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SUMMARY 

Bearing diagnostics provide valuable information related to a bearing’s health and 

facilitate Condition Based Maintenance (CBM) for rotary machines. This is an effective 

method to decrease unnecessary cost and downtime resulting from unanticipated machine 

spindle failure. Defective signatures can be extracted from the corresponding vibration 

signals through both the time and frequency domain signal processing procedures. 

However, techniques to effectively evaluate bearing damage severity from these extracted 

features are still a significant challenge, because the relationship between the bearing 

damage severity and the extracted feature is not well understood. Moreover, previous 

methods are mostly tested under constant loading conditions, and are not suitable for 

bearing diagnostics during machining operations. In this thesis, a time-domain-based 

bearing defect size estimation method is proposed for the inner and outer race defects. This 

new approach is built on the bearing system nonlinear dynamic model and the Hertzian 

contact defect size estimation model. The new defect size estimation model is independent 

of the contact force between ball and raceway, and all the required information for defect 

estimation can be obtained from the vibration signal. The signal processing method is 

developed to automatically extract the time information from the vibration signal for defect 

size estimation. Statistical analysis is performed on the time information and the results 

support the proposed bearing models. A test system designed for CNC-based bearing 

diagnostics was fabricated to validate the new method. Experiments in the speed range 

500-3000 rpm were performed under both no-cutting and cutting conditions with different 

feed rates. Experiment results are consistent under different operational conditions 
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(speeds/feeds), and they are agreeable to both the bearing system dynamic model and the 

defect estimation model. The estimation results are close to the true defect size with relative 

error of approximately 10%, validating the proposed method. 
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CHAPTER 1. INTRODUCTION 

1.1 Problem statement 

Rolling Element Bearings (REBs) are critical components in rotary machinery. 

However, bearing failure consists of a large percentage of machine shutdowns and can 

result in significant repair costs [1, 2]. Therefore, bearing diagnostics have become a topic 

of interest since the 1960’s due to its potential application towards Condition Based 

Maintenance (CBM) for rotary machines, which is an effective tool to decrease loss when 

unanticipated bearing issues occur [3-5]. Though many types of bearing defects exist, they 

can be categorized as either distributed or localized. The defect’s gradual increase in size 

gives rise to heat generated by friction between bearing’s rolling elements and raceways. 

The defect eventually causes spindle seizures and damage the rotary machinery. A large 

number of techniques to detect bearing damage before permanent damage occurs have been 

developed by monitoring phenomena corresponding to bearing defects, including 

temperature monitoring, debris measurement, vibration and acoustic analysis [6-10]. 

Among these methods, vibration based monitoring is the most widely employed technique, 

due to its straightforward interpretable features, easily processed signals and simplicity in 

measurement [1]. For the purpose of CBM, the most critical task is to estimate the bearing 

damage severity according to the vibration signals.  

Techniques to effectively evaluate bearing damage severity are still a significant 

challenge. Previous research using time or frequency domain analysis have demonstrated 

the extraction and recognition of fault signatures from strong background noise [11, 12], 

but the relationship between the bearing damage severity and the extracted feature is not 
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well understood [13]. Based on these signal processing approaches, other researchers have 

estimated damage severity by correlating the change of fault signatures using run to failure 

tests, also known as Trend Analysis [14, 15]. Unfortunately, Trend Analysis is difficult to 

implement in practical environments because a large amount of historical vibration data is 

required for comparison with currently recorded data [13]. Moreover, this statistical 

method is sensitive to variations in operating conditions and, therefore, does not provide 

reliable information on the progression of damage, especially for localized defects. In 

addition, Trend Analysis is time-consuming and a universal damage standard is impractical 

to implement among different bearing systems. Therefore, simply extracting the fault 

signature and trending its development over time is not sufficient for the purpose of 

developing an optimal CBM schedule [16].  

A better solution than Trend Analysis is Absolute Analysis. Absolute Analysis 

involves direct calculation of the bearing defect size using time series information with a 

physics based model. Thus, Absolute Analysis is desirable because the vibration signal is 

directly related to damage severity and no baseline data are needed. Bearing manufacturers 

have stated that the standard of bearing damage severity should be represented by the spall 

size located on bearing raceways and rollers (for example, the Timken Company defines a 

failure as defect size reaches 6.45 mm2 [17]). Therefore, if the spall size can be calculated, 

the bearing damage severity can be determined accordingly. Thus, a quantitative failure 

standard can be implemented in a CBM algorithm. To estimate the spall size, various 

methods have been demonstrated to work for specific spindle speeds and loads [17] while 

other methods depend on the RMS value of the vibration signal, which can be an unreliable 

metric [16]. Other efforts have focused on the localized spall-like defect, which is known 
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to be a typical bearing failure mode. Researchers have proposed that when a rolling element 

passes a spall on the raceways, a repeatable response pattern corresponding to entry and 

exit events arises in the vibration signal. Therefore, the time separation between these two 

events can be used to estimate the size of the defect [18-21], as shown in Figure 1. Using 

this method, the absolute value of the defect size can be directly estimated and the damage 

severity can be determined from the estimation. Therefore, baseline data are not required 

in Absolute Analysis. This method is a promising candidate to quantify the severity of a 

spall-like damage for a CBM algorithm. However, the nature of the vibration response 

signal can vary across different test platforms. Therefore, a deeper understanding of the 

processes corresponding to the generation and transmission of vibrations within the bearing 

system is necessary. Another difficulty of the absolute time domain method is accurately 

identifying the entry and exit points from a noisy vibration signal. Because the entry event 

is a continuous destressing process and, can be difficult to identify, especially due to the 

existence of noise; thus, the time domain estimation for a constant spall defect can be 

incorrectly identified due to variations in spindle speed [12, 22]. For the exit point, previous 

preferred methods are threshold sensitive, and therefore difficult to calculate a reliable 

threshold value for automatic diagnostics. To address these aforementioned issues, a 

dynamic shaft-bearing-housing model is required to interpret the vibration response due to 

a spall-like defect. In addition, a more reliable signal processing method is needed to 

extract the entry and exit points for the automatic bearing diagnostics. Therefore, one of 

the major tasks of this thesis is to perform absolute bearing diagnostics by solving the 

problems described previously. 
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                              (a)                                                                    (b) 

Figure 1. Typical bearing defective response due to a localized defect [13]. 

More importantly, an absolute method can facilitate real-time spindle diagnostics, 

which is critical during machining operations including milling, turning and drilling. 

Performing bearing diagnostics during machining can yield various benefits for an 

industrial manufacturer, as serious bearing damage or severe defect growth during 

machining operations can be monitored in real-time and catastrophic results can be 

avoided. Such recognition is particularly critical for machining processes with higher 

spindle speeds and cutting forces than typical rotary bearing operations. In addition, the 

machine tool spindle typically runs under operating conditions that maximize production 

rate, but bearing diagnostics typically occur when the machine is not cutting. Altering the 

machine’s schedule to facilitate diagnostic when the spindle is spinning but not cutting 

reduces productivity to unacceptable levels. In addition, limited data exist during non-

machining operations for effective diagnostics. Therefore, conducting diagnostic testing 

during actual machining is desirable for optimizing production rate while simultaneously 

collecting data to improve bearing diagnostic results. However, such diagnostics are not 

possible for Trend Analysis due to its sensitivity to operating conditions. Bearing loads 

change frequently in machining, and therefore comparison between the current data and 
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baseline data is impractical. Thus, diagnostics in prior literature are performed when the 

spindle is purely spinning. In addition, most of the previous work use vibration data 

collected from bearing test rigs, rather than actual machine tools. Due to the 

aforementioned limitations, bearing diagnostics during machining operations is lacking. 

Thus, another important task of this thesis is to investigate the performance of absolute 

diagnostic methods during machining operations. However, spindle diagnostics during 

machining can be difficult to perform. For experimental test rigs, artificial defects can be 

seeded on the bearings and a constant external radial load can be applied. However, these 

conditions are not applicable on machine tool spindle bearing systems, because frequent 

disassembly and reassembly of the spindle may result in the failure of the machine tool. 

Therefore, disassembling the spindle structure and seeding a defect on the bearings is 

impractical. In addition, the excessive vibration noise caused by the cutting forces during 

machining further increase the complexity of extracting precise defect size from the 

vibration signal.  

In conclusion, this thesis focuses on developing a time-domain spall size tracking 

method and signal processing algorithm for bearing diagnostics during machining 

operations. Even though this new Absolute Analysis is able to directly estimate spall size, 

it is recommended as an augment to the Trend Analysis rather than a replacement. Trend 

Analysis has been demonstrated for distributed bearing defect and can defect bearing defect 

in incipient stage. When the bearing entry and exit signal are detected, the Absolute 

Analysis can be applied to further improve the diagnostic results. 

1.2 Research objectives 
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According to the previously described discussions, the objectives of this research 

include: 1) Fabricate a new bearing test system with the capability of performing machining 

operations, 2) Develop a novel shaft-bearing-housing system dynamic model to describe 

the defective signature of the vibration signal due to a spall-like artificial defect seeded on 

the bearing races, 3) Estimate bearing spall size based on the defective signature when the 

spindle is running at various spindle speeds, 4) Develop a signal processing method and 

algorithm to estimate bearing spall size during machining operations.  

1.3 Thesis outline 

In this thesis, Chapter 2 introduces the comprehensive background and literature 

review of bearing diagnostics closely related to the research of this thesis. The topics 

covered include typical bearing failure modes, bearing test stands and sensors, bearing 

system dynamic models, signal processing methods, and application in production 

operations. 

In Chapter 3, the bearing test system to estimate the size of a spall-like defect on 

bearing raceways is described in detail. Because artificial defects cannot be seeded inside 

the original machine spindle, an external set of bearings is mounted to the current machine 

spindle. Line-spall defects of various widths can be seeded separately on the inner and 

outer races of the add-on bearings using Electronic Discharge Machining (EDM). An 

accelerometer and a dynamometer with a DAQ system are used to collect the vibration and 

force signals in the experiment. Based on vibration signals at different spindle speeds and 

widths, repeatable defective features can be recognized and extracted. These features are 

used to estimate defect size (width).  
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To understand the mechanism of the defective feature, Chapter 4 describes a 

dynamic model of the bearing test system. Then, three defect size estimation models are 

developed to describe the relationship between the vibration signal and the defect size.  

Chapter 5 describes an empirical entry signal model that is implemented in a new 

signal processing method to extract the time information from the vibration signal. The 

performance of the proposed signal processing method is analyzed. 

Chapter 6 describes the evaluation of the signal processing method developed in 

Chapter 5 when the spindle is purely spinning. Statistical properties of the vibration feature 

are analyzed and the estimation method is validated with experiments. 

To perform bearing diagnostics during cutting operations, Chapter 7 describes the 

application of the signal processing method from Chapter 5 to extract the defective feature 

corrupted by the vibration due to cutting forces. Cutting experiments under varying 

operating conditions are performed for validation.  

Chapter 8 summarizes the conclusions and main contributions from this thesis and 

suggest recommendations for future work.  
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

2.1  Introduction 

Background and previous work addressed in this section include: 1) typical bearing 

failure modes, 2) sensors and bearing test systems, 3) modeling of bearing vibration due to 

a localized spall defect, 4) signal processing methods and damage severity estimation, and 

5) application of advanced bearing diagnostic approaches in machine tools. 

2.2 Bearing failure modes 

In some applications, REBs can operate under improper conditions, such as 

extremely heavy or complex loading, high speed or accelerations, significantly high or low 

temperatures, insufficient lubrication, and improper machinery assembly. Even under 

normal operating conditions, bearings suffer from material imperfection and fatigue 

failure. The previously mentioned faults result in earlier bearing failure than the designed 

bearing lifetime under normal operating conditions [23]. Bearing damage can be 

categorized into distributed and localized defects. 

2.2.1  Distributed bearing defect 

Distributed defects are bearing damage in which “the magnitude of the ball-race 

contact force varies continuously and periodically as the bearing rotates” [24]. This type of 

defect exhibits a relatively large damage area and shallow depth.  

Reasons for the distributed defects include thermal unbalance-induced overheating, 

excessive thrust loading or heavy radial preloading, corrosion pitting and oxidation of 
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rolling contact surfaces due to moisture in the lubricant, misalignment of bearing 

components and indentations caused by hard particle contaminants. Some researchers 

conclude that the distributed bearing defect produce sinusoidal vibrations. In addition, the 

frequency and amplitude of the sinusoidal signal have been investigated [25]. However, 

when distributed defects occur, excessive vibration and heat already exist in the spindle 

and the quality of the product has been compromised. Therefore, it is better to detect 

bearing defect in a more incipient failure stage as introduced in the ensuing section.  

2.2.2 Localized bearing defect 

Localized defects are small isolated areas of damages on the bearing raceways or 

rolling elements [13], also known as the spall. Different from the distributed defects, 

localized defects have sharp discontinuities and larger depth in the rolling surface that 

produce impulsive type vibrations [26].  

Brinnelling can cause this type of defect, which is defined as plastic deformation 

caused by either sudden impact loading during bearing operation or heavy loading while 

the bearing is not rotating [23]. A typical situation when brinnelling occurs is during a 

spindle crash. The result is a small dent on a ball bearing or a line spall for roller bearings 

left on the surface of the bearing raceway. In either case, when the rolling element passes 

by the dent, extremely high-pressure ridges form in the vicinity of the dented region. Thus, 

a spall will start to form at the ridge on the trailing edge of that dent. The spall will shorten 

the bearing lifetime and may finally lead to rapid bearing failure.  

Another cause of a localized defect is the subsurface-initiated spall. This 

phenomenon is unavoidable even for an accurately manufactured and well-lubricated 
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properly mounted bearing, because subsurface material quality is difficult to measure after 

the bearings have been manufactured. Figure 2 shows the formation of a subsurface-

initiated spall on the outer raceway. In this formation, a hard oxide point exists in the 

subsurface layer of the material as the imperfection. When the bearing operates under 

normal operational conditions with cyclic Hertzian stresses, subsurface material fatigue 

occurs. This fatigue promotes crack nucleation and growth, and eventually subsurface 

cracks propagate to the surface. The material loosened by cracking can then break-away 

resulting in a raceway discontinuity as a spall [27]. 

 

Figure 2. Formation of a spall on bearing raceway. 

The spall is not considered as a catastrophic failure but its existence indicates the 

incipient failure. After some time, the spall may propagate in area and depth and cause 

excessive vibrations or heat that may lead to bearing seize. Thus, detecting bearing damage 

at this stage is critical and a majority of bearing diagnostics approaches have been focusing 

on this type of defect. Therefore, the scope of this thesis is focused on the localized defect. 

 

 

 



 11 

2.3 Sensors and bearing test systems 

Since bearing diagnostics during machining operations has not been the focus of 

previous research, typical bearing test systems usually consist of sensors attached outside 

the bearing test rig close to the defective test bearing with/without artificially initiated 

defects. The sensors and test rigs used for typical bearing test will be introduced in this 

section.  

2.3.1 Sensors 

Vibrations and acoustic signals have been used by previous researchers to diagnose 

localized bearing defect. Therefore, accelerometers and acoustic emission (AE) sensors 

have been identified as two potential candidates for this research.  

2.3.1.1 Piezoelectric accelerometer 

A piezoelectric accelerometer is a sensor that transfers mechanical vibrations 

(acceleration) into electric charge. These electric charges are amplified and the output is a 

voltage signal proportional to its acceleration. Piezo accelerometers have wide bandwidth, 

high sensitivity and large measurement range with minimal noise and non-linearity. 

Because of these characteristics, some researchers have used piezo accelerometer to 

estimate the size of an artificially generated line-spall on bearing raceways [28]. However, 

manufacturing cost of the piezoelectric accelerometer is relatively high and usually an 

external charge amplifier is needed for signal conditioning. Therefore, the overall cost for 

the piezo accelerometer can be a limiting factor in production implementation.  
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2.3.1.2 MEMS accelerometer 

Accelerometers can be fabricated as micro electro-mechanical systems (MEMS). 

A MEMS accelerometer transfers mechanical vibrations (acceleration) into the change of 

the capacitance between the moveable plates and the fixed plates. A simple circuit can then 

be used to process the signal and output a voltage proportional to its acceleration. Recently, 

MEMS accelerometers have become a viable sensing system compared to a piezo 

accelerometer due to its cheaper price, simplicity of circuitry, and increasing product 

quality. However, due to the non-linearity and noise of MEMS accelerometers, they still 

cannot measure the size of a localized bearing defect, because the vibration signal can be 

distorted and masked. As MEMS technology develops, the MEMS accelerometer can 

possibly be used to estimate the spall size. 

2.3.1.3 Acoustic emission sensor 

Acoustic Emission (AE) sensors are typically piezoelectric sensors with elements 

made of special ceramic. They are sensitive to high frequency (100 kHz to 1 MHz) elastic 

stress waves that propagate through the sensor. The local dynamic material displacement 

caused by the elastic stress waves can be converted to an electrical signal. Therefore, each 

time when the rolling element passes a spall, the elastic stress of the bearing raceway 

changes according to the relative position and a corresponding electric signal can be 

obtained. Using this phenomenon, Mba [29] measured the burst duration of the acoustic 

signal to approximate defect size. However, the defect estimation result can be 20%-60% 

larger than the true defect size. As suggested by the author, this is attributed to the decay 

characteristics of the AE transient bursts. The start of the burst is earlier than the ball entry 
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and the end of the burst is later than the ball exit. In addition, the burst to noise ratio depends 

on the defect size. When the defect size becomes smaller, the burst to noise ratio decreases 

significantly. Therefore, this method has limited performance for defect size smaller than 

2mm. Hemmati [30] used the duration between two peaks in the acoustic signal to estimate 

defect size (the first peak is related to entry event and the second peak is related to exit 

event). However, according to Mba [31], the existence of the peaks are inconsistent due to 

a protrusion generated during artificial defect seeding process. Thus, AE sensors cannot 

provide a reliable and practical method for defect size estimation. 

 According to the above discussions, the characteristics of these different sensors 

are compared and summarized in Table 1. As the result, piezo accelerometer is selected as 

the optimal sensor for this research.  

Table 1. Comparison of different sensors. 

Sensor Linearity Sensitivity 
/Bandwidth 

RMS 
Noise 

Complexity 
of Circuitry 

Signal 
Interpretation Cost 

Piezo Good Good Low Complex Simple High 

MEMS Bad Bad High Simple Simple Low 

AE Good Fair Fair Complex Complex Fair 

2.3.2  Bearing test rigs 

A typical bearing test rig is shown in Figure 3. Two or three sets of bearings are 

mounted on the shaft and one of the bearing sets is the tested bearing seeded with artificial 

defects. The bearings outer raceway is fixed by a housing that encloses the core of the test 
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system. Constant loading in radial and thrust directions can be applied to the loading 

structure. During the bearing test, the sensor is attached to the housing close to the tested 

bearing and the shaft rotates at a specific speed driven by a servo motor.  

 

Figure 3. A typical bearing test rig [19] 

The design of the test rig facilitates replacement of test bearings and applications 

under specific constant thrust or radial loading. The first feature is very useful, because 

usually in the bearing test, replacement of bearings is frequent. The constant loading is 

excellent to compare bearing test results under different bearing loads, but this loading 

condition is quite different from an actual CNC machine tool during machining operations. 

When the CNC spindle is machining, the loading conditions in the bearing system change 

frequently due to the cutting forces, which cannot be simulated by the test rig. Therefore, 

even though prior research has presented bearing test results based on the test rig, these 

results cannot be directly applied to machine tools.  

The ideal solution to validate bearing fault detection is to perform tests directly 

within a machine tool’s spindle. This enables the ability to perform bearing diagnostics 

during machining operations. In addition, results from bearings that operate under 
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conditions similar to real industrial environments are more applicable in manufacturing. 

However, a challenge of this setup is the seeding of the defect in the spindle bearing and 

replacing the bearings when necessary. Frequent disassembly and reassembly of the 

spindle may result in the failure of the machine tool to satisfy industrial precision 

requirements. Therefore, opening the spindle structure and seeding a defect on the bearing 

is impractical. As a compromised solution, the only way is to combine the test rig with a 

CNC machine tool. A new design with advantages from both the test rig and the CNC 

machine tool is proposed in Chapter 3. 

2.4 Modeling of bearing vibration 

Researchers have proposed that a consistent relationship exists between the 

defective response and the defect size [18, 26, 28]. However, before the defect size can be 

precisely estimated, dynamic modeling of the bearing system is necessary. This is because: 

1) the process when a rolling element passes a localized spall on the raceway has not been 

fully understood, 2) difficulties exist in determining the point of entry, and 3) bearing 

defective responses can differ from platform to platform due to different system dynamics. 

Therefore, modeling of bearing vibration response due to raceway defects is an important 

element for both quality inspection and bearing condition monitoring [32]. Using a 

dynamic model, bearing system responses under different operating conditions (e.g., 

spindle speeds/loads) and with varying defect sizes can be simulated. Research of bearing 

modeling are summarized in the next several paragraphs. 
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2.4.1 Bearing nonlinear stiffness and damping model 

Bearing modeling initially starts with describing smaller defects. Bearing nonlinear 

stiffness and damping have been modeled based on Hertzian contact theory and dynamic 

system modeling [25, 33, 34]. Given the loading condition, the deflection of the bearing 

components can be determined and the contact forces can be derived. A similar model for 

thrust loading condition is developed by F. Wardle [25] and the damping in this system has 

been investigated by T. Walford [34]. Then, a two degree of freedom system can be solved. 

Using this model, vibration due to bearing waviness has been simulated and satisfactory 

results were achieved when compared with experimental data. However, this model 

assumes that the ball and raceways are always loaded, which may not be the case for a 

localized spall defect [35]. Even though this model cannot be directly used for a spall-like 

defect, the basic theory used in this model can be applied to the discontinuous case. 

2.4.2 The bearing impulse train model 

McFadden and J.D. Smith have developed a bearing impulse train model for single 

and multiple spall bearings [36, 37]. Randall [38] improved this model by introducing non-

stationary random slip between rolling elements and raceways. In these models, the impact 

force between rolling element and bearing raceways due to the spall is simplified as a 

square or triangular pulse [20, 39-42]. The amplitudes of these pulses are assumed 

proportional to the bearing loads. Even though the pulse train model can precisely reveal 

frequency components including the corresponding localized defects, shaft unbalance and 

frequency modulation, the defect propagation cannot be predicted reliably, because the 

contact force between the ball and raceways is over simplified [20] and the entry event is 
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not modeled. Therefore, this method cannot be used to estimate defect size unless the 

contact force can be modeled precisely. 

2.4.3 The bearing dynamic model for localized defect 

Other researchers have employed multi-body dynamic models. The first non-linear 

multi-body dynamic bearing model was derived by Harsha in 2005 [43]. Randall improved 

this model by considering the slip between bearing components and applied this model 

towards estimation of the bearing response due to a localized defect [44]. However, since 

the entry event was not considered in the signal processing method, speed dependent errors 

appeared in the defect size estimation result. Moazen and Ahmadi [32, 35] further 

improved this model by considering the finite size of the rolling elements, and the results 

demonstrated an increased accuracy when compared to previous models. However, the 

effects of shaft speed and bearing load conditions, which significantly affect bearing 

dynamic response during the entry event, were not fully investigated. In addition, even 

though the angular contact ball bearing is the most frequently used bearing type in machine 

spindles, most of the previous models are built for roller bearings or deep groove ball 

bearings. Therefore, the dynamic model for the angular contact ball bearing is necessary 

for enhancing spindle diagnostic capabilities. 

Epps [26] has suggested that future work for localized bearing defect diagnostics 

lies in developing signal processing method to extract the useful information for defect size 

estimation. The following section comprehensively introduces the general signal 

processing methods for bearing diagnostics. Then, the signal processing methods for 

localized spall is addressed. 



 18 

2.5 Signal processing methods and damage severity estimation 

Great efforts have been focused on extracting the weak defective feature from the 

strong background noises to detect the existence of a local bearing defect. The extracted 

features are then used in Trend Analysis approaches to evaluate damage severity. The 

mainstream signal processing methods developed before 1990’s are summarized as 

traditional methods in Section 2.5.1. Signal processing methods used to identify the entry 

and exit events for defect size estimation are introduced in Section 2.5.2.  

2.5.1  Traditional signal processing methods 

Bearing defects exhibit specific features in both the time and frequency domain. 

These features are extracted from the vibration signals via a variety of signal processing 

methods. Based on the assumption that increasing damage level yields more dominant 

defect features, these features can be used to estimate bearing damage severity. The 

traditional signal processing methods are categorized into time domain, frequency domain, 

and time-frequency domain analysis. 

2.5.1.1 Time domain analysis 

The earliest time domain technique known as “shock pulse counting” was proposed 

by Gustaffs and Tallian in 1962. Other researchers compared statistical moments, such as 

Root Mean Square (RMS), mean, kurtosis and crest factor with thresholds to determine 

damage severity [11, 16].  

RMS 

RMS represents the average power of a zero-centered signal, which is defined as: 
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 𝑅𝑅𝑅𝑅𝑅𝑅 = �∑𝑥𝑥𝑖𝑖
2

𝑁𝑁
 (2.1) 

Where N is the number of data points and xi represents the signal value at the corresponding 

index. As bearing defects propagate, the RMS value should increase. By comparing the 

RMS value of the current data and the baseline data, the damage severity can be correlated 

and analyzed. 

Skewness and Kurtosis 

Skewness and kurtosis are the third and fourth order statistical moments defined in 

Eq (2.2) and (2.3): 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)3

𝑁𝑁 − 1
 (2.2) 

 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝐾𝐾𝑆𝑆 =
(𝑁𝑁 − 1)∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)4

(∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)2)2
 (2.3) 

Where N is the number of data points and xi represents the signal value at the corresponding 

index, �̅�𝑥 is the average of all data points. Skewness characterizes the degree of asymmetry 

of a distribution around its mean. Kurtosis is a statistical measure used to describe the 

distribution of observed data around the mean. Compared to healthy bearings, damaged 

bearings are more likely to produce asymmetric statistical distributions and that can be 

detected by the skewness. Kurtosis is generally normalized by variance and a high quality 

surface finish corresponds to a theoretical kurtosis of 3 [11]. Thus, kurtosis is a potential 

absolute method for bearing diagnostics because no baseline data is needed.  
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Peak Value and Crest Factor 

Peak value in time domain is the maximum of the absolute value of the signal. Crest 

factor is defined as peak value over RMS.  

 𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆 𝑣𝑣𝑃𝑃𝑣𝑣𝐾𝐾𝑆𝑆 = max |𝑥𝑥𝑖𝑖| (2.4) 

 𝐶𝐶𝐾𝐾𝑆𝑆𝑆𝑆𝐾𝐾 𝑓𝑓𝑃𝑃𝑓𝑓𝐾𝐾𝐾𝐾𝐾𝐾 =
max |𝑥𝑥𝑖𝑖|
𝑅𝑅𝑅𝑅𝑅𝑅

 (2.5) 

Prior work has shown that both parameters increase as defect size increases [45]. However, 

time domain analysis cannot utilize robust thresholds or are sensitive to noises and 

disturbances. Therefore, time domain analysis cannot give reliable results when used alone.  

2.5.1.2 Frequency domain analysis 

Since bearing defects yield well defined frequency based features, frequency 

domain analysis is a commonly used diagnostic method [17]. Depending on the location 

of the defect, the impulses excited by the localized defect has specific frequencies named 

as ball-pass frequencies as shown in Eq (2.6) through Eq (2.9): 

 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑍𝑍
𝑁𝑁𝑖𝑖
2
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𝐷𝐷
𝑑𝑑𝑚𝑚

𝑓𝑓𝐾𝐾𝑆𝑆𝛼𝛼0� (2.6) 
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 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑁𝑁𝑖𝑖
2
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Where Z is number of balls, Ni is the shaft frequency, D is the ball diameter, dm is the pitch 

diameter, α0 is the contact angle. The ball-pass frequency from Eq (2.6) through Eq (2.9) 

represents outer race, inner race, ball/roller, and cage frequencies correspondingly. If any 

of these frequencies appear and increase rapidly in amplitude, the corresponding bearing 

damage may occur. 

High Frequency Resonance Technique (HFRT) 

The High Frequency Resonance Technique (HFRT), also known as Demodulated 

Resonance Analysis or Envelop Detection, is the most widely used frequency domain 

method to extract the defective signal masked by strong background noise [46, 47]. The 

essence of this method is to recover the low frequency component excited by the defect 

from the modulations produced in high frequency vibrations.  

A Fast Fourier Transform (FFT) analysis is applied to the “enveloped” signal output 

by using HFRT. To denoise the signal, the spectrum obtained by HFRT is usually averaged 

to remove white noise. Cepstrum analysis, which is defined as the spectrum of the 

spectrum, is used to collect defect related frequencies into one signature to increase signal-

to-noise ratio. Other techniques, such as adaptive filtering (Adaptive Line Enhancer), 

matched filtering, and Wiener filtering, were implemented to further improve HFRT. 

However, a limitation of HFRT is the ambiguity of the relationship between spectrum 

amplitude and damage severity. Therefore, HFRT is an appropriate method for detecting 

the existence of an incipient damage but not for evaluation of damage level. 
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2.5.1.3 Time-frequency domain analysis 

 Since the time-frequency domain analysis includes information from both time and 

frequency domain, it is suitable for the analysis of non-stationary signals related to 

machinery defects.  

Short Time FFT (STFT) 

The STFT is a method that decomposes a non-stationary signal into many small 

segments, which can be assumed to be locally stationary, and applies FFT to each of the 

segment. The length of each segment is determined by a window function. For each 

segment of data, a different spectrum can be calculated and by combining all of these 

spectrums, the time-frequency distribution function, called a Spectrogram, is obtained. 

Thus, information in both time and frequency domain can be revealed. 

However, increasing time resolution decreases frequency resolution and vice-versa. 

A large window length provides high frequency resolution but poor time resolution while 

a small window length provides good time resolution but poor frequency resolution. More 

importantly, since displaying of multi-resolution in time-frequency distribution diagram is 

an important requirement, STFT has the limitation of possessing the same resolution at all 

locations in the time-frequency plane due to the same window through the whole signal. 

This limitation can be conquered by the Wavelet Transform as described in the next 

section.  
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Wavelet Analysis 

Over the last two decades, great progress has been made in the theory and 

applications of wavelets in the fields of fault diagnosis [48]. The Wavelet Transform (WT) 

is a mathematical tool that converts a time domain signal into time-scale domain using a 

wavelet function. There are two types of WT, continuous and discrete.  

The Continuous Wavelet Transform (CWT) is defined in the following equation: 

 𝑋𝑋(𝑆𝑆, 𝜏𝜏) =
1
√𝑆𝑆

� x(t)ψ(
t − τ
𝑆𝑆

)
∞

−∞
𝑑𝑑𝐾𝐾 (2.10) 

Where s and τ represent scale and translation, ψ(t) is the wavelet. The CWT is similar to 

the Fourier Transform except that the base functions sine and cosine are replaced by the 

wavelet function. The CWT of a signal will produce redundancy as s and τ are changing 

all the time. The redundancy requires a significant amount of computation time.  

To save computation time and cost, the Discrete Wavelet Transform (DWT) is 

preferred since it provides sufficient information with a significant reduction in 

computation time [49]. DWT can be realized by applying filter banks to the time domain 

signal to obtain the detailed and approximate signal in each level. However, in each 

decomposition the time resolution is halved, which is not suitable for analysis with high 

time resolution requirement. 

The Wavelet Packet Transform (WPT) further decomposes the detail information 

of DWT in the high frequency region. The enhanced signal decomposition capability 

facilitates identification defective transient components in the bearing vibration signal. In 
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addition, the WPT can identify frequency shifts associated with the phase transitions of 

defect growth. Even though a WPT method can provide sufficient information, the 

technique cannot provide physical reasoning for the machinery condition analysis because 

of the complexity of most mechanical systems. 

In conclusion, even though agreeable results are observed using these traditional 

methods, the relationship between the damage severity and the defective feature is 

uncertain. Therefore, a new method that estimates the defect size is desired. 

2.5.2  Signal processing methods to identify the entry and exit events 

Recently the entry and exit event in the bearing signals due to a spall-like defect 

has attracted the attention of researchers [43]. Prior work has suggested that the time 

difference between the entry and exit event can be used to estimate spall size. Therefore, 

this method corresponds to the time domain analysis.  

Kumar [50] and Khanam [21] applied discrete wavelet transform on the vibration 

signal to eliminate random noise and separate the entry and exit events to estimate the spall 

size. However, the literature has not reached a consensus on how the distance between the 

entry and exit edges of the spall is related to the entry and exit events of the signal. Also, 

when the entry event is masked by strong noise and disturbances, this method may fail. In 

addition, the effect of spindle speeds/loads is lacking. 

Randall proposed a semi-automated algorithm to separate the entry and exit event 

by applying pre-whitening and the wavelet analysis to the vibration data [18]. Then the 

power cepstrum is calculated to estimate the average separation of the two pulses. Randall 
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considered the most dominant peak in the entry signal as the moment when the ball starts 

to enter the defect zone. However, other work has demonstrated this assumption to be 

inaccurate for larger defects. Prior work has shown the full entry signal starts earlier than 

the most dominant peak in the entry signal. Since the time delay can be a significant 

percentage of the entry-to-exit time, Randall’s estimation results were shown to be smaller 

than the true defect. In addition, this method suffers from a large speed dependent error. 

Smith proposed an alternative method to identify the entry point [22]. He 

demonstrated a consistent roll-off after the entry point in the pre-impact vibration signal 

and presented two methods to estimate the entry point. In the first method, the zero-

crossing point of the low-pass filtered acceleration gradient function is considered as the 

entry point. However, under the influence of noise, the gradient function is not guaranteed 

to cross zero at an entry point. Therefore, in addition to difficult automatic implementation, 

the method is sensitive to noise and threshold. In the second method, the peak location of 

the low-pass filtered acceleration signal is considered as the entry point. However, this 

assumption is only correct when the acceleration “hump” in the pre-impact signal coincides 

with the entry event.  

Ahmadi determined the correct position for the entry and exit point in the vibration 

signal through both observations and dynamic modeling [28, 32]. Ahmadi proposed that 

Randall’s result needed to be compensated by a correction factor, which is a function of 

bearing maximum load and stiffness. The correction factor increases defect estimation 

accuracy. However, the bearing load and stiffness is difficult to measure and changes over 

time. Therefore, a new method independent of the bearing load and stiffness measurement 

is required. 



 26 

2.6 Application of advanced bearing diagnostic approaches in machine tools 

The advanced bearing models and diagnostic approaches previously discussed have 

been investigated on a bearing test rig, rather than an actual machine tool. Therefore, 

applications of these advanced bearing diagnostics methods towards real machine tools are 

limited. The few cases that have been investigated are listed as follows. 

Saravanan [51] monitored a lathe spindle bearing system under different spindle 

speeds, feed rates, and depths of cut. Workpiece surface finish, vibration, and acoustic 

signal in time and frequency domain were used to indicate damage severity. While this 

research shows potential for in-process bearing monitoring, the focused was on lubricant 

pollution rather than the behavior of a localized defect.  

Werner [52] developed an early warning spindle bearing failure monitoring system. 

This system was applied on an Okuma CNC lathe and a vertical machining center. The 

signal was analyzed in both time and frequency domain to trend the propagation of bearing 

damage. However, an ultrasonic sensor was used as the primary measurement system, 

which has been demonstrated as a flawed choice for vibration detection. Also, the 

relationship between the damage severity and vibration signal was not sufficiently shown. 

In addition, a reasonable method to select the threshold for failure detection was not given.  

Bangcheng Zhang [53] monitored the spindle bearing system of a CNC machining 

center by enveloping the first layer of wavelet detail data, and then extracting the ball-pass 

outer race frequency in frequency domain. This research focused on fault signature 

extraction, and the effect of cutting condition was not fully investigated.  
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Yuxue Chen [54] developed an online automatic diagnostic procedure to detect 

scratch defects on bearings. Peak amplitude from the enveloped spectrum and RMS in the 

time domain were used to quantify damage severity. However, this method was not robust 

due to susceptibility of the RMS value to noise and sensor location. Also, more defect sizes 

have to be tested to further validate the effectiveness of this research.  

Kozochkin [55] periodically monitored vibration signal of a lathe under no external 

load over an 8 month period to trend the propagation of bearing damage in different stages. 

The peak factor value of the time domain signal was used to quantify damage severity and 

indicate the damage stage of the bearing. However, experimental validation under other 

operating conditions was not investigated. In these machine tool spindle diagnostic cases, 

a model is further needed to relate the damage severity to the vibration signals. The effects 

of spindle speeds/loads on the vibration were not clearly illustrated. Also, diagnostics under 

machining operations are lacking. 

2.7 Summary 

This chapter introduces the background and literature review of bearing diagnostics 

including different bearing failure modes, sensors and bearing test systems, modeling of 

bearing vibration due to a localized spall defect, signal processing methods and damage 

severity estimation, and application of advanced bearing diagnostic approaches in machine 

tools. Therefore, the scope of this thesis is localized bearing defect analysis using vibration 

based method. The test setup is a combination of the traditional test rig and a CNC mill. 

To obtain a better understanding of the defective signature, a shaft-bearing-housing 

dynamic model is developed. Based on the experiment results, signal processing methods 
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are implemented to extract the defective information for defect size estimation during no 

cutting and cutting conditions.   
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CHAPTER 3. EXPERIMENTAL APPARATUS AND TEST 

EQUIPMENT 

3.1 System Description 

This chapter describes the experimental test system to validate the proposed defect 

size estimation method. The complete test system consists of a vertical CNC mill machine 

tool with an add-on bearing housing, sensors for vibration and force measurement, and a 

data acquisition system including charge amplifiers and Data Acquisition Unit (DAQ). A 

schematic and pictures of the overall system are shown in Figure 4, Figure 5, and Figure 

6. This chapter describes the design, specifications, and capability of each subsystem in 

detail. 

 

Figure 4. The experimental schematic. 
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Figure 5. The CNC-based bearing test system and sensors. 

 

Figure 6. The data acquisition system. 
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3.2 The CNC-based bearing test system 

3.2.1 The add-on bearing housing 

Because frequent disassembly and reassembly of the spindle may result in the 

failure of the machine tool, the original spindle of the machine cannot be disassembled and 

seeded with defects. Therefore, an external bearing housing with the tested angular contact 

ball bearing is mounted onto the original machine spindle by a mounting adapter as shown 

in Figure 5. Four flat planes perpendicular to each other are machined on the surface of the 

add-on housing to provide a robust support for the vibration sensor. The housing was 

fabricated from steel for possible magnetic mounting. A section view of the setup including 

the mounting adapter and the add-on housing is shown in Figure 7. The aluminum 

mounting adapter is fixed to the CNC by six bolts and a setscrew is used to fix the outer 

race with respect to the inner race. During machining operations, the mounting adapter will 

increase the stiffness of the add-on structure. The shaft of the add-on bearing system is also 

the milling cutter. Therefore, the add-on test system can be directly driven by the spindle 

of the 3-axis Okuma CNC mill. One set of two angular contact ball bearings are installed 

in the housing. The housing and the outer race are stationary, while the shaft and the inner 

race are rotating. The top bearing is seeded with defect and the outer race has a transition 

match for easy replacement. The outer races of the bearing set are supported by the housing 

shoulders and the inner races of the bearing set are supported by a spacer in between them. 

The top cap is machined with fine thread and thus the pre-load of the bearing can be 

adjusted by the screw on the top cap. A section view of the housing without the cutter is 

shown in Figure 8. This setup provides operating conditions closer to an actual machine 

tool than the traditional bearing test rigs developed in previous bearing work [12, 56]. In 
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addition, the new setup has the capabilities to perform bearing diagnostics during 

machining operations.  

 

Figure 7. Section view of the bearing test stand. 
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Figure 8. Section view of the add-on bearing housing system. 

3.2.2 The tested bearings and defect generation 

3.2.2.1 Tested bearings 

The tested bearings used in this thesis are SKF 7205BEP single row angular contact 

ball bearings, as shown in Figure 9. The outer/inner races and the balls are made of bearing 

steel and the cage is plastic. The bearing geometry and property are listed in Table 2.  
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Figure 9. The tested bearing. 

Table 2. Bearing geometry. 

Geometry and property SKF 7205BEP angular contact ball bearing 
Outer Diameter (mm) 52 
Inner Diameter (mm) 25 
Pitch Diameter (mm) 38.5 
Ball Diameter (mm) 7.9 

Width (mm) 15 
Contact Angle 40  ̊ 

Max Speed (rpm) 15000 
Basic Dynamic Load (kN) 14.8 

Basic Static Load (kN) 9.3 
Mass (kg) 0.13 

Given the geometry information Table 2, the cage frequency, outer race ball-pass 

frequency and inner race ball-pass frequency can be calculated using Eq (2.9), (2.6) and 

(2.7): 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑁𝑁𝑖𝑖
2
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Eq (3.1) means that the cage frequency is 0.42 times the shaft frequency. In other 

words, the relative velocity between the cage and the outer race (stationary) is 0.42Ni. 

Because the relative velocity between the shaft and the outer race is Ni, the relative velocity 

between the cage and the inner race is (1-0.42)Ni=0.58Ni. Since the ball moves together 

with the cage, 0.42Ni and 0.58Ni are also the relative velocities between the ball/outer race 

and ball/inner race. Because the velocity of the ball will directly affect the defect size 

estimation, the coefficients 0.42 and 0.58 are very important. From Eq (3.2) and (3.3) it 

can be seen that 0.42 is the ratio between outer race ball-pass frequency and shaft frequency 

divided by number of balls, so 0.42 is defined as the outer race ball-pass frequency ratio; 

0.58 is the ratio between inner race ball-pass frequency and shaft frequency divided by 

number of balls, so 0.58 is defined as the inner race ball-pass frequency ratio. Both are 

validated in the experiments by comparing the theoretical calculation in this chapter and 

the experimental results.  

3.2.2.2 Defect generation 

Three different defect widths, 0.794 mm, 1.135 mm and 1.530 mm, are separately 

seeded on the outer and inner races of the tested bearing. A line-spall defect is shown in 

Figure 10. The length of the defect along axis direction L is maximized, meaning that L is 

through the whole groove part of the outer race. The depth of the defect h is considered 
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large with respect to the width d, and therefore the ball cannot contact the bottom of the 

defect as it passes the defect zone. Thus, the values of L and h do not affect the defective 

signature. The primary focus of this research is the defect width, d. The defect is seeded on 

the bearing races, as shown in Figure 10b), using an Electrical Discharge Machining 

(EDM) machine with a copper electrode. Figure 10c) shows the 1.530 mm width defect on 

the outer race. 

 
a)                                     b)                                   c) 

Figure 10. a) A line-spall defect on the outer race b) Seed defect with EDM c) 1.530mm 
outer race defect. 

3.2.3 The cutting setup 

A two-flute 25.4 mm milling cutter is used in the experiment as the shaft and as 

well as to perform bearing diagnostics during machining aluminum workpieces. The 

geometry and the parameters of the cutter are shown in Figure 11 and Table 3. The material 

property of the aluminum workpieces is also listed in Table 3. 
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Figure 11. Cutter geometry. 

Table 3. Cutter and workpieces parameters. 

Cutter 

L (mm) 203.2 
Number of Teeth 2 

D1 max (mm) 25.4 
Shank Diameter (mm) 25.4 

Ap1 max (mm) 1.5 
Max RPM 36600 

Insert WOEJ090512 
Mass (kg) 0.72 

Workpieces 

Material Aluminum 6061 
Young’s modulus 70GPa 

Poisson’s ratio 0.35 
Density 2.70g/cm3 

3.3 Sensors 

3.3.1 Accelerometer 

The PCB 352A21 single-axis accelerometer is used to obtain the vibration signature 

of the bearing system. The sensitivity of the accelerometer is 10 mV/g. The frequency 

response at different mounting conditions of the accelerometer are shown in Figure 12. In 

this research, the accelerometer is waxed to the flat surface of the add-on bearing housing 

as shown in Figure 5. Therefore, the resonance frequency for the accelerometer is 

approximately 10 kHz. 
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Figure 12. Mounting configurations and their effects on high frequency [57]. 

3.3.2 Dynamometer 

The tri-axis Kistler 9257B dynamometer is used to measure the three orthogonal 

components of the cutting force during the experiments. The dynamometer has a natural 

frequency of 3.5 kHz. Its high resolution (3.33 mV/N) enables high sensitivity to smallest 

dynamic changes in large forces. The dynamometer consists of four three-component force 

sensors fitted under high preload between a baseplate and a top plate. Each sensor contains 

three pairs of quartz plates, one sensitive to pressure in the z direction and the other two 

responding to shear in the x and y directions. The dynamometer is mounted on the machine 

tool table with clamps as shown in Figure 5. 
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3.4 The data acquisition system 

3.4.1 Amplifier  

The accelerometer signal was amplified by a Type 5134 Kistler power 

supply/coupler. The force signal is amplified by a three channel Kistler dual mode 

amplifier type 5010. The accelerometer and dynamometer signal while the machine is in 

an idling state are shown in Figure 13 and Figure 14, respectively. As shown, the noise 

amplitude is minimal when compared to the defective response. 

 

Figure 13. The accelerometer signal during machine idling. 
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Figure 14. The dynamometer signal during machine idling. 

3.4.2 Data acquisition 

The forcing signals are collected at 50 kHz sampling rate by the National 

Instrument data acquisition device NI compactDAQ with two 3-channel C Series dynamic 

signal acquisition modules. The vibration signal is collected at 100 kHz sampling rate by 

NI myDAQ. The LabVIEW code was programmed and run on the PC to collect the data. 

3.5 Summary 

This chapter introduces the experimental apparatus and test equipment for the 

validation of the defect size estimation method proposed in this thesis. The schematic and 

pictures of the overall system are shown in 3.1. The test system consists of a vertical CNC 

mill with the add-on bearing housing, sensors for vibration and force measurement, and a 
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data acquisition system. Each of the subsystem is described in detail from 3.2 through 3.4 

including the design and specifications. 
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CHAPTER 4. BEARING MODELS 

The vibration signals generated from a spall-like defect exhibit a repeatable pattern 

and can be used to estimate the defect size. However, to calculate an appropriate estimation 

from the vibration signal, an understanding of the physical process relating the vibration 

pattern to the defect size is required. Therefore, the first section of this chapter introduces 

the bearing system dynamic model used to describe the bearing vibration signal due to a 

spall-like defect. To describe the relationship between the vibration signal and the defect 

size, the following section provides three models to estimate the defect size based on the 

vibration signals. 

4.1 Bearing dynamic model 

Recently, prior work has proposed that when a rolling element passes a spall on the 

raceways, the entry and exit points in the vibration signal can be identified and the time 

difference between these two points can be used to estimate the size of the defect [18-21]. 

The proposed technique is a promising method to quantify the severity of a spall-like 

damage for a CBM program. To obtain a sufficiently accurate estimation result, a dynamic 

model is proposed for a better understanding of the defective response with respect to the 

physical process. The proposed model also facilitates recognizing and extracting defective 

patterns from strong background noises and disturbances. Kinematic analysis is used as the 

foundation of the bearing dynamic model. Then, the Hertzian contact theory is applied to 

derive the nonlinear system equations, which are solved numerically. Finally, the 

simulation result is discussed and the defective pattern is summarized.   
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4.1.1 Kinematic analysis 

When the ball rolls into the defect zone, the destressing contact between the ball 

and the outer race causes the bearing system to vibrate [58]. A repeatable pattern in the 

vibrations signal is shown in Figure 15.  

 

Figure 15. Typical defective response due to a localized defect. 

At point A, the “destressing” process starts and then the vibration signal decreases 

to the local minimum point D. After passing through point D, the time series signal begins 

to increase and reaches the first peak at point B. Peak B is shown to be very dominant and 

repeatable in the response pattern. Then, the signal vibrates at a certain frequency until the 

beginning of a high frequency response at point C. Prior research estimates defect size 

using the time from B to C and the estimation result is much smaller than the true defect 

size [18]. This error occurs because the vibration pattern is not well related to the physical 
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model. Therefore, to improve the estimation, a dynamic model that describes the defective 

pattern is proposed. The kinematic analysis including the ball center path is introduced in 

this section as the foundation for the proposed dynamic model. 

The bearing diagram is shown in Figure 16. The inner race rotates in the direction 

as labeled by the arrow. The outer race is stationary. Due to the preload in the bearing, the 

ball diameter is larger than the distance between the inner and outer races, which is 

represented by the area in shadow in Figure 16. θ0 is the angular position of the ball center 

when the ball just contacts the entry edge. The area of the intersection between inner race 

and the ball is a0, and the area of the intersection between outer race and the ball is b0, 

under the initial bearing load F0. Note that both the deflection of ball and the defect size is 

exaggerated in Figure 16. 

 

Figure 16. Deflection in ball-raceway contact. 

When the ball enters the defect region, the relationship between a, b and the ball 

position is as shown in Figure 17.  
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(a) 

 

(b) 

Figure 17. Intersection area a and b with respect to their positions. 

Before deriving the dynamic model, the path of the ball’s center point needs to be 

determined. Note that the following assumptions are used: 1) the contact force between the 
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ball and the raceway is proportional to the intersection area, 2) the magnitude of the contact 

force between the ball/inner race and the ball/outer race is the same, and 3) the ball is 

assumed to rotate around the bearing center with the same angular velocity as the cage. 

Because the areas of a and b are equal, when the ball rolls into the defect zone, area b starts 

to decrease along with area a. Therefore, the distance between the inner race center O and 

the ball center C (xb) at a specific time t can be calculated using the following equations: 

 𝜃𝜃 = 𝜃𝜃0 − 2𝜋𝜋 ∙ 0.42 ∙
𝑆𝑆

60
∙ 𝐾𝐾 (4.1) 

 𝑃𝑃 = 𝛼𝛼1 ∙ 𝑅𝑅12 + 𝛽𝛽1 ∙ 𝑅𝑅22 − 𝑥𝑥𝑏𝑏 ∙ 𝑅𝑅1 ∙ 𝑆𝑆𝐾𝐾𝑆𝑆𝛼𝛼1 (4.2) 

 

𝑏𝑏 = (𝛼𝛼2 + 𝛽𝛽2 + 𝜃𝜃 + 𝛾𝛾) ∙ 𝑅𝑅22 − (𝛼𝛼2 + 𝜃𝜃) ∙ 𝑅𝑅32 + 𝑥𝑥𝑏𝑏 ∙ 𝑅𝑅3 ∙ 𝑆𝑆𝐾𝐾𝑆𝑆𝛼𝛼2

+ 0.5𝑥𝑥𝑏𝑏 �𝑥𝑥𝑏𝑏 ∙ cos 𝜃𝜃 + �𝑅𝑅22 − 𝑥𝑥𝑏𝑏2 sin2 𝜃𝜃� 𝑆𝑆𝐾𝐾𝑆𝑆𝜃𝜃 
(4.3) 

 𝑃𝑃 = 𝑏𝑏 (4.4) 

Where R1 is inner race radius, R2 is ball radius, R3 is the length of OE as shown in Figure 

17 (b) and n is the spindle speed in RPM. Note that γ, α1, α2, β1, and β2 can be derived 

from trigonometry. After xb is calculated, the intersection area a and b can be calculated 

and the contact force F can be calculated as: 

 𝐹𝐹 = 𝐹𝐹0 ∙
𝑃𝑃
𝑃𝑃0

 (4.5) 

This force will be used in the dynamic model described in the following section. 
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4.1.2 Bearing nonlinear dynamic model 

The dynamic bearing system diagram is shown in Figure 18. m1 is the mass of the 

shaft with the inner race, and m2 is the mass of the add-on bearing housing with the outer 

race. k1, k2, c1, c2 are the stiffness and damping coefficients respectively. F is the contact 

force between the ball that rolls into the defect and both races, as derived in 4.1.1. k3 is 

defined as the load-deformation constant for single point contact [59, 60] and therefore 

represents the relationship between bearing load and deformation. x1 is the displacement 

of the inner race and x2 is the displacement of the outer race. 

 

Figure 18. Diagram of the bearing dynamic model. 

To formulate the equations of motion for the bearing system, the contact force 

between the races and balls must be derived. According to the Hertzian contact theory, the 

contact force between the raceway and the other 12 balls can be represented as: 

 F12 = −𝑆𝑆3��∆x0 +
(x1 − 𝑥𝑥2)cos (iη)

cos40° �
1.5

cos 40° cos(iη)
12

i=1

 (4.6) 
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Where 40° is the contact angle of the angular contact ball bearing, η is the angle between 

two adjacent balls, (in this thesis, there are 13 balls in the bearing and therefore η =2π/13), 

and k3 can be calculated as: 

 k3 = �1.5 ∙
1 − 𝑣𝑣2

𝐸𝐸
�
−1

∙ ��
1
𝐾𝐾
−

1
𝑅𝑅𝑏𝑏
�
1
3

+ �
1
𝐾𝐾

+
1
𝑅𝑅𝑖𝑖
�
1
3
�

−1.5

 (4.7) 

Where r is ball radius, Ro is outer race groove radius, and Ri is inner race groove radius, E 

is the Young’s Modulus, and ν is the Poisson’s ratio. The negative sign in Eq (4.6) indicates 

that the positive direction of 𝐹𝐹12 is radially pointing from the rotating axis to the defect. 

Δx0 is the total deflection between ball and races under the pre-load F0, which can be 

calculated as:  

 ∆𝑥𝑥0 = 𝑆𝑆3
−23 ∙ 𝐹𝐹0

2
3 (4.8) 

After the contact force between ball and races F12 and F, respectively, are 

determined, the equations of motion for the bearing system can be represented as: 

 𝑚𝑚1�̈�𝑥1 + 𝑓𝑓1�̇�𝑥1 + 𝑆𝑆1𝑥𝑥1 = 𝐹𝐹12 − 𝐹𝐹 ∙ cos 40° (4.9) 

 𝑚𝑚2�̈�𝑥2 + 𝑓𝑓2�̇�𝑥2 + 𝑆𝑆2𝑥𝑥2 = −𝐹𝐹12 + 𝐹𝐹 ∙ cos 40° (4.10) 

Note that the equations are a system of second order nonlinear differential equations 

and can be solve numerically using a standard 4th order Runge-Kutta method. The results 

are presented in the following section.  
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4.1.3 Bearing defective response pattern due to a localized spall-like defect 

The dynamic model describes the bearing contact process starting from when the 

ball enters the defect at point A to when it collides with the exit edge at point C. Note that 

A and C are shown in Figure 15. The experimental and simulated vibration responses are 

shown in Figure 19. The spindle speeds are 500 rpm, 1000 rpm and 1500 rpm. In the 

experiment, the accelerometer was mounted above the defect on the outer race.  

By comparing the two plots in Figure 19, the simulation is able to represent some 

key features in the experimental results, which can be summarized as: 

1) Peak B is dominant in both the experimental and simulated vibration response. 

2) The time from A to B is inversely proportional to spindle speed. 

3) The local minimum at point D is proportional to the square of the spindle speed. 

4) After point B, the signal vibrates at a particular frequency and decays. 

Because the simulated result is agreeable with the experimental data, the dynamic 

model is validated and these key features can be used to estimate the defect size. In 

addition, the proposed dynamic model is applicable to inner race defects.  
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Figure 19. Experimental and simulated defective response. 

The corresponding simulated contact forces are shown in Figure 20. By comparing 

Figure 19 with Figure 20, it can be inferred that peak B occurs at the moment when the ball 

and raceway lose contact with each other. In Figure 20, the initial contact force is 100 N. 

As predicted by the kinematic analysis, the time between A and B increases with the initial 

bearing load due to the larger deflection between ball and raceway.  
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Figure 20. Simulated contact force. 

Note that even though the simulation is agreeable with the experiment results in 

describing key features related to defect size estimation, some discrepancies exist as well. 

Even though the simulated and experimental responses both show decreasing trends from 

A to C, the corresponding shapes and vibration magnitudes are shown to differ. The shape 

from A to B depends on the contact force between the ball and raceway. Since the ball 

center path is calculated from the assumption that the intersection area between ball and 

raceways is the same, the contact force model can be prone to error when the assumption 

fails. The higher than expected level of vibration from A to B might due to the assumption 

that the damping in the ball is negligible. In addition, the phase in the vibration after point 

B is different. This might due to the slightly different damping ratio between the simulation 

and the actual system. 
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After the collision, the bearing “restressing” process is masked by the high 

frequency noise due to the impact. Note that the time information after C is difficult to 

extract for a reliable estimation, and therefore is not considered in the scope of the dynamic 

model developed in this thesis. 

 Finally, the defective response pattern in Figure 15 can be explained as follows. 

The time from entry point A to the first peak B of the entry event is defined as the entry-

to-peak time te. The time from the first peak B to the impact point C is defined as the peak-

to-impact time tp. The time from the entry point to the impact point is defined as the total 

time tt. The mechanism of the defective feature can be described as shown in Figure 21. 

Point A is when the bearing starts to enter the defect zone, which is called the entry event. 

During the entry event, the contact force between the ball and raceways decreases. At point 

B, the entry event ends and the ball loses contact with both races, and therefore the contact 

force decreases to zero. The loss of contact the outer race to vibrate at a certain frequency. 

Then, the ball continues to move forward with an initial speed and eventually collides with 

the exit edge of the defect at C. The amplitude of the vibration at C increases dramatically 

due to the impact.  
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Figure 21. Key points when a ball passes a localized defect. 

4.2 Defect size estimation model 

The bearing vibration signal has been explained in the previous section. The next 

task is to estimate the defect size using the time information te and tp obtained from the 

vibration signal. To solve this problem, three models are developed in the next several 

paragraphs from the simplest to the most comprehensive. 

4.2.1 The isosceles trapezoidal model 

The isosceles trapezoidal model is the simplest defect-size-estimation model and 

the geometry relationship between the defect size d and the path traveled by the ball is as 

shown in Figure 22. O is the center of the inner/outer race, A is the ball center when the 

ball is at the entry edge C and B is the ball center when the ball is at the exit edge D.  



 54 

 

Figure 22. The isosceles trapezoidal model. 

The ball is assumed to travel through AB with a constant ball center velocity before 

it enters the defect zone, which is calculated by Eq (4.11): 

 𝑣𝑣𝑏𝑏 =
2 × 𝜋𝜋 × 0.42 × 𝑆𝑆

60
 ∙ 𝑅𝑅 (4.11) 

Where n is the spindle speed in RPM. 0.42 is the outer race ball-pass frequency ratio as 

introduced in Chapter 3, and it is a constant determined by the bearing geometry. R is the 

distance from inner race center to ball center. The time from A to B can be measured from 

the signal, which is te+tp. Then, the defect size d can be derived from the geometry in 

Figure 22: 

 𝑑𝑑 = 𝑣𝑣𝑏𝑏 × (𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑏𝑏) × 𝑅𝑅+𝑏𝑏
𝑅𝑅

  (4.12) 
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Where r is the ball radius. For the inner race case, Eq (4.11) and (4.12) should be updated 

as: 

 𝑣𝑣𝑏𝑏 =
2 × 𝜋𝜋 × 0.58 × 𝑆𝑆 × 𝑅𝑅

60
 (4.13) 

 𝑑𝑑 = 𝑣𝑣𝑏𝑏 ∙ (𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑏𝑏) ∙
𝑅𝑅 − 𝐾𝐾
𝑅𝑅

 (4.14) 

Where 0.58 is the inner race ball-pass frequency ratio. For the inner race defect, since the 

ball path is still constrained by the outer race when it passes the defect, this trapezoidal 

model is suitable. However, this model should provide an estimation of d smaller than the 

true defect size for the outer race defect, because the ball will collide with the exit edge 

before arriving position B as shown in Figure 22. An improved model is introduced in the 

next section for the outer race defect estimation. 

4.2.2 The one-right-angle quadrilateral model 

The one-right-angle quadrilateral model considers the fact that the ball collides with 

the exit edge before the ball center arrives the exit edge. The geometry relationship between 

defect size d and the path traveled by the ball is shown in Figure 23. O is the center of the 

inner/outer race, A is the ball center at the entry edge C and B is the ball center when it 

collides with the exit edge D.  
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Figure 23. The one-right-angle quadrilateral model. 

This model assumes that the ball loses contact with both races at point A and travels 

with the same velocity as before it enters the defect zone, as in Eq (4.11). The travelling 

time from A to B can be obtained from the vibration signal, which is te+tp. Therefore, the 

length AB can be expressed as: 

 𝐴𝐴𝐴𝐴 =
2 × 𝜋𝜋 × 0.42 × 𝑆𝑆 × 𝑅𝑅 × (𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑏𝑏)

60
 (4.15) 

Once AB is obtained, according to the trigonometry relationship as shown in Figure 

23, the angle θd can be derived using the equation below: 

 [(𝑅𝑅 + 𝐾𝐾) ∙ cos 𝜃𝜃𝑑𝑑 − 𝑅𝑅]2 + [(𝑅𝑅 + 𝐾𝐾) ∙ sin𝜃𝜃𝑑𝑑 − 𝐴𝐴𝐴𝐴]2 = 𝐾𝐾2 (4.16) 

Where R is the distance from inner race center O to ball center A, and r is the ball radius. 

For easy comparison with the isosceles trapezoidal model, Eq (4.16) can be simplified. 
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Since θd is a small angle, sin θd ≈ θd, 1-cos θd =2sin2 θd/2 ≈ θd
2/4. Then, in Eq (4.16), θd 

can be solved as: 

 𝜃𝜃𝑑𝑑 =
𝑅𝑅 + 𝐾𝐾 + �(𝑅𝑅 + 𝐾𝐾) ∙ 𝐾𝐾

(𝑅𝑅 + 𝐾𝐾) ∙ 𝑅𝑅
∙ 𝐴𝐴𝐴𝐴 (4.17) 

Then, the defect size d can be estimated as: 

 𝑑𝑑 = 𝑣𝑣𝑏𝑏 ∙ (𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑏𝑏) ∙
𝑅𝑅 + 𝐾𝐾 + �(𝑅𝑅 + 𝐾𝐾) ∙ 𝐾𝐾

𝑅𝑅
 (4.18) 

Note that between Eq (4.12) and Eq (4.18) that the coefficient has been updated. In 

the isosceles trapezoidal model, the coefficient is calculated to be 0.8407 and in one-right-

angle quadrilateral model the coefficient is 1.589. Therefore, this model provides 

estimation results almost twice as large as the first model. Note that this model is not 

suitable for the inner race defect, because the outer race does not allow the ball travel in 

the horizontal direction as in the outer race defect. In other words, the ball is constrained 

by the outer race and its trajectory along a circular motion. 

4.2.3 The Hertzian quadrilateral model 

This model is built on the one-right-angle quadrilateral model and considers ball-

raceway deflection based on the Hertzian contact theory. Therefore, this is the most 

comprehensive model among the three. 
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4.2.3.1 The Hertzian contact theory of spheres 

When two spheres contact with each other under a specific contact force F, a 

circular contact area will form between the contact surfaces as shown in Figure 24. 

 

Figure 24. The Hertzian contact theory. 

The radius of the contact area is given by Eq (4.19), 

 𝑃𝑃ℎ = �
3𝐹𝐹 �1 − 𝑣𝑣12

𝐸𝐸1
+ 1 − 𝑣𝑣22

𝐸𝐸2
�

4 �1
𝐾𝐾1

+ 1
𝐾𝐾2
�

3

 (4.19) 
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Where F is the contact force between the two spheres, E1 and E2 are the Young’s modules, 

v1 and v2 are the Poisson’s ratios. The centers of the two spheres move closer to each other 

by δ and it can be expressed using the equation below: 

 𝛿𝛿 = 𝑃𝑃ℎ2 × �
1
𝐾𝐾1

+
1
𝐾𝐾2
� (4.20) 

For the ball-outer race contact, Eq (4.19) and (4.20) should be updated as: 

 𝑃𝑃ℎ = �
3𝐹𝐹 �1 − 𝑣𝑣12

𝐸𝐸1
+ 1 − 𝑣𝑣22

𝐸𝐸2
�

4 �1
𝐾𝐾1
− 1
𝐾𝐾2
�

3

 (4.21) 

 𝛿𝛿 = 𝑃𝑃ℎ × �
1
𝐾𝐾1
−

1
𝐾𝐾2
� (4.22) 

4.2.3.2 The Hertzian quadrilateral model 

The geometry relationship between the defect size d and the path traveled by the 

ball is as shown in Figure 25. At the moment when the deflected area just arrives at the 

entry edge C, the ball center is at point A. On the outer race, the distance between the 

deflect area center F to the entry edge C is a1. O is the center of the inner/outer race, and B 

is the ball center when the ball collides with the exit edge D. The ball loses contact with 

both races at E. r is the radius of the ball. 
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Figure 25. The Hertzian quadrilateral model. 

At position A, given the initial contact force F0, the radius of the ball-outer race 

and ball-inner race deflections a1 and a2, can be derived from Eq (4.19) and (4.21). Within 

the speed range from 500-3000 rpm, the centrifugal force is very small compared to the 

contact force, and therefore is not considered in this model. For simplicity,  

 𝑃𝑃1 = 𝐾𝐾1 ∙ 𝐹𝐹0
1
3 (4.23) 

 𝑃𝑃2 = 𝐾𝐾2 ∙ 𝐹𝐹0
1
3 (4.24) 

Where K1 and K2 are constants given bearing geometry and material property. According 

to Eq (4.20) and (4.22), the ball center moves closer to the inner race center by Δx2 and 

moves closer to the outer race by Δx1: 
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 ∆𝑥𝑥1 = 𝑃𝑃12 ∙ �
1
𝐾𝐾
−

1
𝑅𝑅 + 𝐾𝐾

� (4.25) 

 ∆𝑥𝑥2 = 𝑃𝑃22 ∙ �
1
𝐾𝐾

+
1

𝑅𝑅 − 𝐾𝐾
� (4.26) 

If the distance from ball center to inner race center without deflection is R, then the 

length OC and OD in Figure 25 can be expressed as: 

 𝑂𝑂𝐶𝐶 = 𝑂𝑂𝐷𝐷 = 𝑅𝑅 + 𝐾𝐾 − ∆𝑥𝑥0 (4.27) 

Where Δx0 is the total defection of the ball with both races and: 

 ∆𝑥𝑥0 = ∆𝑥𝑥1 + ∆𝑥𝑥2 = 𝐾𝐾3 ∙ 𝐹𝐹0
2
3 (4.28) 

K3 is a constant given the bearing geometry and material property. When the ball loses 

contact with both races at E, OE is R and CE is r. Then the angle θ2 can be derived as: 

 𝑓𝑓𝐾𝐾𝑆𝑆𝜃𝜃2 =
𝑅𝑅2 + (𝑅𝑅 + 𝐾𝐾 − ∆𝑥𝑥0)2 − 𝐾𝐾2

2𝑅𝑅(𝑅𝑅 + 𝐾𝐾 − ∆𝑥𝑥0)
 (4.29) 

Then, 𝜃𝜃2 can be further simplified as below: 

 𝜃𝜃2 =
�2(𝑅𝑅 + 𝐾𝐾)𝑅𝑅𝐾𝐾∆𝑥𝑥0
𝑅𝑅(𝑅𝑅 + 𝐾𝐾 − ∆𝑥𝑥0)

 (4.30) 

From position E, the ball is assumed to travel in the horizontal direction with a 

constant speed vb from E to B as shown in Eq (4.11). According to the dynamic model, the 
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first peak in the entry signal occurs at E. Therefore, the time from E to B is tp, which can 

be obtained from the vibration signal. Then, EB can be derived as: 

 𝐸𝐸𝐴𝐴 = 𝑣𝑣𝑏𝑏 ∙ 𝐾𝐾𝑏𝑏 (4.31) 

When the ball collides with the exit edge D, the angle θd can be solved using the 

trigonometry relationship as shown in Figure 23: 

 [𝑂𝑂𝐷𝐷 ∙ cos 𝜃𝜃𝑑𝑑 − 𝑅𝑅 cos 𝜃𝜃2]2 + [𝑂𝑂𝐷𝐷 ∙ sin𝜃𝜃𝑑𝑑 − 𝑅𝑅 sin𝜃𝜃2 − 𝑣𝑣𝑏𝑏 ∙ 𝐾𝐾𝑏𝑏 ]2 = 𝐾𝐾2 (4.32) 

In Eq (4.32), Δx0 and θ2 only depends on the initial contact force F0, and tp can be obtained 

from the vibration signal. In other words, θd is a function of F0 and tp. However, since Eq 

(4.32) is more complicated than the previous models, θd cannot be represented explicitly 

like in Eq (4.17) but solved numerically. Then the defect size d can be estimated using Eq 

(4.33): 

 𝑑𝑑 = 2(𝑅𝑅 + 𝐾𝐾) sin
𝜃𝜃𝑑𝑑
2

 (4.33) 

Therefore, the defect size d is only dependent on the initial contact force F0 and the 

peak-to-impact time tp. In other words, if the bearing load is known and tp can be obtained 

from the vibration signal, the defect size d can be estimated. However, the contact force F0 

is usually hard to determine. In this case, the contact force can be estimated using te from 

the vibration signal. This method will be introduced in the next section. 
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4.2.3.3 Estimation of the initial contact force F0 

According to the dynamic model, the entry-to-peak time te is closely related to the 

initial contact force F0. When F0 is larger, the time te becomes longer. At the moment when 

the deflected area just arrives at the entry edge, the distance between the deflect area center 

F to the entry edge C is a1. Then, the angle θ1 can be calculated as: 

 𝜃𝜃1 =
𝐾𝐾1 ∙ 𝐹𝐹0

1
3

𝑅𝑅 + 𝐾𝐾
 (4.34) 

The angle θ2 can referred from Eq (4.30). Both θ1 and θ2 are functions of F0. Since the 

small deflection, θ1 and θ2 are very small. Therefore, it can be assumed that the velocity 

of the ball center is constant. Thus, 

 𝐾𝐾𝑒𝑒 =
𝜃𝜃1 + 𝜃𝜃2
𝜔𝜔𝑐𝑐

 (4.35) 

Where ωc is the cage angular velocity. From Eq (4.35), the relationship between F0 and te 

can be determined. An interesting thing to notice is that, the ratio between θ1 and θ2 is 

almost a constant value for such small defections. This is because the ratio θ1/ θ2 can be 

derived as: 

 
𝜃𝜃1
𝜃𝜃2

=
𝑅𝑅 ∙ �1

𝐾𝐾 −
1

𝑅𝑅 + 𝐾𝐾�
−13

�2 ∙ (𝑅𝑅 + 𝐾𝐾) ∙ 𝑅𝑅 ∙ 𝐾𝐾 ∙ ��1
𝐾𝐾 −

1
𝑅𝑅 + 𝐾𝐾�

1
3

+ �1
𝐾𝐾 −

1
𝑅𝑅 + 𝐾𝐾�

1
3
�

 (4.36) 
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Therefore, the ratio θ1/ θ2 only depends on the bearing geometry. Then, Eq (4.35) can be 

updated as: 

 𝐾𝐾𝑒𝑒 = 𝐾𝐾 ∙
𝐹𝐹0
1
3

𝑆𝑆
 (4.37) 

Where n is the spindle speed in RPM and K is a constant value that can be determined by 

the bearing geometry and material properties. Substituting Eq (4.37) into Eq (4.28): 

 ∆𝑥𝑥0 = 𝐾𝐾3𝐾𝐾2𝑆𝑆2𝐾𝐾𝑒𝑒2 (4.38) 

Then, substituting Eq (4.38) into Eq (4.32), the defect size d can be obtained from the 

measurement result of te and tp. This relationship can be linearized as: 

 𝑑𝑑 = 𝑣𝑣𝑏𝑏 ��2 − √2� ∙
𝑅𝑅 + 𝐾𝐾
𝐾𝐾

∙ 𝐾𝐾𝑒𝑒 +
𝑅𝑅 + 𝐾𝐾 + �𝐾𝐾(𝑅𝑅 + 𝐾𝐾)𝑓𝑓(𝐾𝐾𝑒𝑒/𝐾𝐾𝑏𝑏)

𝑅𝑅
∙ 𝐾𝐾𝑏𝑏� (4.39) 

4.2.3.4 The defect size lower limit 

The Hertzian quadrilateral model depends on the entry-to-peak time te and the 

peak-to-impact time tp. A prerequisite for this model is that the ball collides with the exit 

edge after it leaves the entry edge. The lower limit of the defect size that ensures the 

Hertzian quadrilateral model is suitable can be calculated from Eq (4.32). The ball is 

assumed to collide with the exit edge when it arrives at position E in Figure 26, which is 

when it just leaves contact with the entry edge.  
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Figure 26. The lower limit of the defect size. 

Then, Eq (4.32) should be updated with tp=0 as: 

 [𝑂𝑂𝐷𝐷 ∙ cos 𝜃𝜃𝑑𝑑 − 𝑅𝑅 cos 𝜃𝜃2]2 + [𝑂𝑂𝐷𝐷 ∙ sin𝜃𝜃𝑑𝑑 − 𝑅𝑅 sin𝜃𝜃2 ]2 = 𝐾𝐾2 (4.40) 

The angle θd can be approximated by the following equation: 

 𝜃𝜃𝑑𝑑 ≈ 2√2 ∙ �
𝐾𝐾 ∙ ∆𝑥𝑥0
𝑅𝑅(𝑅𝑅 + 𝐾𝐾)

 (4.41) 

Then the lower limit of the defect size that works for Hertzian quadrilateral model is as 

below: 
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 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 ≈ 2√2 ∙ �
𝐾𝐾 ∙ (𝑅𝑅 + 𝐾𝐾) ∙ ∆𝑥𝑥0

𝑅𝑅
 (4.42) 

From Eq (4.42) it is obvious that dmin only depends on the contact force between 

the ball and the raceways. When the contact force is larger, the deflection Δx0 becomes 

larger accordingly, then the lower size limit for this model will increase. This size boundary 

is smaller than the smallest defect in the experiment, and therefore all the defects can be 

estimated based on the Hertzian quadrilateral model. 

When the defect size is smaller than dmin, the geometry changes and the proposed 

three models will not work in that situation. As suggested by Randall, when the ball collides 

with the exit edge before it loses contact with the entry edge, the ball center is about at the 

center of the defect. Therefore, the following equation is a recommendation to estimate the 

defect smaller than the lower bound: 

 𝑑𝑑 = 2(𝑅𝑅 + 𝐾𝐾)sin �𝐾𝐾𝑓𝑓 ∙ 𝜔𝜔𝑐𝑐 −
𝑃𝑃1

𝑅𝑅 + 𝐾𝐾
� (4.43) 

Where tt is the total time from entry to impact. Validation of this equation is beyond the 

scope of this thesis, but it can be future work. The three defect-size-estimation models are 

introduced from the simplest to the most comprehensive. They will be used to estimate 

defect size based on the time information obtained from the vibration signals. The first 

model assumes a linear relationship between the defect size and the entry-to-impact time, 

which is te+tp. The second model considers that the ball collides with the exit edge earlier 

before the ball center arrives the exit edge. The third model considers the contact deflection 
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between the ball and races. In Chapter 5, these three models will be used to estimate defect 

size and the experiment results will be compared. 

4.3 Summary 

This chapter proposes the nonlinear dynamic model for the bearing system to 

describe the vibration signal due to a localized defect on the raceway. The repeatable 

pattern is obtained and the simulation result is agreeable with experimental observations. 

Then, three defect size estimation models are introduced from the simplest trapezoidal 

model to the most complicated Hertzian quadrilateral model. In addition, the lower limit 

of the defect size that can be estimated using the Hertzian quadrilateral model is derived. 

These models are validated in Chapter 6 and Chapter 7 with the experimental results. 
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CHAPTER 5. BEARING SIGNAL PROCESSING 

This chapter describes the signal processing method to extract the time information 

from the vibration signal for defect size estimation. Then, the performance of this method 

is discussed with respect to the high and low frequency noises. For the high frequency 

noise, the Variational Model Decomposition (VMD) is used to remove the high frequency 

noise from the entry signal. For the low frequency noise, the lower bound of the spindle 

speed is determined. Finally, the complete signal-processing scheme for defect size 

estimation is summarized. 

5.1 The signal processing methods to extract point A, B and C 

In the defect estimation model proposed in Chapter 4, the time information between 

the entry and exit point is used to estimate the defect size. Therefore, the performance of 

this method relies on the precision in time domain, which can be affected by many factors 

in the actual bearing test system. One of them is ball skidding that occurs when the ball 

enters the defect zone, which cause variations in te. In addition, after the ball loses contact 

with both raceways, the no-external force assumption in the dynamic model may not 

always hold. In some instances, the cage and the raceways may still induce small impacts 

on the ball that leads to variations in the ball’s velocity, which will affect the total time tt 

(from entry to impact). The skidding and small impacts occur randomly and cannot be 

foreseen. Therefore, the time information extracted from one impact response is not 

reliable. A more comprehensive approach is to estimate the defect size based on more 

impact responses collected during a longer period. The mean value of these multiple impact 

responses is a better estimation of the true mean (the real defect width). If large amount of 
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impacts need to be analyzed, it is necessary to develop an automatic algorithm that can 

extract the time information from the data to save time and effort. More importantly, the 

statistics of the time information can be analyzed to obtain deeper understanding of the 

bearing system and better estimation result.  

5.1.1 Point B 

Point B is the peak at the end of the entry event and it represents the moment when 

the ball loses contact with the entry edge, as proposed in the dynamic model. By 

observation of long time sequence of the vibration signal, it can be seen that point B has 

two important features: 1) It is dominant in amplitude compared to the rest of the entry 

signal and the noise. 2) The time difference between point B and C (tp) is a very reliable 

value with a small standard deviation. Also, each impulsive response is very repeatable. 

Therefore, point B can be identified by the cross-correlation algorithm. To use this method, 

a target signal starts at point B ends around the middle point between two adjacent impulses 

as shown in Figure 27 is needed. The cross-correlation between the target signal and the 

raw data is performed as: 

 h(k) = �𝑓𝑓(𝐾𝐾)𝑔𝑔(𝐾𝐾 + 𝑆𝑆), 𝑆𝑆 = 1,2, … ,𝑆𝑆 −𝑚𝑚 + 1
𝑚𝑚

𝑖𝑖=1

 (5.1) 

Where f is the target signal, g is the raw vibration signal, h is the cross-correlation between 

f and g at delay k, m is the length of the target signal, n is the length of the raw vibration 

signal. Since cross-correlation is a measure of the similarity of two series as a function of 

the displacement of one relative to the other, the maximum value of Eq (5.1) occurs when 
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the target signal perfectly lines up with any of the impacts in the raw data as shown in the 

bottom of Figure 27. Due to the good repeatability of the signal, the maximum value of Eq 

(5.1) for each impact in the raw data is within a close vicinity of point B. Therefore, by 

searching the maximum value within a small region around each maximum value of the 

cross-correlation signal, point B can be identified. 

 

Figure 27. The cross-correlation between the target and the raw vibration signal. 

5.1.2 Point C 

Point C is the impact point when the ball collides with the exit edge and excites a 

large high frequency impulsive response in the vibration signal. Therefore, the exit point 

is the initial point of the response and can be used to calculate the position of the exit edge. 

To identify the impact point C, some researchers use the maximum value in the response 

signal to mark the moment when the ball collides with the exit edge. This approach is 

straightforward to implement in an automatic system. However, results show that the 
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maximum value does not always occur right after the collision between the ball and the 

exit edge [58]. Sometimes the time delay between the maximum value and the collision 

can be very large. Therefore, this method can result in an estimation that is much larger 

than the real defect. In this thesis, point C is identified by using a threshold that separates 

the entry and exit events. Since the exit impact response consists of primarily high 

frequency components, point C can be visually identified from the vibration data as shown 

in Figure 28. 

 

Figure 28. Method to find the exit point. 

The vibration signal around point C exhibits the following properties: 1) The exit 

signal (after C) is made of much higher frequency components than the entry signal (before 

C). 2) The transition from low frequency to high frequency is very sharp. 3) The exit event 

has much more energy than the entry event. Therefore, a high-pass filter that amplifies the 

exit signal relative to the entry signal appears suitable. Then, a threshold can be set to 

identify the transition point C. However, in some cases the peak in the entry signal may 
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have a similar amplitude as the first part of the exit signal, thus making the estimation result 

sensitive to the threshold value. Therefore, the high-pass filter is required to be applied 

multiple times to achieve a satisfactory result. In this thesis, the vibration data is 

differentiated twice and squared as shown in Figure 28. The differentiation operation 

operates as a high-pass filter to identify the impact point C between the low frequency entry 

signal and high frequency exit signal as labeled in Figure 28. This method has been tested 

with a large number of impact responses and results show that a reliable region for a 

threshold value to consistently separate the entry and exit signal exists. Note that the 

response may differ among different bearing systems. Dynamic model-base simulations 

can be used to calculate the order of differentiation. The region for the threshold value for 

the nth impact response is defined from the maximum value of the processed entry signal 

(𝐿𝐿𝑚𝑚) to the first peak value of the amplified exit signal (𝑈𝑈𝑚𝑚). Therefore, final threshold for 

all observed impacts is from the maximum 𝐿𝐿𝑚𝑚 to the minimum 𝑈𝑈𝑚𝑚. The large difference 

between the entry and exit signal after the signal processing ensures the method is 

insensitive to the threshold value. If a reliable dynamic model cannot be obtained, this 

threshold value can also be tested directly from the data. 

5.1.3 Point A 

Point A as shown in Figure 15 represents the moment when the ball contacts the 

entry edge and starts to enter the defect zone. According to Sawalhi and Randall [18], at 

this stage the contact force between the ball and races begin to decrease and this is call the 

“distressing process.” During the destressing process, the vibration signal decreases slowly 

to a minimum level before increasing. Because the destressing process is continuous and 

lacks an obvious collision between the ball and the entry edge, the initial part of the bearing 
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entry signal has a small slope and low signal-to-noise ratio. Therefore, precisely identifying 

the entry point is difficult. Moreover, sometimes the excessive background noises and 

disturbances distort the signal even further. Thus, a signal processing method that amplifies 

the entry signal and increases the signal-to-noise ratio is desired. In this thesis, the 

empirical model based method is used to identify the entry point A and they are introduced 

in the following paragraphs. 

5.1.3.1 Observation of the bearing entry signal 

When the rolling element passes a line-spall defect with entry and exit edges, the 

vibration response has a repeatable pattern as shown in Figure 15. Because the entry signal 

has good repeatability, an empirical model can be used to calculate the entry point. This 

section introduces the empirical model and how to use this model to estimate the entry 

point A. 

The entry signal exhibits a repeatable pattern at different spindle speeds and the 

observation result is shown in Figure 29(a). Through observations of multiple data sets at 

different spindle speeds, it is determined that the spindle speed only changes the x and y 

axis scale of the entry signal. The x axis is inversely proportional to the spindle speed while 

the y axis exhibits a quadratic relationship with the spindle speed as shown in Figure 29(b). 

Thus, the spindle speed only scales the signal in the x and y direction and does not affect 

the signal shape. This observation is agreeable with the simulation result based on the 

dynamic model developed in Chapter 4. Therefore, a “normalized” empirical function of 

the entry signal can be developed and used to estimate the entry point at different spindle 
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speeds. These observations are agreeable with the dynamic model as proposed in Chapter 

4. 

 
(a) Observation of bearing acceleration entry signal at different speeds 

 

(b) The local minimum value of the acceleration entry signal at different speeds 

Figure 29. The acceleration signal and its local minimum. 

Since the entry signal is repeatable during each impact response, curve fitting can 

be used to obtain the empirical function of the entry signal. However, a consistent fitting 
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of the acceleration data is difficult because of its low signal-to-noise ratio. To resolve this 

issue, the raw vibration data is integrated to obtain the velocity. Integration operates as a 

low-pass filter by increasing the signal-to-noise ratio of the entry signal as shown in Figure 

30(a). Integration is performed instead of a low-pass filter because digital-filter based 

techniques vary in performance depending on the spindle frequency. After integration, a 

fourth order polynomial with stable and repeatable coefficients can be fitted to the velocity 

entry signal. Eq (5.1) shows the curve fitting result at 1000rpm. The values of the constants 

𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, and 𝑝𝑝5 with 95% confidence interval are 1.3E-6, -1.1E-4, 2.7E-3, -3.3E-2 

and 4.0E-2 respectively. The variable 𝑥𝑥 is the index of a particular data point. Note that 

even though a polynomial is used in this work for its computational simplicity, other 

functions can be implemented in the empirical model.  

 𝑣𝑣 = 𝑝𝑝1𝑥𝑥4 + 𝑝𝑝2𝑥𝑥3 + 𝑝𝑝3𝑥𝑥2 + 𝑝𝑝4𝑥𝑥 + 𝑝𝑝5 (5.2) 

 
(a) The velocity vibration entry signal at different speeds 
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(b) The local minimum value of the velocity entry signal at different speeds 

Figure 30. The velocity signal and its local minimum. 

Figure 30(b) shows that the local minimum of the entry velocity exhibits a linear 

relationship with spindle speed. Therefore, if a velocity curve at a specific spindle speed is 

determined, the velocity curve at other spindle speeds can be obtained by scaling the x and 

y axes. Here, the normal spindle speed is selected as 1000 rpm. Then, the empirical model 

of the entry signal at other speeds can be expressed as: 

 𝑣𝑣 = 𝜑𝜑(𝑝𝑝1𝜑𝜑4𝑥𝑥4 + 𝑝𝑝2𝜑𝜑3𝑥𝑥3 + 𝑝𝑝3𝜑𝜑2𝑥𝑥2 + 𝑝𝑝4𝜑𝜑𝑥𝑥 + 𝑝𝑝5) (5.3) 

Where 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, and 𝑝𝑝5 are the same coefficients corresponding to 1000rpm. 

Therefore, 𝜑𝜑 is n/1000, and 𝑆𝑆 is the current spindle speed in RPM. The 𝜑𝜑 term outside the 

parenthesis in Eq (5.3) ensures that the velocity function is proportional to the spindle 

speed. To validate the velocity function, the acceleration function is formulated by 
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differentiating Eq (5.3). After differentiating, the expression of the acceleration is shown 

in Eq (5.4). 

 𝑃𝑃 = 𝜑𝜑(4𝑝𝑝1𝜑𝜑4𝑥𝑥3 + 3𝑝𝑝2𝜑𝜑3𝑥𝑥2 + 2𝑝𝑝3𝜑𝜑2𝑥𝑥 + 𝑝𝑝4𝜑𝜑) (5.4) 

Therefore, the acceleration function reaches a local minimum at point 𝑥𝑥𝑚𝑚, which is 

expressed as: 

 𝑥𝑥𝑚𝑚 =
−3𝑝𝑝2 + �9𝑝𝑝22 − 24𝑝𝑝1𝑝𝑝3

12𝑝𝑝1𝜑𝜑
=
𝜎𝜎1
𝜑𝜑

 (5.5) 

Where 𝜎𝜎1 is a constant value determined by 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3. The minimum value 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 can 

be expressed as: 

 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜑𝜑(4𝑝𝑝1𝜑𝜑4𝑥𝑥𝑚𝑚3 + 3𝑝𝑝2𝜑𝜑3𝑥𝑥𝑚𝑚2 + 2𝑝𝑝3𝜑𝜑2𝑥𝑥𝑚𝑚 + 𝑝𝑝4𝜑𝜑) = 𝜎𝜎2𝜑𝜑2 (5.6) 

Where 𝜎𝜎2 is a constant and can be determined by 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, and 𝑝𝑝4. Note that Eq (5.6) 

shows that 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 has a quadratic relationship with spindle speed, which agrees with the 

observation in Figure 29. Therefore, at least in the speed range of 500-3000 rpm, the 

empirical model represents the major properties of the entry signal through use of the 

velocity function. For the operational speed lower than this range, signal processing 

method that helps remove low frequency noise is suggested and for the operational speed 

higher than this range, a higher sampling frequency should be considered. 
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5.1.3.2 Signal processing method to identify point A 

This section describes the empirical model-based signal processing method used to 

estimate the entry point. Then, the signal processing method based on differentiation used 

to identify the exit point is described. Finally, the methodology to calculate the defect size 

from the entry and exit points is presented. The first step in entry point estimation is solving 

for 𝑃𝑃 = 0 in Eq (5.4), thus resulting in roots 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥3. The index of the entry point 

can be expressed as 𝑁𝑁 − 𝑥𝑥3 + 𝑥𝑥1 where 𝑁𝑁 is the index of the zero-crossing point of the 

entry signal as shown in Figure 15. Note that 𝑁𝑁 − 𝑥𝑥3 + 𝑥𝑥1 is always positive. However, 

this calculation is prone to error due to the low signal-to-noise ratio in the acceleration 

model around the entry point. Therefore, a more accurate solution is to use a further point 

in the signal with a higher signal-to-noise ratio. Figure 31(a) shows that the velocity 

function has a large linear region before reaching the local minimum. The index of the 

midpoint in the linear region of the velocity function corresponds to the local minimum 

point index of the acceleration function 𝑥𝑥𝑚𝑚. At 𝑥𝑥 = 𝑥𝑥𝑚𝑚, a line can be created with the slope 

𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑓𝑓2𝜑𝜑2. This line is shown in Figure 30 and can be represented as: 

 𝑦𝑦 = 𝑓𝑓2𝜑𝜑2 �𝑥𝑥 −
𝑓𝑓1
𝜑𝜑
� − 𝑆𝑆𝜑𝜑  (5.7) 

Where 𝑆𝑆 is a constant and can be derived by substituting 𝑥𝑥𝑚𝑚 into Eq (5.3). The intersection 

of the line at 𝑦𝑦 = 0 can be derived as:    

 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 =
𝑓𝑓1
𝜑𝜑

+
𝑆𝑆𝜑𝜑
𝑓𝑓2𝜑𝜑2 = �𝑓𝑓1 +

𝑆𝑆
𝑓𝑓2
�

1
𝜑𝜑

  (5.8) 
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Figure 31 shows the relationship of these variables. According to Eq (5.8), the 

distance between the intersection index 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 and the origin is proportional to 1
𝑐𝑐
. After 

substituting all constant values into Eq (5.7), 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 is calculated to be ~7% of the entry-

to-exit time for defect size of 1.530 mm. When applied to real data, 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 can be obtained 

by fitting a straight line to multiple points of the velocity profile. Therefore, 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 can be 

used to estimate the entry point. However, a speed related compensation referring to Eq 

(5.8) needs to be considered, particularly for smaller defect widths where 𝑥𝑥𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 is a 

significant portion of the entry-to-exit time.  

 

Figure 31. Method to estimate the entry point. 

5.2 Discussion of the signal processing method with respect to noises 

5.2.1 High frequency noise 

The empirical method described in the previous section is a powerful tool to extract 

point A, because it provides a large linear region in the velocity signal that is reliable 

through all the spindle speeds in this thesis. However, when the entry signal is exposed to 



 80 

very strong high frequency background noises and disturbances, the signal processing 

method in 5.1.3 is not sufficient enough for denoising, especially at lower spindle speeds 

when the amplitude of the entry signal is very small. Figure 32(a) shows the simulation 

result of an entry signal with/without the high frequency noise. The noise is a 20 kHz sine 

wave with peak-to-peak value 0.06 g. When the acceleration signal is integrated to obtain 

the velocity signal as shown in Figure 32(b), the high frequency noise still exists in the 

integrated signal. If the data points in the linear region are used to extract the entry point, 

the result are significantly affected by the high frequency noise. To determine when the 

signal processing method in 5.1.3 can be directly used to extract point A, the SNR of the 

entry signal with respect to the high frequency noise is defined in Eq (5.9).  

 
(a) The acceleration entry signal 
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(b) The velocity entry signal 

Figure 32. Simulation of the entry signal and the high frequency noise. 

 𝑅𝑅𝑁𝑁𝑅𝑅ℎ =
𝑃𝑃𝑒𝑒
𝑃𝑃𝑚𝑚

  (5.9) 

Where ae is the absolute value of the local minimum in the entry signal, and an is the peak-

to-peak value of the high frequency noise, as labeled in Figure 33. It is recommended by 

this thesis that when the SNRh is smaller than 1, a different denoising algorithm is required 

before applying the empirical model method to identify point A. In this research, the 

Variational Mode Decomposition (VMD) is used in bearing diagnostics to denoise the 

entry signal. 
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5.2.1.1 Variational Mode Decomposition (VMD) 

VMD is a methodology for adaptive and quasi-orthogonal signal decomposition 

developed by Konstantin Dragomiretskiy and Dominique Zosso [61]. The goal of VMD is 

to decompose an input signal into a discrete number of sub-signals (modes). Each of the 

modes are considered compact around a corresponding center frequency ωk. ωk is 

determined by the algorithm automatically along the decomposition. This is achieved by 

solving the following constrained variational problem: 

 min
{𝑢𝑢𝑘𝑘},{𝜔𝜔𝑘𝑘}

���𝜕𝜕𝑓𝑓 ��𝛿𝛿(𝐾𝐾) +
𝑗𝑗
𝜋𝜋𝐾𝐾
� ∗ 𝐾𝐾𝑘𝑘(𝐾𝐾)𝑆𝑆−𝑗𝑗𝜔𝜔𝑘𝑘𝑓𝑓��

2

2𝐾𝐾

𝑘𝑘=1

�  (5.10) 

subject to 

 �𝐾𝐾𝑘𝑘(𝐾𝐾) = 𝑓𝑓(𝐾𝐾)
𝐾𝐾

𝑘𝑘=1

  (5.11) 

Where f(t) is the original signal and uk is the signal of each mode after decomposition 

around the corresponding center frequency ωk. The bandwidth of uk is assessed by means 

of H1 Gaussian smoothness. Konstantin Dragomiretskiy and Dominique Zosso suggested 

solving this problem by the augmented Lagrangian method to render the problem 

unconstrained as presented below: 
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ℒ({𝐾𝐾𝑘𝑘}, {𝜔𝜔𝑘𝑘},𝜆𝜆)

= 𝛼𝛼��𝜕𝜕𝑓𝑓 ��𝛿𝛿(𝐾𝐾) +
𝑗𝑗
𝜋𝜋𝐾𝐾
� ∗ 𝐾𝐾𝑘𝑘(𝐾𝐾)𝑆𝑆−𝑗𝑗𝜔𝜔𝑘𝑘𝑓𝑓��

2

2𝐾𝐾

𝑘𝑘=1

+ �𝑓𝑓(𝐾𝐾) −�𝐾𝐾𝑘𝑘(𝐾𝐾)
𝐾𝐾

𝑘𝑘=1

�
2

2

+ 〈𝜆𝜆(𝐾𝐾),𝑓𝑓(𝐾𝐾) −�𝐾𝐾𝑘𝑘(𝐾𝐾)
𝐾𝐾

𝑘𝑘=1

〉   

(5.12) 

Now the solution to the original variational problem is found as the saddle point of 

the augmented Lagrangian as shown in Eq (5.12). Then, the modes uk and the center 

frequency ωk are updated as: 

 𝐾𝐾�𝑘𝑘𝑚𝑚+1(𝜔𝜔) =
𝑓𝑓(𝜔𝜔) − ∑ 𝐾𝐾�𝑖𝑖(𝜔𝜔) + �̂�𝜆(𝜔𝜔)

2𝑖𝑖≠𝑘𝑘

1 + 2𝛼𝛼(𝜔𝜔 − 𝜔𝜔𝑘𝑘)2
  (5.13) 

 𝜔𝜔𝑘𝑘
𝑚𝑚+1 =

∫ 𝜔𝜔|𝐾𝐾�𝑘𝑘(𝜔𝜔)|2𝑑𝑑𝜔𝜔∞
0

∫ |𝐾𝐾�𝑘𝑘(𝜔𝜔)|2𝑑𝑑𝜔𝜔∞
0

 (5.14) 

Where α is the balancing parameter of the data-fidelity constraint. α will affect the 

bandwidth of each mode. When α is smaller, the bandwidth is larger; conversely, when α 

is larger, the bandwidth is smaller. 

5.2.1.2 Discussion of VMD parameters 

To apply VMD, the number of modes K and the balancing parameter α need to be 

determined. Both K and α affect the VMD output. To obtain the desired signal in the 

decomposition, these parameters can be selected by examining the spectrum of the signal. 
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Figure 34 and Figure 35 show two examples of the VMD output with different setup of K 

and α. 

In Figure 33, the input signal is simulated by the sum result of three sine waves at 

400 Hz, 600 Hz and 1000 Hz. The wanted signal is the 400 Hz sine wave with the smallest 

amplitude. If K=2, only the 1000 Hz signal is decomposed correctly as shown in Figure 

33(a). The 400 Hz signal is still mixed with the 600 Hz signal. This means that two modes 

cannot differentiate the 400 Hz signal from the 600 Hz signal. If K=3, the three signals can 

be decomposed correctly into three separate modes, as shown in Figure 33(b). Therefore, 

if the desired signal is closer to another narrow band signal in frequency, K should be large 

enough to differentiate the difference between the desired signal and the narrow band noise. 

However, K cannot be too large as larger K requires more computational efforts. The 

optimal method is to select the smallest K value that can differentiate the desired signal. 

 
(a) K=2 
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(b) K=3 

Figure 33. The VMD output with different K. 

Figure 34 shows the simulated input signal of two sine waves with frequencies close 

to each other. To separate these two sine waves into two modes of VMD, the balancing 

parameter α should be selected carefully. When α=1000, the decomposition result is poor 

because the bandwidth of each mode is too large and VMD cannot separate the two signals 

very well. When α=8000, VMD successfully decomposes the two signals into two different 

modes. Therefore, when a narrow band signal needs to be denoised from another narrow 

band noise with very close frequency, α should be large to narrow the bandwidth of the 

decomposition and therefore differentiate the signal from the noise. If the desired signal 

has a larger bandwidth, a small α is recommended to decrease the loss of the wanted signal. 
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(a) α=1000 

 

(b) α=8000 

Figure 34. The VMD outer put with different α. 

5.2.1.3 VMD denoising 

Figure 34 shows the result of applying VMD on the bearing entry signal. The blue 
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VMD output. There are three modes altogether in this decomposition and the balancing 

parameter α is 2000. Figure 35 shows that the VMD effectively removes the high frequency 

noise from the vibration signal. This can be interpreted more clearly in the frequency 

domain as shown in Figure 36. The raw signal contains three dominant frequency within 

0-10 kHz. The entry signal primarily consists of low frequency components, and thus, it 

dominates in the first mode. Therefore, by extracting the first mode from the VMD, the 

entry signal is separated from the high frequency noises and disturbances. 

 

Figure 35. Bearing vibration signal with VMD denoising. 
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Figure 36. FFT of the 3 modes VMD. 

5.2.2  Low frequency noise 

The VMD can efficiently remove the high frequency noise in the entry signal, but 

the low frequency vibration from the last impact still exists and is difficult to eliminate, as 

shown in Figure 37. This is because both the entry signal and the noise are mainly 

composed of low frequency components. In Figure 37, the low frequency noise is simulated 

by a sine wave at 4 kHz. The “low frequency” is relative to the entry signal, which means 

that the period of the noise is close or similar to the entry signal. 
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Figure 37. The entry signal with the low frequency noise. 

At lower speeds, the amplitude of the entry signal can be close or even smaller than 

the low frequency noise. In this situation, the signal processing method proposed in 5.1.3 

may not be able to provide accurate estimation of the entry point. The estimation error of 

the entry point depends on the time shift between the signal and the noise. In Figure 37, 

the entry event starts around the minimum of the sine wave. Then, the estimation error can 

be seen in Figure 38. It is obvious that the slopes of the linear region in the two plots of 

Figure 38 are quite different. This results in the measurement error in the entry point by six 

data points, which is about 30% of the total entry signal. At other time shift between the 

entry signal and the low frequency noise, the error is shown in Figure 39. As the entry 

signal swept through the signal wave, the error of the entry point is periodic and the bias is 
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above zero. Thus, when the low frequency noise is strong, the estimation result is usually 

smaller than the true defect.  

 

Figure 38. The velocity signal with/without the low frequency noise. 

 

Figure 39. The error of the entry point with respect to time shift. 
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which ensures that the estimation result is acceptable. To define such a bound, signal-to-

noise ratio between the entry signal and the low frequency noise is defined as: 

 𝑅𝑅𝑁𝑁𝑅𝑅𝑙𝑙 =
𝑃𝑃𝑒𝑒
𝑃𝑃𝑙𝑙

  (5.15) 

Where ae is the absolute value of the local minimum in the entry signal, and al is the peak-

to-peak value of the low frequency noise, as labeled in Figure 38. When SNRl≥1, the 

average error is about 8% of the entry signal and the entry point can be detected using the 

signal processing method proposed in this thesis. When SNRl≤ 0.5, the estimation result is 

more than 30% smaller than the true defect and the result is not acceptable. For a more 

precise estimation, a SNRl greater than 1.5 is recommended and the error is only 3% of the 

entry signal. 

To determine the lower bound of the speed range, experiments were performed at 

different speeds. For all defect sizes, when the spindle speed is equal to or greater than 500 

rpm, the SNRl is greater than 1. Therefore, the lower speed bound is set to be 500 rpm for 

all the tests in this thesis. For spindle speed lower than 500rpm, a signal processing method 

is proposed as follows. The low frequency noise can be considered as a decaying sinusoidal 

signal with certain period and decay factor. The period and decay factor can be solved by 

curve fitting to the vibration signal before the local minimum of the entry event. Then, the 

low frequency noise can be removed by subtracting the curve from the vibration signal. 
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5.3 The signal-processing scheme 

After point A, B and C are successfully identified from the vibration signal, the 

entry-to-peak time te and the peak-to-impact time tp can be determined. The process of the 

signal processing method to obtain te and tp can be summarized as below: 

 

Figure 40. Flowchart of the signal processing procedure. 

In Chapter 6 and Chapter 7, these signal processing methods is applied to the 

vibration signal and the defect estimation result is shown. 

5.4 Summary 

This chapter proposes the signal processing method to extract the key points A, B 

and C from the vibration signal. Point A is extracted using the empirical model of the 

bearing entry signal. Point B is extracted using cross-correlation. Point A is extracted using 

the differential algorithm. Then, the performance of the signal processing method is 
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evaluated with respect to high and low frequency noises. For the high frequency noise, the 

VMD is recommended to remove the noise from the entry signal. For the low frequency 

noise, the estimation results depend on the signal-to-noise ratio between the entry signal 

and the low frequency noise. When the signal-to-noise ratio is too small, the estimation 

result can be smaller than the true defect. Finally, the complete signal-processing scheme 

for defect size estimation is provided. 
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CHAPTER 6. DEFECT SIZE ESTIMATION WITHOUT 

MACHINING 

This chapter describes the validation of the bearing test system and the no-cutting 

experiment design. Then, the experiment results with observations under the no-cutting 

conditions are shown and discussed. Finally, the defect size estimation results for both 

inner and outer defects under different speeds are provided to validate the precision of the 

estimation method.  

6.1 Validation of the test system and design of experiments 

6.1.1 Validation of the test system 

Given the spindle speed, the velocity of each bearing component can be calculated 

according to Eq (2.6) through (2.9). However, when the spindle is running, sliding and 

friction between the balls and raceways may cause variations in the velocity of each bearing 

component comparing to theoretical calculation. Since the method used in this thesis relies 

on time domain information, the velocity of each bearing rotary component (inner race and 

balls) should be validated first. The validation is performed by comparing the actual ball-

pass frequencies with the calculated bearing frequencies. Rotation test from 500-3000 rpm 

were performed and the results are shown in Figure 41 and Figure 42. There is a decreasing 

trend in the ball-pass frequency ratio as the speed increases. This means that at higher 

speeds, the bearing sliding becomes more prominent and the relative speeds between the 

cage and the outer/inner races decrease. Since the variation is only about 1%, it does not 

affect the final estimation results. Both Figure 41 and Figure 42 show that the experimental 



 95 

ball-pass frequency ratios are similar to the calculated results 0.42 and 0.58. Therefore, the 

outer race ball-pass frequency ratio is determined to be 0.42 and the inner race ball-pass 

frequency ratio 0.58, as the theoretical calculation result in Chapter 3. This also means that 

the bearing in the test system is suitable and each component runs at velocities close to 

theoretical calculations.  

 

Figure 41. The ball-pass frequency ratio for outer race defect. 
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Figure 42. The ball-pass frequency ratio for inner race defect. 

6.1.2 Design of the no-cutting experiments 
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obtain te and tp using the signal processing method introduced in 5.1. The results are 

averaged to get te and tp. While for the inner race defect, the first estimation model is used. 

Thus, only the total time tt from entry point A to impact point C is required to calculate the 

estimation result. The measurement result of tt for the inner race defect will be shown in a 

later section.  

6.2.1  The measurement results of te and tp 

The measurement results of te and tp at different speeds are shown in Figure 43 and 

6.4. Both te and tp show a linear trend with respect to 1/rpm. Figure 43 shows that the 

variances in te among the three defect widths are small. This result is due to the fact that 

the bearing preload is constant throughout the experiments. This result agrees well with the 

assumption of the Hertzian quadrilateral model in Chapter 4, that te is dependent on spindle 

speed and independent of the defect size. Figure 44 shows that tp is significantly affected 

by defect size. When the defect size is large, tp becomes longer; when the defect size is 

small, tp becomes shorter. Therefore, tp is determined by the speed and defect size. The 

relationship between te, tp and bearing load cannot be clearly seen from these two plots, 

but it is discussed later. So far, all of the observations from the experiment results for the 

outer race agree with the assumptions of the third defect estimation model.  
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Figure 43. te of outer race. 

 

Figure 44. tp of outer race. 
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One of the advantages of the automatic signal processing method proposed in 

Chapter 5 is that, statistics of te and tp can be analyzed based on the large data sets. Without 

the signal processing method, manual analysis is impractical. Therefore, this is the first 

time that the statistics of te and tp are analyzed and discussed. More observations of te and 

tp will be shown in the next several paragraphs and the results provide insight into the 

relationship between te, tp and bearing load that supports the Hertzian quadrilateral model. 

6.2.1.1 Time domain plot of te and tp 

The time domain plots of both te and tp are significantly affected by bearing load. 

Figure 45 shows an example of te at 1700 rpm for the 1.530 mm outer defect. In this plot, 

te vibrates between the upper and lower bound and looks like a sine wave with a specific 

period. Figure 46 shows the phenomenon more obviously in frequency domain with the 

most dominant frequency at the shaft frequency. This phenomenon can be consistently 

observed from the experiment results of the other two defect sizes as well. For tp, similar 

result can be observed. Therefore, it can be concluded that both te and tp are significantly 

affected by bearing loads. This is due to the change of the relative distance and bearing 

load between inner and outer races when the shaft rotates, as shown in Figure 47. Thus, 

when the ball enters the defect, if the relative distance between the inner and outer races is 

smaller, the contact force is also smaller. In addition, this means that the signal processing 

algorithm developed in Chapter 5 is precise enough to detect the effects of shaft unbalance 

on te and tp. This observation also supports the Hertzian quadrilateral model that the 

bearing contact force should be considered, because it significantly affects te and tp.  
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Figure 45. Time domain plot of te at 1700rpm. 

 

Figure 46. Frequency domain plot of te at 1700rpm. 

 

Figure 47. Load distribution in bearing. 
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6.2.1.2 Statistics of te and tp 

The statistics of te and tp affect the precision of defect size estimation, and therefore 

will be quantified. The histograms of te and tp at two different speeds are shown in Figure 

48. At lower speeds, there are two separate peaks in the histogram. One of them centers on 

the upper bound of the time domain plot as shown in Figure 45, and the other centers around 

the lower bound. The result is very similar to two Gaussian distributions with an overlap 

between each other. This means that the local maximum and minimum in one period of the 

“sine wave” as shown in Figure 45 is close to a Gaussian distribution. Moreover, the 

distance between these two peaks is similar to the amplitude of the “sine wave” and 

proportional to the standard deviation of te and tp as shown in Figure 49. At lower speeds, 

the standard deviation of te and tp are larger, and therefore the two peaks in the histogram 

become farther away from each other. At lower speeds, the standard deviations of te and tp 

become smaller, and the two peaks in the histogram starts to merge and the result becomes 

very similar to a Gaussian distribution.  
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Figure 48. Histograms of te and tp. 
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(b) Standard deviation of tp 

Figure 49. Standard deviation of te and tp with respect to speeds. 
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(a) Normalized standard deviation of te 

 

(b) Normalized standard deviation of tp 

Figure 50. Normalized standard deviation of te and tp with respect to speeds. 
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smaller te and tp. To decrease the uncertainty level, a higher sampling frequency of the data 

acquisition system is required to increase the number of data points in te and tp. Therefore, 

the upper speed range is determined by the sampling frequency of the data acquisition 

system and the defect size (defect size affects tp). If it is required that te and tp should be 

represented by at least m data points at a specific spindle speed r, then the sampling 

frequency should be at least: 

 𝑓𝑓𝑐𝑐 ≥
𝑚𝑚

min (𝐾𝐾𝑒𝑒, 𝐾𝐾𝑏𝑏)
 (6.2) 

As derived in Eq (4.39), te is a function of contact force and spindle speed, and tp 

is determined by defect size and spindle speed. Therefore, the lower bound of the sampling 

frequency depends on contact force, defect size and spindle speed. For this thesis, sampling 

frequency is selected as 100 kHz and this guarantees that for the smallest defect and at the 

highest speed, tp is still represented by at least five data points. Resolution of the estimation 

at different speeds for both outer and inner race defects can be calculated as: 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑏𝑏 =
2𝜋𝜋 ∙ 0.42 ∙ 𝑆𝑆(𝑅𝑅 + 𝐾𝐾)

60 ∙ 𝑓𝑓𝑐𝑐
 (6.3) 

 𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖 =
2𝜋𝜋 ∙ 0.58 ∙ 𝑆𝑆(𝑅𝑅 − 𝐾𝐾)

60 ∙ 𝑓𝑓𝑐𝑐
 (6.4) 

At higher spindle speed and sampling frequency, the resolution of the test system 

is higher. Substituting sampling frequency fs, spindle speed n, R and r into Eq (6.3) and 

(6.4), resolution of the test system is listed in Table 4. For applications with higher 
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precision requirement, the sampling frequency should be large enough to ensure that te and 

tp are represented by enough number of data points. 

Table 4. Resolution of the test system at 100 kHz sampling frequency. 

Spindle speed 
(RPM) 

Resolution for outer race 
defect (mm) 

Resolution for inner race 
defect (mm) 

500 0.0063 0.0063 
700 0.0089 0.0088 
1000 0.0127 0.0126 
1200 0.0152 0.0152 
1500 0.0190 0.0189 
1700 0.0215 0.0215 
2000 0.0253 0.0253 
2500 0.0317 0.0316 
3000 0.0380 0.0379 

6.2.1.3 Correlation between te and tp 

When te increases, tp should decrease when the defect size is fixed, because the 

distance from the point the ball loses contact with the entry edge to the impact point 

becomes shorter. Therefore, te and tp should have a negative correlation. This can be 

validated through the measurement result of te and tp. Firstly, the linear trend in the 

measurement results of te and tp is removed, as shown in Figure 51. The negative trend 

between te and tp can been seen obviously from Figure 51. To quantify the negative trend, 

the correlation coefficient is calculated between the detrended te and tp as in Eq (6.5).  

 𝐾𝐾𝑒𝑒𝑏𝑏 =
𝑆𝑆(∑𝑥𝑥𝑦𝑦) − (∑𝑥𝑥)(∑𝑦𝑦)

�[𝑆𝑆∑𝑥𝑥2 − (∑𝑥𝑥)2][𝑆𝑆∑𝑦𝑦2 − (∑𝑦𝑦)2]
 (6.5) 

To interpret the correlation coefficient, -1~-0.7 means a strong negative linear relationship, 

-0.7~-0.5 means a moderate negative linear relationship, and -0.5~-0.3 means a weak 
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negative linear relationship. From all the tested bearings, the 1.530 mm defect size has the 

most obvious defective response with the best signal-to-noise ratio among the three defects, 

and it has the strongest negative correlation coefficient -0.84. For the 0.794 mm and 1.135 

mm defects, the correlation coefficient is also negative, but not as strong as the 1.530 mm 

defect. This decrease in correlation may be due to the low signal-to-noise ratio at lower 

speed and uncertainty at higher speed. The negative correlation between te and tp is another 

evidence to demonstrate the validity of the Hertzian quadrilateral model.  
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(c) 0.794mm 

Figure 51. Detrended te and tp. 
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decrease the defect width due to thermal expansion. According to the derivation of te and 

tp as shown in Eq (4.37) and (4.39), te will increase and tp will decrease. Therefore, the 

defect size estimation result will decrease correspondingly as defect width decreases under 

heat expansion. Therefore, according to the bearing model, the measurement result of the 

defect width undergoing thermal expansion should be smaller than the defect size at room 

temperature. The defect width at room temperature can be calculated from the defect width 

undergoing thermal expansion using the temperature, bearing material property, bearing 

geometry and defect size. 

6.2.1.5 Discussion of te and tp with respect to material property 

One of the major causes of spall defect is brinnelling. This phenomenon is 

characterized by sudden impact loading during bearing operation, such as spindle crash, or 

heavy loading while the bearing is not rotating. The result is a small dent on a ball bearing 

or a line spall for roller bearings left on the surface of the bearing raceway. For either 

defect, when the rolling element passes by the dent, extremely high-pressure ridges form 

in the vicinity of the dented region. Therefore, the material of the defect’s entry edge 

becomes the hardest location in the bearing. If the difference in hardness is large, the 

influence of this phenomenon on defect size estimation should be considered. 

Assuming that the entry edge is harder, then the deflection between the ball and the 

entry edge when the ball just rolls into the defect region decreases. Therefore, te will 

decrease and while tp remains constant. However, because the actual width of the defect 

does not change, the measurement result of the defect width will be smaller that the actual 

size. The error depends on the material property of the entry edge. 
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6.3 The total time tt from entry to impact 

The measurement results of te, tp and some observations have been discussed in 

6.2. The total time tt from the entry point A to the impact point C can be obtained by adding 

te and tp. The measurement result of tt for both outer and inner race defect is presented in 

this section. 

6.3.1 Total time tt for the outer race defect 

The total time tt for the three outer race defects are shown in Figure 52. From the 

plot, a clear linear trend can be seen between tt and 1/rpm. The small intercepts and the 

large R factors of all the least-square fit lines mean that the linearity of the measurement is 

very good. By comparing Figure 52 with Figure 43 and Figure 44, it can be seen that the 

linearity of tt is better than the linearity of te and tp. The comparison result can be seen 

more clearly from Table 6 by comparing the R value of the linear estimation. This result is 

due to the strong negative correlation coefficient as shown in Table 5. Both te and tp are 

sensitive to the variation in the bearing loads, but their sum, the total time tt, is not. Thus, 

when the contact force increases, te increases and tp decreases to make sure that the overall 

time tt is not affected by the variance of the contact force. Therefore, the measurement of 

tt is very consistent and not sensitive to bearing loads, and it is a suitable metric to estimate 

the defect size. 
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Figure 52. Total time tt for the outer race defect. 

Table 6. The R value of the linear estimation for te, tp and tt. 
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The measurement result of the total time tt for the inner race defect is shown in 
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Figure 53. Total time tt for the inner race defect. 
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1. The estimation result within the speed range 1000 rpm to 2000 rpm are close to 

the true defect size. 

2. At lower speeds, the estimation result is a lower than the true defect size. 

3. At higher speeds, the estimation result is a higher than the true defect size. 

These observations agree with the statistics analysis in 6.2.1. At lower speeds, due 

to the smaller signal-to-noise ratio between the entry signal and the low frequency noise, 

the estimation result will be smaller than the true defect size. At higher speeds, because the 

time from entry to exit point is very short, the uncertainty in the measurement result will 

increase. In addition, the bearing sliding issue becomes more prominent at higher speeds 

as suggested in Figure 41 and Figure 42, and therefore, the estimation result will be a little 

bit larger than the true defect size.  
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(b) 1.135mm outer 

 

(c) 1.530mm outer 

Figure 54. Defect size estimation results for the outer race. 
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result of Hertzian quadrilateral model is about 30% larger than the true defect size. The 

estimation result given by Hertzian quadrilateral model has the smallest error, which is 

usually smaller than 8%. The average error of the estimation result of the three defects are 

shown in Table 10. 

Table 7. Defect size estimation results of three different estimation models (mm). 

Spindle 
speed 
(RPM) 

0.794 mm 1.135 mm 1.530 mm 

M1 M2 M3 M1 M2 M3 M1 M2 M3 
500 0.5114 0.9145 0.6672 0.852 1.5226 1.0875 1.1227 2.005 1.4344 
700 0.5352 0.957 0.6987 0.8238 1.4723 1.0515 1.1359 2.0285 1.4518 
1000 0.5816 1.0398 0.7593 0.8201 1.4658 1.0468 1.1721 2.0929 1.4982 
1200 0.5459 0.9761 0.7104 0.8524 1.5233 1.088 1.1788 2.1048 1.5067 
1500 0.6015 1.0754 0.7802 0.8404 1.5019 1.0733 1.217 2.1728 1.5547 
1700 0.5551 0.9925 0.721 0.8705 1.5555 1.1112 1.1964 2.1361 1.5291 
2000 0.5823 1.0412 0.7568 0.8928 1.5953 1.1401 1.2727 2.2718 1.6288 
2500 0.6081 1.0872 0.7916 0.9087 1.6238 1.0989 1.2399 2.2135 1.5834 
3000 0.5955 1.0647 0.7751 0.9209 1.6454 1.1765 1.2355 2.2056 1.5765 

Table 8. Relative error of three different estimation models. 

Spindle 
speed 
(RPM) 

0.794 mm 1.135 mm 1.530 mm 

M1 M2 M3 M1 M2 M3 M1 M2 M3 
500 0.36 0.15 0.16 0.25 0.34 0.04 0.27 0.31 0.06 
700 0.33 0.21 0.12 0.27 0.30 0.07 0.26 0.33 0.05 
1000 0.27 0.31 0.04 0.28 0.29 0.08 0.23 0.37 0.02 
1200 0.31 0.23 0.11 0.25 0.34 0.04 0.23 0.38 0.02 
1500 0.24 0.35 0.02 0.26 0.32 0.05 0.20 0.42 0.02 
1700 0.30 0.25 0.09 0.23 0.37 0.02 0.22 0.40 0.01 
2000 0.27 0.31 0.05 0.21 0.41 0.01 0.17 0.48 0.06 
2500 0.23 0.37 0.01 0.20 0.43 0.03 0.19 0.45 0.03 
3000 0.25 0.34 0.02 0.19 0.45 0.04 0.19 0.44 0.03 
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Table 9. Average absolute and relative error of three different estimation models. 

Defect 
size (mm) 

M1 M2 M3 
Absolute 

(mm) Relative Absolute 
(mm) Relative  Absolute 

(mm) Relative  

0.794mm 0.225 27% 0.222 28% 0.054 7% 
1.135mm 0.270 24% 0.410 36% 0.048 4% 
1.530mm 0.333 22% 0.607 40% 0.050 3% 

6.4.2 Inner race defect 

For the inner race defect, the defect size is estimated using the first estimation 

model. The results are shown in Figure 55(a) through (c). Since on average, the signal-to-

noise ratio between the entry signal and the low frequency noise is larger than the outer 

race defects, the estimation results for the inner race defect at lower speeds is better than 

the outer race defect. The estimation results, relative error and average error are shown in 

Table 10 and Table 11 respectively. 
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(b) 1.135mm inner 

 

(c) 1.530mm inner 

Figure 55. Defect size estimation results for the inner race. 
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Table 10. The defect size estimation results and relative error for the inner race. 

Spindle 
speed 
(RPM) 

0.794 mm 1.135 mm 1.530 mm 
Result 
(mm) 

Relative 
error 

Result 
(mm) 

Relative 
error 

Result 
(mm) 

Relative 
error 

500 0.7468 0.06 1.056 0.07 1.4970 0.02 
700 0.7239 0.09 1.075 0.05 1.4959 0.02 
1000 0.7246 0.09 1.091 0.04 1.5672 0.02 
1200 0.7186 0.09 1.080 0.05 1.5254 0.01 
1500 0.7313 0.08 1.068 0.06 1.5614 0.02 
1700 0.7121 0.10 1.057 0.07 1.4818 0.03 
2000 0.7120 0.10 1.058 0.07 1.4995 0.02 
2500 0.7110 0.10 1.059 0.07 1.5551 0.02 
3000 0.7459 0.06 1.077 0.05 1.4598 0.05 

Table 11. Average absolute and relative error for inner race defect. 

Defect size (mm) Absolute (mm) Relative 
0.794 0.09 10.9% 
1.135 0.06 5.1% 
1.530 0.02 1.5% 

6.5 Summary 

This chapter validates the defect size estimation method proposed in this thesis with 

the no-cutting experiments. At the beginning of this chapter, the ball-pass frequency ratios 

of the bearing test system are validated at all tested speeds. Then, the experimental design 

is described. After that, the experiment results including measurement of te, tp and tt with 

other observations under the no-cutting conditions are shown and discussed. The statistics 

of the measurement results are performed due to the automatic signal-processing algorithm. 

All the results and observations agree with the assumptions in the Hertzian-quadrilateral 

defect estimation model as proposed in Chapter 4. The defect size estimation results for 

both inner and outer defects are close to the true defect size with the maximum error of 7% 

for the outer race and 10.9% for the inner race.   
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CHAPTER 7. DEFECT SIZE ESTIMATION DURING 

MACHINING 

During machining operations, spectrum of the vibration signal can be significantly 

affected by the cutting forces and excessive noises. Because variations in cutting conditions 

can produce different cutting forces, to use the traditional spectrum comparison based 

diagnostic method, it is necessary to collect the baseline data for every cutting condition. 

However, this method is impractical. Therefore, the traditional diagnostic method is not 

suitable under operating conditions. In Chapter 6, experimental results have shown that the 

new absolute method as proposed in this thesis can provide good estimation result under 

no-cutting conditions. In this chapter, the same method is used to estimate defect size when 

the machine is cutting. First, the effects of cutting forces on bearing vibration signals will 

be shown and discussed. Then, the signal processing method for cutting conditions will be 

introduced. Finally, the cutting experiment and estimation results based on the new time 

domain method are presented. 
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7.1 Effects of cutting forces on bearing vibration signals 

 

Figure 56. Vibration signals no-cutting/cutting and cutting force. 

When the spindle is purely rotating, the vibration signal is dominated by the 

impulsive responses excited by the bearing defect, defined as the “defect response,” as 

shown in Figure 56(a). When the spindle performs cutting operations, the responses excited 

by the cutting forces, defined as the “force response,” appears as ripples in the vibration 



 121 

signal as shown in Figure 56(b). These ripples tend to last longer than one period of the 

defect response with more significant amplitudes than the bearing entry signal. In addition, 

they may overlap and “destroy” the entry signal of the defect response. Therefore, the force 

response is a prevalent noise for defect size estimation. The cutting force is given in Figure 

56(c) as a reference. The time range in Figure 56 is about one shaft revolution. The cutting 

conditions for this cut are shown in Table 12.  

Table 12. Cutting condition for Figure 7.1 (c). 

Number of tooth 2 
Spindle speed 1000 rpm 
Depth of cut 0.02 in 

Feed rate 3 in/min 
Radio immersion rate 100% 

By comparing Figure 56(b) and Figure 56(c), it can be seen that the vibration 

responses during t1 and t2 are excited by the sharp decrease in the cutting forces 

correspondingly. When the cutting force changes smoothly, such as during t3 and t4, the 

defect response is not affected much by the force response. The cutter has two indexed 

teeth and the outer race ball-pass frequency is about 5 times the shaft frequency. Therefore, 

at about every two peaks, the defect response is free from contaminated by the force 

response, which is defined as the “free defect response.” Therefore, the free defect response 

can be used to estimation defect size during machining operations. However, this is only 

suitable when the ball-pass frequency is larger than the number of teeth of the cutter. A 

more general signal processing method will be introduced in 7.2 for defect estimation 

during machining operations. 
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7.2 The signal processing method for cutting operations 

Figure 57 provides a zoomed window in the entry signal contaminated by the force 

response. It can be seen that even though the force response is dominant and the entry event 

is significantly affected by the noise, the first peak in the entry signal (point B in Chapter 

4) can still be seen as labeled in Figure 57. 

 

Figure 57. Detailed vibration signals during machining. 

Therefore, the information of tp can be extracted from the cutting data. The signal 

processing method to extract tp is the same as the no-cutting condition in Chapter 5. To 

identify point B, the cross-correlation between a target impulsive response and the 

vibration signal is used. The maximum value in the cross-correlation signal corresponds to 

the index of point B. The impact point C is identified based on differentiation and threshold. 

Then, tp can be extracted from the cutting data. To estimate the defect size, te is still needed. 

te can be obtained by two methods as follows: 
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Method 1 

If the bearing initial contact force F0 is known, te can be calculated using Eq (4.39). 

Then, the defect size can be estimated as: 

 𝑑𝑑 = 𝑓𝑓(𝐹𝐹0, 𝐾𝐾𝑏𝑏) (7.1) 

Where f can be determined from the estimation model in Chapter 4.  

Method 2 

If the bearing load is unknown and the prerequisite for the frequency defect 

response is not satisfied, te can be extracted from the no-cutting data. The no-cutting data 

can be collected during the small time slot after the tool finishes its pass, as shown in Figure 

58. 

 

Figure 58. The whole cutting data set including the after-cut data. 

Then, the defect size can be estimated as: 
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 𝑑𝑑 = 𝑓𝑓(𝐾𝐾𝑒𝑒 , 𝐾𝐾𝑏𝑏) (7.2) 

Where te is the entry to peak time extracted from the post cutting data, and tp is obtained 

from the cutting data. f can be determined from the estimation model in Chapter 4. The 

second method is more convenient because it is not constrained by the ball-pass frequency 

or the number of teeth. In addition, all the information can be obtained from the vibration 

signal. However, a prerequisite for this method is that tp is constant during and after the 

machining process and this prerequisite need to be validated. The comparison of tp during 

and after machining process is shown in the next section. The design of the experiment to 

validate this method is introduced in the next section. 

7.3 Design of the cutting experiments 

To validate the time domain bearing diagnostics method under cutting conditions, 

the same experiment setup described in the previous chapter was used in these cutting 

experiments. To test the robustness of the estimation method under cutting conditions, all 

of the experiments in Chapter 6 were repeated again under two different feed rates. The 

feed rate with other cutting parameters are listed in Table 13. 

Table 13. Cutting experiment conditions. 

Feed rate (in/minutes) Depth of cut (inches) Radio immersion rate 
2.36 0.02 100% 

3 0.02 100% 

Therefore, 9 different speeds, 3 defect sizes for both inner and outer races, 2 

different cutting conditions were tested. Therefore, the total number of cuts ntotal was 

calculated to be: 
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 𝑆𝑆𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡𝑙𝑙 = 9 × 3 × 2 × 2 = 108 (7.3) 

For each of the 108 cutting conditions, the vibration data during and after cut are 

collected and analyzed using the signal processing method as proposed in 7.1.2. The cutting 

forces in three axes orthogonal to each other are also collected. All the experiments were 

performed under the same bearing preload controlled by a torque wrench. 

7.4 Measurement result of tt 

To estimate the defect size under cutting conditions without knowing the bearing 

load, the te in the vibration signal after cutting can be used. However, a prerequisite that tp 

during and after cutting does not change much needs to hold, as mentioned in 7.1.2. 

Therefore, 7.3 first validates the prerequisite by comparing the tp during and after cutting. 

Then, the correlation coefficient of te and tp is analyzed to show that the assumption of the 

third estimation model holds as well under cutting conditions. Finally, the measurement 

result of tt is shown for both the outer and inner race defects. 

7.4.1 Comparison of tp during cut and post-cut 

The tp for both outer and inner defects during and after machining operations are 

shown in Figure 59 and Figure 60. Each of the data points in this plot are the averaged tp 

based on about 2 seconds of the vibration signal during/after machining. It can be seen that 

the measurement result of tp during machining is close to the result after machining for 

both feed rates. The variation of tp in percentage can be referred from Table 14. The 

maximum variation of tp occurs at 2500rpm for the 0.794mm inner race defect, which is 

16%. The average variation of tp for the outer race is 3.03%, and 3.99% for the inner race. 
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Thus, the variation of tp caused by the cutting forces is very small. Therefore, te after 

machining and tp during machining can be added together to provide estimation of the 

defect size. 

 

 

Figure 59. tp during and after cutting for the outer race. 
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Figure 60. tp during and after cutting for the inner race. 
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Table 14. Variation of tp during and after cutting (%). 

Spindle 
Speed 
(RPM) 

Outer race Inner race 
0.794 mm 1.135 mm 1.530 mm 0.794 mm 1.135 mm 1.530 mm 

2.36 
feed 

3 
feed 

2.36 
feed 

3 
feed 

2.36 
feed 

3 
feed 

2.36 
feed 

3 
feed 

2.36 
feed 

3 
feed 

2.36 
feed 

3 
feed 

500 2.2 3.1 0.2 0.4 4.0 6.8 1.4 3.8 1.6 3.5 0.9 2.3 
700 0.8 9.5 3.6 1.4 5.8 0.1 1.3 10.6 1.5 0.3 1.0 3.8 
1000 2.8 0.4 9.1 2.3 6.9 5.7 7.7 12.9 0.5 4.0 1.8 0.1 
1200 0.6 2.7 1.7 1.7 2.7 5.2 5.5 4.4 11.0 2.6 0.6 2.8 
1500 3.2 4.1 3.1 3.8 1.2 4.6 7.1 4.3 0.8 0.6 2.9 0.1 
1700 0.3 1.9 3.0 3.9 2.1 2.6 3.7 1.2 3.3 1.8 1.0 0.6 
2000 0.4 3.2 2.1 4.4 0.2 4.1 5.3 7.4 10.1 3.0 1.3 6.3 
2500 3.7 1.7 6.4 1.4 3.7 0.1 12.3 16.5 6.7 7.8 3.5 2.7 
3000 1.7 3.3 6.1 0.6 0.3 6.9 1.8 2.7 11.3 2.4 0.6 0.7 

7.4.2 Correlation coefficient of te and tp 

To validate the assumption of the estimation Hertzian quadrilateral model in 

Chapter 4 holds under cutting conditions, the correlation coefficient of te and tp is analyzed, 

as shown in Figure 61. It can be seen that, exactly like the no-cutting condition, there is 

still a strong negative correlation between te and tp under cutting condition, as listed in 

Table 15. The strong negative correlation means that, the total time tt is not sensitive to the 

bearing load even during machining operations, and it can be used to provide good 

estimation of the defect size. Therefore, the assumption in the Hertzian quadrilateral model 

works for both cases, either no-cutting or cutting. 
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(d) 

 

(e) 

 

(f) 

Figure 61. The correlation coefficient of te and tp. 
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Table 15. Correlation coefficient of te and tp for outer/inner race defects. 

Defect size 
(mm) 

Outer race Inner race 
2.36 feed 3 feed 2.36 feed 3 feed 

0.794 -0.644 -0.553 -0.689 -0.377 
1.135 -0.986 -0.822 -0.938 -0.388 
1.530 -0.701 -0.939 -0.857 -0.612 

7.4.3 Measurement of tt 

Since the time tp during and after the machining operation is fairly consistent and 

the total time tt is not sensitive to bearing loads, the defect size can be estimated based on 

tp during machining and te after machining. The result for both outer and inner race defect 

is presented in the ensuing text. 

The total time tt for both the outer and inner race defects under two different feed 

rates are shown in Figure 62 and Figure 63. Similar to the no-cutting experiment results, a 

clear linear trend can be seen between tt and 1/rpm. The small intercepts and the large R 

factors of all the least-square fit lines indicate good linearity of the measurement. By 

comparing Figure 62 and Figure 63 with Figure 59 and Figure 60, it is obvious that the 

linearity of tt is better than the linearity of tp. This is due to the strong negative correlation 

coefficient as shown in Table 15. Therefore, the overall time tt is not affected by the 

variance of the contact force and it is a suitable metric to estimate the defect size even 

under cutting conditions. When feed rate increases by 27% from 2.36 in/min to 3 in/min, 

the estimation result is not affected much. This means that the estimation method is 

consistent with respect to cutting conditions. 
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(a) 

 

(b) 

Figure 62. The measurement result of tt for outer race defect. 
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(a) 

 

(b) 

Figure 63. The measurement result of tt for inner race defect. 
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7.5 Defect size estimation result 

7.5.1 Outer race defect 

The estimation results under different cutting conditions for the outer race defect 

are shown in Figure 64. It can be seen that the estimation results in the speed range 1000-

2000rpm are very close to the true defect size. At lower speeds, the estimation result is 

smaller than the true defect. At higher speeds, uncertainty in the measurement result 

increases. This result is in agreement with the no-cutting experiment. When feed rate 

increases by 27% from 2.36 in/min to 3 in/min, the estimation result is not affected much. 

This means that the estimation method is consistent with respect to cutting conditions. The 

error of the estimated defect size is shown in Table 16. The best estimation result is for the 

1.530 mm defect. This is because the signal-to-noise ratio of this test set is obviously higher 

than the other data sets. The largest error occurs in the outer race 1.135 mm defect at the 

lowest spindle speed. As discussed in Chapter 6, part of the reason is due to the small 

signal-to-noise ratio between the entry signal and the low frequency noise. Another reason 

that this result may occur is that the sensor is not located directly above the defect and this 

further decreases the signal-to-noise ratio.  
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Figure 64. The defect estimation result for outer race defect. 
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Table 16. Average estimation error for the outer race defect. 

 2.36 in/min feed 3 in/min feed 
Defect size 

(mm) 
Absolute 

error (mm) 
Relative 

error 
Absolute 

error (mm) 
Relative 

error 
0.794 0.0485 6.1% 0.0460 5.8% 
1.135 0.1077 9.5% 0.1093 9.6% 
1.530 0.0398 2.6% 0.0514 3.4% 

7.5.2 Inner race defect 

Figure 65 shows the inner race defect estimation results under different cutting 

conditions. Similar trend exist in the inner race estimation result as the outer race defect. 

The estimation results in the speed range 1000-2000 rpm are very good. At lower speeds, 

the estimation result is smaller than the true defect, as shown in the 1.135 mm defect. At 

higher speeds, uncertainty in the measurement result increases. In general, the estimation 

results are better than the outer race defect, as in the no-cutting experiments. Part of the 

reason is the higher signal-to-noise ratio in the vibration data. Another reason might be due 

to the different mechanism of the inner/outer race defect. When a ball enters the inner race 

defect, its motion is regulated by the outer race. This decreases the uncertainty level of the 

ball’s motion. While in the outer race defect, the ball loses contact with both races. Then, 

the motion of the ball suffers from more uncertainty caused by random factors, such as 

sliding and friction. Similar as the outer race defect, when feed rate increases by 27% from 

2.36 in/min to 3 in/min, the estimation result is not affected much. This demonstrates that 

the estimation method is consistent with respect to cutting conditions. The error of the 

estimated defect size is shown in Table 17.  
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Figure 65. The defect estimation result for inner race defect. 
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Table 17. Average estimation error for the inner race defect. 

 2.36 in/min feed 3 in/min feed 
Defect size 

(mm) 
Absolute 

error (mm) 
Relative 

error 
Absolute 

error (mm) 
Relative 

error 
0.794 0.0637 8.0% 0.0610 7.7% 
1.135 0.0707 6.2% 0.0685 6.0% 
1.530 0.0327 2.1% 0.0320 2.1% 

7.6 Summary 

This chapter describes the application of the defect estimation method in the cutting 

experiments. First, the influence of the cutting forces on the vibration signal is studied. 

Then, two signal processing methods are provided for defect estimation under cutting 

conditions. The second method is used in this thesis, which extracts tp from the cutting data 

and obtains te from the post-cut data. The experiments in Chapter 6 are performed again in 

the cutting experiments under two different feed rate. Results show that the estimation 

method works well under cutting conditions with the maximum error 10% for the outer 

race defect and 8% for the inner race defect.  
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

An effective time-domain-based bearing defect size estimation method is proposed 

in this thesis. This chapter summarizes the contributions and conclusions of this research, 

and provides directions for future studies. 

8.1 Contributions 

A set of innovative methods and algorithms for bearing defect size estimation 

with/without cutting has been presented in this thesis. The contributions of this research 

are listed as below: 

• A test system designed for CNC-based bearing diagnostics was proposed and 

fabricated. The setup facilitates bearing diagnostics during machining and modular 

replacement of test bearings without compromising the CNC spindle. 

• A defect size estimation model quantifying the defective pattern in the vibration 

signal excited by the localized defect on raceways was proposed and validated. 

Rather than using contact force, the model uses the entry-to-peak and peak-to-

impact times to quantify the defect size. Because the entry-to-peak and peak-to-

impact times are measured directly from the current vibration signal, no baseline or 

historical data are required to determine the damage severity. 

• A signal processing method was developed to automatically extract the time 

information from the vibration time sequence for defect size estimation. The entry 

point, first peak, impact point were isolated from the time series signal using 

empirical model, cross correlation, and twice differentiation, respectively. The 
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Variational Model Decomposition (VMD) is used to remove high frequency noise 

in the entry signal. These points were then used to calculate the entry-to-peak and 

peak-to-impact times. In addition, the signal processing methods were able to 

facilitate statistical analysis on the time series signal. 

• The proposed bearing size estimation methods were experimentally validated 

during no-cutting and machining states.  

8.2 Conclusions 

The conclusions for each part of this research are summarized as below: 

• The test system was demonstrated to accurately exhibit behaviors of a controlled 

bearing defect. The inner and outer ball-pass frequency ratios exhibited an 

approximately 1% decrease from 500 rpm to 3000 rpm. The decrease was 

determined to be minor and therefore the system was determined to be suitable as 

a bearing diagnostics experimental setup. 

• The defect size estimation method was experimentally validated under no-cutting 

conditions. Within the tested spindle speeds, the defect size estimation results for 

both inner and outer defects were close to the true defect size with the maximum 

errors of 7% for the outer race and 10.9% for the inner race.   

• Spectral analysis showed a significant effect of the load distribution on the entry-

to-peak and peak-to-impact times, which agrees with the Hertzian quadrilateral 

model. The times were shown to be negatively correlated, thus showing that the 

model predicts a constant defect size under varying contact loads. 
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• The defect size estimation method during machining was validated via slot milling 

experiments. The peak-to-impact time was determined to exhibit sufficient 

resolution even under the influence of cutting. The peak-to-impact time was shown 

to be consistent before and after cutting. However, the entry-to-peak time was 

shown to be more sensitive to the influence of cutting. Therefore, entry-to-peak 

time under no-cutting conditions and peak-to-impact time under cutting conditions 

were applied to the method during machining. 

• To improve the upper bound of spindle speeds for the bearing defect estimation 

method, a faster sampling is recommended. To improve the lower bound of spindle 

speeds, subtracting the curve fitted low frequency noise from the time domain 

signal is recommended. Note that to detect bearing defect sizes smaller than the 

spall width corresponding to simultaneous contact with the entry and exit edges, 

the Hertzian quadrilateral model cannot be utilized. 

8.3 Future work and recommendations 

This thesis proposes a new defect-size-estimation method based on the dynamic 

modeling for a line-spall defect on the raceway of a ball bearing. The dynamic model 

developed in this research can identify key features in the vibration signal, but the entry 

signal is not precisely represented. A more comprehensive model that possibly considers 

bearing lubricant conditions and a more advanced contact force model is recommended to 

describe the low frequency noise in the entry signal. 

This research focuses on the ball bearing with a line-spall defect, but the actual 

bearing spall can be in different shapes (circle, rectangular) or dimensions (width, depth, 
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length). Therefore, research with respect to other defect shapes and geometries closer to a 

natural spall can be built on the model developed in this thesis. In addition, other types of 

defect (ball defect) and bearings (roller bearings) may have some special features in the 

defect response due to the kinematic and geometric difference. Therefore, modifying the 

dynamic model and applying it to ball defect and roller bearings can extend its 

applicability.  

The defect size estimation method developed in this thesis can potentially be 

applied in shop floor automation applications for spall size tracking of a single defect on 

the inner or outer race, given the bearing geometries. For the purpose of automatic spall 

size measurement, the low frequency entry and high frequency exit signals should be 

identified and isolated before the other algorithms as proposed in this thesis are used. 

Depending on the different frequency components, signal processing procedures, such as 

low-pass/high-pass filters, Wavelet Transform and enveloping, can be applied toward 

automated spall size detection.  
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