force is unable to 

compensate for the high attractive force gradients of these barriers and it undergoes a free 

fall movement unconstrained by the underlying energy landscape. As a result, the actual 

barrier itself is poorly sampled.  To solve this issue, a biasing potential is superimposed on 

the interaction potential, which serves to confine the movement of the cantilever tip within 

the funnel of the umbrella. This helps to achieve a more efficient sampling at the bottom 

of the funnel, leading to accurate reconstructions. In the AFM, the biasing is naturally 

provided by the cantilever in the form of a harmonic potential. Because the sampling is 

confined to a small region within a single umbrella funnel, only a small piece of the free 

energy is accurately estimated. The z-piezo movement of the cantilever creates many such 

equally spaced umbrellas across the entire reaction coordinate, through which multiple 
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small pieces of free energy of the landscape can be computed accurately. These small 

pieces of accurately estimated free energies are combined using weighted histogram 

techniques to obtain the entire free energy landscape. 

To combine the free energies of all sections together, the cantilever’s deflection 

signal is linearly transformed to the tip sample distance using the Z-Position data. The tip 

sample distance data is parsed into Nw small windows and tip positions (x) from each 

window is binned into histograms in order to calculate the tip position probability density 

P(x) [138]. These biased histograms include the contribution of the cantilever harmonic 

potential in addition to the tip-sample interaction at each tip sample position. The biased 

probability distributions for each window were converted to corresponding unbiased 

distributions using weighted histogram analysis techniques (WHAM) as follows: 
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where i is the window number, 𝑛$ is the number of points sampled in window i, 𝐹$ is an 

arbitrary free energy constant involved in all energy calculations, 𝑤$ 𝑥  is the biasing 

potential and kbT is a unit of thermal fluctuation energy. In the case of AFM, 𝑤$ 𝑥  is the 

harmonic potential of the cantilever probe.  
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 𝑤$ 𝑥 = ;
<
𝑘(𝑥 − 𝑥I,$)<.  [2.14] 

where k is the stiffness of the probe and 𝑥I,$ is the equilibrium position of the probe for the 

ith window. The equilibrium positions of the probe is equal to mean values of reaction 

coordinate for corresponding windows.  

Because the distribution function itself depends on the set of constants Fi, the Eq. 

2.12 and 2.13 must be solved self-consistently. In practice this is achieved through an 

iteration procedure. Starting from an initial guess for the Nw and free energy constants Fi, 

an estimate for the unbiased distribution is obtained from Eq. (2.12). This estimate for P(x) 

is used in Eq. (2.14) to generate new estimates for the free energies constants Fi and a new 

unbiased distribution is generated with Eq. (2.12). The iteration cycle is repeated until both 

equations are satisfied.  Finally, the underlying free energy landscape is calculated from 

the unbiased distributions using inverse Boltzmann distribution (Eq. 2.7).  

The entire process of energy landscape reconstruction using umbrella sampling and 

WHAM methods is shown in Fig. 2.9A, where an interaction energy landscape (blue) is 

sampled using harmonic biasing potential (umbrellas) at each tip position (shown in red). 

To illustrate the reconstruction procedure, a small section of the energy landscape is 

selected (gray zone) along with its associated harmonic biasing potential. The section size 

is chosen to be large enough that sufficient statistics exist for each tip position, yet not so 

large that interaction energy varies significantly between adjacent sections. Fig. 2.9B, 

which shows the selected region, illustrates the fact the biasing potential limits the motion 

of the tip (red circle) to within the bottom of the potential funnel. This helps to achieve 

greater sampling at the bottom of the funnel close to the cantilever’s equilibrium position, 
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thereby reducing the probability of stochastic sampling errors. The funnel also protects the 

cantilever tip from jumping onto the surface even when it is close to a region of steep 

energy gradient, by restricting the natural unconstrained movement of the tip. This allows 

for very accurate sampling of regions very close to jump-ins, which would otherwise not 

have been possible.  The sampled positions are binned into probability histograms, 𝑃(𝑥), 

which is then transformed into energies, 𝐺&1&'2(𝑥), using Boltzmann distribution. The 

harmonic biasing contribution is then removed to obtain the interaction energy, 

𝐺$(&*{')&$1((𝑥), for the given section. Fig. 2.9C shows the interaction energy contribution 

for all the sections of the energy landscape. Since the Boltzmann distribution only 

computes energy up to a constant, the interaction energies of each section are typically 

offset from their true values; leading to multiple interaction energies at a single tip sample 

distance. This unphysical effect is corrected by WHAM techniques which iteratively 

computes the correct constant for each energy section and stitches them together to obtain 

the overall energy landscape (blue curve in Fig. 2.9C).  
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Figure 2.9. A. Sampling of an interaction energy landscape (blue) using harmonic biasing 

potential (umbrellas) at each tip position (shown in red). A small section of the landscape 

is selected for further analysis (gray box). B. Constrained motion of the tip (red circle) 

within the harmonic potential funnel (furthermost left) is transformed into probability 

histograms (second from left) and total energy (third from left) using Boltzmann 
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distribution. Harmonic contribution is removed to obtain interaction energy (right most) 

for the given section. C. Multiple energy sections are stitched together using WHAM 

techniques to accurately reconstruct the underlying energy landscape (blue). 

2.6.1. Choice of Reconstruction Parameters 

Reconstruction parameters, i.e. window size and the histogram bin width plays an 

important role in determining the shape of reconstruction. Both the harmonic potential of 

the cantilever probe as well as the thermal energy of the tip limits the sampling range of 

the tip. Therefore, the window size should be large enough to ensure that the entire 

sampling range of the tip is covered at a fixed probe position. At the same time, the window 

size needs to be small enough to keep the tip-sample interaction constant within its range 

yet so not small to affect the precision of the probabilities calculated from the histograms. 

The histogram bin width also needs to be small so as not to average out small deflection 

changes within a window, and yet not so small as to add to the sampling noise.  

2.6.2. Assumptions of Brownian Reconstruction Method 

The method of reconstructing energy landscapes from Boltzmann distribution of 

cantilever’s thermal fluctuations depends on a few assumptions: 

(i) Point-mass model of cantilever dynamics: It has been assumed that the cantilever 

bends as if a static point load is being applied at the cantilever’s free-end and the 

corresponding static stiffness is used to derive a single degree of freedom point-

mass model.  Hence, while higher harmonics of excitation frequency may be present 

in the cantilever vibration, using a point-mass model allows us to choose only one 

dominant eigenmode to describe the cantilever’s dynamic motion.  
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(ii) Extension of linkers connecting ligands to AFM tips: Brownian reconstruction 

procedure assumes that the interaction forces be tightly coupled to the cantilever. 

For biological experiments, we typically use long linkers and non-specific 

interactions to attach the molecules of interest to the tip. If these linkers are not 

sufficiently stiff, they can stretch significantly when pulled, thereby isolating the 

cantilever’s potential from the tip-surface interaction, hence removing the 

information content from the cantilever motion. In this thesis, we used short 

glutaraldehyde linker molecules (0.75 nm long) which are sufficiently stiff, such 

that the cantilever tip is able to accurately follow the underlying energy landscape. 

(iii) Sampling of thermal noise: In Brownian reconstruction, the span of the thermal 

noise causes the tip to sense both the strongly attractive regions along with the 

weakly attractive regions within a very short interval of time. To ensure that the 

entire span of the thermal noise is captured, the deflections are assumed be sampled 

at frequencies greater than or equal to twice the Nyquist frequency (2f0), where f0 

is the resonance frequency of the cantilever. In this thesis, the deflection signals are 

recorded at frequencies greater than or equal to 4f0, which allowed us to sample the 

entire thermal noise bandwidth thereby ensuring high reconstruction accuracy.  
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CHAPTER 3 

DIRECT MEASUREMENT OF ENERGY LANDSCAPES OF 

LIGAND-RECEPTOR INTERACTIONS 

 

3.1 Introduction 

In this chapter, we will utilize the Brownian fluctuations method, developed in the 

previous chapter, to measure the energy landscapes of strongly adhesive interactions seen 

in ligand-receptor interactions. The energy landscape between ligands and receptor 

interactions are very important since they determine the kinetic and equilibrium properties 

of binding in biological systems. Even though their energy landscapes have been 

computationally simulated, the direct mapping of biomolecular energies between the two 

molecules under near-equilibrium conditions has been a challenge because of strong 

binding affinities. In this chapter, we combine the atomic force microscopy measurements 

with the Brownian fluctuation method to directly map the intermolecular energy landscape 

curve of ligand-receptor system (biotin-avidin in our case) and discriminate multiple 

energy wells. The procedure involves vibrating a sensitive microcantilever probe decorated 

with biotin that is in close and lasting proximity to an avidin coated substrate. By recording 

subtle deviations from the harmonic cantilever vibrations as it translates towards the 

substrate and then transforming these Brownian fluctuations using Boltzmann sampling 

methods, we can reconstruct entire energy landscapes of interactions, including short lived, 

metastable states. The reconstructed energy landscapes reflect both rare short-lived biotin-

avidin interactions and the overall shape of the average energy landscape including the 

presence of multimodal energy wells. Even though the quantitative values do not agree 
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with some previous published experimental work, these results are qualitatively consistent 

with computational simulations that show a rearrangement of peptide loops that border the 

binding pocket of avidin, causing metastable energy states. We close the chapter by 

explaining the reasons for quantitative discrepancy in the energy reconstruction method, 

which are addressed by the technique in Chapter 4. 

3.2 Background 

The reversible binding of ligands to receptors underpins specificity of nearly all 

biological interactions, including adhesion, catalysis, and structural maintenance [139-

142]. The energy landscape, that is the energetic depth and physical extent of interaction 

potentials between biological molecules, dictates the kinetics and affinity of biological 

interactions. While of such fundamental importance, the understanding of dynamic 

conformational changes undertaken by a ligand as it binds to a receptor, and the interaction 

energy that results, remains an elusive and important focus for the development of novel 

drugs through identification of therapeutically relevant antibodies, and understanding 

protein-mediated processes [143-145].  

Despite the importance of the energy landscape, conventional experimental 

approaches cannot fully measure subtle variations within the interaction wells of 

biomolecular bonds [59, 146-154]. While these techniques can measure binding affinities 

and thermodynamic properties of ensemble of molecules, the subtleties of the energy 

landscape only be inferred or computed. In contrast, computer simulation has shown that 

energy landscapes can exhibit subtle topographic features, but its accuracy is limited by 
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uncertainty in the underlying model potentials and the integration of the equations of 

motion [18-20].  

Atomic force microscopy (AFM) offers an unprecedented ability to resolve 

interaction forces between biological molecules. Since bond strength is typically 

characterized by recording the force at which bond dissociation occurs [155], the approach 

measures the deepest portions of energy wells. Alternatively interaction lifetimes can be 

measured [156] [157], but bond lifetimes are primarily defined by the most stable binding 

state and very short metastable binding are not observed due to an inability to sufficiently 

sample the interaction.  

 Complementing adhesion measurements, dynamic force spectroscopy (DFS) 

applies a force at a variety of bond loading rates and applies models of two state binding 

[22, 23], to derive a kinetic off rate from which the depth of an energy well can be inferred 

[3, 22, 24-26]. For this approach to be accurate, hundreds of force-retraction cycles must 

be conducted over multiple retraction rates to acquire the data to derive kinetic off-rates. 

However, due to assumptions of two state transition and irreversible transitions [27], many 

DFS models do not work well for complicated energy landscapes and misses intermediate 

states [158]. DFS models can only determine energy barriers and lacks the ability to fully 

measure the shape of the energy landscape along the reaction coordinate.  

The recent use of non-equilibrium measurements applying Jarzynski’s equality 

have been successful at reconstructing equilibrium free energy landscapes of single 

molecule unfolding of biopolymers [70, 159, 160]. However, deconvolution of the energy 

has only been demonstrated for quickly folding proteins and has not been successfully 
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applied to interactions with very short reaction coordinates that are found in ligand receptor 

interactions [116]. Particularly, when the transition is far from equilibrium or when the 

extension change for unfolding is large, the reconstruction for regions immediately past the 

transition may yield large amounts of error due to limited sampling times [1, 160]. 

We have used atomic force microscopy to directly map the intermolecular energy 

landscape of a ligand-receptor interaction. The method utilizes Brownian fluctuations of a 

microcantilever probe decorated with a ligand, which is then brought into close proximity 

to the interaction potential of complementary molecules that are attached to a substrate 

surface. By recording the variations in fluctuations of the cantilever as it passes close to 

the substrate surface, the free energy landscape can be reconstructed through a 

transformation of Boltzmann’s equation. Using this technique, we have determined the 

interaction potential between biotin and avidin interactions. The method was able to 

discriminate two attractive energy wells with average energies of ~6.5kbT and ~3kbT 

before undergoing repulsive contact. The energy landscape depends only on the kinetic 

rates of the interaction [29], and once its shape is known, can be used to deduce the binding 

rate constants and the affinity of the interaction.  

3.3 Materials and Methods 

3.3.1. Molecular Functionalization of Probe and Surface: Avidin and biotin-BSA were 

functionalized to mica and AFM cantilever tips, respectively as seen in Fig. 3.1.  
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Figure 3.1. Schematic of an AFM probe tip with attached BSA-biotin in close proximity 

of an avidin coated mica substrate  

Following the methods of Gruber [161], silicon nitride cantilevers (Bruker) were 

derivatized with amino groups and crosslinked with biotin ligand. Cantilevers were washed 

in chloroform and then in ethanolamine. Hydrochloric acid (HCl) is dissolved in dimethyl 

sulfoxide (DMSO) and heated to 70°C until complete dissolution. After cooling, the 

cantilevers were immersed in the solution overnight. After washing with DMSO followed 

by ethanol and drying with nitrogen gas, the cantilevers were incubated with a 0.75 nm 

glutaraldehyde linker solution and rinsed in Phosphate buffered saline (PBS). A 0.75 nm 

glutaraldehyde linker was used, which was sufficiently stiff and resistant to stretching, thus 

resulting in more repeatable measurements. For each cantilever, a 1 mg/mL aliquot of 

biotin-BSA were prepared and diluted 5X with PBS. The cantilevers were incubated for 10 

min, then washed and immediately used for experiments. To attach avidin to a muscovite 

mica substrate, we utilized 20 µL of 1mg/mL avidin diluted 10X with 1 mM NaCl and 

lightly mixed.  50 µL was pipetted onto the freshly cleaved mica and incubated for 15 

minutes, rinsed with NaCl ten times and then with PBS twenty times. 
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3.3.2. AFM Approach Force Measurements: The mica sample remained hydrated and 

was placed in the AFM (MFP-3D Bio, Asylum Research). A flexible cantilever with a 

resonance frequency of 13 kHz was used to obtain force curves. The cantilever was 

transferred to the holder and placed in the head, maintaining a hydrated cantilever. To 

minimize drift, the cantilever was equilibrated within a closed chamber for two hours until 

the thermal drift was below 200 pm/s. Typical experiments are performed at 100 +/- 10 

pm/s. The cantilever was brought to within ~40 nm of the surface, and a custom Igor Pro 

script was used to record the raw deflection signal of the cantilever at 50 kHz data rate (~4x 

the cantilever resonance frequency and therefore satisfying the Nyquist sampling theorem 

and thereby ensuring all resonance vibrations are measured in the deflection signal). 

Calibration of zero point of cantilever base position is obtained from intersection of the 

lines fitted from the unbound and bound regions of these approach force curves. After the 

force curves were collected, the cantilever spring constant and deflection sensitivity was 

calibrated using the thermal method [94].  

3.3.3. Energy Landscape Reconstruction Approach: The process of probing molecular 

interactions using Brownian fluctuations is based upon umbrella sampling and weighted 

histogram averaging methods (WHAM) [134, 135, 138, 162]. Deflection signals are 

processed as described in Fig. 3.2. To validate the procedure, we reconstruct a simulated 

force profile, using a damped simple harmonic oscillator cantilever model approaching a 

surface (Fig. 3.2(a)), using the following equation (y is cantilever’s deflection): 

 𝑘𝑦 + 𝑐𝑦 +𝑚𝑦 = 𝐹&% + 𝐹,~ [3.1] 
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where 𝑘, 𝑐,𝑚 are the stiffness, damping and mass of the cantilever, respectively. 𝐹&% and 

𝐹,~ are the tip sample interaction and the thermal/brownian noise forces, respectively. The 

tip sample interaction force is modeled using a 6-3 chemical force profile 

𝐹&%(𝑥)=100 0.1 𝑥
�
− 0.006 0.1 𝑥

�
 where x is the tip sample distance in angstroms 

[80]. The thermal fluctuations are modeled using the Brownian force noise 𝐹,~, which is 

computed by using a pseudo-random number generator that produces Gaussian noise with 

a variance of 4𝑘,𝑇𝑐𝐵 where kB, T, c, B are the Boltzmann constant, temperature, damping 

constant, and frequency bandwidth for the simulation, respectively [80]. The cantilever 

base position and corresponding deflections are recorded at twice (or higher) the resonance 

frequency of the cantilever, during the approach of the cantilever tip towards the substrate 

(Fig. 3.2(b)). The deflections are then transformed into tip sample distances by a linear 

transformation, to plot tip position versus cantilever base position. The entire tip sample 

distance data are parsed into multiple small windows chosen such that the corresponding 

data histograms of each section do not differ appreciably from the adjacent ones (Fig. 

3.2(c)). The tip sample distance data from each window is then binned into histogram in 

order to calculate the tip position probability density (Fig. 3.2(d)). These histograms are 

biased since the contribution of the tip-sample interaction is convolved with the 

contribution of the cantilever’s spring (𝑃=$'%*# = 𝑃$(&*{')&$1( 	 𝑃�{1=*). Fortunately, the 

Boltzmann distribution can be used to relate the cantilever probe’s energy, which is a 

second order quadratic, (𝐺�{1=* =
;
<
𝑘(𝑥 − 𝑥I)<), to its probability distribution (𝑃�{1=* =

𝐶𝑒K	f���v\/`�w). Here 𝑥I is the average position of the cantilever probe base and 𝐶 is the 

partition coefficient for the Boltzmann distribution which is an arbitrary constant. Thus, 

the cantilever’s histograms belong to a Gaussian distribution (blue curve) with its mean 
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given by the average position of the cantilever base and the standard deviation computed 

from the stiffness of the cantilever spring. Fig. 3.2(e) shows the biased probability 

distributions (red) along with the contribution of the cantilever spring (blue) for windows 

A and C. Thus, the probability distribution of the tip position for each window is a relative 

value whose magnitude depends on the values of the partition coefficient for that window. 

Since every window in the force curve overlaps with adjacent windows, the tails of the 

probability distributions of each window essentially overlaps with that of adjacent 

windows. Therefore, incorrect estimation of the partition coefficients leads the overlapping 

tails of the probability distribution of each window being offset from those of adjacent 

windows. Because it is physically obvious that the tip cannot be in two places at the same 

time, these offsets need to be minimized. Since the Boltzmann distribution heavily weights 

the contribution of the energy of rarely sampled states, which naturally occur at the tails of 

these probability distributions, the resulting error in energy computation can be massive if 

the offsets effects are not minimized. To correctly estimate the partition coefficients for 

each window, thereby deconvolving the contribution of the cantilever probe from that of 

the tip-sample interaction, we use an iterative WHAM approach. WHAM solves for the 

values of partition coefficient for each window such that the offset in probability 

distribution between any two adjacent windows is below a certain predefined threshold. 

This threshold is set to be 10K<I. The threshold value should be carefully chosen. The 

threshold value should be lower than the tip probability distribution which is to be solved 

for, while not so low that it results in unacceptably high computer run-times. Fig 3.2(f) 

shows the corresponding unbiased distributions after removing the cantilever’s 

contribution. The inset of the left figure is used to show a zoomed in view of the shape of 
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the unbiased distribution of section C, which is not easily visible in a standard view due to 

its low histogram counts. The inverse of Boltzmann’s distribution is then used to calculate 

the total potential energy at each tip position value in each section (Fig. 3.2(g)). The overall 

tip-sample energy landscape is obtained by adding the unbiased contributions of all the 

windows (Fig. 3.2(h)). The method is able to accurately reconstruct the analytical input 

energy profile, derived by simply integrating the input chemical force profile. Comparison 

of the reconstructed tip sample interaction energies with that of analytical profile at each 

tip position yields an error distribution characterized by mean of -0.2850 kBT and a 

standard deviation of 2.050 kBT. The error in detection of the tip position at the deepest 

point of the energy well is 0.02 nm, which is significantly smaller than the width of the 

biotin-avidin binding pocket (~ 2 nm). Data processing and reconstruction was performed 

by custom routines written in MATLAB (MathWorks Inc., Natick, MA).  
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Figure 3.2. (a) Schematic of an AFM cantilever tip approaching a surface modeled using 

a damped simple harmonic oscillator in a chemical force field (b) Overall approach curve, 

including thermal fluctuations (c) Transformation of the deflection to tip sample distances 

to generate histograms of tip positions at different window locations indicated by the boxes 

(d) Four representative probability density histograms of the tip positions during 

fluctuations at different window locations (e) Biased probability density histogram of tip 

positions at window locations indicated by A and C on right and left, respectively. The 

contribution of the cantilever is indicated by its Gaussian probability distribution shown as 

the blue curve. The position of the Gaussian is dictated by the average cantilever base 

position for each window (f) Unbiased probability distribution for window A and C 

obtained by deconvolving the cantilever’s contribution from the biased distributions. Inset 

in the left figure allows to visualize the low counts of unbiased distribution for section C 

by zooming in. (g) Energy of each window computed using inverse Boltzmann’s 

distribution. (h) Total tip sample interaction energy from many windows stitched together  

3.3.4 Single Molecule Binding: Probing the energy landscape of biotin-avidin systems can 

result in either non-specific (bare tip-surface interaction) or specific interactions (formation 

of single or multiple bonds). The specificity of the bonds formed can be inferred from the 

jump-in distance of the probe during binding. For example, when the jump-in distance is 

averaged over all cases where the bond displayed adhesion during rupture (specific 

binding) versus those where no adhesion was observed (non-specific binding), it was clear 

that higher adhesion forces correspond to higher jump-in distances (Fig. 3.3 (a)). This 

allows to separate the non-specific from specific interactions. The AFM tip, due to its large 

radius as compared to that of BSA-biotin molecules, contains many closely spaced biotin 
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molecules. These are exposed to the multiple binding pockets created by the avidin coated 

surface, resulting in the possibility of multiple bond formation. For measuring metastable 

binding in which the probe is slowly brought into contact with the sample before retraction, 

longer contact times typically allowed more molecular binding events to occur, increasing 

the probability of multiple bonds forming, thereby overestimating the energy well depth 

from reconstructions. In such cases, retracting the AFM tip also resulted in multiple jumps 

in force curves corresponding to multiple bond dissociations. Fig. 3.3 (b) shows a typical 

biotin-avidin approach force curve (red) containing multiple binding events indicated by 

the downward pointing arrows. Fig. 3.4 (c) shows the corresponding unbinding events 

observed during retraction (blue) indicated by the upward pointing arrows. For illustration 

purposes, the data is smoothed (black line) to highlight the binding and unbinding observed 

in the force curves. To ensure that we only reconstruct single molecule binding events, 

firstly we used the retraction data to calculate the equilibrium dissociation force (𝐹*T) 

required to break a single biotin-avidin bond. This was done by conducting a dynamic force 

spectroscopy (DFS) study of biotin-avidin dissociation and fitting a Friddle-Noy-deYoreo 

model to the measurements to obtain 𝐹*T = 25.2 pN. (Fig. 3.3 (d)). The DFS measurements 

were done by perfusing the fluid cell with 1 mM avidin blocker to cause no more than one 

in five force curves to demonstrate biotin-avidin binding, characterized by linearly 

increasing pull-off force before full bond separation. Thereafter, we selected only those 

approach curves for reconstruction whose jump-in forces were within one standard 

deviation of 𝐹*T measured by DFS. This allowed us to sample only single-molecule binding 

events, while discarding both non-specific and multiple binding events. Fig. 3.3 (e) shows 

an approach force curve which shows jump-in forces of ~15 pN upon approach, which are 
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much smaller than 𝐹*T. Thus, these are labeled as non-specific bonds and their 

corresponding retraction curves do not show a sudden sharp increase in rupture force upon 

retraction (Fig. 3.3 (f)); a feature which is characteristic of a specific bond dissociation. 

Furthermore, we also observed that when jump-in forces are in excess of a standard 

deviation of 𝐹*T, as in seen in Fig 3.3 (b), they display two or more unbinding events in 

close succession, indicating multiple-bond formation. 

 

Figure 3.3. (a) Comparison of the average jump-in distances during biotin approach to the 

surface for the cases when adhesion was observed upon retraction versus those when 
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adhesion was not observed upon retraction (b) Approach force curve (red) showing two 

binding events in succession indicated by the downward pointing arrows. The black line is 

the smoothed force profile used to highlight the average movement of the tip as it 

approaches the surface (c) Retraction force curve (blue) showing corresponding 

dissociation events indicated by the upward pointing arrows (d) Friddle-Noy-deYoreo DFS 

model fit to the dissociation data to extract the equilibrium forces required to break a single 

biotin-avidin bond (e) Approach force curve (red) for a non-specific binding event when 

the jump in forces (~15 pN) are much lesser than equilibrium binding force (25.2 pN) (f) 

Zoomed in section of the force curve showing that the retraction curve of a non-specific 

binding event does not show a sudden sharp increase in rupture force that is associated with 

a specific binding event 

3.3.5. Comparison with Conventional AFM Measurements: Thermal (Brownian) noise 

of a cantilever, with a standard deviation of 4𝑘,𝑇𝑐𝐵, can surpass 1 nm (RMS) of tip 

sample distance, and thus sample a substantial portion of the interaction potential (Fig. 

3.4(a)). Conventional force profile measurement techniques employ smoothing techniques 

to determine the average force at a fixed position, and therefore ignore information 

contained in the instantaneous forces at each instantaneous tip position (Fig. 3.4(b)). For 

cases of small gradient of the potential, or during retraction and de-adhesion measurements, 

this simplification results in little loss in essential information of the bond. However, when 

approaching a steep potential curve, the thermal noise necessarily averages the strongly 

attractive and weakly attractive regions of the curve. The insight of the Brownian 

fluctuation method is that thermal fluctuations are inherently accounted for and leveraged 

to sample steep wells without snap-to-contact through stable sampling of rare downward 
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fluctuations in which significant restoring force exists. To illustrate, the simulated 6-3 

chemical force profile was smoothened using standard techniques (moving average filters 

with a half window sizes of 30 points and 1000 points). A zoomed in section of the force 

curve is shown in Fig. 3.4(c). When using a 30-point filter (blue curve), it can be seen that 

the smoothed profile tends to miss sharp transition states which can correspond to rare 

binding events. As smoothing increases to a 1000-point filter (green curve), smoothed 

profile manages to just about capture the overall trend without recording any instantaneous 

deflection data. From the corresponding histograms, we see that while the raw data is 

bimodally distributed, smoothing leads to blurring of the peaks in case of 30-point filter 

and eventually a unimodal distribution in case of 1000-point filter. We compared the 

potential energy profiles obtained by integrating the smoothed force curves and those 

obtained by reconstructions obtained using Brownian fluctuations, with the input energy 

profile obtained from integration of tip sample interaction forces (labeled as analytical 

curve) (Fig. 3.4(d)). As can be seen from the residual measurements in Fig. 3.4(e), the 

potential well is more faithfully sampled using the reconstruction method of its ability to 

utilize the rare fluctuations into the well which helps in improved probing of the well depth 

and curvature. In contrast, without the help of these Brownian fluctuations which allowed 

the tip to sample steeper potential gradients without the cantilever base actually entering 

the well, the cantilever ends up snapping on to the surface in a free fall without being 

constrained by the underlying energy surface. This is what happens in the integrated energy 

profile when the double gradient of energy surface increases beyond cantilever stiffness. 

Although stiffer levers can also enable the conventional force curve to sample deeper into 

a potential well, the cost is a loss of sensitivity to subtle variations in the well, for example 
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due to semi-stable states. However, the reconstruction method requires a substantial 

sampling in proximity to the potential well. Therefore, methods to hover the cantilever at 

a fixed distance will substantially improve the recording of subtle variations of rare binding 

states. 

 

 

Figure 3.4 (a) Left: Fluctuating AFM tip hovering over a surface illustrating the difference 

between average and instantaneous tip positions. Right: Schematic of energy landscape of 

an AFM tip sample interaction, showing the ability of the tip to oscillate between the 
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reference cantilever’s potential well and the tip sample interaction potential well, due to 

tip’s inherent thermal fluctuations (b) Typical force curve (red) of an AFM tip approaching 

a surface generated by simulating a simple harmonic oscillator model. Raw data includes 

thermal fluctuations. Moving average filters applied for smoothing to generate average 

deflections (c) Zoomed in section for the force curve. Deflection histograms of raw (left) 

and smoothed data (blue and green) for a small section of the force curve with filter sizes 

of 30 and 1000 points, respectively, indicates missed transition states due to averaging (d) 

Comparison of the potential measurements obtained by analytical, integration and 

reconstruction methods (b) Residuals of the integrated and reconstructed potential energy 

profiles obtained by subtracting them from analytical curves. Lower potential residual 

signifies a better method 

3.4 Results and Discussion 

3.4.1 Probing the Energy Landscape of Biotin-Avidin Interactions 

To probe the biotin-avidin energy landscape, a biotin-BSA AFM tip was slowly 

brought in close proximity of an avidin coated mica substrate (Fig. 3.5(a)). The fluctuations 

of the cantilever tip as it vibrates under the influence of the biotin-avidin interaction force 

are recorded while the cantilever is approaching the surface (Fig 3.5(b)). The biotin-avidin 

approach curve shows multiple snap-ins to the surface before binding. A zoomed in section 

of the curve shows metastable behavior of the tip as it oscillates between the unbound and 

bound states. Smoothing reveals three states; 1 unbound and 2 bound states (Fig. 3.5(c)). 

Linear translation of the position data to tip sample distance (Fig. 3.5(d)) is followed by 

histogram binning of the tip positions of the cantilever (Fig. 3.5(e)). Finally, application of 
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inverse Boltzmann theorem and WHAM based allows us to reconstruct the average 

potential energy of biotin-avidin interaction (Fig. 3.5(f)). Reconstructed energy landscape 

reveals two wells with average depths of 6.5 kbT and 3 kbT and well widths of 1.8 nm and 

0.75 nm respectively. These wells correspond quite nicely to the cantilever’s snap ins 

towards the substrate. ` 

 

Figure 3.5 (a) Schematic of the experimental setup depicting the biotin decorated AFM tip 

attached to a flexible cantilever approaching an avidin coated substrate. (b) Deflection of 

the cantilever as a function of its position as it moves closer to the surface. (c) Zoomed in 

section of the deflection data. As the as the tip moves close to the surface, it starts 

oscillating between the unbound and bound states in a metastable manner. Smoothing 
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(black profile) highlights the presence of multiple binding states. (d) Linear transformation 

of position to obtain deflection as a function of tip sample distance. The entire data is 

divided into multiple windows, with 4 representative windows shown. (e) Histograms 

depict shift in cantilever’s deflection from unimodal to bimodal states as the biotin 

molecules come within the range of avidin attraction potential (f) Application of inverse 

Boltzmann distribution and WHAM averaging to obtain average potential energy 

reconstruction, thereby capturing the presence of metastable binding states in the form of 

multiple wells 

3.4.2 Energy Landscape Statistics 

Multiple force curves were collected and postprocessed to obtain the energy 

profiles and retraction forces. Force curves that exhibited non-uniform drift while still far 

away from the surface were discarded, due to their unsuitability for reconstruction. 

Approximately 50 data sets were used to reconstruct the energy landscapes and then 

compute the average values of well depths (binding energies) and well widths (binding 

ranges) of biotin-avidin interactions. Fig. 3.6(a) shows 10 such energy curves that are 

reconstructed from the slow approach force curves. Inspection shows approximately 70% 

of the energy profiles featured two energy wells. A typical two well energy landscape as 

shown in Fig. 3.6(b) is used to illustrate the definitions of well widths and depths. Using 

these definitions, average well depths and average well widths for all the reconstructions 

are compiled together in the form of a scatter plot and corresponding box plots (Fig. 3.6(c)). 

The unimodal data corresponds to cases where only a single energy well was observed. 

Table 3.1 shows the average energy well depth of the inner and outer wells to be 2.85 kbT 

and 5.5 kbT and widths to 0.70 nm and 1.60 nm, respectively, for the bimodal cases. These 
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values are lower than published values of biotin-avidin bond strengths measured during 

unbinding experiments [3, 163-165]. The reason for the discrepancy is explained in the 

next section. To examine whether the measured energy well corresponds to more stable 

bonds, the retraction rupture forces were also measured for each approach curve (Fig. 

3.6(d)). The energy well measurement is positively correlated to the corresponding 

retraction bond rupture force with a Pearson’s Coefficient of 0.87. The average adhesion 

force of 120 pN corresponded to an average well depth of 5.5 kbT, indicating specific 

biotin-avidin interactions.  
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Figure 3.6. (a) Ten representative potential energy reconstructions of avidin and biotin 

interactions plotted to show the range of measured attractive potentials (b) Schematic of an 

attractive energy landscape with two wells (c) Scatter plot and box plots of well depth vs. 

well width for each of the two bonds in the bimodal biotin-avidin interaction. Unimodal 

bond corresponds to cases when only one energy well was observed (d) The energy well 

depth measured during approach versus the adhesion force measured upon retraction shows 

a positive correlation, indicating a stable bond is apparent upon formation 
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Table 3.1. Statistics of energy landscapes of biotin-avidin interactions 

3.4.3. Energies of Rare Binding States 

The binding energy landscape which depicts the interaction pathways between 

biotin-avidin interactions is determined by the probability of the cantilever position at each 

tip-sample distance. The average trace, which  is computed by a weighted average 

cantilever residence time at each position [166], determines overall landscape trends such 

as presence of multiple wells corresponding to alterations in molecular positioning or 

multiple binding events. In contrast, metastable binding events which correspond to rare 

binding pathways, typically with a lifetime of less than 5 ms, are not properly determined 

due to infrequent sampling at the current translation speed. To better examine metastable 

interactions, small sections of the approach curve were analyzed for binding energies and 

cantilever residence times in each of the energy states (Fig. 3.7). Fig. 3.7(a) shows the 

cantilever moving from an unbound state (D) to bound state (A) via two metastable binding 

events (B and C), while approaching the surface. Please note that although state B is 

denoted as a metastable state, it corresponds to the same binding pocket as that of state A. 

The cantilever tip jumps in the same binding pocket twice resulting in the two states A and 

B, the difference between them being the amount of time spent the cantilever tip in the 

pockets. Since the tip spends very less time in state B as compared to A, state B is denoted 
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as a metastable state.  To compute binding energies and cantilever residence times at each 

tip sample distance, the cantilever positions are first transformed to tip sample distances to 

obtain deflections as a function of tip sample distance (Fig. 3.7(b)). The instantaneous 

binding energies of each of the four states (A, B, C, D) are separately computed via the 

reconstruction method and shown in box plots of Fig. 3.7(c). Since time spent by cantilever 

in each state is proportional to the number of points recorded for that state, the residence 

times at each of the four states are calculated by a count of the number of points in each 

state (Fig. 3.7(d)). For illustration purposes, coarse tip sample distance increments of 0.25 

nm are used and residence times are plotted as a percentage of the total interaction time. 

The overall average binding energy can be calculated by an average of binding energies 

weighted by cantilever residence times at each state (Fig. 3.7(e)). It shows both the average 

and the range of binding energies for each state during approach. Fig 3.7(f) shows the same 

instantaneous binding energy landscape along with the average trace, but reconstructed at 

much smaller tip sample distance increments. Fig. 3.7(f) is very useful since it shows the 

binding energy pathways for those rarely sampled binding events that would not be 

otherwise visible in an average potential trace. We see that while our method can detect 

rare biotin-avidin interactions with maximum instantaneous binding energies of ~18.5 kbT, 

it estimates the average energy landscape of biotin avidin interactions as having two 

binding pockets with average energies of 6.5 kbT and 3 kbT. Finally, similar analysis is 

performed for our entire dataset at fine tip sample distance increments and the results 

plotted in Fig. 3.7(g). As can be seen, the biotin-avidin energy values calculated by our 

methods are lower than published values. Our methods compute binding energies of biotin-

avidin during approach as opposed to unbinding energies computed during retraction [3]. 
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Since unbinding energies include an additional non-equilibrium work that is dissipated 

during retraction, binding energy values tend to be lower than corresponding unbinding 

energies. Also, reconstructed binding potentials relies on good sampling of the potential 

well in order to record all subtle variations in binding states. Ability to improve sampling, 

such as slower approach rates or enhanced stochastic excitations, will aid in probing rarer 

binding pathways corresponding to deeper potential wells of biotin-avidin interactions.  
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Figure 3.7. (a) Approach force curve for a biotin-avidin system, indicating the different 

binding states (b) Transformation of position to tip sample distance to calculate cantilever 

residence times (c) Box plot of binding energies for each state (A, B, C, D) (d) Residence 

times computed by an estimate of point count in each state, at tip sample distance 

increments of 0.25 nm (e) Range of binding potentials of each state and average potential 

computed by weighted average of instantaneous potentials and residence times at each tip 
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sample distance (f) Binding energy landscape reconstructed using a fine resolution of tip 

sample distance increments, indicating binding pathways including those of rare events (f) 

Instantaneous binding energies for the entire dataset plotted versus corresponding average 

potentials 

3.5. Conclusions 

We have used atomic force microscopy to directly map the intermolecular energy 

landscape of biotin-avidin interaction. By utilizing the variations in fluctuations of the 

biotin bound AFM tip as it passes close to an avidin coated surface, the free energy 

landscape is reconstructed through inverse Boltzmann equation. Using this technique, we 

have reconstructed and analyzed the multiple energy wells that are characteristic of biotin-

avidin bond formation. The energy landscape qualitatively resembles those obtained 

through computational simulation as biotin initially binds to an avidin loop followed by 

binding to beta-barrel residues. However, the landscape is not quantitatively accurate since 

the cantilever is not able to sufficiently sample the rare binding states that contribute 

significantly to energies of biotin-avidin bonds. The biotin-avidin bonds are strongly 

adhesive with steep energy landscapes whose force gradients quickly exceed cantilever’s 

stiffness during bond formation process, thereby forcing the cantilever tip to quickly jump 

from unbound to bound states without recording many rare transition states. This is a 

common problem seen in sampling strongly adhesive energy landscapes and is addressed 

in the following chapter. 
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CHAPTER 4 

ENHANCED STOCHASTIC EXCITATIONS TO MEASURE STEEP 

ADHESIVE ENERGY LANDSCAPES 

 

4.1 Introduction 

The free energy landscape governs the behavior of all interactions in the presence 

of thermal fluctuations in physical chemistry, materials sciences, and the biological 

sciences. From the energy landscape follow all critical information about an interaction, 

such as the reaction kinetic rates, bond lifetime, and the presence of intermediate states. 

Despite its importance to understanding reaction mechanisms, most experimental methods 

do not directly measure energy landscapes, particularly for realistic interactions with steep 

force gradients. As seen in the previous chapter, we were unable to reconstruct the strongly 

biotin-avidin interaction landscape, due to premature jump to contact of the probe resulting 

in insufficient sampling of transition regions.  

In this chapter, we present an atomic force microscopy (AFM) method to increase 

sampling times of these strongly adhesive interactions by enhancing the cantilever’s 

thermal fluctuations using white noise excitation. By combining enhanced fluctuation 

method while recording subtle deviations from harmonic potential with Boltzmann 

sampling discussed in chapter 2 (Eq. 2.7), we show increased accuracy of the reconstructed 

interfacial energy landscapes. Analysis of the energy landscape reveals that there exists an 

optimum excitation voltage that corresponds to a maximum accuracy of landscape 

determination accuracy. The chapter concludes with stressing on the importance of 

identifying the optimum excitation level, which is the subject of the next chapter. 
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4.2 Background 

 Conventional AFM interaction force profiles are measured using a force-distance 

curve, in which a soft spring deflects due to interfacial forces such that the average spring 

position corresponds to the force for each separation distance [167]. While force 

interactions are important, they are insufficient to directly compare to bulk assays [168] 

and simulations [169]. It may be tempting to obtain energy profiles indirectly by integrating 

the measured forces, but to do so is problematic due to inaccuracies in the measured force 

and separation at small distances where force gradients are large and the cantilever position 

does not accurately reflect tip-sample force due to dynamic effects.  This problem appears 

in force curves as snap-in behavior resulting from large gradient attractive forces that 

exceed the probe spring constant [132, 170]. Using stiffer cantilevers to prevent snap-in 

also reduces sensitivity to forces at all length scales [80], especially subtle, near-surface 

force-field variations that extend over sub-nanometer distances. Actively modifying the 

cantilever stiffness using magnetic forces [171] and capacitance [133] can prevent snap-

to-contact, however, low-bandwidth stiffening does not precisely control the cantilever 

motion [117]. Hence there exists a need for direct measurement of interfacial energy 

landscapes for strongly adhesive interactions. 

 Several non-equilibrium and equilibrium techniques [111, 112, 116] have been 

developed to measure energy landscape profiles. Among the non-equilibrium methods, 

Jarzynski’s equality has been used to reconstruct unfolding free energy landscapes of 

nucleic acids and individual biopolymers [159]. However, this method fails to reconstruct 

the energy surface immediately past the transition states due to a very sharp increase in 

dissipated work, which cannot be estimated accurately in the short time span of the 
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transition [160, 168]. Meanwhile, equilibrium methods model the thermal vibrations of the 

probe by a thermal particle in a well which is performing a Boltzmann-like sampling of the 

potential well imposed by both the cantilever and the sample [80, 115]. This approach was 

successfully used to probe potential wells created by the ordering of water near a calcite 

surface and electrical double-layer forces in aqueous solutions [130, 131]. Force and 

energy profiles generated by the transformation of probabilities using Boltzmann’s 

equation have been used to characterize electrostatic, van der Waals and solvation forces 

[80, 132]. 

 Reconstructing the entire interaction energy profile can be challenging due to the 

presence of large barriers that are difficult to sample on the time scale of a measurement 

[115]. To acquire sufficient data around high barriers, it is advantageous to constrain the 

cantilever’s position near these features, or to traverse them at nanometer-per-second 

velocities [118]. Precise movement of the probe harmonic potential tilts the interaction 

profile such that the probe jumps between energy wells along the energy landscape. In this 

way the entire energy landscape is mapped by stitching together energy measurements 

made at different positions along the reaction coordinate [118].  However, a limitation of 

this technique is the inability to map the complete interaction in the presence of attractive 

forces with gradients greater than the cantilever stiffness, due to a critical instability that 

limits sampling [31]. 

As a solution to this problem, Hoh and colleagues showed that approach forces can 

closely approximate retraction forces by adding a white noise signal to gather sufficient 

statistics around barriers and steep energy gradients [32]. In all conventional approaches to 

measuring forces, cantilever noise negatively impacts the accuracy of the interaction 
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measurement. However, enhancing the vibrational noise of the cantilever increases the 

cantilever’s restoring force, allowing it to avoid getting trapped in energy wells for long 

periods of time, transition repeatedly over barriers and transiently sample regions of large 

attractive interactions. Yet this approach has not been applied to the reconstruction of 

energy landscapes. 

In this chapter, we demonstrate the direct mapping of interfacial free-energy 

potentials using enhanced thermal fluctuations combined with a Boltzmann sampling 

method to oversample the probability distribution and improve mapping of the energy 

landscape. The enhanced Brownian (thermal) fluctuations vibrate the cantilever through 

the energy profile of the surface and surrounding medium while the cantilever restoring 

force prohibits binding, enhancing the profile sampling. As a cantilever fluctuates close to 

a surface, the close proximity to the free energy landscape causes deviations from the 

harmonic potential. By recording the variations in fluctuations of the cantilever as it 

approaches and interacts with the substrate, and combining it with inverse Boltzmann 

equation (Eq. 2.7), the free energy landscape is reconstructed. 

 

4.3 Materials and Methods 

4.3.1. Preparation of AFM Tip and Sample Surface:  Silicon nitride, iDrive compatible 

BL-TR400PB cantilevers (Asylum Research, Santa Barbara, CA) were cleaned in 

chloroform (3 × 5 minutes), dried in nitrogen, and then cleaned for one minute on medium 

power in a PDC-32G plasma cleaner (Harrick Plasma, Ithaca, NY) before being placed in 

the cantilever holder. Freshly cleaved grade V-1 mica discs (SPF Supplies, West Chester, 

PA) were glued to glass slides. In the AFM, 40 µL of HPLC water (Sigma Aldrich, St. 
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Louis, MO) was placed on the mica, the cantilever (f0 = 30 kHz, k = 90 pN/nm nominal in 

liquid) was immersed in the fluid and equilibrated for several hours at room temperature.  

4.3.2. AFM Setup for Enhanced Stochastic Fluctuation Measurements: All AFM 

measurements were performed with an Asylum Research MFP-3D Bio-AFM. Data was 

collected at 50,000 samples per second to capture all deflection information through the 

cantilever’s first eigenmode. The inverse optical lever sensitivity was measured in liquid 

just prior to collecting approach-retract traces. Spring constants were calibrated in air after 

the experiment using the thermal method [94, 172]. A DS 345 function generator (Stanford 

Research Systems, Sunnyvale, CA) was used to generate a white noise signal (bandpass 

filtered from 95 Hz to 112 kHz), which was then sent to the iDrive cantilever at voltages 

varying from 1 V to 7 V via controller input. All deflection data was sampled at a frequency 

of 50 kHz. Given that the cantilever’s primary resonance mode in water is ~9 kHz, the 

sample rate is sufficient to satisfy the Nyquist criterion and capture all of the primary 

resonance mode deflections [80]. The current travels along a wire micro-machined into the 

cantilever, generating a magnetic field that acts on a magnet embedded in the cantilever 

holder. The field may either attract or oppose the magnet’s field, vibrating the cantilever. 

The applied voltage causes a linear increase in the RMS vibration of the cantilever. The 

cantilever was equilibrated until drift was below 60 pm/s. Z-Piezo drift was measured 

directly using a sensor, and was less than 200 pm/s. Total drift, calculated as the difference 

between the approach velocity (the contact region slope of the deflection vs time trace) and 

Z-Piezo velocity command sent to the AFM, was always less than 20% of the approach 

velocity. The z-piezo displayed hysteresis when moving quickly over hundreds of microns. 

Once the motion was complete, the hysteresis was allowed to dissipate prior to collecting 
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a deflection trace. Both cantilever and Z-Piezo drift effects were negated by subtracting 

their velocity from the velocity command sent to the Z-Piezo. Approach-retract cycles were 

conducted prior to every set of measurements to calibrate the approach velocity from the 

contact region of deflection vs time traces. For each deflection trace, the zero point of the 

cantilever base-surface distance (Z-Position) was obtained from the intersection of the 

contact and far-from surface regions of the deflection trace. This calibration eliminated the 

effect of drift in the Z-direction [132]. 

4.3.3. Free Energy Landscape Reconstructions: Adhesive energy landscapes between 

silicon nitride and mica were obtained by operating the AFM in force-distance mode and 

collecting approach force curves at a variety of velocities. As the cantilever fluctuates close 

to a surface, the proximity to the interfacial free energy landscape causes deviations from 

the harmonic potential. By recording the variations in fluctuations of the cantilever as it 

approaches and interacts with the substrate, the free energy landscape can be reconstructed. 

Energy landscape reconstruction is as follows. The deflection signal was linearly 

transformed to the tip sample distance by subtracting the Z-position data from the 

cantilever deflection signal. The tip sample interaction potential was obtained from the 

overall tip sample distance data using a technique analogous to umbrella-sampling [173] 

in which the cantilever’s harmonic potential was used to constrain the tip movement within 

a small region to maximize local sampling. The tip position data was parsed into multiple 

small windows and the tip positions from each window were binned into probability 

histograms, 𝑃(𝑥), in order to calculate the tip position probability density.  Directly 

measured histogram distributions are biased since they are dependent on both the cantilever 

harmonic potential as well as the interfacial potential. To remove the contribution of the 
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probe spring, weighted histogram analysis methods (WHAM) [136, 138, 162] were 

employed to iteratively solve for the interfacial potential distributions,	𝑃	$(&*{')&$1( 𝑥 . 

Finally, the inverse Boltzmann relation was used to convert the interfacial potential 

probability distributions into the overall energy landscape, 𝐺 𝑥 =

−𝑘,𝑇𝑙𝑛 𝑃	$(&*{')&$1( 𝑥 . The reconstructed binding energy well depths are defined as 

the depth of the energy well relative to zero energy far from the surface. The barrier width 

is the distance from the energy minimum to the barrier, where the position of the barrier is 

defined by the reaction coordinate where the tip sample interaction appreciably deviates 

from the harmonic potential. The reconstructions were carried out with 5000 point 

windows and 0.05 nm bin widths using custom routines written in MATLAB (MathWorks 

Inc., Natick, MA). In general, slow approach rates were desired (v < 2 nm/s) to increase 

sampling throughout the energy landscape but particularly the barrier region.  

4.3.4. Dynamic Force Spectroscopy and Extraction of Kinetic Parameters: To 

compare the energy landscape reconstruction results to conventional retraction adhesion 

methods, we conducted dynamic force spectroscopy (DFS) to establish retraction energy-

well parameters  [97]. After contact between the tip and sample was established with a 3 

nm trigger deflection, the cantilever was retracted. Retraction velocity was varied from 1 

to 500 nm/s, corresponding to force loading rates of 10 to 105 pN/s, which was measured 

using the slope of the force vs. time retraction plot prior to unbinding. Hundreds of 

approach-retract cycles were carried out to provide sufficient data to fit to the dissociation 

model. The force spectrum and corresponding load rates were plotted in a force vs 

logarithm of loading rate plot. The Friddle-Noy-de Yoreo model [107], which considers 

rebinding of molecular bonds that can occur at slow retraction rates, was fit to this dynamic 
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force spectrum to obtain the equilibrium rupture force, barrier distance, and kinetic off-

rate. Custom scripts written in Igor Pro (Wavemetrics, Lake Oswego, OR) were used for 

all model fitting to calculate rupture forces and load rates from force vs time plots. We fit 

the aggregate raw retraction unbinding force ( 𝐹 ) vs. loading rate (𝑟) data to the analytical 

approximation of the Friddle-Noy-de Yoreo model for single bonds in order to extract free 

energy landscape parameters:  

< 𝐹 >≅ 𝐹*T + 𝐹A𝑙𝑛 1 + 𝑒KV𝑅 𝐹*T     [4.1] 

with, 

𝐹A =
𝑘,𝑇
𝑥A

, 𝐹*T = 2𝑘)'(&∆𝐺=Z	, 𝑅 𝐹*T =
𝑟

𝑘1DD 𝐹*T 𝐹A
	and	𝑘1DD 𝐹*T

= 𝑘I𝑒
A [\]^_K

;
<`����^_

a

 

where 𝛾 is Euler’s constant, 𝑘, is Boltzmann constant, T is temperature, 𝑘)'(& is spring 

constant of cantilever, 𝑟 is loading rate, 𝑥A is barrier distance, ∆𝐺=Z = 𝐺= − 𝐺Z is the free 

energy of binding (𝐺=) relative to free energy of unbinding (𝐺Z), 𝐹A is the thermal force, 

𝐹*T	is the equilibrium force, which is the minimal force required to break the bond for the 

bond/transducer system, and 𝑘I the intrinsic unbinding constant. Fit convergence criteria 

were evaluated with a nonlinear iterative Levenberg-Marquardt algorithm set to allow a 

maximum fitting error of 10-10 and implemented using custom MATLAB scripts. 

4.3.5. DLVO energy landscape calculation. DLVO theory [174-176] describes surface-

surface interactions as comprising repulsive electrostatic and attractive van der Waals 

forces. The forces of the tip-sample interaction were fit to the DLVO model,  

𝐹 𝑧 = − �~
��a

+ 𝐹I𝑒K� �     [4.2] 
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where H is the Hamaker constant, R the tip radius, F0 the electrostatic interaction strength, 

λ the Debye screening length, and z the tip-sample distance. Integration of this force-

distance relation was used to calculate a theoretical energy surface and compared to 

Boltzmann reconstructed energy landscapes. 

 

4.4. Results and Discussion 

White noise driven iDrive Si3N4 cantilevers were slowly translated towards mica in 

HPLC water (Fig. 4.1A). The vibration response of the cantilever probe is shown in Fig. 

4.1B in both passive and active states.  The reconstructed potential energies of the 

cantilever are also shown, indicating the added noise did not alter the harmonic properties 

of the cantilever, but do increase the physical extent of vibration. Both harmonic 

reconstructions overlapped and fit to the same quadratic curve, demonstrating that while 

added excitation increased the range of potentials being sampled, the cantilever’s stiffness 

remained unchanged. Three representative approach curves are shown in Fig. 4.1C for 

added noise voltages of 0 V, 4 V and 7 V. A 0.5 nm region for each is shown indicating a 

static binding event (0 V), discrete, thermally-driven toggling events between unbound and 

bound states (4 V), and large vibrations with no obvious tendency to remain bound or 

unbound (7 V). With increasing excitations, higher tip sample forces were recorded 

corresponding to earlier jump to surface. While a broader tip-sample distance is explored 

with increasing voltage, this comes at the cost of the supplied noise overpowering the 

energy well. To examine the binding states, the deflection data is binned into probability 

density histograms for each voltage (Fig. 4.1D). Both 0 V and 4 V show bimodal 

distributions indicating bound and unbound states. Unlike 0 V, excitation at 4 V allowed 
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us to sample transition states between the two bound states, accumulating more information 

during the transition of the interaction (Fig. 4.1D inset). Increasing the excitation voltage 

to 7 V results in a unimodal Gaussian distribution signal with no ability to distinguish 

between bound and unbound states. 

 

Figure 4.1. A. Schematic of the Asylum iDrive Si3N4 cantilevers used to sample adhesive 

energy landscapes of mica surfaces with enhanced stochastic fluctuations provided by 

white noise signals of varying amplitudes. B. Fluctuations of the undriven (red) and white 

noise driven cantilever at 3 V (blue) along with their potential energy reconstructions far 

away from the mica surface. C. Full deflection traces of the cantilever at 0 V, 4 V and 7 V, 
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along with their zoomed in counterparts. From the deflection traces, it can be seen that 

higher applied voltages increase both the range of sampling and the frequency of cantilever 

transitions between bound and unbound states. D. Count density histograms of the 

deflection signal at 0 V, 4 V and 7 V 

 We explored a range of excitation voltages to compare the approach force curves 

and the reconstructed free energy landscapes of Si3N4 and mica surfaces. The excitation 

noise amplitude was varied with RMS voltages ranging from 0 V (no excitation) up to 7 V 

in 1 V increments and the recorded deflection traces are shown in Fig. 4.2A from top (0 V) 

to bottom (7 V). As the voltage increased, RMS amplitude of cantilever’s Brownian 

fluctuations increased proportionately from 0.31 nm to 0.97 nm. The larger amplitude 

resulted in bond formation while the equilibrium position of the cantilever was further out, 

allowing deeper and more frequent sampling of the underlying energy landscape. This was 

evident by increased Z-Position distance over which metastable binding occurred during 

the transition region (Fig. 4.2B). The underlying adhesive energy landscape for all voltages 

is shown in Fig. 4.2C.  

Reconstruction of the 0 V approach curve showed a potential well depth of 34.6±3.9 

kBT, significantly less than the equilibrium force determined by retraction measurements 

using the Friddle-Noy-de Yoreo model of 188.20±20.48 kBT. As excitation voltage 

increased from 0 V (which showed no transitions between bound and unbound states), the 

reconstructed energy well depth increased to a maximum 206±46.7 kBT with 4 V excitation. 

Greater excitations above 4 V produced a smaller well depth. The measured energy well 

width also increased from 1.37 nm to 2.5 nm with 0 V to 4 V before declining. We observed 

a similar maximal value of the measured slope of the energy landscape, 𝑑𝐺 𝑑𝑥, 
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experienced by the tip at 4 V sampling. These results are summarized in Table 4.1. The 

effective temperature of the tip corresponding to each excitation level was calculated using 

the equipartition theorem 

𝑇*DD,< = 𝑇;
^a
^�

<
     [4.3] 

 
where 𝑇*DD,< is the tip effective temperature at enhanced cantilever deflection 𝑥<, 

and 𝑥; is the cantilever deflection at no excitation at room temperature, 𝑇;=300 K. Effective 

temperature can be interpreted as the temperature of a thermal bath that is coupled primarily 

to the cantilever probe. 
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Figure 4.2. A. Approach deflection traces as a function of Z-distance for the Si3N4 

cantilever approaching the mica surface in HPLC water at pH 7. The cantilever was plasma 

cleaned prior to experiment to remove tip contamination. The cantilever was driven from 

0 V to 7 V and at least six curves were collected for each voltage. B.  Zoomed in sections 

of the approach curves showing the transition regions when the cantilever moves from 

unbound to bound state. C. Reconstructions of the potential energy landscapes of the 

interactions for each voltage. Reconstructions show that binding energies and barrier 

widths are maximized at 4 V 

 
Excitation (V) Teff (K) ΔG (kBT) xβ (nm) <dG/dx> (pN) ttp(μs) 

0 300 34.6 ± 3.9 1.37 ± 0.32 106.7 ± 18.4 240 ± 34.5 
1 344.1 65.2 ± 26.7 1.83 ± 0.87 150.7 ± 26.6 220 ± 41.2 
2 494.4 93.8 ± 40.1 2.04 ± 0.76 188.5 ± 45.4 120 ± 49 
3 785.8 182.6 ± 35.1 2.31 ± 0.41 324.7 ± 15 117.5 ± 35.7 
4 1147.3 206 ± 46.7 2.50 ± 0.38 353.7 ± 71.1 115 ± 41.6 
5 1154.5 173.3 ± 46.8 2.39 ± 0.43 296.8 ± 55.6 112.5 ± 25.2 
6 2174.3 162 ± 25.9 2.35 ± 0.17 285.4 ± 57.5 85 ± 22.5 
7 2881.4 118 ± 49.1 2.18 ± 0.44 213.9 ± 51.2 72.5 ± 20.5 

Table 4.1. Energy landscape parameters for Si3N4 - mica interactions obtained from the 

reconstructions of approach force curves. The values represent the average of at least six 

measurements. Error bars are standard deviations for all data at each voltage 

 

In cases where the energy well is too deep or too wide to be representatively 

sampled by the cantilever’s ambient thermal vibration alone, enhanced cantilever 

fluctuations result in improved sampling of an interaction. Fig 4.3A illustrates a model of 

this effect in which a cantilever tip approaches an energy landscape with a moderate 

curvature (left) versus a steep curvature (right). The direction of cantilever movement is 



 84 

indicated by the arrow, and the positions of the tip along the interaction landscape are 

indicated by red dots. When the cantilever stiffness is greater than or equal to the curvature 

of the energy landscape, the cantilever’s restoring force is able to match the attractive force 

of the interaction, thereby allowing the tip to accurately follow the energy profile. 

However, when the probe is not sufficiently stiff to match the interaction forces, it tends to 

snap onto the surface in a free fall manner, with its trajectory being governed by its own 

dynamics (blue dashed lines), instead of by the constraining interaction energy profile. In 

such cases, the probe is only able to partially sample the landscape. With the help of 

enhanced excitation, the cantilever tip is now able to sample larger regions of the energy 

landscape from a given cantilever position than is possible with thermal vibrations alone. 

With sufficient excitation, it is possible for the tip to sample steep regions of landscape, 

enabling full reconstruction of the landscapes of these steep profiles. 

To validate our reconstructions of the free-energy profile, we compared the results 

to kinetic and energetic parameters extracted from dynamic force spectroscopy (DFS) 

retraction measurements. The reconstructions were performed when the cantilever was 

approaching the surface (data in black) at low velocities (v < 2 nm/s), and the DFS was 

performed on subsequent retraction (data in blue) at faster velocities (Fig. 3B). The inset 

(Fig. 4.3B) shows that slower approach speeds allowed the detection of multiple transitions 

between bound and unbound states, which would not have been possible at higher speeds. 

Fitting the Friddle-Noy-de Yoreo model yielded 𝐹*T = 373.14±19.62 pN, ∆𝐺=Z= 

188.20±20.48 𝑘,𝑇 and 𝑥A= 0.097±0.031 nm (Fig. 4.3C). We also reconstructed free energy 

landscapes of the interaction from the approach deflection traces using the inverse 

Boltzmann sampling technique. Fig 4.3D shows a representative binding potential vs. tip-
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sample distance reconstruction performed at 4 V excitation level. We compared the 

reconstructions of the landscape free energy at different voltages with that of the estimated 

retraction binding energy (Fig 4.3E). The binding energy sampled at 4 V (206±46.7 𝑘,𝑇) 

was similar to the Friddle-Noy-de Yoreo binding energy predictions (188.20±20.48 𝑘,𝑇), 

providing a validation of our method. Plots of barrier widths obtained from reconstructions 

for each voltage (Fig. 4.3F) show that at 4 V excitation, the cantilever sampled a maximum 

barrier width of 2.50±0.38 nm. We also divided the binding energy by the barrier width to 

obtain the mean slope of the energy landscape, 𝑑𝐺 𝑑𝑥 , that the cantilever experienced 

while descending into the well (Fig. 4.3G). We expect the mean slope to correspond to the 

average equilibrium force that the cantilever experiences during its transition from the 

unbound to the bound state. This is validated by reconstructions where we see the 4 V 

excitation results in a maximum mean force of 353.7±71.1 pN, similar to the equilibrium 

force predicted by the Friddle-Noy-de Yoreo model. Finally, we plotted the transition times 

for jumps between bound and unbound times as a function of excitation voltage (Fig. 4.3H). 

As expected, transition path times, ttp, decreased as the jumping frequencies increased with 

increasing voltage. 
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Figure 4.3A. Schematic of an AFM cantilever approaching a moderate (left) vs a steep 

(right) potential well (shown in black) from right to left. The positions of the tip on the 

energy landscape is indicated by the red dots. Dashed blue lines indicate the trajectory of 

the cantilever when it snaps on to the surface. B. A typical force-distance curve recorded, 

with the approach section is colored in black while subsequent retraction is colored in blue. 

Inset shows expanded section of the approach curve where the tip behaves in an oscillating 

manner with multiple jumps over the barrier. C.  Dynamic force spectrum with raw data 

(blue) is fit to the Friddle-Noy-de Yoreo model (red), and the underlying free energy 

landscape parameters are calculated. D. A free energy reconstruction of the approach data 

collected at 4 V shows the reconstructed binding energy and barrier width. E. Histograms 

of mean binding energies at different approach voltages compared to the binding energy 

estimation from the model, with error bars as standard deviations over at least six 

measurements for each voltage. F. Bar plots showing mean and standard deviations of 

barrier widths at each voltage G. Comparison of the energy profile slopes at all applied 

voltages with that of the equilibrium forces estimated from the model. H. Measured 

transition path times as a function of applied voltage, with error bars as the standard 

deviations of the path times at each voltage     

 

One discrepancy we observed was that the energy barrier distances measured by 

Boltzmann reconstruction were greater than that of the Friddle-Noy-de Yoreo method by 

an order of magnitude. This difference could be explained by the multiple molecular bonds 

formed between the tip and the surface, where the true barrier distance, 𝑥A, is reduced to 

[177] according to 𝑥A
'�� = 𝑥A/𝑁 [107]. The ratio of the barrier distances for the 4 V 
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reconstructed surface and DFS of 25 Å and 1.28 Å, respectively, results in N = 25. We 

tested this estimate with predictions from Hertzian contact mechanics model. Applying 

Hertzian contact mechanics [178] to a silicon nitride tip (E = 230 GPa, ν = 0.23) of DLVO-

estimated radius of 56 nm compressing a muscovite mica (E = 34 GPa, ν = 0.21) surface 

with experimentally relevant loading forces of 300 to 900 pN obtained from the force curve 

contact regions, the contact area ranges from 1.7 to 3.6 nm2. Approximating functional 

group areas of exposed cantilever nitrogen and substrate oxygen atoms as ~0.2 nm2 [177], 

and dividing the contact area by the area per bond, the number of formed bonds ranges 

from 8 to 17, slightly underestimating the 25 bonds predicted by DFS (Fig. 4.4) . This 

discrepancy may be due to the Hertz model assumption of a perfectly spherical tip, ignoring 

tip wear during repeated experimentation, and deformation caused by adhesion between 

the tip and surface [179, 180] which would increase bond formation. In experiments, the 

adhesion force during retraction was not affected by contact time or contact force, 

indicating the same contact area formed no matter the force, contrary to the Hertz model 

which predicts greater contact surface area with greater load force. Thus, it is plausible that 

during measurements ~25 bonds are formed.  

 

Fig. 4.4. Hertzian contact area as a function of load force (modeling the cantilever tip as a 

sphere (red) of radius 54 nm) 
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To compare the reconstructed energy surfaces to those predicted by DLVO theory, 

the tip-sample forces were fit to a simple DLVO model (Eq. 4.2) in Fig. 4.5. The Hamaker 

constant was fixed to 30 pN-nm [181] for a silicon nitride-mica interaction and the fit 

results in a Debye screening length of 18.6 nm and tip radius of 54 nm, consistent with the 

manufacturer’s specifications. The ionic strength of the HPLC water is nearly zero, and as 

expected resulted in a longer Debye length than the ~6 nm found for Si3N4-water-mica 

systems in which the water contains millimolar salts [182, 183]. At greater distances, the 

cantilever experienced a slight repulsion from the surface, which is also seen in the 

reconstructions. The repulsive portion of the curve arises from the negative zeta potentials 

of both surfaces, where silicon nitride has an isoelectric point (pI) of 6-7 in water at pH 7 

[81, 184], and mica presents a negative zeta potential at every pH [185]. At smaller tip-

sample distances, van der Waals attraction causes snap-to-contact at 3.2 nm. The force fit 

parameters were used to calculate the individual energy contributions in Fig. 4.5B. The 

energy contributions of each force field, as well as corresponding curvatures are also 

indicated in Fig. 4.5C for small tip sample distances. DLVO predicts a peak-to-trough 

energy depth of 379 kBT and barrier distance of 3.2 nm, significantly larger than those 

found for the 4 V reconstruction. It should be noted that the depth of the DLVO calculated 

energy surface is extremely sensitive to the forces at separations of just a few nanometers, 

but the fact that the AFM cantilever snaps to contact just prior to this distance may cause 

the DLVO model to overestimate the adhesive force and barrier location at these short 

distances. 
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Fig. 4.5A. A total of 98 overlaid force curves (black dots) acquired on mica using a silicon 

nitride in HPLC water at pH 7 at 100 nm/s velocity. The force data average for every 0.2 

nm tip-sample distance (red line) was fit with a DLVO force model (yellow dotted line) 

prior to snap-in. B. Electrostatic (blue line), van der Waals (black line), total energy (green 

line), and total energy curvature (red line) calculated from the DLVO parameters. C. 

Zoomed in total energy and curvature plot for short tip sample distances 

 

4.5 Tuning the Chemical Environment 

Interfacial energy landscapes between surfaces, such as the Si3N4-mica system, is a 

function of the environmental conditions such as pH, salt concentration, hydration forces 

etc. [85, 186]. Variation of these conditions can allow us to tune the liquid environment in 

order to minimize adhesive tip-sample forces that can damage a sample in AFM imaging 

applications [115]. Here, we experimentally verify, through the help of energy 

measurements, that changing the pH of the liquid from 3 to 7 does change the interaction 

from an attractive to a repulsive one, which is also reflected in corresponding energy 

landscape reconstructions. We recorded slow approach force-distance approach curves for 

silicon nitride-mica surfaces in HPLC water at pH 3 and pH 7. Fig. 4.6A shows these force 

curves and Fig. 4.6B shows the corresponding reconstructed energy surfaces for pH 3 (left) 

and pH 7 (right).  The energy landscapes were reconstructed using the Brownian 
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fluctuation method described in the previous sections. The energy surface reconstructions 

gave a ΔG of 70 ± 5 𝑘=𝑇 and 34.6 ± 3.9 𝑘=𝑇 at pH 3 and 7, respectively. For pH 3, the 

energy surface lacks the repulsive hump seen in the energy surface at pH 7, as expected 

from the deflection traces. 

 

Figure 4.6A. Force-distance curve of silicon nitride-mica interface in HPLC water at pH 

3 (left) and pH 7 (right). B. Corresponding energy landscape reconstructions for pH 3 (left) 

and pH 7 (right). Both the force curves and energy landscapes exhibit that increasing the 

pH changes the interaction from adhesive to repulsive  

4.6 Comparison with Reconstruction of Biological Interactions: To our knowledge, this 

work represents the first mapping of energy landscapes with steep curvatures of ~315 

pN/nm, approximately 15 times higher than other reconstructed landscapes, such as ~20 

pN/nm found for DNA-aptamer, prion (64) (Fig. 4.7) and leucine zipper folding (65, 66). 

The energy landscape curvature is calculated for both prion protein folding and Si3N4-mica 

interaction by computing the double derivative of the potential energy vs. extension (or tip 



 92 

sample distance) plots. The energy and corresponding extension values for prion folding 

were estimated from its energy landscape plot in Woodside et al. paper (64). Since 

derivative computations adds noise to the data, the curvature values were further smoothed 

using a robust form of local regression using linear least squares method (rloess), which 

assigns lower weights to outliers. Fig. 4.7(a) shows the energy landscape and its curvature 

for prion folding and Fig. 4.7(b) shows the same for Si3N4-mica interactions studied in this 

paper. As can be seen, the maximum energy landscape curvature for Si3N4-mica 

interactions (~ 315 pN/nm) is significantly higher than those for prion folding events (~20 

pN/nm), thus illustrating the ability of the enhanced stochastic excitation method to sample 

steep energy landscapes. 

 

 

Fig. 4.7 (a) Potential energy versus extension plot for prion folding landscape (top) and its 

corresponding curvature (bottom). (b) Potential energy versus tip sample distance plot for 

Si3N4-mica landscape (top) and its corresponding curvature (bottom) 
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4.7 Conclusions 

We have described and validated a novel method to accurately measure adhesive 

energy landscapes of nanoscale interfacial interactions. An important advantage of our 

approach is the accurate determination of energy wells even for steep gradients that greatly 

exceed the probe’s stiffness, allowing for the use of highly force-sensitive probes. Through 

both deflection histograms and free energy reconstructions, we have shown that driving a 

cantilever with a white noise signal increases its capability to fully sample an interaction. 

We have shown that there is an optimal driving voltage magnitude, beyond which the 

cantilever’s vibrational noise reduces the measurement accuracy.  

Brownian reconstruction methods can be very useful in studying electrochemical 

interactions via analysis of transient states at the interfaces. By combining an active 

excitation mechanism by supplying external voltages to the AFM cantilever with stable 

hovering techniques, we can study both the time behavior of transient states as well as the 

interfacial properties. Brownian mapping of electrochemical interfaces can also help us to 

distinguish the active regions from non-active ones by measuring the fluctuations of the 

AFM cantilever from its equilibrium positions. It is expected that active regions will have 

(statistically) significantly larger fluctuations from equilibrium as compared to non-active 

regions. After transforming the recorded fluctuations to corresponding energy surfaces via 

Boltzmann statistics, we expect to find a good correlation between the measured energy 

depths and the electrochemical activity of surface. 

The actual energy landscape measured by the tip is a function of both the magnitude 

of energies sampled as well as the time spent by the tip in each energy state. Increasing the 

cantilever’s effective temperature via adding excitation increases its ability to sample large 
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energies while reducing the time spent in any state. A low metastable time would indicate 

that the cantilever was not effectively trapped by either the bound or the unbound states. 

As voltage increased towards the optimum of 4V, we were able to progressively sample 

the energy surface – primarily around the barrier region – while ensuring that the decrease 

in metastable time did not overshadow the range of sampled energy. At 4V, this 

combination was maximized and the tip was able to fully sample the energy landscape. 

Beyond 4V, the range of energy sampled remained the same while the metastable times 

decreased, leading to reconstructions with smaller energies. 

Finally, our method was then validated with a model-based approach (Friddle-Noy-

de Yoreo model) that relies on dynamic force spectroscopy results. The Brownian 

reconstruction method used here is not ideal at all excitations, however, it is clear that the 

salient features of the landscape’s energy wells are best sampled at the excitation level at 

which the bound and unbound deflection distributions begin to overlap, or the point at 

which metastable binding is moderately present. Nonetheless, short-lived states within 

larger energy wells have been detected in deflection traces [30, 116, 187] and we 

demonstrated this capability with our system. Identifying the optimum excitation level for 

each energy well within a landscape will require a better understanding of the effect that 

cantilever spring constant, vibrational amplitude and approach velocity have on the 

metastable bond lifetimes and the final reconstructed energy landscape. This is the subject 

matter of Chapter 5. This method promises to be useful in the investigation of biological 

interactions, including ligand-receptor binding and the folding landscapes of proteins and 

nucleic acids, especially those with steep and/or deep energy wells. Detailed energy 

landscapes allow for the calculation of the kinetic rates [188] and landscape roughness 
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[189], and can be used to predict the structural stability of macromolecules, as well as their 

folding and binding pathways. With the advantage of using almost any probe to sample a 

wide variety of interactions, including those with stiff or “brittle” energy barriers, the 

approach demonstrated here extends AFM capabilities for accurately measuring energy 

landscapes. 
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CHAPTER 5 

OPTIMAL EXCITATIONS FOR FULL ENERGY 

RECONSTRUCTION OF STEEP GRADIENT POTENTIALS BY 

SPRING PROBES 

5.1 Introduction 

Although statistical mechanics provide exact equations to calculate free energies, 

they are built on the assumption that all possible configurations of the system are sampled. 

The most pronounced limit to accurate free energy computations is therefore the imperfect 

sampling of a steep gradient potential field or high energy barrier, particularly in the case 

of interactions with small reaction coordinates. In the previous chapter, we had shown that 

increasing the stochastic fluctuations of a harmonic probe by active excitation results in 

increased sampling times of high gradient adhesive interactions and leads to accurate 

energy landscape reconstruction. We concluded that chapter by identifying a key limitation 

of the method, i.e. determination of the optimum excitation levels. This chapter is focused 

on addressing this limitation, through Brownian dynamics simulations and experiments. 

We use Brownian dynamics simulations of to test the impact of probe approach velocity, 

stiffness, and thermal energy to sample multiple wells of various depths and curvatures to 

understand the accuracy of energy surfaces reconstruction as a function of applied 

excitation. We show that through application of optimal stochastic excitations, we are able 

to obtain accurate energy landscape reconstruction for different probe and landscape 

parameters due to improved sampling of previously poorly probed interactions.  
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5.2. Background 

One of the most complete quantitative description of intermolecular interactions is 

the free energy landscape. Free energy landscapes can be used to represent the energetics 

of a range of biological systems of interest, such as protein folding [188, 190], ligand 

receptor binding [191, 192], nucleic acid base flipping [193] and complex conformational 

changes in macromolecules [194]. Energy landscapes are also commonly used in 

computational studies of processes ranging from hydrophobic interactions [195] or organic 

reactions in water [196], to proton transfer [197] or ionic permeation through membrane 

channels [198], to peptide [199] and protein [200] equilibria. Energy landscapes therefore 

provide a valuable framework to describe the behavior of complicated systems in a 

straightforward and statistically rigorous manner. The energy landscape, 𝐺 𝑥 , obtained 

from inverting the Boltzmann relation, is defined up to a constant C as  

where 𝑘,𝑇 is the unit of thermal energy and 𝑃 𝑥  is the probability distribution with respect 

to a reaction coordinate of interest, 𝑥. The reaction coordinate [33, 201] represents a 

variable that can be used to follow the progress of an interaction, such as intermolecular 

distance or angle.  

The experimental single molecule force measurements, for example with atomic 

force microscopy (AFM) [16, 157, 202, 203] or with optical tweezers [17, 66, 204] 

provides data for reconstruction of free energy landscapes.  Free energy landscapes are 

reconstructed from experiments run under equilibrium conditions by binning the positional 

values of the chosen reaction coordinate into histograms to obtain an approximation of the 

 𝐺 𝑥 = −𝑘,𝑇𝑙𝑛(𝑃 𝑥 )) + 𝐶 [5.1] 
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true probability distribution [205-207]. Similarly, energy landscapes can also be calculated 

from repeated non-equilibrium measurements by calculating the distribution of values of 

the mechanical work used to drive the system and transforming it into free energies [160, 

208, 209].  

 A limitation of energy reconstructions of steep adhesive landscapes is that 

experiments may not generate sufficient data for a high quality reconstruction. This 

limitation stems from finite sampling time [205] due to sharp energy landscape barriers 

and probe dynamics which do not allow accurate tracking of energy gradients in 

equilibrium experiments [160]. In the equilibrium regime, the system is typically in a 

bistable state, driven by thermal fluctuations across the energy barrier between completely 

bound and fully unbound states [18]. For many realistic interactions, such as those with 

energy surfaces with high barriers, the transitions across the barrier may be so rare that it 

may not be currently possible to achieve sufficient equilibrium sampling at room 

temperature, in the time frame of an experiment. Researchers have used nonequilibrium 

force ramp experiments as a way to increase sampling in a given time frame and utilizing 

fluctuations theorems such as Jarzynski equality [208] to convert the nonequilibrium 

sampled work distributions to equilibrium free energies. However, the slow convergence 

of the Jarzynski equality with the increase in the number of samples [125] limits its 

applicability to near equilibrium fluctuation regimes only.   

 The cause of finite sampling in the case of steep adhesive energy landscapes with 

force gradients larger than probe stiffness can be attributed to limited thermal energy of the 

tip as well as its limited sampling range. The probe’s thermal energy is insufficient to cross 

high energy barriers or escape deep energy wells and the tip’s fluctuations are too small to 



 99 

fully sample a steep adhesive landscape before it gets snapped onto the surface due the 

high interaction forces. The problem of the finite sampling in the case of the normal single 

molecule constant probe velocity equilibrium experiments can be overcome by supplying 

an external white noise based excitation [18] to the probe in order to increase its magnitude 

of fluctuations, and thereby its reaction coordinate sampling range at any given point in the 

coordinate. By combining this approach with the weighted harmonic analysis method 

(WHAM) [136, 138, 162, 166] for consistent transformation of fluctuations to energies for 

the entire reaction coordinate, it is possible to improve the reconstruction of the energy 

landscape. We have previously demonstrated this method in an AFM experiment in which 

we accurately measured the adhesive energy landscape of Si3N4-mica system with the help 

of white noise driven cantilevers. In this chapter, we perform a parametric sweep of energy 

barrier height, barrier slope, probe stiffness and probe velocity variables and use damped 

Brownian dynamics simulations to study their influence on sampling of the free energy 

landscape. Using the simulations, we are able to determine both the parametric trends and 

the optimal excitations required to best sample an interaction and minimize energy 

reconstruction errors. Finally, we demonstrate the applicability of our simulation results 

with AFM experiments conducted on a Si3N4-mica system at different probe velocities and 

validate that optimal probe velocities for best interaction sampling indeed follows the same 

trend as those predicted by the simulations. This technique may be used to analyze rough 

energy landscapes typical in many biophysically interesting systems without incorrect 

energy reconstruction estimations due to finite sampling errors.  
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5.3 Methods 

5.3.1. Energy Landscape Model: The energy landscape 𝐸(𝑥) consists of two overlapping 

wells with a one dimensional Lorentzian profile, of the form 

where 𝐴;, 𝐴< correspond to well depths, 𝜇; and 𝜇< are the well location parameters and 𝜎; 

and 𝜎< are the well scaling parameters. We simplify the calculations by the making the 

landscape symmetric with the zero point of the reaction coordinate centrally placed 

between the two wells. A range of values 𝜇 and 𝜎 are employed in order to simulate 

different landscapes.   

5.3.2. Brownian Dynamics Simulations: Overdamped Brownian dynamics (Langevin) 

simulations are used to model the behavior of a fluctuating cantilever tip under the 

influence of a potential landscape. At any given instant, the tip is subjected to fluctuating 

forces due to random impulses from neighboring fluid molecules as well as the forces due 

to the external potential field, while being constrained by the restoring force of the probe 

itself. Hence, the position 𝑥$	of the tip at time 𝑡$	 during the ith step of the simulation can 

be given by the following equation [210-212] 

 

where 𝜂 = 5×10K� pN.s/nm is the friction coefficient, ∆𝑡 = 5 ns is the time step of the 

simulation, 𝑘 is the cantilever’s spring constant,  𝑤$ is a Gaussian random number with a 

 
𝐸 𝑥 = −

𝐴;

1 + (𝑥 − 𝜇;)𝜎;<
+

𝐴<

1 + (𝑥 − 𝜇<)𝜎<<
 

[5.2] 

 𝑥$ = 𝑥$K; −
𝑘
𝜂 𝑥$K;∆𝑡 + 2𝐷∆𝑡𝑤$ −

𝑑𝐸(𝑥)
𝑑𝑥 $K;

𝜂∆𝑡 [5.3] 
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mean value of 0 and a variance of 1 and 𝐷 is the diffusion coefficient related to the the 

friction coefficient and thermal energy of the cantilever by Einstein relation 𝜂𝐷 = 𝑘,𝑇. 

400 time steps are used between each recorded data point, which is obtained by dividing 

the data collection rate (Asylum Research MFP-3D Bio-AFM) of 50 kHz with the 

simulation time step of 5 ns. The cantilever spring, which superimposes a harmonic biasing 

potential to the underlying energy landscape, sweeps the reaction coordinate from -0.5 µm 

to 0.5 µm during the duration of the simulation at a constant velocity.  

 

Fig. 5.1 shows a representative sample of the force curve generated by the 

simulation as the tip sweeps over the energy surface. As the tip traverses over the energy 

landscape (from bottom to top in Fig 5.1A), it experiences negligible interaction forces 

until -0.08 µm at which point the tip enters into the first well. Hence, on account of 

negligible tip forces, the tip and base of the cantilever on average move synchronously 

from -0.25 µm to -0.08 µm as evidenced by 45 degree line in Fig. 5.1B. From  -0.08 µm 

until it reaches -0.030 µm, the tip experiences a steep potential gradient and hence the tip 

movement becomes larger than the Z-movement of the base, as seen as a sharp transition 

with force curve gradient greater than 45 degrees in the upper inset of Fig. 5.1B. Thereafter, 

tip moves to the bottom of the energy well and attains a minimum energy state whereupon 

it oscillates around a small range within the first well (with force curve gradient < 45 

degrees) until it is forced to jump over the energy barrier into the second well by the 

constant movement of the base (bottom inset of Fig. 5.1B). The range of tip oscillations is 

governed by the thermal energy of the tip. Since the energy profile is symmetric, the force 

curve for the second well and subsequent energy profile is identical to the force curve 
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obtained before the jump. The bottom inset in Fig. 5.1B shows the region of interest in the 

force curve, which shows the neighboring events around the position when the cantilever 

jumps from one energy well to another. This region will be used for subsequent energy 

reconstructions.     

 

Figure 5.1A. A symmetric bimodal Lorentzian energy profile with overlapping wells. B. 

Force curve generated by an AFM probe tip while traversing over the energy landscape. 

Arrows show the direction of movement of the base of the probe as it approaches the 

surface. Inset on top shows a section of the force curve when the cantilever enters the 

energy well and inset on bottom shows another section of the force curve when the 

cantilever jumps between the wells typically observed in a binding/unbinding event  

 
5.3.3. Energy Landscape Reconstruction and Error Computation: By recording the 

variations in fluctuations of the cantilever as it approaches and interacts with the substrate, 

the free energy landscape can be reconstructed. Energy landscape reconstruction is as 
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follows. The tip sample interaction potential was obtained from the overall tip sample 

distance data using a technique analogous to umbrella-sampling [134, 135], in which the 

cantilever’s harmonic potential was used to constrain the tip movement within a small 

region to maximize local sampling. The umbrella sampling technique is used to determine 

how much data needs to collected at a given tip position, in order to accurately reconstruct 

its associated energy landscape. tip position data was parsed into multiple small windows 

and the tip positions from each window were binned into probability histograms, 𝑃(𝑥), in 

order to calculate the tip position probability density.  The window sizes were chosen to 

ensure that data histograms from adjacent windows do not differ significantly from each 

other, such that maximum difference in average tip position between adjacent windows 

was 0.5 %. Directly measured histogram distributions are biased since they are dependent 

on both the cantilever harmonic potential as well as the interfacial potential. To remove the 

contribution of the probe spring, weighted histogram analysis methods (WHAM) [213, 

214] were employed to iteratively solve for the interfacial potential 

distributions,	𝑃	$(&*{')&$1( 𝑥 . Finally, the inverse Boltzmann relation was used to convert 

the interfacial potential probability distributions into the overall energy landscape, 𝐺 𝑥 =

−𝑘,𝑇𝑙𝑛 𝑃	$(&*{')&$1( 𝑥 . The reconstructions were carried out with 5000 point windows 

and 0.05 nm bin widths using custom routines written in MATLAB (MathWorks Inc., 

Natick, MA).  

 

Due to imperfect sampling, two types of errors can be encountered in a 

reconstruction. (1) Either the reaction coordinate of the given energy landscape is not fully 

traversed (no reconstructed energy values for certain values of reaction coordinate) leading 
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to reconstruction errors when extrapolating the free energies to these under-sampled 

regions. [205]. Techniques such as series expansion or bootstrapping [215, 216] may not 

be effective to reconstruct free energies in these under-sampled regions because too much 

data is missing to enable a bootstrap to fill in the missing information [217]. (2) The probe 

is not sufficiently equilibrated when sampling the reaction coordinate, leading to errors 

when Boltzmann relation is used to transform these nonequilibrium fluctuations to free 

energies. The second type of error is handled by using a root mean square error (RMSE) 

measure to quantify the energy difference between the reconstructed energy and the 

underlying energy surface (numerator in Eq. 4.4). To account for the first type of error, we 

adjust the calculated RMSE by dividing it with a normalized range of reaction coordinate 

𝑅 that is being traversed by the reconstruction as shown in Eq. 4.4. 

where 𝑅0'^. is the maximum value of the sampled reaction coordinate 𝑅.  

5.4 Results 

 Statistically, the mean and first moment can be used to describe a tip position 

probability distribution. However, such a description is not sufficient in regions of poor 

sampling and rare events are a major source of error [205]. Such cases of finite sampling 

exist when there is an energy barrier in the interaction energy landscape which cannot be 

sampled by the cantilever’s thermal energy alone.  Fig. 5.2 illustrates this concept through 

a schematic where a cantilever tip approaches a symmetric bimodal energy landscape from 

the left. 

 
𝑅𝑀𝑆𝐸 =

𝐺(𝑥$) − 𝐸(𝑥$) </ 𝑖$

𝑅/𝑅0'^.
 

[4.4] 



 105 

 

Figure 5.2: Schematic of an AFM tip approaching a symmetric bimodal energy landscape 

separated by a small barrier (A) and a large barrier (B, C) in the direction indicated by the 

arrow.  The probability histograms of the detected positions of the tip are shown for no 

excitation case (in blue color), ideal excitation case (in red color) and overexcitation case 

(in black color). Green dotted line depicts the minimum number of detected tip positions 

needed to sample the reaction coordinate (sampling threshold). 

In Fig. 5.2A (top), the energy barrier separating both the wells is nearly equal to the 

energy of cantilever’s thermal fluctuations (shown as blue dotted lines) which allows the 

tip to spontaneously hop between both the wells multiple times without being trapped in 

either of the wells. As a result, the transition region is sufficiently sampled as indicated by 

the tip position histogram in Fig. 5.2A (bottom), which shows that the tip position sampling 

threshold (green dotted line) is crossed at all points in the reaction coordinate. The sampling 
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threshold is defined as the minimum number of times that the tip needs to sample a reaction 

coordinate in order to accurately reconstruct the underlying energy landscape. However, 

when we increased the energy well separation, thereby increasing the energy barrier height 

(Fig. 5.2B top), the cantilever tip’s thermal energy becomes insufficient to cross the high 

barrier and therefore the tip oscillations between the two wells become rare. Hence, the tip 

spends more time in the first well than in the second well and the transition region sampling 

falls below the threshold (blue histogram in Fig. 5.2B bottom) resulting in a subsequent 

error in energy estimate. Amplifying the fluctuations increased the tip’s energy to match 

that of the energy landscape barrier (red dotted lines in Fig. 5.2B top), thus restoring the 

spontaneous hopping behavior of the tip. The sampling threshold is crossed at all points of 

the reaction coordinate (red histograms in Fig. 5.2B bottom) including that of the transition 

region and an accurate reconstruction of the landscape is obtained. By further increasing 

the amplitude of fluctuations, the tip’s energy became greater than the barrier height (black 

dotted lines in Fig. 5.2C top). In this condition, the tip oscillations were not constrained by 

the underlying energy landscape. Hence its position histogram reflected a unimodal 

Gaussian distribution (black curve in Fig. 5.2C bottom) with the ends of the histogram 

falling below the sampling threshold, making subsequent reconstructions prone to errors at 

these ends. Hence, it is essential that we need choose the correct tip energy, which is 

regulated via its effective temperature in order to optimize sampling and minimize 

reconstruction errors.  

5.4.1. Effect of Energy Barrier Height:  

𝐴;= 𝐴<= 0.15 (pN), 𝜎; = 𝜎< = 20	(nm) 
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𝜇;(nm) -15 -19 -23 -27 -31 -33 -35 

𝜇<(nm) 15 19 23 27 31 33 35 

∆𝐺(𝑘,𝑇) 1.9 6.3 10.9 15.2 18.4 19.8 21.1 

𝑇*DD(K) 300 500 700 900 1100 1400 1800 

Table 5.1: Energy Landscape parameters used for the studying the effect of energy barrier 

height. The last two columns show the barrier height and the optimal tip effective 

temperatures required to accurately reconstruct the energy landscape   

To study the effect of barrier height on energy reconstruction errors, we varied the 

barrier height by increasing the well separation. Table 5.1 shows the parameters used. All 

the parameters except the well positions were varied to simulate barrier heights from 1.9 

𝑘,𝑇 to 21.1 𝑘,𝑇 , where T=300 K. Fig. 5.3A shows the force curves obtained through 

Langevin simulations of these 7 energy landscapes performed at room temperature (300  

K), using a cantilever with a spring constant of 0.150 pN/nm which is sweeping the 

landscape from -60 nm to 60 nm with a constant velocity of 30 nm/s for 4 seconds. It can 

be seen that as the barrier height increases, sampling of the transition region becomes 

infrequent. To improve sampling at higher barrier heights, we increased the diffusion 

coefficient of the tip by raising its effective temperature by 100 K increments, thus 

increasing its sampling range at any given position. Fig. 5.3B. shows the force curves in a 

particular case where barrier height was 15.2 𝑘,𝑇   and the tip’s effective temperature was 

raised from 300 K to 1100 K (200 K increments shown for ease of viewing). Then we 

reconstructed the energies from these force curves (red color) and superimposed them on 

the underlying free energy landscape (black color in Fig. 5.3C). As can be seen 300 K is 

insufficient to sample the energy landscape, and one needs to go as high as 900 K to 
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reconstruct them with minimal errors. Beyond 900 K, errors are reintroduced in the 

reconstructions due to the tip’s dynamics not being constrained by the underlying energy 

landscape anymore. This is the optimal effective temperature for this particular barrier 

height (shown as enclosed in the green box) and has minimum RMSE with respect to the 

energy surface model. We quantified the energy reconstruction errors for all the 

temperatures at all barrier heights and recorded them in Fig. 5.3D. It shows that for each 

barrier height, RMSE for energy reconstructions decreases as the effective temperature is 

increased until an optimal temperature is reached at which the RMSE is minimized. 

Thereafter, the RMSE climbs back up with increasing temperature. Fig. 5.3E is used to 

record the values of optimal effective temperatures for each barrier height and can be used 

as a lookup to identify the range of effective temperatures needed to probe a given barrier 

height.  
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Figure 5.3A.  Brownian dynamics simulated force curves at 300 K for 7 different energy 

barrier heights. B. Force curves simulated at different tip effective temperatures when the 

barrier height is 15.2 𝑘,𝑇. C. Corresponding energy reconstructions (red color) and the 

underlying energy surface (black color) for each temperature. D. RMSE of energy 

reconstructions for different barrier heights plotted versus tip effective temperature. E. A 

plot of the optimal effective temperature versus the barrier height reflects the trend for 

temperatures needed to accurately reconstruct energy landscapes with different barrier 

heights 

5.4.2. Effect of Energy Barrier Slope:  

𝐴;= 𝐴<= 0.15 (pN) 
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𝜇;(nm) -15 -12.75 -10.5 -8.25 -6.5 -4.875 -3.75 

𝜇<	(nm) 15 12.75 10.5 8.25 6.5 4.875 3.75 

𝜎; (nm) 20 17 14 11 8 6.5 5 

𝜎< (nm) 20 17 14 11 8 6.5 5 

dE/dx(pN) 1.05 1.23 1.49 1.89 2.82 3.20 4.20 

𝑇*DD (K) 300 600 900 1100 1300 1500 1600 

Table 5.2: Energy Landscape parameters used for the studying the effect of energy barrier 

slope. The last two columns show the barrier slope and the optimal tip effective 

temperatures required to accurately reconstruct the energy landscape  

Here we varied the barrier slope by proportionately changing the two well locations 

and its scaling parameter values, but keeping the well depths fixed (Table 5.2). The 

simulated barrier curvatures dE/dx range from 1.05 to 4.20 pN. Fig. 5.4A shows the force 

curves recorded through Brownian simulations of these energy surfaces using a cantilever 

of stiffness of 0.150 pN/nm sweeping the landscape from -30 nm to 30 nm with a constant 

velocity of 30 nm/s for 4 seconds. Fig. 5.4B and 5.4C show the force curves and 

corresponding energy reconstructions, respectively for different tip effective temperatures 

when dE/dx=1.49 pN. Based on RMSE values with respect to the energy model, the optimal 

sampling temperature for this barrier slope is 900 K (highlighted in green box). Finally, 

RMSE values are computed for all barrier curvature at each effective temperature in 100K 

increments (Fig. 5.4D), which allows to obtain the optimal effective temperature for each 

barrier curvature (Fig. 5.4E). 
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Figure 5.4A.  Brownian dynamics simulated force curves at 300K for 7 different energy 

barrier slopes. B. Force curves simulated at different tip effective temperatures when the 

barrier slope, dE/dx is 1.49 pN C. Corresponding energy reconstructions (red color) and 

the underlying energy landscape (black color) for each temperature. D. RMSE of energy 

reconstructions for different barrier curvatures plotted versus tip effective temperature. E. 

A plot of the optimal effective temperature versus the barrier slope reflects the trend for 

temperatures needed to accurately reconstruct energy landscapes with different barrier 

slopes 

5.4.3. Effect of Probe Stiffness:  

𝐴;= 𝐴<= 0.15 (pN),  𝜇;	= -𝜇<		= -15 (nm),  𝜎; = 𝜎< = 20	(nm) 
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𝑘	(pN/nm) 0.025 0.050 0.075 0.100 0.125 0.150 0.175 

𝑇*DD(K) 1500 1100 800 600 400 300 300 

Table 5.3: Energy Landscape parameters used for the studying the effect of probe stiffness. 

The last two columns show the probe stiffness and the optimal tip effective temperatures 

required to accurately reconstruct the energy landscape  

Apart from complexities in the energy landscape, probe dynamics also affect the 

quality of sampling of the landscape. The range of tip fluctuations are limited by width of 

the biasing harmonic potential which in turn is governed by the probe stiffness. To study 

the effect of the cantilever probe stiffness, the energy landscape parameters are fixed and 

the probe stiffness is varied from 𝑘 = 0.025 pN/nm to 𝑘 = 0.175 pN/nm in 0.025 pN/nm 

increments (Table 5.3). Fig. 5.5A shows the force curves using different cantilever 

stiffnesses sweeping the landscape from -60 nm to 60 nm with a constant velocity of 30 

nm/s for 4 seconds. Fig. 5.5B and 5.5C show the force curves and corresponding energy 

reconstructions, respectively for different tip effective temperatures when a cantilever with 

stiffness = 0.075 pN/nm is used. Based on RMSE values with respect to the energy model, 

the optimal sampling temperature for this probe is 800 K which is highlighted in the green 

box. The reconstruction errors are quantified for all probe stiffnesses at each effective 

temperature in 100 K increments (Fig. 5.5D) by computing their corresponding RMSE 

values. This allows us to obtain the optimal effective temperature for each probe stiffness 

(Fig. 5.5E). It should be noted that it might be tempting to use very stiff cantilevers to fully 

sample energy landscapes even at 300 K. However, choosing to employ very stiff 

cantilevers can result in low deflection sensitivity of the tip and the recorded fluctuations 

can fall below the noise level of the instrument, producing low signal to noise ratios.  
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Figure 5.5A.  Brownian dynamics simulated force curves at 300K for 7 different probe 

stiffnesses. B. Force curves simulated at different tip effective temperatures when the probe 

stiffness is 1.49 pN /nm C. Corresponding energy reconstructions (red color) and the 

underlying energy surface (black color) for each temperature. D. RMSE of energy 

reconstructions for different probe stiffness plotted versus tip effective temperature. E. A 

plot of the optimal effective temperature versus the probe stiffness reflects the trend for 

temperatures needed to accurately reconstruct energy landscapes with different probe 

stiffnesses 

5.4.4. Effect of Probe Speed:  
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𝐴;= 𝐴<= 0.15 (pN), 𝜇;	= -𝜇<		= -23 (nm), 𝜎; = 𝜎< = 20	(nm) 

𝑣	(nm/s) 30 60 90 120 150 180 210 240 

𝑇*DD(K) 700 800 900 1000 1100 1200 1300 1400 

Table 5.4: Energy Landscape parameters used for the studying the effect of probe approach 

speed. The last two columns show the probe approach speed and the optimal tip effective 

temperatures required to accurately reconstruct the energy landscape.   

The speed of the biasing probe limits the number of samples obtained in a given 

time, and hence is a direct contributor to the energy landscape reconstruction error. The 

effect of probe speed on reconstruction is studied by keeping the energy landscape 

parameters fixed and varying the probe speeds in 30 nm/s increments from 30 nm/s to 240 

nm/s (Table 5.4). The force curves are simulated using a cantilever of stiffness 0.150 

pN/nm which sweeps the energy landscape from -60 nm to 60 nm (Fig. 5.6A). Fig. 5.6B 

and 5.6C show the force curves and corresponding energy reconstructions, respectively for 

different tip effective temperatures when the cantilever is moved across the energy surface 

at a speed of 120nm/s. Based on computed RMSE values with respect to the energy model, 

the optimal sampling temperature for this probe speed is 1000 K (highlighted in the green 

box). RMSE values are then computed for all probe speeds at each effective temperature 

in 100 K increments (Fig. 5.6D). This allowed us to obtain the optimal effective 

temperature for each probe speed (Fig. 5.6E). 



 115 

 

Figure 5.6A.  Brownian dynamics simulated force curves at 300K for 8 different probe 

speeds. B. Force curves simulated at different tip effective temperatures when the probe 

speed is 120 nm/s C. Corresponding energy reconstructions (red color) and the underlying 

energy surface (black color) for each effective temperature. D. RMSE of energy 

reconstructions for different probe speeds plotted versus tip effective temperature. E. A 

plot of the optimal effective temperature versus the probe speeds reflects a linear trend of 

temperatures needed to accurately reconstruct energy landscapes with different probe 

speeds. 

5.4.5. Global Choice of Parameters: Until now, by fixing all but one parameter, we 

studied the effect of variation of individual parameters on the accuracy of energy landscape 
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reconstructions. However, during an actual experiment when all the parameters are 

unknown, the experimentalist needs some guidance for selecting the initial values of these 

parameters, so that the energy landscape is sufficiently sampled. Fortunately, the 

conclusions drawn from simulations of individual parameters can be applied globally to 

determine the choice of probe parameters for a given energy landscape. To begin with, we 

should identify the noise level of the AFM or similar single molecule interaction 

measurement instrument. Then we should select the stiffest available cantilever as long as 

its deflection sensitivity exceeds the instrument noise level, thereby enabling us to resolve 

subtle changes in probe’s deflections. Subsequently, we should move the probe towards 

the surface at the lowest sustainable speed. Typically, the approach speed is limited by the 

instrument drift and very slow approach speeds can place extraordinary demands on the 

instrument and the sample’s stability.  If we have knowledge of the underlying energy 

surface which is being sampled, such as its barrier height and curvature, it is possible to 

narrow down the choices for the probe parameters. For example, knowing the energy 

barrier curvature narrows down the choice of probe stiffnesses equal to or just greater than 

the double gradient of the barrier curvature. This ensures that the probe will not enter into 

an unstable regime where it could snap onto the surface. Once these initial probe 

parameters are chosen, we can begin the experiments knowing that we have maximized the 

sampling capability of the probe without any excitation. Further sampling enhancements 

can be achieved by supplying stochastic excitation to the probe according to the trends 

provided by the optimum effective temperature vs. the individual parameter plots, created 

using Brownian dynamics simulations. 
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5.4.6. Experimental Validation with AFM Measurements: The effect of probe speed 

on the quality of energy landscape sampling is verified in an AFM experiment where we 

measured the adhesive energy landscape of Si3N4-mica system with the help of white noise 

driven iDrive cantilevers. The white noise excitation is used to raise the cantilever tip’s 

effective temperature 𝑇*DD*)&$£*	and its value is determined by the amplification of the tip’s 

fluctuations as compared to those with no excitation at 300K (Eq. 5.5) 

 
𝑇*DD*)&$£* =

𝑠𝑑(1$%*
𝑠𝑑�II

<

×300 
[5.5] 

where 𝑠𝑑 corresponds to standard deviation of the tip’s fluctuations measured when it is 

far from the surface. The value of 𝑠𝑑 is governed by magnitude of voltage of the externally 

applied white noise signal. 

 We recorded slow approach force curves at 4 different voltages of 3, 4, 5 and 6 V 

choosing a range of probe approach speeds at each voltage, and used WHAM techniques 

to reconstruct their underlying tip-sample interaction energy landscapes. The 

corresponding effective temperatures at these voltages are 830 K, 1120 K, 1573 K and 

2194 K. During the experiment, the speeds were varied continuously from 396 pm/s to 

1196 pm/s. To discretize the approach speeds, we used a K-means clustering approach to 

partition the speed data into K=4 clusters and used the squared Euclidean distance measure 

to obtain the cluster centers [218, 219]. K-means was implemented using inbuilt MATLAB 

software functions (MathWorks Inc., Natick, MA). These cluster centers are located at 

488.8, 629, 814.6 and 1155 pm/s and correspond to 4 discrete levels of approach speeds 

(Fig. 5.7). 
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Figure 5.7. 2D graphical representation of the K-means approach used to partition the 

approach speed data set. The actual data points are denoted by the circle, and the color of 

the circle denotes belongingness of data points to a specific cluster. The location of the 

cluster centroid is denoted by X. 

 

  Fig. 5.8A shows representative approach force curves collected at each of the 4 

voltages and 5.8B shows their energy reconstructions at an approach speed of 629 pm/s. 

To quantify the error in energy reconstruction estimations, the correct magnitude of 

average tip sample interaction energy (∆𝐺01#*2) needs to be estimated, which is done by 

fitting the retraction force data collected at no excitation to the Friddle-Noy-de Yoreo 
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model (Fig. 5.8C). ∆𝐺01#*2	is found to be 188.20 𝑘=𝑇. Finally, error in energy 

reconstruction is estimated for each approach velocity by subtracting the peak value of 

reconstruction estimates from ∆𝐺01#*2 (Fig. 5.8D). From 5.8D, we see that low 

reconstruction errors correspond to slower approach speeds and one needs to increase the 

excitation level in order to reduce reconstruction error at high approach speeds. Fig. 5.8D 

also shows that there exists an optimal excitation level for each approach speed, at which 

it is best possible to sample the energy landscape. Fig. 5.8E plots these optimal tip effective 

temperatures as a function of the probe approach speeds and the near-linear trend agrees 

with those predicted by our simulations.  
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Figure 5.8A.  Force curves of a Si3N4 AFM tip approaching a mica surface at a constant 

velocity of 629 pm/s at four different excitations levels of 3, 4, 5 and 6 V. B. Corresponding 

energy reconstructions of the force curves collected above. C. Friddle-Noy-deYoreo model 

used to estimate the tip sample interaction energy (∆𝐺01#*2) from retraction force versus 

load rate data. D. Comparison of the peak reconstructed energy value with that of ∆𝐺01#*2 

is used to estimate errors in reconstructions for all voltages at different approach speeds. 

E. Plot of optimal effective temperature for each probe speed depicts a nearly linear trend, 

and is similar to what was observed in Langevin simulations. 

5.5 Conclusions 

We have used Brownian dynamics computer simulations to study the effect of 

different well barrier parameters and probe dynamics on the quality of sampling of energy 

surfaces by an AFM tip. The energy surface chosen for this study is a symmetric profile 

containing two overlapping Lorentzian wells. Even though some realistic energy 

landscapes may not be symmetric, the chosen symmetric energy profile can be used to 

simulate some conditions obtained in non-symmetric profiles. For e.g., many realistic 

bimodal energy landscapes have wells with unequal depths. However, it was found that the 

reconstruction of bimodal energy surfaces depends on the probe’s ability to spontaneously 

hop between the wells, rather than the actual depth of the wells. Thus the important 

parameter is the height of the barrier separating the wells, which, for a symmetric energy 

landscape, can be varied by moving the location of the wells (controlled by parameter 𝜇) 

in a symmetric energy profile. It should also be noted that the reconstruction accuracy 

strongly depends on the initial conditions, such as the direction of approach. Thus 

reconstructions for a non-symmetric energy surface from opposite directions would yield 
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different results. The effect of approach direction on energy landscape reconstruction 

would be an interesting subject of future studies important to understanding metastable 

binding states. 

The sampling errors are quantified by calculating the errors in reconstructions of 

the underlying energy landscapes. Building upon our previous work, we have then 

proposed a method to improve the reconstructions by raising the AFM tip’s effective 

temperature by driving it with an external white noise signal generator. The external noise 

can be interpreted as a thermal bath which is strongly coupled to the tip and not to the 

sample or the solvent medium. Raising the effective temperature increases the amplitude 

of cantilever’s thermal fluctuations and increases its sampling range. We have proved that 

energy reconstructions are indeed improved by increasing the tip’s effective temperatures, 

for each of the four different situations: high well barriers, steep barrier curvatures, and 

soft probes and fast approach speeds. Furthermore, we have also shown the existence of an 

optimal effective temperature for every reconstruction, at which point the RMSE is 

minimized. By computing the optimal effective temperatures for each of the four situations 

and providing corresponding trends, we have effectively computed a lookup table which 

can be used by the research community to accurately sample an energy landscape. Finally, 

we have demonstrated the applicability of our simulations for the case of varying approach 

speed, through AFM experiments on a Si3N4-mica system. We showed that by raising the 

tip’s effective temperature which is achieved through driving the cantilever with white 

noise, it is possible to overcome the finite sampling limitations encountered in collecting 

fast approach force curves. We also confirmed the presence of optimal excitation levels for 

each probe speed as well as their nearly linear relationship with each other. The 
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understanding derived from this work will be very useful in the addressing the finite 

sampling issues typically encountered in biological interactions such as ligand-receptor 

binding and protein folding landscapes, especially those with steep and/or deep energy 

wells. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary 

Energy landscapes reconstructed from single molecule force spectroscopy have 

enjoyed notable success in explaining folding phenomena using the simple physical picture 

of diffusion over 1D profiles. A generic folding landscape of an interaction plots the free 

energy against a measure of the molecular configuration, typically called the reaction 

coordinate. An accurate energy landscape can predict the folding behavior of a molecule, 

such as the kinetic off rates. Knowledge of the energy landscape allows the discovery of 

information about the intermediate states, as well as the barrier locations and depths. 

Intermediate states are responsible for regulating the energy transfer between the bound 

and unbound states. The data needed for these reconstructions can be collected by a range 

of probing instruments, the most popular among them being Atomic Force Microscope and 

Optical Tweezers. Though full energy landscapes have been successfully reconstructed for 

folding phenomena, the same techniques have not been directly transferable to many 

adhesion phenomena which exhibit steep binding events, which includes many important 

ligand-receptor and interfacial systems. Steep binding events limits the amount of 

information obtained during the transition from bound to unbound states, which limits the 

accuracy of conventional Boltzmann weighted direct reconstruction methods. Other 

indirect techniques for estimating the energy landscapes in adhesion measurements, such 

as force integration or dynamic force spectroscopy measurements can only partially 

recreate the energy landscapes. In this thesis, we have fully reconstructed the energy 
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landscapes of these difficult-to-sample steep adhesive interactions, by developing an 

enhanced stochastic excitation technique and combining it with the Boltzmann 

transformation and the weighted histogram analysis method.  

In this work, we have measured adhesion energy landscapes of both biological and 

interfacial interactions via direct equilibrium measurements using an atomic force 

microscope. Specifically, scientific contributions of this work are:  

(i) Applied and validated a new weighted histogram analysis method (WHAM) 

which minimized errors of combining locally estimated Boltzmann energies 

to more accurately reconstruct energy landscapes of ligand receptor 

interactions across the entire reaction coordinate; 

(ii) Demonstrated that an enhanced stochastic sampling technique can greatly 

improve the accuracy of reconstructions of steep adhesive energy 

landscapes; and 

(iii) Investigated the entire parameter space of the factors affecting energy 

landscape sampling to identify the optimal values that maximize landscape 

reconstruction accuracy.  

To sample interaction energy landscapes, we utilized the Brownian fluctuations of 

a microcantilever probe which is then brought into close proximity to the interaction 

potential of substrate surface. By recording the variations in fluctuations of the cantilever 

as it passes close to the substrate surface, the free energy landscape was reconstructed 

through a transformation of Boltzmann’s equation. Adhesive energy landscapes contain 
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large energy barriers along the reaction coordinate, which prevented an accurate sampling 

of the interaction. When the cantilever tip encountered such large barriers, the cantilever 

spring’s restoring force was unable to compensate for the high attractive force gradients of 

these barriers and it underwent a free fall movement unconstrained by the underlying 

energy landscape. As a result, the actual barrier itself was poorly sampled.  To address this 

issue, we combined the Boltzmann technique with an umbrella sampling approach. In 

umbrella sampling, a biasing potential was superimposed on the interaction potential, 

which served to confine the movement of the cantilever tip within the funnel of the 

umbrella. This helped to achieve a more efficient sampling at the bottom of the funnel close 

to the cantilever’s equilibrium position. The funnel protects the cantilever tip from jumping 

onto the surface even when it is close to a region of steep energy gradient, by restricting 

the natural unconstrained movement of the tip. This allows for very accurate sampling of 

regions very close to jump-ins, which would otherwise not have been possible.  In the 

AFM, the biasing was naturally provided by the cantilever in the form of a harmonic 

potential. Because the sampling was confined to a small region within a single umbrella 

funnel, only a small piece of the free energy was accurately estimated. The z-piezo 

movement of the cantilever created many such equally spaced umbrellas across the entire 

reaction coordinate, through which multiple small pieces of free energy of the landscape 

were computed accurately. These small pieces of accurately estimated free energies were 

combined using weighted histogram (WHAM) techniques to obtain the entire free energy 

landscape. 

Using the above mentioned methods, we reconstructed energy landscapes of 

ligand-receptor binding interactions (biotin-avidin system) using Brownian fluctuations of 
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an AFM microcantilever probe decorated with the ligand which approached a receptor 

molecules coated surface. Furthermore, we were able to experimentally determine an 

intermediate attractive energy well of biotin-avidin binding, which was only known 

previously through computational simulations. The energy landscape qualitatively 

resembled those obtained through computational simulation as biotin initially binds to an 

avidin loop followed by binding to beta-barrel residues. The specificity of binding was 

confirmed through higher pull off forces in retraction force experiments. The energy 

landscapes of biomolecules will be critical to the optimal design of biosensors such as by 

improving antibody specificity in recognition targeting, and will also provide a direct test 

to improve computational model potentials for biological interactions. However, even 

though our reconstructed energy landscapes were qualitatively accurate, the wells were 

shallower than published values. We hypothesized that insufficient sampling of the well 

limited our ability to fully reconstruct its depth. As such, slower approach rates or enhanced 

stochastic excitations will aid in probing more of the rare binding pathways that correspond 

to deeper potential wells of biotin-avidin interactions. 

In the second part of the dissertation, we addressed the problems encountered in 

probing of energy landscapes with sharp transitions between states that leads to infrequent 

sampling of the transition state. A key limitation of reconstruction methods is their inability 

to map the complete interaction in the presence of attractive forces with gradients greater 

than the cantilever stiffness, which produces a rapid snap-in instability of the tip position. 

This is particularly a problem at small surface separations in which the attractive forces 

between tip and sample may exceed this value and cause the tip to snap to the surface or 

biomolecule.  We proposed a method whereby it is possible to overcome limited transition 
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region sampling by increasing the sampling range of the cantilever vibrations through 

white noise excitation. Enhancing the vibrational noise of cantilevers increases the 

transient sampling of regions of large attractive interactions in which the cantilever is of a 

sufficient distance from the high gradient region such that the restoring force of the 

cantilever avoids jump to surface instabilities. We demonstrated this method via direct 

mapping of interfacial free-energies of Si3N4-mica interactions using enhanced thermal 

fluctuations and the Boltzmann sampling method. For this purpose, iDrive cantilevers were 

used which were driven with white noise signals of different voltages. Other methods such 

as piezoelectric [83], magnetic [220] or thermal actuation [221] techniques can also 

employed. Reconstructions were performed at voltages ranging from 0 through 7 V, and 

their accuracy compared with a Friddle-Noy-deYoreo model fit to the retraction force data 

collected at 0 V. Analysis of the energy landscape revealed that there exists an optimum 

excitation voltage (or optimum effective temperature) which corresponds to a maximum 

landscape reconstruction accuracy. This method holds great promise in the investigation of 

biological interactions such as ligand-receptor binding and protein folding landscapes, 

especially those with steep and/or deep energy wells. 

In the third part of the dissertation, we built upon our work of improving energy 

reconstructions via enhanced stochastic excitations and explored the parameter space to 

optimize successful application of this method.  In particular, we studied the influence of 

energy barrier height, barrier curvature, probe stiffness and probe speed on the energy 

reconstruction accuracy. We performed Brownian dynamics computer simulations on a 

Lorentzian bimodal energy landscape model, to study the effect of these parameters on the 

landscape sampling quality and quantified the errors in energy reconstructions using root 
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mean square errors. For each of the parameters, we also determined the optimal effective 

temperatures at which bias in reconstruction estimates are minimized. We also 

demonstrated the applicability of our simulations for the case of varying approach speed, 

through AFM experiments on a Si3N4-mica system. We showed that by raising the AFM 

cantilever tip’s effective temperature which is achieved through driving the cantilever with 

white noise, it is possible to decrease the error in reconstruction estimates. We also 

confirmed the presence of optimal excitation levels for each probe speed.  

5.4 Future Work 

Other factors of AFM based energy reconstruction techniques not addressed in this 

study include the ability to covalently bind ligands to cantilever tips, cantilever drift 

limitations and finite sampling time at current data collection rates and possibly, complex 

tip sample interaction dynamics at the nanoscale levels. Even though addressing all these 

factors are very important in producing better measurements for energy reconstructions, 

we propose the following four as the logical next steps as the future directions for this 

research. 

6.2.1. Full Energy Landscape Reconstructions of Biotin-Avidin Binding 

Through application of Brownian fluctuation technique, we were able to sample the 

attractive energy landscape of biotin-avidin interactions. Even though our method was able 

to discriminate between the two attractive wells, we could not fully reconstruct the 

attractive binding wells due to limited sampling of the rare binding events. With the aid of 

subsequently developed enhanced stochastic excitation approach, we propose to revisit the 

biotin-avidin interaction with the aim of accurately reconstructing their binding energy 

landscapes both quantitatively and qualitatively. 
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6.2.2. Addressing the Sampling Time Limitations  

The energy reconstruction method requires a substantial sampling (100,000+ 

samples) in proximity to the potential well, to reproduce the underlying energy surface. 

Therefore, methods analogous to force clamps, which will allow us to hover the cantilever 

at a fixed distance will substantially improve the recording of subtle variations of rare 

binding states. The tip-surface distance can be controlled by monitoring the cantilever 

quality factor (Q) in a closed feedback loop [222]. The determination of Q is done by fitting 

the thermal noise (Brownian fluctuations) of the tip to a Lorentzian function. In order for 

this technique to be applied in real time for strong tip surface interactions, Q determination 

and subsequent feedback signal to the tip needs to be extremely fast. Better signal 

processing techniques are great step in achieving this goal. Utilizing this method to hover 

the tip above a sample surface, we will be able to study slow protein folding-unfolding 

mechanisms, which exhibit slow conformational changes, over long periods of time. 

6.2.3. Developing a Model for Determining Errors in Equilibrium Energy 

Measurements 

Free energy reconstructions can obtain key information about an interaction, such 

as the reaction mechanisms or its rates. However, finite sampling errors are an intrinsic 

part of free energy measurement and can be an even more critical part of the analysis. In 

WHAM, free energies are computed by direct iteration of a set of coupled equations until 

self-consistency is achieved. In order to achieve self-consistency, substantial sampling of 

the landscape is required and failure to do so results in errors in WHAM free energy 

estimates. We proposed a method to reduce this error by increasing the landscape sampling 

via increase in cantilever tip’s effective temperature, and used Brownian dynamics 
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simulations to show the existence of optimal effective temperature for different landscape 

and probe parameters. While simulations are a good tool to study the effect of a given 

parameter space on the optimal effective temperature, complicated energy landscapes can 

make it difficult to replicate experimental conditions owing to run time limitations. In this 

context, development of a theoretical model that explores the effect of these parameters 

would be ideal. The model will also be very useful to researchers who want to utilize the 

stochastic excitation method to sample an energy landscape, but are unsure as to what 

amount of excitation is ideal in their particular situation. Though computer simulations can 

provide the answer, they can be computationally expensive, depending the energetics that 

are being simulated.  

6.2.4: Application in Antibody Sampling: Understanding the local minima in energy 

landscapes, both energy depth and extent along the reaction coordinate, will allow us to 

assess the multiple binding pathways that are available to the molecule to take before it 

binds to a complementary molecule or a substrate, resulting in better control over the rate 

of these binding processes [11]. As an example, these metastable states are known to play 

an important part in determining the specificity of antibodies in antigen recognition [12]. 

Since antibodies bind their specific antigen target with such high affinity (deep energy 

well), once locked into position they are effectively irreversible. However, finding this 

target requires reversible binding with many more non-target sites of binding. Identifying 

the conformational changes that may occur during induced fit can be a critical step in the 

molecular proofreading process, which can only be accurately quantified through an energy 

landscape [13, 14]. 
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Addressing the first objective will enable us to complete our initial aim of full 

landscape reconstruction of ligand-receptor interactions. The following two objectives will 

complement the equilibrium energy reconstruction methods developed in this dissertation, 

and the final objective proposes an application which highlights the importance of accurate 

determination of energy landscapes. 

Other than these immediate future directions, one can also look into other ways to 

increase the sampling of rare events leading to full energy landscape reconstructions. For 

example, the use of colored noise instead of white noise, or more complex drive 

mechanisms can be also used to bias the sampling in a useful manner. The advantage of 

using colored noise, which is characterized by non-uniform spectral power densities, is that 

they are better tuned for applications which operate within certain frequency limits or have 

spectrally dependent power requirements. On the other hand, complex drive mechanisms 

such as a multifrequency sweeping can be used to identify the ideal frequency to maximally 

excite the cantilever. In this context, band excitation method, developed by Jesse et al. 

[223] for broadband scanning probe microscopy imaging can be very useful. In band 

excitation, the probe is excited using a synthesized digital signal that spans a continuous 

band of frequencies, and the response is monitored within the same or a larger frequency 

band. The cantilever response is detected using high speed data acquisition hardware and 

then Fourier transformed. This Fourier transformed data is analyzed to extract relevant 

parameters of the cantilever behavior; in this case, the frequency ranges for maximum 

amplitude of oscillations. The tip can also be moved along the energy landscape, and 

corresponding frequencies of maximum excitation recorded for each tip position. Once the 

ideal frequency ranges are collected for the entire tip sample movement, the tip is then 
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vibrated at these chosen specific frequencies in order maximize the sampling range of the 

cantilever at each tip position. While this method promises to be quite useful for enhanced 

sampling, it requires signficant computational resources in order to perform real-time 

Fourier transformations and inverse Fourier transformations of the signal at each frequency 

at each tip sample distance.   

 The energy reconstruction techniques developed in this thesis promise to be very 

useful in the studying a wide variety of complicated energy landscapes with multiple 

barriers, be it biological phenomena such as ligand receptor binding or steep adhesive 

energy barriers seen in chemical interactions.  
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APPENDIX A: Brownian Reconstruction Routines 
 

These routines have been written in MATLAB software (Mathworks Inc., 
Natick, MA) 

 
% Main code 
clear all; 
T=300; % change to effective temperature 
constraint_stiffness=90; %pN/nm (this is probe stiffness) 
% change the following two values to the ranges of force curves that 
are being studied  
xmin=-2;  
xmax=25; 
txt_file_name_defl = 'defl_2_0V_pH3.txt'; % text data is in nm (change 
to file name) 
txt_file_name_pos = 'zpiezo_2_0V_pH3.txt'; % text data is in nm (change 
to file name) 
  
%% read text file data (can use flipud() to flip up to down) 
master_afm_defl=table2array(readtable(txt_file_name_defl)); % nm 
master_afm_pos=table2array(readtable(txt_file_name_pos)); % nm 
afm_defl=master_afm_defl(1:end); 
afm_pos=master_afm_pos(1:end); 
% cut off data to the range desired 
bool=afm_pos<xmax & afm_pos>xmin; 
afm_pos=afm_pos(bool); 
afm_defl=afm_defl(bool); 
afm_tsd_raw=afm_defl+afm_pos; 
  
%% Brownian parameters 
windowSize=2000; 
binWidth=0.01;%nm 
numBins=floor(range(afm_tsd_raw)/binWidth); 
numWindows=floor(length(afm_tsd_raw)/windowSize); 
  
%% divide the data into windows 
afm_defl=afm_defl(1:numWindows*windowSize); 
afm_pos=afm_pos(1:numWindows*windowSize); 
afm_tsd=afm_defl+afm_pos; 
  
%% Generate matrices for WHAM analysis 
for i=1:numWindows 
    x_data(i,:)=afm_tsd((i-1)*windowSize+1:i*windowSize); % convert um 
to nm for input to WHAM.m 
    x_constraint(i)=mean(afm_pos((i-1)*windowSize+1:i*windowSize)); % 
convert um to nm for input to WHAM.m 
end 
  
%% Call WHAM.m 
[rp,sp,std_ts]=WHAM(x_data,x_constraint',constraint_stiffness,numBins,T
); 
removed_energy=(rp==Inf); 
sp(removed_energy)=[]; 
rp(removed_energy)=[]; 
rp=rp*T/300; % normalized to 300K if effective temperature was used 
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rp=rp-rp(end); 
  
%% Plot the data 
figure('units','normalized','outerposition',[0 0 1 1]); 
fig1=figure(1); % plot potential data 
plot(sp,rp,'red','LineWidth',2); 
axis square; 
xlim([xmin xmax]); 
set(gca,'FontSize',50.4,'FontWeight','Bold','LineWidth',5); 
ylabel('Potential(k_bT)','FontSize',50.4,'FontWeight','Bold'); 
xlabel('Tip sample distance(nm)','FontSize',50.4,'FontWeight','Bold'); 
  
  
% ---- 
% WHAM 
% ---- 
  
% Parameters 
% Xs:      a WxS matrix containing X coordinate values, 
%          where W is the window and S is the step 
% Bxs:     a Wx1 vector containing the location of the 
%          umbrella window centers. 
% ks:      probe stiffness in pN/nm 
% num_bins:number of bins 
% T       : effective temperature 
  
% Outputs 
% rU:      the PMF 
% xspace:  a 1xB vector marking the edges of the bins along X, 
%          where B is the number of bins 
% 
function [rU,xspace] = WHAM(Xs,Bxs,ks,num_bins,T) 
KbT = 1.3806503E-2*T;     %%% energy unit, (pN nm) 
  
%%% Default range for X 
xspace = linspace(min(Xs(1:end)),max(Xs(1:end)),num_bins); 
xsp = xspace(2)-xspace(1); 
  
  
steps = size(Xs(1:end),2);  %%% total number of data points 
numsims = size(Bxs,1);      %%% number of windows 
numbins = size(xspace,2);   %%% number of bins 
  
%%% Histograms of data 
Hx_counts = histc(Xs',xspace); 
Hx = histc(Xs',xspace)/steps; 
  
%%% WHAM variables 
Fx_old = zeros(1,numsims);   %%% Free energy constants Fx_i 
Px = zeros(1,numbins);       %%% Probabilities from equation (8) 
  
%%% Variables tracking the progress of change 
Fprog = []; 
iter = 0; 
change = 0.05; 
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%%% WHAM iterations 
while change > 0.001 
    numPx = zeros(1,numbins);  
    denPx = zeros(1,numbins);  
    Px = zeros(1,numbins);     
    Fx = zeros(1,numsims);     
     
    %%% Calculate probabilities from free energies 
    for sim = 1:numsims 
        numPx = numPx + Hx(:,sim)'; 
        Ubias = 0.5*ks*((Bxs(sim)-(xspace+xsp/2)).^2); 
        denPx = denPx + sum(Hx(:,sim))*exp((Fx_old(sim)-Ubias)/KbT); 
    end 
    Px = numPx./denPx; 
    for sim = 1:numsims 
        Ubias = 0.5*ks*((Bxs(sim)-(xspace+xsp/2)).^2); 
        Fx(sim) = sum(Px.*exp(-Ubias/KbT)); 
    end 
    Fx = -KbT*log(Fx); 
    Fx(2:end) = Fx(2:end)-Fx(1); 
     
    Fx_old = Fx; 
     
    %%% Measure change in free energy constants 
    Fprog = [Fprog; Fx]; 
    if iter > 2 
        change = max(abs((Fprog(end-1,2:end)-Fprog(end,2:end)))); 
    end 
    iter = iter + 1; 
end 
  
%%% Set minima to zero 
rU = -log(Px); 
rU = rU - min(rU(1:end)); 
end 
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