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SUMMARY

This work presents a model to assess the microstructure-sensitive high-cycle

fatigue (HCF) performance of thin MP35N alloy wires used as conductors in cardiac

leads. The major components of this model consist of a microstructure generator

that creates a mesh of a statistically representative microstructure, a finite element

analysis using a crystal plasticity constitutive model to determine the local response

behavior of the microstructure, and a postscript employing fatigue indicating param-

eters (FIPs) to assess the fatigue crack incubation potency at fatigue hotspots.

The crystal structure of the MP35N alloy, which contains major elements (wt %)

35Ni-35Co-20Cr-10Mo, is modeled as single-phase, face-centered cubic (fcc) material,

and the calibration of the constitutive behavior is based on monotonic tensile and

cyclic ratcheting stress-strain response data generated on the wire. A non-random

texture generation scheme is introduced to approximate the strong fiber texture de-

veloped by wire drawing. Non-metallic inclusions (NMIs) have been shown to be

detrimental in fatigue of MP35N wires by serving as fatigue crack nucleation sites.

The model developed here considers the detrimental effects of NMIs using a stochas-

tic framework. By evaluating multiple statistical volume elements (SVEs), the inher-

ent statistical variability of inclusion-grain and grain-grain interactions at the NMI-

matrix interface can be assessed. The fatigue crack incubation potency for selected

microstructure attributes, boundary and interface conditions, and loading profiles is

determined by computing the Fatemi-Socie (FS) multi-axial FIP over an appropriate

volume of scale.

The extreme-value FS distributions were successfully correlated to rotating beam

bending fatigue (RBBF) life data collected for MP35N fine wire. The correlation

x



indicates that the fatigue potency in RBBF is strongly influenced by the NMI prox-

imity to the wire surface with the most severe case occurring when the NMI intersects

the surface. A significant drop in fatigue potency is observed when the NMI is fully

embedded in the wire. Fatigue-life correlations to a second set of RBBF data were

performed in order to identify a transition life value between crack incubation and

microcrack growth fatigue mechanisms. The transition life was identified as 1 × 105

cycles. The model has applications in numerous additional aspects of microstructure-

sensitive HCF which can be explored in a future work.

xi



CHAPTER I

INTRODUCTION

1.1 Motivation

A robust understanding of component fatigue behavior is critical for the medical

device industry especially for permanently implantable, life sustaining applications

where minimizing invasive procedures and treatments is highly desirable. In the case

of cardiac pacing leads, the in-situ loading conditions are variable and difficult to

quantify. Heart contractions create a low-amplitude, high-frequency load, and torso

and arm movements add higher amplitude, but low frequency loading. In the high

cycle fatigue regime, the fatigue life of fine wires is dominated by crack incubation.

Once formed, a fatigue crack grows quickly to reach the instability point due to the

geometric constraints of the wire, after which ductile (fast) fracture occurs. Fatigue

crack nucleation in fine wires is a stochastic process controlled by defects within the

microstructure. These defects occur in the drawn wire as surface scratches or non-

metallic inclusions (NMIs). Understanding the role these defects play in fatigue life

variability is critical to the design of fatigue resistant lead wires.

Past studies [20] have employed statistical Monte Carlo initiation life models to

predict such variability. However, these models are constrained by a limited capability

to represent the microstructure of the lead wires. Through the use of a crystal plas-

ticity finite element model (CPFEM) governed by a set of constitutive laws, many

different microstructural attributes can be modeled and quickly assessed for their

impact on fatigue. Analysis of process-structure-properties relationships using com-

putational tools is a key aspect of the Materials Genome Initiative (MGI) [12]. MGI
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calls on governmental agencies, academic institutions and industrial partners to coop-

erate in accelerating the pace of materials development. The goal is to reduce by half

the typical material design lifecycle. The MGI infrastructure consists of three parts:

experimental tools, computational tools and data science tools. Once developed, these

tools can be adapted rapidly to collect and analyze material performance for different

materials, applications and processing routes. The current project contributes to the

computational tools aspect of materials development by creating software tools to

predict the high-cycle fatigue (HCF) performance of the MP35N alloy in the fine wire

configuration. Knowledge of the salient microstructure attributes also contributes to

the fundamental materials science understanding of this alloy.

1.2 Research Objective

The work presented in this thesis aims to link microstructure attributes of MP35N

fine wire with its HCF performance under application-relevant loading conditions

through the application of structure-property relations. At the present time, no

known CPFEM models have been developed for MP35N fine wire or for MP35N in

the bulk form. Although Schaffer [19] developed a numerical model for fine wire

MP35N incorporating the influence of a number of microstructural inputs via Monte

Carlo methods, his model does not account for polycrystalline plasticity which is

known to play a significant role in HCF. The objective of this research is to develop a

computational CPFEM model for MP35N fine wire capable of elucidating differences

in fatigue performance due to variability of microstructure attributes. This includes:

1. Formulation of constitutive relations that capture the rate sensitivity and kine-

matic hardening behavior of MP35N fine wire

2. Calibration of these constitutive relations to experimental data

3. Development of a microstructure generation and meshing protocol to recreate

2



salient MP35N microstructure attributes in a stochastic, finite-element frame-

work

4. Selection of appropriate response parameters to assess fatigue performance

5. Characterization of the extreme-value distributions of the selected response pa-

rameters

6. Validation of the newly-developed CPFEM model against experimental data

1.3 Thesis Layout

Chapter 2 provides background on the MP35N alloy system and the microstructure of

MP35N fine wires and reviews previous fatigue models and fatigue testing techniques.

Chapter 3 describes the modeling methodology employed in this research, including

the generation of virtual microstructures, constitutive model framework, selection of

fatigue indicating parameters and life correlation methods. Chapter 4 details the

computational implementation of the model into software codes and considers the

calibration of the constitutive model behavior using selected experiments. Chapter 5

presents the results of two studies using the newly developed model: (1) the effect of

NMI-surface proximity and (2) the identification of crack incubation to microcrack

growth transition life value. The implications of each study are also discussed. Chap-

ter 6 summarizes the main conclusions from the research. Finally, Chapter 7 proposes

some recommendations for further study to extend the development and applications

of the model in relation to the current effort.
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CHAPTER II

BACKGROUND

2.1 MP35N Material Specifications

MP35N (ASTM F562) is a quaternary, low temperature superalloy. It has a nominal

composition of 35% nickel, 35% cobalt, 20% chromium and 10% molybdenum. The

full composition by weight percent as specified by ASTM [2] is given in Table 2.1.

The high amount of nickel produces a metastable fcc crystal structure. MP35N in the

bulk form was first developed by SPS technologies for use in NASA cryogenic fastener

applications. The fine wire form of MP35N has found use in surgical implants due

its excellent corrosion resistance and biocompatibility [13] as well as its high strength

and fatigue resistance. Applications include catheters, stylets and pacing leads.

Production of wires is accomplished by drawing a rod through successively smaller

dies with intermediate annealing steps. The drawing process produces significant

anisotropy in the material with strong texture components in the {001}, {111} and

{113} [7,14,23]. Drawing also contributes to a fine grain structure. Grain size for fine

wire is typically 1-5 µm, compared with 35 µm or greater for the bulk material. Figure

2.2 is a FIB micrograph of a transverse section of the wire, revealing the fine grain

structure. In the bulk material, HCP platelets form through the Suzuki mechanism

[1, 5]. The HCP phase has not been observed in fine wire specimens [14, 23] or bulk

specimens under room-temperature deformation [17], leading to its characterization

as a single-phase material. Plastic deformation is accommodated through both slip

and intra-granular twinning [23]. Twins are found to be between 1-10 nm in thickness.

Once formed, deformation twins also act as a hardening mechanism, impeding the

motion of dislocations.
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The presence of non-metallic inclusions (NMIs) is a primary driver of fatigue in

MP35N wires [20]. Two types of inclusion particles have been identified: cuboidal

titanium nitride (TiN) and globular aluminum oxide (Al2O3). The former are typi-

cally larger in size (4-10 µm) compared to the later (1-5 µm). Example of these can

be seen in Figure 2.1. A variant of the alloy designated 35N-LT was developed by

Fort Wayne Metals. Titanium content was reduced below 0.01% to eliminate TiN

particles, improving fatigue performance. In this work, the terms full-Ti or low-Ti

will be used to differentiate between the MP35N or 35N-LT variants when necessary.

Figure 2.1: Inclusions in MP35N fine wire. (a) Sharp cuboidal TiN inclusion,
partially debonded from the matrix. (b) Globular Al2O3 (alumina) inclusion

near the wire surface. Note differences in scale. From [19]

Table 2.1: Nominal chemical compositions of MP35N & 35N-LT given as wt %.
From [2].

Alloy C Mn Si P S Cr Ni Mo Fe Ti B Co

MP35N 0.025 0.15 0.15 0.015 0.010 19.0-21.0 33.0-37.0 9.0-10.5 1.0 1.0 0.015 Bal.

35N-LT 0.010 0.06 0.03 0.002 0.001 20.58 34.82 9.51 0.52 ≤ 0.01 0.010 Bal.

2.1.1 Characterization of Microstructure Attributes

The salient microstructure attributes of the MP35N fine wire were experimentally

characterized in order to provide realistic input for virtual microstructure instanti-

ation. Grain size, and texture distributions were produced via EBSD imaging of a
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transverse wire cross-section. Grain morphology was estimated by comparing longi-

tudinal and transverse EBSD cross-sections but was not formally measured.

2.1.1.1 Grain Size Distribution

Experimental characterization of MP35N fine wire by Focused Ion Beam (FIB) micro-

graphs (Figure 2.2) has shown the grain size to be on the order of 1-5 µm. Variation

in grain size is usually considered to follow a lognormal distribution. This can be seen

from Figure 2.3 which shows the frequency of grain sizes as area fractions generated

from four MP35N cross-sections, denoted Af-1 through Af-4. The largest distribution

with the peak at 2.05 µm (Af-4) was selected to emulate in this work, since it is more

representative of Fig 2.2.

Figure 2.2: FIB cross-section micrograph illustrating the fine grain structure
and deformation twins. From [14].
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Figure 2.3: Grain size distributions of four wire cross-sections Af-1 through
Af-4. From [7].

2.1.1.2 Texture

MP35N in its cold-drawn condition exhibits a strong fiber texture produced as a result

of the wire drawing. The texture is shown in Figure 2.4. The texture map on the left

and pole figures on the right illustrate the concentrations around the 〈111〉 and 〈100〉

orientations.
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Figure 2.4: EBSD accompanied by pole figures of low-Ti MP35N showing
strong 〈111〉 texture. From [14].

2.2 Rotating Beam Bending Fatigue

One type of fatigue experiment commonly conducted for fine wires is known as Ro-

tating Beam Bending Fatigue (RBBF). RBBF is an ASTM standardized test method

(E2948-14). A schematic of the wire configuration in the test system is shown in

Figure 2.5.

A length of wire is bent into a 180 degree arc and fixed at both ends by a rotary

chuck and bushing. Applying a rotational moment to the chuck results in a fully

reversed (R = −1) bending load as the wire rotates about its neutral axis. The

stresses and strains generated by RBBF can be determined from beam bending theory,

assuming purely elastic deformation and a homogeneous, isotropic material response.

The bending stress amplitude scales with the local wire curvature which is highest at

the wire apex, and approaches zero at either end. The magnitude of bending strain

at the apex is related to the minimum bend radius ρmin by the relation

8



Figure 2.5: Configuration of wire fixed in a RBBF test system showing
relevant parameters for fatigue loading. Taken from [2].

εa =
d/2

ρmin
(2.1)

where d is the wire diameter. The minimum bend radius is controlled by the center

distance C according to

ρmin = 0.417C (2.2)

and

C = 1.198
E d

Sa
(2.3)

where E is the elastic modulus of the wire, and Sa is the fully-reversed stress ampli-

tude. The wire length L and loop height h are related to C by constant factors. The

bending produces a non-uniform stress profile across the wire cross-section, driven by

the bending moment about the neutral axis as shown in Figure 2.6.

The outer fiber of the wire is loaded in tension while the inner fiber undergoes

compression. The maximum tensile and compressive stresses have equal magnitude

but opposite sign. As the wire rotates about its neutral axis each material point in
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Figure 2.6: Illustration of the variation of normal stress across a wire
cross-section

the wire experiences load reversal between tension and compression. The effective

Syy load amplitude depends on the distance away from the neutral axis. As shown

in Figure 2.7, material point A on the surface of the wire experiences twice the Syy

stress amplitude of point B, which is located halfway between the surface and the

neutral axis.

Figure 2.7: Schematic illustrating the dependence of Syy stress amplitude on
the location of a material point within the wire. Point A experiences twice the

maximum stress of point B.

Because of the stress gradient across the wire cross-section, the effective Syy load
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amplitude at the site of crack initiation depends strongly on the distance of the site

from the neutral axis. In the absence of complicating microstructural factors, the

far-field loading conditions favor crack formation at the free surface. However, it is

conceivable for a fatigue crack to initiate away from the surface if microstructural

attributes located there combine to provide a significant driving force.

2.3 Schaffer Fatigue Results

An in-depth study of RBBF fatigue of the MP35N alloy system was conducted by

Schaffer [19] in both the LCF and HCF regimes. Both the low and full Ti alloy variants

were investigated. It was shown that the low-Ti alloy variant, 35N-LT performed

better in RBBF than its counterpart, as seen in the cumulative distribution function

(CDF) of Figure 2.8. Moreover, the 35N-LT data revealed a bimodal life distribution,

with one group of failures occurring in the range between 2.2×105 and 2×106 cycles,

while a separate group of failures occurred in a higher range at greater than 1× 107

cycles.

Figure 2.8: CDFs of fatigue lives of MP35N and 35N-LT under RBBF at 827
MPa stress amplitude. From [20]
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The separation between the two groups was attributed to differences in the crack

initiation site: in the lower range group cracks predominantly formed by small (1-5

µm) alumina inclusions at or very near the surface, while in the higher cycle group

cracks initiated at subsurface particles greater than 0.5 µm below the surface. The

dependence of fatigue life on inclusion particle depth from the surface is also present

in the full-Ti version of the alloy albeit at lower stress amplitudes. This trend is

illustrated in Figure 2.9. Here filled circles denote the inclusion depth from the wire

surface and open circles represent the size of each inclusion, such that each fatigue

experiment performed is displayed by two points – one filled and one open – on the

plot.

Figure 2.9: Effect of inclusion depth (filled circles) and size (open circles) on
fatigue life of MP35N wire at a stress amplitude of 620 MPa. From [20].

2.4 Microstructure-sensitive Fatigue Modeling

Microstructure-sensitive fatigue models are attempts to represent scatter in fatigue life

by explicitly considering the effects of microstructure. The microstructure attributes
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considered may include grain size and texture, phases, precipitates, non-metallic in-

clusions, voids or other pre-existing flaws at the scale of the microstructure.

The major components of a microstructure-sensitive fatigue model involve:

1. A representation of one or more microstructural attributes which vary in con-

formance to some prescribed distributions

2. A method for applying representative fatigue loading and tracking the evolution

of local stresses and strains

3. A metric to evaluate fatigue damage potency. This involves combining key re-

sponse parameters in a manner that provide an indication of the fatigue damage

potency of the applied loading in light of the microstructure attributes repre-

sented. Response parameters include stress-based, strain-based, energy-based

or critical-plane based response parameters.

Historically, empirical methods of have been used to provide an estimation of fa-

tigue life. The most well-known of these approaches are the Basquin equation for

HCF and the Coffin-Manson equation for LCF [24]. The combination of these two

equations via Hookes law provides a fatigue equation which spans high and low cycle

fatigue. Various modifications have been proposed to adapt this model to non-zero

mean stress, notch effects, etc. These empirical methods rely on extensive fatigue

experiments to fit their coefficients and convey no information about the microstruc-

ture. Microstructure-sensitive fatigue models implemented with modern computa-

tional tools can better represent known physical phenomena that lead to fatigue in-

cluding slip localization and plastic strain heterogeneity due to geometrical features

(notches etc) and grain-grain and grain-inclusion interactions.

Some of the specific applications of microstructure-sensitive fatigue models are as

follows:
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1. Link experimentally observed scatter in fatigue life data to known damage mech-

anisms

2. Provide an estimate of minimum fatigue life for a given alloy, processing, and

cyclic loading history

3. Establish rankings of microstructure attributes most detrimental to life.

These applications have been considered in recent work. Musinski [11] imple-

mented a crystal plasticity finite element model to examine microstructurally small

fatigue crack growth in both smooth and notched Ni-base superalloy specimens in-

corporating the effect of debonded inclusion particles and grain boundary effects.

Przybyla [16] used extreme-value marked correlation functions to identify and rank

the influence of coupled microstructure attributes (grain orientation, misorientation

and size) on fatigue damage in a Ni-base superalloy and two Ti alloys. Salajeghah [18]

used weighted probability functions to investigate the surface to bulk transition in

HCF crack initiations in both IN100 and C61 martensitic gear steel.

2.5 Fatigue Life Considerations

Life to failure of a metallic component is traditionally divided into initiation life and

propagation life according to the equation

Nf = Ninc +Np (2.4)

Here, Ninc is the number of cycles required to incubate a crack, Np is the number of

cycles for the crack to propagate to failure. Propagation life can be further subdivided

three crack growth regimes as

Np = Nmsc +Npsc +Nlc (2.5)
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where Nmsc is the number of cycles from formation to a microstructurally small

crack, Npsc is the number of cycles to grow to a physically small crack, and Nlc

defines the long crack growth regime, which typically begins when the crack reaches

the visual inspection limit through the onset of fast fracture. The boundaries of the

crack growth regimes are not well defined. For the purposes of this model, we neglect

the contribution of propagation life to the total life in MP35N wire fatigue based on

the following reasoning:

1. Once incubated, cracks propagate to reach the instability point in relatively few

cycles due to the small cross-sections of the fine wires.

2. The change in Np with decreasing stress amplitude is minimal.

3. Under HCF and VHCF conditions the total cycles to failure is large, and the

great majority of these contribute to crack incubation.

A simple example can illustrate this reasoning. Suppose the propagation life for

any stress amplitude is the same, Np = 10, 000 cycles. Now consider two HCF RBBF

specimens, one failing at Nf = 100, 000 cycles, and another at Nf = 1, 000, 000 cycles.

For the first specimen, 10% of all cycles are propagation, and for the second specimen

only 1% of the total life is propagation. Based on this consideration, it is judged that

the contribution to the fatigue life from crack propagation in the HCF regime will be

less than 10% and can be neglected for the purposes of this model.
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CHAPTER III

MODELING METHODOLOGY

3.1 Microstructure Generation and SVEs

In order to model the stochastic nature of metallic microstructures in a computation-

ally feasible way, it is useful to employ Statistical Volume Elements (SVEs). These

idealized volumes are constructed such that each identically-sized volume is a sample

of the underlying distributions of the microstructure attributes. Each SVE contains a

unique, random arrangement of grains and crystallographic textures which are sam-

pled from experimentally characterized grain size and texture distributions.

The size of the volume must meet certain criteria to qualify as an SVE. The

volume must be of the same length scale as the response parameters of interest, i.e.

grain-scale plasticity. Additionally, the volume must be small enough such that the

distribution of the local response parameters of interest within each SVE comprises

a subset of all possible values. The SVE volume should be large enough relative to

the grain size that the average stress-strain responses of multiple SVEs converges to

the macroscopic stress-strain response determined by experiment.

The use of SVEs for numerical fatigue modeling offers advantages in computa-

tional efficiency. A limited number of SVEs (< 100) at each loading condition can

adequately characterize the distribution of the desired response parameter. Variation

of microstructure attributes between successive SVEs results in differences in the local

stress-strain response. These differences can be quantified using Fatigue Indicating

Parameters (FIPs) which serve as a proxy measure for fatigue crack formation.
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3.2 Constitutive Model

The constitutive model for fine wire MP35N is adapted from a previous model by

Shenoy [21] for Inconel 100, a Ni-based superalloy. The constitutive model describes

the elastic and inelastic deformation through a set of equations derived from crystal

plasticity and continuum mechanics. The shear strain rate γ̇ depends on shear stress

τ , and the evolution of two internal state variables (ISVs) – dislocation density ρ and

backstress χ. In the fine wire configuration, MP35N consists of a single-phase FCC

structure with intra-granular deformation twins. Slip is permitted only on the 12

octahedral systems 〈110〉 {111}. Deformation twins are not explicitly modeled, but

are accounted for phenomenologically through two input parameters: twin volume

fraction ftw and twin spacing, t. Homogenization over deformation twins is necessary

due to the limited spatial resolution of finite element modeling. The model seeks to

predict damage processes at the scale of microns, while deformation twins have been

shown by TEM imaging to have thicknesses of 1-10 nanometers [14,23].

3.2.1 Inelastic Constitutive Equations

The inelastic shear strain rate on slip system α is given by a single-term flow rule

γ̇(α) = γ̇o

〈
|τ (α) − χ(α)|−κ(α)

D(α)

〉n
sgn(τ (α) − χ(α)) (3.1)

where γ̇o is a shear strain rate constant, D is the drag stress, n is the flow exponent

and κ is the threshold hardening parameter. D and n are fitting parameters that

describe the resistance to plastic flow and the strain rate sensitivity, respectively.

The second term used by Shenoy to account for thermally activated flow is removed

for this isothermal model. Inelastic shear strain is zero until an isotropic threshold

stress κ is attained. The threshold hardening equation depends on dislocation density

ρ through a Taylor relation

κ(α) = κ(α)
o + αtµb

√
ρ(α) (3.2)
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where b is the burgers vector of MP35N, µ is the (resolved) shear modulus, αt is a

constant and κo is the initial critical resolved shear stress (CRSS) given by

κ(α)
o = [(τ (α)

o )nk + cgr(dgr)
−0.5 + cgr(ftw)]

1
nk (3.3)

which depends on the lattice resistance, τo, the nominal grain size, dgr, and the twin

volume fraction ftw as well as constants cgr and nk. Dislocation density ρ evolves by

the equation

ρ̇(α) =
12∑
β=1

h(αβ)

(
k1

bΛ(β)
− k2ρ

(β)

)
|γ̇(β)| (3.4)

Here k1 and k2 are constants, h(αβ) is the hardening coefficient matrix, and Λ is the

mean free path (MFP) for dislocation motion. The dislocation density affects both

isotropic and kinematic hardening, as seen in Eqs. 3.2 and 3.7. At high dislocation

densities typical of strongly cold-worked components, competition between dislocation

formation and annihilation results in saturation of ρ due to the dynamic equilibrium

between the first and second terms of Eq. 3.4. The hardening coefficient matrix takes

the form

h(αβ) = hoδ
(αβ) (3.5)

where ho is a constant and δ is the Kronecker delta. Here α = β represents self-

hardening slip systems and α 6= β represents latent slip or cross-hardening. Due to the

low stacking-fault energy (SFE) of MP35N, cross-slip is assumed to be negligible. The

MFP Λ is a measure of the obstacle-free movement distance available to a dislocation

on a given slip system. In MP35N, it is described by the harmonic mean of three

distances: the grain size dgr, twin spacing t and the spacing of immobile dislocations

which scales inversely with the square root of dislocation density.

1

Λ(β)
=

1

dgr
+

1

t
+ k3

√
ρ(β) (3.6)

The backstress evolves according to

χ̇(α) = Cχ[ηµb
√
ρ(α)sgn(τ (α) − χ(α))− χ(α)]|γ̇(α)| (3.7)
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where Cχ is a fitting parameter and η depends on dgr, t and Λ by the relation

η = ηoΛ
(α)

(
1

dgr
+

1

t

)
(3.8)

The backstress equation contains two terms: an accumulation term that depends on

the dislocation density on the current slip system, and a dynamaic recovery term

dependent on the current value of χ representing the influence of dislocation anni-

hilation. The backstress ISV captures the Bauschinger effect and plastic ratcheting

that occurs under cyclic loading as a result of non-uniform dislocation pile-up at

grain and twin boundaries. The constitutive equations implemented by the model

are summarized in Table 3.1.

Table 3.1: Summary of main constitutive equations implemented by the UMAT

Flow Rule γ̇(α) = γ̇o

〈
|τ (α)−χ(α)|−κ(α)

D(α)

〉n
sgn(τ (α) − χ(α))

Threshold Hardening κ(α) = κ
(α)
o + αtµb

√
ρ(α)

Initial CRSS κ
(α)
o = [(τ

(α)
o )nk + cgr(dgr)

−0.5 + cgr(ftw)]
1
nk

Backstress Evolution χ̇(α) = Cχ[ηµb
√
ρ(α)sgn(τ (α) − χ(α))− χ(α)]|γ̇(α)|

Eta η = ηoΛ
(α)

(
1
dgr

+ 1
t

)
Dislocation Density Evolution ρ̇(α) =

∑12
β=1 h

(αβ)

(
k1

bΛ(β) − k2ρ
(β)

)
|γ̇(β)|

Hardening Coefficients h(αβ) = hoδ
(αβ)

Mean Free Path 1
Λ(β) = 1

dgr
+ 1

t
+ k3

√
ρ(β)

3.3 Fatigue Indicator Parameters

Fatigue Indicator Parameters (FIPs) provide a way to determine the location and

relative potency of fatigue hot-spots within a component after the application of
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fatigue loading. FIPs are physically-based metrics that combine tensor quantities

such as stresses or plastic strains occurring over a representative load cycle into a

single scalar value which can be used to judge the relative fatigue potency. Numerous

FIPs have been proposed and utilized for different materials and crack formation

mechanisms.

3.3.1 Fatemi-Socie Parameter

The Fatemi-Socie (FS) parameter [6] was selected for use with the model for its ability

to predict fatigue response in materials where crack formation is driven by localized

cyclic shear strain. The parameter is based on the observation that cyclic fatigue

cracks tend to form on planes aligned with the direction of maximum shear strain

amplitude, but that magnitude of shear strain amplitude alone does not explain the

lower rates of cracking in torsional fatigue compared to uniaxial. To account for this,

the maximum plastic shear strain amplitude over a cycle is modified by the normal

stress to the plane of maximum plastic shear strain. The FS parameter is given by

PFS =
∆γpmax

2

[
1 + k∗

σmaxn

σY

]
(3.9)

where ∆γpmax is the maximum range of plastic shear strain on the critical plane over

a cycle and σmaxn is the maximum stress normal to the critical plane. The maximum

normal stress is normalized by the yield stress σY and weighted by the coefficient

k∗. The weighting coefficient can be estimated by correlating uniaxial to torsional

fatigue data. Lacking torsional data for MP35N fine wire, k∗ has been arbitrarily

set to 1, which is within the range of values found in fatigue literature [3, 11]. The

FS parameter as formulated in Eq. 3.9 is termed a critical plane type FIP since

it accounts for preferential crack nucleation on cyclic shear planes. Musinski [9]

considered two distinct critical plane types, crystallographic or non-crystallographic.

The crystallographic formulation finds the critical plane by searching all available

slip systems, while the non-crystallographic formulation takes the plane of maximum
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cyclic shear strain in 3D space. The non-crystallographic formulation is used in this

work to simplify computation. The choice of critical plane calculation methodology

is not expected to significantly impact the parameter scaling.

3.3.2 Selection of Averaging Volumes

The FS parameter must be evaluated over an appropriate volume in order to provide

a meaningful indication of fatigue crack formation potency. Two important consider-

ations for averaging volume (AV) selection are size and sampling location within the

SVE.

3.3.2.1 Size Considerations

Volume size is dictated by (a) the finite size of fatigue crack incubation, (b) regu-

larization to eliminate mesh-size dependency and (c) desired level of smoothing over

microstructural features such as grains. The term incubation is not well-defined in

literature, having no single agreed-upon criteria. For the purposes of this research,

a fatigue crack is considered incubated when the cracked area within the matrix

approaches 1 µm2. Therefore, the size of the volumes used will be of this same scale.

3.3.2.2 Sampling Location Considerations

Sampling location is associated with the locations of stress risers within the mi-

crostructure which provide the driving force for crack initiation. In many cases, the

locations of stress risers are unknown a-priori so the entire SVE must be interro-

gated to locate them. However, when a hard NMI is present within the SVE, stress

concentrations will occur along the inclusion-matrix interface, permitting a targeted

application of sampling locations there. Salajegheh [18] found that inclusions which

are half debonded from the matrix in an orientation perpendicular to the loading axis

will generate their maximum stresses along the debonding perimeter. Under HCF

conditions, stresses quickly approach their far-field values moving radially outward

21



away from the NMI surface, resulting in insufficient driving force to generate plas-

ticity more than a few microns from the NMI interface. Because of this, AVs are

sampled immediately adjacent to the NMI. Salajegheh showed that this sampling lo-

cation corresponded to the locations of largest FIP magnitude for the 50% debonded

NMI configuration [18]. Figure 3.1 illustrates the locations of selected FIP averaging

volumes for the case of a 50% debonded TiN inclusion.

Figure 3.1: Schematic showing the positioning and naming conventions of
selected FS AVs with respect to a 50% debonded cuboidal inclusion.

Each of the four distinct volumes shown is replicated on the X+, X−, Z+ and Z−

inclusion faces. The plane labeled Debond Perimeter bisects the inclusion along the

Y-axis. Matrix elements above this plane are debonded from the inclusion surface

by means of a frictionless normal contact, while elements below are bonded via tie

constraints. All FIP averaging volumes are bisected by the debond perimeter such

that they contain both bonded and debonded elements in equal measure.

Each volume is a rectangular prism of dimensions W×H×T where W is the width

measured in the plane of the debond perimeter, H is the height along the Y axis and

T is the AV thickness measured radially away from the inclusion and perpendicular

to the inclusion face. Figure 3.2 gives the measurement conventions for H and T in

in reference to the NMI. Here, W is out of the page.

Each AV has H = 1 µm and comes in three variants of thickness denoted T =

(t1, t2, t3) from smallest to largest as measured perpendicular to the inclusion face.

22



Figure 3.2: Measurement conventions for the FIP AVs with respect to a 50%
debonded cuboidal NMI.

Domains denoted by Full Face span the width of the inclusion face, while domains

Left, Right, and Mid have a width equal to half the inclusion width. The Mid domain

overlaps both the Left and Right domains by half. In total, 4 × 4 × 3 = 48 distinct

AVs are defined. Table 3.2 lists the volumes of each AV in µm3 for the case of a 4

µm NMI.
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Table 3.2: Volumes (in µm3) of the FIP AVs for a 4 µm cubic NMI.

AV Identifier t1
(0.10 µm)

t2
(0.25 µm)

t3
(0.50 µm)

Full Face 0.4 1.0 2.0

Left Face 0.2 0.5 1.0

Mid Face 0.2 0.5 1.0

Right Face 0.2 0.5 1.0

3.4 Extreme Value Statistics

Statistics of extreme values (ie maxima and minima) are useful in the study of the

fatigue behavior of engineering components. Engineering components used in life-

critical applications must be designed to make the likelihood of fatigue failure ex-

tremely small. Prediction of reliability requires characterization of the behavior of

the tail end of the population which fails prior to its designed lifespan. Extreme value

statistics characterize this tail. Three classes of extreme-value distributions – Gumbel

(Type I), Fréchet (Type II) and Weibull (Type III) – can be described by a single

distribution through the addition of a shape parameter. This combined distribution

is known as the Generalized Extreme Value (GEV) distribution. The cumulative

distribution function (CDF) for the GEV distribution is given by

FGEV(x;µ, σ, ξ) = e−[1+ξ(x−µ
σ

)]−1/ξ

(3.10)

where µ is the location parameter, σ is the scale parameter and ξ is the shape param-

eter. Parameters µ and σ are permitted to be any real number, but ξ is restricted to

the interval [-1,1]. The shape parameter significantly alters the behavior of the GEV

distribution depending on whether ξ > 0, ξ = 0 or ξ < 0. In the case of ξ = 0, Eq.

3.10 is undefined and must be replaced by the limit as ξ → 0 resulting in

FGumbel(x;µ, σ, 0) = e−e
(−x−µ

σ )

(3.11)
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also known as the Gumbel or Type I GEV distribution. In this work, the GEV distri-

bution (Eq. 3.10) is used to fit the distributions of the volume-averaged FS parameter

and the corresponding fatigue life correlations. The GEV fit is also compared to the

Gumbel distribution fit of Eq. 3.11 for the same data.

3.5 Correlation to Life

Once a sufficiently large sample of the extreme-value FS response values has been

constructed from multiple microstructure instantiations, the sample can then be cor-

related to a life distribution using a modified Tanaka-Mura (T-M) approach [25] [3].

The Tanaka-Mura equation considers that the number of cycles required to incubate

a crack along a slip band under HCF loading is related to the energy required to

form new surfaces which is inversely proportional to the square of the cyclic plastic

shear strain range ∆γp. By substituting the extreme-value FS parameter for ∆γp,

the following relation emerges [22]:

Ninc =
α

dgr
(PFS)−2 (3.12)

where Ninc is the number of cycles required to incubate a fatigue crack, dgr is a

scaling parameter associated with the microstructural size scale and α is a correlation

coefficient, determined by fitting the extreme-value FS distribution to an experimental

life distribution.
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CHAPTER IV

COMPUTATIONAL IMPLEMENTATION

The CPFEM model developed in this work consists of three main components:

1. A microstructure generation tool that creates the stochastic arrangement of

grains within the defined volume;

2. A finite element solver coupling to a physically based constitutive model imple-

mented numerically though a UMAT that iteratively solves for the local stress

and strain states;

3. A postprocessing script to extract the local response variables, specifically the

volume-averaged Fatemi-Socie Parameter.

This chapter will deal with the implementation of these components within a

computational framework including all necessary data inputs and expected outputs.

Figure 4.1 provides a summary of the CPFEM model highlighting the flow of infor-

mation and the necessary software tools for implementation.

The finite element meshes are created with python scripting for ABAQUS, and

the grains are assigned via a Matlab [8] script. Each microstructure instantiation

undergoes a simulated fatigue loading history in the commercial finite element soft-

ware package ABAQUS [4]. ABAQUS calls to a custom-built crystal-plasticity User

MATerial subroutine (UMAT) implemented in Fortran, which computes the stress-

strain response over the entire mesh at each timestep. Prior to analysis, both the

microstructure generation tool and the UMAT are calibrated using a combination

of experimental data and values from literature. The continuum mechanics basis

for the UMAT is presented in Sec 3.2. After the simulated fatigue cycling has been

26



Figure 4.1: Block diagram of information flow through the component parts
of the model, showing the software tools used for each step.

completed, a Matlab post-script computes the volume-averaged FS FIPs for each mi-

crostructure instantiation based on the local values of the stress and plastic strain

tensors.

Once the FIPs have been calculated, the extreme-value FS distribution is popu-

lated from the maximum FS value of each microstructure instantiation. The distri-

bution of extreme-value FIPs are then correlated to the distribution of fatigue life

values found by experiment though a modified Tanaka-Mura approach as described

in Sec 3.5. The fatigue life correlation provides a direct quantitative comparison of

the CPFEM model data to experimental fatigue data and can be used to predict

fatigue life curves. The following sections provide detailed explanations of the model

implementation in the code.
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4.1 Microstructure Generation and Meshing

The microstructure is created using an ellipsoid packing algorithm developed by

Przybyla [15] and uses a meshing algorithm based on Musinski’s work [10]. The

target microstructure is a small volume of a MP35N fine-wire matrix surrounding a

cuboidal TiN inclusion particle. Since the goal of the model is to examine rare event

phenomenon associated with NMIs, the inclusion is input deterministically to each

instantiation with full control of inclusion size, position and interface. The loading,

interface and boundary conditions around the NMI can all be manipulated to examine

their effect on fatigue potency.

4.1.1 User Input Parameters

Table 4.1 summarizes the user input parameters for microstructure generation, along

with their default and permissible values. Each input parameter is the name of a

variable in the Matlab code which can be set by the user. The input parameters

are broken out into six categories: DoE, Geometry, Mesh, Grain Packing, Texture

and Loading. The following sections describe the functions of each of the user input

parameters by category.
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4.1.1.1 DoE Parameters

The four DoE parameters e_amp, R_num, a_r and run, are used to construct the SVEs

necessary to run an arbitrary sized virtual Design of Experiements (DoE). The DoE

has three factors associated with strain amplitude (e_amp), strain ratio (R_num) and

NMI half-width (a_r). Each factor may have an arbitrary number of levels taking on

any of the permissible values as set by the user. At least one SVE is created for every

combination of factor levels. The number of microstructure instantiations created at

each point in the DoE is determined by the run parameter. The run parameter is the

set of sequential positive integers which provides a unique run ID to each microstruc-

ture created. By way of example, the input e_amp = [0.30, 0.45, 0.60], R_num = [−1],

a_r = [0.002], run = [1, 2, 3, 4, 5] generates five microstructure instantiations at each

of three strain amplitudes with R = −1 and rNMI = 0.002 mm, resulting a total of

15 parameterized SVEs.

4.1.1.2 Geometry Parameters

The geometry parameters d_grn, geom.O and geom.scen control the nominal grain

size, NMI centroid position and NMI matrix-interface condition respectively. The

SVE edge length is ten times d_grn in order to avoid undue influence of a single grain

on the SVE mechanical response behavior. The NMI origin (centroid) is set by geom.O

which is a vector in SVE global coordinates (X, Y , Z). The geom.scen parameter

is an integer which selects from five preset NMI interface conditions. The five preset

interface conditions are (1) completely bonded, (2) Top-only bonded, (3) Upper-half

debond, (4) all but bottom debond and (5) solid mesh without NMI. Figure 4.2

illustrates scenarios 2-4 and the resulting stress fields. The red highlighting indicates

the mesh regions where tie constraints are applied to create a bonded interface.
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Figure 4.2: Stress-fields around a cuboidal NMI with various interface
debonding scenarios. (2) Top-only debond. (3) Upper-half debond (4) All but

bottom debond. The NMI has been removed for clarity.

4.1.1.3 Mesh Parameters

The mesh parameters mesh.n_inc_el and mesh.n_edge_el set the number of ele-

ments to mesh across the NMI and the SVE edge respectively. The ratio of these

two parameters together with the differences in edge lengths of the NMI and SVE

controls the mesh density gradient from the SVE edge to the NMI-matrix interface.

4.1.1.4 Grain Packing Parameters

The grain packing parameters are used to pack each SVE with ellipsoidal grains drawn

from distributions of grain size and shape, which are best approximations of experi-

mentally characterized grain size and shape distributions as described in section 2.1.1.

The parameter n_grains sets the total number of grains to pack in each SVE, while

the Max_Iter parameter establishes the maximum allowable placement attempts for

each grain. The parameters z_alpha and w_beta are the shape parameters α and

β of the beta distribution which is used to control the semi-aspect ratios b/a and
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c/a of grain ellipsoids. The beta distribution is defined on the interval [0, 1] and has

cumulative distribution function

Fβ(x;α, β) =
B(x;α, β)

B(α, β)
(4.1)

where B(x;α, β) is the incomplete beta function defined as

B(x;α, β) =

∫ x

0

tα−1(1− t)β−1dt (4.2)

and B(α, β) is the beta function, expressed as

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (4.3)

with the requirements that α and β are real numbers greater than zero.

4.1.1.5 Texture Parameters

Texture parameters are used to generate the crystal orientations of the grains to

match experimentally characterized texture distributions as described in section 2.1.1.

Past studies [10,15] have employed random grain texture for bulk materials, but the

strong fiber texture of MP35N necessitates a reconsidered approach. A new texture

algorithm was developed that allows the user to generate SVEs with any number of

grain orientation bins weighted by relative frequency in order to approximate texture

component by volume-fraction breakdowns from EBSD scans such as that given by

Fig 4.3.

The algorithm is best understood by examining the steps involved sequentially:

1. Choose the number of distinct grain orientations to generate using n_Orient as

well as the number of bins (q) for texture components. The value of n_Orient

defaults to n_grains, but can be made smaller.

2. Select q crystal direction vectors (Miller indices) in the fcc coordinate system to

become the center of each texture component bin. The Miller indices are with

reference to the global Y axis of the SVE and form the q × 3 array hkl.
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Figure 4.3: Volume fraction breakdown of texture components for four
different MP35N wire samples with four texture components each. From [7].

3. Define the extent of each bin using dTheta, the 2σ angular deviation (in degrees)

of a normal distribution centered on the Miller indices in hkl.

4. Designate the volume fraction of each texture component relative to the whole

using the q × 1 array T_frac. The ith entry in T_frac corresponds to the ith

Miller index in hkl and the summation of all entries in T_frac must be unity.

5. Bin the total number of distinct grain orientations to be generated into the q

crystal texture bins by multiplying each of the elements in T_frac by n_Orient.

6. Generate the appropriate number of individual grain orientations (expressed as

crystal direction vectors) for each bin by sampling from the normal distributions

of each Miller index in hkl.

7. Express each individual crystal direction vector in Euler angles (φ1,Φ,φ2) in the

Bunge convention.

4.1.1.6 Loading Parameters

The loading parameters are used together with the e_amp and R_num parameters to

define the loading profile to apply to each SVE. The loadp.e_dot parameter defines

the true strain rate to use at each ABAQUS load step. The loadp.tmax parameter

establishes the maximum allowable time for an ABAQUS time increment, and the
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loadp.e_yield parameter provides the 0.2% offset yield strain as obtained from

tensile tests. Unlike the DoE parameters, the Load parameters remain unchanged

between successive SVEs.

4.1.2 Instantiation of Statistical Volume Elements

An SVE is instantiated by generating a block of tetrahedral mesh containing an NMI

surrounded by a crystal-plasticity region. The crystal plasticity region is subsequently

packed with ellipsoidal grains by assigning distinct materials to ellipsoidal element

subsets of the CP region. The location, size, semi-axes ratios and physical orientation

of these ellipsoids are controlled by an ellipsoidal grain packing algorithm. This

algorithm was developed by Przybyla [15] and modified to work with tetrahedral

elements. A cut-section view of an exemplary microstructure instantiation is shown

in Figure 4.4. The grain packing algorithm consists of the following steps:

1. Determine the number of grains to pack. The total number of grains

packed depends on the size of the SVE and the grain size distribution estab-

lished.

2. Assign a target volume to each ellipsoidal grain. The target volume

of each ellipsoid is obtained by converting the grain diameter value sampled

from the experimental grain diameter distribution. The conversion equation is

Vtarget = 4π
3

(dgrn
2

)3.

3. Scale each target volume to a packing volume. The target volume is the

idealized volume for the completely packed SVE. It is impossible to perfectly

pack a volume with ellipsoids without overlap. Therefore each volume is scaled

down by a factor to account for imperfect packing.

4. Sort the list of ellipsoid grain volumes in descending order. For greatest

packing efficiency, the largest ellipsoid is packed first.
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Figure 4.4: Cut-section view of an exemplary microstructure instantiation
with 1000 grains. Grains are delineated by color. The cuboidal TiN NMI

particle is shown in grey in the center. The width of the NMI is 4 µm and the
SVE is 20 µm on each side.

5. Assign ellipsoid shapes. Ellipsoid morphologies are defined by the semi-axis

ratios b/c and c/a. These axes ratios are sampled from a beta distribution which

is a best estimate of MP35N grain morphology since experimental grain aspect

ratio data was unavailable. The beta distribution parameters are discussed in

Sec 4.1.1.4.

6. Assign crystal orientation. Each grain is assigned a set of Euler angles in

Bunge convention (φ1,Φ, φ2) based on the output of the texture generation algo-

rithm in section 4.1.1.5 defining the crystals rotation from the global coordinate

axes. This is unrelated to the semi-axes orientation.
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7. Seed an ellipsoid into the SVE. Ellipsoids are placed in decreasing order of

volume to maximize packing efficiency. A random seed point (X0, Y0, Z0) within

the bounds of the SVE is chosen as the ellipsoid centroid. At the same time, a

random orientation of the semi-axes is picked.

8. Check for grain overlap. The newly placed ellipsoid must not overlap with

any previously packed grains. To check this, it is required that every element

within the ellipsoid boundary Rb is unassigned. If overlap occurs, a new random

seed point is chosen.

9. Assign elements to current grain. If no elements within Rb are previously

assigned, the space is available. All elements inside Rb are assigned to the

current grain.

10. Repeat steps 7-9 until all ellipsoids have been placed or the jamming limit

is reached. The jamming limit sets the number of grain placement attempts

allowed for a single grain. If this limit is reached and not all grains have been

placed, the algorithm quits because not enough empty space remains to finish

grain placement.

11. Grow grains until all CP elements are assigned. At this point, all ellip-

soids have been placed, but some unassigned elements remain between them.

To fill the SVE volume, these remaining elements are assigned to their nearest

grains. In this way, the grains ”grow” uniformly to fill the SVE.

A 2-dimensional illustration of the grain placement scheme, and associated coor-

dinate systems used is shown in Figure 4.5. As long as the element centroid falls

within the ellipsoid boundary Rb, it is considered to belong to the current grain.

As stated, the grain packing algorithm attempts to match an experimental grains

size distribution. Because of the domain discretization imposed by the finite element
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Figure 4.5: 2D illustration of ellipsoid grain placement showing coordinate
systems and naming conventions used. For clarity, only a few elements are

shown, and the inclusion is excluded.

mesh an exact match of the experimental distribution is not possible. However,

a reasonably close match can be obtained, provided by the appropriate number of

grains are input. Figure 4.6 compares the achieved grain size distribution to the

target distribution for a representative microstructure instantiation with 1000 grains.

The achieved distribution falls short of the target distribution for grains with volume

Vgrn ≤ 0.5 × 10−8 mm3 and exceeds it for grains with volume 0.5 < Vgrn ≤ 1 ×

10−8 mm3. This shifted grain size distribution is consistently present in all 1000 grain

SVEs with a volume of 20 µm3. Grains with volumes below 0.5 × 10−8 mm3 are

undesirable from a mesh quality standpoint since it means the grain consists of only
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a handful of elements.

Figure 4.6: PDF of a representative microstructure instantiation with 1000
grains comparing the achieved grain size distribution to the target distribution.

Grain morphology of the ellipsoids are specified by the ratios b/a and c/a, where

a, b, c are the semi-axes of the ellipsoid, satisfying a > b > c. These axes ratios

are taken from a beta distribution which is a best estimate of actual MP35N grain

aspect ratios since experimental grain aspect ratio data is not available. The values

of the shape parameters α and β used in the beta distribution are listed in Table

4.1. A point cloud of the targeted semi-axes ratios from an exemplary 1000 grain

microstructure instantiation is presented in Figure 4.7. All points lie below the line

b/a = c/a since b > c in all cases. Actual semi-axes ratios may deviate slightly from

the targets due to the grain growth step.

4.1.3 Mesh Quality Study

The finite element mesh utilized in this model is comprised of linear tetrahedral con-

tinuum elements (C3D4). These elements permit mesh refinement around areas of
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Figure 4.7: Targeted grain semi-axes ratios of a representative
microstructure instantiation with 1000 grains.

high stress concentration. However, they exhibit slow convergence with decreasing

mesh size, being linear with a single integration point. A study was conducted to

assess the influence of mesh size on the volume-averaged FS response, and to deter-

mine the minimum level of mesh refinement around the NMI necessary to achieve a

converged response. A mesh test microstructure block was constructed in order to

isolate the effect of mesh refinement from the effects of grain placement and texture.

The mesh test block features 64 cubic grains arranged in a 4 × 4 × 4 grid layout

with a 4 µm half-debonded cubic NMI in the center. Figure 4.8 shows a cut-section

view through the Z midplane of the mesh test block, with individual grains being

demarcated by color.

There are 8 grains adjacent to the NMI, which is debonded from the matrix above

the Y midplane, meaning that the upper 4 grains are disconnected from the NMI. The

mesh quality study examined 8 levels of mesh refinement corresponding to increasing
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Figure 4.8: Cut-section view of SVE generated for mesh quality study
showing 64 cubic grains and central NMI.

the number of elements along the NMI edge. Table 4.2 shows the mesh densities,

model size and run times for each of the 8 mesh density levels. The model size is the

total number of elements present in the model and is the sum of the matrix and NMI

elements. All mesh instantiations are evaluated over the third fully-reversed tension-

compression cycle with a loading amplitude of 0.55 εy to ensure non-zero plastic strain

values within the FS AVs. Grains retain the same position, size and crystal orientation

for all mesh density levels.

The mesh is most dense at the NMI edge and gradually becomes coarser towards

the SVE boundary. As the number of elements along the NMI increases, the model

size also increases, resulting in an increase in the run time. Figure 4.9 shows the

time to run the model for increasing mesh density. The models were run in a Linux
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Table 4.2: Summary of size and run-time measures for the eight mesh density levels

Mesh Density Level Elements
along
NMI
Edge

Elements
along
SVE
Edge

Model
Size

Matrix
Model
Size

Run
Time
(s)

1 9 12 27,924 24,880 1,513

2 11 12 34,951 29,987 1,924

3 13 16 62,235 54,054 3,533

4 15 16 78,184 66,871 4,585

5 17 16 89,012 73,718 5,204

6 19 16 99,395 79,122 7,140

7 21 20 144,947 120,027 11,193

8 25 20 169,320 131,036 21,935

high-performance computing environment utilizing parallel processing on a total of 40

CPUs. A mesh density of 17 elements along the NMI can be considered a transitional

value for computational efficiency. Above this value, the run-time begins to increase

rapidly, while below it the run-time increases slowly and stays below 5000 seconds.

Based on this data, it is seen that higher computational efficiency is achieved using

a mesh density at or below 17 elements along the NMI edge, so long as the volume-

averaged FS values using that mesh density can be considered converged.

Convergence of FS values can be evaluated by comparing the change in FS values

as mesh density is increased. Figure 4.10 shows the FS response of the Full-Face AV

along the X−, X+, Z−, Z+ NMI faces against the number of elements along the NMI

edge which can be thought of as the linear element density. The AV located along the

Z− face showed an elevated FS response compared to the other three faces, due to

higher levels of plasticity resulting from grains oriented favorably for slip. The other

three face volumes have nearly identical response values to one another. The Z−

Face AV and the others share a similar response profile as mesh density is increased,
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Figure 4.9: Run-time (in seconds) for increasing number of elements along
NMI edge.

however the profile is exaggerated for the Z− Face AV due to the intensified FS

response there. Between 9 and 11 the FS response is essentially unchanged. From 11

to 15, the FS response increases sharply by 50% from 0.8×10−3 to 1.2×10−3. Above

15, the FS response value stabilizes, rising only 13% over a linear element density

increase of 10. Based on this analysis, the FS response for the Full-Face AVs were

considered converged at a linear NMI density of 15 elements.

The FS value convergence response was also checked on the Mid AV to confirm

the smaller AVs with one-half NMI width behaved similarly. Figure 4.11 shows the

FS response of the Mid AV along each of the X−, X+, Z−, Z+ NMI faces, plotted

on the same axes as Figure 4.10. The Z− Mid-Face AV response has been translated

upward by roughly 0.2× 10−3 compared to the Z- Full-Face AV while maintaining a

similar profile shape. As in Figure 4.10, the FS response value rises between 11 to
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Figure 4.10: Volume-averaged Full-Face FS response for increasing number
of elements along NMI edge.

15 and flattens out at higher densities. The other three Mid-Face AVs responses are

nearly unchanged compared to their Full-Face counterparts. Because of this, a mesh

density of 15 elements along the NMI edge was the mesh density selected for use in

further studies, being the minimum mesh density needed for converged FS response

values.
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Figure 4.11: Volume-averaged Mid-Face FS response for increasing number
of elements along NMI edge.
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4.2 Constitutive Model Parameter Fitting

The parameters of the constitutive model outlined in Sec 3.2 were calibrated using a

combination of existing values from literature, first principles calculations, and itera-

tive fitting against cyclic mechanical test data. The material response is a function of

both the parameter values and the crystallographic texture of the microstructure, so

the parameter fits must be adjusted for significant changes in texture. Three distinct

model calibrations were performed: an initial calibration that was a first-order ap-

proximation targeting a microstructure with a single texture distribution around the

〈111〉, an intermediate calibration to improve the kinematic hardening response and

a revised calibration targeting a microstructure with multiple texture components in

the 〈001〉, 〈113〉 and 〈111〉. The parameter fitting for the initial, intermediate and

revised calibrations as well as the calibration experiments undertaken are described

in the following sections.

4.2.1 Calibration Experiments

Data from two main calibration experiments was collected on MP35N fine wire in

order to appropriately fit the constitutive model parameters to the material response

behavior. In order to calibrate the isotropic hardening behavior and the strain-rate

sensitivity, uniaxial tensile test data was collected from [14]. This test was conducted

on a 10 in length of low-Ti as-drawn MP35N wire in displacement control alternating

every 0.5% strain between high and low strain rates of 1.7× 10−3 and 1.7× 10−5 s−1

respectively. Figure 4.12 shows the stress-strain plot for the so-called strain-rate jump

test illustrating the jump test. The sensitivity of the stress response to the strain rate

becomes evident beyond 1% strain when the wire response is no longer purely elastic.

The parameters governing the kinematic hardening behavior were determined by

fitting to the model to cyclic tension-tension experiments. Two 10 in lengths of

low-Ti MP35N as-drawn wire were cycled in load control for 10,000 cycles under a
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Figure 4.12: Strain-rate jump test on low-Ti MP35N as-drawn wire with
strain rate alternating every 0.5% increment of strain. From [14].

R = Smin
Smax

= 0.5 load ratio. The tests had different maximum stress values of Smax
1 =

1400 MPa and Smax
2 = 1500 MPa referred to as LCF1 and LCF2, respectively. After

hundreds of cycles, the difference in accumulated strain between the two tests caused

by the non-zero mean stress could be compared to determine the increment of strain

over each cycle. Figure 4.13 shows the results of the first 300 cycles of each test.

The total accumulated strain for LCF 2 is larger than for LCF 1. To determine

the rate of plastic strain accumulation, the peak strain values for LCF 1 are plotted

against the base-10 log of cycles log(N) as shown in Figure 4.14. Each data point is

the peak strain over a single cycle. The rate of strain accumulation stabilizes to a

logarithmic relationship after ten cycles. A similar logarithmic fit was calculated for

LCF 2. The difference in strain accumulation between LCF 1 and LCF 2 was used

to calibrate the backstress evolution parameters.
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Figure 4.13: Strain Ratcheting Experiments showing the accumulation of
strain over 300 cycles for Smax

1 = 1400 MPa and Smax
2 = 1500 MPa.

Figure 4.14: Plot of log(N) vs peak strain (mm/mm) for the LCF1
experiment. The rate of strain accumulation stabilizes after 10 cycles.
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4.2.2 Initial Parameter Calibration

The initial model calibration was a first order estimate targeting a microstructure with

a single texture component distribution around the 〈111〉 orientation. The parameter

values for the initial calibration are given in Table 4.4.

Table 4.4: Values of the constitutive parameters for the initial model calibration
(UMAT v28)

C11 C12 C44 γ̇o n Do τo ρo

179,789
(MPa)

89,485
(MPa)

70,285
(MPa)

6.1× 1016

(s−1)
15 150

(MPa)
85.15
(MPa)

7.0×109

(mm−2)

αt µ b nk cgr dgr ftw

0.1 70,285
(MPa)

0.407
(nm)

1 9.432
(MPa

√
mm)

0.002
(mm)

0.1

Cχ ηo t ho k1 k2 k3

2 2.82 0.0001
(mm)

0.4 100,000
(mm−1)

3.162 0.1

Parameters n, Do, τo, αt, b, nk, cgr, Cχ, ηo and ho are unchanged from the values

in [21] used for IN100. The values of these parameters for MP35N are expected

to be similar to those for IN100, since both are fcc alloys containing significant Ni

content. Parameters dgr, ftw, t and k3 were added to account for the strengthening

effect of the small grain size and nano-scale twins. The value of dgr was set to the

median grain size of 2 µm and t was given a value of 10 nm consistent with the twin

spacing revealed by TEM [14, 23]. The values of ftw and k3 were chosen to reflect

physically reasonable values. The shear strain rate coefficient γ̇o is set to 6.1×1016 s−1.

The initial dislocation density ρo was given a value of 7.0 × 109 mm2 reflecting the

high initial dislocation density from 36% cold work in the as-drawn MP35N wire.

Additional cyclic deformation from fatigue type loading is not expected to further

increase ρ, so the ratio of k1 and k2 is selected such that ρ saturates above ρo.

The values of the elastic parameters C11, C12 and C44 needed for the 4th rank
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elastic stiffness tensor C were established by density functional theory (DFT) using a

calculation methodology derived from the technique in Wang et al. [26] since values for

MP35N were not available in literature. A non-linear weighted average interpolated

between values of elastic constants found for pure fcc Ni, Co, Cr, Mo and binary

alloys Ni-31Co, Ni-31Cr and Ni-31Mo. The results are presented in Table 4.5.

Table 4.5: Results of DFT atomistic calculations for Ni-35Co-20Cr-10Mo alloy
calculated at 0 Kelvin (ShunLi Shang, personal communication, 14 August 2013).

Alloy Composition C11

(GPa)
C12

(GPa)
C44

(GPa)
Volume
(Å3/atom)

fcc Ni 279.2 160.1 130.6 10.917

fcc Co 296.6 171.9 144.0 10.901

fcc Cr 110.7 241.5 -36.5 11.917

fcc Mo 120.9 305.1 13.7 16.195

fcc Ni31Co 279.9 156.0 130.9 10.915

fcc Ni31Cr 280.5 160.2 130.1 10.925

fcc Ni31Mo 276.6 162.5 123.5 11.053

fcc Ni-35Co-20Cr-10Mo 280.92 139.82 109.82 11.263

Based on these values of the elastic constants, the anisotropy ratio of MP35N can

be calculated as

A =
2C44

C11 − C12

= 1.56 (4.4)

The theoretical calculation of the elastic coefficients C11, C12, and C44 for 0 Kelvin

given in Table 4.5 resulted in an effective elastic modulus that was too high when

compared to uniaxial tensile tests conducted at ambient temperature. In order to

improve the elastic modulus fit, the values of all elastic coefficients were scaled by a

factor of 0.64. The resulting values retain the same anisotropy ratio as Eq. 4.4 and

are provided in Table 4.4.
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4.2.3 Intermediate Parameter Calibration

An intermediate calibration was undertaken to improve isotropic and kinematic hard-

ening behavior of the model to the monotonic tensile and cyclic tension-tension tests.

Several parameters were adjusted from the initial fit of Table 4.4 including γ̇o, n,

Do, τo, ρo, ηo and the elastic constants. The adjusted parameter values used in the

intermediate calibration are given in Table 4.6. Comparisons of the model fits using

the initial and intermediate model calibrations against the strain-rate jump and LCF

1 experiments are provided in Figures 4.15 and 4.16, respectively. In these plots, the

terms ”original” and ”latest” refer to the initial and intermediate parameter calibra-

tions.

Table 4.6: Values of the constitutive parameters for the intermediate model
calibration (UMAT v110)

C11 C12 C44 γ̇o n Do τo ρo

165,406
(MPa)

82,326
(MPa)

64,662
(MPa)

7.2× 1016

(s−1)
18 195

(MPa)
75.15
(MPa)

3.0×109

(mm−2)

αt µ b nk cgr dgr ftw

0.1 64,662
(MPa)

0.407
(nm)

1 9.432
(MPa

√
mm)

0.002
(mm)

0.1

Cχ ηo t ho k1 k2 k3

2 68.0 0.0001
(mm)

1 100,000
(mm−1)

1.0 0.1

An increase of the flow exponent n from 15 to 18 improves the rate sensitivity

of the model as evidence by the deeper trough features in the ”latest” model fit.

The amount of isotropic hardening seen post-yield is also increased by enhancing the

value of ηo to better reflect the experiment. The value of the elastic coefficients C11,

C12 and C44 are reduced proportionately from the initial fit, resulting in a poorer

fit of the elastic portion of the curve. This reduction was a compromise in order to

better fit the cyclic value of the elastic modulus in Fig 4.16. In this plot, the first
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Figure 4.15: Comparisons of the initial and intermediate parameter
calibrations to the rate jump uniaxial tension test. Experimental data

from [14].

300 cycles of the LCF 1 experiment have been plotted, together with fits for the

initial and intermediate parameter calibrations. The model fits extend to 24 cycles.

The model fit from the intermediate parameter calibration shows improved fits for

the cyclic portion of the data past the initial load in terms of the amount of strain

accumulation over a cycle.

4.2.4 Revised Parameter Calibration

A third calibration of the constitutive model parameters was conducted targeting

a microstructure with multiple texture components. The parameter values for the

revised model calibration are given in Table 4.7.

The values of the elastic coefficients have been enhanced from the initial fit to 0.85

from the theoretical values computed for 0 Kelvin. This adjustment was necessary to
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Figure 4.16: Comparisons of the initial and intermediate parameter
calibrations to the LCF1 strain ratcheting experiment.

Table 4.7: Values of the constitutive parameters for the revised model calibration
(UMAT v110e)

C11 C12 C44 γ̇o n Do τo ρo

237,321
(MPa)

118,120
(MPa)

92,756
(MPa)

7.2× 1016

(s−1)
18 195

(MPa)
75.15
(MPa)

3.0×109

(mm−2)

αt µ b nk cgr dgr ftw

0.1 92,756
(MPa)

0.407
(nm)

1 9.432
(MPa

√
mm)

0.002
(mm)

0.1

Cχ ηo t ho k1 k2 k3

2 68.0 0.0001
(mm)

1 100,000
(mm−1)

1.0 0.1

correct for the inherent reduction in elastic stiffness from reduced volume fraction of
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〈111〉 texture. The sensitivity of the effective elastic modulus to changes in crystal-

lographic texture can be seen from Fig 4.17 which plots the results of the rate jump

test run on a 1000 grain SVE for pure 〈111〉, pure 〈001〉 and mixed texture using the

intermediate fit of the elastic constants found in Table 4.6.

Figure 4.17: Sensitivity of the effective elastic modulus to SVE texture.

The material stiffness is highest for a pure 〈111〉 crystallographic texture, and

reduces as the volume fraction of 〈111〉 is reduced to zero.
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CHAPTER V

RESULTS AND DISCUSSION

5.1 FIP-Life Correlations

Several studies were undertaken using the newly developed CPFEM model in order

to assess its efficacy for generating fatigue-life correlations in MP35N fine wires. The

model results were compared to MP35N fatigue data available in literature and are

presented in this chapter.

5.1.1 Effect of Inclusion Proximity to Surface

A parametric study was conducted to investigate the ability of the model to predict

the effect of NMI surface proximity on fatigue life. The aim of the study was to

replicate the inclusion surface proximity versus fatigue life trend of Full-Ti MP35N

wire as demonstrated experimentally by the solid trend line in Figure 2.9. A Virtual

Design of Experiments (VDoE) was created with four levels Li corresponding to

different NMI distances from the wire surface. Twenty microstructure instantiations

were run at each level, in order to estimate the median fatigue life and scatter.

Each microstructure instantiation is a 20 µm3 SVE occupying a volume immedi-

ately adjacent to the outer surface of the MP35N wire. The positive X-face is along

the wire outer surface, and all other SVE faces are interior. Periodic boundary con-

ditions are prescribed for the Y and Z faces and all edges. The positive X-face is

traction-free and unconstrained, while the negative X-face is given a node-wise dis-

placement boundary condition to mimic a periodic boundary. The negative X-face

displacement boundary conditions are extracted from a reference analysis having fully

3D boundary conditions but identical mesh and loading history.

Each SVE was instantiated with 1000 grains according to the ellipsoid packing
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method described in Sec 4.1.2. The grains were given a fiber texture with a single

texture component normally distributed about the {111} orientation with standard

deviation defined such that 2σ = 15◦. The full set of constitutive parameter values

used in the study are given in Table 4.4.

The NMI distance from the wire surface xsurf was defined as the perpendicular

distance from the wire surface to the nearest point of the NMI. Similarly, the centroid

distance xc was defined as the perpendicular distance from the wire surface to the

NMI centroid. These and other geometry parameters for the NMI are illustrated in

Figure 5.1. NMI size was fixed at 4 µm for all VDoE levels. The NMIs were oriented

such that the inclusion faces were parallel to the SVE faces. All NMIs had their upper

halves debonded from the matrix, as described in Sec 3.3.2. Values of the parameters

relating to the NMI position at each level of the VDoE are given in Table 5.1.

Figure 5.1: Subset of an SVE showing definitions of TiN particle geometry
as related to the wire surface.

The loading profile applied to each microstructure instantiation was in the form

of three fully-reversed R = −1 displacement controlled cycles. Figure 5.2 shows the

form of the loading profile applied to the SVEs. This history is intended to replicate
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Table 5.1: Values of NMI geometry parameters at each level of the virtual DoE

Li 1 2 3 4

xsurf 0.75 µm 1.5 µm 2.0 µm 4.0 µm

xc 2.75 µm 3.5 µm 4.0 µm 6.0 µm

rNMI – 2.0 µm –

dNMI – 4.0 µm –

loads experienced under RBBF by a small surface volume. Loading was applied along

the global Y-axis, parallel to the wire neutral axis at the bend apex. The assumption

that spin-fatigue fractures occur predominantly near the bend apex where loads are

fully reversed and orthogonal to the neutral axis is supported by Schaffer [19] and is

maintained in this study.

Figure 5.2: Loading profile applied to each SVE to simulate RBBF. Points A
and B are the step endpoints used in the FS FIP calculations.

The magnitude of the loading amplitude at level Li calculated based on the far-

field stress SY Y at the NMI centroid. Since the main difference between each VDoE

level is the NMI proximity to the wire surface, the load amplitude will be different for
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each level. The far-field stress parallel to neutral axis of a wire in rotating bending is

a strong function of the depth x beneath the wire surface. At the outer fiber, SY Y is

a maximum, equal to the stress amplitude Sa in Eq. 2.3. At the neutral axis SY Y is

zero. In general, neglecting microstructural inhomogeneity, the far-field stress SY Y is

a linear function of depth x beneath the wire surface, expressed as

SY Y (x) = − Sa
rwire

(x) + Sa (5.1)

where rwire is the radius of the wire undergoing RBBF, and the quantity − Sa
rwire

is the

far-field stress gradient along the x-axis. In the ideal case, the SVE would be loaded

with a linearly varying load along X as described by Eq. 5.1. However, non-uniform

loads are incompatible with periodic boundary conditions due to the need to drive

displacement boundary conditions from a single reference node. In order to maintain

periodic boundary conditions while matching the stress state in the region of interest

as closely as possible, the displacement on the reference node was determined by

conversion from the far-field stress at the NMI centroid. This value was computed by

inputting the appropriate value of xc for each level Li of the VDoE, such that

SLiY Y = − Sa
rwire

(xLic ) + Sa (5.2)

The far-field stress value determined for each level was converted into a strain ampli-

tude and then to displacement amplitude by

εa =
SLiY Y
E

(5.3)

and

Ya = 20 µm · εa (5.4)

with E being the elastic modulus of the MP35N wire and 20 µm being the length

dimension of an SVE along the loading axis. This step was taken to closely match
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of the far-field stresses in the FS AVs positioned along the NMI debond perimeter to

the actual localized stresses generated by the RBBF experiments. Table 5.2 presents

the relationships between the beam-bending stress amplitude at the wire apex, NMI

surface proximity and SVE applied stress and strain amplitudes for the VDoE.

Table 5.2: Relationships between beam-bending stress reported at the wire apex
(Sa) and stress (SY Y ) and strain (εa) amplitudes applied to the SVE

Li xsurf

(µm)
Sa

(MPa)
SY Y

(MPa)
εa
(% of εy)

1 0.75 620 586 0.331

2 1.5 620 577 0.325

3 2.0 620 570 0.322

4 4.0 620 546 0.308

The fidelity near the NMI comes at the expense of accuracy far from the NMI

centroid along the X axis, but this is considered acceptable since the material response

in these regions does not enter into the FS calculations. Figure 5.3 shows how the

SVE stress amplitude used in the study compares to the SY Y stress gradient between

the outer surface and the neutral axis.

Twenty microstructure instantiations were run at each of the four NMI depths

0.75, 1.5, 2.0 and 4.0 µm. The maximum volume-averaged FS parameter was com-

puted for each run as described in Sec 3.3.1 and Sec 3.3.2. Figure 5.4 shows the EV

FS values plotted against NMI distance from surface.

The EV FS values plotted in Figure 5.4 were correlated to fatigue life values

through the Modified Tanaka-Mura approach from Sec 3.5. The correlation to life

was performed at the 0.75 µm level assuming negligible propagation life. The median

EV FS value was correlated to the linear regression fit the experimental data points

with dgr = 1.5 µm. A correlation coefficient α = 1.129×10−5 µm–cycles was found to
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Figure 5.3: Selection of stress amplitude for an SVE. Stress amplitude SY Y
decreases linearly with NMI depth xc due to the stress gradient generated in

bending. Note that the x axis for depth is opposite the global X axis.

correlate well to experiment. The three remaining VDoE levels were correlated using

the same values of α and dgr. The resulting life-correlations are plotted against the

experimental data points in Figure 5.5.

As expected, the life-correlation results show increasing life values as the NMI

depth from the free surface is increased. Moreover, the model results show good over-

lap with the linear regression trend computed from the experimental data points at all

depths considered in the VDoE. The minimum lives predicted by the model at each

level is below the 5% confidence bound. This indicates that the model gives a more

conservative prediction of minimum fatigue life than the regression fit. The accuracy
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Figure 5.4: Extreme-value FS parameter values for four distinct NMI depths
and corresponding stress amplitudes

of the trendlines derived from experiment could be improved if more experimental

fatigue data points were obtained having a failure initiating from a near-surface TiN

inclusion. Similarly, confidence in the minimum life value predicted by the model at

each NMI depth could be improved by running additional microstructure instantia-

tions at that condition.

The distribution of lives at each NMI depth can be further investigated by exam-

ining the empirical CDFs and fitting GEV distributions. The GEV distributions are

fitted to the data using Statistics Toolbox feature of MATLAB. The empirical CDFs

along with the fitted GEV distributions are plotted in Figure 5.6.

Plotting the CDFs allows for comparison of the probability of failure at a given
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Figure 5.5: Life correlations of the model fit to experimental data. The
modified T-M fit is performed at the 0.75 µm level resulting in a correlation

coefficient α of 1.129× 10−5 µm-cycles.

number of cycles Nf among differing NMI depths from the wire surface. Based

on the figure, the probability of failure at 1 × 107 cycles is predicted to be 1 for

xsurf = 0.75 µm, 0.94 for xsurf = 1.5 µm, 0.85 for xsurf = 2.0 µm but only 0.07

for xsurf = 4.0 µm. This result demonstrates that the probability of failure drops

off drastically once xsurf reaches or exceeds dNMI . This is consistent with past stud-

ies [18], which have found that fully embedded NMIs with xsurf ≥ dNMI are associ-

ated with substantially lower fatigue potencies than those close to the surface. The

reduction of fatigue potency with increasing depth is enhanced by the stress gradi-

ent in RBBF fatigue. These stress gradients are not present in fatigue specimens in

tension-compression or tension-tension fatigue. The fitting parameters for the GEV

distributions are given in Table 5.3.

Gumbel CDFs were also fit to the data and the fit was compared to the GEV
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Figure 5.6: CDFs of the Fatigue-life correlations with corresponding GEV
distributions.

Table 5.3: Fitting Parameters for GEV CDFs

xsurf (µm) µ σ ξ Type

0.75 2.554× 106 1.679× 106 −0.214 III (Weibull)

1.5 2.727× 106 1.780× 106 0.314 II (Fréchet)

2.0 4.937× 106 2.250× 106 0.250 II (Fréchet)

4.0 1.668× 107 6.336× 106 −0.131 III (Weibull)

case. The fit is shown in Figure 5.7. By comparing to Figure 5.6, it can be seen that

the GEV CDFs give a better fit, especially at probabilities of failure from 0 to 0.2.

The Gumbel distribution fit is especially poor for xsurf = 1.5µm.

The Gumbel distributions predict no minimum life value for the values of xsurf

investigated because the CDFs approach zero probability of failure slowly as Nf

goes to zero. Table 5.4 lists the fitting parameters for the Gumbel distributions. The
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restriction of ξ to 0 results in the poor fits to the empirical CDFs at the low likelyhood

end of the distributions.

Figure 5.7: CDFs of the fatigue-life correlations with fitted Gumbel
distributions.

Table 5.4: Fitting Parameters for Gumbel CDFs

xsurf (µm) µ σ ξ

0.75 4.163× 106 1.733× 106 0

1.5 6.394× 106 4.273× 106 0

2.0 8.600× 106 3.712× 106 0

4.0 2.337× 107 7.511× 106 0

5.1.2 Identifying the Crack Incubation to Microcrack Growth Transition

A second study was conducted to identify the transition life between fatigue crack

incubation and microcrack growth regimes using Eq. 3.12 to correlate to an additional
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MP35N fatigue-life dataset. The transition life value Nt can be considered as the value

of Nf where dominant fatigue mechanism switches from large-scale plasticity and

microcrack growth to crack incubation due to highly localized damage accumulation

[24]. Previously, this quantity was estimated by equating the stress-life and strain-life

equations and solving for Nt, but the use of a constitutive fatigue model offers an

alternative basis for its estimation which explicitly considers the underlying fatigue

mechanisms. Because the FS parameter as employed in this model directly equates

the accumulation of localized cyclic shear strain with crack incubation potency most

associated with incubation, the transition life Nt may be identified as the point of

divergence between the experimental S-N curve and the model T-M correlation to

the incubation regime. At stress amplitudes above this transition, fatigue life is

dominated by the cycles to propagate the crack through the wire, with the result

that the model produces overly conservative life estimates based on incubation life.

The experimental fatigue-life data used in this study was obtained from Prasad et

al [14]. They conducted RBBF on 100 µm diameter as-drawn low-Ti MP35N wire at

seven stress amplitudes ranging from 1650 MPa (the 0.2% offset yield strength) down

to 550 MPa. They also performed tension-tension fatigue (TTF) with a stress ratio

R = 0.3 on the same wire. An S-N diagram of the fatigue data is presented in Fig

5.8. Here, squares represent the RBBF data and circles represent TTF. Filled shapes

indicate fractures and open shapes indicate runouts. The runout criteria for these

experiments was 1 × 107 cycles. Note that RBBF tests are displacement controlled,

with displacement amplitude being converted to stress amplitude for comparative

purposes, as described in Sec 2.2. The displacement controlled nature of RBBF means

that the stress intensity factor range, defined as ∆K = Kmax − Kmin and linked to

the rate of crack growth per cycle da
dN

via the Paris law relation, likely decreases as

the crack grows due to the increased compliance of the wire with larger crack size.

In contrast, TTF are force-controlled tests, with ∆K generally increasing with crack
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growth. Because the increased rate of crack growth as well as the positive mean

stress, it is expected that the life to failure in TTF is controlled by crack formation

at all stress amplitudes and does not exhibit a crack growth dominated regime.

Figure 5.8: Prasad et al. S-N data for as-drawn low-Ti MP35N wire [14].

Comparing the RBBF and TTF fatigue data in Fig 5.8, it is seen that the TTF

life distribution is below that of the RBBF at every comparable stress amplitude.

One contributing factor is the difference in the highly stressed volume due to the

test geometry. For equivalent Smax, assuming uniform spatial defect distributions,

the likelihood of finding a fatigue hotspot with sufficient driving force to nucleate a

fatigue crack increases in proportion to the size of the highly stressed volume. A larger

highly stressed volume samples a much larger subset of the defect population within

an individual test specimen and biases the fracture initiation toward higher potency

flaws leading to earlier crack nucleation and reduced fatige life. In addition, the

likelihood of multiple cracks forming independently and later coalescing into a single
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large crack increases when the highly stressed volume occupies a significant portion

of the overall specimen. In TTF, the full wire cross section along the entire 255 mm

gage length between the grips is subject to the maximum stress Smax. In contrast,

only a small portion of the wire near the wire surface and the bend apex approaches

Smax in RBBF tests. The difference in highly stressed volume can be estimated by

computing the ratio VTTF : VRBBF. For a 100 µm diameter wire, VTTF = π (ro)
2 `gage =

π · (0.05 mm)2 · (255 mm) ≈ 2.0 mm3. An approximation for VRBBF can likewise be

made considering an annulular cross-section 5 µm from the outer wire radius over a

length extending 5 mm on either side of the bend apex. The latter assumption is

supported by Schaffer’s finding that 90% of RBBF fractures occur less than 5 mm

from the bend apex [19]. Based on these assumptions VRBBF is then calculated as

VRBBF = π
[
(ro)

2−(ri)
2
]
`apex = π ·

[
(0.05 mm)2−(0.045 mm)2

]
·(10 mm) ≈ 0.015 mm3.

This provides an estimate of the highly stressed volume ratio with VTTF being 133

times greater than VRBBF.

Microstructures for the model correlation were instantiated as described in Sec

5.1.1 except that all NMIs were centered in the SVE and fully 3D periodic boundary

conditions were prescribed. Ten microstructure instantiations were generated at each

of five stress amplitudes 1000, 820, 680, 620 and 550 MPa, corresponding to the

five lowest stress amplitudes in the Prasad data. No stress adjustments for the NMI

depth from the wire surface as in Eq. 5.1 were undertaken, instead the far-field stress

at the NMI was set equal to the fully-reversed stress amplitude at the wire surface.

In other words, each SVE was instantiated with a 4 µm cuboidal inclusion with a

applied load commensurate with that at the wire surface, but neglecting the traction-

free boundary which was modeled in the prior study. In testing it was found that

the impact of boundary effects on local FIP response was overwhelmed by the much

larger effect of changing the alternating stress amplitude. The constitutive model

parameters for this study are given in Table 4.7 and were selected to reflect a wire
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with significant texture components in the 〈001〉, 〈111〉 and 〈113〉 directions with

respect to the wire neutral axis.

The EV FS responses for two separate values of the FS stress weighing coefficient,

k∗ are plotted in Fig 5.9 at the five RBBF stress amplitudes in order to assess the

model sensitivity to k∗ (datasets have been offset in the y-axis for clarity). The EV

FS parameter values are largely unchanged between the two datasets. Based on this

comparison, it is seen that the FS parameter has a low sensitivity to the choice of k∗

for all stress amplitudes evaluated. Therefore, the following T-M life correlations will

use k∗ = 1 for consistency with those in Sec 5.1.1.

Figure 5.9: Comparison of Extreme-Value FS parameter responses using
weighting coefficients k∗ = 1 and k∗ = 0.2.

The T-M correlation of the model EV FS response to the Prasad RBBF data was

undertaken at the 620 MPa stress amplitude because it was the lowest stress amplitude

without runouts which generally are found to be dominated by crack formation. Using

68



dgr = 2 µm, the correlation coefficient α was found to be 4.995 × 10−7µm-cycles.

Figure 5.10 shows the resultant fit with the model results plotted as crosses. The

model correlation shows good agreement with experimental data at 550 MPa but

begins to diverge at the 680 MPa stress amplitude. Above 680 MPa, the model

results are overly conservative compared the experimental data, suggesting that the

life is dominated by propagation life. This indicates that the transition from crack

formation to propagation for the RBBF data is within the range of life values in the

680 MPa stress amplitude. It is also noted that the slope of the model correlation is

close to that of the TTF data, indicating that the model would likely produce a good

fit to the TTF data for all stress amplitudes represented.

Figure 5.10: Fatigue-life correlation to Prasad et al. RBBF data at 620 MPa
with T-M correlation coefficient α = 4.995× 10−7 µm-cycles.

The overlap between the model correlation and the RBBF data is examined close

to the 680 MPa stress amplitude in order to estimate the value of Nt predicted by
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the model. Figure 5.11 shows a close-in view of the point of divergence between the

model and experimental data sets in Fig 5.10. From this figure, it can be seen that

the value of Nt is very close to 1 × 105 cycles. At life values below 1 × 105 cycles,

the model T-M correlation underpredicts the RBBF data indicating that microcrack

growth dominates the total life to failure. At life values above 1 × 105 the model

correlates well to the RBBF data, indicating that HCF mechanisms captured by the

model - namely crack formation due to localized cyclic slip accumulation - are the

main contributors to fatigue fracture. The RBBF fractures at the 680 MPa stress

amplitude represent the transitional stress where crack formation and microcrack

growth contribute to the total life in roughly equal measure.

Figure 5.11: Close-in view of the point of divergence between the T-M
correlation to the RBBF data at 680 MPa and 1× 105 cycles.

Another indication that the transitional stress amplitude occurs at 680 MPa is

provided by the increased scatter of the model data compared to the other stress
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levels. This can be seen intuitively by looking at either the life correlations in Fig

5.10 or the EV FS responses in Fig 5.9, but the EV FS response provides more

direct insight into the model behavior. To quantify the variability at a given stress

amplitude, a weighted EV FS variability parameter ΩFS is defined as

ΩFS(Sa,m) =
∆PFS(Sa,m)

P̃FS(Sa,m)
(5.5)

with Sa being the stress amplitude considered and m being the number of instanti-

ations run at that amplitude. The quantity ∆PFS is the range of EV FS parameter

defined as ∆PFS = max (PFS) − min (PFS) and P̃FS is the median of the EV FS

values. Weighting the observed scatter by P̃FS allows for a comparison to be made

between FS response parameters spanning several orders of magnitude. Figure 5.12

shows a bar graph of ΩFS using the k∗ = 1 FS response values for the five stress

amplitudes modeled with 10 microstructure instantiations each. From this plot, it

is seen that the weighted variability at 680 MPa is 5.03, which is more than twice

as large as the next largest value, 1.95, at 1000 MPa. Moreover, the value of ΩFS

at 680 MPa is more than three times larger than the values at its neighboring stress

amplitudes. The spike in ΩFS at 680 MPa suggests a heightened sensitivity of the EV

FS response to the microstructural features along the NMI debond interface, which

can be associated with a switch in the dominant fatigue mechanism.

The value of ΩFS is sensitive to the number of microstructure instantiations run.

Since only a small number of microstructure instantiations were run, the values ob-

tained should be treated as a comparative metric only and not representative of the

true fatigue variability. Adding additional microstructure instantiations will improve

the ΩFS estimates until the point when EV FS distribution becomes converged.
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Figure 5.12: Weighted variability (ΩFS) in EV FS response parameters at
the five stress amplitudes modeled with 10 microstructure instantiations each.
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CHAPTER VI

CONCLUSIONS

A physically-based, rate-dependent crystal viscoplasticity constitutive model was de-

veloped building off the work of Shenoy [21] which represents the isothermal mechan-

ical behavior of single-phase fcc MP35N alloy material. Deformation processes at and

above the grain scale are modeled, including accumulation of plastic shear strain on

preferred slip systems and isotropic and kinematic hardening. The model also ac-

counts for hardening due to nano-scale twinning through a homogenization approach.

The model parameters were fit to experimental monotonic tensile loading curves and

cyclic tension-tension experiments promoting strain ratcheting and adequately model

the material behavior under monotonic and cyclic loading conditions.

A microstructure generation tool was developed to construct statistical volume

elements (SVEs) reflecting the fine-grained microstructure and fiber texture charac-

teristic of MP35N fine wire. This includes (1) an algorithm for seeding ellipsoidal

grains by sampling from a lognormal distribution matched to experimentally charac-

terized grain size distributions for MP35N wire, (2) the ability to impose non-random

grain texture distributions mimicking MP35N EBSD scans with fiber texture, (3)

a scheme for placing hard non-metallic inclusions (NMIs) into SVEs with control

over the NMI-matrix interface, and (4) a meshing algorithm to maximize resolution

of stress gradients near the NMI while maintaining computational efficiency to run

fatigue loading cycles within the ABAQUS finite-element solver.

A modified Tanaka-Mura incubation life correlation methodology was employed to
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correlate the volume-averaged extreme-value Fatemi-Socie parameter near the NMI-

matrix interface with the HCF behavior of MP35N wire. The model correctly pre-

dicted the fatigue life behavior resulting from variation of NMI proximity to the wire

surface in full-Ti MP35N wires run under rotating beam bending fatigue (RBBF)

loading at 620 MPa. A significant reduction in fatigue potency was found when

NMIs became fully embedded (xsurf ≥ dNMI) in the wire, consistent with experi-

mental results. The same correlation scheme was also used to identify the transition

life Nt between crack incubation and microcrack growth dominated fatigue regimes

for low-Ti MP35N wire loaded in RBBF. The transition life was estimated to be

Nt = 1 × 105 cycles based on the point of divergence between the model correlation

at 680 MPa and the S-N curve. At life values above Nt, the model fit showed good

overlap with the experimental data, but a life values below Nt the model fit was overly

conservative for RBBF, indicating that crack formation was no longer the dominant

fatigue mechanism. It is anticipated that the model would correlate well to the TTF

dataset due to the reduced amount of microcrack growth present in force-controlled

modes of fatigue.
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CHAPTER VII

RECOMMENDATIONS FOR FURTHER STUDY

The results presented in this work are by no means an exhaustive exploration of all

applications and uses for the model. A number of recommendations for continued

study are put forth here which go beyond the scope of the current work.

7.1 Ranking of Microstructure Attributes by Fatigue Po-
tency

A ranking scheme to categorize and rank the microstructure attributes by fatigue

potency could be employed to identify the microstructure configurations with the

highest impact on fatigue life. The impact of NMI proximity to the free surface has

already been considered in Ch. 5. Additional microstructure attributes which may be

of interest include the morphology, size and composition of the NMI, the configuration

of the NMI-matrix interface, and the presence of other defect types such as surface

scratches or sub-surface voids. These attributes can be compared and ranked through

the use of extreme-value marked correlation functions as employed by Przybyla [16].

The use of these functions allows different microstructure attributes to be ranked

by their impact on fatigue and can also assess the impact of interactions between

microstructure attributes.

7.1.1 NMI Morphology

It is of interest to study the impact of inclusion morphology on fatigue crack initia-

tion potency. In addition to the cuboidal shapes considered in this work, spherical,

elliptical and octahedral inclusion geometries may also be considered. In the cases of

octahedral or cuboidal inclusions, the presence of sharp corners may add stress risers

75



in addition to those which are already present due to the strain mismatch between

the matrix and the embedded NMI particle. In these cases, the orientation of the

NMI with respect to the principle loading axis is an additional consideration that

should not be neglected.

7.1.2 NMI-matrix Interface

The condition of the NMI-matrix interface should also be considered in assessing

the microstructure for fatigue initiation potency. Interface delamination between the

matrix and the NMI particle can cause a heightened stress state and serve as an

embryonic crack from which the crack can propagate into the matrix. The extent of

the NMI-matrix delamination along with its orientation in relation to cyclic loading

axis dictates its potency to drive the generation and growth of fatigue cracks. Some

common interface conditions observed include fully bonded, partially debonded, fully

debonded and cracked NMIs.

While the present work has investigated partially debonded NMIs due to a pre-

liminary assessment that this condition represented a high driver for crack initiation,

the relative potency of these NMI-matrix interface conditions has not been rigorously

established. The microstructure generation tool has options to select from several

NMI-matrix interface scenarios on a cuboidal inclusion, and could be adapted to

mesh others. Figure 4.2 shows some of the NMI-matrix debonding scenarios available

in the microstructure generation tool.

7.1.3 Alternative Crack Initiation Sites

In the prior discussion, it has been assumed that fatigue cracks initiate at NMIs asso-

ciated with the generation of local stress risers and elastic mismatch strains. However,

other types of crack initiation sites are possible and are sometimes observed in fine

MP35N wires. Other defects which have been observed in MP35N wires are sur-

face scratches from the die drawing process and large grain-mediated crack initiation.
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Surface scratches act in a similar manner to notches. Fatigue crack initiation due to

notches was explored by Musinski [11]. The role of large-grain mediated crack forma-

tion in HCF can also be addressed using the current methodology, provided data on

large-grain distributions in the drawn wire is available.
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