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SUMMARY 

 

 Surface forces become important at small scales due to the small spacing present 

and high surface area to volume ratio. Liquid-mediated adhesion is defined as the 

adhesion between two solid surfaces in contact or close proximity in the presence of 

liquid film. Familiar examples in nature include: plants, which transport fluid from roots 

to leaves in opposition of gravity through xylem conduits, and soils whose strength 

characteristics depend on the way water interacts between solid particles. Among 

engineering systems, there are several small scale devices such as nano/micro-electro-

mechanical devices (NEMS/MEMS), magnetic storage head/disk interface (HDI), the tip 

of atomic force microscope (AFM) for which liquid films are present in confined regions 

during fabrication or during operation due to condensation (humid environment), 

contamination, or lubrication. In many small-scale devices, the presence of the liquid film 

causes excessive adhesive or friction forces, and “stiction” happens. Stiction is one of the 

main causes of the failure in these devices. On the positive side, in the operation of 

nanofluidic devices, capillary forces operating in submicron channels are used to pump 

liquids from one location to another.   

 In this study, a liquid film within the confined region defined by the interface 

between contacting elastic rough surfaces is considered. The wetting liquid film 

entrapped within the small spacing between the contacting surfaces possess large concave 

curvatures at the free surface, which in turn, causes large pressure drop across the free 

surface. The pressure drop can be quantified using the Laplace-Young relation. This 

pressure drop induces tensile stresses between the contacting surfaces, which leads to 



 xix 

reduction in spacing between the surfaces. Opposing these tensile stresses, are the 

compressive stresses developed at solid-solid contact spots. The interaction between 

these tensile and compressive stresses are studied both numerically and experimentally 

under static equilibrium condition and during capillary-driven flow. 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION  

1.1 Problem Motivation 

 Liquid-mediated adhesion or adhesion due to the wetting of solid-solid interfaces 

often arises in small scale devices, where the liquid film is interposed between two solids 

in close proximity. In small-scale devices such as nano/micro-electromechanical systems 

(NEMS/MEMS), magnetic storage head/disk interface (HDI), and the tip of atomic force 

microscope (AFM) [1-7], a liquid film could be present in confined regions during 

fabrication or during operation (see Fig. 1.1). Fig. 1.1a shows a liquid droplet bridging 

the gap between the tip of atomic force microscopy and the measured surface. Fig. 1.1b 

depicts a magnetic head-disk interface (HDI) and reveals a wear track that could be 

induced by excessive adhesion force caused by the presence of liquid film. A potential 

failure caused by large adhesive forces between surfaces in microelectromechanical 

system (MEMS) is shown in Fig. 1.1c. In many cases, the presence of liquid film causes 

excessive adhesive forces and device failure [8-14]. For instance, the well-known 

problem of high adhesion (stiction) in microelectromechanical systems (MEMS) and 

head/disk interface (HDI) largely depends on the forces induced by the presence of a thin 

liquid film [13,14]. Under certain conditions, the elastic surfaces of these devices may 

adhere together permanently and cause device failure.  

The interfacial liquid film could be present in these devices due to condensation, 

contamination, or lubrication. It would be beneficial to engineers of micro-devices to 

have a comprehensive mathematical model for the interaction between liquid film and 

elastically deforming rough surfaces in contact. It would be valuable to understand how 
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Fig. 1.1 Small-scale devices that are subject to liquid-mediated adhesion. 

AFM HDI MEMS 

(a) (b) (c) 

mechanical equilibrium is achieved for such an interface and thereby be able to predict 

the magnitude of adhesive forces at equilibrium.  

 

  

Liquid-mediated adhesion is also happens in natural systems (see Fig. 1.2). Examples 

include plants, which transport fluid from roots to leaves in opposition of gravity through 

xylem conduits (Fig. 1.2a). Soils whose strength characteristics depend on the way water 

interacts between solid particles (Fig. 1.2b). Adhesive pads of insects which allows them 

to walk on a vertical wall [15] (Fig. 1.2c). There pads could be hairy as are shown in the 

top three pictures in Fig. 1.2c or smooth as are shown in the bottom three pictures in Fig. 

1.2c. 
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Fig. 1.2 Natural systems that are subject to liquid mediated adhesion. 

 

 

The interaction between two surfaces in the presence of liquid film is considered in this 

work. The concentration is on the role of liquid film in regimes where gravitational 

effects are negligible, which corresponds to small vertical length scale. At micro and 

nano scales the surface forces tend to dominate the gravitational and inertial forces. This 

fact is readily seen by appealing to simple scaling arguments. Pressures arising from 

gravitational forces, for example, on a hemispherical droplet would be approximated by 

gR where,   is the mass density of the liquid, g  is the acceleration of gravity and R  

is the droplet radius. On the other hand, the liquid, having surface tension  , would 

experience a capillary pressure given approximately by R/2 , so that the ratio of 

hydrostatic pressure to capillary pressure would be on the order of  2/2gR . For a 
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m1  radius droplet of water, with 33 /10 mkg  and mmN /0727.0 , this ratio 

takes on a value of 8107.6  , or vanishingly small. Thus the micron and sub-micron 

realms are dominated by surface-driven effects, with gravity having essentially no 

influence. 

1.2 Literature Review 

 The effect of liquid-mediated adhesion between surfaces is studied both 

numerically [16-40] and experimentally [41-48]. The previous numerical models on the 

liquid mediated can be categorized based on the gross interface geometry (flat or curved), 

surface topography (smooth or rough), structural properties (rigid or deforming), 

meniscus type (constant-volume or constant-pressure), and separating process (quasi-

static or dynamic.  

 

1.2.1 Previous Numerical Work 

 Zheng and Streator [16-18] modeled the interaction between two elastic smooth 

flat and spherical surfaces in the presence of fixed volume of liquid to investigate the 

interface stability. Matthewson and Mamin [19] modeled the liquid film adhesion 

between two elastic rough surfaces where different regimes were identified by differing 

the quantities of liquid between the surfaces. Persson [22] studied the effect of relative 

humidity (RH) on the work of adhesion and the contact area between two elastic solids 

with randomly rough surfaces. DelRio et al. [25] presented a model for the capillary 

adhesion between contacting micro-machined rough surfaces and the effect of plastic 

deformation and relative humidity (RH) were studied. De Boer and De Boer [28] 

considered both constant volume and constant pressure capillary adhesion between 
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different rigid geometries (spheres and flats). Marmur [33] calculated the capillary 

adhesion force between the rigid spherical, paraboloidal, and conical tips and a rigid flat 

surface numerically. Poon and Bhushan [34] presented a numerical contact model for the 

contact between three-dimensional rough surfaces in the presence of a liquid film. Tian 

and Bhushan [35] used the same approach to study the effect of ultra-thin liquid film on 

the static friction of rough surface contact.  Streator [36] developed a model to account 

for the effect of an intervening capillary film on the friction force between a rigid, 

nominally flat, rough surface and an elastic flat.  Streator and Jackson [37] and Streator 

[38] used spectral and deterministic approaches, respectively, to model the contact 

between 2D elastic rough surfaces in the presence of a liquid film. The tensile force 

between the surfaces due to liquid-mediated adhesion is calculated and a “surface 

collapse” phenomenon is observed in their work which corresponds to a sudden jump in 

the tensile force between the surfaces. Streator [39] presented a model for the separation 

of a sphere from a flat in a fully flooded with the focus on the point of separation. Cai and 

Bhushan [40] investigated the dynamic separation of rigid rough surfaces in the presence 

of liquid film considering both meniscus and viscous effects. 

1.2.2 Previous Experimental Work 

 There has been a lot of experimental study on the liquid-mediated adhesion 

between contacting surfaces [41-51]. Bhushan and Dugger [41] measured the adhesive 

force between magnetic heads and thin film disks under different environmental 

conditions.  The adhesion forces between a smooth spherical particle and flat surfaces of 

alumina, silver, and titanium-coated Si wafers were measured with an atomic force 

microscope (AFM) under various humidity conditions are measured by Ata et al. [49]. 
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Yang et al. [42] used atomic force microscope (AFM) to measure the pull-off force 

between a nano-scale AFM tip and a silicon wafer in air and in ultrahigh vacuum (UHV).  

Xiao and Qian [50] have measured the adhesion force as a function of humidity for SiO2 

and OTE/SiO2 against an AFM Si3N4 tip. Nosonovsky and Bhushan [44] showed 

experimentally several examples of instabilities during liquid-mediated adhesion in nano 

scales.  Rabinovich et al. [45-47] verified the results of a simple theoretical model 

through the measurements of capillary force between glass microspheres and silica 

substrates.   

 

1.2.3 Deficiency in Literature 

 Despite the ample theoretical and experimental work on liquid-mediated 

adhesion, very little work has been performed considering (1) the liquid-mediated 

adhesion between contacting rough surfaces, and (2) the capillary-driven flow between 

contacting rough surfaces. Thus, there is a need to develop numerical models to predict 

the behavior of the contact interface for these cases, and to study the effect of different 

material and geometrical properties on the liquid-mediated adhesion.  

1.3 Problem Statement 

 In this work, liquid-mediated adhesion between two contacting rough surfaces is 

studied both numerically and experimentally. Numerical models are developed for the 

interaction between tensile and compressive stresses, and to investigate the role of 

different material and geometrical properties on the liquid-mediated adhesion between 

the two surfaces. The liquid-mediated adhesion model is presented under two different 
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conditions: (1) a static (no-flow) condition, and (2) a capillary-driven flow condition. 

Next, experiments are performed to validate the results of the numerical model. 

For the static condition, a constant volume of liquid is introduced between the two 

contacting rough surfaces. A numerical algorithm is developed to model the interaction 

between tensile stresses caused by the presence of the liquid film and the compressive 

stresses developed at the solid-solid contact spots within the contact interface. The tensile 

force, average spacing, liquid film spread, and contact area between contacting rough 

surfaces for different material and geometrical properties are calculated and studied. It is 

shown that, under certain conditions, a contact instability occurs leading to unbounded 

rates of change of tensile force, average gap, liquid film spread, and contact area. The 

effects of liquid volume, liquid surface tension, surface topography, nominal contact area, 

and external load on the stability of contact interface are studied. Key dimensionless 

ratios are identified that govern the equilibrium state and onset of instability.   

Two different measurements are performed to assess the extent of liquid-mediated 

interfacial adhesion: (1) a pull-off test and (2) a friction force test. The results are 

compared with the results of previously developed numerical model. The pull-off test is 

performed by separating the two surfaces from contact in the normal direction. The force 

corresponding to the moment of separation is recorded as the pull-off force. The results 

are obtained for different material and geometrical properties. The friction force test is 

performed by applying a lateral force to the upper surface and measuring the friction 

force at the moment of initial slip. The areal coverage of the liquid film between the two 

contacting surfaces is also measured by collecting images of the contact interface using a 

digital camera and performing image processing on them. 
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For the capillary flow condition, a liquid film is introduced via a central hole between 

two contacting rough surfaces, which begins to flow between the rough surfaces due to 

pressure gradient inside the liquid film. The capillary pressure drop at the liquid film 

leading edge compared to the ambient pressure at the source (central hole) causes the 

liquid film to spread between the two surfaces. The liquid film continues to spread 

radially between the two surfaces until it reaches the edge of the contact or the supply of 

liquid is depleted. An iterative numerical algorithm is developed to solve equations of 

elasticity, capillarity and lubrication simultaneously. The results are obtained for the 

liquid flow rate, tensile force, and average spacing versus time as the liquid film spreads 

between the two surfaces.   

To validate the results of the numerical model, an experimental setup is developed to 

visualize the liquid film spread between the contacting surfaces as a function of time. A 

digital camera collects images of the interfacial liquid film during its spreading. The 

time-stamped images provide a record of the rate of spread of the liquid, which can be 

compared to model predictions.  
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CHAPTER 2 

LIQUID MEDIATED ADHESION: STATIC CONDITION 

 The liquid-mediated adhesion between two contacting surfaces is now considered 

for the case that the liquid film is in static equilibrium. A constant volume of liquid is 

introduced between two contacting rough surfaces, where after the equilibrium, the liquid 

is in a static condition with uniform pressure throughout. The interaction between the 

tensile stresses induced by the liquid film and the compressive stresses developed at the 

solid-solid contact spots is solved numerically. Two different contact models: 1. Spectral 

(multiscale) contact model and 2. Deterministic contact model are used to model the 

compressive stresses developed at solid-solid contact spots.  

2.1 Spectral (Multiscale) Approach 

 In this approach, the contact model developed by Jackson and Streator (JS) [52] 

for the contact between two rough surfaces is used to determine the surface deformation 

developed at the solid-solid contact spots. The JS contact model is based on a multi-scale 

representation of compressive rough surface deformation, and it employs the Fourier 

series to decompose a rough surface into multiple scales of frequency.  

Figure 2.1 shows, schematically, the interface of interest. It consists of a rough surface 

with nominal contact area having side length L  in x and y directions ( 2LAn  ) and with 

surface heights in z direction. A rigid flat surface (which is shown as transparent in Fig. 

2.1) with the same nominal contact area deforms the rough surface in the presence of a 

liquid film bridging the two surfaces. It should be noted that the combination of a rigid 

flat and a rough surface used in this work is a model of two hypothetical elastic rough 

surfaces, whereby the rough surface of the model is given the combined roughness and 

flexibility of the hypothetical surface pair. It is well-known that if the liquid wets the two 

surfaces, a sub-ambient pressure will be developed within the liquid bridge which 
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induces tensile (adhesive) stresses between the two surfaces [53]. This pressure drop 

depends on the curvature at the free surface of the liquid film, and the curvature, in turn is 

inversely proportional to the local gap at the free surface of the liquid film. The thinner is 

the local gap, the greater is the pull effect between the two surfaces. As the surfaces are 

pulled together and the gap between them decreases, the more the liquid tends to pull 

them further together. As the surfaces are brought into closer proximity, the compressive 

stresses begin to rise at points of solid-solid contact. There are two potential scenarios 

[18, 19]: (1) the tensile and compressive forces come into balance with an average gap in 

the order of composite surface roughness, or (2) the tensile stresses dominate the 

compressive stresses, and the interface collapses such that the average gap is a very small 

fraction of composite surface roughness. Equations of elasticity and capillarity need to be 

solved, simultaneously, in order to predict the equilibrium configuration for the contact of 

rough surfaces in the presence of liquid film given the surface topography, elastic 

properties, liquid volume, liquid surface tension, and external load. 
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2.1.1 Tensile Stresses 

 As previously mentioned, a liquid film that wets the two contacting surfaces 

induces a pressure drop across the free surface. This pressure drop can be obtained based 

on the Laplace-Young equation (e.g. [53]) 











III RR
p 11                                                                                                       (2.1) 

where p  is the pressure drop across the free surface of liquid film,  is the liquid film 

surface tension, IIIR ,  are the principal radii of curvature at the free surface of the liquid, 

as illustrated in Fig. 2.2. In this model, the effect of gravity is neglected and, due to 

Fig. 2.1 Schematic depiction of the modeled interface: contact of a rigid flat surface 

and an elastic rough surface in the presence of a liquid film. 

L 

L 
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assumed continuity, the liquid film is in static equilibrium with uniform pressure 

throughout.  

 

 

While Fig. 2.1 depicts an axisymmetric liquid film, in a real contact, the liquid film will 

assume a configuration that is consistent with maintaining a constant pressure throughout 

and with the local variations in surface height due to the surface topography. Thus the 

projection of the liquid film on the horizontal plane may deviate a bit from being circular. 

Nevertheless, for the purposes of the present study we assume a circular liquid film 

whose areal coverage is specified by a wetted radius. According to Fig. 2.2, setting 

wI rR   and  RRII   in Eq. (2.1), we have 











wrR
p 11                                                                                                          (2.2) 

Fig. 2.2 The free surface of the liquid along with radii of curvature and the gap 

between the surfaces, which are depicted here as smooth and planar.  
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The assumption wrR   seems reasonable since the gap between the contacting 

surfaces at the free surface, fsh , is expected to be very small (in the order of microns). 

Thus, we have  

 
R

p                                                                                                                          (2.3) 

Hence, according to Eq. (2.3), the radius of curvature is the same at any point along the 

free surface of the liquid. Therefore, the free surface at any cross section cut by a vertical 

plane is part of a circle (Fig. 2.2). The radius of curvature at the free surface, R , can be 

related to the gap at the free surface, fsh , by 

 BAfs Rh  coscos                                                                                                (2.4) 

where BA ,  are the contact angles of the liquid film with lower and upper surfaces, 

respectively. Now, replacing for R  in Eq. (2.3) from Eq. (2.4), the following relation 

between the pressure drop and the gap at the free surface can be obtained 

 BA
fsh

p  coscos                                                                                           (2.5) 

To simplify the calculations, the average gap between the two rough surfaces in the 

wetted region, h , will be used in the current work in place of fsh . With this 

approximation, we have 

 BAh
p 


 coscos                                                                                             (2.6) 

For convenience, the gage pressure is considered in this work. Relative to the ambient 

pressure, the liquid film pressure is then p , which  means that tensile stresses are 
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exerted on each of the opposing surfaces wherever in contact with the liquid film. In 

reality, the absolute value of the liquid film pressure is generally positive. Opposing the 

effects of these tensile stresses are the compressive stresses that are developed at the 

solid-solid contact points, which resist reduction in spacing between the two contacting 

surfaces. 

2.1.2 Compressive Stresses 

 As the average gap between the two surfaces reduces due to tensile stresses 

induced by the liquid film, the asperities on the two surfaces further interact with each 

other and increase the extent of solid-solid contact. The elastic contact between the two 

rough surfaces is investigated using the multi-scale contact model developed by Jackson 

and Streator [52].  The JS model is based on representing the rough surface in multiple 

scale of roughness using a Fourier series. Thus, the surface profile is divided into 

different scales of frequency, and the deformation of each spectral component is 

calculated separately using an appropriate model for the contact of a single asperity. In 

this work, a sinusoidal shape is considered for the asperities at each frequency level. The 

analytical solutions of Johnson, Greenwood, and Higginson (JGH) [54] for early contact 

and near complete contact of sinusoidal asperities, and the empirical equation developed 

by Jackson and Streator [52] for contact area, along with the surface separation relations 

developed by Rostami and Jackson [55] are used in the framework of the JS model to 

solve the contact problem. 

2.1.2.1 Single sinusoidal asperity contact 
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 The current analysis uses the same sinusoidal shape used in Johnson, Greenwood, 

and Higginson (JGH) [54] for the asperity. The shape is described by  





























 yxh 2cos.2cos1                                                                              (2.7) 

where h  is the height of the points on the sinusoidal asperity from its base,  is the 

amplitude of the sinusoidal asperity, and   is the wavelength. The contour plot of the 

sinusoidal surface is shown in Fig. 2.3. 
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JGH [54] presented two asymptotic solutions analytically for the early and near complete 

contact of sinusoidal asperities. Complete contact between contacting sinusoidal 

asperities happens when the two asperities are completely flattened out and there is no 

spacing between them. Jackson and Streator [52] presented an empirical equation for the 

Fig. 2.3 Contour plot of the sinusoidal asperity.  
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contact area connecting the two asymptotic solutions based on the numerical data 

provided by JGH [1]. JGH solutions for contact area only consider elastic deformation 

during contact of three-dimensional sinusoidal shaped surfaces. In their work, p  is 

defined as the average pressure (considering both contacting and non-contacting regions) 

acting on the surfaces, and *p  is defined as the average pressure that when applied to the 

asperity causes complete contact. *p  is given as 

ΔfπEp* *2                                                                                                           (2.8) 

where   is the amplitude of the sinusoidal asperity, f  is the spatial frequency or 

reciprocal of the wavelength,    /1f , and *E  is the equivalent elastic modulus 

which is given by 

2

2
2

1

2
1

*

111
EEE
 




                                                                                                    (2.9)    

11,E  and 22,E  are the elastic moduli and Poisson’s ratios of the contacting surfaces. 

The contacting flat surface is rigid, so, Eq. (2.9) reduces to 

2
1*

1 


EE                                                                                                               (2.10) 

The JGH solutions are applicable when  pp  i.e. at the early stages of contact, and 

when p  approaches *p  (  pp ) i.e. near the complete contact. The equations are 

given as shown 

 pp  :     
3/2

*21 8
3)( 










p
p

f
AJGH 


                                                                (2.11)   
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*pp    : 

















*22 1
2
311)(

p
p

f
AJGH 

                                                        (2.12) 

Empirical equations developed by Jackson and Streator [21] based on data provided by 

JGH, linking Eqs. (2.11) and (2.12) are given by 

for 8.0* p
p

 : 
04.1

*2

51.1

*1 )(1)( 
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

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


p
pA

p
pAA JGHJGH                               (2.13) 

for 8.0* p
p

 : 2)( JGHAA                                                                                       (2.14) 

Also, the asymptotic solutions for the surface separation, g , for the early and near 

complete contact conditions of sinusoidal asperities developed by JGH are presented as 

for 1* p
p

:    



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
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p
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                            (2.15) 

for 1* p
p

:  
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                                                      (2.16) 

Rostami and Jackson [55] developed an empirical equation for the average surface 

separation between sinusoidal asperities for the whole range of elastic contact connecting 

Eqs. (2.15) and (2.16) which is given by 

2/52/1

*1 



















p
pg


                                                                                       (2.17) 

A two-dimensional schematic representation of the surface separation in sinusoidal 

asperity contacts before and during contact stages is shown in Fig 2.4. The average 

surface separation, g , is equal to the amplitude of the sinusoidal asperity,  , when the 

two surfaces touch each other, while during the contact, the average surface separation,  
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g , is smaller than the amplitude of the sinusoidal asperity,  . In other words, when the 

average pressure between the two surfaces, p , is equal to the complete contact pressure, 

*p , the sinusoidal surface is completely flattened out and there is no gap between the 

surfaces, whereby 0g . 

 

 

 

Eqs. (2.13), (2.14), and (2.17) are embedded in the JS multi-scale contact model to solve 

the solid-solid contact of rough surfaces in the current work. 

2.1.2.2 Multi-scale contact model 

 JS multi-scale model for the contact between rough surfaces is briefly 

summarized here. The model is based on the following assumptions [52]: 

1. Asperities of smaller cross-sectional surface area are located on top of larger 

asperities.  

Fig. 2.4 A 2D representation of contact between a sinusoidal asperity and a rigid flat 
(a) before, and (b) during contact. 
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2. Each scale or level of frequency carries the same total load. 

3. At each frequency level, the load is shared equally among the contacting 

asperities. 

4. At each frequency level, each asperity deforms according to a chosen asperity 

contact model (elastic sinusoidal asperity contact in the current work). 

5. The asperities of a certain level of frequency cannot be deformed more than the 

amplitude or height of the asperities at that level. 

The average pressure, kp , at frequency level, k , can be obtained based on the 

assumptions #2 and #3 

1


k

k A
Fp                                                                                                                    (2.18) 

where F  is the total force between the contacting rough surfaces, and 1kA  is the contact 

area at the frequency level 1k  which acts as the nominal contact area for the frequency 

level k . Using the single asperity relations, the contact area and average surface 

separation of a single sinusoidal asperity at frequency level k  under the contact pressure 

kp  can be calculated from Eqs. (2.13), (2.14), and (2.17) i.e.  kk pfA   and 

 kk pfg  . Then, the contact area at the frequency level k  can be calculated 

kkk ANA                                                                                                                   (2.19) 

In Eq. (2.19), kN  is the number of asperities in contact at frequency level k , and can be 

calculated by 

1 kkk AN                                                                                                                  (2.20) 
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where k  is the number of asperities per unit area and is related to the k  level frequency 

kkf /1  by 

22 kk f                                                                                                                     (2.21) 

The 3D rough surface considered in this work is comprised of oscillations both in x and y 

directions (Fig. 2.3). In JS multi-scale model, a single amplitude for each frequency scale 

is required based on a 1D discrete Fourier transform (DFT), of a 2D surface profile (i.e. 

)(xz ), while for a 3D surface profile (i.e. ),( yxz ) a matrix of coefficients is obtained 

by calculating the 2D DFT.  Therefore, to apply the JS model to a 3D topography, an 

equivalent amplitude is calculated from the matrix of Fourier coefficients arising from the 

2D DFT.  Now, the 2D DFT can be expressed as  

 
 
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yx ennz

NN
kkF                                            (2.22) 

where xk and yk  correspond to the spatial frequencies in x and y directions, while xn  

and yn  correspond to the spatial coordinates in x and y directions. The output is a 

yx NN   matrix comprising of complex elements. As the current model requires a single 

amplitude for each frequency scale, an equivalent 1D Fourier coefficient is calculated 

based on [56] 

    
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k yk kkFkkF                                                          (2.23)                                                                  

The above equation is based on calculating the r.m.s. values of 1D Fourier coefficients in 

x and y directions and then averaging the two values. It can be shown that k  is related 
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to the equivalent 1D amplitude coefficient, k , via the simple relation, kk  2 , except 

at 2/Nk  , where 2/2/ NN   .   

2.1.3 Interaction between tensile and compressive stresses 

 In order to consider the effect of liquid film in contact between rough surfaces, 

the average gap between two surfaces and also the area over which the liquid film acts 

are needed to be determined. A volume-loss approach, which is based on the calculation 

of surface deformation due to both compressive and tensile stresses, is implemented. This 

approach is based on calculating the reduction in the average gap between the two 

surfaces in the wetted region based on the compressive and tensile volume losses, as 

detailed below. 

2.1.3.1 Volume loss due to compressive stresses 

 The deformation volume or the loss in available volume due to compressive 

stresses can be calculated by summing up the volume losses at different frequency scales 

based on the JS multi-scale model. Each frequency scale experiences a separate volume 

loss. In order to calculate the volume loss in each frequency scale, the reduction in the 

average gap in each frequency scale is calculated. The initial average gap at each 

frequency scale is equal to the amplitude at that frequency scale when there is no force 

acting on the contacting surfaces.  In the presence of force the average gap reduction at 

frequency scale k  can be calculated as 
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where  ckg  is the reduction in average gap at frequency scale k  due to compressive 

stresses. This reduction multiplied by the contact area at frequency level 1k  (which 

acts as a nominal contact area for frequency scale k ) gives the volume loss associated 

with the frequency scale k .  Therefore, the total volume loss due to compressive stresses, 

cV , can be calculated by 

 



max

1
1

k

k
kcompkc AgV                                                                                              (2.25) 

2.1.3.2 Volume loss due to tensile stresses 

 The liquid film also tends to cause surface deformation by inducing tensile 

stresses between surfaces due to capillary pressure. In the presence of a liquid film, the 

solutions for the solid-solid contact are not strictly valid anymore. However, the solutions 

are still used in the current work to calculate contributions of the compressive stresses in 

the contact between surfaces. In calculation of the volume loss due to tensile stresses, it is 

assumed that the real contact area is a small fraction of the nominal contact area (an 

assumption that is to be validated later). Thus, ignoring the regions of solid-solid contact, 

it follows that the tension throughout the wetted region is uniform and equal in magnitude 

to the Laplace-Young pressure. This assumption of pressure uniformity is invalid after 

the point of surface collapse because then the ratio of real contact area to nominal contact 

area is no longer expected to be small. Therefore, the methods used here to solve the 

contact problem are valid up to the point where instability occurs (i.e., to the point of 

surface collapse). For a uniform pressure, p , acting on a circular wetted area with 

radius, wr , the deformation in the wetted region can be obtained by [57]  
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

                                                        (2.26) 

where  rut  denotes the elastic deformation at radial position r  measured from the 

center of rectangular domain (Fig. 2.1), and  wrrE /  is the complete elliptic integral of 

the second kind. Integrating Eq. (2.26) over the wetted region, the volume loss due to 

tensile stresses, tV , can be calculated by 

  
wr

tt rdrruV
0

2                                                                                              (2.27) 

Substituting and rearranging Eq. (2.26) in Eq. (2.27), the following relation can be 

obtained 
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 wr
w

w
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                                                                                    (2.28) 

Integrating Eq. (2.28), the following relation for volume loss due to tensile stresses can 

be obtained 

3

3
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wt r
E
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


                                                                                                           (2.29) 

Substituting for the pressure drop from Eq. (2.6) in Eq. (2.29), the following relation for 

the volume loss due to tensile stresses can be obtained 

  3coscos
3

16
w

BA
t r
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
                                                                                (2.30) 

where the volume loss due to tensile stresses for a certain liquid is only a function of 

average gap, h , and the wetted radius, wr . Also, the tensile force, tF , can be related to 

the Laplace-Young pressure according to the following relation 

prF wt  2                                                                                                                 (2.31) 
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where tF  is the tensile force between the rough surfaces. Substituting for the Laplace-

Young pressure from Eq. (2.6), the relation below can be obtained 

 BA
w

t h
r

F 


coscos
2

                                                                                  (2.32) 

The total volume loss in the wetted region, totV , is calculated by summing the volume 

loss due to compressive stresses in the wetted region, and the volume loss due to tensile 

stresses, tV .   
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                                                                                         (2.33) 

The coefficient multiplying cV  (which is the compressive volume loss over the entire 

nominal contact region) is needed to account for the fact that we are interested in the total 

volume loss within the wetted region. 

When the two surfaces come into contact at zero load, the gap between the two surfaces 

is the maximum height of the rough surface, maxz . During loading, the deformation due to 

both compressive and tensile stresses causes a change in the average gap between the 

surfaces. The new average gap within the wetted region can be obtained using the total 

volume loss  
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                                                                     (2.34) 

Enforcing the volume conservation of the liquid film, the following relation between the 

average gap and the radius of the wetted region can be obtained 

hrV w
2

0                                                                                                                     (2.35) 
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This relationship can be written alternatively by 

  2/1

0 / hVrw                                                                                                             (2.36) 

Substituting for the average gap between the surfaces from Eq. (2.34) 
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Due to the nonlinear dependency of the both compressive and tensile stresses on the 

radius of the wetted region, Eq. (2.37) must be solved iteratively. It should be noted that 

the compressive volume loss depends on the total force between the two surfaces, which 

is the sum of the external load, P , and the tensile force, tF .  The compressive force, cF , 

is given by 

tc FPF                                                                                                                  (2.38) 

where tF  can be calculated from Eq. (2.32). 

2.1.4 Numerical Algorithm 

 The numerical algorithm used to solve the liquid-mediated adhesion in contact 

between rough surfaces is shown in Fig 2.5. The material and geometrical properties of 

the contacting rough surfaces and the liquid are needed in the numerical algorithm.  

When the two surfaces touch each other, the initial average gap is equal to the maximum 

height of the rough surface. As the surfaces come into contact, the average gap will 

change, and the new average gap and radius of wetted region are obtained using Eqs. 

(2.34) and (2.37). The iteration process will continue until convergence is acquired.  
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Convergence or divergence of the iteration process is determined based on the relative 

error of the tensile force in two successive iterations ( oldtoldtnewt FFF   / . 

Convergence is accomplished when the relative error is less than 510   . 

 

  Fig. 2.5 Flowchart of the numerical algorithm. 
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2.1.5 Results 

 The results of the numerical model developed for the contact between rough 

surfaces in the presence of liquid film are presented in this section. The input parameters 

such as rough surface nominal contact area, nA , surface topography,  yxz , , effective 

elastic modulus, E , liquid volume, 0V , liquid surface tension,  , and contact angles, 

BA, , are needed to obtain a set of results. For convenience, a zero value is selected for 

contact angles of the liquid film with upper and lower surfaces, 0, BA . Three-

dimensional Gaussian isotropic surfaces generated by computer are used for the 

simulations. It was shown [58] that the statistical features of many random profiles such 

as distribution of heights, curvatures, slopes, and peak density could be expressed in 

terms of two parameters, namely the r.m.s. roughness,  , and the correlation length, cl .  

In this work, a surface generation method outlined by Garcia and Stoll [59] is 

implemented, where an uncorrelated distribution of surface points using a random 

number generator is convolved with a Gaussian filter to achieve a random Gaussian 

rough surface with a prescribed standard deviation and having an exponential 

autocorrelation function with a prescribed correlation length.   

The numerical algorithm shown in Fig. 2.5 is used to obtain the equilibrium configuration 

for a given surface topography with the reference material and geometrical properties 

given in Table 2.1. The simulated rough surface has a Gaussian isotropic distribution 

with correlation length to side length ratio of 200/1/ Llc . The results for the tensile 

force, tF , average gap, h , wetted radius, wr , and real contact area, rA , versus the 
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flexibility of the rough surface, E/1 , in the absence of external load, 0P , are shown 

in Fig. 2.6. 

Table 2.1 Reference properties 
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In Fig. 2.5, tensile force, tF , contact area, rA , and the radius of wetted region, wr , 

increase, while the average gap decreases with the flexibility of the rough surface until 

the slope of the curve becomes vertical. The last data point on the curve (to a resolution 

of kNmm /10 29  in the value of flexibility) is taken as the point of instability, and it 

means that no equilibrium configuration could be obtained for the contact problem for 

3
0 mm1.0V   

mN/m,7.27  

m4.0   
2

n cm4A   

Fig. 2.6 The results for (a) tensile force, (b) average gap, (c) wetted radius, 

and (d) contact area versus the flexibility of the rough surface. 
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higher values of flexibility. For higher flexibilities, then, the tensile force overwhelms the 

compressive force and the two surfaces are predicted to experience near-complete or 

complete contact (i.e. surface collapse).  

The results for the tensile force, average gap, wetted radius, and contact area versus the 

external load applied between the contacting rough surfaces for the material and 

geometrical properties given in Table 2.1 are shown in Fig. 2.7. It should be noted the 

results in Fig. 2.7 are obtained based on the flexibility value of kNmmE /02.0/1 2 . 
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Fig. 2.7 The results for (a) tensile force, (b) average gap, (c) wetted radius, 

and (d) contact area versus the external load between contacting surfaces. 
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As it can be seen in Fig. 2.7, the tensile force, wetted radius, and contact area increase 

while the average gap decreases with the external load.  As external load, P , increases, it 

causes more interaction between the contacting surfaces, which causes a reduction in 

average gap, h , between the surfaces and also an increase in the contact area, rA , 

between the surfaces. As the gap between the surfaces decreases, the liquid volume 

between the surfaces spreads over a wider area, which means that the radius of wetted 

region, wr , increases. The reduction in average gap and the increase in the wetted area 

causes the tensile force, tF , to increase. 

2.1.5.1 Non-dimensionalization 

 In this section, we seek normalization to present the results in the most general 

way. By substituting for the radius of wetted region, wr , from Eq. (2.36) in Eq. (2.32), we 

have   

 BAt h
VF 
 coscos

2
0                                                                                         (2.39) 

Considering the case with no external load, 0P , the compressive force on a given 

surface balances the tensile force ( tc FF  ). Also, ignoring the effect of tensile stresses 

on the average gap in initial contact, the average gap for the first frequency scale  1k  

can be related to the load by Eq. (2.17) 
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where the average pressure in the first frequency, 1p , is calculated by dividing the tensile 

force, tF , by the nominal contact area at the first frequency level, nA . The complete 

contact pressure at the first frequency can be calculated using Eq. (2.8) with Eq. (2.40) 
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Now substituting Eq. (2.39) in (2.41) 
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Supposing that the average gap at frequency level 1, 1g , is related to the overall gap, h , 

by some factor X  such that hXg 1 . Then we can conclude 
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where the r.m.s. roughness,  , is used as a scaling factor. It can be deduced from Eq. 

(2.43) 
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where f~  is an unknown function, 1  and   are specified by the undeformed surface 

profile, so,  /1  is a geometric parameter. In contrast,   relates the parameters that 

result from deformation, i.e. 1g  and h . However, it can be shown that, for a given  , 

X  depends only on the details of the surface profile (i.e. the set of  amplitude 
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coefficients). Therefore, Eq. (2.43) implies that the equilibrium gap for a given surface 

profile depends only on the dimensionless parameter 

  32/1
0 2/coscos  EAV nBA  . Therefore, an adhesion parameter is defined as 
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Considering the external load introduces another parameter into the dependence of /h  

on the input parameters. Also, consideration of the direct effect of tensile stresses 

introduces the additional dimensionless ratio nAV /0  which we label as *
0V  and refer to 

as the dimensionless volume. The dimensionless tensile force, *
tF ,and external force, 

*P , can be expressed as 
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In general, for a given rough surface profile, we can write 

 *
0

* ,,~ VPfh 


                                                                                                     (2.48) 

where f ~
 is an unknown function.  Alternatively, using Eq. (2.46), we obtain 

 *
0

** ,,~ VPfFt                                                                                                    (2.49) 

where f ~
 denotes another unknown function. For a given surface topography, Eqs. 

(2.48) and (2.49) are the most general expressions for the equilibrium average gap and 

tensile force, respectively. 
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2.1.5.2 Equilibrium curves 

 In this section, the results for non-dimensional tensile force, *
tF , versus the non-

dimensional adhesion parameter,  , for different material and geometrical parameters 

are presented. A convergence test is performed to obtain the number of numerical nodes 

needed along both x and y axes to get accurate results for a 3D Gaussian isotropic 

surface. As shown in Fig. 2.8, for each case the tensile force increases with increasing 

adhesion parameter until the curve becomes vertical. It can be seen that convergence is 

acquired for node numbers higher than 2000 along coordinate axis for a Gaussian 

isotropic surface with 200/1/ Llc . Performing an extensive number of simulations 

for different Gaussian isotropic surfaces varying correlation length, cl , and side length, 

L , it is shown that the convergence is guaranteed for simulated surfaces with at least 10 

nodal points per correlation length. In the current work, the numerical results are obtained 

for the nominal contact area with 2L cm. 
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As mentioned previously, the non-dimensional tensile force, *
tF , is a function of 

adhesion parameter,  , non-dimensional external load, *P , and non-dimensional liquid 

volume, *
0V . The results for the dimensionless tensile force, *

tF , versus the adhesion 

parameter,  , for different values of dimensionless volume, *
0V , in the absence of 

external load ( 0* P ) are shown in Fig 2.9. As expected, the normalized adhesion force 

increases with adhesion parameter for different values of the dimensionless volume until 

it reaches a vertical slope, suggestive of surface collapse. As the non-dimensional liquid 

volume increases, the instability occurs at higher values of the adhesion parameter; 

however, the non-dimensional tensile force at the point of instability is nearly the same at 

each of the non-dimensional liquid volumes. 

Fig. 2.8 Non-dimensional tensile force results versus adhesion parameter 

for different number of nodes, N , along each coordinate axis. 
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Fig. 2.10 shows the results for non-dimensional tensile force, *
tF , versus the adhesion 

parameter,  , for different values of dimensionless external load, *P . A constant value 

is selected for the non-dimensional liquid volume for all the cases in Fig. 2.10 

( 5.0*
0 V ).  It can be seen in Fig. 2.10, as the external load, *P , increases, the 

instability occurs at lower values of the adhesion parameter,  . Also, the non-

dimensional tensile force, *
tF , at the point of instability increases as the non-dimensional 

external load, *P , increases.  

 

Fig. 2.9 Non-dimensional tensile force versus adhesion parameter for 

different values of non-dimensional liquid volumes.  
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Results for the average gap normalized by the r.m.s. surface roughness, /* hh  , 

versus the adhesion parameter,  , are shown in Fig. 2.10 for different non-dimensional 

liquid volumes, *
0V , where 0* P , and shown in Fig. 2.11 for non-dimensional external 

loads, *P , where 5.0*
0 V . As observed in Fig. 2.11, the non-dimensional average gap, 

*h , decreases as the adhesion parameter,  , increases until the slope of the curve 

becomes vertical. Additionally, the instability occurs at higher values of adhesion 

parameter,  , as the non-dimensional liquid volume, *
0V , increases. In Fig. 2.12, the 

instability happens at lower values of adhesion parameter,  , as the non-dimensional 

external load, *P , increases. Also, Fig. 2.12 shows that as the non-dimensional external 

Fig. 2.10 Non-dimensional tensile force versus adhesion parameter for 

different values of non-dimensional external load.  
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load, *P , increases, the non-dimensional average gap, *h , at the point of instability 

decreases.  
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Fig. 2.11 Non-dimensional average gap versus adhesion parameter for 

different values of non-dimensional liquid volume. 
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The results for non-dimensional contact area, nrr AAA /*  , versus the adhesion 

parameter,  , are shown in Fig. 2.13 for different non-dimensional liquid volumes, *
0V , 

where 0* P , and in Fig. 2.14 for non-dimensional external loads, *P , where 

5.0*
0 V . As the non-dimensional liquid volume, *

0V , increases, the non-dimensional 

contact area, *
rA , at the point of instability also increases (Fig. 2.13). Likewise, as the 

non-dimensional external load, *P , increases, the non-dimensional contact area, *
rA , at 

the point of instability increases (Fig. 2.14).  As it can be seen from Figs. 2.13 and 2.14, 

the non-dimensional contact area, *
rA , is less than 2% at the point of instability, which 

validates the model assumption that the real contact area is a small fraction of nominal 

contact area. 

Fig. 2.12 Non-dimensional average gap versus adhesion parameter for 

different values of non-dimensional external load. 
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Fig. 2.13 Non-dimensional contact area versus adhesion parameter for 

different values of non-dimensional liquid volume.  

Fig. 2.14 Non-dimensional contact area versus adhesion parameter for 

different values of non-dimensional external load.  
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2.1.5.3 Critical adhesion parameter  

 It is of interest to predict the point of instability in liquid-mediated contact 

between solid surfaces, as beyond this point, the surfaces would experience strong 

adhesion or stiction. In this section, the goal is to obtain a relation for the point of 

instability based on material and geometrical properties of the rough surfaces and the 

liquid film. Presenting a general relation that is applicable to all rough surfaces including 

both Gaussian and non-Gaussian random rough surfaces is not feasible. However, 

restricting our attention to rough surfaces with an isotropic Gaussian distribution 

simplifies the task. It can be concluded from Figs. (2.9-2.14) that the critical adhesion 

parameter, cr , for a given rough surface is a function of non-dimensional liquid volume, 

*
0V , and non-dimensional external load, *P , i.e.  **

0 , PVfcr  . The results in Figs. 

(2.9-2.14) were obtained for a given rough surface with r.m.s. roughness of 4.0 μm, 

and having an isotropic Gaussian distribution with correlation length to side ratio of 

200/1/ Llc . The dependency of the critical adhesion parameter, cr , on the 

correlation length, cl , of a Gaussian isotropic rough surface with a given r.m.s. 

roughness,  , is investigated in Fig. 2.15. The results in Fig. 2.15 are obtained for the 

critical adhesion parameter, cr , versus the non-dimensional maximum height, 

/max
*
max zz  , of a Gaussian isotropic rough surface with r.m.s. roughness of 4.0  

μm. It can be seen that the critical adhesion parameter, cr , increases as the maximum 

height of the surface, *
maxz , increases, and it is independent of correlation length, cl . 
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In Fig. 2.16, the results are obtained for the critical adhesion parameter, cr , versus the 

non-dimensional maximum height, *
maxz , for different values of r.m.s. roughness,  , 

while the correlation length is constant and set to 200/1/ Llc . The results show that 

the critical adhesion parameter, cr , is also independent of r.m.s. roughness, which is a 

consequence of the normalization considered in this work. The results in Figs. 2.15 and 

2.16 lead us to conclude that by considering the effect of maximum surface height, *
maxz , 

a general relation for critical adhesion parameter can be obtained, which is applicable to 

different Gaussian isotropic rough surfaces. 

Fig. 2.15 Critical adhesion parameter versus the non-dimensional maximum 

height for different values of correlation length. 
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Therefore, the critical adhesion parameter, cr , for different Gaussian isotropic rough 

surfaces is a function of three different parameters, non-dimensional liquid volume, *
0V , 

non-dimensional external load, *P , and non-dimensional maximum height, *
maxz , i.e.  

 *
max

**
0 ,, zPVfcr                                                                                                   (2.50) 

In the absence of external load, 0* P , cr  is dependent only on *
0V  and *

maxz .  An 

empirical relation is developed for cr  based on the extensive results obtained for critical 

adhesion parameter for different combinations of *
maxz  and *

0V  (Fig. 2.17). The relation is 

given by 

32.0*
0

87.2*
max011.0 Vzcr                                                                                               (2.51) 

Fig. 2.16 Critical adhesion parameter versus the non-dimensional maximum 

height for different values of r.m.s. roughness. 
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The above relation is valid for the non-dimensional liquid volume range, 205.0 *
0 V , 

and non-dimensional surface height range, 91.518.4 *
max  z 1. The average relative 

error between the empirical Eq. (2.50) and the numerical results in Fig. 2.17 is 2.9 %.  

For cases with cr 0 , the instability does not occur in the interface of contact; 

when cr  , the interface is at the critical point, and when cr  , the interface 

experiences instability, and no equilibrium configuration can be found. 
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1 Statistically speaking, depending on the number of nodal points, *

maxz will tend to fall within certain 
bounds.  In the current study, we considered 500 surfaces each having 4 million nodal points and the above 
range represents the total variation observed. 

Fig. 2.17 Critical adhesion parameter versus the non-dimensional liquid 

volumes for different values of non-dimensional maximum surface height. 
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A 3D plot of cr  versus *
maxz  and *

0V  is shown in Fig. 2.18. Points above the critical 

surface represent unstable conditions, while those below are stable.  
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If the liquid volume, 0V , between the rough surfaces is controlled, the following relation 

can be obtained for the liquid volume that causes instability, based on Eq. (2.51) via 

substitution for the non-dimensional parameters 

  32.0

0

87.2

max
32/1

0 011.0
2

coscos






















nn

BA

A
Vz

EA
V

                                               (2.52) 

Simplifying and rearranging Eq. (2.52), the following relation can be obtained for the 

critical liquid volume 

Fig. 2.18 The 3D plot of the critical adhesion parameter versus the 

non-dimensional liquid volume and non-dimensional maximum 

surface height for 0* P . 
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   
94.326.0

22.4
max

68.0
1

0 coscos
012.0 

 n
BA

cr AzEV 
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
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


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





                           (2.53) 

Since the practical range for *
maxz  is limited, it is better to keep /maxz  as one term, and 

it denotes that maxz  and   cannot be chosen completely independently. The above 

expression highlights the role of certain material properties on the critical volume,  

 crV0 , necessary for interface collapse.  For example, it shows that the critical volume is 

quite sensitive to the surface roughness. That is, with /maxz  assumed to be around 5, 

the critical liquid volume scales approximately with the forth power of  . It is also 

observed that the critical volume increases faster than linearly with elastic modulus.  

In the presence of external load, *P , the following relation can be obtained for the 

critical adhesion parameter, cr , based on extensive number of numerical simulations.   

  87.2*
max

32.0*
0

85.0*55.1*
max

*
0 011.0

115.1794.8

1
11.0*

0

zV
PzV V

cr





                      (2.54) 

where the range 50 *  P  is considered for the dimensionless external load, *P , the 

range 91.518.4 *
max  z is considered for the dimensionless surface height, *

maxz , and 

the range 5.105.0 *
0 V  is considered for the dimensionless liquid volume, *

0V . The 

average relative error between Eq. (2.54) and the numerical data is 2.27 %. If the external 

load, *P , is set to zero in Eq. (2.54), it reduces to Eq. (2.51).   
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A comparison between the numerically obtained critical adhesion parameter, cr , with 

the curve-fit Eq. (2.54) is shown in Fig. 2.19. In Fig. 2.19, the non-dimensional surface 

height, *
maxz , is constant, and the plots for critical adhesion parameter, cr , versus non-

dimensional external load, *P , are obtained for 6 different values of non-dimensional 

liquid volume, *
0V . 
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Fig. 2.19 Comparison between critical adhesion parameter 

results with the Empirical Eq. (2.54). 
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2.2 Deterministic Approach 

 In this section, a different contact model, called the deterministic model, is used to 

account for compressive stresses in the liquid-mediated adhesion between contacting 

rough surfaces along with the capillary equations governing the tensile stresses. The 

deterministic model, which is treated as the “exact solution”, is based on the calculation 

of the deformation of each nodal point on the two contacting rough surfaces. Since the 

calculation of deformation of each point on the contacting rough surfaces is 

computationally costly, only a few cases are considered in this model. The purpose of this 

approach is to validate the results obtained based on the JS spectral contact model. 

2.2.1 Compressive Stresses  

 In the current deterministic approach, the influence coefficients are employed to 

relate the deformation of each point to the contact pressure. The influence coefficients are 

developed from the surface deformation of a 3D homogeneous, isotropic, elastic half-

space under a concentrated force, P , which is given by [60] 

   
Er

Pru

 21

                                                                                                         (2.55)         

where u  is the surface deformation of the half-space (taken to be positive into the body), 

which is a function of the radial distance, r , from the origin, ,E  are the elastic 

modulus and Poisson’s ratio of the half-space, respectively. The deformation of a 3D 

homogenous, isotropic, elastic half-space under a uniform pressure p , acting within a 

circular region of radius a  for the case where ar  , can be approximated using Eq. 

(2.55) 
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   
Er

paru
221 

                                                                                                     (2.56) 

where paP 2  is used in Eq. (2.56).  The deformation of the half-space under a 

uniform pressure is shown schematically in Fig. 2.20.   

 

  

It can be shown that Eq. (2.56) only causes 3.3% error compared to the analytical 

solution derived in [60], when r  is just twice a , and more importantly the error is 

acceptable (14.3%) even for cases with ar 1.1 . 

In a similar way, it can be assumed that the relation between a uniform pressure acting on 

a rectangular grid and a nodal deformation is given by  

 
Er

yxpu


 21
                                                                                                    (2.57)        

Fig. 2.20 Illustration of surface deformation due to constant pressure over circular region. 
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where r  is measured from the center of the rectangular grid, and yx  ,  are the grid 

spacing in x and y directions, respectively. The influence coefficient, ijmnC , which is 

defined as the deformation at node  ji,  due to a unit pressure at node  nm, , is 

obtained based on Eq. (2.57) (see Fig. 2.21) 

 
ijmn

ijmn Er
xC


 221

                   nmji ,,                                                               (2.58) 

where it is assumed equal grid spacing in x and y directions yx   .   

when the deformation is needed at the point of application of the pressure, an equation 

due to Love [61], which is given in [60] is used, leading to 

   21ln14 2





E

xCijij 


                                                                                  (2.59) 

Equations (2.58) and (2.59) can be applied to the contact between rough surfaces by 

using the composite elastic modulus, E . In this case, the surface deformation, )(ru , is 

the sum of the deformation of the contacting rough surfaces, and p  is the contact 

pressure between the surfaces. In this case, the equivalent roughness is the sum of the 

roughness of the contacting rough surfaces.  
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2.2.2 Numerical Problem Constraints 

 The original height of the 3D rough surface at each nodal point is denoted by ijz0 , 

which is selected to have a mean value of zero ( 01
1 1

02 
 

N

i

N

j
ijz

N
), while the deformed 

rough surface heights is denoted by ijz . The surface separation, d , is the distance 

between the rigid flat surface and the mean line of the undeformed rough surface. The 

nodal contact pressures, ijp , and surface deformations, iju , are made to satisfy the 

conditions in Table 2.2 at each of the NN   nodes (see Fig. 2.22). 

 

Fig. 2.21 Geometrical definition of key parameters used in influence coefficient 

formulation of Eqs. (2.58) and (2.59).   
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Table 2.2 Constraints on the contact model 

 

 
 

N

m

N

n
mnijmnij pCu

0 0
The problem formulation follows that of Webster and Sayles [62] 

and Streator [38]. Condition 1 defines the relation between the deformed surface height 

and the original, undeformed surface height. Condition 2 expresses the relationship 

between deformation and pressure at each nodal point via the influence coefficients. 

Condition 3 states that, when a point on the rough surface is in contact with the rigid flat, 

its height is that of the rigid flat. The penetration of the rough surface into the rigid flat is 

avoided using Condition 4. Condition 5 states that the pressure for a non-contacting node 
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inside the wetted region is equal to capillary pressure. A non-contacting node outside the 

wetted region experiences zero pressure according to Condition 6. Condition 7 states that 

the pressure of a contacting node outside of the wetted region must be positive, while 

Condition 8 imposes that a solid-solid contact point inside the wetted region cannot be 

more negative than the capillary pressure. The conservation of mass is checked by 

Condition 9.   

A comment is in order regarding Condition 8, where contact pressures within the wetted 

region are allowed to go negative, but no more negative than the capillary pressure.  

Perhaps a more natural restriction would be to require that all contact pressures be 

positive. However, implementing this condition tends to destabilize the iteration process. 

This destabilization seems to occur because there would often be a tremendous change in 

the pressure at a nodal point within the wetted region whose status changed from contact 

to non-contact between successive iterates. Hence, from a practical point of view, the 

present form of Condition 8 is more favorable for achieving convergence. Moreover, it 

also has a physical justification. The pressure at a given nodal point should represent the 

average surface pressure within the small surrounding region associated with that nodal 

point. Generally speaking, this nodal region will not be perfectly smooth but, instead, will 

have multiple contact points that are ‘‘overlooked’’ by the chosen resolution with which 

the surface is represented. That being the case, a nodal region in the wetted zone is likely 

to experience sub-regions of non-contact at the capillary pressure along with other sub-

regions of compressive stress due to contact. Therefore, it is quite plausible that the mean 

pressure of the nodal region could be negative (but not more negative than the capillary 

pressure). 
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2.2.3 Numerical Algorithm 

 The numerical algorithm designed to solve the liquid-mediated adhesion between 

rough surfaces deterministically is outlined in the flow chart of Fig. 2.23. After 

introducing the input parameters, including the original surface profile,  yxz ,0 , the area 

of domain of interest, nA , the external load, P , the material properties such as effective 

elastic modulus, E  , Poisson’s ratio,  , the surface tension of the liquid film,  , and the 

Fig. 2.22 A nodal representation of the contact interface between a rough surface 

and a rigid flat in the presence of a liquid film. 



 54

amount of liquid volume, 0V , an initial guess is made for the level of the rigid flat, d . 

Based on the initial guess for d , a contact index is assigned to the nodal points. The 

contact index of the nodal points with height more than d  is set to unity suggesting that 

the nodal point is in contact; otherwise the contact index is set to zero. The surface 

deformation of the nodal points is adjusted where the contact index is unity so that the 

height is equal to the surface separation, d .  Alternatively, where the contact index is 

zero, the pressure is set to zero for the nodal points outside the wetted region, and set to 

the capillary pressure for the nodal points inside the wetted region. Then, the matrix 

equation defined by the influence coefficients is solved to obtain the value of unknown 

nodal pressures and deformations. Once the surface deformation and contact pressure for 

each nodal point in the domain are obtained, the Conditions 4, 7, and 8 are checked to 

avoid interpenetration, and also to avoid negative pressures outside the wetted region, and 

pressures more negative than capillary pressure inside the wetted region. Wherever 

Condition 4 is violated, the contact index of the nodal point with the highest 

interpenetration is changed from zero to unity. A more natural process might be to adjust 

the status of all the nodal points of interpenetration to have contact index of unity, but 

this procedure tends to destabilize the computation. Whenever Conditions 7 and 8 are 

violated, the contact index is changed from unity to zero; i.e. the nodal point is “taken 

out” of contact. The iteration proceeds until all of the contact conditions are satisfied for 

the given interference. Then, the tensile force, tF , and compressive force, cF , are 

calculated by integrating the compressive and tensile stresses corresponding to the 

assumed surface separation, d . The wetted radius and capillary pressure are updated 

based on the calculation of the average gap, h , until the tensile force converges (based on 
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achieving a relative error of 510 or less). When the tensile force is converged, the 

external load residual is calculated using the external load computed from the model, 

tccal FFP  , and the input external load, P . The location of the rigid flat surface, d , 

is then updated in each iteration until the compressive force, cF , balances the combined 

tensile force, tF , and the external load, P , on the rigid flat surface. If the normalized 

external load residual, ccal FPP / , is below the tolerance ( 510  ), the program 

concludes; otherwise an adjustment is made in the assumed separation, d  based on 

secant search algorithm and the process repeats. 
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Fig. 2.23 Flowchart of the numerical algorithm. 
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In this work, the simulated rough surface is obtained employing the same surface profile 

generation method outlined earlier by Garcia and Stoll [59]. A plot of 4 different 

Gaussian isotropic rough surface profiles with 101 nodes in each direction generated 

using this method is outlined in Fig. 2.24, where the surfaces have the same r.m.s. value, 

4.0 μm, but different correlation lengths, cl  .  A convergence test was performed on 

different randomly generated Gaussian isotropic rough surfaces with different number of 

nodal points, N , which led to the conclusion that the convergence is guaranteed for 

surfaces with at least 10 nodal points per correlation length, cl . In this work, Gaussian 

isotropic rough surfaces with 101 nodal points in each direction ( 101N ) is considered 

with correlation length ratio of 1.0/ Llc .   
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2.2.4 Results 

 In this section, the numerical results for the 3D deterministic contact model are 

presented. Unless stated otherwise the computations are performed using the parameter 

values shown in Table 2.3. Note that the surface tension value considered in this work is 

that of water at 20℃. For convenience, a zero value is selected for contact angles of the 

liquid film with upper and lower surfaces, 0, BA . Fig. 2.25 shows the distribution of 

pressure for a case corresponding to composite elastic modulus 'E  of 15 GPa and an 

external load P  of zero. In Fig. 2.25, the negative pressure in the central circular region 

of the nominal contact area shows where the liquid film is located. Positive spikes in the 

Fig. 2.24 Generated Gaussian isotropic rough surfaces with different values 

of correlation length ratio, Llc / : (a) 05.0/ Llc , (b) 10.0/ Llc , (c) 

20.0/ Llc , and (d) 50.0/ Llc . 
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pressure due to solid-solid contact occur at the various isolated contact points. For the 

case of zero external load the net tensile force in the circular wetted region balances the 

net compressive force due from the isolated solid-solid contact spots. 

 

 

 

The results for the key features of the contact interface such as tensile force, tF , contact 

area, rA , average gap, h , and wetted radius, wr , versus the flexibility of the rough 

surface, E/1 , in the case of no external load, 0P , are shown in Fig. 2.26 for the 

reference properties given in Table 2.3. 

 

Fig. 2.25 The pressure profile within the nominal contact area in 

the absence of external load. 
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Table 2.3 Reference properties 
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As results in Fig. 2.26 suggest, the tensile force, tF , wetted radius, wr , and contact area, 

rA , increase with the flexibility, E/1 , of the rough surface while the average gap, h , 

Fig. 2.26 The results for (a) tensile force, (b) contact area, (c) wetted radius, 

and (d) average gap versus the flexibility of the rough surface. 
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decreases with the increasing surface flexibility. Rough surfaces with higher flexibility 

experience more deformation under the same total load which cause higher contact area 

and lower average gap between the contacting surfaces. The reduction in average gap 

causes the liquid film to spread over a larger area. Both the reduction in the average gap 

and the increase in the wetted radius boost the increase in the tensile force. These 

parameters vary with the rough surface flexibility until the curves approaches an 

approximately vertical slope. The last data point on the curve (to a resolution of 310  

mm2/kN in the value of flexibility) is taken as the point of instability, and no equilibrium 

configuration could be obtained for the contact problem for higher values of surface 

flexibility. It means that the rough surface is too flexible that the compressive force 

developed at solid-solid contact spots cannot balance the tensile force within the nominal 

contact area.   

A parametric study is performed to analyze the effect of different parameters on the 

tensile force, tF , contact area, rA , and average gap, h , results. The normalization 

introduced earlier is also used in this work to present the results. Fig. 2.27 displays the 

results for the normalized tensile force, *
tF , versus the adhesion parameter,   (Eq. 

2.45), for 0625.0*
0 V  and 0* P , for selected parameter values falling within the 

ranges given in Table 2.3 (Note that the maximum selected value of surface tension is 

representative of some molten metals). The legend of Fig. 2.27 reveals which parameter 

or pair of parameters is being varied for a particular set of data points. It can be seen from 

Fig. 2.27 that the chosen normalization works quite well in generalizing the results. 
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Table 2.4 Overview of the parameter ranges used for simulations. 
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The results for the normalized tensile force, *
tF , versus the adhesion parameter,  , for 

different values of normalized liquid volume, *
0V , in the absence of external load 

Fig. 2.27 Normalized tensile force results versus adhesion parameter for 

the range of parameters given in Table 2.3.  
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( 0* P ) are shown in Fig. 2.28. As expected, the normalized tensile force increases 

with the adhesion parameter,  , for different values of the normalized liquid volume, 

*
0V , until it reaches a near vertical slope, suggestive of surface collapse. As the 

normalized liquid volume increases, the instability occurs at higher values of the 

adhesion parameter; also, the normalized tensile force at the point of instability decreases 

as the normalized liquid volume increases. 
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Results for the normalized average gap, *h , versus the adhesion parameter,  , are 

shown in Fig. 2.29 for different values of normalized liquid volumes, *
0V . As observed in 

Fig. 2.29, the normalized average gap, *h , decreases as the adhesion parameter,  , 

Fig. 2.28 Normalized tensile force results versus adhesion parameter for 

different values of normalized liquid volume.  
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increases until the slope of the curve becomes near vertical. The instability occurs at 

higher values of adhesion parameter,  , as the liquid volume, *
0V , increases, also the 

normalized average gap at the point of instability increases as the normalized liquid 

volume increases. 
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The results for normalized contact area, *
rA , versus the adhesion parameter,  , are 

shown in Fig. 2.30, for different values of normalized liquid volume, *
0V . As the 

normalized liquid volume, *
0V , increases, the normalized contact area, *

rA , at the point of 

instability increases (Fig. 2.30).  As it can be seen from Fig. 2.30, the ratio of real contact 

Fig. 2.29 Normalized average gap results versus adhesion parameter for 

different values of normalized liquid volume.  
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area to nominal contact area is small even for values of adhesion parameter near the 

instability point ( %6/*  nrr AAA ). 
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Fig. 2.31 shows the results for the normalized tensile force, *
tF , versus the adhesion 

parameter,  , for different values of normalized external load, *P .  A constant value is 

selected for the normalized liquid volume for all cases in Fig. 2.34 ( 0625.0*
0 V ).  It 

can be seen in Fig. 2.31, as the normalized external load, *P , increases the instability 

occurs at lower values of the adhesion parameter,  .  Also, the normalized tensile force, 

*
tF , at the point of instability increases as the normalized external load, *P , increases.  

Fig. 2.30 Normalized contact area results versus adhesion parameter for 

different values of normalized liquid volume.  



 66

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

Adhesion parameter, 

N
or

m
al

iz
ed

 te
ns

ile
 F

or
ce

, F
t *

 

 

P* = 0

P* = 0.22

P* = 0.55

 

 

Results for the normalized average gap, *h , versus the adhesion parameter,  , are 

shown in Fig. 2.32 for different values of normalized external load, *P . As the adhesion 

parameter,  , increases, the normalized average gap, *h , between the two surfaces 

decreases until it reaches an approximate vertical slope.  It can be seen that the instability 

happens at lower values of the adhesion parameter,  , as the normalized external load, 

*P , increases.  Also, Fig. 2.32 shows that as the normalized external load, *P , increases, 

the normalized average gap, *h , at the point of instability decreases.  

Fig. 2.31 Normalized tensile force results versus adhesion parameter for 

different values of normalized external load.  
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The results for normalized contact area, *
rA , versus the adhesion parameter,  , are 

shown in Fig. 2.33, for different values of normalized external load, *P .  As the 

normalized external load, *P , increases, the normalized contact area, *
rA , at the point of 

instability increases (Fig. 2.33).  As it can be seen from Fig. 2.33, the ratio of real contact 

area to nominal contact area is small even for values of adhesion parameter near the 

instability point ( %5/*  nrr AAA ). 

Fig. 2.32 Normalized average gap results versus adhesion parameter for 

different values of normalized external load.  
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2.3 Comparison between Spectral and Deterministic Approaches 

 A comparison between the critical adhesion parameter, cr , predicted by the 

deterministic model and the spectral model is shown in Fig. 2.34. The two models are 

applied to the same simulated 3D rough surface used in the current work (Surface 1) and 

a new simulated surface with the same values of r.m.s. roughness and correlation length 

(Surface 2). As explained earlier, the Rostami and Streator spectral model is based on 

characterizing the rough surface in different scales of roughness using a fast Fourier 

transform (FFT) of the surface heights. It can be seen from Fig. 2.34, that the two models 

show the same trend for the critical adhesion parameter, cr , versus the normalized 

Fig. 2.33 Normalized contact area results versus adhesion parameter for 

different values of normalized external load.  
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liquid volume, *
0V , and the normalized external load, *P , but with quantitative 

differences. Note that for Surface 1, the current deterministic model predicts lower values 

of cr  than does the spectral model, whereas for Surface 2, the opposite is true.  

The quantitative difference between the two model predictions can perhaps be explained, 

noticing that the deterministic model is restricted in the number of nodal points (surface 

data) due to computational cost, which overlooks the effect of higher resolution data in 

the calculations. Also, results of the deterministic model depends on the spatial 

distribution of the peaks and valleys (at various scales), something that is not included in 

the spectral description (which is based simply on the amplitude versus wavelength 

profile).   
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Fig. 2.34 Critical adhesion parameter predicted by deterministic and 

spectral models versus (a) normalized liquid volume and (b) 

normalized external load for surfaces 1 and 2.  
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2.4 Experiments 

 In this section, an experimental approach is discussed to investigate the tensile 

(adhesive) force and liquid film spread in the liquid-mediated adhesion between two 

contacting rough surfaces. Two different experimental approaches, i.e. 1. Pull-off test and 

2. Friction force test, are used to measure the tensile force between surfaces. The results 

are presented for different values of intervening liquid volume, and surface roughness. 

Also, a digital camera is used to record images of the contact interface and image 

processing is performed on the images to measure the liquid film spread or wetted area 

between the two contacting surfaces. Each test is explained in further details in the 

following sections.  

2.4.1 Pull-Off test 

 The pull-off test is performed to measure the force required to separate two 

contacting surfaces in the presence of liquid film. The basic concept is illustrated in Fig. 

2.35. The external load, extP , is applied between the two surfaces until they lose contact. 

The pull-off force, pF  , is defined as the equilibrium tensile force, tF , between two 

surfaces immediately before they lose contact. The pull-off force is an indication of 

tensile (adhesive) force between the contacting surfaces, but, it does not necessarily 

represent the maximum tensile force between the surfaces.  

 
Fig. 2.35 Interface subjected to a separating external load. 

extP  
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2.4.1.1 Pull-off point 

 The pull-off point corresponds to the moment that the two contacting surfaces in 

the presence of liquid film lose contact. The estimation of the pull-off point can be 

obtained from the spectral approach developed for the liquid mediated adhesion between 

contacting rough surfaces. In this case, an external load, extP , is applied between the two 

surfaces and acts in the direction to separate the two surfaces. As extP  increases, the 

average gap, h , between the two surfaces also increases. Both the compressive force, 

cF , and the tensile force, tF , between the two surfaces decreases with decreasing 

average gap, h .  The pull-off force between the two surfaces is applied by using a spring 

and hook which is connected to the center of the upper surface. A schematic of the pull-

off test is shown in Fig. 2.36.  

 

 

 Fig. 2.36 Schematic of the pull-off process. 
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The location of the top of the spring is denoted by sx . The initial location of top of the 

spring, 0sx , corresponds to the case where the average spacing between the surfaces is 

equal to the maximum surface roughness, maxz , where there is no liquid film between the 

contacting surfaces. As the external load, extP , is applied between the two surfaces, the 

top of the spring moves in the upward direction. The relation between the external load, 

extP , and the average gap, h , for any position, sx , of the spring is linear, 

)()( max0 zhKxxKP ssext  , where the slope of the line is equal to K , which is 

the spring constant. The term 0ss xx   shows the change in the location of top of the 

spring, and maxzh   shows the change in the location of the bottom of the spring or the 

upper surface. . The average spacing ih , corresponds to the case where the compressive 

force, cF , balances the tensile force, tF , and therefore 0 ct FF . A qualitative 

account of the pull-off process associated with the system of Fig. 2.36 is depicted in Fig. 

2.37. The position of the upper end of the spring is prescribed by the stage and each 

dashed green line reveals how the external load extP  varies with changes in the average 

spacing, h , for a fixed. sx . The dashed black curve provides the difference between the 

tensile force and the compressive force ( ct FF  ), which must equate with the external 

load at equilibrium. Thus, the intersection of the given green dashed line with the black 

dashed curve establishes the equilibrium average spacing, h , for a given stage position 

sx . By considering perturbations in the average gap about equilibrium it can be seen that 

the equilibrium points are stable until the compressive force becomes zero. At this point, 
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a small increase in the average gap causes the external load to exceed the net downward 

load ( ct FF  ).  Thus the gap will further increase, leading to pull-off.   

  

 

 

 

At the critical point, where the compressive stresses vanish, the tensile stresses are the 

only source of deformation, and we have from Eq. (2.34) 

2max
w

t
p r

Vzh



                                                                                                          (2.60) 

where ph  is the average gap corresponding to the pull-off point. Substituting for tV  

from Eq. (2.30), we have 

Fig. 2.37 Dependence of tensile force, compressive force, and external 

load with the average gap. 

≈ 
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Substituting for wetted radius, wr  from hrV w
2

0  , we have 
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Rearranging Eq. (2.62) we have 
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It can be seen from Eq. (2.63) that the normalized average gap, max
* / zhh pp  , is a 

function of the normalized adhesion parameter 
 

2/5
max

2/3*

2/1
0

3
coscos16
zE

VBA







 . The 

plot for the normalized gap, *
ph , versus the adhesion parameter,   , is shown in Fig. 

2.38. 

 

 
Fig. 2.38 The results for the normalized average gap, *

ph , versus the 

adhesion parameter,   . 
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It can be seen from Fig. (2.38), that no equilibrium normalized gap, *
ph , can be found for 

the adhesion parameter, 1859.0 . Curve-fitting to the results of the Fig. (2.38) 

598.0
295.1

1859.0 133.2
1

* 





 




ph                                                                              (2.64) 

Then, the pull-off force is given by 
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Introducing the normalized format of the pull-off force 
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Substituting for *
ph  from Eq. (2.64) in Eq. (2.66) 

2

133.2
1

* 598.0
295.1

1859.0






















 




pF                                                                      (2.67) 

The plot for the normalized pull-off force *
pF  versus the adhesion parameter,  , is 

shown in Fig. 2.39. It can be shown that the maximum value of normalized pull-off force 

can be achieved is 8.2*
max pF , where the maximum pull-off force can be calculated by 

  2
max0max /coscos8.2 zVF BAp   . 
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2.4.1.2 Experimental Setup 

 The experimental setup used to measure the pull-off force between contacting 

rough surfaces in the presence of liquid film is shown in Fig. 2.40. The setup consists of a 

vertical stage, mounting plate, force gauge, L-shaped screw-in hook spring, contacting 

surfaces, and liquid film. The force gauge is fixed on the vertical stage by the mounting 

plate which moves in the upward and downward directions. A spring is used to link the 

force gauge to the top surface. The bottom surface is fixed on the table. A known amount 

of liquid film is deposited on top of the bottom surface. The top surface is moved in the 

downward direction using the vertical stage, makes the contact with the bottom surface 

under enough resting time for the liquid film to spread between the surfaces, and then is 

moved in the upward direction until the separation happens.   

Fig. 2.39 The results for the normalized pull-off force, *
pF , versus the 

adhesion parameter  . 
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The liquid film used for the experiments, PSF-200cSt, is a Pure Silicone Fluid (PSF). 

These lubricants are clear, colorless and odorless linear 100% Polydimethylsiloxane 

Silicone Fluids/PDMS Silicone oils that has a variety of viscosities. The surface tension, 

 , of the PSF-200cSt is 21 mN/m.  

2.4.1.3 Results 

 The results for the pull-off force, pF , obtained from the experiments for different 

material of contacting surfaces, different liquid film volumes, 0V , and different surface 

roughness are presented in this section. The effect of relative humidity of the 

environment on the amount of liquid volume between the contacting surfaces, is 

neglected here. Based on the argument in [63], the establishment of thermodynamic 

equilibrium for the formation of liquid film due to humidity needs a considerable amount 

of time, such as hours, or even days. In the interim, the adhesive forces will be dictated 

Fig. 2.40 Experimental setup to measure the pull-off force. 
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by the current amount of liquid within the interface. The roughness of the contacting 

surfaces is obtained by performing profilomtery. A stylus profilometer is used to measure 

the surface roughness as is shown in Fig. 2.41. The surface roughness for different steel 

disks and fused silica glass are shown in Fig. 2.42.  

 

 
 
 
 

 

 

Steel disk (1) 
σ = 10.77 μm, zmax = 24.19 μm 

Fig. 2.41 Stylus profilometer used to measure the surface roughness. 
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Steel disk (2) 
σ =3.50 μm, zmax= 15.74 μm 

Steel disk (3) 
σ  = 1.69 μm, zmax  = 6.66 μm 
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 The results for the pull-off force, pF , versus liquid volume, 0V , for the contact between 

the steel surface with maximum surface roughness of mz 19.24max   and fused silica 

glass are shown in Fig. 2.43. It can be seen that the pull-off force increases as the liquid 

volume between the two surfaces increases. The results for the pull-off force, pF , versus 

the liquid volume, 0V , for the contact between the steel surfaces with maximum surface 

roughness of mz 74.15max   and mz 66.6max   and fused silica glass are shown in 

Figs. 2.44 and 2.45. It can be seen from Figs. 2.44 and 2.45 that as the roughness of 

contacting surfaces decreases, the pull-off force increases. Lower maximum surface 

roughness means smaller average gap between the contacting surfaces which leads to 

more negative capillary pressure inside the liquid film and higher pull-off forces.   

Glass disk 
σ = 0.06 μm, zmax = 0.16 μm 

Fig. 2.42 Surface roughness for different contacting surfaces.  
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Fig. 2.43 The results for the pull-off force versus the liquid volume for 

mz 19.24max  . 

Fig. 2.44 The results for the pull-off force versus the liquid volume for 

mz 74.15max  . 
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The results for the pull-off force, pF , between two plastic acrylic disks versus the liquid 

volume, 0V , are also obtained and is compared with the numerical approximation (See 

Fig. 2.46). The average spacing between the two surfaces are obtained by calculating the 

wetted area, wA , between the two surfaces for different liquid volumes.  

Fig. 2.45 The results for the pull-off force versus the liquid volume for 

mz 66.6max  . 
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As it can be seen from Fig. 2.46 good agreement can be seen between the experimental 

results and the numerical model. Linear fit to the experimental results is shown to better 

see the difference between experimental results trend and the numerical model. 

2.4.2 Friction force test 

 The friction force test between two contacting surfaces in the presence of the 

liquid film is performed by applying lateral force to the upper surface, while the position 

of the lower surface is fixed (Fig. 2.47). The friction force between the two surfaces at 

the point of slip is recorded. The test is performed for different values of liquid film 

volume, surface roughness and also under different external loading. This procedure will 

provide an estimate for the tensile force when its results are compared to the friction 

force test under dry conditions.  

Fig. 2.46 The results for the pull-off force versus the liquid volume between 

two acrylic disks. 
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In this vein, one can consider the force equilibrium of the upper surface. Taking the 

external load, extP , as positive when brings the two surfaces into more contact, and the 

force exerted by the liquid, tF , as positive when tensile, and the force exerted by the 

lower solid at the contact points (compressive force), cF , as positive when compressive, 

we know 

ctext FFP                                                                                                               (2.68) 

The above equation expressed the fact that the force exerted on the upper sample by the 

liquid film, tF , operates in conjunction with the external load, extP . These two force 

contributions must be balanced by the response force, cF , of the solid-solid contact 

points. If it can be assumed that an intrinsic static friction coefficient, s , may be 

assigned to the solid-solid contact points, then the horizontal applied force, fF , required 

to initiate slip is then given by 

csf FF                                                                                                                     (2.69) 

Substituting Eq. (2.69) in Eq. (2.68) and rearranging, the tensile force can be expressed as 

extsfextct PFPFF  /                                                                                     (2.70) 

The expression on the right-hand side of the above equation show that the tensile force 

can be obtained from a measurement of the horizontal force required to initiate slip for a 

given applied external load, assuming that the intrinsic solid-solid friction coefficient, 

s , is known. This latter parameter can be obtained by performing a similar slip 

initiation measurement in the absence of the liquid film.  
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2.4.2.1 Experimental setup 

The experimental setup consists of a horizontal stand, mounting plate, force gauge, 

vertical positioner, L-shaped screw-in hook, spring, contacting surfaces, and liquid film. 

The experimental setup is shown in Fig. 2.48.  

  
  

Fig. 2.48 Experimental setup to measure the friction force. 

Fig. 2.47 The schematic of the friction force test.  

extP  
fF  
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2.4.2.2 Results 

Initially, the friction force test is performed under the dry contact condition i.e. in the 

absence of liquid film ( extc PF  ). The friction force is applied by quasi-statically 

moving the top surface horizontally relative to the bottom surface. The bottom surface is 

fixed on the vertical positioner. The measurements are performed between the same steel 

disks and fused silica glass used in the pull-off force measurements. The friction force, 

fF , results versus solid-solid contact force, cF , under dry contact condition for the 

surface with maximum roughness of mz 66.6max   is shown in Fig. 2.49. The static 

coefficient of friction can be obtained by calculating the slope of a linear fit to the results. 

The same friction test is performed for the surfaces with the roughness of 

mz 74.15max   and mz 19.24max  , which are shown in Figs. 2.50 and 2.51. 

 

 

 

Fig. 2.49 The results for the friction force versus the external load for 

mz 66.6max  . 

Dry Contact 
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The static coefficient of friction of ,1167.0,1231.0s  and 1127.0  are obtained for 

maximum surface roughness of ,74.15,66.6max z  and m19.24 , respectively, from 

Fig. 2.50 The results for the friction force versus the external load for 

mz 74.15max  . 

Fig. 2.51 The results for the friction force versus the external load for 

mz 19.24max  . 

Dry Contact 

Dry Contact 
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Figs. 2.49-2.51. It can be seen that the static coefficient of friction reduces with the 

maximum surface roughness.  

The results for the tensile force, tF , obtained knowing the static coefficient of friction, 

s , and the friction force, fF , in the presence of liquid film (see Eq. 2.3) are presented 

versus different liquid film volumes, 0V , for maximum surface roughness of 

mz 66.6max   in Fig. 2.52.  The external load, extP , acting on the contacting surfaces is 

the weight of the upper disk and the connections. The tensile force results for the 

maximum surface roughness of mz 74.15max  and mz 19.24max   are shown in Figs. 

2.53 and 2.54. 

 

 

 
Fig. 2.52 The results for the tensile force versus the liquid film volume for surface 

roughness of mz 66.6max  . 
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Fig. 2.53 The results for the tensile force versus the liquid film volume for surface 

roughness of mz 74.15max  . 

Fig. 2.54 The results for the tensile force versus the liquid film volume for surface 

roughness of mz 19.24max  . 
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As it can be seen from Figs. 2.51-2.53, the tensile force increases as the liquid film 

volume between the two surfaces increases. Also, as the surface roughness increases, the 

tensile force between the two surfaces decreases.  

The friction force test is also performed between thin transparency sheets and acrylic 

disks in order to achieve smaller average gap, h , between the surfaces and also smaller 

effective elastic modulus, E . The results for the dry friction force between the 

transparency sheet and the acrylic disk is shown in the Fig. 2.54. 

 

 

 

The static coefficient of friction of 3622.0  can be calculated from the results of Fig. 

2.55. This value agrees with the literature which suggests a range of coefficient of friction 

between 0.3 and 0.4 for the contact between plastic surfaces.  

The results for the tensile force between the transparency sheet and the acrylic disk 

obtained from Eq. (2.70) are shown in Fig. 2.56. These results are compared to the 

Fig. 2.55 The results for the friction force versus the external load for the 

contact of two acrylic disks. 

Dry Contact 
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numerical approximation of the tensile force between contacting surfaces, 2
0 /2 hV . The 

average gap, h , is calculated to be m5  from the liquid film spread measurements 

between the two surfaces.  

 

 

As it can be seen from Fig. 2.55, the experimental results are distributed around the 

numerical approximation, but, there is a good agreement between the linear fit (dashed 

black line) of the experimental results and the numerical approximation. 

2.4.3 Wetted area Measurements 

 The spread of liquid film or wetted area, wA , between two contacting surfaces is 

measured experimentally and is compared to the results of the developed numerical 

model. The results are obtained for different liquid film volume, 0V , and different 

maximum surface roughness, maxz . 

Fig. 2.56 The results for the tensile force versus the liquid film volume for the 

contact between transparency sheet and acrylic disks. 
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2.4.3.1 Experimental setup 

 The experimental setup used in the current work is shown in Fig. 2.57. The setup 

consists of a digital camera, light source with adjustable control of light intensity, flexible 

light cords, contacting surfaces (the top surface should be transparent), and liquid film.   

 

 

 

A known amount of liquid film is introduced between the two contacting surfaces. The 

light intensity of the light source along with the direction of the light cords are adjusted in 

order to differentiate between the wetted area and dry area. Due to the transparency of the 

top surface, the camera can capture images of the interface between surfaces. An image 

of the interface showing the wetted area for a known amount of intervening PSF oil is 

shown in Fig. 2.58. The red color is used to show the front line of the liquid film. 

Fig. 2.57 The experimental setup used to measure the liquid film radius. 



 93

 

 

 

Image processing is performed on the captured images to calculate the liquid film wetted 

area between the two surfaces. A threshold method, based on the light intensity at each 

pixel, is applied to detect the boundary of the wetted area. After finding the x and y 

coordinates of the various boundary points (pixels), the following mathematical relation 

is used to calculate the wetted area 

 bbbbw dyxdxyA  2
1

                                                                                           (2.71) 

where bb yx ,  are the coordinates of the boundary points. The discretized version of the 

Eq. (2.71) is given below 
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1 1
112

1
                                                            (2.72) 

where 1i  to N  is the index corresponding to the points on the boundary. It can be 

easily seen that 1111 , yyxx NN   , so, Eq. (2.72) reduces to 

Fig. 2.58 Measured wetted area between two contacting surfaces. 
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2.4.3.2 Results 

Results for the wetted area obtained from the experiments are compared with the results 

of the numerical model. For the simulations we set the liquid-solid contact angles to zero. 

We have made no attempt to precisely measure the contact angles. However, upon visual 

inspection it is clear that the contact angle is quite small so that the corresponding cosine 

values are very close to unity.  

The results for the wetted area, wA , between the steel surfaces and fused silica glass 

versus the liquid volume, 0V , for different values of maximum surface roughness, maxz , 

are shown in Figs. 2.59-2.61. It can be seen as the liquid volume between the two 

surfaces increase, the wetted area also increases. The results also suggest as the 

maximum surface roughness increases, for a specific liquid film volume, the wetted area 

between the two surfaces decreases. 
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Fig. 2.59 The results for the wetted area versus the liquid volume for 

mz 19.24max  . 

Fig. 2.60 The results for the wetted area versus the liquid volume 

for mz 74.15max  . 
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2.5 Conclusions 

Liquid-mediated adhesion between contacting rough surfaces under static condition is 

studied both numerically and experimentally. Two different contact models i.e. spectral 

and deterministic are used to model the compressive stresses at the solid-solid contact 

spots which are solved simultaneously with the capillary equation for the tensile stresses 

developed at the wetted area. A numerical algorithm is designed to solve the interaction 

between tensile and compressive stresses simultaneously. The results for the tensile force, 

average gap, liquid film spread or wetted area, and contact area are obtained from both 

contact models and discussed. The normalization is performed to present the results in the 

most general way. It is shown that the normalized tensile force increases with the 

adhesion parameter until the interface reaches a point of instability. Beyond this point, no 

equilibrium configuration could be found because the compressive force in the contacting 

Fig. 2.61 The results for the pull-off force versus the liquid volume for 

mz 66.6max  . 
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surfaces is overwhelmed by the tensile force within the liquid film.  This condition is 

called surface collapse, whereby there is an expected upward jump in the tensile force, 

wetted radius, and contact area as well as a downward jump in the average gap. An 

empirical relation for the adhesion parameter at the point of instability is obtained based 

on the material and geometrical properties of the contacting rough surfaces and the liquid 

film. It is shown that the critical adhesion parameter, cr , depends on the non-

dimensional liquid volume,  *
0V , non-dimensional external load,  *

extP , and the non-

dimensional maximum height,  *
maxz  as in 

  87.2*
max

32.0*
0

85.0*
11.0*

055.1*
max

*
0

011.0

115.1794.8

1

zV
PzV

V
cr






  

 , which is valid for the range of parameters given below the Eq. (2.54). The results for 

the critical adhesion parameter obtained from spectral and deterministic contact models 

showed good agreement.  

The tensile force between two contacting surfaces in the presence of liquid film is 

obtained experimentally from pull-off and friction force tests. The results are obtained for 

different contacting rough surfaces and different volume of liquid film. The results show 

that the tensile force between surfaces increases with the liquid volume. Also, higher 

tensile forces are achieved for smoother surfaces. The tensile force calculated 

experimentally showed good agreement with the predictions of the numerical model.  
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The liquid film spread or the wetted area is also measured experimentally by recording 

images of the interface and performing image processing on the images. The wetted area 

increases with the liquid volume, and is higher between smoother surfaces. The 

experimental results showed good agreement with the results of the numerical model. 
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CHAPTER 3 

LIQUID MEDIATED ADHESION: CAPILLARY FLOW 

CONDITION 

 In this section, the liquid-mediated adhesion between two contacting rough 

surfaces is considered where the liquid film flows between the two surfaces. The liquid 

flows due to the pressure gradient within the liquid film which is caused by capillary 

effects. A negative pressure distribution exists inside the liquid film compared to the 

ambient pressure which brings the two surfaces into closer proximity. Opposing these 

tensile stresses are the compressive stresses at the solid-solid contact spots. 

The liquid flow within narrow spaces has studied extensively, such as found in capillary 

tubes and porous media. The classic model governing flow in capillaries is presented by 

Washburn [64]: 

 



2
cosRttl 

                                                                                                        (3.1) 

where l  is the position of the free surface in the tube, t  is time,   is the liquid surface 

tension, R  is the tube radius,   is the liquid-solid contact angle and   is the liquid 

dynamic viscosity. The Washburn equation is based on a simple balance between 

(negative) capillary pressures and a velocity-dependent viscous drag that arises during 

laminar (Poiseiulle) flow in cylindrical tubes (see Fig. 3.1). The essential validity of the 

Washburn equation has been supported experimentally [65-67], and via molecular 

dynamics (MD) calculations [68]. In this study we are interested in how liquids flow 

within the confined region defined by the interface between contacting (rough) surfaces. 
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Fig. 3.1 Flow in a horizontal capillary tube. 

Such a region has similarities to that of a capillary tube, but is more complex: there are 

random variations in the local gap, and depending on the rigidity of the surface, there is 

the potential for elastic deformation to strongly couple with the liquid flow. Nevertheless, 

the Washburn equation will provide the frame of reference with which to develop to 

interpret the experimental and numerical results. That is, it is possible to conceive of an 

effective capillary radius for a rough-surface interface, similar to what has been done in 

the analysis of the wetting of soils [69] and drainage through rocks [70]. Expanding the 

point a bit further, it will be of interest to compare the perspective of the Washburn 

theory to what is obtained from a numerical simulation of the flow through the interface 

defined by the contacting surfaces. 

 

 

3.1 Methodology 

 A schematic view of the interface of interest is shown in Fig. 3.2: A volume of 

liquid is introduced via a central hole having radius 1R  of an annular rigid flat. The 

wetting liquid spreads between the annular rigid flat in contact with a rough plate until 

the liquid film radius, b , reaches the outer radius of the rigid flat, 2R . The capillary 
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effect is the driving force for the liquid flow, which depends on the affinity of the liquid 

with the contacting solid surfaces, or how well it “wets” them. Capillary effects will first 

draw the liquid into the channel and then into the interface between the surfaces. Owing 

to small spacing between the surfaces, the liquid film has a free surface with large values 

of curvature (i.e. small values of radius of curvature). These large curvatures are 

associated with large pressure drops across the free surface of the liquid film [53]. For a 

liquid film that wets the two contacting surfaces, the free surface is concave from the 

perspective of the liquid film, leading to film pressures that are significantly less than that 

of the ambient. Assigning a reference value of zero to the ambient, the associated 

negative film pressures represent positive tensile stresses that tend to pull the two solid 

surfaces together. Moreover, the decreasing proximity of the surfaces can lead to 

increases in solid-solid contact. It should be noted that a combination of a rigid flat 

surface and a rough surface used in this work is a model of two hypothetical elastic rough 

surfaces, whereby the rough surface of the model is given the combined roughness and 

flexibility of the hypothetical surface pair.  

 

  
Fig. 3.2 Schematic depiction of the modeled interface. 
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The modeling approach should solve equations of lubrication, capillarity and linear 

elasticity simultaneously to simulate the capillary flow between contacting rough 

surfaces. A numerical model comprised of a macro-contact model, a mixed lubrication 

model, and a micro-contact model is developed to solve this problem. The macro-contact 

model is used to determine the pressure distribution within the nominal region of contact 

due to external load acting on the contacting surfaces. In the macro-contact model, the 

effect of surface roughness is neglected, so that the contacting surfaces are assumed to be 

nominally smooth. The pressure distribution within the liquid film is obtained from a 

mixed lubrication model. The deformation of the surface topography and the resulting 

film thickness are determined in the micro-contact model using a volume loss approach 

[56]. An iterative numerical algorithm is implemented to solve these sub-models 

simultaneously to obtain results for the tensile force, liquid film thickness, and liquid 

flow rate between the two contacting surfaces.  

3.1.1 Macro-Contact Model 

 The macro-contact model is used to determine the pressure distribution between 

the annular rigid flat and the flexible disk due to external loading, extP . The macro-

contact model considers only the gross dimensions of the annular interface, which is 

depicted in Fig. 3.3. Thus, within this sub model, any effect of surface roughness is 

neglected. A numerical approach based on influence coefficients is used in the current 

work to obtain the pressure distribution under the rigid flat.  
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To obtain the influence coefficients, a solution for the case of constant pressure acting 

over a thin annulus is needed. To get this result, we make use of the solution for a 

uniform pressure acting over a circular region: The deformation, u , of a homogeneous, 

isotropic, elastic half-space with elastic modulus E  and Poisson’s ratio   under a 

uniform pressure of p  acting within a circular region of radius a  is given by (e.g., [60])  

 














arraKraraEpr
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c

)/()/1()/()1(4

),/()1(4

)(
22

2

2







      (3.1) 

where cc EK ,  are the complete elliptic integrals of the first and second kind, 

respectively. For the axisymmetric contact problem of Fig. 3.3, the region is divided into 

small annular elements, each having width r , as shown in Fig. 3.4.  The position of 

each element is specified by the radial position of the center of the element.  The surface 

deformation and the pressure distribution are represented by adjacent columns of uniform 

Fig. 3.3 Contact between an annular rigid flat and a flexible disk. 

Annular rigid flat 

Flexible disk 
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deformation or pressure. For example, for the ith annular element, the radial position is ir , 

the surface deflection is iu , and the pressure is ip . 

 

 

Thus, the influence coefficient ijC  is defined as the deflection at ir  due to a unit pressure 

applied at jr . The influence coefficients, ijC , can be computed as described below. 

Suppose we wish to find the normal deflection at some radial position ir  caused by a thin 

circular ring of constant pressure applied at jr . By superposition we can view the 

pressurized ring as a combination of a uniform positive pressure acting within a circle of 

radius 2/rrj   with a uniform negative pressure with the same magnitude acting 

within a circle of radius 2/rrj   (Fig. 3.5).  Then the influence coefficients can be 

written as  

Fig. 3.4 Discrete pressure and deformation elements. 
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(3.2) 

This equation can be applied to the contact between two elastic surfaces by defining a 

composite elastic modulus, *E . For our purposes, the deformation, u , represents the sum 

of the deformations of two surfaces, and p  represents the contact pressure at the 

interface.   

 

 

 

 

In the current work, smooth edges are assumed for the contacting surfaces as suggested 

by Fig. 3.3, in order to avoid unbounded pressures at the inner and outer radii of the 

contact. Moreover, in real applications, every disk has a nonzero value of edge radius.  In 

the current work an edge radius of 0.1 mm is used in the calculations. Fig. 3.6 depicts the 

Fig. 3.5 Equivalency of a pressurized ring to the superposition of a 
uniform positive pressure circle of radius 2/jj rr   with a uniform 

negative pressure circle of radius 2/jj rr  . 
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pressure distribution corresponding to a composite elastic modulus, *E , of 50 GPa, an 

inner radius, 1R , equal to 0.1 cm, an outer radius, 2R , equal to 2 cm, and an external 

load,  extP , equal to 20 N.  As observed the pressure distribution reaches high values at 

the inner and outer radii due to edge effects. 

 

 

3.1.2 Mixed Lubrication Model 

 A mixed lubrication model is used to determine the pressure distribution within 

the liquid film. Assuming incompressible, axisymmetric flow with isotropic surface 

roughness, the average Reynolds equation [71] is given by 

t
hr

r
p

rh
r

f
















  123                                                                                           (3.3) 

where r  is the radial coordinate, fp  is the liquid film pressure, h  is the film thickness, 

  is the pressure flow factor, and   is the dynamic viscosity of the liquid film. It is 

Fig. 3.6 Results for the pressure distribution for an external load of 

NPext 20 . 
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assumed that the squeeze film effects are negligible, which means that the rate of change 

of film thickness in any radial position is sufficiently small in Eq. (3.3) to have an 

insignificant impact on the liquid film pressure. Thus, Eq. (3.3) simplifies to the form 

  03 







dr

dp
rrh

dr
d f                                                                                                 (3.4) 

Patir and Chang [72] developed a model for pressure induced flow between nominally 

smooth surfaces. The transverse pressure flow factor,  , for isotropic rough surfaces is 

given by 

  /56.09.01 he                                                                                                        (3.5)    

where   is the composite r.m.s. roughness of contacting surfaces. The boundary 

conditions for Eq. (3.4) includes ambient pressure at the inner radius of the annular 

region and the capillary pressure at the flow radius, b, which is given by 

    bBAf hbp /coscos    [53], where bh  is the film thickness at the location of 

the free surface(where br  ). In order to solve for the liquid film pressure distribution, 

the domain is discretized into annular segments with width r . Each annular segment 

located at radial position, jr , has the uniform  pressure, fjp , and film thickness, jh  as 

illustrated in Fig. 3.7. The discretized form of Eq. (3.4) is given by  
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where 
)/(56.09.01  jh

j e .  Equation (3.6) is solved iteratively using the familiar 

Gauss-Seidel method (e.g., [51]).   

 

 

3.1.3 Micro-Contact Model 

 The pressure distribution due to external loading from the macro-contact model 

and liquid film pressure distribution from the mixed lubrication model cause micro-scale 

surface deformation. In the current work, the Jackson-Streator (JS) multiscale contact 

model is used to determine the surface deformation within a circumferential band of 

width r  at each radial location in the annular contact zone. The JS contact model is 

based on representing the rough surface in multiple scales of roughness based upon the 

fast Fourier transform (FFT) of the surface heights.  

 For the parametric analysis, rough surface data is generated using a method outlined by 

Garcia and Stoll [59].  One of the rough surfaces generated using this method is shown in 

Fig. 3.7 The schematic explanation of the parameters involved in the Eq. (3.6). 
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Fig. 3.8. A two dimensional FFT is then performed on the generated surfaces using the 

following equation 


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where z  is the surface heights, xN and yN  are the number of nodes in x and y 

directions, xk and yk  correspond to the spatial frequency levels in x and y directions, 

while xn  and yn  correspond to the spatial coordinates in x and y directions. The output 

is a yx NN   matrix comprising of complex elements. As the micro-contact model 

requires a single amplitude for each frequency level, an equivalent 1D amplitude at 

frequency level k  is defined which is given 

by     

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k yk kkFkkF , based on taking the r.m.s. values of 1D 

transforms in x and y directions and then averaging the two values [56].   
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At each frequency level k , the asperities are modeled as three-dimensional sinusoidal 

shape geometries of wavelength k  and amplitude k .  Johnson, Greenwood, and 

Higginson (JGH) [54] developed two analytical asymptotic solutions for early and nearly 

complete contact of sinusoidal asperities.  Later, Jackson and Streator [55] presented an 

empirical equation connecting the two asymptotic solutions based on the numerical 

results of JGH [54]. At each frequency level, k , the average pressure acting on the 

surfaces is denoted by kp , and *
kp  is defined as the average pressure that causes 

complete contact between the two sinusoidal asperities as explained in the previous 

sections. Since each frequency level carries the same load, the average pressure, kp  is 

given by 
 

1

2




k

jjcomp
k A

rrrp
p


.   

Fig. 3.8 A 3D plot of a generated Gaussian isotropic rough surface. 



 111 

That is, the nominal contact area is divided into many annular bands with width, r , and 

the load supported by each band is the product of the band area and the compressive 

stress   rrrp jjcomp 2 .  The JS [52] empirical relations are used to calculate the contact 

area, kA  at each scale k  and the relations developed by Rostami and Jackson [55] are 

used to calculate the average spacing, kg , at each frequency scale k . 

3.1.4 Film thickness 

 In order to complete the model for the capillary flow between contacting surfaces, 

the film thickness between the contacting surfaces at each radial position is needed. The 

volume-loss approach developed by Green et al. [56] is used to calculate the gap at each 

radial position. This approach considers the reduction in the available interfacial volume 

caused by asperity deformation due to both compressive and tensile stresses within 

annular band of width r . The volume loss due to compressive stresses at each radial 

position,  
jrcomplossV  , can be obtained by summing up the volume loss reduction at 

each frequency level, k , which can be obtained from the JS contact model by  

   


 
*

1

N

k
klossjrcomploss VV                                                                                          (3.8) 

where *N  is the Nyquist limit.  The volume loss due to tensile stress within the annular 

segment located at location jr  with thickness r  can be calculated by 

   



 

2/

2/

2
jrjr

jrjr
tjrtensloss duV





                                                                             (3.9) 
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where tu  is the deformation within the annular region with width r  at location jr  due 

to uniform fluid pressure  
jfp ,   is the dummy integral variable, and  

jrtenslossV   is 

the volume loss due to tensile stresses at location jr . The expression for deformation, tu , 

within the annular element, r , due to uniform pressure  
jfp  is given by 
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Next, the film thickness or gap,  jrh , assigned within radial spacing, r , at radial 

position jr  can be calculated by 
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where maxz  is the average gap corresponding to initial contact in the absence surface 

deformation. 

3.1.5 Liquid flow rate 

 Upon solving the equation of mixed lubrication for the pressure field (see Section 

3.1.2), one can compute the velocity profile at the location of the free surface of the film.  

Equating the rate of change of liquid film radius with the average of radial velocity across 

the film thickness, we obtain 
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The discretized version of Eq. (3.12) is given as 
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At each value of b , the rough surface is assumed to be in mechanical equilibrium with 

the liquid film, even though the liquid film is not at steady state. Thus, the liquid flow 

rate, Q , at each time, t , can be computed from 
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3.1.6 Numerical algorithm 

 The flowchart of the numerical algorithm is shown in Fig. 3.9. After introducing 

the material properties of the contacting surfaces and liquid film, and the geometrical 

properties of the contacting surfaces, an initial value, 0b , is selected for the radius of 

liquid film. Next, the pressure distribution due to external loading is obtained using the 

macro-contact model. The initial value for the film thickness or gap at each radial 

position is set to be the maximum surface height, maxz , within the nominal contact region. 

The average Reynolds equation (Eq. 3.6) is solved for the liquid film pressure 

distribution. Since the pressure within the liquid film is negative, it induces tensile 

stresses between the surfaces. These tensile stresses, which act in surface regions where 

there is no solid-solid contact, serves to intensify the solid-solid contact pressures. Thus, 

the liquid film tensile stress and the pressure distribution due to external loading are 

summed to yield the compressive stress that is inserted into the JS multiscale model to 

compute the film thickness at each radial position: 
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fextcomp ppp                                                                                                         (3.15) 

The tensile force, which is the integral of liquid film pressure over the wetted region, is 

calculated and a convergence test is performed on the tensile force. If the tensile force has 

not converged, the recently calculated values for the film thickness at each radial location 

are used in the average Reynolds equation to calculate the new liquid film pressure 

distribution. Once the tensile force has converged, a value of b  is calculated based on Eq. 

(3.13). 

 

 Fig. 3.9 Flowchart of the numerical algorithm. 
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3.1.7 Results 

 Results are now presented for the liquid film pressure distribution, fp , liquid film 

thickness, h , liquid tensile force, tF , and liquid flow rate, Q .  A table of the material 

and geometrical properties used for the contacting surfaces and the liquid film is included 

as Table 3.1. The values for the material properties of contacting surfaces are 

representative of metal-metal interfaces. The surface tension and dynamic viscosity 

values of the liquid considered in this work are that of polydimethylsiloxane fluid (PSF-

200) at 22.5℃ which is the approximate temperature in the laboratory. For convenience, 

the contact angles of the liquid film with upper and lower surfaces are assigned values of 

zero (i.e., 0, BA ). The results are obtained with and without an external load, extP , 

acting on the contacting surfaces. 

Table 3.1: Reference material and geometrical properties 
Name Symbol Value 

Rigid flat inner radius 
1R  0.1 cm 

Rigid flat outer radius 
2R  2 cm 

Edge radius r  0.1 mm 
Effective elastic modulus *E  50 GPa 

Liquid surface tension   21 mN/m 

Liquid dynamic viscosity   204.3 mPa.s 
r.m.s. surface roughness   0.4 m 

 

3.1.7.1 Results in the absence of external load 

 In the case of no external load, the negative fluid pressure distribution within the 

liquid film induces tensile stresses within the wetted region, which are balanced by the 
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compressive stresses arising at the solid-solid contact spots. Both the compressive and 

tensile stresses cause deformation in the contacting surfaces, which leads to a reduction in 

the spacing between them. The domain of interest is divided into multiple annular 

elements of width 01.0r  cm based on the results of a convergence test on the radial 

grid spacing. The initial liquid film radius, 0b , is selected to be 1 cm. Fig. 3.10 shows the 

liquid film pressure distribution (Fig. 3.10a), and film thickness (Fig. 3.10b), versus 

radial position at time 0t . 
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(a) 

(b) 

 

 

 

 

 

Fig. 3.10 (a) Liquid film pressure, and (b) liquid film thickness versus 

the radial position at time 0t . 
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As can be seen from Fig. 3.9a, the pressure distribution starts at zero value (ambient) at 

the inner radius ( 1.01  Rr cm) and decreases to the negative Laplace-Young pressure 

at the film radius ( 10  br  cm). In Fig. 3.9b, the film thickness, h , is equal to the 

maximum surface height, 82.1max z μm, at the inner radius, 1R , where the liquid film 

pressure is least tensile, and it decreases to its minimum value of 1.725 μm at the liquid 

film radius, 0b , where the most negative fluid pressure exists.    

The results for the liquid tensile force, tF , and liquid flow rate, Q , between the 

contacting surfaces versus time, t , are shown in Fig. 3.11.  The results are obtained until 

the liquid film radius reaches 2 cm. As can be seen from Fig. 3.11, the tensile force 

increases with time as the liquid spreads between the two surfaces.  As time passes, the 

areal coverage of the liquid film increases, which leads to an increase in the tensile force.  

On the other hand, the liquid flow rate decreases with time.  

 
Fig. 3.11 The results for the liquid tensile force and flow rate between the 

two contacting surfaces versus time. 
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3.1.7.2 Results in the presence of external load 

 In this section, liquid flow between contacting surfaces in the presence of external 

loading is considered. The results are presented for the external loading of NPext 20  

for the reference parameters given in Table 3.1. The contact pressure distribution due to 

external loading is shown in Fig 3.6. In this case, the pressure distribution due to external 

loading and the liquid film pressure distribution induces stresses which are balanced by 

the compressive stresses arising at the solid-solid contact parts. The results for the liquid 

film pressure distribution and the film thickness at 0t  are shown in Fig. 3.12. The 

liquid film pressure starts from zero at the inner radius and decreases to the capillary 

pressure at the outer radius. High values of external pressure due to the edge effect causes 

a low value of the film thickness at the inner radius, but further away from edge, the film 

thickness increases. Then, the film thickness decreases due to the effect of the liquid film 

pressure distribution.   
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3.1.7.3 Parametrical study 

 A parametric study is performed to investigate the effect of different parameters 

on the liquid tensile force and liquid flow rate between two contacting surfaces. The 

Fig. 3.12 (a) Liquid film pressure, and (b) liquid film thickness versus 

the radial position at 0t . 

(b) 

(a) 
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external load, composite surface roughness, and effective elastic modulus were varied 

according to the ranges listed in Table 3.2. The results are obtained using the same 

material and geometrical properties given in Table 3.1 except the varied parameter. The 

results for the maximum tensile force, maxtF , and time averaged flow rate, avgQ , versus 

the external load, extP , are shown in Fig. 3.13. As observed, the tensile force between the 

two surfaces increases with external load while the average flow rate generally decreases. 

Higher external loads cause a reduction in the gap between the two contacting surfaces, 

which leads to more negative pressures inside the wetted region due to capillary effects 

and therefore more resistance to liquid flow between the two surfaces. 

Table 3.2: Parameter ranges used in the parametric study 
Parameter Range 

External load 5000  extP  N 
Composite surface 
roughness (r.m.s.) 

22.0   μm 

Effective elastic modulus 20010 *  E  GPa 
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The results for the maximum tensile force, maxtF , and average flow rate, avgQ , versus the 

surface roughness in the absence of external load are shown in Fig. 3.14. The tensile 

force between the two surfaces increases as the contacting surfaces become smoother 

while the average flow rate decreases. As the roughness of the surfaces decreases, the gap 

between the two surfaces also decreases, which leads to more negative pressures while it 

causes more resistance to the liquid flow.  

Fig. 3.13 The results for the maximum tensile force and average flow 
rate versus the external load. 
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The results for the maximum tensile force, maxtF , and average flow rate, avgQ , versus the 

effective elastic modulus, E , in the absence of external load are shown in Fig. 3.15.  It 

can be seen that the tensile force between the two surfaces decreases as the effective 

elastic modulus increases while the average flow rate decreases.  As the elastic modulus 

of the surfaces decreases, the gap between the two surfaces decreases due to more 

deformation which leads to more negative pressures inside the wetted region and also 

more flow resistance. 

Fig. 3.14 The results for the maximum tensile force and average flow rate 
versus the composite surface roughness. 
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3.1.8 Liquid film spread 

 A semi-analytical relation for the capillary flow between the two contacting 

surfaces is developed here. The relation for the rate of change of liquid film radius is 

given as in Eq. (3.12) 

br

fbh

dr
dph

dt
db b















12

2

                                                                                             (3.16) 

For the contact between two rigid rough surfaces with separation, bh , the liquid film 

pressure distribution can be calculated from Eq. (3.4) 

     
 1

1

/ln
/lncoscos
Rb
Rr

h
rp

b

BA
f

 
                                                                   (3.17) 

Fig. 3.15 The results for the maximum tensile force and average flow rate versus 
the effective elastic modulus. 
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Substituting the derivative of Eq. (3.17) 

(
   

 1/ln
1coscos

Rbbhr
rp

b

BA
br

f  
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
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 ) into Eq. (3.16): 
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Rearranging Eq. (3.18), and assuming bh  is a known function of ,,, max
* zE  and  b : 

   dtdb
h

Rbb BA

b
bh 12
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                                                               (3.19) 

Integrating Eq. (3.19), we have 
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By performing a parametric study, the following dependency is found for bh  : 
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                                                               (3.21) 

Eq. (3.21) is obtained for the range of parameters 5005.2 *  E GPa, 

5001   mN/m, and 92.5/18.4 max  z . Substituting for bh  from Eq. (3.21) 

into Eq. (3.20), the liquid film spread between any elastic contacting surfaces can be 

obtained. The comparison between the 
maxz
hb results versus 

max
*zE


obtained from the 

numerical model and the curve-fit equation (3.21) for different liquid film radius, b , is 

shown in the Fig. 3.16. The average error between the numerical results and the curve-fit 

equation is 1.06 %. 
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3.2 Experiments 

3.2.1 Liquid film spread 

 The developed numerical model is validated by comparing the results of the liquid 

film radius, b , as the liquid spreads between the two surfaces with the experiments. The 

experimental setup in Fig. 3.17 is the same as section 2.3.2. The setup consists of a 

camera, light source, several light cords, liquid film, and contacting surfaces. The surface 

roughness of the metallic disk and the optical flat is measured using a contact stylus 

profilometer. A scan length of 2.5 cm is set on the profilometer and 13162 surface 

heights data are obtained for a given scan. Scans are performed on both the optical flat 

and the metallic disk. These profiles are summed to give a composite profile, which 

yielded a value of maximum surface height of 8.3 µm and a r.m.s. roughness of 3.4 µm. 

Fig. 3.16 The comparison between results from the 
numerical model and curve-fit Eq. (3.21). 
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Several liquids of varying viscosities are introduced via the central hole in the top optical 

flat which is in contact with the metallic surface. The relevant properties of the liquids, 

which are all Pure Silicone Fluids (PSFs), are given in Table 3.3.  

 

 

The liquid film is introduced via the hole in the optical flat and then begins to spread 

inside the contact interface due to capillary effect. The images of the spread of a PSF oil 

at different times are shown in Fig. 3.18. The red color is used to show the front line of 

the liquid film. 

 

 

 

Fig. 3.17 The Experimental setup used to measure the liquid film radius. 

Fig. 3.18 The spread of liquid film between the contacting surfaces. 

t =6 s t =130 s t =300 s t =480 s 
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Table 3.3: Properties of the liquid films 

(http://www.clearcoproducts.com/pdf/pure-silicone/polydimethylsiloxanes-
properties.pdf). 

Lubricant Dynamic viscosity (mPa.s) Surface tension (mN/m) 
PSF-50cSt 50.66 20.8 
PSF-100cSt 101.95 20.9 
PSF-200cSt 204.32 21.0 
PSF-500cSt 512.38 21.1 

PSF-1000cSt 1024.76 21.2 
PSF-5000cSt 5144.90 21.3 

Image processing is performed on the video records to calculate the liquid film radius 

between the two surfaces at each time step. After finding the x and y coordinates of the 

various boundary points, the same discretized equation in section 2.3 is used here 

  


 
N

i iiiiw yxxyA
1 112

1
                                                                                         (3.24) 

Then the liquid film radius corresponding to this wetted area can be easily obtained by 


wAb  .  

Results for liquid film radius obtained from the experiments are compared with the 

results of the numerical model (see Fig. 3.19) for six different PSFs ranging in viscosity 

from 0.051 Pa-s to 5.1 Pa-s (Table 3.3). For the simulations we set the liquid-solid 

contact angles to zero. We have made no attempt to precisely measure the contact angles. 

However, upon visual inspection it is clear that the contact angle is quite small so that the 

corresponding cosine values are very close to unity. As it can be seen the model does a 

good job of capturing the spread of different liquid films between the two contacting 

optical flat and the metallic surface. 



 129 

 

 

 

 

 

 

 

 

Fig. 3.19 The liquid film radius versus time results as predicted by the 
numerical model and experiment for different PSF lubricants. 

PSF-50cSt PSF-100cSt 

PSF-200cSt PSF-500cSt 

PSF-1000cSt PSF-5000cSt 
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3.3 Conclusions 

Liquid-mediated adhesion between contacting surfaces under capillary flow condition is 

investigated through both numerical and experimental approaches. The numerical model 

needs to solve equations of elasticity, capillary and lubrication simultaneously. The 

numerical model consists of three sub-models including a macro- and micro- contact 

models along with a mixed lubrication model. The results are obtained for the 

characteristic parameters of the liquid flow using an iterative numerical algorithm. It is 

shown as the liquid spreads between the two contacting surfaces, the liquid tensile force 

increases while the liquid flow rate decreases with time in the case of no external load. 

As the external loading increases, the tensile force increases while the average liquid flow 

rate decreases. Higher tensile forces and lower flow rates happen for smoother surfaces. 

For more flexible surfaces, higher tensile forces and lower flow rates happen. A semi 

analytical equation is developed for the capillary-driven flow between two contacting 

surfaces. The spread of liquid film between the contacting surfaces is visualized using a 

digital camera and the spread of the liquid film is measured as a function of time by using 

image processing on the images recorded. Good agreement between the numerical model 

and the experimental results is observed. 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

 The liquid-mediated adhesion between contacting rough surfaces is studied 

through both numerical and experimental approaches. Liquid-mediated adhesion under 

two different conditions is considered: (1) no-flow condition or static condition, where 

the liquid film has a uniform pressure throughout, and (2) capillary flow condition, where 

a pressure gradient exists inside the liquid film. In order to model the compressive 

stresses that arise at solid-solid contact spots, two different contact models, i.e.: spectral 

or multiscale and deterministic, are employed. 

1. For the static condition, results are obtained for the tensile force, average spacing, 

liquid film spread, and contact area for different material and geometrical properties of 

the contacting surfaces and liquid film. It is shown under certain circumstances, a contact 

instability could happen, where the tensile stresses dominate the compressive stresses. 

This condition is called surface collapse, whereby there is an unexpected upward jump in 

the tensile force, liquid film spread, and contact area, as well as a downward jump in the 

average gap. Based on the normalization, an empirical relation for the adhesion parameter 

at the point of instability is obtained which is a combination of the material and 

geometrical properties of the contacting rough surfaces and the liquid film. It is shown 

that the critical adhesion parameter, cr , depends on the non-dimensional liquid volume, 
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Also, tensile force between the two contacting surfaces are measured experimentally 

through both a pull-off test and a friction force test. Two different experimental setups 

are used to measure the pull-off and friction forces between different contacting surfaces 

in the presence of different amount of liquid volume. It is shown as the liquid film 

volume increases between the two surfaces, the tensile force also increases. The results 

showed that the tensile force is higher between the smoother surfaces. The liquid film 

spread or wetted area between the surfaces is also measured by performing image 

processing on the images captured by a digital camera from the interface. The results are 

obtained for different contacting surfaces and different amount of intervening liquid film. 

The results suggested that the wetted area increases as the liquid film volume increases 

between the surfaces, and also higher wetted area happens between smoother surfaces 

due to small spacing between them. The experimental results are compared with results 

of the numerical model. Good agreement is observed between the two approaches.  

2. For the capillary flow condition, it was shown as the liquid film spreads between the 

two contacting surfaces, the liquid tensile force increases while the liquid flow rate 

decreases with time. As the external loading increases, the tensile force increases while 

the average flow rate decreases. Higher tensile forces and lower flow rates happen for 

smoother surfaces. For more flexible surfaces, higher tensile forces and lower flow rates 

happen. A semi analytical equation is developed for the capillary-driven flow between 
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two contacting surfaces. The spread of liquid film is visualized using a digital camera, 

and the wetted area is measured as a function of time. The results are compared with 

results of the numerical model. Good agreement between the numerical model and the 

experimental results is observed.  
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