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SUMMARY 

Reliably and quantitatively calculating the conductance of phonons across an 

interface between two materials has been one of the major unresolved questions in thermal 

transport physics for the last century. Theories have been presented in this regard, but their 

predictive power is limited. In this thesis, a new formalism to extract the modal 

contributions to thermal interface conductance, termed interface conductance modal 

analysis (ICMA) is developed. ICMA can fully include the temperature dependent 

anharmonicity and atom level topography around the interface in the calculations. In 

addition, compared to all the previous techniques that are based on the phonons gas model 

(PGM) and can only be applied to crystalline interfaces, ICMA is not based on preexisting 

assumptions; thus, it can be applied to the interface of disordered/amorphous solids as well. 

The obtained results indicate that when two materials are joined a new set of 

vibrational modes are required to correctly describe the transport across the interface. The 

new set of vibrational modes is inconsistent with the physical picture described by the 

PGM, because some of the most important modes are localized and non-propagating and 

therefore do not have a well-defined velocity nor do they impinge on the interface. Among 

these new modes, certain classifications emerge, as most modes extend at least partially 

into the other material. Localized interfacial modes are also present and exhibit a high 

conductance contribution on a per mode basis by strongly coupling to other types of 

vibrational modes. ICMA formalism is applied to different interfaces to present thermal 

interface conductance accumulation functions, two-dimensional cross-correlation 

matrices, and a quantitative determination of the contributions arising from inelastic 



 xviii 

effects. Moreover, the results show that ICMA present a physical explanation for interfacial 

heat transafer that is based on correlation and that is different and independent of the 

dominant scattering viewpoint followed by the PGM. The provided new perspective on 

interface thermal transport can open new gates towards deeper understanding of phonon-

phonon and electron-phonon interactions around interfaces. 
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CHAPTER 1. INTRODUCTION: THE THEORY OF PHONON 

TRANSPORT ACROSS INTERFACES 

When heat flows across an adjoining interface between two different materials there 

will be a temperature discontinuity at the interface (see Figure 1). The interfacial heat flow

 Q , can be written as the product of the thermal interface conductance (TIC), denoted by 

G , which is the inverse of the thermal interface resistance (TIR), and the temperature 

difference across the interface  T  (i.e., Q G T  ). Interfaces play a key role in the 

thermal behavior of nanostructures.1,2 Due to tremendous advances in nanostructuring in 

recent years,3,4 exquisite structures with characteristic lengths on the order of nanometers 

can be fabricated for applications in nanoelectronics 5 and nanoscale energy conversion.1 

In these small scales, interfaces can become the dominant resistance to heat transfer, which 

on one side impedes the progress towards achieving improved performance in nano-

electronics,6 nano-optoelectronics,7 or energy conversion devices such as multi-junction 

solar cells,8,9 and on the other side sets interface engineering as a promising path to reach 

higher ZT thermoelectric materials through reducing thermal conductivity (e.g., by making 

grain boundaries 10 or superlattices 10). 
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Figure 1 – Heat flow  Q  causes a temperature jump  T  at the interface of two 

solid materials labeled A and B. Q  is proportional to T , and the constant of 

proportionality is the interface conductance G  (i.e., Q TG  ). 

The heat flow across the interface can be carried primarily by electrons in 

electrically conducting materials, but the contribution from the atomic motions is present 

in all materials. For solids and rigid molecules, these atomic motions correspond to 

vibrations around an equilibrium site, which can be decomposed into a series of eigen 

modes via the lattice dynamics (LD) formalism 11 where the actual anharmonic (i.e., 

inelastic) dynamics manifest as the modes having time varying amplitudes. At a given 

instant, by knowing the amplitudes of these eigen modes of vibration, one can sum the 

contributions of all the different eigen modes to recover the vibrations of each atom.11 The 

eigen modes are termed phonons in crystalline materials, since they generally correspond 

to propagating waves such as sound waves. However, in disordered/amorphous solids or 

molecules many eigen modes may not propagate or resemble the usual definition of a 

phonon. This has prompted our use of the term eigen mode in the presented thesis to retain 

generality. 

A B

Q
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Since the first experimental observations of TIR,12,13 different theoretical models 

have been proposed to explain the transfer of heat across interfaces and to predict TIC.22-

25,27,28,36 The acoustic mismatch model (AMM),14,15 the diffuse mismatch model (DMM),16-

18 the atomistic Green's function (AGF) approach,19-23 the harmonic LD based 

approaches,24-26 wave packet (WP) method,27-30 and frequency domain perfectly matched 

layer (FD-PML) method 31,32 are notable examples of these models. Although each of these 

techniques is devised for different sets of operating conditions (e.g., temperature range, 

interface quality, etc.), they are all based on the phonon gas model (PGM) and usually 

invoke some version of the Landauer formalism.33-35 

1.1 Phonon gas model 

The Fourier’s law of heat conduction, proposed in 1822 by Joseph Fourier,36,37 

defines the thermal conductivity  K  of a solid with respect to the steady flow of heat 

along the specimen  j  and the imposed temperature gradient  dT
dx

 using the following 

formula, 

 dT
j K

dx
   

(1) 

The above equation is a solution to the diffusion equation, which based on the mathematical 

descriptions for Markov process 38 is a manifestation that thermal energy transfer in solid 

materials is based on a random process. To describe this random transfer of energy in solid 

materials, in 1929, Peierls 39 introduced the main idea of the PGM. According to the PGM, 

similar to gas molecules contained in a vessel (see Figure 2) that exhibit random 
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movements and collisions (i.e., Brownian motion),40 the modes of vibration in a solid 

material (i.e., phonons) can also be envisioned as travelling quasi-particles, where they 

have associated velocities, direction of movement and can get scattered by other phonons. 

 

Figure 2 – Gas molecules contained in a vessel under a temperature gradient. The 

thermal conductivity for such a system can be described by kinetic theory of gases 

(see Eq. (2)). 

After assuming the general similarity between gas molecules and phonons, PGM 

likens the energy transfer by phonons in solid materials to energy transfer by gas molecules, 

too. Energy transfer by gas molecules can be explained by elementary kinetic gas theory.41 

The thermal conductivity of a gas inside a vessel can be expressed as, 

 1

3
K Cvl  

(2) 

where C  is the heat capacity per unit volume, v  is the average particle velocity, and l  is 

the mean free path of a particle between collisions with other particles. Equation (2) can 

be derived using elementary kinetic theory.34,41 The flux of particles along the x-direction 

is 
1

2
xn v , where n  is the concentration of molecules, and  shows the averaged 

value. Coefficient 1
2

 comes from the fact that in equilibrium there is a flux of equal 

magnitude in the opposite direction. If c  is the heat capacity of one particle, then by moving 

Hot

End
Cold

End
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from a region with temperature T T   to another region with temperature T , a particle 

will release c T  energy. At the end of a free path of particle, T  can be written as, 

 
x x

dT dT
T l v

dx dx
   

(3) 

where   is the average time between collisions. The net flux of energy in the system is 

 

2 2

1 1

2 2

1

3

x x x x

x

n v c n
dT dT

j v v
dx dx

v c

dT dT
n v cnc v

dx dx

 

 

       
       

       





 



 

(4) 

If we consider constant propagation velocity for all phonons, Eq. (4) can be written as, 

 1

3
j Cv

dx
l

dT
  

(5) 

Considering l v  and C nc , 
1

3
K Cvl can be obtained. Equation (5) describes the net 

flux of energy by gas molecules, and according to PGM it can be readily modified to 

explain energy transfer by phonons. This is possible if one replaces the velocity  v , heat 

capacity  c , and concentration of the particles in Eq. (5) with the phonon group velocity 

 gv , phonon energy   , and phonon distribution function (e.g., Bose-Einstein 

distribution function denoted by f ), respectively. Here,  is Planck's constant divided by 

2 , and   is the frequency of vibration. The result would be the net heat flux transfer by 

phonons and can be written as, 
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  gj f v l

dT

dx
  

(6) 

Equation (6) is the cornerstone for all the PGM based models that are utilized to explain 

heat transfer in solid materials. The main difference between these models, however, is 

how each model calculates the mean free path of different phonons. 

When it comes to interfacial heat transfer, the PGM follows a similar viewpoint 

formulated in Eq. (6), where it depicts phonons as travelling quasi-particles with energies 

(  ) and well-defined velocities, which are determined by the group velocity (
gv ), that 

are incident on the interface. According to the PGM, the incident phonons on the interface 

undergo scattering events (see Figure 3 for a schematic representation of this idea). By 

accounting for these scattering events, the Landauer formalism then describes interfacial 

heat flux in terms of what fraction of the energy of each incident phonon is transmitted to 

the other side of the interface. Mathematically, the Landauer formalism for phonon heat 

flux going from material A to material B is formulated as,16,33 

 

, , z, 0

, , )
1

(
max max max

A x A max y A max A

k k k

A B z

p k

A AB A

k k kkA

vQ f T
V

 

  

 
  

  
    

(7) 

where the summations are performed over different polarizations ( p ) and allowed wave 

vectors (
, ,x y zk ) in material A so that only phonons with velocities incident on the interface 

are counted,33 and in addition to  and   which were previously defined, AV  is the volume 

of side A, 
,z Av  is the phonon group velocity normal to the interface,   is the transmission 
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probability for the mode of vibration, T  is the temperature, and f  is the Bose-Einstein 

distribution function. The net heat flux from material A into material B is the difference of 

the two, 
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(8) 

 

Figure 3 – Scattering of incident phonons (transmission and reflection) at the 

interface of two materials A and B. 

At thermal equilibrium (i.e., A BT T ), the net heat flux is zero, so that 
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The above equation is an instance of detailed balance, which requires that no heat flux 

crosses the interface if the system is at equilibrium. Using Eq. (9) we can rewrite Eq. (8) 

as, 

 

 
, , z, 0

, , ) , )
1

( (
max max max

A x A max y A max A

k k k

z A AB A

k k

B

p k kA k

Q fv T f
V

T  
  

 
  






    
(10) 

The above formula shows that, using the principle of detailed balance, the Landauer 

formalism can describe the interfacial heat flux with properties of only one of the two 

materials and with transmission probably. When the difference between AT and BT  is 

small, using the definition of  A BQ G TT  , Eq. (10) can be written as, 

 

, , z,

,

0

1 ( , )max max max

A x A max y A max Ap k

k k

k

k

z A AB

k k kA

df T
vG

V dT




  

 
  

  
     

(11) 

It should be noted that in the Landauer formulation (Eq. (11)), 
gv  needs to be calculated 

for all modes of vibration in the system and rigorously, such a calculation is only possible 

for crystalline solids. Therefore, application of PGM based methods to the interfaces of 

amorphous materials and alloys is highly questionable, since 
gv  cannot be defined for most 

of the vibrational modes, as most of the modes of vibration in amorphous materials are not 

of propagating nature.42-47 This situation has limited the application of the PGM based 

methods to the interface of crystalline solids. 

The reason that 
gv  cannot be defined for most of the modes in alloyed and 

amorphous materials can be understood from its definition. Qualitatively, 
gv  is the velocity 
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based on which any phase in a travelling wave moves. For instance, the velocity according 

to which the pinnacle of a wave travels in a medium (e.g., the pinnacles of waves generated 

after throwing a stone in a stationary water) is equal to the 
gv  for that wave (see Figure 4). 

Mathematically, 
gv  for a mode of vibration can be dined as,  

 
gv

k






 

(12) 

where   and k  are frequency and wave vector (i.e., proportional to the inverse of wave 

length (see Figure 4)) for the mode of vibration, respectively. Equation (12) shows that 
gv  

is a measure for the degree of variation in frequency for the mode of vibration with respect 

to its wave vector. Therefore, the calculation of 
gv  for a mode of vibration in the system 

requires well-defined definitions for both frequency and wave vector for that mode of 

vibration. Frequency is a characteristic for all the modes of vibration in the system and can 

be calculated using LD. However, as Seyf and Henry discuss in a recent study,48 most of 

the vibrational modes in alloyed and amorphous solids do not have well-defined wave 

vectors which consequently makes the definition of group velocity for them impossible. 
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Figure 4 – Schematic representation of group velocity  gv  and wave vector  k  for 

a travelling wave. Wave length    measures the distance between two equal phases 

in travelling wave (e.g., the distance between two pinnacles). 

Despite being only applicable to crystalline interfaces, the main difference between 

all the PGM based techniques such as AMM, DMM, AGF, and WP method is how the 

transmission probability ( ) for the incident phonon on the interface is calculated. The 

AMM and DMM take the limit of purely specular and diffuse scattering respectively. Many 

improvements have been made to these methods,16,49-53 but neither can include the atomic 

level detail of the interface quality (e.g., roughness, interatomic diffusion, stress, 

imperfections etc.) and therefore they are fundamentally limited. The development of the 

AGF method was a major step forward, as it incorporated the atomic level details and also 

accounts for quantum effects.22,54 However, most applications of the AGF method have 

been limited to small system sizes and harmonic interactions, due to analytical complexity 

and computational expense.22 Mingo nonetheless has shown that, in principle, 

anharmonicity can be included in the AGF.22 To our knowledge, however, the anharmonic 

AGF has not yet been widely used. Although exceptions exist,55 the majority of the 

literature using DMM have also only been able to evaluate elastic scattering interactions 

where the transmission of a mode’s energy across the interface is purely governed by 

whether or not other modes with similar frequency exist on the other side of the 

2
k

 

gv
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interface.1,23 The WP method allows the calculation of a mode's transmissivity in the 

context of a molecular dynamics (MD) simulation, however, it requires that all other modes 

have zero amplitude.22,54,56,57 This effectively corresponds to the 0T K  limit and 

therefore is unable to examine the effects of temperature dependent anharmonicity. As a 

result, the WP method simply reproduces the same results as the harmonic AGF approach.1 

1.2 The importance of anharmonicity 

Within the last decade, techniques have been developed to accurately calculate the 

individual eigen mode contributions to TC from first principles.58-60 These techniques now 

allow for predictive calculations of the modal contributions to thermal conductivity (TC) 

for materials and nanostructures that have yet to be synthesized.61,62 Compared to the 

tremendous advancements in predicting TC for crystalline materials over the last decade, 

predicting TIC still faces many challenges. The central issue is that we lack quantitative 

understanding of the underlying processes that occur at interfaces, because we currently 

have no way of determining the modal contributions with full inclusion of anharmonicity. 

Interactions/coupling of modes of vibration with different frequencies is the result of 

anharmonicity. 

To better understand anharmonicity, we need to first define lattice energy. Lattice 

energy of a solid structure is the energy of formation for the structure from infinitely 

separated atoms. The origin for lattice energy is the interaction between all the atoms in 

the system, and it can be theoretically calculated from electronic calculations. Using force 

constants (FC), which are defined as derivate of the potential energy with respect to atomic 
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displacements about their equilibrium positions, lattice energy can be written as summation 

of all the atom-atom interactions,63 

 
0

1 1 1

2! 3! 4!
i i ij i j ijk i l

i

j k ijkl i j k

ij ijk ijkl

u u u u u u u u u uV V            
(13) 

where indexes , , ,i j k l  refer to triplets defined by  ,,R   , with R  being a translation 

vector pointing to a primitive basis in the lattice,   being an atom within that primitive 

basis, and   being the Cartesian coordinate for the atomic displacement u .  ,  , and 

  are the harmonic, cubic, and quartic FCs, respectively. If the potential energy V  is 

expanded around its minimum energy or equilibrium configuration,   would be zero. 

Following the potential energy in Eq. (13), the force on atom i  would then be,  

 1 1

2 3!
i i ij j ijk j k ijkl j k

j jk jkli

l

V
u uF u

u
u u u


       


    

(14) 

Harmonic interactions in Eqs. (13) and (14) are described by 
ij  FCs. The calculations 

based on purely harmonic energies and forces are called harmonic approximation and are 

the basis of many reasonable results, such as frequencies of vibrational modes, mean-

squared atomic displacements, elastic constant.11 However, in explaining a number of 

properties such as, 

 Temperature dependence of equilibrium properties (e.g., temperature 

dependence of thermal expansion or vibrational frequencies). 

 Occurrence of phase transitions. 
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 Transport properties (e.g., TC). 

harmonic approximation fails and higher order interactions based on e.g., cubic and quartic 

FCs are needed to describe the observed physics. These higher order interactions are 

generally referred to as anharmonicity or anharmonic interactions. 

It has been argued that anharmonic interactions (i.e., inelastic scattering) may not 

be important at room temperature, particularly in systems with nanoscale features,20 while 

others have argued that anharmonicity can have notable contributions to TIC at high 

temperatures.16,56,57,64-66 English et al. 67 and Stevens et al. 56 have shown that the increase 

in TIC at higher temperatures can be attributed to anharmonic interactions between 

phonons across interfaces. Thus, there are conflicting reports and beliefs within the 

community, rendering this issue of the role of anharmonicity unresolved due to the lack of 

consensus. 

Over the last 25 years, a variety of methods have been developed,14,15,17,18,20,28,68 but 

none of the methods that provide mode level details have fully included anharmonicity. 

Non-equilibrium MD (NEMD) fully includes anharmonicity and has been used extensively 

to analyze different interface materials and interface qualities.67,69-72 However, a formalism 

that can be used to study the modal contributions to TIC in the context of NEMD is lacking. 

As a result, the predictive power of methods that provide mode-level detail has been limited 

to cryogenic temperatures, whereas most engineering applications involve temperatures 

near or above room temperature, at which anharmonic interactions have the potential to 

significantly impact interfacial heat transfer.56,67 Until a method that includes 
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anharmonicity/inelastic scattering is tested, it is difficult to conclude whether or not 

anharmonicity is important. 

1.3 Comparisons with experiments 

Theoretical approaches for calculating the TC of different materials are now able 

to provide predictions with excellent agreement with experimental measurements.58,73 

However, when it comes to TIC, no general or consistent agreement between 

computation/theory and experiment has ever been reported. Figure 5 compares the 

theoretically predicted and experimentally measured values of TIC for a number of isolated 

interfaces at different temperatures. For all the examined interfaces, at least at some 

temperatures the theoretical predictions show > 20% deviation from the experimental 

measurements. Therefore, a formalism capable of reliably predicting TIC values in 

reasonable agreement with experimental measurements is needed. 
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Figure 5 – Comparison of theoretical predictions of TIC across different interfaces 

with corresponding experimentally measured values. For each interface, each point 

represents a calculation/measurement at a different temperature. Each panel 

represents a different TIC range. The dashed lines represent the percent error 

associated with the theoretical predictions. The examined interfaces have references 

as follows: TiN/MgO,74 TiN/Al2O3,74 Al/Si with/without oxide layer,75 Al/GaSb,76 

GaSb/GaAs,76 Au/Diamond,77 Bi/Diamond,78 and Pb/Diamond.78 Modified DMM 

referenced in the legend was proposed as a variation of DMM to predict TIC across 

interfaces with severe chemical and structural changes around the interface.79,80 

JFDMM is a variation of DMM, where the altered phonon frequencies in the interface 

region is also included in the calculations.50 
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1.4 The fundamental problem 

For more than half a century, all investigations on heat transfer across interfaces 

have been conducted using methods that are inherently based on the PGM. Despite the 

prevalence of the PGM in the literature, predicted conductance values often disagree by 

20% or more with experimentally reported values, as illustrated in Fig. 2. This lack of 

accuracy suggests our understanding of the physics needs revision and revisiting the 

underlying assumptions of the PGM is a logical starting point. Here we examine the 

possibility of devising a new formalism that can address the following issues with PGM 

based approaches: 

1. Although the PGM has been utilized to study interfacial heat transfer for 

decades, no rigorous proof has ever been provided for Eqns. (6) and (11) to 

assure its correctness. Instead, Eqns. (6) and (11) have been simply derived 

by analogy to heat flow attributed to gas particles and was not rigorously 

derived from any first principles. 

2. Studies have shown that anharmonicity plays a significant role in interfacial 

heat transfer at above cryogenic temperatures, however none of the PGM-

based techniques has been ever able to capture anharmonicity to full order. 

3. The position of atoms near the interface can significantly alter the 

characteristics of interfacial heat transfer. In spite of this, among the PGM 

based techniques, only the AGF and WP methods include the exact atomic 

positions/topography in the calculations, however these techniques are 

limited to harmonic interactions. Thus, no method has managed to 
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simultaneously include anharmonicity to full order and the atomic level 

topography/interface structure. 

4. From the mathematical definition of the PGM in Eqs (6) and (11), it can be 

seen that all the PGM based approaches are dependent on well-defined 

group velocities for all the modes of vibrations in the system. This limits 

the applicability of the PGM based techniques to the cases of having only 

crystalline materials at the sides of the interface. Therefore, PGM based 

methods cannot be applied to the interface of disordered solids. Thus, a 

more general method that can treat any type of solid or rigid molecule is 

needed. 

The above issues are potentially the origin of the discrepancies between the PGM 

predictions and experimental measurements. The PGM does not present a complete picture 

for the interfacial heat transfer. A new formalism, independent of any assumptions 

associated with the PGM is needed that can overcome all the above issues. Such a 

formalism can potentially provide a better agreement with experiment and is the main 

subject of this thesis. 

MD simulations have the potential to solve the above issues as they (1) 

automatically incorporate inelastic interactions by fully including anharmonicity through 

finite temperature sampling of a naturally anharmonic interatomic potential; (2) they can 

be applied to different detailed atomic configurations around interface; and (3) they are 

completely independent of any definition of group velocity, thus have the potential to be 

applied to the interface of disordered solids as well. However, based on the existing 

formulations, MD simulations are only able to calculate the total TIC. It is known that 
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enlightening insights to future designs can only be achieved by understanding to the modal 

contributions. Knowing the contributions of specific eigen modes can enable rational 

design and selection of materials by crafting certain features that will target certain group 

of modes (i.e., acoustic, optical, longitudinal or transverse), to either inhibit or enhance 

their transport.81-83 In general, this quantitative capability has improved our ability to 

predict classical size effects 84 and other nanoscale phenomena,85 which are important 

effects that ultimately limit heat dissipation in applications such as microelectronics.6 

Developing, testing, and extracting insight from a new formalism based on MD simulations 

to study the modal contributions to TIC is therefore the focus of the remainder of this thesis. 
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CHAPTER 2. A NEW PARADIGM BASED ON CORRELATION 

The interaction between different modes of vibration in the PGM paradigm is 

described by the scattering picture. According to the scattering picture, incident phonons 

on the interface undergo specific scattering mechanisms, where they either combine with 

other phonons to make new phonons or become scattered themselves to generate new 

phonons – subject to energy conservation constraints. A similar scattering picture is also 

utilized by the PGM to describe TC. Such a scattering picture has been able to predict the 

TC of crystalline solids in great agreement with experimental values.58-60 However, the 

scattering picture has not been successful in consistently predicting the TIC values even 

across crystalline interfaces (see Figure 5). Therefore, a new formalism with improved 

predictive abilities is needed. The critical question then becomes whether an alternative 

picture to the existing phonon scattering picture can be found. 

MD simulations are inherently independent of any assumptions or 

conceptualizations of phonon behavior. Therefore, they can form a promising foundation 

for a new formalism independent of the PGM. For calculating TIC using MD simulations, 

two major approaches exist: (1) NEMD, and (2) equilibrium MD (EMD) formulations. 

Calculation of TIC in NEMD simulations follows the direct definition of TIC. In 

this approach, a heat flow is transferred through the structure by placing hot and cold 

reservoirs in different positions in the system. At steady state, temperature profile develops 

in the structure (e.g., similar to the one in Figure 1), and by directly measuring the 

temperature difference between the two sides of the interface, TIC can be calculated using 

the formula, 
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G

T

Q



 
(15) 

where Q  is the steady state, time-averaged interfacial heat flux in the NEMD simulation, 

and T  is the temperature difference at the interface, determined by extrapolation of the 

temperature gradients in each respective material.69,86-88 

In EMD simulations, calculation of TIC follows the fluctuation-dissipation 

theorem.89 In this approach, TIC is proportional to the auto-correlation of the equilibrium 

fluctuations of heat flux across the interface based on the following formula, 

 
2 0

1
( ) (0)

B

t Q dt
Ak T

G Q


   
(16) 

where A  is the interface contact area, Bk  is the Boltzmann constant, T  is the equilibrium 

temperature of the system, Q  is the instantaneous interfacial heat flux, and  represents 

the autocorrelation function. This EMD formulation suggests a possible alternative picture 

to the scattering one– a new picture based on correlation. 

2.1 Interface conductance based on the fluctuation-dissipation theorem 

The equilibrium approach for the calculation of TIC (Eq. (16)) is in concept similar 

to the Green-Kubo technique for the calculation of TC from EMD simulations and was 

first introduced by Puech et al.90 The definition in Eq. (16) can be justified by the following 

derivation.91 Consider the interface of two solid materials, denoted by A and B, coupled 

together. If  AE t  is the energy of the solid A at time t, the Langevin evolution of this 

variable can be written as,91 
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       0( )A At Q t GA T T t f tE      (17) 

where  AT t  is the instantaneous temperature of solid A at time t, and 
0T  is the time-

averaged temperature of the system. In the Langevin description, the evolution of the slow 

variable (i.e., energy) is separated into a systematic contribution (i.e., a macroscopic 

evolution) and a random,   correlated part  f t . Writing      '' tf t f t t   and 

    0A A V AX E t E C T A T     one may rewrite Eq. (17) in the standard Langevin 

form, 

    t
dX

f t
dt

X   (18) 

With VAGC  , Eq. (18) is a standard Langevin equation for the variable X . The usual 

relations follow for the correlation functions 
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In the thermodynamic limit  VC  , the second term vanishes (since 0  in this limit), 

so that one may write  

    
0

2 0q t q dt


   (21) 
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Using the relation 2

2
X 


  which follows from Eq. (19) at 0t  , and the equilibrium 

distribution for X  which yields the standard fluctuation formula 
2 2 2

B VX E k T C 

, the equilibrium definition of TIC in Eq. (16) is obtained immediately from Eq. (21).  

Microscopically, any thermodynamic quantity exhibits local fluctuations in time. 

No matter how random these fluctuations might seem, there are patterns embedded within 

them associated with the patterns in the underlying atomic vibrations that contribute to the 

quantity. Correlation function quantifies these repetitive patterns in the existing 

fluctuations of the dynamic variable. According to Eq. (16), TIC is directly proportional to 

the auto-correlation of the interfacial heat flux. If interfacial heat flux shows stronger 

interdependence and stays correlated for a longer time it will result in larger TIC. The 

definition of TIC according to Eq. (16) is very similar to the definition of TC based on the 

Green-Kubo definition.33 Calculating the modal contributions to Eq. (16) will allow 

analyzing the underlying physical mechanisms of interfacial heat transfer with a higher 

resolution. In this chapter, first the EMD definition of TIC in Eq. (16) will be proven, and 

then a new formalism, termed interface conductance modal analysis (ICMA), based on MD 

simulations capable of calculating the modal contributions with full inclusion of 

anharmonicity will be developed. 

2.2 Derivation of interface conductance modal analysis (ICMA) 

In this section, a new formalism based on MD simulations will be devised. Such a 

formalism will be able to extract the modal contributions to interface conductance with full 

inclusion of anharmonicity and detailed atomic positions around the interface into the 

calculations. Consider forming an interface by bringing two systems A and B into contact, 

each having NA and NB atoms. We can use the LD formalism 11 to obtain the complete 

3N=3(NA+NB) eigen solutions to the equations of motion describing the vibrations of the 
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system when all the interactions are considered to be harmonic. These eigen solutions allow 

us to write the atomic displacements and velocities as, 

 
 

,1/2

1
ni i n

n iNm
Xx e  (22) 

 
 

1/2 ,

1
i n

i

i n

n m
X

N
x e  (23) 

where n  is the index for the eigen mode, ix , ix , and im  are the displacement from 

equilibrium, velocity and mass of atom i  respectively, and 
,n ie  is the eigen vector for mode 

n  assigning the direction and displacement magnitude of atom i . From the inverse of the 

operations in Eqns. (22) and (23), we can define the normal mode coordinates of position 

and velocity for mode n  ( nX  and 
nX ) as, 
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where i  is the index for the atom in the system, and *  represents complex conjugate. A 

system of N atoms has a Hamiltonian given by, 
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where   is the total potential energy of the system, and the position and momentum of 

atom i  are denoted by ir  and ip , respectively. From Eq. (26), the individual Hamiltonian 

for atom i  can be written as, 
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(27) 

where i  is the potential energy assigned to a single atom.92,93 Using the above definition 

of the Hamiltonian for an individual atom, the energy exchanged between material A and 

B  A BQ   at each instant of time can be written as, 
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 (28) 

which is a general equation that is valid for any interatomic potential, including pairwise 

or even multi-body potentials, as long as the total potential energy of the system    can 

be written as a sum of individual atom potential energies  i (i.e., i

i

   ). In Eq. 

(28) is a double summation, and the first summation (index i ) is performed over all the 

atoms in material A, and the second summation (index j ) is performed over all the atoms 

in material B. For the case of having pairwise interactions between material A and B, Eq. 

(28) is reduced to, 
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  
1

2
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Q 

 

  f x x  (29) 

where 
ijf  is the pairwise exchanged force between atoms i  and j  in the two 

materials.65,94,95 Having pairwise interactions, half of the interaction energy is naturally 

partitioned with atom i  and the other half with atom j . For simplicity, we will use Q  

instead of A BQ   for interfacial heat flow in the ensuing discussion. Using Eq. (29) and 

fluctuation-dissipation theorem,89 Puech et al. 90 as well as Domingues et al. 95 and Barrat 

et al. 91 showed that the conductance is proportional to the correlation between the 

equilibrium heat flow fluctuations via the equilibrium definition of TIC in Eq. (16). It can 

be seen from Eq. (16) that if one can obtain the modal contributions to the interfacial heat 

flow such that at each instant the obtained modal contributions sum to the total Q , 

 n

n

Q Q  (30) 

then G  can be rewritten as, 

 2 2

1 1
( ) (0) ( ) (0)n n
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This then yields the individual modal contributions to G  as, 
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1
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t Q
Ak T

G Q dt   (32) 
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where, 

 n

n

G G  (33) 

Furthermore, the modal heat flux definition in Eq. (30) allows us to substitute for both of 

the total heat fluxes in Eq. (16) leading to another definition for G  as, 

 '2 2
' '

1 1
( ) ( ) ( ) (0)n n n n

n n n nB B

Q Q dG t t tt Q Q dt
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where individual contributions from pairs of modes equal to, 
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To complete the formulation, the important step is then to determine nQ , with the 

requirement of Eq. (30) (i.e., n

n

Q Q ), which can be accomplished by replacing the 

atomic velocities in Eq. (28) with their modal definition in Eq. (23), 
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Eq. (36) is general and it can be simplified for pairwise interactions to, 
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Eq. (36) and Eq. (37) are the definitions of modal contributions to interfacial heat flow. 

The definition in Eq. (35) represents TIC as the summation of all the auto-

correlations and cross-correlations between eigen mode pairs n  and 'n  in the system (

,

, '

n n

n n

G G  ) and provides new insight into the degree to which each pair of modes interact 

and contribute to TIC. As a result, the ICMA method presented above, contains more detail 

and can potentially lead to deeper insights into the physics of TIC. This deeper insight is 

now accessible, because Eq. (35) elucidates the modal contributions to the correlation 

picture that was introduced in the equilibrium definition of TIC in Eq. (16). In this more 

detailed picture, the TIC is broken into pairwise contributions by all the pairs of modes in 

the system. Many modes of vibration exist in the structure and each pair can transfer the 

heat across the interface and contribute to TIC if correlated. This correlation picture and 

mathematical formulation (Eq. (35)) has the following significant outcomes that may not 

necessarily be in agreement with the existing paradigms: 

1) In the PGM picture, each mode of vibration can have a maximum contribution 

to TIC, when the entire energy of the incident phonon is transmitted to the other 

side of the interface (i.e., 1  ). However, according to the correlation picture 

and the provided in Eq. (35), no upper limit exists on the degree to which two 

modes of vibration can be correlated and contribute to TIC. In fact, as was 

shown in the simulations of thermal conductivity (from equilibrium Green-
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Kubo calculations), some of the vibrational modes have the potential to show 

very long/strong correlations that can even lead to divergent thermal 

conductivities.96 

2) The contribution of each mode of vibration to TIC is dependent on the presence 

of other modes of vibration in the system. In this view, modal contributions are 

mutual contributions originating from the presence of all the modes of 

vibrations in the system. 

3) The mathematical formulation provided in Eq. (35) even allow for positive and 

negative contributions to TIC, because the fluctuations in the contribution to 

heat flux by two modes of vibration can become correlated and anti-correlated 

that can lead to positive and negative contribution to TIC, respectively.  

2.3 ICMA application to NEMD simulations 

The modal heat flux in Eq. (36) can also be readily used in NEMD simulations to 

obtain modal contributions to interface conductance. Here we used G
T

Q



 (similar to Eq. 

(15)). The modal contribution to the conductance ( nG ) then becomes, 

 n
nG

T

Q



 (38) 

where the same T  is used for every mode.  
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CHAPTER 3. ICMA VALIDATION 

3.1 Choosing the correct vibrational basis set 

The modal contributions to interfacial heat flux formulated in Eq. (36) are based on 

atomic velocities and eigen modes of vibration from both sides of the interface. Such a 

description for interfacial heat flux is inconsistent with the dominant view of the PGM 

whereby, as a result of using the principle of detailed balance in deriving Landauer 

formalism (Eq. (9)), all the parameters required to describe the interfacial heat transfer are 

obtained from the vibrational information belonging to only one side of the interface (see 

Eq. (11)). To resolve this inconsistency, one can potentially use the following equations, 

which are only based on atomic velocities and eigen modes of vibration from one side of 

the interface, 
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where Q  and nQ  are the total and modal instantaneous interfacial heat flux values, 

respectively. The difference between the above equations and Eqns. (29) and (36) can be 

better understood by reconsidering the general definition of interfacial heat flux in Eq. (28). 

Equation (28) is based on the potential energy of the interaction between atoms at the 

opposite sides of the interface. According to Eq. (28) different definitions for interfacial 
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heat flux can be obtained by partitioning this interaction potential energy in different 

formats.43 For instance, Eqns. (39) and (40) are obtained by ascribing this interaction 

potential energy only to the atoms on one side of the interface (e.g., side B), which allows 

the interfacial heat flux to be explained by only using the atomic velocities and eigen modes 

of vibration belonging to the other side of the interface (e.g., side A). Calculating the modal 

contributions to heat flux from Eq. (40) requires eigen modes of vibration from only one 

side of the interface, which in agreement with Landauer formalism formulated in Eq. (11) 

can be obtained from the bulk vibrational modes on that side of the interface. 

It should be noted that the modal contributions to interfacial heat flux can still be 

calculated using Eq. (36), but it requires one utilize a different set of vibrational modes 

than the ones associated with one material as eigen modes of vibration from both sides of 

the interfaces are incorporated in Eq. (36). The key question then becomes, which set of 

modes (i.e., basis set) should one use in the heat flow decomposition to calculate physically 

meaningful contributions? This is important, since mathematically there are infinite 

number of basis sets that are complete and can be used for modal analysis, meaning that 

they are guaranteed to return the same amount of total heat flow and total interface 

conductance (i.e., they are able to satisfy the n

n

Q Q  and n

n

G G  conditions). 

However, different choices might ascribe different amounts of contributions to heat flux 

and TIC to different frequencies (i.e., each basis set calculating different values of nQ  and 

nG ). This is critical because different spectral contributions might then lead to different 

temperature dependent TIC predictions when quantum effects on the heat capacity are 

accounted for (i.e., by applying approximate quantum corrections).97,98 In reality, one must 
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account for quantum effects on the heat capacity of the different modes. Since the classical 

MD heat capacity is the same for every mode, as one approaches low temperatures the 

conductance would not approach zero as 0T K , which is qualitatively incorrect. 

Recently Lv and Henry have shown via the (Green-Kubo modal analysis) GKMA 

formalism 99 that one can extend the classical MD results to essentially any temperature 

accurately by simply correcting the heat capacity portion of the transport coefficient. Even 

though the MD simulation itself at low temperatures will still reflect the interactions 

between low frequency modes and higher frequency modes that should not be excited, for 

many systems it is likely that these interactions are weak or essentially negligible leading 

to quantitatively correct values for the modal contributions to the transport property. Lv 

and Henry’s recent calculations 99,100 seem to suggest this is scheme works well and 

therefore, we apply a similar correction here to account for quantum effects on the heat 

capacity of vibrational modes with frequency ( ) at temperature (T ) using the following 

relations, 
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and indices Q  and MD  stand for quantum and molecular dynamics (classical), 

respectively. In Eqns. (41) and (42), Bk  and  are Boltzmann constant and Planck's 
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constant divided by 2 , respectively , and 
B

x
k T


 . The key feature of Eq. (41) is the fact 

that the heat capacity of every mode is frequency dependent. Thus, for example, if the TIC 

is dominated by low frequency modes, the temperature regime where it will decrease 

towards zero at low temperatures may be quite low, versus if it is dominated by higher 

frequency modes, the temperature regime where TIC will decrease towards zero at low 

temperatures may occur at somewhat higher temperatures. In this section, we essentially 

examine the validity of the most basic assumption in the PGM treatment of heat transfer 

across interfaces that one can describe interfacial transport in terms of the bulk materials’ 

modes (see Eq. (11)). Our analysis will show whether the PGM paradigm is correct or 

whether we need a new set for the contributing modes of vibration at the interface of two 

materials. 

Towards finding the correct set of modes to be used in the heat flow decomposition, 

we have identified three potential options for the modal decomposition of the interfacial 

heat flow (Eqns. (36) and (37)). These three basis sets are schematically shown in Figure 

6. If we consider two bulk materials labeled A and B respectively, when they are joined 

and form an interface, the three choices for describing the modes that contribute to heat 

flow through their interface are denoted by {A/B}, {A+B} and {AB}. The basis set {A/B} 

corresponds to the modes associated with the bulk of either material A or B, where one 

performs a LD calculation for each individual bulk material (see Figure 6a). The modal 

basis set {A+B} corresponds to the addition of the eigen solutions for each separate bulk 

material, whereby one simply assigns polarization vectors equal to zero for the atoms on 

side B, for modes on side A, and vice versa (see Figure 6b). The third choice is then basis 
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set {AB}, which corresponds to the modes obtained from a LD calculation for the entire 

structure, containing both materials A and B along with their interface (see Figure 6c). The 

basis set choices {A/B} and {A+B} are conceptually consistent with the PGM view of 

interface transport, since they correspond to the modes of the bulk material and for crystals 

are guaranteed to yield all propagating modes that have well-defined velocities. Using the 

bulk modes, which have well-defined velocities, is critical to the current paradigm, because 

the PGM description of TIC casts each mode’s contribution as proportional to its 

velocity.18,33 Thus, a non-propagating or localized mode’s contribution is ill-defined in the 

PGM paradigm, and it is therefore of critical importance to determine if {A/B} and/or 

{A+B} can still be used to describe interfacial transport. 

 

Figure 6 – For the interface between two solid materials A and B, three bases sets are 

chosen and examined for their physical correctness: (a) {A/B}, (b) {A+B}, and (c) 

{AB}. The red dashed lines show the region where the modes of vibration are 

calculated for using the LD formalism. 

The correct basis set can be determined based on purely theoretical considerations, 

because it must reproduce the expected behavior in the harmonic limit (e.g., as T 0K ). 

As T 0K , the atomic interactions approach that of a perfectly harmonic potential, which 
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then leads to purely elastic interactions, whereby modes can only transfer their energy to 

other modes with the same frequency. We know this must be true, because in the harmonic 

limit, one can solve the equations of motion analytically and the elastic behavior at an 

interface can be described exactly. We therefore require that any new formalism and basis 

set reproduce this known behavior in the harmonic limit. In general, there could be modes 

on one side of the interface (denoted side A) that are above the maximum frequency that 

can be supported on side B, which we label as the heavier or weaker material with a lower 

maximum vibration frequency denoted by 
,max B . Modes with frequencies above 

,max B  on 

side A have no corresponding mode with the same frequency on side B to exchange energy 

with through elastic interactions. Therefore, in the T 0K  limit, these modes cannot 

contribute to the TIC when anharmonic coupling is disabled. It is important to note that 

this effect is correctly reproduced by MD simulations, as the WP method shows that modes 

above 
,max B  have 0% transmission.27-30 This behavior is also well understood and 

reproduced by other established methods such as the AGF method, since the majority of 

implementations of the AGF method are based harmonic approximation.19-23 Thus, by 

simply testing which basis sets show zero contributions to the TIC from modes above 

,max B  as T 0K , we can determine which basis is correct. 

Here, we studied a simple interface between lattice matched Lennard-Jones (LJ) 

face-centered cubic (FCC) solids. The LJ potential is defined based on the following 

formula,101 
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where   and   are the energy and distance parameters and r  is the distance between two 

interacting atoms. We select equal values of   and   for both materials A and B, which 

results in equal lattice constants for the two sides. An acoustic mismatch exists at the 

interface because the mass of the atoms on side B are four times the mass of atoms on side 

A ( 4B Am m ). Both sides have FCC lattice structures. In LJ systems the simulations can 

be performed in LJ dimensionless units,102 but to have the results correspond to a physically 

meaningful system, we chose LJ parameters in our simulations to be equal to that of argon 

(
211.67 10 J   , 3.405Å  , and 26106.6Am kg   103). Thus, side A represents solid 

argon (mass m ) and side B represents a fictitiously heavier solid argon (mass 4m ) and by 

averaging an isobaric-isothermal simulation at zero pressure and T=1K, the lattice constant 

was calculated as 5.26Å . 

3.1.1 EMD simulations 

In our EMD simulations for the interface between LJ crystals, the system consists 

of 3x3x60 FCC unit cells (each side 30 unit cells long), which includes 2160 atoms and 

6480 eigen modes. We confirmed that increasing the size of cross section does not change 

the features observed in the results, which is in agreement with other reports.23,94 Initially, 

an equilibration period equal to 2 ns is performed. Then, modal heat flux contributions (

nQ ) are recorded for 5 ns in the micro-canonical ensemble. The modal contributions to the 

heat flow, nQ , are then used in post processing, which leads to the calculation of modal 
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thermal conductance ( nG ). A time step of 1 fs was chosen for the simulations and ten 

independent ensembles were simulated to reduce the standard deviation in TIC below 5% 

104. The TIC accumulation function was then computed for all three basis sets according to 

the ICMA formalism 105 and is shown in Figure 7. At a temperature of 1K, only the {AB} 

basis set shows the qualitatively correct behavior as all of the contributions above 
,max B  

decay to zero. Both the {A/B} and {A+B} basis sets, however, still attribute large portions 

of the TIC to frequencies that only exist in the bulk of side A and cannot transmit any 

energy to side B. 

 

Figure 7 – Modal contributions to interface conductance at T=1K at the interface of 

two lattice matched, mass mismatched LJ solids calculated using different basis sets. 

{A/B} basis set can either express the modes on the bulk of side A or on the bulk of 

side B. The modal contributions from these two basis sets are shown in the figure 

using {A} and {B}, respectively. Since the {B} basis set is based on the heavier side of 

the interface, the maximum frequency in this basis set is 
,max B , therefore the 

contributions by higher frequencies cannot be calculated using the {B} basis set. 

It should be noted that 0% transmission above 
,max B  was also observed for a 

perfectly smooth interface between two lattice matched diamond structured materials, 
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modeled with the Tersoff potential,106 using parameters for silicon (Si) on both sides of the 

interface and Si with a 4X larger mass on the other. For this structure, we used EMD 

simulations to calculate the modal contributions to TIC. The system consists of 3x3x36 

diamond unit cells (each side 18 unit cells long), which includes 2592 atoms and 7776 

eigen modes of vibration. By averaging in an isobaric-isothermal simulation at zero 

pressure and T=1K, the lattice constant was calculated as 5.43Å . The temperature of the 

simulation is set to T=1K. Initially, an equilibration period of 5 ns under the NPT ensemble 

is performed. Then, modal heat flux contributions ( nQ ) were recorded for 10 ns in the 

micro-canonical ensemble. The modal contributions to the heat flow, nQ , are then used in 

post processing, which leads to the calculation of modal thermal conductance ( nG ). A time 

step of 0.5 fs was chosen for the simulations and ten independent ensembles were simulated 

to reduce the standard deviation in TIC below 5%. The accumulations have been calculated 

for different basis sets and are presented in Figure 8. Again, by using the {AB} basis set, 

no contribution to TIC from frequencies above 
,maxB  was observed, yet for the {A/B} and 

{A+B} bases, the frequency dependence is qualitatively incorrect. Since only the {AB} 

basis set yields the qualitatively correct behavior in both cases, our conclusion is that {AB} 

is the correct choice. 
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Figure 8 – TIC accumulation for different basis sets at the interface of a lattice 

matched, mass-mismatched Si diamond structured system. Accumulation is 

calculated at a temperature of T=1K. {A/B} basis set can either express the modes on 

the bulk of side A or on the bulk of side B. The modal contributions from these two 

basis sets are shown in the figure using {A} and {B}, respectively. Since the {B} basis 

set is based on the heavier side of the interface, the maximum frequency in this basis 

set is 
,max B , therefore the contributions by higher frequencies cannot be calculated 

using the {B} basis set. 

3.1.2 Wave-packet simulations 

To understand why {A/B} and {A+B} yield qualitatively incorrect behavior, a test 

was devised based on the WP method, whereby only a narrow range of frequencies with a 

single polarization is excited, and all other modes have zero amplitude which approximates 

T 0K . The WP is launched towards the interface 29,30 from bulk of side A, and when it 

reaches the interface it elastically scatters, and a fraction of its energy is transmitted into 

modes with similar frequency on side B. We form the WP from the longitudinal 

polarization by displacing the atoms in the system according to,29 

      
22

0 0 0 0 1 0exp exp ,i iA eu k ik z z z z       
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where the plane of the interface is perpendicular to the z-direction, 0A  is the amplitude of 

the wave packet, 0k  is the central wave vector for the WP,   is the spatial extent of the 

WP, and 0z  is the initial central location for the WP.29 For the WP simulations in this study, 

we set the parameters to be 00.00001A a , 
0

0

2
0.2k

a


 , 050a  , and 0 0150z a , where 

0a  is the lattice constant for solid argon. Initial atomic velocities are assigned based on the 

differentiation of Eq. (44) with respect to time.29 Initially, the WP has a certain amount of 

energy ( .initE ), and when it reaches the interface, part of its energy is transmitted ( .transE ) 

and the remainder is reflected (
.reflE ). The polarization of both the reflected and the 

transmitted WPs can be different from the incident WP, however both should have the 

same frequencies as the incident WP.29 In previous WP studies, the energy of different 

modes is studied and the transmission ( ) is computed from,30 

 
.

.

trans

init

E

E
   (45) 

Using Eq. (37), the modal contributions to the interfacial heat flow are tracked in 

time for all three choices {A/B}, {A+B}, and {AB}. For a correct basis set, the following 

two features should be observed:  (1) Since the scattering event will be purely elastic, as 

the WP reaches the interface, we should only observe heat flow contributions nQ  associated 

with the original modes in the WP on side A or the modes in the transmitted WP on side 

B. (2) If we integrate nQ  in time, we should see that only the modes that participate in the 

incoming or outgoing WPs contribute to the energy transfer across the interface. Figure 9 
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shows that {A/B} and {A+B} do not exhibit these features, as they both show frequency 

broadening when the WP reaches the interface. This is unphysical because the frequency 

content of all the atomic motions before, during, and after the scattering event all lie within 

the same frequency range as the original WP. Therefore, the broadening exhibited by 

{A/B} and {A+B} is not representative of actual excitation of those frequencies. Instead, 

this broadening is a type of aliasing, since the modes in {A/B} and {A+B} do not contain 

information about the interface condition or bonding. Therefore, {A/B} and {A+B} ascribe 

contributions to modes that are not actually excited, which is why they assign large TIC 

contributions to modes with frequencies > 
,max B  as T 0K (45% and 22% respectively). 

However, only when the combined system {AB} is used, are all of the theoretical 

requirements satisfied. 
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Figure 9 – Modal contributions to interfacial heat flow for the WP simulation at the 

interface of two lattice matched, mass mismatched LJ solids calculated using different 

basis sets of (a) {A}, (b) {B}, (c) {A+B}, and (d) {AB}. The data represents three 

different instants: before the impact (t1), during the impact (t2), and after the impact 

(t3). The atomic displacement profiles at these three times are shown as insets in (a). 

The dashed lines show (  ) the range of frequencies in the originally excited WP. 

Since the {B} basis set is based on the heavier side of the interface, the maximum 

frequency in this basis set is 
, 1.03max B THz  , therefore the contributions by higher 

frequencies cannot be calculated using the {B} basis set. 

3.2 Alternative Decompositions 

The ICMA formulation 43,105 presented in the previous sections is based on the 

decomposition of velocities alone. However, another approach can be formulated based on 

the decomposition of forces. Similar to velocity decomposition, modal analysis based on 

force decomposition is also mathematically complete, meaning that the summation of 

calculated modal contributions will add up to the same total value of heat flux in each 
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instant of time. However, in addition to being mathematically complete, one needs to also 

check whether the calculated modal contributions from force decomposition are physically 

meaningful. 

3.2.1 ICMA with force decomposition 

The force decomposition of heat interfacial heat flux follows the following 

formulation. Instantaneous energy exchange at the interface of two solid materials A and 

B can be written as in Eq. (28). For simplicity we will write 
j

i

H

r
 and 

j

iH

r
 in Eq. (28) in 

the form of 
jiF  and 

ijF , respectively. This allows us to rewrite Eq. (28) as, 
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Eq. (46) can be further simplified to the following form, 

 
i

A B

j

i j

i ji j

Q
m m 

   
pp

F F  (47) 

where iF  and 
jF  are force vectors attributed to atoms i  and j  that are summed over all 

the individual interactions with the atoms on the other side of the interface. Here, it is very 

important to realize that the instead of writing the individual forces between each pair or 

triplet, etc. of atoms, all of such individual forces have been summed. This results in a 

single force vector for each atom that represents the net interaction it has with the other 

side of the interface and allows for simplification of Eq. (47), whereby we can sum over 
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all atoms in the system at once. Similar to the momentum vector field, these resultant forces 

( iF  and 
jF ) attributed to each atom in the system can also be considered as a vector field 

throughout the entire structure. In this view, Eq. (47) can be rewritten as a single summation 

using a single index (e.g., 'i ) going over all the atoms in the system, 

 '

'

'

'

i

A

i

ii B

Q
m 

 
p

F  (48) 

Now, to perform the modal analysis based on the force decomposition, we first calculate 

the normal mode force amplitude for mode n  (e.g., n ) as follows, 

 '
'

'

,i'

i

i
n i n

m

N
  eF  (49) 

where, *  represents complex conjugate, and 
, 'n ie  is the eigen vector for mode n  assigning 

the direction and displacement magnitude of atom 'i . From the inverse of the operations 

in Eq. (49), we can describe the force on atom 'i  coming from the atoms on the other side 

of the interface as the summation of individual contributions by different modes of 

vibration in the system as, 

 ' ,i'

'

1
i n

n

n

iNm
  eF  (50) 

Then, replacing Eq. (50) in the definition for interfacial heat flux (Eq. (48)) results in the 

following definition, which is the contribution by mode of vibration n  to the total 

interfacial heat flux derived from the force decomposition approach, 
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Once implemented, we conducted a simple test simulation, whereby we only 

excited one mode of vibration in the system (e.g., an extended mode at 4.61THz) by giving 

initial displacements to the atoms from their equilibrium position according to the eigen 

vectors belonging to that specific mode of vibration. The maximum initial displacement 

attributed to an atom to excite this mode of vibration was chosen to be small enough 

 ~ 0.0001Å  to make sure that no other mode of vibration becomes excited after the 

simulation begins. Nonetheless, we checked the frequency content of the system during the 

simulation and confirmed that our initially excited mode of vibration at the intended 

frequency of 4.61THz is indeed the only mode of vibration present in the system. 

Therefore, any physically meaningful scheme for modal decomposition should predict 

absolutely zero contributions for all modes of vibration in the system except for the one 

that was initially excited at the frequency of 4.61THz. 

Figure 10 shows the modal contributions to the heat flux from the velocity and force 

decomposition approaches for a single snapshot in time during our simulation. It can be 

seen from Figure 10b that a number of non-zero contributions to heat flux have been 

calculated by force decomposition approach for frequencies that in reality do not even exist 

in our structure. The fact that we observe non-zero contributions from non-existent 

frequencies shows that the force decomposition does not correctly attribute the heat flux to 

the correct modes, since by construction, the only mode that can contribute is the one that 

is excited. Therefore, the force decomposition approach should not be used for modal 
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analysis. Furthermore, we have confirmed that velocity decomposition correctly predicts 

only one non-zero contribution at all times during the simulation, which indeed belongs to 

the only existing mode of vibration in the system at 4.61THz (see Figure 10a) and is 

consistent with our physical intuition. Therefore, the authors believe that the velocity 

decomposition is the only technique that is both mathematically and physically meaningful. 

 

Figure 10 – Calculated modal contributions to heat flux  nQ  by (a) velocity and (b) 

force decomposition approaches, for one instant of time, for the InP/InGaAs interface 

when there is only one mode of vibration (extended mode with the frequency of 

4.61THz) is excited in the simulation. 
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CHAPTER 4. CLASSIFICATION OF THE MODES OF 

VIBRATION AT THE INTERFACE OF TWO MATERIALS 

After establishing the correct choice of modes in the previous chapter, we turn our 

discussion to a deeper examination of the modes contained in the {AB} basis set. The 

interface itself acts as a compositional discontinuity that breaks the system’s symmetry and 

changes the LD dynamical matrix in such a way that not all solutions can retain sinusoidally 

modulated eigen vectors for all of the atoms. Therefore, not all of the modes from the {AB} 

basis set correspond to propagating modes. Furthermore, since atoms near the interface 

have different dynamical matrix elements than the rest of the system, some of the eigen 

solutions become localized to the interfacial region (i.e., similar to localization of 

vibrational modes near defects).107 Given that some degree of localization is to be expected, 

new mode classifications can emerge. One can then envision developing a mode 

classification scheme based on the degree to which modes are localized to a given portion 

of the system. For example, Eqns. (36) and (37) indicate that a mode can only contribute 

substantively to the heat flow, if it includes participation (e.g., significant eigen vectors) 

from atoms near the interface. Thus a mode with zero eigen vectors for the atoms near the 

interface will by definition have zero contribution to the heat flow and therefore zero 

contribution to the TIC. Also, a mode that can extend through both sides of the interface 

and deeply into both materials has a greater likelihood of exhibiting longer correlation 

times, resulting in larger contributions to the TIC (see Eq. (32)). From this perspective, one 

might obtain new and interesting insights by classifying the modes in the {AB} basis set 

according to (1) the degree of delocalization into both materials, (2) the degree of 
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localization in one material, (3) the degree of participation near the interface, or (4) the 

degree of localization near the interface. 

We have tentatively classified the 3N solutions in the {AB} basis set into 4 distinct 

categories based on the region where they are most localized:  <1> extended modes, <2> 

partially extended modes, <3> isolated modes and <4> interfacial modes. The criterion for 

classifying the modes in the LD calculation of the {AB} basis set is based on the answers 

to 2 questions motivated by inspection of Eqns. (36) and (37), namely: 

1. Does the mode of vibration exhibit participation near the interface? 

2. Is the mode of vibration localized to any particular part of the system? 

These two questions are motivated from the fact that if a mode does not exhibit significant 

participation in the interfacial region, it cannot exhibit a significant contribution to the 

interfacial heat flow or TIC. Conversely, if the majority of its vibrations are localized to 

the interfacial region, it can exhibit a significant contribution. Also, if a mode is delocalized 

across the interface and extends through both materials it has a higher likelihood of 

exhibiting longer correlation times, which could lead to larger TIC contributions. 

From LD calculations for the {AB} basis set, eigen vectors are defined for all the 

atoms and since we are interested in classifying eigen modes based on their vibrations with 

respect to the interface, we have defined four participation parameters ( PP ) to measure the 

magnitude of the eigen vectors for each atom in a given mode. The first PP  sums the eigen 

vector magnitudes for eigen mode n  in the entire structure ( n

totPP ). The second PP  sums 

the eigen vector magnitudes for eigen mode n  inside the interface region ( n

intPP ), which is 
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shown in Figure 11. The third and fourth PP  sums the eigen vector magnitudes for eigen 

mode n  for side A, n

APP , and side B, n

BPP , respectively. To define the interface region, 

we simply used a cutoff value, such that whenever the distance between an atom and the 

interface plane is less than cutx  (see Figure 11), the atom is considered inside the interface 

region. IN our classifications for the modes of vibration in the LJ and diamond systems, 

the cut off value was taken to be equal to two lattice constants. n

totPP , n

intPP , n

APP , and n

BPP  

for an eigen mode n  are then defined as follows, 
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The comparison of relative magnitudes for these four quantities are then used to 

classify each eigen mode n  as one of the four types, based on answers to a series of 

questions. First, to answer the question: “Is the mode present at the interface?”, we require 

n

intPP  to be a significant fraction of n

totPP  (e.g., more than 0.1%), which leads to the 

requirement that 0.001n n

int totPP PP  . To then answer the question: “Is the majority of the 

vibration at the interface?” we require that more than half of the vibrations be located 

within the interface region, which is mathematically expressed as the condition 



 49 

0.5n n

int totPP PP  . To then determine “Is the mode localized to side A” or “Is the mode 

localized to side B?”, we require that one side of the interface exhibit at least 10 times 

larger portion of the vibrations (e.g., more than 90% of the vibration is on one side of the 

interface). This is then expressed mathematically as 10n n

A BPP PP   to be localized on side 

A and 10n n

B APP PP   to be localized on side B. Thus we then require 10n n

A BPP PP   and 

10n n

B APP PP   for delocalized modes. The four mode classifications are then defined by 

the following answers to the preceding questions and are summarized below using the 

corresponding mathematical statements: 

Modes of type <1> are present at the interface, but the majority of the vibration is not at 

the interface, and they are delocalized into both materials. 

Modes of type <2> are present at the interface, but the majority of the vibration is not at 

the interface, and they are localized on one side of the interface. 

Modes of type <3> are not present at the interface. 

Modes of type <4> have the majority of their vibration at the interface. 
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 mode is type <3> if it is not <1>, <2>, or <4>n  (59) 

 / 0.5, mode is type <4>ti t

n n

nt oPP PP n  (60) 

With this classification scheme every eigen solution falls uniquely into one type 

and it is to be reiterated that the taxonomy introduced herein is preliminary. Additional 

studies are needed to determine the extent to which these mode definitions should be 

revised or expanded and whether or not these classifications serve as useful descriptors for 

the TIC. 

 

Figure 11 – Interface region. cutx  assigns the span of the interface region around the 

interface. For this study the value of cutx  has been chosen equal to 10Å , which is 

equivalent to the LJ cut-off. For the diamond Si system, the cutoff was equal to two 

lattice constants. 

For the interface of two LJ solids (e.g., the interface of a solid argon and a 

fictitiously heavier solid argon with four times the mass of real argon), Figure 12 shows 

examples of each of the four types of modes, and Figure 13 shows their respective density 

of states. Extended modes (type <1>) are delocalized over the entire system (Figure 12a) 
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and because both sides (A and B) vibrate at one frequency, their density of states has a 

sharp cutoff at 
,max B  (Figure 13). Partially extended modes (type <2>) vibrate on one side 

of the interface and only partially extend through to the other side (Figure 12b). These 

modes comprise the majority of the eigen solutions (see Figure 13). Isolated modes (type 

<3>) exist on one side of the interface, but do not include participation near the interface 

(Figure 12c). Interfacial modes (type <4>) are localized/peaked near the interface (Figure 

12d) and they make up a small portion (0.3%) of the density of states, yet they play a 

significant role in the transport. The contributions to the TIC for each mode type are: 

42.87% (extended), 53.20% (partially extended), 0.55% (isolated), and 3.16% (interfacial). 

This indicates that, despite their low population, interfacial modes have the highest 

contribution on a per mode basis (10X higher than the average contribution per mode 

GTotal/3N). 
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Figure 12 – Examples of the four classifications of eigen modes identified for the {AB} 

basis set for the interface of two lattice matched, mass mismatched LJ solids. Each 

panel shows eigen vector displacements for an example of each type of solution: (a) 

extended <1>, (b) partially extended <2>, (c) isolated <3>, and (d) interfacial <4> 

modes. The frequencies of vibration for these for examples of eigen modes of vibration 

are 0.34THz, 0.68THz, 0.96THz, and 0.47THz respectively. 

 

Figure 13 – DOS and population (i.e., percentage of the total number of modes) for 

the four classifications of eigen modes identified for the {AB} basis set for the interface 

of two lattice matched, mass mismatched LJ solids. 
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To confirm that these mode classifications are not just a peculiar artifact of the LJ 

system, we have also performed the same calculations on the interface of diamond Si with 

another diamond Si structure but with a fictitiously 4X larger mass than real Si. The atomic 

interactions are modeled with the Tersoff potential, where the interaction parameters are 

the same for both sides. LD calculations for such interfaces, as well as for interfaces where 

both the parameters and masses are different (i.e., corresponding to Si-Ge), again revealed 

the same 4 classifications of modes. Furthermore, all studies to date of different interfaces 

have yielded the same behaviors and conclusions, with regards to the mode classifications. 
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CHAPTER 5. THE IMPORTANCE OF ANHARMONICITY 

Up to now, no model has been able to quantify the true effect of anharmonicity on 

the heat transfer across interfaces. Some reports have reasoned that inelastic interactions 

across interfaces play a critical role in interfacial heat transfer,56,67 however others have 

questioned the significance of anharmonic effects.20 ICMA formalism is based on MD 

simulations and now has the capability to automatically include the anharmonicity into the 

calculations to its full order. Such a feature in ICMA technique allows for direct evaluation 

of anharmonic contributions to TIC, which can potentially settle all previous debates about 

the importance of anharmonicity. 

Harmonic interactions can only transfer energy between modes of vibration that 

have equal frequencies, as is known from continuum mechanics.108,109 Therefore, any 

contribution to interfacial heat transfer by a mode of vibration that has a frequency higher 

than the maximum frequency of vibration belonging to the bulk of the heavier or weaker 

side of the interface (i.e., 
,max B ) can only be attributed to the anharmonic interactions. 

Previous reports have investigated the effect of temperature on TIC, however none 

of them have been able to study how the modal contributions and anharmonicity vary with 

temperature. Using ICMA, we investigated the effect of temperature on the modal 

contributions and anharmonic interactions across the interface of two LJ solids (i.e., the 

interface of solid argon and a fictitious solid argon with a mass 4X the real mass of argon). 

The TIC accumulation functions at four different temperatures are calculated and shown 

in Figure 14. It can be seen that purely harmonic interfacial heat transfer is only present at 
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temperatures as low as 1K, where there is no contribution to TIC beyond 
,max B . 

Interestingly, at only slightly elevated temperatures, anharmonic interactions quickly 

become a major contributor to the TIC, where 18%, 23% and 21% of the contributions to 

TIC at temperatures 10K, 30K and 60K respectively are directly obtained from frequencies 

larger than 
,max B , which proves the significance of anharmonicity in the interfacial heat 

transfer across these interfaces. It is also important to note that at higher temperature it is 

also very possible that contributions below 
,max B  can also be associated with 

anharmonicity. However, currently a method for separately assessing/distinguishing the 

two parts is non-existent. Nonetheless, in Figure 10, one could conjecture that the 

contributions between 0.5-1.0 THz above 10K might also be affected by anharmonicity 

since they are higher than the contributions at 1K in the same frequency range. The 

similarity in the contributions below 0.5 THz at all temperatures also supports this 

possibility, but it remains to be confirmed by a more rigorous assessment. 

 

Figure 14 – TIC accumulation functions at the interface of two LJ solids calculated 

at different temperatures. 
,max B  represents the maximum frequency of the heavier 

side of the interface. 
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In addition to the interface of LJ solids, we have also studied the anharmonic 

contributions to the TIC across a number of more realistic interfaces at above cryogenic 

temperatures. Our investigated structures include the interface of (1) Si and fictitiously 

heavier Si with a mass 4X the real mass of Si, (2) Si and germanium (Ge) structures with 

all the possible variations in the crystallinity of the solids (e.g., crystalline (henceforth 

denoted by the prefix c-) or amorphous (henceforth denoted by the prefix a-)), and (3) InP 

and InGaAs structures. The calculated modal contributions are shown in Figure 15 in the 

form of TIC accumulation functions. All the contributions to the TIC above 
,max B  is 

attributed to the anharmonic interactions. For InP/InGaAs interface, because of the 

phononic bandgap in InP structure (see Figure 16) no overlap of vibrational frequencies 

between the two sides is seen beyond 5.7THz. Therefore, all the contributions to the TIC 

for InP/InGaAs interface by frequencies higher than 5.7THz are caused by anharmonic 

interactions. Figure 15 clearly shows that except cSi/aSi and cGe/aGe interfaces, 

anharmonicity has at least 18% contribution to the TIC across all the other interfaces. For 

some reason that will be investigated later the harmonic contributions dominate the 

interfacial heat transfer across cSi/aSi and cGe/aGe interfaces. These results again support 

the significance of including anharmonic interactions into calculations. 
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Figure 15 – TIC accumulation functions for eight different interfaces. Anharmonic 

contributions are present at frequencies higher than the maximum frequency of 

vibration at the bulk of the heavier/weaker side of the interface (denoted here by 

,max B ). For InP/InGaAs interface anharmonic contributions are present at 

frequencies above the beginning of the InP bandgap (denoted here by 
max,overlap ) above 

which no overlap of frequencies exists between the two sides. 
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Figure 16 – Density of states (DOS) for the bulk InP and InGaAs structures. 

5.1 Correlation Mapping 

The ICMA formalism is not only able to quantify the anharmonic contributions 

across interfaces, but it also has the ability to elucidate the underlying mechanisms of heat 

transfer through interfaces. Using ICMA, we can examine the extent of 

correlation/interaction between different modes through a 2D mapping of 
,n nG   

correlations (Figure 17) using Eqns. (35), (36) and (37). Here, we examine the interface of 

two LJ solids to understand the modal interactions/correlations in more detail. We 

calculated the 2D matrix of ,n nG   correlations for different mode classifications as color 

maps (see Figure 17). Since elastic interactions are restricted to phonons of the same 

frequency, which are only associated with the values along the diagonal of the correlation 

map, all the off-diagonal contributions are attributed to the anharmonicity. Generally, the 

magnitude of auto-correlations ( 'n n ) is much larger than the cross-correlations ( 'n n
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details of the cross-correlations (i.e., anharmonic interactions) as shown in Figure 17b. All 

of the 
,n nG 

 plots in Figure 17 are symmetric about the diagonal, and examination of the 

plots leads one to notice interesting features that naturally emerge from the modal 

interactions. What is particularly interesting is that when analyzed with the {AB} basis set, 

features emerge at locations where mode character changes. For instance, in the LJ system, 

there is a region of minimal correlation in the frequency range 0.4-1.0 THz. Here, 0.4 THz 

corresponds to the onset of localization (Figure 13), where the first partially extended mode 

appears. Below 0.4 THz all of the modes extend through the entire structure. Interestingly, 

1.0 THz corresponds to 
,max B , whereby modes that extend into the bulk of the heavier side 

B cease to exist, since the bulk of side B cannot support higher frequency vibrations. The 

fact that distinct features in the mode-mode correlation are observed where the mode 

character changes is a further indication that the four classifications are meaningful. The 

majority of the modes present in the 0.4-1.0 THz frequency band are partially extended 

modes (type <2>) that primarily exist on the heavier side of the interface (side B) and these 

partially extended modes exhibit much smaller correlations with other modes in the system, 

yet they contribute more than 25% to the TIC (see Figure 14). Also, interfacial modes show 

the strongest correlation/interaction with the low frequency extended modes and higher 

frequency partially extended modes on the lighter side (side A). This leads us to conjecture 

that interfacial modes may help facilitate the transfer of the energy between low frequency 

extended modes and high frequency partially extended modes on the lighter side (side A) 

and vice versa. If true, these modes could serve as an important bridge for inelastic 

interactions, whereby modes with frequencies above 
,maxB  transfer their energy to 

interfacial modes at lower frequencies, which then transfer the energy into extended modes 
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at even lower frequencies so it can propagate into the heavier side (side B). If true, this 

pathway provides a new physical picture for how interfacial transport can occur 

 

Figure 17 – Correlation contributions to TIC between eigen modes n  and 'n , 
2 1

, (   )n nG W m K 

 , at the interface of two lattice matched, mass mismatched LJ solids. 

The complete set of auto- and cross-correlations are in panel (a). Panel (b) shows only 

the cross-correlations after the auto-correlations have been artificially set to zero 

from the full set of correlations. (c-f) show correlations between the entire set of modes 

and the four classifications of vibrational modes (e.g., types <1>-<4>). (c) shows <1> 

extended mode correlations (d) shows <2> partially extended correlations (e) shows 

<3> isolated mode correlations and (f) shows <4> interfacial mode correlations. 
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CHAPTER 6. APPLICATION OF ICMA TO DIFFERENT 

EXAMPLE OF INTERFACES 

6.1 Crystalline Si/Ge interface: Role of interfacial modes of vibration 

Silicon-germanium (Si-Ge) is a prototypical system that has been studied 

extensively in the literature, largely due to its applications in thermoelectrics.110,111 

Amongst the extensive literature on Si/Ge interfaces, most studies have not been focused 

specifically on the modal contributions or do not include inelastic scattering,21,23,29,94,112-115 

except the recent studies by Chalopin and Volz 64 and Murakami et al.116 Chalopin and 

Volz 64 where they calculated the anharmonic spectral contributions to thermal transport 

across Si/Ge interfaces. Their results showed a significant contribution to TIC by 

frequencies around 14 THz. They suggested such a large contribution could be due to 

localized and non-dispersive interface modes 64 and a similar observation has also been 

reported by Murakami et al.116 In this section, we reexamine heat conduction at strained-

lattice matched, atomically smooth interfaces between crystalline Si-Ge structures with the 

ICMA method and new techniques for quantifying the mode level anharmonicity to better 

understand these contributions. Using the two techniques together allowed for deeper 

understanding of the nature of interfacial modes and ultimately provided a new framework 

for interpreting their contributions. The key distinction from previous work is the ability to 

conduct individual mode level assessments of not only TIC, but also each mode’s harmonic 

vs. anharmonic energy. 
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Using these techniques, we determined that the large contributions reported by 

Chalopin et al. 64 and Murakami et al. 116 are associated with modes that have amplified 

magnitudes of vibration for the atoms around the interface, but still extend through the bulk 

of the Si side (the eigen vectors belonging to the modes of vibration are shown in Figure 

20). Furthermore, these modes only comprise < 0.1% of the total number of modes, yet 

their contributions are quite substantial. We show that the large contribution by these 

interfacial modes originates from their high tendency to couple to almost all other modes 

of vibration in the system. In addition, we examine the mechanism underlying their ability 

to couple so strongly using a new formulation that allows for the calculation of mode-level 

harmonic and anharmonic energy distributions amongst the atoms in the system. 

Here, the ICMA method is employed in EMD.105 The Tersoff potential 106 is used 

to describe the interactions between the atoms in the system. For both Si and Ge sides, the 

number of unit cells along x, y, and z directions are chosen to be equal to 3, 3, and 24, 

respectively. The interface is a plane perpendicular to the z direction, which is parallel to 

the [100] crystallographic direction. Periodic boundary conditions are applied to all 3 

spatial directions, and a finite time step of 0.5 fs is chosen for the MD simulations. After 

relaxing the structure under the isobaric-isothermal ensemble (NPT) for 1 ns at zero 

pressure and the canonical ensemble (NVT) for another 1 ns at 300T K , we simulate the 

structure in the microcanonical (NVE) ensemble for 10 ns during which the modal 

contributions to the heat flux across the interface are calculated. The heat flux contributions 

are saved and post processed to calculate the mode-mode heat flux correlation functions.105 

Statistical uncertainty, due to insufficient phase space averaging, has been reduced to less 

than 5% by considering 10 independent ensembles for each case.104 All MD simulations 
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were conducted using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package 117 and the eigen modes for each structure were determined from LD 

calculations using the General Utility Lattice Program (GULP).118 The Tersoff force 

routine in LAMMPS was modified to include the modal decomposition of the heat flux 

across the interface, which allows the modal contributions to be computed concurrently 

with the trajectory, which is computationally efficient. 

The DOS  of the four classes of vibration as well as their population as the fraction 

of the total number of states ( DOS ) are shown in Figure 18 and Table 1, respectively. It 

can be seen that the formation of the interface caused more than 2.5% of the modes to 

become localized near the interface, even though the entire system is crystalline and lattice 

matched. 

 

Figure 18 – DOS of the modes of vibration across the crystalline Si/Ge interface. 

Summation of the DOS for different classes of vibration (colored curves) are equal to 

the total DOS (black curve) 
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Table 1 – Number of states for the four different classes of vibration and their 

contribution to TIC across the Si/Ge interface. Columns 2-4 represent the fraction of 

the total number of states ( DOS ), the percentage contribution to G  (G ), and 

contribution to G  divided by fraction of total number of states (i.e., contribution to 

G per mode) (G DOS ), respectively. 

Mode Type (%)DoS  (%)G  G DOS  

Extended 29.35 51.99 1.77 

Partially extended 64.24 29.28 0.45 

Isolated 3.50 < 0.01 < 0.01 

Interfacial 2.90 18.73 6.45 

Table 1 shows modal contributions to TIC associated with each class of vibration. 

The results show that interfacial modes have the highest contribution to TIC on a per mode 

basis (e.g., here 6.5X higher than the average contribution per mode). The accumulation 

function for TIC is then shown in Figure 19a. The accumulation is interesting because it 

shows a steep increase between 12-13 THz. The large contribution of the modes in 12-13 

THz region to TIC is both interesting and non-intuitive, because as Figure 18 shows, it 

does not correspond to a region where there is a large population of modes, as would be 

expected for rapid increase in the accumulation at high frequencies. Similar features in the 

modal contributions to TIC have been observed by Chalopin and Volz 64 and Murakami et 

al.116 However, using ICMA we can now pinpoint exactly which normal modes are 

responsible for this portion of the TIC and we can examine their characteristics to look for 

deeper insights. 
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LD of the combined structure revealed that 12-13 THz region is comprised of large 

contributions from six special interfacial modes, which comprise < 0.1% of the all the 

modes, yet they are responsible for approximately 15% of the TIC (Figure 19a). Figure 20 

shows pictures of the eigen vectors associated with this small group of six modes, which 

indicates that many of them extend through the bulk of the Si side, but have a predominant 

portion of their energy/vibration (~20%) at the interface (see the next subsection on how 

to calculate the energy distribution of one eigen mode over different atoms in the system). 

Furthermore, since the frequency of these interfacial modes are above the maximum 

frequency of the bulk Ge side (~ 10THz) their contribution must be the result of inelastic 

interactions enabled by the system’s anharmonicity.43,105 
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Figure 19 – Modal contributions to TIC for Si/Ge interface at T=300K. (a) TIC 

accumulation function, (b) 2D map and (c) 3D perspective depiction of the data in (b) 

showing the magnitudes of the correlations/interactions as elevations above the plane 

of two frequency axes. The values presented on the 2D and 3D maps have units of 

 2 1MW m K 
. Inelastic interactions occur between the modes with frequencies 12-

13 THz and all the other modes in the system. Although panel (a) shows that 

interfacial modes in the frequency range of 12-13 THz contribute almost 15% to the 

TIC, the summation of the contribution of interfacial modes on the correlation maps 

of (b) and (c) show that when their affects/correlations with other modes are also 

included they are, in total, responsible for more than 26% of the total TIC. 
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Figure 20 – Eigen vectors for six special interfacial modes in the 12-13THz region that 

comprise near 15% of the TIC. The frequencies of these eigen modes are (a) 

12.01THz, (b) 12.01THz, (c) 12.10THz, (d) 12.10THz, (e) 12.25THz, and (f) 12.32THz. 

Si and Ge atoms are shown with white and cyan spheres respectively. 

Using ICMA, the degree of interaction/correlation between each pair of vibrational 

modes in the system can be calculated and presented as a two-dimensional map of 

correlation,43,105 shown in Figure 19b. Since elastic interactions are restricted to phonons 

of the same frequency, which are only associated with the values along the diagonal of the 

correlation map (Figure 19b), all the off-diagonal contributions are attributed to the 

anharmonicity. The 2D mapping shows that the interfacial modes between 12-13THz are 

strongly correlated with all others and their correlation is at least 1 order of magnitude 
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larger than the average correlation outside this regime (see Figure 19c for the 3D 

representation of the correlations). 

Since the highly contributing modes of vibration shown in Figure 20 have relatively 

large frequencies (~12-13THz), one could suspect their contribution to TIC at room 

temperature to be partially suppressed by their reduced heat capacity. However, even after 

such quantum effects are accounted for 43 at T=300K, the interfacial modes of vibration at 

12-13THz still contribute 12% to TIC (Figure 21b). Additionally, the modal contributions 

to TIC at higher temperatures (400K and 500K (Figure 21a-b)) show that interfacial modes 

still contribute 15% to the TIC, which confirms that for applications at room-temperature 

and above, interfacial modes maintain their contribution to TIC. 
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Figure 21 – Normalized modal contributions to TIC for Si/Ge interface at three 

different temperatures of 300K, 400K, and 500K (a) before quantum correction and 

(b) after quantum correction. The absolute values of TIC before quantum correction 

for 300K, 400K, and 500K are 0.84 GWm-2K-1, 0.87GWm-2K-1 and 0.88 GWm-2K-1, 

respectively. The absolute values of TIC after quantum correction for 300K, 400K, 

and 500K are 0.80 GWm-2K-1, 0.83GWm-2K-1 and 0.86 GWm-2K-1, respectively. 

It is also important to note that if such a large contribution to the conductance is 

associated with a narrow range of frequencies for a real system, such a distinct feature 

could potentially be verified by measuring the TIC vs. temperature (i.e., using transient 

thermoreflectance techniques 119,120). The data in Figure 22 supports this idea by showing 

the effect of interfacial modes on the TIC accumulation function. It can be seen that by 

removing the entire contribution of interfacial modes (e.g., by excluding all the points 

corresponding to interfacial modes on the correlation maps) the sharp increase at the 
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frequency range of 12-13THz disappears and the TIC accumulation function follows a 

smooth increase vs. frequency. Moreover, the exclusion of interfacial modes results in a 

noticeably different temperature dependence for the TIC when quantum corrections are 

applied, which can form a basis for the experimental evaluation of the existence of the 

reported interfacial modes in the 12-13THz frequency region. 

 

Figure 22 – Effect of excluding the contribution by interfacial modes at the frequency 

range of 12-13THz on (a) the TIC accumulation function and (b) the temperature 

dependence of TIC at the interface of crystalline Si/Ge. It should be noted that 

according to the correlation maps shown in Figure 19, the contribution/effect by 

interfacial modes is not limited to the narrow frequency region of 12-13THz and is in 

reality distributed all over the frequency spectrum. Transient thermoreflectance 

measurement techniques can potentially detect the decrease in TIC after the exclusion 

of interfacial modes, which can serve as an experimental basis for evaluating the 

existence of these modes. 

6.1.1 Calculating harmonic and anharmonic energy distributions for modes 

To understand how the interfacial modes between 12-13 THz couple to virtually all 

other modes, we compute the degree of anharmonicity sampled by different atoms at 

different locations in the structure (see Figure 23) based on the following procedure. The 
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potential energy for an oscillator can be written as arising from the sum of harmonic and 

anharmonic contributions, 

 pot harmonic anharmonicH H H   (61) 

where  represents the ensemble average.104 The anharmonic portion represents the 

deviation of the potential energy of the system from its largest component which is the 

harmonic term. We are interested in calculating how the harmonic and anharmonic portions 

of the energy for an oscillator are distributed amongst the different atoms in the system. 

Based on the equipartition theorem, the average harmonic energy of a classical oscillator 

is equal to, 

 
1

2
harmonic BH k T  (62) 

where Bk  is the Boltzmann constant, and T  is the temperature of the system. The potential 

energy for a harmonic oscillator can also be calculated from the normal mode amplitude 

analysis via,11 

 
2 21

2
harmonic n nH X   (63) 

where nX  is the modal displacement coordinate, and n  is the frequency of the eigen mode. 

It should be noted that calculating the harmonic energy for an eigen mode using the 

knowledge of force constant matrix and the respective atomic displacements for an eigen 
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mode is equal to the approach based on the normal mode amplitude analysis (Eq. (63)). 

The modal displacement coordinate can be explicitly written as,11 

 
,

i
n n i

i

i

m
X

N
  e u  (64) 

where, N  is the total number of unit cells in the system, i  is the atom index, im  is the 

mass of atom i , 
,n ie  is eigen vector associated with atom i  for eigen mode n , and iu  is 

the displacement of atom i . By combining Eq. (62) and Eq. (63) we then have, 

 
2 2

n n BX k T   (65) 

To determine the distribution of the harmonic energy for eigen mode n  amongst 

the atoms in the system, one can envision a state of the system whereby all of the atoms in 

the system are displaced from equilibrium in the direction of their respective eigen vectors 

from mode n  (i.e., 
,n ie ). In this view, the attributed displacement to an atom would be 

equal to, 

 ,i n n iu e  (66) 

where n  is a scaling factor that associates a certain degree of displacement with the mode’s 

amplitude at a given temperature. The exact value of the scaling factor can then be 

calculated from the combination of Eqns. (64), (65) and (66). Replacing for the atomic 

displacement in Eq. (64) with the definition in Eq. (66), we would have, 



 73 

 
, , , ,

i i
n n i n n i n n i n i

i i

m m
X

N N
    e e e e  (67) 

which by the substitution of 
, , ,

i
i n n i n i

m
X

N
 e e , yields a simpler form, 

 ,n n i n

i

X X






 
  (68) 

Using Eq. (65) we then have n n BX k T   and by incorporating Eq. (68), we can calculate 

the scaling factor as, 
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(69) 

With this scaling factor  n , we then rewrite Eq. (65) as, 

 
2

n n n BX X k T   (70) 

and substitute for nX from Eq. (68), which yields, 

 
2

, ',

'

n i n n i n n

i

B

i

X X Tk  
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      
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   (71) 

 
 2 2
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(72) 
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Replacing for n  with its definition in Eq. (69) allows us to rewrite Eq. (72) as, 
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and finally, 
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Eq. (74) defines the harmonic energy attributed to atom i  by eigenmode n   ,i n , 
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(75) 

Through the definition of the scaling factor  n , we can determine the exact 

displacements for the atoms in the system when exactly one mode is excited. This then 

allows us to analyze the energy and anharmonicity associated with that single mode, where 

(according to Eq. (62)) the harmonic energy for eigen mode n is equal to 1
2 Bk T . 

An atom’s full potential energy contribution to a given eigenmode  ,i n  is then 

determined by applying the associated displacements for a specific eigen mode 11 – e.g., 

the case where it is the only mode excited in the system. This total potential energy includes 

both the harmonic and anharmonic portions (anharmonic to full order). This is achieved by 
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writing the total potential energy of the system as the summation over the individual atomic 

potential energies as,92,93 

 i

i

    (76) 

where  is the total potential energy and 
i  is the potential energy assigned to atom i , 

such that all energy is equally partitioned amongst interacting pairs of atoms.82,83 Following 

this method, by applying the displacements associated with a given mode, each individual 

atom’s potential energy can be calculated statically, without having to execute an EMD 

simulation. For an eigenmode n , the difference between the total potential energy  ,i n

and the harmonic potential energy  ,i n associated with atom i  equals the anharmonic 

portion of the energy  ,i n . 

 , , ,i n i n i n    (77) 

This anharmonic energy can then be used to better understand how modes and regions of 

atoms interact and ultimately will help to quantify its effect on transport. 

If one then sums 
,i n  over all the eigen modes, the result is the total anharmonic 

energy of atom i  and provides insight into the amount of anharmonicity it will experience. 

We can then sum the anharmonic energy contributions for all of the atoms in a specific 

region of the system which will provide insight into whether or not the presence of the 

interface causes different regions of the system experience more or less anharmonicity. 
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Figure 23 – Average anharmonic energy for the atoms at each layer along the Si/Ge 

structure normalized by kBT. The largest peak belongs to the last layer of Si atoms at 

the interface. The position of the interface is shown by the dashed line. 

Figure 23 shows that atoms near the interface experience the largest anharmonic 

contributions to their energy. This confirms that the presence of the interface increases the 

extent to which atoms access the anharmonic terms in the energy in certain regions. It 

should be noted, that by comparison, for a homogenous solid (no interface) the anharmonic 

energy terms would be uniform and homogenous throughout the entire structure. Thus, a 

deviation from constant anharmonicity is attributable to the presence of the interface itself. 

Also, since the interfacial modes hold 20% of their energy in this more anharmonic region, 

one might immediately assume that the motions associated with these modes must be the 

most strongly anharmonic. However, from the mode-level contributions to anharmonic 

energy for the interfacial atoms (see Eq. (77) and Figure 24), it appears that interfacial 

modes between 12-13THz are not the most notably anharmonic modes in the interfacial 

region. Nonetheless, they do comprise the predominant portion of the energy in the 
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interfacial region. Figure 25b shows that more than 30% of the energy for interfacial atoms 

comes from the interfacial modes with frequencies between 12-13 THz. Thus, despite their 

small population in the entire system DOS (Figure 18 or Figure 25a), they contribute 

considerably to the energy of the atoms in the interfacial region (Figure 25b), which matter 

most for the TIC. We then postulated that other modes, which could be somewhat more 

anharmonic (see Figure 24), tend to couple their energy from the bulk into these interfacial 

modes, which have the most energy in the interfacial region. These interfacial modes then 

facilitate energy transfer through the interface and into the other material. As a result, 

interfacial modes exhibit extremely strong correlation with all the other modes (Figure 19b 

and Figure 19c), as they effectively serve as a bridge for the energy to couple across the 

interface. This supports a new physical picture for describing the contributions of 

interfacial modes, whereby the energy in other modes couples to the most overall energetic 

modes in the interfacial region (e.g., interfacial modes), which then move the energy across 

the interface to the other material, whereby it can couple to other modes that exist in the 

bulk of the other side. 
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Figure 24 – Mode-level distribution of anharmonic energy, normalized by kBT, 

averaged over the first layer of Si atoms at the interface that have Ge atoms as nearest 

neighbors. This layer is also the most anharmonic region in the structure (see Figure 

23). Anharmonic energy accumulation function is also presented in the figure. 
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Figure 25 – (a) DOS and (b) Mode-level distribution of harmonic energy, normalized 

by kBT, for the last layer of Si atoms at the interface, that has the largest 

anharmonicity (see Fig. 6) in the Si/Ge structure. Panel (a) also includes the DOS for 

the entire structure, which is equal to total DOS curve in Figure 18. Spectral energy 

distribution for the interfacial atoms in panel (a) is determined from the MD 

simulated atomic velocities 69,121. The difference between the DOS of the interfacial 

atoms and the DOS for the entire structure is significant as it appears that the optical 

phonon peak in Ge between 8-10 THz is shifted to 12-13 THz in the interfacial region. 

The scheme provided for calculating the mode-level anharmonic energy 

contributions from each atom in the system (
,i n ) (Eq. (77)) is a simple and straightforward 

technique to quantitatively assess the degree of anharmonicity in the interactions in 

essentially all classes of solid materials.122 It could be used, for example in crystalline 

solids or systems with interfaces, defects or even disordered solids. For instance, Figure 23 

not only shows that the interface region is the most anharmonic region, but it also shows 
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that anharmonic energy in the bulk of the Ge side is on average higher than the Si side. 

This is interesting, because the higher anharmonic energy on the Ge side could be one of 

the factors that leads to the lower thermal conductivity of Ge compared to Si (i.e., lower 

relaxation times).58 

Using the ICMA method, we identified that the high contributions to TIC from 

modes with frequencies between 12-13THz at the interface of crystalline Si/Ge structures 

are caused by a small group of interfacial modes that occupy less than 0.1% of the total 

population of modes. These interfacial modes have extended vibrations on the bulk of Si 

side and have a strong tendency to couple to virtually all other modes in the system. Our 

calculations at T=300K show that at the interface ~ 23% of the potential energy is 

attributable to the anharmonic terms in the potential energy, which leads to strong coupling 

between modes with different frequencies. However, this relatively large degree of 

anharmonicity quickly decreases further into the bulk of each side (< 7% anharmonicity in 

the bulk). Furthermore, this degree of anharmonicity facilitates strong correlations between 

interfacial modes and virtually all other modes in the structure. By performing energy 

distribution calculations, we showed that although the interfacial modes are not the most 

anharmonic modes in the entire structure, but they are the most energetic modes in the most 

anharmonic region (e.g., the interfacial region). Consequently, all the other modes tend to 

couple with them to transfer their energy to the other side of the interface. These results 

therefore provide a basis for developing a new and revised physical picture for thinking 

about the contributions of localized modes at interfaces. 

 



 81 

6.2 Interfaces with disordered materials 

It was mentioned previously that in the Landauer description of phonon transport 

across interfaces (Eq. (11)), 
gv  needs to be calculated for all the modes of vibration in the 

system and such a calculation is only possible for crystalline solids. Therefore, application 

of the PGM based methods to the interfaces of amorphous materials and alloys is highly 

questionable, since 
gv  cannot be defined for most of the vibrational modes, as most of the 

modes of vibration in amorphous materials are not of propagating nature.42-47 Thus, based 

on these existing frameworks, there is no obvious insight one can derive from the governing 

model itself. Instead one can only resort to very approximate physical arguments. ICMA 

formalism is not dependent on the definition of the PGM and is therefore independent of 

any description of 
gv , thus it has the potential to calculate the modal contributions to the 

TIC and provide deeper insight into the heat transfer across the amorphous and alloyed 

interfaces. 

With respect to TC, different approaches such as the Allen-Feldman method (A-F) 

42,123 or the virtual crystal approximation (VCA) 124 are able to provide some degree of 

insight into the heat transfer in amorphous solids and alloys, respectively. Using these 

techniques one can explain the order of magnitude difference between the TC of crystalline 

and amorphous solids. However, no similar methods exist to predict how TIC varies when 

one or both sides of an interface is amorphous. The only approximate physical insight one 

might be able to justify is possibly that an interface with an amorphous material is likely 

to exhibit low conductance since amorphous material thermal conductivities are typically 

very low by comparison to crystals. Thus, in essence, the only expectation one might derive 
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about an interface with an amorphous material is that the modes have short “effective mean 

free paths” and thus they are unlikely to be effective at moving heat across an interface. 

Furthermore, one might also argue that if the interface is between an amorphous material 

and a crystal, the modes in the crystal may have a strong likelihood of scattering at the 

interface, because the mode character is expected to change dramatically at the interface, 

thus requiring some type of mode conversion/exchange, which would require a scattering 

event. However, contrary to this approximate intuition, a recent study 125 measured a larger 

TIC at the interface of graphite and amorphous SiC than at the interface of graphite and 

crystalline SiC. The reason for such a non-intuitive result is currently unknown, but likely 

due to the action of very different mechanisms than what are normally understood to take 

place in crystalline materials. 

On the one hand, in crystalline materials, phonon transport is described based on 

purely propagating modes of vibration (i.e., the PGM). On the other hand, in amorphous 

solids transport occurs because of interactions between three distinct types of vibrations: 

propagons, diffusions, and locons, among which only propagons exhibit a propagating 

nature.42 None of the more well-established approaches 42,123,124 are able to explain how 

these different types of vibrations interact to transfer energy across an interface. For 

example, the mechanism whereby a propagating mode on the crystalline side couples with 

a diffuson on the amorphous side can be postulated but has never been studied in detail. In 

addition, it is unknown whether the localized modes at the interface can facilitate the 

transfer of energy at a disproportionally higher rate between the two sides in all situations 

similar to how they behaved at the interface of crystalline Si andGe.64,122 
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6.2.1 Crystalline and amorphous Si/Ge interfaces 

To the best of our knowledge, none of the reports that have investigated non-

crystalline Si/Ge interfaces have calculated the conductance for an individual interface. In 

a recent study, Giri et al. examined the effect of crystalline/amorphous Si/Ge interfaces on 

heat transfer through confined films and superlattices.126 In their study, the reported 

resistances are the total resistance for the film (i.e., the summation of resistances at the bulk 

and at the interfaces). In another study Giri et al. study the amorphous Si/Ge superlattices 

and utilize a thermal circuit model (based on separate calculations for bulk resistances) to 

calculate the resistance at the interfaces.127 In this study, however we focus on direct 

calculation of conductance across individual interfaces, which as will be shown can provide 

additional insights that could not be captured by investigating the thermal transport 

properties from other approaches. We also extend our investigations beyond the c-Si/c-Ge 

interface and examine all the various combinations of crystalline and amorphous Si and Ge 

to evaluate the effects of different phases of solids on interfacial heat transfer.128 In this 

regard, six interfaces have been considered: c-Si/c-Ge, c-Si/a-Ge, a-Si/c-Ge, a-Si/a-Ge, c-

Si/a-Si, and c-Ge/a-Ge. Table 1 shows how these combinations are chosen, and Figure 26 

shows an example supercell used for each of these configurations. In the following, the 

TIC across these interfaces are calculated and compared and to better understand the 

contributions by different modes of vibration, the ICMA technique 43,105 is employed. 
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Table 2 – Six distinct interfaces can be formed by joining the c-Si, c-Ge, a-Si, a-Ge 

structures: c-Si/c-Ge, c-Si/a-Ge, a-Si/c-Ge, a-Si/a-Ge, c-Si/a-Si, and c-Ge/a-Ge. Only 

the interfaces on one side of the diagonal are unique. 

 c-Si c-Ge a-Si a-Ge 

c-Si  * * * 

c-Ge *  * * 

a-Si * *  * 

a-Ge * * *  

 

Figure 26 – Schematics of the six formed interfaces between c-Si, a-Si, c-Ge and a-Ge 

structures. White and cyan spheres represent Si and Ge atoms, respectively. 
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One of the key benefits of using ICMA is that it can describe any of the modes that 

exist in an interfacial structure, which can have a variety of different types of mode 

character. However, because the PGM based descriptions require that all modes be treated 

as propagating modes, they are unable to account for the effect that an interface has on the 

mode character in a given structure. Therefore, in this study the ICMA method not only 

quantifies, but also provides a rigorous and unified platform for understanding the various 

contributions to TIC from different phonons in all of the Si/Ge systems described in Table 

2 and Figure 26. 

Here, the ICMA method is first employed in EMD, but is later used in NEMD as 

well.105 The Tersoff potential 106 is used to describe the interactions between the atoms in 

the system. In the case that one side of the interface was crystalline, the number of unit 

cells along x, y, z directions are 3, 3, and 24, respectively. In previous studies of similar 

system we showed that the TIC values are converged with less than 5% standard deviation 

utilizing this system size 43,105,122,129 (see Figure 31 for further discussions). The interface 

is a plane perpendicular to the z direction, which is parallel to the [100] crystallographic 

direction. To generate the structure for the amorphous side, the number of atoms 

corresponding to the densities of a-Si (~2.29
3/g cm  130) and a-Ge (~5.32

3/g cm  131) are 

initially randomly positioned in a simulation box with the same dimensions as the 

crystalline side. The system is then heated to a temperature above its melting point, after 

which it is quenched to 0K over a 50 ns simulation time. The two sides are then brought 

into contact, and the entire system is annealed at 1000K for 2 ns. This annealing/sintering 

process is required to ensure the correct positioning of the atoms around their equilibrium 

sites.132 Figure 27 shows the radial distribution function (RDF) of the generated amorphous 
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structures based on this generation scheme. It can be seen that the calculated RDFs show 

reasonable agreement with experimental values. Periodic boundary conditions are applied 

in all 3 spatial directions, and a time step of 0.5 fs is used for all simulations. After first 

relaxing the structures under isobaric-isothermal conditions (NPT) for 1 ns at zero pressure 

and then at isochoric-isothermal conditions (NVT) for another 1 ns at 300T K , we 

simulate the structures in the microcanonical (NVE) ensemble for 10 ns at which point the 

modal contributions to the heat flux across the interface are calculated. The heat flux 

contributions are saved and post processed to calculate the mode-mode heat flux 

correlation functions.105 Statistical uncertainty, due to insufficient phase space averaging, 

has been reduced to less than 5% by considering 10 independent ensembles for each 

case.104,133 All MD simulations were conducted using the LAMMPS package 117 and the 

eigen modes for each structure were determined from lattice dynamics calculations using 

the GULP package.118 It should be noted that zero pressure constraint used in our 

simulations have also been utilized in other MD studies,126,127 and it helps to more easily 

find the finite-temperature relaxed structure and volume. However, because of the lattice-

mismatch condition that is common in finite size MD simulations, using such a zero 

pressure constraint does not ensure zero pressure along all the three Cartesian coordinates, 

but at least can provide the minimum stress structure. After the relaxation procedure is 

complete the MD simulations, the authors confirmed that the final densities of the 

amorphous structures have less than 2% variation from the initial densities mentioned 

above. 
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Figure 27 – RDFs for (a) a-Si and (b) a-Ge structures compared to experimental 

measurements by Alvarez et al.134 

The TIC values for all the interfaces were calculated using EMD at 300K and are 

presented in Table 3. It can be seen that, except for the c-Ge/a-Ge interface, all of the 

obtained TIC values differ by less than 40%. This is interesting for two reasons: (1) the 

TCs of the materials on either side of the interfaces vary greatly – at 300K, the TCs of 

naturally occurring c-Si (150W/m-K 135-137) and c-Ge (70W/m-K 138) are two orders of 

magnitude larger than a-Si (1 W/m-K 139) and a-Ge (0.5 W/m-K 140); (2) the DOS for 

different modes of vibration across these interfaces are significantly different from each 

other (see Figure 28). Particularly, the degree of localization to one side of the interface 

(i.e., the total population of partially extended, isolated and interfacial modes) is ~70% 

across c-Si/c-Ge interface, while it is only ~25% across c-Si/a-Si interface (see Table 4), 

yet these interfaces have comparable values of conductance. Although, the overlap in the 

vibrational density of states has been successful to explain the TIC in many reported 

instances,53,67,125-127,141,142 this is not the first time that overlap in the vibrational density of 
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states has served as a poor descriptor for TIC. In addition to others,69,87 we also observed 

similar results for LJ systems.143 Further investigations are needed to determine what 

parameters can explain the TIC variations with a better consistency and accuracy compared 

to density of states overlap. 

Table 3 – TIC values for Si/Ge interfaces at 300K ( 2 1GWm K  ). 

c-Si/c-Ge 0.84 

c-Si/a-Ge 0.77 

a-Si/c-Ge 0.89 

a-Si/a-Ge 1.06 

c-Si/a-Si 0.98 

c-Ge/a-Ge 0.29 

Among the available literature where methods that include anharmonicity are used 

in calculating the conductance across crystalline/amorphous Si/Ge interfaces, Giri et al. 

have reported the conductance of a-Si/a-Ge interface to be 1.92 2 1GWm K   127 using 

NEMD combined with thermal circuit model to decompose bulk and interfacial resistances, 

which can explain the difference between their value and our reported EMD values. For c-

Si/c-Ge interface, using NEMD simulations Giri et al. 126 and Landry and McGaughey 70 

reported the conductance to be 0.36 2 1GWm K   and 0.34 2 1GWm K   respectively, which 

are in better agreement with our NEMD calculated conductances (see Figure 33). 

Additionally, for the c-Si/c-Ge interface, using EMD and Stillinger-Weber interatomic 

potential,144 Chalopin et al. 94 reported a conductance of 0.63 2 1GWm K  , the difference 

of which from our reported value can be attributed to different interatomic-potentials. 
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Figure 28 – DOS for the modes of vibration across the (a) c-Si/c-Ge, (b) c-Si/a-Ge, (c) 

a-Si/c-Ge, (d) a-Si/a-Ge, (e) c-Si/a-Si, and (f) c-Ge/a-Ge interfaces. For comparison, 

DOS of the bulk crystalline/amorphous Si and crystalline/amorphous Ge structures 

have also been shown in panels (g) and (h). 
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Table 4 – Number of states for the four different classes of vibration and their 

contribution to TIC across the c-Si/c-Ge, c-Si/a-Ge, a-Si/c-Ge, a-Si/a-Ge, c-Si/a-Si, 

and c-Ge/a-Ge interfaces. Columns 2-4 describe the fraction of the total number of 

states ( DOS ), the percentage contribution to G  (G ), and contribution to G  divided 

by fraction of total number of states (i.e., contribution to G per mode) ( G DOS ), 

respectively. In agreement with our previous observations,43,122,129 interfacial modes 

in all of the structures have the highest per mode contribution to the TIC. The TIC 

value for each interface from Table 3 is also included for ease of comparison. 

 c-Si/c-Ge 

 2 10.84G GWm K    

 c-Si/a-Ge 

 2 10.77G GWm K   

Mode 

Type 

(%)DoS  (%)G  G DOS   Mode 

Type 

(%)DoS  (%)G  G DOS  

Extended 29.35 51.99 1.77 Extended 51.27 52.22 1.02 

Partially 

extended 

64.24 29.28 0.45 Partially 

extended 

43.11 40.25 0.93 

Isolated 3.50 < 

0.01 

< 0.01 Isolated 3.21 < 

0.01 

< 0.01 

Interfacia

l 

2.90 18.73 6.45 Interfacia

l 

2.39 7.53 3.15 

 

 a-Si/c-Ge 

 2 10.89G GWm K   

 a-Si/a-Ge 

 2 11.06G GWm K   

Mode 

Type 

(%)DoS  (%)G  G DOS   Mode 

Type 

(%)DoS  (%)G  G DOS  

Extended 69.16 62.26

% 

0.90 Extended 56.23 54.71 0.97 

Partially 

extended 

19.19 25.72 1.34 Partially 

extended 

24.36 25.99 1.07 

Isolated 6.62 < 0.01 < 0.01 Isolated 11.24 < 

0.01 

< 0.01 

Interfacia

l 

5.01 12.02 2.40 Interfacia

l 

8.16 19.30 2.33 
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 c-Si/a-Si 

 2 10.98G GWm K   

 c-Ge/a-Ge 

 2 10.29G GWm K   

Mode 

Type 

(%)DoS  (%)G  G DOS   Mode 

Type 

(%)DoS  (%)G  G DOS  

Extended 77.73 83.61 1.08 Extended 79.93 85.75 1.07 

Partially 

extended 

16.20 7.70 0.48 Partially 

extended 

15.30 7.94 0.52 

Isolated 4.00 < 

0.01 

< 0.01 Isolated 3.36 < 

0.01 

< 0.01 

Interfacia

l 

2.05 8.69 4.24 Interfacia

l 

1.38 6.31 4.57 

The TIC accumulation functions for each of the six configurations were calculated 

and are shown in Figure 29. In addition, by using ICMA, the degree of coupling/interaction 

between each pair of vibrational modes across the interface 43 was calculated and is 

presented as 2D maps of correlation in Figure 30. As was pointed out in the previous 

section, for the c-Si/c-Ge interface, the modes of vibration in the frequency range of 12-

13THz show a large degree of coupling with all the other modes of vibration in the system 

(Figure 30a) and contribute almost 15% to the TIC (Figure 29) 122. The population of these 

modes in this 12-13THz region was shown to be less than 0.1% of the total population of 

modes.122 Additionally, it was shown that while these modes have extended vibrations on 

the Si side, they also exhibit a large portion of their vibrational energy at the interface 122 

– hence they are considered interfacial modes of vibration 43 (see Figure 20 for a 

representation of these modes of vibration). By changing the crystallinity of each side of 

the interface, the highly interacting frequency region of 12-13THz (Figure 30a) seems to 

shift to a broader frequency region of vibrations around 10-14THz for c-Si/a-Ge, a-Si/c-

Ge and a-Si/a-Ge interfaces (Figure 30b-d). Although the frequency region of 10-14THz 
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also contributes largely to the TIC across c-Si/a-Ge, a-Si/c-Ge and a-Si/a-Ge interfaces (see 

Figure 29), all the modes of vibration present within this region contribute on average 

equally to the TIC. Therefore, unlike the c-Si/c-Ge interface, contributions to interfacial 

heat transfer across the c-Si/a-Ge, a-Si/c-Ge and a-Si/a-Ge interfaces are not dominated by 

small subset of modes. It is also interesting to note that the highly interacting frequency 

region of 12-13THz in the c-Si/c-Ge interface is absent in the c-Si/a-Si and c-Ge/a-Ge 

interfaces (Figure 30e-f). In fact, the TIC for these interfaces is largely dependent on the 

elastic interactions (i.e., auto-correlations) present along the diagonal of the 2D maps of 

correlation (Figure 30e-f), which can possibly be attributed to the large population of 

extended modes in the c-Si/a-Si and c-Ge/a-Ge structures (in which more than 75% of the 

modes are extended) (see Table 4). Extended modes are delocalized; thus they potentially 

can transfer heat to the other side of the interface without the need to couple to other modes 

of vibration.43 Although c-Si/a-Si and c-Ge/a-Ge interfaces seemingly follow similar 

mechanisms of interfacial heat transfer (see Figure 28e-f, Table 4 and Figure 30e-f), the 

conductance across c-Ge/a-Ge interface is 3.38 times smaller than c-Si/a-Si interface. Such 

a lower conductance for c-Ge/a-Ge interface can be understood by considering the fact that 

the absolute of values of heat flux across this interface are on average smaller than the ones 

across the c-Si/a-Si interface. In fact, in our simulations, the average of the absolute values 

of heat flux at the c-Si/a-Si interface was 2.36 times larger than that of the c-Ge/a-Ge 

interface. These lower values of interfacial heat flux naturally result in lower values of 

conductance using both equilibrium and non-equilibrium definition of interface 

conductance for the c-Ge/a-Ge interface and they arise due to the simple fact that Ge is 

heavier than Si. Thus, at the same temperature Ge atoms have lower velocities than Si, and 
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since the heat flux itself is directly proportional to the atom velocities on both sides, the 

low velocities for both a-Ge and c-Ge yield lower overall heat fluxes and conductances. 

 

Figure 29 – (a) Non-normalized and (b) normalized TIC accumulation functions for 

Si/Ge interfaces at T=300K. 
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Figure 30 – 2D maps showing the magnitude of correlations/interactions across the 

(a) c-Si/c-Ge, (b) c-Si/a-Ge, (c) a-Si/c-Ge, (d) a-Si/a-Ge, (e) c-Si/a-Si, and (f) c-Ge/a-Ge 

interfaces as elevations above the plane of two frequency axes. (f´) shows a magnified 

view for the interactions across the c-Ge/a-Ge interface (panel (f)). The values 

presented on the maps have units of 
2 1MWm K 

. 
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6.2.1.1 Understanding size effects in NEMD simulations. 

As was shown in Figure 28 and Figure 29, the c-Si/c-Ge case is heavily dependent 

on the interfacial modes present in the 12-13THz frequency region. Using ICMA 

formalism, we also know that these interfacial modes have a long tail of vibration on the 

bulk Si side. Since a substantial portion of their vibration extends through the Si side, we 

postulated that if one were to perform NEMD simulations of this structure, the heat baths 

might actually perturb these modes. Particularly because the TIC depends so strongly on 

the presence of these interfacial modes, the unnatural perturbations associated with velocity 

rescaling in the heat baths can hypothetically affect the TIC across c-Si/c-Ge. Such an 

effect is interesting because it cannot be described by a scattering based paradigm. In 

theory, if TIC is truly governed by phonon scattering at the interface, then scattering away 

from the interface should not affect it. 

It should be noted that based on the Landauer formalism (Eq. (11)) there should be 

no size dependence associated with TIC. No length dependent properties, such as mean 

free path, enter the Landauer description. The only length dependent property is the number 

of modes in Eq. (11), which are the allowed modes of vibration in the system.33 Regarding 

this issue, Figure 31 shows that our conducted EMD simulations are effectively size-

independent, which is in agreement with other reports on Si/Ge interfaces.94 Therefore, it 

seems that even a small structure with ~3x3x24 unit cells on each side of the interface 

includes sufficient number of modes that TIC varies by less than 5%. (See Figure 31). 

Therefore, according to the standard picture, for system sizes beyond 3x3x24, there should 

not be any size dependence for the TIC. However, in concept, when one performs velocity 

rescaling during NEMD simulations, one effectively disrupts mode amplitudes artificially, 
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which can hinder a mode’s ability to naturally couple to other modes of vibration and 

transfer energy. Thus, even though the scattering picture may be useful in many contexts, 

the existence of an effect on TIC by perturbing modes far away from the interface would 

serve as evidence to support the notion that the true picture is instead one of 

correlation/coupling between modes, and not scattering. However, this effect might be 

reduced for larger and larger structures as the perturbations (e.g., the region of heat input) 

are moved farther from the interface. Nonetheless, it is also possible that the effect may 

never completely vanish, since these modes penetrate through the body of the silicon 

portion (Figure 20). If true, this would be the first report of such a size effect and would be 

quite notable, since it would strongly confirm the concept that the interfacial modes exist 

and can be affected by perturbative stimuli far away from the interface. 

 

Figure 31 – The effects of increasing the (a) cross section and (b) length of the 

structure on the TIC of different Si/Ge interfaces from EMD simulations. 
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periodic boundary conditions in all Cartesian directions. The cross sections of the structures 

Cross section (nm
2
)

2 4 6 8 10 12

G
 (

G
W

m
-2

K
-1

)

0.2

0.4

0.6

0.8

1.0

1.2

c-Si/c-Ge

c-Si/a-Ge

a-Si/c-Ge

a-Si/a-Ge

c-Si/a-Si 

c-Ge/a-Ge 

Length (nm)

12 15 18 21 24 27 30

G
 (

G
W

m
-2

K
-1

)

0.2

0.4

0.6

0.8

1.0

1.2

c-Si/c-Ge 

c-Si/a-Ge 

a-Si/c-Ge 

a-Si/a-Ge

c-Si/a-Si

c-Ge/a-Ge

(a) (b)



 97 

in the NEMD simulations are of equal dimensions as the supercells used in the EMD 

simulations. Hot and cold heat baths were placed at midpoints between the (periodic) 

interface (Figure 32). A thermal power equal to 220 nW is input to the system at the hot 

bath and removed from the system at the cold bath. The system is simulated for 4 ns to 

reach steady state, after which the temperature profile (see Figure 32) remains constant 

throughout the structure. The temperature profile was then averaged for 2 ns, from which 

the temperature jump ( KT ) at the interface was calculated across the interface. The TIC 

at the interface can then be calculated from, 

 
K

G
T

Q



 (78) 

where Q  is the time-averaged heat flux through the interface. Five independent ensembles 

were simulated for improved phase-space averaging. 
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Figure 32 – Schematic of the NEMD implementation to calculate TIC. Hot and cold 

heat baths are assigned by red and blue blocks, respectively. White and cyan spheres 

represent Si and Ge atoms, respectively. Temperature distribution is also provided, 

which clearly shows the temperature drop (Kapitza resistance) around the interface. 

The results are presented in Figure 33 and confirm the hypothesis that size effects 

can have a significant impact on TIC. All the NEMD calculated TIC values except for the 

a-Si/a-Ge interface were found to be significantly lower than the values calculated from 

EMD. Since the EMD values are independent of the system size (see Figure 31), for a 

clearer comparison with NEMD values, they are shown normalized to the corresponding 

EMD value for the same structure. The large difference between the EMD and NEMD 

values for conductance across the a-Si/a-Ge interface is surprising. One reason for such 

discrepancy can be attributed to the fact that due to the low thermal conductivities of 

amorphous structures no clear temperature drop could be detected across the a-Si/a-Ge 

interface. This can be the reason this interface appears to have a higher TIC than the 

equilibrium value, as the uncertainty associated with the calculation is larger. In this regard, 

X (A)

0 20 40 60 80 100 120

Te
m

p
e

ra
tr

e
 (

K
)

200

250

300

350

400

(Hot Heat Bath) (Cold Heat Bath)

   

L/2



 99 

as was pointed out in a recent study by Giri et al. 126 EMD calculations can provide better 

predictions for TIC across such interfaces. It may also be possible that the mechanism for 

transport between diffusons and locons is enhanced by the heat bath perturbation while it 

is suppressed for propagating modes existing in a crystalline material. Further study would 

be needed to determine if this is true, but it if so this study would provide some supporting 

evidence to that effect. In addition, Figure 33 shows that the NEMD TIC values for the c-

Si/c-Ge interface exhibit the largest discrepancy with the EMD values and exhibit the 

strongest size dependence. Perturbing the vibrations by placing the heat baths at the bulk 

of the materials, even far from the interface (e.g., > 60 nm), can have a noticeable effect 

on TIC, even for a system with a length > 60 nm. This observation cannot be understood 

through the standard PGM/Landauer formalism, since it would be difficult to rationalize 

how perturbing a mode far from the interface would affect its transmissivity at the interface. 

Landry and McGaughey 70 have shown that by simulating longer structures (e.g., >150nm) 

convergence for conductance across c-Si/c-Ge interface using NEMD approach can be 

achieved. They also observed convergence between their NEMD calculations and a 

Landauer-based approach for interface analysis and observed good agreement. 
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Figure 33 – Normalized TIC values for Si/Ge interfaces obtained from NEMD 

simulations as a function of the system length. The NEMD values are normalized to 

the corresponding EMD value for the same structure. 

To further confirm that this effect is in fact caused by the aforementioned 

mechanism, we computed the conductance accumulations using the NEMD 

implementation of ICMA.105 The TIC accumulation function from this approach is 

calculated and presented in Figure 34, which shows that in the NEMD simulation, the 

ability of interfacial modes to couple to other modes is hampered by the heat bath. Here it 

is interesting to see that it is primarily the contributions of other modes that would have 

coupled to the 12-13 THz interfacial modes that is mostly affected. Thus, the observations 

indicate that mode-mode correlation/coupling in the bulk of a material may be a core 

mechanism for interfacial heat transfer, as was also suggested by Wu and Luo.86 This is 

particularly interesting because it suggests a rather different physical picture is needed as 

compared to the standard PGM/Landauer model. Having observed this effect, to further 

test our understanding, we constructed an alternative system by separating the heat baths 

Length (nm)

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 G

0.0

0.5

1.0

1.5
c-Si/c-Ge

c-Si/a-Ge 

a-Si/c-Ge 

a-Si/a-Ge 

c-Si/a-Si 

c-Ge/a-Ge 



 101 

by 2 additional layers of c-Si and c-Ge, effectively simulating three periods of a superlattice 

structure (Figure 35). If our understanding of the effect of the heat baths is correct, then for 

this larger structure, we would expect markedly reduced effect from heat baths on the 

middle interface, which does not contain materials in contact that are directly perturbed by 

the heat baths. In this way, the heat bath effect should be most pronounced for the other 

two interfaces, but possibly negligible for the middle interface. 

Such a test is again a potentially strong indicator that the scattering based 

interpretation of interfacial heat flow may be problematic, even in the case of two crystals, 

where the PGM is most well justified. This is because the three periods of the superlattice 

structure are identical, thus one would expect by all scattering based arguments they should 

all exhibit the same TIC. This perspective is based on the fact that the most prevalent 

picture for interfacial transport is based on the PGM/Landauer formalism, which in no way 

suggests that transmission at an interface should in any way be coupled to or affected by 

scattering away from the interface. In the current view the bulk and interface scattering are 

viewed as essentially independent phenomena, and thus the effect that heat bath would 

have 10’s of nanometers away from the interface should be negligible, thereby leading to 

the same TIC for all three superlattice period interfaces. 

The results of this test are shown in Figure 35, which confirms our hypothesis by 

showing that the unperturbed interface in the middle has a higher TIC, as visibly evidenced 

by the noticeably larger temperature drop at the other interfaces (Figure 35). This result is 

quite remarkable because the NEMD version of the ICMA formalism does not even involve 

the calculation of correlation functions. Instead, it is proportional to each mode’s average 

heat flux, and thus it is quite interesting to see that the average mode heat flux itself is 
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actually affected by the heat baths. This then strongly suggests that a coupling/correlation 

based perspective is actually in more correct alignment with the actual transport that 

happens at interfaces, rather than a scattering based perspective. Furthermore, this result 

also suggests that one may be able to affect transport at a faraway interface, by modifying 

or perturbing modes artificially in another part of the system. To our knowledge this is the 

first report of such an observation, and it can provide a new pathway to dynamic control or 

influence over TIC, by indirect means in certain material systems, which is quite non-

intuitive based on the prevalent PGM paradigm. 

 

Figure 34 – Modal contributions to TIC for the c-Si/c-Ge interface calculated from 

the NEMD and EMD implementations of ICMA. 
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Figure 35 – Schematic of the NEMD implementation across the superlattice structure. 

Hot and cold heat baths are assigned by red and blue blocks respectively. White and 

cyan spheres represent Si and Ge atoms, respectively. Temperature distribution is 

also provided, which clearly shows that the temperature drop across the interface 

with unperturbed vibrations ( 2T ) is smaller than the drop across the interfaces with 

perturbed vibrations ( 1T  and 3T ). 

6.2.2 InP/InGaAs interface 

Indium-gallium-arsenide alloys (InxGa1-xAs) are of significant interest for 

thermophotovoltaics (TPV) 145,146 and other electronic systems.147,148 In many instances 

there is specific interest in the In0.53Ga0.47As alloy, because it is lattice matched with InP 

149, which is commercially available as a single crystal substrate. This lattice matching 

makes this system an ideal platform for growing high quality single crystal devices, since 

there is minimal strain to drive the formation of defects, which can negatively affect the 

device performance.150 Furthermore, since In0.53Ga0.47As has an electronic band gap of 0.74 

eV, it is an ideal candidate for TPV, since this band gap is close to the peak in the Black 

body spectrum at temperatures commensurate with many high temperature heat sources. 
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In many applications the devices consist of many successive layers with thicknesses 

ranging from as low as 10 nm up to 10 micron, and the temperature of the devices can often 

have a major influence on the performance. These devices therefore have to consider 

thermal management issues and one important quantity can be the thermal interface 

conductance (TIC) between the two materials. 

Depending upon the device, low values of TIC could be highly important, if it 

presents a significant resistance to heat flow out of the system. In this study we used the 

ICMA method to not only quantify, but understand the various contributions to TIC from 

different phonons in the In0.53Ga0.47As/InP system. 

We used ICMA and equilibrium MD to calculate the modal contributions to TIC. 

The interactions are described by Tersoff interatomic potential 106 based on the parameters 

by Powell et al. 151 to model different III-V semiconductor compounds, and we used mixing 

rules 106 to describe the cross species interactions. Periodic boundary conditions have been 

applied to all three Cartesian coordinates, and a time step of 0.5 fs is chosen for the MD 

simulations. The number of unit cells along the xyz directions have been chosen to be equal 

to 3, 3 and 24 (3x3x24). We examined the effect of larger cross sections up to 5-5 unit cells 

and longer systems up to 50 unit cells, and neither resulted in changes larger than 5% to 

both the mode distributions from LD or modal contributions to TIC calculated from MD. 

The interface is situated normal to the z direction, which is parallel to the [100] 

crystallographic direction, and the simulation temperature was set equal to 300K. After 

relaxing the structure under the isobaric-isothermal ensemble (NPT) for 1 ns at zero 

pressure and 300T K  and under the canonical ensemble (NVT) for another 1 ns at 

300T K , we simulated the structure in the microcanonical (NVE) ensemble for 10 ns 
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during which the modal contributions to the heat flux across the interface are calculated. 

The heat flux contributions are saved and post processed to calculate the mode-mode heat 

flux correlation functions.105 The effect of different configurations on the InGaAs side has 

been accounted for by averaging the results over five different random alloy configurations. 

Statistical uncertainty, due to insufficient phase space averaging, has been reduced to less 

than 5% by considering 10 independent ensembles.104 The MD simulations were performed 

using the LAMMPS 117 and the LD calculations were performed using the GULP package 

118. The low-temperature LD information used in this study is justified because the 

simulation temperature of 300K is lower than the temperatures (e.g., 800K) at which Feng 

et al. 152 and Gill-Comeau and Lewis 153 have reported noticeable changes in frequencies 

and eigen vectors for their modal analysis. This effect is also not expected to dramatically 

change the results for this system. 

Similar to previous studies, we observed four different types of modes arising from 

the LD of the entire structure of InGaAs/InP interface. Interestingly, unlike previous 

systems,43,122 these modes are actually segregated into well-defined regions based on their 

frequencies. Figure 36b shows the total DOS and DOS for each type of vibration at the 

interface of InGaAs/InP. In addition, the eigen vectors of vibration for a sample eigen mode 

of vibration belonging to each class of vibration are provided in Figure 37. The segregation 

of the modes according to their frequencies is different from previous observations of Ar 

based interfaces,43,143 Si interfaces with mass difference,43 or Si/Ge interfaces 122 in which 

different types of vibrational modes appear in overlapping regions of the DOS. It is also 

peculiar that even the partially extended modes on InP side and partially extended modes 

on InGaAs side occupy separate sections on DOS. The primary cause of the mode 
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segregation is the phonon band gap in InP. InP has a large gap in its vibrations between 

~5.9-10 THz (see Figure 36a), largely due to the significant mass difference in the basis (~ 

3.5X). The lack of vibrational states between 5.9-10 THz in InP forces the system to 

segregate the modes of the full structure into distinct regimes. 

 

Figure 36 – DOS and modal contributions to TIC for InGaAs/InP interface at 

T=300K. (a) DOS for isolated InP and isolated InGaAs before making interface, (b) 

total DOS and DOS for different mode classifications across the interface, (c) TIC 

accumulation function, and (d) 2D map showing the magnitudes of the 

correlations/interactions on the plane of two frequency axes. The values presented on 

the 2D map have units of . 
2 1MWm K 
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Figure 37 – Eigen vectors for different examples of the four classes of vibration 

present at the interface of InGaAs/InP. In, Ga, As, and P atoms are represented by 

red, yellow, cyan, and white spheres respectively. The examples and their frequencies 

are (a) extended mode at 3.86THz, (b) partially extended mode centered on InGaAs 

side at 8.11THz, (c) partially extended mode centered on InP side at 10.61THz, (d) 

isolated mode at 5.48THz, and (e) interfacial mode at 9.96THz. 
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Table 5 – Number of states for the four different classes of vibration and their 

contribution to TIC across the InGaAs/InP interface. Columns 2-4 represent the 

fraction of the total number of states ( DOS ), the percentage contribution to G  (G ), 

and contribution to G  divided by fraction of total number of states (i.e., contribution 

to G per mode) ( G DOS ), respectively. 

Mode Type (%)DOS  (%)G  G DOS  

Extended 47.1 70.6 1.50 

Partially extended 52.6 23.1 0.44 

Isolated 0.1 < 0.01 < 0.01 

Interfacial 0.2 6.3 31.5 

From Figure 36a, it can be seen that the interfacial modes exist at two narrow bands 

of frequencies: (1) the point where extended modes transition into partially extended modes 

on InGaAs side, and (2) the onset of partially extended modes on InP side. Also, 

interestingly Table 5 shows that, by comparison to previously studied structures, the 

In0.53Ga0.47As/InP structure has significantly more extended modes ~ 47%, which is larger 

than a previously studied Ar/4Ar interface ~10% 43 and Si/Ge interface ~30%.122 In 

essence, since extended modes correspond to collective vibrations of the entire system 

(e.g., including both bulk materials together) at a single frequency, their fraction of the 

total number of states is commensurate with the bulk DOS overlap. However, previously 

we showed that for instance at the interface of Ar(m)/Ar(4m) a large population of partially 

extended modes exist even at the region of frequency overlap between the two sides of the 

interface.43 This observation showed that DoS overlap does not automatically guarantee 

that the states will be extended. Nonetheless, for the In0.53Ga0.47As/InP structure, 
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interestingly all of the eigen modes in the regions of DoS overlap fall into class <1> and 

are extended. Thus, the In0.53Ga0.47As/InP structure appears to have the maximum number 

of extended modes possible. 

After calculating the modal contributions to TIC it was found that again, the 

interfacial modes have the highest per mode contribution (see Table 5), similar to Ar/4Ar 

43 and Si/Ge interfaces.122 Figure 36c shows that the conductance accumulation associated 

with the low frequency modes (e.g., between 0 and 1THz) is large, ~20% of the total TIC. 

The large value observed for the total TIC also suggests that in InGaAs/InP devices, this 

particular interface likely contributes negligible resistance to the overall device resistance. 

Using ICMA, the degree of interaction/correlation between each pair of vibrational 

modes in the system can be calculated and presented as a two-dimensional map of 

correlation,43,105 shown in Figure 36d. Since elastic interactions are restricted to phonons 

of the same frequency, which are only associated with the values along the diagonal of the 

correlation map (Figure 36d), all the off-diagonal contributions are attributed to the 

anharmonicity. It is interesting to note that the large contribution by extended modes 

(~70%) including the contribution by low frequency modes between 0-1THz mainly arises 

from the auto-correlations, while for partially extended modes, particularly the ones that 

are located on the InP side, the major contributions to TIC are caused by cross-correlations. 

In fact, since the frequency of vibration for the partially extended modes on InP side is 

larger than the maximum frequency of vibration on InGaAs side, the contribution by these 

modes are attributed to anharmonicity. Particularly, it can be seen from 2D correlation map 

that partially extended modes on InP side are primarily correlated with lower frequency 

extended modes in the system. Moreover, not only because of their considerable 
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contribution to conductance (~12%), but also because of their strong band of anharmonic 

coupling, the contributions by partially extended modes on the InP side, to a great degree, 

resemble the contributions by interfacial modes in crystalline Si/Ge interfaces.122 In 

addition, the degree of cross-correlations for partially extended modes primarily located on 

InP side seem much stronger compared to the cross-correlations for partially extended 

modes primarily located in InGaAs. It can also be seen from Figure 36d that the frequency-

doubling and frequency-halving processes that was reported to be significant for 

Ar(m)/Ar(4m) interface 154 do not seem to be the dominant correlations for the interface of 

InP/InGaAs. 

These observations lead to the following interpretations (1) The extended modes 

behave almost as their own subsystem and exhibit minimal interaction with other modes in 

the system. Since they extend through the entire structure, it is as if they do not recognize 

the presence of the interface and thus, their contributions may not be well explained by a 

picture framed upon the PGM, e.g., it is as if they simply contribute directly to the total 

thermal conductivity of the full structure based on their respective mean free paths. (2) The 

fact that the partially extended mode contributions are dominated by their cross-

correlations suggests that these mode’s contributions may be well described by the PGM 

transmission paradigm. This is because cross-correlation is a signal of interaction and 

therefore these modes, which on the InP side are essentially propagating modes, carry 

energy to the interface and then exchange it with other modes on the other side via 

scattering. (3) The fact that the high frequency modes, above the phonon band gap in InP, 

contribute primarily via cross correlation is consistent with the conventional PGM model, 

since there are no modes on with the same frequencies on the other side that they can 
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exchange energy with. Therefore, all of their contributions can be associated with inelastic 

interactions/anharmonic effects. Furthermore, the fact that their contributions are non-

negligible ~ 12%, suggests that, again, as was observed for other systems 16,56,64,65,154 

anharmonicity is non-negligible at room temperature. 

After studying this interface, we have noted first that that remarkably, the normal 

modes of vibration segregate into distinct regions of frequency. Secondly the TIC is very 

high and is not likely to be limiting in devices with layer thicknesses greater than ~15 nm. 

The majority of the TIC comes from the extended modes and various correlations for each 

group of modes indicates that the extended modes behave as if the interface is non-existent, 

while the partially extended modes behave in a manner more consistent with the 

conventional paradigm based on the PGM. This application of the ICMA method provides 

insight and useful data for future studies focused on thermal management in systems 

containing InGaAs/InP interfaces, as there is now evidence to suggest that the TIC is large 

and may be negligible by comparison to the thermal resistance of the respective device 

layers. 
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Conclusions 

PGM has been the dominant method of choice for studying heat transfer across 

interfaces for almost a century. However, using PGM based approaches, the predicted 

conductance values show large deviations from experimental measurements. In addition, 

none of the PGM based techniques has been successful in fully including the important 

effect of anharmonicity in the calculations. Furthermore, by being based on Landauer 

formalism, PGM based approaches can only be applied to the interfaces between pure 

crystalline materials. In this thesis, we devised the ICMA formalism to calculate the 

anharmonic modal contributions to interfacial heat transfer. Unlike all the other existing 

methods, our model is not based on the PGM, therefore it does not suffer from the 

limitations of Landauer formalism. In fact, since ICMA is fundamentally based on the 

fluctuation-dissipation theorem, the physical intuition that it offers for interfacial heat 

transfer follows a correlation approach, which is different from the scattering approach that 

the PGM offers. The following are the important features of ICMA: 

 Using ICMA, for the first time, the exact eigen vectors of vibration around the 

interface could be calculated. In fact, some of these vibrational modes are 

localized and non-propagating, which is very different in nature than the modes 

of vibration that PGM based approaches are based on. 

 By not being based on any limiting assumptions, ICMA can be applied to 

interfaces between all phases of solids (i.e., crystalline, amorphous, alloyed, 
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etc.). All the other existing techniques can only be applied to the interfaces 

between pure crystalline solids. 

 Using ICMA, for the first time, the exact anharmonic contributions by an 

individual mode of vibration to the interface conductance could be calculated. 

In this sense, the resolution provided by ICMA is even higher than techniques 

that can calculate the contributions for different frequencies of vibration (i.e., 

spectral techniques 64,66,154). 

 By being based on MD simulations, ICMA includes anharmonicity to its fullest 

order in the calculations; this could not be achieved using any of the previously 

exiting techniques. 

 ICMA allows for inclusion of the desired atomic positions around the interface 

in the calculations. For instance, ICMA can calculate the anharmonic modal 

contributions for both smooth and rough interfaces. This is a crucial 

improvement, since most of the actual interfaces are not smooth/perfect and 

contain various forms of defects such as dislocations, vacancies, and 

interdiffusions, and by having the ability to exactly describe the atomic 

positions, ICMA can systematically quantify the effect of each type of defect 

on the interfacial heat transfer. Before ICMA no other modal analysis technique 

could incorporate the exact atomic positions in the calculations. 

After the development of ICMA, it was applied to several interfaces. The results 

helped obtain a deeper understanding of the true mechanisms of heat transfer across the 

interface of two materials. A number of the important obtained insights can be summarized 

as follows: 
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 Although interfacial modes are localized and do not have a well-defined group 

velocity, they contribute significantly to the interface heat transfer. In fact, it 

was shown that only a small population of interfacial modes (e.g., less 0.1% of 

the entire population of modes) at the interface of c-Si/c-Ge contribute directly 

more than 15% to the interfacial heat transfer. 

 For all our examined interfaces, interfacial modes had the largest per mode 

contribution to the interfacial heat transfer. 

 Using Landauer formalism, one can define a maximum theoretical limit for the 

heat transfer across interfaces. However, using ICMA, it was shown that 

interfacial heat transfer (i.e., interface conductance) does not necessarily follow 

a maximum theoretical limit. In fact, several of our examined interfaces (e.g., 

Si(m)/Si(4m), InP/InGaAs, and GaAs/Ge) showed conductance values even 

larger than the previously established maximum theoretical limit by the PGM. 

7.2 Future directions 

After developing ICMA and showing that it provides deeper insights into the 

interfacial heat transfer than other existing techniques, the future step would be to assess 

its predictive ability against experimental measurements. To this goal, two approaches can 

be followed. First is to experimentally measure the conductance across interfaces that 

ICMA has already provided predictions. Second is to apply ICMA to the interfaces for 

which experimental measurements already exist. In the following, the challenges in both 

approaches will be discussed. 
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7.2.1 Experimentally measuring the conductance across interfaces 

Using ICMA, the TIC across several interfaces were examined in this thesis. 

However, as will be argued, experimental measurement of the TIC is a challenging task. 

The main challenge arises because TIR is generally much smaller than the other thermal 

resistances in the structure. For instance, for c-Si/a-SiO2 interface structure shown in Figure 

38a, in addition to the TIR, two other thermal resistances in the bulk of the materials are 

also present, and because of the small TIR values, the measurements by techniques such as 

3-omega 2 will not be sensitive to the interface resistance to report any reliable TIC. The 

following quick calculation based on comparing the resistances in the bulk to the TIR can 

explain this more clearly. By assuming an average TIC of 
2 10.5G GWm K   for c-Si/a-

SiO2 interface, the TIR would be  
1 2 11 2 nW m K

G


 . The bulk thermal resistance is 

L
K

, where L  and K  are the thickness and thermal conductivity of the material, 

respectively (for a-SiO2, 
1 11K Wm K   and for Si 1 1150K Wm K  ). By choosing a 2nm 

thickness for a-SiO2 layer, its thermal resistance can be lowered to the point that it becomes 

equal to the TIR; this is a very small thickness that by introducing additional uncertainties 

to the analysis complicates the calculations even further. Another option that can be 

envisioned is transfer bonding the Si layer on top of the a-SiO2 substrate (i.e., similar to 

silicon on insulator (SOI) technology). Now, a ~300nm thickness of Si results in a 

resistance equal to the TIR; this is a more reasonable thickness resulting in lower 

uncertainties. However, the quick analysis explained above merely provides a first guess, 

and the actual sensitivity analyses are much more involved. In fact, conducting those 
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rigorous sensitivity calculations shows that even if Si is transfer bonded to a-SiO2 substrate, 

the sensitivity is still not large enough to extract any reliable TIC values. 

In addition to 3-omega, other experimental techniques can also be utilized, such as 

time-domain thermoreflectance (TDTR) 155 and frequency domain thermoreflectance 

(FDTR).120,156,157 However, for these techniques a transducer layer (Al for TDTR and Au 

for FDTR) should be grown on top of the structure shown in Figure 38a, which now 

transforms the interface of c-Si/a-SiO2 to a buried interface (see Figure 38b). Measuring 

reliable TIC values for this buried interface (i.e., Rint,1), is even more complicated, because 

the sensitivity is even lower than the previous structure (Figure 38a) due to the additional 

resistances (such as Rint,2 shown in Figure 38b) that are now introduced to the system. 

The discussion above shows that new measurement techniques need to be devised 

to experimentally measure the TIC across different interfaces. For instance, by devising 

measurement techniques that do not require a transducer (i.e., transducer less techniques), 

sensitivity to the desired interface can potentially be improved significantly. Such new 

measurement approaches are essential if further coupling between theory and experiment 

is desired, which is crucial in deepening our understanding of the interfacial heat transfer 

and ultimately realizing improved thermal management designs in future. 
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Figure 38 – Schematic for c-Si/a-SiO2 interface structure that can be used for different 

experimental techniques such as (a) 3-omega and (b) TDTR and FDTR (with grown 

AL and Au transducers). Rint,1 the resistance across the c-Si/a-SiO2 interface, and 

Rbulk,1 and Rbulk,2, and Rint,2 represent the resistances in the bulk of Si and SiO2 and 

interface resistance across SiO2/transducer interface, respectively. 

7.2.2 Applying ICMA to interfaces for which experimental values exist 

Another approach to validate ICMA is to apply it to interfaces for which 

experimentally measured TIC values already exist. Among the existing measurements that 

were previously shown in Figure 5, TiN/MgO 74 seems to be good a candidate for 

performing MD simulations, since it is a smooth interface (i.e., epitaxially grown) between 

two lattice matched solids (both TiN and MgO have lattice constants equal to ~4.20Aº). 

However, the problem here is that no accurate interatomic potentials exists for TiN, MgO 

and the interactions between them across the interface to perform the MD simulations 

needed for ICMA calculations. 

To generate the needed interatomic potentials to conduct the required MD 

simulations, Atomistic, Simulation & Energy (A.S.E) Laboratory has developed an 

optimization code based on the genetic algorithm, termed phonon optimized potentials 

(POPs).158 To use POPs, first quantum calculations are conducted on different atomic 

configurations for the material under study. Then, after the functional form for the 
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interatomic potential is chosen, POPs finds the best set of parameters in this functional 

form by directly fitting to the atomic forces, atomic energies, and atomic stress values that 

were obtained from the previously conducted quantum calculations. In this way, POPs can 

accurately obtain the quantum calculated properties from the much faster interatomic 

potentials, which are suitable for MD simulations. The reason that atomic forces, energies, 

and stress values were chosen to find the parameters in the functional form is that lowering 

the errors in predicting these values potentially results in the most accurate descriptions of 

(1) dispersion curve (i.e., modes of vibration), (2) anharmonicity, and (3) stability in the 

system, which are three independent parameters that are crucial to having an accurate MD 

simulation. 

After POPs is finalized in near future, not only it allows for generating the required 

interatomic potentials to validate ICMA against the existing experimental measurements, 

but also by having access to such a powerful code, interatomic potentials for almost any 

material can be accurately created; this ultimately allows ICMA to be applied to any 

interface that can be envisioned, which further expands the scientific and technological 

significance of the ICMA approach that was developed and utilized in this thesis. 
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