
PROBABILISTIC ALGORITHMS FOR TRANSITION ALTITUDE

OPTIMIZATION IN BALLISTIC AIRDROP

A Thesis
Presented to

The Academic Faculty

by

Christopher J. Jumonville

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
August, 2016

COPYRIGHT© 2016 CHRISTOPHER J. JUMONVILLE

PROBABILISTIC ALGORITHMS FOR TRANSITION ALTITUDE

OPTIMIZATION IN BALLISTIC AIRDROP

Approved by:

Dr. Jonathan Rogers, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Jun Ueda
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Aldo Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: July 26, 2016

To those who could not finish the journey with me: Marie, Eulalie, Albert, Buck, Nester,
Roy, and Gabby

iv

ACKNOWLEDGEMENTS

 I would first like to thank my advisor, Dr. Jonathan Rogers. His mentoring and

guidance through this process was critical to the success of this thesis. He helped shape my

graduate experience, and I will be forever grateful for the opportunities he has given me.

 Adam Gerlach deserve special mention for his contributions to the software

implementation of the algorithm. I want to thank him for his patience and help.

I would also like to thank my thesis committee members, Dr. Jun Ueda and Dr. Aldo

Ferri, for graciously accepting my request. Their classes were instrumental in shaping my

graduate education, and I am happy they were able to serve on my committee.

 The iREAL lab members deserve special mention: Brady, Caroline, Jonathan, Kyle,

and Laura. I would like to thank them for providing all the help they have given me during

this last year and showing me that it is ok to feel lost at times.

 I would particularly like to thank my friends: Huong, Brian, Ben, Ahmed A., Ahmed

N., Benni, Caroline, Eui, Marius, Nadine, Thomas, and Xiashou. They made this stressful and

trying period of my life so much easier to get through with their welcomed distractions,

adventures, and support.

I would finally, and especially, like to thank my mother and father for always pushing

me to be the best person I can be. I feel extremely fortunate to have parents that are so

supportive of my goals and aspirations. Without their encouragement throughout these last 6

years, I never would have been able make it as far as I have.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

NOMENCLATURE xi

SUMMARY xiii

CHAPTER

1 Introduction 1

2 Simulation Framework 6

Parachute-Package Dynamics 6

Atmospheric Model 9

Uncertainty Model 10

Uncertainty Propagation 11

Software Workflow 12

3 Transition Altitude Optimization Algorithm 14

Joint Distribution Specification and Discretization 15

Boundary Value Solution 16

 Single Shooting Method 17

 Modified Simple Shooting Method 19

 Method Comparison 23

Uncertainty Propagation 27

Transition Altitude Optimization 29

4 Custom Scenario Creator 32

 vi

GUI Operation 32

 Draw Drop Zone Mode 33

 Road Network Mode 35

Scenario Computation 40

5 Results 51

PDF Back-Propagation Examples 51

Dispersion Reduction 54

Exclusion Regions 58

Probabilistic 𝑧𝑡
∗ Calculation 63

Complex Drop Zones 65

6 Conclusion 70

Future Work 70

APPENDIX A: Modified Simple Shooting Method Code Implementation 71

APPENDIX B: Dynamic Simulation Parameters 81

REFERENCES 82

 vii

LIST OF TABLES

Page

Table 3.1: Constant wind BVP comparison 25

Table 3.2: Wind stick BVP comparison 25

Table 3.3: 3D wind BVP comparison 26

Table 3.4: Bounds vs no bounds BVP comparison 26

Table 5.1: Impact statistics for cases 5-8 62

Table 5.2: Monte Carlo impact statistics for complex drop zone examples 69

Table B.1: Simulation parameter and uncertainty distribution values 81

 viii

LIST OF FIGURES

Page

Figure 1.1: The guided PADS being controlled during its descent 1

Figure 1.2: Unguided airdrop of humanitarian relief after the Haiti earthquake of 2010 2

Figure 2.1: HALO airdrop schematic 6

Figure 2.2: Software workflow 13

Figure 3.1: Probabilistic transition altitude optimization process 14

Figure 3.2: Examples of desired impact distributions 15

Figure 3.3: A visualization of the single shooting method 19

Figure 3.4: Visualization of the modified simple shooting method 20

Figure 3.5: Visualization of the modified simple shooting method 20

Figure 3.6: Custom realization of the MSSM showing the setup of the method 23

Figure 3.7: 𝑥-𝑦 marginalization process of joint PDF 28

Figure 3.8: Methodology for construction 𝜑𝑑(𝑧) from drogue descent trajectory
prediction 30

Figure 4.1: Custom Scenario Creator 33

Figure 4.2: Draw Drop Zone mode tools 34

Figure 4.3: Custom scenario created with Draw Drop Zone mode 34

Figure 4.4: Desired impact distribution created from the CSC showing the probability and
exclusion regions 35

Figure 4.5: Road Network mode tools 36

Figure 4.6: Road Network region of interest drawn on the map 36

Figure 4.7: Road network region of interest drawn on the map 37

Figure 4.8: Road network region with constant probability region, exclusion region, and
desired impact point at A 38

 ix

Figure 4.9: Desired impact distribution created from the CSC using a desired impact
point 39

Figure 4.10: Desired impact distribution created from the CSC using all roads weighed
equally 39

Figure 4.11: New road network region 40

Figure 4.12: Minimum distance matrix 41

Figure 4.13: Road cost matrix 42

Figure 4.14: Road cost matrix, oblique view 42

Figure 4.15: Modification of road data in image space 44

Figure 4.16: Total road network 44

Figure 4.17: Geodesic distance example 46

Figure 4.18: Geodesic cost 46

Figure 4.19: Comparison of different values of 𝛼, 𝛽, 𝛾, and 𝛿 for the same road
network 47

Figure 4.20: Final complex scenario 49

Figure 4.21: Final complex scenario, oblique view 49

Figure 5.1: Case 1 53

Figure 5.2: Case 2 53

Figure 5.3: Altitude vs downrange for example trajectories (Case 3 and 4) 55

Figure 5.4: 𝜑𝑑(𝑧) vs altitude for Case 4 56

Figure 5.5: Monte Carlo impact dispersion for fixed transition altitude case and optimized
transition altitude case 57

Figure 5.6: CEP vs altitude resolution and 𝑁 57

Figure 5.7: Wind magnitude vs altitude / Exclusion region geometry and line of control for
cases 5-8 59

Figure 5.8: Case 5 60

Figure 5.9: Case 6 60

Figure 5.10: Case 7 61

 x

Figure 5.11: Case 8 62

Figure 5.12: Case 9 64

Figure 5.13: Case 10 64

Figure 5.14: Road network and line of control for complex drop zone example 66

Figure 5.15: Inverse cost map for complex drop zone example 67

Figure 5.16: Monte Carlo impact locations, fixed transition altitude case 68

Figure 5.17: Monte Carlo impact locations, optimized transition altitude case 69

 xi

NOMENCLATURE

CARP Computed Air Release Point

HALO High-Altitude, Low-Opening

𝐼, �̂�, �̂� Unit vectors in North-East-Down frame

𝑥, 𝑦, 𝑧 Location of parachute-package system in North-East-Down frame

𝐶𝑑 Parachute drag coefficient

𝑆 Parachute reference area

𝜌 Air density

𝑔 Gravitational acceleration

𝑚 Parachute-package mass

𝑚𝑎 Apparent mass

𝑘𝑎 Apparent mass coefficient

𝑅 Parachute radius

�⃑� Parachute-package state vector

𝑤𝑥, 𝑤𝑦, 𝑤𝑧 Magnitude of wind in the 𝐼, �̂�, �̂� directions

�̅�𝑚𝑎𝑔 Mean wind magnitude

�̅�𝑑𝑖𝑟 Mean wind direction

𝑛𝑝 Number of uncertain parameters

𝜎𝑚𝑎𝑔, 𝜎𝑑𝑖𝑟 , 𝜎𝑐 Standard deviations in wind mag., wind dir., and drag coefficient

𝜑𝑃𝐼(𝑥, 𝑦) Desired impact distribution

𝜑𝑥𝑦(𝑥, 𝑦, 𝑧) 𝑥-𝑦 marginal probability density

𝜑𝑑(𝑧) Marginal PDF along predicted drogue trajectory

𝑠�̅� Discretized value of augmented state vector

 xii

𝑁 Number of points used in discretization of joint probability density

𝑝, 𝑞 Number of bins in 𝑥 and 𝑦 used during marginalization

𝑠𝑖 Guess vector in BVP method

𝑧𝑡 Transition altitude

𝑧𝑡,𝑚𝑖𝑛 , 𝑧𝑡,𝑚𝑎𝑥 Minimum and maximum allowed transition altitudes

𝑧𝑡
∗ Optimized transition altitude

𝑧𝑖𝑛𝑓 Inflation distance

�̇�𝑠𝑠 Quasi-steady-state descent rate under main parachute

CSC Custom Scenario Creator

𝐷 Distance matrix

𝑀 Minimum distance matrix

𝑅 Road cost map

𝐺 Geodesic cost map

𝐽 Final cost map

 xiii

SUMMARY

The development of a transition altitude optimization algorithm for ballistic airdrops

is detailed. Ballistic airdrops are unguided, high-altitude, low-opening cargo drops for military

or humanitarian purposes. Compared to their guided airdrop counterparts, unguided airdrops

are cheaper but have less accurate impact locations since the flight path of unguided airdrops

is not controlled. Because of their ability to be deployed in large quantities, efforts have been

taken to improve the impact dispersion of unguided airdrops. The algorithm described here

aims to increase accuracy and shape the impact dispersion while accounting for relevant

sources of uncertainty by optimizing the parachute-package system’s transition altitude, e.g.

the altitude of main parachute deployment.

A simulation framework that consists of the airdrop dynamic model, atmospheric air

density and wind model, and a parachute inflation model is generated. This framework serves

as a test bed for algorithm development and testing. Additionally, the creation of complex

impact distributions based on real-world map data is detailed. Nonlinear uncertainty

propagation is employed to back-propagate the impact distribution through space and time

from ground to airdrop altitude. This time-history of the impact distribution is leveraged for

the purposed of optimal transition altitude selection. Finally, example results are presented

and discussed.

1

CHAPTER 1

INTRODUCTION

 Airdrops are a standard technique for delivering various equipment to inaccessible

areas. Used in both military and humanitarian efforts, cargo is deployed from the aircraft and

allowed to safely descend to ground under a parachute. Depending on the mission

requirements, guided or unguided airdrops are used.

 Guided airdrops are used in cases where highly accurate and precise impacts are

required. For these situations, the parachutes are controlled by a mechanical system as the

package descends, as shown in Figure 1.1. This controllable flight path allows these guided

airdrops to excel in complex impact scenarios – such as hitting a specific target or avoiding

certain obstacles – and results in small impact dispersions. However, these guided airdrop

systems are often expensive and impractical for large numbers of drops [1]. The current state

of the art in guided airdrops is the Precision Airdrop System (PADS) [2-4]. The PADS control

system uses a model predictive framework in which a trajectory is propagated from the aircraft

release point to the desired ground impact location. While this system provides favorable

accuracy with respect to a desired impact location, the error dispersion cannot be shaped or

changed.

Figure 1.1: The guided PADS being controlled during its descent (Image credit:

http://www.defenseindustrydaily.com/jpads-making-precision-airdrop-a-reality-0678/)

http://www.defenseindustrydaily.com/jpads-making-precision-airdrop-a-reality-0678/

 2

 Unguided airdrop, also called ballistic airdrop, is used in cases where specific impacts

are unimportant, and an impact dispersion is preferable instead. For example, it might be

desirable to land packages anywhere between a forward operating base and a body of water,

i.e. as long as the package does not hit some exclusion region, it does not matter where it lands.

While not as accurate as guided airdrops, these unguided airdrops utilize knowledge of the

atmosphere, parachute dynamics, and aircraft state to compute an air release point that allows

packages to land in a desired location. Because unguided airdrops are less expensive and able

to handle large numbers of drops at once, it is desirable to increase the impact accuracy. An

example of unguided airdrops is shown in Figure 1.2.

Figure 1.2: Unguided airdrop of humanitarian relief after the Haiti earthquake of

2010 (Image credit: http://media.defense.gov/2010/Jan/19/2000402702/-1/-1/0/100118-F-4177H-

657.JPG)

 There have been many previous attempts to improve ballistic airdrop accuracy.

Avenues explored include minimizing the primary sources of uncertainty by using high

 3

resolution wind modeling systems [5-6], increasing the fidelity of the dynamic models that

compute the CARP [7-8], and accounting for the coupled aircraft-package dynamics and

relating the drag characteristics of the package to its inertial properties [9]. Unfortunately,

wind and atmospheric uncertainties play a large role in airdrop impact accuracy and dispersion,

and higher fidelity dynamic models cannot account for this. Additionally, current mission

planning techniques [2-4] rely on a single desired impact point and cannot control the shape

of the unavoidable dispersion error.

 High Altitude, Low Opening (HALO) airdrops are considered as the ballistic airdrop

scheme in this paper. When released from the aircraft, the package descends under a drogue

parachute until it reaches the determined transition altitude. The drogue then detaches from

the parachute-package system, and the main parachute deploys and inflates, significantly

slowing the package’s descent to ground. The transition altitude is pre-programmed in current

systems. By altering the transition altitude, the package impact location is moved along a “line

of control” that is determined by wind conditions [10]. Thus, controlling the transition altitude

can control the package impact location along this line of control.

 Being able to specify an impact distribution affords the ability to account for various

complex impact scenarios. This specification of an impact distribution proves advantageous

in increasing the accuracy of ballistic airdrops. However, due to the multivariate uncertainty,

the Computed Air Release Point (CARP) calculation must now take into account the desired

impact distribution, i.e. use the desired impact distribution as an input to the mission planner

instead of as an output as in current mission planners. The proposed solution described in

this paper is as follows: given a desired impact distribution or cost map on the ground and

knowledge of winds in a specific volume, an airdrop package selects an optimized transition

altitude that allows the package to impact on a given target with the only control input being

the main parachute deployment, i.e. the transition altitude is treated as a single-use control

input.

 4

 The transition altitude optimization is accomplished in 4 main steps. First, a desired

impact distribution or cost map that would result in the ideal impact dispersion pattern at

ground is specified. This impact distribution is then combined with model uncertainty and

wind uncertainty to produce a joint probability density function (PDF) at ground. Next, this

PDF is propagated backwards through time using the Stochastic Liouville Equation (a

simplified form of the Fokker-Planck Equation) [11], a method of nonlinear uncertainty

propagation. This now provides a time-history of the PDF from the ground to the drop

altitude. Next, the PDF at altitude is analyzed to pick the CARP and aircraft heading, a process

beyond the scope of this thesis (a full description of this procedure can be found in [12]).

Finally, the intermediate PDFs are analyzed in real-time as the package falls under drogue

descent to determine the best transition altitude for the main parachute in order to reduce

dispersion error. The selection of the transition altitude is based on various criteria discussed

in Chapter 3 and is repeated in a feedback manner during drogue descent to reduce the effects

of trajectory prediction errors.

 This thesis presents the following contributions to the transition altitude optimization

algorithm scheme: implementation and validation of the simulation framework, exploration

of different boundary value problem (BVP) solution methods for trajectory generation in the

uncertainty propagation procedure, and creation of the Custom Scenario Creator tool for

producing complex desired impact distributions. To contextualize these contributions,

previous research from [9], [12], and [23] is used as a base of understanding.

 The thesis is outlined as follows. The simulation framework is first explored in

Chapter 2. This includes the derivation of the parachute-package dynamic model.

Atmospheric and uncertainty models are also introduced in this section. Chapter 3 begins the

description of the proposed transition altitude optimization algorithm, detailing the steps of

the scheme. A detailed description of alternative boundary value problem solution methods

is provided in this section. A tool for creating complex desired impact distribution and inverse

cost maps in presented in detail in Chapter 4. Development of this tool was vital in producing

 5

real-world scenarios. Chapter 5 presents the results of the proposed algorithm for a variety of

example cases involving spatially varying winds, exclusion regions, and complex impact

distributions. Finally, Chapter 6 provides the conclusion and a look at future work in this

topic.

 6

CHAPTER 2

SIMULATION FRAMEWORK

 In this section, the simulation framework is detailed, starting first with the derivation

of the parachute-package dynamics. Descriptions of the atmospheric and uncertainty models

then follow, and a brief discussion of the nonlinear uncertainty propagation process is

described. Finally, the software workflow of the simulation framework is briefly described.

Parachute-Package Dynamics

 A HALO ballistic airdrop refers to the high altitude package deployment and low

altitude during main parachute inflation, as shown in Figure 2.1. It is assumed that the drogue

parachute inflates instantly upon package deployment and that the parachute-package system

reaches a quasi-steady-state descent at the stabilization point. After reaching a pre-computed

transition altitude, 𝑧𝑡, the drogue parachute detaches from the package, and the main

parachute is deployed. The parachute-package system then enters another quasi-steady-state

decent under the main parachute until ground impact at point PI.

Figure 2.1: HALO Airdrop Schematic

 7

 In deriving the dynamics of the parachute-package system, an inertial North-East-

Down coordinate system is used with the package center of mass position given as,

 𝑟𝐶/𝑂 = 𝑥𝐼 + 𝑦𝐽 + 𝑧�̂� (1)

where the inertial coordinate system is denoted with 𝐼, 𝐽, and �̂�. Starting from a simple drag

equation, the drag force on the parachute-package system is determined as,

 �⃑�𝐷 =
1

2
𝜌𝑆𝐶𝑑‖�⃑⃑�𝑟𝑒𝑙‖�⃑⃑�𝑟𝑒𝑙 (2)

where 𝜌 = 𝑓(𝑥, 𝑦, 𝑧) is the air density at the current point, 𝑆 is the parachute reference area

(i.e. a circle with the same radius as the parachute), 𝐶𝑑 is the parachute coefficient of drag, and

�⃑⃑�𝑟𝑒𝑙 is the velocity of the parachute-package system relative to the wind in the inertial frame,

 �⃑⃑�𝑟𝑒𝑙 = [

�̇� − 𝑤𝑥
�̇� − 𝑤𝑦
�̇� − 𝑤𝑧

] = �⃑�𝑝 − �⃑�𝑤 (3)

with �⃑�𝑤 = 𝑤𝑥𝐼 + 𝑤𝑦𝐽 + 𝑤𝑧�̂� being the wind velocity and �⃑�𝑝 = �̇�𝐼 + �̇�𝐽 + �̇��̂� being the

parachute-package system velocity.

 The air mass captured by the parachute presents non-negligible effects on the

parachute-package system. This mass, called the apparent mass 𝑚𝑎, is commonly

approximated as the volume of air mass enclosed by a sphere that has the same radius as the

parachute reference area,

 𝑚𝑎 =
4

3
𝑘𝑎𝜌𝜋𝑅

3 (4)

where 𝑅 is the parachute radius and 𝑘𝑎 is the apparent mass coefficient [9]; 𝑘𝑎 is determined

by the parachute geometry and porosity.

 Because the parachute-package system mass is changing during flight due to the

apparent mass, Newton’s Second Law cannot be applied solely to the parachute-package

system. Instead, define a control volume around the parachute-package system with the

following assumptions: (a) the air in the apparent mass volume is moving at the same velocity

 8

as the package, and (b) the air outside of the apparent mass volume is moving at the same

velocity as the wind field. Newton’s Second Law is now applied to this control volume,

 �⃑�𝐷 +𝑚�⃑� =
𝑑

𝑑𝑡
[𝑚𝑒𝑥𝑡�⃑�𝑤 + (𝑚 +𝑚𝑎)�⃑�𝑝] (5)

where 𝑚𝑒𝑥𝑡 is the air mass in the control volume but outside of the apparent mass volume,

and the derivative is taken in the inertial frame. Additionally, note that the weight of the

apparent mass is cancelled by its buoyancy, and therefore, the term is not in the equation.

Substituting 𝑚𝑖𝑛𝑡 = 𝑚 +𝑚𝑎 into Eq. (5) and expanding the derivative yields,

 �⃑�𝐷 +𝑚�⃑� = �̇�𝑒𝑥𝑡�⃑�𝑤 +𝑚𝑒𝑥𝑡 �̇⃑�𝑤 + �̇�𝑖𝑛𝑡�⃑�𝑝 +𝑚𝑖𝑛𝑡 �̇⃑�𝑝 (6)

Knowing �̇�𝑒𝑥𝑡 = −�̇�𝑎 and assuming �̇⃑�𝑤 = 0,

 �⃑�𝐷 +𝑚�⃑� = −�̇�𝑎�⃑�𝑤 + �̇�𝑎�⃑�𝑝 +𝑚𝑖𝑛𝑡 �̇⃑�𝑝 (7)

 �⃑�𝐷 +𝑚�⃑� = �̇�𝑎(�⃑�𝑝 − �⃑�𝑤) + (𝑚 +𝑚𝑎)�̇⃑�𝑝 (8)

From Eq. (4), the time derivative can be computed,

 �̇�𝑎 = 4𝑘𝑎𝜌𝜋𝑅
2�̇� (9)

where the assumption is made that the contributions from �̇� are negligible to the parachute-

package weight. Substituting Eq. (2), Eq. (3), and Eq. (9) into Eq. (8), �̇⃑�𝑝 can be solved for,

1

2
𝜌𝑆𝐶𝑑‖�⃑⃑�𝑟𝑒𝑙‖�⃑⃑�𝑟𝑒𝑙 +𝑚�⃑� = 4𝑘𝑎𝜌𝜋𝑅

2�̇��⃑⃑�𝑟𝑒𝑙 + (𝑚 +𝑚𝑎)�̇⃑�𝑝 (10)

 �̇⃑�𝑝 = [
𝜌𝑆𝐶𝑑‖�⃑⃑�𝑟𝑒𝑙‖ − 8𝑘𝑎𝜌𝜋𝑅

2�̇�

2(𝑚 +𝑚𝑎)
] �⃑⃑�𝑟𝑒𝑙 +

𝑚

𝑚 +𝑚𝑎
�⃑� (11)

Expanding this equation for clarity yields the equations of motion,

 [
�̈�
�̈�
�̈�
] =

𝜌𝑆𝐶𝑑‖�⃑⃑�𝑟𝑒𝑙‖ − 8𝑘𝑎𝜌𝜋𝑅
2�̇�

2(𝑚 +𝑚𝑎)
[

�̇� − 𝑤𝑥
�̇� − 𝑤𝑦
�̇� − 𝑤𝑧

] +
𝑚

𝑚 +𝑚𝑎
[
0
0
𝑔
] (12)

From [9], the rate of change of the parachute radius is given by,

 �̇�(𝑡) =
6𝑅0(1 − 𝜂)

𝑡0
6

[(1 − 𝜂)𝑡5 + 𝜂𝑡0
3𝑡2] (13)

 9

where 𝑅0 is the fully inflated parachute radius, 𝑡0 is the parachute opening time, and 𝜂 is “the

ratio of projected mouth area at line stretch to the steady-state projected frontal area” [9]. The

parachute opening time 𝑡0 is modeled base on experimental data as,

 𝑡0 = (
0.339

0.121 − 𝐶𝑒𝑓𝑓
)
2𝑅0
𝑉𝑆

 (14)

where 𝐶𝑒𝑓𝑓 is the parachute effective porosity and 𝑉𝑆 is the snatch velocity of the parachute

deployment [9]. Similarly, 𝜂 is modeled experimentally as,

 𝜂 =

√
𝑆
𝑆0
− (

𝑡
𝑡0
)
3

1 − (
𝑡
𝑡0
)
3 (15)

where 𝑆0 is the fully inflated parachute reference area and 𝑆 is the instantaneous parachute

reference area based on the current radius [9].

 By substituting Eq. (13), Eq. (14), and Eq. (15) into Eq. (12), a system of nonlinear

ordinary differential equations is produced that is solved numerically with a 4th order Runge-

Kutta integrator. The parachute-package system state vector is constructed as,

 �⃑� = [𝑥 𝑦 𝑧 �̇� �̇� �̇�]𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]
𝑇 (16)

and thus,

 �̇⃑� = [�̇�1 �̇�2 �̇�3 �̇�4 �̇�5 �̇�6]
𝑇 = [𝑥4 𝑥5 𝑥6 �̇�4 �̇�5 �̇�6]

𝑇 (17)

Atmospheric Model

 Three-dimensional wind field data from Weather Research and Forecasting (WRF), an

atmospheric prediction and modeling tool, is examined [29]. This model gives three-

dimensional wind vectors on a grid of (𝑥, 𝑦, 𝑧) locations, which can then be interpolated to

determine the wind at any point on an airdrop trajectory.

 Although referenced above, the wind vector at a given (𝑥, 𝑦, 𝑧) is now defined as,

 �⃑�𝑤(𝑥, 𝑦, 𝑧) = �⃑⃑⃑�(𝑥, 𝑦, 𝑧) = 𝑤𝑥𝐼 + 𝑤𝑦𝐽 + 𝑤𝑧�̂� (18)

The wind azimuth angle is simply defined as,

 10

 �̅�𝑑𝑖𝑟 = tan
−1(𝑤𝑦/𝑤𝑥) (19)

and the wind magnitude simply as,

 �̅�𝑚𝑎𝑔 = ‖�⃑⃑⃑�‖ = √𝑤𝑥2 + 𝑤𝑦2 + 𝑤𝑧2 (20)

Finally, instead of using a spatially-varying air density model, a simpler model is used instead

where the air density varies as a function of altitude [13],

 𝜌(𝑧) = 1.2257 x (1.0 + 0.00002257𝑧)4.258 (21)

Should a more complex model be desired, this computation can simply be replaced in the

algorithm.

Uncertainty Model

 For aerospace vehicles, wind uncertainty is normally modeled using the high-fidelity

Dryden gust and turbulence model [14]. However, uncertainty propagation with this model

can present several computational difficulties [15-16]. Therefore, the wind uncertainty is

simplified by assuming the wind errors are a perturbation to the total magnitude, Eq. (20), and

direction, Eq. (19), and are uniform across the entire wind field. Thus, the wind magnitude

and direction becomes,

 𝑤𝑚𝑎𝑔(𝑥, 𝑦, 𝑧) = �̅�𝑚𝑎𝑔 ∗ �̂�𝑚𝑎𝑔 (22)

 𝑤𝑑𝑖𝑟(𝑥, 𝑦, 𝑧) = �̅�𝑑𝑖𝑟 + �̂�𝑑𝑖𝑟 (23)

with the wind magnitude uncertainty and wind direction uncertainty terms defined as,

 �̂�𝑚𝑎𝑔 = 𝒩(1, 𝜎𝑚𝑎𝑔) = 1 ± 𝜎𝑚𝑎𝑔 (24)

 �̂�𝑑𝑖𝑟 = 𝒩(0, 𝜎𝑑𝑖𝑟) = 0 ± 𝜎𝑑𝑖𝑟 (25)

where 𝒩(∗,∗) is the normal distribution.

 Another major source of error comes from uncertainty of the dynamic model, which

is manifested as uncertainty of the drag coefficient of the main parachute. Note that the drag

coefficient of the drogue parachute does not present appreciable uncertainties since the

transition altitude optimization algorithm is used in a feedback manner, i.e. the optimal

 11

transition altitude is continually recomputed during the drogue descent. Similar to the wind

uncertainty, the drag coefficient error is assumed as a perturbation to the mean value,

 𝐶𝑑 = 𝒩(𝐶�̅�, 𝜎𝑐) = 𝐶�̅� ± 𝜎𝑐 (26)

Since wind and dynamic model uncertainty account for most of the impact error of

ballistic airdrops [17], the uncertainty model focuses only on these areas.

Uncertainty Propagation

 Monte Carlo simulation is normally used as the standard method of uncertainty

propagation in airdrop computation because of its ease of implementation and lack of

alternative methods. By simulating a large number of trajectories from randomly sampled

initial conditions, a history of the uncertainty evolution can be built. However, Monte Carlo

methods break down for high-dimensional systems: computationally scalability is difficult to

achieve [18]; implementation of necessary Markov Chain Monte Carlo methods is non-trivial

[19]; and uncoherent quantification of uncertainty evolution [20-21] (i.e. the PDF cannot be

examined at regular time intervals) present themselves.

 Instead, a direct method of uncertainty propagation is used whereby the PDF

transport equation is solved directly compared to approximating the solution from various

samples. The Fokker-Planck-Kolmogorov (FPK) equation is the general PDF transport

equation that describes the time evolution of the joint probability density over the state space

[22]. However, a solution to the FPK is largely computationally intractable expect for low-

dimensional problems because it is a partial differential equation in the number of dimensions

of the state space [15-16]. This problem is mitigated by reducing the FPK equation to the

Stochastic Liouville Equation (SLE) by neglecting noise in the system and only considering

parametric uncertainty. The SLE is a quasi-linear partial differential equation that is first order

in both time and space.

 While the full derivation of the SLE is beyond the scope of this thesis, it is noted that

the SLE can be reduced to an ordinary differential equation of the form,

 12

𝑑𝜑(�⃑�, 𝑡)

𝑑𝑡
= −𝜑(�⃑�, 𝑡)𝛹(�⃑�(𝑡)) (27)

along a trajectory of the dynamic system where 𝝋(�⃑⃑⃑�, 𝒕) is the time-varying joint PDF of the

augmented state �⃑⃑⃑� = [�⃑⃑⃑� �⃑⃑⃑�]𝑻 with �⃑⃑⃑� ∈ ℝ𝒏𝒔 and the parameter vector 𝒑⃑⃑⃑⃑ ∈ ℝ𝒏𝒑 . 𝚿(�⃑⃑⃑�(𝒕)) is

the trace of the Jacobian of 𝒉(�⃑⃑⃑�, �⃑⃑⃑�) evaluated at �⃑⃑⃑�(𝒕) defined as,

 Ψ(�⃑�(𝑡)) ≡∑
𝜕ℎ𝑖
𝜕𝑥𝑖

 |
�⃑�(𝑡)

𝑛𝑠

𝑖=1

 (28)

where �̇⃑⃑⃑� = 𝒉(�⃑⃑⃑�, �⃑⃑⃑�). Eq. (27) is then numerically integrated from an initial condition 𝝋𝟎.

 Since the ODE form of the SLE is valid only along a trajectory of the dynamic system,

Eq. (12) must be numerically integrated followed by Eq. (27) for each parachute-package

system trajectory. To compute the time and space evolution of the entire PDF, the initial joint

density 𝝋𝟎 must first be discretized across the uncertainty space; this creates an ensemble of

initial conditions for the SLE at ground. From these discretized initial conditions, trajectories

are propagated to package drop altitude through a boundary value problem (BVP) solver. The

SLE is then computed along these trajectories, resulting in a time-varying joint PDF from

ground to package drop altitude. For a full description and analysis of this procedure, the

reader is directed to [23].

Software Workflow

 The software workflow is shown in Figure 2.2. A full parachute dynamics simulation

is implemented in MATLAB, including the inflation model and uncertainty model described

above. The parachute simulation requires as input an initial condition, a wind model, and

simulation parameters. The wind model can take the form of constant winds, wind stick data,

or 3D wind fields. The simulation parameters including data logging and the ability to turn

off the transition altitude optimization algorithm, among others. The mission planner and

transition altitude optimization are discussed in Chapter 3.

 13

Figure 2.2: Software workflow

The path of execution is as follows. A wind model, propagation model, terrain model,

and desired impact distribution are used as input to the mission planner. The mission planner

then computes the marginal 𝒙-𝒚 probability densities. The transition altitude optimization

takes the marginal densities and determines the optimal transition altitude 𝒛𝒕
∗. These two

processes are detailed in Chapter 3. As the parachute-package system dynamics are simulated

from drop altitude to ground, the transition altitude optimization receives the current state

vector of the parachute-package system at some specified frequency. This simulates the

transition altitude optimization algorithm receiving state data from onboard sensors in a real-

world application. The parachute dynamics simulation then checks the transition altitude

value. When the parachute-package system has descended to or below the transition altitude,

the main parachute is deployed. A full state time-history is produced upon ground impact.

 14

CHAPTER 3

TRANSITION ALTITUDE OPTIMIZATION ALGORITHM

 The overall transition altitude optimization scheme is shown in Figure 3.1. The offline

mission planner procedure follows. First, a desired impact distribution is specified. Next, the

joint probability density is created and discretized at ground, i.e. the joint PDF at ground is

now known. For each discretized point in the ground PDF, a BVP is solved to produce the

package trajectory from the maximum transition altitude to ground impact. Back-propagating

the SLE along each trajectory then yields the joint PDF for discrete locations along the

trajectory. The 𝒙-𝒚 marginal density at discrete altitudes is then computed, producing “slices”

of the joint PDF. These “slices” are then stored on the package for onboard computation of

the transition altitude optimization.

Figure 3.1: Probabilistic transition altitude optimization process

 15

 The onboard procedure now follows. A maximum transition altitude 𝒛𝒕,𝒎𝒂𝒙 and

minimum transition altitude 𝒛𝒕,𝒎𝒊𝒏 (i.e. maximum and minimum altitudes that the main

parachute can deploy) are set. Using position and velocity feedback, the drogue descent

trajectory is predicted from its current altitude down to 𝒛𝒕,𝒎𝒊𝒏. The marginal PDF along this

trajectory is then computed, and the optimal transition altitude 𝒛𝒕
∗ based on various criteria is

selected. The determination of 𝒛𝒕
∗ is then repeated in a feedback loop as the descent continues.

Once the package altitude drops to or below 𝒛𝒕
∗, the main parachute deploys. These individual

steps are examined in the sections below.

Joint Distribution Specification and Discretization

 A desired impact distribution, denoted 𝜑𝑃𝐼(𝑥, 𝑦), is required as input to the

algorithm. This distribution is a normalized function of 𝑥 and 𝑦, taking the form of an impact

probability density or an inverse cost map (i.e. high cost regions represent desired landing

regions and lost cost regions represent regions to avoid). Examples of desired impact

distributions include 2D uniform distributions, Gaussian distributions, or complex

distributions based on arbitrary map data, as seen in Figure 3.2.

Figure 3.2: Examples of desired impact distributions

 16

 Once a desired impact distribution is achieved, the joint probability density can be

computed. Comprised of the uncertainty distribution of the desired impact point and the

uncertainty distributions for the 𝑛𝑝 uncertain parameters, the joint probability density at the

ground 𝜑0 is the product density of the parametric uncertainty distributions and impact

distribution,

 𝜑0 = 𝜑𝑃𝐼(𝑥, 𝑦)∏𝜑𝑖(𝑝𝑖)

𝑛𝑝

𝑖=1

 (29)

where 𝜑𝑖(𝑝𝑖) is the uncertainty distribution associated with the 𝑖𝑡ℎ uncertain parameter. Note

that it is assumed all of the uncertainty distributions are uncorrelated at the ground impact

time. Additionally, the uncertainty distributions for the uncertainty parameters may take the

form of any valid probability distribution function.

 The ground joint probability density is then discretized into 𝑁 vectors of 𝑛𝑝 +

2 dimension, where 𝑁 is the number of points in the desired impact distribution. The

𝑖𝑡ℎ discretized vector in the uncertainty space is denoted 𝑠�̅�, where 𝑠�̅� ∈ 𝑅
𝑛𝑝+2 and 𝑖 ∈ [1, 𝑁].

Therefore, the discretization process results in 𝑁 vectors 𝑠�̅� and 𝑁 associated probability

values. The 𝑠�̅� vectors are referred to as “samples” throughout the rest of the thesis. Note,

however, that these samples are not drawn randomly from the underlying distributions as in

Monte Carlo, but are points in the discretized uncertainty space.

Boundary Value Solution

 To solve the SLE as described in Eq. (27), trajectories of the dynamic system must

first be generated for each sample 𝑠𝑖
̅ . While the impact point of a particular sample is known

from the discretization process of the desired impact distribution, the trajectory of the sample

– using that particular sample’s realization of the uncertain parameters – is unknown. The

trajectory of the parachute-package system is computed from 𝑧 = 0 to 𝑧 = 𝑧𝑡,𝑚𝑎𝑥 under the

 17

main parachute dynamics. This trajectory generation problem is a two-point boundary value

problem (BVP) that is formulated as,

Given 𝑠�̅� and initial state values of the system at 𝑧𝑡,𝑚𝑎𝑥 as,

{

𝑧(𝑡0) = 𝑧𝑡,𝑚𝑎𝑥 = 𝑧0

�̇�(𝑡0) = 𝑤𝑚𝑎𝑔(𝑥0, 𝑦0, 𝑧𝑡,𝑚𝑎𝑥) 𝑐𝑜𝑠 (𝑤𝑑𝑖𝑟(𝑥0, 𝑦0, 𝑧𝑡,𝑚𝑎𝑥)) = �̇�0

�̇�(𝑡0) = 𝑤𝑚𝑎𝑔(𝑥0, 𝑦0, 𝑧𝑡,𝑚𝑎𝑥) 𝑠𝑖𝑛 (𝑤𝑑𝑖𝑟(𝑥0, 𝑦0, 𝑧𝑡,𝑚𝑎𝑥)) = �̇�0

�̇�(𝑡0) = �̇�𝑠𝑠 = �̇�0

find the package position 𝑥(𝑡0) = 𝑥0, 𝑦(𝑡0) = 𝑦0 subject to the dynamics

in Eq. (12)

(30)

where the initial time 𝑡0 = 0 is defined such that 𝑧(𝑡 = 𝑡0) = 𝑧𝑡,𝑚𝑎𝑥, 𝑥0 and 𝑦0 are the

package positions at 𝑧𝑡,𝑚𝑎𝑥, and �̇�𝑠𝑠 is the quasi-steady-state parachute-package descent speed

under the main parachute given by [30],

 �̇�𝑠𝑠 = √
2𝑚𝑔

𝜌(𝑧)𝐶𝑑𝑆
 (31)

 Due to the larger number of samples, it is important to have an efficient BVP solver.

A single shooting method (SSM) is currently used for solving BVPs in the existing mission

planner. Its convergence failure rate in 3D wind fields is higher than desired, thus necessitating

a more robust method; the SSM is thus compared with a more robust method, the modified

simple shooting method (MSSM), below.

Single Shooting Method

 The single shooting method for solving boundary value problems transforms the BVP

into an initial value problem (IVP). For the trajectory generation in Eq. (30), there are 𝑛 = 6

total states and 𝑚 = 4 known states at the initial condition 𝑡0. Thus, there are 𝑛 −𝑚 = 2

unknown states that must be “guessed”, the initial 𝑥 and 𝑦 positions of the parachute-package

system at drop altitude 𝑧𝑡,𝑚𝑎𝑥. The fully complete initial state vector �⃑�(𝑡0) is then used as

the initial condition to the dynamic system, and the system is integrated to ground impact at

 18

time 𝑡𝑓. The error between the desired impact point (𝑥𝑑 , 𝑦𝑑) and the actual impact point

(𝑥𝑎, 𝑦𝑎) is computed. Based on this error, a damped Newton-like Method is used to reduce

the error to 0 and generate a new guess for 𝑥0 and 𝑦0 using an adaptive damping factor 𝜆. The

BVP solution algorithm proceeds as follows:

(1) Choose initial guesses for 𝑥𝑘 and 𝑦𝑘 to complete the intial state vector �⃑�(𝑡0) =

[𝑥𝑘 𝑦𝑘 𝑧0 �̇�0 �̇�0 �̇�0]
𝑇as the initial conditions, initialize iteration counter 𝑘 to 0,

and choose the error tolerance for solving completion as 휀 > 0

(2) Integrate the dynamic system of Eq. (12) to ground impact

(3) Compare the distance between the actual impact point and desired impact point [
∆𝑥
∆𝑦
] =

[
𝑥𝑎 − 𝑥𝑑
𝑦𝑎 − 𝑦𝑑

] and compute an error formulation 𝑒𝑘+1 = ∆𝑥2 + ∆𝑦2

(4) If 𝑒𝑘+1 < 휀, break out of solver; otherwise, continue to step (5)

(5) (Only compute this step if 𝑘 > 0) If 𝑒𝑘+1 < 𝑒𝑘, increase 𝜆 by a small amount; otherwise,

decrease 𝜆 by a small amount

(6) Determine a new guess using, [
𝑥𝑘+1
𝑦𝑘+1

] = [
𝑥𝑘
𝑦𝑘
] − 𝜆 [

∆𝑥
∆𝑦
]

(7) Increment 𝑘

(8) Return to step (2)

 This method is illustrated in Figure 3.3. The SSM is advantageous because it is easy

to implement and fast to compute, but may fail to converge without a good starting guess in

some wind fields.

 19

Figure 3.3: A visualization of the single shooting method, where it takes three

iterations to get close to the final boundary conditions [25]

Modified Simple Shooting Method

 The modified simple shooting method begins similar to the SSM in that the BVP is

transformed to an IVP and initial guesses must be chosen. The notion of a “reference path”

is introduced. The reference path 𝑟(𝑡) is a Lipschitz continuous function from the initial

conditions to the final conditions such that 𝑟(𝑡0) = �⃑�0 and 𝑟(𝑡𝑓) = �⃑�𝑓; in most cases, a line

from initial conditions to final conditions is used as the reference path. Bounds of width

휀𝑏 are placed around the reference path. As the system is integrated, violations of these

boundaries are checked. If the system does go out of bounds, the integration is stopped

at 𝑡𝑣𝑖𝑜𝑙𝑎𝑡𝑒. The MSSM then enters another iteration loop to correct the guessed parameters

using a modified Newton Method. In this correction iteration, the system is only integrated

to 𝑡𝑣𝑖𝑜𝑙𝑎𝑡𝑒. Once the system is within a certain tolerance 휀 of the reference path at 𝑡𝑣𝑖𝑜𝑙𝑎𝑡𝑒,

the correction iteration stops, and the system is integrated until another boundary violation

occurs or the final condition is successfully reached. This procedure is illustrated in Figure

3.4, where “shot 1” (green) uses 3 corrections, shot 2 (red) uses 3 corrections, and shot 3 (blue)

uses 2 corrections; the reference path is the solid black line from (𝑎, 𝛼) to (𝑏, 𝛽). In Figure

 20

3.5 the reference path and bounds are more clearly illustrated; the reference path is the dashed

black line from (0,1) to (1,2) and the bounds are shown as dashed green lines. A full

description of the MSSM is provided in [24] and [25].

Figure 3.4: Visualization of the modified simple shooting method [25]

Figure 3.5: Visualization of the modified simple shooting method

 Unfortunately, the BVP in Eq. (30) is not formulated in the exact manner for which

the MSSM was defined in reference [25]. However, some small modifications to the method

 21

result in a formulation that is more applicable to the BVP considered here. First, 𝑧 is chosen

as the independent variable. Next, instead of a reference path from 𝑧0 to 𝑧𝑓, a constant desired

value is used. Finally, the parallel bounds are replaced by bounds that continuously shrink as

they approach the final condition. These modifications are shown in Figure 3.6, where the

desired 𝑥 value is 2000 m, the desired 𝑦 is 3000 m, 𝑧0 is -1000 m, 𝑧𝑓 is 0 m (i.e. ground), and

the bounds decrease from an 휀𝑏 of 10,000 m at the initial conditions to 20 m at the final

conditions. The remaining solving conditions and methods are kept the same as in the

standard MSSM. Thus, the final algorithm proceeds as follows:

(1) Choose initial guesses for 𝑥𝑘,𝑐 and 𝑦𝑘,𝑐 to complete the intial state vector �⃑�(𝑡0) =

[𝑥𝑘,𝑐 𝑦𝑘,𝑐 𝑧0 �̇�0 �̇�0 �̇�0]
𝑇
as the initial conditions, define initial conditions guesses as

𝑠𝑘,𝑐 = [
𝑥𝑘,𝑐
𝑦𝑘,𝑐

] and thus the initial guess associated with “shot” 1as 𝑠1,0 = [
𝑥1,0
𝑦1,0

],

initialize iteration counter 𝑘 to 1, initialize correction counter 𝑐 to 0, and choose the error

tolerance for solving completion as 휀 > 0

(2) Integrate the dynamic system of Eq. (12) until a boundary is violated

(3) If no boundary is violated (i.e. the system stayed in bounds all the way to ground impact), go

to step (8); otherwise, stop integration at the boundary violation, now called 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒, and

continue to step (4)

(4) Compute a “correction” guess using a modified or damped Newton Method,

𝑠𝑘,𝑐+1 = 𝑠𝑘,𝑐 − 𝜆(𝐷𝐹)
−1𝐹

 where 𝜆 is the adaptive damping factor, 𝐷𝐹 is the Jacobian, and 𝐹 is the error between

actual and desired position.

a. The Jacobian is defined,

𝐷𝐹 =

[

𝜕𝑥𝑓

𝜕𝑥𝑖

𝜕𝑥𝑓

𝜕𝑦𝑖
𝜕𝑦𝑓

𝜕𝑥𝑖

𝜕𝑦𝑓

𝜕𝑦𝑖]

 22

∴ 𝐷𝐹 = [

1

2ℎ
[𝑥𝑓(𝑥𝑖 + ℎ, 𝑦𝑖) − 𝑥𝑓(𝑥𝑖 − ℎ, 𝑦𝑖)]

1

2ℎ
[𝑥𝑓(𝑥𝑖 , 𝑦𝑖 + ℎ) − 𝑥𝑓(𝑥𝑖 , 𝑦𝑖 − ℎ)]

1

2ℎ
[𝑦𝑓(𝑥𝑖 + ℎ, 𝑦𝑖) − 𝑦𝑓(𝑥𝑖 − ℎ, 𝑦𝑖)]

1

2ℎ
[𝑦𝑓(𝑥𝑖 , 𝑦𝑖 + ℎ) − 𝑦𝑓(𝑥𝑖 , 𝑦𝑖 − ℎ)]

]

where the notation 𝑥𝑓(𝑥𝑖 + ℎ, 𝑦𝑖) represents the final 𝑥-position of the system at

altitude 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒 using 𝑥𝑖 + ℎ and 𝑦𝑖 as guesses to complete the initial conditions.

Thus, four additional integrations are computed from 𝑧0to 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒: one for each

variation of guesses.

b. The error is defined, 𝐹 = [
𝑒𝑥
𝑒𝑦
] = [

𝑥𝑎 − 𝑥𝑑
𝑦𝑎 − 𝑦𝑑

] where 𝑥𝑎 is the actual 𝑥-position

of the system at 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒 and 𝑥𝑑 is the desired impact 𝑥-position (and also the

reference path)

c. The damping factor 𝜆 is defined according to the increasing or decreasing of a scalar

error. Compute an error formulation 𝑒𝑐+1 = 𝑒𝑥
2 + 𝑒𝑦

2. If 𝑒𝑐+1 < 𝑒𝑐,

increase 𝜆 by a small amount; otherwise, decrease 𝜆 by a small amount (only compute

this comparison when 𝑘 > 1).

(5) Integrate the dynamic system of Eq. (12) from 𝑧0to 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒 using guess 𝑠𝑘,𝑐+1

(6) Compute a final tolerance formulation 𝑒𝑡𝑜𝑙 = √(𝑥𝑎 − 𝑥𝑑)2 + (𝑦𝑎 − 𝑦𝑑)2 where 𝑥𝑎 is

now the actual 𝑥-position at altitude 𝑧𝑣𝑖𝑜𝑙𝑎𝑡𝑒 using guess 𝑠𝑘,𝑐+1

(7) Increment 𝑐. If 𝑒𝑡𝑜𝑙 > 휀, return to step (4); otherwise, set 𝑠𝑘+1,0 = 𝑠𝑘,𝑐, reset 𝑐 to 0,

increment 𝑘, and return to step (2).

(8) The system has successfully stayed in bounds all the way to ground impact. Perform a final

Newton iteration to produce the final correct guess as described in steps (4)-(7)

 A fully detailed implementation of the modified MSSM written in C++ is provided to

the interested reader in Appendix A.

 23

Figure 3.6: Custom realization of the MSSM showing the setup of the method

Method Comparison

 Practical implementations introduce a further consideration: the methods cannot get

stuck in an infinite loop. While not a regular occurrence, the solvers can sometimes get caught

in a local minimum and fail to converge to a solution. The adaptive damping factor helps

overcome this problem, but some cases have been noted where convergence is never reached.

To prevent this, the SSM solving routine is aborted after 50 iterations. Similarly, the MSSM

solving routine is aborted after 50 combined main shooting and correction iterations.

Furthermore, the Newton correction routine of the MSSM switches from a 1st order

approximation,

 𝑠𝑘,𝑐+1 = 𝑠𝑘,𝑐 − 𝜆(𝐷𝐹)
−1𝐹 (32)

to a 0th order approximation,

 𝑠𝑘,𝑐+1 = 𝑠𝑘,𝑐 − 𝜆𝐹 (33)

 24

after 10 iterations have elapsed in the correction routine. Due to the high convergence rate

of Newton Methods, it is assumed that after 10 iterations the solver is close to a solution, in

which case switching to the 0th order approximation will still quickly arrive at the solution, or

the system will never converge to a solution, in which case it is desirable to get as close to the

solution as possible and additional computation time should not be wasted by numerically

computing the Jacobian.

 Both of the above methods are tested using the parachute-package dynamic system

described in Eq. (12). The methods are implemented in C++ on an Ubuntu operating system.

500 points in the joint probability distribution at ground are randomly sampled to produce

desired impact points, as well as values for the uncertainty parameters of 𝐶𝑑 , 𝑤𝑚𝑎𝑔, and 𝑤𝑑𝑖𝑟.

 Additionally, three different wind models are used in the comparison: constant wind,

wind stick data, and 3D wind fields. The constant wind model assume a constant and uniform

7.0 m/s wind speed in the +𝑥 direction (i.e. North) throughout the entire scenario; no wind

exists in the 𝑦 or 𝑧 directions. The wind stick model keeps the 𝑥 and 𝑦 components of the

wind vector constant for a given altitude with no velocity component in the 𝑧 direction. For

example, at altitude 𝑧 = 𝑧1, all wind vectors would be of the form

�⃑⃑⃑� = 𝑤𝑥,1𝐼 + 𝑤𝑦,1𝐽 , whereas at altitude 𝑧 = 𝑧2, all wind vectors would be of the form �⃑⃑⃑� =

𝑤𝑥,2𝐼 + 𝑤𝑦,2𝐽. Finally, the 3D wind fields varies all three components of the wind vector

throughout the scenario space.

 For the constant wind case, an ideal solver should be able to produce a solution in

only 2 iterations. Once one iteration has been completed, the difference between actual and

desired impact locations is simply applied to the original starting position; all choices of initial

conditions will produce the same trajectory, they will just be translated in space. The

comparison of the methods for constant wind is presented in Table 3.1. Both the SSM and

MSSM successfully converged for all trials. However, the MSSM was able to converge for all

500 samples in identically 2 iterations, the ideal amount. The SSM, meanwhile, required many

more iterations. This is due to the initial choice of 𝜆 = 0.3 for the SSM and 𝜆 = 1 for the

 25

MSSM. Changing the value of 𝜆 for the SSM breaks the solver for other wind models. It is

also noteworthy that the MSSM is able to produce the initial conditions that result in identically

0 error at ground impact, which the SSM cannot replicate.

Table 3.1: Constant wind BVP comparison

 SSM MSSM

Total Runs 500 500

Number Not Converged 0 0

Average Number of Iterations 8.78 2

Average Iteration Time 0.09 s 0.10 s

Average Iterations / Runtime 99.66 20.54

Average Distance to Target at Ground 0.72 m 0.0 m

 Similar to the constant wind case, an ideal solver using a wind stick model should also

be able to produce a solution in only 2 iterations. Because the system always has the same

wind values for any trajectory starting from the same altitude, the system trajectory is constant

for any choice of initial conditions. The comparison for wind stick data is presented below in

Table 3.2. Again, the MSSM is able to successfully converge for all 500 samples in the ideal 2

iterations, whereas the SSM converges for all 500 samples in identically 8 iterations. Similar

to the constant wind case, the SSM’s 8 iterations are due to the initial choice of 𝜆 = 0.3 for

the SSM and 𝜆 = 1 for the MSSM. The SSM is slightly faster but produces a larger error at

ground compared to the MSSM, although this error value is negligible for the purposes of this

work.

 Table 3.2: Wind Stick BVP comparison

 SSM MSSM

Total Runs 500 500

Number Not Converged 0 0

Average Number of Iterations 8 2

Average Iteration Time 0.09 s 0.11 s

Average Iterations / Runtime 104.19 20.18

Average Distance to Target at Ground 0.79 m 0.0 m

 26

 While constant wind and wind stick models are useful for testing purposes, 3D wind

fields represent the real-world data sets that these solvers need to work with. The comparison

for 3D wind is presented below in Table 3.3. The MSSM is slightly more robust than the SSM,

failing to converge for only 2.0% of its samples compared to 3.4% for the SSM. Additionally,

it is seen that the MSSM converges much more rapidly than the SSM at the cost of slightly

longer iteration times. Finally, the MSSM still results in trajectories that are closer to the

desired impact points compared to the SSM.

Table 3.3: 3D Wind BVP comparison

 SSM MSSM

Total Runs 500 500

Number Not Converged 17 (3.4%) 10 (2.0%)

Average Number of Iterations 13.17 4.96

Average Iteration Time 0.25 s 0.32 s

Average Iterations / Runtime 60.34 20.96

Average Distance to Target at Ground 0.85 m 0.42 m

 While the performance of the MSSM is not as decisive for the 3D wind model, a

further step is taken. The bounds of the MSSM are turned off, reducing the method to the

currently used SSM, except with a 1st order approximation for the new guesses. The results

are presented below in Table 3.4; note that these results were conducted with a 3D wind

model. Noting that the full MSSM performs slightly better than the boundary-less version,

these results show that the 0th order approximation in the currently used SSM is reducing

performance. Using a 1st order approximation in the current SSM would likely produce results

comparable with the full MSSM.

Table 3.4: Bounds vs No Bounds BVP comparison

 Bounds No Bounds

Total Runs 500 500

Number Not Converged 10 (2.0%) 10 (2.0%)

Average Number of Iterations 4.96 4.18

Average Iteration Time 0.32 s 0.34 s

Average Iterations / Runtime 20.96 14.03

Average Distance to Target at Ground 0.42 m 0.47 m

 27

 The similar performance between the full MSSM and a 1st order SSM ultimately stems

from the quality of the initial guess. The same initial guess was chosen for all the comparisons

presented above (i.e. MSSM sample 𝑖 and SSM sample 𝑖 use the same initial guess, …, MSSM

sample 𝑛 and SSM sample 𝑛 use the same initial guess). However, a “good” guess is generated

for every sample by coarsely stepping the ground impact position backwards through time to

the start altitude using the wind 𝑥 and 𝑦 components. Without this good initial guess, the

MSSM would perform more favorably than any SSM.

Uncertainty Propagation

 The joint probability density at ground needs to be evolved through the nonlinear

dynamics of the parachute-package system to the maximum transition altitude. To accomplish

this, the SLE is integrated backwards in time for each sample along its trajectory. The

independent variable of the SLE is changed from time 𝑡 to altitude 𝑧 since different samples

have different descent rates. This results in the following equation for the time-varying joint

PDF,

 𝜑(�⃑�(𝑧)) = 𝜑0 exp(−∫
Tr (𝐽�̇⃑�(𝜉))

�̇�3
𝑑𝜉

𝑧

0

) (34)

where 𝐽�̇⃑� is the Jacobian of �̇⃑� from Eq. (17) and Tr(∗) is the trace. The full derivation of Eq.

(34) is beyond the scope of this thesis but is presented in detail in [23]. Eq. (34) is then able

to be solved along the trajectory of every sample since the trajectories are now known from

the BVP solution, thus producing the joint PDF as a function of altitude along each sample’s

trajectory.

This joint PDF represents the evolution of the final density 𝜑0 from ground to 𝑧𝑡,𝑚𝑎𝑥

through the uncertain dynamic system and assuming only main parachute dynamics. Consider

the joint PDF at some altitude 𝑧̅ 𝜖 [𝑧𝑡,𝑚𝑎𝑥, 0]. If packages were deployed at altitude 𝑧̅, and

their initial positions and uncertain parameters were randomly sampled according to the joint

PDF at 𝑧̅, then the resulting ground impact distribution would match exactly the desired

 28

impact distribution. This assumes the packages are already in steady-state under the main

parachute and infinite samples are being used. In reality, the final impact distribution will

never exactly match the desired impact distribution due to discretization errors, errors in

uncertainty distributions, and finite sampling.

The transition altitude optimization algorithm uses the 𝑥-𝑦 marginal probability

density 𝜑𝑥𝑦(𝑥, 𝑦, 𝑧) rather than the joint PDF from Eq. (34). An example of the procedure

is presented in Figure 3.7. The joint PDF exists in (𝑛𝑝 + 2)-dimensional space; thus, when

viewed in the 𝑥-𝑦 plane, the joint PDF looks noisy. In the marginalization process, a grid of

𝑝 × 𝑞 total bins is layered over the joint PDF. To produce the marginal, each bin is computed

as the average of the joint PDF values in that bin and is normalized by the bin area and total

probability across all bins. The procedure is repeated at discrete altitude steps to produce

marginal 𝑥-𝑦 “slices” 𝜑𝑥𝑦
𝑖 . The accuracy of 𝜑𝑥𝑦 depends on the number of samples 𝑁, the

number of uncertain parameters 𝑛𝑝, and the number of bins 𝑝 and 𝑞; for example, lower

values of 𝑁 lead to higher noise in the marginal. A grid size of 60 × 60 bins is assumed for

the remainder of the thesis.

Figure 3.7: 𝒙-𝒚 marginalization process of joint PDF

It is worth noting that the PDF values computed with Eq. (34) can become quite small

over a small altitude range, leading to numerical ill-conditioning of the joint PDF. To resolve

this problem, the dynamics of Eq. (12) are non-dimensionalized by an arbitrary acceleration

 29

value 𝛾. This factor decreases the magnitude of the Jacobian in Eq. (34), improving the

computational performance of the algorithm. A value of 𝛾 = 50 m/s is used for the remainder

of the thesis.

Transition Altitude Optimization

 Every step prior to this section takes place offline in the mission planning process, i.e.

prior to package deployment. The marginal 𝑥-𝑦 PDF slices 𝜑𝑥𝑦
𝑖 are stored in a computer

onboard the package which computes the real-time optimized transition altitude. The

transition altitude optimization algorithm is described below.

While under the drogue descent, the package’s current state is measured. The

trajectory is propagated from the measured state to an altitude of 𝑧𝑡,𝑚𝑖𝑛 under drogue

parachute dynamics only using an analytical descent solver that predicts the drogue trajectory

using a radial basis function approximation [26]. This analytical trajectory propagator is

beneficial because the solution time is deterministic and many orders of magnitude faster than

numerical integration; this makes the propagator practical for a real-time implementation on

low-cost embedded hardware. The analytical solution in [26] assumes that winds do not vary

spatially in 𝑥 or 𝑦. However, this assumption results in minimal error because the package

vertical velocity is much greater than its translation velocity under drogue descent.

The predicted package trajectory computed by the analytical solution is defined as

𝑥𝑝(𝑧) = 𝑓𝑥(𝑧) and 𝑦𝑝(𝑧) = 𝑓𝑦(𝑧). The marginal probability density is determined along this

trajectory, resulting in a function 𝜑𝑑(𝑧) that measures the PDF values that this trajectory is

predicted to intersect during drogue descent. This process is shown in Figure 3.8, where the

predicted drogue trajectory is shown in black. The predicted trajectory passes through regions

of relatively low probability on slices 𝜑𝑥𝑦
𝑖 , 𝜑𝑥𝑦

𝑖+1, and 𝜑𝑥𝑦
𝑖+3, whereas it reaches a high

probability region on slice 𝜑𝑥𝑦
𝑖+2. The translation of the marginal slices is due to the effects of

wind on the main parachute motion.

 30

Figure 3.8: Methodology for constructing 𝝋𝒅(𝒛) from drogue descent trajectory

prediction

During drogue descent, 𝜑𝑑(𝑧) is continuously recomputed based on the position and velocity

feedback from the onboard sensors. There are many methods for choosing a transition

altitude from 𝜑𝑑(𝑧). Two methods are presented here.

The optimal transition altitude 𝑧𝑡
∗ may be selected as,

 𝑧𝑡
∗ = arg max

𝑧∈𝒵
𝜑𝑑(𝑧) (35)

where 𝒵 = [𝑧𝑡,𝑚𝑖𝑛, 𝑧𝑡,𝑚𝑎𝑥]. Selecting 𝑧𝑡
∗ as the altitude that maximizes 𝜑𝑑(𝑧) will push

packages towards higher probability regions. Eq. (35) is most appropriate when the desired

impact distribution 𝜑𝑃𝐼 is specified as an inverse cost map since packages that can reach the

highest probability regions will always do so and low probability regions will always be avoided

if possible. Thus, the impact distribution will likely not match 𝜑𝑃𝐼 if given as a desired impact

distribution.

 In cases where it is desirable to match the impact distribution to the desired impact

distribution, 𝑧𝑡
∗ may be considered to be a random variable with distribution given by

𝜑𝑑(𝑧) according to,

 𝑧𝑡
∗ ∈𝜑𝑑(𝑧) (36)

where 𝑧𝑡
∗ is generated by randomly sampling from 𝜑𝑑(𝑧) as each new prediction for 𝜑𝑑(𝑧) is

obtained. Thus, packages will probabilistically achieve the desired impact distribution given a

 31

large enough number of trials. Applications of these two methods are discussed in detail in

Chapter 5.

 In practice, the selection process for choosing 𝑧𝑡
∗ using either method is performed

every time 𝜑𝑑(𝑧) is recomputed when new state measurements are received. When the

measured altitude crosses the currently selected 𝑧𝑡
∗, the main parachute deploys and inflates.

This constant recalculation process allows the optimal transition altitude to be updated based

on unexpected wind and dynamic model errors that can cause the actual trajectory to drift

from the predicted trajectory.

 It is important to note a few considerations in this scheme. First, the transition altitude

optimization only acts to control a package along its “line of control” along the ground. This

line of control, determined by the wind field, is fixed at the time of package deployment based

on the initial location. Therefore, it is not possible to control the accuracy in the crosswind

direction by changing the transition altitude alone. This limitation restricts the ability of this

process to realize an arbitrary desired impact distribution. However, results shown in Chapter

5 demonstrate how transition altitude optimization can be used to shape the dispersion pattern

in interesting ways despite being unable to reduce dispersion in the crosswind direction.

 Another consideration is the BVP solutions assume that the parachute-package system

is in a quasi-steady-state descent under the main parachute throughout the entire BVP

trajectory. When deploying the main parachute at 𝑧𝑡
∗, it still takes several meters of altitude

(on the order of 100+ m for the cases presented here) to reach steady-state descent. An

inflation distance 𝑧𝑖𝑛𝑓 is added to 𝑧𝑡
∗ such that when the measured 𝑧 altitude crosses over 𝑧𝑡

∗ +

𝑧𝑖𝑛𝑓, the main parachute is deployed, and the system achieves steady-state descent by the time

is reaches 𝑧𝑡
∗. A value of 𝑧𝑖𝑛𝑓 = 130m was determined via simulation that provided an accurate

approximation of the inflation distance for the example cases below.

 32

CHAPTER 4

CUSTOM SCENARIO CREATOR

 The potential use of the proposed algorithm in complex real-world scenarios is of

primary concern. Examples include impacting at the shortest geodesic location to a desired

point and avoiding undesirable impact areas. For example, perhaps it is desirable to land cargo

as close to the entrance of a military forward operating base (FOB) as possible but avoid

landing inside the actual base. Perhaps instead it is desirable to land cargo in any of the

surrounding area around a FOB, but the packages should land as close to the existing roads

as possible to make the package retrieval easier. Further still, perhaps it is desirable to land as

many packages as possible in an open park, but it is not important where inside the park they

land. Reliably and repeatedly creating these complex scenarios is a non-trivial task. To solve

this problem, the Custom Scenario Creator (CSC) graphical user interface was created,

allowing a user to easily generate a complex desired impact distribution.

GUI Operation

 The CSC is a MATLAB program that utilizes the Mapping Toolbox and Image

Processing Toolbox to allow a user to create a desired impact distribution based on a real-

world map, as shown in Figure 4.1. In the examples shown, map and road data from Boston,

Massachusetts is used because it is provided as example data in the Mapping Toolbox.

Additional map and road data can be easily gathered from various sources online; the

interested reader is directed to [27]. Two modes of operation currently exist in the CSC:

“Draw Drop Zone” mode and “Road Network” mode.

 33

Figure 4.1: Custom Scenario Creator

Draw Drop Zone Mode

 In this mode, the user can manually draw any number of regions of high, medium, and

low probability, along with exclusion regions, as seen in Figure 4.2. Using the Boston map as

an example, the user can mask out desired regions of interest, as shown in Figure 4.3. The

color scheme is as follows: red regions are regions of highest probability (set to 99%), yellow

regions have medium probability (set to 66%), green regions have low probability (set to 33%),

and black regions are exclusion regions that have no probability (set to 0%). These probability

levels can be easily tailored or generalized as needed.

 34

Figure 4.2: Draw Drop Zone mode tools

Figure 4.3: Custom scenario created with Draw Drop Zone mode

In the example, a low probability across the entirety of the map is set, and the desired exclusion

areas are masked out, i.e. the packages should be able to land anywhere in the map except for

the exclusion regions. Additionally, two regions of high probability are added where the

packages should ideally impact, if possible given the atmospheric conditions. Finally, a region

of medium probability is added around one of the high probability regions to further push the

package toward the desired landing area.

 35

 Once the user is satisfied with the scenario, a desired impact distribution is generated,

as seen in Figure 4.4. This impact distribution is then able to be directly used in the existing

mission planner for uncertainty propagation. It is noted that no efforts were taken to smooth

the transitions between probability regions. Different interpolation approaches can be

investigated to produce a smoother impact distribution, but the implementation of that feature

is left for future work.

Figure 4.4: Desired impact distribution created from the CSC showing the

probability and exclusion regions

Road Network Mode

 In this mode, the user can manually draw a road network region of interest and any

number of constant probability and exclusion regions. Additionally, the user can choose

between having all roads weighted equally and specifying a desired impact point, as seen in

Figure 4.5. By choosing all roads weighed equally, a desired impact distribution is produced

where all the roads in a given region will have the same probability of impact. Conversely, by

choosing a desired impact point, a desired impact distribution is produced where the

probability of each road is a function of the geodesic distance from a given point on the road

to the desired impact location. Both options will be explored further below.

 36

Figure 4.5: Road Network mode tools

The user first creates a road network region. The road network region is an area of

interest in the map that is turned into a desired impact distribution. Figure 4.6 shows this area

in green around a park. The road network region is then zoomed in to maximize its area while

maintaining the aspect ratio of the map, as seen in Figure 4.7

Figure 4.6: Road network region of interest drawn on the map

 37

Figure 4.7: Road network region of interest drawn on the map

A region of constant probability is added in the middle of the park, denoted in red, as well as

an exclusion region, denoted in black, as shown in Figure 4.8. This region of constant

probability is a region where the desired probability is 100%, i.e. as many packages as possible

should ideally land in that area subject to the atmospheric conditions. Conversely, the

exclusion region is a region where the desired probability is 0%, i.e. no packages should land

in that area. Finally, a desired impact point is added to the road near the northwest region of

the park denoted as point A in Figure 4.8. This desired impact point will produce a geodesic

distance computation for every road, i.e. the farther away from the desired impact point, the

lower the probability (according to a geodesic distance metric).

 38

Figure 4.8: Road network region (green) with constant probability region (red),

exclusion region (black), and desired impact point (pink) at A

 Overall, the example scenario is designed to proceed as follows. As many packages as

possible should land in the middle of the park. If the packages cannot reach the middle of the

park, they should land as close to any road as possible. However, it is also desirable to land as

close as possible to point A. Thus, the ultimate goal for a package is to land as close as possible

to any road but also as close to point A as possible. No packages should land in the exclusion

region. This scenario is realized in Figure 4.9 where the region of constant probability, the

exclusion region, and the probability decreasing out from point A can easily be seen.

 39

Figure 4.9: Desired impact distribution created from the CSC using a desired impact

point

If instead all roads are chosen to be weighed equally, the scenario would build similar to before.

However, now the probability no longer diminishes from point A, as seen in Figure 4.10.

Figure 4.10: Desired impact distribution created from the CSC using all roads

weighed equally

 40

Scenario Computation

 The procedure for computing the complex scenarios is now examined. A road

network similar to Figure 4.8 is chosen as the starting point. This scenario contains every

currently available option: multiple roads, exclusion region, constant probability region, and a

desired impact point. Note that the drop zone spans from approximately 1900 m to 2900 m

in the x-direction and approximately 700 m to 1300 m in the y-direction, as seen in Figure

4.11.

Figure 4.11: New road network region (green) with constant probability region (red),

exclusion region (black), and desired impact point (pink)

The drop zone is first discretized into a 2D grid. For the examples in this thesis, a 250

× 250 grid is used because of its fast computation time and visual clarity (i.e. larger grids were

too dense to display). For each road in the scenario, the minimum distance from every grid

point to the road curve is computed, producing a distance matrix 𝑫𝒌, where 𝟏 ≤ 𝒌 ≤ 𝒏 and

𝒏 is the number of roads in the scenario. Thus, 𝒏 250 × 250 matrices are produced that

 41

contain this distance information. A minimum distance matrix 𝑴 is then created by taking

the minimum value from every distance matrix for each grid point,

 𝑀𝑖𝑗 = min(𝐷1,𝑖𝑗, 𝐷2,𝑖𝑗, … , 𝐷𝑛,𝑖𝑗) (27)

This matrix is visualized in figure 4.12. From the minimum distance matrix, the road cost 𝑹

is computed by inverting 𝑴,

 𝑅 =
1

𝑀0.1
 (27)

The minimum distance matrix is taken to the power 0.1 because it provides a gentler gradient

of the resulting data. The road cost matrix is then saturated at a value of 0.95 to eliminate

spikes in the data and is normalized, as seen in Figure 4.13 and Figure 4.14.

Figure 4.12: Minimum distance matrix

 42

Figure 4.13: Road cost matrix

Figure 4.14: Road cost matrix, oblique view

 43

The geodesic cost 𝑮 is next computed by utilizing MATLAB’s Image Processing

Toolbox. For every road in the scenario, the road curve is discretized into a large binary matrix

that maintains the aspect ratio of the scenario. Indices in the binary matrix where a road

appears are valued as 1, and everything else is valued at 0. The binary matrix is then

transformed into a logical matrix so that image processing operations can be performed. The

discretized road curve data is quite sparse in the binary matrix, as seen in Figure 4.15a. Note

that the procedure now switches to “image space” where every pixel is an index of the logical

matrix. The MATLAB bwmorph(*,’dilate’) operation is then used to widen the line

and connect some adjacent pixels, as seen in Figure 4.15b. However, the line still has

discontinuities and is too small to perform significant operations. The

bwmorph(*,’thicken’,*) operation is used to significantly widen the data line, as seen

in Figure 4.15c. To remove the remaining discontinuities, a final bwmorph(*,’dilate’)

operation is performed to obtain a smooth and wide road curve in the logical matrix, as seen

in Figure 4.15d. Remember that this procedure is done for every road. Every logical matrix

is summed together to produce a final logical matrix 𝑹𝒏𝒆𝒕𝒘𝒐𝒓𝒌 containing the entire road

network, as seen in Figure 4.16.

 44

Figure 4.15: Modification of road data in image space – (a) raw road data discretized
to image space, (b) dilated line to connect adjacent pixels, (c) widened line, (d)

dilated line again to fully connect data

Figure 4.16: Total road network (Note the units on the axes are pixels since this is an
image)

 45

 The binary image of the road network is used to compute the geodesic distance

transform of the impact point using the operation bwdistgeodesic(𝑹𝒏𝒆𝒕𝒘𝒐𝒓𝒌,

impactX, impactY, ‘quasi-euclidean’), where impactX and impactY are the 𝒙

and 𝒚-coordinate of the desired impact point, respectively. The geodesic distance can be

thought of as the shortest distance along a given path, e.g. the distance from the desired impact

point to any arbitrary point in the road network along valid paths of the road network. This

is displayed in Figure 4.17, where the white area of the image is considered a valid path and

the black area is an invalid path. Valid and invalid paths of the geodesic computation are

specified by 𝑹𝒏𝒆𝒕𝒘𝒐𝒓𝒌 where values of 1 and 0 represent valid and invalid paths, respectively.

The newly computed geodesic distance matrix 𝑮𝒅𝒊𝒔𝒕 is then inverted to produce the geodesic

cost 𝑮,

 𝐺 =
1

𝐺𝑑𝑖𝑠𝑡
0.1 (27)

This is the same inversion used for the road cost calculation. Values of NaN are set to 0,

values of Inf are set to 1, and the geodesic cost is normalized over the road network structure

to produce a simple distribution between 0 and 1. Note the geodesic cost is still in an image

state at this point around 1800 x 1200 pixels in size, which is much larger than the road cost

matrix. This image is then discretized to a matrix of the same dimension as the road cost to

produce the final geodesic cost, as seen in Figure 4.18.

 46

Figure 4.17: Geodesic distance example, white areas are valid travel regions, black
areas are obstacles

Figure 4.18: Geodesic cost

 47

The road cost 𝑹 and geodesic cost 𝑮 are then combined by a generic addition to

produce the final cost 𝑱,

 𝐽 = 𝛼𝑅𝛾 + 𝛽𝐺𝛿 (27)

where 𝜶, 𝜷, 𝜸, and 𝜹 are scalar parameters that are manually tuned to produce the desired

impact distribution. The effects of changes to these parameters are shown in Figure 4.19 for

a more primitive scenario example that contains four roads and one exclusion region.

Figure 4.19: Comparisons of different values of 𝜶, 𝜷, 𝜸, and 𝜹 for the same road

network

While many sets of parameters could produce valid probability distributions, it is desirable to

produce distributions that show a clean ramp down in probability along the roads originating

 48

from the desired impact point, as well as a further reduction in probability emanating from the

roads themselves.

Finally, “matrix masks” of the exclusion and constant probability regions are created

to apply to the final cost. These masks essentially act as filters, setting certain indices of the

final cost matrix to specific values and letting all the other indices remain unchanged. For

example, the exclusion mask combines all exclusion regions into a discretized matrix; any index

in the exclusion mask that falls within an exclusion region forces that same index in the final

cost matrix to have a value of 0. Thus, the final cost calculation becomes,

 𝐽𝑖𝑗 = {

0, 𝑖𝑓 𝐸𝑖𝑗 = 1

1, 𝑖𝑓 𝐶𝑖𝑗 = 1

𝛼𝑅𝑖𝑗
𝛾 + 𝛽𝐺𝑖𝑗

𝛿 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (27)

where 𝑬 is the exclusion region mask and 𝑪 is the constant probability mask. The final cost

is then scaled between 0 and 1 to have all desired probabilities in the form of a percent. The

final cost is shown in Figure 4.20. In Figure 4.21, an oblique view of the distribution is shown.

Note the exclusion region reaches a floor of zero probability, while the constant probability

reaches the ceiling of 1 across its whole area. Additionally, note the probability peaks at the

desired impact point and slowly decays along all the roads paths.

 49

Figure 4.20: Final complex scenario

Figure 4.21: Final complex scenario, oblique view

 50

The above process detailed the computation of a road network scenario with a desired

impact point. If a road network scenario with all roads being equal weight is desired instead,

none of the geodesic calculations have to be computed, and the total road cost of Figure 4.13

would serve instead as the output distribution.

Furthermore, if a drawn drop zone scenario is chosen instead of a road network

scenario, a much simpler computation is undertaken. The concept of matrix masks presented

above is utilized to compute the final cost,

 𝐽𝑖𝑗 =

{

 0, 𝑖𝑓 𝐸𝑖𝑗 = 1

0.33, 𝑖𝑓 𝐿𝑖𝑗 = 1

0.66, 𝑖𝑓 𝑀𝑖𝑗 = 1

0.99, 𝑖𝑓 𝐻𝑖𝑗 = 1

 (27)

where 𝑯𝒊𝒋 is the high probability region mask, 𝑴𝒊𝒋 is the medium probability mask, 𝑳𝒊𝒋 is the

low probability mask, and 𝑬𝒊𝒋 is the exclusion region mask. Higher probability regions take

precedent over lower probability regions, e.g. if a high probability region is on top of a middle

probability region which is on top of a low probability region, the high probability value is

chosen.

 51

CHAPTER 5

RESULTS

 In this section, a comprehensive set of simulation results is presented demonstrating

performance of the proposed transition altitude optimization algorithm in a variety of

scenarios. Simulation results are first shown for two example cases where the propagated

probability density is sampled at altitude and the desired impact distribution is recovered at

the ground, highlighting the physical meaning of the evolution of the desired impact

distribution as it is back-propagated through the dynamic system. Next, several example cases

are presented showing the ability of the transition altitude optimization algorithm to reduce

dispersion, avoid obstacles, and shape the impact distribution in complex scenarios.

 Three uncertain parameters (𝑛𝑝 = 3) are assumed throughout this section: main

parachute drag coefficient, wind direction, and wind magnitude. A normal distribution is

assumed for these parameters according to Eq. (22) – Eq. (26). The specific parachute-

package system used in these examples is based on the G-12E with a total package mass of

1,048 kg. All inertial and aerodynamic properties used in the following cases are presented in

Appendix B.

PDF Back-Propagation Examples

 These examples demonstrate the physical meaning of the back-propagated probability

distribution. By choosing random samples from the joint distribution at altitude and

simulating those samples to ground impact under the main parachute dynamics, the desired

impact distribution can be recovered. Note that the transition altitude optimization does not

factor into these cases.

 A desired ground impact distribution is first specified, as well as uncertainty

distributions for 𝑪𝒅, wind magnitude, and wind direction. The joint density at the ground is

sampled as described in Chapter 2, Section “Joint Distribution Specification and

 52

Discretization” and the parameter values listed in Appendix B. The joint density at ground is

then back-propagated along BVP solution trajectories using the SLE to an altitude of 𝒛 =

𝟕𝟎𝟎 𝐦, and the marginal distribution 𝝋𝒙𝒚
𝟕𝟎𝟎 is calculated. Next, new samples are generated by

randomly sampling drop locations according to the 𝒙-𝒚 marginal distribution 𝝋𝒙𝒚
𝟕𝟎𝟎 and the

other uncertainty distributions for 𝑪𝒅, wind magnitude, and wind direction. Rejection

sampling [28] is used to draw samples from the marginal density in light of its arbitrary shape.

The new samples are then integrated to ground impact to construct the marginal density at

ground impact. The number of grid points used in these cases is 𝑵 = 500,000.

 The correlation between the desired impact distribution and the achieved

reconstruction is quite favorable. Case 1 is presented in Figure 5.1. A static wind field,

constant with altitude, is used, where 𝒘𝒙 = 0 m/s and 𝒘𝒚 = 2 m/s except for a jet of 𝒘𝒙 = 5

m/s located between 𝒚 = 700m and 𝒚 = 800m. The desired distribution is chosen as a

Gaussian centered at 𝒙 = 1000m, 𝒚 = 700m with a diagonal covariance matrix, and equal

variances in 𝒙 and 𝒚 of 105 m2. The top left of Figure 5.1 shows the marginal density at the

ground computed from the joint distribution using the binning procedure. The top right of

Figure 5.1 shows the back-propagated marginal density 𝝋𝒙𝒚
𝟕𝟎𝟎; the effect of the wind jet is

clearly seen in the portion of the distribution smeared in the negative 𝒙-direction. The bottom

left of Figure 5.1 shows the histogram of 100,000 drop locations sampled from 𝝋𝒙𝒚
𝟕𝟎𝟎 using

rejection sampling. Finally, the bottom right of Figure 5.1 shows the histogram of impact

locations for the samples generated, which is an approximately Gaussian distribution with a

nearly identical mean and covariance to the desired distribution.

 53

Figure 5.1: Case 1 – (Top Left) Desired marginal probability density at 𝒛 = 𝟎 𝐦. (Top Right) Marginal

probability density at 𝒛 = 𝟕𝟎𝟎 𝐦. (Bottom Left) Histogram of sampled marginal probability density
for validation simulations. (Bottom Right) Histogram of impact point locations from validation

simulations

Figure 5.2: Case 2 – (Top Left) Desired marginal probability density at 𝒛 = 𝟎 𝐦. (Top Right)

Marginal probability density at 𝒛 = 𝟕𝟎𝟎 𝐦. (Bottom Left) Histogram of sampled marginal probability
density for validation simulations. (Bottom Right) Histogram of impact point locations from

validation simulations

 54

Case 2 is presented in Figure 5.2, where an exclusion zone is placed in the target region.

Note the desired impact distribution 𝝋𝑷𝑰(𝒙, 𝒚) is set to zero in this region. The same winds

as Case 1 are used. The top right of Figure 5.2 is again the marginal density at 700m, sampled

using rejection sampling and smeared from the wind jet. Finally, the bottom right of Figure

5.2 again shows the reconstruction of the original desired impact distribution, strongly

resembling the overall Gaussian shape and avoidance of the exclusion region. The fuzzy

boundary of the exclusion region in the top left of Figure 5.2 is due to the discretization during

the binning process; discontinuous drops in probability across the exclusion region cannot be

perfectly represented.

Dispersion Reduction

 The transition altitude optimization algorithm’s ability to reduce dispersion is

examined in this section. Additionally, the effects of various algorithm parameters on

dispersion reduction are explored. In the follow examples, a Gaussian centered at 𝑥 = 0m,

𝑦 = 1300m with diagonal covariance matrix and equal variances of 105 m2 in the 𝑥 and 𝑦

directions is used as the desired impact distribution. This is meant to be interpreted as an

inverse cost map, therefore Eq. (35) is used for selection of 𝑧𝑡
∗. Winds are assumed to be

constant in the 𝑦 direction at 7 m/s and are uniform with respect to altitude. Again, all inertial

and aerodynamic parameters, as well as uncertainty values, are given in Appendix B.

A complete HALO airdrop is simulated for these examples. The drop altitude is set

to 4000m. The simulation executes the transition altitude optimization algorithm under the

drogue descent and deploys the main parachute once passing the selected 𝑧𝑡
∗ and accounting

for inflation distance. The main parachute dynamics are used for the remainder of the

simulation until ground impact is recorded.

Figure 5.3 shows a plot of altitude vs downrange distance for two example trajectories

dropped at initial locations 𝑦 = 150m (Case 3) and 𝑦 = 350m (Case 4). The simulations of

 55

these examples incorporate uncertainty in 𝐶𝑑 and wind magnitude but not wind direction.

Since there is no wind component in 𝑥, 𝑥 = 0 for all time. It is seen that the transition altitude

optimization sufficiently selects 𝑧𝑡
∗ such that the package impacts very near the center of the

Gaussian distribution.

Figure 5.3: Altitude vs downrange for example trajectories (Case 3 and 4) (Note both

cases are overlaid after main parachute inflation)

A plot of 𝜑𝑑(𝑧) vs altitude at a specific instant of the trajectory for Case 4 is shown

in Figure 5.4. Two different marginal densities are shown, corresponding to 𝑁 = 250,000

(blue) and 𝑁 = 1,250,000 (red). It is clear that using more points results in less noise in the

marginal probability density, thus resulting in less noise in 𝜑𝑑(𝑧). Less noise in 𝜑𝑑(𝑧) is

beneficial for maximum 𝑧𝑡
∗ selection described by Eq. (35). Unfortunately, increasing the

 56

number of points 𝑁 significantly increases the offline computation time. In these cases,

increasing 𝑁 from 250,000 to 1,250,000 resulted in an 18x increase in runtime.

Figure 5.4: 𝝋𝒅(𝒛) vs altitude for Case 4 using 𝑵 = 250,000 (blue), and 𝑵 = 1,250,000

(red)

The effect of 𝑁 and the altitude resolution at which the marginal densities are stored

are examined in a trade study that further explores the tradeoffs described above. The altitude

resolution Δ𝑟 represents the altitude between adjacent “slices” of the 𝑥-𝑦 marginalization 𝜑𝑥𝑦
𝑖 .

Two sets of Monte Carlo simulations of 50 runs each were computed using 𝑁 = 500,000 and

Δ𝑟 = 4m where the initial 𝑦 location of the bundle was randomly varied according to a uniform

distribution. Additionally, 𝐶𝑑 and wind magnitude were also varied. One set used an

optimized transition altitude, while the other used a fixed transition altitude of 𝑧𝑡 = 625m.

The results are shown in Figure 5.5, where the fixed transition altitude case produces a target-

 57

centered 50% circular error probable (CEP) of 81m and the optimized transition altitude

produces a target-centered 50% CEP of 19m.

Figure 5.5: Monte Carlo impact dispersion locations for fixed transition altitude case

(top) and optimized transition altitude case (bottom)

Figure 5.6: CEP vs altitude resolution and 𝑵, solid lines represent 50% CEP, dashed

lines represent 90% CEP

 58

The study is extended further in Figure 5.6, showing how 50% and 90% CEP changes

as function of 𝑁 and Δ𝑟. Note that accuracy generally improves as altitude resolution and 𝑁

both increase. Increasing altitude resolution reduces dispersion only to a certain point, after

which it is necessary to increase 𝑁 to provide further reductions.

Exclusion Regions

 The proposed transition altitude optimization algorithm is particularly advantageous

because of its ability to enforce exclusion regions in the drop zone, where packages should

avoid landing. This capability is demonstrated as follows. A Gaussian inverse cost map is

created and centered at 𝒙 = 0, 𝒚 = 0 with diagonal covariance matrix and equal variances in 𝒙

and 𝒚 of 105 m2. A rectangular exclusion region is created, as shown in Figure 5.7. Inside of

the exclusion region, the inverse cost map 𝝋𝒙𝒚 is set to zero. The wind values in these

examples represent wind stick data obtained from actual dropsonde measurements at Yuma

Proving Ground [26]. The wind stick data varies with altitude but not spatially with 𝒙 or 𝒚.

A “line of control”, which represents the possible impact locations obtained by varying the

transition altitude between 𝒛𝒕,𝒎𝒊𝒏 and 𝒛𝒕,𝒎𝒂𝒙, is also shown. Note that the line of control only

translates throughout the drop zone as the drop location moves but does not otherwise change

shape since the winds are constant in 𝒙 and 𝒚.

 59

Figure 5.7: Wind magnitude vs altitude (left), Exclusion region geometry and line of

control for cases 5-8 (right)

Cases 5-8 all used Monte Carlo simulations of 500 runs each, randomly selecting the

drop location according to a uniform distribution in a 500m × 500m area. Additionally,

random perturbations to 𝑪𝒅, wind magnitude, and wind direction were selected according to

Appendix B. Case 5 used a fixed transition altitude of 𝒛𝒕 = 625m; case 6 used the optimized

transition altitude but did not use the exclude region; and case 7 used the optimized transition

altitude and the exclude region. In cases 6 and 7, 𝒛𝒕
∗ was selected according to Eq. (35) since

𝝋𝒙𝒚 represents an inverse cost map. The results are presented below in Figures 5.8, 5.9, and

5.10, respectively. Additionally, impact statistics are presented in Table 5.1.

 60

Figure 5.8: Case 5 – Monte Carlo impact locations, fixed transition altitude

Figure 5.9: Case 6 – Monte Carlo impact locations, optimized transition altitude with

no exclusion region

 61

Figure 5.10: Case 7 – Monte Carlo impact locations, optimized transition altitude

with exclusion region

As expected, the fixed transition altitude case yields relatively poor CEP, yielding

nearly 10% of impacts within the exclusion region. With the optimized transition altitude (but

not using the exclusion region), the CEP is reduced drastically since many of the impacts are

pushed towards the target but also into the exclusion region. Finally, using the optimized

transition altitude and the exclusion region produces a milder CEP reduction compared to

case 6, but the number of impacts within the exclusion region is reduced to 1.8%.

The final Monte Carlo simulation, case 8, demonstrates the importance of the

uncertainty propagation process. During the definition of the joint probability for this case,

the standard deviations of all parameter distributions (𝑪𝒅, wind magnitude, and wind

direction) are set to 0, i.e. the PDF is propagated assuming perfect knowledge of all system

parameters and wind. However, these parameters are still perturbed during each Monte Carlo

run. Case 8 is shown in Figure 5.11 shows. Over twice as many impacts land in the exclusion

region compared to case 7. Furthermore, there appears to be a buffer region between the

impact density and exclusion region boundary in case 7 that is not present in case 8. This

 62

forms because of the presence of uncertainty in generation of the joint PDF, and the resulting

diffusion that occurs during propagation. When the PDF is propagated to altitude, the low

probability area of the exclusion region slowly increases in sizes, and the boundaries become

“fuzzy”. This fuzziness, or diffusion, becomes greater as the parameters become more

uncertain. This results in a larger buffer region emerging which is desirable when uncertainty

in the model and wind conditions increases. This behavior is entirely emergent from the

probabilistic planning process and represents the main advantage of this method over a

similarly-defined deterministic scheme.

Figure 5.11: Case 8 – Monte Carlo impact locations, optimized transition altitude

with no parameter uncertainty used in PDF propagation

Table 5.1: Impact statistics for cases 5-8

 50% CEP Number of cases landing inside exclude region

Case 5 186 m 48

Case 6 130 m 73

Case 7 153 m 9

Case 8 136 m 23

 63

Probabilistic 𝒛𝒕
∗ Calculation

 The ability of the proposed algorithm to match a desired ground impact distribution

is further examined in another case study. A scenario is considered in which packages are to

be dispersed over multiple areas. A real-world example would be several nearby operating

bases or several nearby areas for humanitarian aid delivery. It is desirable that packages

distribute themselves amongst the multiple drop zones according to some pre-defined

statistical distribution, i.e. the majority of packages should not impact near a single location.

 To realize this scenario, consider a humanitarian aid example whereby the desired

impact distribution is defined by the union of two disjoint uniform distributions 𝑼𝟏(𝒙, 𝒚) and

𝑼𝟐(𝒙, 𝒚), and the magnitude of 𝑼𝟏(𝒙, 𝒚) is double that of 𝑼𝟐(𝒙, 𝒚). By setting 𝝋𝒙𝒚 = 𝑼𝟏 ∪

𝑼𝟐, a joint PDF is created using the parameter distributions in Appendix B and then

backpropagated. A steady wind, uniform with altitude, of 𝒘𝒙 = 0 and 𝒘𝒚 = 7 m/s is assumed.

A Monte Carlo run of 300 simulations is performed, where parameter values are sampled from

distributions in Appendix B, all packages are dropped from a single location 𝒙 = 0 and 𝒚 = -

1,016 m, and 𝒛𝒕
∗ is selected according to Eq. (36) since 𝝋𝑷𝑰(𝒙, 𝒚) represents a desired

statistical impact distribution.

 The results of this scenario, case 9, are shown in Figure 5.12, where 𝑼𝟏 is the blue

region and 𝑼𝟐 is the red region. The resulting impact distribution should result in 2/3 of the

impacts being in 𝑼𝟏 and 1/3 of the impacts being in 𝑼𝟐. Indeed, case 9 yielded 202/300

(67.3%) impacts in 𝑼𝟏 and 98/300 (32.7%) impacts in 𝑼𝟐. Comparing these results to the

same setup using a fixed transition altitude of 𝒛𝒕 = 773 m results in 158/300 (52.7%) impacts

in 𝑼𝟏 and 142/300 (47.3%) impacts in 𝑼𝟐; these results are not shown below.

 64

Figure 5.12: Case 9 – Desired distribution and Monte Carlo impact locations

Figure 5.13: Case 10 – Desired distribution and Monte Carlo impact locations

 65

A second example, case 10, is considered in Figure 5.13. Two non-adjacent

distributions with slightly smaller supports are employed. The same PDF values for 𝑼𝟏 and

𝑼𝟐 as above are used, and the difference in the sizes of the supports is accounted for. Thus,

the resulting impact distribution should yield 75% of impacts within 𝑼𝟏 and 25% of impacts

with 𝑼𝟐. Case 10 yielded 166/250 (66.4%) impacts in 𝑼𝟏 and 59/250 (23.6%) impacts in 𝑼𝟐.

The remaining impacts fell outside of both distributions. Again, the Monte Carlo process is

repeated using a fixed transition altitude of 𝒛𝒕 = 773m resulting in 127 (50.8%) impacts in 𝑼𝟏,

48 (19.2%) impacts in 𝑼𝟐, and 30% outside both distributions. It worthwhile to note that the

number of impacts outside of both regions is reduced from 30% to 10% when the optimized

transition altitude is used. This can potentially be reduced further by increasing 𝑵 and/or

increasing the binning resolution.

Complex Drop Zones

 The final case study involves a complex scenario designed to emulate a real-world

mission. The scenario is based on a road network and includes a 3D spatially-varying wind

field generated from the Weather Research and Forecasting (WRF) tool [29]. Additionally, a

desired impact point is specified on the road network, as shown in Figure 5.14.

The 3D wind field varies with respect to 𝒙, 𝒚, and altitude. The wind data used for

this example was generated for the Salinas Valley in Northern California and has a resolution

of 333m in both the 𝒙 and 𝒚 directions and variable grid spacing in the altitude direction. For

the drop locations selected in this example, horizontal winds of 15+ m/s are experienced over

𝒛𝒕,𝒎𝒂𝒙 during drogue descent, and winds below 𝒛𝒕,𝒎𝒂𝒙 are nominally in the 7-8 m/s range

with highly variable direction. An example line of control, denoting the various achievable

impact locations from varying 𝒛𝒕, is shown in Figure 5.14 in red.

 66

Figure 5.14: Road network and line of control for complex drop zone example

In the practical implementation of such a scenario, if the packages cannot land at the

desired impact point, then they should at least land along a road for easier retrieval. However,

if the package cannot land at the desired impact point but can land at multiple locations along

the road network, it should land at the point with minimum geodesic distance to the desired

impact point. Thus, the inverse cost map should be high along roads, decrease as the distance

to a road increases, and decrease as the geodesic distance along the road to the desired impact

point increases. Additionally, points off of the road network should decrease relative to the

distance to the closest point on the road network. This inverse cost map is visualized in Figure

5.15, where the inverse cost is maximum at the desired impact point.

 67

Figure 5.15: Inverse cost map for complex drop zone example

Two Monte Carlo cases were performed: one using a fixed transition altitude of 𝒛𝒕 =

625m, and one using the optimized transition altitude as computed by Eq. (35). The

uncertainty propagation and marginalization algorithms for these cases used 𝑵= 2,000,000,

and the binning resolution was increased to 𝒑 = 𝒒 = 120 to maintain adequate resolution of

the narrow road features. Low binning resolution makes these road features highly diffused

when the marginal density is computed, and thus resolution was increased. For each run, the

drop location was randomized within a 500m × 500m area and random 𝑪𝒅, wind magnitude,

and wind direction perturbations were selected according to the distributions in Appendix B.

300 runs were computed in each Monte Carlo simulation.

The results of the fixed transition altitude case are shown in Figure 5.16, while the

results of the optimized transition altitude case are shown in Figure 5.17. Impact statistics for

 68

these cases are also given in Table 5.2, including the mean and median distances to the closest

point on a road. These distances are determined by computing the distance from each impact

location to its respective closest point on a road. It can be seen that the optimized transition

altitude algorithm effectively reshapes the impact distribution around the road network. The

median distance from the packages to the road network is reduced by 71%. Similarly, the

maximum distance from any package to a road is reduced by 57%.

It is worthwhile to note that many of the impacts in Figure 5.17 are skewed to the

north, or upwind, side of the road network even though these trajectories could have impacted

the road network farther south. This is the result of the diffusion of probabilities that occurs

at higher altitudes, i.e. the PDF value along each road is lower at higher altitudes and higher at

lower altitudes. This produces the exactly desired behavior from a probabilistic standpoint: in

the presence of uncertainty, it is safer to transition at the lowest possible altitude to reduce the

time under the main parachute dynamics where the system is exposed to uncertain winds. This

behavior is further evidence of the proposed algorithm’s proper treatment of uncertainty in

the unguided airdrop problem and emerges directly from the probabilistic formulation of the

algorithm.

Figure 5.16: Monte Carlo impact locations, fixed transition altitude case

 69

Figure 5.17: Monte Carlo impact locations, optimized transition altitude case

Table 5.2: Monte Carlo impact statistics for complex drop zone example

Fixed Transition

Altitude
Optimized

Transition Altitude

Mean distance from impacts to road 64 m 24 m

Median distance from impact to road 56 m 16 m

Maximum distance from impact to road 305 m 131 m

 70

CHAPTER 6

CONCLUSION

 A transition altitude optimization algorithm for HALO ballistic airdrop has been

presented. The proposed algorithm has been shown to be quite successful in shaping the

impact dispersion pattern of unguided airdrops. The use of uncertainty as an input to a

mission planner and the analysis of the uncertainty propagation proved critical in achieving

these results. The results are generated through a detailed simulation framework that includes

the airdrop dynamic model, atmospheric and wind model, and parachute inflation model. The

uncertainty propagation is helped in part by a comprehensive study of two boundary value

problem solvers used for trajectory generation. Finally, a scenario creation tool was presented

as a complimentary aspect of the current mission planning procedure, allowing the robust

generation of complex input distributions.

Future Work

 Further improvements to the algorithm can still be made, including terrain

implementation and formalization of an all-encompassing mission planner. A terrain model

for the both the mission planner and desired impact distribution definition does not currently

exist. Currently, all terrain is assumed to be flat. While this works well for test cases, a larger

number of scenarios could be explored with the implementation of a robust terrain model.

Additionally, many of the components of the processes detailed in this thesis are separate

software structures. It would be beneficial to future development to have these pieces folded

into a main software base.

 71

APPENDIX A

MODIFIED SIMPLE SHOOTING METHOD CODE

IMPLEMENTATION

 The following code is the implementation of the Modified Simple Shooting Method

for BVP solving in the mission planner C++ code used for the transition altitude optimization

algorithm. Any variables used that are not explicitly declared in the function are assumed to

be declared as public in the header. The custom variable state is a typedef of

vector<double>. Many functions used in the main BVPsolveMSSM function are provided

so that the interested reader can follow the path of execution. Functions not included are

deemed unimportant to execution of the solver.

int DynamicSystem::BVPsolveMSSM(bool showText)
{
 showState = false;

 // calculate density at current altitude for vterm calculation
 double dropAltitude = 1000.0;
 double rho = 1.22566578494891 * pow(1.00000000-0.0000225696709*(dropAltitude),4.258);
 vterm = sqrt(2*m*g/(rho*Cd*S));

 // set the initial state vector. x and y guesses are calculated. x0[4] and x0[5] correspond
 // to velocity in x and y, these are set equal to the wind at the point (x,y) at the start
 // of the solver loop.
 double guess[2];
 CalculateGuess(guess);
 double xInitial = guess[0];
 double yInitial = guess[1];
 double zInitial = -1000.0;
 double xDotInitial = 0.0;
 double yDotInitial = 0.0;
 double zDotInitial = vterm;

 vector<double> initialState = { 0.0, xInitial, yInitial, zInitial,
 xDotInitial, yDotInitial, zDotInitial, 0.0, joint_ground };

 GetSysWind(initialState[1], initialState[2], -initialState[3]);
 initialState[4] = syswind[3]*cos(syswind[4]);
 initialState[5] = syswind[3]*sin(syswind[4]);

 // Initialize time and state vectors and counters
 vector<double> myTimes;
 myTimes.push_back(0.0);

 vector<vector<double>> myStates;
 myStates.push_back(initialState);

 int n = 0;
 int numShots = 1;
 int k = 0;
 int totalIterations = 0;
 int allowableIterations = 100;

 // initialize public variables from header
 dxdt.assign(9, 0.00);
 nextState.assign(9, 0.00);
 nextTime = 0.0;
 refPathValAtTime.assign(2, 0.0);

 72

 boundsValAtTime.assign(4, 0.0);

 // Initialize shot guess variables
 vector<double> tempGuess = {xInitial, yInitial};
 shotGuess.clear();
 shotGuess.push_back(tempGuess);

 double finalTolerance = 0.0;

 // ---------- FOR DEBUG -----------
 // vector<double> tempMyTimes;
 // vector<vector<double>> tempMyStates;

 // Set desired impact points
 desiredImpactX = xtar;
 desiredImpactY = ytar;

 // Diagnostic print out
 if(showText)
 {
 cout << "Starting MSSM" << endl;
 }

 // ---------- FOR DEBUG -----------
 // cout << "Cd = " << Cd << "\twm_perturb = " << wm_perturb << "\twd_perturb = " << wd_perturb << endl;

 // Solve for a drop location that keeps the package within bounds until ground impact
 while(myStates.at(n).at(3) <= 0.0)
 {
 // Check if x and y states are in bounds
 FuncRefPath(myStates.at(n).at(3));

 // ---------- FOR DEBUG: Printint out bounds -----------
 // cout << myStates.at(n).at(3) << "\t|\t"
 // << boundsValAtTime[0] << " > " << myStates.at(n).at(1) << " > " << boundsValAtTime[1] <<
"\t|\t"
 // << boundsValAtTime[2] << " > " << myStates.at(n).at(2) << " > " << boundsValAtTime[3] <<
endl;

 // ---------- FOR DEBUG: Printing out state history -----------
 // cout << myTimes.at(n) << "\t\t"
 // << myStates.at(n).at(1) << "\t\t"
 // << myStates.at(n).at(2) << "\t\t"
 // << myStates.at(n).at(3) << "\t\t"
 // << myStates.at(n).at(4) << "\t\t"
 // << myStates.at(n).at(5) << "\t\t"
 // << myStates.at(n).at(6) << endl;

 // If x or y states go out of bounds, correct the guess
 if ((myStates.at(n).at(1) > boundsValAtTime[0] || myStates.at(n).at(1) < boundsValAtTime[1])
 || (myStates.at(n).at(2) > boundsValAtTime[2] || myStates.at(n).at(2) < boundsValAtTime[3]))
 {
 cout << numShots << "\t" << myStates.at(n).at(3) << endl;

 // Diagnostic print outs
 if(showText)
 {
 cout << "===== Shot " << numShots << " went out of bounds at altitude "
 << myStates.at(n).at(3) << " meteres ====="
 << "\n--Drop = (" << myStates.at(0).at(1) << ", " << myStates.at(0).at(2)
 << ")\tImpact = (" << myStates.at(n).at(1) << ", " << myStates.at(n).at(2)
 << ")\tTarget = (" << xtar << ", " << ytar << ")" << endl;

 cout << "-- [" << myTimes.at(n) << "\t\t"
 << myStates.at(n).at(1) << "\t\t"
 << myStates.at(n).at(2) << "\t\t"
 << myStates.at(n).at(3) << "\t\t"
 << myStates.at(n).at(4) << "\t\t"
 << myStates.at(n).at(5) << "\t\t"
 << myStates.at(n).at(6) << "]" << endl;
 }

 int correctionShots = ModifiedNewtonMethod(initialState, myStates.at(n), true, false, showText);

 // Reset initial state
 initialState[0] = 0.0;
 initialState[1] = shotGuess.back().at(0);
 initialState[2] = shotGuess.back().at(1);

 73

 initialState[3] = zInitial;
 initialState[4] = xDotInitial;
 initialState[5] = yDotInitial;
 initialState[6] = zDotInitial;
 initialState[7] = 0.0;
 initialState[8] = joint_ground;

 GetSysWind(initialState[1], initialState[2], -initialState[3]);
 initialState[4] = syswind[3]*cos(syswind[4]);
 initialState[5] = syswind[3]*sin(syswind[4]);

 // Reset state variables
 myTimes.clear();
 myTimes.push_back(0.0);
 myStates.clear();
 myStates.push_back(initialState);
 n = 0;

 // Sum up the number of shots
 totalIterations = totalIterations + 1 + correctionShots;

 if(showText)
 {
 cout << "Total Iterations = " << totalIterations << endl;
 }

 // Increment counter for next shot
 numShots++;

 // Diagnostic print outs
 if(showText)
 {
 cout << "\t-- Found new guess (" << shotGuess.back().at(0) << " , " <<
shotGuess.back().at(1) << ")" << endl;
 }
 } // end if - bounds check

 // If we exceed 50 total iterations, break out of the solver
 if(totalIterations > allowableIterations)
 {
 cout << "ERROR: Exceeded allowed number of total iterations." << endl;
 break;
 }

 // Integrate system
 DoRK4(myTimes.at(n), myStates.at(n));
 myTimes.insert(myTimes.end(), nextTime);
 myStates.insert(myStates.end(), nextState);

 n++;
 } // end while

 // Correct final guess if we're less than 50 total iterations
 if(totalIterations < allowableIterations)
 {
 // Simulate final guess for verification
 x0[0] = myStates.at(0).at(0); // time
 x0[1] = myStates.at(0).at(1); // X
 x0[2] = myStates.at(0).at(2); // Y
 x0[3] = myStates.at(0).at(3); // Z
 x0[4] = myStates.at(0).at(4); // Vx
 x0[5] = myStates.at(0).at(5); // Vy
 x0[6] = myStates.at(0).at(6); // Vz
 x0[7] = myStates.at(0).at(7); // Trace(f)
 x0[8] = myStates.at(0).at(8); // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(0.0);
 myStates.at(n) = x_impact;

 // Diagnostic print outs
 if(showText)
 {
 cout << "===== Shot " << numShots << " stayed in bounds all the way to the ground" << endl;

 74

 cout << "\t-- Starting Point = (" << myStates.at(0).at(1) << " , " << myStates.at(0).at(2) << "
)" << endl;
 cout << "\t-- Impact Point = (" << myStates.at(n).at(1) << " , " << myStates.at(n).at(2) << " ,
" << myStates.at(n).at(3) << ")" << endl;

 cout << "\nCorrecting guess for tolerance" << endl;
 }

 myStates.at(n).at(3) = 0.0;
 int correctionShots = ModifiedNewtonMethod(initialState, myStates.at(n), true, true, showText);

 // Done with main shots, so only add correction shots
 // NOTE: The plus 1 is because the final successful shot is not
 // counted elsewhere, so we count it here
 totalIterations = totalIterations + correctionShots + 1;
 }

 // Simulate final guess for verification
 // showState = true;
 x0[0] = 0.00; // time
 x0[1] = shotGuess.back().at(0); // X
 x0[2] = shotGuess.back().at(1); // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(0.0);//myStates.at(n).at(3));

 if(showText)
 {
 myTimes.clear();
 myStates.clear();
 myTimes.push_back(0.0);
 myStates.push_back(x0);
 n = 0;
 cout << "======================================Final State Sim" << endl;
 while(myStates.at(n).at(3) <= 0.0)
 {
 FuncRefPath(myStates.at(n).at(3));

 // ---------- FOR DEBUG: Printint out bounds -----------
 // cout << myStates.at(n).at(3) << "\t|\t"
 // << boundsValAtTime[0] << " > " << myStates.at(n).at(1) << " > " << boundsValAtTime[1] <<
"\t|\t"
 // << boundsValAtTime[2] << " > " << myStates.at(n).at(2) << " > " << boundsValAtTime[3] <<
endl;

 // ---------- FOR DEBUG: Printing out state history -----------
 // cout << myTimes.at(n) << "\t\t"
 // << myStates.at(n).at(1) << "\t\t"
 // << myStates.at(n).at(2) << "\t\t"
 // << myStates.at(n).at(3) << "\t\t"
 // << myStates.at(n).at(4) << "\t\t"
 // << myStates.at(n).at(5) << "\t\t"
 // << myStates.at(n).at(6) << endl;

 // If x or y states go out of bounds, correct the guess
 if ((myStates.at(n).at(1) > boundsValAtTime[0] || myStates.at(n).at(1) < boundsValAtTime[1])
 || (myStates.at(n).at(2) > boundsValAtTime[2] || myStates.at(n).at(2) < boundsValAtTime[3]))
 {
 cout << "WENT OUT OF BOUDNS" << endl;
 }

 // Integrate system
 DoRK4(myTimes.at(n), myStates.at(n));
 myTimes.insert(myTimes.end(), nextTime);
 myStates.insert(myStates.end(), nextState);

 n++;
 } // end while
 } // end if

 75

 // Diagnostic Print out
 if(showText)
 {
 cout << "\t-- Final starting Point = (" << x0[1] << " , " << x0[2] << ")" << endl;
 cout << "\t-- Final Impact Point = (" << x_impact[1] << " , " << x_impact[2] << " , " << x_impact[3]
<< ")" << endl;
 }

 return totalIterations;
}

int DynamicSystem::ModifiedNewtonMethod(state initialState, state finalState, bool doJacobian, bool
finalCorrection, bool showText)
{
 // Initialize shot calculation variables
 // -- Jacobian
 vector<double> DF;
 DF.assign(4, 0.0);
 double x_xplus, x_xminus, x_yplus, x_yminus;
 double y_xplus, y_xminus, y_yplus, y_yminus;
 double dropPerturbation = 10.0;

 // -- F
 double f1, f2;

 // -- lambda
 double lambda = 1.0;//0.3;//1.0;
 double error;
 double errorprev;

 // Initialize counter
 int mNMCount = 0;
 int k = shotGuess.size()-1;

 // Initialize dummy guess
 vector<double> tempGuess;
 tempGuess.assign(2, 0.0);

 // Initialize initial state values
 double xInitial = initialState[1];
 double yInitial = initialState[2];
 double zInitial = initialState[3];
 double xDotInitial = initialState[4];
 double yDotInitial = initialState[5];
 double zDotInitial = initialState[6];

 // Initialize final state values
 double xFinal = finalState[1];
 double yFinal = finalState[2];
 double zFinal = finalState[3];

 // Initialize allowable number of iterations
 int totalAllowedNewtonIterations = 0;
 if(finalCorrection)
 {
 totalAllowedNewtonIterations = 10;
 }
 else
 {
 totalAllowedNewtonIterations = 10;
 }
 bool haveNotHitCheck = true;
 int maxAllowedIterations = 50;

 // Correct the guess until final tolerance is less than the target tolerance
 double finalTolerance = sqrt(pow(refPathValAtTime[0]-xFinal , 2.0) + pow(refPathValAtTime[1]-yFinal ,
2.0));
 while(finalTolerance > tar_tol)
 {
 // If we exceed the max number of allowed iterations, break out of the solver
 if(mNMCount > maxAllowedIterations)
 {
 cout << "ERROR: Exceeded allowed number of Newton iterations." << endl;
 break;
 }

 76

 // Increment Newton iteration counter
 mNMCount++;

 // If Newton iteration counter exceeds 10 iterations, turn off the Jacobian computation
 // if we're at the final correction or break out of the solver if we're at other corrections
 if((mNMCount > totalAllowedNewtonIterations) && (haveNotHitCheck == true))
 {
 haveNotHitCheck = false;
 if(finalCorrection)
 {
 doJacobian = false;
 }
 else
 {
 mNMCount = totalAllowedNewtonIterations;
 break;
 }
 }

 // Diagnostic print out
 if(showText)
 {
 cout << "\t-- Starting Newton Method Iteration " << mNMCount << endl;
 }

 // Compute Jacobian
 if(doJacobian)
 {
 // --- X plus h ---
 x0[0] = 0.00; // time
 x0[1] = shotGuess.at(k).at(0) + dropPerturbation; // X
 x0[2] = shotGuess.at(k).at(1); // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(-zFinal);
 x_xplus = x_impact[1];
 y_xplus = x_impact[2];

 // --- X minus h ---
 x0[0] = 0.00; // time
 x0[1] = shotGuess.at(k).at(0) - dropPerturbation; // X
 x0[2] = shotGuess.at(k).at(1); // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(-zFinal);
 x_xminus = x_impact[1];
 y_xminus = x_impact[2];

 // --- Y plus h ---
 x0[0] = 0.00; // time
 x0[1] = shotGuess.at(k).at(0); // X
 x0[2] = shotGuess.at(k).at(1) + dropPerturbation; // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 77

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(-zFinal);
 x_yplus = x_impact[1];
 y_yplus = x_impact[2];

 // --- Y minus h ---
 x0[0] = 0.00; // time
 x0[1] = shotGuess.at(k).at(0); // X
 x0[2] = shotGuess.at(k).at(1) - dropPerturbation; // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(-zFinal);
 x_yminus = x_impact[1];
 y_yminus = x_impact[2];

 DF[0] = (1 / (2*dropPerturbation))*(x_xplus - x_xminus);
 DF[1] = (1 / (2*dropPerturbation))*(x_yplus - x_yminus);
 DF[2] = (1 / (2*dropPerturbation))*(y_xplus - y_xminus);
 DF[3] = (1 / (2*dropPerturbation))*(y_yplus - y_yminus);
 }
 else
 {
 DF[0] = 1;
 DF[1] = 0;
 DF[2] = 0;
 DF[3] = 1;
 }

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t\tDF = [[" << DF[0] << "\t" << DF[1] << "\n\t\t" << DF[2] << "\t" << DF[3] << "]]"
<< endl;
 }

 // Compute F
 f1 = xFinal - refPathValAtTime[0];
 f2 = yFinal - refPathValAtTime[1];

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t\tF = [" << f1 << "\t" << f2 << "] "<< endl;
 }

 // Compute lambda
 error = f1*f1 + f2*f2;
 if (mNMCount != 1)
 {
 if (error > errorprev) {lambda /= 1.25;} // error increased, decrease step
 else if (error < errorprev) {lambda *= 1.05;} // error decreased, increase step
 if (lambda > 2) {lambda = 2;}
 }
 errorprev = error;

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t\tlambda = " << lambda << endl;
 }

 // Compute new shot: shotNew = shotOld - inv(DF)*F
 tempGuess[0] = shotGuess.at(k).at(0) - ((lambda * (DF[3]*f1 - DF[1]*f2)) / (DF[0]*DF[3] -
DF[1]*DF[2]));
 tempGuess[1] = shotGuess.at(k).at(1) - ((lambda * (DF[0]*f2 - DF[2]*f1)) / (DF[0]*DF[3] -
DF[1]*DF[2]));

 78

 shotGuess.insert(shotGuess.end(), tempGuess);

 // Increment shot counter
 k++;

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t\t-- updated guess = [" << shotGuess.at(k).at(0) << "\t" << shotGuess.at(k).at(1) <<
"] "<< endl;
 }

 // Simulate new guess
 showState = false;
 x0[0] = 0.00; // time
 x0[1] = shotGuess.at(k).at(0); // X
 x0[2] = shotGuess.at(k).at(1); // Y
 x0[3] = zInitial; // Z
 x0[4] = xDotInitial; // Vx
 x0[5] = yDotInitial; // Vy
 x0[6] = zDotInitial; // Vz
 x0[7] = 0.00; // Trace(f)
 x0[8] = joint_ground; // joint pdf

 GetSysWind(x0[1], x0[2], -x0[3]);
 x0[4] = syswind[3]*cos(syswind[4]);
 x0[5] = syswind[3]*sin(syswind[4]);

 IntegrateToZ(-zFinal);
 xFinal = x_impact[1];
 yFinal = x_impact[2];

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t\t-- final state based on new guess = [" << xFinal << "\t" << yFinal << "\t" <<
zFinal << "] "<< endl;
 }

 finalTolerance = sqrt(pow(refPathValAtTime[0]-xFinal , 2.0) +
 pow(refPathValAtTime[1]-yFinal , 2.0));

 // -- Diagnostic print out
 if(showText)
 {
 cout << "\t-- Completed Newton Method Iteration " << mNMCount << ", Final Tol = "
 << finalTolerance << "\tUsing guess = [" << shotGuess.at(k).at(0)
 << "\t" << shotGuess.at(k).at(1) << "]" << endl;
 }

 showState = false;

 // -- Pause program execution after each new guess so we can examine output
 if(showText)
 {
 cin.get();
 }

 } // end Modified Newton Method while

 return mNMCount;
}

void DynamicSystem::FuncRefPath(double z)
{
 // Set initial vales for reference path
 double zi = -1000.0;
 double xi = desiredImpactX;
 double yi = desiredImpactY;

 // Set final values for reference path
 double zf = 0.0;
 double xf = desiredImpactX;
 double yf = desiredImpactY;

 // Range around initial x and initial y values

 79

 double a = 5000.0;

 // Range around final x and final y values
 double b = 50.0;

 // Compute x reference path and upper and lower bounds for the given z value
 double phi1 = ((xf-xi)/(zf-zi))*z + xi;
 double bound1Upper = ((b-a)/(zf-zi))*z + (xi+b);
 double bound1Lower = ((a-b)/(zf-zi))*z + (xi-b);

 // Compute y reference path and upper and lower bounds for the given z value
 double phi2 = ((yf-yi)/(zf-zi))*z + yi;
 double bound2Upper = ((b-a)/(zf-zi))*z + (yi+b);
 double bound2Lower = ((a-b)/(zf-zi))*z + (yi-b);

 refPathValAtTime[0] = phi1;
 refPathValAtTime[1] = phi2;

 boundsValAtTime[0] = bound1Upper;
 boundsValAtTime[1] = bound1Lower;
 boundsValAtTime[2] = bound2Upper;
 boundsValAtTime[3] = bound2Lower;
}

void DynamicSystem::DoRK4(double currentTime, state currentState)
{
 //adsf
 state k1, k2, k3, k4, tempState;
 double h = 0.1;

 tempState.assign(9, 0.00);

 // cout << "Trying FuncODE" << endl;
 k1 = FuncODE(currentTime, currentState);
 // cout << "Executed k1" << endl;

 tempState[0] = currentState[0] + (h/2)*k1[0];
 tempState[1] = currentState[1] + (h/2)*k1[1];
 tempState[2] = currentState[2] + (h/2)*k1[2];
 tempState[3] = currentState[3] + (h/2)*k1[3];
 tempState[4] = currentState[4] + (h/2)*k1[4];
 tempState[5] = currentState[5] + (h/2)*k1[5];
 tempState[6] = currentState[6] + (h/2)*k1[6];
 tempState[7] = currentState[7] + (h/2)*k1[7];
 tempState[8] = currentState[8] + (h/2)*k1[8];
 k2 = FuncODE(currentTime + (h/2), tempState);
 // cout << "Executed k2" << endl;

 tempState[0] = currentState[0] + (h/2)*k2[0];
 tempState[1] = currentState[1] + (h/2)*k2[1];
 tempState[2] = currentState[2] + (h/2)*k2[2];
 tempState[3] = currentState[3] + (h/2)*k2[3];
 tempState[4] = currentState[4] + (h/2)*k2[4];
 tempState[5] = currentState[5] + (h/2)*k2[5];
 tempState[6] = currentState[6] + (h/2)*k2[6];
 tempState[7] = currentState[7] + (h/2)*k2[7];
 tempState[8] = currentState[8] + (h/2)*k2[8];
 k3 = FuncODE(currentTime + (h/2), tempState);
 // cout << "Executed k3" << endl;

 tempState[0] = currentState[0] + h*k3[0];
 tempState[1] = currentState[1] + h*k3[1];
 tempState[2] = currentState[2] + h*k3[2];
 tempState[3] = currentState[3] + h*k3[3];
 tempState[4] = currentState[4] + h*k3[4];
 tempState[5] = currentState[5] + h*k3[5];
 tempState[6] = currentState[6] + h*k3[6];
 tempState[7] = currentState[7] + h*k3[7];
 tempState[8] = currentState[8] + h*k3[8];
 k4 = FuncODE(currentTime + h, tempState);
 // cout << "Executed k4" << endl;

 // cout << "k1 = " << k1[1] << "\t" << k1[2] << "\t" << k1[3]
 // << "\t" << k1[4] << "\t" << k1[5] << "\t" << k1[6] << "\t"<< endl;

 nextState[0] = currentState[0] + (h/6)*(k1[0] + 2*k2[0] + 2*k3[0] + k4[0]);

 80

 nextState[1] = currentState[1] + (h/6)*(k1[1] + 2*k2[1] + 2*k3[1] + k4[1]);
 // cout << "x_next = " << nextState[1] << " = " << currentState[1] << " + "
 // << (h/6) << " * (" << k1[1] << " + " << 2*k2[1] << " + "
 // << 2*k3[1] << " + " << k4[1] << ")" << endl;
 nextState[2] = currentState[2] + (h/6)*(k1[2] + 2*k2[2] + 2*k3[2] + k4[2]);
 // cout << "y_next = " << nextState[2] << " = " << currentState[2] << " + "
 // << (h/6) << " * (" << k1[2] << " + " << 2*k2[2] << " + "
 // << 2*k3[2] << " + " << k4[2] << ")" << endl;
 nextState[3] = currentState[3] + (h/6)*(k1[3] + 2*k2[3] + 2*k3[3] + k4[3]);
 nextState[4] = currentState[4] + (h/6)*(k1[4] + 2*k2[4] + 2*k3[4] + k4[4]);
 nextState[5] = currentState[5] + (h/6)*(k1[5] + 2*k2[5] + 2*k3[5] + k4[5]);
 nextState[6] = currentState[6] + (h/6)*(k1[6] + 2*k2[6] + 2*k3[6] + k4[6]);
 nextState[7] = currentState[7] + (h/6)*(k1[7] + 2*k2[7] + 2*k3[7] + k4[7]);
 nextState[8] = currentState[8] + (h/6)*(k1[8] + 2*k2[8] + 2*k3[8] + k4[8]);

 nextTime = currentTime + h;

 return;
}

state DynamicSystem::FuncODE(double t, state x)
{
 // Main parachute equations of motion
 // x[0] = t
 // x[1] = x
 // x[2] = y
 // x[3] = z
 // x[4] = xdot
 // x[5] = ydot
 // x[6] = zdot
 // x[7] = tr(J)
 // x[8] = phi

 // get wind at current location
 GetSysWind(x[1], x[2], -x[3]);

 // calculate density at current altitude
 double rho;
 rho = 1.22566578494891 * pow(1.00000000-0.0000225696709*(-x[3]),4.258);

 // calculate apparent mass
 double m_app;
 m_app = (4/3) * pow(R, 3) * PI * 0.25 * rho;

 // relative velocities with wind
 double xdot_rel, ydot_rel, zdot_rel, Vtotal;
 xdot_rel = x[4] - syswind[3] * cos(syswind[4]);
 ydot_rel = x[5] - syswind[3] * sin(syswind[4]);
 zdot_rel = x[6] - syswind[2];
 Vtotal = sqrt(xdot_rel * xdot_rel + ydot_rel * ydot_rel + zdot_rel * zdot_rel);

 // directional drag
 double Dx, Dy, Dz;
 Dx = -(0.5 * rho * xdot_rel * Vtotal * Cd * S);
 Dy = -(0.5 * rho * ydot_rel * Vtotal * Cd * S);
 Dz = -(0.5 * rho * zdot_rel * Vtotal * Cd * S);

 // incremental state
 dxdt[0] = 1.00;
 dxdt[1] = x[4];
 dxdt[2] = x[5];
 dxdt[3] = x[6];
 dxdt[4] = Dx / (m + m_app);
 dxdt[5] = Dy / (m + m_app);
 dxdt[6] = (Dz + m*g) / (m + m_app);
 dxdt[7] = 0.00;
 dxdt[8] = 0.00;

 return dxdt;
}

 81

APPENDIX B

DYNAMIC SIMULATION PARAMETERS

 The model used in the Results section is based on the descent dynamics of a 4.57 m

diameter ring-slot drogue and a G-12E main parachute. Table B1 provides the parameters

and uncertainty distributions used in these dynamic simulations.

Table B1: Simulation parameter and uncertainty distribution values

Parameter Description Value

𝑚 Package Mass 1,048 kg

𝐶�̅� Main Parachute Nominal Drag Coefficient 1.0487

𝑅 Main Parachute Radius 9.75 m

𝐶𝑑,𝑑𝑟 Drogue Parachute Drag Coefficient 0.6

𝑅𝑑𝑟 Drogue Parachute Radius 2.3 m

𝑘𝑎 Apparent Mass Coefficient 0.25

𝜎𝑐 Standard Deviation in Main Parachute Drag Coefficient 0.0422

𝜎𝑤 Standard Deviation in Wind Magnitude Scaling Parameter 0.05

𝜎 𝜓 Standard Deviation in Wind Direction 0.0873 rad

𝑧𝑡,𝑚𝑖𝑛 Minimum Allowable Transition Altitude 240 m

𝑧𝑡,𝑚𝑎𝑥 Maximum Allowable Transition Altitude 1,000 m

 82

REFERENCES

 [1] Benney, R., Henry, M., Kristen, L., Meloni, A., “DoD New JPADS Programs and
NATO Activities,” AIAA Paper 2009-2952, May 2009.

[2] Hattis, P., Fill, T., Rubenstein, D., Wright, R., Benney, R., “An Advanced On-Board
Airdrop Planner to Facilitate Precision Payload Delivery,” AIAA Paper 2000-4307,
August 2000.

[3] Wright, R., Benney, R., McHugh, J., “An On-Board 4D Atmospheric Modeling System
to Support Precision Airdrop,” AIAA Paper 2005-7070, September 2005.

[4] Campbell, D., Fill, T., Hattis, P., Tavan, S., “An On-Board Mission Planning System to
Facilitate Precision Airdrop,” AIAA Infotech Conference, 26-29 September 2005,
Arlington, VA, AIAA Paper 2005-7071.

[5] Munnell, C., “Company Developing Wind Measurement Technology to Improve Cargo
Airdrops,” National Defense Magazine, September 2014.

[6] Cacan, M., Scheuermann, E., Ward, M., Costello, M., and Slegers, N., “Autonomous
Airdrop Systems Employing Ground Wind Measurements for Improved Landing
Accuracy,” IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 6, 2015, pp.
3060-3070.

[7] Potvin, J., Charles, R., and Desbrais, K., “Comparative DSSA Study of Payload-
Container Dynamics Prior to, During and After Parachute Inflation,” AIAA Paper
2007-2564, May 2007.

[8] Cuthbert, P. A., “A Software Simulation of Cargo Drop Tests,” AIAA Paper 2003-
2132, May 2003.

[9] VanderMey, J., Doman, D., Gerlach, A., “Release Point Determination and Dispersion
Reduction for Ballistic Airdrops,” Journal of Guidance, Control, and Dynamics, Vol.
38, No. 11, 2015, pp. 2227-2235.

[10] Gerlach, A., Manyam, S., and Doman, D., “Precision Airdrop Transition Altitude
Optimization via the One-in-a-Set Traveling Salesman Problem,” 2016 American
Control Conference, Boston, MA, 6-8 July 2016.

 83

[11] Sobczyk, K., Stochastic Differential Equations, Kluwer Academic Publishers,
Dordrecht, Germany, 1991.

[12] Klein, B., Rogers, J., “A Probabilistic Approach to Unguided Airdrop,” AIAA Paper
2015-2119, April, 2015.

[13] Etkin, B., Reid, L. D., Dynamics of Flight: Stability and Control, John Wiley and Sons,
Hoboken, NJ, 1996, pp. 364-367

[14] Department of Defense Handbook, Flying Qualities of Piloted Aircraft, MIL-HDBK-1797,
December 1997.

[15] Kumar, M., Chakravorty, S., and Junkins, J., “On the Curse of Dimensionality in the
Fokker-Planck Equation,” Advances in the Astronautical Sciences, Vol. 135, 2009, pp.
1781-1800.

[16] Kumar, M., Chakravorty, S., Singla, P., and Junkins, J., “The Partition of Unity Finite
Element Approach with HP-Refinement for the Stationary Fokker-Planck Equation,”
Journal of Sound and Vibration, Vol. 327, 2009, pp. 144-162.

[17] Petry, G., “Airdrop Error Analysis,” Air Force Systems Command Technical Report
ASD-TR-75-8, Wright Patterson Air Force Base, Ohio, June 1975.

[18] Guglieri, G., “Parachute-Payload System Flight Dynamics and Trajectory Simulation,”
International Journal of Aerospace Engineering, Vol. 2012, 2012.

[19] Dunn, W. L., Shultis, J., Exploring Monte Carlo Methods, Elsevier Science and
Technology, 2012, pp. 133-166.

[20] Scott, D., Multivariate Density Estimation: Theory, Visualization, and Practice, John
Wiley & Sons, New York, pp. 1992.

[21] Halder, A., Bhattacharya, R., “Dispersion Analysis in Hypersonic Flight During
Planetary Entry Using Stochastic Liouville Equation,” Journal of Guidance, Control,
and Dynamics, Vol. 34, No. 2, March-April 2011, pp. 459-474.

[22] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications,
Springer-Verlag, New York, 1996, pp. 63-91.

 84

[23] Leonard, A., Klein, B., Jumonville, C., Rogers, J., Gerlach, A., and Doman, D., “A
Probabilistic Algorithm for Ballistic Parachute Transition Altitude Optimization”,
(Submitted for Publication to Journal of Guidance, Control, and Dynamics)

[24] Holsapple, R., Venkataraman, R., and Doman, D., “A New, Fast Numerical Method
for Solving Two-Point Boundary Value Problems”,
http://www.math.ttu.edu/~rvenkata/papers/jgcdnote.pdf (Accessed June 1, 2016).

[25] Holsapple, R., Venkataraman, R., and Doman, D., “A Modified Simple Shooting
Method for Solving Two Point Boundary Value Problems,” Proceedings of the IEEE
Aerospace Conference, Big Sky, MT, Vol. 6, IEEE, New York, NY 10016-5997, March
2003, pp. 2783–2790.

[26] Gerlach, A., Doman, D., “Analytical Solution for Optimal Drogue-to-Main Parachute
Transition Altitude for Precision Ballistic Airdrops,” Journal of Guidance, Control, and
Dynamics, Submitted for Publication, 2015.

[27] “Mapping Toolbox User’s Guide”,
http://www.mathworks.com/help/pdf_doc/map/map_ug.pdf (Accessed June 1,
2016).

[28] Von Neumann, J., “Various Techniques Used in Connection With Random Digits,”
National Bureau of Standards Applied Mathematics Serial, No. 12, 1951, pp. 36-38.

[29] National Center for Atmospheric Research, “A Description of the Advanced Research
WRF Version 3,” NCAR Technical Note TN-475+STR, Boulder, CO, June 2008.

[30] Fields, T., LaCombe, J., Wang, E., “Autonomous Guidance of a Circular Parachute
Using Descent Rate Control,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4,
2012, pp. 1367-1370.

http://www.mathworks.com/help/pdf_doc/map/map_ug.pdf

