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SUMMARY

The goal of this thesis is to facilitate the detection and tracking of vehicles using an

ultra-wideband radar sensor. Prior research of this topic is strongly focused on Colli-

sion Avoidance Systems (CASs) for use in specific situations such as highway driving.

The target application of this thesis is one of lower speeds but greater uncertainity

in the tracked-vehicles’s entry and exit points. Therefore, different assumptions and

considerations must be acknowledged. The focus of this thesis is on tracking vehicles,

with no considerations given to possible collisions.

This thesis first investigates two widely-used nonlinear estimation techniques, the

Extended Kalman Filter and the Particle Filter. It is found that unrestrictive frame-

work of the Particle Filter is better suited for tracking problem in this thesis. With the

target application in mind, a Particle Filter is developed to first detect new vehicles

and then track them during a state-refinement stage. Pruning and gating techniques

are developed to leverage the cluttered radar-sensor data in the measurement update

procedures. Considering the quality and separation of the provided radar data, the

data association step is simplified allowing mutiple-vehicle tracking. To extend the

tracking system to be used on a moving platform, mappings are developed to al-

low the transformation of data from a moving radar frame-of-reference to an inertial

frame, and vice versa. The mappings require knowledge of the moving platform’s

state, an Extended Kalman Filter is formulated to estimate the state from limited,

noisy onboard-sensor data.

The tracking system is tested for both single and multi-vehicle tracking using

real-world data collected by a short-range, ultra-wideband radar sensor. The results

ix



show that the developed system sufficiently tracks each vehicle in an uncontrolled

and cluttered environment. Real-world data collected from a test vehicle shows that

the developed Extended Kalman Filter provides a suitable state estimate from the

limited available sensors. Further research is suggested to rigorously test the system

and extend its capabilities.
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CHAPTER I

INTRODUCTION

The task of tracking an object can be forumalated into a straightforward question:

using previous observations and an understanding of the object in question, can we

predict where it will be in the future?

In the context of the question posed above; to predict the future trajectory of an

object, a suitable model must be defined and the current state of the object calculated.

The available observations of the object are typically noisy and of a lower dimension

than the state vector itself, so the state must be estimated. In essence, the task of

tracking is analogous to state estimation performed remotely.

The chapter proceeds as follows. The next section provides a brief motivation to

the work in the thesis and the main objectives. In section 1.2 the scope of the work,

including the environment considered, data available, and limitations, is described.

In section 1.3 a system to accomplish the objectives, the contribution of this thesis,

is proposed. Next, a brief review of the state-of-the-art is provided. Finally, section

1.5 outlines the remaining chapters of this thesis.

1.1 Motivation and Objectives

The ability to track an object is of great benefit to a vehicle safety system. If the

future trajectory of an object can be predicted, conclusions can be drawn on whether

a collision is imminent. This knowledge provides a base to determining whether

corrective measures are neccessary. The specific application pursued in this thesis

is a driver-less system in a controlled environment. While tracking is a natural and

intuitive task for a human, systematic approaches are challenging and involved, and

thus an active area of research.
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In this thesis such an approach is developed to be applied in a vehicle safety

system. The developed approach should provide a mechanism to derive useful object-

state information, needed for trajectory generation, from otherwise inconsequential

sensor data. As such, the objectives of the work are as follows.

First, the tracker must be able to handle suitable state dynamics, observation,

and uncertainity models. The state dynamics model serves to predict the object’s

future state; thus, to accurately describe the object, the tracker should be able to

leverage linear and nonlinear models. The observation model is the mechanism to

map the state vector into a space whose axes are the available measurements. Again,

to accurately define this mapping the tracker should accept linear and nonlinear

models. The uncertainity model represents our trust, or distrust, in the previous

two models through process noise and oberservation noise, respectively. The tracker

should accept noise sampled from arbitrary densities.

Second, the tracker should expect to run continuously and in real-time, with

objects entering and exiting the system’s environment. Thus, a mechanism for track

creation and deletion must be provided. In this sense, the tracker is responsible for

first detecting the object before tracking it.

Third, the tracker should possess the ability to track multiple objects. Given a

sufficient field of view one can expect multiple objects to be present at one time. The

system should concurrently handle detection and tracking with a method seamlessly

switch when a vehicle has been detected.

Finally, the system should be extendable to a moving platform; that is, the obser-

vations made from a moving ego-vehicle, which we will refer to as the radar-vehicle.

The system must be able to transform the observations from the vehicle reference

frame to an inertial frame where the objects of interest reside; this requires knowl-

edge of the radar-vehicle’s state. Elements from the first objective can be used to

perform this local state estimation.
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1.2 Scope of Work

To further develop the foundation of this thesis, the scope of the work must be con-

sidered. This includes a description of the environment considered, available sensors,

and other limitations.

The application that the system is targeted towards is for use on the grounds

of a manufacturing plant. To observe the environment an Ultra-Wideband (UWB)

radar sensor is employed. The sensor, an SRR-208 produced by Continental Engi-

neering, provides range, azimuth, Radar Cross Section (RCS), and relative velocity

data on upto 128 objects. The data, transmitted via a CAN bus, is updated every 66

milliseconds[1].

While people, bikes, and vehicles can all be found traversing the area, and thus

could be considered as objects, the work in this thesis focuses on tracking vehicles.

This is due in part to limitations of the radar sensor, which has shown difficulty in

detecting slow, non-metallic objects.

From the radar-vehicle, individual wheel speeds, steering angle, and location data

is available. The location data is provided by an auxillary Real Time Kinetic(RTK)

GPS, rather than the standard system available in the vehicle. The RTK system

provides accuracies in the centimeter range[42]. The GPS data is updated every 20

milliseconds while the vehicle data is updated every 5 milliseconds. In the targeted

application, the radar-vehicle will travel slowly (<12 km/h) and without rapid ma-

neuvers.

To test the ability to estimate the ego-vehicle’s state collected data is used. To

test the tracking system simulated and collected data is used. In both cases the ego-

vehicle is stationary. The method to extend the system to a moving vehicle, linking

the two endeavours, is discussed but left open for a future research endeavour.
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1.3 Method

The approach taken to develop the tracking system is as follows. To track other

vehicles within the radar-vehicle’s environment a particle filter (PF) is employed. The

framework provided by the Monte Carlo based filter allows for the use of a nonlinear

vehicle model, nonlinear observation model, and arbitrary noise distributions. The

ability to use non-Gaussian noise in the observation model is critical. Additionally,

the particle filter framework provides a mechanism, with some limitations, to detect

when a new vehicle is being tracked.

To estimate the state of the radar-vehicle an Extended Kalman Filter (EKF)

has been chosen. The EKF allows for the use of nonlinear vehicle and observation

models, but typically considers the process and measurement noise to be Gaussian.

This assumption fits well with the available measurements and desired output. To

transform the radar data to the inertial frame, position, orientation, velocity, and

yaw rate must be estimated.

The methods listed above both fall under the Bayesian estimation designation,

which will be developed in Chapter 2. Both frameworks will be developed such that

a clear connection and comparision can be made between the two allowing for a clear

choice for the proposed application.

1.4 State of the Art

The area of state estimation, especially in the context of vehicle tracking, is currently

a very heavily-researched field. The ability to detect and track vehicles is of great

interest in Driver Assistance Systems (DAS). The detection and tracking methods

employed by these systems vary with intent, application, and available sensors. A

comprehensive review of current methodologies and sensors is provided by Mukhtar

et al.[34]. Common sensors used in such systems are Radar and Laser or LIDAR

based, which are considered active, and vision based, which are considered passive.
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Vision-based systems are commonly deployed due to their low cost and detection

quality but suffer from issues of complexity and sensitivity to external factors. The

complexity in vision-based methods is rooted in the need to detect features and vehi-

cles from the image data to obtain location measurements[41]. Alternatively, Radar-

based systems provide location, and sometimes velocity, measurements directly. The

advantages of both sensors can be leveraged by fusion algorithms, such as the one

developed by Feng et al. in [28].

Using a radar sensor, the task of tracking is commonly handled by a framework

such as the Kalman Filter (KF), the Extended Kalman Filter (EKF), or the Particle

Filter (PF). Floudas et al. compare several variations of these frameworks in [15]. The

variations include different methods to linearize the–typically nonlinear–measurement

space for KF implementations and different resampling/linearization methods for the

PF implementations.

The particle filter implementations for vehicle tracking have been investigated by

a number of researchers, for example [19, 29]. Considering the broader cateogory of

object tracking, the particle filter framework has been used in applications such as

air traffic control[30] and ship tracking[9].

When transitioning to tracking multiple vehicles, or objects, especially in noisy or

cluttered environments, emphasis is placed on the data association step [18, 36, 23, 32].

While this is branch of research unto itself, the focus of this thesis is tracking and

estimation.

Much of the state-of-the-art is targeted towards specific applications and envi-

ronments different than the one considered in this thesis. Additionally, many of the

developed systems possess a level of complexity and sophistication beyond the scope

of this thesis. A system targeted towards the application specified above is developed

from the ground up, beginning with an investigation of state estimation techniques.
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1.5 Outline of Work

The thesis proceeds as follows. The first chapter provides a background on state esti-

mation with a focus on Kalman and particle filtering techniques. Chapter II develops

the system using elements from Chapter I and addressing application-specific objec-

tives. Chapter III presents the data and discusses the filters’ effectiveness. Finally, a

Conclusion provides a review of the overall system and future areas of research and

development.
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CHAPTER II

STATE ESTIMATION METHODS

This chapter presents and develops available state estimation methods in an effort to

determine which could be used in the tracking and radar-vehicle localization problems.

In the context of the described problems, we are attempting to infer information about

the current vehicle state, st, from the set of previous measurements, Y = {yi}ni=0,

which are provided by either the radar or onboard vehicle sensors.

This chapter is structured as follows. First, a description of the system and obser-

vation models that are considered is provided. The uncertainity of the measurements

and models is then viewed within a Bayesian framework to provide systematic esti-

mation methods. Next, the Kalman Filter is developed for both linear and nonlinear

systems. Finally, the nonlinear estimation problem is approached using sequential

Monte Carlo methods, known as a particle filter.

2.1 System and Observation Models

The words state and model have already been used quite often in this thesis and yet

an explaination of what is intended has not been offered, until now. Considering a

state-space representation of the system, the system model describes the dynamics of

the system, or how we expect the vehicle to move over time. The observation model

is a mapping of the state-space to the domain of the measurements. In this thesis,

both linear and nonlinear models are considered but limited to the discrete-time case;

the models are given in Table 1. For methods on determining discrete-time systems

from continuous time representations see [20].

In the linear case of the system model, Fk is the state transition matrix and Bk the

input matrix. For the nonlinear case, f(sk, uk) is an arbitrary function of the state
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Table 1: System and Observation model types considered

Linear Nonlinear
System Model sk+1 = Fksk +Bkuk + wk sk+1 = f(sk, uk) + wk

Observation Model zk = Hksk + vk zk = h(sk) + vk

vector and input vector, respectively. In the linear case of the observation model,

Hk is the measurement model matrix, while in the nonlinear case h is an arbitrary

function of s. It is important to note that the variable z is not just a selection of

elements of s but rather the result from any mapping between the two spaces. In the

linear sense this amounts to any linear combination of the state vector elements.

Included in the system and observation models is the additive process and oberser-

vation noise terms wk and vk, respectively. The process noise, w ∈ Rn, serves to

accumulate the errors from the processes not included in the model; it is essentially

a measure of trust in the system model. The measurement noise, v ∈ Rm, serves

to represent the inherent uncertainity involved in the measurement process; this is

the measure of trust in the sensors. These two entities are what we have named the

uncertainty model.

2.2 Bayesian Framework

To adequately represent the uncertainity about the true state of our system, a stochas-

tic approach is taken. That is, the elements of the finite-length vehicle state vector,

s, are each considered random variables. A joint probability density function (pdf)

is used to describe the relative likelihood that a realization of the state is in fact the

true state. This joint pdf yields an estimate of the vehicle state can be obtained using

various estimators.

This estimation will take part within a Bayesian framework, which is based upon
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the work of Reverend Thomas Bayes[33]. Bayes Theorem, which famously reads as

p(A |B) =
p(B |A) p(A)

p(B)
, (1)

The quantity p(A |B) is known as the posterior density and is the probability of

event A occuring given that event B has already occured. Conversely, p(B |A) is the

probability of event B occuring given event A. The quantities p(A) and p(B) are the

probabilities of events A and B ocurring without regard to the other, respectively.

In the context of state estimation, Bayes theorem provides a mechanism to sys-

tematically update the vehicle state pdf using prior knowledge given by a model and

measurements. Given the set of states s0:k = {s0, . . . , sk} and set of measurements

y1:k = {y1, . . . , yk}, the posterior density at any time k can be written as,

p(s0:k | y1:k) =
p(y1:k | s0:k)p(s0:k)∫
p(y1:k | s0:k)p(s0:k)ds0:k

(2)

The posterior, p(s0:k | y1:k), can be interpreted as a measure of the relative likelihood

that the discrete-time trajectory, s0:k, is the true vehicle trajectory given the observed

measurements, y1:k.

Inherent in the state-space formulation specified in section 2.1 is that the systems

are Markov chains. As such, when predicting sk+1 the previous state sk provides the

same information as the set of all previous states s0:k. The expression in equation (2)

can then be rewritten in a recursive fashion as,

p(s0:k+1 | y1:k+1) =
p(yk+1 | sk+1)p(sk+1 | k)

p(yk+1 | y1:k)
(3)

Following the same principle as above, the marginal density of sk from the above

posterior can also be expressed in a recursive manner. When separated into prediction

and update steps it can be written as

predict : p(sk | y1:k−1) =

∫
p(sk | sk−1)p(sk−1 | y1:k−1)dsk−1 (4)

update : p(sk | y1:k) =
p(yk | sk) p(sk | y1:k−1)∫
p(yk | sk) p(sk | y1:k−1)dsk

(5)
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The marginal density of the posterior describes the uncertainity in the vehicle

state, rather than trajectory, at time k given all previous measurements and is the

density from which the state estimate will be calculated. For simplicity the marginal

designation is dropped when describing the density for the remainder of this thesis.

The result of equation (4), p(sk | y1:k−1), will be called the prior density and the result

of equation (5), p(sk | y1:k), will be called the posterior density.

For a deeper formulation of the Bayes filtering problem interested readers can

consult [13].

2.3 The Kalman Filter

The Kalman Filter is aptly named after R.E. Kalman, the author of the 1960 paper: A

New Approach to Linear Filtering and Prediciton Problems [26]. In his paper, Kalman

provides an optimal solution to the linear quadratic estimation (LQE) problem.

As specified in the Bayesian framework, the vehicle state, s, is a random vector

described by the joint pdf, p(s). Within the Kalman Filter the posterior of the pdf is

updated recursively, conditioned on the current measurement and prior distribution.

While only the current measurement is explcitly stated during the update proce-

dure, because of the recursive nature of the algorithm the posterior density contains

information from all previous measurements.

The Kalman Filter is developed below, first in its original, linear form and then

in the nonlinear form, which is known as the Extended Kalman Filter(EKF).

2.3.1 Linear Kalman Filter

To begin, it is assumed the system and measurement models are linear, as described

in Table 1:

sk+1 = Fksk +Bkuk + wk (6)

zk = Hksk + vk. (7)
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Additionally, it is to be assumed that the process and measurement noises are multi-

variate zero-mean Gaussian white noise vectors with covariance matrices Qk and Rk,

respectively. That is, w ∼ N (0, Qk) and v ∼ N (0, Rk), where

Qk = E[wᵀ
kwk] (8)

Rk = E[ vᵀk vk]. (9)

Now, as specified in the Bayesian framework, the vehicle state, s, is a random

vector described by the joint pdf, p(s). Within the Kalman Filter the joint pdf

is characterized by a state estimate, ŝ, and error covariance matrix P . The error

covariance matrix is a measure of uncertainity in the state estimate. This amounts

to,

ek = sk − ŝk (10)

Pk = E[ eke
ᵀ
k ]. (11)

To develop the algorithm, consider that at time k the state estimate, ŝk|k, and

error covariance matrix, Pk|k, are known and contain the information provided by

all previous measurements. The quantities can then be propagated forward in time

according to equations (12) and (13). This is the prediction step, where the resulting

estimate and covariance matrix describe the prior density.

ŝk+1|k = Fkŝk|k +Bkuk (12)

Pk+1|k = FkPk|kFk +Qk. (13)

When a new measurement is available the posterior density is calculated, condi-

tioned on the new measurement and the prior density; this is the update step. The

corresponding posterior estimate and error covariance matrix are determined using
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equations (15) and (16), respectively,

yk = zk −Hkx̂k|k−1 (14)

ŝk|k = ŝk|k−1 +Kkyk (15)

Pk|k = (I −KkHk)Pk|k−1. (16)

Equation (14) is known as the innovation, which is a measure of the error between

the measurement, zk, and the state estimate mapped into the measurement-space.

This measure is weighted by the Kalman gain, Kk, which is the foundation of the

Kalman Filter.

The Kalman gain represents the optimal linear filter gain; that is, it returns

the Minimum Mean-Squared Error(MMSE) estimate of the posterior distribution.

Recalling the error function from equation (10), the MMSE estimator can be written

as

ŝMMSE
k = arg min

ŝk

E[ ‖ek‖2]

= arg min
ŝk

E[(sk − ŝk)(sk − ŝk)ᵀ] (17)

The argument of equation (17), the Mean-Squared Error(MSE), is also equivalent to

the trace of the error covariance matrix, Tr [Pk]. Substituting in the equations for

the posterior estimate, measurement model, and prior error covariance, the posterior

error covariance can now be written as

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1H
ᵀKᵀ

k +Kk(HkPk|k−1H
ᵀ
k +Rk)K

ᵀ
k (18)

To determine the optimal gain matrix the trace of equation (18) can be differentiated

with respect to Kk and set equal to zero,

∂ Tr[Pk|k]

∂Kk

= −2(HkPk|k−1)ᵀ + 2Kk(HkPk|k−1H
ᵀ
k +Rk) = 0 (19)

Solving for Kk yeilds

Kk = Pk|k−1H
ᵀ
k (HkPk|k−1H

ᵀ
k +Rk)

−1. (20)

12



At this point, all of the necessary steps of the Kalman Filter have been developed.

Table 2 summarizes the key Kalman Filter quantities derived above.

Table 2: Recursive steps for linear Kalman Filter

Linear Kalman Filter Algorithm

0 Initialize: k = 0, Given : ŝ0 | 0, P0 | 0

Predict (prior)

1 State estimate: ŝk+1 | k = Fkŝk|k +Bkuk

2 Error covariance: Pk+1 | k = FkPk|kFk +Qk

Update (posterior)

3 Measurment: zk, set k = k + 1

4 Innovation: yk = zk −Hkŝk | k−1

5 Kalman Gain: Kk = Pk | k−1H
ᵀ
k (HkPk | k−1H

ᵀ
k +Rk)

−1

6 State estimate: ŝk | k = ŝk | k−1 +Kkyk

7 Error covariance: Pk | k = (I −KkHk)Pk | k−1

8 Return: goto step 1

2.3.2 Extended Kalman Filter

While the Kalman Filter was developed for estimation of linear systems, most real-

life situations of interest are not linear. The Extended Kalman Filter(EKF) was

developed to do exactly as the name implies; extend the applicability of the Kalman

Filter to nonlinear systems[31]. The filter is developed below to provide a conceptual

understanding, interested readers may turn to [16] for a deeper analysis.
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Given the nonlinear models from Table 1,

ŝk+1 = f(ŝk, uk+1) +Bkuk+1 + wk (21)

zk = h(ŝk) + vk (22)

an approximation of the true state and measurement vectors can be expressed by a

linearized system about the current state estimate using a first-order Taylor series

expansion. The approximated quantities are,

sk+1 ≈ f(ŝk) + Fk(sk − ŝk) (23)

zk ≈ h(ŝk) +Hk(sk − ŝk) (24)

where Fk and Hk are the Jacobians of the system and measurement models, respec-

tively, evaluated at the current state estimate.

Fk =
∂f

∂s

∣∣∣
s=ŝk

(25)

Hk =
∂h

∂s

∣∣∣
s=ŝk

(26)

The standard Kalman Filter can now be applied to the linearized system, a summary

of the steps is available in Table 3. It should be noted that the Extended Kalman

Filter algorithm applies the nonlinear transformation to the state estimate during

the prediction and innovation steps. Since the linearized transformation is used to

update the corresponding error covariance matrix, there is an inherent deviation from

the true posterior and therefore the EKF is not optimal. When the system is linear,

the first-order approximation is equivalent and there is no deviation from the true

distribution and the filter collapses back down to the standard Kalman Filter.
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Table 3: Recursive steps for the Extended Kalman Filter

Extended Kalman Filter Algorithm

0 Initialize: k = 0, Given : x̂0 | 0, P0 | 0

Predict (prior)

1 Linearize f : Fk = ∂f
∂x

∣∣∣
x=x̂k | k

2 State estimate: x̂k+1 | k = f(x̂k | k, uk+1)

3 Error covariance: Pk+1 | k = FkPk | kFk +Qk

Update (posterior)

4 Measurment: zk, set k = k + 1

5 Linearize h: Hk = ∂h
∂x

∣∣∣
x=x̂k+1 | k

6 Innovation: yk = zk − h(x̂k | k−1)

7 Kalman Gain: Kk = Pk | k−1H
ᵀ
k (HkPk | k−1H

ᵀ
k +Rk)

−1

8 State estimate: x̂k | k = x̂k | k−1 +Kkyk

9 Error covariance: Pk | k = (I −KkHk)Pk | k−1

10 Return: goto step 1

The Extended Kalman filter, while loosening the requirement that the system and

observation models are linear, is still restricted in the variety of situations to which

it can be applied. Strong nonlinearities in the system model can cause the filter to

diverge or converge to an incorrect solution[25]. The filter is also still restricted by

the assumption of Gaussian noise.
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2.4 The Particle Filter

The particle filter (PF), also known as the bootstrap filter, is part of a simulation-

based class of filters employing Sequential Monte Carlo (SMC) methods. The filters

use Monte Carlo (MC) integration to solve the high dimensional integrals found equa-

tions (4) and (5). The advantage of SMC methods is the absence of restrictions on

the model and noise types. That is, the framework can handle nonlinear–including

highly nonlinear–models and any arbitrary noise form. The price of this unrestricted

framework, however, is in the cost of the required computational power.

In the remainder of this section the particle filter is developed such that its ap-

plicability to the tracking problem can be analyzed. For an indepth formulation of

SMC methods, including the particle filter, interested readers are directed to [7] and

[14].

2.4.1 Sequential Monte Carlo (SMC) methods

Importance Sampling

As stated above, the basis of SMC is the use of MC integration. MC integration is

useful when solving high-dimensional, definite integrals; such as when calculating an

estimate of a distribution. Rather than discretizing the space over which the integral

is taken, Ω, MC integration evaluates the integrand at random points. If the random

points x̄ = {x1, . . . , xN ∈ Ω} are drawn from the distribution p, the definite integral

can be approximated as∫
Ω

h(x̄)p(x̄)dx1, . . . , dxn ≈
1

N

N∑
i=1

h(xi) (27)

In many situations, however, drawing samples from the distribution p(x) is in-

tractable or simply not possible because the distribution is not known in closed form.

Instead, samples can be drawn from a proposal distribution, π(x). This process is
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known as importance sampling,∫
Ω

h(x)p(x)dx1, . . . , dxn ≈
1

N

N∑
i=1

h(x̄i)

π(x̄i)
(28)

In the law of large numbers, the approximation tends towards the exact integral

as N approaches inifinty,

1

N

N∑
i=1

h(x̄i)

π(x̄i)
⇒

N→∞

∫
Ω

h(x)p(x)dx1:n (29)

In the context of the vehicle-state estimation problem, importance sampling MC

integration can be applied to the posterior distribution to obtain an estimate accord-

ing to some function fk,

I(fk(sk)) = Ep(sk | y1:k)[fk(sk)] ,
∫
fk(sk)p(sk | y1:k)dsk (30)

Sampling from the exact posterior distribution p(sk | y1:k) is not possible though,

so a proposal distribution, π(sk |x0:k−1, y1:k) must be used. Following Doucet in [13],

the integral can be written as,

I(fk(sk)) =

∫
fk(sk)

p(sk | y1:k)

π(sk | s0:k−1, y1:k)
π(sk | s0:k−1, y1:k)dsk (31)

q(sk) =
p(sk | y1:k)

π(sk | s0:k−1, y1:k)
(32)

where q(sk) is known as the importance weight. The proposal distribution is left–for

now–as a general distribution of sk given all previous states and measurements. The

choice of what specific distribution to use will be discussed later in section 2.4.2.

Assuming that N independent and identically distributed (i.i.d) vehicle-state

samples, or particles, {s(i)
k }Ni=1 can now be drawn from the proposal distribution,

π(sk | s0:k−1, y1:k), the MC estimate of the integral is,

Î(fk(sk)) =
1
N

∑N
i=1 fk(s

(i)
k ) q(s

(i)
k )

1
N

∑N
i=0 q(s

(i)
k )

=
N∑
i=0

fk(s
(i)
0:k)q̃

(i)
k (33)

q̃
(i)
k =

q(s
(i)
k )∑N

j=1 q(s
(j)
k )

(34)
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where q̃
(i)
k is the normalized importance weight. The specifics of this normalization can

be found in Schön[40]. Equations (33) and (34) highlight the importance weights’ role

as a relative measure of importance of each particle to the estimate of the distribution.

Sequential Importance Sampling (SIS)

The importance weights in their current form must be recomputed with each new mea-

surement and therefore are not ideal for recursive estimation. Following Schön[40],

equation (34) can be rewritten in a recursive fashion such that the updated value is

a function of the previous state, previous weight, and current measurement.

In order to express the integral in a recursive form it must first be assumed that

the proposal distribution be of the form

π(sk | s0:k−1, y1:k) = π(s0)
k∏
i=1

π(si | s0:i, y1:i). (35)

This assumption allows the importance weights in equation (34) to be rewritten as

q̃
(i)
k ∝ q̃

(i)
k−1

p(yk | s(i)
k ) p(s

(i)
k | s

(i)
k−1)

π(s
(i)
k | s

(i)
0:k−1, y1:k)

(36)

which is proportional up to a normalizing constant. Therefore, after each update the

weights need to be normalized.

The SIS algorithm has a well documented problem known as degeneracy [27]. It

can be shown that the variance of the importance weights is an increasing function of

k. Thus, after a number of iterations–increasing k–all of the importance weight will

be held by a single particle[2]. This phenomenom seriously degrades the estimate and

is a waste of computational resources.

2.4.2 Sequential Importance Resampling (SIR)

In 1993 Gordon et al. proposed the origninal bootstrap filter in the paper: Novel

approach to nonlinear/no-Gaussian Bayesian state estimation[17]. The bootstrap

filter, which in this thesis is to be considered synonomous to the particle filter, intro-

duces a resampling step to effectively eliminate particles with low importance weights,

mitigating the variance issues of the SIS algorithm.
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To resample, a new set of particles is drawn with replacement from the current

set according to

Pr(s
(i)
k,new = s

(i)
k,curr) = q̃

(i)
k , i = 1, . . . , N (37)

with each particle’s importance weight set to 1
N

. The resampling occurs after the

measurement update, which updates the importance weights based on the most re-

cent measurement. Thus, the resampling process can be seen as a measure to remove

unlikely particles effectively concentrating computational resources on the most prob-

able particles.

The original particle (bootstrap) filter proposed by Gordon performed the resam-

pling step every iteration. This in itself is a computationally expensive process, so

for efficiency it should only be performed when deemed necesary.

It is beneficial to introduce a metric to measure the variance of the importance

weights. One such measure is the effective sample size, which is defined by Bergman[6]

as

Neff ,
N

1 + Eπ(· | y1:k)[q2
k]
. (38)

This value cannot be computed exactly, but can be estimated by

N̂eff =
1∑N

i=1(q̃
(i)
k )2

. (39)

When all of the particles are uniformly weighted, N̂eff is equal to N . Conversely,

when all of the normalized importance weight is held by a single particle, N̂eff is equal

to one. Thus, a relative scale of the variance in the samples’ importance weights is

established. Resampling can be deemed necessary when N̂eff is below a set threshold,

Nth.

To complete the recursive algorithm a satifactory proposal density must be iden-

tified. Recalling equations (31) and (32), the proposal density π(sk | s0:k−1, y1:k) is left

as an arbitrary quantity given that it fits the form defined in equation (35). From

equation (31) it can be seen that the optimal density would indeed be p(sk|y1:k),
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which is equivalent to p(sk | sk−1, y1:k) given the Markovian property of the models.

Sampling from this density, if possible, is difficult and in most cases involves addi-

tional assumptions. Interested readers may consult Arulampalam et. al[2] for a more

indepth analysis.

Gordon proposed that the prior could be used as an approximation of the optimal

proposal density:

π(sk | s0:k−1, y1:k) = p(sk | sk−1). (40)

This proposition, when subsituted into the recursive importance weight expression

(equation (36)), yields

q̃
(i)
k ∝ q̃

(i)
k−1

p(yk | s(i)
k ) p(s

(i)
k | s

(i)
k−1)

π(s
(i)
k | s

(i)
0:k−1, y1:k)

= q̃
(i)
k−1p(yk | s

(i)
k ). (41)

This choice is intuitive and easy to implement given the recursive framework. From

the set of particles sk−1 = {s(i)
k−1}Ni=1 from the previous recursion, or initialization, the

prior can be found by propagating each particle through the system model

sk = fk−1(x
(i)
k−1, uk) + w

(i)
k−1, i = 1, . . . , N. (42)

At this point the necessary steps in the particle filter algorithm have been devel-

oped. A summary of the algorithm can be found in Table 4.
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Table 4: Recursive steps for the Particle Filter (SIR)

Particle Filter (SIR) Algorithm

Initialize

Given: k = 0, p(x0)

0 Draw N samples: (x
(i)
0 , q

(i)
0 ) ∼ p(x0), for i = 1, . . . , N

Propagate Posterior

1 Update Particles: x
(i)
k+1 | k = f(x

(i)
k | k, uk+1) + w

(i)
k , for i = 1, . . . , N

Measurement Update

2 Set time: k = k + 1

3 Apply measurement: q̃
(i)
k ∝ q̃

(i)
k−1 p(zk |x

(i)
k | k−1), for i = 1, . . . , N

4 Normalize weights: q̃
(i)
k =

q̃
(i)
k∑N

j=1 q̃
(j)
k

, for i = 1, . . . , N

5 Calculate N̂eff : N̂eff = 1∑N
i=1(q̃

(i)
k )2

Resample

6 Check N̂eff : if N̂eff < Nth, continue. Else, goto step 1

7 Sample with replacement: x
(i)
k ∈ {xk | k−1} s.t Pr(x

(i)
k = x) = q̃

(j)
k , for i = 1, . . . , N

8 Reset weights: q
(i)
k = 1

N
, for i = 1, . . . , N

10 Return: goto step 1
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CHAPTER III

SYSTEM DEVELOPMENT

The state estimation techniques of the previous chapter provide a foundation from

which a vehicle tracker can be developed. The tracker leverages the unrestrictive

particle filter framework and provides a mechanism for both the detection of new

vehicles and refinement of tracked vehicles. The proceeding section covers the topics

of models used, initial sampling and resampling, detection of new vehicles, and release

of tracked vehicles. Next, methods to handle the radar sensor data are investigated,

this includes pruning and gating for mitigating the effects of clutter. At this point a

full particle filter is developed. Considering the objectives of this thesis, an algorithm

is developed to allow for the simultaneous tracking of multiple vehicles. Finally, in

section 3.4, modifications are proposed to allow the entire system to operate on a

moving radar-vehicle. This section includes estimating the radar-vehicle’s state via

an Extended Kalman Filter as well as needed transformations between the inertial

and moving frames of reference.

3.1 Vehicle Tracking

To solve the vehicle tracking problem a particle filter is implemented. As seen in the

previous chapter, the particle filter provides a much less restrictive framework with

which to develop the system. Most importantly it allows for the use of a nonlinear

vehicle model, which is discussed in section 3.1.1, and a nonlinear observation model,

discussed in section 3.1.3. Additionally, the noises used may be non-Gaussian. This

is especially important for the observation model.
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3.1.1 Vehicle Model

The choice of a suitable model is of great importance when working on an estimation

problem and is typically a tradeoff between simplicity and accuracy.

For the tracking problem presented here a nonlinear, kinematic vehicle model with

state elements s = [x, y, θ, V, ω]ᵀ is chosen such that,

sk+1 = fk(sk, uk, T ) + wk (43)

fk(sk, T ) =



xk + (2Vk
ωk

) sin(ωkT
2

) cos(θk + ωkT
2

)

yk + (2Vk
ωk

) sin(ωkT
2

) sin(θk + ωkT
2

)

θk + ωkT

Vk

ωk


. (44)

In the model above, x, y, and θ represent the location of a characteristic point of

the vehicle and the orientation, which can be considered the direction perpendicular

to a fixed axle, respectively. This is a common model for wheeled robots, with Vk and

ωk typically representing the inputs to the system. Here, however, they are included

as state elements, allowing them to be estimated.

3.1.2 Initial Sampling

As stated in the particle filter algorithm, found in table 4, it is assumed that the initial

posterior, p(s0), is known and can be sampled from. At k = 0 it can be assumed that

very little is known about the vehicle state and it would be beneficial to represent

this fact in p(s0). Under the Kalman Filter framework this would be very difficult

to do given the assumption of Gaussian noise about an initial estimate. Within the

particle filter framework an arbitrary density can be assumed, which, for example,

can be a mixture of Gaussian and uniform densities.
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To begin, it is intuitive to state that the posterior is only nonzero within a subset

of the state-space, the area of concern, and that is the area from which the initial

samples should be drawn. For the x and y dimensions, this subset is the field of view

(FOV) of the radar sensor. The radar FOV can be defined as

FOV =

[
(x, y) : Rmin≤

√
(x2+y2)≤Rmax

Ψmin≤ arctan( y
x

)≤Ψmax

]
∀x > 0, y∈ IR (45)

where [Rmin, Rmax] is the minimum and maximum range measurement and [Ψmin,Ψmax]

is the minimum and maximum azimuth measurement. Similarily, the heading, θ, and

velocity, V , can be constrained such that,

−π ≤ θ ≤ π (46)

Vmin ≤ V ≤ Vmax (47)

where Vmin and Vmax are reasonably chosen limits.

To represent the uncertainity in p(s0) it is beneficial to sample this space uniformly.

To do so, a Halton sequence, which is a deterministic, low-discrepancy sequence[35],

is transformed to fill the spaces defined above.

While the turning rate, ω, is also unknown, it is reasonable to assume that for

most tracked vehicles this value is zero. Therefore, for the intialization of the particle

filter, the ω values should be sampled from a zero-mean, Normal distribution with a

specified variance.

The result of this initial sampling procedure can be seen in figure 1. Even though

not all of the state elements were sampled from uniform distributions, every particle

is given an initial importance weight of 1
N

.

3.1.3 Observation Model

The observation model is the mechanism to relate the radar measurements to the

current set of particles. As stated in the Introduction, the radar sensor produces

measurements that include range(r) and azimuth angle(ψ). The nonlinear function
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Figure 1: Initial particles sampled from p(s0).

h(s) maps the state-space to the measurement-space byr
ψ

 = h(s) =

√x2 + y2

arctan( y
x
)

 . (48)

Recalling from section 2.4.2, the likelihood function p(yk | sk | k−1) is needed to

update the importance weights, q̃
(i)
k , based on

q̃
(i)
k ∝ q̃

(i)
k−1p(yk | s

(i)
k | k−1). (49)

where yk is the new measurement and s
(i)
k | k−1 is particle state vector predicted from

the last measurement update.

When considering additive measurement noise, as is done in the defined models,

the likelihood function is

p(yk | s(i)
k | k−1) = pvt(yk − h(s

(i)
k )), (50)

where pvk(·) is the measurement noise density[40]. Within the particle filter framework

this density can be arbitrary.
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Since the noise density can be arbitrary, it can be easily extended to include mul-

tiple measurements; for example, if a vehicle has more than one data point associated

with it. Assuming that the additive noise of each data point is Gaussian, the noise

density can be represented by a mixed Gaussian distribution,

X(m) = y
(m)
k − h(s

(i)
k )

p(yk | s(i)
k | k−1) ∝

M∑
m=1

exp(−1

2
X(m)ᵀ Σ−1X(m)) (51)

where M is the number of measurements being mixed, y
(m)
k is the individual measure-

ment, Σ is the measurement covariance matrix, and the individual Gaussians have

been given equal weights. Since the importance weights are normalized after every

update the standard Gaussian constant has been dropped.

3.1.4 Resampling

As mentioned previously in section 2.4.2, resampling is the step that makes the par-

ticle filter practical. Without this step, all of the importance weight will be held by

a few–or single–particles after a handful of iterations. This produces a poor estimate

of the posterior and is a waste of computational resources. The task of the resam-

pling step is to choose the N new particles, with replacement, from the set of current

particles according to their normalized importance weight.

There exist a number of methods that have been proposed to solve the resampling

problem. These include Multinomial Resampling, Residual Resampling, Stratified

Resampling, and Systematic Resampling; all of which have been investigated by Douc

et al.[12]. Additionally, the computational complexity and performance of the same

algorithms have been compared by Hol et al.[21]. Accordingly, systematic resampling

has been chosen due to its simplicity and performance.

Systematic resampling works by choosing the particle that corresponds to the

particle set’s cumulative distribution function (CDF) at systematically determined
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points. The CDF is the cumulative sum of the particles,

F (n) =
n∑
i=1

q̃
(i)
k (52)

where F (0) = 0 and F (N) = 1. The selection points are determined such that,

U (i) =
(i− 1)

N
+ U0 for i = 1, . . . , N (53)

where U0 is a single random number drawn from a uniform distribution with support

(0, 1
N

]. Thus, the particle chosen at each selection point, s
(n)
k , is the one that satifies,

F (n− 1) ≤ U (i) < F (n). (54)

From equation (54) it can be seen that the greater the particle’s importance weight

the greater chance it has to be chosen once or multiple times.

It is important to realize that while the ordering of the particles defines the shape

of the CDF, it has no effect on the resampling algorithm. Additionally, if the particles

have uniform importance weights, every particle will be selected exactly once, regard-

less of U0. From a logical standpoint, this is ideal since the discrepenancy between

the particles’ weights is already at a minimum.

The algorithm can be visualized in Figure 2, where the blue curve represents the

CDF of 10 particles and the red circles represent the selection points. This example

includes 10 particles with normalized weights chosen uniformly.
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Figure 2: Systematic resampling.

3.1.5 Detection

A major goal of the vehicle tracking system is the ability to determine when the par-

ticle filter has detected a vehicle. This decision is different than the filter converging.

Considering the information available to the system, N particles with state vectors,

s = [x, y, θ, V, ω], and normalized importance weights, the particle filter is considered

to have detected a vehicle when the variance of the particle headings is less than a

set threshold.

It is important to note that the heading, θ, is a circular quantity; that is, it

is constrained to (−π, π]. Therefore the normal calculation of variance, Var(x) =

E[(x− µ)2], will not work. Rather, the following expression is used, which is a slight
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modification of the descriptive statistics defined in [22],

Cw =
N∑
i=1

q̃
(i)
k cos θ

(i)
k

Sw =
N∑
i=1

q̃
(i)
k sin θ

(i)
k

Var(θ) = 1−
√
C2
w + S2

w (55)

where q̃k are the normalized importance weights and Cw and Sw are weighted averages

of the sine and cosine of the particles’ headings, respectively. Under this formulation:

0 ≤ Var(θ) ≤ 1 (56)

Thus, this is only a relative measurement where Var(θ) = 1 describes high variance

and Var(θ) = 0 occurs when all particles have the same heading.

With the metric defined by equation 55 the detection of a vehicle can be defined

as,

Var(θ) ≤ σth (57)

where σth is the threshold value. As the heading variance falls below the threshold it

is said that the particle filter has moved from the detection stage to the refinement

stage.

3.1.6 Track Deletion/Detector Reset

As the system is targeted to run recursively, a mechanism is needed to systematically

reset the tracker when deemed necessary. This is to ensure that the system runs both

effectively and efficiently.

During the detection stage this amounts to ensuring the area of concern, the radars

field of view, is fully populated by particles. When the particles have dispersed outside

of the FOV, such that the covariance of the xy-dimensions is above a set threshold, the

particle set is reinitialized to the set established during the initial sampling, section

3.1.2, including the uniform particle weights.
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Similarily, during the refinement stage it is possible that a tracked vehicle has

left the radars field of view or is no longer recognized, possibly because it is blocked

by another object or vehicle. By recalling equation (45), the binary assessment of

whether a tracked vehicle is out-of-bounds (outside the FOV), OOB, can be written

as

OOB(j) =


0
(
x̂(j), ŷ(j)

)
∈ FOV

1
(
x̂(j), ŷ(j)

)
/∈ FOV

, for j = 1, . . . , J, (58)

where J is the number of tracked vehicles at a given instance. If true, the vehicle is

released and no longer tracked.

Additionally, a vehicle is considered lostno longer recognizedwhen the variance of

its particles in the xy-dimensions is above a set threshold. The rise in the disparity

among the particles occurs when the set is not continually updated by the radar

data. Therefore, the threshold allows for vehicles with more refined estimates to

survive during occlusion.

3.2 Radar Data

As stated in the Introduction, the radar sensor provides information on numerous

objects each update cycle. The majority of these data points do not originate from

a vehicle and can be considered clutter, even if they do originate from a real object.

The exact definition of clutter varies between the detection and refinement stages of

the particle filter and are explained below.

3.2.1 Pruning for Detection

During the detection stage of the particle filter clutter can be considered any data

points that fall below a relative velocity magnitude threshold. Since it is assumed that

the radar-vehicle is stationary, this has the effect of removing all stationary objects
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from the field of view. A binary determination for each data point can be made using

stationary(m) =


0
∣∣∣v(m)
rel

∣∣∣ > vrel,th

1
∣∣∣v(m)
rel

∣∣∣ ≤ vrel,th

, for m = 1, . . . ,M, (59)

where M is the total number of data points.

It is possible that this simple filter could also remove data points originating from

vehicles driving in a constant radius circle around the radar-vehicle, but this case is

unlikely. In the case that a vehicle does have zero relative velocity with respect to

the radar-vehicle, a collision is not possible and thus the situation can be effectively

ignored.

3.2.2 Gating for State Refinement

To determine whether a data point originated from a tracked vehicle a validation

gate is used. The gate is a binary decision based on the Mahalanobis distance[5]

calculated from the current state-estimate to the data point in question. To calculate

such a distance, the state estimate and data point must be mapped into a space with

common dimensions. The nonlinear mappings are,

hygate(y) =


x

y

vrel

 =


R cosψ

R sinψ

vrel

 , hsgate(s) =


x

y

vrel

 =


x

y

V arctan
(
y
x

)
 . (60)

The Mahalanobis distances between current state estimate and each data point, D(m),

can then be calculated as

Xm = hygate
(
y(m)

)
− hsgate(ŝ) (61)

D(m) =
√
Xᵀ
m Σ−1

gate Xm, for m = 1, . . . ,M (62)

where Σgate is the covariance matrix associated with the gate and M is the total

number of measurements. The quantity D is a nondimensionalized measure of length

and therefore not affected by differences in scale between the dimensions.
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Since the covariance matrix is assumed to be both positive definite and symmetric,

it can be decomposed into its eigenvalues and eigenvectors:

Σgate = SΛSᵀ (63)

S(s) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (64)

Λ = diag(σl, σw, σv) (65)

where the columns of S(s) are the eigenvectors and span the common space. In this

case, the first eigenvector is aligned with the vehicle heading in the xy-plane, the

second eigenvector is perpedicular to the first, and the third spans the vrel dimension.

This allows for the eigenvalues to be representative length scales in each dimension.

Considering that the vehicle length is greater than its width, it would make sense that

the gate is longer in the heading direction. Thus, it is chosen that σl > σw.

The binary determination of whether a data point originated from a tracked vehicle

can be made using

vehicle(m) =


0 D(m) > γ

1 D(m) ≤ γ

(66)

where γ is determined from the inverse χ2 cumulative distribution of k degrees of

freedom at a confidence interval, α, which is normally 0.05 or 0.01[10]. In equation

66, there are k = 3 degrees of freedom.

3.3 Multi-Vehicle Tracking

As stated in the Introduction, an objective of this thesis is to develop a mechanism

within the system to allow for the tracking of multiple vehicles. In a rigorous sense,

this is a very complicated and computationally intensive task which is not well-suited
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for the target application. In the following section the algorithm to track multiple

vehicles is proposed, which, under certain assumptions and considerations, substan-

tially simplifies the data association step. The proceeding section, 3.3.2, explores the

assumptions further.

3.3.1 Detached Operation

The particle filter developed above is tasked with tracking a single vehicle through

its lifecyle: detection, continued refinement, and release. Since the particle filter is

completely self contained, tracking multiple vehicles amounts to using a collection of

individual particle filters.

At all times there is one particle filter acting as a detector. It is tasked with

detecting new vehicles entering the field of view of the radar. Once a vehicle is

detected, a procedure described in section 3.1.5, the particle filter is detached to

run independently. While running indepentdently, the particle filter continues to

refine its tracked vehicle’s state using the subset of the radar-sensor data originating

from the specific vehicle. When the tracked vehicle exits the field of view, or the

signal is lost, the particle filter will remove itself from the collection. At the time of

detection/detachment a new particle is initialized and set to run as a detector. This

will happen for every new vehicle entering the radars field of view. An overview of

the algorithm is provided in Table 5.
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Table 5: Recursive steps for the multiple-vehicle tracking algorithm.

Multi-Vehicle Tracking Algorithm

0 Initialize: Detection PF: PFdet

Tracking PF: PFtrk =
[
PF1, . . . ,PFN

]
, N = 0

1 Radar measurement: Zk

Update tracking PFs

2 For each PF: PFi, i = 1, ..., N

3 → perform measurement update.

4 → if : out-of-bounds, loss of recognition, then:

5 release PFi from PFtrk, N = N − 1.

Update detector PF

6 Update Zk: remove data points used by PFtrk.

7 Measurement update: perform measurement update with Zk

8 Check detection: if : vehicle is detected, then:

9 add PFdet to PFtrk, N = N + 1.

10 initialize a new detector, PFdet.

11 Return: goto step 1

It is important that the detector does not include data points related to currently-

tracked vehicles in its measurement update step. Including such points would result

in the same vehicle potentially being tracked by multiple particle filters; a waste

of resources and provides an incorrect representation of the environment. After it

has been determined which data points belong to which tracked-vehicle, the data

association process discussed in the next section, the remaining data points are passed

to the detector.
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3.3.2 Data Association

The complexity of the multi-target tracking problem stems from the need to associate

sensor data points with their origin and, potentially, originless points as clutter. There

exist a number of well researched methods to perform such a task, a table comparing

the algorithms can be found in [11]. The more popular and widely-used algorithms

include: Global Nearest Neighbor Standard Filter (GNNSF), Joint Probabalistic Data

Association Filter (JPDAF), and Multiple Hypothesis Tracker (MHT), among others.

These methods are not investigated in this thesis, but interested readers can refer to

[38], [4], and [39] for an in-depth analysis of the algorithms.

Data association algorithms work–in a high-level sense–to minimize, or remove, the

influence of data points not originating from the tracked object from being included

in the update procedure and, therefore, influencing the tracked objects state estimate.

This is a complex and computationally intensive task that grows as more data points

and tracked objects are considered.

The methods are typically implemented in situations where it is particularly dif-

ficult to not only separate relevant data points from clutter and false alarms but also

assign the relevant data points to their correct object tracks. This is common problem

when tracking commercial aircraft[3]. The sensor used in this thesis, a short-range

UWB radar, measures relative velocity in addition to position. This provides another

dimension along which the relevant vehicles may be separated from not only clutter

but also each other. As seen in Figure 3, data from moving vehicles are well separated

from clutter.

Data association is also especially important in situations where measurements

are infrequent such that updating with an incorrect measurement could lead to large

errors over time. Alternatively, since the radar sensor used in this thesis provides

updates every 66 milliseconds, on the rare occasion that an incorrect data point is

used in the update procedure of a tracked vehicle the influence would be minimal.
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Figure 3: Left) the radar data points displayed in the x − y plane with relative
velocity identified by color. Right) the radar data displayed in the x − vrel plane to
show separation from clutter. The set of yellow points and set of blue points each
originated from different vehicles.

With these considerations and assumptions, no rigorous data association algo-

rithm is explicitly included in the system developed within this thesis. The data

association step is handled, instead, by the gating procedure. Essentially, if a data

point is within the validation gate, which is dependent on both position and velocity,

it is assumed to have originated from the tracked vehicle and therefore included in

the measurement update. The assumptions fit within the scope of this thesis and

justified by experimental data.

3.4 Extension to Moving Vehicle

To extend the system developed above it is important that the state of the radar-

vehicle is well known such that the set of particles, which exist in a global, inertial

frame of reference, can be transformed into the radars frame of reference for use in

the measurement update and gating procedures. This, once again, poses the prob-

lem of estimating the radar-vehicle state via a set of limited measurements; this is

36



accomplished through the use of an Extended Kalman Filter.

3.4.1 Extended Kalman Filter

Unlike with the tracking system, the restrictions imposed by the EKF framework do

not present issues when estimating the radar-vehicle state. It is reasonable to assume

that an initial estimate of the vehicle state is available and the process and measure-

ment noises are Gaussian. Given that the EKF is computationally less intensive and

easier to implement than a particle filter, it is well suited for this specific estimation

problem.

The state elements of interest include position and orientation terms, x, y, and θ,

and velocity terms, V and ω. Available measurements include GPS location, (x, y),

individual wheel angular velocity, Ω(1,2,3,4), and steering angle, α. Assuming a no-

slip condition, which is safe at the low speeds of the target application [24], virtual

measurements for vehicle velocity, Vvirt, and turn-rate, ωvirt, can be calculated as

V virt =
Ω(3)R3 + Ω(4)R4

2
(67)

ωvirt =
Ω(4)R4 − Ω(3)R3

W
(68)

where R3,4 are the radii of the left and right rear wheels, respectively, and W is

the vehicle width. This approach is similar to that of Özkan et al.[37], who use a

marginalized particle filter to perform the estimation under looser assumptions, and

Carlson et al.[8], who include a gyroscope in the available sensors.

The accuracy of the two measurements is dependent on the knowledge of the true

radii of the two rear wheels. Assuming a nominal measurement, Rnom, the true radii

can be expressed as

R3 = Rnom + δ(3) (69)

R4 = Rnom + δ(4), (70)
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which can be substituted into equations (67) and (68) to produce

V = V virt − Ω(3)δ(3)

2
− Ω(4)δ(4)

2
(71)

ω = ωvirt +
Ω(3)δ(3)

W
− Ω(4)δ(4)

W
. (72)

The wheel radius errors can be estimated alongside the vehicle pose elements

by augmenting the state vector such that s = [x, y, θ, δ(3), δ(4)]. Assuming a no-slip

condition between the tires and road surface, a nonlinear, kinematic system model

can be used:

xk+1

yk+1

θk+1

ωk+1

δ
(3)
k+1

δ
(4)
k+1


= fk(sk, uk, T ) =



xk +
(
V virt
k − Ω3

kδ
3
k

2
− Ω4

kδ
4
k

2

)
cos(θk)T

yk +
(
V virt
k − Ω3

kδ
3
k

2
− Ω4

kδ
4
k

2

)
sin(θk)T

θk + ωkT(
V virt
k − Ω3

kδ
3
k

2
− Ω4

kδ
4
k

2

)
tan(αk)

L

δ
(3)
k

δ
(4)
k


, (73)

where the input vector at time k, uk = [V virt
k ,Ω3

k,Ω
4
k, αk], includes the virtual velocity

measurement, rear-left wheel angular velocity, rear-right wheel angular velocity, and

steering angle, respectively. The Jacobian of the nonlinear function fk is

∂Fk
∂s

=



1 0 −
(
Vk −

Ω3
kδ

3
k

2
− Ω4

kδ
4
k

2

)
sin(θk)T 0 −Ω3

k

2
cos(θ)T −Ω4

k

2
cos(θ)T

0 1
(
Vk −

Ω3
kδ

3
k

2
− Ω4

kδ
4
k

2

)
cos(θk)T 0 −Ω3

k

2
sin(θ)T −Ω4

k

2
sin(θ)T

0 0 1 T 0 0

0 0 0 0 −Ω3 tan(α)
2L

T −Ω4 tan(α)
2L

T

0 0 0 0 1 0

0 0 0 0 0 1


.

To update the estimate the measurement vector zk = [x, y, ω]ᵀ is used, where x

and y are provided by the GPS and ω is the virtual measurement. Since the GPS data

and onboard vehicle data are updated at different rates, two measurement models are
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needed; one for when GPS data is available, hGPSk , and one for when it is not, hNOGPSk .

The two models are:

hGPSk =


xk

yk

ω

 , hNOGPSk =


0

0

ω

 ,
with corresponding Jacobians,

∂h(GPS)

∂s
=


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0



∂h(NOGPS)

∂s
=


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

 .
Given the quantities above the EKF will provide an estimate of the vehicle state,

ŝ, from which the system output vector can be calculated:

ŷout =



x̂k

ŷk

θ̂k

ω̂k

V̂k


=



x̂k

ŷk

θ̂k

ω̂

V virt − Ω(3)δ̂(3)

2
− Ω(4)δ̂(4)

2


. (74)

3.4.2 Coordinate Space Transformations

The tracker developed earlier in this chapter assumed that the radar-vehicle was

stationary and thus the two reference frames, seen in Figure 4, could be arbitrarily

aligned. With an estimate of the full vehicle-state provided by the EKF, the current

set of particles can be transformed from the global frame of reference to the radar
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frame of reference, allowing the same update procedure to be used, via

xr = x̂+ lr cos θ̂ (75)

yr = ŷ + lr sin θ̂ (76)R(i)

ψ(i)

 =


√

(x(i) − xr)2
+ (y(i) − yr)2

arctan
(
y(i)−yr
x(i)−xr

)
− θ̂

 (77)

where lr is the known length from the rear axle of the radar-vehicle to the radar

sensor, (xr, yr) is the location of the radar sensor in the inertial frame, and x̂, ŷ, and

θ̂ are from the EKF output.

xinertial

yinertial

x r
ad
ar

y r
ad
ar

θ̂

x̂

ŷ

b (R,ψ)

lr

Figure 4: Illustration of the two frames of reference. The radar-vehicle frame of
reference extends out from the radar-sensor which is located lr in front of the rear
axle. It is assumed the normal vector of the face of the sensor is aligned with the
vehicle heading at all times.

Additionally, the nonlinear mappings for use in the gating step can be extended

to a moving radar-vehicle. Using the EKF output the velocity of the radar sensor

40



can be computed as

Vr =

√
V̂ 2 + (ω̂lr)2 (78)

θr = arctan

(
V̂ sin θ̂ + ω̂lr cos θ̂r

V̂ cos θ̂ + ω̂lr sin θ̂r

)
, (79)

where Vr and θr are the magnitude and direction of the radar sensor in the inertial

frame, respectively.

Using equations (78) and (79) the relative velocity vector between the radar sensor

and individual particle can then be written asv(i)
rel,x

v
(i)
rel,y

 =

V (i) cosψ(i) − Vr cos θr

V (i) sinψ(i) − Vr sin θr

 . (80)

The relative velocity in the radial direction of a particle is calculated using a dot

product of the vector found in equation (80) and the directional vector from the radar

sensor to the particle in question:

vrel,R =

[
v

(i)
rel,x v

(i)
rel,y

]
·

x(i) − xr

y(i) − yr


√

(x(i) − xr)2
+ (y(i) − yr)2

. (81)

The nonlinear mappings from the radar measurement-space and vehicle state-

space into the common gate-space can now be defined as

hygate(s, y) =


x

y

vrel

 =


R cos

(
ψ + θ̂

)
+ xr

R sin
(
ψ + θ̂

)
+ yr

vrel

 (82)

hsgate(s, y) =


x

y

vrel

 =


x̂

ŷ

vrel,R

 (83)

where xr and yr are from equations (75) and (76), respectively and (R,ψ, vrel) is the

radar data point.
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3.4.3 Tracker Modifications

In addition to the transformations described above, certain aspects of the original

tracker must be modified to effectively work on a moving radar-vehicle. These modi-

fications ensure that the system is efficient and effective while operating recursively.

During the detection stage it is important that the radar’s field of view is suffi-

ciently populated with particles. The area from which particles are initially sampled,

the area of concern, must be expanded such that the FOV is always populated by

particles. It is compuationally intractable to consider the entire environment during

the initial sampling procedure. Rather, it is more feasible to consider a local area

dependent on the radar-vehicle’s current state. A metric can be developed to measure

how populated the FOV is and, when needed, reinitialize the detector particle filter.

The pruning method to identify data points originating from stationary objects,

described in scetion 3.2.1, must also be modified to be extended to a moving radar-

vehicle. By first assuming that the data point in question,
(
R(m), ψ(m), v

(m)
rel

)
, is from

a stationary object in the inertial frame, its radial relative-velocity to the radar sensor

can be computed using

v
(m)
rel,stat = Vr cos

(
ψ(m) + ˆtheta− θr

)
, (84)

where Vr and θr are from equations (78) and (79), respectively, and θ̂ is the estimated

vehicle heading. Equation (59) can now be modified to include the influence of a

moving radar-vehicle:

stationary(m) =


0
∣∣∣v(m)
rel − v

(m)
rel,stat

∣∣∣ > vrel,th

1
∣∣∣v(m)
rel − v

(m)
rel,stat

∣∣∣ ≤ vrel,th

, for m = 1, . . . ,M. (85)

Given perfect information, the expression
∣∣∣v(m)
rel − v

(m)
rel,stat

∣∣∣ should equate to zero for a

stationary object.

By extending the system to a moving radar-vehicle, other vehicles are no longer

the only safety concern. Previously, stationary objects were effectively ignored since
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a collision with them was not possible. Now, however, a collision is possible and

therefore these objects must be considered as obstacles and handled accordingly.
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CHAPTER IV

RESULTS

In this chapter the vehicle-tracking and radar-vehicle state-estimation subsystems

developed previously are tested against the objectives stated in the Introduction. For

this purpose, real-life (experimental) data, collected and recorded from the radar and

onboard vehicle sensors specified in the Introduction, is used.

4.1 Vehicle Tracker

The vehicle tracking system is tested below using experimental data collected using

the ultra-wideband radar sensor presented in the Introduction. First, the system is

employed to track a single vehicle moving through the radar’s field of view (FOV)

allowing the detection, refinement, and release stages to be viewed. Next, the capa-

bility to track multiple vehicles is tested. In both cases, the environment from which

the data are collected is uncontrolled and cluttered. As stated in section 1.2, Scope

of Work, the tracker is tested on a stationary radar-vehicle only.

4.1.1 Detection, Refinement, and Release

The detection mechanism of the system is tested using experimental data. The test

case involves a vehicle entering the radar’s FOV directly ahead of the sensor with a

slight offset to the right. The vehicle enters and begins to turn such that it crosses

the sensor’s centerline. The detection procedure can be seen in Figure 5, where 5000

particles are used.

The top-left plot of Figure 5 shows the environment when the vehicle first enters

the FOV. The red circle represents the radar data point that originated from the

vehicle; its influence on the particle’s importance weights can be seen. The black
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markers are the other radar data points, these points have been deemed clutter and

thus ignored by the detection mechanism. The top-right plot of Figure 5 is the

environment after several update cycles.
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Figure 5: Progression of detection mechanism. (a) is the first frame in which the

vehicle is within the FOV. (b) the detector is converging on the vehicle’s state. (c) a

new vehicle has been detected.
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The bottom plot of Figure 5 shows the environment when it has been determined

that a vehicle has been detected. The estimated location and heading of this vehicle

is represented by the red ’X’ and red arrow, respectively. Within the environment

exist two sets of particles; one for the newly spawned vehicle tracker, pf1, and another

for the detection mechanism, pf0.

The detection, and subsequent detachment of the tracker, is based on the variance

in the headings of the individual particles. The time series of this value over the time

spanned by the frames discussed above can be seen in Figure 6.

The same test-case can be used to demonstrate the refinement and release stages

of the tracker. As shown in Figure 8, the tracker continues to update the tracked-

vehicle’s state estimate after detection. During this stage only data points falling

within the tracker’s validation gate are used in the update procedure. In Frames 55

and 68, two radar data points fall within the specific vehicle’s validation gate.

During both the detection and refinement stages the particle filter is resampled

according to section 3.1.4. Figure 7 shows the time series of the effective sample size,

Neff . It can be seen that by using this metric, along with a threshold, resampling is

not required after every measurement update, saving computational resources.

While the pf1 particle filter actively tracks the detected vehicle, the pf0 particle
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filter continues to work as the detector. Given that the only non-clutter points origi-

nate from the tracked-vehicle, and therefore within the validation gate, the detector

is passed no relevant data and stands idle for the duration of the refinement stage.

It can be seen in Frame 99 of Figure 8 that the tracked vehicle is on the verge of

the FOV. After the vehicle exits the radar’s FOV the tracker automatically releases

itself, freeing up valuable computational resources. This occurs in Frame 100, which

is not shown. This ends the specific particle filter’s lifecycle.
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Figure 8: Progression of refining the estimated vehicle state.

48



4.1.2 Simultaneous Tracking

Using another set of experimental data, the ability to track multiple vehicles is tested.

This test case involves two vehicles entering the FOV from behind and right of the

radar-vehicle; the second vehicle enters roughly 2 seconds after the first. The pro-

gression of detection, refinement, and release of the vehicles can be seen in Figure

9.

Frame 21 of the sequence shows the point that the first vehicle is detected. At this

point, the particle filter is detached to continue with refinement and another particle

filter is brought online to act as a detector. In Frame 41 the second vehicle enters the

FOV and the detector particles begin to converge, shown in Frame 50.

Just as with the first vehicle, when the second vehicle has been detected the

particle filter is detached and a new detector is spawned. In Frame 58, now three

individual sets of particles can be seen in the environment. The states of the tracked

vehicles are then independently refined.

Frame 64 of the sequences shows the three particle filters operating alongside each

other. Here the radar data points relevant to the vehicles are used by the trackers,

pf1 and pf2, and therefore the detector, pf0, stands idle once again.

The first vehicle exits the FOV in Frame 73. Frame 74 in Figure 9 shows the

respective particle filter has been released without any effect on the others.
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Figure 9: Progression tracking two vehicles simultaneously and independently.
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4.2 Vehicle State Estimator

The Extended Kalman Filter, developed in section 3.4.1 to obtain an estimate of the

radar-vehicle state, is tested below. The sensor data is obtained from a Mercedes Benz

E-Class test vehicle. First, the vehicle parameters need by the EKF are presented,

followed by the sensor. Next, the output signals produced by the EKF are analyzed.

4.2.1 System Inputs

Recalling from the development of the EKF, the system needs vehicle-specific infor-

mation to be used in the estimation procedure. These parameters are shown in Table

6; L is the axle-to-axle length, W is the axle width, and Rnom is the nominal radius

of the tires.

Table 6: Vehicle parameters used by the EKF.

Vehicle Parameters

L 2.939 m
W 1.619 m

Rnom 0.315 m

The EKF also requires the specification of the process and measurement noise

covariance matrices, Q and R, respectively. It also requires an initial guess of the

state estimate and error covariance matrix, which amounts to an initial estimate of

the posterior density. These parameters have been tuned using several test cases.

One of these example cases is shown in Figure 10. The input data provided to the

system includes the GPS location, projected into a local cartesian coordinate system,

individual wheel speeds, and steering angle.
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Figure 10: EKF input data. (a) The GPS track from the RTK GPS system. (b) The

four wheel speeds provided by an onboard system. (c) Steering angle time series in

degrees, also from the onboard system.
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4.2.2 Results

Using the state vector estimated by the EKF, ŝ =
[
x, y, θ, δ(3), δ(4)

]
, where δ(3) and

δ(4) are the wheel radius errors, the system output, defined in section 3.4.1, can be

computed. The system output includes the vehicle location, x and y, heading, θ,

velocity, V , and turn rate, ω.

The position and heading output of the EKF compared with the raw data can be

seen in Figure 11. Given the accuracy of the GPS system, which is realized in the

measurement noise covariance matrix, the EKF track follows the GPS track closely.

Also shown in Figure 11 is the raw and EKF heading time series. The raw heading

is calculated as the angle formed between two sequential GPS points; this produces a

noisy signal. Alternatively, the EKF produces a smoothed estimate. This smoothed

signal is important when mapping the radar sensor data to the inertial frame, and

vice versa.
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Figure 11: Comparison between input data and EKF output for position and heading.
Raw data is shown by the blue line, EKF data is represented by the red line.

The EKF turning-rate and velocity estimates can be seen in Figure 12. The raw

data in the turning rate plot is the ωvirt time series (equation (68)). The signal is a

function of the two rear-wheel speeds; as such, it is sensitive to the errors in those
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quantities. The discretization errors found in the individual wheel speeds can be seen

as a source of noise about the signal.

The raw data in the velocity plot is the V virt time series (equation (67)), which is

also a function of the two rear-wheel speeds. As opposed to the ωvirt, it is an effective

average of the speeds rather than a difference. Therefore, this source of noise in the

V virt signal is not as prominent.

Time [s]
440 450 460 470 480 490 500 510 520

T
u
rn
-R

at
e
[r

a
d

s
]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Radar-Vehicle Turn-Rate

Raw Data

EKF

(a) turning-rate

Time [s]
440 450 460 470 480 490 500 510 520

V
el
o
ci
ty

[k
m h
]

0

1

2

3

4

5

6

7

8

9

10

Radar-Vehicle Velocity

Raw Data

EKF

(b) velocity

Figure 12: Comparison between input data and EKF output for turning-rate and
velocity. Raw data is shown by the blue line, EKF data is represented by the red line.

Both the turning-rate and velocity signals are functions of the individual rear

wheel radii. Given a nominal wheel radius, the EKF estimates the error of each

rear-wheel. The time series of the estimated rear-wheel radii can be seen in Figure

13. The convergence of these signals to constant values is difficult given the limited

sensors; no access to an onboard gyroscope, for example.
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Figure 13: Estimated wheel radii.

No true-radii values are available but it can be seen that the estimates are less

than the nominal value. Looking once again to the velocity plot, this fact can can

be seen as the EKF velocity estimate is less than the virtual sensor time series. A

similar statement can be made about the turning rate, the difference between in the

rear-wheel radii produces the disparity between the estimated and virtual signals.

This is most apparent at greater turning-rates.

Using additional test cases not presented here, it is verified that from the limited

and noisy signals available to the system the EKF produces a full state estimate that

can be used to extend the tracker to a moving radar-vehicle.
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CHAPTER V

CONCLUSION

5.1 Closing Remarks

The system developed in this thesis has met the objectives defined in the Introduction.

Using the particle filter framework, the tracker is able to handle the nonlinear model

describing the kinematics of the tracked vehicles as well as the nonlinear observation

model mapping the state-space to the measurement-space. The particle filter is also

unrestrictive on what noise distributions can be used. This was beneficial during the

measurement update procedure.

Also provided by the particle filter framework is a mechanism to allow for the

detection of new vehicles within the radar’s field of view. Once a vehicle is identified

it is tracked during the refinement stage until it exits or is lost. The management

of tracked vehicles allows the system to run continously and only focus on relevant

vehicles. This has been proven by the test case shown in the results.

The system has shown that it can handle tracking mutliple vehicles simultaneously

using a collection of particle filters. To facilitate real-time operation the complex

data association step has been relaxed. This allows the spawned trackers to operate

independently of each other.

In both test cases the environment is cluttered with data points originating from

non-vehicle objects and potential false alarms. The pruning and gating techniques

developed sufficiently mitigate the effects of the irrelevant points so that the vehicles

of interest may be detected and tracked. The success of these methods positions the

system to be

Finally, a method to extend the tracking sytem has been developed. Given a limted
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set of measurements the state of the radar-vehicle is estimated using an Extended

Kalman Filter. With this estimated state, mappings from the radar-frame to an

inertial-frame, and vice versa, were derived such that a modified version of the tracking

system could be used. The EKF was tested using experimental data and showed that

a suitable state estimate could be produced with the limited, noisy sensor data.

5.2 Future Research

A number of research avenues exist to improve and extend the capability of the

developed system. Testing of the current system in a controlled but real-world envi-

ronment, where the tracked vehicle’s states are knwon, is needed to rigorously verify

the tracker’s accuracy when coupled to the radar sensor; something simulations can-

not adequately replicate. A controlled environment can also facilitate the testing of

the system’s limits, including vehicle size, separation, maneuvering, and occlusions.

A key step to fully extend the system’s capability is the testing of the methods

developed to enable the use of the tracking system on a moving vehicle. The modifi-

cations proposed, specifically the identification of stationary objects, pose a research

endeavour unto itself. The problem of identifying data points from stationary objects

and relevant vehicles jointly pushes the need for a more rigorous approach to data

assocation.
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