
  

DEVELOPMENT OF METHODS FOR HIGH PERFORMANCE 

COMPUTING APPLICATIONS OF THE DETERMINISTIC 

STAGE OF COMET CALCULATIONS 

 

 

A Dissertation 
Presented to 

The Academic Faculty 
 

by 

 

Kyle Eugene Remley 

 

 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Nuclear and Radiological Engineering 

 

 

 

Georgia Institute of Technology 

August 2016 

 

 

COPYRIGHT © 2016 BY KYLE E. REMLEY



  

DEVELOPMENT OF METHODS FOR HIGH PERFORMANCE 

COMPUTING APPLICATIONS OF THE DETERMINISTIC 

STAGE OF COMET CALCULATIONS 

 

 

 

 

 

 

 

 

 

 

 
Approved by:   

   
Dr. Farzad Rahnema, Advisor 
George W. Woodruff School 

Georgia Institute of Technology 

 Dr. Tom Morley 
School of Mathematics 

Georgia Institute of Technology 

   
Dr. Bojan Petrovic 

George W. Woodruff School 
Georgia Institute of Technology 

 Dr. Alireza Haghighat 
Virginia Polytechnic and State 

University 

   
Dr. Dingkang Zhang 

George W. Woodruff School 
Georgia Institute of Technology 

  

   
 

   Date Approved:  July 13, 2016 
 

 



  

 

 

 

 

 

 

 

 

To my lovely life. 

 

 

 

 

 



 

 

iv 

ACKNOWLEDGEMENTS 

 

 Major milestones in one’s life are rarely achieved without the support and 

guidance of multiple people, and this thesis is no exception.  I would like to thank 

my friends and family who have supported and inspired me during my tenure at 

Georgia Tech, as well as the people who have helped me become who I am today.   

 First, I’d like to thank my advisor, Dr. Farzad Rahnema for his support, 

guidance, and encouragement during my tenure as a graduate student. Further, I 

would like to thank him for pushing me to get involved with research at CRMPL at 

Georgia Tech and to swiftly complete my graduate studies. I would also like to 

thank the members of my committee – Dr. Bojan Petrovic, Dr. Dingkang Zhang, 

Dr. Tom Morley, and Dr. Alireza Haghighat – for participating in the critique of 

my work.   

 In addition, I’d like to thank my wonderful colleagues in the CRMPL Lab at 

Georgia Tech. The relationships that I have formed during our long hours in the 

lab are among my most treasured memories. My fellow CRMPLers Daniel Lago, 

Gabriel Anthony Kooreman, Ryan Hon, Alex Huning, Chris “Chaps” Chapman, 

Stefano Terlizzi, and Drew Johnson certainly helped me through the many rough 

times in research as a much needed morale boost, and I can only hope that I 

returned the favor. I’d like to apologize for all the times I had “plans” on days when 

there were lab outings. The ones I actually managed to make it to were some of my 

favorite times in graduate school. 



  

 v 

 I must also mention my family, specifically my parents Keith and Belinda 

Remley, for bribing me with Pokemon cards for good grades when I was young. 

Had they not instilled in me a persistent motivation to achieve, I would not know 

where I am today.  

 Finally, I’d like to thank my friends Nathan Le and Nick Breen. Without 

their support and companionship through my many years in undergraduate and 

graduate school, I would be a much sadder man than I am today. I’m happy to be 

great friends with the both of you, and I hope our connections continue on for 

many years in the future. 



 

 

iv 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES vi 

LIST OF FIGURES ix 

SUMMARY  xiiiiii 

INTRODUCTION 1 

1.1 The COMET Method as a Way to Compute Whole-Core Solutions 2 

1.2 Motivation and Goal 3 

BACKGROUND AND THEORY 5 

2.1 The Neutron Transport Equation 5 

2.2 Classical Methods 6 

2.3 The COMET Method 9 

CURRENT TECHNOLOGIES AND METHODOLOGIES 16 

3.1 Solution Methods for the Response Matrix Equations 16 

3.2 Acceleration Schemes for COMET Calculations 19 

3.3 Parallel Computing in Transport Calculations 22 

DEVELOPMENT THE DISTRIBUTED ALGORITHM 29 

4.1 Problem Decomposition 29 

4.2 Distinctions from the Serial Algorithm 37 

4.3 Outlined Distributed Algorithm 43 

4.4 Scalability Analysis 44 

ANALYSIS OF THE COMET-MPI CODE WITH AMDAHL'S LAW                        48 

5.1 Effect of Response Function Lookups on Performance  49 

5.2 Benchmarking Parallel Efficiencies with Theory 53 

5.3 Discussion of Response Function Lookup Cost 60 



  

 v 

SENSITIVITY STUDY OF PROBLEM SIZE ON SCALABILITY OF THE COMET-

MPI CODE       63 

6.1 Description of the Benchmark Problems 63 

6.2 Number of Coarse Meshes Sensitivity Study 69 

6.3 Flux Expansion Sensitivity Study 73 

WHOLE CORE BENCHMARK PROBLEM SOLUTIONS WITH COMET-MPI 76 

7.1 Description of the Benchmark Problems 76 

7.2 Benchmark Solutions 86 

7.3 Computational Performance with more Processors 98 

CONSIDERATIONS FOR PROBLEMS WITH HIGH FLUX EXPANSIONS 105 

CONCLUSIONS 109 

APPENDIX A 112 

REFERENCES 117 

VITA   122 

 



  

 vi 

LIST OF TABLES 

           Page 

Table 1: Unique coarse meshes modeled for the benchmark problems.              67 

Table 2: Axial and total coarse mesh loadings of the 

               three benchmark problems.                                                         69 

Table 3: Parallel performance results for the 1X C5G7 problem.                           70 

Table 4: Parallel performance results for the 2X C5G7 problem.                          70 

Table 5: Parallel performance results for the 3X C5G7 problem.                          71 

Table 6: Parallel performance results for the 3X C5G7 problem 

                for various flux expansion orders.                                                                74 

Table 7: Unique coarse mesh specification for PWR w/gad  

                computational model.                                                                                     81 

Table 8: Geometric specifications of the PWR with MOX benchmark.                84  

Table 9: Unique coarse mesh specifications for the PWR with MOX 

                  benchmark.                                                                                                      85 

Table 10: Runtime results for the PWR with gadolinium benchmark.                 86 

Table 11: Computational performance results for LOA inner 

                  iterations for PWR with gad.                                                                       87  

Table 12: Computational performance results for full-order inner 

                  iterations for PWR with gad.                                                                       88 

Table 13: Computational performance results for the full core  

                  PWR w/MOX 2g solution.                                                                            90  

Table 14: Computational performance results for the LOA  



  

 vii 

                  inner iteration for PWR w/MOX 2g.                                                         91 

Table 15: Computational performance results for the full-order  

                  inner iteration for PWR w/MOX 2g.                                                         91  

Table 16: Computational performance results for the full core  

                  PWR w/MOX 8g solution.                                                                          95  

Table 17: Computational performance results for the LOA  

                  inner iteration for PWR w/MOX 8g.                                                        95 

Table 18: Computational performance results for the full-order  

                  inner iteration for PWR w/MOX 8g.                                                        95 

Table 19: Computational performance results for PWR w/gad  

                  on Prometforce-6, first run.                                                                       99  

Table 20: Computational performance results for PWR w/gad  

                  on Prometforce-6, second run.                                                                  99 

Table 21: Computational performance results for PWR w/MOX 

                  on Prometforce-6.                                                                                       100  

Table 22: Computational performance results for full-order   

                  inner iteration for PWR w/MOX 8g with 

                 high flux expansion.                                                                                     106 

Table 23: Computational performance results for full-order   

                  inner iteration for PWR w/MOX 8g with 

                  high flux expansion, MPI+OpenMP.                                                       107 

Table A1: Computational Performance for the C5G7 Problem,  

                  Response Function Lookup Case.                                                            112 



  

 viii 

Table A2: Computational Performance for the C5G7 Problem,  

                  No Response Function Lookup Case.                                                      113 

Table A3: Amdahl Speedups and Efficiencies, 

                  Response Function Lookup Case.                                                             114 

Table A4: Amdahl Speedups and Efficiencies, 

                  No Response Function Lookup Case.                                                       115 

  



  

 ix 

LIST OF FIGURES 

           Page 

Figure 1: Assumed incoming fluxes shining onto surfaces (left) and  

                 outgoing fluxes and volume values in response (right).                        14  

Figure 2: A matrix (top left) is decomposed into rectangular elements 

                  (bottom left) whose matrix-vector products are evaluated 

                 in parallel.                                                                                                       32 

Figure 3: Decomposition of a domain (left) to multiple processors 

                  (right), with a  different color representing the part of a  

                  Domain on a particular processor.                                                           35 

Figure 4: Domain decomposition for COMET calculations in the  

                  uneven case.                                                                                                  36 

Figure 5: Modification of data access model from the serial (left) 

                 To the distributed (right) algorithm.                                                        37 

Figure 6: On-the-fly response generation coupled with serial (left)    

                 vs. distributed (right) implementations of the COMET code.             39 

Figure 7: Sweep orders for the serial (left) vs. the distributed (right) 

                 algorithm.                                                                                                       40 

Figure 8: Communication patter used at each iteration.                                       41 

Figure 9: Wall-clock times for increasing number of processors 

                  for COMET-MPI solutions with and without response 

                  function lookups.                                                                                          51 

 



  

 x 

Figure 10: Speedups for increasing number of processors 

                  for COMET-MPI solutions with and without response 

                  function lookups.                                                                                          52 

Figure 11: Parallel Efficiencies for increasing number of processors 

                  for COMET-MPI solutions with and without response 

                  function lookups.                                                                                          53 

Figure 12: Amdahl efficiency and observed parallel efficiency 

                   for no response function lookup case.                                                     56 

Figure 13: Amdahl efficiency and observed parallel efficiency 

                   for response function lookup case.                                                           59 

Figure 14: Radial view of the 1X C5G7 Problem.                                                      64 

Figure 15: Radial view of the 2X C5G7 Problem.                                                     65 

Figure 16: Radial view of the 3X C5G7 Problem.                                                     66 

Figure 17: Pin cell makeup of the UO2 assembly coarse meshes.                         67 

Figure 18: Pin cell makeup of the MOX assembly coarse meshes.                       68 

Figure 19: Speedups for 1X, 2X, and 3X C5G7 problems for 

                    increasing numbers of processors.                                                           71 

Figure 20: Parallel Efficiencies for 1X, 2X, and 3X C5G7 problems for 

                    increasing numbers of processors.                                                           72 

Figure 21: Radial core layout of the PWR with gadolinium 

                   benchmark problem.                                                                                    78 

Figure 22: Axial meshing of the PWR w/gad core used in the  

                    benchmark problem.                                                                                   79 



  

 xi 

Figure 23: Pin cell layout of a UO2 mesh without gadolinium.                             79 

Figure 24: Pin cell layout of a UO2 mesh with gadolinium.                                   80 

Figure 25: Radial active core layout of the PWR with MOX.                                 82 

Figure 26: Axial meshing used in the PWR with MOX benchmark.                    83 

Figure 27: Speedups for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    gadolinium problem.                                                                                  88 

Figure 28: Parallel efficiencies for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    gadolinium problem.                                                                                  89 

Figure 29: Speedups for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    MOX 2 group problem.                                                                              92 

Figure 30: Parallel efficiencies for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    MOX 2 group problem.                                                                              93 

Figure 31: Speedups for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    MOX 8 group problem.                                                                              96 

Figure 32: Parallel efficiencies for the whole solve, LOA inner iteration, 

                    and full order inner iteration for the PWR with  

                    MOX 8 group problem.                                                                              97 

Figure 33: Speedups for the PWR with gad runs on Prometforce-6                   100 



  

 xii 

Figure 34: Parallel efficiencies for the PWR with gad runs  

                    on Prometforce-6                                                                                        101 

Figure 35: Speedup for the PWR with MOX runs on Prometforce-6                   102 

Figure 36: Parallel Efficiencies for the PWR with MOX run 

                    on Prometforce-6                                                                                         103 

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 xiii 

SUMMARY 

 

The Coarse Mesh Radiation Transport (COMET) method is a reactor physics 

method and code that has been used to solve whole core reactor eigenvalue and 

flux distribution problems. A strength of the method is its formidable accuracy and 

computational efficiency. COMET solutions are computed to Monte Carlo accuracy 

on a single processor in a runtime that is several orders of magnitude faster than 

stochastic calculations. However, with the growing ubiquity of both shared and 

distributed memory parallel machines and the desire to extend the method to allow 

for coupling to multiphysics and on-the-fly response generation, serial 

implementations of COMET calculations will become less desirable. It is under this 

motivation that an implementation for a parallel execution of deterministic 

COMET calculations has been developed. COMET involves inner and outer 

iterations; inner iterations involve local calculations that can be carried out 

independently, making the algorithm amenable to parallelization. However, 

considerations for decomposing a problem and the distribution of data must be 

made. To allow for efficient parallel implementation of a distributed algorithm, 

changes to response data access and sweep order are made, along with 

considerations for communications between processors. The parallel code is 

implemented on several variants of the C5G7 benchmark problem to assess the 

scalability of the algorithm, and it is found that problems with larger numbers of 

coarse meshes increase the scalability of the code, which is an encouraging result. 

The code is further tested for full core reactor problems, where extremely efficient 
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wall clock times (on the order of minutes) for solutions are achieved. Finally, 

application of the parallel code to novel implementations of COMET (e.g., 

problems with high flux expansions) is discussed.  
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CHAPTER 1 

 

INTRODUCTION 

  

 Since its inception, the reactor physics community has considered efficient 

3-D full core neutronics calculations as an important goal. This desire looms even 

larger in today’s environment of heavy regulation of nuclear power, as fewer 

reactors are built for research purposes; instead, greater emphasis is placed on 

modeling and simulation to accomplish design goals. However, the sheer number 

of unknowns involved in classical (e.g., fine mesh) methods have limited the 

applicability of deterministic solution methods in accomplishing this goal. 

Stochastic methods have been shown to provide full-core eigenvalue solutions with 

the benefit of exact phase space treatment of neutron transport, but these methods 

are often computationally prohibitive, as reducing uncertainties in calculations 

and source convergence leads to long runtimes.  

 However, as computers have improved, so have these solution methods’ 

efficacies in solving reactor physics problems. With growing computational 

capability through increasing power and memory, both deterministic and 

stochastic solution methodologies have increased their capabilities in tackling full 

core neutronics calculations. A particularly important advancement in computing 

applications has been the implementation of parallel algorithms. Both stochastic 

and deterministic codes have implemented solution methods that involve many 

processors working on partitions of a computational task rather than a single 
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processor carrying out calculations. This advancement is viewed as the prevailing 

strategy for scientific computing as a whole, as large computing systems with many 

processors become more commonplace, and the reactor physics community is no 

exception in using this strategy.  

 

1.1 The COMET Method as a Way to Compute Whole-core Solutions 

 In addition to improving reactor physics calculations through increasing 

computing power, the community has also sought advanced methods for reactor 

physics calculations. For instance, hybrid methods are considered an attractive 

option as an alternative to deterministic and stochastic solution methods to 

facilitate full core neutronics calculations. The Coarse Mesh radiation Transport, 

or COMET, method developed at the Georgia Institute of Technology is a 

stochastic-deterministic method that has been shown to provide eigenvalue and 

flux distribution solutions to 3-D reactor core benchmark problems in full 

geometric heterogeneity [1-2]. The method has been benchmarked against several 

different reactor types, including light and heavy water reactor types such as PWR, 

BWR, and CANDU [3], as well as prismatic configurations, including a sodium 

cooled fast reactor [4] and a gas cooled reactor [5].  

 The COMET method is response-based. By decomposing a problem into a 

number of non-overlapping subvolumes, called coarse meshes, an eigenvalue 

problem for the full reactor core can be transformed into a system of local fixed-

source problems coupled about the interface angular fluxes. If the interface 

angular fluxes and the global eigenvalue are known, this decomposition solves the 
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problem exactly. However, interface fluxes and eigenvalue are not known, so a way 

to proceed is with an angular flux expansion. Responses (e.g., resulting outgoing 

angular fluxes and pin fission density) to incoming boundary angular fluxes with 

phase space determined by an assumed expansion function are calculated for every 

unique coarse mesh in a precalculation. In order to preserve the heterogeneity in 

the problem, this precalculation is done stochastically. Once computed, these 

responses are stored in a library and are used to solve the decomposed system of 

fixed source problems via a deterministic iterative algorithm, allowing for a 

solution to the global problem to be found. 

 

1.2 Motivation and Goal 

 An attractive feature of the COMET method is its formidable computational 

efficiency. Like Monte Carlo methods, COMET calculations are able to solve whole-

core neutronics problems; however, COMET runtimes are several orders of 

magnitude smaller than that of stochastic calculations. Maintaining and increasing 

efficiency of the method has been an active area of research. To this end, various 

acceleration methods have been implemented in the deterministic algorithm, 

which are seen to significantly improve the computational efficiency [2]. In 

addition, techniques that adaptively select expansion order have been explored to 

improve efficiency of the method [6-9]. 

 The goal of this study was to develop and asses the gains in computational 

efficiency of a parallel implementation of the deterministic iterative algorithm for 

COMET calculations. Particularly, efficient whole-core computations are desired 
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with the use of parallel computing. The work of this thesis builds on the research 

of increasing computational efficiency of the COMET method to applications that 

involve parallel computing. A parallel implementation of the deterministic 

algorithm is necessary to adapt the COMET method to the ubiquity of parallel 

machines to maintain and increase its computational efficiency in future 

implementations; as deterministic and stochastic methods have benefitted from 

parallel computing, so should the COMET method. 

 By extending deterministic COMET calculations to many processors, 

COMET will be better suited for taking advantage of novel (e.g., on-the-fly) 

response generation techniques as well as coupling to multiphysics, such as lattice 

depletion, both of which are current areas of research [10-11]. Both response 

generation and lattice depletion methods take place in parallel environments, so 

coupling the deterministic COMET solution to these calculations in a parallel 

environment increases efficiency in ways such as data sharing.  
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CHAPTER 2 

 

BACKGROUND AND THEORY 

 

 In this section, the fundamental theory of neutron transport – the neutron 

transport equation – as well as various methods for analysis of phenomena will be 

discussed. While classical deterministic and stochastic methods will be mentioned, 

the primary focus of this section will be on the COMET method. For a more 

thorough review of classical deterministic and stochastic methods, the reader is 

encouraged to refer to Lewis and Miller [12]. Emphasis is placed on the theory and 

derivation of the global problem solution since response generation and 

deterministic solution procedure are implementation dependent. 

 

2.1  The Neutron Transport Equation 

 The equation describing the steady-state phase space distribution for 

neutrons in a large heterogeneous volume V is given by the neutron transport 

equation: 

Ω̂ ∙ ∇𝜓(𝑟, Ω̂, 𝐸) +  𝜎(𝑟, 𝐸)𝜓(𝑟, Ω̂, 𝐸) =  ∫ 𝑑𝐸′ ∫ 𝑑Ω̂′𝜎𝑠(4𝜋

∞

0
Ω̂′, 𝐸′ → Ω̂, 𝐸) 𝜓(𝑟, Ω̂′, 𝐸′)  

+  
χ(𝑟,⃗⃗⃗ ⃗ 𝐸)

4𝜋𝑘
∫ 𝑑𝐸′ 𝜈𝜎𝑓(𝑟,⃗⃗⃗  𝐸

′) ∫ 𝑑Ω̂′𝜓(𝑟,⃗⃗⃗ Ω̂′, 𝐸′)
4𝜋

∞

0
,                        (1)     

where 𝜓 is the angular flux, (𝑟, Ω̂, 𝐸) is the space-angle-energy phase space, χ(𝑟,⃗⃗⃗  𝐸) 

is the spectrum of fission neutron emission, 𝜎, 𝜎𝑠, and 𝜎𝑓 are total, scatter, and 

fission cross sections, 𝜈 is number of neutrons emitted per fission, and 𝑘 is the 
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global eigenvalue. To determine the distribution of neutrons, equation (1) is paired 

with an appropriate boundary condition, given by 

𝜓(𝑟𝑏 , Ω̂, 𝐸) = 𝐵𝜓(𝑟𝑏 , Ω̂
′, 𝐸′), �̂� · Ω̂ < 0, �̂� · Ω̂′ > 0,   𝑟𝑏 ∈  𝜕𝑉.             (2) 

In equation (2), 𝜕𝑉 denotes the system boundary, 𝑟𝑏 indicates a position along the 

boundary, �̂� is the unit outward normal, and 𝐵 is a boundary condition operator. 

The neutron transport equation (1) is long-winded with many terms. As such, it is 

often useful to write equation (1) in terms of operator notation: 

𝐻𝜓(𝑟, Ω̂, 𝐸) =
1

𝑘
𝐹𝜓(𝑟, Ω̂, 𝐸).                                          (3) 

The transport 𝐻 and fission 𝐹 operators are defined as 

{
𝐻 =  Ω̂ ∙ ∇ +  𝜎(𝑟, 𝐸) − ∫ 𝑑𝐸′ ∫ 𝑑Ω̂′𝜎𝑠(4𝜋

∞

0
Ω̂′, 𝐸′ → Ω̂, 𝐸) 

𝐹 =  
χ(𝑟,⃗⃗⃗ ⃗ 𝐸)

4𝜋
∫ 𝑑𝐸′ 𝜈𝜎𝑓(𝑟,⃗⃗⃗  𝐸

′) ∫ 𝑑Ω̂′
4𝜋

∞

0

.              (4) 

 The boundary value problem (1-2) is a very difficult problem solve. Except 

in the most simplified of cases, solutions cannot be found analytically. We seek to 

find useful solutions for realistic reactor problems, so these simplified case 

solutions are often inadequate. As a result, we must approximate the neutron 

transport equation and seek numerical solutions. 

 

2.2  Classical Methods 

 There are two main families of methods employed in solving the neutron 

transport equation: deterministic and stochastic solution methods. Both have seen 

much development and use in transport calculations; however, the methods also 

encounter considerable difficulties. This subsection provides a brief review of both 

types of methods. 
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Deterministic Solution Methods 

 Deterministic methods solve the boundary value problem (1-2) via 

discretization of phase space, defining a system of linear equations from this 

discretization, and then solving this system simultaneously. In the eigenvalue case, 

solving a system (inverting a matrix) is coupled with another solution method, 

typically a power iteration. However, sometimes, more sophisticated methods are 

utilized [13].  

 Arguably the most important discretization employed in deterministic 

methods is the multigroup approximation. In this approximation, solutions are 

found for a discrete number of group fluxes 𝜓𝑔 rather than a continuous energy 

spectrum for the true angular flux 𝜓. This approximation leads to a system of 

integro-differential equations of the form 

𝐻𝜓𝑔(𝑟, Ω̂) =
1

𝑘
𝐹𝜓𝑔(𝑟, Ω̂)                                         (5) 

which are coupled via the scattering and fission terms of each of the equations. 

This discretization has significant effect on accuracy, as it requires precomputation 

of group constants (e.g., cross sections) that are not known in their exact form 

before a true solution is found. How well these group constants relate to the 

problem being solved as well as number of energy groups used in a calculation 

greatly affects fidelity of the calculation. However, significant issues are memory 

and computation time – a more accurate calculation employing a large number of 

energy groups will lead to a large utilization of these resources, which are often 

limited.  
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 Other discretizations to the transport equation depend upon method and 

implementation. A common angular discretization scheme is the discrete 

ordinates approximation [12], where the transport equation is solved for only 

discrete directions, and the integrals in the fission and scattering terms of the 

transport equations are approximated via quadrature. Spatial discretizations 

include finite difference, finite element, and characteristic methods [12,14-15]. As 

with the multigroup approximation, finer discretizations lead to more accurate 

answers. Again, however, this puts significant strain on available computing power 

and memory. The sheer number of unknowns generated in deterministic neutron 

transport calculations (as many as billions of unknowns) present a significant 

challenge to these methods. 

Stochastic Solution Methods 

 In addition to deterministic methods, stochastic (e.g., Monte Carlo) 

methods have seen significant development. In contrast to deterministic tools, 

phase space is treated exactly in a Monte Carlo transport calculation. Instead of 

discretizing the transport equation, a stochastic method uses random numbers to 

simulate the transport of individual particles in a reactor. After a sufficiently large 

number of particles have been simulated, the mean behavior of neutrons in a 

reactor can be determined.  

 An advantage of these methods is that they can be used to model problem 

geometry explicitly, and compute global eigenvalue quickly. For Monte Carlo 

calculations, global eigenvalue is simply given by the ratio of fission sources 

between cycles: 
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𝑘𝑖 =
𝐹𝑖

𝐹𝑖−1
.                                                             (6)  

Typically, this is a fast calculation once the fission source is converged because 

computation is a single tally that occurs over a whole problem. However, the fission 

source must be converged first since it is not known before a calculation, which can 

sometimes be a significant computational hurdle.  

 Stochstic methods do suffer from some drawbacks. Pointwise angular fluxes 

cannot be computed with these methods; instead, quantities (e.g., angular flux) 

averaged over discretized phase space (e.g., direction, energy, or space) or part of 

the phase space (e.g., scalar flux) are most often calculated. This formal limitation 

does not hurt the method, as a quantity such as scalar flux is typically a more useful 

quantity in reactor calculations than angular flux. However, desire for detailed 

knowledge of the spatial variation of scalar flux in a reactor core requires relatively 

fine meshing. This can lead to large variances in tallies and statistical noise, as 

simulated particles may not travel through tally zones in a sufficiently large 

number. The main remedy to this issue is running more particles in a calculation; 

however, this, coupled with large numbers of tallies, can lead to infeasibly long 

computational runtimes.  

 

2.3  The COMET Method 

 To remedy the issues surrounding classical deterministic and stochastic 

methods for solving the neutron transport equation, advanced methods are 

constantly being investigated. The focus of this study is on the COMET method 

developed at Georgia Institute of Technology [1-2]. COMET is a response matrix 
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method, which is a very powerful tool that can circumvent much of the 

computational expense of classical solution methods by shifting cost to a 

precalculation. In addition, source convergence issues which can plague Monte 

Carlo calculations, are circumvented by limiting the stochastic calculation to small 

(coarse mesh) fixed source problems. Given a set of precomputed data, solutions 

to even whole-core problems can be found with excellent computational efficiency.  

Domain Decomposition 

 Suppose that we wish to compute the flux distribution and global eigenvalue 

of a reactor core given by the boundary value problem (1-2). The COMET method 

will decompose the problem volume V into a system of non-overlapping 

subvolumes Vi, henceforth called coarse meshes. For each coarse mesh, the 

following transport equation and boundary condition are assumed to hold: 

{
𝐻𝜑𝑖(𝑟, Ω̂, 𝐸) =  

1

𝑘
𝐹𝜑𝑖(𝑟, Ω̂, 𝐸)

𝜑𝑖
−(𝑟𝑖𝑠, Ω̂, 𝐸) =  𝜓(𝑟𝑖𝑠, Ω̂, 𝐸), 𝑟𝑖𝑠  ∈ 𝑉𝑖𝑠

.                                 (7) 

 In the boundary value problem (7), 𝜑𝑖 is the angular flux within the ith coarse 

mesh, and the incoming angular flux into surface s, indicated by the “-” superscript, 

is equivalent to the global angular flux at that surface for that mesh. In addition, it 

is assumed that the eigenvalue in the boundary value problem (7) is fixed at the 

global value. Given these assumption, the system (7) becomes a fixed-source 

problem. Further, if these assumptions are true, then the decomposition 

introduces no approximation to the calculation. 
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Introduction of a Flux Expansion 

 However, the global flux on coarse mesh surfaces and global eigenvalue are 

not known a priori. Therefore, a method to proceed is via a flux expansion [1-2]. 

Incoming and outgoing angular fluxes are assumed to be a superposition of a 

known complete set of orthogonal functions: 

𝜑𝑖
+/−
(𝑟𝑖𝑠, Ω̂, 𝐸) =  ∑ 𝐽𝑠,𝑚

𝑖,+/−
𝛤𝑚𝑚 (𝑟, Ω̂, 𝐸).                              (8) 

In equation (8), the “+/-” superscript indicates outgoing or incoming flux, 

respectively. 𝛤𝑚  are the expansion functions in moment m, and 𝐽𝑠,𝑚
𝑖,+/−

 are the 

outgoing and incoming expansion coefficients for surface s in moment m for the ith 

coarse mesh.  

 Due to the linearity of the transport equation, the ith coarse mesh angular 

flux can be constructed as  

𝜑𝑖 = ∑ ∑ 𝐽𝑠,𝑚
𝑖,− 𝑅𝑠,𝑚

𝑖
𝑚𝑠 ,                                             (9) 

where 𝑅𝑠,𝑚
𝑖  is known as a surface-to-volume response function. This response 

function is defined as the solution to the equation 

𝐻𝑅𝑠,𝑚
𝑖 (𝑟, Ω̂, 𝐸) =  

1

𝑘
𝐹𝑅𝑠,𝑚

𝑖 (𝑟, Ω̂, 𝐸)                                  (10) 

with 𝑘 fixed at the global value and coupled to the boundary condition  

𝑅𝑠,𝑚
𝑖 (𝑟𝑖𝑠, Ω̂

−, 𝐸) =  {
𝛤𝑚(𝑟𝑖𝑠, Ω̂

−, 𝐸) 𝑓𝑜𝑟 𝑟  ∈  𝜕𝑉𝑖𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                   (11) 

It seen that 𝑅𝑠,𝑚
𝑖  is the angular flux within the volume Vi responding to the incident 

flux 𝛤𝑚, hence the term surface-to-volume response function.  

 In theory, any expansion functions can be used in this formalism. However, 

some requirements on the expansion functions are sensible if reasonable accuracy 
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with a relatively low expansion order is desired. Two such requirements are that 

the 0th order expansion function represents the isotropic flux and that the partial 

currents are conserved regardless of use of expansion order. Let the following inner 

product be defined: 

(𝑢, 𝑣) =  ∫ 𝑑𝐸 ∫ 𝑑𝑟
𝜕𝑉𝑖𝑠

∫ 𝑑�̂�(�̂�𝑖𝑠
+/−

∙ �̂�)𝑢𝑣
�̂�
𝑖𝑠
+/−

∙�̂�>0
.                        (12) 

It is then required that the expansion coefficients satisfy the following 

orthogonality condition: 

(𝛤𝑚 , 𝛤𝑚′) =  𝐴𝑚𝛿𝑚𝑚′                                               (13) 

where 𝐴𝑚 is a constant and 𝛿𝑚𝑚′ is the Kronecker delta.  

 The expansion functions chosen [2] that satisfy this orthogonality condition 

are given by equation (14): 

𝛤𝑖𝑗𝑘𝑙𝑔 = 𝑃𝑖(𝑥)𝑃𝑗(𝑦)𝑈𝑘(𝜇)𝑃𝑙(𝑐𝑜𝑠 𝜙)𝛿(𝐸 − 𝐸𝑔).                           (14) 

In equation (14), Legendre polynomials are used to expand the spatial variables (x 

and y coordinates on a surface) and the azimuthal angle cosine 𝜙. Chebyshev 

polynomials of the second kind are used to expand the polar angle cosine 𝜇. A Dirac 

delta in energy E is equivalent to traditional multigroup energy treatment. It is 

evident that this expansion set satisfies isotropic angular flux for the 0th order 

angular expansion. Further, if the expansion coefficients 𝐽𝑠,𝑚
𝑖,+/−

 are defined as 

𝐽𝑠,𝑚
𝑖,+/−

= (𝛤𝑚, 𝜑𝑖
+/−
),                                                (15) 

then the 0th order expansion coefficients are simply the incoming and outgoing 

partial currents on mesh interfaces. Therefore, the partial currents are always 

preserved, satisfying the requirements on the expansion set. 
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 The outgoing expansion coefficients for a coarse mesh can be computed by 

projecting the response functions onto the incoming expansion coefficients: 

∑ 𝑅𝑠𝑠′,𝑚𝑚′
𝑖 𝐽𝑠′,𝑚′

𝑖,−
𝑠′,𝑚′ = 𝐽𝑠,𝑚

𝑖,+ ,                                         (16) 

where 𝑅𝑠𝑠′,𝑚𝑚′
𝑖  is the surface-to-surface response function, defined by 

𝑅𝑠𝑠′,𝑚𝑚′
𝑖 = (𝛤𝑚′ , 𝑅𝑠,𝑚

𝑖 ).                                           (17) 

From this definition, it is seen that 𝑅𝑠𝑠′,𝑚𝑚′
𝑖  is the outgoing flux of surface s in 

moment m in response to an incoming flux in moment m’ on surface s’.  

Global Problem and Solution 

 This formalism relies heavily on known response functions. These values 

are determined in a precalculation. While in a global problem quantities of interest 

must be computed for every region (including regions with redundant geometry 

and material composition), local response calculations only need to be carried out 

for unique coarse meshes, i.e., those with unique geometry and composition. While 

any method can be used to determine the response functions, COMET calculations 

employ the Monte Carlo method for calculations due to the method’s ability to treat 

complex geometries.  

 During response generation, any quantities of interest can be computed. In 

practice, calculated values include surface-to-surface responses as well as the 

surface-to-volume responses for fuel pin fission density, neutron production, and 

neutron absorption. Figure 1 demonstrates the procedure through which 

responses are computed. 
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Figure 1. Assumed incoming fluxes shining onto surfaces (left) and outgoing 

fluxes and volume values in response (right) [16]. 

 Assumed incoming fluxes of the form (14) are “shined,” that is, applied as 

the boundary condition to equation (11) upon each surface of each unique mesh, 

and the responding quantities are tallied. This is equivalent to finding solutions to 

the boundary value problems (10-11) for each unique coarse mesh. Once all the 

boundary value problems are solved (all responses computed), the results are 

stored in a library.  

 After responses compiled in a library, a deterministic iterative procedure is 

used to compute the global solution to the problem. While exact solution methods 

vary by implementation [2,17], both inner and outer iterations are required to 

compute flux and eigenvalue solutions. The inner problem is defined by the 

eigenvalue problem 

 ∑ 𝑅𝑠𝑠′,𝑚𝑚′
𝑖 (𝑘)𝐽𝑠′,𝑚′

𝑖,−
𝑠′,𝑚′ = 𝜆𝐽𝑠,𝑚

𝑖,+ .                                        (18) 

The 𝜆-eigenvalue in (18) has physical meaning. This eigenvalue represents the 

discontinuity between the incoming and outgoing partial currents in the global 

problem. When the response functions are evaluated at the true core eigenvalue, 

there is no discontinuity, and the  𝜆-eigenvalue is equal to unity.  
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 However, the true eigenvalue is not known before a calculation and must be 

determined iteratively. 𝑘 is updated in outer iteration via the balance relation 

𝑘 =  
∫𝑑𝒘𝑭𝜓

𝐿+ ∫𝑑𝒘𝑨𝜓
.                                                           (19) 

In equation (19), L  is the system leakage, w denotes the space-angle-energy phase 

space, and F and A denote the fission and absorption operators, respectively. In 

order for a global solution to be computed, initial guesses for both flux and 

eigenvalue are made, and inner iterations on flux and outer iterations on 

eigenvalue are carried out until both are converged.  

 The exact solution methods used to solve the global problem have been the 

focus of much study. Of particular interest has been the acceleration of the solution 

method as well as appropriate handling of response data, which can be a 

formidable task when flux expansions are high and when many energy groups are 

used in computation of a solution. Details of these implementations will be 

discussed in the next chapter.   
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CHAPTER 3 

 

CURRENT TECHNOLOGIES AND METHODOLOGIES 

 

 In this chapter, specific implementations of the solution of the inner and 

outer problems for deterministic COMET calculations will be discussed. Since 

COMET is a member of the response matrix method family, pertinent literature 

will be reviewed to discuss solution methods for this problem. In addition, current 

research efforts to accelerate COMET solutions will be discussed. 

 However, it had been found that these current acceleration methods only 

gain so much in terms of computational efficiency. This partly motivates the drive 

to extend COMET calculations to high performance computing applications. As 

such, current efforts at parallelization in modern transport codes will be discussed. 

In addition, the prevalent software implementations for developing parallel 

distributed and shared memory algorithms will be described. 

 

3.1  Solution Methods for the Response Matrix Equations 

 As discussed in the previous chapter, the solution of the whole core solve in 

COMET calculations requires convergence on an inner problem (flux) and an outer 

problem (eigenvalue). Formally posed, the problem requires convergence on the 

principal eigenvector of the eigenvalue problem 

𝑀𝑅(𝑘)𝑱− =  𝜆𝑱−                                                   (20) 
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for each inner flux solve. In equation (20), 𝑱− is the collection of all incoming 

expansion coefficients, 𝑅(𝑘) is the response matrix evaluated at global eigenvalue 

𝑘, and 𝑀 is the so-called connectivity matrix [17], the operator that transfers 

outgoing expansion coefficients to incoming expansion coefficients.  

 Once the inner eigenvalue problem has been solved, the updated vector 𝑱− 

is used to update the global eigenvalue via the balance relation (19). In current 

COMET calculations, this balance is calculated via the equation 

𝑘 =  
∑ 𝐽𝑠,𝑚

𝑖,− 𝑅𝑁𝐹𝑠,𝑚
𝑖

𝑖,𝑠,,𝑚

∑ 𝐽𝑠,𝑚
𝑖,− 𝑅𝐴𝐵𝑠,𝑚

𝑖
𝑖,𝑠,,𝑚 + ∑ (𝐽𝑠,0

𝑖,−−𝐽𝑠,0
𝑖,+) 𝑖⊂𝜕𝑉,𝑠

                                    (21) 

where 𝑅𝑁𝐹𝑠,𝑚
𝑖  is the neutron production response for the ith coarse mesh for surface 

s in moment m, 𝑅𝐴𝐵𝑠,𝑚
𝑖  is the neutron absorption response for the same conditions, 

and ∑ (𝐽𝑠,0
𝑖,− − 𝐽𝑠,0

𝑖,+) 𝑖⊂𝜕𝑉,𝑠  is the net leakage out of the core.  

 Clearly, the inner problem is an eigenvalue problem itself, which requires 

an iterative method to obtain a solution. COMET calculations employ the power 

method [2] to solve this problem. The solution algorithm for both the inner and 

outer problem is outlined below. 

1. Initial Guess for Global Eigenvalue and Flux Distribution 

a. A guess of unity for eigenvalue is often reasonable 

b. A guess of flat flux is used for any case 

2. Evaluate response functions at the global eigenvalue. 

a. E.g., 𝑅(𝑘) = 𝑅(1) 

3. Solve the inner problem given by equation (20) (Power method): 
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a. Update outgoing expansion coefficients via equation (16), or in 

matrix form 𝑅(𝑘)𝑱𝑛,− = 𝑱𝑛+1,+ 

b. Update incoming expansion coefficients using interface and 

boundary conditions, i.e. apply the connectivity matrix:            

𝑀𝑱𝑛+1,+ = 𝑱𝑛+1,− 

c. Normalize expansion coefficients to outgoing partial current  

d. If the outgoing partial currents are converged, then quit. 

i. Criteria: |
𝐽𝑠,0
𝑖,+,𝑛+1

𝐽𝑠,0
𝑖,+,𝑛 − 1| <  휀𝑖𝑛𝑛𝑒𝑟 

4. Update global eigenvalue via the balance relation given by 

equation (21). 

5. Repeat steps (2-5) until both eigenvalue and expansion 

coefficients are converged. 

i. Eigenvalue Criteria: |
𝑘𝑛+1

𝑘𝑛
− 1| <  휀𝑜𝑢𝑡𝑒𝑟 

 The power method has been employed in COMET calculations due to its 

robustness and stability in finding solutions for eigenvalue and principal 

eigenvector. However, as problem sizes grow large (e.g., for large reactors and/or 

problems with many energy groups and high flux expansions) the convergence rate 

for the power method in the inner problem can degrade significantly. Experience 

with the method has shown it may take as many as 1000s of iterations before 

convergence is reached.  
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3.2 Acceleration Schemes for COMET Calculations 

 While other implementations of response matrix methods [17] have used 

Newton’s method [18] to solve the inner eigenvalue problem, the power method is 

the selected solution method for implementation in this study. The power method 

is selected due to its cheap computational cost at every iteration, robust nature in 

converging to the principal eigenvector, and is amenable to the current 

organization of the response library in the code, which pre-builds submatrices for 

use in the deterministic solve. However, the problem of potentially slow 

convergence in the inner problem persists. Zhang and Rahnema [2] have suggested 

two acceleration methods – Low Order Acceleration and Chebyshev Polynomial 

Filtering – that have been observed to work well for reactor calculations. These 

schemes are described below. 

Low Order Acceleration 

  In the description of the power method in the previous subsection, initial 

guesses for core eigenvalue and flux were discussed. As previously stated, it is 

common for initial guesses to be unity for 𝑘 and flat for 𝑱−. However, a first guess 

can be improved if the result from a lower-order calculation is used as initial data. 

This is the idea behind Low Order Acceleration (LOA). In a deterministic core 

calculation, a low order calculation is carried out. Current implementations carry 

out a second-order calculation in space and angle. While this solution may not give 

desired accuracy alone, they serve as a much improved initial guess for core 

eigenvalue and principal eigenvector 𝑱−. Formally, LOA is written 

𝑘𝐻(1) =  𝑘𝐿(𝑈),                                                      (22) 
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𝐽𝑠,𝑚
𝑖,−,𝐻(1,1) =  {

𝐽𝑠,𝑚
𝑖,−,𝐿 𝑓𝑜𝑟 s = 1,… ,𝑀𝐿

0 for s =  𝑀𝐿+1, … ,𝑀𝐻
.                                  (23) 

 In equations (22-23), the superscripts “H” and “L” represent high-order and 

low-order calculations, respectively. 𝑈 is the low-order converged iterate for 𝑘. An 

initial guess using this low-ordered result has been seen to improve computational 

performance by a factor of 2-3 [2]. In addition, this author’s experience suggests 

that LOA provides a good first-blush view of reactor eigenvalue and power 

distribution, even if a high-ordered answer is desired. 

Chebyshev Polynomial Filtering 

 In addition to LOA, Chebyshev polynomial filtering has been used to 

accelerate convergence on the inner problem. For problems with dominance ratio 

near unity, power iterations can have very low convergence rate. This convergence 

can be improved by breaking each iteration into sub-iterations based upon 

polynomials of the initial matrix. The forms of the polynomials 𝑝𝑞 are given below: 

∑ 𝑝𝑞(𝑅𝑠𝑠′,𝑚𝑚′
𝑖 )𝐽𝑠′,𝑚′

𝑖,−,(𝑛)
𝑠′,𝑚′ = 𝐽𝑠,𝑚

𝑖,+,(𝑛+1)
,                              (24) 

𝑝𝑞(𝑅) =  ∏ (𝑅 − 𝑤𝑖𝐼)
𝑞
𝑖=1 ,                                           (25) 

𝑤𝑖 = 𝛾 [cos (
2𝑖−1

2𝑞
)𝜋 + 1] −  𝛼.                                    (26) 

In equations (24-26), 𝑤𝑖 is the weighting function used for over/under relaxation 

depending upon the problem solved. 𝑖 is the sub-iteration index. 𝛾, 𝑞, and 𝛼 are 

potentially problem-dependent parameters that are determined empirically. 

Zhang and Rahnema echo Stamm’ler and Abbate [19] in saying that the values 

0.985, 10, and 1.0, respectively, work well for problems studied. In the work of this 
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thesis, the values 0.99, 10, and 1.01 have been used and have been seen to work 

well.  

 It should be noted that choice of parameters can severely impact 

convergence behavior. While these selected parameters have certainly shown to 

improve performance – Zhang and Rahnema [2] claim that these parameters used 

in Chebyshev Polynomial Filtering, combined with LOA, have improved 

computational efficiency by at least a factor of 20 – poorly chosen parameters can 

severely degrade convergence. While not observed directly in this study, the 

problem-dependent nature of these parameters calls for a more systematic 

selection. Some preliminary work of this thesis toggled these parameters 

experimentally, but a true systematic selection of these parameters would require 

analysis on the eigenspectrum of the 𝑀𝑅(𝑘) matrix, which was outside the scope 

of this work. A fuller analysis of this problem should prove to be an interesting area 

of further study.  

Ongoing Work in Improving Efficiency 

 An ongoing research project with the goal of improving efficiency of the 

COMET method is adaptive COMET. Traditional COMET implementations use a 

flux expansion and hold this expansion constant throughout a problem. In 

contrast, a method was developed by Remley and Rahnema [6-9] that allows the 

flux expansion to vary depending upon problem-dependent factors. The gains in 

efficiency from using this adaptive method over a standard COMET method varied 

from speedups of 2-5.8 [8-9].   
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3.3 Parallel Computing in Transport Calculations 

 Prior to the work of this study, parallel computing has been used extensively 

by the community to improve computational efficiency in transport calculations 

and extend the range of problems that can be solved with existing methods. While 

computational efficiency and accuracy of calculations improve with continuing 

research in advanced methods for solving the neutron transport equation, it is 

recognized that present solution methods are greatly improved by developing 

software implementations that take advantage of modern computing 

architectures, allowing for multiprocessing and advancements such as utilizing 

gpu systems. Before describing previous work of parallel computing in transport 

codes, it is useful to discuss common concepts germane to multiprocessing. 

Basic Concepts of Parallel Computing 

 The first important concept in parallel computing is the type of computer 

architecture being used in development of applications. Classically, four types of 

machines have been described [20]: 

 SISD – Single Instruction/Single Data Stream 
 SIMD – Single Instruction/Multiple Data Stream 
 MISD – Multiple Instruction/Single Data Stream 
 MIMD – Multiple Instruction/Multiple Data Stream 

SISD systems describe computers where applications are applied sequentially; one 

instruction is carried out before the next one begins. SIMD machines apply the 

same operations to multiple data sets. MISD is a rarely used classification for 

machines. MIMD is the more commonly used machines used in parallel computing 

applications. 
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 MIMD machines come in two flavors: shared and distributed memory. 

Shared memory systems allow each processor to have access to a global memory. 

These systems are typically limited to tens of processors due to connections needs 

to the memory map. Distributed memory systems offer completely independent 

memory between nodes. A node is a collection of processors with potentially 

shared memory. Information that is shared between processes on different nodes 

must be communicated via networks. There is virtually no limit to the number of 

processors on a distributed memory system; machines range from one to 

thousands of nodes.  

 In assessing applications utilizing parallel computing, accuracy of 

calculations is insufficient; computational performance is also important in 

evaluating programs. To this end, it is important to define parallel speedup and 

efficiency, given below 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑇𝑆

𝑇𝑁
,                                                   (27) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
.                                          (28) 

In equations (27-28), 𝑇𝑆 is the serial execution time of a parallel program, and 𝑇𝑁 

is the parallel execution time on N processors. Efficiency is the speedup normalized 

to the number of processors used in an application and is a measure of the economy 

of parallelization. It should be noted that a common assumption [21] (one utilized 

in this study) is that the overhead in parallelizing a program is negligible when 

executing a program on a single processor. That is, the serial execution time in 

analysis is that of a “parallelized” code executed on a single processor, rather than 
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older version of a code that was implemented in serial without considerations for 

parallelization. 

 It is tempting to believe that utilizing more processors will always result in 

increased speedup. However, parallel programs have an upper bound in speedup 

achievable limited by their parallel fraction 𝑓𝑝. This upper bound on speedup is 

determined by Amdahl’s Law: 

𝑆𝑝 = 
1

(1−𝑓𝑝)+ 
𝑓𝑝
𝑁
⁄

.                                                  (29) 

In equation (29), 𝑆𝑝 is the maximum theoretical speedup achievable for a parallel 

program given a parallel fraction and number of processors used. As N tends to 

infinity, the maximum theoretical speedup is limited to the inverse of 1 − 𝑓𝑝. From 

this, one sees that a high parallel fraction is of utmost importance if high parallel 

speedups are desired. In practice, other considerations, such as communication 

costs, computer architecture, or the problem solved, adding more and more 

processors to a computation will greatly impact parallel efficiency. 

 Amdahl’s Law leads programmers to consider the parallelizability of various 

algorithms and programs. Although parallelizability itself is a qualitative term that 

might differ between communities, it is useful to distinguish between different 

types of algorithms and their amenability to parallelization. If a program or 

algorithm requires communication or synchronization many times per second or 

after unit numbers of operations, then the level of parallelism is known as fine-

grain parallelism. If processes do not need to communicate many times per 

second or if many operations are carried out between communications, then the 

level of parallelism is known as coarse-grain parallelism. If processes never have 
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to communicate, then we say these processes are embarrassingly parallel. An 

example of an embarrassingly parallel process is response generation for COMET 

calculations. Unique responses can and are generated completely in parallel 

without the need for any synchronization. 

 The discussion of parallelizability brings up the concept of granularity, 

which is a measure of the number of operations that are carried out in between 

synchronization or communication. Since communication or synchronization are 

serial elements in a program that can limit performance, it is generally seen that a 

greater grain size of an application will lead to better parallel performance.  

 In practice, parallel efficiency is tied not only to parallel fraction of a 

program but also the costs of synchronization or communication. Therefore, an 

important aspect of analysis of parallel applications is the cost of these 

synchronizations and communications. For high parallel scalability (the ability to 

apply a parallel program efficiently to many processors), typically computation 

costs should dominate communication costs. This is even more important when 

one keeps in mind that communication speed is often much smaller than 

computation speed on modern computing architectures [22].  

Software Implementations 

 When developing codes to run in parallel, one must make the jump from 

theoretical considerations to practical applications. The most important 

distinction one must make is the software implementation to be used in 

parallelization. While many software implementations have been developed [23], 
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two main software implementations have been used in parallelization: OpenMP 

and MPI [22]. 

 OpenMP allows for parallelism based upon shared memory MIMD systems. 

With OpenMP, multiple threads, or tasks, are created and are executed 

simultaneously. Because this parallelism occurs in a shared memory environment, 

communication between tasks is not required. This implementation is useful for 

situations where there is data parallelism, when the same calculation is carried 

out on the same or multiple sets of data. OpenMP has the advantage of simple 

implementation, as parallelism is determined from a small set of compiler 

directives, and incremental parallelism of a code without the need for large 

rewrites. However, a significant limitation to OpenMP is the requirement for 

shared memory. Because of this limitation, the number of processors one can use 

in an OpenMP calculation is limited to the number of processors that have access 

to a global memory.  

 Message Passing Interface, or MPI, is another prevalent software 

implementation for parallel programs. In contrast to OpenMP, MPI is based upon 

the distributed memory MIMD model, so communication between processes is 

required. MPI is useful for situations where there is task parallelism, or when 

different tasks are carried out on the same or different sets of data. MPI does carry 

with it the requirement that typically a large amount of code rewriting is necessary 

when developing a parallel program, and care must be made that distributed 

algorithm is designed and implemented such that optimal computational 

performance is achieved. A significant advantage of MPI is that MPI is not limited 
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to any number of processors like OpenMP is; indeed, distributed algorithms 

designed and implemented with MPI are more generally applicable and portable 

than parallel programs with OpenMP. Because of its advantages, MPI has been 

widely implemented in transport codes (including the ones discussed here) and is 

the focus of software implementation in this study. 

Transport Codes That Employ Parallelism 

 Both stochastic and deterministic codes have utilized parallel computing in 

their software applications to great success. In addition, codes employing 

advanced methods have also have parallel implementations. Perhaps the most 

amenable methods to parallelization are Monte Carlo methods. These calculations 

have a very coarse granularity and thus can achieve high parallel efficiencies. Codes 

such as MCNP [24] have seen significant speedups from the use of parallel software 

implementation. More recently, a Monte Carlo response generation code SPaRC 

has been developed that implements parallelism via MPI, and that work saw orders 

of magnitude speedup [11]. 

 Parallelism has also been applied to deterministic methods. The Parallel 

Environment Neutral-particle TRANsport (PENTRAN) code developed by Sjoden 

and Haghighat [21] employs finite-difference discrete ordinates multigroup 

transport distributed across many cores. Scalable in memory, the PENTRAN code 

is able to solve larger problems than can be solved on a serial machine. With a 

parallel fraction as high as 0.98, speedups as high as 50 have been observed [21].  

 The response matrix code Serment [25] has also implemented parallelism. 

Emphasis on the parallelism in this code is on the response generation and solution 
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of the nonlinear response matrix problem, which is facilitated with PETSc and 

SLEPc libraries [25]. However, the code has yet to be applied to full core problems 

on par with previously developed response matrix codes such as COMET. The use 

of parallel computing for efficient whole-core solves in a response matrix method 

is a novel development and the principal goal of this study.  
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CHAPTER 4 

 

DEVELOPMENT OF THE DISTRIBUTED ALGORITHM 

 

 The main focus of this study was the development and implementation of a 

distributed (local memory only) algorithm for COMET calculations. The 

distributed memory approach was chosen because of its ability to explicitly to 

express parallel algorithms, and it is generalizable many different computing 

systems. To this end, the primary software implementation used in this study was 

MPI. In this chapter, the distributed algorithm is described.  

 

4.1  Problem Decomposition 

 In order to parallelize a calculation, a problem must be decomposed in some 

fashion. Different “chunks” of the problem, including relevant data, are allocated 

to different processors, and each process works only on the chunk to which it is 

assigned. Communication occurs as necessary in the computation. It is well known 

that communication costs are a major bottleneck in computations [21-22], so an 

algorithm should be developed to limit these potential degradations in 

performance. 

 COMET calculations offer multiple ways in which problems may be 

decomposed for solution on many processors. The fundamental observation is 

that, during the iteration, the outgoing expansion coefficients are computed via 

equation (16). During these calculations, there are no dependencies on other parts 
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of the algorithm. These calculations entail the majority of computational effort in 

COMET calculations, and therefore, the algorithm is amenable to parallelization. 

However, computational performance depends upon how these computations are 

decomposed onto multiple processors. Three possible decompositions include 

decomposition by surface, decomposition by flux expansion, and decomposition 

by domain.  

Decomposition by Surface 

 To describe decomposition by surface, it is instructive to construct the 

response matrices used in COMET calculations from the terms in equation (16). 

While these updates in outgoing expansion coefficients compute expansion 

coefficients for a given surface and moment, it is more efficient to update the 

expansion coefficients for a given surface at every moment in a matrix-vector 

multiplication, that is, 

𝑱𝑠
𝑖,+ =  ∑ 𝑅𝑠𝑠′

𝑖 𝑱𝑠′
𝑖,−

𝑠′ .                                             (30) 

With these matrix-vector multiplications, the expansion vectors and response 

submatrices are defined as 

𝐽𝑠
𝑖,+ −⁄ =  

(

 
 
 

𝐽𝑠,1
𝑖,+ −⁄

⋮

𝐽𝑠,𝑚
𝑖,+ −⁄

⋮

𝐽𝑠,𝑀
𝑖,+ −⁄

)

 
 
 

,                                                  (31) 

𝑅𝑠𝑠′
𝑖 =  (

𝑅𝑠𝑠′,11
𝑖 ⋯ 𝑅𝑠𝑠′,𝑚1

𝑖

⋮ ⋱ ⋮

𝑅𝑠𝑠′,1𝑚′
𝑖 ⋯ 𝑅𝑠𝑠′,𝑚𝑚′

𝑖
).                                   (32) 
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 With updates in expansion coefficients carried out in this fashion, it is 

possible to partition the calculation along surfaces. Each update of the form of 

equation (30) can be partitioned onto up to 𝑠 processors. However, this 

decomposition is extremely limited, and communication between processors is 

still required when updating incoming expansion coefficients from outgoing 

expansion coefficients. The calculation can be decomposed further by distributing 

the individual matrix vector products 𝑅𝑠𝑠′
𝑖 𝑱𝑠′

𝑖,− onto different processors, which 

would allow for a maximum decomposition of up to  𝑠2 processors, which would 

allow for decomposition onto 𝑂(10) processors. For example, for the Cartesian 

geometry COMET code off of which this work is based, this would lead to a 

maximum number of processors of 36. While this is a larger decomposition than 

simply partitioning along surfaces, another set of communications is required, as 

𝑠 matrix-vector products are summed for a single update in 𝑱𝑠
𝑖,+.  

Decomposition by Flux Expansion 

 Decomposition by flux expansion involves splitting the submatrices 𝑅𝑠𝑠′
𝑖  

into rectangular chunks that are separately multiplied by incoming expansion 

coefficient vectors 𝑱𝑠′
𝑖,−. This decomposition is demonstrated in the figure below. 
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Figure 2. A matrix (top left) is decomposed into rectangular elements (bottom 

left) whose matrix-vector products are evaluated in parallel. 

 This decomposition has the advantage of being bounded by the submatrix 

dimension 𝑠𝑚, which for large problems can be in the hundreds. However, care 

must be made to not decompose too finely, since the granularity of this calculation 

can become so fine that the matrix-vector evaluation will not scale well. An 

example of this scaling issue can found in reference [22]. These types of 

decompositions would likely be similar to the surface decomposition as a 

decomposition onto 𝑂(10) processors as a theoretical maximum. 

Decomposition by Domain 

 Finally, a proposed decomposition is by domain. A reactor problem is 

broken into different regions in space and given to different processors to perform 
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calculations independently.  Domain decomposition has the intuitive advantage 

that this is the method that is used to solve COMET problems already; local 

solutions are computed and the global solution is constructed from these results.  

 Domain decomposition also has mathematical justification. The structure 

of the response matrix used in the update 𝑅(𝑘)𝑱𝑛,− = 𝑱𝑛+1,+ of the power method 

solution is block diagonal: 

𝑅(𝑘) =

(

 
 
 

𝑅1(𝑘)

⋱
𝑅𝑖(𝑘)

𝑅𝑖+1(𝑘)

⋱
𝑅𝑁(𝑘))

 
 
 

,                  (33) 

where N is the total number of coarse meshes in a problem. The block matrices 

𝑅𝑖(𝑘) are given by 

𝑅𝑖(𝑘)  =  (
𝑅11
𝑖 ⋯ 𝑅𝑠1

𝑖

⋮ ⋱ ⋮

𝑅1𝑠′
𝑖 ⋯ 𝑅𝑠𝑠′

𝑖
).                                              (34) 

This structure allows expansion coefficients for each coarse mesh to be computed 

independently in a sweep via  

𝑱𝑖,+ = 𝑅𝑖(𝑘)𝑱
𝑖,−,                                                  (35) 

where 

𝑱𝑖,+ −⁄ =  

(

  
 

𝑱1
𝑖,+ −⁄

⋮

𝑱𝑠
𝑖,+ −⁄

⋮

𝑱𝑆
𝑖,+ −⁄

)

  
 

.                                                 (36) 

A significant advantage of this decomposition is that it is limited only by the 

number of coarse meshes used in a problem. For full reactor problems, there are 
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thousands of coarse meshes used. Unlike the decomposition of flux expansion 

proposed in the previous subsection, each update of the form (35) requires many 

calculations, ensuring synchronization or communication is not required 

prohibitively often; the granularity of a calculation is coarse enough to allow for 

decomposition onto many processors. Because of this, domain decomposition is 

seen as having the theoretical possibility for decomposition onto 𝑂(1000) 

processors. Due to the much higher limit of parallelization that domain 

decomposition offers over the other proposed decompositions discussed, it is the 

method of decomposition used in the distributed algorithm. 

 Domain decomposition allows for a splitting of the calculation, but transfers 

of outgoing expansion coefficients to incoming coefficients during the power 

iteration still require communication between processors. If an outgoing 

expansion coefficient on a given processor transfers to an incoming expansion 

coefficient on an adjacent coarse mesh that exists on a different processor, then 

these processors must communicate. Therefore, the decomposition that takes 

place in calculations should allow for meshes to be spatially close together to 

minimize this need for synchronization at every iteration. Figure 3 demonstrates 

how a problem is decomposed. 
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Figure 3. Decomposition of a domain (left) to multiple processors (right), with a 

different color representing the part of a domain on a particular processor. 

 Of course, the decomposition shown in Figure 3 is the case of an even 

decomposition; that is, when the number of coarse meshes in a problem and the 

number of processors used in the problem solution divide without remainder. 

However, for many applications of the algorithm, the decomposition will lead to 

partitions on different processors that are not even, since in general the number of 

coarse meshes and processors will not divide evenly. This brings up the issue of 

load balancing. The processors employed to perform a COMET calculation should 

do similar amounts of work, otherwise some processors will sit idle for lengths of 

time during a calculation, introducing inefficiencies.  

 The decomposition used in the distributed algorithm addresses load 

balancing by enforcing the following rule when assigning coarse meshes to various 

processors: 

𝑁𝐶𝑀 = {
𝑓𝑙𝑜𝑜𝑟 (

𝐶𝑀

𝑁
) + 1, 𝑖 < 𝑚𝑜𝑑(𝐶𝑀,𝑁)

𝑓𝑙𝑜𝑜𝑟 (
𝐶𝑀

𝑁
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                                (37) 
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In the rule (37), 𝐶𝑀 is the number of coarse meshes in a problem, 𝑁𝐶𝑀 is the 

number of coarse meshes on a processor, and 𝑖 is the coarse mesh index. Because 

of this rule, computational load between processors is relatively balanced; the 

worst case scenario is some processors having one more coarse mesh than other 

processors. In the limiting case where there are many coarse meshes distributed to 

each processor in a calculation, this imbalance becomes small. Domain 

decomposition for the uneven case is demonstrated in Figure 4.  

 

Figure 4. Domain decomposition for COMET calculations in the uneven case. 

 It should be noted that domain decomposition occurs axially first. That is, 

coarse meshes are “filled up,” or selected, along every axial column first before 

moving to another (x,y) location. Domain decomposition occurs one axial column 

at a time. Other forms of domain decomposition, such as breaking the problem 

into cubes that are solved on different processors, are possible as well. These 

alternative decompositions might even further limit the communication costs at 

every iteration. However, it is more difficult to systematically and automatically 

decompose the domain in this way, especially for the uneven decomposition case. 



  

 37 

More sophisticated domain decomposition methods can be investigated as a part 

of future work.  

 

4.2  Distinctions from the Serial Algorithm 

 Aside from the decomposition of the problem, other changes to the solution 

algorithm described in the previous chapter have been made, either taking 

advantage of parallel processing or facilitating it.  

Reading in Responses 

 In the execution of the COMET code, responses are read from a stored 

response library and evaluated at the current guess for global eigenvalue. In the 

serial implementation of the solution algorithm, all responses were read from the 

library regardless of their appearance in the problem. This has been modified in 

the distributed algorithm. Once domain decomposition has occurred, each 

subdomain is surveyed for the response data it needs to perform its coarse mesh 

calculations. Each process then only reads the required response data from the 

database. This modification is demonstrated in Figure 5. 

 

Figure 5. Modification in data access model from the serial (left) to the 

distributed (right) algorithm.  
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 In Figure 5, the white blocks represent response data, and the grey blocks 

represent processors that are carrying out all or part of COMET calculations. This 

modification allows for memory resources on each processor to be dedicated only 

for relevant response data, which can be a precious resource when response 

libraries grow large.  

 The modification is also a step in the right direction for coupling COMET 

calculations to on-the-fly response generation, which is an interest of future work. 

In this case, response data will exist in a distributed environment rather than at a 

single location (in this case a CDF database [26]). Once a decomposition has been 

made, the relevant response data can be sent only to the processors that need it for 

calculations. If on-the-fly response generation is coupled to a serial 

implementation of the COMET code, response data must be collapsed to a single 

location before being used in further COMET calculations. The difference in data 

flow between serial and distributed COMET calculations coupled with on-the-fly 

response generation is demonstrating pictorially in Figure 6. 
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Figure 6. On-the-fly response generation coupled with serial (left) vs. distributed 

(right) implementations of the COMET code. 

 In Figure 6, as in Figure 5, the white blocks represent response data, and 

the grey blocks represent processors carrying out COMET calculations. A 

distributed implementation of the COMET code allows for more streamlined data 

transfer between response generation and COMET calculations. For a further 

discussion of the potential of coupling on-the-fly response generation with COMET 

calculations (as well as multiphysics), the reader is encouraged to consult the 

references [10-11].  

Sweep Order 

 Sweep order, the order in which coarse mesh calculations (35) are carried 

out, has also been changed in the distributed algorithm from the serial version. In 

practice, the sweep order employed is arbitrary, since the incoming expansion 

coefficients used in the calculation are from the previous iteration (this is similar 

in spirit to a Jacobi iteration when solving systems of linear equations).  
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 In the serial algorithm, the sweep order was determined on a material 

(response function) basis. This was to limit the look-up cost of response 

submatrices 𝑅𝑠𝑠′
𝑖 . For a given unique coarse mesh type, the corresponding response 

submatrix was fetched from memory, and calculations using this response data 

were carried out for all repetitions of the unique coarse mesh regardless of where 

they occur in a problem.  

 In the distributed algorithm, the sweep order is determined on a geometric  

basis. This distinction from the serial algorithm is demonstrated in Figure 7. 

 

Figure 7. Sweep orders for the serial (left) vs. the distributed (right) algorithm.  

 In Figure 7, each block represents a coarse mesh, and each color represents 

a unique coarse mesh, necessitating new response data. The numbers on each 

block represent the order in which the coarse mesh calculation (35) was carried 

out.  The change in sweep order was made because it is generalizable to any 

number of processors used in a calculation – the sweep can be performed along 

the domain decomposition without regard for differences in coarse meshes on 

different processors. The change in sweep order also anticipates future problems 

that the code will encounter. For realistic reactor problems, the number of unique 
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coarse meshes approaches the number of total coarse meshes in a problem due to 

the heterogeneity effects of factors such as burnup. For cases such as these, 

material sweeping becomes less viable.  

Communication at Each Iteration 

 As stated previously, the stage of the iteration that transfers outgoing 

expansion coefficients to incoming expansion coefficients requires communication 

between processors. This communication only occurs on the boundaries between 

subdomains that exist on different processors to minimize the cost of this step of 

the algorithm. Communications that occur at every iteration are demonstrated in 

Figure 8. 

 

Figure 8. Communication pattern used at each iteration. 

As in previous figures, the blocks in Figure 8 represent coarse meshes, and the 

different colors represent coarse meshes on different processors. The arrows 

represent a surface where inter-processor communication takes place.   

 Once the problem has been decomposed and the processors employed in a 

calculation have been assigned their respective coarse meshes, the addresses for 

where outgoing expansion coefficients are to be sent are determined. These 



  

 42 

addresses are used during the communication at each iteration in conjunction with 

the MPI_SEND and MPI_RECV commands, which are the software 

implementations to send specific messages between processors in MPI. In the 

communications, all needed expansion coefficients are sent out via MPI_SEND, 

and then all expansion coefficients are received. This is done to avoid locking in 

the program execution; if a processor is expecting to receive some data via 

MPI_RECV but it has not been sent by another processor via MPI_SEND (due to 

different sending priorities because of the coarse mesh loading on different 

computers), execution of the program is halted.   

Calculation of Balance Values 

 The primary focus thus far on the distributed algorithm’s distinctions from 

the serial algorithm has been on the inner iteration. This is sensible; the inner 

problem is the majority of the computational expense in COMET calculations, as 

the outer problem simply updates eigenvalue via the balance relation (21). 

However, when performing a calculation where coarse mesh data is distributed 

across many processors, consideration of calculating these balance values (neutron 

production, neutron absorption, and leakage) must be made; the coarse mesh 

calculations in the inner problem can be carried out simultaneously, but balance 

values are single numbers that are best calculated on a single processor. To 

compute these values, each processor determines its own volume responses for 

production, absorption, and leakage. Global values are calculated by reducing 

these values with the command MPI_REDUCE. Global eigenvalue is calculated via 
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(21) on a single processor and then sent to all processes with MPI_BCAST for the 

purposes of evaluating responses.  

 

4.3  Outlined Distributed Algorithm 

 While the decomposition and special considerations in developing the 

distributed algorithm have been made, it is instructive to outline the algorithm, 

which highlights the changes that have been made from the serial algorithm. The 

distributed algorithm is given below. 

1. Given a number of coarse meshes and number of processors, 

decompose the problem 

a. Even division case: decompose as in Figure 3 

b. Uneven division case: decompose as in Figure 4 

c. Determine the addresses for all expansion coefficients that need to 

be communicated at each inner iteration 

2. Initial guess for global eigenvalue and flux distribution 

a. Eigenvalue sent to all processors via MPI_BCAST 

3. Evaluate response functions at the global eigenvalue. 

a. Processors only read in relevant response data 

b. E.g., 𝑅(𝑘) = 𝑅(1) 

4. Solve the inner problem – equation (20) (Power method): 

a. Update outgoing expansion coefficients via equation (16), sweeping 

geometrically rather than by material, as in Figure 7 
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b. Update incoming expansion coefficients using interface and 

boundary conditions, i.e. apply the connectivity matrix:            

𝑀𝑱𝑛+1,+ = 𝑱𝑛+1,− 

i. If incoming expansion coefficients cross processors, they 

must communicate 

ii. Send out all needed expansion coefficients via MPI_SEND 

iii. Receive all needed expansion coefficients via MPI_RECV 

1. Sends and receives sent to addresses determined in 

step 1 of the algorithm 

c. Normalize expansion coefficients to outgoing partial current  

d. If the outgoing partial currents are converged, then quit. 

5. Update global eigenvalue via the balance relation – equation (21). 

a. Each processor computes its relevant balance values (production, 

absorption, leakage) 

b. Sum over all processors for balance values via MPI_REDUCE 

c. Eigenvalue computed on a single processor. 

6. Repeat steps (2-5) until both eigenvalue and expansion 

coefficients are converged. 

 

4.4  Scalability Analysis 

 Once a distributed algorithm has been proposed, it is important to assess its 

scalability. In a simple sense, this is analyzing the ratio cost of communications 

(which can limit the efficiency of a parallel program) to the cost of computations. 
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For an algorithm to be scalable, this ratio of communication to calculation should 

be as small as possible. Further, it is desirable that for larger problems – those with 

more computations required – that scalability will increase, that is, the ratio of 

communication to computation will decrease.  

 To determine if this is the case for the developed distributed COMET 

algorithm, let some assumptions be stated. First, this analysis only applies to the 

inner iterations – the bulk of the computational effort in COMET calculations. 

Second, assume that calculation and communication have uniform costs per 

operation, called 𝑇𝑐𝑎𝑙𝑐 and 𝑇𝑐𝑜𝑚𝑚, respectively. With this assumption, calculation 

and communication costs can be estimated as integer multiples of these values. 

While these types of analyses may not be exact, they can give insight into how the 

algorithm is expected to behave when encountering different types of problems. 

 In the communication step of the inner iteration, each expansion coefficient 

vector that must be sent between processors as size 𝑚, the size of the flux expansion 

used in the problem. When one expansion coefficient vector is sent from a 

processor to another, it must also receive a corresponding expansion coefficient 

vector. Therefore, every instance of communication requires 2𝑚𝑇𝑐𝑜𝑚𝑚. 

Communication is required on every surface that is shared by coarse meshes that 

exist on different processors, so let the total communication cost at an iteration be 

given as 2𝑎𝑚𝑇𝑐𝑜𝑚𝑚, where 𝑎 is the number of surfaces where communication must 

take place. 𝑎 can be difficult to estimate, as it depends upon the topology of the 

decomposition. However, for the limiting cases where there are many coarse 

meshes on a processor with relatively few surfaces that require communications  
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(𝑁 ≪ 𝐶𝑀) and the cases where there are few coarse meshes on a processor and 

nearly every surface requires communications (𝑁 ≈ 𝐶𝑀), 𝑎 can be estimated as 

𝑎 ≈ {
1, 𝑁 ≪ 𝐶𝑀
𝑠𝐶𝑀,𝑁 ≈ 𝐶𝑀

.                                              (38) 

Therefore, reasonable estimates for communication costs in the limiting cases are 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 ≈ {
2𝑚𝑇𝑐𝑜𝑚𝑚, 𝑁 ≪ 𝐶𝑀

2𝑠𝐶𝑀𝑚𝑇𝑐𝑜𝑚𝑚, 𝑁 ≈ 𝐶𝑀
 .                               (39) 

While not exact, these estimates demonstrate that as the number of processors 

used in a calculation is increased while number of coarse meshes is held constant, 

communication costs increase, which could impact the scalability of the algorithm. 

 To assess the costs of calculation in an iteration, it is useful to describe each 

computational task and its associated expected number of operations, keeping in 

mind the total cost accrued over all operations. Each iteration involves the 

computation of the matrix-vector product 𝑅𝑠𝑠′
𝑖 𝑱𝑠′

𝑖,−, which costs 2𝑚2 −𝑚 floating 

point operations. For each 𝑱𝑠
𝑖,+to be computed, this calculation happens 𝑠 times; 

there is the additional cost of 𝑠2𝑚 additions, so the running total of operations is 

𝑠2𝑚 + 𝑠(2𝑚2 −𝑚). The computation of 𝑱𝑖,+is 𝑠 times the calculation cost of 𝑱𝑠
𝑖,+. 

The number of operations is now 𝑠3𝑚+ 𝑠2(2𝑚2 −𝑚). To determine 𝑱𝑖,−, the 

connectivity matrix must be applied to the outgoing expansion coefficients as 

𝑀𝑱𝑛+1,+ = 𝑱𝑛+1,−. The connectivity matrix is sparse; there is at most one nonzero 

element in each row. Therefore, this matrix-vector multiplication only introduces 

an additional calculation cost of 𝑠𝑚. This cost is multiplied by the number of coarse 

meshes to obtain the total estimated calculation cost: 

𝐶𝑜𝑠𝑡𝑐𝑎𝑙𝑐 = 𝐶𝑀(𝑠
3𝑚 + 𝑠2(2𝑚2 −𝑚) + 𝑠𝑚)𝑇𝑐𝑎𝑙𝑐 .                          (40) 
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The ratio of communication to computation is then 

2𝑇𝑐𝑜𝑚𝑚

𝐶𝑀(𝑠3+𝑠2(2𝑚 −)+𝑠)𝑇𝑐𝑎𝑙𝑐 
                                               (41) 

in the limiting case for 𝑁 ≪ 𝐶𝑀. In the limiting case for 𝑁 ≈ 𝐶𝑀, the ratio of 

communication to computation times is 

2𝑇𝑐𝑜𝑚𝑚

(𝑠2+𝑠 (2𝑚 −1)+1)𝑇𝑐𝑎𝑙𝑐
.                                              (42) 

In both limiting cases, it is seen that calculation cost dominates communication 

cost. Further, as problem sizes grow larger by increasing number of coarse meshes 

or by increasing the flux expansion (growth in 𝑚), the scalability of the algorithm 

is expected to increase. 

 This model of scalability is encouraging. However, it is desirable to observe 

how the algorithm behaves in practice.  Chapter 6 focuses on this issue by 

performing a sensitivity study of the effects of problem size (both in terms of 

number of coarse meshes as well as flux expansion) on efficiency of the distributed 

algorithm implemented in the COMET code.   
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CHAPTER 5 

 

ANALYSIS OF THE COMET-MPI CODE WITH AMDAHL’S 

LAW 

 

 In order to assess the performance of the distributed algorithm in the 

COMET code, an implementation was developed, which will henceforth be referred 

to as COMET-MPI, a proxy app [23] to the main COMET research app. COMET-

MPI retains much of the functionality of the main COMET code, but it has been 

modified to allow for parallelization with MPI. For instance, the response libraries 

are still stored in and accessed from CDF databases [27] while the deterministic 

whole-core solutions are carried out by the algorithms described previously. The 

code has been optimized to deal with PWR-type benchmark problems with 

symmetry for the purpose of focusing on parallel performance of the code; these 

optimizations do not limit the method. 

 To assess the performance of the COMET-MPI code, a computational model 

for the C5G7 problem [28] was developed. COMET-MPI solved this problem for 

various number of processors, and the important aspects of computational 

performance were determined and analyzed. Different aspects of the algorithm 

were isolated to determine their effect on parallel efficiency and computational 

performance. As expected, two primary factors in performance were the 

calculation effort such as determination of the response matrix-vector products 

and the communication cost between each processor during each iteration. 
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However, another factor that proved to greatly impact parallel performance was 

the need to communicate with memory in the form of looking up response 

functions during each coarse mesh sweep.  

 It is important to demonstrate that the behavior of a developed code, 

particularly for a novel development like COMET-MPI, which offers a unique 

consideration of communication with memory, matches well with theory. As such, 

the performance data were compared against a model using Amdahl’s Law (29) to 

determine whether the code performed as expected. Further, Amdahl’s Law was 

used to draw conclusions on the parallelizability of the code as well as potential 

bottlenecks. For a thorough description of the problem solved, the reader is 

encouraged to review Chapter 6, which describes the benchmark in detail.  

 

5.1 Effect of Response Function Lookups on Performance 

 When using the COMET-MPI code to solve the C5G7 problem, it was 

determined that the cost of response function lookups (to be described shortly) 

greatly impacted computational performance of the code. To demonstrate this 

effect, various computational performance data are presented. In all problem 

cases, the C5G7 problem was solved with a fixed number of iterations: 1 outer 

iteration to evaluate the response functions and 150 inner iterations to converge 

the problem. No acceleration techniques were used. Because much of the effort in 

the algorithm and code focuses on the inner iteration, performance data for the 

inner iterations alone were recorded.  To ensure the data were reliable, all cases 
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were run on a dedicated homogeneous research cluster of Intel(R) Xeon(R) CPU 

E5-2670 0 @ 2.60GHz processors, with 2 nodes of 20 processors each. 

 The wall-clock times for COMET-MPI solutions to the C5G7 problem under 

these conditions were determined for two cases. The first case was a problem 

solution with response function lookups, which shows the effect on computational 

performance of both inter-processor communication as well as communication 

with memory. The second case was a problem solution without response function 

lookups, which only shows the effect of inter-processor communication on 

computational performance. While response function lookups are a vital part of 

the solution algorithm, the focus of this study was to assess factors of 

computational performance.  Figure 9 gives the wall-clock times for COMET-MPI 

solutions for these two cases for 1-40 processors. For both cases, Figure 10 gives 

the speedups from parallelization, and Figure 11 gives the parallel efficiencies.  
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Figure 9. Wall-clock times for increasing number of processors for COMET-MPI 

solutions with and without response function lookup. 
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Figure 10. Speedups for increasing number of processors for COMET-MPI 

solutions with and without response function lookup.  
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Figure 11. Parallel efficiencies for increasing number of processors for COMET-

MPI solutions with and without response function lookup. 

 From the results seen in Figures 9-11, it is apparent that response function 

lookup can have a large impact on performance of the COMET-MPI code. For this 

problem, the case without response function lookups was about twice as efficient 

as the response function lookup case. Clearly, when analyzing performance of this 

code, consideration of lookup cost must be made in addition to analysis of 

calculation and communication costs.  

 

5.2 Benchmarking Parallel Efficiencies with Theory 

 The impact of communication between processors on performance of 

parallel transport codes is a well-observed phenomenon [21]. However, the cost of 

frequent memory access and its effects on computational performance are often 
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less considered. To those experienced with parallel computing in neutron 

transport, the computational performance data presented in the previous 

subsection might even be considered counter-intuitive. Therefore, to ensure that 

the COMET-MPI code is behaving as expected, the results for both the response 

lookup case and the no response lookup case were benchmarked against predicted 

efficiencies given by Amdahl’s Law.  

 As suggested by some literature [14,21,29], Amdahl’s Law can be modified 

to reflect the cost of inter-processor communication: 

𝑆𝑝 = 
1

(1−𝑓𝑝)+ 
𝑓𝑝
𝑁
⁄ + 

𝑇𝐶
𝑇𝑆
⁄

.                                              (43) 

In the modified Amdahl’s Law of equation (43), 𝑇𝐶 is the time spent 

communicating between processors, and 𝑇𝑆 is the serial execution time. Using this 

modified form (43) with estimated values for parallel fraction and communication 

cost, the approximate performance of a parallel code in terms of speedup and 

efficiency can be predicted. The actual performance of a code should agree with 

this prediction.  

 Kucukboyaci et al. [29] perform analysis with the modified Amdahl’s Law 

to ensure that the neutron transport code PENTRAN behaves as expected. They 

vary the number of processors used in solving a simple problem and record the 

computational performance data. They compare their parallel efficiency results to 

those predicted by Amdahl’s Law with an assumed parallel fraction and an 

estimated communication cost given by the median number of processors used in 

their paper. In this case, the Amdahl efficiency is given by 
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𝑒𝐴 =
1

(1−𝑓𝑝+
𝑇𝐶

𝑇𝑆
⁄ )𝑁+𝑓𝑝  

.                                                (44) 

Equation (44) is obtained by dividing the speedup predicted by Amdahl’s Law (43) 

by the number of processors used in a calculation. In equation (44), 𝑒𝐴 is the 

Amdahl efficiency. 

Analysis for the No Response Lookup Case 

 Analysis with Amdahl’s Law was performed in a similar manner in this 

study. Since the case without response lookup demonstrates the effects of inter-

processor communication on computational performance, the form of Amdahl’s 

Law given by equation (43) was used to predict speedups and the form given by 

equation (44) was used to predict parallel efficiencies as the number of processors 

increased. Parallel fraction was estimated as 

𝑓𝑝 = 1 − 
1

𝐶𝑀∗𝑠∗𝑚
 .                                                   (45) 

In equation (45), 𝐶𝑀 ∗ 𝑠 ∗ 𝑚 is the size of one dimension of the total response 

matrix 𝑅(𝑘) in the inner iteration. This parameter is also the maximum 

decomposition that can occur on the problem using a combination of the 

decomposition techniques discussed in the previous chapter. Using the flux 

expansion, number of surfaces, and number of coarse meshes of the C5G7 problem 

given in the description in Chapter 6, this estimate resulted in a parallel fraction of 

approximately unity. The communication term, 
𝑇𝐶
𝑇𝑆
⁄ , was estimated as 0.0062, 

which was the communication cost for the case with 20 processors. This was 

estimated by  

𝑇𝐶
𝑇𝑆
⁄ =  

1

𝑁
−

1

𝑆𝑝
 .                                                  (46) 
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Equation (46) shows the difference in inverse speedup between an Amdahl’s Law 

with and without communication cost.  

 Using the assumed 20 processor communication cost in equation (44), the 

Amdahl efficiency was graphed against the observed parallel efficiencies for the 

case of no response lookups. The two are shown in Figure 12.  

 

Figure 12. Amdahl efficiency and observed parallel efficiency for the no response 

lookup case.  

As seen in Figure 12, the predicted Amdahl efficiencies agree well with the observed 

parallel efficiencies. The oscillation of efficiencies seen for the 21-40 processor run 

cases come from variations in the processor topologies of the decomposition, 

which are determined by the job scheduler on the cluster. Further, these runs 

involve processors on different compute nodes, which amplify this topology effect. 
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From these results, it can be concluded that when response lookup cost is 

neglected, the COMET-MPI code performs as expected when computation and 

communication costs dictate the performance of the code.  

Analysis of the Response Lookup Case 

 Clearly, given the quite different behavior of the COMET-MPI code when 

response lookups are not neglected, different assumptions must be made when 

using Amdahl’s Law to predict the performance of the code. One such approach is 

to include another term in Amdahl’s Law to account for the cost of looking up 

response functions. Horoi and Enbody [30] follow this approach of adding a term 

to Amdahl’s Law when considering effects outside of inter-processor 

communication. Another approach is to modify the assumed parallel fraction. 

From the perspective of predicting parallel efficiencies, these two approaches are 

equivalent, and the difference between the two is semantic. However, the 

difference does have an impact on analyzing the effects of response function lookup 

on improvement in computational performance from parallelization.  

 If lookup cost is considered as its own term in Amdahl’s Law, such as in 

equation (47), 

𝑆𝑝 = 
1

(1−𝑓𝑝)+ 
𝑓𝑝
𝑁
⁄ + 

𝑇𝐶
𝑇𝑆
⁄ + 

𝑇𝑚𝑒𝑚
𝑇𝑆
⁄

,                                         (47) 

where 
𝑇𝑚𝑒𝑚

𝑇𝑆
⁄  represents the cost of response function lookups, then this cost can 

be compared to the communication cost and its detriment to speedup. If lookup 

cost is considered within the parallel fraction, then the cost can be shown to 

directly impact parallelizability of a code.  To demonstrate the difference between 
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these two approaches, both a response function lookup cost to be used in an 

Amdahl’s Law analysis such as with equation (47) and a modified parallel fraction, 

which would be used Amdahl’s Law analysis given by equations (43) and (44), are 

computed.  

 First, the response lookup cost itself was estimated. Using a similar 

approach to finding the communication cost at 20 processors, that is, finding the 

value of the lookup cost as the difference in inverse speedup between the response 

lookup and no response lookup cases, where the assumed speedups are of forms 

(47) and (43), respectively, the response lookup cost was computed as 0.0601. This 

cost is roughly 10 times larger than the estimated communication cost. This 

comparison shows directly that the cost of response function lookups is much 

greater and has a larger effect on performance of the COMET-MPI code than the 

inter-processor communication cost.  

 The modified parallel fraction was computed as well. The difference 

between inverse speedups of the response lookup and no response lookup cases 

with an Amdahl’s Law of form (43) was computed. Using this difference in inverse 

speedup, an assumed parallel fraction of unity for the no response lookup case, and 

an assumed communication cost of 0.0062 on 20 processors, the modified parallel 

fraction for the case of response function lookup was 0.94. Clearly, this lower 

parallel fraction indicates that the parallelizability of the COMET-MPI code is 

lowered when response function lookups are involved in the analysis. 

 As mentioned previously, the difference between using equation (43) with 

a modified parallel fraction or using equation (47) with an assumed cost of 
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response function lookup to predict speedups (and therefore parallel efficiencies) 

is semantic – both approaches generate similar estimates for speedups and parallel 

efficiencies in that they produce similar predictions for speedup and parallel 

efficiency as a function of 𝑁, the number of processors used in a calculation 

Therefore, the approach that modifies the parallel fraction for equations (43) and 

(44) is used to predict Amdahl efficiencies for the response lookup case by 

preference. These predictions were compared against the observed parallel 

efficiencies for this case. The results are plotted in Figure 13.  

 

Figure 13. Amdahl efficiency and observed parallel efficiency for the response 

lookup case.  

With the modified assumption in Amdahl’s Law (43) or (47), the computational 

performance of the COMET-MPI code can be predicted from theory. The deviation 

from prediction for the case with low number of processors is due to decomposition 
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dependent response lookup costs degrading efficiency – response function lookup 

costs are really a function of the number of processors used in a calculation. After 

a sufficiently high number of processors is used in a calculation, the efficiencies 

agree much very well with theory. Therefore, despite the somewhat surprising 

effect of response function lookups impacting parallel performance as much as 

they do, the effect is to be expected when analyzing the performance of the code.  

 

5.3 Discussion of Response Function Lookup Cost 

 Clearly, the cost of looking up response functions during the coarse mesh 

sweep of each inner iteration greatly affects the computational performance of the 

COMET-MPI code. From the results presented in this chapter, it can be concluded 

that the response function lookup cost, not communication cost, is the limiter on 

speedup and parallel efficiency of the code. The ramifications of this effect should 

be discussed in detail.  

 As an inner iteration progresses, it is a necessity to look up responses during 

the coarse mesh sweep.  As outgoing expansion coefficients are updated via 

equation (35) in the coarse mesh sweep, different regions of a reactor are visited, 

which represent zones of varying state parameters. These state parameters will 

necessitate varying responses to accurately describe their behavior. As a result, 

when a region of a reactor is encountered with unique characteristics (e.g., material 

composition or state parameters such as temperature, material density, etc.), a new 

response function must be looked up to accurately compute the outgoing 

expansion coefficients for the coarse meshes. Despite their detriment to 
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computational performance, response function lookups are required for obtaining 

an accurate problem solution.  

 It is important to note that the effect of response function lookups is 

problem-dependent. Each problem has its own loading pattern of coarse meshes, 

so it should be concluded that each problem will have unique costs of response 

function lookups, even given a similar response function data set. The effects of 

different problems’ coarse mesh loadings on computational performance is 

directly demonstrated in the next chapter, which shows COMET-MPI solutions for 

problems of varying size and coarse mesh loadings.  

 Further, different problems will have differing sizes of flux expansions. As 

the size of a flux expansion increases, the response function lookup cost will 

increase in kind. It should be noted that this works against the scalability of the 

COMET-MPI code as problems grow in flux expansion. This is in direct opposition 

to the prediction of the scalability model derived in the previous chapter, which 

indicated that problems with a high flux expansion will scale better with increasing 

number of processors. However, that model did not include effects of response 

function lookups, which have been shown to have a large impact on computational 

performance.  

 For the problems presented in this thesis, the cost of coarse mesh lookups 

might present a load imbalance in a calculation. While measures have been made 

in the algorithm to balance the load in relation to computational and 

communication effort, because of the geometric nature of the domain 

decomposition, some processors might have a greater number of unique coarse 
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meshes and therefore a higher cost of response function lookup than others. To 

remedy this load imbalance by redistributing coarse meshes among processors 

based upon response lookup cost is an interesting area of future work. 

 However, the problems presented in this thesis are mostly snapshot-in-time 

calculations for idealized benchmark problems. In the future, it is desired to 

compute COMET solutions coupled to burnup calculations. For these types of 

problems, the number of unique coarse meshes in a sweep approaches the total 

number of coarse meshes in a problem. This is because, while there might exist 

only a few types of assemblies in a core design (e.g., 3.5 w% UO2, 2 w% UO2 with 6 

w% Gd2O3), each region of the core will burn differently. Therefore, the material 

compositions of each coarse mesh will vary. For this class of problems, the load 

imbalance of disparity in response function lookups between processors is 

significantly diminished, since every coarse mesh in a sweep will require a new 

lookup.  

 Because of the effect of the response function lookup cost on computational 

performance of the COMET-MPI code, future work on developing parallel 

implementations of COMET should be focused on ways of improving the response 

function lookups’ use of memory bandwidth to improve computational 

performance and parallel efficiency. 
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CHAPTER 6 

 

SENSITIVITY STUDY OF PROBLEM SIZE ON SCALABILITY 

OF THE COMET-MPI CODE 

 

 The effects of problem size on parallel efficiency were studied in the scope 

of this thesis. Using variants of the C5G7 problem, number of coarse meshes and 

size of flux expansions were varied, and the parallel performance of COMET-MPI 

was recorded. This was to assess the varying effects of computational costs, 

communication costs, and, very importantly, response function lookup costs as the 

problem being studied changed in size. In all cases, COMET-MPI runs were carried 

out on a dedicated homogeneous cluster of Intel(R) Xeon(R) CPU E5-2670 0 @ 

2.60GHz processors, with 2 nodes of 20 processors each. 

 

6.1 Description of the Benchmark Problems 

 In the sensitivity studies, problems used were variants of the C5G7 problem 

[28], which has both UO2 and MOX fuel. The first variant is the C5G7 problem with 

vacuum boundary conditions, henceforth called the “1X C5G7 problem.” A radial 

view of the problem is provided in Figure 14.  
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Figure 14. Radial view of the 1X C5G7 Problem. 

The second problem used in the sensitivity study is the “2X C5G7 Benchmark 

Problem,” so called because it has two repetitions of the C5G7 active core on a side. 

A radial view of this problem is provided in Figure 15. 



  

 65 

 

Figure 15. Radial view of the 2X C5G7 Problem. 

The third and final problem used in the sensitivity study is the “3X C5G7 Problem,” 

due to its repetition of three C5G7 active cores along a side. The radial view of this 

problem is given in Figure 16. 
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Figure 16. Radial view of the 3X C5G7 Problem.  

COMET Models 

 Computational models of these problems for use in the COMET code were 

built and used when monitoring computational performance. The models used 

here are similar to those used in previous studies [7]. Using the seven energy group 

cross section library provided in the reference, a response library was built with 

expansions of fourth order in space and second order in angle using the stochastic 

code MCNP5 [24]. 50 million particles were run per case, and responses measuring 

surface angular flux, pin fission density, neutron production, and neutron 

absorption were tallied. Seven unique coarse meshes were modeled, and they are 

given in Table 1. 
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Table 1. The unique coarse meshes modeled for the benchmark problems. 

 Mesh  Dimension 

1 UO2 Uncontrolled Assembly  21.42” x 21.42” x 14.28” 

2 UO2 Controlled Assembly  21.42” x 21.42” x 14.28” 

3 MOX Uncontrolled Assembly  21.42” x 21.42” x 14.28” 

4 MOX Controlled Assembly  21.42” x 21.42” x 14.28” 

5 Upper Unrodded Reflector  21.42” x 21.42” x 21.42” 

6 Lower Unrodded Reflector  21.42” x 21.42” x 14.28” 

7 Upper Rodded Reflector  21.42” x 21.42” x 21.42” 

 

 In Table 1, the reflector coarse meshes are filled completely with water and 

are homogeneous with the exception of the “Upper Rodded Reflector,” which has 

control rods inserted. The pin cell makeup of the fuel coarse meshes is given in 

Figures 17 and 18. While the models have explicit fuel-moderator heterogeneity, 

this is not reflected in the figures. 

 

Figure 17. Pin cell makeup of the UO2 assembly coarse meshes, from [8]. 
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Figure 18. Pin cell makeup of the MOX assembly coarse meshes, from [8]. 

 In Figure 17, the lightly shaded areas are pin cells with UO2 fuel rods. The 

darkly shaded areas are guide tubes in the uncontrolled mesh and are control rods 

in the controlled mesh. The exception is the center pin cell, which is always a fission 

chamber. In Figure 18, the lightly shaded areas are pin cells with 4.3% MOX, the 

slightly darker areas pin cells with 7.0% MOX, and the dark grey areas are pin cells 

with 8.7% MOX. The black areas are guide tubes in the uncontrolled mesh and are 

control rods in the controlled mesh; as with the UO2 mesh, the center pin cell is 

always a fission chamber.  

 All problems use these unique coarse meshes and their precomputed data 

as their computational models. In addition, vacuum boundary conditions are 

assumed in all cases. The difference between the problems is the coarse mesh 

loading patterns. Radially, the Figures 14-16 demonstrate how the coarse mesh 

loadings vary between the different problems. The problems also have different 

axial loadings, which are shown in Table 2, which also shows how many total 

coarse meshes are used for each case. 
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Table 2. Axial and total coarse mesh loadings of the three benchmark problems. 

 Active/Total Axial CM Loading  Total CM Loading 

1X 6/8  288 

2X 12/14  2016 

3X 16/18  4608 

 

 In Table 2, the distinction between active and total axial coarse mesh 

loading is made because the top and bottom axial zones of each problem are loaded 

with coarse mesh type 7 (from Table 1) where fuel is placed in the active core (every 

axial zone that is not the top or bottom zone). In the top and bottom axial zones, 

the radial reflector meshes are modeled by coarse mesh type 5 and are modeled by 

coarse mesh type 6 in all other axial zones. For the 1X C5G7 Problem, one radial 

reflector coarse mesh is used on the perimeter of every axial zone. For the 2X and 

3X C5G7 Problems, two reflector coarse meshes are used on the perimeter of every 

axial zone.  

 

6.2 Number of Coarse Meshes Sensitivity Study 

 To assess the effects of changing the number of coarse meshes in a problem 

to the scalability of the code, the 1X, 2X, and 3X C5G7 problems were solved with 

COMET-MPI on various numbers of processors, varying from 1 to 40. When 

solving these problems, the number of iterations performed was fixed – one outer 

iteration to evaluate the response functions and 150 inner iterations, mirroring a 

typical set of inner iterations in a core solve. The number of iterations is held fixed 

to assess the change in speedup for various numbers of processors for problems of 
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various sizes. Chebyshev polynomial filtering was used in the calculations. 

Computational performance was only measured for the inner iterations, to 

evaluate the scalability model from Chapter 4 and to assess the effects of response 

function lookup as the problem size increased. The results of each calculation are 

given in Tables 3-5. When examining computational performance data for parallel 

programs, it is often instructive to view the speedup and parallel efficiency data 

graphically. The speedups and parallel efficiencies are plotted in Figures 19 and 

20, respectively.  

 

Table 3. Parallel performance results for the 1X C5G7 Problem; COMET 

calculated core eigenvalue 𝑘 = 1.14367 +/− 2 𝑝𝑐𝑚 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 101 1.0 100 

5 26 3.9 78 

10 20 5.1 51 

20 11 9.2 46 

40 6 16.8 42 

 

Table 4. Parallel performance results for the 2X C5G7 Problem; COMET 

calculated core eigenvalue 𝑘 = 1.22163 +/− 1 𝑝𝑐𝑚 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 701 1.0 100 

5 155 4.5 90 

10 102 6.9 69 

20 52 13.5 68 

40 28 25 63 
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Table 5. Parallel performance results for the 3X C5G7 Problem; COMET 

calculated core eigenvalue 𝑘 = 1.23971 +/− 1 𝑝𝑐𝑚 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 1639 1.0 100 

5 356 4.6 92 

10 215 7.6 76 

20 111 14.8 74 

40 56 29.3 73 

 

 

Figure 19. Speedups for the 1X, 2X, and 3X C5G7 problems for increasing 

numbers of processors. 
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Figure 20. Parallel efficiencies for the 1X, 2X, and 3X C5G7 problems for 

increasing numbers of processors. 

  As indicated by Tables 3-5 and demonstrated graphically in Figure 20, 

parallel efficiency increases with increasing number of coarse meshes in a 

calculation. This agrees with the scalability model derived in Chapter 4. The results 

also demonstrate that the degradation in parallel efficiency due to response 

function lookup varies between problems and can decrease for increasing problem 

size given the same number of processors used to calculate a solution.  

 These encouraging results imply that for problems with large numbers of 

coarse meshes, high parallel speedups and efficiencies can be obtained. An 

application of this could be finer axial meshing of core calculations with the 

COMET method. It should be noted that when a calculation increases from 
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utilizing 5 to 10 processors, efficiency for all problems decreases, while speedups 

scale nearly linearly with other changes in processors. This effect was 

demonstrated for the C5G7 problem in the previous chapter and is a consequence 

of reduced parallel efficiency due to response function lookup costs.  

 

6.3 Flux Expansion Sensitivity Study 

 To assess the effects of changing the flux expansion in a problem to the 

scalability of the code, the 3X C5G7 problem was solved with COMET-MPI using 

various flux expansions ranging from zeroth order in both space and angle to the 

maximum flux expansion. For each flux expansion, the problem was solved on 1 

and 40 processors. As with the size sensitivity study, when solving these problems, 

the number of iterations performed was fixed – one outer iteration to evaluate the 

response functions and 150 inner iterations. Again, Chebyshev polynomial filtering 

was used in the calculations. Computational performance was only measured for 

the inner iterations to evaluate the scalability model. The results of each 

calculation are given in Table 6. As with Tables 3-5, the wall clock times in Table 6 

are given in seconds, and efficiency is reported in percent. 
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Table 6. Parallel performance results for the 3X C5G7 Problem for various flux 

expansion orders. 

Flux 
Expansion 

Wall Clock 
Time - 1  

Wall Clock 
Time - 40 

Speedup Efficiency 

0,0,0,0 16 s 0.7 s 23 58 % 

2,2,0,0 40 s 1.4 s 29 73 % 

2,2,2,2 631 s 18 s 35 88 % 

4,4,2,2 1639 s 56 s 29 73 % 

 

  The results of this sensitivity study are of particular interest. Increasing the 

flux expansion order from zeroth order up to second order in space and angle 

increases the parallel efficiency. This agrees with the scalability model derived in 

Chapter 4. However, increasing the flux expansion order to the maximum in the 

database reveals a degradation in computational efficiency. This is an effect of the 

response function lookup cost on the parallel efficiency of the COMET-MPI code. 

Further, from this sensitivity study, it is demonstrated that large flux expansions 

(and thus large response submatrices) increase the magnitude of this effect. How 

this applies to larger problems (full core problems utilizing a high flux expansion) 

is the focus of a future chapter.  

 While there are some effects that the scalability model from Chapter 4 did 

not account for, it is seen that increasing the number of coarse meshes does 

increase the scalability of COMET-MPI. In addition, the problem-dependent 

nature of the response function lookup costs is demonstrated When increasing flux 

expansion, an increase in parallel efficiency is also observed to a point. The 

increase in parallel efficiency does saturate and start to yield negative returns due 
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to response function lookup costs. With some knowledge of how COMET-MPI 

behaves for various problem cases, it is of interest to compute whole-core solutions 

with the code to observe how it performs. This is the focus of the next chapter.  
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CHAPTER 7 

 

WHOLE CORE BENCHMARK PROBLEM SOLUTIONS 

WITH COMET-MPI 

  

 The sensitivity study results of the previous chapter show that even on a 

relatively small research cluster, computational gains in COMET calculations by 

using the COMET-MPI code can extend up to a factor of 35 speedup over a serial 

COMET calculation. With these encouraging preliminary results as motivation, the 

focus of study shifted to solving whole core benchmark problems with COMET-

MPI. Two benchmark problems were solved, and one of the benchmark problems 

were solved with different sets of nuclear data. The benchmark problems, 

computational models, and results are described in this chapter. 

 

7.1 Description of the Benchmark Problems 

 Two benchmark problems were solved in this section of the study: a PWR 

with gadolinium benchmark problem [31] and a PWR with MOX fuel benchmark 

problem [32]. These problems were selected because the COMET method has been 

verified against these problems [3], so it is known that the COMET solutions for 

these problems agree well with Monte Carlo benchmarks. In addition, these PWR 

problems offer sufficient meshing and heterogeneity to reflect realistic problems 

that the COMET method has encountered and will continue to solve in the future.  
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PWR with Gadolinium 

 This benchmark problem is comprised of 193 square fuel assemblies in the 

active core, with length 21.505 cm on a side. Standard fuel assemblies in the reactor 

core contain UO2 fuel pins, enriched to 4.1% by weight of U-235.  There are also 

assemblies which contain fuel rods doped with gadolinium (Gd2O3) as a burnable 

absorber.  In such fuel rods, the fuel is enriched to 2.6% by weight of U-235, and 

the fuel pins contains 6% gadolinium by weight.  The benchmark core also features 

assemblies at different burn levels: fresh fuel, 15 GWd/T (once burned), 33 GWd/T 

(two times burned), and 50 GWd/T (three times burned). The assumed boundary 

condition for this problem is a vacuum boundary. 

 A radial cross section of the core is illustrated in Figure 21, where the 

different colors designate different types of fuel assemblies. Figure 22 shows the 

axial meshing of the core used in the modelling of the problem, which includes 17 

zones along the active core length. Figures 23 and 24 demonstrate the pin cell 

makeup of the fuel assemblies with and without gadolinium. Even though not 

explicitly shown in Figure 23-24, note that full fuel-clad-moderator heterogeneity 

is modelled on the pin cell level. In these figures, the white regions are UO2 pin 

cells, the grey regions are gadded UO2 pin cells, the black regions are cell with 

either guide tube or inserted control rods.  
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Figure 21. Radial core layout of the PWR with gadolinium benchmark problem, 

from [9]. 
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Figure 22. Axial meshing of the PWR w/gad core used in the benchmark problem, 

from [9]. 

 

Figure 23. Pin cell layout of a UO2 mesh without gadolinium. 
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Figure 24. Pin cell layout of a UO2 mesh with gadolinium. 

 The problem contains three core configurations which depend upon 

insertion of control rods: all-rods-in (ARI), all-rods-out (ARO), and some-rods-in 

(SRI). Control rod insertion into assemblies is indicated by Figure 21 by the letters 

“S” and “P.” In the SRI configuration, only control rods in the assemblies marked 

“P” will have control rods inserted. In the ARI configuration, all control rods are 

inserted into the core (where there are assemblies marked with letters). In the ARO 

configuration, no control rods are inserted. For the case of this study, only the ARO 

solution is computed.  

 The computational model for this problem utilized a two energy group 

library provided in the reference [31]. Again using the stochastic code MCNP5, a 

response library was computed using 50 million particles per case. A maximum 

flux expansion of sixth order in space and second order in angle was computed. 

Responses tallied were surface flux, pin fission density, neutron production, and 
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neutron absorption. The computational model utilizes 39 unique coarse meshes, 

which are briefly described in Table 7.  

Table 7. Unique coarse mesh specification for PWR w/Gad computational model. 

Mesh Coarse Mesh Type Mesh Coarse Mesh Type 

1 
UO2 uncontrolled, fresh, 

full size 
21 UO2 gadded plug, fresh 

2 
UO2 controlled, fresh, full 

size 
22 

UO2 uncontrolled plug, once 
burned 

3 UO2 gadded, fresh, full size 23 UO2 controlled plug, once burned 

4 
UO2 uncontrolled, once 

burned, full size 
24 UO2 gadded plug, once burned 

5 
UO2 controlled, once 

burned, full size 
25 

UO2 uncontrolled plug, twice 
burned 

6 
UO2 gadded, once burned, 

full size 
26 

UO2 uncontrolled plug, thrice 
burned 

7 
UO2 uncontrolled, twice 

burned, full size 
27 

UO2 uncontrolled tube spring, 
fresh 

8 
UO2 uncontrolled, thrice 

burned, full size 
28 UO2 controlled tube spring, fresh 

9 
UO2 uncontrolled, fresh, 

small size 
29 UO2 gadded tube spring, fresh 

10 
UO2 controlled, fresh, small 

size 
30 

UO2 uncontrolled tube spring, 
once burned 

11 
UO2 gadded, fresh, small 

size 
31 

UO2 controlled tube spring, once 
burned 

12 
UO2 uncontrolled, once 

burned, small size 
32 

UO2 gadded tube spring, once 
burned 

13 
UO2 controlled, once 

burned, small size 
33 

UO2 uncontrolled tube spring, 
twice burned 

14 
UO2 gadded, once burned, 

small size 
34 

UO2 uncontrolled tube spring, 
thrice burned 

15 
UO2 uncontrolled, twice 

burned, small size 
35 Moderator 1 

16 
UO2 uncontrolled, thrice 

burned, small size 
36 Moderator 2 

17 
UO2 uncontrolled blanket, 

fresh 
37 Moderator 3 

18 
UO2 controlled blanket, 

fresh 
38 Moderator 4 

19 
UO2 uncontrolled plug, 

fresh 
39 Moderator 5 

20 UO2 controlled plug, fresh   
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PWR with MOX 

 This benchmark is a PWR full-core benchmark problem with both UO2 and 

MOX fuel from Rahnema et al [32]. The benchmark specification is the same in 

this study as given in the reference, except that here the core was divided into 

sixteen axial zones along the active core length, as in Remley and Rahnema [8] 

rather than four. The active core is arranged in a checkerboard pattern of 121 fuel 

assemblies surrounded by a water reflector. Vacuum boundary conditions are 

assumed. A radial cross section of the core and the axial layout are given in Figures 

25 and 26, respectively.  

 

Figure 25. Radial active core layout of the PWR with MOX, from [8]. 
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Figure 26. Axial meshing used in the PWR with MOX benchmark, from [8]. 

 In figure 25, the unshaded regions represent UO2 fuel assemblies, and 

shaded regions represent MOX fuel assemblies. The regions marked with “A,” “S,” 

and “H” are assemblies where control rods may or may not be inserted, depending 

upon core configuration. In Figure 26, the unshaded regions represent are a 

division along the active core length. As shown in Figure 16, all lengths of the axial 

zones in the active core are 21.8711 cm. The black-shaded regions represent the 

plug, and the grey-shaded area represents the reactor’s tube-spring. The pin cell 

layout of these assemblies is the same as the pin cell layout in the 1-3X C5G7 

problems solved the in previous chapter. However, in this problem, the 

heterogeneity of the fuel, clad, and moderator are explicitly modeled. Unlike in the 
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previous full core benchmark problem, all the fuel in this problem is assumed to 

be fresh (never burned) fuel. Table 8 shows some geometric parameters in the 

benchmark specification. 

Table 8. Geometric Specifications of the PWR with MOX benchmark.  

Parameter  

Number of fuel pins per assembly 264 

Number of control rods/guide tubes  24 

Fuel radius 0.4095 cm 

Cladding outer radius 0.54 cm 

Guide tube inner radius 0.573 cm 

Guide tube outer radius 0.63 cm 

Pin pitch 1.26 cm 

Assembly pitch 21.42 cm 

 

  In the benchmark specification, there are three possible fuel assembly 

types, based upon control rod insertion: UO2 controlled, UO2 uncontrolled, and 

MOX uncontrolled. As with the PWR with gadolinium, different configuration of 

this core depend on control rod insertion. The three core configurations in the 

benchmark specification are All-Rods-Out (ARO), All-Rods-In (ARI), and Some-

Rods-In (SRI). In ARO configuration, all rods are fully removed from the core. SRI 

indicates control rods in assemblies marked “S” in figure 25 to be fully inserted, 

and control rods in assemblies marked “H” in figure 25 to be halfway inserted. ARI 

configuration indicates full control rod insertion in all assemblies marked either 
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“A,” “S,” or “H” in figure 18. As with the PWR with gadolinium problem, only the 

ARO configuration is solved in this study.  

 The computational model for this problem utilizes two different energy 

group data sets that are specified in the reference [32]. A response library was 

compiled using a two energy group data set, and a different response library was 

compiled using an eight energy group data set. Both libraries were compiled to 

study the effect of increasing energy groups on the efficiency of the calculations. In 

the two group case, a maximum flux expansion of fourth order in space and fourth 

order in angle was used. In the eight group case, a maximum flux expansion of 

fourth order in space and second order in angle was used. In both cases, 50 million 

particles were run per response case, and surface flux, pin fission density, neutron 

production, and neutron absorption responses were tallied. Nine unique coarse 

meshes were used to model the problem (for both energy group cases). The unique 

coarse mesh descriptions are given in Table 9. 

 

Table 9. Unique coarse mesh specifications for the PWR with MOX benchmark. 

Mesh Description 

1 UO2 Controlled Assembly 

2 UO2 Uncontrolled Assembly 

3 MOX Uncontrolled Assembly 

4 Tube/Spring Uncontrolled Assembly 

5 Tube/Spring Controlled Assembly 

6 Plug Assembly 

7 Active Core Reflector 

8 Tube/Spring Reflector 

9 Plug Reflector 

 



  

 86 

7.2 Benchmark Solutions 

 Solutions to the whole-core benchmarks described in this chapter were 

calculated using COMET-MPI. In contrast to the computations in the previous 

chapter, where iterations were held fixed, the solutions in this section are fully 

converged results. In all calculation cases, both LOA and Chebyshev polynomial 

filtering are used. As with the calculations carried out in the previous chapter, the 

COMET-MPI runs in this section were carried out on a dedicated homogeneous 

research cluster of Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz processors, with 

2 nodes of 20 processors each. 

PWR with Gadolinium Solution 

 Solutions to the PWR with Gadolinium problem were computed for the full 

sixth order in space and second order in angle flux expansion. The COMET-MPI-

calculated core eigenvalue for this problem was 𝑘 = 1.05323 +/− 1 𝑝𝑐𝑚. COMET-

MPI computed the solution using various numbers of processors, and the runtime 

data was recorded. Table 10 shows the wall clock times for calculation of the 

solution for increasing numbers of processors, given for convenience in minutes. 

 

Table 10. Runtime results for the PWR with gadolinium benchmark. 

#Processors 
Wall Clock Time 

(min) 
Speedup Efficiency(%) 

1 39 1.0 100 

5 10 3.9 78 

10 6.2 6.2 62 

20 3.6 11 55 

40 2.1 19 48 
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 The results in Table 10 are encouraging. When solving the benchmark 

problem on 40 processors, a whole-core solution is computed in just over two 

minutes. This high level of computational efficiency is obtained, it should be noted, 

using a larger flux expansion than previously used in COMET calculations for this 

problem [3]. Table 10 gives the total execution time of COMET-MPI for these 

whole core solves. However, it is instructive to also look at the wall clock times for 

the inner iterations. The runtime data for the LOA inner iterations is given in Table 

11, and the runtime data for the full order inner iterations is given in Table 12.  

Since speedup and efficiency are the quantities of interest for these data, the wall 

clock times are reported in seconds. Further, the speedups and parallel efficiencies 

of the whole solve, the LOA inner iteration, and the full order inner iteration are 

demonstrated graphically in Figures 27 and 28, respectively.  

 

Table 11. Computational performance results for LOA inner iteration for PWR 

with gad 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 109 1.0 100 

5 24 4.5 90 

10 14 7.8 78 

20 9 12 60 

40 6 18 45 
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Table 12. Computational performance results for full-order inner iteration for 

PWR with gad 

#Processors Runtime(s) Speedup Efficiency(%) 

1 699 1.0 100 

5 172 4.1 82 

10 111 6.3 63 

20 59 12 60 

40 33 21 55 

 

 

Figure 27. Speedups for the whole solve, LOA inner iteration, and full order inner 

iteration for the PWR with gadolinium problem.  
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Figure 28. Parallel efficiencies for the whole solve, LOA inner iteration, and full 

order inner iteration for the PWR with gadolinium problem.  

 Tables 11-12 and Figures 27-28 indicate that the computational 

performance behavior for the whole core solve is driven by the computational 

performance of the inner iteration convergence. This is an expected result, as it has 

been stated that the inner iteration is the bulk of the computational effort in 

COMET calculations. Another observation to make from the results for this case is 

the higher order result has more parallel efficiency up to 40 processors than the 

LOA result, which agrees with the scalability model of chapter 4. This indicates 

that response function lookup cost for this problem is similar to the 

communication cost for this problem, in contrast to the problems of the previous 
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chapters. Further, Figure 28 shows parallel efficiency behavior that agrees with the 

predictions of Amdahl’s Law as demonstrated in Chapter 5.  

PWR with MOX – Two Energy Groups 

 Solutions for the PWR problem with MOX in two energy groups were 

computed with COMET-MPI utilizing the full fourth order in space and angle 

expansion. The calculated eigenvalue for these calculations was 𝑘 = 1.02655 +

/−  1 𝑝𝑐𝑚. The computational performance of the solutions for various numbers 

of processors in a calculation was recorded. Tables 13-15 show the computational 

performance for full core solve, the LOA inner iteration, and the full order inner 

iteration, respectively. As with the previous case, the wall clock times in Table 13 

are most important and are given in minutes while the wall clock times in Tables 

14-15 are reported in seconds. Figures 29 and 30 give plots of the speedups and 

parallel efficiencies of the whole solve, the LOA inner iteration, and the full order 

inner iteration.  

 

Table 13. Computational performance results for the full core PWR w/MOX 2g 

solution 

#Processors 
Wall Clock Time 

(min) 
Speedup Efficiency(%) 

1 52 1.0 100 

5 12 4.5 90 

10 6.7 7.8 78 

20 3.5 15 75 

40 2.0 25 63 
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Table 14. Computational performance results for LOA inner iteration for PWR 

w/MOX 2g 

#Processors Runtime(s) Speedup Efficiency(%) 

1 165 1.0 100 

5 33 5.0 100 

10 18 9.3 93 

20 10 17 85 

40 5 33 83 

 

Table 15. Computational performance results for full-order inner iteration for 

PWR w/MOX 2g 

#Processors Runtime(s) Speedup Efficiency(%) 

1 1010 1.0 100 

5 217 4.7 94 

10 127 8.0 80 

20 65 16 80 

40 36 28 70 
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Figure 29. Speedups for the whole solve, LOA inner iteration, and full order inner 

iteration for the PWR with MOX 2 group problem.  
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Figure 30. Parallel efficiencies for the whole solve, LOA inner iteration, and full 

order inner iteration for the PWR with MOX 2 group problem.  

 As with the PWR with gadolinium problem, here it is observed that on a 

small research cluster, a whole-core reactor problem is solved with COMET-MPI 

in merely two minutes, given in Table 13. Along with the previous problem, the 

flux expansion used is higher than previously employed in COMET solutions for 

this problem [3,8]. Figures 29 and 30 indicate near linear increase in speedup as 

number of processors increase and parallel efficiency behavior that is expected. In 

contrast to the previous problem, the parallel efficiency of the full order inner 

iteration is lower than the efficiency of the LOA inner iteration,  indicating that the 

effect of response function lookups for this case is affecting the parallel efficiency. 
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Also in contrast to the previous case is that the parallel efficiency of the whole 

problem solution is less than either the LOA or full order inner solve. This is likely 

due to reading in responses from the response database during the outer iterations. 

While in the PWR with gadolinium problem there were many coarse meshes that 

could be read in, allowing for a high level of parallelizability, there were only nine 

unique coarse meshes in this model, limiting the parallelizability of that effect.  

PWR with MOX – Eight Energy Groups 

 The whole core solutions presented thus far have produced encouraging 

results. However, solutions to problems with higher number of energy groups are 

often desirable. As such solutions for the PWR problem with MOX in eight energy 

groups were computed with COMET-MPI utilizing the full fourth order in space 

and second order in angle expansions. The calculated eigenvalue for these 

calculations was 𝑘 = 1.02011 +/−  0.5 𝑝𝑐𝑚. The computational performance of 

the solutions for various numbers of processors in a calculation was recorded. 

Tables 16-18 show the computational performance for full core solve, the LOA 

inner iteration, and the full order inner iteration, respectively. As with the previous 

cases, the wall clock times for Table 16 are given in minutes, and the wall clock 

times for Tables 17-18 are given in seconds. The speedups and parallel efficiencies 

of the whole solve, LOA inner iteration, and full order inner iteration are plotted 

in Figures 31 and 32.  
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Table 16. Computational performance results for the full core PWR w/MOX 8g 

solution 

#Processors 
Wall Clock Time 

(min) 
Speedup Efficiency(%) 

1 157 1.0 100 

5 38 4.2 80 

10 24 6.7 67 

20 12 13 65 

40 6.7 24 60 

 

Table 17. Computational performance results for LOA inner iteration for PWR 

w/MOX 8g 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 943 1.0 100 

5 193 4.9 98 

10 112 8.4 84 

20 58 16 80 

40 32 29 73 

 

Table 18. Computational performance results for full-order inner iteration for 

PWR w/MOX 8g 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 2347 1.0 100 

5 596 3.9 78 

10 393 6.0 60 

20 196 12 60 

40 100 23 58 
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Figure 31. Speedups for the whole solve, LOA inner iteration, and full order inner 

iteration for the PWR with MOX 8 group problem. 
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Figure 32. Parallel efficiencies for whole solve, LOA inner iteration, and full order 

inner iteration for the PWR with MOX 8 group problem.  

 Again, the computational performance is encouraging. When solving a 

problem with eight energy groups, the whole-core solve time with COMET-MPI is 

just under seven minutes, as seen in Table 16.  For this benchmark problem, it is 

observed that the efficiency of the entire execution time follows very closely the 

execution time of the full order inner iteration. This is because this part of the 

program execution dominates for this case. Figures 31 and 32 indicate that as with 

the previous problems, speedup increases linearly with greater number of 

processors that and parallel efficiency behaves as expected.  
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7.3 Computational Performance with More Processors 

 The results shown thus far have all been computed on a small research 

cluster whose maximum processor load is 40. However, it is often desirable to run 

parallel programs with more processors. In the case of evaluating COMET-MPI, it 

would be of interest to assess the performance limits of the code on a larger number 

of processors than available on the research cluster. Some results have been 

generated on the Prometforce-6 cluster on the PACE clusters at Georgia Institute 

of Technology [33]. This cluster is a shared heterogeneous cluster by several 

computational research groups. Because this is a heterogeneous cluster with a 

shared scheduler, the computational performance results are less reliable, as 

different processors and connections between nodes will lead to different wall 

clock times. In addition, running codes on this cluster takes time, since jobs must 

wait in a queue. Nonetheless, some results have been generated.  

 Using the PWR with gadolinium and PWR with MOX (two energy group) 

computational models with maximum flux expansions in their respective models, 

computational performance results have been generated on Prometforce-6 for the 

case with fixed number of iterations – one outer iteration and 150 inner iterations, 

recording the runtime data for only the inner iterations, as was the case in the 

previous chapter’s results. While core eigenvalues were computed for these runs, 

they are not reported since they are unimportant to the focus of this work. 

Computational wall clock times for two trials of runs for the PWR with gadolinium 

problem were recorded and are presented in Tables 19-20. Performance results for 

the PWR with MOX problem are presented in Table 21. The speedups and parallel 
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efficiencies for the PWR with gad runs are plotted in Figures 33 and 34. The 

speedup and parallel efficiency of the PWR with MOX run are plotted in Figures 

35 and 36.  

 

Table 19. Computational performance results for PWR w/gad on Prometforce-6, 

first run. 

#Processors 
Wall Clock 

Time(s) 
Speedup Efficiency(%) 

1 1091 1.0 100 

5 450 2.4 48 

10 243 4.5 45 

20 152 7.2 36 

40 69 16 40 

60 65 17 28 

80 50 22 28 

100 41 27 27 

125 29 38 30 

 

Table 20.  Computational performance results for PWR w/gad on Prometforce-

6, second run. 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 1437 1.0 100 

5 2064 0.7 14 

10 260 5.5 55 

20 166 8.7 44 

40 188 7.6 19 

60 65 22 37 

80 57 25 31 

100 48 30 30 

125 59 24 19 
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Table 21.  Computational performance results for PWR w/MOX on Prometforce-

6. 

#Processors 
Wall Clock Time 

(s) 
Speedup Efficiency(%) 

1 956 1.0 100 

5 172 5.6 112 

10 90 10.6 106 

20 73 13 65 

40 32 30 75 

60 22 43 72 

80 37 26 33 

100 19 50 50 

 

 

Figure 33. Speedups for both PWR with gad runs on Prometforce-6. 
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Figure 34. Parallel efficiencies for both PWR with gad runs on Prometforce-6. 



  

 102 

 

Figure 35. Speedup for the PWR with MOX runs on Prometforce-6. 
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Figure 36. Parallel efficiencies for the PWR with MOX runs on Prometforce-6. 

 The results of these calculations with COMET-MPI confirm what has been 

stated previously; these computations were carried out on a heterogeneous cluster 

with a shared scheduler, so the absolute computational performance of the code 

will be difficult to assess on this cluster. As expected, the performance results are 

inconsistent, with some runs taking more time on more processors rather than 

less. Regardless, the trend of increasing processors used in a calculation leads to a 

trend of reduced runtime (up to a factor of 50). In practice, to perform calculations 

in the future, COMET-MPI can be used on a heterogeneous cluster such at 

Prometforce-6; however, the absolute performance characteristics of the code 

cannot be accurately observed.  
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 The main goal of this project was to achieve efficient whole-core reactor 

calculations through the use of parallel computing. These efficient calculations 

have been demonstrated on a few PWR benchmark problems that are 

representative of the class of problems that have been encountered in COMET 

calculations. The more efficient solution of whole-core problems enables COMET 

to be coupled to other modules, such as depletion, thermal hydraulics, and on-the-

fly response generation. With the exception of response generation, neutronics 

solves are typically the bottleneck in coupled calculations. With the computational 

efficiency shown in this chapter, this may no longer be the case.   
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CHAPTER 8 

 

CONSIDERATIONS FOR PROBLEMS WITH HIGH FLUX 

EXPANSIONS 

 

 The results presented thus far have been very encouraging. On just a small 

research cluster, increases in computational efficiency as high as a factor of 35 have 

been observed. In addition to simply improving efficiency for the types of 

calculations that COMET has encountered in the past, it is tempting to determine 

what types of new problems are now computationally tractable. As the sensitivity 

studies in Chapter 6 indicate, problems with increasing numbers of coarse meshes 

might be more easily tackled with the use of parallel computing. However, the 

sensitivity studies also indicate that for high enough flux expansions, parallel 

efficiency might degrade due to the expense of response function lookups in the 

inner iteration. This effect is investigated in this chapter on (again) the PWR with 

MOX benchmark problem. 

 Using an eight energy group library, a response library with maximum flux 

expansions of fourth order in space and angle was compiled, again using the code 

MCNP5. The responses tallied were the same as in previous computational models 

of this problem. COMET-MPI was used to compute solutions to this problem. 

However, iterations were limited to one outer iteration and 150 inner iterations, 

and computational runtime data was recorded only for the inner iterations. Still, 

in this case, the problem poses severe difficulty for the serial case, as even just one 
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set of inner iterations takes several hours to calculate. As before, COMET-MPI 

calculations took place on a small research cluster of Intel(R) Xeon(R) CPU E5-

2670 0 @ 2.60GHz processors, with 2 nodes of 20 processors each. While core 

eigenvalues were computed for these runs, they are not reported since they are not 

important to the focus of this work. The wall clock time results for COMET-MPI 

for various processors is given in Table 22. Wall clock times are reported in hours. 

 

Table 22. Computational performance results for full-order inner iteration for 

PWR w/MOX 8g with high flux expansion. 

#Processors 
Wall Clock Time 

(h) 
Speedup Efficiency(%) 

1 4.6 1.0 100 

5 2.4 1.9 38 

10 2.2 2.1 21 

20 1.0 4.6 23 

40 N/A N/A N/A 

 

 As Table 22 indicates, performance of COMET-MPI for this high flux 

expansion case is poor. The code did not produce a result for the 40 processor run 

because the memory requirements exceeded the resources available on the 

research cluster. While the use of COMET-MPI reduced the runtime of the 

calculation from a few hours to one hour, the parallel efficiency for the problem is 

low.  

 These degradations in computational efficiency are amplified examples of 

deviations from the scalability model in chapter 4 due to the costs of response 

function lookups in the inner iteration. For problems that use high amounts of 
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memory for the response matrices (as is the case for problems with high flux 

expansions and high numbers of energy groups), these memory operations become 

quite formidable. In addition, the requirement of an MPI application that each 

processor have its own local memory can be prohibitive for cases such as this 

problem where memory requirements are rather high.  

 A potential remedy for this is a hybrid software implementation of MPI and 

OpenMP [34]. In these types of software implementations, a problem is 

decomposed as it would be in a distributed memory MPI-only approach, but then 

each problem chunk is further parallelized with OpenMP. An advantage of this 

implementation is that it limits memory requirements, as the shared-memory 

aspect of OpenMP can be utilized.  

 This approach was briefly investigated in this study. While the 

implementation explored is hardly exhaustive, the coarse mesh sweeps were 

multithreaded using the OpenMP compiler directive !$omp parallel do. Runs 

using the hybrid MPI+OpenMP approach were carried out, and the performance 

results are given in Table 23. Wall clock times are again reported in hours. 

 

Table 23. Computational performance results for full-order inner iteration for 

PWR w/MOX 8g with high flux expansion, MPI+OpenMP. 

#Processors 
Wall Clock Time 

(hour) 
Speedup Efficiency(%) 

1 4.6 1.0 100 

5 1.1 4.4 88 

10 0.88 5.2 52 

20 0.68 6.7 34 

40 0.81 5.7 14 
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 In the runs shown in Table 23, for the cases up to 20 processors, the 

parallelism was entirely through multithreading in OpenMP. For the 40 processor 

case, the problem was decomposed onto to distributed memory processes, and 

then each of these processes utilized 20 threads. While the efficiency for 5 threads 

is much better than the case for 5 processors without OpenMP in COMET-MPI, 

the speedup saturates very quickly for this implementation. Further, even though 

a 40 processor run was able to be achieved in this implementation, it is slower than 

the 20 processor computation. This is because each calculation was only carried 

out on a single node, even though two were available. The scheduler used on the 

cluster always sent all processes/threads to one node rather than sharing the work. 

In general, in the future, it may be difficult to choose what jobs will be sent to which 

nodes if a scheduler is in charge of starting computing jobs. 

 Another issue of this implementation is permutations of MPI 

decompositions and OpenMP threads. Though in this case, OpenMP 

multithreading dominated the parallelism, it is possible to primarily decompose a 

problem with MPI and then utilize only a few threads. However, there are many 

different possible combinations, and determining the optimal combinations of 

decompositions and threads may be difficult to determine in a systematic way.  
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CHAPTER 9 

 

CONCLUSIONS 

 

 In this thesis, a distributed memory algorithm was developed and 

implemented for use in the COMET method under the motivation of improving 

computational efficiency of calculations as well as paving the way for coupling to 

other software modules, such as multiphysics (e.g., depletion or thermal 

hydraulics) and on-the-fly response generation. A software implementation for 

this algorithm was developed, COMET-MPI. This proxy app was tested for various 

benchmark problems. In all cases, the use of multiprocessing via COMET-MPI 

improved the computational efficiency of COMET calculations. The project 

achieved the major goal of efficient whole-core simulations utilizing parallel 

computing. 

 The COMET-MPI code was benchmarked against expected speedups and 

parallel efficiencies predicted by Amdahl’s Law. It was determined during the 

course of this study that in addition to calculation and inter-processor 

communication costs, the cost of response function lookups during the inner 

iteration greatly affects the computational performance of the code. An important 

aspect of future work will be to investigate ways to limit the effect of response 

function lookups on parallel efficiencies, thus increasing the speed of calculations 

and scalability of future implementation of COMET calculations employing 

parallel computing.  
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 Sensitivity calculations that investigated the effect of problem size on 

parallel efficiency were carried out. It was observed that for problems with greater 

numbers of coarse meshes, parallel efficiency is improved, helped both by 

increased scalability of the code as well as potentially mitigating the effect of 

response function lookup costs. Building on this result, it would be an interesting 

focus of future work to perform calculations with tighter spatial meshing (e.g., 

more axial zones) to get finer spatial distributions of pin fission densities in reactor 

cores. Further, if smaller coarse meshes are used in response generation, the 

computational burden for this stage of calculations is lessened, and the 

permutations of problems that can be solved in the deterministic algorithm given 

a response library is greatly increased. 

 COMET-MPI was used to solve whole-core benchmark problems indicative 

of the types of problems of past and future research interest. In this case, COMET-

MPI was able to compute solutions to these traditionally challenging problems in 

just minutes. These extremely efficient calculations are highly encouraging, as a 

major goal of the project was increasing efficiency of whole-core calculations.  

 A problem with a higher flux expansion than usually used in COMET 

calculations was also explored with COMET-MPI. While performance for this 

calculation was improved with the use of multiprocessing, the parallel efficiency 

for this case was poor; response function lookups during the inner iteration proved 

to be a  major bottleneck in the problem execution. A hybrid MPI+OpenMP 

approach was explored to remedy this, but the results were inconclusive. An 

obvious path of future work, then, is to look for ways to improve parallel efficiency 
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for the high flux expansion case, including more sophisticated implementations of 

MPI+OpenMP. 

 Another obvious area of future work is extending a parallel implementation 

of COMET to many more processors. While computational resources were 

somewhat limited during the course of work of this thesis, it would be interesting 

to see how the COMET-MPI code or a future implementation behaves with more 

processors used to solve a problem. To this end, hybrid decomposition strategies 

(e.g., domain and flux expansion decomposition) should be explored to allow for 

decomposition on the order of tens of thousands of processors to enable massively 

parallel computations. An important aspect of this future work is an update in the 

response function library data storage method. CDF libraries are currently used, 

but this affects portability of the code to different machines, as compilation and 

execution of the code becomes more complicated.  

 Overall, the development of the proxy app COMET-MPI demonstrated 

improvements in computational efficiency and data handling over previous serial 

implementations of the COMET code. As COMET calculations are coupled to on-

the-fly response generation and mulitphysics modules, it is recommended that a 

parallel implementation of the COMET code is used.  
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APPENDIX A 

 

TABULATED COMPUTATIONAL PERFORMANCE DATA 

FOR AMDAHL’S LAW STUDIES 

 The tabulated computational performance data for the Amdahl’s Law 

studies of Chapter 5 are provided in Tables A1-A4 below. 

Table A1. Computational performance for the C5G7 problem, response function 

lookup case. 

#Processors Wall Clock Time (s) Speedup  Efficiency (%) 

1 103.0 1.0 100.0 

2 61.6 1.7 83.6 

3 52.0 2.0 66.1 

4 42.4 2.4 60.8 

5 26.1 3.9 78.8 

6 24.4 4.2 70.4 

7 22.5 4.6 65.5 

8 21.7 4.8 59.4 

9 20.9 4.9 54.9 

10 21.3 4.8 48.3 

11 19.3 5.3 48.5 

12 18.5 5.6 46.3 

13 17.0 6.1 46.7 

14 16.2 6.4 45.6 

15 15.1 6.8 45.6 

16 14.2 7.3 45.3 

17 13.3 7.7 45.5 

18 12.5 8.3 45.9 

19 12.2 8.4 44.3 

20 12.0 8.6 42.9 

21 11.6 8.9 42.4 

22 11.1 9.3 42.3 

23 11.0 9.4 40.9 

24 10.4 9.9 41.4 

25 10.1 10.2 40.7 

26 9.5 10.9 41.9 
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27 9.4 10.9 40.6 

28 9.0 11.5 41.0 

29 9.0 11.4 39.4 

30 9.2 11.3 37.5 

31 8.6 12.0 38.8 

32 7.9 13.0 40.5 

33 8.0 12.8 38.8 

34 7.7 13.5 39.6 

35 6.7 15.4 44.1 

36 6.5 15.7 43.7 

37 6.5 15.8 42.7 

38 6.7 15.3 40.2 

39 6.9 15.0 38.5 

40 7.0 14.6 36.6 

 

Table A2. Computational performance for the C5G7 problem, no response 

function lookup case. 

#Processors Wall Clock Time 
(s) 

Speedup  Efficiency (%) 

1 100.2 1.0 100.0 

2 50.9 2.0 98.4 

3 34.2 2.9 97.6 

4 25.9 3.9 96.7 

5 20.8 4.8 96.2 

6 17.2 5.8 97.0 

7 14.9 6.7 95.9 

8 13.1 7.6 95.6 

9 11.8 8.5 94.5 

10 11.3 8.9 88.8 

11 9.9 10.1 92.1 

12 9.0 11.2 92.9 

13 8.4 12.0 92.0 

14 7.8 12.8 91.7 

15 7.3 13.7 91.1 

16 6.7 14.9 93.1 

17 6.4 15.8 92.7 

18 6.0 16.8 93.4 

19 5.9 17.1 90.1 

20 5.6 17.8 89.2 

21 5.2 19.1 91.0 

22 5.1 19.6 89.2 
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23 4.8 20.7 89.8 

24 4.5 22.2 92.6 

25 4.6 22.0 88.0 

26 4.4 23.0 88.3 

27 4.1 24.4 90.4 

28 4.1 24.7 88.3 

29 4.1 24.2 83.3 

30 3.7 26.8 89.2 

31 3.8 26.2 84.4 

32 3.4 29.6 92.4 

33 3.4 29.5 89.4 

34 3.5 28.3 83.2 

35 3.3 30.7 87.7 

36 3.0 33.0 91.8 

37 3.1 32.7 88.5 

38 3.0 33.1 87.2 

39 3.0 33.5 86.0 

40 3.0 33.6 83.9 

 

Table A3. Amdahl speedups and efficiencies, response function lookup case. 

#Processors Amdahl Speedup Ahmdahl Efficiency (%) 

1 1.0 99.4 

2 1.9 93.2 

3 2.6 87.8 

4 3.3 83.0 

5 3.9 78.7 

6 4.5 74.8 

7 5.0 71.3 

8 5.4 68.0 

9 5.9 65.1 

10 6.2 62.4 

11 6.6 59.9 

12 6.9 57.7 

13 7.2 55.5 

14 7.5 53.6 

15 7.8 51.7 

16 8.0 50.0 

17 8.2 48.4 

18 8.4 46.9 

19 8.6 45.5 

20 8.8 44.2 
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21 9.0 42.9 

22 9.2 41.7 

23 9.3 40.6 

24 9.5 39.5 

25 9.6 38.5 

26 9.8 37.6 

27 9.9 36.7 

28 10.0 35.8 

29 10.1 35.0 

30 10.3 34.2 

31 10.4 33.4 

32 10.5 32.7 

33 10.6 32.0 

34 10.7 31.3 

35 10.7 30.7 

36 10.8 30.1 

37 10.9 29.5 

38 11.0 28.9 

39 11.1 28.4 

40 11.1 27.9 

 

Table A4. Amdahl speedups and efficiencies, no response function lookup case. 

#Processors Amdahl Speedup Ahmdahl Efficiency 
(%) 

1 1.0 99.4 

2 2.0 98.8 

3 2.9 98.2 

4 3.9 97.6 

5 4.8 97.0 

6 5.8 96.4 

7 6.7 95.8 

8 7.6 95.3 

9 8.5 94.7 

10 9.4 94.2 

11 10.3 93.6 

12 11.2 93.1 

13 12.0 92.5 

14 12.9 92.0 

15 13.7 91.5 

16 14.6 91.0 

17 15.4 90.5 
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18 16.2 90.0 

19 17.0 89.5 

20 17.8 89.0 

21 18.6 88.5 

22 19.4 88.0 

23 20.1 87.5 

24 20.9 87.0 

25 21.6 86.6 

26 22.4 86.1 

27 23.1 85.7 

28 23.9 85.2 

29 24.6 84.8 

30 25.3 84.3 

31 26.0 83.9 

32 26.7 83.4 

33 27.4 83.0 

34 28.1 82.6 

35 28.8 82.2 

36 29.4 81.8 

37 30.1 81.3 

38 30.8 80.9 

39 31.4 80.5 

40 32.1 80.1 
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