
CONTROL OF A FOLDING QUADROTOR WITH A SLUNG LOAD USING
INPUT SHAPING

A Thesis
Presented to

The Academic Faculty

By

Nicholas Andrew Johnson

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology

May 2017

Copyright c© Nicholas Andrew Johnson 2017

CONTROL OF A FOLDING QUADROTOR WITH A SLUNG LOAD USING
INPUT SHAPING

Approved by:

Dr. William E. Singhose, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Nader Sadegh
School of Mechanical Engineering
Georgia Institute of Technology

Dr. I. Charles Ume
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: April 3, 2017

ACKNOWLEDGEMENTS

I would like to acknowledge the support I have received in my endeavors from pre-

school to graduate school. I would like to thank Dr. Singhose for guiding me through this

Masters project, my family who have gotten me to this point, my friends who made the ride

enjoyable, and God for blessing me every day. AMDG.

I’d also like to thank the past groups who have worked on this quadrotor project, whose

work I am building from.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Quadrotor model . 2

1.3 Input shaping . 5

1.4 Folding mechanism . 6

1.5 Thesis contributions . 7

1.6 Thesis outline . 7

Chapter 2: Quadrotor and Payload Dynamics 8

2.1 Quadrotor dynamics . 8

2.1.1 Linear dynamics . 10

2.1.2 Rotational dynamics . 13

2.1.3 Dynamics in simulation . 16

2.2 Payload dynamics . 19

vi

2.2.1 Payload dynamics derivation . 19

2.2.2 Torque equilibrium . 22

2.2.3 Payload EOM . 24

2.3 Model verification . 25

2.4 Suspension offset . 26

2.5 Stability and validity of the model . 27

2.6 Simplified models . 28

Chapter 3: Feedback Control of Quadrotors with Suspended Payloads 31

3.1 Feedback control . 31

3.1.1 Position control . 31

3.1.2 Limitations to position control . 36

3.1.3 Velocity control . 37

3.1.4 Limitations to velocity control . 41

3.1.5 Manual control . 41

3.1.6 Attitude control . 42

3.1.7 Limitations to attitude control . 44

3.2 Outer-loop control with attitude tracking 46

3.2.1 Manual control simulation algorithm 46

Chapter 4: Input Shaping Control of Payload Swing 50

4.1 Introduction to input shaping . 50

4.2 Input shaping applications . 52

4.3 Robust input shaping . 55

vii

4.4 Disadvantages of input shaping . 56

4.5 Oscillation analysis . 57

4.6 ZV robustness . 63

Chapter 5: Quadrotor design . 65

5.1 Mechanical design . 65

5.1.1 Frame . 65

5.1.2 Folding mechanism . 65

5.1.3 Motors . 71

5.1.4 Batteries . 72

5.1.5 Electronic speed controllers . 73

5.1.6 Microcontroller . 74

5.1.7 Sensors . 75

5.1.8 Design challenges . 75

Chapter 6: Future Work and Summary . 78

6.1 Future work . 78

6.2 Summary . 78

Appendix A: MATLAB code for simulations . 81

References . 108

viii

LIST OF TABLES

2.1 Experimental data for motor current draw versus generated thrust. 19

2.2 Parameters used in MATLAB simulations. 21

3.1 The gains used for horizontal position and altitude control. 32

3.2 The gains used for horizontal velocity and altitude control. 38

3.3 The desired velocity and maximum swing amplitude of PI control with
load-attitude coupling. 40

3.4 The gains used for attitude control. 43

4.1 The convolution components of a ZV shaper. 50

4.2 The convolution components of a ZVD shaper. 55

ix

LIST OF FIGURES

2.1 The quadrotor model and sign conventions. 9

2.2 The effect of drag on creating a maximum velocity. 11

2.3 The drag force that creates a cruising velocity. 12

2.4 The effect of not having enough excess thrust to both maintain altitude and
move forward. 13

2.5 An illustration of the center of pressure, rcop. 14

2.6 The effect of rcop on cruise attitude. 15

2.7 The effect of rcop on cruise velocity, due to the effect on φ. 15

2.8 The linear relationship between motor current draw and generated thrust. . . 20

2.9 An illustration of the suspension offset, rsusp, and the H frame. 20

2.10 The effect of d on a quadrotor with a fixed position and free attitude. 26

2.11 The effect of d on relative payload position while the quadrotor holds attitude. 27

2.12 The effect of payload swing on quadrotor position while holding attitude. . 28

2.13 The linearized φ̈p compared to the nonlinear form for the quadrotor as a
fixed pendulum. 30

2.14 A comparison between the linearized and nonlinear payload accelerations
for an example maneuver. 30

3.1 The effect of waypoint resolution on the PID position response of an un-
loaded quadrotor. 33

x

3.2 A PID response compared to a PD response. 34

3.3 The payload swing of a PD path maneuver. 35

3.4 The payload swing of a PID path maneuver with 0.5 m waypoint resolution. 35

3.5 The payload swing of a PID path maneuver with 0.25 m waypoint resolution. 36

3.6 The velocities of the PD, PID with 0.5 m resolution, and PID with 0.25 m
resolution controllers. 37

3.7 The velocity response of a trapezoidal velocity command on an unloaded
quadrotor. 39

3.8 The position response of a PI velocity command on an unloaded quadrotor. 39

3.9 The swing response of a PI velocity command, with load-attitude coupling
considered. 40

3.10 An attitude command and the resulting unloaded quadrotor response. 43

3.11 The effect of rcop on φ of an attitude command. 44

3.12 The effect of d on the φ response of an attitude command. 45

3.13 The effect of d on the swing response of an attitude command. 45

3.14 The user interface of the simulation algorithm, showing example position
(above) and velocity (below) in real-time. 48

3.15 Example commands that the user inputs in real-time. 48

4.1 Two system responses offset by half the period. 51

4.2 The superposition of sine waves, yielding a response with zero residual
oscillation. 51

4.3 A comparison of a command pulse and its ZV-shaped counterpart. 53

4.4 The position response resulting from a velocity command and its ZV-shaped
counterpart. 54

4.5 The payload swing resulting from a velocity command and its ZV-shaped
counterpart, with no load-attitude coupling. 54

xi

4.6 The payload swing resulting from a velocity command and its ZV-shaped
counterpart, with load-attitude coupling considered. 55

4.7 A single pulse of an attitude command with a five-second duration. 57

4.8 The peak-to-peak residual oscillation induced by an attitude command ver-
sus the duration of that command for a 1-meter payload length. 58

4.9 The peak-to-peak residual oscillation induced by an attitude command ver-
sus the duration of that command for a 0.5-meter payload length. 58

4.10 The normalized peak-to-peak residual oscillations. 59

4.11 The payload responses of a trapezoidal and ZV-shaped trapezoidal input for
a five-second command. 60

4.12 A comparison between the residual oscillations of a trapezoidal input and a
ZV-shaped input. 60

4.13 The payload responses of a trapezoidal and ZV-shaped input with nonzero
drag forces. 61

4.14 The payload responses of a trapezoidal and ZV-shaped input for the double
pendulum case. 62

4.15 The residual payload response of two trapezoidal pulses as a function of
the time between the pulses. 62

4.16 The transient payload response of two trapezoidal pulses as a function of
the time between the pulses. 63

4.17 The payload responses of an example two-pulse input command. 64

4.18 The robustness of a ZV shaper targeted at P = 2 s. 64

5.1 The 3D model of the quadrotor in its unfolded state. 66

5.2 The physical quadrotor in its unfolded state, without rotors. 66

5.3 The 3D-printed frame that holds the electronics. 67

5.4 A side view of the frame showing how the springs line up. 67

5.5 The 3D model of the quadrotor in its folded state. 69

xii

5.6 The physical quadrotor in its folded state. 69

5.7 The base, springs, and rods that make up the folding mechanism. 70

5.8 One of the four arms of the quadrotor with the motor mount attached. . . . 70

5.9 One of the Turnigy Park 300 1600kv motors used. 71

5.10 The quadrotor on the test rig for thrust measurements. 72

5.11 The QBrain ESC hub that regulates the voltage to the motors. 73

5.12 A top view of the Pixracer microcontroller. 74

5.13 The Pixracer with all sensors attached. 75

5.14 An overhead view of the quadrotor, highlighting its symmetry. 76

xiii

SUMMARY

Quadrotors are being used in an increasing number of applications. One such applica-

tion is in carrying suspended payloads. However, as the payload swings — due to quadro-

tor motion or due to a disturbance — it also pulls on the quadrotor. The resulting force

and torque from the payload can be significant and destabilize the quadrotor. Additionally,

the swinging may be undesirable for fragile payloads, or the payload may collide with an

obstacle. A typical approach is to allow the swinging to damp out, but this takes away from

the limited battery life of the quadrotor.

Instead, input shaping techniques can be implemented in the software to reduce the pay-

load oscillations. Input shaping has been shown in similar systems (cranes, double pendula,

and helicopters) to significantly reduce the amount of residual oscillation after a maneuver.

Because it is a passive technique, the position of the payload does not need to be obtained

in a motion capture facility or by using computationally expensive observer algorithms.

This allows the quadrotor to be used in a variety of applications, including in disaster relief

and cargo transport where cost is a factor.

In this thesis, the dynamics of the quadrotor and payload are derived and explained

in depth, including physicalparameters not usually considered. Then PID feedback is ex-

plored in controlling the system. In addition to the simulation results, hardware limitations

must also be considered. Input shaping is then integrated into the system. The simulations

show that input shaping greatly reduces unwanted residual oscillations. Finally, a folding

quadrotor design is presented. Quadrotors must have large frames in order to carry large

payloads, and a folding design saves space when transporting the quadrotor between flights.

The quadrotor can then be placed in the trunk of a car or deployed from a rocket to reach

an inaccessible area to provide aid.

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Quadrotors are increasingly popular rotorcraft that are seeing many applications due to their

size and maneuverability. They have been used in surveillance, defense, photography, and

videography. With four rotors and six degrees of freedom, quadrotors are underactuated;

therefore, control techniques are critical to prevent unstable or uncontrollable behavior.

Another use of quadrotors is in carrying slung loads — payloads suspended from a sin-

gle suspension point. Helicopters often carry large payloads, such as logs in remote-logging

operations and even people in rescue missions. A quadrotor can be seen as scaled-down,

more maneuverable version of a helicopter. In effect, they can both be seen as flying cranes

with eight degrees of freedom, able to perform maneuvers that other vehicles cannot as

easily while carrying a payload to a destination. For instance, food and medicine can be

brought to an otherwise inaccessible region in an emergency. In humanitarian efforts, per-

ishable foods can be unloaded off a ship more quickly, preventing spoilage and increasing

the efficiency of the unloading process.

A problem with slung loads is that they pull on the quadrotor as they swing, as explored

in helicopters by Adams [1]. With a large enough payload mass and with a too-large ampli-

tude of swing, the payload can destabilize the quadrotor, causing it to fall and potentially

crash. Feng et al. [2] showed that increasing the mass of the payload increases its effect on

the quadrotor.

When the payload is not attached at the center of gravity of the quadrotor, load-attitude

coupling takes place, causing the system to act similarly to a double pendulum. Swinging

may also be undesirable in general for fragile payloads or when there are obstacles that

1

the payload could collide into. Often, the payload swing is allowed to damp out due to

drag, but this delay reduces efficiency and consumes battery life in an unproductive way.

Battery capacity is limited in a single flight of a quadrotor since the weight of each battery

is an additional load that the quadrotor must carry. Additionally, certain operator commands

may unintentionally antagonize the payload oscillations if they are not in the correct phase.

These commands can cause more swinging, causing even greater delays or undesirable

behavior.

In order to prevent collisions, maximize productive battery usage, and ensure the safety

of payloads and the environment, the amplitude of the payload oscillations must be reduced.

Since the slung load adds two additional degrees of freedom, control techniques must

be investigated for this system. However, much research has involved a system within a

motion-capture facility [3]–[7], where the eight degrees of freedom were known with high

accuracy and could be used as reliable feedback to the system. This is an expensive solution

that may not be in place for real-world applications, such as delivering medicine after a

natural disaster. For these types of situations, control techniques must be limited to the

hardware of the quadrotor.

1.2 Quadrotor model

In order to understand the dynamics of a quadrotor and how the payload affects the sys-

tem, both the quadrotor and quadrotor-with-payload systems are modeled for simulation in

MATLAB. The quadrotor model has been derived previously, but further depth is provided

in these derivations.

Fusato et al. [8] presented the model of a helicopter with a slung load. The model of the

quadrotor with a slung load is very similar. Others have presented more complex models,

but several simplifying assumptions are made to reduce the complexity of the quadrotor

model. Salih et al. [9] used the small angle assumption to state that the local angular velocity

was approximately identical to the global angular velocity. This assumption removed three

2

state variables, simplifying the model. Kaya et al. [10] went into depth on blade element

theory and aerodynamic effects. They used parameter estimation to obtain the relationships

between thrust and angular velocity as well as torque and angular velocity. Mian et al. [11]

implemented a gearbox model to determine how motor speeds evolved.

These relationships are simplified before being used in the presented model, as others

have done. These simplifications hold because the quadrotor carrying a payload that is pre-

sented is not performing aggressive maneuvers. The more complex models are linearized

about hover conditions to yield the presented equations. When aggressive maneuvers are

considered, the validity of simulations would benefit from a more complex model.

In addition to the dynamic model, the method of controlling the model in simulation

is PID feedback and its derivatives. This is selected due to its relative simplicity to im-

plement. Li et al. [12] condensed the dynamics of an unloaded quadrotor into linear time-

invariant state space form and derived transfer functions. However, the dynamics of the

loaded quadrotor are highly nonlinear and cannot be expressed in linear time-invariant form

without oversimplifying the system. One such simplification was presented by Hehn et al.

[4], in which the mass of the payload was small enough that the payload hardly affected

the quadrotor. However, this assumption is not robust enough to be used in this thesis, as

quadrotors may be required to lift heavy payloads. Erginer et al. [13] also used PID control

on an unloaded quadrotor but implemented computer vision techniques in the controller.

Hancer et al. [14] used PID control on an unloaded quadrotor but used an observer to ac-

count for disturbances, such as wind gusts.

Nonlinear and optimal control techniques have also been used, but these often acted on

both the quadrotor and payload state variables rather than just those of the quadrotor.

Al-Younes et al. [15] compared PID control to linear quadratic regulator (LQR) and

adaptive integral backstepping (AIB) controllers on an unloaded quadrotor. The AIB con-

troller showed reduced settling times compared to the PID and LQR controllers, as de-

signed. They stated that the AIB controller estimated modeling errors and increased the

3

robustness of the system against disturbances.

de Crousaz et al. [16] presented a quadrotor-with-payload model that used stochastic

linear quadratic (SLQ) control, which is a form of nonlinear trajectory optimization. They

described the “window task,” where a loaded quadrotor navigated through a narrow open-

ing. This required the payload to intentionally swing at a large angle in order for both the

quadrotor and payload to make it through the window. They also investigated the case in

which the payload cable lost tension. A similar test was shown by Mellinger et al. [5],

where an unloaded quadrotor was subject to the window test. This test was experimentally

performed using a trajectory generated by sequential composition.

Feng et al. [17] presented adaptive control on the attitude and altitude of the quadrotor

in order to handle the force and torque that the payload induced on the quadrotor. Palunko

et al. [6] took adaptive control a step further for when the payload displaces the center

of gravity of the quadrotor from its mass center. Palunko et al. [7] generated an optimal

trajectory using dynamic programming.

Faust et al. [3] presented a neural network solution, in which the system was trained

to generate swing-free trajectories. By rewarding the equilibrium state and penalizing the

distance from the goal state in addition to the payload swing, a robust policy was formed

after several hundred iterations. However, as presented, the payload swing grew large if the

distance from the goal state was large, as the policy prioritized achieving the goal state over

maintaining a low payload swing throughout.

However, a goal of this thesis is to present a controller that does not need to know the

position of the payload at any time. Therefore, optimal control techniques that take the

payload position into account are out of scope, and a PID controller receiving quadrotor

states as feedback is presented.

4

1.3 Input shaping

Input shaping is proposed as a way to reduce residual payload oscillations. Input shaping

is a passive technique where the input command is modified to produce a more desirable

response. The position of the payload is not needed in order to modify the command, so

this method of control is advantageous in a wide range of situations outside of a motion

capture facility. The only two pieces of information needed are the natural frequency and

the damping ratio. Input shapers can be designed to be more robust to modeling errors. This

can be useful for a quadrotor that must be able to carry a variety of payloads, as the input

shaper would not necessarily have to be changed based on the mass of the payload.

Vaughan et al. [18] used input shaping to reduce the residual oscillations of a double

pendulum system. By implementing a Specified Insensitivity (SI) shaper, they were able to

target the frequencies of both pendula. By adding a tolerable amount of residual oscillation,

the SI shaper became more robust to modeling errors, such as different payload lengths.

This input shaper improved the usability of a tower crane system. A human trial was set

up in which operators navigated a payload through an obstacle course. Both the average

completion time and average number of collisions were reduced with the SI shaper than in

the unshaped trials.

Adams [1] showed that input shaping on a constrained RC helicopter was an effective

way to reduce payload oscillations. For manned helicopters, a residual attitude oscillation

of 0.5 degrees is considered excessive. Larger oscillations threaten the stability of the craft,

and the payload may have to be jettisoned for the craft to regain stability.

Because of the effectiveness of input shaping in similar systems, in this thesis, the effec-

tiveness of input shaping on reducing the residual oscillations of payloads is investigated

on quadrotors carrying slung loads. Kozak et al. [19] presented multiple methods of judg-

ing input shaping performance. However, only the amplitude of the payload oscillation is

investigated here.

5

Sadr et al. [20] previously implemented input shaping on a loaded quadrotor follow-

ing a path. However, due to sensor limitations, the position estimation of the quadrotor is

not reliable enough to use over time. The quadrotor may use GPS and integrations of ac-

celerometer readings to estimate position. However, GPS is not precise, and integrating the

noise of an accelerometer causes errors to build over time. Achtelik et al. [21] stated that

several challenges in micro aerial vehicles (MAVs) include integrating acceleration noise

and computational demand. If position is not a reliable quantity to use, control techniques

must take advantage of only the more reliable parameters, such as attitude, which can be ob-

tained through an extended Kalman filter and several sensors. Additionally, input shaping

is less computationally expensive than other techniques, including observers. Therefore,

this thesis focuses on applying input shaping to attitude commands, although input shaping

on velocity commands is also discussed.

1.4 Folding mechanism

In order to carry payloads of an appreciable size, the motors and propellers must be of

adequate rating and size. To fit the larger propellers, the quadrotor itself must be made

bigger to increase controllability and so that the propellers do not collide with each other.

The additional weight results in additional thrust required to hover, requiring larger and

heavier batteries to maintain flight time, which also increase the weight. The large wingspan

of the resulting quadrotor is impractical to transport, such as in the trunk of a car.

It is then beneficial to reduce the size of the quadrotor during transport with the ability

to expand it to full size for flight. A folding quadrotor is presented, where the wingspan of

the quadrotor is reduced in its folded state. In this design, folding the arms inward stretches

springs,which contract when the arms are released. This was designed for the quadrotor

being transported to a location in a confined space. Upon being ejected, the unfolding

would happen quickly, and the quadrotor could then begin operation. A 3D model of the

quadrotor, including the folding mechanism, is developed in SolidWorks.

6

Mintchev et al. [22] presented a different type of folding quadrotor, where the folded

arms wrapped around the frame. As the rotors spun in the folded configuration, the torque

on the arms caused them to unfold. Using thrust or torque to unfold the arms is not done

in the presented design because the arms fold down. Any thrust imbalance would cause

the arms to unfold unevenly, causing the motors to be at an angle with respect to their

intended orientation. Additionally, if the arms wrapped around the frame, then the rotors

would collide with the electronic components that lie on top of the frame.

1.5 Thesis contributions

This thesis adds to the field of micro aerial vehicles and their applications, specifically

when carrying slung loads outside of a motion capture facility. The main contributions are:

1. Nonlinear dynamics derivation and simulations

2. Evaluation of input shaping on attitude profiles

3. Folding quadrotor test platform

1.6 Thesis outline

Chapter 2 describes the dynamics of the quadrotor and quadrotor-with-payload systems.

Chapter 3 presents the advantages and disadvantages of several feedback controllers. Chap-

ter 4 investigates the usefulness of input shaping in reducing residual payload oscillations

in the presented model. Chapter 5 presents the design and design decisions of the folding

quadrotor. Chapter 6 summarizes the presented work and suggests topics of future work.

Finally, Appendix A shows the MATLAB code used for simulations.

7

CHAPTER 2

QUADROTOR AND PAYLOAD DYNAMICS

The dynamics of the quadrotor-with-payload platform have been derived previously, but

many interesting dynamical effects have often been left out.

The 3D model and sign conventions of the quadrotor with a slung load are illustrated in

Figure 2.1.

2.1 Quadrotor dynamics

The four inputs to the system are the four motor speeds. However, these can be treated as

thrust, T , and three torques, τ =

[
τφ τθ τψ

]T
by the following relationship:

T

τφ

τθ

τψ

=

k1 k2 k3 k4

lk1 0 −lk3 0

0 lk2 0 −lk4

b1 −b2 b3 −b4

ω2
1

ω2
2

ω2
3

ω2
4

(2.1)

where ωi is the angular speed of each of the four motors, ki is the thrust coefficient of

each motor, bi is the torque coefficient of each motor, and l is the horizontal distance from

the center of gravity to the center of the motor. ki and bi can be found experimentally.

In simulation, it is convenient to abstract away ωi and deal only with thrust and torque.

However, ωi should be monitored in some way to ensure that unrealistic values are not used.

For convenience, let Tr =

[
0 0 T

]T
be the thrust vector in quadrotor-local coordinates,

which always points locally upward.

The parameter r represents the
[
x y z

]T
position; ξ is the

[
φ θ ψ

]T
attitude

(pitch, roll, and yaw); g is gravity; and R is a 3×3 ZXY rotation matrix going from

8

Figure 2.1: The quadrotor model and sign conventions.

quadrotor-local space to inertial-global space, given by:

R(ξ) =

cθcψ − sφsθsψ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

 (2.2)

where cφ = cos(φ), sφ = sin(φ), tφ = tan(φ), etc.

Near-hover conditions are assumed in order to avoid the additional rotation matrix

between quadrotor-local angular velocity (often
[
p q r

]T
) and global angular velocity

(
[
φ̇ θ̇ ψ̇

]T
). In other words, the quadrotor-local coordinate axes are always approxi-

mately aligned with the global coordinate axes (small-angle approximation). This assump-

tion falters when performing aggressive maneuvers, but such maneuvers are not considered

here.

9

2.1.1 Linear dynamics

The equation of motion for the linear dynamics is:

r̈ =
1

mq
(Fg + Fd +RTr +RFp) (2.3)

where mq is the mass of the quadrotor, Fg is the gravitational force, Fd is the drag force,

and Fp is the force of the payload on the quadrotor. Vector quantities multiplied by R are

quadrotor-local and must be brought into the global frame.

The gravitational force is:

Fg =

0

0

−mqg

 (2.4)

and the drag force is:

Fd = −1

2
CdAρair ‖ṙ‖ ṙ (2.5)

where Cd is the drag coefficient, A is the exposed area for drag consideration, and ρair is the

density of air, as a constant, although it can be a function of altitude or pressure if necessary.

It should be noted that thrust would also change with changing air density since the mass

flow rate of air through the propellers would change. In other words, assuming air density

is just a function of altitude, the thrust coefficient k is also a function of altitude,

k(z) = k0
ρ(z)

ρ0
(2.6)

where k0 is the value of the thrust coefficient k at a reference pressure ρ0. However, air

density will be treated as a constant here.

Without drag, an artificial maximum speed would have to be imposed on the system to

10

Figure 2.2: The effect of drag on creating a maximum velocity.

prevent it from growing to an unrealistic value. The effect of drag on limiting the maxi-

mum speed is shown in Figure 2.2, comparing drag coefficients Cd = 0 and Cd = 1, and

the corresponding quadratic drag force is plotted in Figure 2.3 for the case where drag is

considered.

When a cruising attitude is achieved, part of the thrust is required to maintain the alti-

tude of the quadrotor, and the rest of the thrust propels the quadrotor forward. The quadrotor

accelerates to a velocity, limited by when the drag force exactly opposes the forward com-

ponent of thrust. If there is no drag in the model, then there is no bound on the velocity.

Therefore, the maximum speed of the quadrotor, given drag, can be calculated as a function

of ξ:

‖ṙmax(ξ)‖ =

√
2R(ξ)T

ρairCdA
(2.7)

The force of the payload on the quadrotor, Fp, is discussed later.

With a constant thrust and nonzero φ or θ, the dynamic equations indicate that the

quadrotor will descend as it moves forward due to gravity being greater than the upward

component of thrust. Therefore, the thrust must increase — meaning the motors must spin

11

Figure 2.3: The drag force that creates a cruising velocity.

faster — to avoid falling too much. Limiting the maximum angle or maximizing excess

thrust (Tmax − mg) improves the ability of the quadrotor to maintain or recover altitude.

Figure 2.4 highlights the altitude response when the excess thrust is not enough to also

control the altitude of the quadrotor. When T = 1.68g N, there are 680 grams of excess

thrust, 40 percent of the maximum thrust, which is sufficient for control. For T = 1.06g N,

there are 60 grams of thrust, about 6 percent of the maximum thrust, which is shown to be

too little to both maintain altitude and move forward at ξdes. More excess thrust also allows

for the quadrotor to pick up larger payloads and remain stable.

To fix this in practice, motors with a higher kv rating (RPM per voltage) should be

chosen to increase Tmax, or the overall weight of the quadrotor should be reduced. For

moving from one point to another, if neither fix is feasible, then the controller may need to

alternate between moving closer to the target and recovering altitude so that the quadrotor

eventually reaches its destination without falling too far and crashing.

12

Figure 2.4: The effect of not having enough excess thrust to both maintain altitude and
move forward.

2.1.2 Rotational dynamics

The equation of motion for the rotational dynamics is:

ξ̈ = I−1(τd + τ + τp − ξ̇ × (Iξ̇)) (2.8)

where I is the diagonal inertia matrix, τd is the torque due to drag, and τp is the torque due

to the payload. The drag torque is:

τd = (Rrcop)×Fd (2.9)

where rcop is the center of pressure, i.e. where the drag force is applied relative to the center

of gravity, as illustrated in Figure 2.5. If drag is applied at the COG, it does not induce

a torque. If applied above the COG in the quadrotor-local space, the drag torque would

oppose the motion and act as damping. This yields a more stable but less maneuverable

system, and the equilibrium angle is less than the expected value in magnitude. If applied

below the COG, the drag torque would be in the same direction as the motion, and the

13

Figure 2.5: An illustration of the center of pressure, rcop.

equilibrium angle is greater than the desired angle. This yields a more maneuverable but

less stable system, as the quadrotor can more easily tip over.

The effect of the center of pressure on φ and ṙmax is shown in Figures 2.6 and 2.7,

respectively. Let rcop =

[
0 0 zcop

]T
. The equilibrium angle for zcop = 0 is the desired

angle. For zcop > 0 cm, the equilibrium angle is less than the desired angle in magnitude,

causing the quadrotor to move slower but not be at risk for tipping over. For zcop < 0 cm,

the quadrotor exceeds the desired angle in magnitude and is at risk of tipping over. The

steeper angle permits a higher maximum velocity, however.

The center of pressure is a function of the geometry of the quadrotor. The value used in

simulation is assumed to be above the COG, providing a damping torque, but this was not

experimentally determined.

The cruise attitude can be found with:

ξ = ξdes +
rcop × Fd

Kp,ξ
(2.10)

where ξdes is the desired attitude and Kp,ξ is the proportional gain of a PD controller, dis-

cussed in the next section.

14

Figure 2.6: The effect of rcop on cruise attitude.

Figure 2.7: The effect of rcop on cruise velocity, due to the effect on φ.

15

The torque due to the payload is discussed later.

2.1.3 Dynamics in simulation

The nonlinear dynamics are simulated in MATLAB’s ode45. The simulation code is pre-

sented in Appendix A.

The control of a quadrotor as presented here utilizes two or three control loops. The first

is attitude control, which attempts to follow an attitude profile or hold a desired attitude.

The three τ inputs come from this controller. The second is altitude control for controlling

z and, thereby, the T input. A third, optional controller is one to control position or velocity.

This can be xy-only or include z as well, in which case the altitude controller is simply one

aspect of the position/velocity controller. Position control either follows a path or attempts

to reach a single destination. Velocity control follows a profile or maintains a cruising

velocity. Either of these is performed by transforming x and y or ẋ and ẏ inputs into ξ

inputs and controlling attitude.

In order to perform simulations by integrating the dynamics, the thrust and torque

evolve following:

Ṫ = cT (Tdes − T) (2.11)

and

τ̇ = cτ (τdes − τ) (2.12)

where cT and cτ are rate-limiting constants, needed because real motor cannot change

speeds instantaneously. Additionally, Tdes is the desired thrust, and τdes is the desired torque.

16

The desired values come from:

Tdes = (mq +mp)(g + cφcθz̈des)

Tmin≤Tdes≤Tmax

(2.13)

where mp is the mass of the payload, Tmin and Tmax bound the desired thrust, cφcθ is the

projection onto the horizontal plane, and z̈des is the desired acceleration in the z direction.

Additionally,

τdes = PD(ξdes − ξ) (2.14)

where ξdes is the desired attitude, and PD(·) is a proportional-derivative feedback controller.

Other controllers can be used in this step, but this thesis will utilize PID control, or subsets

thereof.

In open-loop position or velocity control, ξdes would be the ultimate input to the system.

For closed-loop control, its value can be automatically set by any desired outer controller,

following:

ξdes =

sin−1(− ÿdes

‖r̈des‖cθ
)

sin−1(ẍdes
‖r̈des‖

)

0

‖ξdes‖ ≤ ξmax

(2.15)

where the desired attitude magnitude is bounded. Yaw control is often used for planning

optimal trajectories, where performing an off-axis maneuver is less stable and less prefer-

able than adjusting ψ and moving along only one axis. However, yaw control is ignored

here. Coupling between φ and θ arises due to the direction the motors spin in conjunction

with the conservation of angular momentum, as can be seen by the 1
cθ

in the expression for

φdes, i.e. the first term of ξdes.

17

Additionally,

r̈des =

PID(rpath − r)

PD(rfinal − r)

PI(ṙ(t)− ṙ)

etc

(2.16)

where PID granular path following, PD long-range navigation, PI velocity profile tracking,

or other controllers are used to convert the primary input of the system into a desired ac-

celeration. Only PID feedback control is considered here, but others have used alternative

control methods. Control is the topic of Chapter 3 and will be explained more thoroughly

there.

If desired, the charge of the battery supply can be modeled as well. Individual motor

thrust, Ti, and current draw, Ii, exhibit a linear relationship. The experimental motor data,

shown in Table 2.1, is linearly fit and plotted in Figure 2.8. Zeroing the y-intercept, the

slope, si, directly transforms thrust into current draw and is assumed to be the same value

for each motor. The additional current draw from the microcontroller and sensors, Imc, can

be included to find the total current draw, I:

I = −
∑

Ii − Imc = −
∑

siTi − Imc (2.17)

Current can be integrated to find the change in battery charge as a function of time, with

the initial battery charge being the number of coulombs the battery supply starts with. This

could be relevant if one wanted to optimize energy usage or end a simulation early if the

charge reaches zero. The simulation could also continue beyond the battery being drained,

but Tmin, Tdes, and τdes must all be set to zero to simulate an unpowered quadrotor.

The quadrotor and payload parameters used in simulation are presented in Table 2.2.

The values are taken from the physical quadrotor describes in Chapter 5, the Solidworks

3D model, literature, and appropriate estimations.

18

Table 2.1: Experimental data for motor current draw versus generated thrust.

Thrust (N) Current (A)
0.0000 0.04
0.3924 0.366
0.7848 0.685
1.0791 1.056
1.4225 1.433
1.7658 1.83
2.0601 2.23
2.4525 2.73
2.8449 3.52
3.5316 4.38
3.5806 4.57
3.6297 4.64
3.6788 4.73

2.2 Payload dynamics

The dynamics of the payload are highly nonlinear, with the majority of terms being coupled

or higher order.

In previous literature, the payload dynamics are not derived in the quadrotor-local sys-

tem. Instead, a new H frame of reference, xH , yH , zH , is the quadrotor-local space multi-

plied by a rotation matrix. This frame of reference is illustrated in Figure 2.9. A rotation that

could be used with the presented model could be R(

[
0 π/2 π

]T
), yielding xH = −x,

yH = −y, and zH = −z. However, such a rotation is not performed in these derivations

and is only mentioned to explain the difference in form between the presented work and

previous literature. The derivations in either case are mathematically identical and yield the

same equations of motion.

2.2.1 Payload dynamics derivation

A suspension offset, rsusp =

[
0 0 −d

]
, is the vector distance from the center of gravity

of the quadrotor to where the payload is suspended from, where d is the magnitude of the

19

Figure 2.8: The linear relationship between motor current draw and generated thrust.

Figure 2.9: An illustration of the suspension offset, rsusp, and the H frame.

20

Table 2.2: Parameters used in MATLAB simulations.

Parameter Value Unit
mq 1.0 kg
g 9.81 m/s2

Ixx,Iyy 6.8e-9 kgm2

Izz 4.5e-9 kgm2

L 0.155 m
r 8.89 cm
Tmin 1.00 N
Tmax 16.48 N
ρair 1.22 kg/m3

ki 1.28e-7 N/RPM2

bi 1e-9 Nm/RPM2

A 0.025 m2

Cd 1 -
rcop [0, 0, 5.0]T cm
mp 0.073 kg
Lp 1.0 m
d 0 cm
Cd,p 0.5 -
Ap 0.0081 m2

ξmax 0.35 rad
cT 16 s-1

cτ 20 s-1

distance. An offset can be added in general to all three axes, but only a vertical offset is

considered in these derivations, as shown in Figure 2.9.

The position of the payload relative to this suspension point, rl, is given by:

rl = −Lp

−cφpsθp

sφp

cθpcφp

 (2.18)

where Lp is the length of the massless and inelastic cable, φp and θp are the tangential and

21

orthogonal angles of the payload. The transformation matrix that is multiplied by Lp is:

XY −1

0

0

1

 = Y −1X−1

0

0

1

 (2.19)

Including the suspension offset, the payload position relative to the quadrotor, rp, is:

rp = rl + rsusp (2.20)

Furthermore, if Lp is significantly larger than d, then:

rp≈rl (2.21)

Differentiating the global position of the payload, r + rp, the absolute velocity can be

found to be:

ṙp = ṙ + ṙl + ξ̇ × rl (2.22)

and absolute acceleration is:

r̈p = r̈ + r̈l + ξ̈ × rl + 2ξ̇ × ṙl + ξ̇ × (ξ̇ × rl) (2.23)

2.2.2 Torque equilibrium

By finding r̈l, one can obtain both φ̈p and θ̈p from the chain rule multiplications. These

are the angular accelerations that define the dynamics of the payload. To determine these

accelerations, a moment balance is performed about the suspension point. Assuming 0 <

φp, θp < π/2, and 0 < φ̇p, θ̇p, both the gravitational and drag forces cause a positive mo-

ment about both the x and y axes. Following this sign convention, the moment balance in

22

the quadrotor-local frame can be written as:

mprl × (r̈ − r̈l − ξ̈ × rl − 2ξ̇ × ṙl − ξ̇ × (ξ̇ × rl)− gξ + fξ) = 0 (2.24)

where gξ is the relative acceleration due to gravity, and fξ is the relative acceleration due

to the drag force acting on the payload, both relative to the orientation of the quadrotor.

The linear acceleration, r̈ holds the opposite sign of the terms containing rl because of

where each acceleration/force is located with respect to the suspension point, i.e. the lever

arms with respect to the pivot point. This is in contrast to the absolute payload acceleration,

(2.23), where all of the terms are added together.

The relative gravity is:

gξ = g

−cφsθ

sφ

cθcφ

 (2.25)

where the transformation matrix multiplied by g is the XY −1 rotation matrix. When this

vector is multiplied by the ZXY rotation matrix R, as in (2.3), the resultant gravity vector

points downward in the inertial reference frame, as expected. Although the force of gravity

causes a positive moment, the sign multiplied by gξ in (2.24) is negative because the force

and the acceleration hold opposing signs as defined: Fgξ = −mpgξ.

As with gravity, drag is a global force that must be first be transformed into quadrotor-

local space. The relative drag acceleration is:

fξ = RT Fd,p

mp
(2.26)

where RT is the transpose of the rotation matrix R, and Fd,p is the drag force acting on the

payload. Payload drag is calculated the same as for drag on the the quadrotor, (2.5), except

with a different drag coefficient, area, and velocity: Cd,p, Ap, and ṙp.

23

2.2.3 Payload EOM

Expanding the torque equilibrium yields three equations — one of which is redundant

since derivatives of Lp are zero — where φ̈p and θ̈p are the two unknowns. Let fx represent

the x component of the relative drag force on the payload, fξ, for ease of writing (and

correspondingly so for fy and fz). Using Mathematica, the two angular accelerations are

solved to be:

θ̈p =

−cθpsθpφ̇
2 + 2tφp θ̇pφ̇p − 2cθpφ̇pψ̇ + cθpsθpψ̇

2 + φ̇(2sθpφ̇p + (c2θp
− s2θp

)ψ̇)

+tφp θ̇(cθpφ̇− 2φ̇p + sθpψ̇) + (cθp(fx + gcφsθ) + (fz − gcθcφ)sθp + cθpẍ

+c2φp
sθp z̈)/Lp/cφp + θ̈ + sθptφpφ̈− cθptφpψ̈ (2.27)

and

φ̈p =

−sφpcφp θ̇
2 − sφpcφp θ̇

2
p + sφpcφp(sθpφ̇− cθpψ̇)2 + 2c2φp

θ̇p(−sθpφ̇+ cθpψ̇)

+θ̇(2sφpcφp θ̇p + (c2φp
− s2φp

)(sθpφ̇− cθpψ̇))− (cφp(fy − gsφ) + (−fzcθp

+g(sθsθp + cθcθp)cφ + fxsθp)sφp + cφp ÿ − sφp(−sθpẍ+ cθp z̈))/Lp

+cθpφ̈+ sθpψ̈ (2.28)

NB: these equations rely on components and derivatives of both ξ and ξp. Generalized,

they take the form of ξ̈p = h(ṙ, r̈, ξ, ξ̇, ξ̈, ξp, ξ̇p).

A caveat is that these equations implicitly rely on r̈ and ξ̈. This means that the EOM of

the quadrotor depend on the accelerations of the payload, as expected, but also the payload

24

EOM also depend on the quadrotor accelerations. In order to use the quadrotor accelera-

tions in the payload EOM, best estimates or previous values of r̈ and ξ̈ should be used,

depending on the implementation.

Finally, with everything else known, the absolute acceleration of the payload, r̈p, can

be found in general using (2.23). The force and torque of the payload on the quadrotor are:

Fp = mp(r̈p − gξ + fξ) (2.29)

and

τp = (Rrsusp)× Fp (2.30)

respectively.

2.3 Model verification

The presented model was verified by comparing it to models in previous literature, includ-

ing both helicopters and quadrotors with slung loads. Although the presented model has

increased complexity, the equations for φ̈p and θ̈p aligned with those in previous literature.

These equations have not usually been presented in previous works, but their respective

models were input into Mathematica to solve for their payload EOM.

For the more complex dynamics, including relative drag, it was necessary to fix certain

parameters to observe the effects of others. For instance, if the position of the quadrotor

was fixed, then the quadrotor model could be rotated without inducing a velocity. In one

example, the payload was attached at the COG of the quadrotor. The quadrotor was given a

fixed attitude, ξ ≡ ξ0, and the payload was given an initial angle, ξp = ξp0. No matter the ξ0

chosen, the gravitational and drag forces acting on the payload should be the same for the

same initial payload angle. Without the transformations in (2.25) and (2.26), gravity and

drag would have affected the payload as functions of ξ, which is not physically accurate.

25

Figure 2.10: The effect of d on a quadrotor with a fixed position and free attitude.

2.4 Suspension offset

Assuming the payload is suspended from the center of gravity of the quadrotor, the swing-

ing of the payload does not induce a torque. However, even a small d in rsusp causes the

system to essentially act as a double pendulum. More precisely, the system exhibits load-

attitude coupling, which has similar characteristics to a double pendulum.

The effect of d is shown in Figure 2.10, where the initial φp0 = π
9
, T0 = mg. The drag

coefficients of both the quadrotor and payload are zero here, r is fixed, and the quadrotor is

free to rotate about its COG. The d = 0 cm case is a normal sinusoidal pendulum response.

However, the d = −5 cm case is a double pendulum, where the response is a combination

of sinusoids and where the payload induces an angular acceleration in the quadrotor. The

response is well-behaved compared to that of a chaotic double pendulum because the torque

induced by the payload is small in this example.

In a typical system, where r is not fixed, the swinging behaves differently. Let ξdes =[
0 0 0

]T
. For the specific controllers described in Chapter 3, the following effects occur.

Figure 2.11 highlights that the amplitude of swinging of the double pendulum decays much

faster than that when d = 0, where both drag coefficients are still zero. What is happening

26

Figure 2.11: The effect of d on relative payload position while the quadrotor holds attitude.

is that as the payload induces a torque on the quadrotor, the quadrotor pitches or rolls to

counteract the torque and maintain a zero attitude. This eventually damps out the payload

response. However, because the quadrotor is rotating (when d 6= 0) and because the pay-

load pulls on the quadrotor, the linear position of the quadrotor also changes, as depicted in

Figure 2.12. Although the double pendulum has clear advantages in reducing payload oscil-

lation when holding a zero attitude, it does require slightly more thrust, current, and energy.

As is shown later, these advantages disappear when performing other types of maneuvers.

2.5 Stability and validity of the model

Based on (2.28), specifically the cos(·)−1 terms, θ̈p divergence will occur when φp ap-

proaches ±π/2. For uniaxial x movements, where φp is undisturbed, θ̈p cannot diverge if

the other parameters are bounded.

Given all of the presented dynamics, the quadrotor-payload model can be seen to be a

bounded-input bounded-output system as long as −π/2 < θ, φp < π/2. Although there

are no mathematical restrictions on φ and θp, naturally they should also be kept within the

aforementioned range.

27

Figure 2.12: The effect of payload swing on quadrotor position while holding attitude.

In addition to boundedness, the definition of stability in this context will be refined. As

highlighted in Figure 2.4, too little excess thrust will cause the system to go unstable. Based

on the defined ξmax, the minimum excess thrust can be calculated, under which the system

should be treated as unstable. Moreover, the presented model is invalid at a large enough

payload angle. A real cable would likely have slack in it at a large angle, and the inelastic

cable assumption that this model relies on would no longer be valid.

2.6 Simplified models

The equations for the payload accelerations are complex, with many trigonometric calcu-

lations that must be performed. Even if the values of cφ, cθ, etc are calculated once and

reused as needed, there is still much algebra to perform. The equations can be linearized

about hover conditions, where all coupled and higher-order terms are assumed to be zero.

Additionally, small angles can be assumed, where sφ = φ, cφ = 1 etc, and where the drag

force is assumed to be zero. After linearizing (2.27) and (2.28) using the aforementioned

28

assumptions, only terms containing gravity remain:

θ̈p =
g(θ − θp)

Lp
(2.31)

and

φ̈p =
g(φ− φp)

Lp
(2.32)

The force of the payload on the quadrotor would then simply be:

Fp = −mpgξ (2.33)

This degree of linearization is valid for small movements but loses accuracy as the

quadrotor or payload velocity increases. Assuming the quadrotor is a pendulum with fixed

position, Figure 2.13 shows that a small initial angle causes the linear and nonlinear forms

of φ̈p to be virtually identical, even in the double pendulum case presented. However, Fig-

ure 2.14 shows the payload response to an attitude command for both the linearized and

nonlinear accelerations. The linearized model does not capture the rich dynamics of the

nonlinear form, and the two responses differ greatly.

A further simplification has been made in previous literature where Fp = 0. This ex-

treme linearization is not robust because of the simple fact that the weight of the payload

pulls down on the quadrotor, even if swinging is not considered. It would only be valid for

payload masses quite small in comparison to the quadrotor mass.

The intent of these simplifications is to reduce the complexity of the system and to re-

duce the time it takes to simulate. However, the simplified models presented are not used

in the remainder of this thesis. A reduced model, such as a state-space representation, is

not necessary for further analysis in this thesis. The presented simulations still run quickly

using the more nonlinear forms of the equations, and their rich dynamic behavior is pre-

served.

29

Figure 2.13: The linearized φ̈p compared to the nonlinear form for the quadrotor as a fixed
pendulum.

Figure 2.14: A comparison between the linearized and nonlinear payload accelerations for
an example maneuver.

30

CHAPTER 3

FEEDBACK CONTROL OF QUADROTORS WITH SUSPENDED PAYLOADS

3.1 Feedback control

Effective feedback controllers are required for controlling the now-eight-DOF system: the

six of the quadrotor and two of the payload. In this chapter, several PID controllers are in-

vestigated to determine their applicability and compatibility with input shaping. The focus

of this thesis is on feedback control for the Pixracer microcontroller, which is described in

Chapter 5.

3.1.1 Position control

Quadrotors using feedback control generally have two or three control loops: an inner atti-

tude controller, an outer position or velocity controller, and an optionally separate altitude

controller. The inner feedback loop is usually PD or PID control with a critically damped

response and short rise time, providing a fast, but realistic, response. The outer feedback

loop is most often a PID position controller following a desired path. In the case of long

travel distances, PD control is preferred because integral error would accumulate and be-

come irrelevantly large — proportional control alone would cause actuator saturation for

a long distance, and integral control would have little effect. For PID position control, a

path of “waypoints” is the input to the outer loop, and the inner loop adjusts the attitude to

follow the profile. For PD control, the final position would normally be the input.

Position control is achieved in several built-in control modes of the Pixracer micro-

controller, including pre-programmed “missions” (waypoint navigation), “return-to-home”

mode, and “loiter-at-current-position” mode. However, these require the use of a GPS unit.

31

Position control simulations

The gains used in simulation for position control are listed in Table 3.1. These values were

selected by first using the Ziegler-Nichols gain tuning method, where the gains are cal-

culated using characteristics of the proportional-only response. Tuning methods such as

Ziegler-Nichols are intended for simple systems, and so the resulting gains were further

adjusted. The adjustments were made by changing individual gain values until a subjec-

tive specification was met, including the rise time, settling time, overshoot, and residual

oscillation of the position response. The x and y directional properties of the quadrotor are

assumed to be symmetric and, thus, share the same gains.

The selected gains were not designed to satisfy some type of “optimal” cost function,

but there exist methods for how to find optimal parameters. One class of methods is the set

of randomized optimization algorithms, where the algorithm maximizes a fitness function

by randomizing the gain parameters and prioritizing certain aspects of the resulting system

response. These algorithms include hill-climbing, simulated annealing, genetic algorithms,

and others. They can be used in this context if one wanted to find some type of “optimal”

gains. Relevant fitness functions can minimize the sum of squared position error, energy

usage by minimizing thrust, residual oscillation, settling time, or others.

Table 3.1: The gains used for horizontal position and altitude control.

Type P I D
PID (altitude) 30 1 6

PID (horizontal) 12 1 6
PD (horizontal) 12 0 6

The distance between PID waypoints affects the speed. The quadrotor slows down as it

approaches the next waypoint due to the proportional error decreasing, so a finer resolution

— more waypoints — would cause an overall slower response. The responses using several

different waypoint resolutions are compared in Figure 3.1.

32

Figure 3.1: The effect of waypoint resolution on the PID position response of an unloaded
quadrotor.

Because the quadrotor generally moves faster when there are fewer waypoints, it also

overshoots its destination by a larger percent. The gains of the PD controller are the same

values that the PID controller uses, excluding integral gain, so they are not optimized to the

specific controller. However, increasing derivative gain or reducing proportional gain to re-

duce overshoot would cause the quadrotor to move slower. If constraints and specifications

are imposed on the system, one could choose gains in a more rigorous way. However, this

was deemed out of scope for the position controllers in the presented work.

With a large enough resolution, though, the PID case would become more similar to the

PD case, eventually becoming the PD case when the resolution is exactly the distance from

the starting point to ending point. Example responses of a PID (0.5 meter resolution) and a

PD move are shown together in Figure 3.2. In this figure, the PD response quickly reaches

the desired position but then overshoots by a large amount. The PID controller more slowly

approaches the destination.

Note: for the simulations shown in Figures 3.1 and 3.2, the drag coefficients are no

longer zero. For the rest of this chapter, they are Cd = 1.0 and Cd,p = 0.5, unless otherwise

specified.

33

Figure 3.2: A PID response compared to a PD response.

Position control with payload

When the payload is considered, the waypoint resolution becomes a more important con-

sideration. The higher the acceleration of the quadrotor, the more oscillation occurs. This is

evident in Figure 3.3, which shows the payload swing of the PD controller used to generate

Figure 3.2. The swing angle throughout the single pendulum response (d = 0 cm) is enough

to make the model less valid, and the double pendulum response (d = −5 cm) has even

higher amplitudes. This is in contrast to Figure 3.4, where the PID controller used with 0.5

m resolution — in which the quadrotor moves slower and accelerates less drastically than

in the PD case — yields a response with a smaller peak-to-peak amplitude. The amplitude

of the double pendulum response, however, is still large. Finally, a 0.25 m resolution pay-

load response is shown in Figure 3.5, where the quadrotor is moving slowly enough that

both the single and double pendulum responses are within the bounds of validity for the

presented model.

A comparison of the velocities in the PD, PID (0.5), and PID (0.25) cases is presented

in Figure 3.6. It is shown that by increasing the waypoint resolution from 0.25 m to the full

path length, the speed increases. From these figures, it is clear that the PD gains should be

34

Figure 3.3: The payload swing of a PD path maneuver.

Figure 3.4: The payload swing of a PID path maneuver with 0.5 m waypoint resolution.

35

Figure 3.5: The payload swing of a PID path maneuver with 0.25 m waypoint resolution.

modified if payload swing is a concern. Alternatively, advanced control techniques can be

implemented, which are discussed in Chapter 4.

3.1.2 Limitations to position control

Quadrotors may have an accelerometer, gyro, magnetometer, and temperature sensor (or an

all-in-one inertial measurement unit, IMU), but these provide unreliable position informa-

tion, which path-following requires. Using sensor fusion, the sensors can provide a fairly

accurate acceleration estimation. However, integrating this twice to estimate position is of-

ten problematic, especially if the acceleration noise is large. Integrating acceleration to find

displacement is useful, but subject to accumulating errors. GPS units are usually used for

position and can reinforce the position calculated by integrating acceleration. However, the

sampling rate and error — once per second to within a few meters based on the weather

— cannot be used for reliable feedback. For imprecise control, such as moving toward a

faraway target, PD control with GPS may suffice. However, for more precise control, espe-

cially that needed for advanced control techniques to be of any use, position control is not

reliable enough.

36

Figure 3.6: The velocities of the PD, PID with 0.5 m resolution, and PID with 0.25 m
resolution controllers.

Previous studies have addressed this problem by performing most tests in a motion

capture facility, with the capture cameras providing data to the feedback loop multiple

times per second. However, this is not possible in real world uses, and so feedback must

eventually be achieved with the hardware on board the quadrotor.

3.1.3 Velocity control

With unreliable position information, PID control to follow a path is unreliable. Instead,

velocity control using a PI feedback loop can be implemented. A velocity profile is the

input to the outer loop, and the inner loop attempts to achieve that profile. Although velocity

is still an integrated estimation, it is a better estimation than position. Fixed-wing aircraft,

such as planes, could make use of an airspeed sensor, such as a pitot-static probe, which

uses Bernoulli’s equation to find velocity. However, the Pixracer multirotor controller only

has a barometer built-in for estimating altitude as a function of air pressure.

PI velocity control is one of the built-in control modes of the Pixracer controller (“posi-

tion control” mode, where the user controls linear velocity), so implementing this controller

is simply a matter of changing the gains in the code. There is a relatively small derivative

37

gain in the code, but its impact did not appear relevant in any simulation and was thus

ignored. It would come into play if the Pixracer controller attempted a large linear acceler-

ation.

With altimeters that measure air pressure, altitude does not need to be obtained by in-

tegration. The built-in PI velocity controller uses PID control on altitude rather than PI

control on vertical velocity. Here, the altitude controller is a separate entity from the hori-

zontal position controller.

Velocity control simulations

The PI gains for velocity control were obtained in the same manner as for position control

and are listed in Table 3.2. When optimizing the position response, one must remember

that P and I gains for velocity act as D and P gains for position, respectively. The x and

y directional properties of the quadrotor are assumed to be symmetric and, thus, share the

same gains.

Table 3.2: The gains used for horizontal velocity and altitude control.

Type P I D
PID (altitude) 30 1 6
PI (x and y) 0.4 0.1 0

Although the velocity commands used in simulation are trapezoidal, the acceleration

time used is 0.1 seconds in duration, which cannot easily be seen at larger timescales.

Because the quadrotor can only directly control ξ and z, there is a delay between the com-

manded and actual velocity profiles, as illustrated in Figure 3.7. The corresponding position

response is shown in Figure 3.8.

38

Figure 3.7: The velocity response of a trapezoidal velocity command on an unloaded
quadrotor.

Figure 3.8: The position response of a PI velocity command on an unloaded quadrotor.

39

Figure 3.9: The swing response of a PI velocity command, with load-attitude coupling
considered.

Velocity control with payload

The behavior of the payload swing is similar to that under position control, i.e. a faster

velocity, more dramatic acceleration, and load-attitude coupling (d < 0 cm) both cause a

greater swing amplitude. An example response is shown in Figure 3.9. The largest ampli-

tude of the swing occurs during the transient deceleration, which occurs at t = 7.3 s. The

relationship between this amplitude and the desired velocity is shown in Table 3.3.

Table 3.3: The desired velocity and maximum swing amplitude of PI control with load-
attitude coupling.

ṙdes (m/s) Max φp amplitude (rad)
1.0 0.1488
2.0 0.2772
3.0 0.3898
4.0 0.4886
5.0 0.5751
6.0 0.6522

40

3.1.4 Limitations to velocity control

For automated velocity control, a velocity profile must be created ahead of time. This ap-

plies to automated machinery where the pickup and delivery locations are known, and it

could work under similar conditions for quadrotors. However, for applications where the

environment or objective locations are not already known — or where manual control is

desired — velocity profile tracking is not desirable to use.

Manual velocity control is the alternative, but it does not automatically control position.

In this regard, the human operator who is manually controlling velocity acts as the position

controller. However, for the topic of advanced control, a velocity profile must be generated

at some point, as it is the specific velocity profile that, when followed, creates a desired

response. Thus, velocity profile tracking must be accurate in order to use advanced control

techniques.

The argument can be made that the integration of a noisy signal results in an unreliable

measurement. The Pixracer microcontroller passes certain estimations through a low-pass

filter to attenuate noise, but the reliability of these measurements was not investigated.

Additionally, other small errors, including those associated with the sampling rate, would

accumulate when integrated. Over time, this may lead to an estimation that is noticeably

incorrect.

3.1.5 Manual control

A human performing manual control is a mode of operation common in hobbyists. The

analog to human control is perhaps PD position control with a tolerance, where neither po-

sition error, nor steady-state velocity, are required to tend toward zero. There is an element

of being “close enough” in the spatial states. If precise positioning is a requirement in a

certain application, then the human operator can adapt to the circumstances.

When a payload is attached, r error, ṙ, ξp, and ξ̇p should be minimized in the final

state. Advanced control techniques, such as linear quadratic regulation (LQR) and H∞

41

control, can be used when multiple disparate states should be fed back into the controller.

However, these require the software to estimate the location and the effects of the payload.

Alternatively, a skilled human should be able to judge the parameters and drive them to be

within a desired tolerance.

Without a motion capture facility, the position of the payload can be estimated using

an observer. However, observer design is not considered in this thesis. There comes a point

when the microcontroller is computationally overburdened, and this hardware limitation

would have to also be considered in the observer design. From qualitative observation,

though, the Pixracer microcontroller could likely implement one additional observer.

3.1.6 Attitude control

The attitude estimations that are produced by sensor fusion in IMUs are more reliable than

the integrated acceleration estimations due to there being less noise that needs to be filtered

away. Therefore, attitude control is considered. PD attitude control is a built-in control

mode of the Pixracer controller found in “angle” and “altitude control” modes.

Attitude control simulations

The attitude PD gains were chosen by attempting to achieve a fast, but overdamped, attitude

response. A critically damped response may be theoretically ideal, but the real quadrotor

may not be able to respond that quickly. The center of pressure, rcop was temporarily set to

zero so that the equilibrium angle would not differ from the desired angle. The time required

to achieve a certain attitude was estimated from various real-world sources, and the gains

were selected to achieve such settling times. The selected gains are listed in Table 3.4, with

the φ and θ directional properties sharing gain values due to symmetry. ψ gains were not

tested and are not included.

Because attitude is a more reliable estimation than velocity, attitude profile tracking and

attitude holding are both considered. An example trapezoidal attitude command and the

42

Table 3.4: The gains used for attitude control.

Type P I D
PD (φ, θ) 0.90 0 0.28

Figure 3.10: An attitude command and the resulting unloaded quadrotor response.

corresponding response are shown in Figure 3.10. The attitude response tracks the com-

mand well.

It was shown in Figure 2.6 that the center of pressure, rcop, affects the attitude response

in terms of a torque induced by the drag force. For φdes = π
6
, the effects of zcop is shown

in Figure 3.11 for the φ response. From zero to five seconds, the equilibrium φ of the

nonzero zcop is less than that of when zcop = 0 (although the former does not actually reach

equilibrium in the presented amount of time). However, because the direction of the drag

force is dependent on velocity, the quadrotor overshoots zero at t = 6 s for the nonzero

zcop case. The same damping torque causes overshoot as the quadrotor attempts to return to

zero attitude.

43

Figure 3.11: The effect of rcop on φ of an attitude command.

Attitude control with payload

The amplitude of swing increases with increasing φdes. However, in the double pendulum

case, the payload affects the attitude of the quadrotor, in addition to its position. The attitude

response and payload swing are shown in Figures 3.12 and 3.13, respectively. As before, the

swinging amplitude of the double pendulum case is greater than that of the single pendulum

case. In the attitude response, there is an additional slight oscillation in the case exhibiting

load-attitude coupling.

3.1.7 Limitations to attitude control

The limitations of attitude control are that the position and velocity of the quadrotor are

not addressed by the controller. For practical use-cases, position and velocity are among

the most desirable parameters to control. For this reason, attitude control is not terribly

useful alone, although it holds promise as a basis for advanced control techniques. It would

then be ideal if a position or velocity controller generated profiles for the inner attitude

controller to follow. These profiles could be modified by control techniques to produce a

response with reduced oscillations.

44

Figure 3.12: The effect of d on the φ response of an attitude command.

Figure 3.13: The effect of d on the swing response of an attitude command.

45

Although gyroscopes measure attitude rate, the attitude estimations do not solely come

from integration. Instead, using sensor fusion, the outputs of the gyroscope, accelerometer,

and magnetometer are passed through an extended Kalman filter in order to estimate atti-

tude. The resulting attitude is relative to the user-defined zero-attitude orientation, which

itself is relative to the direction of gravity.

3.2 Outer-loop control with attitude tracking

Chapter 2 described the desired attitude, ξdes, as a value recomputed during each loop of

the simulation based on r̈des, if an outer-loop controller is also being used. As mentioned

previously, in order to implement advanced control techniques to modify an attitude pro-

file, the outer-loop controller must generate those attitude profiles instead of instantaneous

values.

In simulation, however, it is difficult to generate and use a profile during ode45 integra-

tion because the solver can go backwards in time. ODE solvers do this when the residual or

absolute error of an integration step is not below a user-defined maximum, meaning that too

large of a ∆t was integrated. Adding to, or removing from, a global variable technically vi-

olates causality if the solver opts to move to a previous time in the next iteration. Moreover,

it is impossible to perform real-time manual control during the ode45 integration routine.

3.2.1 Manual control simulation algorithm

Instead of running the solver once, integrating from t = 0 to t = tfinal, the dynamics are

integrated from t = ti to t = ti+0.1 until the user terminates the program. There is a delay

after each call to ode45, during which the user can input commands via the keyboard. The

delay also serves to progress the simulation in real time, where one second of simulation

occurs over one second of real time, approximately. Attitude profiles are generated during

the delay based on keyboard input, and this buffer is accessed during subsequent integration

steps. This buffer is passed into a modifying routine, changing it into a trapezoidal or other

46

command. Keyboard input does limit the amplitude of input commands to a single positive

number, a single negative number, and zero as opposed to the range of values provided by

the joystick of a physical RC controller. A wider range of values could be implemented by

utilizing more keys on the keyboard, at the cost of usability. An RC controller or even a

video game controller could provide input to MATLAB using its joystick objects, but this

was not performed for this research.

The manual control simulation algorithm proceeds as follows. The model parameters

and initial conditions are given values. Pitching and rolling are mapped to the arrow keys on

a keyboard in order to add human interactivity. In an infinite loop, the inputs are checked,

a command buffer is generated from those inputs or lack of inputs, the ode45 simulation is

advanced by a constant time step, states of interest are plotted versus time, the final state

becomes the initial conditions of the next iteration, and a delay is inserted to update the

plots and also approximate a real-time simulation. Any states can be plotted, but the most

relevant ones to this research are position, velocity, and payload swing. Finally, the com-

mands input by the user can be stored and replayed exactly under different initial conditions

or model parameters. The commands can also be edited or generated separately and played

in simulation. The algorithm is contained within modelCont.m, presented in Appendix A.

The user interface is shown in Figure 3.14, with position and velocity being updated

in quasi-real-time. The command that causes the aforementioned position and velocity re-

sponses is shown in Figure 3.15, where a positive command corresponds to pitching for-

ward, a negative command corresponds to pitching backward, and a zero command mean-

ing there is currently no input. Only y- and φ-related variables are shown, but both x and y

can be controlled at the same time by controlling θ and φ, respectively.

The advantages of this approach are that manual control is an option, a real-time visual

representation of the quadrotor states is available, and the attitude profile buffer can be

implemented on the Pixracer microcontroller in a custom control mode. These reasons

make this simulation environment ideal for performing user feedback studies without the

47

Figure 3.14: The user interface of the simulation algorithm, showing example position
(above) and velocity (below) in real-time.

Figure 3.15: Example commands that the user inputs in real-time.

48

fear of a participant crashing and damaging a real quadrotor.

A human trial can be set up by plotting only position and velocity and having the tester

try to achieve and maintain a desired position. After conditions are met and the simulation

ends, the time response of the payload swing can be plotted. The payload angle could be

plotted during the simulation, and experienced testers could time their inputs with the peaks

and troughs of the time response to optimally control the system. However, in real life with

a human operator, the period of the payload is relatively short, and the payload angle is not

known with much precision. Controlling the simulation based on the precise payload angle

may not be representative of a true experience for testers.

Because the attitude controller is assumed not to possess knowledge of the payload

position or angles, any further control techniques should also possess no knowledge of the

payload position or angles. One such technique is input shaping, which is the subject of the

following chapter.

49

CHAPTER 4

INPUT SHAPING CONTROL OF PAYLOAD SWING

Input shaping is a technique where the command input to a system is modified with the

purpose of suppressing one or multiple modes of vibration. The original input is convolved

with a specific series of impulses that are timed to cancel out the vibrations of each other.

4.1 Introduction to input shaping

Consider an undamped mass-spring system, which has a sinusoidal response to an applied

impulse. Next, consider a second impulse applied to the system after the first input, which

has a similar, but temporally offset, response. The two responses added together yield the

full response of the system. If the second impulse is placed exactly at half the period of

oscillation, as illustrated in Figure 4.1, then the superposition of the responses equals zero

for every time after the half-period, as shown in Figure 4.2. The first half-period of the

response is unaffected, and there is no residual oscillation afterward.

This two-impulse sequence is the most basic type of input shaper, a Zero Vibration (ZV)

shaper. An impulse, step, or any generic input is divided into two parts, with the second part

timed to cancel the vibration induced by the first part. Let P be the period of the oscillation

to be suppressed. The timing and scaling convolution that operates on the input is shown in

Table 4.1.

Table 4.1: The convolution components of a ZV shaper.

First Second
Amplitude scaling 0.5 0.5

Time offset (s) 0 P/2

When the damping ratio is greater than zero, the amplitude scaling generalizes to [23],

50

Figure 4.1: Two system responses offset by half the period.

Figure 4.2: The superposition of sine waves, yielding a response with zero residual oscilla-
tion.

51

[24]:

A1 =
1

1 +K
(4.1)

A2 =
K

1 +K
(4.2)

where,

K = exp(− ζπ√
1− ζ2

) (4.3)

where A1 is the first amplitude scaling, A2 is the second, and ζ is the damping ratio. Thus,

the two pieces of information an input shaper requires are the period of oscillation and

the damping ratio. These parameters are more reasonable to acquire than instantaneous

payload angle at any time for the quadrotor, which may be required for other advanced

control algorithms.

4.2 Input shaping applications

The input being shaped does not have to be position; velocity could be shaped, where the

integral of the first half-period yields displacement, and the system becomes stationary

afterwards. A real-world use-case for this is in cranes carrying payloads, where the trolley

follows a velocity command and residual payload swing is undesirable. Input shaping could

modify the velocity command so that the trolley still moves the desired distance, but the

payload beneath swings into place with ideally zero residual oscillation.

For example, the trapezoidal velocity profile input to the PI velocity controller men-

tioned previously can be ZV shaped. The period used to design the shaper is the approx-

imation for a single pendulum, P = 2π
√

Lp

g
, and the damping ratio, ζ , is assumed to be

zero. The original commanded profile and the new ZV-shaped profile are compared in Fig-

ure 4.3. Note that the shaped command ends P/2 seconds later than the original command.

52

Figure 4.3: A comparison of a command pulse and its ZV-shaped counterpart.

This slight delay in the shaped case can also be seen in the position response, Figure 4.4.

The significant benefits of input shaping are shown in Figure 4.5, which shows that

the transient swinging is reduced and the residual oscillation is greatly reduced. From the

maximum transient peak to the minimum, the peak-to-peak amplitude is reduced from

0.4468 m to 0.2218 m, a 50 percent reduction. For the residual, the peak-to-peak amplitude

near the beginning is reduced from 0.2157 m to 0.005949 m, a 97 percent reduction. Using

the logarithmic decrement method, the damping ratio, ζ is found to be 0.0048, which can

safely be assumed to be zero.

The response for d = −5 cm is shown in Figure 4.6. The transient peak-to-peak is

reduced from 0.6764 m to 0.4190 m, a 38 percent reduction; the residual is reduced from

0.08586 m to 0.01865 m, a 78 percent reduction. However, these results are only for a move

time of five seconds; different move times have different reductions in oscillation. Certain

move times cause near-zero oscillation, even without input shaping. This relationship is

presented later.

53

Figure 4.4: The position response resulting from a velocity command and its ZV-shaped
counterpart.

Figure 4.5: The payload swing resulting from a velocity command and its ZV-shaped coun-
terpart, with no load-attitude coupling.

54

Figure 4.6: The payload swing resulting from a velocity command and its ZV-shaped coun-
terpart, with load-attitude coupling considered.

4.3 Robust input shaping

When d 6= 0, the system has more than one frequency to be attenuated: one for the payload

and another for the suspension point. More advanced input shapers can reduce the effects

of multiple frequencies. One such is a Zero Vibration and Derivative (ZVD) shaper. The

ZVD shaper is less sensitive to modeling errors around the associated frequency. Assume

P1 and P2 are the periods of the two oscillatory modes, with P1 ≤ P2. The amplitudes and

times of a ZVD shaper designed with zero damping are listed in Table 4.2. If P1 = P2, the

second and third impulses can be added together.

Table 4.2: The convolution components of a ZVD shaper.

First Second Third Fourth
Amplitude scaling 0.25 0.25 0.25 0.25

Time offset (s) 0 P1/2 P2/2 P1/2 + P2/2

There is a measure of robustness for each input shaping method: some shapers are more

or less sensitive to modeling errors, including inaccurate periods and damping ratios. For

55

a crane, the hoist length can change, which affects the period of oscillation. Moreover,

the payload mass may not be constant, affecting the damping ratio. One ideal scenario

is that the selected input shaper attenuates the oscillations of all targeted frequencies. A

consideration here is that each targeted frequency slows the response down, and targeting

several frequencies may cause the system to respond undesirably slowly. Another is that

the shaper is a function of the parameters, meaning the amplitudes and timings of the im-

pulse sequence are functions of the system parameters. However, the amplitudes and times

may need to be obtained numerically, and the physical controller may not be capable of

obtaining those numbers in real-time, given a rapidly changing system.

There can be many modes of oscillation in a system — technically, there are infinite

modes — but high-amplitude or low-frequency modes should be prioritized in attenuating

as they have the most impact on the amplitude of residual oscillations. Another option is to

design a shaper for minimizing oscillation rather than intending to reduce it to zero, as a ZV

shaper does. If a tolerance is added to the desired vibration amplitude, then the resulting

shaper becomes more robust. However, this effect is not evaluated in this thesis.

4.4 Disadvantages of input shaping

The downsides to using input shaping are twofold. Because the input command is modi-

fied, the corresponding system response may be unexpected to a human controller. Input

shaping delays a portion of the subsequent commands by at least half the period. If the

oscillatory mode has a large period, then the system would take a long time to achieve the

desired maneuver. Inexperienced human controllers may overcompensate if the actual sys-

tem response does not match their expectations, and overall performance may be degraded.

Secondly, input shaping cannot reduce pre-existing oscillations or reject disturbances,

as there is no active component of input shaping that monitors the response. However, since

the goal of this research is to reduce payload oscillations without knowledge of the location

of the payload, this disadvantage is not applicable.

56

Figure 4.7: A single pulse of an attitude command with a five-second duration.

4.5 Oscillation analysis

As stated previously, the amplitude of payload oscillation depends on the move time of the

maneuver. Some move times cause a response with a high amplitude, and others cause a

near-zero-amplitude response. In order to show this effect, first a single pulse of a trape-

zoidal attitude command is considered. An example pulse is shown in Figure 4.7. The

pulse amplitude is φdes = 0.1 rad. The duration of that pulse — the move time — is varied,

and the residual amplitude of the payload response is recorded, as shown in Figure 4.8.

Both drag coefficients are treated as zero. These results show that the residual peak-to-peak

swing is periodic with move time, ranging from near-zero to a maximum of 0.3 m.

For a 1-meter payload length, Lp, the period of the payload oscillation, P , is approxi-

mately 2 seconds. Both the maxima and minima of Figure 4.8 are periodic with respect to

that period. This is due to the fact that the payload motion is also periodic: the payload as

an ideal pendulum has the same position and velocity at time t as it has at time t + P . It

follows that the residual responses of those two pulse durations would also be the same.

This analysis was repeated for a different payload length, Lp = 0.5 m, and the results are

also periodic with respect to the new period, about 1.4 seconds, as shown in Figure 4.9.

57

Figure 4.8: The peak-to-peak residual oscillation induced by an attitude command versus
the duration of that command for a 1-meter payload length.

Figure 4.9: The peak-to-peak residual oscillation induced by an attitude command versus
the duration of that command for a 0.5-meter payload length.

58

Figure 4.10: The normalized peak-to-peak residual oscillations.

If both responses are normalized with respect to their respective periods, the peaks and

troughs line up with each other, as shown in Figure 4.10. Due to the nonlinearities present

in the system, linear amplitude scaling does not occur.

When input shaping is applied to the system, there is a nearly 100 percent reduction in

residual oscillation and significant percent reduction in the transient peak-to-peak ampli-

tude. One such comparison is shown in Figure 4.11, where the reduction in peak-to-peak

residual amplitude is 99 percent, and the reduction in transient peak-to-peak amplitude is 67

percent. In the transient regime, there is also little swing when input-shaped. The transient

peak-to-peak amplitude gets reduced by 96 percent within the duration of the move. By

simply delaying half of the command with input shaping, the payload hardly deviates from

the mean within the transient and within the residual regimes. This is shown in Figure 4.12,

which is the comparison between the trapezoidal residual amplitudes and the ZV-shaped

trapezoidal residual amplitudes. The amplitudes of the ZV-shaped input do not exceed 1

mm in simulation.

For completeness, a response with both drag coefficients considered is shown in Fig-

ure 4.13. However, because the residual response is not centered at a constant number, the

59

Figure 4.11: The payload responses of a trapezoidal and ZV-shaped trapezoidal input for a
five-second command.

Figure 4.12: A comparison between the residual oscillations of a trapezoidal input and a
ZV-shaped input.

60

Figure 4.13: The payload responses of a trapezoidal and ZV-shaped input with nonzero
drag forces.

peak-to-peak amplitude is somewhat ambiguous, although a significant reduction in ampli-

tude does occur.

Finally, the comparison where d = −5 cm is shown in Figure 4.14. Because the re-

sponse has different frequencies than the single pendulum case, the five-second pulse dura-

tion no longer corresponds to a maximum. An input shaper targeting a different frequency

or set of frequencies would produce better results.

In a real-world situation, however, more than one pulse command will likely be used.

Consider the case when two pulses of the same duration, one positive and one negative, are

used as the input. The time between the pulses is the quantity being varied. The amplitude

of the residual oscillation after the second pulse is shown in Figure 4.15. The maximum first

transient and minimum second transient peak-to-peak amplitudes are shown in Figure 4.16.

These are both periodic, as before, with a period equal to the period of the payload oscilla-

tion.

When a ZV shaper is applied, the transient peak-to-peak is constant at 0.2 m, up to a

58 percent reduction from the unshaped input. In the residual part, the results are similar

to those of the single-pulse trial, where oscillations are reduced by up to 99 percent. Fig-

61

Figure 4.14: The payload responses of a trapezoidal and ZV-shaped input for the double
pendulum case.

Figure 4.15: The residual payload response of two trapezoidal pulses as a function of the
time between the pulses.

62

Figure 4.16: The transient payload response of two trapezoidal pulses as a function of the
time between the pulses.

ure 4.17 shows an example response when the delay between pulses is four seconds long,

corresponding to a maximum in the residual amplitude.

4.6 ZV robustness

The ZV shaper has only a small amount of robustness to modeling errors. If the payload

length is different than that used to design the shaper, then the oscillation reduction suffers.

For a five-second single pulse with no drag and d = 0 cm, where the ZV shaper is targeted

at Lp = 1 m (or P = 2 s), the residual amplitude as a function of the period is shown in

Figure 4.18.

If one defines a tolerable amount of oscillation, e.g. up to 0.2 cm, then the range of

usable periods (and, thus, payload lengths) widens. A misidentified payload length within

this range would still yield an acceptable amount of oscillation, by definition. More com-

plex input shapers would have a “flatter” minimum or would have multiple minima, both

corresponding to additional usable payload lengths.

63

Figure 4.17: The payload responses of an example two-pulse input command.

Figure 4.18: The robustness of a ZV shaper targeted at P = 2 s.

64

CHAPTER 5

QUADROTOR DESIGN

The 3D model of the fully unfolded quadrotor is shown in Figure 5.1, and the physical

version is presented in the photograph shown in Figure 5.2. The main components of the

quadrotor are the frame, the arms and folding mechanism, motors and mounts, propellers,

batteries, a GPS unit, and the Pixracer microcontroller.

5.1 Mechanical design

5.1.1 Frame

The frame, pictured in Figure 5.3, was designed to hold and protect the microcontroller and

provide structure to the folding mechanism. The frame was 3D-printed for rapid prototyp-

ing. The aluminum arm holder was screwed into the frame, and the other electronics sat at

the top of the frame, shown in Figure 5.4.

5.1.2 Folding mechanism

The initial goal of the physical quadrotor was to have it participate in the CanSat com-

petition, an annual competition organized by the American Astronautical Society (AAS)

and the American Institute of Aeronautics and Astronautics (AIAA). In this event, a rocket

carrying the system is launched several thousand meters up. Near apogee, the system is

ejected from the rocket and must both land on the ground and autonomously reach a target.

Without a folding design, only a small quadrotor would have been able to fit within the

diameter of the rocket. A small quadrotor could not generate enough thrust or carry enough

batteries for it to reach the target before running out of charge. Although the components

of the folding design add weight, it allows a larger quadrotor to participate. Using springs

65

Figure 5.1: The 3D model of the quadrotor in its unfolded state.

Figure 5.2: The physical quadrotor in its unfolded state, without rotors.

66

Figure 5.3: The 3D-printed frame that holds the electronics.

Figure 5.4: A side view of the frame showing how the springs line up.

67

that are in tension when folded, the arms unfold when they are no longer contained by the

rocket body. Upon detecting freefall, the quadrotor can then begin autonomous operation.

The folding design can be useful in other applications. A quadrotor must have powerful

motors if it is to carry heavy payloads. Large rotors are needed to provide more thrust, and

a larger frame is required to improve controllability and so that the rotors do not collide

with each other during operation. This large frame may become unwieldy to transport from

one location to another, e.g., in the trunk of a car. Using a folding design, a quadrotor with a

larger wingspan can be transported in a smaller space. Moreover, the quadrotor in a rocket

may be adapted to a real-world scenario. The rocket can travel several miles away, possibly

after a natural disaster where terrain is temporarily inaccessible. The rocket can then deploy

the quadrotor, which unfolds and begins operation.

The folding mechanism is shown in Figures 5.5 and 5.6, the 3D model and physical

quadrotor, respectively. The folding action was achieved by using springs, rods attached

to the arms, ball joints, and a central base where the rods and springs are connected. The

mechanism is shown in Figure 5.7. The four hollow aluminum arms, shown in Figure 5.8,

are held in place by four brass rods attached to a thick aluminum base. The springs, always

in tension, keep the base in place, which keeps the rods in place, which keep the arms in

place. When the arms are folded down, the rods push the base down, which stretches the

springs more. If the arms are released, the springs contract, raising the arms back into place.

Ball joints connect the rods to the arms and to the base as there is a slight pivot required

when folding or unfolding the arms due to where they are attached on the base.

The springs in the design do a good job of guiding the base into the proper position.

With uneven unfolding, the arms are not orthogonal with respect to the vertical axis, and the

quadrotor drifts. This drift requires additional thrust and torque to overcome. Additionally,

the arms appear to be rigid during flight, not inducing additional modes of vibration.

68

Figure 5.5: The 3D model of the quadrotor in its folded state.

Figure 5.6: The physical quadrotor in its folded state.

69

Figure 5.7: The base, springs, and rods that make up the folding mechanism.

Figure 5.8: One of the four arms of the quadrotor with the motor mount attached.

70

Figure 5.9: One of the Turnigy Park 300 1600kv motors used.

5.1.3 Motors

The motors selected were four Turnigy Park 300 1600kv brushless outrunners, pictured in

Figure 5.9. The kv rating (PRM per voltage) was chosen through trial and error: both the

1080kv and 1380kv versions did not provide enough thrust. Each 1600kv motor provided

a maximum of about 420 grams of thrust, 1.68 kg in total, which is enough to lift the 1.0

kg quadrotor and have enough excess thrust for control and payloads. Thrust was measured

on a stand with a scale underneath, as shown in Figure 5.10.

The thrust depends on the size of the rotors being used, with larger rotors providing

more thrust per rotation but also being harder to rotate due to the increased inertia. The

geometry of the quadrotor also restricts the rotor size, where rotors cannot ever collide with

each other or with anything else on the quadrotor. Based on geometry, 7-inch propellers

were chosen with a pitch of 4 (a “7x4” propeller). Two of the propellers were oriented

clockwise, and the other two are oriented counter-clockwise. On the quadrotor, opposing

motors should have similarly oriented propellers, and adjacent motors should be opposite.

These motors drew a significant current, upwards of 5.0 A each for maximum thrust,

so high charge-density batteries are a must if the intent is to fly for a reasonable amount

71

Figure 5.10: The quadrotor on the test rig for thrust measurements.

of time. The batteries must also be able to discharge that much current over a long time.

Lithium-polymer (LiPo) batteries were chosen to deal with both issues.

5.1.4 Batteries

There are a wide variety of LiPo batteries to choose from, but voltage, size, discharge rate,

and capacity are the parameters by which a battery should be determined. Because the

motor speed is determined by the supplied voltage, the battery of choice had to be 11.1

V. The size constraint was important so that the battery does not interfere with the folding

mechanism. The discharge rate and capacity together determined how much current the

batteries can supply, with current equal to the discharge rate times the capacity. Although

some batteries have a “burst” discharge rate, the current should be sustainable for longer

periods of time.

The battery chosen was the Turnigy 2200 mAh 3S 35C Lipo Pack, which can provide

2.2 Ah ∗ 35 C = 77 A of current, where “C” is not coulombs but rather the discharge rate,

which has units of inverse hours. Two of these batteries were placed in parallel to double

the amount of charge the quadrotor can operate with. This did not double the flight time,

72

Figure 5.11: The QBrain ESC hub that regulates the voltage to the motors.

however, as the extra weight of the additional battery required more thrust and, thus, more

current to keep aloft. Using the linear relationship between current draw and thrust, one

could estimate the new flight time and compare it to the old time. In this case, the second

battery added approximately 60 percent more flight time.

5.1.5 Electronic speed controllers

In order to vary the voltage sent to the motors and control their speed, electronic speed

controllers (ESCs) must be used. These convert the DC battery current into three inputs

that are used to control each motor. The control board communicates with the ESCs through

pulse-width modulation, and there is one ESC per motor. Each ESC has a current rating,

so the maximum current each motor can draw should be less than the current rating of its

respective ESC.

A QBrain 4x25A ESC hub for quadrotors, pictured in Figure 5.11, was used to simplify

the hookups.

73

Figure 5.12: A top view of the Pixracer microcontroller.

5.1.6 Microcontroller

The microcontroller of a quadrotor is responsible for taking sensor inputs and adjusting the

RPM of each motor correspondingly. This is complex for a user to have to code, so quadro-

tor libraries were utilized. The complexity arises due to accelerometer and gyroscope noise

and drift, RC input, GPS measurements, estimating position or velocity or attitude, and

PID feedback control. Additional complexity arises for non-essential functionality, includ-

ing data logging, telemetry, autonomous control, etc. Initially, an Arduino Uno was used,

but it was quickly determined that its CPU could not handle what was required for the

quadrotor to be controllable and also to estimate its states. Furthermore, a large portion of

the codebase would have to be self-developed. Therefore, the open-source Pixracer micro-

controller was selected, depicted in Figure 5.12.

The Pixracer software performs the complex operations to fly and estimate states. More-

over, the software is extensible and allows for users to edit existing programs or create new

ones, such as one that stores a buffer for input shaping. The board has an internal IMU and

has hookups for other sensors. With the QGroundControl flight control software, one can

easily change system parameters, plot waypoints on a map, and calibrate the software.

74

Figure 5.13: The Pixracer with all sensors attached.

5.1.7 Sensors

The Pixracer has several sensors built-in and allows for additional ones to be added. Inter-

nally, it contains an accelerometer, gyroscope, magnetometer with temperature compensa-

tion, and barometer. Externally, one can add a GPS unit, WiFi board, arming switch, and

RC receiver, some of which are shown in Figure 5.13. GPS is required for several of the

position-related control modes. WiFi allows the quadrotor to communicate with software

like QGroundControl for telemetry or updating parameters. The arming switch is a safety

feature that enables and disables the ESCs. The RC receiver is required for manual control,

paired with a transmitter.

5.1.8 Design challenges

The main design challenges were to reduce the weight, optimize space for the electronics,

have it unfold without human interaction, and respond to RC pitch and roll input. These

were all accomplished in the current design, but more challenges remain.

High frequency vibrations caused by the four motors can vibrate screws and wires out.

If a motor loses signal due to a wire coming out, the Pixracer microcontroller senses that

75

Figure 5.14: An overhead view of the quadrotor, highlighting its symmetry.

and attempts to land the quadrotor in a stable way. The code uses a low-pass filter, which

attenuates noise in the IMU. Although the quadrotor seemed to behave no differently with

and without dampers under the IMU, this was not quantitatively observed. To do so, the

onboard position, velocity, and attitude would have to be compared to that measured in a

motion capture facility. Furthermore, the system parameters used in simulation that can be

obtained during flight would have to be acquired in the same way.

Because the base of the quadrotor is relatively small, landing without crashing is an-

other design challenge. A wide foam pad is affixed to the base to both act as a shock

absorber on impact and provide a wider base to land on. This foam does not interfere with

the folding mechanism, although it may interfere with where payloads are suspended from.

Another concern is that due to the symmetric design, it is not immediately clear which

direction is “forward,” i.e. which way a pitch or roll command will tilt the quadrotor, high-

lighted by Figure 5.14. A single colored rotor in the direction of +y is used to denote

direction.

The amount of wires is a concern. If the wires are long, they must be tied down so they

do not interfere with the rotors. If they are short, they weigh less but cannot be lengthened

76

if the design changes and requires it. In a more final design, the wires of the motors, ESCs,

and external sensors could be shortened and connectors re-spliced to reduce tangle and

weight.

Finally, if the quadrotor does crash, the ability to remake or reacquire parts is a con-

cern. Although 3D-printed parts seem to break more easily, they are easy to recreate. If an

aluminum part bends, it may be able to be bent back into shape or used in its bent state.

Depending on the part, it may be easy to remake or tedious if it requires machining. In any

case, the rotors are likely the most fragile part of the quadrotor, as they are thin, protruding,

and spinning at a high frequency.

77

CHAPTER 6

FUTURE WORK AND SUMMARY

6.1 Future work

Input shaping was shown in simulation to be successful, but the techniques must now be

tested on a real system. The Pixracer microcontroller has an extensible codebase, allowing

custom modules. An input shaping buffer within the attitude control module would enable

an operator to switch between attitude control and input-shaped attitude control modes.

Further testing could be performed in a motion capture facility to quantify the payload

oscillations, which can then be compared to the results obtained from simulation.

Additionally, modeling wind and sensor noise may prove useful in determining how

position and velocity estimates drift over time. These phenomena can be treated as random

Gaussian noise or a function with noise added, although the values should be deterministic

for simulations.

Finally, an articulated cable model can replace the inelastic cable assumption presented.

An articulated cable can more accurately model the slack in a cable. For large payload

angles or in a rapid change of direction, these effects may become important to more fully

understand the dynamics of the system.

6.2 Summary

In this thesis, the equations of motion of a quadrotor with a slung load were derived in

Chapter 2. The model includes aerodynamic effects such as drag and the center of pressure

as well as load-attitude coupling that causes double-pendulum-like behavior.

This allowed the application of PID feedback to control the system in Chapter 3. This

type of control is easy to implement and does not require knowledge of the payload. Sensor

78

limitations were investigated, and it was determined that attitude control was qualitatively

more reliable than position or velocity control.

Furthermore, input shaping techniques were implemented in the simulations in Chap-

ter 4. The results showed that input shaping greatly reduces the oscillation of the payload.

Because input shaping has been a successful approach in similar real-world systems, in-

cluding cranes and helicopters, the presented work can be implemented on a real quadrotor

with the expectation that the payload swing will be reduced.

Reducing the payload oscillations with input shaping has many benefits. With a reduced

maximum transient amplitude, the payload is less likely to cause the quadrotor to destabi-

lize, decreasing the chance that the quadrotor or payload fall and crash. Additionally, less

residual payload swing is beneficial when the quadrotor must drop the payload onto a tar-

get position. Waiting for the payload swing to damp out is a common but battery-wasting

method of reducing the residual swing. By using input shaping, there is little residual swing,

and the quadrotor can reserve battery life for additional maneuvers.

Moreover, the code for these simulations was included in Appendix A. This provides a

starting point for others to perform additional testing, including changing model parameters

and applying other phenomena to the system.

Finally, a folding quadrotor design was shown in Chapter 5. The folding aspect reduces

the wingspan of the quadrotor during transportation, allowing a wider and more powerful

quadrotor to be brought to a location more easily. In experimentation, the folding mecha-

nism did not appear to induce additional modes of vibration, suggesting that the presented

design is fairly rigid in its unfolded state during operation.

79

Appendices

80

APPENDIX A

MATLAB CODE FOR SIMULATIONS

The code used for simulations was written in MATLAB and is included below. The entry

points are model.m for automatic control and modelCont.m for manual control. The four in-

cluded controllers are attitude.m (PD attitude control), far.m (PD position control), path.m

(PID position control), and vel.m (PI velocity control). These controllers are the inputs to

ode45. The initial conditions, controller gains, and model parameters are defined in model-

Params.m. modelResults.m contains the values that can be plotted, e.g. plot(T, thrust).

81

%% addGlobalForce.m

function [F_sum, T_sum] = addGlobalForce(force, r_off, R, F_sum, T_sum)
% sum of external forces/torques =
 % function(force to add, location of force, rotation matrix, current values of

force/torque)
F_sum = F_sum + force;
T_sum = T_sum + cross(R * r_off, force);
end

%% addLocalForce.m

function [F_sum, T_sum] = addLocalForce(force, r_off, R, F_sum, T_sum)
% sum of external forces/torques =
 % function(force to add, location of force, rotation matrix, current values of

force/torque)
F_sum = F_sum + R * force;
T_sum = T_sum + cross(r_off, force);
end

%% attitude.m
function [x_d] = attitude(t, x)
% attitude control

global state;

F_sum = [0; 0; 0]; % sum of external forces
T_sum = [0; 0; 0]; % sum of external torques

[r, xi, r_d, xi_d, r_i, r_d_i, thrust, tau, xi_p, xi_p_d, charge] = getStates(x);

r_e = state.r_start - r; % maintain a height with error

R = getRot(xi); % rotation matrix based on the current angles

ctcp = R(3, 3); % cos(theta) * cos(phi), the projection onto the horizontal plane

% add thrust to the sum of forces F_ext
[F_sum, T_sum] = addLocalForce([0; 0; thrust], [0; 0; 0], R, F_sum, T_sum);

% add drag at the center of pressure
[F_sum, T_sum] = addGlobalForce(getDrag(r, r_d, state.Cd * state.area), state.cop, R,

F_sum, T_sum);

% add gravity at the center of gravity
% adjust distance if COG is off-center
[F_sum, T_sum] = addGlobalForce([0; 0; -state.m * state.g], [0; 0; 0], R, F_sum,

T_sum);

r_dd = 1 / state.m * F_sum; % acceleration

T_sum = T_sum + tau - cross(xi_d, state.I * xi_d);
xi_dd = state.iI * T_sum; % angular acceleration

% add payload effects if the mass exists
if state.mp ~= 0

 % implicit accelerations to feed into payload dynamics
 Fp_est = R * [0; 0; -state.mp * state.g];

82

 r_dd_est = (F_sum + Fp_est) / state.m;
 xi_dd_est = state.iI * (T_sum + cross([0; 0; state.r_susp], Fp_est));

 [xi_p_dd, localForceOnQuad] = getPayloadParams(R, r, r_d, r_dd_est, xi, xi_d,

xi_dd_est, xi_p, xi_p_d);
 [F_sum, T_sum] = addLocalForce(localForceOnQuad, [0; 0; state.r_susp], R, F_sum,

T_sum);

 % recalc for payload
 r_dd = 1 / state.m * F_sum; % acceleration
 xi_dd = state.iI * T_sum; % angular acceleration
else
 xi_p_dd = [0; 0];
end

gains = state.gains;

% PID position = desired acceleration
r_dd_des = gains.Kp_r * r_e + gains.Kd_r * -r_d + gains.Ki_r * r_i;
% modify the Z gain to include hover thrust, project onto horiz plane
r_dd_des(3) = state.g + ctcp * r_dd_des(3);
thrust_des = (state.m + state.mp) * r_dd_des(3); % desired thrust
% only the z direction matters here

xi_des = state.profile(t);
xi_e = xi_des - xi; % angle error

% PD angles = desired torque
tau_des = gains.Kp_xi * xi_e + gains.Kd_xi * -xi_d;
% torque limiter
tau_d = 20 * (tau_des - tau);

if thrust_des < state.thrust_min % limit to minimum thrust
 thrust_des = state.thrust_min;
end

if thrust_des > state.thrust_max
 thrust_des = state.thrust_max; % limit to maximum thrust
end

% thrust limiter
thrust_d = 16 * (thrust_des - thrust);

charge_d = -thrust / state.thrust_I_ratio; % current draw from motors/ESCs
% possibly also add current draw from sensors and controller

% ode45 output
x_d = [r_d; xi_d; r_dd; xi_dd; r_e; zeros(3, 1); thrust_d; tau_d; xi_p_d; xi_p_dd;

charge_d];
end

%% far.m

function [x_d] = far(t, x)
%vel Goes full velocity, ideal for heading to a far-away locations

global state;

F_sum = [0; 0; 0]; % sum of external forces

83

T_sum = [0; 0; 0]; % sum of external torques

[r, xi, r_d, xi_d, r_i, r_d_i, thrust, tau, xi_p, xi_p_d, charge] = getStates(x);

r_e = state.r_final - r; % drives toward the final position

R = getRot(xi); % rotation matrix based on the current angles

ctcp = R(3, 3); % cos(theta) * cos(phi), the projection onto the horizontal plane

% add thrust to the sum of forces F_ext
[F_sum, T_sum] = addLocalForce([0; 0; thrust], [0; 0; 0], R, F_sum, T_sum);

% add drag at the center of pressure
[F_sum, T_sum] = addGlobalForce(getDrag(r, r_d, state.Cd * state.area), state.cop, R,

F_sum, T_sum);

% add gravity at the center of gravity
% adjust distance if COG is off-center
[F_sum, T_sum] = addGlobalForce([0; 0; -state.m * state.g], [0; 0; 0], R, F_sum,

T_sum);

r_dd = 1 / state.m * F_sum; % acceleration

T_sum = T_sum + tau - cross(xi_d, state.I * xi_d);
xi_dd = state.iI * T_sum; % angular acceleration

% add payload effects if the mass exists
if state.mp ~= 0

 % implicit accelerations to feed into payload dynamics
 Fp_est = R * [0; 0; -state.mp * state.g];
 r_dd_est = (F_sum + Fp_est) / state.m;
 xi_dd_est = state.iI * (T_sum + cross([0; 0; state.r_susp], Fp_est));

 [xi_p_dd, localForceOnQuad] = getPayloadParams(R, r, r_d, r_dd_est, xi, xi_d,

xi_dd_est, xi_p, xi_p_d);
 [F_sum, T_sum] = addLocalForce(localForceOnQuad, [0; 0; state.r_susp], R, F_sum,

T_sum);

 % recalc for payload
 r_dd = 1 / state.m * F_sum; % acceleration
 xi_dd = state.iI * T_sum; % angular acceleration
else
 xi_p_dd = [0; 0];
end

gains = state.gains;

% PD position = desired acceleration
r_dd_des = gains.Kp_r * r_e + gains.Kd_r * -r_d;
% modify the Z gain to include hover thrust, project onto horiz plane
r_dd_des(3) = state.g + ctcp * r_dd_des(3);
thrust_des = (state.m + state.mp) * r_dd_des(3); % desired thrust

mag = norm(r_dd_des);
if mag == 0
 mag = 1;
end

84

% use desired acceleration to find desired angles
% since the quad can only move via changing angles
xi_des = [
 asin(-r_dd_des(2) / mag / cos(xi(2)));
 asin(r_dd_des(1) / mag);
 0
];

mag = norm(xi_des);
if mag > state.maxAngle
 xi_des = xi_des / mag * state.maxAngle;
end

xi_e = xi_des - xi; % angle error

% PD angles = desired torque
tau_des = gains.Kp_xi * xi_e + gains.Kd_xi * -xi_d;
% torque limiter
tau_d = 20 * (tau_des - tau);

if thrust_des < state.thrust_min % limit to minimum thrust
 thrust_des = state.thrust_min;
end

if thrust_des > state.thrust_max
 thrust_des = state.thrust_max; % limit to maximum thrust
end

% thrust limiter
thrust_d = 16 * (thrust_des - thrust);

charge_d = -thrust / state.thrust_I_ratio; % current draw from motors/ESCs
% possibly also add current draw from sensors and controller

% ode45 output
x_d = [r_d; xi_d; r_dd; xi_dd; [zeros(6, 1)]; thrust_d; tau_d; xi_p_d; xi_p_dd;

charge_d];
end

%% getAirDensity.m

function rho = getAirDensity(z)
%getAirDensity Air density as a function of altitude

global state;
rho = 1.22; % kg/m3
% only needed as a function if air density is a function of altitude
end

%% getBufferAt.m

function profile = getBufferAt(t)

global state;

if isempty(state.buffer)
 profile = [0; 0; 0];
 return;
end

85

% state.buffer has to be t,x,y,z
i = 1;
tvec = state.buffer(:, 1);

while i <= length(tvec) && tvec(i) <= t
 i = i + 1;
end

if i > 1
 i = i - 1;
end

profile = state.buffer(i, 2:4)';
end

%% getDrag.m

function drag = getDrag(r, r_d, CdA)
drag = .5 * getAirDensity(r(3)) * -r_d .* abs(r_d) * CdA; % N
end

%% getPathAt.m

function next = getPathAt(current)

global state;

next = zeros(3, 1);

for i=1:length(current)

 s = state.r_start(i);
 f = state.r_final(i);
 c = current(i);

 if abs(f - c) < state.distScale
 next(i) = f;
 elseif f > c
 next(i) = s + state.distScale * floor((c - s) / state.distScale + 1);
 else
 next(i) = s - state.distScale * floor((s - c) / state.distScale + 1);
 end
end
end

%% getPayloadParams.m

function [xi_p_dd, localForceOnQuad] = getPayloadParams(R, r, r_d, r_dd, xi, xi_d,

xi_dd, xi_p, xi_p_d)

global state;

invR = inv(R);

x_dd = r_dd(1);
y_dd = r_dd(2);
z_dd = r_dd(3);

phi = xi(1);

86

theta = xi(2);
psi = xi(3);

phi_d = xi_d(1);
theta_d = xi_d(2);
psi_d = xi_d(3);

phi_dd = xi_dd(1);
theta_dd = xi_dd(2);
psi_dd = xi_dd(3);

phi_p = xi_p(1);
theta_p = xi_p(2);

phi_p_d = xi_p_d(1);
theta_p_d = xi_p_d(2);

cp = cos(phi);
ct = cos(theta);
sp = sin(phi);
st = sin(theta);

cpp = cos(phi_p);
ctp = cos(theta_p);
spp = sin(phi_p);
stp = sin(theta_p);
tpp = tan(phi_p);
ttp = tan(theta_p);

g_xi = state.g * [
 -cp * st;
 sp;
 cp * ct
];

rl = state.Lp * [
 cpp * stp;
 -spp;
 -cpp * ctp
];

rp = rl + [0; 0; state.r_susp];

rl_d = state.Lp * [
 cpp * ctp * theta_p_d - spp * stp * phi_p_d;
 -cpp * phi_p_d;
 ctp * spp * phi_p_d + cpp * stp * theta_p_d
];

rp_d = r_d + rl_d + cross(xi_d, rp);

drag_acc = invR * getDrag(r + rp, rp_d, state.Cdp * state.Ap) / state.mp;
fx = drag_acc(1);
fy = drag_acc(2);
fz = drag_acc(3);

% linearized: state.g * (xi(2) - xi_p(2))
theta_p_dd = -ctp*stp*phi_d^2+2*tpp*theta_p_d*phi_p_d-

2*ctp*phi_p_d*psi_d+ctp*stp*psi_d^2+phi_d*(2*stp*phi_p_d+(ctp^2-

stp^2)*psi_d)+tpp*theta_d*(ctp*phi_d-2*phi_p_d+stp*psi_d)+theta_dd+stp*tpp*phi_dd-

87

ctp*tpp*psi_dd+(ctp*(fx+state.g*cp*st)+(fz-

state.g*ct*cp)*stp+ctp*x_dd+cpp^2*stp*z_dd)/state.Lp/cpp;

% linearized: state.g * (xi(1) - xi_p(1))
phi_p_dd = (-spp*cpp*theta_d^2-spp*cpp*theta_p_d^2+spp*cpp*(stp*phi_d-

ctp*psi_d)^2+2*cpp^2*theta_p_d*(-

stp*phi_d+ctp*psi_d)+theta_d*(2*spp*cpp*theta_p_d+(cpp^2-spp^2)*(stp*phi_d-

ctp*psi_d))-(cpp*(fy-state.g*sp)+(-

fz*ctp+state.g*(st*stp+ct*ctp)*cp+fx*stp)*spp+cpp*y_dd)/state.Lp+spp*(-

stp*x_dd+ctp*z_dd)/state.Lp+ctp*phi_dd+stp*psi_dd);

rl_dd = state.Lp * [
 cpp * ctp * theta_p_dd - cpp * stp * (theta_p_d^2 + phi_p_d^2) - spp * stp *

phi_p_dd - 2 * ctp * spp * theta_p_d * phi_p_d;
 -cpp * phi_p_dd + spp * phi_p_d^2;
 cpp * ctp * (phi_p_d^2 + theta_p_d^2) + ctp * spp * phi_p_dd + cpp * stp *

theta_p_dd - 2 * spp * stp * theta_p_d * phi_p_d
];

rp_dd = r_dd + rl_dd + cross(xi_dd, rl) + 2 * cross(xi_d, rl_d) + cross(xi_d,

cross(xi_d, rl));

xi_p_dd = [phi_p_dd; theta_p_dd];

localForceOnQuad = state.mp * (rp_dd - g_xi + drag_acc);
end

%% getProfileAt.m

function [profile] = getProfileAt(t)

global state;

amp = 1;
accTime = .1;
moveTime = 20;

period = 2 * pi * sqrt(state.Lp / state.g);

% only one direction is currently being used
xx = 0;
yy = 0;
zz = 0;

% zv
if t < accTime
 yy = t / accTime * amp/2;
elseif t < period/2
 yy = amp/2;
elseif t < period/2 + accTime
 yy = amp/2 + (t - period/2) / accTime * amp/2;
elseif t < moveTime
 yy = amp;
elseif t < moveTime + accTime
 yy = amp - (t - moveTime) / accTime * amp/2;
elseif t < moveTime + period/2
 yy = amp/2;
elseif t < moveTime + period/2 + accTime
 yy = amp/2 - (t - moveTime - period/2) / accTime * amp/2;
else

88

 yy = 0;
end

% trapezoidal
% if t < accTime
% yy = t / accTime * amp;
% elseif t < moveTime
% yy = amp;
% elseif t < moveTime + accTime
% yy = amp - (t - moveTime) / accTime * amp;
% else
% yy = 0;
% end

% unshaped
% if t < moveTime
% yy = amp;
% else
% yy = 0;
% end

profile = [xx; yy; zz];
end

%% getRot.m

function [R] = getRot(angle)
%getRot Calculates the ZXY rotation matrix based on the angle

a_phi = angle(1);
a_theta = angle(2);
a_psi = angle(3);

c1 = cos(a_phi);
s1 = sin(a_phi);
c2 = cos(a_theta);
s2 = sin(a_theta);
c3 = cos(a_psi);
s3 = sin(a_psi);

% ZXY rotation matrix
R = [
 c2 * c3 - s1 * s2 * s3, -c1 * s3, c3 * s2 + c2 * s1 * s3;
 c2 * s3 + c3 * s1 * s2, c1 * c3, s3 * s2 - c3 * c2 * s1;
 -c1 * s2, s1, c1 * c2
];
end

%% getShaper.m

function buffer = getShaper(current, desired, baseTime)

global state;

% current is row vec: 0,0,0
% desired is col vec: 0;0;0

desiredT = desired';

% only when there's a new desired, otherwise keep following the old one

89

if all(current == desiredT)
 buffer = [baseTime, current];
else

 period = 2 * pi * sqrt(state.Lp / state.g);
 accTime = .1;
 dt = 0.01;

 % unshaped bang
 if strcmp(state.shaper, 'bang')
 buffer = [baseTime, desired'];

 % unshaped trap
 elseif strcmp(state.shaper, 'trap')
 tt = 0;
 i = 1;
 buffer = zeros(11, 4);
 while abs(tt - accTime) > dt
 buffer(i, :) = [baseTime + tt, current + (desiredT - current) * tt /

accTime];
 tt = tt + dt;
 i = i + 1;
 end

 buffer(i, :) = [baseTime + accTime, desiredT];

 % zv bang
 elseif strcmp(state.shaper, 'zv')
 buffer = [
 baseTime, current + (desiredT - current) / 2;
 baseTime + period/2, desiredT
];

 % zv trap
 elseif strcmp(state.shaper, 'zv_t')

 tt = 0;
 i = 1;

 buffer = zeros(21, 4);
 while abs(tt - accTime) > dt
 buffer(i, :) = [baseTime + tt, current + (desiredT - current) * tt /

accTime / 2];
 tt = tt + dt;
 i = i + 1;
 end

 buffer(i, :) = [baseTime + accTime, current + (desiredT - current) / 2];

 tt = 0;
 i = i + 1;

 while abs(tt - accTime) > dt
 buffer(i, :) = [baseTime + tt + period/2, (current + desiredT)/2 * (1 - tt

/ accTime) + desiredT * tt / accTime];
 tt = tt + dt;
 i = i + 1;
 end

 buffer(i, :) = [baseTime + period/2 + accTime, desiredT];

90

 end
end
end

%% getStates.m

function [r, angle, r_d, angle_d, r_i, r_d_i, thrust, tau, angle_p, angle_p_d, charge

] = getStates(x)

r = x(1:3); % xyz
angle = x(4:6); % phi theta psi
r_d = x(7:9); % xyz dots
angle_d = x(10:12); % phi theta psi dots
r_i = x(13:15); % xyz integral
r_d_i = x(16:18); % xyz_d integral
thrust = x(19); % thrust
tau = x(20:22); % torque
angle_p = x(23:24); % payload angles
angle_p_d = x(25:26); % payload angle dots
charge = x(27); % charge, used in outOfCharge
end

%% handleBuffer.m

function handleBuffer(ti, X)

global state;

bufferL = [];
bufferR = [];
bufferU = [];
bufferD = [];

amp = .1;

% allow multiple orthogonal directions at the same time
if state.prevKeys.L

 if state.keys.L
 bufferL = getShaper(X(end, 4:6), [0;-amp;0], ti);
 else
 bufferL = getShaper(X(end, 4:6), [0;0;0], ti);
 end

 state.prevKeys.L = false;

elseif state.prevKeys.R

 if state.keys.R
 bufferR = getShaper(X(end, 4:6), [0;amp;0], ti);
 else
 bufferR = getShaper(X(end, 4:6), [0;0;0], ti);
 end

 state.prevKeys.R = false;

end

if state.prevKeys.U

91

 if state.keys.U
 bufferU = getShaper(X(end, 4:6), [-amp;0;0], ti);
 else
 bufferU = getShaper(X(end, 4:6), [0;0;0], ti);
 end

 state.prevKeys.U = false;

elseif state.prevKeys.D

 if state.keys.D
 bufferD = getShaper(X(end, 4:6), [amp;0;0], ti);
 else
 bufferD = getShaper(X(end, 4:6), [0;0;0], ti);
 end

 state.prevKeys.D = false;
end

buffer = [];

% this isn't perfect but it works when the times match
% should discretize time more
if ~isempty(bufferL)
 buffer = bufferL;
end

if ~isempty(bufferR)
 if isempty(buffer)
 buffer = bufferR;
 else
 buffer(:, 2:4) = buffer(:, 2:4) + bufferR(:, 2:4);
 end
end

if ~isempty(bufferU)
 if isempty(buffer)
 buffer = bufferU;
 else
 buffer(:, 2:4) = buffer(:, 2:4) + bufferU(:, 2:4);
 end
end

if ~isempty(bufferD)
 if isempty(buffer)
 buffer = bufferD;
 else
 buffer(:, 2:4) = buffer(:, 2:4) + bufferD(:, 2:4);
 end
end

% insert buffer into state.buffer
if ~isempty(buffer)
 mergeBuffers(buffer);
end
end

function mergeBuffers(newBuffer)

92

global state;

[rs, ~] = size(state.buffer);
[rn, ~] = size(newBuffer);

if isempty(state.buffer) || state.buffer(end, 1) < newBuffer(1, 1)
 state.buffer(rs+1:rs+rn, :) = newBuffer;
else
 for i = 1:rn

 newT = newBuffer(i, 1);

 for j = 1:rs

 stateT = state.buffer(j, 1);

 if newT > stateT
 if j == rs
 state.buffer(end+1, :) = newBuffer(i, :);
 else
 continue;
 end
 elseif newT < stateT
 state.buffer(j+1:end+1, :) = state.buffer(j:end, :);
 state.buffer(j, :) = newBuffer(i, :);
 rs = rs + 1;
 break;
 else
 state.buffer(j, 2:end) = state.buffer(j, 2:end) + newBuffer(i, 2:end);
 break;
 end
 end
 end
end
end

%% kpDown.m

function kpDown(~, event)

global state;

i = double(event.Character);

if i == 27

 state.keys.ESC = true;

elseif i == 28

 if ~state.keys.L
 state.keys.L = true;
 state.prevKeys.L = true;
 end

elseif i == 29

 if ~state.keys.R
 state.keys.R = true;
 state.prevKeys.R = true;

93

 end

elseif i == 30

 if ~state.keys.U
 state.keys.U = true;
 state.prevKeys.U = true;
 end

elseif i == 31

 if ~state.keys.D
 state.keys.D = true;
 state.prevKeys.D = true;
 end

end

%% kpUp.m

function kpUp(~, event)

global state;

i = double(event.Character);

if i == 28

 if state.keys.L
 state.keys.L = false;
 state.prevKeys.L = true;
 end

elseif i == 29

 if state.keys.R
 state.keys.R = false;
 state.prevKeys.R = true;
 end

elseif i == 30

 if state.keys.U
 state.keys.U = false;
 state.prevKeys.U = true;
 end

elseif i == 31

 if state.keys.D
 state.keys.D = false;
 state.prevKeys.D = true;
 end

end

%% model.m

clear global;

94

clear;

global state;

% define parameters
modelParams;

% define time bounds
t0 = 0;
tf = 20;

% define input
state.profile = @getProfileAt;

% integrate
[T, X, Te, Xe] = ode45(@far, [t0, tf], [r_0; xi_0; r_d_0; xi_d_0; r_i_0; r_d_i_0;

thrust_0; tau_0; xi_p_0; xi_p_d_0; charge_0]);

% name state variables for easier access
modelResults;

%% modelCont.m

clear global;
clear;

global state;

% define parameters
modelParams;

% so Xi can be reused for each step
Xi = [r_0; xi_0; r_d_0; xi_d_0; r_i_0; r_d_i_0; thrust_0; tau_0; xi_p_0; xi_p_d_0;

charge_0];

% time info
t0 = 0;
tf = -1; % if -1, simulation runs until ESC is pressed
ti = 0;
dt = 0.1;

% final state vector
X = Xi';
T = t0;

% command buffer
state.profile = @getBufferAt;
state.buffer = [0, 0, 0, 0];

% stored input commands to optionally replay
replaying = false;

if exist('commands.mat', 'file') == 2

 load('commands.mat');
 % delete('commands.mat');

 replaying = true;

95

 commands_clone = commands;
else
 commands = [0, 0];
end

% keyboard input
fig = figure('KeyPressFcn', @kpDown, 'KeyReleaseFcn', @kpUp);

while ti <= tf || tf < 0

 % if ESC is pressed, end simulation
 if state.keys.ESC
 break;
 end

 % update inputs if replaying from a file
 % otherwise just stores the input
 if replaying

 if ~isempty(commands)

 overrideInput(commands(1, 2));

 commands(1, 1) = commands(1, 1) - dt;

 % issues with eps, should be good enough
 if commands(1, 1) < dt * .1

 commands = commands(2:end, :);

 if isempty(commands)

 replaying = false;

 % bc the original commands were culled
 commands = commands_clone;

 disp('Done replaying.');
 end
 end
 end

 else
 commands = saveInput(commands, dt);
 end

 % generate command based on keyboard inputs
 handleBuffer(ti, X);

 % integrate
 [Ti, Xi] = ode45(@attitude, [ti, ti + dt], X(end, :));

 % update current values
 X = [X; Xi(2:end, :)]; % initial condits are already in X from prev step
 T = [T; Ti(2:end)];

 ti = ti + dt;

 % cull times < ti, except for the most recent one

96

 while state.buffer(1, 1) < ti && size(state.buffer, 1) > 1
 state.buffer = state.buffer(2:end, :);
 end

 % update the plot
 subplot(2, 1, 1);
 plot(T, X(:, 2), 'k-', 'LineWidth', 2); % plotting y
 subplot(2, 1, 2);
 plot(T, X(:, 8), 'k-', 'LineWidth', 2); % plotting y_d
 pause(0.075);
end

% generate data to plot input command
numCommands = size(commands, 1);

inputT = zeros(1, numCommands * 2);
inputC = zeros(1, numCommands * 2);
inTime = 0;
input = 0;
for i = 1:numCommands

 in = commands(i, 2);

 if in == 4
 input = 1;
 elseif in == 8
 input = -1;
 else
 input = 0;
 end

 inputT(i * 2) = inTime;
 inputC(i * 2) = input;

 inTime = inTime + commands(i, 1);

 inputT(i * 2 + 1) = inTime;
 inputC(i * 2 + 1) = input;
end

% name state variables for easier access
modelResults;

%% modelParams.m

global state;

% physical parameters
m = 1; % kg, mass
g = 9.81; % m/s^2, gravity
Ixx = 6815763.88e-9; % kgm^2, xx moment of inertia
Iyy = 6801641.50e-9; % kgm^2, yy moment of inertia
Izz = 4548279.56e-9; % kgm^2, zz moment of inertia
I = [Ixx, 0, 0; 0, Iyy, 0; 0, 0, Izz]; % inertia matrix
iI = inv(I); % inverse of inertia matrix, to simplify calculations
L = .15546; % m, rotor axis to center of grav
r = .0889; % m, radius of props
kv = 1600; % RPM/V, motor ratio
V = 11.1; % V, battery voltage
rpm = kv * V; % RPM, estimate of max motor RPM
thrust_min = 1; % N, minimum total thrust of all four motors combined

97

thrust_max = 1.680 * g; % N, total thrust of all four motors combined
k = thrust_max / 4 * g / rpm / rpm; % N/(rpm)^2 (per motor)
b = 1e-9; % Nm/(rad/s)^2 -> Nm/(rpm)^2 (guess)
area = .025; % m^2, estimate of cross-sectional area
Cd = 1; % drag coefficient, .5-1.5 are pretty decent values
cop = [0; 0; 0.05]; % m, center of pressure (where aerodynamic forces are applied

relative to COM)
thrust_I_ratio = .0171 * 4 * 9.81; % N/A, constant ratio of thrust to current draw

% payload parameters
mp = .073; % kg, mass
Lp = 1; % m, length of cable
r_susp = -.05; % m, suspension point of the cable from COM (assuming z-only offset)
Cdp = .5; % drag coefficient of the payload, 0.5 for sphere
Ap = pi * .0508^2; % m^2, estimate of cross-sectional area of the payload

maxAngle = pi / 9; % radians, limit desired angle
distScale = .5; % m, resolution of the path generation
% should prolly separate xy and z in distScale and path gen

% PID gains (position control)
Kp_r = [12, 12, 30]; % proportional position
Kd_r = [6, 6, 6]; % derivative position
Ki_r = [1, 1, 1]; % integral position

% PI gains (velocity control)
Kp_v = [.4, .4, 0];
Ki_v = [.1, .1, 0];

% PD gains (angle control)
Kp_xi = [.90, .90, .90]; % proportional angle
Kd_xi = [.28, .28, .28]; % derivative angle

shaper = 'trap'; % input type ('bang', 'trap', 'zv', 'zv_t')

% global state vector
state = struct('m', m, 'g', g, 'thrust_max', thrust_max, 'thrust_min', thrust_min,

'k', k, 'b', b, 'Ixx', Ixx, 'Iyy', Iyy, 'Izz', Izz, 'I', I, 'iI', iI, 'L', L, 'r', r,

...
 'area', area, 'Cd', Cd, 'cop', cop, ...
 'mp', mp, 'Lp', Lp, 'r_susp', r_susp, 'Cdp', Cdp, 'Ap', Ap, ...
 'maxAngle', maxAngle, 'distScale', distScale, 'thrust_I_ratio', thrust_I_ratio,

...
 'gains', struct('Kp_r', diag(Kp_r), 'Kd_r', diag(Kd_r), 'Ki_r', diag(Ki_r), ...
 'Kp_v', diag(Kp_v), 'Ki_v', diag(Ki_v), ...
 'Kp_xi', diag(Kp_xi), 'Kd_xi', diag(Kd_xi)), ...
 'shaper', shaper ...
);

% arrow key presses
state.keys = struct('U', false, 'D', false, 'L', false, 'R', false, 'ESC', false);
state.prevKeys = struct('U', false, 'D', false, 'L', false, 'R', false);

% Initial/final parameters
r_final = [0; 0; 5]; % final position

% +phi = -y
% +theta = +x

98

r_0 = [0; 0; 5]; % initial position
r_d_0 = [0; 0; 0]; % initial velocity
r_i_0 = [0; 0; 0]; % initial position error
r_d_i_0 = [0; 0; 0]; % initial position error
xi_0 = [0; 0; 0]; % initial angle
xi_d_0 = [0; 0; 0]; % initial angular velocity
thrust_0 = (m + mp) * g; % initial thrust
tau_0 = [0; 0; 0]; % initial thrust
xi_p_0 = [0; 0]; % initial payload angle
xi_p_d_0 = [0; 0]; % initial payload angular velocity
charge_0 = 15840; % C, initial charge on the battery: 1 mAh = 3.6 C

state.r_start = r_0;
state.r_final = r_final;

%% modelResults.m

% variables of interest
n = length(T);

x = X(:, 1);
y = X(:, 2);
z = X(:, 3);

r = [x, y, z];

phi = X(:, 4);
theta = X(:, 5);
psi = X(:, 6);

xi = [phi, theta, psi];

x_d = X(:, 7);
y_d = X(:, 8);
z_d = X(:, 9);

r_d = [x_d, y_d, z_d];

phi_d = X(:, 10);
theta_d = X(:, 11);
psi_d = X(:, 12);

xi_d = [phi_d, theta_d, psi_d];

thrust = X(:, 19);

tau_phi = X(:, 20);
tau_theta = X(:, 21);
tau_psi = X(:, 22);

tau = [tau_phi, tau_theta, tau_psi];

phi_p = X(:, 23);
theta_p = X(:, 24);

xi_p = [phi_p, theta_p];

phi_p_d = X(:, 25);
theta_p_d = X(:, 26);

99

xi_p_d = [phi_p_d, theta_p_d];

charge = X(:, 27);

xp = zeros(n, 1);
yp = zeros(n, 1);
zp = zeros(n, 1);

xh = zeros(n, 1);
yh = zeros(n, 1);
zh = zeros(n, 1);

susp = [0; 0; r_susp];

for i=1:length(T)

 R = getRot([phi(i); theta(i); psi(i)]);

 r_h = R * susp;
 xh(i) = x(i) + r_h(1);
 yh(i) = y(i) + r_h(2);
 zh(i) = z(i) + r_h(3);

 r_l = R * (Lp * [cos(phi_p(i)) * sin(theta_p(i)); -sin(phi_p(i)); -cos(phi_p(i)) *

cos(theta_p(i))]);

 xp(i) = xh(i) + r_l(1);
 yp(i) = yh(i) + r_l(2);
 zp(i) = zh(i) + r_l(3);
end

r_h = [xh, yh, zh];
r_p = [xp, yp, zp];

% rp_d

%% overrideInput.m

function overrideInput(command)

global state;

L = bitand(command, 1);
R = bitand(command, 2);
U = bitand(command, 4);
D = bitand(command, 8);

if state.keys.L ~= L
 state.keys.L = L;
 state.prevKeys.L = true;
end

if state.keys.R ~= R
 state.keys.R = R;
 state.prevKeys.R = true;
end

if state.keys.U ~= U

100

 state.keys.U = U;
 state.prevKeys.U = true;
end

if state.keys.D ~= D
 state.keys.D = D;
 state.prevKeys.D = true;
end
end

%% path.m

function [x_d] = path(t, x)

global state;

F_sum = [0; 0; 0]; % sum of external forces
T_sum = [0; 0; 0]; % sum of external torques

[r, xi, r_d, xi_d, r_i, r_d_i, thrust, tau, xi_p, xi_p_d, charge] = getStates(x);

r_e = getPathAt(r) - r; % drives toward the next waypoint

R = getRot(xi); % rotation matrix based on the current angles

ctcp = R(3, 3); % cos(theta) * cos(phi), the projection onto the horizontal plane

% add thrust to the sum of forces F_ext
[F_sum, T_sum] = addLocalForce([0; 0; thrust], [0; 0; 0], R, F_sum, T_sum);

% add drag at the center of pressure
[F_sum, T_sum] = addGlobalForce(getDrag(r, r_d, state.Cd * state.area), state.cop, R,

F_sum, T_sum);

% add gravity at the center of gravity
% adjust distance if COG is off-center
[F_sum, T_sum] = addGlobalForce([0; 0; -state.m * state.g], [0; 0; 0], R, F_sum,

T_sum);

r_dd = 1 / state.m * F_sum; % acceleration

T_sum = T_sum + tau - cross(xi_d, state.I * xi_d);
xi_dd = state.iI * T_sum; % angular acceleration

% add payload effects if the mass exists
if state.mp ~= 0

 % implicit accelerations to feed into payload dynamics
 Fp_est = R * [0; 0; -state.mp * state.g];
 r_dd_est = (F_sum + Fp_est) / state.m;
 xi_dd_est = state.iI * (T_sum + cross([0; 0; state.r_susp], Fp_est));

 [xi_p_dd, localForceOnQuad] = getPayloadParams(R, r, r_d, r_dd_est, xi, xi_d,

xi_dd_est, xi_p, xi_p_d);
 [F_sum, T_sum] = addLocalForce(localForceOnQuad, [0; 0; state.r_susp], R, F_sum,

T_sum);

 % recalc for payload
 r_dd = 1 / state.m * F_sum; % acceleration

101

 xi_dd = state.iI * T_sum; % angular acceleration
else
 xi_p_dd = [0; 0];
end

gains = state.gains;

% PID position = desired acceleration
r_dd_des = gains.Kp_r * r_e + gains.Kd_r * -r_d + gains.Ki_r * r_i;
% modify the Z gain to include hover thrust, project onto horiz plane
r_dd_des(3) = state.g + ctcp * r_dd_des(3);
thrust_des = (state.m + state.mp) * r_dd_des(3); % desired thrust

mag = norm(r_dd_des);
if mag == 0
 mag = 1;
end

% use desired acceleration to find desired angles
% since the quad can only move via changing angles
xi_des = [
 asin(-r_dd_des(2) / mag / cos(xi(2)));
 asin(r_dd_des(1) / mag);
 0
];

mag = norm(xi_des);
if mag > state.maxAngle
 xi_des = xi_des / mag * state.maxAngle;
end

xi_e = xi_des - xi; % angle error

% PD angles = desired torque
tau_des = gains.Kp_xi * xi_e + gains.Kd_xi * -xi_d;
% torque limiter
tau_d = 20 * (tau_des - tau);

if thrust_des < state.thrust_min % limit to minimum thrust
 thrust_des = state.thrust_min;
end

if thrust_des > state.thrust_max
 thrust_des = state.thrust_max; % limit to maximum thrust
end

% thrust limiter
thrust_d = 16 * (thrust_des - thrust);

charge_d = -thrust / state.thrust_I_ratio; % current draw from motors/ESCs
% possibly also add current draw from sensors and controller

% ode45 output
x_d = [r_d; xi_d; r_dd; xi_dd; r_e; [zeros(3, 1)]; thrust_d; tau_d; xi_p_d; xi_p_dd;

charge_d];
end

%% saveCommands.m

save('commands.mat', 'commands');

102

%% saveInput.m

function commands = saveInput(commands, dt)

global state;

% L = 0x1, R = 0x2, U = 0x4, D = 0x8

% if inputs haven't changed, nothing to check
if ~state.prevKeys.L && ~state.prevKeys.R && ~state.prevKeys.U && ~state.prevKeys.D
 commands(end, 1) = commands(end, 1) + dt;
 return;
end

command = 0;

if state.keys.L
 command = bitor(command, 1);
end

if state.keys.R
 command = bitor(command, 2);
end

if state.keys.U
 command = bitor(command, 4);
end

if state.keys.D
 command = bitor(command, 8);
end

commands(end+1, :) = [dt, command];
end

%% vel.m

function [x_d] = vel(t, x)
%vel Follows a velocity profile

global state;

F_sum = [0; 0; 0]; % sum of external forces
T_sum = [0; 0; 0]; % sum of external torques

[r, xi, r_d, xi_d, r_i, r_d_i, thrust, tau, xi_p, xi_p_d, charge] = getStates(x);

r_d_e = state.profile(t) - r_d; % follow a velocity profile
r_e = state.r_start - r;

R = getRot(xi); % rotation matrix based on the current angles

ctcp = R(3, 3); % cos(theta) * cos(phi), the projection onto the horizontal plane

% add thrust to the sum of forces F_ext
[F_sum, T_sum] = addLocalForce([0; 0; thrust], [0; 0; 0], R, F_sum, T_sum);

% add drag at the center of pressure

103

[F_sum, T_sum] = addGlobalForce(getDrag(r, r_d, state.Cd * state.area), state.cop, R,

F_sum, T_sum);

% add gravity at the center of gravity
% adjust distance if COG is off-center
[F_sum, T_sum] = addGlobalForce([0; 0; -state.m * state.g], [0; 0; 0], R, F_sum,

T_sum);

r_dd = 1 / state.m * F_sum; % acceleration

T_sum = T_sum + tau - cross(xi_d, state.I * xi_d);
angle_dd = state.iI * T_sum; % angular acceleration

% add payload effects if the mass exists
if state.mp ~= 0

 % implicit accelerations to feed into payload dynamics
 Fp_est = R * [0; 0; -state.mp * state.g];
 r_dd_est = (F_sum + Fp_est) / state.m;
 xi_dd_est = state.iI * (T_sum + cross([0; 0; state.r_susp], Fp_est));

 [xi_p_dd, localForceOnQuad] = getPayloadParams(R, r, r_d, r_dd_est, xi, xi_d,

xi_dd_est, xi_p, xi_p_d);
 [F_sum, T_sum] = addLocalForce(localForceOnQuad, [0; 0; state.r_susp], R, F_sum,

T_sum);

 % recalc for payload
 r_dd = 1 / state.m * F_sum; % acceleration
 angle_dd = state.iI * T_sum; % angular acceleration
else
 xi_p_dd = [0; 0];
end

gains = state.gains;

% so PI(r_d) for xy and PID(r) for z
pi = gains.Kp_v * r_d_e + gains.Ki_v * r_d_i;
pid = gains.Kp_r * r_e + gains.Kd_r * -r_d + gains.Ki_r * r_i;

r_dd_des = [pi(1); pi(2); pid(3)];

r_e(1:2) = 0; % so xy integral doesn't accumulate

% modify the Z gain to include hover thrust, project onto horiz plane
r_dd_des(3) = state.g + ctcp * r_dd_des(3);
thrust_des = (state.m + state.mp) * r_dd_des(3); % desired thrust

mag = norm(r_dd_des);
if mag == 0
 mag = 1;
end

% use desired acceleration to find desired angles
% since the quad can only move via changing angles
xi_des = [
 asin(-r_dd_des(2) / mag / cos(xi(2)));
 asin(r_dd_des(1) / mag);
 0
];

104

mag = norm(xi_des);
if mag > state.maxAngle
 xi_des = xi_des / mag * state.maxAngle;
end

angle_e = xi_des - xi; % angle error

% PD angles = desired torque
tau_des = gains.Kp_xi * angle_e + gains.Kd_xi * -xi_d;
% torque limiter
tau_d = 20 * (tau_des - tau);

if thrust_des < state.thrust_min % limit to minimum thrust
 thrust_des = state.thrust_min;
end

if thrust_des > state.thrust_max
 thrust_des = state.thrust_max; % limit to maximum thrust
end

% thrust limiter
thrust_d = 16 * (thrust_des - thrust);

charge_d = -thrust / state.thrust_I_ratio; % current draw from motors/ESCs
% possibly also add current draw from sensors and controller

% ode45 output
x_d = [r_d; xi_d; r_dd; angle_dd; r_e; r_d_e; thrust_d; tau_d; xi_p_d; xi_p_dd;

charge_d];
end

105

REFERENCES

[1] C. J. Adams, “Modeling and control of helicopters carrying suspended loads”, The-
sis, 2012.

[2] Y. Feng, C. A. Rabbath, and C.-Y. Su, “Modeling of a micro uav with slung pay-
load”, in Handbook of Unmanned Aerial Vehicles, K. P. Valavanis and G. J. Vacht-
sevanos, Eds. Dordrecht: Springer Netherlands, 2015, pp. 1257–1272, ISBN: 978-
90-481-9707-1.

[3] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learn-
ing swing-free trajectories for uavs with a suspended load”,
2013 Ieee International Conference on Robotics and Automation (Icra), pp. 4902–
4909, 2013.

[4] M. Hehn and R. D’Andrea, “A flying inverted pendulum”, in
IEEE International Conference on Robotics and Automation, pp. 763–770.

[5] D. Mellinger, N. Michael, and V. Kumar, “Trajectory genera-
tion and control for precise aggressive maneuvers with quadrotors”,
The International Journal of Robotics Research, vol. 31, no. 5, pp. 664–674,
2012.

[6] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation : Safe and efficient
load manipulation with aerial robots”, IEEE Robotics and Automation Magazine,
vol. 19, no. 3, pp. 69–79, 2012.

[7] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-free maneu-
vers of a quadrotor with suspended payload: A dynamic programming approach”, in
IEEE International Conference on Robotics and Automation, pp. 2691–2697.

[8] D. Fusato, G. Guglieri, and R. Celi, “Flight dynamics of an articulated rotor he-
licopter with an external slung load”, Journal of the American Helicopter Society,
vol. 46, no. 1, pp. 3–13, 2001.

[9] A. L. Salih, M. Moghavvemi, H. A. F. Mohamed, and K. S. Gaeid, “Flight pid con-
troller design for a uav quadrotor”, Scientific research and essays, vol. 5, no. 23,
pp. 3660–3667, 2010.

[10] D. Kaya and A. T. Kutay, “Aerodynamic modeling and parameter estimation of a
quadrotor helicopter”.

106

[11] A. A. Mian and W. Daobo, “Modeling and backstepping-based nonlinear control
strategy for a 6 dof quadrotor helicopter”, Chinese Journal of Aeronautics, vol. 21,
no. 3, pp. 261–268, 2008.

[12] J. Li and Y. Li, “Dynamic analysis and pid control for a quadrotor”, in
IEEE International Conference on Mechatronics and Automation, pp. 573–578.

[13] B. Erginer and E. Altug, “Modeling and pd control of a quadrotor vtol vehicle”,
2007 Ieee Intelligent Vehicles Symposium, Vols 1-3, pp. 1177–1182, 2007.

[14] C. Hancer, K. T. Oner, E. Sirimoglu, E. Cetinsoy, and M.
Unel, “Robust hovering control of a quad tilt-wing uav”,
Iecon 2010 - 36th Annual Conference on Ieee Industrial Electronics Society,
2010.

[15] Y. M. Al-Younes, M. A. Al-Jarrah, and A. A. Jhemi, “Lin-
ear vs. nonlinear control techniques for a quadrotor vehicle”,
7th International Symposium on Mechatronics and its Applications, 2010.

[16] C. de Crousaz, F. Farshidian, M. Neunert, and J. Buchli, “Unified motion con-
trol for dynamic quadrotor maneuvers demonstrated on slung load and rotor fail-
ure tasks”, 2015 Ieee International Conference on Robotics and Automation (Icra),
pp. 2223–2229, 2015.

[17] Y. Feng, C. A. Rabbath, S. Rakheja, and C.-Y. Su, “Adaptive controller design for
generic quadrotor aircraft platform subject to slung load”, pp. 1135–1139.

[18] J. Vaughan, D. Kim, and W. Singhose, “Control of tower cranes with double-
pendulum payload dynamics”, IEEE Transactions on Control Systems Technology,
2010.

[19] K. Kozak, W. Singhose, and I. Ebert-Uphoff, “Perfor-
mance measures for input shaping and command generation”,
Journal of Dynamic Systems, Measurement, and Control, vol. 128, no. 3, p. 731,
2006.

[20] S. Sadr, S. A. A. Moosavian, and P. Zarafshan, “Dynamics modeling and control of
a quadrotor with swing load”, Journal of Robotics, vol. 2014, pp. 1–12, 2014.

[21] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Autonomous navigation
and exploration of a quadrotor helicopter in gps-denied indoor environments”, 2009.

[22] S. Mintchev, L. Daler, G. L’Eplattenier, L. Saint-Raymond, and D.
Floreano, “Foldable and self-deployable pocket sized quadrotor”, in
2015 IEEE International Conference on Robotics and Automation (ICRA 2015).

107

[23] O. Smith, Feedback control systems. McGraw-Hill Book Co., Inc., 1958.

[24] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vi-
bration”, Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 1,
pp. 76–82, 1990.

108

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Quadrotor model
	Input shaping
	Folding mechanism
	Thesis contributions
	Thesis outline

	Quadrotor and Payload Dynamics
	Quadrotor dynamics
	Linear dynamics
	Rotational dynamics
	Dynamics in simulation

	Payload dynamics
	Payload dynamics derivation
	Torque equilibrium
	Payload EOM

	Model verification
	Suspension offset
	Stability and validity of the model
	Simplified models

	Feedback Control of Quadrotors with Suspended Payloads
	Feedback control
	Position control
	Limitations to position control
	Velocity control
	Limitations to velocity control
	Manual control
	Attitude control
	Limitations to attitude control

	Outer-loop control with attitude tracking
	Manual control simulation algorithm

	Input Shaping Control of Payload Swing
	Introduction to input shaping
	Input shaping applications
	Robust input shaping
	Disadvantages of input shaping
	Oscillation analysis
	ZV robustness

	Quadrotor design
	Mechanical design
	Frame
	Folding mechanism
	Motors
	Batteries
	Electronic speed controllers
	Microcontroller
	Sensors
	Design challenges

	Future Work and Summary
	Future work
	Summary

	MATLAB code for simulations
	References

