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The road to wisdom? – Well it’s plain and simple to express:

Err and err and err again, but less and less and less.

Piet Hein
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SUMMARY

Medical devices are burdened with complications of thrombosis and hemorrhage.

The combined interaction of material surface, local hemodynamics (in particular shear

rate), and large-scale thrombosis is poorly understood.

First, basic science studies elucidated the relative importance of material surface and

shear rate for large-scale bulk thrombus formation in an in vitro setup. We then used the

results from these studies to develop a thrombogenicity ranking.

Next we assessed thromogenicity issues with current blood-contacting devices and

worked to develop understanding of the contributing mechanisms. We then simulated the

device thrombosis in vitro and validated our results against the clinical results.

Finally, we proposed two novel devices to correct current thrombogenicity issues, and

tested our prototypes in vitro.

The results of these studies are summarized below:

· Development of a relative thrombogenicity comparison for current device materials

· Histological analysis of bulk thrombi revealing mixed platelet and fibrinous composition

regardless of shear rate

· Analysis of clinical thrombosis in 1) ECMO circuits, 2) the Sorin Revolution centrifu-

gal pump and 3) Berlin Heart EXCOR pediatric VAD on the basis of macroscopic

thrombus formation

· CFD anaylsis of areas of thrombotic germination in ECMO circuits and the Sorin Revo-

lution

· Development of a system for in vitro simulation of device thrombosis validated against

clinical samples

· Proposal and prototyping of novel devices validated in vitro

xvii



The contributions from the results of this thesis are as follows:

· Demonstration of differences in bulk thrombosis formation of materials across shear

regimes

· Recommendations for device design and clinical management from a thrombogenicity

ranking

· Evidence of material surfaces overriding classical “red” and “white” clot mechanisms

· Identification of specific thrombogenic areas and elucidation of thrombotic behavior in

ECMO circuits, the Sorin Revolution, and the Berlin Heart EXCOR

· Hypothesis and validation of thrombotic mechanisms in ECMO circuits and the Sorin

Revolution

· Validated in vitro simulation of device thrombosis

· Device design and in vitro validation

xviii



CHAPTER 1

BACKGROUND AND MOTIVATION

Blood-contacting medical devices, such as stents, grafts, catheters, extracorporeal cir-

cuits, and ventricular assist devices (VADs), are used to treat a variety of cardiovascular

and cardiopulmonary diseases. Complications resulting from thrombus formation in these

devices are a frequent source of failure [1], and thrombosis and hemorrhage are the two

dominant clinical issues for mechanical circulatory support patients [2]. The aforemen-

tioned complications not only impede the function of the device, but pose direct risk to the

patient. To reduce the risk of occurrence of thrombosis, patients are subjected to anticoagu-

lation regimens for the duration of the treatment, which can be long-term. Such treatments

reduce the overall quality of life of these patients, and pose additional risks, such as hem-

orrhage. There is a gap in understanding the relationship of how the thrombotic outcome

is related to the initial processes that occur when blood contacts material surfaces. This

relationship is the central to the prevention of device thrombosis, and its quantification will

benefit design, troubleshooting, and patient treatment.

The material surface field is vast and much work has been done to elucidate the blood-

surface interactions and their effects for decades. Material pathways are complex and have

lots of crosstalk, further increasing the difficulty of study.

When blood contacts a material surface, a series of complicated systems initiate that

ultimately potentiate thrombosis (Figure 1). The enacted mechanisms include protein ad-

sorption, platelet adhesion, platelet activation, coagulation activation, leukocyte activation,

and complement activation. The immediate adsorption of blood proteins is the initial event

in the material-thrombosis pathway [1, 3, 4]. Protein adsorption is initially controlled

by diffusion, but is dominated by protein-surface affinity over time (the Vroman Effect)

[5]. Surface adsorption subsequently triggers events such as fibrin polymerization and/or
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Figure 1.1: Initiation and interaction of response cascades by a biomaterial surface from
Ekdahl et al. [8].

platelet activation and adhesion, which potentially lead to thrombus formation [6, 7].

The coagulation cascade occurs through a series of positive feedback zymogen-enzyme

conversions that ultimately result in thrombin production and subsequent fibrin polymer-

ization [9]. The cascade is separated into two branches (extrinsic and intrinsic) that are

potentiated separately but come together in a common pathway that leads to thrombin. The

extrinsic cascade is activated by vascular injury in vivo. The intrinsic cascade is activated

by circulating high molecular weight kininogen and prekallikrein. The first step in intrinsic

potentiation is the activation of FXII which is referred to as “autoactivation” [9]. The initi-

ation of this cascade is also mediated by contact with artificial surfaces [10]. It is generally

accepted that anionic surfaces are the strongest activators of the intrinsic cascade [9, 10].

A diagram of the cascade is shown in Figure 2 [9]. The intrinsic cascade is a part of the
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Figure 1.2: Coagulation cascade diagram from Vogler and Siedlecki’s 2009 review [10].

immediate protein adsorption process and thus occurs during the first seconds to minutes of

material surface contact with blood [10]. Tissue factor expression on monocytes requires

synthesis and therefore up to an hour must elapse before this pathway would contribute to

thrombin generation [10]. Thrombin generation by activated FXII is flow dependent and

therefore timescales of the coagulation cascade will depend on the flow situation, which

contributes to the complex problem of understanding mechanisms in the blood-contacting

device setting [10, 11].

The materials most often used in devices are typically hydrophobic and have affinity

with many proteins [12]. The most commonly adsorbed plasma proteins are albumin, fib-

rinogen, IgG, fibronectin, and vWF [12, 13, 14, 15]. VWF and fibrinogen appear to be the

most important mediators of procoagulant platelet activity [16]. These proteins undergo

conformational changes to expose hydrophobic domains and therefore become adsorbed to

the hydrophobic surface [12, 17, 18, 19]. It is these conformational changes that expose

receptor cites that cause subsequent immune reactions and initiate thrombosis [12, 20, 21].
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The concentrations and conformations of adsorbed proteins are dependent on the material

surface [12, 22, 23, 24].

The complement system, platelets, and leukocytes all play important roles in material

compatibility and ultimately together lead to a surface-induced immune response [10]. The

complement system is made up of numerous plasma proteins that cascade to produce com-

plement produces that then bind foreign particles, surfaces, bacteria, and immune system

complexes which allows uptake into inflammatory cells [10, 25]. Complement activation

is initiated by either a classical or alterative pathway, and both join in the terminal path-

way. Both begin with an enzyme that causes C3 convertase formation. C3 convertase then

generates C5 convertase which allows the creation of the terminal complement complex

(TOC). Complement activation and inhibition pathways are shown in Figure 3 [10]. Com-

plement and intrinsic activation are intertwined [10, 26, 27]. Complement activation also

induces cellular responses and activation of the immune system, and has been shown to do

so specifically in the presence of artificial materials [28, 29]. Platelet activation at surfaces

can also induce an immune response and has been shown to induce neutrophil activity in

this setting [30]. Leukocytes can then make procoagulant contributions in conjunction with

platelets, such as surface-mediated tissue factor production [31].

Many groups have made significant contributions to the field. Horbett has demonstrated

various effects of pre-adsorbed proteins on platelet adhesion, activation, and procoagulant

activity. In 1999 Grunkemeier et al. showed that different polymer materials had different

propensities for fibrinogen and vWF adsorption, and that the vWF trends were similar to

procoagulant activity trends [32]. A series of studies from this group then also showed

that fibrinogen and vWF are the most important proteins to mediate platelet procoagulant

activity [16, 33], and in addition that the adsorbed conformation of fibrinogen, not the

concentration, is the determining factor for procoagulant activity [34]. Shen and Horbett

also show that the immune response is dependent on surface chemistry even post protein

adsorption [35, 36].
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Figure 1.3: Complement activation (a) and inhibition (b) from Sefton and Gorbett [10].
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Sefton has also made substantial contributions. In 2001 they showed that bulk behav-

iors for leukocyte activation differed from surface behaviors, and that bulk activation of

leukocytes was independent of platelet activation [37]. That study also demonstrated initi-

ation of the extrinsic pathway by tissue factor and resulting fibrin formation [37]. In a 2003

study they showed that platelet activation was necessary for material-induced tissue factor

expression [31]. In their 2000 review they discuss the need to redefine thrombogenicity

as clotting times and platelet deposition have proven insufficient to predict thrombogenic-

ity [38]. In another 2005 review they highlight the importance of the consideration of the

immune response when discussing thrombosis, as these two mechanisms are largely in-

tertwined [10]. It is also important to note that many device materials cause significant

compatibility issues [39].

Ekdahl has done lots of recent work regarding complement activation. In a 2010 poly-

mer surface study, Engberg et al. found that uncharged hydrophobic surfaces are best to

resist complement activation [40]. In 2014 Engberg et al. looked for complement markers

and found C4/C4BP as a possible predictor of biocompatibility [29]. In 2016 Huang et al.

found an inverse relationship between contact activation and complement activation after

half an hour of incubation [41]. In a 2015 review, Ekdahl highlighted evidence for a platelet

role in innate immunity via crosstalk with the complement cascade, but that under normal

physiological conditions, platelets defend themselves from complement attack [42].

A few materials studies have tested effects of shear. Otto et al. showed that platelet ad-

sorption on material surfaces is influenced both by pre-adsorbed proteins and flow, and that

materials ranked differently for platelet adhesion under varied shear regimes [43]. Balasub-

ramanian and Slack demonstrate varied platelet adhesion to fibrinogen-adsorbed surfaces

by shear after 5 minutes of single-pass perfusion, as well as varied abilities for surfaces to

retain fibrin under varied shear, and came to the conclusion that shear must be considered

when discussing thrombogenicity [44]. Wagner’s group found an inverse shear-platelet ad-

hesion relationship on device-relevant surfaces after 5 minutes of perfusion [M29]. Flow
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has otherwise been acknowledged as a parameter of importance yet is still rarely incorpo-

rated into material evaluation [38, 45].

There has so far been a failure of in vitro thrombogenicity results to predict in vivo

and clinical outcomes [1, 10]. For example, while studies on poly-(ethylene oxide) (PEO)

modified surfaces demonstrated protein and cell resistancein vitro, the in vivo results are

contradictory [1, 10]. Another study on albumin coatings showed reduced platelet and

leukocyte adhesion in vitro, but the coating failed to ameliorate outcomesin vivo [1, 46,

47]. Heparin coatings have also been unable to achieve clinical improvements [10]. And

again, even though reduced platelet adhesion was demonstrated with carbon coatings in

vitro, carbon coatings texitin vivo did not improve long-term performance [1, 48, 49, 50].

Surfaces incorporating phosphatidylcholine were also thought to be promising after re-

duced adhesion of platelets both in vitro and in vivo is some animal models, the results in

humans did not demonstrate any improvement [1, 51, 52]. Design of these devices relied

primarily on adsorption studies without blood flow, which so far has proven insufficient to

directly predict in vivo behavior.

The thrombotic behavior of blood depends on the shear rate regime [53, 54, 55]. Gross

thrombus can be millimeters in thickness and the growing surface is expected to be far away

from the material surface and therefore largely independent of surface interactions and

processes. Thus, the initial adhesion mechanisms are likely to be quite different from the

growth of gross thrombus. Under low shear regimes, red, fibrin-rich clot is potentiated with

a distinct absence of platelets. Under high shear regimes, white, platelet-rich thrombosis

occurs [53, 55]. Platelet adhesion is preferential to fibrinogen at low shear, but requires von

Willebrand factor (vWF) at high shear depending on the shear rate [54, 56]. vWF undergoes

shear-induced stretching at critical shear rates that have been reported as ≥ 3000 s-1 and

≥ 5000s-1, which exposes many additional platelet binding sites required for high shear

capture of unactivated circulating platelets [57, 58, 59]. Platelet thrombosis studies, as

well as coagulation studies, typically adsorb the surface with a protein (e.g. fibrinogen
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or collagen) prior to blood exposure in order to provide an active surface for thrombus

formation [60, 61, 53, 55] skipping the step of adsorption, and eliminating material surface

effects as a parameter for modulation of thrombosis.

As an alternative to the aforementioned thrombosis studies, some groups have used

recirculating loops to study devices directly in a true-to-life model without pre-activation

of the surface. Stents are a common choice due to the natural vessel analog of the flexible

tubing used to construct such loops. However, exposure times are typically ≤ 10 mins

and endpoints are therefore only initial adhesion [62, 63]. Krajewski et al. investigated

the thrombogenicity of neurovascular stents and used a perfusion time of 60 mins with

endpoints of endothelialization, and platelet activation, adhesion, and consumption [64].

Grove et al. studied cannula thrombogenicity in an in vitro ovine loop with a perfusion

time of approximately 4 hrs, and were able to demonstrate some differences in macroscopic

thrombus formation between positive and negative controls [65].

Despite much study of the biocompatibility of artifical materials, the field is still at a

loss to understand, predict, and therefore prevent device thrombosis. There is a need to

innovate thrombogenicity studies. Device thrombosis in vivo can occur in days, weeks,

months, or even years. Catastrophic device thrombosis is macroscale and likely occlu-

sive. It is unclear whether the material-dependent blood interactions or the shear regime

determine the final gross thrombotic outcome. If this relationship can be determined re-

producibly, then device design and material selection may eliminate clots on the medical

device, ultimately improving patient treatment.

In an effort to study thrombogenicity in a clinically relevant way, we therefore propose

the need for longer timescales (≥ 24 hours), the inclusion of flow and surface, adsorption

and thrombus formation from whole blood, and macroscale endpoints. It is also of utmost

importance to learn from clinical thrombosis examples and to use clinical information to

inform basic science studies.

We will therefore attack this problem with a combination of the aforementioned con-
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siderations.

First, basic science studies will attempt to measure the relative importance of material

surface and shear rate for large-scale bulk thrombus formation in an in vitro setup. We will

then use the results from these studies to compare and contrast the thrombogenic perfor-

mance of materials in our setup.

Next we will assess thromogenicity issues with current blood-contacting devices and

work to develop understanding of the contributing mechanisms. We will then simulate the

device thrombosis in vitro and validate our results against the clinical results.

Finally, we will propose two novel devices to correct current thrombogenicity issues,

and test our prototypes in vitro.
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CHAPTER 2

LONG TERM PERFUSION OF ARTIFICIAL SURFACES AT VARIOUS SHEAR

RATES TO ELUCIDATE THE SURFACE-SHEAR RELATIONSHIP

2.1 Introduction

Thrombotic complications in blood-contacting medical devices are a frequent source of

failure. Confusion reigns as to the cause, mechanism, and treatment of this device related

thrombosis. Predicting thrombogenicity based on protein surface adsorption has not been

successful, despite being the most commonly accepted method to assess thrombosis poten-

tial for materials. We hypothesize that there is sequential requirement of a) absorption of

blood proteins; then b) extrema of blood shear rate, and further that thrombotic outcomes

can we predicted based on material surface and shear rate.

To investigate these hypotheses, we set out to develop an in vitro study with the goal

of ultimately addressing two major needs for study and understanding of device thrombo-

genicity: (1) the elucidation of the material-flow relationship and (2) the incorporation of

both adsorption and thrombus formation. To accomplish this challenge we designed long-

term (> 24 hours) recirculating blood loops and created flow chambers to modulate both

the shear rate and material surface. The chambers created three distinct shear rate environ-

ments: low shear (LS) ( < 100 s-1), physiologic shear (PS) (500 s-1), and high shear (HS)

(5000 s-1). The chambers also allowed for insertion of a surface of interest. The materials

included in the present study are summarized in Table 1.
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Table 2.1: Biomaterials in blood-contacting medical devices.

Material Examples of Clinical Use

Acrylic Extracorporeal Membrane Oxygenation (ECMO) connec-
tors

PVC Flexible tubing in ECMO and pediatric ventricular assist
device (VAD) circuits

Stainless Steel Centrifugal pumps, stents
Silicone Pacemaker leads, peristaltic tubing, catheters
Dacron Vascular grafts
PTFE Vascular grafts

2.2 Methods

2.2.1 Chamber Design and Fabrication

In order to control for shear rate and material surface in the loop, the modulation of the

shear rate resulted only from the change in geometry of the chambers. The tubing was

setup in the same configuration and measurement each time so that the surface exposure in

each experiment was constant. The flow rate was set to 1.5 lpm so that the shear rate in the

loop outside of the chamber was constant and physiologic across experimental runs The

chambers are an assembly of three parts to facilitate insertion and integration of various

material surfaces (Fig 2.1).

The chambers have a top piece and bottom piece encapsulating the flow field, as well as

a third material insert piece. The bottom flow surface has a square hole, and the third piece

fits into this opening. The pieces are 3D printed acrylic, which was treated post-printing

to achieve medical-grade standing. The material insert is 1 cm square, and the chamber is

3 cm wide total at the point of interest. The tubing to supply the circuit is 1/4” in (0.635

cm) diameter, and the chamber allows for a gradual size change to and from the 3 cm width

over 4 cm, and is 10 cm in total length. For the acrylic and stainless steel studies, bottom

pieces were printed and machined, respectively, to fit into the opening. PTFE and Dacron

fabrics were secured around an acrylic insert. Likewise, a PVC film was secured around an
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Figure 2.1: Chamber design. A: Cross sectional views of low shear (top), physiological
shear (middle) and high shear (bottom) chambers. B: Chamber assembly. C: Printed cham-
ber.
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acrylic insert. Silicone was cured directly into the insert.

Vaccuum grease was used to ensure sealing between chamber layers but care was taken

so that no grease contacted flowing blood. Clear silicone caulk was used to seal the cham-

bers from the outside, and again care was taken to ensure no caulk-blood contact.

The chambers were perfused via roller pump (COBE Century) and the flow rate was set

at 1.5 L/min. The heights of the chambers were (X, Y, Z) to achieve shear rates of 50 s-1,

500 s-1, and 5000 s-1 based on the shear rate equation for flow between two infinite parallel

stationary plates:

γ̇ =
6Q̇

wh2

Where γ̇ is the shear rate, Q̇ is the flow rate, and w and h are the width and height of

the channel, respectively. This equation assumes 1-dimensional laminar flow. Under this

assumption, the shear rate equation is accurate for 95% of the channel for an aspect ratio

(w:h) of 5:1 [66].

2.2.2 Chamber CFD

CFD was done in the chambers to evaluate the flow field. The simulation was Newtonian

and steady state and viscosity was set to 4 cP. Input fow was 1.5 lpm and the outflow

boundary condidtion was a pressure outlet. CFD was performed in ANSYS with a mesh

size of 254234-268099 cells and convergence criteria of 1e-4.

2.2.3 96-Hour Perfusion

The experiment was run for a total of 96 hours, which consists of two 48 hour sec-

tions. Whole porcine blood was collected at a local abattoir into light heparinization (7

U/mL). Upon arrival at the laboratory, the blood was dosed with 2.2 mM glucose (Sigma),

2 mM L-glutamine (Sigma), and 10 mL/L antibiotic antimycotic solution (Gibco), and the
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Figure 2.2: Blood smears. A: A perfused loop with no chamber treated with glucose, L-
glutamine, antibiotic/antimycotic, and temperature has presence of RBCs after 48 hours of
perfusion. B: The untreated perfused counterpart has no cell presence after 48 hours.

loops were filled. The glucose, glutamine, and antibiotic/antimycotic cocktail has been

previously used to maintain survival of arteries in a flow loop [67]. Portions of circuit tub-

ing were submerged in a water bath at 37 ◦C to maintain body temperature of the blood.

The blood was dosed with heparin at 12 hour intervals post collection.To establish these

methods, comparison circuits with and without temperature and treatment with glucose,

glutamine, and the antibiotic/antimycotic solution were run on simple loops. The inclusion

of all treatments was determined to be the best for RBC maintenance (Fig 2.2).

2.2.4 Blood Assays

Assays were performed throughout the experiment to ensure the health of the blood as a

baseline at the start of the experiment and to compare changes across materials.

Hemoglobin

The hemoglobin (Hgb) assay was performed daily using a kit (Sigma). Three replicates

per sample were averaged for each concentration calculation.
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Platelet Assays

Light transmission aggregometry (LTA) was used to establish functionality of the platelets

upon arrival to the laboratory. Platelet rich plasma (PRP) was dosed with agonists in sus-

pension and the absorbance was recorded for 10 minutes. The agonists used were ADP (2

uM), adrenaline (2 uM), collagen (3 ug/mL), and ristocetin (1.5 mg/mL).

Platelet counts were performed initially and then subsequently every 24 hours of loop

perfusion. Whole blood was incubated in 5% ammonium oxalate (1:20 dilution) for 5

minutes to lyse RBCs. The solution was loaded into a disposable hemacytometer(INCYTO

C-Chip, Neubauer improved) which was then manually counted.

Coagulation Assays

The activated clotting time (ACTs) and activated partial thromboplastin time (APTT)

were both performed initially and then subsequently every 24 hours of loop perfusion. The

ACT was done manually with 6 mg kaolin per mL blood in a 5 mL centrifuge tube and a

water bath. The APTT was also performed manually using a kit (Fisher Scientific).

2.2.5 Histology

Post perfusion, the loops were disassembled and the chambers were photographed with

any adherent thrombus undisturbed. Any thrombus of interest was preserved in 10% for-

malin. Samples were embedded, sectioned, and stained with Carstairs’ stain for fibrin and

platelets and Hemotoxylin and Eosin (H&E).

2.2.6 Endpoints

Circuit occlusion was detected by visual inspection of the chamber and the loop. If

a thrombus was observed covering the width of the chamber the circuit was determined

occluded. If a circuit occluded prior to 96 hours, the occlusion time (OT) was recorded,

and the circuit was dismantled and samples recorded and preserved as described above.
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Photographs of circuit chamber thrombus were analyzed in GIMP 2. Thrombus was

selected for by pixel differentiation by color and area and a thrombus surface area was

calculated using a given reference area.

2.2.7 Model Development

The materials were sorted sorted by surface area for both low shear and physiological

shear cases. For the high shear case, materials were sorted by occlusion time first and sur-

face area second. Thrombogenicity rankings were therefore unique to shear regimes. A to-

tal thrombogenicity ranking was calculated by summing the ranking across shear regimes.

Surface areas and occlusion times were tested for stasticially significant differences across

materials using a Student’s t-Test (α=0.05).

2.3 Results

2.3.1 CFD

Skewing was observed in the flow field in the low and physiological chambers (Fig 2.3).

The high shear chamber did not exhibit any skewing (Fig 2.3). In the low and physiological

cases, the material insert was subjected to a shear minimum in the field. The values of the

minimum shear rates are shown in Figure 2.3.

2.3.2 Assays

Hgb concentrations of whole blood were 23650 +/- 14517 mg/dL. Hgb concentrations

throughout perfusion were not significantly different across materials nor across shear

regimes.

ACTs and APTTs rarely clotted within 10 minutes. There was no significant difference

across materials nor across shear regimes.

Platelet counts were 140312 +/- 68953 plts/uL. Platelet counts were not significantly

different across materials nor across shear regimes.
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Figure 2.3: Chamber CFD. Top left: low shear chamber. Top right: physiological shear
chamber. Bottom left: high shear chamber. Bottom right: Min, max, and average shear
rate values for the chambers.
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Figure 2.4: Platelet light transmission aggregometry (LTA). LTA was performed with four
agonists (ADP (2 uM), adrenaline (2 uM), collagen (3 ug/mL), and ristocetin (1.5 mg/mL))
and absorbance readings were caputred over 10 minutes.

LTA confirmed platelet activity. An example is shown in Fig 2.4.

2.3.3 Thrombogenicity Assessment and Ranking Model

When the circuits were drained and refilled with fresh blood on Wednesday, the chambers

were clean in every case. It was only after the second half of the experiment began that

thrombus formed. A sample of chamber results for acrylic and silicone chambers are shown

in Fig 2.5.

Thrombogenicity results are shown by shear reate in Fig 2.6. The resulting rankings

are shown in Table 2.2.

2.3.4 Histologogical Analysis

Across all shear rates and materials, the Carstairs’ stain revealed a mixed presence of

platelets, fibrin, and red blood cells (Fig 2.7). Materials differed in morphology and relative

presence of platelets, fibrin, and red blood cells (Fig 2.7). H&E revealed the presence of
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Figure 2.5: Examples of chamber thrombus. A: Acrylic chambers after 96 hours of per-
fusion under low shear (top), physiological shear (middle), and high shear (bottom). B:
Silicone chambers after 96 hours of perfusion under low shear (top), physiological shear
(middle), and high shear (bottom).

Table 2.2: Thrombogenicity ranking by shear rate.

Low Shear Physiologic Shear High Shear

1 (Best) PTFE PVC Acrylic
2 Stainless Acrylic Silicone
3 Acrylic Stainless PVC
4 Dacron Dacron Dacron
5 PVC PTFE PTFE

6 (Worst) Silicone Silicone Stainless Steel
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Figure 2.6: Thrombogenicity results by surface area (low and physiological shear) and
occlusion time (high shear). Best performers are on the right, worst performers are on
the left. Stars indicate significant differences from the best performing material. Bars and
asterisks indicate significance and p-values are displayed for each case. Red dashed lines
indicate thresholds assigned for discussion of “acceptable” thrombogenicity level.
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cells in some thrombus samples due to hematoxylin staining of nuclei (Fig 2.7). Across

shear rates, platelts were always present, yet shear appeared to modulated morphology (Fig

2.8). H&E and Carstairs’ were applied to sections from the same sample. In some cases,

orientation of cross-sections was preserved (Fig 2.9).

2.4 Discussion

Using a 96-hr, two-stage, perfusion setup, and endpoints of bulk thrombus formation

and occlusion time, we have determined a relative thrombogenicity comparison for five

materials currently used in blood-contacting medical devices.

The material ranking differed under varying shear regimes. For example, PTFE was the

least thrombogenic under low shear perfusion, but second to worst under physiological and

high shear perfusion. Conversely, silicone was the worst performer under low and physi-

ological perfusion, but second best under high shear perfusion. Material surface therefore

dictates thrombogenicity in a flow-dependent manner, and thrombogenicity rankings thus

necessitate the inclusion of flow considerations.

These rankings lend themselves to basic recommendations for device design, that still

must be considered in context of this system. We set thresholds of 8 cm2 and 80 hours

of perfusion time to facilitate discussion and consideration of low and physiological and

high shear thrombogenicity (respecitvely) acceptance levels. When considering a low shear

flow environment for a novel device design, these results suggest PTFE and stainless steel

as a low thrombogenic choice. This is supported by clinical success of large-diameter

synthetic PTFE grafts. Stainless steel would be another good option. For physiological

shear applications, Acrylic, PVC, and stainless steel are choices with low thrombogenicity.

This is also supported by ECMO circuits lacking thrombus in the bulk of the tubing and

connector lumens, as we will present discuss in further detail in the next chapter. For low

and physiological shear, it is surprising that stainless steel performed well, as this contrasts

with the clinical notions of metals having high thrombogenicity. However, stainless steel is
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Figure 2.7: Examples of stained sections from thrombus samples (10x). A: Carstairs’ stain
of a low shear PVC thrombus exhbiting mixed platelet-rich and fibrinous sections. B: H&E
stain of the same low shear PVC thrombus. The purple dots are cell nuclei. C: Carstairs’
stain of a low shear stainless steel thrombus exhibiting mixed platelet-rich and fibrinous
sections. D: H&E stain of the same low shear stainless steel thrombus. The dots are cell
nuclei. E: Carstairs’ stain of a high shear acrylic thrombus sample. This thrombus is of
mixed platelet-rich and fibinrous, RBC-rich sections. F: H&E stain of the same high shear
acrylic thrombus sample. Small purple dots are cell nuclei.
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Figure 2.8: Silicone samples across all shear regmies. At left, low shear silicone sample
(10x). Middle, physiological shear sample (4x). At right, high shear silicone sample (4x).
Samples are stained with Carstairs’ stain.

typically chosen for its high mechanical strength, which would often subject it to systems

and settings with extreme high flow requirements. For high shear applications, acrylic and

silicone are good choices, and stainless steel is highly thrombogenic. VADs and centrifugal

pumps have known clotting problems and often incorporate stainless steel and/or other

metals, and as just mentioned this may account for the general attribution of thrombogenic

to this class of materials. We will also explore these comparison rankings further with

clinical data and discussion in the following chapter.

The histological analysis revealed clots of mixed composition with Carstairs staining,

which implies that material surfaces overrule the classical thrombosis divisions of red and

white clot [53, 55]. H&E staining is of course unable to differentiate platelet presence, but

did reveal the presence of cell nuclei that were undetectable with Carstairs as they likely

blended in with blue staining of platelets. These cells are most likely immune cells that

were recruited to the material surface. Staining of thrombus cross sections with Carstairs

also revealed a presence of platelets at the clot-material interface, and a transition to a more

fibrinous-RBC composition away from the surface. This again could imply the platelet-

material interaction initiating the thrombotic mechanism. However, at high shear this may

be due to platelet thrombus growth changing the surrounding shear regime and thus subse-

quently causing red fibrinous thrombus to form. Due to the mixed composition of thrombi

it is no surprise that clinical management of device thrombosis is a huge challenge. These

results suggest both antiplatelet and anticoagulant agents are necessary for the management

23



Figure 2.9: High shear silicone thrombus cross section with orientation preserved (10x). A:
Carstairs’ stain reveals platelet presence at the side of the material surface. RBC presence is
seen away from the surface. B: H&E stain does not show such obvious differences. Darker
areas are possibly cell nuclei.
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of the majority of material surface thrombi.

The assays typically used to differentiate material thrombogenicity (platelet count, Hgb

concentration) showed no significant differences across materials nor shear rates. These

results confirm the need for endpoints of macroscopic bulk thrombus formation to elucidate

material thrombogenicity.

At the halfway point of the experiment, the chambers were free of thrombus. It was

only after addition of fresh blood that bulk thrombus formation occurred, and sometimes

quickly enough to occlude the chamber later that day. We therefore deduce that material

adsorption was occurring for the first 48 hours, and upon addition of fresh blood with

physiologic concentrations of coagulation proteins and platelets, thrombus formation was

potentiated on the activated surface.

There are some limitations in this study. Real-time thrombus visualization is not recorded,

and therefore parameters such as growth rate are not available to us. The blood samples

used to perfuse the loops came from different animals, and therefor there may be blood

type incompatibility. Additionally, only adhered thrombus in the chamber was accounted

for, and therefore any emboli were not included in the thrombogenicity assessment.

This study has demonstrated the time-delay of the bulk-adsorption-thrombosis relation-

ship, and has shown modulation of thrombogenicity by shear regime. These methods also

open doors for in vitro device assessment, troubleshooting, and design.
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CHAPTER 3

COLLECTION AND ANALYSIS OF EXAMPLES OF THROMBUS FORMATION

IN CURRENT CLINICAL DEVICES

3.1 Extracorporeal Membrane Oxygenation Circuits

3.1.1 Background

The use of extracorporeal membrane oxygenation (ECMO) as a form of extracorporeal

life support (ECLS) is now a well-established therapy for cardiorespiratory failure. Cur-

rently the use of ECLS is dominated by neonatal and pediatric patients over adult patients,

and use of ECLS is increasing for both adults and pediatric patients. The ELSO registry

currently documents use of ECMO in > 55,886 pediatric and neonatal patients since 1990.

Neonatal patients (<30 days old) account for 47% of all ECLS cases, pediatric pateints (30

days - 16 years old) account for 24% of total cases, and adult patients account for the re-

maining 29% [68]. However, in the face of ever increasing experience, there continues to be

significant morbidity and mortality related to clotting and bleeding related complications,

especially in the neonatal and pediatric population [69, 68]. Overall hospital to discahrge

survival of ECLS cases is 58% for adules, and 41% for both children and neonates [68].

In addition to the events captured on the patient side, issues related to clotting contribute

significantly to equipment malfunctioning necessitating interventions such as circuit and

oxygenator changes. For respiratory ECLS patients, adverse events relating to mechanical

malfunctions, bleeding, and infarction occurred in 404%, 62.4%, and 46.3% of neonate,

pediatric, and adult patients respectively [68]. The incidence of these events was higher in

cardiac pateints, and occurred in 67.5%, 69.1%, and 62.4% of neonate, pediatric and adulte

patients respectively [68]. In the neonatal and pediatric population, management and ap-

propriate balancing of the anticoagulation to counteract clotting is a tremendous challenge.

26



A reduction in the inherent generation of clots in an ECMO circuit would reduce the need

for anti-coagulation with its concomitant bleeding complications.

There is very limited data on the clot composition, contributing factors, or mechanism

of clot generation within the ECMO circuit. The goals of this study were to characterize

clot formation and location within the circuit, to understand the basic histologic composi-

tion of the clot, and to ascertain the relation between clot location and the local hemody-

namic conditions in the extracorporeal circuit.

3.1.2 Methods

According to Emory IRB policies, this study is not subject to IRB approval as it did not

involve the acquisition of data via interaction or intervention with the patient, and there was

not identifiable private information obtained.

ECMO Circuits

ECMO circuits were prospectively collected from Childrens Healthcare of Atlanta (CHOA),

Emory University (Atlanta, GA) between 2012 and 2014. Every patient supported with

ECMO during this period was considered eligible for inclusion in the study. No circuits

were excluded based on patient or ECMO characteristics and the study population was rep-

resentative of the overall ECMO supported group in terms of age, diagnosis, type of ECMO

and duration of ECMO. During the ECMO support, all of these patients were managed by

using the institutional protocol for anticoagulation and blood product administration. The

anticoagulation is achieved using unfractionated heparin, with target anti-Xa levels between

0.3 to 0.7 as well as bedside activated clotting time (ACT) measurements using an i-STAT

device (Abbott Laboratories, Abbott Park, Illinois) with a Kaolin ACT cartridge. The ACT

target ranges were adjusted based on patient anti-Xa levels as well as clinical scenario of

bleeding or clotting problems. Blood component therapies were administered as needed to

maintain hematocrit between 35% and 45%, platelet count of greater than 100,000/cmm,
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and fibrinogen count of greater than 200 mg/dl.

Following removal of a patient from ECMO support, the circuits were immediately

drained of blood and gently flushed and filled with normal saline. The circuits were refrig-

erated (4 ◦C) at Georgia Tech 24-48 hours until inspection.

Each circuit was inspected for gross clots easily visible through the saline. The location

of adhered clots was recorded and regions of interest were photographed. To determine if

clots were adherent, saline was perfused lightly in the direction of flow. A clot was deemed

adherent if it remained completely or partially attached during perfusion. Tubing sections

of interest were cut from the circuit, then labeled and photographed. Clots were then ex-

cised from the sections and were immediately fixed in 10% formalin (VWR International,

Radnor, PA) until histological analysis. Oxygenator clots were removed by either flushing

clots out of the oxygenator with saline or with forceps if a sample was in reach of the entry.

Patient parameters of interest while on ECMO were also collected.

A single connector has two TCJs, one upstream and one downstream, and the TCJ was

cataloged according to its internal diameter. A typical expansion connector, for example,

would have one 1/4 inch TCJ upstream and one 3/8 inch TCJ downstream.

Histological Analysis

The dissected clots were embedded in paraffin and 5-micron thick slices were cut using

a microtome (Thermo Fisher Scientific, Waltham, MA). The slices were then mounted on

glass slides and dried.

Prior to staining, the slides were first deparaffinized and rehydrated. Carstairs stain for

fibrin and platelets was used for staining [70]. After staining, the slides were dehydrated

via ethanol, cleared via xylene, and mounted. The Carstairs method stains platelets grey

blue to navy, fibrin red, muscle bright red, collagen bright blue, and red blood cells yellow

to clear. Images of the slides of the stained clots were analyzed using a pixel count by color

in Adobe Photoshop CC 2015 in order to quantify the clot composition.
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Computational Anaylsis

In order to identify the regions of extreme shear rate, flow separation, and other flow

profiles of interest, computational fluid mechanics was used to analyze the flow through a

segment of tubing with a connector.

The tubing connector junction geometry was represented as a 2-D, axisymmetric cylin-

der in COMSOL Multiphysics. Representative ECMO flow rates (300 mL/min - 5000

mL/min, Re = 500 1014) were used to generate streamlines, velocity profiles, and shear

rate profiles. The mesh is smaller at the boundary layer and expands in size in the lumen.

The mesh contains 49,923 elements and has an area of 33,940 mm2. The dynamic whole

blood viscosity was assumed to be 0.0004 Pa·s. Convergence was calculated with relative

tolerance of 0.001.

Statistical Analysis

An unpaired Students t-test was used for significant differences among TCJ clotting

incidences (p < 0.05).

3.1.3 Results

Patients and Parameters

Basic patient characteristics and relevant ECMO parameters are described in Table 3.1.

The study cohort is representative of the ECMO population at this hospital, with 64%

(32/50) of the patients having a cardiac etiology and 36% (18/50) with a non-cardiac eti-

ology for the support. The majority of the cardiac patients (70%) were post-cardiotomy.

There was a wide range of age represented from newborn to 16 years of age, with corre-

sponding weight range of 2.2 to 80 kgs. Mean duration of ECMO was 166.5 hours (range

of 12 hours to 878 hours (36.6 days). Management of ECMO during the course was based

on the basic strategy described in the methods section. Goal directed anticoagulation was
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Table 3.1: Summary of ECMO patient parameters

Parameter Mean Median Range
Weight (kg) 15.68 5.16 2.2-80
Age (months) 38.17 1 0.16-195
ECMO duration (hours) 166.52 132 12-878
Flow rate (mL/min) 464 N/A 328-4081
Hemoglobin (g/dL) 13.6 N/A 9.4-13.8
Platelet count (plts/cmm) 115.7e3 N/A 67e3-270e3
Prothrombin time (s) 17.7 N/A 14.1-25.2
APTT (s) 110.1 N/A 38-200
ACT (s) 162 N/A 130-190
Mean heparin dose (IU/kg/hr) 32 N/A 22-114.4

maintained with target anti-Factor Xa levels as well as point of care ACT testing. This re-

sulted in maintenance of target ACTs in all of the patients with a range of 130-190 seconds.

ACT range was lower for immediate post-operative patients with significant bleeding (130-

160 seconds) while a range of 160-190 seconds was expected for the rest of the patients.

Circuit Analysis

A total of 50 ECMO circuits were collected after separation from patients at removal

from the patient. These circuits were then processed and analyzed as described.

The recovered circuits were composed of S-97-E Tygon tubing (Saint-Gobain Corpo-

ration, Courbevoie, France) for the roller pump raceway (in the case of circuits with roller

head pumps) and Class 6 bypass tubing (Medtronic, Minneapolis, MN) for the rest of the

circuit. Oxygenators used were either an adult or pediatric Quadrox D Oxygenator (Ma-

quet, Rastatt, Germany). The circuit also included an arterial filter (Medtronic) as well as

a bladder system the majority of the circuits (39/50) with the Better- Bladder (Circulatory

Technologies, Inc., New York, USA). The circuits used either a SIII roller pump (Stockert-

Shiley SIII, LivaNova, Munich Germany) (68% of circuits) or a centrifugal pump (Sorin

Revolution, LivaNova, Munich, Germany) in (32% of the circuits). A system-wide change

over for the institute from a roller to centrifugal technology occurred 2/3 of the way through
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Figure 3.1: Typical TCJ Thrombus. Clot at downstream TCJ identified by green arrow.

the collection time period. ECMO circuits at CHOA were primed with packed red blood

cells immediately prior to use.

Visual documentation of gross clots was performed for all circuit components. Overall,

94% of circuits exhibited thrombus formation. Clots were not evenly distributed within

the various components of the ECMO circuit. Although the tubing accounts for over 90%

of the surface area exposed to blood, no clots were present on the free tubing surface.

Instead, thrombi were focused at two locations: the tubing-connector junctions (TCJs) and

the oxygenator. The clots found at the TCJs were adherent and typically axisymmetric

(Fig 3.1). The clots that were found in the oxygenator were not adherent to the membrane

and were found loose on the deoxygenated or pre-membrane side. In some cases, clots

from TCJs grew downstream and formed large masses greater than 2 cm2 (Fig 3.2). The

clots were only adherent to the TCJ attachment point, and under perfusion, the portion

downstream of the TCJ was mobile. It is likely that these large clots would eventually

break off and migrate to the oxygenator.

The ECMO circuits were comprised of approximately 5 m of tubing, with 6-12 connec-

tors that were used to control flow and insert devices (oxygenator, filters, vascular access,

etc.). Depending on the entry size of the circuit components, circuits were either a single

diameter throughout or sized up and down between two diameters. Overall, the connectors

accounted for about 10% of the exposed surface area, yet exhibited 99% of the clots. The
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Figure 3.2: Examples of growth from TCJs. A: A clot attached with a wide base at a
downstream TCJ and a long, thin extending tail. B: A clot with two attachment points at a
downstream TCJ. C: A large, nearly occlusive clot in the tubing lumen attached by multiple
tethers to both upstream and downstream TCJs at the nearest upstream connector. D: A clot
attached to both downstream and upstream TCJs of adjacent connectors.
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Figure 3.3: Connector CFD. A: The upstream connector edge (arrow) causes a point of
stasis. B: The downstream step of the connector edge (arrow) creates a recirculation zone.
C: The upstream connector edge creates a point of stasis in the corner ( shear rate <<50
s-1). D: The downstream connector edge creates an extended period of low shear (shear rate
<100 s-1). E: A low-power microscopy view of a downstream clot shows the attachment
point to the connector edge (arrow).

majority of ECMO circuit tubing diameter was 1/4 inch (0.635 cm), and a typical circuit

sized up and down between 1/4 in and 3/8 in (0.953 cm) tubing. A few larger roller pump

circuits sized up and down between 3/8 in and 1/2 in (1.27 cm) tubing, which accounted

for only 8% of the circuits in this study.

The TCJ is formed by the thickness of the connector wall and the region of tubing that

is expanded to fit over the outer diameter of the connector until it returns to the relaxed

diameter (Fig 2). Clots were found in the step right at the junction in the lumen expansion

zone on both the inlet and outlet ends of the connectors.
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The incidence of clotting was high at certain connectors and regions of the ECMO

circuit, and is correlated with areas of low shear (p<< 0.05) (Fig 2). The downstream

end of expansion connectors was the most thrombogenic region in the ECMO circuits,

with a 74% incidence rate, while its upstream counterpart had a thrombi incidence rate of

only 13%. The 3/8 in diameter TCJs in general had a higher incidence of thrombosis of

45% overall vs. the 1/4 in TCJs which were at 22%. In general, a downstream TCJ was

significantly more likely to be thrombogenic than its upstream counterpart (33% vs 25.2%,

p = 0.00297).

Clot Histology

Histological analysis revealed the TCJ clots to be fibrin-rich and full of red blood cells

(RBC) (Fig 3.4). The oxygenator clots were coiled, and when expanded reached a length

of > 5 cm (Fig 3.5). Oxygenator clots were present on the upstream pre-membrane side,

and these clots were non-adherent. Under light perfusion of water, the clots dislodged and

became mobile. With changes in oxygenator orientation (tipping), clots would slide in the

direction of gravity. The composition of oxygenator clots is similar to the axisymmetric

TCJ clots (Fig 3.5). The clots were on average 54% fibrin, 45% RBCs, and approximately

1% platelets. These red clots had a paucity of platelets.

Computational Fluid Dynamics Analysis

Based on the frequency distribution for the localization of adherent clots, we identified

the TCJ as the highest priority site for potentiation of thrombosis. We then characterized

the hemodynamics of the TCJ zones. CFD analysis of the TCJ region revealed distinct

regions of low shear and a recirculation region on the downstream side of the TCJ. A figure

of the streamlines and shear rates is shown in Figure 3.3. For the inlet to the connector, a

zone of very low shear rates less than 50 s-1 is present in the corner. At the outlet, the zone

of very low shear rates is even larger and directly located in the corner of the junction. Note
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Figure 3.4: ECMO TCJ clot histology. Carstairs stains red blood cells yellow to clear,
fibrin red, muscle deep red, collagen bright blue, and platelets blue-gray to navy.

Figure 3.5: ECMO oxygenator clot example (left) and histology (right). Arrows point to
clots caught in the entrance side of the oxygenator. Carstairs stains red blood cells yellow
to clear, fibrin red, muscle deep red, collagen bright blue, and platelets blue-gray to navy.
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that the shear rates outside of the corners return to a normal shear rate range from 450-1000

s-1. Thus, the clots co-locate directly at the site where blood is virtually stagnant with shear

rates less than 50 s-1, or a shear stress of less than 0.2 Pa (p << 0.05).

3.1.4 Discussion

This is one of the first studies to examine in detail the location and histologic compo-

sition of thrombosis within the ECMO circuit. The analysis was extended to examine the

statistical relationship of thrombosis with hemodynamics in the clinical circuits.

Analyses of clinical ECMO circuits revealed that thrombosis occurs consistently in

nearly all of ECMO circuits at specific sites. The ECLS Registry collects information on

clot formation at certain ECMO circuit components, however clots are typically recorded

when large enough to be seen from outside the circuit while blood is still flowing, or when

large enough to be detrimental. There is some variation in frequencies of these clot re-

lated complications. For example, in neonatal cardiac ECMO patients, 11.6% reported

oxygenator clots, 3.9% reported bridge clots, 5.9% reported bladder clots, 4.3% reported

hemofilter clots while 13.6% reported clots at other locations[69]. For pediatric cardiac

ECMO patients, the frequencies were as follows: oxygenator 8.4%, bridge 3.0%, bladder

4.0%, hemofilter 3.5% and other locations 10.2% reported clots [69] However, the ECMO

circuits vary from facility to facility and the methods for recording clots are inconsistent.

The development of a consistent method for identifying and reporting clots at specific sites

in ECMO circuits would be of benefit to the patient population. In general, our data sug-

gests that there is significant under-recognition and therefore under-reporting of circuit

thrombosis.

The blood clots are found at specific locations within the circuit, primarily at the junc-

tions made by the tubing and connectors (TCJs). It is noteworthy that although the tubing

of the circuit constitutes a large portion of the surface area, there were no clots detected

on the tubing surface. This is remarkable given that the standard circuit tubing (Medtronic
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Class VI) is not coated. This TCJ clot location corresponds directly to zones of very low

shear rates less than 50 s-1. Conversely, almost no clotting occurs with tubing material

where shear rates are greater than 450 s-1 (p << 0.05) based on the CFD analysis. These

conditions correspond to a Virchows Triad requirements for foreign surface, blood coagu-

lation proteins, and zones of virtually stagnant blood. The fibrin clots are also consistent

with previous studies that have looked at the behavior of blood components in relation

to differences in shear rates. Using rabbit aorta with endothelial disruption, Weis et al.

showed that the degree of fibrin deposition inversely correlated with the shear rates; high

fibrin content at low shear rates of 50 s-1 versus low fibrin content at high shear rates of >

650 s-1 [71]. Similarly, Guy et al have showed that low shear rates correspond directly to

a higher degree of fibrin gel deposition on an injured blood vessel surface, using mathe-

matical modeling [72]. The height of the fibrin gel achieved was highest at shear rates less

than 100 s-1 yet was minimal at shear rates above 1000 s-1. In the current study, we find

concordance with these studies. The areas of TCJs with shear rates < 50 s-1 exhibited with

high fibrin deposition and clot formation. The contribution of the local hemodynamics to

local clot formation within the clinical ECMO system is critical.

Growing clots with small attachment points at TCJs are particularly worrisome, as they

imply the possibility of large emboli which could cause devastating patient complications.

These large clots would be subject to large drag forces and may be the source of the large,

loose thrombi seen in the oxygenator.

The histologic appearance of clots in the ECMO circuits were fibrin-rich with few

platelets. Thus fibrin coagulation is the dominant problem for ECMO circuits rather than

platelet thrombosis. The observation that ECMO clots are fibrin-rich is also consistent

with reports of fibrinogen consumption in these patients [73, 74]. These red clots form in

the setting of adequate anti-coagulation with heparin and with therapeutic ACTs, illustrat-

ing the criticality of shear rate as a new factor. Currently, there are no universally estab-

lished guidelines for ECMO anticoagulation, though unfractionated heparin is used at most
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ECMO centers, and very few centers (6 in a recent 119 center survey) use antiplatelet agents

(acetylsalicylic acid, prostacyclin) [75]. Unfractionated heparin is effective at binding with

antithrombin III (AT III) and causing a conformational change that leads to acceleration of

AT III mediated inactivation of various coagulation factors including thrombin, factors IX,

X, and XI [76]. However, one of the major limitations of heparin in the setting of bioma-

terials is its inability to inactivate thrombin bound to fibrin or to biomaterial surfaces [77].

Hence, we can speculate that once fibrin deposition is initiated within the circuit, further

propagation at low shear rate zones may not be sufficiently prevented by heparin use.

Our data also indicate that circuits with centrifugal pumps have more incidence of

thrombus than the roller pumps. The circuit thrombi may be due to the size of tubing

to fit the centrifugal pump, which typically sizes up and down between diameters to go

through the pump and the oxygenator. Our data show these connectors of diameter in-

crease and subsequent larger diameter regions to be highly thrombotic. Redesign of the

circuit to avoid such step size changes may reduce the thrombogenecity of the circuit by

reducing the amount of regions with extreme low shear rates. Indeed, elimination of just 4

TCJs could reduce circuit thrombus by 80%.

This study is methodologically limited in some ways. The inspection of ECMO circuits

was done macroscopically, and microscopic examination of the entire tubing was not per-

formed. This may have excluded smaller, subclinical clots. Circuit components such as the

oxygenator and arterial filter were not dismantled for investigation, and thus assessment

of these components was limited to outer visual inspection. Though the morphological

and histological similarity of clots found in the oxygenator entry and the TCJs suggest that

these mechanisms are linked, it is also possible that low shear in the oxygenator could also

potentiate thrombosis. Our results are also in agreement with other oxygenator findings,

i.e. that the thrombi accumulate in the venous side of the oxygenator [78]. The histological

analysis performed was used only to ascertain whether the clot was predominately com-

posed of fibrin or of platelets, neglecting further details of clot morphology. The circuits
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were gently irrigated with saline prior to refrigeration. So it is possible that some lightly

adherent clots may have washed out. However, the overall clot burden noted in our study is

far more extensive than the visual inspection methodology used for registry reporting. We

anticipate the overall analysis including histology is not affected by the procedure, based

on staining and microscopic examination of the various sections. We did not evaluate the

circuits at successive time intervals and cannot comment on the growth rate of clots. This

is also a single-center study, which may limit applicabilitygeneralizations.

A better understanding of clot formation in ECMO may allow for targeted preventive

treatments and thus better patient outcomes. Current anticoagulation regimens alone are

not sufficient to eliminate thrombosis, and modification of the circuit itself may be nec-

essary to minimize thromboembolic events. Identification of the areas of the circuit that

are thrombogenic allows for improved circuit design. Our results demonstrate that the

local hemodynamics, which create small zones of low shear rate, are strongly related to

thrombus formation in extracorporeal circuits. We recommend that circuits be designed to

reduce the zones of low shear rate (< 100s-1) such as occurs at expansions and connectors.

However, it is also still important to circuit design to exclude pathologically high shear

rates that may induce hemolysis (> 40,000 s-1) and/or platelet thrombosis (> 10,000 s-1)

[53, 79]. Our data also suggest that on the basis on thrombogenecity, roller pumps appear

to produce less thrombosis than centrifugal pumps. We conclude that blood clotting in

ECMO circuits may be reduced through an understanding of the induction of coagulation

combined with fluid mechanic design to eliminate zones of stagnation.

This was published in the ASAIO Journal [80].

3.2 Sorin Revolution Centrifugal Pump

3.2.1 Background

While we were collecting ECMO circuits from CHOA as discussed above, the center

made a change from roller pumps (COBE Century) to centrifugal pumps (Sorin Revolution)
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for ECMO circuit perfusion. As previously described, ECMO continues to be burdened by

both thrombotic and hemorrhagic complications [47, 81, 82].

Original concerns centrifugal pump induced hemolysis kept the roller pump in use over

the past couple of decades. Recently, there has been a nationwide clinical shift to centrifu-

gal pumps in the US due to improvements in the technology [82, 83, 84, 85, 86, 87]. Some

current centrifugal pumps include the Revolution (Sorin Group), the Rotaflow (Maquet),

and the Centrimag (Thoratec) which have small priming volumes and mitigate heat gener-

ation [85]. The Centrimag is levitated and has a magnetic bearing. The ECMO center at

Childrens Hospital of Atlanta (CHOA) at Egleston recently converted to the Sorin Revolu-

tion. The Revolution pump has stainless steel bearings that secure the impeller, as it is not

a magnetically levitated centrifugal pump. At the top of the shaft, there is an exposed piece

of the stainless steel bearing (Fig 3.6). The steel bearing shaft is unique to the Revolution

pump.

Thrombosis, anticoagulation, and bleeding remain clinical problems. Most analyses of

these pumps focus on hemolysis and other markers [88]. While hemolysis may contribute

to a hypercoagulable state of blood or serve as a marker of thrombosis, analysis based on

bulk thrombosis is lacking in the field. We propose that to truly gauge the thrombogenicity

of the pumps, it is necessary to use the endpoint of large-scale thrombus formation. Fur-

thermore, there is a need for improved guidance of device design and device testing that

incorporates flow, surfaces, and clinically relevant endpoints.

Here we examine neonatal and pediatric (>30 days old, <18 years old) ECMO circuits

after patient use and compare them to roller pump circuits on the basis of bulk thrombo-

genicity. We will also develop a CFD model of the Revolution to investigate the shear rate

in potential thrombogenic areas, and then we will simulate a growing thrombus to explore

changes in shear rate.
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Figure 3.6: Sorin Revolution Centrifugal Pump. Flow comes in at the top over the cone.
The shaft secures the cone and there is an exposed piece of the stainless steel bearing at the
top of the cone.
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3.2.2 Methods

ECMO Circuit Collection

ECMO circuits with centrifugal pumps were collected from Childrens Healthcare of

Atlanta, Emory University (Atlanta, GA). Patient parameters are the same as the previous

study and are listed in Table 1 in the first section. Circuits were drained of blood and

filled with saline immediately following removal of patient support for transport to our

laboratory at Georgia Institute of Technology (Atlanta, GA). The saline was then drained

and the circuits were inspected for adherent thrombi. The location of thrombi was recorded,

and in some cases, samples were excised gently using a hemostatic clamp and preserved in

formalin.

Histological Analysis

Preserved clots were embedded in paraffin and 5-micron thick slices were cut using a

microtome (Thermo Fisher Scientific, Waltham, MA). The slices were then mounted on

glass slides and dried for 24 hours at 37C.

Prior to staining, the slides were first deparaffinized and rehydrated. Carstairs stain for

fibrin and platelets was used for staining [70]. After staining, the slides were dehydrated

via ethanol, cleared via xylene, and mounted. The Carstairs method stains platelets grey

blue to navy, fibrin red, muscle bright red, collagen bright blue, and red blood cells yellow

to clear.

CFD Analysis

A 3D computational model of the pump head was generated from actual pump heads

and photographic images available in the public domain. The pixel mesh was scaled and

is shown in Figure 3.7. The mesh was composed of 5 million cells and inflation cells were

placed on the tip of vanes where high velocity was expected. Ansys CFX and Windows OS
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Figure 3.7: CFD mesh. Pump head mesh consisting of 5 million cells.

on a computer with 6 CPUs were used for the computation. Blood was modeled as a New-

tonian fluid and boundary conditions were taken from clinical data. A Moving Reference

Frame (MRF) method was used to reflect the rotational effect of the vanes. A summary of

relevant parameters is shown in Table 3.2.

The endpoint calculated was the wall shear strain rate in the entire pump head. Further

investigation was made around the metal shaft with the simulation of an adherent growing

Table 3.2: Summary of CFD parameters

Software: ANSYS CFX
Hardware: Dell, 6CPUs
Time dependency: Steady flow
Turublence: k-epsilon
Rotation analysis: MRF
Inlet boundary condition: 85 mmHg
Outlet boundary coniditon: 2.4 L/min
Rotational speed: 2,000 rpm
Blood density: 1,050 kg/m3

Blood viscosity: 4 cP
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thrombus.

3.2.3 Results

Circuit Thrombosis

Of the 16 centrifugal pumps in patient circuits, all pump heads (100%) exhibited macro-

scopic adherent thrombi. Thrombi consistently formed at the top of the shaft of the pump,

covering the exposed stainless steel bearing at the top of the pump cone (Fig 3.8). The

thrombi were firmly adherent and cohesive upon extraction. In 5-10% of cases, large

thrombi extended from the pin onto the tops of the vanes (Fig 3.9). While the size of

the thrombus varied considerably, the location of macroscopic thrombus was consistent at

the inlet to the pump head. No macroscopic thrombus was seen in the depths of the vanes

or at the tips of the vanes at the periphery.

In addition, centrifugal pump TCJs were compared with roller pump TCJs, and it was

found that the centrifugal pump circuits had a higher overall incidence of thrombosis at the

connector junctions (41% vs 25%, p<<0.05).

Clot Histology

The clinical thrombi were sectioned and stained using Carstairs to distinguish platelets

from RBCs. As with most histology, samples varied due to staining intensity, orientation,

and area of extraction. Under low power microscopy, the thrombus was recovered as a

circular section that surrounded the shaft (Fig 3.10). In most samples, the tissue appeared

under medium power to have significant sections of blue stained platelets with sparse red

blood cells indicating the predominance of platelet-based thrombus (Fig 3.11).

CFD Analysis

The shear rate was quantified for steady flow in the pump head. Certain pump head areas

had pathologically high shear rates ≥ 2000 s-1. Other areas had very low shear rates < 50
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Figure 3.8: Inlet shaft coverage by thrombus was seen in 100% of clinical circuits.
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Figure 3.9: Centrifugal pump from a clinical circuit with large-scale thrombus formation
at the top of the cone including the shaft.
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Figure 3.10: Low power (4x) view of thrombus surrounding the shaft. The circular form
of the shaft is cisible in the center with a uniform thickness of the sample giving a circular
form to the blood surface of the thrombus. Carstairs stains red blood cells yellow to clear,
fibrin red, muscle deep red, collagen bright blue, and platelets blue-gray to navy.
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Figure 3.11: Example of medium power (10x) view of a thrombus sample from a clinical
centrifugal pump. Carstairs stains red blood cells yellow to clear, fibrin red, muscle deep
red, collagen bright blue, and platelets blue-gray to navy. Thrombi were of mixed compo-
sition of platelets and fibrin in distinct regions. In this section, 89% of pixels are blue and
11% of pixels are red.
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Figure 3.12: Shear strain rate in the pump head. A: Outer housing. B: Inner cone.

s-1. Calculation results of the shear rate in the pump head are shown in Figure 3.12. The

shear rates in the curved entrance tube were physiologic with values about 240s-1. As flow

entered the cone shaped entrance to the pump, a band of high shear greater than 1,220 s-1

was seen on outer housing in Figure 3.12. Shear rates on the inner cone eached values

greater than 2,000 s-1 shown in Figure 3.12. Shear rates at the bearing pin exceeded 1,220

s-1. Note that the metal bearing pin is subjected only to high shear stresses without a zone

of stagnant blood. Then as the flow exits the vanes, the tips exhibited high shears of >

2,000 s-1.

Figure 3.13 shows an iso-volumetric view of the regions of low shear rate and those of

high shear rate. Areas of low shear < 50 s-1 form in the valleys of the vanes at the bottom-

center of the pump. Conversely, high shear rate regions are concentrated at the vane tips.

The high shear rate region occurs on the shaft surface facing inlet blood flow and the cone

tip. For scale, the length of the exposed pin is about 1.5 mm. Thus, the pump head subjects

the blood to both very high shear rates and very low shear rates at artificial plastic surfaces,

while the metal pin is exposed to high shear rate blood flow.

As thrombus accumulates around the bearing pin, the growing thrombus will change

the dimensions of the shaft. We modeled the thrombus growth as an increase in shaft

diameter. The shaft radius was changed from 1.6 mm to 2 mm and then 3 mm to quantify
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Figure 3.13: Isovolumetric view with shear extrema. A: Under 50 s-1. B: Over 1,000 s-1.
C: Zoomed in view of B.

Figure 3.14: Varying shaft radius to simulate growing thrombus. A: Diameter of 1.6 mm.
B: Diameter of 2 mm. C: Diameter of 3 mm.

the difference in shear strain rate around the metal shaft and the cone tip. Figure 3.14 shows

the simulation result with the legend ranging from 50 s-1 to 2,000 s-1. Blood flows from

upper right corner to left bottom and path lines are colored with velocity 0 m/s to 1 m/s.

The cone tip region shows the highest shear strain rate over 2,000 s-1. With the increase of

the axis radius, the surface area of high shear rate around the shaft increases. The maximum

shear rate on the shaft appears at the surface facing the blood flow for radius 1.6mm and

2mm, but the maximum area shifts to upper side of the shaft as the radius reaches 3 mm.

The shear rate around the metal bearing shaft is 2,500 s-1, but reaches over 5,000 s-1 if the

shaft becomes thicker.

3.2.4 Discussion

Thrombosis in clinical ECMO circuits is a serious problem affecting patients supported

by this life-saving procedure. Large macroscopic thrombus was observed in 100% of clin-
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ical centrifugal pumps. The thrombus was adherent to the exposed piece of stainless steel

bearing at the top of the shaft. Large thrombus was commonly seen extending from the

shaft, covering the inlet portion of the vanes while not being seen at the peripheral tips

or depths of the vane channels. Histology reveals the clinical thrombus as having a large

platelet component, which suggests platelet thrombosis activity. The use of the centrifugal

pump therefore introduces an additional thrombotic mechanism to ECMO circuits, which

are otherwise dominated by fibrinous coagulation germinating at the TCJs. In addition, the

centrifugal pumps themselves demonstrate adherent thrombus, especially at the pin of the

cone. The centrifugal pump also potentially poses other complications such as heat gener-

ation due to the high resistance of pediatric and neonatal cannulas. Variation in designs of

various available centrifugal pumps and its implication to thrombus generation will be the

focus of a future study.

The presence of fibrin within the clot could arise from contact activation initiation of

clotting on the exposed stainless-steel shaft. The histological composition of the bulk of

the thrombi point to a platelet-rich thrombus, which previous work has linked to patholog-

ically high shear rate conditions by a mechanism mediated by platelet attachment to von

Willebrand factor (vWF) [53, 55, 89, 90, 91]. Our interpretation of the sequence of events

is that the exposed stainless steel bearing initially absorbs blood proteins to induce fibrin

formation at the surface during the first 24 hours. This initial fibrin thrombus then grows

by rapid platelet accumulation under the high shear conditions at the entrance to the pump.

Further growth of the thrombus to extend over the inlet is then a process stimulated by

pathologically high shear away from the surface of contact activation.

Our CFD model predicts high shear rates at the shaft. Our growth model also shows

increasing shear rate as the shaft diameter thickens, as in the case of coverage othe shaft by

uniform thrombus. This model supports the histology results and our resulting hypothesis

of initial protein and fibrinous deposition and subsequent platelet thrombus growth as shear

rate increases.

51



These findings continue to confirm that it is important to consider both the material

surface and shear regime while designing a blood contacting medical device, as both con-

tribute to thrombogenicity. The Sorin Revolution pump head relies on a bearing shaft of

steel. A levitated pump head without a shaft could potentially mitigate thrombogenicity.

We have not gained access to these pumps for comparison. Future studies may examine

the relative contribution of the exposed stainless steel surface nidus versus hemodynamic

shear rate in the thrombogenic area.

It has also been shown that acquired von Willebrand factor (vWF) disease (avWD) can

occur due to centrifugal pumps [3]. This is presumably due to high shear and can lead

to bleeding problems. Since we observe platelet-rich thrombi occurring in these pumps

and suspect a high shear mechanism, there is the potential for avWD to interact with this

pathway.

In this study, we focused on the endpoint of macroscopic thrombus to assess pump

thrombogenicity. Direct observation of large-scale thrombosis may be more clinically rel-

evant as an endpoint for blood pumps, as compared to indirect measures of blood damage

such as hemolysis or platelet activation, though hemolysis and platelet activation may be

interesting markers to include in future studies. Other contributors to thrombus formation,

such as heat generation, suspected contributor due to the friction of the bearing, may also

be explored in a future study. Comparison studies of different centrifugal pumps designs

may point to the relative roles of surface, shear rate, and heat in macroscopic thrombosis.

Portions of this study were published in the International Journal of Artificial Organs

[92].

3.3 BerlinHeart

3.3.1 Background

The Berlin Heart EXCOR is a pulsatile pediatric ventricular assist device (VAD) for

support of infants and children with end-stage heart failure. This patient group has the
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highest waitlist mortality of all patients waiting for a transplant [93, 94]. While adults

and larger adolescents have a choice of a wide variety of available VADs currently on the

market, children and infants do not. ECMO has thus historically served as a bridge-to-

transplant for these patients but survival rates are low [93].

The EXCOR has recently progressed as another option for pediatric bridge-to-transplant

[93, 95, 96]. In the EXCOR IDE trial, 75% of all patients survived to transplant or recov-

ery [93]. Thrombosis and management of the anticoagulation-bleeding balance persists

as a challenge for clinical patient management, and EXCOR patients are at high risk for

stroke. Neurological dysfunction was reported in 29% of children and is the leading cause

of death for EXCOR patients [93].

There is a lack of published data on incidence, rate, and distribution of clotting specif-

ically within the VAD itself. Our colleagues at CHOA tabulate incidence of thrombosis

but so far the data has not been analyzed. Here we quantify and analyze the thrombosis

incidence in pediatric Berlin Heart EXCOR patients.

3.3.2 Methods

Pump records were obtained for CHOA patients without any link to patient information

(n=4). The records were tabulated with pen and paper and were first digitized. The log

sheets were provided by Berlin Heart. The EXCOR is divided into 11 sections (Fig 3.15).

Deposits were noted with a letter in the corresponding section that they were observed,

and for analysis purposes the letters were assigned a number (Table 3.3). Increasing value

corresponds roughly with increasing surface area. If more than one deposit was noted in an

area of the same type, the formula 1+0.1·(incidence) was applied. If more than one deposit

of different types were noted in the same area, the values were summed. Notes were taken

every couple of hours during support.

Pump performance was also indicated for both eject and fill as being in one of three

categories: 80-100%, 50-79%, or ≤ 49%.
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Figure 3.15: EXCOR Pump with labelled sections. The log sheet lists descriptions of each
area as follows: 1 transition inflow cannula-inflow connector; 2 only on pumps with PU
valves: inflow stub in front of inflow valve; 3 inflow valve; 4 inflow stub behind inflow
valve; 5 area between inflow and outflow stubs; 6 remaining area of blood chamber; 7
transition blood chamber-membrane (directly above the reinforcement ring); 8 outflow
stub in front of outflow valve; 9 outflow valve; 10 only on pumps with PU valves: outflow
stub behind outflow valve; 11 transition outflow connector-outflow cannula.

Table 3.3: Clot cataloging description. Thrombi observed on the EXCOR were categorized
by morphology. For analysis, each type was assigned a number, with increasing value
corresponding with increasing severity.

Letter Number Description
p 1 Small punctual deposit
P 2 Large punctual deposit
a 3 Small area of deposit
A 4 Large area of deposit
f 5 Small strand (often fibrin deposit)
F 6 Large strand (often fibrin deposit)
t 7 Small thrombus
T 8 Large thrombus
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One-way ANOVAs were performed in MATLAB to look for significance across pump

sections.

3.3.3 Results

Four patients were analyzed. Patients were randomly assigned a number 1-4 and will be

subsequently referred to as Pt 1, Pt 2, Pt 3, and Pt 4. The incidence of thrombosis for each

patient over the duration of their support is shown in Fig 3.16-3.19 in stacked area plots.

Pt 1 was supported for 87 days. The incidence of thrombosis in Sections 10 and 9 in

Pt 1s pump were significantly higher than the rest of the sections (incidence in descending

order). Sections 3, 4, 6, and 7 had no incidence of thrombosis.

Pt 2 was supported for 24 days. Sections 3 and 9 had the highest incidence of throm-

bosis, and were not significantly different from each other, but were significantly different

from the rest of the sections. Section 10 had the third highest incidence of thrombosis and

was significantly different than the rest of the sections. Section 2 ranked fourth highest and

was significantly different than the rest of the sections. Section 5 ranked fifth highest and

was significantly different than the rest of the sections. Sections 1, 3, 4, 5, 6, and 11 had no

incidence of thrombosis.

Pt 3 was supported for 125 days. The incidence of thrombosis in Sections 10, 9, and 2 in

Pt 3s pump were significantly higher than the rest of the sections (incidence in descending

order). Section 6 was the only section with no incidence of thrombosis.

Pt 4 was supported for 134 days. The incidence of thrombosis in Sections 6, 3, 9 in

Pt 4s pump were significantly higher than the rest of the sections (incidence in descending

order). The incidence of thrombosis in Sections 2 and 8 were not significantly different

from each other, but were significantly different than the rest of the sections (lower than 6,

3, and 9, and higher than 1, 4, 5, 7, 10 and 11. Section 11 was the only section with no

incidence of thrombosis.
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3.3.4 Discussion

Here we have analyzed incidence of pump thrombosis by area for four patients supported

by the Berlin Heart EXCOR over a range of 24 to 134 days. In 3/4 patients, the pump

section 10 was very thrombogenic, and significantly so over the rest of the sections. In the

remaining patient, section 6 was the worst, which was surprisingly low in incidence for

the others. Sections 1 and 11 were consistently low in thrombosis across all four patients.

Sections 9 and 10 are on the outflow valve. The inflow valve sections were not nearly as

thrombogenic as the outlow sections, and in some cases did not thrombose at all. This

is possibly due to activation of platelets or coagulation cascade during travel through the

pump.

The qualitative thrombotic behavior of the pumps is quite remarkable. Embolus is

extremely common, and likely contributes to the high risk of EXCOR stroke. In addition,

it is rare that one section begins to thrombose alone, and often multiple sections germinate

thrombosis together. This is perhaps due to an elevation in the coaguable state of the

patients blood. The difference in section performance is also interesting. The fact that some

sections are much worse than others point to issues with flow potentiated thrombogenicity,

since the material surfaces are controlled for. It is also of note that spikes in thrombotic

behavior rarely cause pump changes.

The marked difference in pump behavior of Pt 4 vs Pt 1-3 could be easily attributed to

pump size or flow rate, but at this point this information is unavailable to us, and the root

cause remains a mystery. In the future, a more in depth analysis of patient-related data,

such as flow, pump size, and incidence of deleterious events would be of great use.
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CHAPTER 4

IN VITRO SIMULATION OF DEVICE THROMBOSIS

4.1 Background

As we have established long-term perfusion methods as described in Chapter 2, we set

out to recreate thrombosis directly in devices. We began with the ECMO connectors and

Sorin Revolution centrifugal pump so that we could compare with the data and samples we

have collected as detailed in Chapter 3. Then we ran a novel pulsatile pump in a preclinical

preliminary in vitro test.

There is a great need for improved guidance of device design and device testing that

incorporates flow, surfaces, and clinically relevant endpoints. Thus, the establishment of a

reliable method to recreate, and therefore explore ways to prevent, bulk device thrombosis

in vitro opens up new ways to approach device design.

4.1.1 ECMO Connectors

Through collection and analysis of clinical ECMO circuits, we have identified the tubing

connectors as a major contributory source of thrombosis in ECMO. This study is detailed

in Chapter 3. Briefly, for patients with cardiopulmonary failure, extracorporeal membrane

oxygenation (ECMO) offers mechanical life support. The majority of ECMO patients are

pediatric and neonatal (≤ 30 days old), though the adult patient population has surged

since 2009 due to H1N1 infection and has remained steady [69]. ECMO presents clinical

challenges as it is burdened by both thrombotic and hemorrhagic complications [69, 81,

82]. Study of ECMO is difficult and is often limited to a case by case procedure. Potential

bench-top models are limited by time and volume. We have developed an in vitro system

that addresses these problems with a recirculating, high-volume system that can run exper-
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iments for 24 hours and longer. Here we offer an in vitro loop demonstrating cabability to

mimic ECMO connector thrombosis.

4.1.2 Sorin Revolution

While we were collecting clinical ECMO circuits, there was a change from roller pumps

(COBE Century) to centrifugal pumps (Sorin Revolution). The Sorin Revolution has a

stainless steel bearing shaft. In 100% of clinical circuits collected, the shaft exhibited

thrombus coverage, and in some cases, large thrombus grew from this nidus into the pump.

Collection and analysis of these circuits is detailed in Chapter 3. Here we also present in

vitro recreation of a centrifugal pump circuit and validate it by similarity to clinical results.

4.2 Methods

The methods here are largely similar to those discussed in detail in Chapter 2. These

methods will be briefly described here.

4.2.1 Perfusion

Whole porcine blood was collected from a local abattoir via direct collection of blood

from the aorta into a clean container. The blood was immediately transferred into a jar

with anticoagulant to provide a final concentration of 3.5 U/mL heparin. The blood was

further treated with glucose (4.4 mmol/L), Sigma-Aldrich, Saint Louis, MO), L-glutamine

(2 mmol/L), Sigma-Aldrich), and an antibiotic/antimycotic (10 mL/L, Gibco).

The whole blood was circulated in a mock loop. The loop design was dependent on the

device of interest.

ECMO Connectors

Tubing and connectors were ordered from Medtronic (Minneapolis, MN). Bypass pumps

(Century, Mesa, AZ) were supplied by our colleagues at Childrens Hospital of Atlanta at
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Egleston. Heparinized porcine blood collected from a local abattoir was used. Circuit

volumes were in the range of 150 300 mL. Heparin was dosed 6 and 12 hours after collec-

tion to maintain a concentration of 3.5 U/mL. Three ECMO connectors were assembled in

series, with ports for access and pressure relief.

Circuits were perfused at a flow rate of 500 mL/min. After 24 hours, the circuit was

drained of blood and inspected.

Sorin Revolution

The centrifugal pump loop required allocation of resistance to ensure clinically relevant

pump performance. The circuit therefore consisted of a Sorin Revolution centrifugal pump,

bladder (Better-Bladder, Circulatory Technology Inc.), two sizes of ECMO tubing to pro-

vide said resistance, connectors (Medtronic), and a pressure transducer. The total volume

of the loop was 350 mL. The pump was set to 2000 rpm, and the circuit pressure was set to

80-90 mm Hg. On average the circuit flow rate corresponded to 2.4 lpm with the pump set

to 2000 rpm. Heparin was dosed every 12 hours to maintain the bolus concentration. At 6

hours, 12, hours, and 24 hours during circulation, the pump was briefly stopped and exam-

ined for thrombus formation by inclusion of an air bubble, which was shifted over the area

of interest. After examination for thrombus formation, the air bubble was removed from

the circuit. After 48 hours of perfusion, the system was drained and examined for adherent

thrombi. Location of thrombi was recorded, and samples were preserved in formalin.

4.2.2 Histology

Any samples of interest were preserved in 10% formalin. Samples were embedded,

sectioned, and stained with Carstairs’ stain in order to differentiate between fibrin and

platelets, and to compare to histology of clinical samples.
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Figure 4.1: Clinical and in vitro thrombus sample comparison. A: Typical clinical TCJ
thrombus. B: thrombus observed at TCJs after in vitro perfusion. C: Example of growth
from a clinical TCJ. D: Growth was also observed in vitro.

4.3 Results

4.3.1 ECMO Connectors

Clots formed at the junctions formed by the tubing and the connectors (27/18, 150%,

p=0.0239) (Fig 4.1). These clots were found to be fibrin rich, which is consistent with

the composition of ECMO clots (Fig 4.2).

4.3.2 Sorin Revolution

Large-scale thrombus formed in all of the in vitro centrifugal pumps after circulation for

48 hours (n=5, 100%) (Fig 5). The stainless steel bearing from this experimental loop was

covered with thrombus in all cases after 24 hours (n=2). The thrombus then extended from

that point and grew more extensive over the next 24 hours. After 48 hours of perfusion,

the thrombus extended to cover the tops of the vanes at the pump head inlet. The gross ap-

pearance of the thrombus in the experimental pump heads was similar to those found in the

clinical pumps (Fig 5). Histological analysis of the in vitro thrombus revealed a strikingly

similar predominance of blue indicating a predominance of platelet-based thrombus (Fig

6). In both clinical circuits and in vitro circuits, the thrombus was adherent. In the in vitro

64



Figure 4.2: A: In vitro sample histology. B: Clinical sample histology. Carstairs stains red
blood cells yellow to clear, fibrin red, muscle deep red, collagen bright blue, and platelets
blue-gray to navy.

circuit, no embolization was observed.

4.4 Discussion

Ensuring clinical relevance of in vitro device assays is a current challenge in the biomed-

ical engineering research field. Here we have demonstrated methods capable of simulation

of device thrombosis that exhibits gross morphological and histological validation with

clinical samples.

In the case of the ECMO connectors, a simplified loop potentiated thrombosis only at

the TCJ, and not in the rest of the tubing of the circuit. The location, gross morphology,

and histology were all in accordance with clinical samples.

In the case of the Sorin Revolution, we were able to recreate the large-scale thrombus

via perfusion of whole porcine blood in a recirculating loop for 48 hrs. The macroscopic

experimental thrombus matched the location and composition of the clinical thrombus. The

in vitro experiment allowed us to observe thrombus as uniformly present at the shaft within
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Figure 4.3: In vitro centrifugal pump thrombus grows from the shaft into the pump and is
morphologically similar to clinical pump thrombus.
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Figure 4.4: In vitro pump thrombus histology. Carstairs stains red blood cells yellow to
clear, fibrin red, muscle deep red, collagen bright blue, and platelets blue-gray to navy.
This image is at 10x magnification. Thrombi were of mixed composition of platelets and
fibrin in distinct regions. In this image, 88% of pixels are blue and 12% of pixels are red.
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24 hours that grew in extent over the inlet in the next 24 hours.

This system can be used to develop potential preventative methods for ECMO thrombo-

sis and centrifugal pump thrombosis. Furthermore, since it is a high-volume recirculating

system that can be run for an extensive period of time, this assay could be used to assess

other blood-contact medical devices in an in vitro setting, as well as to test the thrombo-

genicity of novel devices, serving a crucial role in the progression of device design.
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CHAPTER 5

DEVICE REDESIGN FOR IMPROVED THROMBOGENICITY

5.1 ECMO Connector Prototype

5.1.1 Introduction

Flexible tubing is commonly used for fluid transport in a wide variety of applications.

Connectors for flexible tubing facilitate construction of tubing lengths and loops and can

provide access to the fluid. Currently, flexible tubing connectors require expansion of the

tubing around the connector, causing diameter changes.

Extracorporeal membrane oxygenation (ECMO) is a form of life support and consists

of a flexible tubing circuit connected by such connectors. Clotting in the circuit is a burden-

some clinical problem and connectors have long been recognized as a contributing source.

As discussed in Chapter 3, we noticed that the sudden expansions and contractions created

by the connectors potentiated thrombus formation. In Chapter 1, we tested the materials

at these expansions and contractions across low, physiological, and high shear regimes and

identified that the tubing material ranked high for low-shear thrombogenicity. We subse-

quently hypothesize that the elimination of the low-shear PVC exposure steps would greatly

reduce thrombus formation in the circuit, and that it would be advantageous to procure a

connector that prevents diameter changes and ensures smooth surfaces.

We have created two iterations of a prototype that removes the low-shear regime and

tested them against the existing connector. The first version is a hollow acrylic tube that

allows for connection of two ends of tubing. The tubing is secured via glue. This prototype

provides no connector lumen, so while it demonstrates the proof-of-concept, it would not

solve clinical challenges need to have a port for drug infusion. for access to blood. The

second prototype has a lumen and the tubing is inserted and secured with glue so that it is
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flush against the lumen edge. This solves the problem of the need for access, however rapid

prototyping methods introduce potential thrombotic challenges such as rough surfaces.

We tested the first iteration of the prototype with our long-term recirculating in vitro

methods that are known to simulate ECMO connector thrombosis as detailed in Chapter 4.

We have also tested the second prototype against the current connector in a flow visualiza-

tion model.

5.1.2 Methods

Prototype Creation

Input from clinicians and consideration of constraints led to an objectives list for the

connector prototype:

Attributes List:

1. The connector should not potentiate thrombus

1.1 The connector should not cause zones of shear extrema

1.2 The connector should not employ known thrombogenic materials

1.2.1 The connector should not introduce new materials into contact with blood

2. The connector should be safe

2.1 The connector should not separate under application of extreme force

2.2 The connector should be nontoxic

3. The connector should be able to be used in the clinic

3.1 The joinging of the tubing and connector should be able to be done by clinical

staff on site in the event of an emergent patient complication

3.1.2 The joining of the tubing and connector should require very few steps

3.2 The connector should allow for access to blood via a female Luer Lock

3.3 The connector should facilitate circuit assembly

3.3.1 The connector should be available in multiple inner diameter sizes in ac-
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Figure 5.1: Prototypes. A: Straight tube prototype with the tubing ends butting up against
each other. B: Connector with lumen.

cordance with existing medical devices

3.3.2 The connector should be available in an expansion that introduces a non-

thrombogenic inner diameter change

3.3.3 The connector should be available in an equal “Y” connection to facilitate

joining three separate tubing segments of equal inner diameter.

Solid acrylic tubes were machined in order to accomodate the desired interior diame-

ter(s) (ID). The prototypes are shown in Fig 5.1.
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Thrombogenicty Study via 96-hour Perfusion

Whole porcine blood was collected into light heparinization (3.5 U/mL) and treated with

glucose, L-glutamine, and an antibiotic/antimycotic solution, as described Chapter 1, to

ensure blood health during long-term perfusion. Prototype connectors were perfused in

series. A control circuit with the current connector model was also perfused in series with

the same blood sample. Portions of the circuit tubing was submerged in a water bath at

37 ◦C to maintain loop temperature. The loop flow rate was 500 mL/min and loops were

run for 96 hours total, with replacement with fresh blood ocurring at 48 hrs as discussed in

Chapter 1 to account for both adsorption and thrombosis.

Flow Visualization Studies

A loop with a single straight 3/8” connector was assembled and filled with water and

perfused via a roller pump. A syringe filled with red dye was attached to a flat needle head

and the needle was bored into the tubing upstream of the connector to facilitate dye entry.

The flow rate of the loop was 500 mL/min.

5.1.3 Results

Thrombogenicity Study

After 96 hours of perfusion, proof-of-concept prototype connectors were thrombus-free,

while control connectors had typical thrombus formation at the connector junctions (Fig

5.2).

Flow Visualization Studies

The CFD of the TCJ discussed in Chapter 3 revealed low shear rates and zones of recir-

culation created by the connector edge expansion. The connector prototypes eliminate this

region.

72



Figure 5.2: ECMO Conenctor prototype perfusion results. A,C: Current connector de-
vices that were perfused in series with the prototype exhbiting typical TCJ thrombus. B:
Connector prototype.
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Flow visualization via dye confirmed the circulation at the edges of the current connec-

tor device (Fig 5.3). The prototype eliminated these discontinuities (Fig 5.3).

5.1.4 Discussion

ECMO connectors are known potentiators of thrombosis as we found in Chapter 3.

The current connectors create a discontinuity on both the upstream and downstream sides.

Thrombus growth directly co-locates with these discontinuities. In order to prevent throm-

bosis, we sought to eliminate these discontinuities.

Here we tested two versions of a prototype that both provide a continuous, smooth

surface throughout the entirety of the connector. The first prototype connector serves as

a proof of concept and demonstrated the feasibility of the approach. The second proto-

type allows for access to blood, addressing a clinical design constraint, and eliminates the

discontinuities.

5.2 Polyvinyl Alcohol as Novel Graft Material

5.2.1 Introduction

Graft thrombosis remains a major complication in the field of surgical vascular recon-

struction [97]. Thrombosis results in direct failure of the graft and puts the patient at risk

for deleterious consequences. Early thrombosis (1 to 30 days) occurs in 2%-20% of grafts

(depending on location) and is likely due to surgical errors or complications [97]. Late

thrombosis ( > 2 years) occurs at a rate as high as 80% for distal placement.

PTFE and Dacron are the most commonly used synthetic graft materials. Meta-analysis

of large-scale randomized comparison studies in various anatomical locations has shown

no advantage of one material over the other [98]. All synthetic small diameter grafts (6

mm or less) eventually thrombose [99], and despite decades of research, novel replacement

technologies such as cell-lined grafts are still in development. Our results in Chapter 1

predict these outcomes as well, with PTFE ranking high as nonthrombogenic at low shear
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Figure 5.3: Flow visualization. A: Recirculation observed at the upstream edge of the
existing connector. B: No discontinuities are observed at the edge of the prototype.
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rates, but both PTFE and Dacron ranking highly thrombogenic at high shear rates.

Polyvinyl alcohol (PVA) has been extensively used and studied in the blood-contacting

surface field. Hydrogels are generally thought to be biocompatible due to their high water

content and soft flexibility [100]. Their mechanical weakness excludes them from ubiqui-

tous applications, but the hydrogel has potential use as a graft material.

Here we use our in vitro perfusion loop to compare the thrombogencitiy of PVA with

the Dacron and PTFE with an endpoint of macroscopic graft thrombosis after 48 hours of

perfusion.

5.2.2 Methods

PVA tubes with inner diameters of 5 mm and 10 mm were sutured into PVC tubes (ID

3/8 or ) with 6-0 prolene. Suture holes were sealed from the outside with clear silicon

caulk. Care was taken to ensure no risk of contact of caulk with blood. PTFE grafts of 6

mm inner diameter and Dacron grafts of 10 mm inner diameter were also sutured into PVC

tubes and circuits were constructed with PVA and either Dacron or PTFE in series (Fig 5.4)

and perfused with a roller pump. The larger diameter loop (n = 3) with PVA and Dacron

was perfused with wall shear rates of approximately 170 s-1 (n=2) and 980 s-1 (n=1). The

smaller diameter loop (n = 2) was perfused with wall shear rates of approximately 1080 s-1.

Whole porcine blood was collected from a local abattoir via direct collection of blood

from the aorta into a clean container. The blood was immediately transferred into a jar

with anticoagulant to provide a final concentration of 3.5 U/mL heparin. The blood was

further treated with glucose (4.4 mmol/L), Sigma-Aldrich, Saint Louis, MO), L-glutamine

(2 mmol/L), Sigma-Aldrich), and an antibiotic/antimycotic (10 mL/L, Gibco).

Post perfusion, the grafts were excised, splayed, and photographed. Any thrombi were

preserved in 10% formalin. Histological analysis was done using Carstairs stain.
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Figure 5.4: Loop setup. PVA, Dacron, and PTFE grafts were sutured into PVC tubing.
Heparin was added every 12 hours to maintain the low level initial dose of 3.5 U/mL. A
syringe was attached downstream of the grafts to allow for pressure increases in case of
graft occlusion.
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5.2.3 Results

The higher shear rate Dacron graft formed extensive thrombus while the PVA was clear

of bulk thrombus (Fig 5.5). The PVA was slightly smaller in diameter than the surrounding

tube and therefore obtained a red color due to the surrounding blood. Dacron grafts also

had the same diameter mismatch. Blood did not continually flow past the graft, but filled

the space between the graft and the tube. The lower shear Dacron graft did not occlude, but

had some thrombus growth, and in one case an annular thrombus formed (Fig 6). The PVA

again was relatively clean (Fig 5.6).

The PTFE grafts formed extensive thrombus (Fig 5.7). The PVA grafts in series re-

mained clean (Fig 5.7). There was a better matchup of the PVA-PVC diameters and the

PVA at this size was not reddened by blood.

The histological analysis of Dacron and PTFE clots revealed mixed composition of

thrombus of both fibrin and platelets.

5.2.4 Discussion

PVA grafts demonstrated improved thrombogenicity over Dacron and PTFE grafts after

48 hours of perfusion in series at low and moderately high physiologic shear rates on the

basis of bulk thrombus formation. As expected based on clinical experience, the Dacron

graft performed worse at elevated shear rates, and 6 mm PTFE grafts were also highly

thrombogenic.

The mixed composition of the thrombi is interesting and perhaps suggests a role of

the material surface in platelet and fibrinogen recruitment regardless of shear regime. The

annulus formed in the Dacron loop at shears considered too low for vWF unfolding and

platelet aggregation [53, 57] yet exhibits high platelet content. This could be due to the re-

cruitment of platelets to the Dacron surface. Alternatively, fibrinous clot could deposit first,

then change the shear rate of the environment, potentiating high-shear platelet thrombosis.

Limitations of this study include low power replicates, possible effects of sutures, and
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Figure 5.5: Dacron (top) and PVA (bottom) after 48 hours of perfusion with a wall shear
rate of 980 s-1.
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Figure 5.6: Dacron (top) and PVA (bottom) after 48 hours of perfusion with a wall shear
rate of 170 s-1
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Figure 5.7: PTFE (top) and PVA (bottom) after 48 hours of perfusion with a wall shear rate
of 1080 s-1.
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no capture of emboli.

PVA was less thrombogenic than Dacron and PTFE with a bulk thrombosis endpoint.

These results therefore ultimately promote PVA as a vascular graft material.
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CHAPTER 6

CONCLUSIONS

6.0.1 Results

In this thesis, we have attacked the problem of blood-contacting medical devices from

multiple avenues.

We designed and perfused flow chambers for 96 hours to elucidate the effects of ma-

terial surface and shear rate on bulk thrombogenicity. From these results, we developed a

thrombogenicity ranking and were able to make recommendations for device design. We

also found no relationship among the currently used assays for thrombogenicity and the

bulk thrombogenic performance of a material. The histological analysis revealed mixed

platelet and fibrinous composition regardless of shear rate.

We investigated three cases of clinical device thrombosis in 1) ECMO circuits, 2) a

centrifugal pump, and 3) a pediatric VAD. Thrombotic incidence was our endpoint to assess

thrombogenicity which provided useful information regarding the thrombotic mechanism.

We used CFD Analysis in the case of the ECMO circuit and centrifugal pump to confirm

our mechanistic hypotheses. We were also able to make recommendations for clinical

management of thrombosis in these devices.

We simulated device thrombosis in vitro and validated our results against our clinical

analysis. We were able to form thrombus morphologically and histologically similar to

thrombosis in ECMO circuits and a centrifugal pump.

We proposed novel devices to correct for thrombogenic issues in 1) ECMO connectors

and 2) vascular grafts. We validated these prototypes to show superiority in vitro.

These results are summarized below:

· Use of a perfusion system to evaluate thrombosis on device materials and comparison of
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the performance of these materials relative to each other

· Histological analysis of bulk thrombi revealing mixed platelet and fibrinous composition

regardless of shear rate

· Analysis of clinical thrombosis in 1) ECMO circuits, 2) the Sorin Revolution centrifu-

gal pump and 3) Berlin Heart EXCOR pediatric VAD on the basis of macroscopic

thrombus formation

· CFD analysis of areas of thrombotic germination in ECMO circuits and the Sorin Revo-

lution

· Development of a system for in vitro simulation of device thrombosis validated against

clinical samples

· Proposal and prototyping of novel devices validated in vitro

6.0.2 Contributions

The main contributions of this work are elucidated below.

We have shown shear-dependency of relative thrombogenicity performance of a selec-

tion of device materials in a perfusion system. Our results suggest that it is necessary to

consider flow regime when examining material thrombogenicity. We have also shown that

the adsorption process and bulk thrombosis are separate entities, both requiring substantial

lengths of time (!¿24 and !¿6 hours, respectively) to occur from whole blood. These results

suggest that shorter assessments of thrombogenicity, and especially thrombosis alone, are

insufficient. The histological analysis demonstrated thrombi with mixed composition of

platelet-rich and fibrinous sections, which contradicts the idea of two distinct mechanisms

of thrombosis producing “red” fibrinous clots or platelet-rich “white” clots.

Our clinical analysis examined current devices with an endpoint of macroscopic throm-

bosis, which does not currently exist in the field for ECMO circuits, centrifugal pumps, or

84



Berlin Hearts. The analysis revealed certain thrombogenic areas responsible for the major-

ity of the thrombosis in the device, suggesting that more careful consideration of materials

and shear regime interactions could greatly improve device design and thrombogenic out-

comes.

We developed in vitro perfusion methods to simulate device thrombosis. We success-

fully mimicked both centrifugal pump and ECMO circuit thrombosis. These methods pave

the way for in vitro device thrombogenicity assessment and novel device design.

We developed and tested prototypes for two devices by destroying thrombotic mecha-

nisms identified by our studies. The ECMO connector prototype is nonthrombogenic vs.

the current device as tested in our in vitro perfusion loop. PVA shows promise as a graft

material vs. existing synthetics as demonstrated by low levels of bulk thrombus formation

in PVA grafts alone.

These contributions are summarized below:

· Demonstration of differences in bulk thrombosis formation of materials across shear

regimes

· Recommendations for device design and clinical management from a thrombogenicity

ranking

· Discovery of material surfaces overriding classical “red” and “white” clot mechanisms

· Identification of specific thrombogenic areas and elucidation of thrombotic behavior in

ECMO circuits, the Sorin Revolution, and the Berlin Heart EXCOR

· Hypothesis and validation of thrombotic mechanisms in ECMO circuits and the Sorin

Revolution

· Validated in vitro simulation of device thrombosis

· Device design and in vitro validation

85



6.0.3 Limitations

In our studies we have largely ignored the nuances of adsorption and focused primarily

on the end result of large-scale thrombus formation. There are many finer details to be

explored on the adsorption side of the mechanism, such as surface properties and initial

deposition. These can all be tied to bulk thrombosis in our system to produce a clinically

and scientifically relevant outcome.

The endpoint of bulk thrombosis also ignores potential downstream effects that could

be undesirable in a patient. For example, PVA is known to have high propensity for platelet

activation and to cause platelet consumption [28]. The endpoint of bulk thrombosis is

therefore not always necessarily consistent with other biocompatibility endpoints, which

while potentially problematic, is an interesting inconsistency.

In addition, we always employ the use of heparin, which is clinically relevant, but limits

the common pathway of coagulation. We do not test other anticoagulants or antiplatelet

agents and do not use untreated blood.

6.0.4 Comparison with Other Systems

Over the decades of material research, other rankings have been proposed and compar-

ison with our results is a useful exercise. In 1969, Mason et al. ranked 58 materials using

an in vitro assay evaluation based on platelet activation and coagulation activation under

stagnant conditions [101]. They divided the materials in the three categories of “good”,

“intermediate and “poor. Our results have some agreement, as under low shear stainless

steel was good and Dacron was worse, but also some disagreement with silicone being in

the middle of his ranking. Note that these assays were drawn into silicone-coated glass,

which is different from our shear studies at longer time points.

Sanak et al in 2010 looked at 8 materials and compared polymers and metals [102].

The endpoint was platelet adhesion after 5 minutes of 1000 s-1 shear rate exposure. Metals

were the worst, silicone was the best, and the polymers fell in between. We have good
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agreement with these results, as stainless steel was the worst at high shear, and silicone was

the second best.

Recently, Hanson wrote a chapter in a biomaterials book discussing general material

performance [103]. He stated that overall rankings are not possible, and suggested that

device design should be selected for based on mechanical requirements, and that material

selection for compatibility should then be taken from previous clinical experience. He

states that polymers are typically acceptable for use, metals tend to be thrombogenic, and

PTFE is better than Dacron. Our ranking has partial agreement in that bulk thrombosis

outcome depends on shear rate provides some insight into the complexity of the problem,

and that a single general overarching ranking system without the inclusion of shear would

not be meaningful. Other rankings show a dependence of adsorption on shear as well as

differences between ranking of surfaces [43, 44]. While we lack information to directly

equate or extrapolate from static adsorption studies, there is at least agreement here that

surface order rankings vary depending on the assay.

Some adsorption studies have indicated a need for shear consideration [43, 44] and

we confirm this need for thrombogenicity evaluation. Our material-dependent macroscale

findings after 96 hours of perfusion are extensions of mechanisms occurring at the surface

interaction level, and while we lack information describing the transition from surface to

macroscale thrombus growth, we observe some parallels. It has been shown that the con-

formation of adsorbed protein over the concentration influences downstream procoagulant

activity, and that the conformation is modified by the surface [12, 22, 23, 24, 34], which

is likely a contributing factor to our finding that bulk thrombus formation on materials

differs. Shear rate has also been demonstrated to modify initial adsorption and adhesion

processes [43, 44], which could account for our finding that shear regime modulates the

relative bulk thrombus formation performance of surfaces. Flow has long been included

as a contributing factor to thrombogenicity, but has been rarely explored [10, 45]. Here

we do not contradict classical surface studies, but highlight the need for the inclusion of
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this parameter for applicability to the device setting. Our effects of shear rate on a relatvie

bulk thrombus formation on material surfaces highlights the clinical limited applicability

of no-flow surfaces studies. Coagulation cascade crosstalk with immune response has also

long been reported and is an important consideration for biocompatibility [10, 30, 31, 42].

In addition, the response is modulated by the material surface [36]. Our finding of immune

cells uniformly distributed through some samples and differences among surfaces fits with

these previous surface findings.

The histology from our studies contradicts classical “red” and “white” thrombus for-

mation at low and high shear rates on biological surfaces [53, 55], and suggests large,

propogating effects of the immune response. The large presence of platelets at low shear

regimes implies an alternative mechanism of platelet capture, and perhaps one mediated by

leukocytes. The intertwining of the coagulation cascade and the complement cascade [10,

26, 27], and the ability of the complement cascade to induce leukocyte activation [104],

leads to the possilibilty of the complement as a contributing mechanism to bulk device

thrombosis. This also confirms the suggestions of previous authors of the possilibilty of an

anti-inflammatory as an inhibitor of device thrombosis.

6.0.5 Future Directions

In Chapter 2, we tested materials across shear rates over the course of 96 hours with

an endpoint of bulk thrombus formation. There are many more materials to explore in

this setup to further develop a thrombogenicity ranking, both currently in use and on

the horizon. Such materials include: polycarbonate, titanium, polyurethanes, and PVA.

The histological results of these studies reveal mixed composition of thrombi with both

platelet-rich and fibrinous regions. It would be of additional interest to apply anticoagu-

lants, anti-inflammatory agents, and antiplatelet agents to the system to confirm prevention

of thrombus formation.

In Chapter 3, we analyzed thrombogenicity of devices currently in use. There are also
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many more devices in dire need of thrombogenicity analysis by inspection of macroscopic

thrombus formation. Many devices are difficult or impossible to examine during use due

to opaque surfaces, masking by blood, or position of the device. However, all devices

could benefit from post-processing evaluation if preserved and handled properly. These

findings lead us to discovery of thrombotic mechanisms intiated by the device. It would be

especially of use to compare other centrifugal pumps that lack a stainless steel bearing to

the Sorin Revolution.

In Chapter 4, we developed in vitro methods for device thrombosis simulation. The

reliability of replication in our loop lends itself nicely to investigation of improvements to

existing devices and novel device design, the latter which we begin in Chapter 5. However,

there are endless devices to test in vitro, both to explore thrombogenic mechanisms as well

as to continue to validate our methods.

In Chapter 5, we tested two novel approaches to devices. There is much more work

to be done to progress to the point of clinical uses. The connector prototypes will next be

made by injection molding with the inclusion of all clinical design constraints and tested

in the in vitro system. The device will ultimately need to be tested in an in vivo setting to

demonstrate non-inferiority at a minimum. The PVA will also need an in vivo validation.
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