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SUMMARY 

 

Simulating complex interactions at different length scales of a hierarchical 

material system is essential to multi-scale modelling techniques. Such models, however, 

need reliable information on the effective properties measured at different length scales 

(i.e., spanning from the macroscale to the microscale constituents). This dissertation 

presents new protocols for estimating these multiscale properties from the indentation 

stress-strain curves measured using recently developed spherical indentation protocols. 

More specifically, protocols are developed to extract the homogenized (bulk) properties 

(e.g., uniaxial yield strength and hardening rate) at the macroscale. At the microscale, 

new protocols are formulated to extract single crystal elastic-plastic parameters (e.g., 

elastic stiffness constants and initial slip resistance) from nanoindentation measurements. 

All of the new protocols will be validated using a finite element model of the spherical 

indentation, used here as a surrogate for the actual experiment. The protocols are also 

demonstrated on a range of materials, for which experimental measurements have been 

published in prior literature.  

 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Integration of advanced material systems into most engineering applications 

requires a detailed understanding of the deformation behavior of such materials. 

Successful integration requires simulating complex interactions at different length scales. 

Such models, however, need reliable information on the effective properties measured at 

different length scales (i.e. spanning from the macroscale to the microscale constituents) 

as illustrated in Figure 1.1. 

 

 

  

 

 The overall performance characteristics of such material systems are typically 

measured under uniaxial loading conditions such as simple tension or simple 

Figure 1.1. Illustration of the hierarchical material structure and its integration 

into structural applications requires multi-scale models. 
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compression (ASTM, 2015).  However, testing methods for extracting the local 

properties from these individual microscale constituents are still in developmental stages 

(Uchic et al., 2004; Zhang et al., 2006). Knowledge of homogenized properties (e.g., 

uniaxial yield strength) as well as local properties (e.g., grain-scale elastic-plastic 

material constant) at different length scales is critical to the formulation and validation of 

physics-based multiscale materials models (Groh et al., 2009; Panchal et al., 2013; Roters 

et al., 2010). 

 Indentation is a versatile tool for measuring the mechanical properties from small 

material volumes (Cordill et al., 2009; Field and Swain, 1993; Li and Bhushan, 2002; 

Oliver and Pethica, 1989; Oliver and Pharr, 1992). The technique has been used widely in 

the past to determine the elastic modulus and hardness of the sample material from the 

unloading segment of the load-displacement data, which is purely elastic. Kalidindi et al. 

(Kalidindi and Pathak, 2008; Pathak et al., 2008; Pathak et al., 2009) recently developed 

a novel approach to convert load-displacement data measured during the initial loading 

segments in spherical nanoindentation into more meaningful indentation stress-strain 

(ISS) curves. The new data analysis procedure reliably captures the local elastic, yield, 

and post-elastic behavior during the deformation process for various material systems. 

With this new characterization technique, we are now in a position to extract elastic-

plastic (isotropic and anisotropic) material properties required for multi-scale modelling.  

 In this context, spherical nanoindentation provides a new opportunity to deduce 

the constitutive models that govern the deformation behavior of materials. A large 

number of analytical and numerical approaches employed over the last few decades 

reveal that the interpretation of the indentation response is not a straightforward task, and 
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requires careful treatment. It is imperative to recognize that the stress-strain fields 

realized in spherical indentation test and a uniaxial test (e.g., simple compression or 

tension) are fundamentally different. In particular, the stress fields in the indentation test 

are highly heterogeneous compared to uniaxial loading conditions and present a 

significant challenge to the recovery of the physical material properties.  

 Previous characterization studies in using spherical indentation were mainly 

focused on the extraction of meaningful indentation stress-strain curves from small 

material volumes. However, these previous investigations did not resolve the relevant 

elastic-plastic properties used in physics-based multi-scale material models. 

Nanoindentation analysis protocols coupled with a suitable finite element model have the 

potential to resolve the elastic-plastic properties of interest in multi-scale material model 

theories. 

 The objective of this dissertation is to develop novel protocols for estimating 

homogenized (macroscale) and local (microscale) elastic-plastic properties of 

polycrystalline sample material using spherical nanoindentation. At the macroscale, 

protocols are formulated to predict homogenized properties (i.e. uniaxial yield strength 

and hardening rate) using isotropic J2 flow theory of plasticity. This is done by 

correlating ISS response to uniaxial stress-strain (USS) response. To understand the 

macroscale response of a polycrystalline sample, one also needs to understand the 

microscale response. At the microscale, the deformation behavior depends on the local 

constituent details such as crystal orientation and the elastic-plastic properties (e.g., 

elastic stiffness constants, initial slip resistance, and initial hardening rates) of the single 

crystal. Novel protocols are formulated to estimate these single crystal elastic-plastic 
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parameters using indentation experimental observation coupled with finite element 

models. The merits of the proposed approach in this work will be demonstrated with a 

specific case study on as-cast polycrystalline sample. 

 The dissertation is structured as follow. Chapter 2 briefly reviews the 

tools/techniques utilized throughout the thesis. Since spherical nanoindentation technique 

forms the basis of this work, the chapter begins with a review of the current 

nanoindentation analyses protocols of extracting mechanical properties and converting 

load-displacement curves to indentation stress-strain curves. In Chapter 3, protocols are 

developed to address the longstanding problem of recovering macroscale, uniaxial 

mechanical properties from instrumented indentation experiments, with the central 

challenge being the lack of validated protocols for converting indentation stress-strain 

values to equivalent values in uniaxial stress states such as simple compression of an 

isotropic material system following a J2 flow theory. In Chapter 4 and Chapter 5, 

protocols are developed to extract microscale elastic-plastic properties. More specifically, 

in Chapter 4 a two-step inverse methodology is developed to estimate the single crystal 

elastic stiffness parameters for polycrystalline samples using spherical nanoindentation 

and orientation measurements from electron backscattered diffraction (EBSD) combined 

with FE simulations. The accuracy and viability of the approach were demonstrated for 

an as-cast cubic polycrystalline Fe-3% Si sample. In Chapter 5, an application of the two-

step procedure developed in chapter 4 is demonstrated to estimate the average slip 

resistance in a cubic polycrystalline metal sample from spherical nanoindentation and 

lattice orientation measurements. The validity of the approach is demonstrated for 

annealed Fe-3% Si using measurements published in prior literature. Chapter 6 
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summarizes the dissertation and includes possible directions for future research 

endeavors.  
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CHAPTER 2 

BACKGROUND 

 

 Development of physics-based multi-scale materials model with excellent 

predictive capabilities is largely hampered by lack of methods to characterize materials at 

multiple length scales of interest. One approach explored in literature involves the 

fabrication of micro-pillar tests (Li et al., 2011; Shan et al., 2008; Uchic et al., 2004) 

using focused ion-beam and deforming the micro-pillar in compression. Preparation of 

micro-pillar requires intricate fabrication and handling which comes with certain 

challenges such as ion beam damage, misalignment of the pillar under compression – 

leads to a non-uniform cross section, etcetera. This approach requires access to highly 

sophisticated equipment and is not particularly well suited for extracting the local elastic-

plastic property of the microscale constituents. In contrast to micro-pillar testing, 

nanoindentation can provide mechanical information at different length scales at 

significantly lower effort and cost. Traditionally, indentation test has been one of the 

most common technique for measuring hardness properties of materials at large effective 

strains using sharp indenters. Although sharp indenters are effective in measuring the 

properties at finite plastic strains, the inherent high stress concentration at the tip is a 

major impediment in studying the elastic and elastic-plastic behavior of a material which 

makes the spherical indenters a more likely option for such studies.  
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2.1 Spherical nanoindentation 

 

  

 

 Spherical nanoindentation data analyses procedures are largely based on Hertz’s 

theory (H., 1896; Johnson and Johnson, 1987; Willis, 1966), which assumes frictionless, 

elastic, contact between two isotropic quadratic surfaces. The main result of this theory 

can be expressed as 

 𝑃 =
4

3
𝐸𝑒𝑓𝑓𝑅

𝑒𝑓𝑓

1
2 ℎ𝑡

3
2, 𝑎 =  (

3𝑃𝑅𝑒𝑓𝑓

4𝐸𝑒𝑓𝑓
)

1
3⁄

 (2.1) 

where 𝑎 is the contact radius at the indentation load 𝑃 and the penetration depth, ℎ𝑡. 

ℎ𝑡 = ℎ𝑒 for purely elastic indentation. 𝑅𝑒𝑓𝑓 and 𝐸𝑒𝑓𝑓 denote the effective radius and the 

effective indentation modulus of the sample and the indenter system, defined as 

 
1

𝐸𝑒𝑓𝑓
=

1 − 𝜐𝑠
2

𝐸𝑠
+

1−𝜐𝑖
2

𝐸𝑖
,            

1

𝑅𝑒𝑓𝑓
=

1

𝑅𝑠
+

1

𝑅𝑖
  (2.2) 

In Eq. (2.2), 𝐸 and 𝜈 denote the Young’s modulus and Poisson’s ratio of the indenter 

(subscript i) and the specimen (subscript s), and 𝑅 denotes the radius. In the purely elastic 

indentation of a perfectly flat surface, 𝑅𝑒𝑓𝑓 = 𝑅𝑖. Eq. (2.2) is a transformation of the 

elastic indentation response between the two isotropic, quadratic deformable bodies (i.e. 

Figure 2.1. Demonstrate the transformation of contact between two quadratic 

surface to a case of indenting a flat deformable surface by a single quadratic 

surface. 
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the sample and the indenter) to the elastic response in the case of contact between a flat 

isotropic deformable sample by a spherical indenter as illustrate in Figure 2.1. 

 The extraction of macroscale and microscale material properties using spherical 

nanoindentation (e.g. modulus, uniaxial yield strength) is discussed next. 

  

2.1.1 Extracting macroscale properties 

 Bulk mechanical properties of materials are typically measured under uniaxial 

loading conditions such as simple tension or simple compression (ASTM, 2015). 

However, testing methods for extracting these properties from exceedingly small sub-

volumes of a sample requires local characterization technique such as indentation. As 

mentioned earlier, indentation test has been one of most common techniques for 

measuring macroscale (i.e. hardness) properties of materials at large strains. These 

hardness measures were found to be invaluable in quickly assessing the resistance to 

plastic deformation in rage of materials. In spite of these advantages, hardness 

measurements continue to be used mainly as a comparative measure since hardness 

numbers are sensitive to indenter shape, indenter size, and the imposed load level. 

 As a natural extension of the hardness measurement, Tabor (Tabor, 1951) 

recognized the need to standardize the hardness measurements and introduced the 

concept of normalized indentation stress-strain curves (ISS). Tabor recorded the hardness 

measurements on copper and steel using spherical indenter at different loads and 

aggregating them into a single ISS curve for each material. Tabor assumes indentation 

stress (Meyer’s hardness) as load, 𝑃 normalized by the projected contact area, 𝐴. The 



 9 

projected contact area was determined by measuring the impression left after unloading 

the indenter. Then, the ISS curves can be defined as 

 𝜎𝑖𝑛𝑑 =
4𝐸𝑒𝑓𝑓

3𝜋
𝜀𝑖𝑛𝑑, 𝜎𝑖𝑛𝑑 =

𝑃

𝜋𝑎2
, 𝜀𝑖𝑛𝑑 =

𝑎

𝑅𝑒𝑓𝑓
.  (2.3) 

The linear relationship between stress and strain in elastic indentation has prompted many 

studies (Basu et al., 2006; Field and Swain, 1993; Field and Swain, 1995; Herbert et al., 

2001; Swain, 1998) to adopt some variant of 𝑎
𝑅𝑒𝑓𝑓

⁄  as a measure of indentation strain 

for more general case of elastic-plastic indentation. 

 

 

  

 Following the ISS definition defined in Eq. (2.3), Tabor was able to empirically 

correlate experimentally measured value of indentation flow stresses and strains on 

annealed copper and mild steel to a uniaxial test of the same materials. More specifically, 

Tabor showed a reasonable agreement between ISS and uniaxial stress-strain curves 

Figure 2.2. Tabor correlate indentation measurements to uniaxial stress-strain 

response for mild steel and annealed copper taken from Tabor, 1951 
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when the uniaxial true stress is scaled by a factor of 2.8 and the uniaxial true strain by a 

factor of 0.2 (Tabor, 1951) as shown in Figure 2.2. The factor of 2.8 is defined as 

constraint factor as it captures the effect of the higher hydrostatic pressure associated to 

the indentation test. Numerous numerical/analytical studies (Hill, 1948; Hill et al., 1947; 

Hill et al., 1989; Ishlinsky, 1944; Johnson, 1987; Johnson and Johnson, 1987) support the 

scaling of indentation stress-strain curves to extract the uniaxial macroscale properties 

using Tabor’s approach. However, the scaling relationship is constraint to a fully plastic 

indentation defined by a specific range of 𝑎
𝑅𝑒𝑓𝑓

⁄  (Herbert et al., 2001). Also, the 

definition of indentation strain as 𝑎/𝑅𝑒𝑓𝑓 lacks any physical interpretation as a measure 

of strain. This is because strain should be fundamentally interpreted as a ratio of the 

change in length over the initial length of a selected line segment in region of interest in 

the sample. 

 Tabor’s work has stimulated numerous theoretical studies aimed at correlating the 

elastic-plastic stress-strain responses in indentation and simple compression. The 

theoretical treatment for the perfectly-plastic deformation imposed by a rigid frictionless 

indenter was first explored by Hill (Hill et al., 1947) using slip-line field approach and 

assuming plane strain deformation (note that the real deformation mode in indentation is 

far from this assumption). This approach, applied to the rigid plastic deformation of a flat 

sample with a wedge indenter, produces the widely cited result that the average pressure 

under the (wedge) indenter being approximately three times the flow stress in a uniaxial 

test. Subsequently, Ishlinksy (Ishlinsky, 1944) performed slip-line field analysis of a 

spherical contact and reported that the contact pressure for a perfectly plastic contact (no 

hardening) is between 2.61 and 2.84. In the slip-line analyses, the volume of material 



 11 

displaced by the indenter is accounted by the upward flow of the material as shown in 

Figure 2.3 (i.e. the material bounded in the region ABCDE flows outward and upward as 

the load is imposed on the indenter). It should be noted that the imposed plane-strain 

boundary conditions in these theoretical approaches naturally yields an upper bound in 

determining the constraints factor (Yu and Blanchard, 1996). 

 

  

 

An alternative approach to the analysis of an elastic-plastic indentation was 

suggested by Bishop et al. (Bishop et al., 1945), and was further developed extensively 

by Johnson (Johnson, 1987). The spherical cavity model (Fig. 2.4) proposed by Johnson 

assumes that the surface of the indenter in contact is encased in a hemi-spherical core that 

essentially comprises both the rigid indenter and the surrounding material. The core is 

assumed to be in a hydrostatic stress state (i.e., the core acts as an inflating spherical 

cavity). Outside the core, it is assumed that the stress and displacement are radially 

symmetric, same as in an infinite elastic perfectly-plastic body containing a spherical 

cavity under pressure. The stress and displacement fields are computed invoking two 

Figure 2.3. Schematics of slip-lines (lines of maximum shear stress) under the 

indenter (Fischer-Cripps, 2011). 
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conditions at the interface between the core and the elastic-plastic zone (Johnson, 1987): 

(i) the hydrostatic pressure in the core must be equal the radial component of stress in the 

external zone, and (ii) neglecting the compressibility in the core, the displacement of 

points lying on the interface during penetration must accommodate the volume of 

material displaced by the indenter.  

 

 

 

 

 

The spherical cavity model of indentation predicts that the mean pressure at initial yield 

(deviation from Hertz theory) is 1.1 times the uniaxial flow stress, and at the fully plastic 

state, it would reach around 3.0 times the uniaxial flow stress. Although the spherical 

cavity model allows imposing large plastic deformation on the sample, it neglects the 

upheaval or “pile-up” behavior of the material around an indenter. Also, the model 

assumes uniform expansion of the material around the core as in the case of spherical 

pressurized void in an infinite elastic-plastic space. These assumptions severely limit the 

Figure 2.4. Schematic of spherical cavity model. Indenter is encased by a 

hydrostatic core of radius 𝒂𝒄 which is surrounded by a hemispherical plastic zone 

of radius 𝒄. An increment in the displacement of indenter, 𝒅𝒉 results in a uniform 

expansion of the core 𝒅𝒂. The volume displaced by the indenter is accommodated 

by radial movement of the material 𝒅𝒖(𝒓) at the boundary between the core and 

the plastic zone (Fischer-Cripps, 2011) 
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utility of this approach. Moreover, numerical studies (Fischer-Cripps, 1997) showing the 

evolution of plastic zone beneath the indenter also shows significant deviation in the 

contours of maximum shear stress from the expanding cavity model as shown in Fig. 2.5. 

 

  

 

In practice, it is very difficult to compute theoretically the contact stresses in an 

elastic-plastic indentation, because the shape and the size of the elastic-plastic boundary 

cannot be captured adequately in idealized simple geometries. This has led to the 

development of various numerical methods to the indentation simulation problem. One of 

the first numerical models for spherical indentation was established by Hill (Hill et al., 

1989) using the infinitesimal deformation theory of plasticity. In this model, Hill invokes 

Figure 2.5. Comparing contours of maximum shear stress using FE model and 

expanding cavity model of elastic-plastic indentation response for mild steel 

material, E/Y = 550. 
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geometrical-similarity in the scaling of contact variables as a function of penetration 

depth with the spherical indenter approximated by a paraboloid of revolution. Hill’s 

model is in excellent agreement with Tabor’s findings that the representative indentation 

strain is 0.2𝑎/𝑅𝑖 and that the average pressure is 2.8 times the uniaxial flow stress in 

tension. It should be noted that Hill’s model makes the following simplifying 

assumptions: (i) the constitutive behavior of the indented half-space is governed by a 

simple power-law between suitable measures of stress and strain, and the elastic 

contribution to the deformation is neglected, (ii) the contact geometry remains constant 

throughout the indentation, and (iii) the diameter of the indenter is very large compared 

to the indentation depth leading to infinitesimal plastic strain imposed on the material. In 

spite of these simplifying assumptions, it is remarkable that the predictions of the 

numerical model are in excellent agreement with Tabor’s experiments.  

In an effort to extend the applicability of Hill’s model (Hill et al., 1947) while 

capturing the complex heterogeneous deformation field under the indenter, several recent 

studies have resorted to finite element models (Beghini et al., 2006; Bhattacharya and 

Nix, 1988; Park and Pharr, 2004; Taljat et al., 1998). A majority of these studies report a 

value of around 3.0 for the constraint factor for an elastic-perfectly plastic response. 

However, the ISS curves produced by these models show unusually large elastic-plastic 

transitions with high levels of apparent strain hardening (note that the materials 

constitutive behavior was assumed to be elastic-perfectly plastic in these models). In a 

recent study Donohue et al. (Donohue et al., 2012) pointed out that these abnormal 

features of the ISS curves arise because of the use of specific definitions of the contact 
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radius and the indentation strain measures that are completely inconsistent with Hertz’s 

theory.  

 

2.1.2 Extracting microscale properties 

 Instrumented indentation (Doerner and Nix, 1986; Oliver and Pharr, 1992) 

exhibits tremendous potential as a low cost, high throughput, approach because of its 

capability to probe quickly multiple local volumes in a small sample. Hence, indentation 

techniques have been employed successfully to characterize the local mechanical 

responses in individual grains in a polycrystalline sample (i.e., at length scales 

significantly lower than typical grain sizes). Although one can measure directly the local 

response at selected locations in a sample, one still needs a sophisticated strategy to 

extract the values of the elastic-plastic parameters of interest from the measured load-

displacement curves. The general approach for addressing this challenge has been to 

employ optimization strategies that minimize a suitably defined error between the 

measurements (typically the load-displacement curves) and the corresponding predictions 

from a finite element (FE) simulation of the indentation experiment, by fine-tuning the 

model parameters of interest (such as slip resistances aka critical resolved shear stress). 

Examples of such efforts have included the extraction of the average slip resistance value 

for single crystal copper (Liu et al., 2008; Zaafarani et al., 2006) and the hardening rate 

for low-alloy steels (Dao et al., 2001; Kucharski and Mróz, 2001). Since the entire 

elastic-plastic transition occurs over a very short regime in the indentation load-

displacement curve (Kalidindi and Pathak, 2008; Pathak and Kalidindi, 2015), it is 
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generally very difficult to identify this regime precisely on the measured load-

displacement curve as shown in Figure 2.6. 

 

 

 

 

 

Consequently, values of the slip parameters estimated using such approaches are 

generally not robust (i.e., very sensitive to small changes in the protocols employed). 

Indeed, it is much more practical and insightful to compare the indentation stress-strain 

curves instead of the load-displacement curves in calibrating the material constitutive 

laws (Donohue et al., 2012). In this regard, the recently developed spherical 

nanoindentation data analysis protocols have shown tremendous potential (Kalidindi and 

Pathak, 2008; Pathak and Kalidindi, 2015) in converting the load-displacement curves to 

indentation stress-strain curves. These new data analysis protocols discussed in the 

following section enables to convert the load-displacement data obtained during spherical 

nanoindentation into a meaningful indentation stress-strain (ISS) curve, which exhibits a 

clear initial elastic regime followed by an elastic-plastic transition (Kalidindi and Pathak, 

2008; Pathak et al., 2008; Pathak et al., 2009). 

Figure 2.6. Shows the elastic-plastic transition occurs over a short regime on a 

load-displacement curve and illustrate the need to convert load-displacement 

curve to indentation stress-strain curve for clear identification of elastic, elastic-

plastic transition and post-elastic behavior. 
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2.1.3 Indentation stress-strain measures 

 The central issues in recovering reliable indentation stress-strain curve from 

indentation load-displacement curve revolves around the definition of indentation stress 

and indentation strain. As mentioned earlier, commonly use definition of indentation 

stress and indentation strain, Eq. (2.3) lack physical significance. Recently, a more 

physical definition of indentation stress and indentation strain was proposed (Kalidindi 

and Pathak, 2008) defined as 

 𝜎𝑖𝑛𝑑 = 𝐸𝑒𝑓𝑓𝜀𝑖𝑛𝑑, 𝜎𝑖𝑛𝑑 =
𝑃

𝜋𝑎2
, 𝜀𝑖𝑛𝑑 =

4

3𝜋

ℎ𝑡

𝑎
≈

ℎ𝑡

2.4𝑎
 . (2.4) 

Note that Eq. (2.4) is essentially a rearrangement of Hertz’s theory expressed in Eq. (2.1). 

This particular rearrangement suggests the use of the ratio ℎ𝑡/𝑎 as the definition of 

indentation strain. The pre-multiplier, 4/3𝜋 in the definition of indentation strain was 

justified by noting that 2.4𝑎 corresponds to the depth of the indentation zone (Donohue et 

al., 2012). This definition of indentation strain allows interpretation of strain measure in 

the classical sense as the change in length per unit length by idealizing the deformation 

under indenter as being equivalent to compressing by ℎ𝑡 (total indentation depth) a 

cylindrical sample of radius 𝑎 and height 2.4𝑎. 
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 The definition of ISS curves, Eq. (2.4) requires precise information about the 

contact radius, 𝑎. Estimation of the contact radius (see Eq. (2.1)) needs an estimate of the 

effective radius. Note that the contact radius as well as the effective radius evolves 

continuously once plastic deformation initiates under the indenter. In simulations, contact 

radius can only be estimated from the unloading segments (see Figure 2.7) which are 

presumably purely elastic and enables application of the Hertz’s theory. Each purely 

elastic unloading segment satisfies the following modified relationship of Eq. (2.1) 

 ℎ𝑡 − ℎ𝑟 = (
3𝑃

4𝐸𝑒𝑓𝑓√𝑅𝑒𝑓𝑓

)

2
3⁄

 (2.5) 

A least-fit between ℎ𝑡 and 𝑃2/3 for the data in each of the unloading segment produces 

the best estimate of 𝑅𝑒𝑓𝑓 and the residual depth, ℎ𝑟 that corresponds to the peak load. 

Now, contact radii at the corresponding depth can be computed using Eq. (2.1). The 

corresponding indentation stress and indentation strain can be tabulated using Eq. (2.4). 

Figure 2.7. Load-displacement response from FE simulations. Unloading segment 

represents purely elastic behavior (i.e. each segment can be analyzed using 

Hertz’s theory. 
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 Donohue et al. (Donohue et al., 2012) critically evaluated the indentation stress-

strain definitions proposed by Tabor (Tabor, 1948, 1951), Field and Swain’s (Field and 

Swain, 1995) and Kalidindi and Pathak (Kalidindi and Pathak, 2008) using finite element 

model of indentation for isotropic elastic-plastic material response. It was found that the 

protocols developed by Kalidindi and Pathak yields more realistic results. For a rigid 

perfectly plastic response, as expected the indentation stress-strain response shows no 

hardening behavior using the Kalidindi and Pathak approach; whereas, other ISS 

protocols shows significant strain hardening as shown in Fig. 2.8. The study concludes 

that the contact radius estimated using the Kalidindi and Patahak’s protocols are 

consistent with the Hertz’s theory (Donohue et al., 2012). 
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 The recently developed ISS protocols is further used to capture the anisotropic 

elastic-plastic deformation behavior in polycrystalline Fe-3% Si (Kalidindi and Pathak, 

2008). The protocols were able to record the changes in the indentation modulus and 

yield strength dependence on the lattice orientation as Figure 2.9. 

Figure 2.8. ISS curves for isotropic elastic-perfectly plastic material from FEM 

simulation using different definitions of contact radius and indentation strain 

taken from Donohue et al. 2012. 
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 Further, the ISS curves clearly record the increase in the indentation yield strength 

after imposing a macroscopic deformation of 30% and 80%. It is shown that the 

indentation yield strength measured on the ISS curve is sensitive to subtle variation in the 

local crystal orientation and dislocation density in the primary indentation zone. 

Indentation stress-strain curves has the capability of quantifying the heterogeneous 

deformation behavior across the grain boundary regions in polycrystalline high-purity 

aluminum as shown by Vachhani (Vachhani et al., 2016). The spherical indentation 

studies on Fe-3% Si and Al demonstrated that microstructure-property relationship can be 

determined from ISS curves. 

  

a) 

b) c) 

Figure 2.9. Spherical nanoindentation measurements showing the grain-scale 

elastic-plastic anisotropic. a) ISS curves for Grain #1 and Grain #2. b) 

Orientation imaging map (OIM) and its corresponding inverse pole figure (IPF).   
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CHAPTER 3 

CORRELATION OF INDENTATION STRESS-STRAIN CURVES TO 

UNIAXIAL STRESS-STRAIN CURVES 

  

 The stress-strain fields realized in spherical indentation tests are highly 

heterogeneous, and present a significant challenge to the recovery of bulk stress-strain 

response such as those measured in simple compression tests performed on sample with a 

uniform cross section in the gauge section. In this chapter, I critically explore the 

correlations between indentation stress-strain curves and the simple compression stress-

strain curves as illustrated in Figure 3.1 using finite element model of indentation for 

isotropic elastic-plastic materials obeying J2 flow theory. 

 

 

 

Figure 3.1. Comparing and correlating the stress-state realized in indentation 

and uniaxial compression tests. 
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3.1 Introduction 

 Bulk mechanical properties of materials are typically measured under uniaxial 

loading conditions such as simple tension or simple compression (ASTM, 2015). 

However, testing methods for extracting the local properties from exceedingly small sub-

volumes of a sample and relate to macroscale properties are still in developmental stages 

(Gianola and Eberl, 2009; Shan et al., 2008; Uchic et al., 2004; Zhang et al., 2006). 

 The central issues in the extraction of ISS curves and their correlation to simple 

compression stress-strain curves revolve around the definitions of the indentation stress 

and indentation strain measures and their correspondence with stress and strain measures 

used in simple compression tests. Indentation stress and strain definition stems from 

Hertz’s theory (Hertz, 1896) for frictionless contact between two isotropic elastic solids 

with spherical surfaces, which may be described as 

 𝑃 =
4

3
𝐸𝑒𝑓𝑓𝑅

𝑒𝑓𝑓

1
2 ℎ𝑒

3
2, 𝑎 =  √𝑅𝑒𝑓𝑓ℎ𝑒 (3.1) 

where 𝑎 is the contact radius at the indentation load, 𝑃 and ℎ𝑒 is the elastic penetration 

depth. 𝑅𝑒𝑓𝑓 and 𝐸𝑒𝑓𝑓 denotes the effective radius and the effective modulus of the 

indenter and the specimen system. In order to convert the measured load-displacement 

data into ISS curve, one may define the indentation stress and indentation strain such that 

Hertz’s theory, Eq. (3.1), transforms into a linear relationship as 

 𝜎𝑖𝑛𝑑 =
4𝐸𝑒𝑓𝑓

3𝜋
𝜀𝑖𝑛𝑑, 𝜎𝑖𝑛𝑑 =

𝑃

𝜋𝑎2
, 𝜀𝑖𝑛𝑑 =

𝑎

𝑅𝑒𝑓𝑓
. (3.2) 

Eq. (3.2) has prompted many researchers to adopt some variant of 𝑎/𝑅𝑒𝑓𝑓 as a measure 

of indentation strain for the more general case of elastic-plastic indentation. In this 

regard, it is important to note that Eq. (3.2) is strictly valid only for elastic indentations. 
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As a specific example, a majority of the studies in the literature (Basu et al., 2006; Field 

and Swain, 1993; Field and Swain, 1995; Herbert et al., 2001; Swain, 1998) have 

employed the definition of indentation strain as 𝑎/𝑅𝑖  for elastic-plastic indentation. As 

mentioned earlier, a number of recent studies have utilized this measure of indentation 

strain to correlate indentation stress-strain response to uniaxial stress-strain response of 

the same material. More specifically, the elastic-plastic transition in indentation is 

observed to initiate at 1.1𝜎𝑦 and plateau at 3𝜎𝑦, where 𝜎𝑦 is the uniaxial plastic yield 

strength of the sample material.  However, this definition of indentation strain as 𝑎/𝑅𝑖 

lacks any physical interpretation as a measure of strain. This is because strain should be 

fundamentally interpreted as a ratio of the change in length over the initial length of a 

selected line segment in region of interest in the sample. 

 Recent development in instrumented indentation techniques (Cordill et al., 2009; 

Field and Swain, 1993; Li and Bhushan, 2002; Oliver and Pethica, 1989; Oliver and 

Pharr, 1992; Pathak and Kalidindi, 2015; Pathak et al., 2008; Pathak et al., 2009; 

Vachhani et al., 2013) have resulted in the ability to probe reliably and consistently the 

mechanical properties of materials at the microscale. More specifically, as mentioned in 

the Chapter 2 it is possible to extract suitably normalized indentation stress-strain curves 

that display an initial linear elastic segment followed by a clear transition to a plastic 

response. However, relating these ISS curves to stress-strain responses measured in the 

conventional simple compression tests remains a significant challenge. 

 A number of other approaches in literature for the recovery of the USS response 

from the indentation experiments have employed inverse solution methodologies. These 

approaches utilize sophisticated optimization strategies to minimize a suitably defined 
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difference (i.e., error metric) between the measured load-displacement curve and the 

corresponding prediction from the finite element simulation by adjusting the material’s 

constitutive law defined usually as its USS response (Abu Al-Rub and Voyiadjis, 2004; 

Bucaille et al., 2003; Cheng and Cheng, 1999; Liu et al., 2008; Pelletier, 2006; Raabe et 

al., 2002). The central deficiency of this approach stems from the fact that the entire 

elastic-plastic transition occurs over a very short regime in the load-displacement curve. 

Since it is very difficult to pinpoint this regime exactly in the measured load-

displacement curve, it is very difficult to extract reliable properties consistently with such 

inverse solution methodologies. Indeed, transforming load-displacement curve to ISS 

curves addresses this problem and provides a much improved opportunity for extracting 

reliable uniaxial stress-strain curves.  

 In this chapter, protocols are developed to correlate the ISS curves extracted using 

the spherical indentation analyses (Donohue et al., 2012; Pathak and Kalidindi, 2015; 

Pathak et al., 2008; Pathak et al., 2009) and the USS response via simple scaling 

relationships. The scaling relationships are established and validated in this study using a 

two-dimensional finite element model for a class of isotropic elastic-plastic materials 

obeying the J2 flow theories (Hill, 1948) with linear or saturation type hardening laws. 

The similarities and differences between these scaling factors and the ones originally 

used by Tabor (Tabor, 1948) are discussed in detail. 

 

3.2 Finite element model of spherical indentation for isotropic materials 

A finite element model of spherical indentation is employed as a surrogate for the 

experiment in exploring the correlations between ISS and USS responses. For this 



 26 

purpose, a commercially available finite element code ABAQUS (ABAQUS, 2014) is 

used. The FE model developed for this study is shown in Figure 3.2a, and is comprised of 

two axisymmetric two-dimensional isotropic bodies: (i) an elastic-plastic deformable 

sample with an initially flat surface, and (ii) a rigid hemi-spherical indenter. Four-noded, 

bilinear, two-dimensional axisymmetric continuum elements (CAX4 in ABAQUS) are 

used to model the sample in this study. The size of the sample mesh was selected as 

20μm x 20μm to ensure that it is much larger than the primary indentation zone. The top 

surface of the indenter is constrained to remain planar, and is allowed to move only 

normal to the indentation surface. The sample is constrained from moving in the x-

direction along the axis of symmetry and along y-direction (indentation direction) at the 

bottom surface. The sample is discretized into five regions (as shown in Fig. 3.2a.) to 

achieve highest mesh density in the primary indentation zone (region in the sample with 

the highest localized deformation).  

In the simulations, a vertical displacement boundary condition (along y-direction) 

is imposed on the node at the center of the indenter which is tied rigidly to entire surface 

of the indenter. Surface-to-surface contact definition is used to avoid any concentrated 

force buildup at individual nodes at initial point of contact. Detachment of the two 

surfaces is allowed to simulate loading-unloading response. The FE model is first 

validated for purely elastic indentations by comparing the predicted load-displacement 

curve to predictions from Hertz’s theory (Eq. (3.1)). Figure 3.2b demonstrates excellent 

accuracy of the FE indentation model for purely elastic indentations. 
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The load-displacement history extracted from the FE model in multiple elastic-

plastic loading-unloading cycles (Donohue et al., 2012) are then used to extract elastic-

plastic ISS curves comparable to those extracted from experiments (Pathak et al., 2008; 

Pathak et al., 2009). For this purpose, we have adopt the following definitions of 

indentation stress and indentation strain (Kalidindi and Pathak, 2008):   

 𝜎𝑖𝑛𝑑 = 𝐸𝑒𝑓𝑓𝜀𝑖𝑛𝑑, 𝜎𝑖𝑛𝑑 =
𝑃

𝜋𝑎2
, 𝜀𝑖𝑛𝑑 =

4

3𝜋

ℎ𝑡

𝑎
≈

ℎ𝑡

2.4𝑎
 (3.3) 

Note that Eq. (3.3) is essentially a rearrangement of Hertz’s theory expressed in Eq. (3.1). 

This particular rearrangement suggests the use of the ratio ℎ𝑡/𝑎 as the definition of 

indentation strain. The pre-multiplier, 4/3𝜋 in the definition of indentation strain was 

justified by noting that 2.4𝑎 corresponds to the depth of the indentation zone (Donohue et 

al., 2012). This definition of indentation strain allows interpretation of strain measure in 

the classical sense as the change in length per unit length by idealizing the deformation 

Figure 3.2. a) Schematic of the two dimensional FE mesh (discretized into 5 

regions) to simulate isotropic elastic-plastic response under the indenter 

(axisymmetric boundary conditions applied). b) Load-displacement response 

compared from FE simulation against Hertz theory for isotropic elastic response. 
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under indenter as being equivalent to compressing by ℎ𝑡 (total average indentation depth) 

a cylindrical sample of radius 𝑎 and height 2.4𝑎.  

The protocols needed to extract ISS curves from the FE model have been 

described previously by Donohue et al. (Donohue et al., 2012). A central feature of these 

protocols is that contact radius is estimated from a partial unloading segment which is 

assumed to be purely elastic and follow Hertz’s theory. Since each unload leads to an 

estimation of one value of contact radius (in much the same way Tabor did in his 

experiments), it becomes necessary to conduct a very large number of load-unload steps 

(as shown in Figure 3.3) in the FE simulation to determine accurately the evolution of the 

effective radius and the residual depth in the sample. 

 

 

 

 

 

Figure 3.3. Load-displacement curve depicting partial unloads at multiple load 

levels. The unloading segments are used to compute indentation stress and strain 

values. 
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3.3 Scaling relationship between ISS and USS response 

 This work is aimed at developing robust protocols for recovering the USS curves 

from the ISS curves. As discussed earlier, this requires the estimation of suitable scaling 

factors between uniaxial and indentation stresses as well as between uniaxial and 

indentation strains. Furthermore, we focus on our attention in this study to isotropic 

elastic-plastic materials, where the plastic response is described by the J2 flow theory 

(Hill, 1948). 

The strategy for addressing this challenge involves two steps. In the first step, we 

focus on the scaling factor between uniaxial and the indentation stress through a 

consideration of the elastic-perfectly plastic indentation response. Because there is no 

hardening in this case, we expect the ISS curves to plateau at large strains. As a result, we 

should be able to extract a simple ratio between the plateau stresses in USS and ISS 

curves. 

In the second step, we focus on the scaling factors for uniaxial and indentation 

strains. In fact, as soon as we establish a scaling factor for the stress (described in the first 

step above), the scaling factor for the elastic indentation strain can be extracted by 

matching the ISS curve obtained using Hertz’s theory (Eq. 3.3) with the corresponding 

USS curve (note that for elasticity both these curves are linear). Therefore, we only need 

to focus on the scaling factor for indentation plastic strain. This can be established from a 

consideration of indentation response of materials exhibiting linear hardening.  

The 

 central hypothesis is that the scaling factors established using the protocols 

described above are not strongly affected by the actual hardening behavior exhibited by 
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the sample material. We critically evaluate our hypothesis by applying the same scaling 

factors to a sample material exhibiting a completely different hardening response, namely 

the saturation-type hardening laws. The calibration and validation of these scaling factors 

are described next. 

 

3.3.1 Scaling indentation stress 

Table 3.1 summarizes the material properties used in this study for the elastic-

perfectly plastic sample. These cover the typical range of properties exhibited by 

advanced metals of interest to structural applications. The corresponding ISS curves are 

generated from the finite element model following the protocols described above (cf. 

(Donohue et al., 2012)). 

 

Material 
Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

Yield Strength 

(GPa) 

Soft 70 0.30 0.04 

Stiff 400 0.28 0.75 

 

 

 

These ISS curves obtained using the FE model and elastic-perfectly plastic 

material response are shown in Figure 3.4, and show three clearly distinguishable 

Table 3.1. Elastic and plastic properties used to describe the isotropic sample 

material behavior used in the present study. 
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regimes: (i) an initial elastic regime where the indentation stress evolves linearly with the 

indentation strain, (ii) an elastic-plastic transition regime that exhibits apparent strain 

hardening (recall that there is no real hardening of the material in the elastic-perfectly 

plastic constitutive description) attributed to the transformation of the indentation zone 

from being dominated by elasticity to one dominated by plasticity, and (iii) a post-yield 

regime exhibiting the expected perfectly plastic response. 
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Figure 3.4. FE-generated indentation stress-strain curves for the a) soft and b) 

stiff materials selected for this study. 
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Based on the linear elastic solution for stress fields beneath the spherical indenter, 

initiation of plastic flow following the von-Mises criterion is predicted at an indentation 

stress of 1.07σy (Johnson, 1987).  However, it is important to note that the deviation from 

elasticity on the ISS happens after a substantial amount of plastic deformation has been 

realized by the sample as seen in Figure 3.5. The elastic-plastic transition is marked by 

the fact that the stress fields in the indentation zone have to change from those dominated 

by elasticity in the first regime to those dominated by plasticity in the final regime. More 

specifically, the plastic zone underneath the indenter is initially fully surrounded by 

elastically deforming material. This initial plasticity is therefore heavily constrained until 

the plastic zone has grown to reach the sample surface (see Figure 3.5). At that point, 

plasticity occurs relatively easily and this marks the onset of the third regime of a 

perfectly plastic response in the ISS curves seen in Figs. 3.3 and 3.4. In particular, this 

transition is most clearly seen through the contour plots of equivalent plastic strain 

(PEEQ) fields at selected points on the ISS curve in Fig. 3.4. This elastic-plastic 

transition poses a significant challenge in our efforts to establish a useful correlation 

between ISS curves and the USS curves. 
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It should be noted that the ISS curves in Figure 3.6 exhibit some degree of 

roughness. This, in our opinion, is a consequence of the many numerical computations 

involved both in the FE simulations (i.e., mesh design, mesh discretization) and the 

estimation of the contact radius from the analyses of the unloading segments. Our many 

trials in these simulations have indicated that these numerical oscillations can be 

alleviated by increasing the mesh density inside the constantly evolving primary 

indentation zone. However, this improvement is relatively small (and mostly 

inconsequential for the present study) and incurs a prohibitively high computational cost.  

Figure 3.5. Finite element results showing the evolution of plastic zone under the 

indenter in terms of contours of equivalent plastic strain field (PEEQ) at the 

corresponding indentation stress (shown for soft material). Note only small 

subsection of the mesh is shown here. 



 35 

 

 

 

 

As mentioned earlier, the ability to extract meaningful ISS curves is critical to our 

goals of extracting a reliable scaling factor between the uniaxial and indentation stresses. 

This scaling factor is simply the ratio of the indentation stress and the uniaxial stress in 

the plateau regions of these stress-strain curves. Based on the ISS curves shown in Figure 

3.6, this ratio was observed to be in the range of 2.1- 2.2. The correspondence between 

the scaled ISS curve and the USS curve for the soft material is shown in Figure 3.6 (a 

similar correspondence was observed for the stiff material as well). In Figure 3.6, the 

indentation strain was scaled by 2.0, which is established simply using Hertz’s theory 

Figure. 3.6. USS curve vs. scaled ISS curve for the soft material (see Table 3.1) 

exhibiting elastic perfectly-plastic response. 
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(i.e., matching Eqs. (3.1) and (3.3)). In other words, this scaling factor ensures that the 

elastic portions of the scaled ISS and USS curves would match. However, as mentioned 

earlier, the plastic strain in the indentation and the uniaxial tests are unlikely to be related 

by the same factor as the corresponding elastic strains; this will be explored in detail in 

later case studies that invoke strain hardening. 

The stress scaling factor (also called constraint factor) of 2.2 is indeed 

significantly lower than the previously reported numbers (e.g., the factor of 2.8 reported 

by Tabor (Tabor, 1951) and Hill (Hill, 1948; Hill et al., 1947; Hill et al., 1989)). The 

difference is directly attributed to the differences in the definition of the contact radius 

used in the extraction of the ISS curves. More specifically, the contact radius used in 

prior studies was either based on the residual indentation left after complete unloading or 

is defined based on geometrical relationship between the indenter and the sample. In a 

recent paper (Donohue et al., 2012), we have demonstrated these choices have a 

significant effect on the estimated values of the contact radius and the subsequent 

computation of the indentation stress. In the same paper, we have demonstrated that the 

protocol used in this work provides the most meaningful ISS curves. 

As noted earlier, the elastic-plastic transition in the ISS curve is significant in 

extent and poses a significant challenge in our efforts to correlate the ISS and USS 

curves. We will revisit this issue later.  

 

3.3.2 Scaling indentation strain  

As noted earlier, it is necessary to examine the ISS curves for materials exhibiting 

hardening to extract a scaling relationship between the indentation plastic strain and the 
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uniaxial plastic strain. For this purpose, FE indentation simulations were performed for 

the soft material (see Table 3.1) with different levels of constant strain hardening rates, 

ho. In other words, the uniaxial stress-strain behavior of the sample in these simulations is 

defined to be bi-linear: the first linear segment reflects the purely elastic behavior, and 

the second linear segment with a slope of ho reflects a regime of constant strain hardening 

rate. This bilinear stress-strain description (in the uniaxial stress mode) is provided as 

input to the FE indentation simulations. The corresponding ISS curves obtained using the 

protocols described earlier are shown in Figure 3.7. 

 

 

 

It is seen that the ISS curves in the plastic regime exhibit a linear hardening 

response, except for some oscillations that are fairly characteristic of the numerical 

instabilities involved in these simulations (as discussed earlier). The fact that the ISS 

Figure 3.7. Indentation stress-strain curves for soft material (see Table 3.1) 

depicting linear-hardening behavior for different hardening rates. 
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curves reflect a linear hardening response lends additional support to the validity of the 

analyses protocols described and employed in this work. 

The results presented in Figure 3.7 also suggest that it should be possible to 

establish a simple scaling factor between the indentation plastic strain and the uniaxial 

plastic strain. There is, however, no reason to expect that this scaling factor would be the 

same as the one introduced earlier for the elastic strain. The following set of equations is 

formulated to describe this equivalence: 

𝜀𝑖𝑛𝑑 = 𝜀𝑖𝑛𝑑
𝑒 + 𝜀𝑖𝑛𝑑

𝑝 =
𝜎𝑖𝑛𝑑

𝐸𝑒𝑓𝑓
+ 𝜀𝑖𝑛𝑑

𝑝
 (3.4) 

𝜀𝑠𝑐 =
𝜀𝑖𝑛𝑑

𝑒

2.0
+

𝜀𝑖𝑛𝑑
𝑝

𝛼
 

(3.5) 

In Eqs. (3.4) and (3.5), 𝜀𝑠𝑐 denotes the equivalent simple compression strain 

corresponding to 𝜀𝑖𝑛𝑑 and the superscripts 𝑒 and 𝑝 refer to the elastic and plastic 

components, respectively. The value of the scaling factor 𝛼 was established as ~1.3 by 

matching the ISS and USS curves for all the FE simulations conducted in this work 

imposing linear hardening. It is noted here that the scaling factor 𝛼 established in this 

study is also the same as the scaling factor for the ratio between the hardening rates in 

ISS and USS responses reported previously by Donohue et al. (Donohue et al., 2012) and 

confirmed once again in this study. The corresponding scaled ISS curves are compared 

with the USS curves in Figure 3.8. It is seen that there is excellent agreement between 

these curves, except in the elastic-plastic transition regime. As noted earlier, it is very 

difficult to make a correspondence in this transition regime and we shall revisit this issue 

later in this paper. 

 



 39 

 

 

 

3.4 Demonstration of the scaling relationships 

As a critical evaluation of the protocols established in the previous section, we 

examine a material constitutive behavior where the plastic response is described by 

power-law hardening described as 

 𝜎 = 𝜎𝑦 + 𝐾(𝜀𝑝)𝑛 (3.6) 

where 𝐾 and 𝑛 are the strength coefficient and the strain hardening exponent. For the 

present case study, we choose two distinct sets of material parameters with different 

strength coefficients and strain hardening exponents to describe the uniaxial stress-strain 

behavior of the sample. The material parameters selected are the ones reported for 

Tantalum (𝑛 = 0.5 and 𝐾 = 562 MPa) and Aluminum (𝑛 = 0.2 and 𝐾 = 180 MPa) 

Figure 3.8. USS curve vs. scaled ISS curve for soft material (see Table 1) with 

different linear strain hardening rates. 
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(Kalpakjian and Schmid, 2008). These power-law descriptions were provided as input to 

the FE indentation simulations. 

The ISS and USS curves for the selected materials are compared in Figure 3.9. It 

is seen that scaling protocols described earlier are highly applicable to the both high and 

low hardening behaviors. This result is significant as the scaling factors were extracted 

from two very simple hardening laws: (i) perfectly plastic (non-hardening), and (ii) linear 

hardening, and are observed to provide excellent correspondence in the case of the much 

more complex saturation-type hardening law used in the validation example. Indeed, the 

excellent agreement between the scaled ISS and the USS responses, using the scaling 

factors from the simpler hardening laws, attest clearly to their general applicability to a 

range of materials behaviors of interest in actual practice.  
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Figure 3.9. Comparison of the ISS, Scaled ISS, and USS responses for materials 

exhibiting power-law hardening behavior. 
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3.5 Extracting uniaxial mechanical properties from indentation 

As clearly evident from the case studies presented so far, reliable identification of 

the indentation yield strength is severely compromised by the unavoidable elastic-plastic 

transition in the indentation test method. Of course, this challenge has long been 

recognized in prior literature. As a prime example, Herbert et al. (Herbert et al., 2001) 

explored several alternatives and could not arrive at any conclusive correlation between 

the uniaxial yield strength and the indentation yield value. Instead, they simply reported a 

lower limit and an upper limit based on the theoretical Tresca yield criterion (1.07𝜎𝑦) and 

Tabor’s finding (~2.8𝜎𝑦), respectively.  

A common and standard approach in defining a yield point is to employ an offset 

strain. Indeed, a tensile or compressive yield strength is often defined as 0.2% offset yield 

strength (ASTM, 2015). Close inspection of Figure 3 for the soft and stiff material clearly 

shows that a fairly large offset is needed if one were to define the indentation yield 

strength on the plateau region of the ISS curve. However, at the same time, the ISS 

curves in Figure 3.7 indicate that the value extracted using a high offset is likely to be 

strongly influenced by the hardening behavior of the material. So, the practical way 

forward is some form of a compromise on the offset value. 

 



 43 

 

  

 

 

In order to establish a practically useful offset value of the indentation yield 

strength, we plotted the offset value indentation stress normalized by the 0.2% offset 

uniaxial yield strength for different values of the offset in the ISS curves for the FE 

simulations performed on the soft material in Figure 3.9. Based on this plot, it is clear 

that this ratio exhibits a plateau (more or less constant value) in the range of 0.1%-0.2% 

offset in the indentation strain. Also, based on the scaling factors we established earlier 

between the indentation plastic strain and the uniaxial plastic strain, a 0.2% strain offset 

for the uniaxial test corresponds approximately to 0.15% offset indentation strain, which 

falls right in the middle of the plateau seen in the plot in Figure 3.10. Note that Figure 

3.10 includes the non-hardening case, the different linear hardening rates, and the power-

Figure 3.10. Ratio of indentation stress to the 0.2% offset uniaxial yield strength for all 

FE simulations performed on the soft material. 
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law hardening discussed earlier. Consequently, we believe 0.15% offset strain is the best 

choice for establishing an indentation yield strength for the material. With this definition, 

the scaling factor for the 0.2% offset yield strength typically recovered from uniaxial 

stress-strain responses will be 2.0 (see Figure 3.10). In other words, this would be the 

constraint factor for the offset definition of the yield point. 
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CHAPTER 4 

EXTRACTING SINGLE CRYSTAL ELASTIC STIFFNESS 

CONSTANTS FROM POLYCRYSTALLINE SAMPLE USING 

INDENTATION 

 

Development of robust, physics-based, multiscale materials models are largely 

hampered by lack of validated tools and protocols for characterizing reliably the local 

(anisotropic) properties at length scales at or below a micron. Although numerical 

techniques such as the Finite Element Method (FEM) have been shown to be successful 

in simulating complex interactions between microscale constituents of a composite 

material system (Anand and Kalidindi, 1994; Bachu and Kalidindi, 1998; Bhattacharyya 

et al., 2001; Bronkhorst et al., 1992; Haddadi et al., 2006; Kalidindi, 2004; Kalidindi and 

Anand, 1994; Kalidindi et al., 2004; Kalidindi et al., 1992; Kalidindi and Schoenfeld, 

2000; McDowell, 2010; Raabe et al., 2002; Roters et al., 2011; Zhao et al., 2001), their 

predictive capabilities are strongly affected by the assumptions made about the 

constitutive laws used to describe the local response of the microscale constituents 

present in these systems. This chapter describes a new approach for the extraction of the 

single crystal elastic stiffness parameters from polycrystalline samples using spherical 

nanoindentation and orientation measurements combined with finite element simulations.  
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4.1 Introduction 

 It is often very expensive, and sometimes impossible, to produce sufficiently large 

volumes of the microscale constituents of interest in their pure form to allow the 

application of traditional mechanical testing methods (such as compression or tensile 

testing). One approach explored in literature involves the fabrication of micro-pillars (Li 

et al., 2011; Shan et al., 2008; Uchic et al., 2004) using focused ion-beam and testing 

them in a scanning electron microscope. However, this approach requires access to highly 

sophisticated equipment and is not particularly well suited for extracting the elastic 

properties of the microscale constituents in composite material systems. 

 In this work, a new approach for estimating single crystal elastic properties from 

polycrystalline samples using indentation methods, orientation measurements (by 

electron back-scattered diffraction), and finite element models is developed. The 

approach presented here is formulated to solve the following inverse problem: Find the 

values of the fundamental single crystal elastic stiffness parameters (for a selected 

material phase) that are most consistent with a set of in-grain indentation measurements 

obtained on a range of lattice orientations in a polycrystalline sample. This work builds 

on prior work (Donohue et al., 2012; Kalidindi et al., 2008; Pathak et al., 2008; Pathak et 

al., 2009; Proust G, 2004) from our research group. As noted above, the challenge posed 

in the present work is essentially an inverse problem. In the forward direction, it is 

relatively easy to build a finite element model (Bhattacharya and Nix, 1988; Donohue et 

al., 2012; Suresh and Giannakopoulos, 1998) that predicts the indentation modulus for a 

selected crystal lattice orientation and a selected combination of single crystal elastic 

stiffness parameters. Such finite element models are not ideally suited for addressing the 
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inverse problem stated above. A new approach is introduced for addressing the inverse 

problem described above, which is built on the compact Fourier representations used 

extensively in our prior work in the development of the microstructure sensitive design 

(MSD) framework (Adams et al., 2012; Kalidindi, 2004; Li et al., 2003). This new 

approach is developed and presented first in a general framework that is applicable to any 

crystal lattice symmetry. 

 

4.2 Elastic anisotropy in indentation 

 Spherical nanoindentation data analyses procedures are largely based on Hertz’s 

theory (H., 1896; Johnson and Johnson, 1987; Willis, 1966) which assumes frictionless, 

elastic, contact between two isotropic quadratic surfaces. The main result of this theory 

can be expressed as 

 𝑃 =
4

3
𝐸𝑒𝑓𝑓𝑅

𝑒𝑓𝑓

1
2 ℎ𝑒

3
2 (4.1) 

where 𝑃 is the indentation load at the elastic penetration depth, ℎ𝑒. 𝑅𝑒𝑓𝑓 and 𝐸𝑒𝑓𝑓 denote 

the effective radius and the effective indentation modulus of the sample and the indenter 

system, defined as 

 
1

𝐸𝑒𝑓𝑓
=

1 − 𝜐𝑠
2

𝐸𝑠
+

1−𝜐𝑖
2

𝐸𝑖
,            

1

𝑅𝑒𝑓𝑓
=

1

𝑅𝑠
+

1

𝑅𝑖
 (4.2) 

In Eq. (4.2), 𝐸 and 𝜈 denote the Young’s modulus and Poisson’s ratio of the indenter 

(subscript i) and the specimen (subscript s), and 𝑅 denotes the radius. In the purely elastic 

indentation of a perfectly flat surface, 𝑅𝑒𝑓𝑓 = 𝑅𝑖. 

Although the theory for elastic indentation of isotropic materials is well 

established, it is not directly applicable to most in-grain nanoindentation studies on 
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polycrystalline materials since the indentation zone size in such measurements is 

typically much smaller than the grain size in the sample. At this length scale, most 

crystalline materials exhibit significant anisotropy in their elastic response. A number of 

different approaches have been explored in literature (Cammarata et al., 1990; Farthing et 

al., 1988) to take the elastic anisotropy into account in the analyses of the indentation 

measurements. Vlassak and Nix (Vlassak et al., 2003; Vlassak and Nix, 1993, 1994) have 

developed a rigorous analytical framework based on Hertz theory to address the elastic 

indentation of anisotropic samples. Their theory indicates that the inclusion of a crystal 

lattice orientation dependent parameter, β, into the definition of the effective indentation 

modulus will adequately capture the anisotropic elastic indentation response of cubic 

crystals for any arbitrary orientation of the crystal lattice in the indentation zone. More 

specifically, they suggest 

 
1

𝐸𝑒𝑓𝑓
= 𝛽 (

1 − 𝜐𝑠
2

𝐸𝑠
) + (

1 − 𝜐𝑖
2

𝐸𝑖
), (4.3) 

where Es and νs denote the effective Young’s modulus and Poisson’s ratio, respectively 

(Vlassak and Nix, 1993, 1994), for a randomly textured polycrystalline sample. 

 

4.3 FE model of spherical indentation for elastic anisotropic materials 

 The first goal is to establish the underlying features of Vlassak and Nix (Vlassak 

and Nix, 1993, 1994) theory that are central to the indentation analyses protocols 

discussed here. More specifically, Eq. (4.3) combined with Eq. (4.1) implies that the 

indentation load, 𝑃, continues to be directly proportional to ℎ𝑒
3/2

, even with anisotropic 

elastic response of the sample. For establishing whether or not an indentation modulus 
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can be defined for any crystal lattice orientation (from the expected linear relationship 

between 𝑃 and ℎ𝑒
3/2

), we developed and employed a finite element model. 

 The three-dimensional finite element (FE) model to simulate elastic spherical 

indentation of anisotropic crystals was produced using the commercial finite element 

code ABAQUS (ABAQUS, 2014). The finite element model developed for this study is 

comprised of two three-dimensional bodies: (i) an elastically deformable sample with an 

initially flat surface discretized into ~57,000 eight-noded, three-dimensional, continuum 

(C3D8) elements, and (ii) a rigid hemi-spherical indenter of radius 13.5m (size of the 

indenter in prior experimental studies in our group). The size of the sample was selected 

as 18m x 18m x 9m to ensure that it is much larger than the typical indentation zone 

size (observed to be about ~1.2m from our simulations). The sample has been 

discretized into seven regions as shown in Fig. 4.1a to permit the use of a progressively 

higher mesh density as we approach the indentation zone directly below the indenter-

sample contact surface. Discretizing the mesh in this manner allowed us to capture the 

stress and strain fields to sufficient accuracy while keeping the total number of elements 

in the FE model (as well as the computational cost) relatively low. Significant 

computational resources were required and utilized to keep the runtime to just under ~30 

minutes per simulation. The FE simulations described in this work were executed on 2 

nodes (32 cores per node) provided by Trestles (part of XSEDE supercomputing facility). 

A hard surface-to-surface, frictionless, contact definition was used to model the contact 

behavior between the indenter (master) surface and the elastically deformable sample 

(slave) surface. 
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Displacement boundary conditions in the z-direction were imposed on the 

reference node (placed at the center of the indenter), which is tied rigidly to the entire 

surface of the indenter. The top surface of the sample was free to move while the bottom 

surface of the sample was constrained along the z-direction (indentation direction). The 

inputs to the FE model are the single crystal elastic stiffness constants of the material of 

interest in the crystal frame (i.e., 𝐶11, 𝐶12,  and 𝐶44) and the crystal lattice orientation, 

(Φ, 𝜑2). 

 

 

 

 

 

 

Finite displacement in the z-direction was imposed on the indenter and the 

corresponding total reaction force exerted by the slave surface on the indenter is 

predicted and used to determine the effective indentation modulus of the sample. The 

finite element model developed in this study was validated by comparing the simulated 

Figure 4.1. a) The 3-D FE mesh used to simulate elastic anisotropic response 

under the indenter (isometric view of the region under the indenter tip). b) 

Load-displacement response of FE simulation vs. Hertz theory for the isotropic 

response case. 
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load-displacement curves against the analytical prediction from Hertz’s theory for purely 

isotropic elastic deformation (see Fig. 4.1b). Additionally, a detailed sensitivity study was 

conducted to ensure that the details of the mesh and the details of the far-field boundary 

conditions did not influence significantly the predicted load-displacement response. 

The finite element model developed in this study was validated by comparing the 

predicted indentation modulus against the analytical expression reported by Vlassak and 

Nix (Vlassak and Nix, 1994) in Table 4.1.  

 

Material and 

corresponding 

elastic constants 

(GPa) 

Orientation 

Direction (h,k,l) 

Theoretical 

𝐸𝑖𝑛𝑑  (GPa) 

FE Prediction 

𝐸𝑖𝑛𝑑  (GPa) 

Aluminumᄉ 

𝐶11 =107.3 

𝐶12 = 60.90 

𝐶44 = 28.3 

(100) 79 78.96 

(110) 80 80.93 

(111) 81 80.25 

Copperᄉ 

𝐶11 = 170.2 

𝐶12 = 114.9 

𝐶44 = 61.0 

(100) 129 129.65 

(110) 138 137.19 

(111) 141 141.05 

β-Brassᅩ (CsCl) 

𝐶11 = 126.5 

𝐶12 = 107.7 

𝐶44 = 80.3 

(100) 95 93.87 

(110) 112 109.40 

(111) 117 115.47 

 

 

 

 

ᅩ Taken from Vlassak and Nix 

ᄉ Taken from Simmon and Wang 

Table 4.1. Indentation moduli values for the cubic crystals predicted from Finite 

Element model and theoretical values reported in Vlassak and Nix for selected 

orientations. 
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It is clear that the finite element predictions are in excellent agreement with the 

theoretically expected values. Furthermore, the FE models predicted that a linear 

relationship between 𝑃 and ℎ𝑒
3/2

 holds for the anisotropic elastic indentations, in full 

accord with the theories presented by Vlassak and Nix (Vlassak and Nix, 1993, 1994). 

Some examples of the FE predicted load–displacement relations are presented in Fig. 4.2. 

 

 

 

 

 

 

Since this relationship holds true for any arbitrary orientation of the crystal, then it 

allows us to extract an orientation dependent indentation modulus (the parameter  is 

Figure 4.2. P vs. (he)
(3/2)

 plots obtained for indentation of copper in different 

crystal orientations spread over the cubic-transversely isotropic FZ (highlighted 

area in the subplot). 
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expected to be orientation dependent) from the indentation measurement on any crystal in 

the sample. 

 

4.4 Protocols to estimate single crystal elastic constants 

In this section, we present the proposed approach as a general framework. In the 

next section, we demonstrate a specific application and provide many more details of the 

computations involved.  

4.4.1 Spectral representation of indentation modulus 

The first step of the proposed protocol involves establishing the functional 

dependence of the effective indentation modulus on the single crystal elastic constants 

and the crystal lattice orientation. In order to establish this functional dependence, a large 

number of data points can be accumulated from the finite element model predictions. 

Each FE simulation provides one data point which is an estimate of the indentation 

modulus for a specific combination of one crystal orientation and one set of values for the 

elastic constants. 

A least-squares fit between the FE predicted values of P and he
3/2

 in each 

simulation yields an estimate of the indentation modulus (𝐸𝑖𝑛𝑑) (see Eq. (1)). Implicitly, 

the indentation modulus so obtained depends on the crystal lattice orientation (applied 

here uniformly to all elements in the sample) and the values of the single crystal elastic 

constants used for the sample material (e.g., 𝐶11, 𝐶12, and 𝐶44 for cubic crystals) 

(Simmons and Wang, 1971). Therefore, the different measurements on the differently 

oriented grains in the polycrystalline sample can be interpreted as results of probing 

single crystals of a selected phase through indentations in different crystallographic 
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directions. The functional dependencies of the indentation modulus described above can 

therefore be succinctly expressed as 𝐸𝑖𝑛𝑑(𝑔, 𝐶11, 𝐶12, 𝐶44).  

The first goal is to capture this functional dependence of the indentation modulus 

using highly efficient spectral representations. In this paper, we have employed  the 

spherical surface harmonics (SSH) (H, 1982) denoted as 𝐾𝑙
𝑚

 
 (g) to serve as a Fourier 

basis for compact representation of this function over the orientation space of interest. 

The advantages and compactness of using basis functions on the orientation space have 

already been discussed in our prior publications (Fast et al., 2008; Fullwood et al., 2010). 

For the variables denoting the elastic stiffness constants, we explore here the use of 

Legendre polynomials, 𝑃𝑛( ) (Copson, 1950) as Fourier basis. Note that the Legendre 

polynomials form a Fourier basis over the range [-1,+1], and therefore the stiffness 

parameters need to be suitably rescaled. Each rescaled elastic stiffness constant can be 

defined as 

 �̃� =
2𝐶 − 𝐶𝑚𝑖𝑛 − 𝐶𝑚𝑎𝑥

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
 (4.4) 

where 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 are the respective minimum and maximum values for the specific 

elastic stiffness constant. The function of interest, 𝐸𝑖𝑛𝑑(𝑔, �̃�11, �̃�12, �̃�44) is then expressed 

as 

 𝐸𝑖𝑛𝑑(𝑔, �̃�11, �̃�12, �̃�44) = ∑ ∑ ∑ 𝐴𝑙
𝑚𝑞𝑟𝑠𝐾𝑙

𝑚

∞

𝑞,𝑟,𝑠=0

𝑀(𝑙)

𝑚=1

∞

𝑙=0

(𝑔)𝑃𝑞(�̃�11)𝑃𝑟(�̃�12)𝑃𝑠(�̃�44)  (4.5) 

In Eq. (4.5), 𝐴𝑙
𝑚𝑞𝑟𝑠

 represent the Fourier coefficients. The function 𝑀(𝑙) denotes the 

number of terms needed in the enumeration of index, m; these numbers are a function of 

the index l and are determined by crystal symmetries (H, 1982). 
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 The most common approaches used in literature for establishing the Fourier 

coefficients generally exploit the orthonormal properties of the Fourier basis (Adams et 

al., 2012; Kalidindi et al., 2006; Kalidindi et al., 2008; Knezevic et al., 2009). However, 

such approaches require evaluation of the function at an extremely large number of 

locations in the compounded space of the complete ranges of all the independent 

variables involved. Since the function evaluation here is being attempted through a 

computationally expensive finite element model, the traditional approach of establishing 

Fourier coefficients is not very practical for the present problem. Consequently, we 

explore in this work an approach for establishing the values of the Fourier coefficients in 

Eq. (4.5) using Ordinary Least Squares (OLS) regression analysis. In order to use a 

regression technique, it is necessary to truncate the Fourier series in Eq. (4.5) to a finite 

number of terms in the expansion. Simplifying the notation a little, Eq. (4.5) can be 

expressed as 

 𝐸𝑖𝑛𝑑(𝑔, �̃�11, �̃�12, �̃�44) ≈ ∑ ∑ 𝐴𝐿
𝑞𝑟𝑠𝐾𝐿

�̃�

𝑞,𝑟,𝑠=0

�̃�

𝐿=0

(𝑔)𝑃𝑞(�̃�11)𝑃𝑟(�̃�12)𝑃𝑠(�̃�44) (4.6) 

where 𝐿 enumerates each distinct combination of (𝑚, 𝑙) in the SSH series expansion, and �̃� 

and �̃� denote the truncation limits in the SSH and the Legendre polynomial expansions. 

Note also that a single limit was selected in Eq. (4.6) for all three Legendre polynomial 

bases used in this equation. This was merely done for simplicity here, and different limits 

can be selected for the different variables as needed in any specific application. 

As described earlier, each FE simulation of the indentation produces one discrete 

data point for a combination of one crystal orientation and one set of values for the cubic 

elastic stiffness constants. Consider a dataset with N such data points collected from 
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multiple runs of the FE simulations for different combinations of crystal orientations and 

cubic elastic stiffness constants. Such a FE generated dataset can be denoted 

as {(𝐸𝑖𝑛𝑑
𝐹𝐸 (𝑛)

, 𝑔(𝑛), �̃�11
(𝑛)

, �̃�12
(𝑛)

, �̃�44
(𝑛)

 ) , 𝑛 = 1, 2, … , 𝑁}. Regression analysis is then 

formulated as a minimization of the difference (sum of the squares of the residual) 

between the FE generated dataset and the truncated Fourier representation shown in Eq. 

(6). In other words, OLS (Bishop, 2006; Press, 2007) aims to solve the following 

minimization problem: 

 min
𝐴𝐿

𝑞𝑟𝑠
(∑ |𝐸𝑖𝑛𝑑

𝐹𝐸 (𝑛)
− ∑ ∑ 𝐴𝐿

𝑞𝑟𝑠
𝐾𝐿(𝑔(𝑛))𝑃𝑞(�̃�11

(𝑛)
)𝑃𝑟(�̃�12

(𝑛)
)𝑃𝑠(�̃�44

(𝑛)
)

�̃�

𝑞,𝑟,𝑠=0

�̃�

𝐿=0

|

2
𝑁

𝑛=1

) (4.7) 

Note that the values of the Fourier coefficients established using the regression method 

described above can be sensitive to the truncation levels used, i.e., the values of �̃� and �̃�. 

Since we do not generally know a priori the right values of �̃� and �̃� in any specific 

application, this approach needs a few repeated trials. Although higher values of �̃� and �̃� 

will generally produce a lower error (difference between the FE dataset and the fitted 

Fourier expansion), they may also result in over-fitting of the dataset. Over-fitting needs 

to be avoided as it will likely produce unreliable estimates in subsequent application of 

the Fourier function (especially for new data points not included in the calibration 

dataset). 

In order to track the potential for over-fitting of the Fourier coefficients obtained at 

each level of truncation (i.e., selection of �̃� and �̃�), leave-one-out-cross validation 

(LOOCV) can be employed (Çeçen et al., 2014). LOOCV allows an objective selection 

of the truncation levels by establishing the fit N times (this is size of the dataset), while 
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leaving one data point out of the regression each time. In doing so, LOOCV will quantify 

the contribution of each data point to the Fourier coefficients established in each 

regression. Given a large N, for an over-fitted Fourier expansion, the exclusion of a 

single data point will cause significant change in the coefficients, whereas for a good fit 

this change will be negligible. In order to quantify the robustness of the fit, the following 

objective measures could be utilized: 

I. Mean absolute error of the fit, �̅�, defined as 

 

�̅� =
1

𝑁
∑|𝑒(𝑛)|

𝑁

𝑛=1

 

=
1

𝑁
∑ |𝐸𝑖𝑛𝑑

𝐹𝐸 (𝑛)
− ∑ ∑ 𝐴𝐿

𝑞𝑟𝑠𝐾𝐿(𝑔(𝑛))𝑃𝑞(�̃�11
(𝑛)

)𝑃𝑟(�̃�12
(𝑛)

)𝑃𝑠(�̃�44
(𝑛)

)

�̃�

𝑞,𝑟,𝑠=0

�̃�

𝐿=0

|

𝑁

𝑛=1

 

(4.8) 

      Median absolute deviation (MAD) of error of the fit as 

 𝑀𝐴𝐷𝑒 = Median(|𝑒(𝑛) − Median(𝑒(1), 𝑒(2), . . . , 𝑒(𝑁))|),    𝑛 = {1,2, . . , 𝑁} (4.9) 

I. Mean absolute error of LOOCV, �̅�𝐶𝑉, and MAD of LOOCV, 𝑀𝐴𝐷𝐶𝑉, defined 

analogously as the mean and median of the error for the test data point in each 

of the N repeated fits. 

The two measures of error of fit defined above will show improvement of fit with 

higher values of �̃� and �̃�, whereas the two measures of error of LOOCV are expected to 

show a decline in robustness of fit with higher values of �̃� and �̃� accounting for over-fit 

of data. Therefore, a compromise is often made in choosing the best fit based on the 

values of all four measures defined above. In the next step, Eq. (4.6) can be used to 

address the inverse problem of estimating the unknown single crystal elastic stiffness 

constants for a selected phase in a polycrystalline sample. 
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4.4.2 Protocol to extract single-crystal elastic constants 

As described earlier, developing and validating an inverse solution methodology 

to extract grain scale elastic properties for a selected materials phase in a polycrystalline 

material is the main objective of this work. The protocol described here aims to match the 

measurements of a set of indentation moduli on differently oriented grains (typically 

measured using Orientation Imaging Microscopy (Proust G, 2004)) of a selected phase 

whose independent elastic stiffness constants are unknown (denoted as 𝐶∗) with the 

function established in the previous step (Eq. (4.6)). For cubic materials, for simplicity of 

notation, let (�̃�1
∗, �̃�2

∗, �̃�3
∗) correspond to rescaled unknown elastic constants (�̃�11

∗ , �̃�12
∗ , �̃�44

∗ ) 

using Eq. (4.4). Let {𝑔(𝑗), 𝑗 = 1, 2, … 𝐽} denote the specific orientations where the 

indentation measurements were made, and 𝐸𝑖𝑛𝑑
(𝑗)

 denote the corresponding measurements 

of the indentation moduli. Let the corresponding theoretical value for each of the 

measurement, predicted from the Fourier representation (Eq. (4.6)) be denoted as, 

𝐸𝑖𝑛𝑑
(𝑗)∗

(𝑔(𝑗), �̃�1
∗, �̃�2

∗, �̃�3
∗). The task of estimating the unknown single crystal elastic constants 

then reduces to minimizing the difference between the values of 𝐸𝑖𝑛𝑑
(𝑗)∗

(𝑔(𝑗), �̃�1
∗, �̃�2

∗, �̃�3
∗) 

and 𝐸𝑖𝑛𝑑
(𝑗)

 for all of the available measurements on the selected material phase. The 

corresponding minimization problem can be expressed as 

 min
�̃�1

∗,�̃�2
∗,�̃�3

∗
𝑓 (�̃�1

∗, �̃�2
∗, �̃�3

∗) = min
�̃�1

∗,�̃�2
∗,�̃�3

∗
∑[𝐸𝑖𝑛𝑑

(𝑗)
− 𝐸𝑖𝑛𝑑

(𝑗)∗
(𝑔(𝑗), �̃�1

∗, �̃�2
∗, �̃�3

∗)]2

𝐽

𝑗=1

 (4.10) 

The above minimization problem can be addressed by evaluating and equating the 

relevant derivatives of the function to zero: 
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𝐹𝑖(�̃�1
∗, �̃�2

∗, �̃�3
∗) =

𝜕𝑓

𝜕�̃�𝑖
∗

= −2 ∑[𝐸𝑖𝑛𝑑
(𝑗)

− 𝐸𝑖𝑛𝑑
(𝑗)∗

(𝑔(𝑗), �̃�1
∗, �̃�2

∗, �̃�3
∗)]

𝜕𝐸𝑖𝑛𝑑
(𝑗)∗

(𝑔(𝑗), �̃�1
∗, �̃�2

∗, �̃�3
∗)

𝜕�̃�𝑖
∗

𝐽

𝑗=1

= 0.  

(4.11) 

The system of nonlinear equations in Eq. (4.11) can be solved using various numerical 

approaches. In this paper, we have employed an iterative Newton-Raphson algorithm to 

solve this system of non-linear equations. This approach can be summarized as 

 

�̃�𝑖
∗(𝑘+1) 

 
= �̃�𝑖

∗(𝑘)
− [𝐽𝑖𝑗]

−1
𝐹𝑗 

𝐽𝑖𝑗 =
𝜕𝐹𝑖

𝜕�̃�𝑗
∗
|

�̃�𝑛
∗ =�̃�𝑛

∗(𝑘)

 

(4.12) 

where the superscript (k) denotes the iteration number.  

 

5. Case study: polycrystalline as-cast Fe-3%Si 

The new protocols presented in this paper to extract the single crystal elastic 

stiffness parameters have been applied to an as-cast polycrystalline sample of Fe-3%Si. 

As described in the previous section, the first step involves establishing the function 

𝐸𝑖𝑛𝑑(𝑔, �̃�11, �̃�12, �̃�44) in a spectral form (see Eq. (4.6)) using regression methods on 

datasets assembled from results produced by the FE models described in Section 3. As 

described earlier, each FE simulation of the spherical indentation for a selected 

combination of crystal orientation and cubic elastic stiffness parameters, yields one data 

point. In the present example, the desired dataset was accumulated by executing a total of 

2700 FE simulations that employed 300 distinct sets of the cubic elastic stiffness 



 60 

constants (Simmons and Wang, 1971) compounded with nine distinct crystal orientations. 

The elastic stiffness constants were selected in the ranges of 50 ≤ 𝐶11 ≤ 250,  40 ≤

𝐶12 ≤ 150, and  15 ≤ 𝐶44 ≤ 125 (see Fig. 4.3), which were chosen so that they cover 

the typical ranges for most structural cubic metals and alloys of interest. This set covers a 

cubic anisotropy ratio, defined as 𝐴 = 2𝐶44/(𝐶11 − 𝐶12), in the range (0 < 𝐴 < 8).  

 

 

 

 

The crystal orientations were selected such that they cover the relevant fundamental zone 

(FZ) of orientations of interest for the present application (Adams et al., 2012) (see the 

inset of Figure 4.2): 

 𝐹𝑍 =  [(Φ, 𝜑2) |  𝑐𝑜𝑠−1 (
cos 𝜑2

√1 + 𝑐𝑜𝑠2𝜑2

)  ≤ Φ ≤
𝜋

2
 ,   0 ≤ 𝜑2 ≤  

𝜋

4
]. (4.13) 

 

Figure 4.3. 300 distinct sets of independent elastic stiffness 

constants (𝑪𝟏𝟏,  𝑪𝟏𝟐, 𝑪𝟒𝟒) used in the present study to establish the spectral 

representations. 
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 The symmetrized spherical surface harmonics basis functions exhibiting cubic-

transversely isotropic symmetry denoted as 𝐾𝑙
𝑚(𝑔) are used for this case study. In this 

description of symmetry, the first term reflects the crystal symmetry and the second term 

reflects the sample symmetry (arises because the indentation direction is unaffected by 

any in-plane rotation of the sample). As described in the previous section, the Fourier 

coefficients of Eq. (4.6) can be determined using OLS regression (Eq. (4.7)). 
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Figure 4.4 a) The mean absolute error for varying numbers of SSH basis 

functions (�̃�) and degree of Legendre polynomial (�̃�) with MAD of absolute error 

as the error bars.  b) The mean absolute error of LOOCV for varying numbers of 

SSH basis functions (�̃�) and degree of Legendre polynomial (�̃�) with MAD of 

absolute error of LOOCV as the error bars. 
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 The values of �̅� (Eq. (4.8)) and 𝑀𝐴𝐷𝑒  (Eq. (4.9)) were computed for the training 

set for different selections of �̃� and �̃�, and are summarized in Fig. 4.4. The mean and 

median measures of the error decreases with increasing values of �̃� and �̃� as expected 

(see Fig. 4.4a). The LOOCV analyses (Fig. 4.4b) indicates over-fitting of the data points 

at high values of both �̃� and �̃�. For instance, the �̅�𝐶𝑉 values for the fits obtained using  

�̃� > 12 and �̃� > 3  start to increase significantly. Examination of the error measures 

shown in Figs. 4a and 4b suggests that �̃� = 12 and �̃� = 3 provide a good fit for the 

dataset acquired in this study using FE simulations. This level of truncation produces a 

total of 348 Fourier coefficients; these are utilized in this study to describe the functional 

dependence of indentation modulus on orientations and the independent elastic constants. 

The accuracy of the truncated spectral representation of the indentation moduli over the 

selected range of cubic elastic constants for several orientations was compared against the 

values predicted by the previously validated FE model and the analytical solution 

provided by Vlassak and Nix (Vlassak et al., 2003). Representative results are shown in 

Fig. 4.5 for a selected range of elastic anisotropic ratios for two orientations that provide 

the extremal responses. The indentation modulus in this plot was normalized by the 

indentation modulus of a polycrystalline aggregate, following the approach outlined by 

Vlassak and Nix (Vlassak and Nix, 1993) and using the expressions provided by Hashin 

and Shtrikman (Hashin and Shtrikman, 1962). The error between the FE prediction and 

the spectral representation for any given set of cubic elastic constants (within the selected 

bounds mentioned earlier) and any orientation was found to be within 4%. It is clear that 

the spectral representation developed in this work captures well the variations in the 
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indentation moduli for different orientations and different degrees of elastic anisotropy in 

the sample. 

 

 

 

 

We now turn our attention to estimating the single crystal elastic stiffness 

parameters of Fe-3%Si, for which indentation measurements on differently oriented 

single crystals were already reported in prior work (Pathak et al., 2009) . These results are 

summarized in Table 4.2, where the orientations are also plotted on the standard inverse 

pole figure. The effective indentation moduli reported in this table for Fe-3%Si were 

computed using Eqs. (4.1-4.3), where the Young’s modulus and Poisson ratio of the 

indenter were taken as 1000 GPa and 0.07, respectively (Field and Swain, 1993) . 

Estimating the single crystal constants of Fe-3%Si then reduces to minimizing the 

difference between the values predicted by the Fourier function established earlier and 

Figure 4.5 Comparison of the spectral representation of normalized indentation 

modulus as a function of anisotropic ratio against the predictions of the FE model 

and the analytical model of Vlassak and Nix. 
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the discrete measured indentation moduli reported in Table 4.2. This minimization was 

accomplished using a Newton-Raphson scheme described in the previous section (see 

Eqs. (4.10-4.12)). The estimated values of the single crystal elastic constants for the as-

cast Fe-3%Si polycrystalline sample from this study are 𝐶11 = 215.7 GPa,   𝐶12 =

131.6 GPa, and  𝐶44 = 122.2 GPa. The single crystal elastic constants obtained using 

the inverse solution approach described in this paper are within 5% of the typical values 

reported in literature for Fe-3%Si (𝐶11 = 225.28 GPa,   𝐶12 = 135.1 GPa,   𝐶44 =

102.2 GPa) (Alberts and Wedepohl, 1971; Machova and Kadečková, 1977; Routbort et 

al., 1971). 

 

 

 

 

 

Table 4.2. a) Measured values of the effective indentation modulus, Eeff, for eleven 

different orientations, and b) representation of the orientations in an inverse pole 

figure map. 
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The accuracy of the spectral framework mentioned above can be improved with 

additional measurements of indentation moduli on additional crystal orientations. Note 

that we used only eleven measured indentation moduli in the present case study. One 

might actually argue that we need only three measurements (on three distinct crystal 

orientations) to estimate the three unknown elastic stiffness constants in cubic crystals. 

However, because of the regression methods used in the approach described here, it is 

important to measure indentation moduli for orientations that are well spread out in the 

fundamental zone of orientations. For example, if we were to repeat the inverse solution 

presented here by considering only three orientations clustered in any one of the corners 

of the inverse pole figure (depicts a certain projection of the fundamental zone of 

orientations) shown in Table 4.2, it would produce highly erroneous estimates of the 

single crystal elastic stiffness constants. In fact, it is best to ensure that there at least some 

measurements in each of the three corners of the inverse pole figure shown in Table 4.2, 

as these orientations typically produce the maximum contrast in the indentation moduli.  

It is also likely that there are better representations of the indentation modulus as a 

function of the orientation and the elastic stiffness constants. Although we have had a lot 

of experience with the use of SSH as a Fourier basis for the orientation variable, we only 

have very limited prior experience in spectral representation of the elastic stiffness 

parameters. Therefore, it is entirely possible that one might accomplish a more accurate 

representation of the indentation modulus function (Eq. (4.5)) with a different Fourier 

basis, which might in turn improve the accuracy of the estimates of the elastic stiffness 

constants. 
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CHAPTER 5 

EXTRACTING SINGLE CRYSTAL EFFECTIVE SLIP 

RESISTANCE PARAMETER FOR CUBIC POLYCRYSTALLINE 

METALS 

  

 Successful deployment of polycrystalline metals in demanding engineering 

applications requires a detailed understanding of their microscale deformation behavior. 

The deformation behavior of these materials is characterized and controlled by 

dislocation slip at the level of individual grains (i.e., crystals) in the polycrystalline 

sample. Accurate characterization of the slip resistance and other slip parameters (Asgari 

et al., 1997; Beyerlein and Tomé, 2007; Gambin and Barlat, 1997; Kalidindi et al., 2004; 

Knezevic et al., 2009; Pathak et al., 2009; Sarma and Dawson, 1996; Vachhani et al., 

2016) is essential to determining the macroscopic constitutive response of a 

polycrystalline aggregate subjected to finite plastic deformation. In this chapter, a two-

step protocols formulated in the previous chapter is utilize to estimate the average slip 

resistance for cubic polycrystalline metal. 
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5.1 Introduction 

 Considerable attention has been paid to measure or estimate the slip resistance 

values and the slip hardening parameters from polycrystalline samples. A common 

practice in literature has been to extract these values by calibrating the polycrystalline 

deformation experiments with their corresponding simulations. For instance, the slip 

resistance values are estimated by calibrating the predicted macroscopic yield for 

different textures to the measured yield in multiple loading conditions (Barlat et al., 1997; 

Bron and Besson, 2004; Kalidindi and Anand, 1992; Kalidindi et al., 1992). Such 

approaches necessarily employ a homogenization scheme to relate the single crystal slip 

parameters to the effective polycrystalline response. Examples of such homogenization 

schemes range from the simple Taylor-type models (Taylor, 1934, 1938) to self-

consistent models (Lebensohn and Tomé, 1993; Segurado et al., 2012; Tomé et al., 2002; 

Tomé et al., 2001) to micromechanical crystal plasticity finite element models (CPFEM) 

(Bachu and Kalidindi, 1998; Becker, 1991; Delannay et al., 2009; Kalidindi and Anand, 

1992; Kalidindi et al., 1992; Tikhovskiy et al., 2007). Consequently, the slip parameters 

extracted using these approaches are meant to be used exclusively with the specific 

homogenization schemes employed in estimating them in the first place. In other words, 

the calibrated slip parameters extracted in these approaches reflect an inherent bias 

introduced by the use of the homogenization model. Furthermore, since each test 

(combination of each texture and loading condition imposed on the sample) constitutes 

one data point, one typically needs to expend a substantial amount of time and effort to 

generate a sufficiently large dataset that provides robust values of the slip parameters of 

interest. 
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 Alternately, it is possible to grow and test single crystals of many metals to 

estimate the values of the slip resistance. Such single-crystal experiments are effort and 

time intensive, as they require carefully controlled growth of preferentially oriented 

grains, their characterization via electron backscatter diffraction (EBSD) method, and the 

preparation of oriented test samples excised from these crystals. In practice, it is often 

impractical to produce sufficiently large volumes of the microscale constituents of 

interest in their pure form to allow the application of standardized mechanical testing 

methods (such as compression and tensile testing). Another approach explored in 

literature involves the compressive testing of micro-pillars fabricated using focused ion-

beam (FIB) in a scanning electron microscope (SEM) (Li et al., 2011; Shan et al., 2008; 

Uchic et al., 2004) . All of the techniques described above generally demand effort 

intensive sample preparation protocols and highly specialized test equipment.  

 Among the different experimental techniques explored thus far in literature, 

instrumented indentation (Doerner and Nix, 1986; Oliver and Pharr, 1992) exhibits 

tremendous potential as a low cost, high throughput, approach because of its capability to 

probe quickly multiple local volumes in a small sample. Indeed, indentation techniques 

have been employed successfully to characterize the local mechanical responses in 

individual grains in a polycrystalline sample (i.e., at length scales significantly lower than 

typical grain sizes). Although one can measure directly the local response at selected 

locations in a sample, one still needs a sophisticated strategy to extract the values of the 

slip parameters of interest from the measured load-displacement curves. The general 

approach for addressing this challenge has been to employ optimization strategies that 

minimize a suitably defined error between the measurements (typically the load-
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displacement curves) and the corresponding predictions from a finite element (FE) 

simulation of the indentation experiment, by fine-tuning the model parameters of interest 

(such as slip resistances). Examples of such efforts have included the extraction of the 

average slip resistance value for single crystal copper (Liu et al., 2008; Zaafarani et al., 

2006) and the hardening rate for low-alloy steels (Dao et al., 2001; Kucharski and Mróz, 

2001). Since the entire elastic-plastic transition occurs over a very short regime in the 

indentation load-displacement curve (Kalidindi and Pathak, 2008; Pathak and Kalidindi, 

2015) , it is generally very difficult to identify this regime precisely on the measured 

load-displacement curve. Consequently, values of the slip parameters estimated using 

such approaches are generally not robust (i.e., very sensitive to small changes in the 

protocols employed). Indeed, it is much more practical and insightful to compare the 

indentation stress-strain curves instead of the load-displacement curves in calibrating the 

material constitutive laws (Donohue et al., 2012). In this regard, the recently developed 

spherical nanoindentation data analysis protocols have shown tremendous potential 

(Kalidindi and Pathak, 2008; Pathak and Kalidindi, 2015). These new data analysis 

protocols convert the load-displacement data obtained during spherical nanoindentation 

into a meaningful indentation stress-strain (ISS) curve (details discussed in chapter 2), 

which exhibits a clear initial elastic regime followed by an elastic-plastic transition 

(Kalidindi and Pathak, 2008; Pathak et al., 2008; Pathak et al., 2009). 

 

5.2 CPFEM of spherical nanoindentation 

 The central goal of this investigation is to extend the recently developed protocols 

for estimating elastic parameters to estimate the effective slip resistance, s, in cubic 
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polycrystalline samples. Assuming that this value is uniform on all the slips systems in 

the indentation zone, the desired function (analogous to Eq. (4.5)) can be expressed as 

 �̃�𝑖𝑛𝑑(𝑔) =
𝑌𝑖𝑛𝑑(𝑔)

𝑠
= ∑ ∑ 𝐵𝑙

𝑚𝐾𝑙
𝑚(𝑔)

𝑀(𝑙)

𝑚=1

∞

𝑙=0

 (5.1) 

where 𝑌𝑖𝑛𝑑 is the indentation yield strength, and �̃�𝑖𝑛𝑑(𝑔) is a normalized indentation yield 

strength. Note that these two definitions of the indentation yield strength are linearly 

related through the slip resistance. Therefore, in many ways, it should actually be much 

easier to establish the function described in Eq. (5.1) compared to what was done earlier 

for Eq. (4.5) in the previous chapter. However, the central challenges are: (i) the CPFEM 

simulations needed to establish the SSH coefficients, 𝐵𝑙
𝑚, are computationally much 

more demanding, and (ii) the number of coefficients needed are expected to be 

significantly higher (plastic properties are known to require many more terms compared 

to elastic properties in the Fourier representations; cf. (Adams et al., 2012; Fullwood et 

al., 2010). 

 The first step in our protocol requires the generation of a dataset that can be used 

to estimate the Fourier coefficients in Eq. (5.1). It is important to build a computationally 

efficient crystal plasticity-based FE model of the spherical indentation for this purpose. 

Since we intend to use this model to simulate indentations over a broad range of crystal 

orientations, the computational efficiency of the model is of utmost importance. In this 

work, we have employed a previously established and validated model (Kalidindi and 

Anand, 1992) as a UMAT (user material subroutine) in ABAQUS (ABAQUS, 2014) to 

simulate the spherical indentation test. A complete description of this model along with 

the implementation details have already been published in prior literature (Bachu and 
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Kalidindi, 1998; Bhattacharya and Nix, 1988; Kalidindi and Anand, 1992; Kalidindi and 

Schoenfeld, 2000). A brief description of the FE model of indentation is being described 

in this section. 

 Because the sample in the indentation simulations is likely to be assigned an 

arbitrary lattice orientation, we cannot take advantage of any symmetry in the indenter 

geometry (the sample response is fully anisotropic). Consequently, it is necessary to 

develop a complete three-dimensional FE model of the indenter-sample system for the 

present study. In general, a fine mesh density is needed to capture reliably the evolving 

elastic-plastic response under the indenter. However, it is important to note that 

increasing the number of finite elements in the mesh increases the computational cost per 

simulation significantly. A large number of different meshing schemes were explored in 

this study before settling on the final model.  

 The FE model developed and employed for this study is shown in Fig. 5.1 and 

comprises of two three-dimensional solids: (i) an elastic-plastic deformable sample with 

an initially flat surface, and (ii) a rigid hemi-spherical indenter of radius 13.5µm (typical 

size of the indenter in prior experimental studies (Kalidindi and Pathak, 2008; Pathak and 

Kalidindi, 2015; Pathak et al., 2008; Pathak et al., 2009). Eight-noded, three-dimensional, 

continuum elements (C3D8 in ABAQUS) were used to mesh the deformable part. The 

size of the sample was selected as 10𝜇𝑚𝑋10𝜇𝑚𝑋10𝜇𝑚 to ensure that the stress-strain 

fields are well within the primary indentation zone size. There were a total of 17𝐾 

elements within the indentation zone, whose overall length scale was observed to be 

about ~2.5𝜇𝑚 from our simulations. The indentation zone has been discretized into seven 

regions as shown in Fig. 5.1a to permit the use of progressively higher mesh density as 
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we approach the indentation zone directly below the indenter-sample contact surface. 

This partitioning allows highest mesh densities in the regions where steepest gradient in 

the stress (or strain) fields are expected in the sample. With this meshing scheme, the 

innermost region (0.1𝜇𝑚𝑋0.1𝜇𝑚𝑋0.07𝜇𝑚) has an element size of 

(3.9𝑛𝑚𝑋3.9𝑛𝑚𝑋4.4𝑛𝑚). The aspect ratio of the element in the indentation zone was 1.8. 

The aspect ratio of the elements outside the indentation zone is larger, but these regions 

experience fairly minimal stresses and strains. A hard surface-to-surface, frictionless, 

contact was defined between the sample and indenter. A vertical displacement boundary 

condition was imposed on the indenter. The bottom surface of the sample was 

constrained along the z-direction (indentation direction). Encastre boundary condition is 

defined at the center of the bottom surface of the sample to arrest rigid body translations 

and rotations. The lateral surfaces of the sample material are kept free throughout the 

simulation. The displacement of the indenter and the total force applied on the sample are 

recorded at every time increment from the simulation. 

 

  

 

Figure 5.1. a) Finite element mesh of the sample in the spherical nanoindentation. 

b)  Close-up view of a midsection through the indentation zone under the indenter 

tip. 
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 The finite element model developed in this study was validated by comparing the 

indentation stress-strain curve for isotropic perfectly-plastic material constitutive 

behavior with the previously published result obtained using a 2-D FE model (see Fig 

5.2). The FE mesh developed and utilized in this work enabled a relatively fast 

computation of the ISS curves using the crystal plasticity constitutive model. The final 

mesh employed in this work executed in about 5 hours per simulation on 20 CPUs 

provided by Partnership for Advanced Computing Environment (PACE) facility. 

 

 

  

Figure 5.2. Comparison of the predicted ISS response from FE simulation against 

the corresponding prediction of ISS curve using 2-D FE simulations of 

indentation for isotropic perfectly plastic response 
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5.3 Orientation dependence of indentation yield in BCC crystals  

As discussed earlier, our first goal in this work is to establish the Fourier coefficients, 

𝐵𝑙
𝑚, in Eq. (5.1).  Our strategy will be to numerically evaluate �̃�𝑖𝑛𝑑(𝑔) for a sufficiently 

large number of crystal orientations using the crystal plasticity FE model described in the 

previous section, and to use this data to estimate (or calibrate) the Fourier coefficients, 

𝐵𝑙
𝑚, using a linear regression method. The inputs to the crystal plasticity FE simulations 

of spherical indentation are the single crystal elastic stiffness constants, the crystal lattice 

orientation (𝑔), and arbitrarily chosen average initial slip resistance parameter, 𝑠0 =

8 MPa for all 48 slip systems (Kocks et al., 2000). It is important to note that the sample 

is assumed to initially be a single crystal region (i.e., all elements are assigned the same 

initial crystal lattice orientation) and is assumed to be non-hardening (as this has no 

relevance to our goal of establishing the function defined in Eq. (5.1)). The crystal 

orientation is described by a set of three Bunge-Euler angles (H, 1982) denoted as 

(𝜑1, Φ, 𝜑2). Since, any arbitrary rotation of the sample about the axis of the spherical 

indenter does not influence the indentation response, the extracted ISS curves and the 

value of 𝑌𝑖𝑛𝑑 only depend on two of the three Bunge-Euler angles, (Φ, 𝜑2). Considering 

the inherent crystal cubic symmetry and the transversely-isotropic sample symmetry, the 

crystal lattice orientations for different simulations were selected from the fundamental 

zone (FZ) defined by 

𝐹𝑍 =  [(Φ, 𝜑2) |  𝑐𝑜𝑠−1 (
cos 𝜑2

√1 + 𝑐𝑜𝑠2𝜑2

)  ≤ Φ ≤
𝜋

2
 , 0 ≤ 𝜑2 ≤  

𝜋

4
].  
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For the present study, 36 crystal lattice orientations were selected from the FZ by 

discretizing the orientation space in a way that ensures that the bins size has the same 

invariant measures (see Fig. 5.3; cf. (Fullwood et al., 2010)). The indentation yield 

strength is extracted from the ISS curve using a 0.2% offset indentation plastic strain as 

shown in Fig 5.4. 

 

Figure 5.3. Distinct set of selected crystal lattice orientations spanning the cubic-

transversely isotropic fundamental zone (highlighted area). 
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Grain 
Effective Modulus 

(GPa) 
Indentation Yield 

(MPa) 

(111) 202.5 ~89.5 

(101) 196 ~82.5 

(001) 170.2 ~77.5 

 

 

 An ordinary least square approach described in our previous work (Patel et al., 

2014) has been used to calibrate the Fourier coefficients, 𝐵𝑙
𝑚 (see Eq. (5.1)). Through 

repeated trials, it was found that truncating the Fourier representation at l = 6 provided a 

good representation. This truncation level results in a total of 23 Fourier coefficients. The 

truncation error was observed to be less than 5%. This is consistent with prior work on 

the microstructure-sensitive design (MSD) framework, where plastic properties such as 

Figure 5.4. Indentation stress-strain curves predicted using CPFEM of 

nanoindentation for three different grains. 
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tensile and shear yield strength showed similar error levels when truncated at l = 6 

(Proust G, 2004). 

 

 

 As another validation, we present in Figure 5.4 a comparison between �̃�𝑖𝑛𝑑(𝑔) 

established in this work and the 𝑌𝑖𝑛𝑑(𝑔) measured experimentally in prior work on an as 

cast Fe-3%Si BCC polycrystalline sample (Pathak et al., 2009). Note that it is not 

possible to compare directly the predicted and measured indentation yield strengths, since 

the value of the slip resistance for the sample used in the experiment is unknown. 

However, this is precisely the main point of this paper. The excellent agreement in the 

shapes of the contours shown in Figure 5.5 suggests that we should be able to extract the 

value of the slip resistance simply by calibrating the experimental results to the FE 

predicted results. This is pursued next.  

 

Figure 5.5. Inverse pole figure (IPF) map showing the surface contours of the 

variation in the indentation yield strength over the orientation space based on 

experimental observations and FE simulations. 
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5.4 Estimating the initial slip resistance 

The main goal of this work is to develop and validate a robust methodology to extract 

the value of the local (i.e., length scales well below the typical grain size) slip resistance 

from a polycrystalline bcc sample. This will be accomplished by minimizing the 

difference between CPFEM predicted indentation yield values and the corresponding 

measured values on a selected set of grain orientations in the given polycrystalline 

sample. A suitable definition of the error for such a regression analyses can be expressed 

as  

𝜒2(𝑠) = ∑ [
𝑌𝑖𝑛𝑑

𝐸𝑥𝑝(𝑔𝑗) − (𝑠�̃�𝑖𝑛𝑑(𝑔𝑗))

σ𝑗
]

2𝑁

𝑗=1

            (5.2) 

where 𝑗 enumerates the grain orientations where the measurements were made, 𝑁 is total 

number of grain orientations studied in the given sample, and σ𝑗 denotes the standard 

deviation for multiple measurements on a single grain (this allows us to account for 

potentially different levels of variance in the measurements in the differently oriented 

grains). The value of the slip resistance, 𝑠, can then be determined easily by minimizing 

the 𝜒2 function (i.e., setting its derivative with 𝑠 to zero). This value can be computed as 

𝑠 =  

∑
�̃�𝑖𝑛𝑑(𝑔𝑗)𝑌𝑖𝑛𝑑

𝐸𝑥𝑝(𝑔𝑗)

σ𝑗
2

𝑁
𝑗=1

∑
�̃�𝑖𝑛𝑑(𝑔𝑗)�̃�𝑖𝑛𝑑(𝑔𝑗))

σ𝑗
2

𝑁
𝑗=1

.           (5.3) 

It is possible to compute the variance on the estimated value of the slip resistance (as a 

measure of the uncertainty involved in the estimated value) as (Press, 2007) 
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σ𝑠
2 = ∑ 𝜎𝑗

2

𝑁

𝑗=1

𝜕𝑠

𝜕𝑌𝑖𝑛𝑑
𝐸𝑥𝑝

(𝑔)|
𝑔=𝑔𝑗

=  
∑ �̃�𝑖𝑛𝑑(𝑔𝑗)𝑁

𝑗=1

∑
�̃�𝑖𝑛𝑑(𝑔𝑘)�̃�𝑖𝑛𝑑(𝑔𝑘))

σ𝑘
2

𝑁
𝑘=1

            (5.4) 

5.5 Case study: As-cast Fe3%Si Polycrystalline Sample 

The protocols described in the earlier sections will now be demonstrated on 

measurements reported previously on an as-cast Fe-3%Si polycrystalline steel sample. 

These previously reported measurements are summarized in Table 5.1 (Pathak et al., 

2009). The regression techniques described in the previous section produced an estimated 

value (along with estimated variance) of the slip resistance as 155.4 ± 3.5 MPa for the as-

cast Fe-3%Si polycrystalline material. This estimated value lies within the range of 

values reported in prior literature for Fe-3% Si using a variety of protocols. For example, 

a value of 146.12 MPa (Hull, 1963) was obtained from single crystals deformed in 

tension. A value of 161 MPa (Klusemann et al., 2012; Orlans-Joliet et al., 1990) was 

obtained from calibrating the tensile test data on single crystals of Fe-3% Si for different 

lattice orientations via crystal plasticity finite element analysis. Additionally, the effective 

slip resistance value was also estimated from measurements on polycrystalline samples of 

Fe-3%Si. These values fall within the range of values obtained from the single crystals 

studies. For instance, from tensile studies on fine (20μm) and coarse (170μm) grain sized 

Fe-3%Si (Suits and Chalmers, 1961), it was deduced that the yielding is independent of 

the grain size and the value of slip resistance was estimated to be in the range of 130.42 

MPa and 157.9 MPa. Clearly, the values obtained in this study are in good agreement 

with those obtained in prior studies described above. 
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5.4 Robustness of the approach 

The robustness of the estimated value of the slip resistance from the protocols 

described in this paper (i.e., sensitivity of the estimated value to the choices made in the 

estimation protocols) depends critically on the number and quality of the indentation 

yield measurements available, and the orientation space they cover. Note that indentation 

yield measurements were available from only 11 distinct grain orientations for this study. 

In general, a critical selection of the grain orientations for the indentation measurements 

is essential for a reliable estimation of the slip resistance value. Because of the regression 

Table 5.1. a) Measured values of the indentation yield, Y
ind

, for eleven different 

orientations, and b) representation of the orientations in an inverse pole figure 

map (Pathak et al., 2009). 
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method used in the approach described here for the estimation of the effective slip 

resistance, it is important to select orientations that produce robust estimates of the slip 

resistance.  

In order to systematically evaluate the robustness of the estimated value of the slip 

resistance, one can subsample the measurements and repeat the entire estimation 

protocol. Let N (in the present case study, N =11) denote the total number of grain 

orientations studied using indentation protocols described in this paper. If one were to 

decide to make indentation measurements on only k grain orientations (k ≤ N), it would 

be possible to identify ⟨𝑁
𝑘

⟩ =
𝑁!

𝑘!(𝑁−𝑘)!
 distinct ensembles (i.e., subsamples) of potential 

datasets that might have been collected. As an example, if k = 1, the number of distinct 

ensembles is 11 for the present case study. For k = 2, the number of distinct ensembles is 

55. A study of the estimated values of the slip resistance from each such ensemble will 

provide insights into how many grain orientations are needed to obtain reliable results. It 

will also provide some insights on how to select the grain orientations for the indentation 

measurements.  
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The estimated values of the slip resistance for the different choices of k from the 

ensembles created as described above are summarized in Figure 5.6 as frequency plots. 

As expected, the distribution of the estimated value of the slip resistance sharpens 

significantly with an increase in k. Interestingly, as stated earlier, the distribution of the 

estimated values is mostly within 155.4 MPa ± 3.5 MPa for the higher values of k (see k 

= 6 in Figure 5.6). One might look at the percentage of estimated values within 3% of the 

mean estimated value for each value of k to determine how many grain orientations are 

needed to establish a reliable value of the slip resistance using the protocols described in 

this paper. This value increases from 72% for k = 1, to 87% for k = 2, to 93% for k = 3, to 

96% for k = 4. This simple analysis suggests that there is a high likelihood of obtaining a 

reliable value of the slip resistance with indentation measurements in as few as four 

Figure 5.6. The frequency distribution of the estimated slip resistance values 

using various ensembles of subsamples. 
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different grain orientations. Figure 5.7 shows the specific ensembles (i.e., selections of 

four grain orientations) that produced the closest estimates to the value of 155.4 MPa 

estimated in this study. From a review of these inverse pole figures, the following 

guidelines emerge for the selection of the grain orientations for the indentation 

measurements: (i) select grains with orientations close to each of the corners of the 

inverse pole figures, and (ii) distribute the orientations as uniformly as possible to cover 

the fundamental zone of the orientation space. 

 

 
Figure 5.7. Ensembles from k = 4 (four grain orientations selected randomly) that 

produced values closest to the estimated slip resistance of 155.4 MPa from the 

entire collection of eleven grain orientations. 
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CHAPTER 6 

CONCLUSION 

 

 Successful development and deployment of polycrystalline metals in demanding 

engineering applications requires a detailed understanding of their microscale and 

macroscale deformation behavior by using physic-based constitutive theories coupled 

with finite element simulations tools. Such models require relevant physical material 

parameter at those length scales. In this thesis, robust protocols are developed to 

characterized macroscale and microscale elastic-plastic parameters at significantly lower 

effort and cost by combining the mechanical information obtained from indentation 

measurements and FE simulations.  

At macroscale, this work addressed the longstanding problem of recovering 

uniaxial mechanical response from instrumented indentation experiments, with the 

central challenge being the lack of validated protocols for converting indentation stress 

and strain values to equivalent values in uniaxial stress states such as simple 

compression. This study has developed new protocols to address this critical gap for 

materials exhibiting isotropic plasticity. The protocols presented in this study were 

validated using FE models of indentation with a broad range of isotropic elastic-plastic 

constitutive response following J2-flow theory. In the study, the following key advances 

are made.  

a.) A novel framework and protocols are formulated to correlate indentation stress-

strain curves and the simple compression stress-strain curves. This protocol 

involves different scaling factors for indentation stress, elastic indentation strain, 
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and plastic indentation strain. This paper represents the first report of such a 

comprehensive protocol that specifically addresses all of the components of a 

stress-strain curve. Furthermore, the protocol developed here involves very simple 

scaling relationships to scale indentation stress-strain curve to uniaxial stress-

strain curves and vice-versa. 

b.) An elastic-plastic finite element model of indentation was developed and 

validated. The new protocols for mapping indentation stress-strain measurements 

into compression stress-strain curves are validated for a variety of materials 

exhibiting a broad range of hardening behaviors using the finite element model as 

a surrogate for the experiment.  

c.) A specific protocol was developed to reliably identify offset indentation yield 

strength from experimental measurements and to correlate it to 0.2% offset 

uniaxial yield strength used extensively in current literature. The right offset 

indentation strain level was identified as 0.15% and the corresponding scaling 

factor (also called constraint factor) was identified as 2.0. The identification of 

this protocol now fills a critical gap in our ability to extract meaningful material 

properties from instrumented indentation experiments. 

At microscale development of robust, physics-based multi-scale materials model 

is significantly hampered by the lack of validated tools and protocols for characterizing 

reliably the local anisotropic properties at sub-micron length scale. Here, I developed 

inverse methodology to extract grain scale elastic-plastic properties using spherical 

indentation measurements and finite element models. In particular, a two-step protocols 

are developed to extract the elastic stiffness constants for cubic polycrystalline metal 
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sample from a collection of spherical nanoindentation and lattice orientation 

measurements.  

a.) In the first step, a suitable FE model of nanoindentation is developed as a 

surrogate to the experiments to capture the functional dependence of the property 

of interest on the crystal lattice orientation at the indentation site and the relevant 

physical material parameters. This functional dependence is captured in a 

compact spectral representation using surface spherical harmonics functions.  

b.) In the second step, measured values of the property of interest and the crystal 

lattice orientation at the indentation site from a polycrystalline sample are fitted to 

the spectral function established in the first step to provide a robust estimate of the 

elastic-plastic material parameters.  

c.) The validity of this approach is demonstrated for annealed Fe-3%Si 

polycrystalline sample using measurements published in prior literature.  

Similarly, a robust protocol has been formulated to extract the effective slip resistance 

value for cubic material system from spherical nanoindentation and orientation 

measurements. This protocol was developed through the following steps:  

a.) A crystal plasticity finite element model of nanoindentation is developed in 

ABAQUS to capture the variation in the mechanical behavior of the differently 

(lattice) oriented grains in a simple analytical expression using spectral 

representations.  

b.) The protocol was demonstrated on as-cast polycrystalline Fe-3%Si sample. The 

effective slip resistance value was estimated by matching the experimental 

measurements with the analytical expression established in (a). The estimated 
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value lies in the range of the reported literature values for Fe-3%Si using other 

protocols. 

c.) The protocols provide guidelines for the selection of the grain orientations for the 

indentation measurements: (i) select grains with orientations close to each of the 

corners of the inverse pole figures, and (ii) distribute the orientations as uniformly 

as possible to cover the fundamental zone of the orientation space. 

6.1 Future work 

 The lack of validated methods to characterize the changes in the local anisotropic 

elastic-plastic properties of the microscale constituents is a major impediment to attaining 

a deeper physics-based understanding on the material microstructure and its mechanical 

properties. This work is a crucial step in establishing methodologies and protocols for 

extracting reliable local mechanical properties from nanoindentation. The developed 

protocols here provide high-throughput reliable characterization technique which enables 

further physics-based understanding of materials behavior. While current research 

focuses only on cubic metallic materials, the techniques developed here can be easily 

extended to complex material systems such as hexagonal metals. The long term impact of 

this work is likely to result in fast characterization of complex material systems which is 

likely to result in accurate multi-scale physics-based model to predict materials behavior 

across multiple length scales. 
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APPENDIX A 

SPECTRAL REPRESENTATION 

 The protocols to extract microscale properties developed in this work is built on 

prior Microstructure Sensitive Design (MSD) framework which allows a rigorous 

treatment of properties represented over an orientation space. This is accomplished 

through the proper utilization of the Fourier basis functions. There are several advantages 

in utilizing these basis functions: i) Fourier basis form a complete set of basis functions 

and are orthogonal; ii) properties can be expressed with a finite number of terms over 

orientation space; iii) invertible relationship exists between properties and 

microstructures. 

 Generalize surface spherical harmonic (SSH) functions, a subset of Fourier basis 

are employed to approximate the orientation dependence functions and the associated 

properties. SSH functions have already been demonstrated to produce highly efficient and 

compact spectral representation of desired functions over the orientation space, 𝑔 (H, 

1982) defined as 

 𝑇𝑙
𝑚(𝑔) = 𝑇𝑙

𝑚(𝜑2, Φ) = ∑ ∑ 𝑒𝑖𝑚𝜑2𝑃𝑙
𝑚(cos Φ)

+𝑙

𝑚=−𝑙

∞

𝑙=0

 (A.1) 

where 𝑃𝑙
𝑚 are associate Legendre functions. SSH functions forms a complete 

orthonormal basis 

 ∫ 𝑇𝑙
𝑚(𝑔) 𝑇𝑙′

 ∗𝑚′
(𝑔)𝑑𝑔 =  𝛿𝑙𝑙′𝛿𝑚𝑚′ (A.2) 

where 𝑑𝑔 is the invariant measure of orientation space and “∗” denotes complex 

conjugate. SSH functions is modified to reflect transverse isotropic symmetry realized in 
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an indentation. Symmetrized SSH functions for cubic transversely isotropic symmetry 

denoted as 𝐾𝑙
𝑚(𝑔) are found as a linear combination of SSH functions: 

 𝐾𝑙
𝑚(𝑔) = ∑ 𝛼𝑙

𝑚

𝑙

𝑚=−𝑙

𝑇𝑙
𝑚(𝑔) (A.3) 

where 𝛼𝑙
𝑚 are the coefficients that accounts for the cubic transversely isotropic crystal 

symmetry in the SSH functions. The orthonormal condition is preserved when SSH 

functions are symmetrized for a selected crystal system. As an example, Figure 2.10 

shows the orthogonal relationship for symmetrized SSH for cubic crystals under 

indentation which exhibits transversely-isotropic cubic symmetry (see Figure 2.11) at 

truncation level of 𝑙 = 4. 

 

 

  

 

 

Figure A.1. Shows the symmetrized SSH basis functions are orthonormal for the 

truncation level, 𝒍 = 𝟒. 
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 The main advantage of utilizing Fourier representation is that an indentation 

response, 𝑓(𝑔) which depends on the lattice orientation, 𝑔 can be represented as a 

Fourier series of symmetrize surface spherical harmonics, weighted with appropriate 

coefficients  

 𝑓(𝑔) = ∑ ∑ 𝐹𝑙
𝑚

+𝑙

𝑚=−𝑙

∞

𝑙=0

𝐾𝑙
𝑚(𝑔) (A.4) 

where 𝐹𝑙
𝑚 represents Fourier coefficients of the function 𝑓(𝑔). The most common 

approaches used in literature for establishing the Fourier coefficients involves exploiting 

the orthonormal properties of the Fourier basis (Adams et al., 2012; Kalidindi et al., 

2006; Kalidindi et al., 2008; Knezevic et al., 2009). To determine the Fourier coefficient, 

𝐹𝑙
𝑚 of a function 𝑓(𝑔), Eq. (A.4) is multiplied by the conjugate of one of the spherical 

harmonics function 

Figure A.2. The fundamental zone (shaded) for cubic lattice under indentation 

which possess transversely isotropic cubic symmetry.  
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 𝑓(𝑔) = ∑ ∑ 𝐹𝑙
𝑚

+𝑙

𝑚=−𝑙

∞

𝑙=0

𝐾𝑙
𝑚(𝑔) (A.5) 

We then integrate each side over the fundamental zone (FZ) (unique orientations space 

for a selected crystal lattice structure), 

 ∬ 𝑓(𝑔)

 

𝐹𝑍

𝐾𝑙′
∗𝑚′(𝑔)𝑑𝑔 = ∬ ∑ ∑ 𝐹𝑙

𝑚

+𝑙

𝑚=−𝑙

∞

𝑙=0

 

𝐹𝑍

𝐾𝑙
𝑚(𝑔)𝐾𝑙′

∗𝑚′(𝑔)𝑑𝑔 (A.6) 

Exploiting the orthonormal relations, the Fourier coefficients can be expressed as 

 ∬ 𝑓(𝑔)

 

𝐹𝑍

𝐾𝑙′
∗𝑚′(𝑔)𝑑𝑔 = ∬ ∑ ∑ 𝐹𝑙

𝑚

+𝑙

𝑚=−𝑙

∞

𝑙=0

 

𝐹𝑍

𝛿𝑙𝑙′𝛿𝑚𝑚′ = 𝐹𝑙′
𝑚′ (A.7) 

If the function 𝑓(𝑔) represents the microstructure of single crystal, it can be defined 

using a Dirac Delta function 𝛿(𝑔 − 𝑔0) such as 

 ∬ 𝛿(𝑔 − 𝑔0)

 

𝐹𝑍

𝑑𝑔 = {
1, 𝑖𝑓 𝑔0 = 𝑔
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.8) 

Hence, for single crystals the Fourier coefficients is defined as 

 𝐹𝑙
𝑚 = (2𝑙 + 1)𝐾𝑙

∗𝑚. (A.9) 

If the texture consists of several different crystals with orientation 𝑔𝑖, and volumes 𝑉𝑖, 

one thus obtains the coefficients as weighted average values 

 𝐹𝑙
𝑚 = (2𝑙 + 1)

∑ 𝑉𝑖𝐾𝑙
∗𝑚

𝑖

∑ 𝑉𝑖𝑖
. (A.10) 

Let {𝑔𝑖, 𝑖 = 1, 2, … 𝑖} denote the specific orientations where the measurements are made. 

The function 𝑓(𝑔) then possesses a form as schematically represented in one dimension 

in Figure 2.12. If one extends the series expansion to very high, but finite, values of 𝑙 the 
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discontinuous function 𝑓(𝑔) will be approximated by a continuous function. Thus, it will 

reproduce measurements at each individual orientation, 𝑔𝑖. Rather, it is generally 

preferable to have a smooth function which represents the distribution density of the 

orientation. In order to accomplish this, one has the simply truncate the series at 

appropriate value of 𝑙. 

 

 

  Figure A.3. Schematic of approximating a discontinuous function 𝒇(𝒈) by 

employing surface spherical harmonics functions in one-dimension. (Bunge, 

1982) 
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APPENDIX B 

CRYSTAL PLASTICITY FRAMEWORK 

  

 Crystal plasticity theory is used in many applications because of their ability to 

relate the local anisotropic response of polycrystalline materials to their microstructures 

(Kalidindi et al., 1992). The crystal plasticity constitutive equations described here are 

applied at crystal level and therefore predict the local response of each individual crystal 

orientation. In order to simulate the single crystal deformation behavior under the 

indenter in an experiment, the classical crystal plasticity constitutive equations described 

were used in the current work. In the FE model described in section 5.2, all integration 

points were assigned a single crystal orientation. 

 A detailed description of the implementation of the crystal plasticity modeled 

with a time integration implicit scheme of FE package ABAQUS through a user material 

subroutine (UMAT) is in Kalidindi et al. [ref]. A brief overview is given here describing 

the numerical work-flow of the crystal plasticity theory and its integration with 

ABAQUS. 

 At each time step, 𝑡 ABAQUS outputs the total deformation gradient tensor 𝑭 

from which the trial stress (𝑻∗) is calculated 

 𝑻∗ = 𝓛𝑬∗, 𝑬∗ =
1

2
(𝑭∗𝑇𝑭∗ − 𝑰) (B.1) 

where 𝓛 is the fourth-order elasticity tensor. 𝑻∗ and 𝑬∗ are a pair of work conjugate stress 

and strain measures. Then the critical shear stress, 𝜏𝛼 is estimated as 

 𝜏𝛼 = (𝑭∗𝑇
𝑭)𝑻∗ ∙ 𝒎0

𝛼⨂𝒏0
𝛼 ≈ 𝑻∗ ∙ 𝒎0

𝛼⨂𝒏0
𝛼. (B.2) 

The subscript “0” indicates a time invariant measure – i.e. the slip normal (𝒏) and slip 

direction (𝒎) remain constants throughout the deformation. In rate-dependent plasticity, 
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the shearing rate (�̇�𝛼) is iteratively calculated using the viscoplastic power law which 

phenomenologically describes the dependence of slip activity due to the imposed 

resolved shear stress on the slip system, 𝛼. The shear rate on the slip system, �̇�𝛼 is 

defined as 

 𝛾�̇� = �̇�0 |
𝜏𝛼

𝑠𝛼
|

1
𝑚

sgn(𝜏𝛼) (B.3) 

where �̇�0 is the reference shear rate and 𝑚 is the strain rate sensitivity parameter. For 

most metals at room temperature the value of 𝑚 is assumed to be very small (~0.01). The 

evolution of the slip resistance can be described by a saturation type hardening law as 

 �̇�𝛼 = ℎ0 (1 −
𝑠𝛼

𝑠𝑠
)

𝑎

∑|𝛾�̇�|

𝛽

 (B.4) 

where ℎ0, 𝑠𝑠 and 𝑎 denote the slip hardening parameters. It should be noted that Eq. (B.3) 

assumes that all systems hardens equally. Once a shearing rate is determined that satisfies 

the current state of stress, the plastic velocity gradient (𝑳𝑝) is tabulated as  

 𝑳𝑝 = ∑ 𝛾�̇�

𝛼

𝒎0
𝛼⨂𝒏0

𝛼. (B.5) 

Then, the plastic deformation evolution, �̇�𝑝 is described by the following rule: 

 �̇�𝑝 = 𝑳𝑝𝑭𝑝 (B.6) 

where 𝑭𝑝 is the plastic deformation tensor. Eq. (B.6) is solved for 𝑭𝑝 numerically via 

fully-implicit time-integration scheme 

 𝑭𝑝(𝑡 + ∆𝑡) = 𝒆{∆𝑡𝑳𝑝(𝑡+∆𝑡)}𝑭𝑝(𝑡) (B.7) 

where the exponential function is approximated via Taylor expansion. Once the plastic 

deformation is known, the elastic deformation 𝑭∗ can be easily calculated from the 

elastic-plastic decomposition rule: 
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 𝑭 = 𝑭∗𝑭𝑝. (B.8) 

The Cauchy Stress, 𝑻 in the crystal is defined as 

 𝑭 = 𝑭∗𝑭𝑝. (B.9) 

Finally, the lattice spin tensor 𝑾∗ (and the related lattice rotation tensor, 𝑹∗) in the 

crystalline region is updated by 

 𝑾∗ = �̇�∗𝑹∗𝑇 = 𝑾 − 𝑾𝑝, 𝑾𝑝 =
1

2
(𝑳𝑝 − 𝑳𝑝𝑇) (B.10) 

where 𝑾 is the applied spin tensor and 𝑾𝑝 is the plastic spin tensor. The constitutive 

behavior described above determines the response of an individual grain at each time step 

increment.  
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