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ABSTRACT 

Magneto-active polymers (MAPs) are polymer-based composites that respond to 

magnetic fields with large deformation or tunable mechanical properties. While a variety of 

these materials exist, most are composites of a soft polymer matrix with a filler of magnetic 

particles. The multi-physics interactions in MAPs give them two very attractive features. 

First, they respond to a magnetic field with variable mechanical properties (e.g. stiffness). 

Second, their shape and volume may be significantly changed in a magnetic field. Both 

features could be tuned by engineering the microstructure of the composites. Potential 

applications of MAPs include sensors, actuators, bio-medicine, and augmented reality. 

However, their potential has not been fully uncovered, partly due to the limited 

understanding in the mechanisms driving the coupled multi-physics behaviors, and the lack 

of a quantitative tool to predict their response under various loading and boundary 

conditions. This study aims to enhance the understanding of mechanics of MAPs, by 

developing theroies and models which can explain and predict several primary features of 

these materials. 

First, the viscoelastic behaviors of ferrogels, one class of MAPs, in response to 

different magnetic fields are studied. A ferrogel is composed of gel-like matrix and magnetic 

particles that randomly distribute in the matrix. Due to the viscoelasticity of the gel-matrix, 

ferrogels usually demonstrate rate-dependent behaviors. However, very few models with 

coupled magnetic field and viscoelasticity exist in the literature, and even fewer are capable 

of reliable predictions. Based on the underlying principles of non-equilibrium 

thermodynamics, a field theory is developed to describe the magneto-viscoelasticity in solids. 

The theory provides a guideline for experimental characterizations and structural designs of 
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ferrogel-based devices. A specific material model is then selected, and the theory is 

implemented in a finite-element code. As numerical examples, the responses of a ferrogel in 

uniform and non-uniform magnetic fields are respectively analyzed. The dynamic response 

of a ferrogel to cyclic magnetic fields is also studied, and the prediction agrees with our 

experimental results. In the reversible limit, our theory recovers existing models for elastic 

ferrogels, and is capable of capturing some instability phenomena. 

Second, the mechanism of the stiffening effect in magneto-rheological elastomers 

(MREs), a class of anisotropic MAPs, is investigated. MREs tend to be mechanically stiffer 

under a magnetic field. Such a stiffening effect is usually referred to as the magneto-

rheological (MR) effect and often attributed to the magnetic interaction among filler 

particles. But the well-acknowledged dipole-interaction model fails to explain the stiffening 

effect in tension/compression, which was observed in experiments. Other mechanisms, such 

as the effect of non-affine deformation, have also been proposed, but there is no conclusive 

evidence on the dominating mechanism for the MR effect. This study investigates various 

chain structures, and seeks to identify the ultimate origin of the stiffening effect in MREs. 

Two different methods are used for cross verification: a dipolar interaction model and a finite 

element simulation based on continuum field theories. Both the shear and axial deformation 

of the material are studied, with a magnetic field applied in the particle-chain direction. It is 

found that while the magnetic interaction between particles is indeed the major cause of the 

stiffening effect, the wavy chain structure is the key to the modulus increase. Besides, chain-

chain interaction and non-affine deformation are shown to be insignificant. In addition, the 

dependence of the stiffening effect on filler concentration is calculated, and the results 



 xi 

qualitatively agree with experimental observations. The models also predict some interesting 

results that could be easily verified by future experiments. 

Third, a simpler and easy-to-use homogenenous model is further developed to predict 

the magnetostriction and the MR effect of MAPs subjected to a uniform magnetic field. In 

general, the magnetic permeability of a MAP varies during a deformation due to the change 

of the microstructure. The strain dependence of permeability has been discussed for MAPs 

with various microstructures. It is shown that when the magnetostriction is primary caused by 

the difference in the permeability of an MAP and its surrounding media, the MR effect is due 

to the change of the permeability under a strain. Besides, it is found that both the 

magnetostriction and the MR effect are microstructure dependent. When the magnetostriction 

is more significant in isotropic MAPs, the MR effect only exists in anisotropic MAPs. In 

addition, it is shown that only the materials with wavy particle chains are possible to exhibit 

MR effect in tensile modulus. 
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CHAPTER 1.  INTRODUCTION 

Having a combination of desirable properties, including light weight, low cost, 

flexibility, high efficiency, and responsiveness to external stimuli, soft active materials have 

recently attracted great attention, especially in multi-functional applications such as actuators 

and sensors. They often deform in response to stimuli other than mechanical forces. Several 

typical examples are dielectric polymers that deform under a voltage (Pelrine et al., 2000), 

hydrogels that swell in response to changes in solvent concentration, pH, and humidity 

(Meng and Hu, 2010), shape-memory polymers that recover the original shape under certain 

temperature (Lendlein and Langer, 2002), and magneto-active polymers (MAPs) that change 

volume, shape, or mechanical properties, when subjected to a magnetic field (e.g. Zriyi et al., 

1996; Jolly et al., 1996).  

1.1 Literature review 

The magneto-active polymers studied in this dissertation are composites of a polymer 

matrix and magnetic filler. The invention of MAPs was perhaps enlightened by the idea of 

magneto-rheological fluid (MRF) (Carlson, 1994), which uses a fluid (e.g. silicon oil) as the 

carrier of the dispersed magnetic particles (e.g. iron powder). In the absence of any magnetic 

field, the particles are randomly distributed in the fluid. When a magnetic field is applied, the 

particles form columns due to magnetic interaction, and such regulated microstructures 

increase the viscosity of the material to the point when it becomes a viscoelastic solid 

(Carlson and Weiss, 1994; Carlson et al., 1995). Natrually, the yield stress of an MRF in the 

active state is dependent on the magnetic field intensity (e.g. Bossis et al., 1997). Such a 
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magneto-rheological (MR) effect gives rise to applications such as vibration controllers and 

dampers (e.g. Carlson, 1994; Li et al., 2000, 2003; Hitchcock et al., 2007; Bossis et al., 2002; 

Claracq, et al., 2004; Wang and Gordaninejad, 2006; Yang et al., 2009). However, MRFs 

suffer from sedimentation due to the liquidous carrier. To overcome this drawback, MAPs 

with polymers as matrices have been developed. The magnetic particles are locked into 

specific positions in an MAP at the time of curing and would not settle. MAPs have been 

studied under a variety of names and for a variety of different applications over the past 

several decades. This section will review the background that directly motivates the research 

conducted for this dissertation. 

Various polymers have been adopted as the matrix material to synthesize MAPs, such 

as poly(vinyl) alcohol (PVA) hydrogels (Zrínyi et al., 1996; Varga et al., 2006; Failey et al., 

2010), alginate gel (e.g. Zhao et al., 2011), natural and synthetic rubber (Carlson and Jolly, 

2000), silicon elastomers (Zhou et al., 2003), polyurethanes (e.g. Carlson and Jolly, 2000; 

Wu et al., 2010) and thermoplastic polymer (Zajac et al., 2010). Typical magnetic particles 

used as the filler of MAPs are soft magnetic materials, such as iron particles in micron size 

(e.g. Jolly et al., 1996), carbonyl iron powder (e.g. Varga et al., 2006; Faidley et al., 2010), 

and nanoscale iron particles (Zrínyi et al., 1996; Zhao et al., 2011). The behavior of MAPs 

interacting with external magnetic fields can be understood by considering the behavior of 

the filled particles when exposed to a field and constrained by the matrix materials 

simultaneously. For example, in a very soft matrix, such as a gel, the magnetic particles will 

be driven to the region of the highest gradient of the field causing the matrix material to 

move together with them and creating a bulk strain in the sample. On the other hand, 

particles embedded in a stiffer elastic matrix will attract each other when exposed to a 
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uniform field thus creating internal forces and increasing the effective stiffness of the sample. 

In general, the MAPs to be studied in this dissertation can be devided into two categories 

based on the property of the matrix materials, as summarized in Tab 1.  

Table 1. Summary of MAP types 

Common Name 
Matrix 

Material 

Mechanical 

Property 

Typical 

Microstructure 

Primary Field-

Driven Behavior 

Ferrogel Gel Viscoelastic Isotropic Strain 

Magneto-

rheological 

elastomer 

Elastomer Elastic Anisotropic Stiffness change 

 

Ferrogels usually consist of a soft gel matrix with magnetic particles in micro- or 

nano-meter size. Generally the particles are randomly dispersed in the matrix (Fig. 1.1a) 

enduing ferrogels isotropic elasticity and magnetic sensitivity. When a ferrogel is placed in 

an external magnetic field, forces act on the filler particles and the magnetic interaction is 

enhanced. The magnetic field drives particles, together with the polymer network, moveing 

towards to the highest field. Depending on the geometrical arrangement, elongation (Zrínyi et 

al., 1996), contraction (Snyder et al.,2010a), bending and rotation (Snyder et al.,2010a; 

Nguyen & Ramanujan,  2010) can be achieved. Thus there is a distinctive way to creat the 

motion by magnetic field without any direct contact. Besides, the ferrogels move smoothly 

and scilently in a wide range of motions with rapid response capability and precise 

controllability. These magnetocontrolled soft and swellable gels are promising materials in 

the growing family of stimuli-responsive gels and actuators. In the past decades, ferrogels 

have received developments on a variety of changes in shape (Zrínyi et al., 1996; Snyder et 

al., 2010a; 2010b), water retention (Liu et al., 2006a; Filipcsei et al 2007; Hernández et al., 
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2010), stiffness (Misumata et al., 1999; Varga et al 2006) and viscoelasticity (Zrínyi et al., 

1998; Hernández, 2004; Hernández et al., 2010; Faidley et al., 2010) under magnetic fields.  

For examples, strains up to 40% are reported in a ferrogel formed of PVA crosslinked with 

glutardialdehyde (GDA) and swollen with a ferrofluid under non-uniform magnetic field of 

0.8T (Zriyi et al., 1996); dynamic study on a ferrogel synthesized with PVA gel with 

carbonyl iron power shows its rate-dependent deformation under a non-uniform field 

saturates at about 1 Hz (Faidley et al., 2010). When the gel matrix is made to be porous, 

ferrogel-based magnetic foams are developed (Liu et al., 2006a). These materials respond to 

a magnetic field with drastic change in both the volume and the shape resulting in 

applications for controllable drug delivery systems (Liu et al., 2006b; Zhao et al., 2011). 

 

Figure 1.1 Microstructure of isotropic (a) and anisotropic (b) MAPs (adopted form Chen et 

al., 2007).   

Magneto-rheological elastomers (MREs), orginially developed as sensors for axial 

and rotational strains (Rigbi & Jilkén, 1983), have primarily received interest for vibration 

mitigation applications due to their tunable stiffness. Unlike ferrogels, in MREs the magnetic 

particles are usually engineered into chain structures (Fig. 1.1b), by applying an external 

(a) (b) 

Polymer 

matrix 

Particles Particle chains 
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magnetic field during the curing process. The chain strucutres are locked upon the final cure 

making both the microstructure and magneto-mechanical property of MREs to be 

anisotropic. When an MRE is placed in a uniform magnetic field, the interactions between 

particles in a chain enhance the permeability and increase the effective stiffness of the 

material. Experimental observations have found that both the shear modulus (e.g. Jolly et al., 

1996; Zhou, 2003; Chen et al., 2007) and tensile modulus (e.g. Bellan & Bossis, 2002; Varga 

et al., 2006; Abramchuk et al., 2007) of these materials increase under a magnetic field, as 

shown in Fig. 1.2 and 1.3 respectively. Such magnetotunable stiffness enables MREs in a 

variety of applications as variable stiffness bushings (Lerner, 2005), engine mounts (Ginder, 

1996) and releasable attachments (Ottaviani et al., 2006) used in the automotive industry; 

tunable vibration absorbers and damping components (e.g. Ginder et al., 2000; Deng et al., 

2006; Lerner and Cunefare, 2008; Hoang et al., 2011), and noise control devices (Farshad & 

Roux, 2004). The behavior that the stiffness of MREs increases under a magnetic field is 

usually reffered to as MR effect. Theoretical models are developed to explain the MR effect, 

most of them consider each particle exposed to a magnetic field as a magnetic dipole and 

believe that the MR effect is attributed to the dipolar interaction (e.g. Jolly et al., 1996; 

Ivaneyko et al., 2011; Stolbov et al., 2011). A large number of experiments have been carried 

out to study the effect of matrix and filler composition (e.g. Bellan and Bossis, 2002; Nikitin 

et al., 2006; Lockette et al., 2011), relative alignments of particles, mechanical, magnetic 

inputs (e.g. Varga et al., 2006; Filipcsei et al 2007; Rao et al., 2010;), frequency of 

mechanical and magnetic loads (e.g. Zhou, 2003; Bolm & Kari, 2005; Stepanov et al., 2007; 

Li et al., 2010; Gong et al., 2012). Beside the MR effect, by adding graphite powder into the 
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matrix the electrical resistivity of an MRE becomes tunable in a magnetic field, giving rise to 

a new type of sensors (e.g. Kchit and Bossis, 2009; Tian et al., 2011).  

 

Figure 1.2 The MR effect in the shear deformation. The change in the shear modulus 

increases with respect to the applied magnetic field as well as the volume fraction of 

magnetic particles (adopted from Jolly et al., 1996). 

MRE 
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Figure 1.3 The MR effect in the tensile modulus. The modulus increases with respect to the 

applied magnetic field and the weight fraction of magnetic particles (adopted from Varga et 

al., 2006). 

Magnetostriction, initially observed from ferromagnetic metals and alloys (Clark and 

Belson, 1983; Wun-Fogle et al., 1999), has been captured in both ferrogels and MREs under 

a uniform magnetic field. Due to the relatively low stiffness of the matrix matrials, the 

magnetostriction in MAPs can be 10
3
 times larger than that in alloys (Bednarek 1999). For 

example, 1.5% magnetostriction stain is obtained from a MAP composed of silicon elastomer 

and iron particles at a volume ratio of 10% under a magnetic field of 120kA/m (Coquelle and 

Bossis, 2005), while only micro-strain can be obtained from alloys. Magnetostriction, 

together with the finite deformation under a non-uniform field, enables MAPs a wide range 

of applications as actuators. Experiments have been carried out to study the effect of 

microstructure dependence (Ginder et al., 2002; Martin et al., 2006), relative particle 
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alignments and magnetic field (Guan et al., 2002; Danas et al., 2012) and mechanical inputs 

(Danas et al., 2012). A few models are developed based on the magnetic dipolar interaction 

theory to explain the magnetostriction of isotropic MAPs (Diguet et al., 2009; Stolbov et al., 

2011).  

1.2 Motivation 

Though the viscoelastic behavior of MAPs has been widely demonstrated through 

experiments, very few models exist in the literature can couple the magnetic field and the 

viscoelasticity, and one can predict the three-dimensional dynamic behavior of MAPs even 

does not exist. Linear viscoelastic models such as Maxwell and Kelvin-Voigt models have 

been used to capture the dynamic responses of MAPs, as reviewed by Spencer Jr. et al. 

(1996). However, these simple rheological models are limited to small deformations in one 

dimension. Therefore, to develop constitutive relations describing the coupling of magnetic 

field and viscoelasticity is important to understand and predict the behaviors of MAPs and 

becomes the first objective of this study.  

Constant efforts have been paid to study the mechanism of MR effect in MREs for a 

long time. The most widely used models in the literature are based on the dipolar interaction 

theory, which consider each particle as a magnetic dipole in an applied field and assume all 

particles in MREs are aligned into straight chains (e.g. Jolly et al., 1996; Shen et al., 2004; 

Stolbov et al., 2011). However, these models can explain the MR effect of the shear modulus, 

but not that of the tensile modulus. Besides the dipolar interaction, some other mechanisms 

have also been claimed, such as non-affine deformation and chain-chain interaction (e.g. 

Kankanala and Triantafyllidis, 2004; Yin and Sun, 2005; Ivaneyko et al., 2011; Stolbov et al., 
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2011). However, theoretical or experimental approves of these possible mechanisms are still 

lacking, which naturally motivates the second objective of this study: to identify the ultimate 

mechanism of the MR effect. 

In addition, contradiction exists between the experiments and theories for 

magnetostriction of MAPs. Kankanala and Triantafyllidis (2004) claimed that under a 

magnetic field, the particles in a chain of anisotropic MAPs attract their neighbors, leading to 

a contraction of the chain, and thus to a global negative magnetostriction. On the contrary, as 

discussed in Section 1.1, elongations of anisotropic MAPs are observed in experiments. 

Though a few models have been developed to predict the magnetostriction, they are limited 

to isotropic MAPs only (Diguet et al., 2009; Stolbov et al., 2011). Thus the third objective of 

this study is to develop a general model which can explain the magnetostriction in both 

isotropic and anisotropic MAPs and can be verified by comparing with existing experimental 

results. 

1.3 Structure of the dissertation 

This dissertation is organized as follows. In Chapter 2, a field theory is developed to 

couple the magnetic field and viscoelasticity in solids. To utilize the theory, a material model 

is specified and the weakform is derived for finite-element implementation. Three different 

boundary value problems are studied as numerical examples of our model. Chapter 3 

investiges various possible mechanisms that cause the MR effect of MREs using two 

methods. First, the dipole-interaction model is used to verify the magnetic contribution of 

various microstructures to the stiffness of MREs. Then the field theory-based finite-element 

simulation is conducted for cross-verification. Besdies, the finite-element model is also used 



 10 

 

to study the contribution of other mechanisms, such as the non-affine deformation and chain-

chain interaction. Chapter 4 develops a homogeneous model to predict the magnetostriction 

and the MR effect of MAPs. A general case, cylindrical MAPs are subjected to a uniform 

magnetic field, is discussed. The magnetic permeability of MAPs is proposed as a function of 

the axial strain, and the strain dependence is discussed for MAPs with various 

microstructures. Besides, the effect of microstructure on the magnetostricion and MR effect 

is discussed. As demonstrations, experimental results of magnetostriction (Coquelle and 

Bossis, 2005) and the MR effect (Varga et al., 2006) are fitted by the model. 
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CHAPTER 2.  COUPLED MAGNETIC FIELD AND VISCOELASTICITY 

OF FERROGELS 

2.1 Introduction 

Although naturally insensitive to magnetic fields, polymers have been made magneto-

responsive by embedding iron or magnetite particles. Characterized by its low mechanical 

stiffness and usually isotropic filler distribution, ferrogels respond to magnetic stimuli with 

large deformation. Typical deformation patterns include elongation, rotation and torsion, 

coiling and bending (Zrínyi et al., 1996, 1998; Snyder et al., 2010; Nguyen and Ramanujan, 

2010). Strains of up to 40% when exposed to a non-uniform magnetic field have also been 

reported (Zrínyi et al., 1997a). The deformation of ferrogels in a uniform magnetic field has 

also been demonstrated (Raikher et al., 2008; Filipcsei and Zrínyi, 2010). The large 

deformation capability has made ferrogels a promising material for soft actuators and sensors 

(Ramanujan et al., 2006; Monz et al., 2008; Qin et al., 2009; Faidley et al., 2010). The 

current Chapter will focus on the magnetic-field-induced large deformation of ferrogels. 

To provide guidance for the design and optimization of ferrogel-based devices, 

continuous efforts on modeling the coupling behaviors of ferrogels have been made in past 

decades.  Early approaches tend to solve the magnetic field separately and treat the coupling 

effect by adding field-induced distributed forces and moments (e.g. Zrínyi et al., 1996).  

More recently, fully coupled nonlinear field theories have been developed (e.g. Dorfmann 

and Ogden, 2004; Bustamante et al., 2008). The theories consider the coupled elastic 

deformation and magnetic field, and describe specific material properties by free-energy 
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functions of deformation and magnetic field.  The theories have also been implemented 

numerically to handle boundary-value problems in complex geometries (Dorfmann et al., 

2005; Bustamante et al., 2007).  However, the elastic theories become deficient when the 

dynamic response of a viscoelastic ferrogel is of interest.  Partly due to the viscoelasticity of 

the polymer matrices, the responses of ferrogels are often rate-dependent, as demonstrated in 

various experiments (Zrínyi et al., 1998; Hernández, 2004; Faidley et al. 2010).  Very few 

researches have been carried out on modeling the viscoelastic behaviors of ferrogels.  Some 

models use combinations of linear springs and dashpots to fit the dynamic responses of 

ferrogels to cyclic magnetic fields (Zrínyi et al., 1998; Rao et al., 2010; Faidley et al., 2010).  

Without a comprehensive field theory, these models are limited to one dimensional small 

deformation, and provide little physical insight or guidance for improved designs. 

This Chapter presents a field theory that fully couples the magnetic field and the large 

viscoelastic deformation in ferrogels. In Section 2.2, following the approaches recently used 

for elastic (Suo et al., 2008) and viscoelastic (Hong, 2010) dielectrics, we define the stress 

and magnetic fields through an energy approach similar to the principle of virtual work. Such 

definitions are material-independent and suitable for both equilibrium and non-equilibrium 

states. Based on the principles of non-equilibrium thermodynamics, Section 2.3 derives the 

governing equations for the coupled physics. Under certain physical assumptions, Section 2.4 

proposes a simple material model and Section 2.5 implements it further into a finite-element 

method. Finally, numerical simulations of a ferrogel sample in response to uniform and non-

uniform magnetic fields are demonstrated as an application of the theory. 
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2.2 Stress and magnetic field 

To describe the deformation of a ferrogel, we pick the undeformed state to be the 

reference, in which the material is fully relaxed and no magnetic or mechanical load is 

present. Following the usual practice in continuum mechanics, we identify a material particle 

by its position vector in the reference state, X , and trace the motion by its current position at 

time t ,  t,Xx . The local deformation and rotation of a material particle is characterized by 

the deformation gradient   xXF t, . In this Chapter, the gradient operator  , the 

divergence operator  , and the curl operator  , indicate differentials with respect to the 

coordinates in the reference state. 

To avoid ambiguity, we define the internal fields as the representatives of external 

loads, independent of the material properties and the thermodynamic state.  Such an approach 

has been used in the analysis of electro-active polymers (Suo et al., 2008; Hong, 2010).  In 

the reference state, let  XdV  be a volume element, and  XdA  be the area of a surface 

element. Correspondingly, we denote the mechanical force in the volume as  dVt,Xb  and 

that on a surface as  dAt,Xt . We define the tensor of nominal stress (i.e. the Piola-

Kirchhoff stress of the first kind),  t,XP , such that the equation 

 


 dAdVdV ξtξbξP , (2.1) 

holds true for arbitrary test field  Xξ  in any domain   and on its surface  . In the case 

of a dynamic process, inertial forces are included as the body force.  While Eq. (2.1) serves 

only as a definition of the stress field, it becomes the principle of virtual work when ξ  is 

taken to be a virtual displacement field.  The stress defined herein recovers the common 
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definition in a state of thermodynamic equilibrium.  Applying the divergence theorem to the 

left-hand side of Eq. (2.1), via integration by parts, one would easily obtain a mathematically 

equivalent definition of the nominal stress: 

 0bP  T
 (2.2) 

in the volume of a body and 

   tNPP    (2.3) 

on an interface where the mechanical traction t  is applied.  The labels “+” and “–” 

differentiate the media on the two sides of the interface, and the unit vector N  is normal to 

the interface in the reference state, pointing towards the medium “+”. 

 

Figure 2.1 Sketch of a ferrogel under combined mechanical and electromagnetic loads.  P 

indicates the external mechanical load applied by a weight and I is the current input to the 

ferrogel by a current source. (Han et al., 2011) 

In general, a ferrogel may contain conductive parts such as an electromagnetic coil on 

the surface or in the volume.  For simplicity, we take a conceptual idealization and neglect 

both the mechanical stiffness and the electric resistance of the conductive phases.  Upon 



 15 

 

homogenization, we write the volumetric current density as  t,
~

Xj  and the interfacial current 

density as  t,
~

XJ , both measured with respect to the undeformed geometry.  Similar as in the 

definition of nominal stress, we define the nominal magnetic field,  t,
~

XH , such that 

   


 dAdVdV JηjηHη
~~~

 (2.4) 

holds true for arbitrary test field  Xη .  Upon application of the divergence theorem, (2.4) 

yields an equivalent definition of the nominal magnetic field in a differential form: 

 jH
~~

  (2.5) 

in the volume and 

   JHHN
~~~

   (2.6) 

on an interface. Eqs. (2.5) and (2.6) are known as Ampère's circuit law (e.g. Guru and 

Hiziroğlu, 2004). 

Since a static magnetic field does no work, here we imagine connecting a ferrogel to a 

field of current sources, as sketched in Fig. 2.1.  Using a continuum approach, we write the 

current input by external sources as  dVti ,
~

X  in the bulk and  dAtI ,
~

X  on an interface.  

The charge conservation dictates that the nominal current densities satisfy 

 i
~~

 j  (2.7) 

in the bulk of a homogeneous material, and 

   Is

~~~~
 

JNjj  (2.8) 

on an interface, where s  is the divergence taken on the interface.  Within an interval t , 

external current sources do work  
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   tdAItdVi 
~~

, (2.9) 

where  t,X  is the electric potential on a material particle (in its conductive phase).  

Substituting Eqs. (2.7) and (2.8) into (2.9) and utilizing the divergence theorem, we can write 

the work done by current sources as 

   tdAtdV s  Jj
~~

. (2.10) 

While the electric-potential gradient is only defined in the conductive phase, it is 

possible to continuously extend it into the whole domain and define a vector field  t,
~

XA , 

such that  tA
~

 in the conductive phase.  It is noteworthy that the choice of A
~

 is not 

unique, and A
~

 is not the gradient of a continuous potential.  Utilizing the definitions of A
~

 

and H
~

, we may further simplify the work done by the external current sources (2.10) into a 

volumetric integral over the whole domain: 

    dVHA
~~

 . (2.11) 

It can be recognized from Eq. (2.11) that A
~

 is the magnetic vector potential in a 

Lagrange description.  One may define the nominal magnetic induction as AB
~~

 . 

The soft nature of ferrogels usually results in large deformation, and the geometries in 

the current and reference states differ significantly.  The quantities defined here are nominal 

fields in a Lagrange description.  When needed, equations in terms of the nominal quantities 

can be easily rewritten in the current state using the geometric relations between the nominal 

and true fields, such as 

 
F

FP
σ

det

T
 , 

F

jF
j

det

~


 , AFA
~

 , 
F

BF
B

det

~


 , and HFH
~

 , (2.12) 
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where σ , j , A , B , and H  are the true stress, true current density, true magnetic potential, 

true magnetic induction, and the true magnetic field, respectively. 

2.3 Non-equilibrium thermodynamics 

Consider a body of ferrogel, loaded mechanically by a field of body force b  and 

surface traction t , and electromagnetically by a field of current sources.  Associated with a 

velocity field x  and input current i
~

 and I
~

, the power of the external work done by the 

electromagnetic and mechanical loads is 

   IdAidVdAdV xtxb  . (2.13) 

Let W  be the Helmholtz free energy of the material per unit reference volume, and 

W  be its material rate of changing.  Utilizing the definition of stress and magnetic field, one 

has the corresponding change rate in the total free energy of the system,  , including the 

potential of the external loads, 

    dVW BHFP
 ~~

: . (2.14) 

The laws of thermodynamics dictate that the free energy of the system never 

increases in a physically possible process, 0 .  The inequality must hold true in any 

volume, and thus 

 0
~~

:  BHFP
W  (2.15) 

holds true on any material particle for any process, where the equal sign takes place only 

when the process is reversible, i.e. the system is locally in equilibrium.  The thermodynamic 

equilibrium state of a material particle is fully determined by the deformation gradient and 

the magnetic induction.  For a general inelastic material, the free energy in a non-equilibrium 
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state differs from that in an equilibrium state.  To distinguish between them, we introduce the 

equilibrium Helmholtz free-energy density, and write it as  BF
~

,EQW .  From (2.15) in the 

case of an equal sign, we obtain the following constitutive relations in an equilibrium state: 

    
F

BF
BFP






~
,~

,
EQ

EQ W
,    

B

BF
BFH ~

~
,~

,
~






EQ
EQ W

, (2.16) 

in which EQ
P  and

EQ
H
~

 are the nominal stress and the nominal magnetic field in an 

equilibrium state. 

To describe a non-equilibrium state, following the usual approach in finite-

deformation viscoelasticity (Lee, 1969), we imagine an intermediate state between the 

reference state and the current state, which may be achieved by a virtual elastic unloading on 

the part of the polymer network that is not in equilibrium.  The relation between the 

reference, current, and intermediate states are illustrated in Fig. 2.2.  In order for a full 

relaxation, the material needs to be divided into infinitesimal particles, which do not 

necessarily constitute a continuum body in the intermediate state.  Denoting the deformation 

gradient of the intermediate state as  ti ,XF , and that of the current state with respect to the 

intermediate state as  te ,XF , we have the multiplicative decomposition of the deformation 

gradient: 

 ie FFF  . (2.17) 
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Figure 2.2 A physical deformation is decomposed into two parts through imagining an 

intermediate state, in which every material particle is elastically relaxed.  The fully relaxed 

material particles in the intermediate state do not need to constitute a continuum body.  The 

inelastic stress in the current state is assumed to be a function of the elastic deformation 

gradient 
eF  only. (Han et al., 2011) 

On the other hand, the magnetization of a ferrogel may involve two distinct 

processes: each filler particle changes its direction of magnetization without rotating its 

spatial orientation, as shown schematically in Fig. 2.3b; each particle maintains its 

magnetization along an easy-magnetization axis, but rotates against the matrix towards the 

direction of the applied field, as in Fig. 2.3c. The first process usually dominates in 

multicrystalline ferromagnetic materials. In general, both processes take place 

simultaneously in a ferrogel with relatively soft matrix. The two physical processes have 

distinct characteristic time scales. The magnetic domain switch reaches equilibrium much 

Reference state Current state 

Intermediate state 

(imaginary) 

Actual 

Elastic 

relaxation 

Irreversible 

deformation 
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faster than the rotation of a solid particle in a viscoelastic matrix. Therefore, in the regime 

where most ferrogels are applied, it may be assumed that the first process is always in 

equilibrium, while the second process dissipates energy and its rate depends on the 

viscoelastic property of the matrix.  In this study, we only consider the case when the first 

process dominates, so that the magnetic fields are always in equilibrium, EQ
HH
~~

 .  

Physically, such an assumption represents ferrogels with relatively large (> 5μm) filler 

particles which exhibits less anisotropy, and operated under a field far from saturation.  This 

an assumption also implies that the magnetic field under consideration is quasi-static and no 

electromagnetic wave is propagating, and the energy dissipation due to the induced current in 

filler particles is neglected. 

 

Figure 2.3 (a) At a reference state the filler particles are randomly distributed in the polymer 

matrix. Applying a magnetic field to the ferrogel either changes the magnetization direction 

of each filler particle without rotating its spatial orientation (b), or rotates particle against the 

matrix towards the direction of the external field (c).  The elliptical shapes are used to show 

the physical orientations of particles. (Han et al., 2011) 

(a) (b) (c) 
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Following Reese and Govindjee (1998), we assume that the non-equilibrium 

Helmholtz energy, namely the difference between the Helmholtz free energy of a non-

relaxed state and that of an equilibrium state, depends only on the elastic deformation 

between the relaxed intermediate state and the current state,  eNEQEQ WWW F .  Since the 

irreversible deformation is more suitable for characterizing a non-equilibrium state, here we 

take the corresponding deformation gradient iF as an internal state variable, and write the 

total Helmholtz free energy density as 

      1~
,

~
,,


 iNEQEQi WWW FFBFBFF . (2.18)  

To handle more general cases when filler particles exhibit significant magnetic 

anisotropy and the spatial rotation of particles are important, one may extend the current 

model by accounting for the dependence on magnetic induction B
~

 in the nonequilibrium free 

energy density 
NEQW .   

The total nominal stress is the derivative of the Helmholtz free-energy density with 

respect to the deformation gradient even in a non-equilibrium state (Coleman and Gurtin, 

1967), 

   TiNEQEQW 





 FPP

F
P , (2.19) 

where the inelastic nominal stress tensor eNEQNEQ W FP  .  The remainder of inequality 

(2.15) which governs the evolution of the inelastic internal variables becomes: 

   0: 
 iTiNEQTe FFPF  , (2.20) 

which physically indicates that the energy of the system only dissipates in inelastic 

deformation. 



 22 

 

In terms of the inelastic true stress eTeNEQNEQ FFPσ det , inequality (2.20) can 

also be written in the current configuration as: 

 0: iNEQ
Lσ , (2.21) 

where iL  is the inelastic part of the covariant velocity gradient, 

111   FFFFFFFL
ieeei  . 

While inequality (2.21) is a consequence of the second law of thermodynamics thus 

must be satisfied by all processes for any material, a kinetic evolution equation in the form 

 
NEQi

σML :  (2.22) 

is often used in practice.  The material-dependent fourth-rank mobility tensor M  needs to be 

positive-definite to satisfy inequality (2.20) automatically.  By writing the evolution equation 

in this form, the rigid-body rotation in the inelastic deformation is discarded (Boyce et al., 

1989).  In general models for the evolution of internal parameters, the mobility tensor may be 

dependent on various state variables.  Equations (2.16), (2.19) and (2.22), together with the 

definition of state variables in Section 2.2, form a closed system for the analysis of the 

coupled magnetomechanical response of viscoelastic ferrogels. 

2.4 A specific constitutive model 

To apply the nonlinear field theory developed in the preceding sections to the analysis 

of ferrogels, one needs to specify the Helmholtz free-energy functions  BF
~

,EQW  and 

 eNEQW F , and the mobility tensor M . In order to characterize the viscoelastic behavior of 

polymeric materials under various loading conditions, there has been continuous efforts 

during the past decades on developing equilibrium (e.g. James and Guth, 1943; Treloar, 
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1975; Flory, 1977; Arruda and Boyce, 1993) and kinetic evolution models (e.g. Lubliner, 

1985; Haupt, 1993; Reese and Govindjee, 1998; Bergström and Boyce, 1998). Possible forms 

of the equilibrium free-energy function  BF
~

,EQW  that couples magnetic field and 

deformation have also been studied recently (e.g Dorfmann and Brigadnov, 2004; Dorfmann 

and Ogden, 2004; Kankanala and Triantafyllidis, 2004; Otténio et al., 2008).  Here for the 

purpose of demonstration and qualitative studies, we will construct a simple model. 

We assume that the equilibrium free-energy density only consists of the contributions 

from stretching and magnetization,      BFBF m

EQ

s

EQ WWW 
~

, , and the free energy of 

magnetization only depends on the true magnetic induction B . The physical decoupling 

between the deformation and the true magnetic induction field represents a category of 

materials that have liquid-like magnetization behavior independent of the deformation state.  

For simplicity, we neglect the hysteresis in magnetization and further assume the magnetic 

property to be linear and the magnetization energy being   BBB  2
1

mW , where   is the 

magnetic permeability. Assuming the free energy of stretching to be purely entropic with 

Gaussian statistics (Treloar, 1975),   FFF :
2
1 EQEQ

s GW  , we have the equilibrium free-

energy function 

      BFBFFFBF
~~

2

1
:

2

~
, 



EQ
EQ G

W , (2.23) 

where 
EQG  is the equilibrium or long-term modulus. Similarly, we assume the non-

equilibrium free-energy function in the form 

      11
:

2
:

2


 ii

NEQ
ee

NEQ
eNEQ GG

W FFFFFFF  (2.24) 
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with non-equilibrium modulus 
NEQG .  In this study, the material is assumed to be 

incompressible, with both elastic and inelastic deformations being volume-conservative, 

1detdetdet  ei
FFF . 

Application of free-energy functions (2.23) and (2.24) in Eqs. (2.16) and (2.19) yields 

the following constitutive relations: 

   TiTiNEQEQ pGG 


 FBBFFFFFP
~~11


, BFFH

~1~
 T


, (2.25) 

where p  is an undetermined hydrostatic pressure introduced by the incompressibility 

constraint. Alternatively, the constitutive relation may also be expressed in terms of true 

quantities: 

 1BBFFFFFFσ pGG TTiiNEQTEQ 




11
, 



B
H  , (2.26) 

with 1  representing the second rank identity tensor.  The third term on the right-hand side of 

Eq. (2.26),  BB
~~

 , is usually referred to as the magnetic Maxwell stress.  It is noteworthy 

that the hydrostatic part in the usual form of the Maxwell stress is absorbed in the arbitrary 

pressure p introduced by the incompressibility constraint.  The magnetic contribution of 

stress in this particular form is only a consequence of the specific free-energy function, and 

should not be generalized to all materials.  Under the current assumption that the magnetic 

field is always in equilibrium, a magnetic contribution does not appear in the inelastic stress 

NEQP  or 
NEQσ . 

To specify the evolution law for the inelastic deformation, we assume the viscous 

property of the material to be isotropic in the current state, so that the inverse of the mobility 

tensor takes the form 
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 









111M
3

141  . (2.27) 

Here 41  is the fourth rank symmetric identity tensor.  When a constant viscosity   is 

used, the inelastic behavior of the material resembles that of Newtonian fluid. 

2.5 Finite-element implementation 

To simplify expressions, from now on, we will normalize all stresses and energy 

densities with the instantaneous modulus, 
NEQEQ GGG  , magnetic fields with 0G , 

magnetic inductions with G0 , and times with G .  0  is the permeability of free space.  

Without any intrinsic length scale in the model, we will normalize all lengths by an arbitrary 

length L  of the geometry, e.g. the characteristic length of the specimen.  The dimensionless 

fields are noted with an over-bar, e.g. Gpp  , G0

~
BB  , and Lxx  . 

The material model described in Section 2.4 has two dimensionless parameters: the 

relative permeability 0 r  and the ratio between the equilibrium modulus and 

instantaneous modulus, GGEQ . The parameter   characterizes the fraction of the 

polymer network that has time-independent deformation (Bergström and Boyce, 1998).  The 

viscoelastic material reduces to purely elastic when 1 , and becomes a viscous fluid when 

0 . 

Within the current theoretical framework, the mechanical momentum balance and the 

equilibrium of magnetic field are enforced by the definitions of stress and magnetic field.  

The definitions are naturally in weak forms as in Eqs. (2.1) and (2.4).  Applying the specific 
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material model in Section 2.4 by substituting Eq. (2.25) into Eqs. (2.1) and (2.4), we arrive at 

the dimensionless weak forms explicitly as 

          



 






  AdVdVdp TTiTiT
xtxbFFBBFFFFFFF  ::1:

1

  

  (2.28) 

and 

 


 AdVdVdT
AJAjBFFB  . (2.29) 

Following the usual approach in finite-element analysis, we add to the weak form 

   01det 


VdpF  (2.30) 

for the volume incompressibility and to determine the field of hydrostatic pressure p . 

To evolve the inelastic deformation in the intermediate state, we further write Eq. 

(2.22) into the following weak form: 

      0:: 111 


 VdieieTNEQ FFFFFFMFSF  , (2.31) 

where    TiiNEQ 
 FFS

1
dev1   is the deviatoric part of the non-equilibrium Piola-

Kirchhoff stress of the second kind, and the time derivative iF  is taken with respect to the 

dimensionless time  tG .  Considering the symmetric viscous tensor in Eq. (2.27), we 

can further simplify Eq. (2.31) as  

   0: 


VdiiTNEQi FFFFSF  . (2.32) 

Weak forms (2.28), (2.29), (2.30), and (2.32) constitute a system sufficient to 

determine the evolution of the dimensionless fields in a ferrogel,  ,Xx ,  ,Xp ,  ,XFi
, 
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and  ,XA .  However, a ferrogel system may also contain materials that are either very stiff 

(e.g. a rigid magnet) or extremely compliant (e.g. vacuum or fluid). In vacuum, the 

deformation fields  ,Xx  and  ,XFi  are undetermined, while the inclusion of a very stiff 

body may cause the problem to be numerically ill-conditioned.  Instead, we employ the 

arbitrary Lagrangian-Eulerian (ALE) method which introduces an artificial deformation field 

in a vacuum or fluid domain.  The artificial deformation, namely the moving mesh, agrees 

with the actual deformation on the interface between a ferrogel and vacuum, and maximizes 

the mesh smoothness in vacuum (COMSOL, 2008). On the other hand, the mesh is immobile 

on a fixed rigid body, Xx  .  To simplify calculation, the weak form of magnetostatics, Eq. 

(2.29), is rewritten in the current configuration with the Eulerian magnetic potential 

  ,XxA . We have implemented the formulations in the commercial finite-element 

package, COMSOL Multiphysics 3.5a, for both 2D and 3D axisymmetric geometries, and 

used them in the following analyses. 

2.6 Numerical examples 

In this section, the responses of viscoelastic ferrogels in magnetic fields will be 

studied as illustrations of the theoretical framework and numerical method developed. The 

deformations of a ferrogel in three different magnetic fields will be analyzed.  In the first 

example, the specimen lies inside a solenoid, where the magnetic field is nearly uniform.  

The second example analyzes the large deformation of a ferrogel induced by a highly non-

uniform magnetic field. The third example aims at recovering our recent experimental results 

of the dynamic response of a ferrogel subject to the cyclic field near an electromagnet. 
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2.6.1 A quasi-uniform magnetic field 

As a first example, we study the dynamic response of a cylindrical ferrogel inside a 

solenoid, as shown schematically in Fig. 2.4a. No mechanical load is present. The 

computational domain is 3D axisymmetric. A cyclic magnetic field, sin0HH  , is 

applied through an alternating current of dimensionless frequency  .  In the absence of the 

ferrogel, the magnetic field inside the solenoid is uniform.  However, since the ferrogel has a 

larger magnetic permeability than vacuum or air, the uniform field is perturbed when the 

ferrogel is in position. The resulting non-uniform field drives the inhomogeneous 

deformation of the ferrogel, and the deformed shape further redistributes the magnetic field.  

The deformed shape and the field lines are plotted in Fig. 2.4b.  In this example, we have 

taken a relative magnetic permeability 2r  for the ferrogel, and the heterogeneities in the 

magnetic field and deformation are still relatively small. The resulting behavior of the 

ferrogel – extension along the field direction – agrees with the experimental observation of a 

ferrogel in a nearly uniform field (Filipcsei and Zrínyi, 2010). The relation between the 

averaged magnetic field and the averaged magnetic induction is also close to that of a rigid 

linear magnetic material, as shown in Fig. 2.4c. Only a very small hysteresis due to the 

geometric effect is shown on the plot.  Taking a representative value for the modulus of the 

ferrogel, G = 10kPa, the dimensionless magnetic field 10 H  approximately corresponds to 

a dimensional field strength of 90 kA/m, a value close to the highest achievable uniform field 

without bringing the material to saturation (Raikher et al., 2008; Snyder et al., 2010). 
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Figure 2.4 (a) A ferrogel sample is placed inside a solenoid. (b) The magnetic field is 

slightly perturbed by the ferrogel due to coupling. The color scale indicates the axial stretch 

3 . (c) The BH ~  curve is close to linear and demonstrates an insignificant hysteresis. (Han 

et al., 2011) 

To show the viscoelasticity effect, we plot the total axial stretch   and the inelastic 

stretch 
i  in response to a cyclic field in Fig. 2.5. When the ferrogel is actuated by a 

magnetic field at a relatively low frequency, both   and 
i  are sinusoidal functions of time 

and are in phase with each other, as shown in Fig. 2.5a.  The stretch is almost fully inelastic, 

i.e. 
i  , implying that the material is always relaxed.  Since the strain only depends on the 

magnitude and not the sign of the magnetic field, the frequency of deformation doubles that 

of the applied field.  Even though the inelastic response is almost in phase with the applied 

field, hysteresis loops still appears on the H  plots in Fig. 2.5d.  This is mainly due to the 

geometrical nonlinearity introduced by finite deformation. When the magnetic field 

alternates at an intermediate frequency, the magnitude of stretch is smaller than in the low 

frequency case, as shown in Fig. 2.5b.  The inelastic stretch 
i  is lower than the total stretch  

(a) (b) (c) 
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Figure 2.5 (a) (b) (c) Total stretch )(  and inelastic stretch )(i of a ferrogel in response 

to a cyclic magnetic field   sin)( 0HH  . (d) (e) (f) Trajectory plots of the stretch )(  

with respect to the applied nominal magnetic field )(H . Three different dimensionless 

frequencies are selected for comparison: 1.0  for (a-d), 1  for (b-e), and 10  for 

(c-f). (Han et al., 2011) 

 , and exhibits a finite phase lag due to viscoelasticity.  On the trajectory plot of H  in 

Fig. 2.5e, the hysteresis loop stabilizes after a few cycles.  When the ferrogel deforms in a 

magnetic field at a relatively high frequency, the magnitude of the mechanical response is 

even smaller, as shown in Fig. 2.5c. The mean value of the inelastic stretch increases 

gradually and reaches a steady state after many cycles, and the H  plot in Fig. 2.5f has 

negligible hysteresis due to a relatively small deformation.  Experiments following the 
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procedure illustrated here may be carried out to identify the viscoelastic properties of 

ferrogels. 

2.6.2 A non-uniform magnetic field 

In a magnetic field, each filler particle is magnetized and can be considered as a 

magnetic dipole.  Since the motion of a magnetic dipole is only driven by the gradient of the 

external field, the deformation of a ferrogel is expected to be much larger if the applied field 

is non-uniform.  In this example, we look at a rectangular ferrogel strip placed in the non-

uniform field generated by a pair of magnets, as shown in Fig. 2.6a.  Normalized by the 

length of the ferrogel strip, L , the geometric parameters of this example include the distance 

between the bottom of strip and the axis of magnets 1Z , the size of the magnets 1d , and 

the distance between the two magnets 2D .  While these parameters can all affect the final 

deformation of the ferrogel (Snyder et al., 2010), as a demonstration, we will only focus on 

the viscoelastic effect by changing the material parameter  .  The relative permeability of 

the ferrogel is still taken to be 2r . 

The distribution of the magnetic field is nonuniform: the field maximizes near the 

axis of two magnets where maxHH  , and decays exponentially away from the axis.  In the 

prescribed geometry, the magnetic field at the bottom of the undeformed ferrogel relates to 

the maximum field as max04.0 HH  . As the ferrogel deforms, the magnetic field near the 

ferrogel is perturbed, but no noticeable change in maxH  is observed near the magnets axis.  

We will thus use maxH  as an indicator for the strength of the applied field. 
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By symmetry, we establish a 2-D model consisting of half of the ferrogel and one 

magnet.  The deformation pattern of the ferrogel and the distribution of the magnetic field are 

plotted in Fig. 2.6b.  In addition to the local non-uniform deformation, an overall elongation 

is induced by the spatial gradient of the magnetic field.  The symmetry boundary condition 

also introduces an artificial constraint to the ferrogel.  Due to the lateral non-uniformity of 

the field, the straight extension of the ferrogel is unstable, and the symmetry may be broken 

with the ferrogel bending towards one of the magnets.  Extra constraints (e.g. by using a 

glass tube, Nguyen and Ramanujan 2010) are often added to prevent the unwanted lateral 

bending.  On the other hand, when the local field intensity reaches a critical value, a surface 

instability similar to the Rosensweig instability of ferrofluid will occur (Cowley and 

Rosensweig, 1967).  Without considering surface energy, our model diverges at the onset of 

this instability. To circumvent this issue, in the following calculations where high field 

intensity is needed, we add an additional constraint to the edges of the ferrogel by forcing 

them to be straight, an approach similar to the glass-tube constraint in experiments. 
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Figure 2.6 (a) A nonuniform magnetic field is produced by two electromagnets to drive large 

deformation of a ferrogel. (b) Part of a 2-D model that captures the elongation of the ferrogel.  

The color scale indicates the longitudinal stretch  . (c) The stretch   as a function of the 

applied field.  Several values of the viscoelastic parameters   are used. (d) An instability 

phenomenon as captured by an elastic model. (Han et al., 2011) 

In Fig. 2.6c, we vary the dimensionless parameter   from 0.1 to 0.9, and plot the 

equilibrium deformation of the ferrogel as a function of the applied field.  As expected, when 

the ferrogel is more liquid-like (smaller  ), its deformation is larger. Compared to the quasi-
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uniform-field example, the overall deformation caused by the non-uniform field is much 

larger, even for a solid-like (larger  ) sample. Fig. 2.6c also shows that the stretch   

increases drastically at higher but finite magnetic field.  This trend is related to yet another 

type of instability observed in the experiments (Zrínyi et al., 1997; Snyder et al., 2010).  Such 

instability is mainly due to the geometry and the spatial distribution of the magnetic field.  

Multiple equilibrium states can be achieved under the same applied field: the ferrogel can 

have a smaller elongation and remain in the region of lower magnetic field gradient; 

alternatively the ferrogel can be highly stretched and reach a position much closer to the axis 

of the magnets where the gradient of magnetic field is much higher. For simplicity, we 

neglect the viscoelasticity of the material which plays a minor role in this case, and study the 

response of a fully elastic ( 1 ) ferrogel.  As shown by the solid curves in Fig. 2.6d, two 

stable branches of the equilibrium stretch-magnetic-field relation are obtained by prescribing 

either the undeformed state or a highly stretched state as the initial condition, and gradually 

increasing or decreasing the applied field.  Beyond a certain magnetic field, a ferrogel in the 

shorter state extends instantaneously to the longer state.  Likewise, when the magnetic field 

decreases below a critical value, the ferrogel originally in the longer state will retract 

suddenly to the shorter state.  In between the two critical values, three equilibrium states are 

possible. Besides the two stable states, we also obtained the unstable state (shown as the 

dotted curve on Fig. 15d) by properly constraining the ferrogel.  The numerical results agree 

qualitatively with the existing experimental measurements (Zrínyi et al., 1997; Synder et al., 

2010), quantitative predictions may be possible upon calibration of the material behaviors 

and a more accurate representation of the actual 3-D geometry. 
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2.6.3 Cyclic response induced by an electromagnet 

To further validate the theoretical framework, this example simulates our recent 

experiment (Faidley et. al., 2010).  As sketched in Fig. 2.7a, a ferrogel cylinder is placed on 

the surface of an electromagnet.  We assume the system to be axisymmetric and neglect the 

friction between the ferrogel and the electromagnet.  Fig. 2.7b shows the deformed shape of 

the ferrogel and the distribution of the magnetic field.  Due to the combined magnetic and 

gravitational driving forces, the ferrogel reduces in height and increases in diameter.  The 

diameter increase is more significant near the bottom of the ferrogel, where the field gradient 

is higher.  The deformed shape of the ferrogel agrees qualitatively with our observation. 

In experiment, it was found that this type of ferrogel (polyvinyl alcohol crosslinked 

by sodium tetraborate) demonstrates a significant viscoelastic property. Within a relatively 

short period, the dynamic response to a cyclic field is almost always a sinusoidal oscillation 

superimposed on a linear creep (Fig. 2.7c). The magnitude of the sinusoidal oscillation, 

which is due solely to the magnetic field, depends on the frequency of the field as shown in 

Fig. 2.7d. To compare with the experimental results, we plot the numerical solutions of the 

overall axial strain together with the measured data, both in the time domain (for the response 

to a magnetic field at 1Hz, Fig. 2.7c) and in the frequency domain (Fig. 2.7d).  The numerical 

results agree well with the experiments. 

The dimensionless parameters used in calculation are as follows. The relative 

permeability of the ferrogel, 2r , is obtained directly from experimental measurements.  

The ratio between the equilibrium and instantaneous moduli 09.0 , the dimensionless 

specific weight of the ferrogel 017.0 GbLb , and the dimensionless magnitude of the  
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Figure 2.7 (a) Sketch of experimental setup.  (b) The ferrogel is shortened longitudinally and 

expands laterally due to gravity and the magnetic field.  The color scale indicates the 

longitudinal stretch  .  Numerical results in terms of the average axial strain are compared 

with experiments in the time domain (c) and in the frequency domain (d). (Han et al., 2011) 

applied magnetic field 5.00 H , are determined from fitting the computational results to the 

experiment.  The corresponding dimensional parameters, density of ferrogel at 1700kg/m
3
, 

maximum magnetic field at 60kA/m, instantaneous modulus at 20KPa, are all close to 

measured values. With a viscosity 70kPa∙s, the dynamic response of the material has a 
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characteristic frequency of around 0.3 Hz, and agrees well with that measured as shown in 

Fig. 2.7d. 

2.7 Concluding remarks 

Based on the principles of nonequilibrium thermodynamics, this Chapter develops a 

field theory that couples the large inelastic deformations and magnetic fields in ferrogel. A 

simple model is specified by assuming a Newtonian-fluid-like kinetic property of the 

material. Based on the theory and the simple model, a finite element method is further 

developed so that numerical calculations are possible even in complex geometries.  Using the 

numerical codes, we carry out simulations of a ferrogel in three typical types of magnetic 

fields. In a quasi-uniform field, the ferrogel extends along the field-direction. In a non-

uniform field, the ferrogel moves towards the region of highest magnetic field.  In both cases, 

the responses of a viscoelastic ferrogel are rate-dependent. In a highly non-uniform magnetic 

field, the instability of a ferrogel caused by geometric nonlinearity is revealed by the model. 

The dynamic response of a ferrogel driven simultaneously by the constant gravity force and a 

cyclic non-uniform magnetic field is also studied. The numerical results agree well with our 

experimental measurements both in time and frequency domains.  When proper material 

models are adopted and calibrated through experiments, the theory is not only applicable to 

existing magneto-active materials, but to emerging materials as well. 
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CHAPTER 3.  FIELD-STIFFENING EFFECT OF MANETO-

RHEOLOGICAL ELASTOMERS 

3.1 Introduction 

The magneto-active polymers that exhibit a field-induced stiffening effect are known 

as magneto-rheological elastomers (MREs).  Under an applied magnetic field, an MRE may 

significantly increase its shear modulus (e.g. Jolly et al., 1996; Zhou et al., 2003; Shen et al., 

2004) and tensile modulus (e.g. Bellan & Bossis, 2002; Zhou, 2003; Varga et al., 2006).  For 

brevity in description, we will refer to the field-stiffening effect as the magneto-rheological 

(MR) effect in this dissertation.  The MR effect enables MREs in numerous applications, 

such as smart vibration absorbers and damping components (e.g. Ginder et al., 2000; Deng et 

al., 2006; Lerner and Cunefare, 2008; Hoang et al., 2011), noise barrier system (Farshad and 

Roux, 2004), and sensors (e.g. Tian et al., 2011). 

From a structural perspective, an MRE is a polymer-based composite filled with 

magnetic particles. While various polymers can been employed as the matrix material, silicon 

rubber and polyurethane are often used (e.g. Carlson and Jolly, 2000; Varga et al., 2006; 

Zajac et al, 2010; Wu et al., 2010).  Due to their reliability and ease of manufacturing, 

micron-sized iron particles are usually used as the filler (e.g. Jolly et al., 1996; Zhou, G., 

2003; Rao et al., 2010).  The filler particles are usually dispersed during the curing process of 

the matrix elastomer, and their relative positions in the matrix are locked upon completion of 

the polymerization.  In the absence of any external field, the filler particles are randomly 

distributed, and the resulting MREs have isotropic microstructure and magneto-mechanical 
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properties.  If an external magnetic field is applied at curing, the filler particles tend to align 

into chain-like structures, resulting in an MRE with highly anisotropic properties. Such 

anisotropic MREs have directional magnetic sensitivity, and exhibit a stronger MR effect 

than isotropic ones.  Moreover, the MR effect is most significant when the applied magnetic 

field is in the direction along the particle-chains (e.g. Varga et al., 2006).  All these evidences 

suggest a strong correlation between the MR effect and the microstructure of an MRE. 

In past decades, constant efforts have been made in seeking the underlying 

mechanism of the ME effect.  The simple and widely used model is based on the magnetic 

dipolar interaction between neighboring filler particles (Jolly et al., 1996).  It is assumed that 

all particles are magnetized in the same direction as the external magnetic field, and the 

particles are small enough to be considered as magnetic dipoles.  The magnetostatic energy 

of the interaction between two neighboring dipoles is a function of the dipole moment m , 

the inter-particle distance r , and the angle between the line connecting the two dipoles and 

the direction of magnetization   (Fig. 3.1a) (Rosensweig, 1985), 

  


 2

3

2

0 cos31
4


r

m
U ,  (3.1) 

where 0  is the vacuum permeability.  As the interaction energy is proportional to 3r , it 

attenuates quickly as the inter-particle distance increases, and thus an approximation can be 

made by accounting for the neighboring particles only.  As sketched in Fig. 3.1a, when the 

material undergoes a shear  , the angle   changes from 0 to   and the distance r  increases 

as cos0rr  .  The change in the interaction energy contributes to the stress against the 

shear.  The corresponding contribution to the shear stiffness, 
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Figure. 3.1 Schematics of three possible mechanisms of the field-stiffening effect in an 

MRE: (a) dipolar interaction between particles in a straight chain, (b) dipolar interaction in a 

wavy particle chain, and (c) non-affine deformation of the polymer matrix.  The geometric 

parameters are the particle diameter d , the horizontal distance b , and the vertical distance h  

between two neighboring particles. 
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is always positive. Consequently, the effective shear modulus increases with the applied 

field.  This simple model has been widely used to explain the increase of the shear modulus 

of MREs under a magnetic field (e.g. Jolly et al., 1996; Ivaneyko et al. 2011).  This model 

has been extended to account for the interactions among all particles of an infinitely long 

chain (Shen et al., 2004), as well as the interaction between parallel particle chains (Ivaneyko 

et al., 2011; Stolbov et al., 2011). 

Although all these models recover the MR effect in the shear modulus, none of them 

is able to explain the MR effect in the tensile modulus.  Subject to a normal strain   along 

the chain direction, the inter-particle distance changes as   10rr , while the angle 0 .  
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Even though the dipolar contribution to the normal stress 0 U , the contribution to the 

tensile stiffness, 
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, (3.3) 

is always negative.  In contrast to the experimentally observed stiffening effect, this simple 

dipolar model results in a tensile modulus decreasing with the applied field.  An extended 

model considering a rectangular lattice of dipoles also gives a reduction in the tensile 

modulus under an applied magnetic field (Ivaneyko et al. 2011). 

We believe that the failure of the simple dipole-interaction model is mainly due to the 

incorrect microstructure assumed – the straight particle chains. In fact, available micrographs 

of MREs (e.g. Coquelle et al., 2006; Chen et al., 2007; Bobarth et al., 2012) show that the 

particle-chains are often wavy rather than straight, as sketched in Fig. 3.1b.  It has been 

suggested in the literature that wavy chains may explain the increased tensile modulus 

(Ivaneyko et al. 2011), but no rigorous theory or model has been proposed for this 

mechanism. 

In addition to the dipolar interactions, other mechanisms have also been suggested for 

the MR effect, such as the local non-affine deformation of the polymer matrix.  In a magnetic 

field, the neighboring particles in a chain of finite length may move closer to each other due 

to the magnetic attraction (e.g. Kankanala and Triantafyllidis, 2004), as sketched in Fig. 3.1c.  

As the particles are much stiffer than the matrix, the particle chain with narrower gaps would 

have a higher effective stiffness.  Another type of non-affine deformation is the large 

distortion of the polymer matrix in between particle chains, as shown in Fig. 3.1c. 
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With all these mechanisms proposed but none verified, it becomes an urgent task to 

identify the ultimate origin of the MR effect in MREs.  In the current Chapter, we seek to 

elucidate this puzzle by reconsidering all possible mechanisms.  We will first calculate the 

MR effect from a wavy particle-chain structure by considering the dipolar interactions.  Then 

we will compare the contributions from various mechanisms by computing the responses of a 

few material unit cells with detailed microstructures using a finite-element method, in which 

both the polymer matrix and the filler particles are modeled as deformable continua, and the 

coupled magnetic and strain fields are solved simultaneously. Our calculations will show that 

the dominating mechanism for the MR effect is the magnetic dipolar interaction between 

particles in a wavy chain, while the contribution from chain-chain interaction and non-affine 

deformation is minor. The models also predict the possibility of manufacturing a material 

with negative MR effect by arranging the particles in straight chains. 

3.2 Dipolar interaction in a wavy particle-chain 

In this section, the simple dipole-interaction model (Jolly et al., 1996) is extended to 

study a wavy particle chain.  Each magnetized filler particle is still treated as a magnetic 

dipole.  The origin of the waviness in particle chains is quite natural.  While the detailed 

chain structure depends on the complex curing processes of MREs, such as the strength of 

the field applied, the initial dispersion, the viscosity of the polymer solution, and the speed of 

curing, basic physics suggests that a chain of aligned and equally spaced magnetic dipoles is 

unstable (Earnshaw, 1842).  To enable analytical solution of the problem, we still assume the 

chain structure to be periodic and infinitely long, as sketched in Fig. 3.1b.  The individual 

chains are assumed to be quite far from each other so that the interaction between chains is 
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neglected. The structure is characterized by two geometric parameters: the horizontal 

distance b and vertical distance h  between two neighboring particles.  Particularly, a wavy 

chain reduces to a straight chain when 0b . 

Consider the case when the magnetic field is applied in the vertical direction, along 

the particle chains.  When the material undergoes an elongation or compression along the 

same direction, the symmetry of the problem suggests that the dipole moment of each 

particle, m , is also in the vertical direction.  The magnetic interaction energy of per particle 

can be calculated by summing Eq. (3.1) over the contributions from all other particles: 

   1503.05.0
3

2

0  



f

h

m
U , (3.4) 

where        







1

252222 12122
n

nnf  , and hb  is a dimensionless 

geometry parameter representing the waviness of a chain.  When 0 , the result reduces to 

that of a straight chain, 32

02.1 hmU  . 

The magnetic interaction energy per unit volume of the MRE can be written as 

NUWm  , where N  is the number of particles per unit volume.  mW  changes with 

deformation.  Let us first consider a uniaxial deformation along the chain direction, and 

assume that all particles undergo an affine deformation.  The geometry of the chain structure 

varies accordingly with the axial stretch  : h  becomes h , b  becomes b1 , and thus   

becomes  2 .  The magnetic energy density is thus also a function of the axial stretch  , 
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The magnetic energy gives rise to an additional stress  mm Ws , and an additional 

tensile modulus due to the magnetic contribution, 

       8032.1296 2

3

2
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fff
h

mNW
E m

m .  (3.6) 

The normalized magnetic modulus, 2

0

3 mNhEE mm  , is plotted in Fig. 3.2.  To 

show the fast attenuation of the magnetic interactions, we plot Eq. (3.6) together with the 

approximate result with only the interaction from the nearest neighbor.  The small difference 

clearly shows the dominance of the interaction between neighboring particles.  The results 

show that for relatively small   values, or almost straight particle chains, the magnetic 

dipolar interaction has a negative contribution to the modulus.  At the intermediate values of 

  (approximately 0.4~0.85), when the chain is wavy, mE  is positive and maximizes at 

6.0 .  At relatively large values of  , a wavy chain is effectively divided into two 

parallel straight chains, and the magnetic contribution to the tensile modulus is also negative.  

The results at large values of   also indicate that the interaction between two straight chains 

could not give a positive MR effect in tension. 
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Figure. 3.2 Dimensionless contribution to the tensile modulus from magnetic dipole 

interactions, plotted as a function of the geometric parameter hb  (the waviness of a 

chain).  Both the nearest-neighbor approximation (dash curve) and the result with 

interactions from all particles (solid curve) are presented. 

The prediction of this model is quite interesting.  The MR effect is highly dependent 

on the particle alignment in each chain.  Only an MRE containing wavy particle chains has a 

positive MR effect in tensile modulus. The fact that existing MREs mostly demonstrate 

positive MR effect indicates that most particle chains in these materials are quite wavy.  If an 

MRE with relatively straight particle chains could be manufactured, we expect that it would 

exhibit a negative MR effect, i.e. a reduction in tensile modulus under a magnetic field. 

Using a similar approach, we also calculate the additional shear modulus induced by the 

magnetic dipolar interaction.  Interestingly, the results are dependent on the relative direction 

of the shear deformation, as shown by Fig. 3.3.  If the applied shear is perpendicular to the 

direction of the magnetic moments (case 1 on Fig. 3.3), the result is opposite to the tension 
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Figure 3.3 Dimensionless contribution to shear modulus from magnetic dipole interactions, 

plotted as a function of the geometric parameter hb .  The results depend on the relative 

direction of the shear-induced rotation and the direction of dipole moments.  In the case when 

the dipoles stay in the original direction (case 1), a straight chain ( 0 ) has stiffening effect 

in shear, but a wavy chain of intermediate   values softens under a magnetic field.  In the 

case when the dipoles follow the shear-induced rotation (case 2), a wavy chain shows 

stiffening effect at intermediate values of  . 

case: a straight chain stiffens under a magnetic field but a wavy chain becomes more 

compliant. When the shear is parallel to the direction of the magnetic moments (case 2 on 

Fig. 3.3), the result is similar to the change in the tensile modulus.  One may argue that these 

two shear modes differ only by a rigid-body rotation, and case 1 is even closer to a usual 

experimental setup at first sight (e.g. Jolly et al., 1996; Zhou, 2003; Shen et al., 2004).  It 

should be pointed out that, due to the presence of the magnetic dipole vectors, the difference 

between these two cases is more than just a rigid-body rotation.  In fact, the physical 

difference lies on the magnetization behavior of the material.  In case 1, the magnetic dipoles 
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are always in the direction of the applied magnetic field, despite the shear-induced rotation of 

the particle chain.  In case 2, the magnetic dipoles rotate together with the particle chain.  

Since the filler particles have much higher permeability than the polymer matrix, a particle 

chain creates a highly permeable pathway for the magnetic field in the composite, and 

consequently the magnetization would more likely follow the rotation caused by the shear 

deformation.  Case 2, which gives a result closer to the experimental observations, may better 

represent the actual physical process.  This speculation would be further validated by the 

numerical calculations in the following sections.  

Although the dipolar interaction model provides a simple way of understanding the 

mechanism of the MR effect, and shows that a wavy-chain structure could explain the 

stiffening effect in both tension and shear, it is still limited by the oversimplified model 

assumptions.  First, the magnetic interactions between particles are modeled as that between 

dipoles.  Such an approximation is valid when the inter-particle distance is much larger than 

the size of an individual particle, whereas available micrographs showed that the gaps 

between particles are often comparable or even smaller than a particle (e.g. Chen et al. 2007; 

Bobarth et al., 2012).  Second, the model assumes constant dipole moment for each filler 

particle, while in reality both the magnitude and the direction of magnetization would vary 

with deformation.  Third, as discussed in the previous section, the presence of rigid particles 

may induce highly non-affine deformation, which may also affect the mechanical stiffness.  

To verify the prediction of the dipolar interaction model and to investigate the effects of all 

other possible mechanisms, a model that considers both filler particles and polymer matrix as 

continua will be introduced to study the stiffening effect via numerical simulations. 
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3.3 Material model and numerical calculation 

The continuum theory of coupled magnetic field and mechanical deformation, namely 

the magneto-elasticity, has been well developed (e.g. Brigadnov and Dormann, 2003; 

Dorfmann and Ogden, 2004; Kankanala and Triantafyllidis, 2004; Han et al., 2011; Danas et 

al., 2012).  Also Chapter has introduced a theoretical framework to derive the theory of 

magneto-viscoelasticity.  The purpose of the current section is not to redevelop the theory, 

but to use it to study the field-stiffening mechanism of MREs.  We will thus omit the detailed 

derivation of the theory, and only list the governing equations and the specific material 

model.  In contrast to homogenized models (e.g. Dorfmann and Ogden, 2004; Kankanala and 

Triantafyllidis, 2004; Ponte-Castañeda and Galipeau, 2011), we will study the effect of 

microstructures by considering the polymer matrix and the magnetic fillers as continua of 

distinct material properties. 

Following Chapter 2, we specify the material properties by introducing the Helmholtz 

free energy function W , and consider the case that neither the polymer matrix nor the filler 

particles have physically coupled magnetic and mechanical properties. Polymers are 

naturally non-magnetic, and the small magnetostriction of individual iron particles can be 

neglected. We therefore write the free energy into the sum of the magnetic contribution mW  

and the elastic contribution sW . For simplicity, we further assume the magnetic field is much 

lower than the saturation field, so that the materials can be modeled as linear magnetic as in 

Chapter 2, with magnetization energy density 

 
2

ii
m

BB
W  ,  (3.7) 
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where   is the permeability and iB  the magnetic induction.  Repeated indices indicate a 

summation over all spatial dimensions.  Unlike the ferrogels, only elasticity is considered for 

MREs here. Thus the elastic property is captured by the neo-Hookean model, with free 

energy density 

  3
2

1
 iKiKs FFGW , (3.8) 

with G  being the shear modulus, and iKF  the deformation gradient.  An incompressible 

constraint, 1det F , is further prescribed by using a Lagrange multiplier, p , i.e. the 

pressure field.  The field theory of magneto-elasticity is often written in terms of the nominal 

quantities measured with respect to the reference configuration.  For example, the nominal 

magnetic induction 
1~  KiiK FBB , with 1

KiF  being the inverse-tensor components of the 

deformation gradient. 

The specific form of free-energy function gives rise to the constitutive relations.  The 

nominal stress is related to deformation gradient and magnetic induction as 

 1~~1 
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and the nominal magnetic field 
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 In the absence of any body force, the mechanical equilibrium requires the divergence 

of the nominal stress to vanish 
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Without any distributed current in the bulk, the static magnetic field satisfies Ampère’s law, 

 0

~






K

M
iKM

X

H
 , (3.12) 

where iKM  is the permutation symbol.  The spatial derivatives in the governing equations, 

(3.11) and (3.12), are both taken with respect to the material coordinates in the reference 

state. 

 Following the weak forms developed in Chapter 2 and removing those terms related 

to the viscocity, the governing equations and the material model are implemented into a 

finite-element code using the commercial software COMSOL Multiphysics 4.2. As the 

detailed microstructure of an MRE is unknown, we are more interested in the dominating 

mechanism rather than giving accurate prediction for a specific sample.  We thus implement 

the model in 2D, and calculate the representative unit cells in a material, such as the one 

sketched in Fig. 3.4b.  In contrast to the dipole-interaction model, each filler particle is now 

modeled as a circular domain with finite diameter d .  We assume the particles to be tightly 

bonded to the matrix, so that both displacement and traction are continuous across the 

interface.  Different material properties are assigned to the filler particles and the polymer 

matrix.  Both the shear modulus and the magnetic permeability of the iron fillers are taken to 

be 1000 times higher than the corresponding parameters of the polymer matrix, 

3

00 10  ff GG , similar to those taken in the literature (Davis et al., 1999).  To reduce 

the number of parameters, we normalize stresses by 0G , magnetic inductions by 00G , and 

magnetic fields by 00 G .  For a typical shear modulus of the polymer matrix, 1 MPa , a 

dimensionless magnetic field 5.000 GH   is approximately 445 kA m , which is far 
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below the saturation field for iron particles (Carlson and Jolly, 2000).  Thus the linear 

magnetic assumption in Eq. (3.7) should be valid. 

 

Figure 3.4 (a) Sketch of an MRE with the magnetic field applied through an electromagnetic 

coil. (b) Sketch of a representative unit cell with a wavy chain.  Periodic boundary conditions 

with constant offsets are applied on the displacements of all four edges of the unit cell. 

Since the computational cells are much smaller than the size of a specimen, the 

boundary conditions are different from those on a macroscopic sample.  Periodic boundary 

conditions are applied to the four sides of a unit cell, to represent a small piece of material in 

the middle of a large sample. To allow macroscopic deformation, the horizontal displacement 

on the right boundary has a constant but unknown offset from that on the left boundary, 

0uuu lr  . Similar conditions are prescribed on the top and bottom boundaries, 0vvv bt  . 

The proper choice of magnetic boundary conditions is not obvious, as no magnetic 

field or electric current is applied directly on the boundaries of the unit cell.  In experiments, 

magnetic fields have been applied in various ways to study the stiffening effect.  In the 

tension or compression tests, magnetic fields are usually applied via electromagnetic coils 

where the MRE sample is placed at the center of the coil (e.g. Varga et al., 2006; Li et al., 
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2010; Chertovich et al., 2010), as sketched in Fig. 3.4a.  Due to the different permeability of 

the sample and its surrounding air, the magnetic field is non-uniform.  Let us neglect the 

surface effect by considering a small representative volume in the middle of the sample, in 

which the field is almost uniform.  We thus apply periodical boundary conditions to the top 

and bottom edges of the unit cell, and symmetry boundary conditions to the left and right 

edges.  The magnetic field is applied through an integral constraint.  Consider the contour a-

b-c-d on Fig. 3.4a, according to Ampere’s law, the integration of the magnetic field along a 

closed contour equals the electric current it encloses.  We may neglect the magnetic field 

outside the coil, and also that along the transverse sections (b and d) of the contour.  Thus the 

true magnetic field along boundary a is related to the current density in the coil J  as 

JadlH
a

t  , where tH  is the tangential component of the true magnetic field along the 

boundary. Since the coil rarely deforms with the sample, the true magnetic field H  measured 

with respect to the current geometry keeps constant when the sample undergoes a tension or 

compression. To be consistent, we also evaluate the moduli by taking the derivatives of the 

true normal stress   and shear stress   with respect to the corresponding strains   and  , 

all measured in the current state.  Therefore, in the following numerical examples, the MR 

effect is demonstrated by calculating the dependence of the tensile and shear moduli on the 

applied true magnetic field 

  
H
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




  and  

H

HG







 . (3.13) 

It should be mentioned that some experiments are done under approximately constant true 

magnetic induction by placing the sample between two permanent magnets, such as those 

measuring the MR effect in shear (Jolly et al., 1996; Varga et al., 2006; Kaleta and 
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Lewandowski, 2007; Stepanov et al., 2007; Chen et al., 2007; Zajac et al., 2010). The 

measured constant-induction moduli, e.g. 
B

  , may differ from the constant-field moduli 

(3.13) in values, but should at least have the same sign and trend. 

3.4 Results and discussion 

First, the tensile moduli of unit cells with straight and wavy particle chains are 

studied.  The chain structures are assumed to be infinitely long in both cases.  In the 

numerical simulation, 1% tensile strain was applied to the unit cell along the chain direction.  

The tensile modulus  HE  is evaluated from the finite-element output using Eq. (3.13).  The 

results are normalized with the zero-field modulus  0E , and plotted in Fig. 3.5 as a function 

of the dimensionless field strength 00 GH  , for various particle-chain geometries.  Shown 

in Fig. 3.5a are the results of unit cells with straight particle chains ( 0 ) but different 

inter-particle distances ( 3.1,2.1,1.1dh ).  Just like the prediction of the dipole-interaction 

model, the straight-chain structure has a negative MR effect (i.e. the field-induced stiffness 

decrease). Moreover, the relative change in the modulus decreases with dh , as the 

composite is less permeable with large inter-particle distance, and thus the particles are less 

magnetized.  As shown in Fig. 3.5b, the results with wavy particle chains are also consistent 

with the prediction of the dipole-interaction model.  At intermediate values of  , wavy chain 

structures exhibit a positive MR effect in tension.  Interestingly, the tensile modulus of some 

wavy chain structures (e.g. at 4.0 ) is not a monotonic function of the applied field.  At a 

relative high magnetic field, the modulus decreases slightly. We believe that this 
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phenomenon is caused by the local non-affine deformation under a strong magnetic field, 

when the particles are better aligned into a straighter chain.  

The shear moduli  HG  of these unit cells are also calculated and the results are 

plotted in Fig. 3.6a, after normalization with the zero-field shear modulus  0G .  In contrast 

to the behaviors in tension, the particle-chain structures always exhibit a positive MR effect, 

and a straight chain ( 0 ) shows the highest relative change in the shear modulus.  The 

results show that the behavior of particle chains is neither of the two ideal cases in the dipole-

interaction model (Fig. 3.3).  The magnetization of the iron particles neither remains in the 

direction of the external field, nor strictly follows the shear-induced rotation of the chains.  

As shown by Fig. 3.6b, the magnetization of the filler particles slightly rotates in the 

direction of shear, but the angle of rotation is smaller than the shear strain. 
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Figure 3.5  Stiffening effect in the tensile modulus of MREs with different chain geometries: 

(a) straight chains ( 0  ) only give softening effect, which becomes weaker as the inter-

particle distance increases; (b) wavy chains of intermediate   values have positive field-

stiffening effect.  

  

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

 

 

h/d =1.1,  =0

h/d =1.2,  =0

h/d =1.3,  =0

 
00 GH 

(a)

 






0
E

H
E

0 0.1 0.2 0.3 0.4 0.5
0.99

1

1.01

1.02

1.03

1.04

1.05

 

 

h/d =1.1,  =0.4

h/d =1.1,  =0.6

h/d =1.1,  =0.8

h/d =1.1,  =1.0

 
00 GH 

(b)

 






0
E

H
E



 56 

 

 

 

Figure 3.6 (a) Stiffening effect in the shear modulus of MREs with different chain 

geometries: straignt chains ( 0  ) give the strongest stiffening effect and wavy chains (

0 ) also induce positive stiffening effect. (b) Rotation of the particle chains and the 

magnetization in filler particles due to a shear deformation.  The color scale shows the 

magnitude of the dimensionless true magntic field, and the  arrows shows the directions of 

the magnetization field. 
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To further investigate the effect of deformation non-affinity in the particle-chain 

level, two more microstructures of MREs are studied.  Instead of assuming the particle-

chains to be infinitely long, we arrange finite particle chains side by side or staggered as 

shown by Fig. 3.7a and b, respectively, and select the computational unit cells as delineated 

by the dash lines. To focus on the contribution from non-affine deformation, we only 

consider the case of straight chains.  The distance between neighboring particles within a 

chain is fixed at 2.1dh  and the aspect ratio of the unit cells is fixed at 5.0Lw , where 

w  and L  are the width and length of the unit cells.  The relative length of a particle chain 

Ll  varies from 0.5 to 1.  Under a 1% tensile strain, the deformation and the magnetic field 

are shown in Fig. 3.8.  As expected, even under the low overall strain, both cases exhibit 

highly non-affine deformation: the inter-particle distance is significantly narrowed while the 

gaps between chains are extended.  The local strain exceeds 20%.  In addition, the staggered-

chain structure shows a shear-lag pattern in the polymer matrix between two parallel chains 

with overlaps.  The relative changes in tensile modulus of both types of structures are plotted 

in Fig. 3.9. 
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Figure 3.7 Two representative microstructures of MREs containing particle chains of finite 

lengths: (a) chains are parallel and side by side, and (b) chains are staggered. The 

computational unit cells are marked by dash lines. 

 

Figure 3.8 Simulated non-affine deformation in unit cells under magnetic fields: the inter-

particle distance is narrowed and the inter-chain gap is stretched. The magnetic induction 

field is shown by streamlines, and the vertical stretch is shown by color scale.   
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Despite the finite length of the chains and the staggered pattern, all results show a 

negative MR effect in tension.  Although the structures with larger gaps (smaller Ll  values) 

demonstrate a smaller decrease in the stiffness, we believe it is mainly caused by the decrease 

in the effective permeability of the structure – particle chains with larger gaps are less 

magnetized under the same field.  This conclusion can be drawn by comparing between the 

behaviors of the side-by-side structure and the staggered structure.  As shown by Fig. 3.9, the 

two types of structures are only slightly different in terms of the stiffness change.  The 

difference would be much more significant if the non-affine deformation were the 

dominating mechanism for the stiffness change, as the deformation patterns and load-

carrying modes of the two structures are very different.  We thus conclude that although the 

non-affine deformation under a magnetic field could cause stiffness increase, it plays a minor 

role compared to the effect of wavy chains in an anisotropic MRE.  It may, however, explain 

the relatively low MR effect in isotropic MREs (Rao et al., 2010), in which particles are 

randomly distributed and no chain structure is present. 
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Figure 3.9 Relative change in tensile modulus of MREs containg straight chains arranged 

side by side or staggered.  All geometris show a field-softening effect.  The effect becomes 

weaker as the gap size increases. 

Finally, using the numerical model developed, we will study the effect of particle 

concentrations. It has been observed in experiments that MREs loaded with more iron 

particles usually have a stronger MR effect, both in shear and in tension/compression (Bellan 

and Bossis, 2002; Nikitin et al., 2006; Varga et al., 2006; Rao et al., 2010; Wu et al., 2011).  

For simplicity, only the structures of infinite long wavy chains with geometric parameter 

6.0  are considered.  The volume fraction of filler particles,  , is changed by tuning the 

width of the computational unit cells.  The calculation results are presented in Fig. 10a.  It is 

found that for each  , the relation between the dimensionless change in tensile modulus 

0GE  and the dimensionless magnetic field 00 GH   fits well to a quadratic function, as 

shown by Fig. 3.10a.  In other words, the absolute change in modulus scales with the square 

of the applied field, and is independent of the elastic properties of the matrix.  Such a result 
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could be understood as a consequence of the dominance of the magnetic particle interactions 

over the non-affine deformation.  This important result could be easily verified through 

experiments, e.g. by measuring the ME effect under different temperatures. 

Subsequently, we fit all data in Fig. 3.10a by quadratic relations, and plot 2

0HE  , 

which represents the relative strength of the MR effect, as a function of the filler volume 

fraction in Fig. 3.10b.  More interestingly, the dimensionless combination 2

0HE   turns 

out to be almost linear in the filler volume fraction  .  Due to the limitation of the current 2D 

model and the coarse presentation of the microstructures, we are not confident on the 

accuracy of this linear relation, especially at high concentrations of filler particles.  A densely 

loaded MRE could cause the particles to agglomerate and thus change the chain structure of 

the material.  Nevertheless, the predicted trend that stronger MR effects are expected at 

higher filler concentrations is in agreement with experimental observations (e.g. Varga et al., 

2006).  A 3D finite element model with more realistic microstructures of MREs is expected 

to yield more accurate results, but is beyond the scope of this study. 
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Figure 3.10 (a) Change of tensile modulus plotted as a function of the normalized true 

magnetic field, for MREs of various filler volume fractions.  The numerical results fit well to 

a quadratic relation, 2

0HE   (solid curves). (b) The dimensionless quantity 2

0HE   

from the fitting results, is approximately linear in filler volume fraction,  .  
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3.5 Concluding remarks 

While the MR effect in magnetic-particle-filled polymer composites has been 

identified for decades, the dominating mechanism giving rise to this effect has never been 

clearly identified.  It is clear though, that the mechanism is strongly correlated with the 

underlying microstructures of the materials.  In this Chapter, we investigate the particle chain 

structures of anisotropic MREs and identify the dominating mechanism that causes the MR 

effect using two methods.  First, by modeling each particle as a magnetic dipole, we 

analytically derive the magnetic contribution to the stiffness of an MRE.  The result shows 

that even though a straight chain could give MR effect in shear, the tensile modulus would 

decrease with magnetic field.  On the other hand, a wavy chain could give rise to positive 

MR effect in both shear and tension/compression. To compensate the simplicity of the 

dipole-interaction model, we develop a finite-element model to simulate the behavior of 

material unit cells, which contain the polymer matrix and filler particles arranged into various 

patterns. Both the matrix and the fillers are modeled as continua of distinct material 

properties.  The finite-element calculation confirms that the magnetic interaction among the 

filler particles in an MRE of wavy chains have positive MR effect in both shear and 

tension/compression.  Furthermore, numerical calculations show that the contribution from 

non-affine deformation is present but insignificant, and would not yield a positive MR effect 

in MREs with straight chains. 

Besides identifying the dominant mechanism of MR effect, our models have a few 

interesting predictions.  It is shown analytically and numerically that an iron-particle-filled 

polymer composite would have a decrease in tensile stiffness under a magnetic field, if the 

particles are specially arranged to form straight chains.  For a regular MRE, it is shown 
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numerically that the stiffness increase scales with the square of the applied field, and is 

independent of the stiffness of the matrix material.  The 2D numerical model also predicts an 

approximately linear dependence of the MR effect on the volume fraction of filler particles at 

relatively low filler concentrations.  We are eagerly waiting for experimental verifications on 

the microstructural mechanism and on the predictions of the model. 
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CHAPTER 4.  A HOMOGENEOUS MODEL OF MAGNETOSTRICTION 

AND MAGNETO-RHEOLOGICAL EFFECT 

4.1 Introduction 

As an intrinsic property of magnetic materials, magnetostriction causes them to 

change shapes when subjected to a magnetic field.  This phenomenon is usually observed in 

ferromagnetic metals and alloys, such as nickel and Terfenol-D (Clark and Belson, 1983; 

Wun-Fogle et al., 1999). The magnetic field-induced deformation is employed in diverse 

applications, such as transducers, actuators and sensors (Moffett et al., 1991; Kwun and 

Bartels, 1997; Quandt and Ludwing, 2000).  While all ferromagnetic materials deform under 

magnetic field, the effect is particularly pronounced in soft materials, such as polymer based 

composites filled with magnetic particles (Bednarek 1999). The deformation of such 

magneto-active elastomers (MAEs) is found much larger than that in crystals (Bednarek, 

1999; Ginder et al., 2002; Martin et al., 2006; Guan et al., 2008).  For example, 1.5% axial 

stain is obtained from a silicon elastomer containing iron particles at a volume fraction of 

10% under a magnetic field of 120kA/m (Coquelle and Bossis, 2005).   

To promote utilizing the magnetostriction of these soft active materials, experimental 

and theoretical studies have been conducted recently.  It is found that the magnetostriction of 

MAEs is strongly microstructure dependent.  When the particles are randomly dispersed in 

the polymer matrix, significant magnetostriction has been observed from such isotropic 

MAEs.  The magnitude of the strain is linear to the square of the applied magnetic field at a 

relatively low field and saturates at a relatively high field (e.g. Ginder et al., 2002; Martin et 

al., 2006).  On the contrary, slight magnetostriction has been observed from anisotropic 
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MAEs where particles form chain structures (Guan et al., 2002; Danas et al., 2012).  With 

differnet preloads applied, both elongation and contraction are observed in anisotropic MAEs 

(Danas et al., 2012).  Several models are developed based on the magnetic dipolar interaction 

theory to explain the magnetostriction in isotropic MAEs (Diguet et al., 2009; Stolbov et al., 

2011).  However, mismatch exists in theories and experiments for anisotropic MAEs: 

dilations have been observed in experiments while theoretically each particle attracts its two 

closest neighbors leading to a contraction of the whole chain strucrure (Kankanala and 

Triantalfyllidis, 2004).  Such lack of understanding motivates this study to seek for the 

mechanism of magnetostriction of both isotropic and anisotropic MAEs. 

Another significant feature of MAEs is the magneto-rheological (MR) effect: both 

their shear and tensile moduli increase under an applied magnetic field (Jolly et al., 1996; 

Gong et al., 2005; Varga et al, 2006).  Such property enables MAEs in applications where 

tunable stiffness is required, such as in vibration dampers (Deng et al., 2006; Li et al., 2012), 

vibration control for earthquake (Ni et al., 2010) and noise barrier (Farshad, 2004). The MR 

effect is usually attributed to the magnetic dipolar interaction between the adjacent particles 

(Jolly et al., 1996; Davis, 1999).  However, these models assuming straight particle chains 

failed to explain the MR effect in tensile modulus (Ivaneyko et al. 2011). A microstructure-

based finite-element model is developed in Chapter 3 to investigate other mechanisms that 

cause the MR effect. It is shown that the magnetic interaction between neighboring particles 

of a wavy chain is the key to the MR effect, and the numerical results qualitatively agree with 

experiments. However, to conduct quantitative prediction of the MR effect, the detailed 

information of the microstructure is needed, such as the inter-particle distances and angles.  
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This chapter aims to develop a homogeneous model to predict the MR effect with very few 

material parameters that could readily be measured.  

This Chapter is organized as follows. Based on the principles of thermodynamics, a 

constitutive model is first developed for the multi-physcis coupling of cylindrical MAEs 

subjected to a uniform magnetic field. When a strain dependent effective permeability is 

adopted, the model naturally extends to the magnetostriction and the MR effect. The 

microstructure dependent behavior of MAEs is dicussed and experimental data from 

literature is fitted by the model as illustrative examples. 

4.2 Fields definition 

To derive a constitutive model to couple the magnetic field and the finite 

deformation, we imagine a cylindrical MAE surrounded by a flexible and stretchable 

conductive coil as in Fig. 4.1.  In the reference state, the elastomer has length L  and radius 

R . When the elastomer is subject to uniformly distributed force zF  in the axial direction and 

rF  in the radial direction, as well as a magnetic field induced by the current I  passing 

through the coil, the dimensions of the MAE change to l  and r , respectively.  In most cases, 

MAEs are either isotropic, when particles are randomly dispersed in the matrix, or 

transversally isotropic, when particles are aligned in the axial direction.  Thus due to the 

axisymmetry in both the geometry and the magnetic field, it is safe to assume a homogeneous 

uniaxial deformation takes place in such a cylindrical MAE. Consequently, the stretches of 

the matrial in axial and radial directions are respectively, 

 Llz  , Rrr  .  (4.1) 
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Figure 4.1 Sketch of a cylindrical MAE surrounded by a flexible coil.  A constant current I  

passes through the coil to generate a uniform magnetic field through the elastomer.  In the 

reference state, the elastomer has a length, L  and a radius, R .  Under a deformed state, the 

dimensions change to l  and r , respectively. 

Here the forces zF  and rF  are mechanical forces applied by external agents, such as 

weights.  When the length and radius of the MAE change by small amounts, l  and r , the 

mechanical forces do works lFz  and rFr .  Here we assume the length of the MAE is 

much larger than its diameter, RL  , thus the magnetic field is homogeneous in most part 

of the MAE body and diverges from its edges.  For simplicity we neglect the edge effect and 

assume the magnetic field is homogeneous through the MAE body.  Denote the magnetic 

flux through the cross-sectional area of the MAE by  . Because the MAE material has 

higher permeability then the surrounding air, when the elastomer is stretched or contracted 

the magnetic field is perturbed.  According to Faraday’s law, such perturbation inducts a 

voltage in a coil of N  turns, dtNdV Φ , where dtdΦ  is the rate of change in the flux.  

The negative sign indicates that the induced voltage is against the change in the flux.  In a 

Reference Deformed State

I

I

L
l
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very short period of time, the additional work done by the coil-circuit is  VdtI   , which 

can be written as ΦNI .  

The MAE and the coil-circuit together is a thermodynamic system taken to be held at 

a constant temperature.  Denote the Helmholtz free energy of the system by A .  When the 

MAE is in an equilibrium with the applied forces and the magnetic field, associated with any 

small change in the dimensions of the elastomer and in the magnetic field, the change in the 

Helmholtz free energy equals the work done by the applied forces and the electronic coil-

circuit,  

 ΦNIrFlFA rz   .  (4.2) 

Divide Eq. (4.2) by the volume of the elastomer in the reference state, LR2 , and 

combine with Eq. (4.1) we obtain that 

 BHssW rrzz

~~
2   ,  (4.3) 

where  LRAW 2  is the Helmholtz free-energy density;  2RFs zz   is the nominal 

stress in the axial direction;  RLFs rr 2  is the nominal stress in the radial direction; 

LNIH 
~

 is the nominal magnetic field; and  2~
RΦB   is the nominal magnetic flux 

density.  From Eq. (4.3), we know that the nominal stresses are work conjugate to the 

stretches, and the nominal magnetic field is work conjugate to the nominal magnetic flux 

density.  

Different quantities have been chosen as independent variables for the free-energy 

function (Kankanala and Triantafyllidis, 2004).  Following Chapters 2 and 3, as a material 

model we stipulate that the free-energy density is a function of the stretches and the nominal 
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magnetic flux density,  BW rz

~
,, . Consequently, Eq. (4.3) dictates that the nominal 

stresses and the nominal magnetic field are partial differential coefficients, namely, 
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Once the free-energy function  BW rz

~
,,  is known for a given MAE, Eq. (4.4) 

constitutes the equations of state.   

Recall that the true stresses are defined as  2rFzz    and  rlFrr  2 , so that 

the true stresses relate to the nominal stresses by 2

rzz s    and  rzrr s   .  Similarly, 

the true magnetic field is defined as lNIH  , and the true magnetic field relates to the 

nominal electric field by 
zHH 

~
 . The true magnetic flux density is defined as 

 2rB  , so that the true magnetic flux density relates to the nominal magnetic flux 

density by 2~
rBB  .  It is worth to note that though the true stresses are not work conjugate 

to the stretches in a finite deformation (Suo et al., 2008), the true magnetic field is still work 

conjugate to the true magnetic flux density.  Recall that the coil-circuit does work NI , 

which can be rewritten in terms of the true quantities as    2rBHlNI      BHlr  2 .  

Thus the product BH  is the work per unit volume, and therefore the true magnetic field 

strength can be calculated as BWH  . In order to make expressions consistent, nominal 

quantities of magnetic field are used in the free energy function in this chapter.  



 71 

 

4.3 Incompressibility and free-energy 

In general, when an MAE deforms the change in the volume is negligible comparing 

to the change in the shape, thus the material is taken to be incompressible.  The volume is 

conserved in an uniaxial deformation, LRlr 22   , or, in terms of stretches as 12 zr .  

When the MAE deforms, the condition of incompressibility relates the change r  to the 

change z  as 

 z

z

r
r 






2
 .  (4.5) 

Consequently, Eq. (4.3) becomes 

 BHssW zr

z
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~~





 








 .  (4.6) 

Recall the radial stretch relates to the axial stretch as zr  1 , thus the free-energy 

density can be reduced to a function of the axial stretch and the nominal flux density only, 

 BW z

~
, , so that Eq. (4.6) implies that 
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Once the free-energy function  BW z

~
,  is known for an incompressible MAE, Eq. 

(4.7) constitutes the equations of state.   

When an MAE deforms under a magnetic field, the Helmholtz free-energy is 

contributed from two concurrent processes: stretching and magnetizing the particle-filled 



 72 

 

elastomer.  Following Chapter 3, the free-energy function is a sum of the energy due to 

stretching the polymer network and the energy due to magnetizing the particles, 

     BWWW zmzs

~
,  .  (4.8) 

We adopt the concept of effective permeability,  , which is the ratio between an average 

magnetic field strength and the corresponding average flux density in a representative 

volume of the material.  When an MAE deforms, the inter-particle distance and angle vary 

leading to a change in the effective permeability. Therefore, we write the permeability as a 

function of the axial stretch,  z  , and leave the discussion on the specific form of   

in the next Section.  Following Dorfmann and Ogden (2004) and Han et al. (2011), in general 

the magnetic energy density in the current state can be prescribed as  
 z

zm

B
BW




2
,

2

 .  

Therefore, the free-energy function is written in terms of nominal quantities as 
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Inserting Eq. (4.9) into Eq. (4.7), we obtain that 
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 BH z ~~
2
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In terms of true quantities, Eq. (4.10) becomes 
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 HB  .  (4.11b) 
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The first term in Eq. (4.11a) is the stress due to elasticity.  The second term is the 

Maxwell stress and is always positive in the direction of the magnetic field.  The third term is 

present when the permeability varies with the stretch, and can be either positive or negative 

depending on the specific microstructure. Equation (4.11b) characterizes a linear 

ferromagnetic behavior: the magnetic flux density is linear to the magnetic field strength 

when the stretches are held at any fixed levels.   

4.4 Effective permeability 

The nonmagnetic polymer matrix and magnetic particles are two distinct phases in 

MAEs. Homogenizing rules such as Maxwell-Garnett formula and Bruggeman formula 

(Waki et al., 2006; Zhang et al., 2008) have been used to estimate the effective permeability 

of magnetic composites in the absence of any deformation.  However, the strain dependence 

of the permeability has seldom been studied.  This section discusses on the strain depedent 

effective permeability of MAEs from a physical perspective.  

The magnetic particles can be randomly distributed in the matrix (Zrínyi et al., 

1997b), or be engineered into alignments by applying an external magnetic field during the 

synthensis (Jolly et al., 1996; Gong et al., 2005; Varga et al., 2006).  Fig. 4.2 shows unit cells 

of MAEs with three ideal types of microstructures: particles are randomly dispersed (4.2a), 

particles form into straight chains (4.2b) and wavy chains (4.2c). Generally, particle chains 

have higher effective permeability in the chain direction, and the denser the chain is, the 

higher permeability is obtained.  Notice that the effective permeability of an MAE with chain 

structures is directional, in the current chapter we assume the material is transversally 

isotropic and limite the discussion on the case that an external magnetic field is applied along 
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the chain direction. Therefore, only the permeability in the chain direction is important. 

Subject to a uniaxial stretch,  , both the angle and distance between neiborhing particles 

vary resulting in a variable effective permeability. Therefore, the effective permeability of an 

MAE is strain depedent, and can be expanded into the Taylor series of the axial stretch to the 

second order, 

       2
111   ba ,  (4.12) 

where   is the effective permeability in the undeformed state, while a  and b  are two 

unknown coefficients.  

Now we discuss on the physical significance of the coefficients a  and b . When 

particles are randomly dispersed in the matrix as in Fig. 4.2a, subject to a stretch in the 

vertical direction, the particles move away from each other in the vertical direction but get 

closer in the horizontal direction. The average inter-particle distance remains as a constant, 

and the ultimate magneto-sensitivity is non-directional.  Therefore, the effective permeability 

is expected to be a constant during a deformation, namely 0 ba  in Eq. (4.12).  However, 

when particles form straight chains as in Fig. 2b (ii), the inter-particle distance increases with 

tension. As the particles are much more permeable than the matrix, the effective permeability 

decreases monotonicly with respect to the stretch, 0a . On the other hand, this effect 

diminishes as the inter-particle distance becomes larger, and the function in Eq. (4.12) is 

expected to be concave with coefficient 0b .  In reality the particle chains are seldom 

straight, but more likely zig-zag as in Fig. 4.3c (Coquelle and Bossis, 2005). As a first order 

effect, the permeability would decrease with strain due to the increased interparticle distance, 

0a . Secondly, the alignment of the particles would be better under tension, which could 
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give a higher permeability. These two magnetisms are competing through a tensile 

deformation.  As a result, the parabolic function in Eq. (4.12) is expected to be convex with 

0b . The specific values of the three unknown parameters,  , a  and b , can be 

experimentally determined for an MAE.   

 

Figure 4.2 Representative sketches of strain dependent effective permeability   of MAEs 

with three different microstructures. The permeability maintains as a constant when the 

particles are randomly dispersed in the polymer-matrix (a), but varies distinctly with respect 

to the strain, 1 , when the particles are aligned into straight chains (b) and zig-zag chains 

(c). 

4.5 Magnetostriction 

This section studies the magnetostricion of MAEs based on the constitutive equations 

developed in Section 4.3. A typical experimental setup for magnetostricion is sketched in 

Fig. 4.3a, a cylindrical sample is placed at the center of an eletromagneto coil.  In the absence 

of the sample, the magnetic field inside the coil is uniform.  The insertion of the sample 
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perturbs the magnetic field, which becomes nonuniform around the edges of the sample, as 

shown in Fig. 4.3b.  The re-distribution of the field depends on the relative size as well as the 

permeability of the sample.  As a demonstration here, we discuss on a specific case that the 

magnetic field is quasi-uniform: the magnetic field is uniformly distributed through the 

sample along the axial direction.  Such a field can be achived with a relatively long solenoid 

or a pair of electromagnets. As in Fig. 4.3b, denote the magnetic field inside the sample by 

H , the outside magnetic field near the top and bottom surfaces of the sample by 1H , and 

that along the vertical sides of the sample by 2H .  According to Gauss’s Law, the magnetic 

flux density is continuous across an interface.  Thereby, together with Eq. (4.11b) we get 

HH  10 , where 0  is the permeability of the air or vacuum.  Due to Ampere’s Law, in 

the absence of any current applied on the skin of the sample, the magnetic field along the 

vertical sides doesn’t change, HH 2 . The true stress on the top and bottom surfaces of the 

sample is 22

10Hz   , while the stress on the lateral surface is 22

20Hr    

(Bustamante, 2010).  In terms of H , the stresses on the surfaces become 
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From here   is used to represent the uniaxial stretch in the current chapter.  For 

simplicity, we assume the mechanical properties of MAEs behave like Neo-Hookean 

materials.  In a uniaxial deformation the stress-strain relation satisfies a general form, 

  12  Grz , where G  is the shear modulus (Flory, 1953).  Together with Eqs 

(4.11b) and (4.13), we have 
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Eq. (4.14) illustrates that for a nonmagnetic material where 0  , such as a rubber, 

no strain can be induced by an external magnetic field.  Besides, by considering 0  as the 

permeability of any other material, Eq. (4.14) indicates that the magnetostriction is actually 

due to the difference of the magnetic permeability between an MAE and its surrounding 

media.  From this point, the model developed here can be easily extended to analyze the 

magnetostriction of other materials.   

 

Figure 4.3 (a) The schematic drawing of a cylindrical MAE placed inside an electromagneto 

coil.  A constant direct current I  passes through the coil generating a uniform magnetic field 

when the MAE is absent.  (b) After the insertion of an MAE, the magnetic field is perturbed.  

The streamlines show the distribution of the magnetic field H , which is quasi-uniform 

through the MAE body. 
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The magnetostriction calculated by Eq. (4.14) is plotted on Fig. 4.4, where the x-axis 

is the square of a dimensionless magnetic field, GH 2

0 , and the y-axis is the axial strain, 

1 .  The dashed curves are results of isotropic MAEs where three constant values of the 

effective permeability, 20  , 5.2  and 3 , are respectively used.  The magnitude of 

elongations is linear to the square of the dimensionless magnetic field, just as observed in 

experiments (Ginder et al., 2002).  Besides, greater effective permeability induces larger 

strain in an MAE.  Such conclusion is consistent with experiments done by Guan et al. 

(2008), in which larger strain is obtained from an MAE with higher volume fraction of iron 

particles, i.e. higher effective permeability.  Since the permeability in anisotropic MAEs is 

strain dependent, for simplicity, we only study the effect of zig-zag chains (Fig. 4.2c) on the 

magnetostriction, where 0a  and 0b  in Eq. (4.12).  The values of permeability used for 

isotropic MAEs are taken to be the initial permeability of anisotropic MAEs,  .  The 

experimental data taken from Ref (Coquelle and Bossis, 2005) is used to fit the coefficients 

a  and b , while a moderate value is chosen for the initial permeability, 5.20  . 

Consequently, 4.0a  and 5b  are obtained. Such values of a  and b  indicate an 

approximate 40% reduction in the permeability if the specimen has a 100% tensile strain. 

The solid curves represent magnetostriction of anisotropic MAEs.  It illustrates that the 

magnetostriction is smaller in an anisotropic MAE.  Such conclusion agrees with the 

experimental observation (e.g. Guan et al., 2008).  Besides, the magnetostriction saturates 

more quickly in an anisotropic MAE, as has been observed in experiments (Martin et al., 

2006; Ginder et al., 2002).   
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Figure 4.4 The magnetostriction of MAEs as functions of the square of a dimensionless 

magnetic field.  The dashed curves represent magnetostriction of isotropic MAEs of three 

values of the effective permeability, while the solid curves represent the magnetostriction of 

anisotropic MAEs.  The square symbols are experimental data taken from Ref (Coquelle and 

Bossis, 2005). 

4.6 MR effect 

A typical setup for studying the MR effect of the tensile modulus is as in Fig. 3a, 

where an anisotropic MAE is subject to a uniform magnetic field. When the particle 

alignments are in the axial direction, i.e. in parallel to the magnetic field, the most significant 

MR effect in tensile modulus is obtained (Varga et al., 2006).  Under the quasi-uniform field 

assumption, the true magnetic field H  in the MAE is constant during a uniaxial deformation 

(Section 3.3).  Consequently the Eq. (4.13) gives a constant stress on the lateral surface of the 

MAE. Thereby, the tensile modulus can be calculated according to Eq. (4.11a),  
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The first terms in Eq. (4.15) is the modulus due to the elasticity, the second term is 

the magnetic field-induced modulus, E .  It illustrates that the field-induced modulus is 

independent on the elasticity of the material, but a function of the change in the effective 

permeability with respect to the axial strain.  For simplicity, here we only discuss the field-

induced modulus in the undeformed state, i.e.  1 E , and leave the discussion on the 

effect of the strain to future work.  Together with Eq. (4.12), the field-induced modulus can 

be written as, 
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From Eq. (4.16), E is linearly proportional to the square of the magnetic field. Such 

conclusion is consistent with experimental (e.g. Varga et al., 2006) and numerical results 

(Section 3.4). Besides, it illustrates that the MR effect strongly depends on the microstructure 

of MAEs.  As discussed in Section 4.4, if an MAE contains zig-zag chains we have 0a  

and 0b  in Eq. (4.12), thereby the extra modulus can be either positive or negative 

depending on the specific values of a  and b .  Such conclusion agrees with the magnetic 

dipolar interaction theory (Section 3.2). To seek for reasonable values of those two 

coefficients, experimental data taken from Ref (Varga et al., 2006) is used to fit Eq. (4.16).  

In the experiment, anisotropic MAE samples with three different volume fractions of 

carbonyl iron particles were synthesized and their tensile moduli were tested under a 

magnetic field of 0~100mT.  The initial permeability are roughly estimated as 4,3,20  , 

corresponding to the fraction of iron particles of 20wt%, 30wt% and 40wt%, respectively.  

As shown in Fig. 4.5, the square, triangle and circular symbols represent experimental data.  

The solid curves show the calculated E , where  4.0a  and 5.1b  are fitted values.  
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On the other hand, if an MAE contains straight chains we have 0a  and 0b  in Eq. 

(4.12), therefore only negative modulus can be obtained under a field from Eq. (4.16).  For 

example, when 4.0a  and 5.0b  the extra modulus is plotted by the dashed curves.  It 

illustrates that an MAE with straight chains becomes softer in a magnetic field.  However, 

such conclusion is expected to be verified via future experiments.   

 

Figure 4.5 The MR effect in the tensile modulus as a function of the applied magnetic field.  

The solid curves are calculated E  of MAEs with zig-zag chains of three values of the 

effective permeability.  The dashed curve is calculated E  of MAEs with straight chains.  

The square, triangle and circular symbols represent experimental results of three different 

volume fractions of iron particles taken from Ref (Varga et al., 2006).  

4.7 Concluding remarks 

The current Chapter presents a homogeneous model for cylindrical MAEs subjected 

to a quasi-uniform magnetic field.  When a strain depedent effective permeability is adopted, 

the model naturally extends to the magnetostriction and the MR effect. It is shown that the 

magnetostriction of isotropic MAEs is larger than that of anisotropic MAEs. Besides, the 
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magnetostriction of anisotropic MAEs tends to saturate with the magnetic field. These 

conclusions are consistent with experimental results. While the magnetostriction is mainly 

due to the difference of the permeability between an MAE and its surrounding media, the 

MR effect is induced by the change of the permeability under a strain.  It is shown that an 

MAE with wavy particle chains would have a positive MR effect and an MAE with straight 

chains would have a negative MR effect. Such conclusion is consistent with predictions in 

Chapter 3. Experimental data of magnetostriction and MR effect are fitted by the model as 

denmostratvie examples. The results indicate that once the effective permeability of an MAE 

is identified, this model is able to predict both the magnetostriction and the MR effect.  
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CHAPTER 5.  CONCLUSIONS 

In this study, we develop multi-physics coupling theories for magneto-active 

polymers (MAPs). These theories have been implemented into numerical and analytical 

models to predict the performance of MAPs under various magnetic fields and mechanical 

forces. 

Firstly, a field theory is developed to couple the magnetic field and large inelastic 

deformation in solids based on the principles of nonequilibrium thermodynamics. The theory 

is further implemented into a finite element method which makes numerical simulation 

possible. For denmonstration, three boundary value problems of a ferrogel are studied 

respectively. Consistent with experimental results, a ferrogel reacts distinctly in response to 

different magnetic fields. In a quasi-uniform field, the ferrogel extends along the field-

direction. In a non-uniform field, the ferrogel moves towards the region of highest magnetic 

field. In both cases, the response of a viscoelastic ferrogel is rate dependent. At an extreme 

limit, our theory recovers existing models for elastic ferrogels, and is capable of capturing 

some instability phenomena caused by geometry nonlinearity at a relatively high magnetic 

field. The dynamic response of a ferrogel driven simultaneously by the constant gravity force 

and a cyclic non-uniform magnetic field is also studied. The numerical results agree well 

with our experimental measurements in both time and frequency domains.  

Secondly, we identify the dominating mechanism that causes the MR effect of MREs 

by investigating various microstructures. First, by modeling each particle as a magnetic 

dipole, we analytically derive the magnetic contribution to the stiffness of an MRE. The 

result shows that even though a straight chain could give MR effect in shear, the tensile 

modulus would decrease with a magnetic field.  On the other hand, a wavy chain could give 



 84 

 

rise to positive MR effect in both shear and tension/compression. To compensate the 

simplicity of the dipole-interaction model, we develop a finite-element model to simulate the 

behaviors of material unit cells, which contain the polymer matrix and filler particles 

arranged into various patterns.  Both the matrix and the fillers are modeled as continua of 

distinct material properties. The finite-element calculation confirms that the magnetic 

interaction among the filler particles in an MRE of wavy chains gives positive MR effect in 

both shear and tension/compression. Furthermore, numerical calculations show that the 

contribution from non-affine deformation and chain-chain interaction is present but 

insignificant, and would not yield a positive MR effect in MREs with straight chains only. 

More interestingly, both the dipole-interaction model and the numerical simulation show that 

an iron-particle-filled polymer composite would have a reduction in the tensile stiffness 

under a magnetic field, if the particles are specially arranged to form straight chains. Besides, 

it is shown numerically that the stiffness increase in a regular MRE scales with the square of 

the applied field, and is independent of the stiffness of the matrix material.  The 2D 

numerical model also predicts an approximately linear dependence of the MR effect on the 

volume fraction of filler particles at relatively low filler concentrations.   

Thirdly, we develop a homogeneous model for magneto-active elastomers subjected 

to a homogeneous magnetic field based on a quasi-uniform field assumption. When an 

effective permeability is adopted for MAEs, the model naturally extends to the 

magnetostriction and the MR effect.  It is shown that the magnetostriction of isotropic MAEs 

is significant and has a linear dependence on the square of the dimensionless magnetic field, 

and that of anisotropic MAEs is smaller and saturates at a higher magnetic field. While the 

magnetostriction is mainly due to the difference of the permeability between an MAE and its 



 85 

 

surrounding media, the MR effect is caused by the change of the permeability under a strain.  

It is shown that an MAE with wavy particle chains would have a positive MR effect in the 

tensile modulus and an MAE with straight chains would have a negative MR effect. Besides, 

the MR effect is shown to be independent on the matrix material. These conclusions are 

consistent with predictions in Chapter 3. Experimental data of magnetostriction and the MR 

effect can be well fitted by the model.  The results indicate that once the specific effective 

permeability is identified, the model is able to capture primary features of an MAE.  
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