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SUMMARY 

The principle concern of the material scientist is the connection between 

microstructure, properties, and processing. Microstructure is characterized via 

experimental measurements of geometry at the appropriate length scale. This is usually 

followed by a quantification of microstructure via statistics for which there are a broad 

base of possibilities including classical stereological measures such as grain size and 

higher order descriptions like the N-point spatial correlations. Despite advances in 3D 

characterization of microstructures such as X-ray tomography and serial sectioned SEM, 

most techniques still capture measurements only in 2D sections. Even when 3D datasets 

are available they are typically measuring only small volumes leading to uncertainty 

about their statistical significance. Can we build statistically representative 

reconstructions of 3D microstructure from the partial information gathered on a 

collection of 2D cross sections? The proposed work introduces new approaches to these 

problems for two phase composites with complex anisotropic geometries. Efficient 

algorithms for the computation of "higher order" statistics, such as N-point correlations 

and chord length distributions, will be explored. These higher order metrics will form the 

basis for establishing structure based representative volume elements (RVEs) in both 

cases where microstructure geometry information is complete and incomplete. 
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CHAPTER 1. INTRODUCTION 

Establishing linkages between the structure of materials, their measured 

properties, and the processing done to them is the inherent goal of material science. 

Structure is investigated by first deciding the length scale(s) of interest and then selecting 

an appropriate experimental technique to measure the internal geometry of the sample of 

interest. Most experimental techniques measure data in planar cross sections of samples 

and therefore it is difficult to directly translate into a fully resolved picture of the 3D 

structure. Characterization in three dimensions is now possible in certain cases utilizing 

techniques such as X-ray microtomography [1], serial sectioned SEM (using mechanical 

polishing [2, 3], focused ion beam [4, 5], laser ablation [6, 7], etc.), atom probe [8], and 

other methods. Suitability of any of these techniques is dependent upon numerous 

factors; susceptibility of material to investigating radiation, required length scales and 

resolutions, financial cost, time, etc.  

Despite the many advances in microstructure characterization, the number of 

large true three dimensional spatially resolved datasets that are available to researchers 

for certain classes of materials is still very low. Currently, materials for which X-ray 

microtomography is not suitable have been typically analyzed in three dimensions using 

some form of serial sectioning technique coupled with an image acquisition technology 

like SEM. Sectioning is usually performed via mechanical polishing or a focused ion 

beam (FIB) for applicable materials. When FIB is suitable the time spent on sectioning 

datasets is usually much quicker, easier to implement, and possible to automate fully. 

However, the volume of material that can be milled away is much smaller than required 
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for the length scales of interest in a large amount of material systems. This is particularly 

true for polycrystalline metals where a typical FIB generated dataset size is on the order 

of 50 cubic microns. When statistically significant volumes of polycrystalline metals are 

needed in full 3D the only real alternative is mechanically polished serial sectioning with 

SEM\EBSD. However, the process is much more time consuming and extremely difficult 

to automate. These types of datasets are rare because of the prohibitive cost in both time 

and money. 

The difficulty in acquiring 3D datasets for a large number of material systems 

pushed to the forefront the concept of reconstructing statistically representative 3D 

microstructures from sets of partial spatial correlations. We are dealing with partial 

statistics simply because the data from which they are derived are not 3D but 2D cross 

sections taken over large areas of the sample. The motivation for this approach is that we 

can cover a much larger and thus more statistically significant area of the material with 

2D cross sections then we could by investing in direct 3D characterization. If enough 2D 

cross sections are taken then we should be able to gather enough information to 

reconstruct the 3D statistics from spatially resolved 2D statistics taken from the cross 

sections. 

The general approach is to take statistics from the 2D cross sections and couple that 

with the known orientation of the planar section within the sample frame. With all of this 

information we can reconstruct an approximation to the 3D statistics of the 

microstructure. We will be missing statistics that are out of the planes that we have not 

sectioned. However, if enough oblique sections are taken we will be able to approximate 

the full 3D function. With such an approximation we can then try to derive a structure 
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digitally that matches the known statistics as closely as possible. This optimization 

problem begins by guessing a starting point for the microstructure that is as close as 

possible to the one we are trying to reach of course. We then iterate over this guess 

making small changes until the structures statistics converge to the target statistics 

derived from our 2D sections. 

1.1 Related Work 

Statistical reconstruction has been particularly studied in the metals community 

because of the difficulty in 3D characterization. The standout success in the field would 

certainly be the software project Microstructure Builder developed by Rollett et al. [9, 

10] . Microstructure builder fits into the general model of statistical reconstruction 

presented above. The goal of the project is to use SEM\EBSD information gathered from 

three orthogonal cross sections taken from a polycrystalline sample and derive a full 3D 

model of the microstructure that is representative. SEM EBSD data contains not only 

information about the geometry of the grain structures but also crystallographic 

orientation of each of those grains.  

Microstructure builder then calculates a set of statistical distributions that describe 

the shape and texture (distribution of preferred crystallographic orientations) of the 

sample. The distributions are derived completely from scans on only the three orthogonal 

sections. The geometric component of these statistics is the ellipsoid distribution that is 

used to describe the grain structure. One main assumption of the work is that grains in 

polycrystalline metals can be approximated via ellipsoids. This assumption is not very 

reasonable for polycrystalline materials because ellipsoids are not space filling. That is, 
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while grains could be approximated as ellipsoids and characterized with a distribution of 

these shapes, this distribution would lack a large amount of information about the 

structure of interfaces between grains.  Additionally, the authors assume that the 

approximating ellipses are all orientated in the same direction. They assume as well that 

there are no gradients present in the texture, that is, the ellipsoid distribution is 

independent of the position in the sample. With these assumptions they formulate a 

distribution ݂(ܽ, ܾ, ܿ) where the three parameters are the semi-axis lengths of an ellipsoid 

and ݂ is the probability of finding a grain with such an approximating ellipsoid. It is 

obvious how three orthogonal sections could provide complete information to extract this 

type of 3D statistical distribution. To capture the texture of the sample two statistical 

distributions are captured from the three sections; the orientation distribution function 

(ODF) and the misorientation distribution function (MODF). The ODF ݂(݃) gives the 

probability of finding crystallographic orientation ݃ in the sample, and the MODF ݂(Δ݃) 

gives the probability of finding a misorientation Δ݃ between nearest neighboring grains 

in the sample.  

Once these statistical measures are estimated from the orthogonal cross sections 

the algorithm begins by trying to find a grain structure that matches the ellipsoid 

distribution. It does this by filling a cubic space with said distribution of ellipsoids 

meanwhile trying to pack them as tightly as possible. Simulated annealing is used to pack 

the ellipses. Once this is done the ellipses are converted to space filling grains via a 

procedure that I will not describe here for sake of brevity.  

After a grain structure is produced the final phase of reconstruction is an 

assignment of orientation to each grain such that the texture of the reconstruction matches 
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the ODF and MODF of the sample. This process produces a 3D reconstruction that 

matches the basic grain shape and texture character of the true sample. However, the real 

drawback in microstructure builder is the statistical measures they chose to capture 

microstructure detail. The ellipsoid distribution will not capture more complex grain 

geometries such as colony microstructures with different orientations. Worse yet, they 

use only the most basic measures of crystallographic orientation and thus their 

reconstructions will not account for the true spatial correlation between different grains in 

the structure. These features are extremely important for modeling anisotropic plasticity. 

 Reconstructions using monte carlo techniques [11-15] directly from correlation 

functions have been explored extensively. The general approach is to start from an 

initialization of cells in the reconstruction (nucleation) and then guide the distribution and 

growth of those cells via minimizing some objective error function. The objective error 

function in these cases is the classic spatial statistical measure of the two point correlation 

function.  For the case of fiber composites [12], interestingly the authors utilized a 

geometric description of the fiber composites geometry as cylinder segments with 

“waviness” connected by node junctions instead of a more traditional image model. This 

drives home the point that the reconstruction problem is not always a problem in image 

modelling as often times images are not immediately useful for every application.    

Surprisingly, the reconstruction problem has also been explored in the field of 

computer graphics.  This area, called solid texture synthesis [16], endeavors to solve a 3-

D reconstruction problem that is essentially identical to the one presented earlier. 

Computer graphics has adopted the term texture map (or simply texture) to refer to a 

color image that is applied to 3-D graphical objects to give them a more complex and real 



 6

appearance. These textures are most commonly 2-D images that are mapped or 

interpolated across the surface of the 3-D object. However, when it is necessary to show 

the internal structure of a 3-D object with texture, a 3-D image or solid texture is then 

needed. Solid texture synthesis algorithms are being devised to help 3-D animators create 

realistic 3-D images that specify the appearance of the internal surfaces of objects. The 

most popular form of these algorithms utilizes what are called 2-D exemplar textures to 

define the appearance of the solid texture when viewing it from a particular direction. 

That is, when the solid texture is cut along any plane of a certain orientation it will 

resemble the 2-D exemplar texture statistically.  

One of the most effective algorithms in the literature is an optimization based 

approach presented by Kopf et al. [17]. The algorithm’s inputs are a set of three input 

images that represent the desired appearance of the solid texture when cut anywhere 

along three orthogonal planes. The algorithm alternates between search and optimization 

steps until the solid texture converges. The search step is relatively simple. The 

neighborhood of every pixel in the current iteration’s solid texture is examined, and the 

three best matching neighborhoods from the exemplar input images are found. A 

neighborhood is defined as a small square region of pixels centered on a certain voxel. 

Since the algorithm’s input is three orthogonal 2D slices we are concerned with the three 

corresponding orthogonal neighborhoods centered on each voxel. If NxN represents the 

size of our neighborhood, then N can range typically between 8 and 32 pixels. The 

optimization step proceeds by assigning each pixel a value that minimizes the error 

between all best matching neighborhoods for which the pixel is involved. More 
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specifically, given the current 3-D reconstruction, ܵ, and a set of 2-D exemplars images, 

 is defined as ்ܧ this error ,ܧ

;ܵ)்ܧ  (ܧ = ෍ ෍ ฮܵ௩,௜ − ௩,௜ ฮܧ
௥

௜∈{௫,௬,௭}௩

 (1) 

 

where ݒ iterates over the entire current 3-D reconstruction, ܵ௩,௫, ܵ௩,௬, and ܵ௩,௭ are 

vectorized neighborhoods situated around the voxel ݒ in slices orthogonal to the x, y, and 

z axes. ܧ௩,௜ is the best matching candidate (identified in the previous search phase) for ݒ. 

The ݎ exponent is used to control sensitivity to outliers. It has been shown that a good 

value for ݎ is ~0.8 [17]. This optimization is solved using an iteratively reweighted least 

squares (IRLS) method for which a simple closed form expression is derived: 

 
ܵ௩ =

∑ ∑ ௨,௜,௩௨∈ே೔(௩)௜∈{௫,௬,௭}ܧ௨,௜,௩ݓ

∑ ∑ ௨,௜,௩௨∈ே೔(௩)௜∈{௫,௬,௭}ݓ
 (2) 

where ௜ܰ(ݒ) represents the different slices forming the neighborhood of ݒ. Here ܧ௨,௜.௩ 

represents the exemplar pixel in the neighborhood ܧ௨,௜ that corresponds to ݒ. The weight 

 ௨,௜,௩ is a scalar value for each exemplar neighborhood pixel that can be used to controlݓ

the influence of a neighborhood to the solution. These weights allow us to drive the 

solution towards a more global optimum. Equation 14 can be thought of intuitively as 

setting the value of each voxel in the reconstruction so that it best matches all of the 

neighborhoods with which it is involved. More specifically, this equation is simply 

setting the value of the voxel to the average of all the suggested values from the best 
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matching neighborhoods. If the weighting constants (ݓ௨,௜,௩) chosen for each 

neighborhood’s contribution are all equal then the algorithm converges towards a 

solution in which only local statistics (defined within the selected size of the 

neighborhood) are matched. The figure below shows a schematic description of the 

general process of solid texture synthesis. 

Kopf et al. [17] present reweighting schemes which incorporate global statistical 

information to drive the solution towards a compromise between both local and global 

constraints. Since Kopf et al. are reconstructing color images, the global statistics they are 

trying to incorporate are simply color histograms. That is, they are trying to produce a 3D 

reconstruction whose histogram of colors matches that of the 2-D input images. This 

would be something akin to trying to simply match the volume fraction in the case of a 

two-phase microstructure. To accomplish this, the weights are selected as the algorithm 

progresses so that neighborhoods that drive the color histogram away from their target 

are diminished. Another more recent approach [18] uses a dual approach of position and 

neighborhood histogram matching. More specifically, a record is kept between iterations 

of which pixels and neighborhoods from the exemplars are copied to the solution. The 

optimization weights are adjusted so that the exemplar images are sampled uniformly. 

Methods that explicitly model the material or texture with non-parametric Markov 

Random Fields (NP-MRF) have been known for quite some time [19] and have been 

among the most successful for reconstructing 2D images from other 2D example images 

(2D texture synthesis). Before that, MRFs where studied extensively in the context of 

image texture modelling as a statistical model for local image structure. They have been 

used for problems like edge detection, image registration, reconstruction, segmentation, 
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texture classification, and synthesis [20-22].  Recently these methods have been extended 

to the problem of 3D solid texture synthesis [23]. The MRF approach can be viewed as 

the application of the Markovian principle to the image modelling domain. More 

specifically, the probability of any pixel\voxel taking on a certain value depends only on 

the values at neighboring pixels\voxels. The neighborhood of a pixel\voxel is usually 

defined a small square region around its location. This Markovian condition is usually 

called the local conditional probability density function (LCPDF), which may be 

expressed; 

(ݏ)ܮ  = ௦ܯ)ܲ = ݉௦|ܯ௧ = ݉௧, ݏ ് (ݐ = ܲ(݉௦|݉௧, ݐ ∈ ௦ܰ) (3) 

where  ܯ௦ is the random variable describing the intensity value at pixel\voxel ݏ and ௦ܰ is 

the neighborhood of ݏ. In NP-MRF, the LCPDF is estimated by constructing a 

multidimensional histogram from image neighborhoods were each dimension is a 

position in the neighborhood. This histogram may then be smoothed and normalized into 

a pdf by Parzen-window density estimation [24] as done by [23]. Using the estimated 

LCPDF the reconstruction problem can then be treated as a relaxation problem for which 

there are a number of suitable algorithms; stochastic methods such as Gibbs sampling 

[21] and Metropolis-Hastings [25] as well as deterministic methods like Iterated 

Conditional Modes (ICM) [26]. 

 Recently some researchers [27, 28] in the material science field have seemed to 

take inspiration from the solid texture synthesis community. Liu et al. [27] argue 

primarily that the microstructure reconstruction problem is analogous to the texture 

synthesis problem. They argue that modelling microstructure as an MRF should capture 
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completely all other local spatial statistical measures. Most of their experiments are 

conducted as a 2D texture synthesis problem using 2D exemplars. There is brief mention 

and results of extending the algorithms to 3D reconstruction from 2D exemplars. The 

algorithm is implemented for binary images and is adapted from [29]. It is a surprisingly 

simple deterministic algorithm which iteratively assigns unknown pixels in the 

synthesized microstructure from the best matching neighborhoods in the exemplar. Like 

many solid texture synthesis algorithms it builds a multiscale Gaussian pyramid of both 

the exemplar image and synthesis solution. It then proceeds from lower resolution to 

higher, upsampling each time the solution converges or in this case all pixels are 

assigned. This algorithm performs excellently when 2D images are synthesized from 

other 2D images because in this case LCPDF of the MRF is completely known. However, 

in the compressed sensing problem of 3D reconstruction from 2D information only we 

have an ill-posed problem with many possible valid solutions. More state of the art solid 

texture synthesis algorithms such as [17, 18] have had more success with utilizing a 

hybrid approach of trying to match both local and global statistics.        

Sundararaghavan [28] seems to have taken the approach of adapting Kopf et al. 

[17] work to the material science domain. However, there are some interesting 

differences discussed in the implementation of the underlying algorithms of this work. 

First, Kopf et al. utilizes a reweighting scheme in the optimization step of their algorithm 

which down-weights exemplar pixels that drive the solution away from the global color 

histogram of the exemplar. This can be seen as a form of regularization enforced on the 

optimization algorithm to help ensure it does not copy the same regions of the exemplar 

again and again. Or otherwise, so that it does not get stuck in local minima. 
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Sundararaghavan discusses the weighting in his algorithm as utilizing a simple Gaussian 

scheme which assigns weights to pixels from the exemplar as a function of distance from 

the center of the neighborhood. This is done to “to preserve short-range correlations of 

the microstructure”. This is interesting because there does not seem to be any 

regularization in the optimization as done in  Kopf et al.[17] and others[18]. The 

presented results are shown for a few simple microstructures using small exemplar 

images. Numerous artifacts are present in the reconstructions that are not visible in the 

exemplar images which are most likely the result of the algorithm converging to local 

minima, a typical problem with solid texture synthesis. None the less, to the author’s 

knowledge, this is probably the best example of solid texture synthesis algorithms being 

applied directly to the field of material science to date.  

1.2 Contents 

This document describes the work of adapting state of the art solid texture 

synthesis algorithms to the problem of 3D microstructure reconstruction. This effort 

began with research into statistical measures of microstructure for assessing the accuracy 

of these reconstructions. Chapter 2 includes detailed discussions on a classical measure of 

microstructure known as the 2-point correlation function. Specifically, it discusses 

extensions made to the fast Fourier transform (FFT) convolution algorithm for computing 

these spatial statistics on microstructure images that allows for avoiding periodic 

boundary condition assumptions. In chapter 3, we discuss the application of 

microstructure statistics towards a definition of the representative volume element 

(RVE). Our weighted sets of statistical volume elements (SVE) are an attempt to redefine 

the RVE in terms of statistics of microstructure as opposed to simulated performance 
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bounds. In chapter 5, we discuss the implementation of a solid texture synthesis inspired 

algorithm for the reconstruction of 3D microstructure images from sets of 2D images. 

Finally, appendix A discusses another metric of microstructure known as the chord length 

distribution and its expression in an angularly resolved form. We discuss an algorithm for 

the efficient computation of these statistics on 2D and 3D microstructure images.  
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CHAPTER 2. N-POINT CORRELATIONS 

In order to reconstruct a statistically representative microstructure we must first 

define what we mean by “statistically representative”. There have been numerous ways in 

which materials researchers attempted to capture features of microstructure in a statistical 

space; including the n-point spatial correlations [30-37], shape moment invariants [38], 

topological descriptors including homology [39-41], entropic descriptors [42, 43], chord 

length distributions [44-50], lineal path functions [51], among others. The following 

chapter of this work is dedicated to n-point correlations. We will define these measures, 

describe how to compute them efficiently, and show why they can be effective statistical 

representations for microstructures. If you have additional interest in chord length 

distributions and how they can be efficiently computed, please consult Appendix A  [44]. 

2.1 Discretized Microstructure Function 

In order to characterize microstructure, we must first specify a mathematical 

description of it. Let the spatial domain of the microstructure be binned into a uniform grid 

of ܵ cells/pixels/voxels, whose nodes are enumerated by the ordered triplet of indices, one 

per dimension of the image, [ݏଵ, ,ଶݏ  ଷ]. Each component is numbered in a zero basedݏ

indexing, ݏ௜ = 0,1,2 … ௜ܵ − 1. We can represent this triplet by vector ࢙, the vector from the 

origin to ܵଵ − 1, ܵଶ − 1,  ܵଷ − 1 as ࡿ − ૚, and the zero vector as ࡻ. Just as we have 

discretized our spatial domain we may do the same for the local state space represented at 

each individual spatial bin. The local state space ܪ, is binned into a uniform grid of ܰ 

discrete local states. Similarly, local state bins will be represented by an ordered vector ࢔. 
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The discrete microstructure function over the sub-region Ω௝ described here is therefore 

denoted in a condensed form as ݉࢔
࢙
௝. It is necessary to introduce a convention for indexing 

sub-region Ω௝ because this work often discusses aggregating over sub-samples of a 

microstructure dataset. 

We define the following constraints on the discretized microstructure function; 

 
෍ ࢔݉

࢙
௝

૚ିࡺ

௡ୀࡻ

= ࢔݉                 ,1
࢙
௝ ≥ 0,                 ෍ ࢔݉

࢙
௝

૚ିࡿ

௦ୀࡻ

= ࢔ܸ ௝ܵ (4) 

where ܸ࢔ ௝ is the volume fraction of local state ࢔ in the sub-region Ω௝ and ܵ = ܵଵܵଶܵଷ (the 

number of spatial cells). By formalizing the microstructure function in this manner we are 

expressing the idea that all characterization techniques probe the material over finite 

volumes (spatial bins), thus the measurement at bin ࢙ is effectively quantifying the local 

state distribution at the probe volume. More succinctly, we can express the inherent 

uncertainty with individual measurements using this description. 

However, for most of our cases we deal with images that only have one local state 

represented in any spatial bin. That is, for any spatial bin ࢙ of ݉࢔
࢙
௝, only one local of state 

bin ࢔ has a non-zero value. Such microstructure datasets are very common in material 

science because often times experimentalists simplify their data by deciding the most 

dominant signal present in a spatial bin will represent that bin’s local state entirely. For 

example, micro-porous datasets can be approximated by binarizing (thresholding) the local 

state space of X-ray tomography data. For convenience, throughout this work we will most 
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likely express such two-phase microstructures using a simplified form of this notation, ࢙݉. 

Here, the local state index and spatial region index have been dropped for brevity. 

2.2 Spatial Statistics of Microstructure 

The most comprehensive and hierarchical measures of a microstructure are 

provided by the framework of n-point spatial correlations [30, 37, 52-55]. For example, 

the 1-point and 2-point statistics corresponding to the discretized microstructure realization 

࢔݉
࢙
௝ , on the region Ω௝ are defined as; 

 
࢔݂ ௝ =

1
S

෍ ࢔݉
࢙
௝

૚ିࡿ

࢙ୀ૙

 , (5) 

 
ᇲ࢔࢔݂

࢚
௝ =

1
S

෍ ࢔݉
࢙
௝ ᇲ࢔݉

࢙ା࢚
௝

૚ିࡿ

࢙ୀ૙

 (6) 

࢔݂ ௝  is the probability of finding local state ࢔ within sub region Ω௝, or in other words, the 

volume fraction of local state ࢔ܸ ,࢔ ௝. ݂࢔࢔ᇲ

௧
௝ can be thought of as the joint probability of 

finding local states ࢔ and ࢔′ separated by the discrete set of vectors ࢚ within sub region Ω௝. 

That is, if we throw a discrete vector corresponding to ࢚ randomly into our discrete 

microstructure, ݂࢔࢔ᇲ

௧
௝  gives the probability of finding local states ࢔ and ࢔′ at the tail and 

head of that vector respectively. Throughout this work, we will refer to the case when ࢔ =

 ᇱ as an auto-correlation and the alternative as a cross-correlation. When computing these࢔

quantities assumptions must be made regarding how to treat vectors that extend past the 

boundary of the data. It is important to note that this definition of the 2-point correlation 
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differs with respect to some definitions within the literature in one important regard. Here, 

we are capturing the probability for any arbitrary but specific vector (fixed length and 

orientation). Some definitions of the 2-point correlation, particularly when characterizing 

isotropic structures, integrate the angular component of this function and only parameterize 

by the length. Throughout this work, when discussing 2-point correlations we will always 

be referring to the full correlation, unless otherwise indicated.  In most cases throughout 

this work we will assume periodic boundary conditions, however, in this section we will 

discuss methods for calculating these quantities using other boundary assumptions. Note 

the large difference in the amount of information contained in the 2-point statistics when 

compared with 1-point statistics. We go from only capturing volume fraction information 

to a measure that requires more memory storage than the original image itself. While it is 

possible to extend these definitions to an arbitrary numbers of points (thus the name, N-

point correlations), this work does not discuss these measures. The computation of 3-point 

or greater correlations represents a difficult and open problem in the literature, at least to 

the author’s knowledge. Additionally, the exponential growth in the size of these measures 

necessitates finding redundancies or ways to compress this data to make it tractable to 

compute and store for even modest size microstructures datasets. 

2.3 Efficient calculation of 2-point statistics 

The most naïve approach for computing the 2-point statistics of a given 

microstructure image/realization ݉࢔
࢙
௝ would be a sampling approach. That is, throw as 

many vectors of the given size and orientation into our microstructure and enumerate the 

counts for different local states. We would need to have a set of matrices for each possible 
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pair of local states in the image. These matrices could be used to enumerate counts for any 

combination of local states found separated by the given vector, and then one has to repeat 

this computation for all vectors of interest. Figure 1 represents this algorithm, specifically 

how vectors of different lengths and orientations could be accumulated within a counting 

matrix by translating the tail of the vector to the center of the matrix and using that as the 

origin. Such an algorithm would be effective however computationally it is not very 

efficient. In addition, how many vectors must we sample before the statistics converge? 

Within a ݉ by ݊ pixel image we would have up to ݉ଶ݊ଶ possible samples (exact number 

depends on which boundary assumptions that we would want to make). This is of a 

quadratic computational complexity. For large images, especially those with more than a 

few local states, this would be computationally inconvenient even on modern hardware.  

Fortunately, there is a much more efficient way to compute these correlations if we 

realize that what we are actually computing is a convolution. First, create a version of our 

microstructure image where ones represent our local state of interest and all other pixels are 

zero. Choose a vector length and orientation of interest. Center a copy of the image on top 

of itself but offset it by this vector. Compute an elementwise multiplication of these 

matrices and sum them up. This will give us the count for this particular vector. If we 

repeat this for each vector we will have computed the auto-correlation of this local state of 

interest. That is, we can convolve this image with itself to compute the correlation. This 

works to our advantage because convolution is an operation that can be efficiently 

computed in Fourier space using a simple element multiplication. So with the use of the 

fast Fourier transform (FFT) and a subsequent inverse FFT we can compute the correlation 

in a much faster ܱ(݊ log ݊) asymptotic complexity [37, 54, 56]. In order to express this 
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more formally, the discrete Fourier transform (DFT) of the microstructure function is 

written as 

 
௞ܯ

௝ = ℱ( ࢙݉
௝) ࢔࢔= ෍ ࢔݉

࢙
௝݁ଶగ௜࢙∙࢑/ௌ,

૚ିࡿ

࢙ୀ૙

 (7) 

where ℱ(ݔ) is the DFT, and ݇ is the index of the terms of the Fourier series.  We know that 

we can evaluate the DFT in ܱ(݊ log ݊) computational complexity using the FFT. It follows 

from the convolution theorem that we can then perform the convolution in Fourier space, as 

an element wise product of the series, 

 
௞ܨ

௝࢔࢔ᇲ
=  ℱ( ݂࢚௝)࢔࢔ᇲ

=
1
ܵ

௞ܯ
௝࢔ ∗

௞ܯ
௝࢔ᇲ
, (8) 

where the ∗ symbol denotes the complex conjugate. Note the normalization of statistics by 

the number of pixels\cells in the image. This is because, for any particular vector, we can 

place that vector on any pixel in the image by invoking fully periodic boundaries. 

Throughout this work, we will employ a simple visualization of the 2-point correlation 

function where the origin is placed at the center of the plot. To read the value ݂࢚௝࢔࢔ᇲ
 for any 

particular ࢚, simply go to its coordinates and read the value. That is, place the tail of the 

vector at the origin and read the value at the head. An example of these visualizations is 

shown in Figure 3 and Figure 4. 
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Figure 1:  The image on the left represents a simple 2-phase/binary microstructure. 
Random vectors are thrown into the data with their heads and tails lying in different 
spatial bins. The image to the right shows how we could accumulate these vectors within 
a set of matrices, one for each correlation. 

 

 

Figure 2: Choose a vector length and orientation of interest. Center a copy of the image 
on top of itself offset by this vector. Multiply each of the overlapping pixels together and 
add them up and you will have the total count for that particular vector. 
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Figure 3: An example of a microstructure with two local states containing equally sized 
circles. Yellow example vectors are shown thrown into the microstructure. Not all vectors 
sampled are shown. A calculation of the 2-point auto-correlation (using the local state 
red). To read the probability associated with the yellow vector simply read the value at 
the head after placing the tail on the origin. 
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Figure 4: An example of a microstructure with three local states. The cross-correlation to 
the right is computed between the red and green local states. 

2.4 Boundary Conditions 

One result of utilizing Fourier methods to compute the 2-point statistics is the 

implied assumption that the microstructure is a periodic structure. That is, for vectors that 

extend beyond the boundary of our image it will be as if they wrap around to the other side 

and encounter whatever is present there in the image. Or to put it another way, it is as if we 

have padded the image with copies of itself. While typically this is not a problem in a lot of 

cases, there are alternatives for those that feel this may impact their use of these measures. 

One approach is to treat the boundary as if it is padded with zeros beyond the range of the 

image. In this case vectors that extend beyond the boundary will not be counted. However, 

this requires two considerations. First, normalizing these statistics is not as simple as the 

periodic case (divide by the number of spatial cells\pixels). All vectors are not sampled 

equally in this case and thus we need to normalize each count accordingly. The adjusted 

normalization and statistics is as follows, 
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 Յ(࢚) = ( ଵܵ − ଵ)(ܵଶݐ − ଶ)(ܵଷݐ −  ଷ) (9)ݐ
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1
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෍ ࢔݉
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௝ ᇲ࢔݉

࢙ା࢚
௝

૚ିࡿ

௦ୀ૙

 (10) 

A plot of the normalization factor Յ(࢚) is shown in Figure 5. The second consideration that 

one must make when computing these non-periodic statistics is that we must actually pad 

the image with zeros to twice its size in all dimensions. This will increase the 

computational cost of the calculation when using an FFT approach. There may be 

intelligent ways to mitigate this cost (because the pad is all zeros) but the authors have not 

explored customizing the FFT for these purposes. A computational time comparison 

between different methods for computing a 2D 2-point auto-correlation are shown in 

Figure 7. Finally, because there are less samples for longer vectors than for shorter vectors 

one must consider whether this effects the accuracy of the statistics themselves.  
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Figure 5: An example of the normalization applied to non-periodic 2D 2-pt correlation. 
The origin is at the center of the plot. Each value is the total count of vectors that can fit 
into a 256x256 image. In the non-periodic case long and angled vectors can be thrown in 
less than short vectors so their counts must normalized non-uniformly. 
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Figure 6: A comparison of periodic vs. non-periodic auto-correlation of the image of 
circles in the top right. Notice the more pronounced effects for longer vectors. 

 

Figure 7: A comparison of computation time in seconds as a function of image size 
between 2-point correlation calculation algorithms. The blue line with ܱ(݊ଶ) growth is a 
naïve implementation of the convolution. The red and green lines represent the 
ܱ(݊ log ݊) FFT methods. Notice the increased cost that padding adds for the non-
periodic case. 
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CHAPTER 3. REPRESENTATIVE VOLUME ELEMENTS  

The previous chapters outlined a comprehensive framework for statistics of 

microstructure that can now be used to define representative volume elements (RVE or 

SVE). For this work we have elected to utilize 2-point correlations because of their 

computational efficiency. However, there is no reason that other statistical measures like 

the chord length distributions could not be used as a basis for defining a statistically 

representative volume element. The work described in this chapter culminated in the 

publication of two journal papers [57, 58].  

The concept of the RVE in material science most likely dates back to  Hill [59], 

who proposed a working definition of the RVE as; 

“a sample that (a) is structurally entirely typical of the whole mixture on average, 

and (b) contains a sufficient number of inclusions for the apparent overall moduli 

to be effectively independent of the surface values of traction and displacement, 

so long as these values are macroscopically uniform.” 

Part (a) speaks to the idea that our volume element should look like the microstructure in 

an average sense. That is, if we sample many volumes they should not look entirely 

different than our sub-volume. Our volume should be large enough that any inherent 

heterogeneity in the structure of the sample is represented within it. Part (b), which in 

Hill’s definition is the stronger requirement, makes the claim that the RVE should be 

large enough such that calculated (simulated) effective properties should be independent 

of boundary effects (i.e. the number of boundary elements is small relative to the number 
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of total elements for finite element method (FEM)). Many authors determine the RVE 

based solely on the convergence of effective properties for both Neuman and Dirichlet 

boundary conditions (for a review of important results and studies on the application of 

Hill’s RVE see [60, 61]).  It is important to note that using this approach the RVE is a 

function of both the effective property under consideration and the contrast in local 

property values between the constitutive microstructure components. In general, the RVE 

for highly nonlinear properties or high contrast composites (porous materials) will be 

substantially larger than for low contrast composites (phase separated metallic alloys) or 

linear properties. 

 It is often the case that, from a practical point of view, the RVE defined above is 

simply too large. Thus, an ensemble of smaller regions, often termed statistical volume 

elements (SVEs), is used to approximate effective properties. Properties calculated from 

the members of the ensemble are termed apparent properties and will exhibit a variance 

that is a function of SVE spatial size. Effective (RVE) properties can be bounded by 

apparent (SVE) property calculations [61-63]. For example, Huet [63] showed that for 

linear elastic materials the effective stiffness is always bounded from below by the 

harmonic average of moduli under Neuman boundary conditions and bounded from 

above by the arithmetic average of moduli under Dirichlet boundary conditions. Kanit et 

al. [64] constructed confidence intervals on the value of the effective property as a 

function of members in the SVE ensemble, while other authors determine ensemble size 

from convergence studies on the effective property as new members are added. In 

general, with smaller SVEs, more members are required in the ensemble, and the upper 

and lower bounds of effective properties are wider. This approach is reasonable when 
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defect-insensitive homogenized properties are sought for macroscale design. However, 

such approaches have not enjoyed much success in applications involving defect-

sensitive macroscale properties or performance criteria that depend strongly on the spatial 

distributions of specific microscale features. 

 However, the work presented in this chapter attempts to more formally define part 

(a) of Hill’s criteria, in hopes that in doing so we will arrive at a more robust and 

effective definition of the RVE. That is, using our previously defined concepts of N-point 

correlations as a measure of microstructure statistics, can we define an RVE that is 

statistically representative of the sample microstructure. There are at least two reasons 

that this approach might be more effective than the convergence of effective properties 

criteria described above. First, we can define an RVE that is entirely defined by structure, 

regardless of property of interest. It is known that structure-property relationships are 

many-to-one [65] and [66], and thus just because we have found volume that has similar 

effective properties does not mean it is truly representative of the structure. Effective 

properties emerge at different length scales and there is no reason to assume an RVE for 

one will be and RVE for another. However, if we represent the structure accurately, it 

should follow that many properties are captured accurately as well. 

Second, what does one do when the necessary RVE size using Hill’s criteria is not 

computationally tractable for simulation. In this case, using the concept of microstructure 

spatial statistics, we can try to optimize the selection of an ensemble of smaller SVEs 

rather than take a random sample, which is typically done. The goal of such an 

optimization would be to find a set of SVEs that best approximate the statistics of the full 

sample microstructure. In doing so, researchers could optimize for the best RVE under a 
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give computational budget. This can be thought of as a form of intelligent sub-sampling. 

In this work we refer to such optimized ensembles as weighted statistical volume element 

sets (WSVE sets). 

3.1 Ensemble Averaged Microstructure Statistics 

In chapter 2, we discussed the definition of a discretized microstructure function 

and their related N-point correlations. These two components form the basis for defining 

a representative volume element in a statistical sense. To begin with constructing a 

statistical RVE we must first estimate the statistics of the microstructure we wish to 

represent. We may think of these sample statistics as the target or goal of our approach. 

The most-straightforward way to estimate these statistics would be to take an ensemble 

average of a large number of characterized regions of the microstructure in question. Or, 

more typically, given a large characterized volume (for which simulation is impractical), 

select a sub-volume size and randomly extract as many as needed from the full sample 

until our statistics converge. The ensemble-averaged 1-point and 2-point statistics over ܬ 

such sub regions\volumes (Ωଵ, Ωଶ … , Ω௃) are simply defined as 

 
݂ஐ࢔ ≈ ࢔݂̅ =

1
ܬ

෍ ݂୨࢔

௃

௝ୀଵ

= 〈 ݂୨࢔ 〉 (11) 

 
݂࢚ஐ࢔࢔ᇲ

≈ ݂௧̅
ᇲ࢔࢔

=
1
ܬ

෍ ݂࢚୨࢔࢔ᇲ

௃

௝ୀଵ

= 〈 ݂࢚୨࢔࢔ᇲ
〉 (12) 

where ݂ஐ࢔  and ݂࢚ஐ࢔࢔ᇲ
 are the material sample statistics. These equations express a 

simple ensemble average of the statistics as an estimate of the true sample statistics. The 
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natural origin of the spatial statistics allows us to do this. If we did a similar average over 

the microstructure realizations themselves the result would be effectively meaningless. 

However, one important consideration to make is that all of this assumes that the SVEs 

are drawn from a statistically homogenous microstructure. If the sample contains any 

structural gradients, then these assumptions do not apply and this work is not applicable. 

 Using the spatial statistics, we can define the idea of coherence length, which is 

the length scale beyond which the spatial distributions of local states are completely 

uncorrelated. Or mathematically, the coherence length ݐ௖ 

 〈 ݂࢚୨࢔࢔ᇲ
− ݂୨࢔ ∙ ݂୨࢔ᇲ

〉 ≤ ߳        ∀ ‖࢚‖ ≥  ௖ (13)ݐ

where ߳ denotes some sufficiently small tolerance. This allows us to define a minimum 

length scale of interest based on our SVE ensemble. However, this does not mean that 

any two members of our SVEs will have similar statistics beyond this length scale (see 

Figure 8)  
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Figure 8: (a) Ensemble averaged normalized 2-point particle–particle 

autocorrelations,〈 ݂࢚୨࢔࢔ − ( ݂୨)࢔ ଶ〉, calculated over 100 independent 150 × 150 pixel 
realizations of non-overlapping disks of diameter 20 pixels with a minimum spacing of 5 
pixels. The ensemble average statistics clearly shows the discs are spatially uncorrelated 
with a coherence length of 25 pixels. (b) Three independent realizations of the 
microstructure. (c) The normalized 2-point statistics of the realizations shown in (b). 
Even though the dimensions of each realization are six times larger than the coherence 
length, the correlation functions for each realization show significant correlations at the 
longest vectors. 

Finally, for our purposes, it is important to define a scalar distance metric between 

two different sets of microstructure statistics. In our case, we will be computing the 

distance between the estimate sample statistics (ensemble average) and a sub-domain Ω௝ 

of our WSVE set. We will define this distance as 
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ௌܦ

௝ =
1
ܵ

ඨ෍ ෍ ෍ ൫ ݂࢚୨࢔࢔ᇲ
− ݂௧̅

ᇲ࢔࢔
൯

ଶௌିଵ

௡ᇲୀ଴

ேିଵ

௡ୀ଴

ௌିଵ

௧ୀ଴
 (14) 

where ܵ defines the spatial extent of the sub-domain as in Equation 4. This definition is 

dependent on this size so it is denoted as a subscript. As ܵ approaches the size of the full 

sample the distance will converge to zero. However, our original goal is to sub-sample 

the data, thus a researcher must choose an effective size ܵ to both minimize ܦௌ
௝ while still 

considering the practicality of a WSVE set with elements of size ܵ. 

3.2 Statistical Volume Element (SVE) Size 

Selecting the size of each element of an SVE ensemble is necessary step as the size 

remains fixed for all members. One simple approach is to only consider the 

computational budget that the researcher has and let that determine the SVE size. That is, 

if the researcher’s goal is to perform FEM analysis on each member of the SVE set, then 

they could set the size to the maximum for which they could run such simulations. 

However, let us assume for the sake of discussion that our hypothetical researcher wishes 

to optimize both their compute budget and their results. A more sophisticated approach 

would then be to look at the value of ܦௌ
௝ as a function of ܵ. More specifically, can we see 

a point where changing the size of the SVE element does not improve the error (on 

average) by an amount that would justify the extra computational cost.  

More formally, let us extract for each SVE size in question, a large number of sub-

volumes\regions from our full sample and compute their individual 2-point statistics. We 

can then compute their ensemble average statistics using Equation 12. Using this as our 
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sample target statistics ݂௧̅
ᇲ࢔࢔

 in Equation 14, we can then compute a scalar error for each 

individual sub-volume ܦௌ
௝. The mean error ܦഥௌ

௝ and standard deviation error ߪ஽ೄ
will 

decrease as the SVE size approaches the full sample size. We can look at this 

convergence to see at which size ܵ this value seems to stop sharply decreasing in order to 

get an idea where to define the SVE size. For example, in Figure 9 we show an example 

of a digitally created microstructure with two distinct local states. In Figure 10, we show 

the relationship between SVE size and the scalar error ܦௌ
௝ of individual sub-volumes. We 

can see a plateau in both the mean and variance at around 200x200 pixels. This means 

that there is probably not much need to extend the size of the SVE beyond this range for 

this particular sample. For the rest of this chapter we will refer to the selected SVE size as 

ሚܵ. 

 

Figure 9: Digitally created 2-phase microstructure (550 × 550 pixels) for which an SVE 
Set is to be created. 
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Figure 10: (a) Mean scalar error,  ܦഥௌ
௝ , for ensembles of 100 members of different sub-

domain sizes. Error bars indicate maximum and minimum observed values of ܦௌ
௝ for each 

ensemble. (b) Standard deviation of  ܦௌ
௝ as a function of the sub-domain size. 

3.3 Building Weighted Statistical Volume Element Sets 

Now that we have determined the size of our individual SVE sub-regions we can 

construct an optimized set to best match the target sample statistics. Our ability to 

precisely match the ensemble-averaged statistics of the sample depends on the number of 

elements in the SVE Set. In the limiting case, when we extract a very large number of 

SVEs of size Ωୗ෨
௝  from the original sample and consider them all as equally weighted 

elements of the RVE set, we can recover precisely the statistics of the entire sample as an 

SVE ensemble. It is worth reminding ourselves that this is what was precisely done in 

establishing the plot in Figure 10 (in this plot 100 elements were used for each selected 

domain size).  

Instead of creating a very large SVE set (large in terms of number of SVEs, not 

SVE size), we can optimize each selected SVE element such that it drives us closer to the 

sample statistics. Doing this would hopefully allow us to create a much smaller SVE set 

that is still statistically representative. In addition, because we are using statistics, we can 

allow the weights assigned to each SVE be non-equal. Doing this allows us to build a 
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weighted SVE (WSVE) set. Let ܰ denote the number of volume elements in the WSVE 

set. Let ܵ denote the number of pixels\voxels dictating the size of the spatial domain of 

the SVE. Let the ensemble (Ωଵ, Ωଶ … , Ω௃)  denote the set of potential volume elements 

(each of size ܵ) that could be included in the WSVE set (presumably these have been 

extracted from the sample). For sake of discussion, let us denote the simple concatenation 

of all individual 2-point correlations ݂࢚୨࢔࢔ᇲ
 as a very high-dimensional point ଶ݂

௝. Here the 

subscript 2 denotes the 2-point correlation. We can visualize the two-point statistics for 

the ensemble ( ଶ݂
ଵ, ଶ݂

ଶ, … ଶ݂
௃) as a set of points in a very high-dimensional (on the order 

 is the number of distinct local states) space. For a given WSVE set ܪ where ,(ଶܵܪ)ܱ

size, ܰ, the search for the best possible elements of the WSVE set reduces to a search in 

the convex hull defined by ( ଶ݂
ଵ, ଶ݂

ଶ, … ଶ݂
௃) for points, lines and hyperplanes that are 

closest (by Equation 14) to the ensemble average ݂௧̅
ᇲ࢔࢔

. For example, if ܰ is selected to 

be 1, then we are looking for the specific ଶ݂
௝ that is closest to ensemble average. If ܰ is 

selected to be 2, we are searching for two specific points, say ଶ݂
௝ and  ଶ݂

௞, such that a 

bounded line between them passes closest to the ensemble average. With ܰ equal to 3, 

we are searching for a bounded triangular surface defined by a triplet of ( ଶ݂
௜, ଶ݂

௝, ଶ݂
௞) that 

passes closest to the ensemble average. For arbitrary sizes of ܰ, we are looking for 

the ܰ individual statistics that form the closest hyperplane to the ensemble average. For 

any WSVE set size greater than 1, we can easily compute the corresponding set of 

weights for each member by considering the convex combination of their statistics that 

comes closest to ensemble statistics. 
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While the brute force (try all combinations in the ensemble) computations for small 

values of ܰ are manageable, as the size ܰ of the WSVE set increases, the number of 

possible combinations increases exponentially. We have therefore developed and 

implemented new heuristics that are particularly suited for larger values of ܰ (typically 

larger than 2 or 3). The search begins by selecting a random point ଶ݂
௜. It then identifies the 

closest line to the ensemble average using ଶ݂
௜ and any other point in the ensemble. After 

finding the closest line, passing through ଶ݂
௜ and ଶ݂

௝, it identifies the convex combination 

of ଶ݂
௜ and ଶ݂

௝ that lies closest to the ensemble average; let us denote this point ଶ݂
෡ . At this 

stage, we have established the first two members of our WSVE (Ω௜ and Ω௝). To add 

another member, we simply search again for the closest line between ଶ݂
෡  and any other 

point in our ensemble, other than those already in the WSVE set. This procedure 

continues until we have found ܰ members of the WSVE set. Since the establishment of 

the WSVE by this procedure is critically dependent on the selection of the first point in 

the ensemble, we repeat the entire WSVE selection process described above several 

times, each time with a different (but random) selection of the first point in the WSVE 

set. If there are ܬ volume elements in ensemble, this can lead to a maximum of J trials. 

Finally, we compare all the constructed WSVE sets and pick the one which provides a 

convex combination that is closest to the target statistics. It should be noted that although 

these heuristics do not guarantee the most optimal WSVE set, we have successfully 

constructed acceptable ones for numerous case studies papers [57, 58]. 

3.4 Examples 
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The following sections outlines two example case studies in which the methods 

described in this chapter were used. 

3.4.1 Two-Phase Digitally Created 2D Microstructure 

Utilizing, the microstructure shown in Figure 9, we performed a case study 

showing the usefulness of these methods for defining an RVE. Figure 11 and Figure 12 

depict SVE sets of size 1 and 3 respectively. The corresponding difference between the 2-

point statistics of the produced SVE Set (as a weighted combination of the instantiations 

shown) and the ensemble-averaged statistics of the sample, defined by Equation 12, as 

well as the calculated properties for the sample and RVE, are summarized in Table 1. To 

validate our concept of the SVE set we have chosen two properties of interest; the 

macroscale Young’s modulus and the interface fraction. These specific attributes were 

selected as representative examples of a macroscale property and a microstructure metric 

that depend on the 2-point statistics in the microstructure. The macroscale Young’s 

modulus was computed using the second-order homogenization theory described and 

validated in the following works; [65, 67, 68]. In this work, the stiff (white) phase and the 

soft (black) phase were assumed to possess Young’s moduli of 70 and 45 GPa, 

respectively, along with a Poisson’s ratio of 0.3 (same for both phases). The interface 

fraction (as an approximation to interface area per unit volume) is simply the number of 

interface pixels over the total number of pixels in the SVE. 

If we examine results shown in Table 1, we can see that the optimal SVE set of 

size 1 captures the macroscale module with less than 1% error and the interface fraction 

with 4%. If we utilize and SVE set size of 3 we can reach less than 1% error and less than 
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0.1% error with a set size of 5. Also note the decreasing value of ܦ௦ shown in Table 1 and 

Figure 13. An important point to realize from these results is that for different properties 

of interest a different SVE size ሚܵ and set size ܰ might be needed to accurately capture the 

effective properties. We can see this with the macroscale Young’s modulus when 

compared to the interface fraction. It is likely that any arbitrary sub-region of size 

100x100 pixels on this sample would capture the Young’s modulus to a 1% error. 

However, this is not true for the interface fraction. This is why constructing SVE sets 

using a statistical basis is more robust than defining them based on certain specific 

properties and then hoping that they are representative for others. 
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Figure 11: The 200 × 200 pixel sub-domain (a) and its associated 2-point statistics 
(white–white autocorrelation) (b) that comes closest to matching the statistics (c) of the 
target microstructure (d). The main features of the target 2-point statistics are evident in 
the RVE statistics, such as the intensity and shape of the central spot. The location of the 
sub-domain shown in (a) is highlighted in (d). 
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Figure 12: Members (a–c) and associated statistics (d–f) of the three-member RVE Set. 
The statistics (white–white autocorrelations) are all plotted with the same color-scale to 
highlight the differences observed between the members. Individually the statistics of the 
individual members are a poor match to the target statistics shown in Figure 11c; 
however, their weighted average (h) is a close match. The location of the individual 
windows in the target microstructure (g) is highlighted. 

 

Table 1: Comparison of scalar error ܦ௦, effective Young’s modulus, and interface 
fraction between the large microstructure data set (labeled as sample) shown in Figure 9 
and the corresponding RVE Sets produced in this study (see Figure 11 and Figure 12). 

 SAMPLE SVE SET 
SIZE 1 

SVE SET 
SIZE 2 

SVE SET 
SIZE 5 

DS   0.0247 0.0111 0.0078 
EFFECTIVE MODULUS 
(GPA) 

59.7 60.1 60 59.7 

% ERROR   0.67 0.5 0 
INTERFACE FRACTION 0.125 0.1295 0.1259 0.1251 

% ERROR   3.6 0.72 0.08 
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Figure 13: The influence of the SVE Set size on the scalar error between the 2-point 
statistics of the SVE Set and those of the target microstructure, ܦ௦. By adding more 
members to the SVE Set, the target statistics can be captured to improved accuracy. 

3.4.2 2D Polycrystalline Microstructure 

Here we demonstrate the construction of an SVE set for a large 

(1936 μm × 1956 μm scan with 946,704 measurement points) polycrystalline 

microstructure obtained from a lightly rolled Fe–Si steel sample, characterized by 

electron backscattered diffraction (see Figure 14). The microstructure local state 

description for each spatial bin is a triplet of three Bunge-Euler angles [߶ଵ, Φ, ߶ଶ] [69] 

specifying the local crystallographic lattice orientation. In order to create a manageable 

number of discrete local states we have binned the orientation space into (cubic-triclinic 

fundamental zone) into 512 equal volume bins [70]. The complete set of possible 2-point 

correlations includes 512ଶ = 262, 144 correlations – far too many to enumerate directly. 

Fortunately, this set contains a large number of interrelations [37] that reduce the set of 

independent correlations to just 511. For this case study, we have fixed the value of ࢔ at 

the most populous bin (#460 corresponding to ߶ଵ = 321°, Φ = 85°, ߶ଶ = 5°) and let ࢔′ 

vary across the full local state space (511 bins).  
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Figure 14: (a) EBSD grain map of Fe–Si steel where the fundamental zone of crystal 
orientation has been binned into 512 bins in the Euler-angle space. Each pixel represents 
1 μm. (b) The corresponding texture of the microstructure shown in (a) as 〈100〉 and 
〈110〉 pole figures showing that the sample is only weakly textured. 
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Figure 15: Standard deviation of ܦௌ
௝
 as a function of the sub-domain spatial extent for the 

microstructure data set shown in Figure 14. 

 

 

Figure 16: The texture corresponding to the one- (top) and three-member (bottom) SVE 
Sets, demonstrating that even the very weak textures can be accurately captured by a 
relatively small SVE set. The maximum intensities in the SVE Sets are somewhat higher 
due to a much smaller number of grains in these sets. 
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Table 2: A comparison of scalar error ܦ௦ and the first-order upper and lower bounds for 
the components of the stiffness tensor and tensile, and shear yield strengths between the 
entire sample and an optimize SVE set of size 1. 

 Entire sample SVE Set size 1 
 ௦  0.0247ܦ

Property Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

% 
Error 
UB 

% 
Error 
LB 

Elastic       
C1111 281.74 261.45 283.91 263.55 0.77 0.8 
C2222 281.76 261.47 280.64 260.51 0.4 0.37 
C3333 274.83 255.07 274.83 255.1 0 0.01 
C1212 86.17 71.43 85.64 70.95 0.61 0.67 
C1313 93.1 78.36 91.45 76.59 1.77 2.25 
C2323 93.08 78.34 94.72 80.18 1.77 2.36 
C1122 121.96 90.88 121.38 90.37 0.47 0.56 
C1133 128.62 97.55 126.99 95.98 1.26 1.61 
C2233 128.6 91.15 130.15 90.69 1.21 0.51 
Yield       
Sigma11 2.93 2.23 2.97 2.24 1.28 0.18 
Sigma22 2.93 2.23 2.9 2.22 1.19 0.26 
Sigma33 2.85 2.18 2.84 2.19 0.31 0.34 
Tau12 1.59 1.3 1.58 1.29 0.45 0.57 
Tau13 1.66 1.33 1.64 1.32 1.07 0.84 
Tau23 1.66 1.33 1.67 1.33 0.66 0.41 

 



 44

Table 3: A comparison of scalar error ܦ௦ and the first-order upper and lower bounds for 
the components of the stiffness tensor and tensile, and shear yield strengths between the 
entire sample and an optimize SVE set of size 3. 

 Entire sample RVE Set size 3 
 ௦  0.0111ܦ

Property Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

% 
Error 
UB 

% 
Error 
LB 

Elastic       
C1111 281.74 261.45 282.96 262.65 0.43 0.46 
C2222 281.76 261.47 281.64 261.42 0.04 0.02 
C3333 274.83 255.07 274.83 255.08 0 0.01 
C1212 86.17 71.43 85.62 70.93 0.64 0.69 
C1313 93.1 78.36 92.43 77.64 0.72 0.91 
C2323 93.08 78.34 93.75 79.09 0.72 0.96 
C1122 121.96 90.88 121.38 90.34 0.47 0.6 
C1133 128.62 97.55 127.95 96.91 0.52 0.65 
C2233 128.6 91.15 129.23 90.62 0.49 0.58 
Yield       
Sigma11 2.93 2.23 2.95 2.24 0.84 0.37 
Sigma22 2.93 2.23 2.92 2.23 0.3 0.08 
Sigma33 2.85 2.18 2.84 2.19 0.15 0.11 
Tau12 1.59 1.3 1.58 1.29 0.51 0.37 
Tau13 1.66 1.33 1.65 1.33 0.6 0.35 
Tau23 1.66 1.33 1.66 1.33 0.2 0.16 
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 Figure 15 shows our analysis for determining the size of the SVE for this case 

study. Like before, we plot the standard deviation of the scalar error ߪ஽ೞ
 as a function of 

SVE size ܵ. In this case we selected a size of 600 μm × 600 μm because the variance 

seemed to plateau at this point with diminishing returns beyond this size. The textures of 

the one- and three-member SVE sets are shown in Figure 16  as 〈100〉 and 〈110〉 pole 

figures, demonstrating that, even though the sample is only very weakly textured, the 

orientation distribution is reasonably well captured in the RVE set of size 3. To validate 

the properties of these SVE sets we looked at a range of elastic properties (predicted 

using the elementary first-order upper and lower bounds [59, 71-73]) and yield properties 

(Hill’s anisotropic yield parameters [74], predicted using crystal plasticity theories [75]) 

and calculated them for the SVE sets and the full sample shown in Figure 14. The results 

are summarized in Table 2 and Table 3. For a single-member SVE Set, the first-order 

bounds on all of the selected macroscale elastic and yield properties were captured to 

within 3%. However, it was observed that a three-member RVE set captured the same 

properties to within 1%. 

3.4.3 Large 3D Polycrystalline Microstructure 

Throughout this chapter we have been referring to volume elements. However, the 

case studies above dealt with 2D samples only so this has been a bit of misnomer. We 

will now focus on a case study involving a very rare and large 3D polycrystalline dataset. 

This work has been published as well. [58].  

The dataset in this study is a large (4300 grain, 1.115 × 0.516 × 0.3 mm3, 1670 × 

770 × 200 voxels) 3D sample of bcc β-stabilized Ti 21S. The microstructure was 
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reconstructed using serial sectioning, optical microscropy with periodic electron 

backscatter diffraction (EBSD). In addition, image processing and segmentation were 

required to create the final sample. The complete methodology has been published in a 

paper by Rowenhorst et al. [76]. For each grain, an average crystallographic orientation is 

determined from values measured using EBSD. In Figure 17, we show the volumetric 

dataset, with each color signifying its orientation parallel to the Z direction. The depicted 

Z direction is parallel to the sectioning direction. To reduce memory and computational 

requirements in the subsequent analyses and modeling, the dataset is compressed by 

sampling every third voxel in the XY-plane of the reconstruction, and every second voxel 

in the Z-direction. 

 

 

Figure 17: Sample of the 4300-grain sample of β-stabilized Ti 21S (1.115 × 0.516 × 0.3 
mm3, 1670 × 770 × 200 voxels). The color key corresponds to the crystallographic 
orientation parallel with the Z-axis [0 0 1]. 

  

 In order to test our methodologies, we constructed three RVE sets. First, a sub-

optimal WSVE set was built. We call this set sub-optimal because it contains four 
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arbitrarily selected SVE’s of similar size and number of grains (approximately 100), with 

a fifth one selected so as to make the two-point statistics of the five-member set match 

the average ensemble statistics as closely as possible. We call the first four SVE’s the 

random WSVE and the four SVEs with optimal fifth SVE the sub-optimal WSVE. 

Second, for the optimal case we use the algorithms described in section 3.3 to construct 

the full five member WSVE set. In addition, we chose larger SVE sizes (approximately 

200 grains) for this set. The size difference and the level of optimization in the selection 

procedure were intentionally selected to evaluate vastly different examples of WSVEs 

that could be produced using the statistical microstructure-based representation 

methodology described in this paper. Finally, we have what we call a traditional single 

volume element. This traditional RVE has as many as five times the number of grains as 

our smallest WSVE sets. Based on prior modeling experience with this material, this size 

is expected to adequately represent both effective and local material behavior in the 

context of initial yield (small deformations). In Figure 18, we illustrate the locations and 

relative sizes of this RVE and the WSVE sets described. In Table 4, we show the 

corresponding weights for WSVE members as well as their dimensions and number of 

grains. 
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Figure 18: Locations and relative sizes of all five members of each representative WSVE 
set and the traditional RVE in the 4300-grain sample. 
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Table 4: Specifications of the representative WSVE sets and the traditional RVE. Note 
the extreme weight given to element E in the suboptimal WSVE set. This is element 
selected based on 2-point statistics while the others are random. Also note the weights of 
the optimal WSVE set, they are more equal as the elements have been selected 
heuristically.  

SVE Grains Dimensions 
(μm) 

Elements Degrees of freedom 
(approx.) 

Weights 
(Wi) 

Suboptimal WSVE Set 

A 99 132 × 148 × 113 185,592 668,131 0.1732 

B 101 120 × 132 × 125 166,320 598,752 0.0701 

C 87 148 × 144 × 118 213,120 767,232 0.0630 

D 97 152 × 140 × 112 202,160 727,776 0.0820 

E 92 120 × 132 × 112 150,480 541,728 0.6117 

Average ∼95 134 × 139 × 116 183,534 660,723 – 

Optimal WSVE Set 

A 224 168 × 184 × 157 409,584 1,474,502 0.2282 

B 217    0.1462 

C 198    0.2177 

D 192    0.1944 

E 171    0.2135 

Average ∼200 168 × 184 × 157 409,584 1,474,502 – 

Traditional RVE 

– 499 243 × 241 × 244 1,210,484 4,357,742 – 

 

3.4.3.1 1-point and 2-point Statistics 

 To compare the structural representation of our sample and these different RVE 

sets we computed pole figures and have included them in Figure 19. Pole figures 

basically represent a form of 1-pt statistics, that is, volume fractions of different 

orientations found in the sample. As is typical, the values shown in the pole figures 

depicted in Figure 19 indicate times random. Since we have used 2-point correlations as 

the statistical basis for constructing our WSVE sets we should expect that they accurately 

capture the 1-point statistics of the sample. This is because N-point correlations are a 

hierarchical measure and thus the 2-point correlations contain the 1-point correlations 
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entirely. This is exactly what we show in Figure 19. The first distinctive feature to note is 

that while the texture of the sample is very random with a maximum magnitude near 2.2 

times random, the suboptimal WSVE set exhibits a stronger texture with maximum near 

4.5 times random. The traditional RVE is around 3 and the optimal WSVE set is around 

2.2. These distributions are expected, since the total volume of the optimal WSVE set is 

larger than the traditional RVE and similarly the traditional RVE is larger than the 

suboptimal WSVE set. That is, while the single traditional RVE has a larger spatial range 

than any single element of the optimal WSVE set, the total number of crystallographic 

grains is larger in the full optimized set of five weighted SVEs. This of course leads to a 

closer statistical match when comparing the samples via a one-point statistical 

representation. In addition, we examined the scalar error ܦௌ  between the 2-point 

statistics of the sample and our WSVE sets. These results are shown in Table 5. Note that 

as expected the completely random WSVE set has the highest error with the sample, 

followed by the sub-optimal WSVE set, then the optimal WSVE set, and finally the 

traditional single RVE. Interestingly, thought close, the optimal WSVE set does not have 

lower error that the traditional RVE despite it’s the larger combined volume of the 

WSVE. This is most likely due to the larger spatial extent of the traditional RVE and thus 

its greater ability to capture longer range correlations. Still, the suboptimal WSVE set has 

a significantly larger statistical error, whereas the statistical error of the random set (i.e. 

SVEs A–D of the suboptimal set with equal weights) is significantly worse than all. This 

result shows that the WSVE sets constructed via matching the two-point statistics are 

indeed more accurate than a simple random selection. 
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Figure 19: A comparison of orientation distributions via pole figures in three 
crystallographic directions of interest. The color value indicates times random. The 
samples compared are the full 4300-grain dataset, the traditional RVE, the optimal 
WSVE set and the suboptimal WSVE set. The pole figures are created using the same 
level of smoothing for all. 

 



 52

Table 5: Statistical error between representative WSVE sets, the traditional RVE and 
ensemble statistics for the entire sample. 

Sample D (Statistical Error) 
Suboptimal WSVE Set 10.7588 
Random WSVE Set 17.8115 
Optimal WSVE Set 5.0826 
Traditional RVE 3.0477 

 

3.4.3.2 Global and Local Mechanical Behaviour 

 Similarly, to our previous two examples, we have also conducted simulated 

experiments to gauge how accurately our WSVE sets are capturing specific properties of 

interest. These simulations were conducted by our collaborators Qidwai et al. at the 

Naval Research Laboratory (NRL). We would like to acknowledge their specific and 

significant contribution to this section. The mechanical simulations discussed here were 

calculated using commercial finite element (FE) software ABAQUS ® [77]. All SVEs and 

RVEs were converted to FE meshes by using a one-to-one correspondence between voxel 

centroids and the centroids of eight-node brick elements (ABAQUS designation: C3D8). 

An example of one of these SVE in mesh form is shown in Figure 20. Global 

displacement based loading conditions are applied such that uniaxial tensile behavior is 

obtained effectively. The displacements are applied to attain up to 2.5% uniaxial strain, 

enough to cause the global response of the SVE to evolve beyond the initiation of plastic 

flow. The rate-dependent crystal plasticity constitutive model described by Asaro (1983) 

and Huang (1991) on the basis of resolved shear stress, is used to describe the material 

behavior. The interested reader can find details of the model in Ref. [78]. The user-

material subroutine UMAT developed by Huang [79] based on this model is employed in 
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the simulations. Representative material parameters available in the literature for the β-Ti 

21S are used and shown in Table 6. The elastic constants are taken from Ledbetter et al. 

[80], whereas the constants related to plastic slip are incorporated from Deka et al. [81]. 

The crystal plasticity constitutive description and its implementation in FE models 

described here is fully consistent with prior efforts in literature [75] and [82]. 

 

Table 6: Representative constitutive model parameters for β-Ti 21S alloy. 

Material parameter Value 

Family of slip systems (48 independent) ݏ = 〈111〉      ݊ = {110}} 
ݏ = 〈111〉      ݊ = {112} 
ݏ = 〈111〉      ݊ = {123} 

Elastic moduli C11 = 97.7 GPa,  C12 = 82.7 GPa, C44 = 37.5 GPa 

Shearing rate parameters m = 50,   go = 0.0023 s−1 

Hardening moduli parameters ho1 = 1.5 GPa,  ho2 = 1.5 GPa,  ho3 = 1.5 GPa 
to1 = to2 = to3 = 200 MPa, ts1 = ts2 = ts3 = 500 MPa 
q1 = q2 = q3 = 1* 

 

Figure 21 contains the global uniaxial stress–strain responses associated with the 

suboptimal WSVE set in four graphs. The first three (a, b and c) show the uniaxial 

behavior of the individual SVEs in the set for loading in the three global directions, X, Y 

and Z, respectively, whereas the last one shows the effective RVE response in the three 

global directions defined as: 

 
= ݁ݏ݊݋݌ݏܴ݁ ܧܸܴ ෍ ௜ݐℎ݃݅݁ݓ ×

ே

௜

 ௜ (15)݁ݏ݊݋݌ݏܴ݁ ܧܸܹܵ
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Figure 20: (a) Superposition of a regular mesh on the underlying microstructure is used to 
create the finite-element model for an approximately 100-grain volume. (b) Description 
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of displacement-based uniaxial loading conditions. The four transverse planes (two are 
not shown in this 2-D view) are constrained to move as planes. 

 

 

Figure 21: Global uniaxial stress–strain responses for the suboptimal WSVE set: (a) 
individual SVEs in the global X-direction; (b) individual SVEs in the global Y-direction; 
(c) individual SVEs in the global Z-direction; and (d) effective RVE response in the three 
global directions obtained by weighting each SVE response in respective directions 
according to Equation 22 with the appropriate weights given in Table 4. 

 

 The uniaxial responses for each SVE show a considerable amount of variance for 

all loading directions. However, when combined by weighted sum (using Equation 22) 

the converge to a narrow band.  
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Figure 22: Global uniaxial stress–strain responses for the optimal WSVE set: (a) 
individual SVEs in the global X-direction; (b) individual SVEs in the global Y-direction; 
(c) individual SVEs in the global Z-direction; and (d) effective RVE response in the three 
global directions obtained by weighting each SVE response in respective directions 
according to Equation 22 with the appropriate weights given in Table 4. 

 

 In Figure 22, the same data is shown for the optimal WSVE set. However, in this 

case the individual SVE responses are much less scattered. In each loading directions 

there is a single SVE that divereges more from the others. For tension in the X-direction, 

it is the third SVE (C), and the first (A) and second (B) SVEs, respectively, for the Y- 

and Z-directions.  Again, the effective RVE responses in the three directions converge 

into a tighter band, as shown in Figure 22(d). 
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Figure 23: Effective uniaxial stress–strain responses for the suboptimal WSVE set, 
optimal WSVE set and the 499-grain RVE under tension in: (a) X-direction, (b) Y-
direction and (c) Z-direction. 

 

 In Figure 23, we have our first comparison of effective uniaxial stress–strain 

responses for the suboptimal WSVE set, the optimal WSVE set, and the traditional 499 

grain RVE. Due to computational cost considerations, the responses for the 499-grain 

RVE are obtained up to an applied strain of 1.125% except for the tensile loading in the 

Y-direction where an applied strain of 2.25% is achieved. The comparisons show that for 

each loading case, the effective responses match quite well and the differences are 

minimal. 
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Figure 24: Comparison of the effective uniaxial stress–strain behaviors as predicted for 
the optimal WSVE and the random set with equal weights (0.25) in (a) X-direction, (b) 
Y-direction and (c) Z-direction. The error (defined in the text) is in terms of relative 
absolute error with respect to the WSVE response. 

 

 In Figure 24, we have a direct comparison between the random selection WSVE 

set (A – D of sub-optimal WSVE with equal weights, 0.25) and the optimal WSVE set in 

terms of effective uniaxial stress–strain behaviors. We compute the relative error using; 

 
ݎ݋ݎݎ݁ ݁ݒ݅ݐ݈ܽ݁ݎ =

௢௪௦௩௘ߪ| − |௥௦௩௘ߪ

௢௪௦௩௘ߪ
× 100 (16) 

where σOWSVE and σRSVE are the optimal WSVE set and random SVE set axial stresses, 

respectively. The effective responses are comparable with the relative error not exceeding 

1%, 8% and 2% for tensile loading in the X-, Y- and Z-directions. Note that the largest 
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error occurs in the elastic regime for each loading case, which is related to the prediction 

of stiffness values by each model.  

 All of our comparisons so far have been looking at effective global responses, 

now let us turn to errors in local response. To perform these comparisons, we chose to 

use histograms of cumulative shear strain ߛ, accumulated on all slip systems up to a 

specific time at a material point. For each FE, we obtain the cumulative shear strain at the 

centroid through interpolation. To minimize the effect of boundary conditions we discard 

values from FE’s that are within 10% of the overall distance to the surface in the global 

direction. This criteria is based on the calculated boundary-to-boundary variations in 

mechanical responses of polycrystalline RVEs for four different types of boundary 

conditions in [83]. In Figure 25, we show the histograms of cumulative shear strain for 

each indivudal SVE in the optimal WSVE set and the effective RVE response (when 

combined in a weighted sum). Following this, we compare the cumulative shear strain 

histograms for the suboptimal WSVE set, optimal WSVE set, and traditional 499 grain 

RVE in Figure 26. We see good overall aggreement between these local scale responses.  

 In our final comparison, shown in , we look at the cumulative shear strain data for 

the optimal WSVE set and random set. The histograms in Figure 27 show the responses 

for both. In addition, we show the relative fractional error between the optimized and 

random WSVE sets. The error is defined similarly to Equation 16; 

 
ݎ݋ݎݎ݁ ݁ݒ݅ݐ݈ܽ݁ݎ =

௢௪௦௩௘ܥܸ| − |௥௦௩௘ܥܸ

௢௪௦௩௘ܥܸ
× 100 (17) 
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where ܸܥ௢௪௦௩௘ and ܸܥ௥௦௩௘ are the volumetric counts for the optimal WSVE and random 

WSVE sets respectively. The error in local responses are higher than their global 

counterparts with the minimum to maximum fraction of error values of 0.08–0.30, 0.03–

0.35 and 0.0–0.21 for tensile loadings in the X-, Y- and Z-directions, respectively. 
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Figure 25: Frequency plots or histograms by volume of the cumulative shear strain γ for 
the SVEs of the representative optimal set and their weighted summation, the effective 
RVE. The 227,700 data points for each SVE are obtained at an applied strain of 1.15% in 
the X-direction soon after the yield point in the global stress–strain curves (Figure 24). 
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Figure 26: Comparison of effective histograms by volume of the cumulative shear 
strain γ for the representative suboptimal and optimal WSVE sets, and the RVE under 
tension in: (a) X-direction, (b) Y-direction and (c) Z-direction. The data is obtained at an 
applied strain of 1.15% soon after the yield point in the global stress–strain curves 
(Figure 21, Figure 22, and Figure 23). 

 



 63

 

Figure 27: Comparison of the cumulative shear strain data for the optimal WSVE set and 
random set under loading in (a) X-direction, (b) Y-direction and (c) Z-direction. The 
fraction of error (defined in the text) indicates the absolute error in terms of fraction of 
the optimal WSVE set data. The data is obtained at an applied strain of 1.15% soon after 
the yield point in the global stress–strain curves. 

 

We have shown that the suboptimal WSVE set and optimal WSVE capture similar 

global and local responses to the more traditional RVE. It is important to note that in the 

suboptimal WSVE set, each SVE contain approximately 100 grains while in the optimal 

WSVE there are approximately 200 grains each. Despite this, the local and global 

response is captured to a similar accuracy. This shows that the size and number of 

elements in the WSVE set are not paramount, provided all microstructural features 

pertinent to the material behavior under study are accounted for in a weighted sense 
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within the collection of selected SVEs. This is the inherent advantage of building our 

RVE based on microstructure statistics and not specific properites of interest. We can 

incremently improve WSVE set by adding structurally represtantive SVEs. This is much 

more computationally efficient than building a traditional RVE by running simulations 

with larger and larger volumes until the convergence of our simulated property 

irrespective of boundary conditions. More to this point, the average volume of the sub-

optimal SVE is eight times smaller than the traditional RVE. This means that the degrees 

of freedom in our computational models for the suboptimal WSVE set and traditional 

RVE are 660,723 (an average) and 4,357,742 respectively. So, even with these much 

smaller models, we are able to capture global and local response because we have chosen 

them intelligently using microstructure statistics. On average the simulation clock time 

for the suboptimal and optimal SVEs with 56 SGI Altix processors at 2 GB per processor 

was 1.5 and 3 days, respectively, whereas for the traditional RVE it was 14 days with 156 

processors. (Note: the simulation clock time for the RVE is based on an applied strain of 

2.25% compared to the 2.5% for the SVEs.)  By using structure based WSVE sets we can 

realize enormous computational and memory cost savings when building an RVE. 

  

3.5 Conclusions 

The methods shown here in this chapter have been called representative or 

statistical volume element methods based on structure. However, the lack of large 3D 

datasets for which to apply these methods created an impetus to examine the problem 

from a different perspective. What can be done when the full 3D 2-point statistics are not 

known a priori. That is, what if we cannot afford to characterize our material using 3D 
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techniques and we are left with only 2D data. The next chapter explores this problem of 

statistical reconstruction of 3D microstructure from partial 2D data.  
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CHAPTER 4. STATISTICAL RECONSTRUCTION 

We conclude our work by arriving at the problem stated in the introduction; 

can we construct a statistically representative 3D microstructure using only 2-D 

samples (exemplars) collected on oblique sections. The work presented in this chapter 

culminated in a single journal publication by Turner et al. [84].  

4.1 Solid Texture Synthesis for Microstructure Reconstruction 

To attempt an answer to this question we have explored the application of 

solid texture synthesis approaches [17, 18]  from computer graphics in the context of 

material science. The inputs to the microstructure reconstruction problem of interest 

here are the 2-D exemplar images that represent the desired appearance of the 

microstructure when the solid 3-D volume is cut along a given plane. Although we 

will use three orthogonal sections to illustrate our methodology, we have ensured that 

the algorithm presented here is not restricted to this specific choice (specific examples 

will be presented later). Also, in this initial foray, we have restricted our attention to 

two-phase or gray scale images; however, we strongly believe that the basic 

algorithm presented here can be easily extended to multiphase composites.  
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Figure 28: A schematic description of the solid texture reconstruction based on Kopf et 
al. [17] 

 

 The reconstruction of interest will be pursued in a cubical volume that is 

uniformly tessellated into cuboids (this restriction can be relaxed as needed in future 

efforts). Let the array {݉} denote the 3-D solid reconstruction (i.e., the reconstructed 

microstructure), where its components ݉௦ [66] denote the volume fraction of a selected 

phase in the spatial bin (can also be interpreted as a pixel or a voxel) enumerated by the 

index ݏ. Since our interest in this work is restricted to two-phase microstructures, we only 

need to work with the volume fraction of any one selected phase (the volume fraction of 

the other phase is identically equal to (1 − ݉௦)). Note also that in most practical 



 68

situations we are only interested in the final reconstructions being expressed as eigen 

microstructures, where ݉௦ is only allowed to take values of either zero or one (i.e., each 

spatial bin is allowed to be occupied by only one of the phases present in the 

microstructure).  Furthermore, it should be recognized that the index ݏ itself can be 

expressed as an array of indices to help visualize easily the 3-D microstructure volume 

being reconstructed (i.e., ݏ = ,ଵݏ) ,ଶݏ  ଷ)). Let ܵ denote the set of all possible values thatݏ

can be assigned to ݏ in the reconstruction being pursued (i.e., ݏ ∈ ܵ). 

The algorithm begins with an initial guess of the reconstructed microstructure, 

{݉}. A simple random field can work as an initial guess but like most large scale 

optimization problems, the closer one starts to a satisfactory local optimum the better. 

Depending on the exemplar images, this may be difficult or easy. From the initial guess, 

the algorithm alternates between two steps called the search and the optimization steps, 

until the reconstruction converges (stops changing significantly). This process is shown 

schematically in Figure 1. The goal of the search step is to simply identify the best 

matching 2-D neighborhoods (from the available 2-D exemplars) for every spatial bin in 

the reconstruction. For this purpose a neighborhood is defined as a small square region of 

spatial bins of the size ݊ ×  ݊, where ݊ may be selected typically in the range between 8 

and 32. Each neighborhood array, ܰ, then captures the values of the microstructure (i.e., 

݉) assigned to the selected ݊ ×  ݊ spatial cells in a contiguous square area. Since we do 

not want to mix up neighborhoods from the exemplars collected from the differently 

oriented sections in the original sample, we shall use the superscript ݅ to refer to each 

distinct orientation in the input set of 2-D exemplars. In other words, every potential 

neighborhood identified from all available 2-D exemplars collected on a specified cut 
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into the sample would be denoted as ܰ௜, and would constitute the set ࣨ ௜ (i.e., ܰ௜ ∈ ࣨ ௜). 

As a specific example, if one were to use as input 2-D exemplars collected from three 

orthogonal sections into the sample, then ࣨଵ, ࣨଶ, and ࣨଷ would denote the complete 

sets of all distinct neighborhoods (of the selected size ݊ ×  ݊) that can be extracted from 

the input 2-D exemplars available from each of the three orthogonal sections, 

respectively. It should be noted that establishing these neighborhood array sets needs to 

be done only once for each 3-D solid reconstruction.  In the search step of the 3-D 

reconstruction, the current neighborhood array in each selected 2-D orientation centered 

around every spatial bin ݏ (denoted as ௦ܰ
௜) is compared with the elements of the 

corresponding neighborhood array set ࣨ ௜ to identify the one that is closest (using a 

simple Euclidean distance measure). Let ෩ܰ௦
௜ denote the identified closest neighborhood 

array (note that this has to be an element of ࣨ ௜). The search phase dominates the 

computational complexity of the entire algorithm, which is mainly impacted by the size 

of ࣨ ௜ and the choice of ݊. In the examples presented here, this was accomplished 

utilizing approximate nearest neighbor search (ANN) available from the library called 

FLANN [85]. In this protocol, the 2-D neighborhood arrays of the exemplars are 

flattened and stored in an ensemble of randomized KD-trees. Search is performed in 

parallel across multiple cores on a single machine. 

An important consequence of the search step is that each identification of ෩ܰ௦
௜ 

produces a set of ݊ଶ recommendations for the elements of the reconstructed 

microstructure. This is because each neighborhood consists of ݊ଶ spatial bins. In other 

words, the selection of ෩ܰ௦
௜ not only constitutes a specific recommendation (or a vote) for 

what should be placed in the spatial bin ݏ (i.e., the value of ݉௦)  but also in its 
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neighboring spatial bins. Seen from a different perspective, each spatial bin ݏ receives ݊ଶ 

recommendations for ݉௦ from a consideration of one set of distinctly oriented exemplars 

(since each spatial bin participates in ݊ଶ neighborhoods in the search step for each 

orientation ݅). If there are ܫ distinct orientations included in the reconstruction, then each 

spatial bin receives a total of ݊ଶܫ recommendations for ݉௦ at the end of the search step. 

The schematic in Figure 29 shows this schematically. Put another way, the 

recommendations (or votes) for each spatial bin in the reconstruction will come from all 

of the best matching neighborhoods that it is involved in, not simply the ones centered on 

it.  

 

 

Figure 29: A schematic representation of our notation for reconstruction {࢓} and the set 
of exemplars. The sample shown in the top left has three orthogonal 2D exemplar scans 
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taken from it. Each voxel in our reconstruction is then assigned multiple best matching 
neighborhoods taken from the exemplars, where each assignment is treated as a “vote”. 
The figure conveys how the microstructure value at ࢙࢓ has three votes from the three 
best matching neighborhoods on the three different planes denoted by ࡺ෩ ࢙

࢏ ; these are 
selected from the set of possible neighborhoods denoted as {࢏ࡺ} from the exemplar set. 
Furthermore, all of the yellow, green, and red colored voxels in the reconstruction also 
receive a vote from the same assignment. 

 

The goal of the optimization step is to consider all the multiple recommendations 

and arrive at a single update for the current iteration of the reconstruction, i.e., a single 

update for {݉}. As described earlier, the multiple recommendations for each spatial bin 

in the reconstruction are a natural consequence of the tremendous coupling between the 

neighborhoods associated with neighboring spatial bins. Let ሚܵ௦ denote the set of all 

spatial bins in the neighborhood of ݏ whose closest neighborhood matches impact the 

final update of the ݉௦ in the current iteration (an example of this is shown in Figure 29 to 

include all of the yellow, green, and red colored voxels for a selected voxel in the 

reconstruction). As mentioned earlier, ሚܵ௦ should comprise of ݊ଶܫ elements. Further, note 

that ݏ ∈ ሚܵ௦ ⊂ ܵ. Let ݉௦,௦̃ denote the recommendation for the value of ݉௦ from each 

member of ሚܵ௦ (enumerated by index ̃ݏ). Note that the values of ݉௦,௦̃ come directly from 

the closest neighborhoods ෩ܰ
௦̃
௜ identified in the search step (using the neighborhoods 

extracted from the input 2-D exemplars images). The goal of the optimization step then is 

to update the value of ݉௦ in such a way that it minimizes the overall discrepancy for all 

neighborhoods in the reconstruction in relation to their respective closest matching 

neighborhoods identified in the search step, while accounting for the tremendous 

coupling that exists between the neighborhoods as described earlier.   For this purpose, 

we can define an overall measure of error as 
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 ݁ = ෍ ෍ฮ݉௦ − ݉௦,௦̃ฮ
௦̃∈ௌሚೞ௦∈ௌ

 (18) 

where ‖ ‖ represents the L2-norm. The minimization of this error is solved using an 

iteratively reweighted least squares (IRLS) method for which a simple closed form 

expression is derived as 

 
݉௦ =

∑ ௦,௦̃݉௦,௦̃௦̃∈ௌሚೞݓ

∑ ௦,௦̃௦̃∈ௌሚೞݓ

 (19) 

where ݓ௦,௦̃ denotes a value (i.e., weight) assigned to control the influence of a 

neighborhood to the solution. As a specific example, one might decrease the values of 

 if one ,ݏ̃ and ݏ ௦,௦̃ with increasing values of the physical distance between spatial binsݓ

desires to reduce the influence of the neighborhood in the reconstruction. 

Equation 19 essentially embodies a weighted recommendation for the update at 

the end of each iteration of the reconstruction. Consequently, a better use of the weights 

might be to use them to drive the reconstruction towards some desired global 

requirements for the overall statistics in the reconstruction.  Since ݓ௦,௦̃ can be varied for 

each choice of ݏ and ̃ݏ, it can be readily interpreted as a weighting factor for the specific 

2-point statistic corresponding to ݐ = ݏ) −  By letting the weights change dynamically .(ݏ̃

from one iteration to another, one can devise clever ways to drive the overall 

reconstruction to capture closely any selected subset of 2-point statistics of interest in the 

reconstruction.  However, if the weights are all set equal to each other, it essentially 

implies equal consideration of all the 2-point statistics defined by ݐ = ݏ) −  for the (ݏ̃
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reconstruction. Finally, rather than updating the value at ݉௦ directly using Equation 19, 

we find the nearest value within the set of votes (݉௦,௦̃ for all ̃ݏ ∈ ሚܵ௦) and copy this value 

directly. This “discrete optimization” as described by [18], is recommended to reduce 

blending of values and ensures that only values actually present in the exemplars will be 

present in the reconstruction. 

The two step algorithm described above is implemented in the successive 

hierarchy of a Gaussian pyramid. That is, the exemplars are down-sampled (i.e., coarser 

spatial resolution) a number of times (two times in practice) to build a hierarchy of 

images. The reconstruction begins at the coarsest spatial resolution. When it converges at 

this level, it is then up-sampled and used as the starting guess for the algorithm at next 

level. This process is repeated until we reach the highest level and the original resolution 

of the exemplars. This strategy dramatically reduces the number of iterations needed at 

the higher spatial resolutions, where nearest neighbor search is very expensive. 

Additionally, it indirectly allows capture of longer range features or spatial statistics in 

the iterations at the coarser resolutions. 

We implemented our algorithm in a hybrid of MATLAB and C++ codes. Most of 

the time critical portions of the code including the crucial search and optimization phases 

are implemented using multi-core parallelism with highly optimized C++ for 

performance needs. This allowed us to use a higher number of larger exemplar images 

than any prior reported work in the literature. 

As mentioned earlier, reweighting schemes where the weights are adjusted 

dynamically from one iteration to another are an important component of the 
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reconstruction algorithm presented here. Kopf et al. [17] have presented reweighting 

schemes that drive the reconstruction to capture closely the overall ensemble averaged 

color histograms (gathered from all of the input 2-D exemplars).  They accomplish this 

by adjusting the weights at each iteration such that the specific ܰ௜ helping drive the 

solution to the desired global statistics are up-weighted. This technique has the tendency 

to cause the algorithm to sample more uniformly from the available exemplars (note that 

there was no criterion for uniform sampling of the exemplars in the basic two-step 

algorithm described earlier). In fact, in more recent work [18], reweighting schemes have 

been developed that explicitly select the weights based on how often a particular pixel 

from the exemplar has been used in the reconstruction. This strategy encourages a more 

uniform utilization of the input exemplar images within the reconstruction. 

In the present work, we implemented a reweighting scheme based on the 

exemplar position histogram [18], (݌)ܪ, that describes the number of times each pixel ݌ 

from the exemplar is copied and used in the current reconstruction normalized by the 

number of voxels in the reconstruction. In other words, each time Equation 19 is used for 

a spatial bin and we select the closest value to copy from our recommendation set to the 

reconstruction, we keep a count in our histogram (݌)ܪ. This information is then used to 

adjust the weights for the next iteration using 

௦,௦̃ݓ  =
௦,௦̃ݓ

1 + max൫0, ൯(௦,௦̃݉)ܮ൫ܪ − ∅൯
, (20) 

where the function ܮ(݉௦,௦̃) gives the pixel location within the exemplar from where the 

value ݉௦,௦̃ was copied. The constant ∅ is simply the number of times that a pixel from the 
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exemplar is expected to appear in the reconstruction if the image was sampled uniformly, 

once again normalized by the size of reconstruction. By defining the weights using this 

equation we will down-weight pixels from the exemplars that have been overused. While 

this helps alleviate some under-sampling of the exemplars it does not eliminate it [18]. In 

fact, using a weighting scheme only during the optimization phase of the algorithm can 

lead to the algorithm not converging to a reasonable solution for certain microstructures. 

This is particularly a problem in those microstructures where one of the two phases has a 

low volume fraction (below 15%). In these cases, the algorithm will quickly converge to 

a local optimum in which the entire reconstruction is the high volume fraction phase. At 

this point the algorithm will not be able to down-weight the pixels from the exemplars 

enough because they will all be originating from the same regions of the exemplar. This 

is because the search phase of the algorithm does not take these weights into account and 

simply finds the neighborhoods in the exemplar that best match the now uniform 

reconstruction.  

To counteract this we adapt the recommendations presented in [18] and utilize an 

additional weighting scheme in the search phase. The authors of Ref. [18] redefine the 

Euclidean distance metric utilized for calculating neighborhood similarity to be scaled by 

a weight defined based on the neighborhood histogram. This weight is defined in an 

analogous way to the position histogram weight discussed above. The goal is to down-

weight neighborhoods that have been overused in the reconstruction. We adopted a 

slightly different approach in the present work to improve performance. Instead of 

redefining the neighborhoods similarity metric, we simply added the normalized 

neighborhood histogram as an additional component to the high dimensional vector 
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representing the neighborhoods pixel values. The neighborhood histogram then becomes 

an additive factor to the neighborhood similarity instead of a multiplicative factor. This 

choice was made because it allowed efficient implementation of the neighborhood search 

using approximate nearest neighbor search. Even though we need to rebuild the KD-trees 

each time the neighborhood histograms change, this extra cost in time is dwarfed because 

of the large number of query points (all neighborhoods in the 3-D reconstruction) when 

compared with the number of points in our tree (all neighborhoods in our 2-D 

exemplars).  

Like most non-convex optimization problems, reconstructing a 3-D solid image 

from only 2-D exemplars suffers from the problem of multiple solutions or local optima. 

The success of these algorithms in navigating this immense search space is highly 

dependent on a number of factors. Certain exemplar inputs will converge to reasonable 

solutions while others will not. There is no known general solution to these problems and 

thus heuristics must be derived. A general guiding principal is that we should try to 

constrain the algorithm to a search space of reasonable solutions as much as possible so 

that it does not converge to poor but locally optimal solution. The reweighting schemes 

discussed above are examples of general constraints that can be applied to any 

reconstruction from exemplars. However, sometimes it is possible to constrain a solution 

even further for particular types of structures and achieve better results. For example, 

imagine a granular microstructure with two phases, one being grain boundary and the 

other being grain interior. In a typical polycrystalline structure there will not be many 

grains which percolate the entire sample from one side to the other. We can enforce such 

a constraint on our reconstructions if it is not being met by the simple reweighting 
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approaches discussed earlier. While not implemented in this work, we suggest this idea 

for future studies. 

4.2 Results and Discussion 

In an effort to test the performance of our algorithm, we selected a class of large 3-

D two-phase microstructures. These were assembled from multiple sources. Some were 

digitally generated using various algorithms [86, 87], while others were previously 

collected using X-ray microCT techniques on natural materials (ivory and macadamia 

nutshells) [88]. Each of the microstructures comprised of 500ଷ or more voxels.  The 

exact details of the protocols used in acquiring these datasets are not very relevant to the 

present study. Our main interest is in using these datasets to test our algorithm by starting 

with a limited set of 2-D images extracted from the 3-D microstructures, conducting the 

reconstructions using the algorithm described above, and then comparing the 

reconstructions to the original 3-D microstructure datasets (used to represent the ground 

truth). 

Final reconstruction volume size was selected as 150ଷ voxels for all the 

reconstructions performed in this work. We needed to keep the reconstruction size to be 

small enough to allow the computations to be performed within available computational 

resources, but be large enough to ensure that the reconstruction captures a sufficient 

number of the features seen in the microstructure. Since the average feature size in the 

microstructures used in this study was around 15 pixels, the selected size of 150ଷ voxels 

was deemed a good compromise for this present study. 



 78

 

Figure 30: An example 3-D microstructure used in the validation of the algorithm 
presented in this study. (a) shows the 3-D microstructure volume, (b) shows orientations 
of the nine slices used in some of the reconstructions as well as a single example slice, 
and (c) shows an example sub-volume of the same size as our reconstruction. 

 

The first step is to extract the 2-D exemplars that will serve as the input to the 

reconstruction algorithm. For this purpose, the 3-D microstructures were “digitally” 

sectioned along nine oblique planes as shown in Figure 30. The nine planes selected are 

defined by Miller indices (100), (010), (001), (110), (011), (101), (1ത01), (1ത10), 

and (01ത1). However, we carried out the reconstructions twice for each microstructure 

studied - once with only three orthogonal exemplars from (100), (010), and (001) 

sections, and the second time with all nine oblique sections. The goal of doing the 

reconstructions twice in this manner was to explore the effect of the number of oblique 

sections on the accuracy of the reconstructions. Neighborhood sizes of 1111ݔ pixels 
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were used (unless otherwise noted) at all stages (i.e., resolutions) of the reconstruction. 

Full reconstruction took around four hours for cases with nine oblique sections, but only 

about 1.5 hours for the cases with three oblique sections. All reconstructions were 

executed using a single Dell C8220 compute node with two Intel E5 8-core processors 

and 32GB of memory. 

Our results show that the two-step algorithm presented in this paper using position 

and neighborhood histogram re-weighting is a viable approach for reconstruction of a 

variety of microstructures. A comparison of the reconstructions against the original 

microstructures is shown in Figure 31 for five selected example microstructures. Several 

others were also performed as a part of this study. The five examples shown in Figure 31 

were specifically selected to illustrate the capabilities as well as the shortcomings of the 

algorithm presented in this work. 

The comparison of the reconstructions with the original microstructure shown in 

Figure 31 is highly qualitative. In order to conduct a quantitative comparison, we need to 

compute and compare salient statistical measures of the original and reconstructed 

microstructures. As described in chapter 2 and 4, the most comprehensive and 

hierarchical measures of a microstructure are provided by the framework of n-point 

spatial correlations [30, 37, 52-55]. We will limit our attention in this work to the non-

redundant 2-point spatial correlations for the present study computed [37, 54] and 

denoted as ௧݂. 
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Figure 31: Comparisons of reconstructions with the original microstructures for several 
selected examples. The ground truth is shown as a 1503 voxel subsample taken randomly 
from a larger 5003 voxel sample. The reconstructions are of the same size as the 1503 
voxel subsamples from the original microstructures.  

 

Visualization of ௧݂  presents a significant challenge as it represents a 3-D array of 

values. Figure 32 presents a comparison of the autocorrelations computed for the original 
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microstructure (500ଷ voxels) with those of the reconstructions for selected examples 

from Figure 31.  These comparisons are presented in the form of three orthogonal 

sections in ௧݂  corresponding to the orientations of the three oblique sections used in both 

the 3-slice reconstructions as well as the 9-slice reconstructions. A careful comparison of 

these autocorrelation plots indicates that the reconstructions do capture the salient 

statistical measures to a very large extent. It is important to keep in mind that the 

correlations shown in Figure 32 for the original microstructure used the full 500ଷ voxels, 

while the correlations for the reconstruction are based on the 150ଷ voxels. Therefore, one 

should not expect a close match between these autocorrelations. 

In order to arrive at a more quantitative comparison between the original and the 

reconstructed microstructures, a large ensemble of 600 subvolumes of size 150ଷ voxels 

were extracted from the original microstructure. Euclidean distance measures were then 

computed between the autocorrelations of each of the members of the ensemble and that 

of the entire original sample (i.e., the ensemble average). These distance measures then 

provide an estimate of the inherent approximation involved in random sampling of the 

original larger volume by the smaller subvolume size used for the reconstruction. The 

mean distance measure and the standard deviation in the ensemble are presented in Table 

7 for each of the five microstructures shown in Figure 31, and are compared with the 

distance measure between the autocorrelations of the original and reconstructed 

microstructures shown in Figure 32.   

Table 7: Statistical measures (mean and standard deviation) of distance between the 
autocorrelations of a 1503 voxels subvolume extracted from the larger (5003 voxels) 
original microstructure and the full original microstructure compared against the distance 
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between the autocorrelations of the original microstructure and its reconstruction. 
Microstructures numbers correspond to the one shown in Figure 31. 

Micro-
structure 

Mean Distance of 
Subvolumes from 

the Original 

Standard 
Deviation in 
Distance of 

Subvolumes from 
the Original 

Distance 
Between 3-Slice 
Reconstruction  

and the 
Original 

Distance 
Between 9-Slice 
Reconstruction 

and the Original 

1 2.124999E-05 1.775622E-05 2.702421E-05 1.389484E-04 

2 8.914490E-04 1.195266E-03 1.462192E-03 5.438459E-04 

3 2.728381E-05 2.631370E-05 3.936405E-05 4.987727E-05 

4 8.186787E-05 5.296932E-05 1.527004E-04 1.871140E-04 

5 2.116913E-05 2.170245E-05 1.967602E-03 5.765046E-03 

 

All of the distance measures shown in Table 7 can be interpreted as mean squared 

errors. Keeping in mind the actual values of ௧݂  are about 0.5 (see Figure 32), these error 

values confirm that the reconstructions are indeed very good. Columns 2 and 3 provide 

an estimate of the error and its standard deviation that can be attributed to the fact that 

reconstructions are significantly smaller in volume compared to the original 

microstructure. Table 7 indicates that these errors are comparable to the errors observed 

between the original and the reconstructed microstructures.  
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(a) 

(b) 
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Figure 32: Selected comparisons of 3-D two point statistics between original 
microstructures and their reconstructions shown in Figure 31. A subset of the 3-D auto-
correlations are shown on three orthogonal slices through the origin of the spatial 
statistics. 

 

Table 7 indicates that the 9-slice reconstruction was significantly better than the 3-

slice reconstruction only for Microstructure #2. For the rest of the microstructures, the 9-

slice reconstruction was either no better or worse than the 3-slice reconstruction. This is 

because only Microstructure #2 showed a significant anisotropy (see the autocorrelations 

shown in Figure 32). In the rest of the microstructures, the anisotropy was essentially 

confined to short vectors and was adequately captured in the three orthogonal slices. In 

other words, there isn’t much new information on the additional slices included in the 9-

(c) 
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slice reconstruction compared to the information already present in the 3-slice 

reconstruction for these microstructures (all except Microstructure #2). For some of these 

cases (e.g., Microstructure #1) the 9-slice reconstruction performed worse because the 

computations were needlessly penalized by the dramatically increased higher 

dimensional optimization space. It is therefore important to use the additional orientations 

(i.e. larger number of distinct oblique sections) only for microstructures that exhibit 

strong anisotropy that is revealed in these additional orientations. 

Table 7 also indicates that the reconstructions for Microstructures #1, #2, and #3 

are significantly better than for Microstructures #4 and #5. We believe that the higher 

errors for the later indicate the limitations of the current algorithm. It is noted that 

Microstructures #4 and #5 exhibit a certain non-Markovian nature, and further work is 

needed to constrain solutions during the iterative optimization to achieve better results. In 

addition, Microstructure #5 needed to be down-sampled by a factor of two before 

exemplar extraction and reconstruction, which led to smaller input images. The down-

sampling was necessary so that we could capture longer range features in the small 

neighborhoods we used for the present study. This structure was not a synthetic 

microstructure so it was impossible to generate a higher resolution sample. We believe 

that this highlights the importance of having high resolution images for reconstructing 

complex geometries. 

The comparisons discussed thus far were focused on the autocorrelations evaluated 

on the entire reconstructed microstructure. However, our interest is also in comparing 

information between the original microstructure and the reconstruction at the scale of 

smaller neighborhoods. Such a comparison would constitute a higher level of evaluation 
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compared to what is presented in Figure 32 and Table 7. In order to perform such a 

comparison, we extracted ensembles of small neighborhoods (of specified size) from both 

the reconstructions as well as the original full sample. The autocorrelations of each of 

these neighborhoods was then computed. However, this is still a high dimensional 

representation and makes it difficult to quantitatively compare the distributions within the 

ensembles and between the ensembles. As a specific illustration of the challenge, we 

selected the neighborhood sizes as 303 voxels and 753 voxels. The number of 

autocorrelations computed for each of these neighborhoods would be 303 and 753, 

respectively. In other words, each neighborhood is now represented by a vector of size 

303 and 753, respectively, for the two different neighborhood sizes selected for the study.  

Following approaches outlined in earlier work [55, 86, 87, 89, 90] we employed 

principal component analyses (PCA) to obtain objective low-dimensional representations 

of autocorrelations of the neighborhoods for this study. For each pair of ensembles 

extracted from the original image and its reconstruction, one PCA was performed. The 

top three principle components are then plotted as 3-D scatter plots in Figure 33 for the 

two different neighborhood sizes as well as for 3- and 9-slice reconstructions. In each 

plot, the red points denote the neighborhoods extracted from the original full sample and 

the blue points denote the neighborhoods from the reconstruction. For most of the 

structures examined, there is a large overlap of these point clouds indicating that the 

neighborhoods extracted from both the original sample and the reconstruction have 

similar spatial statistics. The differences are somewhat significant for Microstructure #4 

and most significant for Microstructure #5, consistent with the observations we made 

earlier from Figure 32 and Table 7. Also, the differences are larger for the larger 
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neighborhood size. This essentially indicates that the algorithm needs additional 

development and tuning to capture the slightly longer range spatial correlations.  

 

Figure 33: The principle component (PC) embeddings of autocorrelations computed for 
neighborhoods extracted from the original full microstructure (red points) and its 
reconstruction (blue points). The percentages next to each plot express the captured 
overall variance in the ensembles using three PC scores. 

 

Although the examples presented here demonstrate tremendous promise, they also 

point to much needed further development. The reconstructions are extremely sensitive to 

the heuristics employed (including the many hyper parameters and the choices made in 
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the algorithms). These include neighborhood size, the number of Gaussian layers, the 

input exemplar size, the exemplar phase volume fractions, among several others, and can 

all have dramatic effects on the convergence. In particular, microstructures with low 

volume fractions (less than 10%) are found to be particularly challenging for this 

algorithm, as it has a tendency to converge to solutions of entirely the high volume 

fraction phase. Although, this can be largely alleviated with histogram weighting as 

explained in this work, it is by no means a perfect solution. 

4.3 Conclusions 

We have demonstrated the effectiveness of an algorithm inspired by the field of 

solid texture synthesis for reconstruction of several material microstructures. This 

algorithm provides a new approach for material scientists to acquire statistically 

representative 3-D microstructure samples, when only measurements on 2-D sections are 

possible or tractable. Moreover, in cases where large 3-D scans are not possible 

experimentally, researchers may be able to acquire more statistically representative 

ensembles of samples from 2-D data using the approach described in this work. Although 

three orthogonal sections were sufficient for reconstructing most of the microstructures 

explored in this study, it was observed that additional orientations (i.e., new oblique 

sections) would be necessary in cases where the microstructure shows strong anisotropy 

in new directions or planes (not contained in the orthogonal sections). Additionally, 

certain structures, those that do not satisfy a Markovian property, may not be suitable for 

reconstruction using even large numbers of oblique sections. To our knowledge, this 

work represents the first implementation of a solid texture synthesis algorithm using 

position and neighborhood histogram reweighting for the problem of microstructure 
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reconstruction. In addition, it is the first example of more than three oblique sections 

being used to synthesize a solid texture or reconstruct a microstructure. 
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APPENDIX A. CHORD LENGTH DISTRIBUTIONS 

 While 2-point correlations represent a powerful statistical tool for 

quantifying microstructure, their adoption has been limited in some cases. This could be 

because of their difficult to interpret nature or the computational cost\difficulty of 

calculating them. Instead, simple stereological estimators such as intercept lengths are 

mostly employed due to their a) easy interpretation, b) straightforward manual calculation 

using widely available microscopy software tools such as ImageJ [27], and c) strong 

connection to properties relevant to design (for example, grain shape and size 

distributions in polycrystalline metals are known to strongly influence their mechanical 

strength [28-32], while pore size and shape distributions are known to have a dominant 

effect on the mechanical and transport properties in porous solids [13, 33]). Typically, 

only mean or average feature sizes are calculated by application of the broadly adopted 

ASTM E-112 “Standard Test Methods for Determining Average Grain Size” protocols 

[34], which involve counting intercepts of randomly oriented lines on two-dimensional 

sections or counting numbers of grains per area. The obvious weakness of such 

approaches is that they are not applicable to structures that have large structural 

anisotropies or where the size distribution of features includes distinct populations of 

several large and small features. The limited number of features counted also means that 

rare features corresponding to the extreme tails of the size distributions are unlikely to be 

counted. The manual or semi-automated nature of the analysis can also be problematic in 

that great care must be taken to ensure that the results are independent of who is 

performing the analysis, as large variances can result. For example, ASTM E-112 gives 
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reproducibility at ±0.5 G which corresponds to ≈±9μm uncertainty in the average 

diameter for material with 45μm average grain diameter.  

In this chapter, we demonstrate a computationally efficient scheme to compute 

anisotropic microstructure chord length distributions, which capture the complete size 

distribution of microstructure features in two- or three-dimensional material datasets. 

This approach retains the main benefits of the average intercept techniques in that the 

results are quick to compute, and simple to interpret and visualize, while providing 

significantly more detailed information beyond the average feature size. Turner et al. [91] 

is the culmination of the work presented in this chapter. 

Chord length distributions (CLDs) [45, 48-50, 92-96] have been successfully 

utilized in prior literature as rigorous measures of the size and shape distributions of the 

important microscale constituents in the material system. A chord is defined as any line 

segment in the microstructure whose interior points are all occupied by the specific local 

state of interest (e.g., a pore or a distinct phase) and the end points abut against other 

local states. In other words, chords cannot be extended in either direction and still remain 

completely in the local state region of interest.  Formally, the CLD, ݌௜(ܢ), denotes the 

probability density associated with finding a chord ܢ (including a specified magnitude 

and a specified direction) within the local state ݅ in a given microstructure dataset. When 

the chords are identified by both their length and direction, the resulting distributions are 

termed as angularly resolved CLDs in this work. 

Another important microstructure metric that is closely related to the chord length 

distribution is the lineal path function (LPF) [30, 51].  Formally, the LPF, ܮ௜(ܢ), denotes 
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the probability that a line segment ܢ (including a specified magnitude and a specified 

direction) thrown randomly into a given microstructure dataset lies entirely within local 

state ݅. In this definition, the line segment does not have to be a chord with end points at 

the interfaces as defined earlier. As before, when the line segments are identified by both 

their length and direction, the resulting function is termed as the angularly resolved LPF 

in this work. 

Prior work [37] has established a relationship between the CLD and the LPF. This 

relationship can be expressed as 

 
(ܢ)௜݌ =

݈௖

ܸ௜ 
݀ଶܮ௜(ܢ)

ଶݖ݀ ,         ݈௖ = න  ݖ݀(ܢ)௜݌ݖ
ஶ

଴
 (21) 

where ݖ is the magnitude of ܢ, ܸ௜ is the volume fraction of local state ݅, and ݈௖ is the 

mean chord length along the direction of ܢ. Both the CLD and the LPF are commonly 

estimated by sampling, and accurate estimation requires identifying a very large number 

of chords in the microstructure or throwing a very large number of line segments into the 

microstructure. Because of the high computational cost involved in these estimations, 

most prior applications [30, 45, 48-50, 92-98] have been largely limited to isotropic 

structures, where the CLD and the LPF were assumed to be independent of the direction 

of the chord or the line segment, respectively.  

It should also be noted that CLDs and LPFs have been utilized successfully in 

reconstructions of microstructures [99]. More germane to the present discussion, 

Talukdar et al. [100] utilize angularly resolved CLDs in their microstructure 

reconstructions. However, they employ only four selected directions in a two-
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dimensional (2-D) microstructure dataset in computing the angularly resolved CLDs. 

This is presumably because of the prohibitively high computational cost involved in the 

currently used methods for estimating these distributions. In fact, Talukdar et al. [100] 

utilize a sampling approach for the calculation of the CLDs by translating a line 

successively to every pixel in the image. This approach has the unique advantage that it 

does sample all chords present in the given dataset. Singh et al. [51] use a similar 

approach for computing the lineal path function for high resolution 2D micrographs. 

They compute angularly resolved lineal path functions in three directions; zero degrees, 

ninety degrees, and forty-five degrees. However, certain optimizations are needed to 

make the approach computationally practical for use in large 2-D and 3-D microstructure 

datasets, while including a larger number of directions.  

The main purpose of this paper is to explore an efficient algorithm for computation 

of angularly resolved CLDs and LPFs. The approach shown in this paper is referred as 

the Scan Line Method, and is an extension of the simple idea of translating a line 

successively to every pixel in the dataset (utilized earlier by Talukdar et al. [100] and 

Singh et al. [51]). We present in this paper several new ideas for optimization of the 

computations involved in the Scan Line Method for estimating angularly resolved CLDs 

in large 2-D and 3-D microstructure datasets.  Furthermore, we present numerical 

procedures for extracting LPFs from the computed CLDs in this approach. The protocols 

developed in this work are demonstrated on selected example 2-D and 3-D microstructure 

datasets. We show clearly that angularly resolved CLDs and LPFs can be computed 

efficiently for large 3D microstructures for large numbers of directions. 

4.4 Computational Procedures 
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A line scan approach, such as the one employed by Talukdar et al. [100], might 

prove to be computationally efficient if implemented in a highly optimized environment. 

As an illustrative example, consider a 2-D binary image represented as a square matrix ܫ. 

Furthermore, let us restrict our initial attention to only the chords in this image that have 

an orientation of 0°, i.e., those that are completely horizontal. We can precisely identify 

and compute the distribution of lengths of these chords by simply scanning through the 

rows of the matrix ܫ (assuming these correspond to pixels in the horizontal direction), and 

keeping track of the starts and ends of chords as we encounter them. For instance, we can 

scan along each pixel in a row of the image and record when we encounter a phase value 

of interest. After this, we will continue scanning forward until we encounter a pixel with 

a value of another phase. At this point, we will have identified a chord of a certain length 

and it can be recorded for calculation of a distribution. This approach works just as well 

for vertical chords as we can simply look at the columns of the image. One final note is 

that we must discard chords that originate or touch the boundary of the image because we 

cannot be sure these are in fact chords. This is because pixel\voxels at the edge of our 

image may not be interface pixels\voxels. The criteria of non-edge chords not being 

counted can be removed when one wishes to calculate lineal path functions from chord 

length distributions because lineal path functions do not require that line segments span 

interfaces like chords. 

A scanning algorithm for orthogonal lines is extremely efficient both 

computationally and in terms of memory. It will require on the order of ܱ(݊) number of 

operations, where ݊ is the number of pixels in the image. The memory requirements are 

even better as it requires only keeping track of a distribution of chord lengths, where the 
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zero chord length and the longest possible chord lengths define the range. So we have a 

memory requirement upper bound of ܱ(݊) because the computation can be done in place. 

However, we must be able to adapt this algorithm for chords that are not perfectly aligned 

along the reference axes of our image. Fortunately, the field of computer graphics has 

already developed a fast and simple algorithm for determining arbitrarily oriented scan 

lines through an image. This novel idea is described below. 

Bresenham’s line drawing algorithm [101] is efficient algorithm for drawing an 

approximation of a line between two points in an n-dimensional image. Given the start 

and endpoint of the line in the image, Bresenham’s algorithm determines the pixels lying 

on the line between these two points using only integer addition, subtraction, and bit 

shifting. Using only integer arithmetic is not only faster, but more accurate because it 

avoids the common drawbacks of accumulated floating point error. With Bresenham’s 

algorithm, we can determine the pixels that correspond to a scan line through the image 

of any orientation. Once we have determined the pixels for a given scan line, we can then 

simply translate this line such that it sweeps through the entire image (see Figure 34).  
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Figure 34: This figure details how chords are identified for a particular orientation. In all 
images the red phase is the phase of interest. The green coloured pixel marks the active 
pixel in the algorithm, blue marks pixels that have be processed, and gold marks pixels 
along a chord. In (a) we show how for a given orientation we try every scanline within 
the image dimensions. Some are not shown here for the sake of brevity. For each 
scanline, we begin (b) by starting at one edge of the image and marching along the 
rasterized approximation of an oriented line until (c) we encounter the phase of interest. 
We then continue moving along the scanline until (d) we encounter a pixel that is not the 
phase of interest. At this point we have identified a chord as long as the start pixel and 
end pixel are not touching the edge of the image. In (e) we continue processing the 
remaining portion of the scanline.    
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Using translated Bresenham lines we can scan through an image in any arbitrary 

direction and identify all chords in the local state regions of interest. This scan converted 

image will allow us to calculate the distribution of chord lengths in that direction using a 

process that is almost identical to the case of vertical or horizontal chords described 

earlier. The main difference is that we will have to account for the conversion between 

number of pixels along a Bresenham line and the length of the line. The length of a chord 

can be approximated by calculating the Euclidean distance between the chords start and 

end pixels.  

This scan line approach is roughly equivalent to the rotation of a discretized 

image. Computationally, the rotation of an image is worse than the scan line method 

described above since it requires a copy of the image to be made. However, because 2D 

image rotation is such a common image operation in computer graphics, a tremendous 

amount of work has been done to develop optimized routines for this purpose. We have 

thus implemented two algorithms for 2D images, one uses the above described scanline 

approach and the other using simple image rotation with bilinear interpolation. Bilinear 

interpolation is probably the most common interpolation method used for image 

registration to a new coordinate system. Given a point to register it find the four nearest 

pixels and computes weighted average of their values [102]. Our results for 2-D images 

are shown and compared for both methods. However, such a simple approach of rotating 

the image was not effective for 3D images for two principal reasons. First, there are no 

real efficient implementations of 3D image rotation algorithms known to the authors. 

Memory requirements of copying a large 3D image could be prohibitive; therefore, an in-

place algorithm like the scan line method is more attractive in the authors’ opinion. 
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The same scanline algorithm outlined above for 2-D images can be extended to 3-

D images as well. We have developed a parallelized implementation of this algorithm 

that computes a full angularly resolved CLD. Performance of this algorithm running on 

an 8 core 2.4 GHz Intel Xeon machine for a 5003 voxel dataset with azimuthal and polar 

angular resolution of 5o was approximately 20 minutes. This algorithm may be 

significantly improved if it was developed for modern graphics processing units (GPUs) 

because of its massively parallel nature. That is, each computation for a specific scan line 

orientation is completely independent of the others.  

It is relative easy to compute the lineal path function directly from a chord length 

distribution. Such an algorithm is described by Singh et al. [51] and simply requires 

counting all the line segments that could possibly fall along each chord. That is, if we 

have a chord of length 10 pixels\voxels. Then we can fit one line of length 10, two of 

length 9, three of length 8, and so on. The only thing left after enumerating all such line 

segments is to normalize by the total number of possible line segments for each length 

which is a function of the image dimensions and line length. One important note, as 

mentioned before, is that chords that touch the boundary of the image should be added 

when constructing lineal path functions from chord length distributions. 

4.5 Examples 

To demonstrate our algorithms, we have selected a set of example microstructures 

(both 2-D and 3-D samples). 

4.5.1 Two-Phase 2-D Microstructure 
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Figure 35: A simple image of identical circles of diameter of approximately 32 pixels 
placed in a uniformly random manner. Volume fraction of the circular phase is 18.2%. 
The image dimensions are 2048x2048. 

As a first demonstration, we consider a simple 2-D digital microstructure (shown 

in Figure 35) with a uniformly random distribution of circles each with a diameter of 

approximately 32 pixels. Volume fraction of the circular phase is 18.2 percent. The 

diameter is approximate because of the nature of representing a circle on a raster. The 

main advantage of selecting such a simple example microstructure is that we have a 

closed form analytical solution for both the CLD and LPF. For many simple convex 

shapes/bodies, closed form expressions for the non-angularly resolved CLD have been 

derived and studied [46, 50, 103, 104]. For a simple circle, we have the following 

expression [46] for the non-angularly resolved CLD: 
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(22) 

where R is the radius of the circle, which is 16 pixels for our test image described above. 

A comparison of the integrated values recovered using our algorithm (rotated 2D images) 

with the closed form Equation 22 is presented in Figure 36. We can see that the 

calculation is accurate aside from the noise present due to the discretized nature of the 

rasterized circle. That is, our digitized image of a circle is only an approximation to a true 

circle made from a discrete set of Bresenham lines. Therefore, certain chords are 

overrepresented and others are underrepresented. Nowhere is this more obvious than in 

the regime of very short chords (around 1 to 3 pixels). Several authors [42, 51] discuss 

this problem and its causes extensively, and describe a few very simple mitigation 

strategies. These simple strategies generally involve discarding certain chords by defining 

a minimum acceptable chord length criterion. The strictest of these criteria is that in order 

for a chord to be counted it must at least traverse a distance of one voxel unit size in all 

dimensions. That is, we only accept chords that traverse at least a single resolution 

distance in both x and y for 2D and x, y, and z for 3D. We have not implemented this 

criterion in the calculations shown in  Figure 36, so that we can illustrate the inherent 

inaccuracies of approximating chords and shapes on a raster. In Figure 37, we show a 

comparison between results computed using the scanline method and the image rotation 

methods described above which show general agreement. We would like to note that the 

rotation method seemed to result in a slightly less noisy result when compared to the scan 

line approach. We conjecture that this is a result of the bilinear interpolation and 

thresholding of the image when it is rotated. Our hypothesis would be that scan line 
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method captures the discretized nature of the circle at different angles more accurately 

while the image rotation method has a tendency to average out these differences at each 

orientation. Future work is needed to verify this hypothesis however.  



 102

 

Figure 36: Comparison of closed form and calculated results for non-angularly resolved 
chord length distribution  for a simple two dimensional circle with an approximate 
diameter of 32 pixels. 

 

Figure 37:  Here we show a comparison between our implementations of chord length 
distribution calculations using both a scanline and image rotation method. Aside from 
some small deviations due to differences between Bresenham line discretization and 
image rotation interpolation the method mostly agree.  
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If we do not integrate over the angular dependence of the chord length 

distribution, we arrive at the results shown in Figure 38. This figure depicts the chord 

length distribution for each angle sampled, where each exhibits inherent noise as shown 

in Figure 37. However, based on how the circle is rasterized, certain chord orientations 

will exhibit more noise than others. To alleviate this noise, we have performed a five 

point/pixel moving window average on each distribution (for each sampled angle). These 

results show, as we expect, that there is no angular dependence on the chord length 

distribution for a circle. The computation of the full angularly resolved full distribution 

for a 500x500 pixel image took less than a second on a 2.00 GHz Pentium 4 PC.  
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Figure 38: Full angularly resolved chord length distribution for the image in Figure 35. 
The polar axis on the figure represents the angular orientation of the chord. The radial 
axis represents the length of the chord. Each individual distribution (chord angle) has 
been smoothed with a 5 point/pixel moving window average to eliminate noise resulting 
from discretization of the circle.  

 

To confirm our calculation of LPFs from our chord length distribution, similar to 

[51], we used the following expression for the LPF of the matrix phase for a set of 

uniformly distributed equal size circles; 
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௠௔௧௥௜௫(z)ܮ = ܸ௠௔௧௥௜௫݁

ି
ଶ൫ଵି௏೘ೌ೟ೝ೔ೣ൯௭

ோగ௏೘ೌ೟ೝ೔ೣ  (23) 

The ܸ௠௔௧௥௜௫ is the volume fraction of the matrix phase, 81.8 percent in our case. The 

radius ܴ of our circles is 16 pixels as described in Figure 35. The comparison of the 

calculated and analytical LPF is shown in Figure 39. The results show excellent 

agreement between the two functions. 

 

Figure 39:  Shows a comparison between the analytical and calculated LPFs for the 
matrix phase in the case of randomly distributed circles of r=16 pixels.  The calculated 
LPF derived from our chord length distribution of the matrix phase of the image 
presented in Figure 35 show excellent agreement. 

 

To highlight the anisotropic nature of the angularly resolved chord length 

distributions we have also selected another simple synthetic 2D microstructure to analyze 

with our method. In this case, we have an image of uniform randomly placed ellipses 

with major axis of 95 pixels and minor axis of 63 pixels. The ellipses are all oriented with 
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major axis at 90 degrees from the horizontal. This microstructure is shown in Figure 40 

and its corresponding angularly resolved chord length distribution is shown in Figure 41. 

Though analytical solutions for isotropic chord length distributions for ellipses have been 

derived [47], they are not closed form expressions. We have chosen for sake of brevity to 

limit our experiment to the results shown in Figure 41. 

 

Figure 40: Image of uniform randomly placed ellipses with major axis of 95 pixels and 
minor axis of 63 pixels. The ellipses are all oriented with major axis at 90 degrees from 
the horizontal. 
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Figure 41: The angularly resolved chord length distribution of the image shown in figure 
7. The 95 pixel major axis of the ellipse is highlighted by the peak of the chord length 
distribution at the 90 degree orientation.  

 

4.5.2 Porous 3-D Microstructures 

To illustrate the capabilities of the extended approach described in this chapter for 

3-D microstructures, we have selected a digitally simulated 3D porous microstructure. 

This high resolution sample consists of 500x500x500 cubic voxels. It has been 

segmented into two distinct phases: pore and matrix. To quantify the shape of the porous 

structure, we ran our chord length algorithm on the pore phase of this dataset. We used 

scanlines at azimuthal and polar angular increments of every 5 degrees. 
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Figure 42: Top left shows a synthetic digitally created 3-D microstructure. The pore 
network has been coloured to show connected pores with distinguishing colours. In the 
bottom left, the mean pore chord length in all directions has been plotted on the surface 
of a sphere. Polar and azimuthal angles correspond to orientations of the chord within the 
sample. To the right, we show selected chord length distributions for two chord 
orientations. The angularly resolved chord length distributions show clearly the 
anisotropic nature of the porous structure. 

 

Analysis of these results shows a difference of approximately 11 voxels between 

the maximum and minimum mean chord lengths for sampled directions. These 

anisotropic features of the pores in this sample are illustrated in Figure 42. It is important 

to remember that for each chosen orientation of scanlines through the sample we 

calculate a full chord length distribution. It is difficult to render all of this information 

into a single figure so we have elected to show an illustrative subset of these 
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distributions. Typical calculations of a non-angularly resolved chord length distribution 

would obviously not capture these features. Calculation of these distributions on the 

entire 500x500x500 voxel dataset was performed using a dual core Intel® i7-2460M 

CPU at 2.8 GHz in roughly 20 minutes. 

4.6 Summary 

Despite the known complex anisotropic nature of materials, non-angularly resolved 

implementations of the chord length distribution and lineal path function are frequent in 

the literature. We have described an efficient algorithm for the calculation of the 

angularly resolved chord length distributions in both 2D and 3D digital images. To the 

author’s knowledge, this work presents the first calculations of these angularly resolved 

distributions for high resolution 3D datasets in thousands of directions at once. Moreover, 

we believe the algorithm presented can be extended to leverage general purpose 

computing on graphics processing units (GPGPU) to reach an additional order of 

magnitude or more performance increase. These results should provide researchers 

wishing to quantify the structure of materials with a new and more efficient tool to do so. 
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