

DEVELOPMENT OF AN APPLICATION PROGRAMMING

INTERFACE FOR DEPLETION ANALYSIS (APIDA)

A Dissertation

Presented to

The Academic Faculty

by

Daniel Edgardo Lago

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Nuclear and Radiological Engineering

Georgia Institute of Technology

May 2016

COPYRIGHT © 2016 BY DANIEL E. LAGO

DEVELOPMENT OF AN APPLICATION PROGRAMMING

INTERFACE FOR DEPLETION ANALYSIS (APIDA)

Approved by:

Dr. Farzad Rahnema, Advisor

George W. Woodruff School

Georgia Institute of Technology

 Dr. Tom Morley

School of Mathematics

Georgia Institute of Technology

Dr. Bojan Petrovic

George W. Woodruff School

Georgia Institute of Technology

 Dr. Glenn E. Sjoden

Air Force Technical Applications Center

Dr. Dingkang Zhang

George W. Woodruff School

Georgia Institute of Technology

 Date Approved: March 31, 2016

To my DANK memes. And also my lovely wife.

iv

ACKNOWLEDGEMENTS

 Monumental accomplishments in life are rarely achieved without the support and

guidance of multiple people and this thesis is no exception. I would like to thank all my

friends and family who have supported and inspired me during my tenure at Georgia Tech,

as well as the people who have helped me become who I am today.

 First, I’d like to thank the members of my committee – Dr. Farzad Rahnema, Dr.

Glenn Sjoden, Dr. Bojan Petrovic, Dr. Tom Morley, and Dr. Dingkang Zhang – for

participating in the critique of my work. I want to thank my advisor Dr. Rahnema for his

support during my five years at Georgia Tech and for his belief in me to pursue and develop

such a daunting graduate project. I would also like to express gratitude to Dr. Sjoden for

teaching the indispensable fundamentals in developing my skillset as a nuclear engineer

during my time at the University of Florida.

 I would be remiss not thank the exuberant, esoteric, and somewhat mercurial

members of the CRMP lab at Georgia Tech. The friendships and bonds forged during our

many late evenings at the lab and several group outings will forever serve as fond

memories. In an effort to avoid an endless barrage of complaints, I will thank them all by

name: Andrew Holcomb, Ryan Hon, Alex Huning, Gabriel Kooreman, Christopher

Chapman, Kyle Remley, and Saam Yasseri. I must also thank my longtime colleague

Jessica Paul; a trusted friend and confidant who was always around to provide advice and

levity.

 I must also mention my family, specifically my parents Edgardo and Rosalinda

Lago, for instilling the values and work ethic needed to get me to this point of my life.

 v

While not as apparent in the midst of my youth, there have been numerous crystalizing

moments in my upbringing responsible for my development as a human being and my

parents are behind almost every one of them.

 Most importantly, I would like to thank my wife and best friend Lily. My time in

Atlanta has been exciting, challenging, and integral to my growth as a person and a

researcher, and it has been an experience made immeasurably more exceptional with your

accompaniment. I love you and I eagerly await the adventures ahead of us as we enter the

next chapter of our life.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS ix

SUMMARY xi

I. INTRODUCTION 1

1.1 Motivation 2

1.2 Objectives 3

II. BACKGROUND AND THEORY 5

2.1 Radioactive Decay 5

2.2 Bateman Equations 9

2.3 Nuclear fission, fissile isotopes, and fission products 12

2.4 Other neutron-nuclide interactions 14

2.5 Decay and fission yield data 15

2.6 Burnup problems, systems of differential equations, and matrix structure 16

III. CURRENT TECHNOLOGIES AND METHODOLOGIES 19

3.1 Linear Chain Methods 19

3.2 Matrix Exponential Methods 22

IV. DEVELOPMENT OF BURNUP SOLVER 26

4.1 The Chebyshev Rational Approximation Method (CRAM) 26

4.2 Partial Fraction Coefficients (PFD) Generation 30

4.3 Direct matrix solver using LU factorization 32

4.4 Linear chain solver for stable nuclides 34

V. API DEVELOPMENT FOR APIDA 37

 v

5.1 Communication between transport solver and burnup module 37

5.2 Object-oriented framework in APIDA 39

5.3 Classes and features in APIDA 40

5.4 Implementation of APIDA 41

5.5 Coupling APIDA and COMET 43

VI. DESCRIPTION OF BENCHMARK PROBLEMS 47

6.1 Analytical benchmarks with Mathematica 47

6.2 Lattice depletion pin cell benchmark 51

VII. RESULTS 57

7.1 Analytical benchmarks with Mathematica 57

7.2 Isotopic sensitivity analysis with a fuel pin cell 61

7.3 Multi-step pin cell depletion calculation 69

VIII. CONCLUSIONS 74

APPENDIX A. CLASSES AND FUNCTIONS IN APIDA 76

APPENDIX B. LIST OF ISOTOPES IN SENSITIVITY ANALYSIS 82

APPENDIX C. PARAMETERS FOR BENCHMARK PROBLEMS 119

REFERENCES 122

VITA 125

 vi

LIST OF TABLES

 Page

Table 1: Decay modes and their associated reactions. 7

Table 2: Half-lifes of interest. 8

Table 3: Neutron-nuclide interactions relevant to burnup calculations. 14

Table 4: Geometric parameters for fuel pin cell. 53

Table 5: Fuel parameters for UO2 pin cell. 53

Table 6: Fuel parameters for pin cell with gadolinium. 54

Table 7: APIDA results compared to Mathematica solutions for benchmarks 57

#1 and #2.

Table 8: APIDA results compared to Mathematica solutions for 58

benchmarks #2 and #3.

Table 9: APIDA results compared to Mathematica solutions for 59

benchmarks #5 and #6.

Table 10: Comparison of APIDA eigenvalues to the SERPENT eigenvalue 63

for one burnup step tracking 274 nuclides to 665 nuclides.

Table 11: Comparison of APIDA eigenvalues to the SERPENT 64

eigenvalue for one burnup step tracking 687 nuclides to 1049 nuclides.

Table 12: Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin 66

eigenvalue for one burnup step tracking 274 nuclides to 665 nuclides.

Table 13: Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin 67

eigenvalue for one burnup step tracking 687 nuclides to 1049 nuclides.

 vii

LIST OF FIGURES

 Page

Figure 1: Plot of the binding energy per nucleon and related notes 6

on nuclear stability.

Figure 2: Fission product yield distribution for thermal fission of 235U and 239Pu. 13

Figure 3: Structure of a burnup matrix with 1606 nuclides in ascending order. 18

Figure 4: Decay chain pathways for Sm. 20

Figure 5: Enumerated linear chain pathways for 150Sm. 21

Figure 6: MATLAB script for the block LU factorization algorithm implemented 33

in APIDA.

Figure 7: Flowchart of communication between transport solver and burnup 38

module using text inputs.

Figure 8: Example input using APIDA to solve Benchmark Problem #6. 42

Figure 9: Flowchart of COMET-burnup coupling. 46

Figure 10: Description of Benchmark #1. 48

Figure 11: Description of Benchmark #2. 48

Figure 12: Description of Benchmark #3. 49

Figure 13: Description of Benchmark #4. 49

Figure 14: Description of Benchmark #5. 50

Figure 15: Description of Benchmark #6. 51

Figure 16: Illustration of fuel pin cell depletion problem. 52

Figure 17: Geometry of fuel pin cell in HELIOS. 56

Figure 18: APIDA solution points plotted over the analytical solution 60

to benchmark #4.

Figure 19: APIDA solution points plotted over the analytical solution 60

 viii

to benchmark #5.

Figure 20: Sparsity pattern of the burnup matrix when tracking 274 isotopes. 61

Figure 21: Sparsity pattern of the burnup matrix when tracking 1049 isotopes. 62

Figure 22: Convergence of APIDA generated eigenvalues in SERPENT to the 65

reference solution given different numbers of isotopes.

Figure 23: Convergence of APIDA generated eigenvalues in SERPENT to the 68

reference solution of the gadded fuel pin given different numbers of isotopes.

Figure 24: Eigenvalue (k-eff) as a function of burnup resulting from SERPENT, 69

HELIOS, and APIDA calculations.

Figure 25: Production of 135Xe as a function of burnup resulting from SERPENT 71

and APIDA calculations.

Figure 26: Change in 235U as a function of burnup resulting from SERPENT 72

and APIDA calculations.

Figure 27: Ratio of 240Pu to 239Pu as a function of burnup resulting from 73

SERPENT and APIDA calculations.

 ix

LIST OF SYMBOLS AND ABBREVIATIONS

ABTR Advanced Burner Test Reactor.

API Application Programming Interface.

APIDA API for Depletion Analysis.

BC Boundary Condition.

BWR Boiling Water Reactor.

CANDU Canada Deuterium Uranium reactor.

CASMO Multi-group 2-D transport code developed by Studsvik.

CINDER’90 Burnup solver for MCNP using Markovian chains.

COMET Coarse Mesh Radiation Transport Method.

CPM Collision probability method.

CRAM Chebyshev Rational Approximation Method.

CRMP Computational Reactor and Medical Physics Laboratory.

ENDF Evaluated Nuclear Data File.

EPR European Pressurized Reactor/Evolutionary Power Reactor.

HELIOS MOC/CPM Lattice physics code.

HPC High Performance Computing.

HTGR High Temperature Gas cooled Reactor.

LWR Light Water Reactor.

MCNP Monte Carlo N–Particle Transport Code.

MOC Method of characteristics.

NFY Neutron-induced fission product yields.

OpenMP An API for multi-platform shared-memory parallel programming in

C/C++ and Fortran.

 x

ORIGEN Isotope Generation and Depletion Code Matrix Exponential

Method.

ORNL Oak Ridge National Laboratory.

PARAGON CPM 2-D transport code developed by Westinghouse.

PCM per cent mille (10−5Δk/k).

PENBURN Linear Chain Burnup/Depletion Solver coupled to PENTRAN or

Multigroup MCNP.

PENTRAN Parallel Environment Transport Code.

PWR Pressurized Water Reactor.

RDD Radioactive decay data.

RSICC Radiation Safety Information Computational Center.

SCALE Software Suite by ORNL for Nuclear Safety Analysis and Design.

 Code.

SERPENT A 3-D continuous-energy Monte Carlo code, developed at VTT

Technical Research Centre of Finland.

SFY Spontaneous fission product yields.

SPaRC Stochastic Particle Response Calculator.

ZAID Nuclide identification number.

 xi

SUMMARY

A new utility has been developed with extensive capabilities in identifying nuclide decay

and transmutation characteristics, allowing for accurate and efficient tracking of the change

in isotopic concentrations in nuclear reactor fuel over time. This tool, named the

Application Programming Interface for Depletion Analysis (APIDA), employs both a

matrix exponential method and a linear chain method to solve for the end-of-time-step

nuclide concentrations for all isotopes relevant to nuclear reactors. The Chebyshev

Rational Approximation Method (CRAM) was utilized to deal with the ill-conditioned

matrices generated during the course of lattice depletion calculations, and a complex linear

chain solver was developed to handle isotopes reduced from the burnup matrix due to either

radioactive stability or a sufficiently low neutron-induced reaction cross section. The entire

tool is housed in a robust but simple application programming interface (API). The

development of this API allows other codes, particularly numerical neutron transport

solvers, to incorporate APIDA as the burnup solver in a lattice depletion code in memory,

without the need to write or read from the hard disk. Specifically, APIDA was developed

for coupling with the coarse mesh radiation transport method (COMET) – a numerical

transport solver extensively validated and shown to provide efficient and accurate whole

core solutions to host of different reactor types. The APIDA code was benchmarked using

numerous decay and transmutation chains. Burnup solutions produced by APIDA were

shown to provide material concentrations comparable to the analytically solved Bateman

equations - well below 0.01% relative error for even the most extreme cases using isotopes

with vastly different decay constants. For further benchmarking, APIDA was coupled with

 xii

the transport solver in the SERPENT code for a fuel pin cell depletion problem. A

sensitivity analysis was also conducted to determine the optimal number of isotopes to

track for a typical pressurized water reactor (PWR) problem in order to accurately track

the change in eigenvalue of the core. Results show APIDA to be effective and efficient in

solving lattice depletion problems, in addition to being successful in terms of portability

for users to implement via the API.

1

CHAPTER 1

INTRODUCTION

 The world’s energy demands are at historic levels and the need for clean,

sustainable, and dependable power is unquestionably at the forefront of modern society.

Nuclear power is increasingly becoming the most powerful tool to combat the impending

energy crisis, subsequently making adequate tools to safely operate nuclear reactors and

accurately track the changes in fuel over the core lifetime vital to ensuring the advent of a

new fleet of nuclear power plants.

 Nuclear fuel in fission reactors undergoes constant and significant change during

operation with criticality, radioactivity, and material performance all affected as a result.

The formation of new isotopes following the absorption of a neutron in the fuel causes

power shifts and flux profile changes; consequently, these phenomena need to be

monitored to ensure safe and efficient reactor operation. Tracking the transmutation of fuel

is also important after the core lifetime, as radiation shielding and national security become

a significant concern once spent fuel is removed and stored for either permanent disposal

or reprocessing.

 Computer simulation is the primary tool used in reactor analysis and design.

Multiple codes are deployed by both researchers and operators to monitor the neutron

population and distribution in the core, calculate the core eigenvalue (k-effective), track

the change and formation of isotopes, and ensure proper heat transfer and cooling. Of those

 2

facets, accurately tracking the material composition in the fuel is relevant to reactor

lifetime, fuel utilization, used nuclear fuel management, and nuclear safeguards.

 The current push in reactor physics research is to create all-encompassing codes

capable of capturing all the multiphysics present in the complicated core of a nuclear

reactor – thermal hydraulics, material performance, radiation shielding, and kinetics being

the most relevant. This work aims to create a novel burnup module with sufficient

modernization to couple with current and future neutron transport solution methods.

1.1 Motivation

 One emerging code in constant development at the Georgia Institute of Technology

is the Coarse Mesh Radiation Transport Method (COMET). A hybrid deterministic-

stochastic transport solution method, COMET uses incident flux response expansions to

quickly and accurately calculate core eigenvalues, fuel pin fissions density distributions,

and other important values. COMET has been shown to provide solutions with Monte

Carlo accuracy at a fraction of the computational time for PWRs, BWRs, CANDU reactors,

HTGRs, and ABTR [8, 19, 32, 33, 34, 35].

 COMET presents a wholesale advancement in the archives of response matrix

solution methods, particularly those applied to reactor physics and medical physics. While

COMET in its current form is a powerful resource in reactor design, it also has the potential

to be applied effectively as a lattice depletion tool. The purpose of this work was to develop

an accurate and efficient burnup tool to couple with COMET in the future. This work was

performed in coincidence with another Ph.D. project in the Computational Reactors and

Medical Physics (CRMP) laboratory at The Georgia Institute of Technology. The

 3

coinciding project involved developing a response function generation tool to work in

conjunction with the burnup solver to track the change in nuclide concentration in reactor

problems over time. Ultimately, these new tools will be implemented within the COMET

framework to create one cohesive, deployable program capable of solving challenging

reactor problems.

1.2 Objectives

 The research in this study addresses the need for more efficient ways to accurately

predict the change in isotopics in reactor fuel during the course of operation. While

methods do currently exist to calculate the end-of-life-cycle nuclide concentrations in

reactor fuel, they do so with a number of limitations. The majority of these limitations lie

in the transport method used to generate reaction rates at each burnup time step, but several

burnup tools currently in use are handcuffed in some way as well.

 The purpose of this project is to develop a burnup module to couple with the

COMET method, ultimately creating an efficient and accurate lattice depletion tool. En

route to the ultimate goal of a fully capable lattice depletion tool, significant work was

done in developing an API framework for an efficient Bateman equation solver. Numerous

methods have been developed over the past 40 years to solve these equations with most of

those employing numerous liberties and workarounds to circumvent the difficulties caused

by the wide-range in eigenvalues present in almost every burnup calculation. This work

aims to provide a tool powerful enough to solve any type of burnup problem with any

number of isotopes. In doing so, the following goals were laid out:

 4

1. Develop an efficient and accurate method for solving the decay/depletion equations

(the Bateman equations).

2. Verification of this solver for a number of simple and complex decay/transmutation

chains.

3. Create an API framework for this solver with a clean, but robust front-end interface.

4. Benchmark the burnup tool using a widely used transport and lattice depletion code

(SERPENT).

5. Introduce the concept of coupling COMET and APIDA to be implemented in future

work.

 5

CHAPTER 2

BACKGROUND AND THEORY

 In this section, the fundamental theory of radioactive decay is outlined and

described briefly. The relevance of radioactive decay and other pathways for transmutation

is also discussed, and the basis for the Bateman equations governing burnup is developed.

The role of fission, with specific mention of fission product yield curves for different

isotopes, is also reviewed in this section. Finally, the importance of neutron-induced

reactions is considered with special note of the ones most relevant to burnup calculations.

2.1 Radioactive Decay

 Among the different pathways for an isotope to change its given mass and energy,

the most fundamental one in nuclear physics is radioactive decay. There are a number of

radioactive nuclides that occur naturally on earth and a host of others made via human

intervention, and all of them exhibit radioactive characteristics thanks to the lack of

stability in their respective nuclei.

 The stability of a particular nucleus is determined primarily by its average binding

energy, BE, per nucleon. The binding energy is defined as the energy released when the

atom is “created” from its constituent parts – hydrogen atoms (H) plus neutrons (N). The

average binding energy can then be calculated using the known masses for each particle –

hydrogen (mH), neutron (mn), and electron (mE) [25].

 6

 H n E
AVG

Zm

Z

Nm
BE

N

m 


 (1)

 The probability of an atom fissioning has a particularly strong correlation to the

binding energy of a nucleus. The stability curve in relation to binding energy per nuclear

particle seen below shows a steady decline towards a threshold where particles are capable

of fissioning. As explained in the figure, once a particle’s mass becomes unwieldy, the

binding energy per nucleon decreases enough for the atom to undergo fission.

Figure 1. Plot of the binding energy per nucleon and related notes on nuclear stability [20].

 The mode of decay varies by isotope and is determined by the quantum mechanical

properties of its nucleus. There are several decay types, the most pertinent of which to

burnup calculations are outlined below in Table 1.

 7

Table 1: Decay modes and their associated reactions.

Decay Mode Reaction

Gamma (γ)
*A A

z zX X  

Alpha (α)
4

2

A A

z zX Y 

 

Beta (β-) 1

A A

z zX Y  

  

Beta (β+) 1

A A

z zX Y  

  

Electron Capture (EC) 1

*A A

z zX e Y 

  

Proton (p)
1

1

A A

z zX Y p

 

Neutron (n)
1A A

z zX X n 

Spontaneous fission Fission ProductsA

z X 

While there are other decay modes not outlined in Table 1, they have extremely low

probability of occurring and have negligible contributions in regards to burnup

calculations.

 In addition to the method of disintegration, the other important parameter in

radioactivity is the half-life of a particular isotope. Since radioactive decay of a material is

a statistical phenomenon, there is no way predicting when a single nucleus will decay.

Instead, one uses an isotope’s decay probability (λ) to characterize the likelihood it will

disintegrate over a given time.

 Considering a given concentration of a radioactive nuclide N, the time rate of

change of that nuclide over time can be defined as,

 ()
dN

N t
dt

  , (2)

the solution of which is

 8

   0

tN t N e  , (3)

where N0 is the initial concentration of the nuclide.

 Consequently, the exponential nature of decay allows one to calculate a useful

property: the amount of time it takes for a given number of nuclides to decay to half of its

initial amount, or its ‘half-life’.

 

 

1/20
1/2 0

1/2

2

2

T
N

N

l

T e

T

N

n











 (4)

 Experimental evaluation of half-lifes are extremely important as their accuracy

affects burnup calculations significantly. Table 2 shows some half-lifes of interest.

Table 2: Half-lifes of interest [9].

Nuclides Half-life

U235 7x108y

U238 4.5x109y

Pu238 87.7y

Pu239 24,110y

Pu240 6,536y

Xe135 9.2 hours

I135 6.57 hours

Cs137 30.17y

 9

2.2 Bateman Equations

 The formalization of tracking decay in Equation 3 is valid for one isotope, but the

extension to a chain of decay products is quite natural. Tracking the decay of a nuclide and

its subsequent products creates a system of coupled, first order, ordinary differential

equations known as the Bateman equations. The simplest of these equations is when there

are no sources for the production of isotopes outside of decay. Equation 5 shows the result

of tracking the decay of an isotope being produced by a single parent isotope [16].

 1 1i i
i

i i

dN
N N

dt
      (5)

 atom density of nuclide

 radioactive decay constant of nuclide

i

i

N i

i





 Given an arbitrary set of nuclides, the generalized solution to Ni in the proposed

system of ordinary differential equations is as follows,

 0

1 1 2

1

1

1

() ...

()

ji

i
j

k
k

t

i i

j

k j

e
N t N



  

 















 (6)

0

1

 atom density of nuclide

 initial atom density of the first nuclide in the chain

 radioactive decay constant of nuclide

i

i

N i

N

i







 Equation 6 describes the solution when the only driver for time rate of change is

the first nuclide in the linear chain. Taking transmutation, the changing of one element into

 10

another via nuclear bombardment, into account, the resulting solution is shown in Equation

7 [16].

1

1

1 1

0 0

1() ...

()

j ii i

l l l i
l j

t t

i i i

i
k j

k l
k j

e e
N t N N

 

 


 





 

 






 
 
   

    
  

 
 

 


 (7)

0

 atom density of nuclide

 initial atom density of the nuclide in the chain

 chain-linking precursor decay constant of nuclide including decay of other

nuclides (and) reaction rate s

i

i

th

i

N i

N i

i









(

 effective decay constant of nucl

)

ide i i



 

 In this form of the Bateman equation, new decay constants are introduced in order

to account for destruction driven by the presence of a reactor flux (φ) and the production

via chain-linking precursors.

 The most extensive form of the Bateman equation includes production from an

external source, generally fission product generation in the presence of a reactor flux [16].

 11

 1

1

1 1

1

0 0

1

0 0

1 / 1
() ...

()

,

j
ii i

l l l i
l j

t
t

j

i i i

i
k j

k k

i i

k l

f

k j

K

k

k

e e
Q t P P

P y N




 


 

 





 












 
 

   
    

  
 
 



 




 (8)

0

2

2

 fission product yield fraction from fissile nuclide

 inital concentration of parent fissile nuclide

 fission cross section of parent fissile nuclide ()

 reactor flux (/

k th th

i

k

k

f

i k

k

f cm

y

n c

N

m













0 1

)

 initial constant rate of formation for nuclide (sec)

 atoms of nuclide produced at tim) (e

i

i

s

P i

Q i tt





 Equation 8 was formulated assuming the initial amount of nuclide Ni to be zero and

a constant production represented by Pi. It is also important to note the units of the two

terms, where Qi is the nuclide concentration in atoms, whereas Pi is the constant rate of

production of nuclide i with units of sec-1.

 The linear nature of the Bateman equations allows these equations to be solved

separately and then combined for the total solution by the property of superposition. In the

case of no reactor flux, only the basic Bateman equation (Equation 6) is used. When a

reactor flux is present, the Bateman equations with production and the effective decay

constants are summed together (Equations 7 and 8).

 Further discussed in Chapter 3, this set of Bateman equations is the basis for the

commonly utilized linear chain methods present in some burnup codes.

 12

2.3 Nuclear fission, fissile isotopes, and fission products

 Nuclear fission is a reaction predicated by the formation of a compound nucleus. A

nuclide amenable to a particular reaction, quantified by its specific reaction cross section,

absorbs a neutron and its nucleus becomes unstable. Generally, nuclides are more inclined

to undergo fission if they are neutron rich (i.e. large number of nucleons), an expected

outcome when accounting for the importance of binding energy per nucleon. One of the

most common examples in regards to fission in nuclear reactors is shown in Equation 9.

 235 236 144 89

92 92 56 36

* 3 FissionU n U Ba Kr n E      (9)

 In this example, an isotope commonly used in light water reactor fuel (235U)

undergoes fission. It initially becomes a compound nucleus with an excited state, but

effectively instantaneously fissions, resulting into two large fission products, an excess of

neutrons with some given energy, and a release of energy, the magnitude of which is

dependent on the excess mass and the excitation level of the compound nucleus. The

neutrons produced as a result of the fission are monumentally important in sustaining the

fission chain reaction in a nuclear reactor core. The incoming energy of the neutron and

the target nucleus undergoing fission both affect the eventual fission products and the

amount of excess neutrons released.

 The result of one atom fissioning is not always the same. Depending on the energy

of the incoming neutron and the state of the target nucleus, different isotopes can be

produced as a result of the fission. Predicting which nuclides are created as the result of an

atom fissioning is achieved using empirically generated fission yield curves. Compiled

using experimental data, these curves have a distinct “double hump”, a phenomenon that

correlates with what is observed in fission events – the formation of two large fission

 13

products, one of which is usually 60 – 80 nucleons heavier than the other. Figure 2 shows

the fission yield curves for 235U and 239Pu when they absorb a thermal neutron and

consequently fission.

Figure 2. Fission product yield distribution for thermal fission of 235U and 239Pu [25].

 Most current nuclear reactors operate with the assumption of incident neutrons with

thermal energies dominating the fission chain reaction, but fission can occur at varying

energies. Figure 2 shows the distribution of fission products from thermal fission –

generally the boundary, or upper limit, for thermal fission is 0.0253 eV. The current set of

nuclear data (ENDF/B-VII libraries) contain data for fissions in 3 different energy regions

– thermal, epithermal (upper boundary of 2.0 MeV), and high energy fission (upper

boundary of 14 MeV) [12]. Not all fissionable isotopes contain data for each energy region.

 14

For isotopes with data for 2 or more energy groups, standard linear interpolation is usually

implemented to calculate the resulting yield of each fission product.

2.4 Other neutron-nuclide interactions

 Fission is the primary contributor to the reaction rates highlighted in Equations 7

and 8 for the fissionable nuclides tracked in a given problem, but reaction rates constitute

all neutron-induced reactions in burnup calculations. Isotopes that don’t undergo fission

still contribute to the production of other isotopes via other reactions. Table 3 outlines the

neutron-nuclide interactions of interest.

Table 3. Neutron-nuclide interactions relevant to burnup calculations.

Decay Mode Reaction

(, 2)n n 1 2A A

Z ZX n X n  

(,3)n n 2 3A A

Z ZX n X n  

(, 4)n n 2 4A A

Z ZX n X n  

(,)n  1A A

Z ZX n X   

(,)n p
1

A A

Z ZX n Y p  

(,)n d 1

1

A A

Z ZX n Y d

  

(,)n t 2

1

A A

Z ZX n Y t

  

3(,)n He
2 3

2

A A

Z ZX n Y He

  

(,)n  3

2

A A

Z ZX n Y 

  

 15

 In terms of applications to burnup up problems and Bateman equations, neutron-

nuclide interactions are treated effectively as constants – a phase-space integral of the

microscopic cross section times the scalar flux.

    iRR dX XX   (10)

 The phase-space X constitutes the independent variables acknowledged in

formulating the original problem; generally, space, energy, angle. The result is effectively

an average reaction rate with the same units as the decay constant (seconds-1).

2.5 Decay and fission yield data

 As with any nuclear engineering application, a topic worthy of consideration is the

methods used in acquiring and validating the accuracy of the prerequisite data used for

calculations. Cross sections are important in any transport calculation but burnup solution

methods uniquely require decay data and fission product yield data.

 The primary source of most radioactive decay data is from the Evaluated Nuclear

Data Files (ENDF/B-*). ENDF/B libraries, the latest and most commonly used being

ENDF/B-VII, contain an enormous amount of data for every nuclide relevant to most

calculations [7]. ENDF/B-VII is comprised for 14 sublibraries with 3 libraries being the

most pertinent in regards to burnup – radioactive decay data (RDD), spontaneous fission

product yields (SFY), and neutron-induced fission product yields (NFY).

 The ENDF/B-VII library is widely used and validated by numerous high-pedigree

simulation codes both in industry and research laboratories. Oak Ridge National Lab

 16

(ORNL) utilizes the ENF/B-VII libraries to construct their own set of decay and yield

libraries, publicly distributed as part of the Scale code package via the Radiation Safety

Information Computational Center (RSICC). For sake of comparison and ease of use, the

decay libraries from the Scale code package were used in this study, but future work will

implement a data reader to extract data directly from the ENDF libraries.

2.6 Burnup problems, systems of differential equations, and matrix structure

 The formalizations of the decay equations and the solutions via Bateman equations

in the previous sections are the foundation for burnup and depletion analysis. For the

purposes of this thesis and the development of a burnup tool, the subsequent generalized

equation is used to begin building the foundation for the solution method implemented in

this work.

1 Destruction

Product

1

ion

()
m

ij j j ik k k i i i

j

m
i

k

dN
y RR N RR N

dt
b N 

 

     (11)

    i iRR dX XX  

 

 

 atom density of nuclide

 radioactive decay constant of nuclide

 neutron absorption cross-section for nuclide over phase-space

 neutron angular flux over phase-space

 branching

i

i

i

ij

N i

i

X i X

b

XX





 







 ratio of all other nuclides to nuclide

 branching ratio for neutron absorption by other nuclides that lead to nuclide ik

i

y i

 17

 Equation 11 shows the time rate of change of the concentration of nuclide Ni as a

balance equation with the net result being the sum of the destruction and production of the

nuclide of interest. The necessary assumptions in forming Equation 11 are as follows: a

homogenous medium; space-averaged and energy-integrated reaction rate over one energy

group; sufficiently small time step to assume a constant flux. In most lattice depletion

applications, these assumptions are acceptable and provide accurate solutions if utilized

appropriately.

 Production of Ni can result from the decay of another nuclide Nj into Ni with the

probability of said reaction expressed by its associated branching ratio bij, or production

can come from nuclide Nk participating in a reaction under the influence of a flux resulting

in the production of nuclide Ni. Destruction of Ni is determined by two factors, both of

which are dependent on the type of problem and isotope. If the nuclide is unstable, its decay

probability (λ) determines the removal rate. If there is irradiation, implying a flux (ϕ), then

the nuclide’s reaction rate determines the removal rate. If both principles are appropriate,

then the decay probability and reaction rate are summed to constitute the removal

coefficient for the nuclide Ni.

 Equation 11 is valid for all isotopes being tracked in a given problem, the end result

being a system of first order, ordinary differential equations. The structure of the matrix in

burnup problems is distinct and consistent – extremely sparse with the non-zero elements

bunched near the diagonal, save for the fission products which are bunched up to the right

side of the matrix. This matrix structure assumes the nuclides are arranged in ascending

order by atomic mass.

 18

Figure 3. Structure of a burnup matrix with 1606 nuclides in ascending order [22].

 In the preceding figure, the sparsity pattern of a typical burnup matrix is shown

given the presence of a neutron flux. The fission product distribution is condensed on the

right hand side, rendering the matrix ‘almost’ upper triangular in structure and behavior.

This serves as an advantage when using certain matrix solution methods such as LU

factorization.

 19

CHAPTER 3

CURRENT TECHNOLOGIES AND METHODOLOGIES

 Burnup and depletion codes previously developed or currently in development

support numerous options in regards to both solution methodologies and applications for

reactor operations and nuclear safeguards. Among the applications currently of interest and

being pursued by developers are:

 Calculating the change in eigenvalue over the core lifetime;

 Tracking fissile isotopes as well as major and minor actinides inside of fuel

elements;

 Optimizing the utilization of nuclear fuel;

 Studying open and closed fuel cycles;

 Estimating the nuclide concentration at end-of-life fuel cycle for nonproliferation

and national security.

 This section will focus on the two main methods used to solve the depletion

Bateman equations – matrix exponential methods and linear chain methods. This section

will also discuss current methods for coupling burnup and transport.

3.1 Linear Chain Methods

 In terms of utilizing the generalized solutions to burnup problems represented by

the Bateman equations described in Chapter 2, linear methods are the most basic and

 20

straightforward to apply. At their core, linear chain methods are based on identifying the

relevant nuclide decay chains and calculating the solution for each chain. While simple to

implement for a low number of chains, the method becomes more complicated when many

chains are involved. An example of such a chain is illustrated in Figure 4.

Figure 4. Decay chain pathways for Sm [16].

 Isolating the pathways of production for 150Sm, there are 6 unique pathways for

147Nb to eventually decay into each particular isotope of Sm. Enumerating each of these

pathways into linear chains is the most taxing facet of linear chain methods. Figure 5

illustrates the 6 pathways in the previous decay scheme for 150Sm.

 21

Figure 5. Enumerated linear chain pathways for 150Sm [16].

 Given the particular pathways defined by the nuclides being tracked, the Bateman

equations outlined in Chapter 2 (Equations 6 – 8) can be utilized appropriately to solve for

the final concentration of each nuclide after a prescribed time interval. Once the solution

for each linear chain is generated, they can be summed together as a result of the

superposition principle.

 The primary advantage of a linear chain method is the ability to directly and

explicitly find solutions – each linear chain is solved for using the Bateman equations,

minimizing the computational overhead. This approach works effectively for a problem

involving a low number of nuclides (< 200), but the need to explicitly model each pathway

for each nuclide being tracked hinders the extension of these methods to problems

involving several hundreds of nuclides.

 Some current codes utilizing the linear chain methods are PENBURN (the burnup

module associated with PENTRAN), HELIOS, and CINDER’90 [17, 25, 29].

 22

3.2 Matrix Exponential Methods

 The alternative approach to dealing with burnup problems is to embrace the natural

development of a system of ordinary differential equations and use a numerical matrix

solver. Historically, matrix exponential methods have been applied with varied success in

multiple fuel decay and transmutation codes.

 For a chosen set of isotopes, Equation 11 can be set up in matrix notation as follows,

 N N A . (12)

 = transition matrix containing coefficients for decay and transmutation

 = nuclide concentration vector, . . for all

 = first derivative in time of nuclide concentration

iN s t N N i

N





A

The solution can be given in the form of an exponential as follows,

    exp 0N t N A . (13)

(0) = initial nuclide concentration vectorN

 Consider the solution proposed in Equation 13 – the exponential term can be

represented by an infinite series expansion as in Equation 13, and plugged back into the

solution in Equation 14.

  
   

2

0

exp ...
2! !

m

m

t t
t I t

m



    
A A

A A . (14)

 23

   

 
2 3

... 0
2! 3!

t t
N t N

 
     
  

A A
AI . (15)

Now, a recursion relation can be developed by looking at an arbitrary iN ,

     

 

2

...
3 2

0 0 0

0

j j

im

i i ij

j

j ik kj j

k

mk kj j

m k

N N t a N t a N

t a N

t
a

t t
a a

 
 
 

  
   

 

  

 
  
  



 

 



 . (16)

Considering the definition for iN in Equation 14, the recursion relation below can be

applied:

 

1

0 0

1

i i

n

i i

n

j j

j

N

t
a

n

R

R R







 , (17)

0

n

i i

n

N R




 , (18)

 Given the construction of the solution in Equation 17, this method only requires the

storage of two successive vectors - nR and 1nR  - in addition to the updated value for the

solution and the transition matrix [11]. This method of representing the exponential of the

matrix as a Taylor series expansion has been the main solver in the ORIGEN for the past

several decades [3, 4].

 24

 The implementation described in the preceding equations is the most naïve of the

matrix exponential methods. Most burnup problems require tracking up to 1000 or so

isotopes with a wide range of half-lifes, potentially spanning 30 orders of magnitude.

Consequently, the resulting transition matrix has a wide spectrum of eigenvalues,

introducing numerical instabilities and false solution convergence. Matrix exponentiation

is a valid way to solve Equation 13, but the process used to effectively exponentiate the

matrix must handle the difficulties presented by burnup problems [18].

 Historically, burnup codes have used this naïve approximation to the exponential

of the matrix with some modifications. Generally a valid way to approximate an

exponential, the Taylor series expansion method breaks down catastrophically for a matrix

with an even modestly wide range of eigenvalues. Some codes attempt to remedy this by

using a scaling and squaring method, shown in the following equation,

At

At n

n

e e
 

  
 

 . (19)

While using this method does induce the desired effect of minimizing the norm of the

matrix multiplied by the time step, it does a poor job of handling isotopes if they are

produced at a faster rate than they decay. These methods also suffer from a limitation in

terms of length of time step, generally breaking down for any time interval greater than 106

seconds [21].

 One of the most recent advancements in matrix exponentiation and burnup solution

methodologies is the Chebyshev Rational Approximation Method (CRAM), the primary

 25

burnup solver in the Monte Carlo-based lattice-depletion code SERPENT [15]. CRAM

provides multiple advantages, allowing one to compute more accurate solutions with some

computational speedup and without the potential breakdowns associated with poorly

conditioned matrices. For those reasons, CRAM was chosen as the solver for this study.

 26

CHAPTER 4

DEVELOPMENT OF BURNUP SOLVER

 Development of the burnup solver in the APIDA code involved studies into

multiple linear chain methods and matrix exponential methods. Literature review and

implementation of proof-of-concept algorithms led to the conclusion CRAM was the most

effective and flexible method for solving burnup equations.

 While CRAM, and inherently any numerical matrix solver, handles the requisite

transition matrices in burnup problems well, it cannot be applied to nuclides that introduce

zeros into the diagonals of said matrices. Consequently, a novel decay chain solver needs

to be applied to solve for the time rate of change of nuclide concertation for those particular

isotopes.

 The APIDA tool is the result of combining the two preceding methods – a hybrid

matrix exponentiation and linear chain solver for burnup problems. The following section

briefly outlines the theory and foundation of CRAM. For a more complete analysis, the

reader is encouraged to refer to the work done by Pusa, et al in references [23].

4.1 The Chebyshev Rational Approximation Method (CRAM)

 As discussed in earlier sections, the nature of burnup problems and the inherent

properties of the isotopes of interest leads to the generation of poorly conditioned matrices.

The inclusion of both short- and long-lived isotopes results in a large spectrum of

eigenvalues in the problem matrix. Additionally, the time interval for each burnup

 27

calculation has a significant effect on the behavior of the matrix. Historically, these

problems have been circumvented by reducing the transition matrix and removing the

short-lived or stable isotopes which inflate the norm of the problem (the product of the

transition matrix and the time interval). While effective, this method requires

computational overhead to check which nuclides must be removed from the matrix and

consequently tracked as a decay chain.

 The matrices produced in burnup problems exhibit one unique property which can

be exploited to produce more accurate answers in a relatively quick time period – the

eigenvalues of the burnup matrix have been found to be bounded near the negative real

axis [21]. Physically, this is a natural outcome of generating the burnup matrix; the

diagonal elements represent the removal coefficients for a particular isotope and are always

negative. For methods requiring solutions near the origin (the Taylor series expansion of

the matrix exponential), this presents a mathematical hurdle.

 CRAM takes advantage of this property and allows burnup matrices to be solved

accurately without the removal of short-lived isotopes. Like most burnup matrix

exponential solvers, CRAM utilizes an approximation to the given solution for the

following system of differential equations.

'() ()

() exp() (0)

N t N t

N t t N





A

A
 (20)

 Given a rational function capable of approximating the exponential of a value, the

matrix exponential can be computed if the approximation is valid in the complex plane

 28

[23]. Applying the Cauchy integral formula, the matrix exponential can be approximated

as,

  
11

exp() () ,
2 i

t exp z z t dz






 A I A (21)

where I is the identity matrix, z is the independent variable of the rational function R(z)

approximating the exponential function, and Γ is the closed contour around the spectrum

of At.

 Using resolvent formalism, one can define the following relation,

  
 

1 ()
,

det

z
z t

z t


 



B
I A

I A
 (22)

where the series B(z) is defined as

 1

1 2

0 2 1() ... n

n n n

nz z z z 

    B B B B B (23)

where Bi is a matrix independent of the variable z [28].

 Consequently, the eigenvalues of the matrix At are equivalent to the poles of the

rational functions in the formalism of the resolvent. Using the matrix exponential

approximation with the Cauchy integral formula, the following holds,

 29

 
1

1
exp() () () ,

2

() ,

f ft exp z R z dz

z z

i

R t








 

A

I A

 (24)

where the asymptotic behavior of Rf(z) as z  -∞ is defined Rf = (1) and the singularities

of Rf correspond to the eigenvalues of the problem matrix At. As mentioned earlier, the

eigenvalues are confined to the negative real axis, thus the contour Γ can be extended to

the complex plane as a hyperbolic/parabolic function.

 Using these properties, the contour integral in Equation 23 can be approximated

with rational functions. With the poles and residues of the integral representing the nodes

and weights, numerical integration can effectively approximate the matrix exponential.

 Defining the rational function with an order k, the partial fraction decomposition of

the approximation is as follows,

 0

1

, () ,
k

k k

jj

j
r z

z






 


 (25)

where α0 is the limit of the rational function as z  ∞ and the residues, αj, correspond to

the poles αj. Knowing the poles can form conjugate pairs, the real coefficients and forming

the real-valued rational function r(x) can be applied as follows,

1

, 0

/2

() 2*Re .
j

k k

j

k

j

r x
x






 
     

 (26)

 30

 This real, rational function serves as the approximation to the matrix exponential

and provides the solution to the problem proposed in Equation 19 as follows:

 

/

0

2

,

1

1

() exp() (0) () (0)

(0) 2*Re (0) .

k k

j j

k

j

N t t N r x N

N t N  




  

 
  

 


A

A I
 (27)

 In practice, any rational function can be used to approximate the exponential. The

Chebyshev rational approximation itself is well defined, but the difficulty comes in

generating the coefficients (αj and θj) to a precision sufficient enough to provide accurate

answers.

4.2 Partial Fraction Coefficients (PFD) Generation

 The rational function coefficients can be computed via any method but are more

practically applied in the form of partial fraction coefficients. These coefficients can be

computed directly by solving for the roots of the polynomials, but numerical difficulties

arise for higher order approximations [10]. Precomputed coefficients are available in

current literature, but even the most widely used sets suffer from round-off errors.

 One method for generating these coefficients is through the application of

quadrature formulas to the contour integrals over the left complex plane. As highlighted in

Equation 23, the computation of the matrix exponential exp(At) can be approximated with

high accuracy by contour integrals when the eigenvalues of the matrix At are confined to

the negative real axis. Given the exponential nature of the function, the integral

 31

asymptotically decays as the function approaches -∞, allowing the integral to be

approximated by a quadrature set [29].

 The work by Weideman presents some useful options for rational approximations

to the exponential functions using quadrature rules [29]. One of the simplest and most

effective quadrature rules for approximating exponentials are parabolic sets. The analyses

done by Weideman includes optimizations for the parameters in each quadrature set,

including balancing the error terms of each approximation.

 Considering the integral term in Equation 23 illustrating the properties outlined for

matrix exponential approximations, any optimized contours can be used. The one proposed

by Gallopoulos and used in this work to generate quadrature coefficients is shown below

[10].

    20.1309 0.11 049 ,.2500x N ixx    (28)

where ϕ is defined from the real plane to the complex plane. This particular parabola is

shown to yield a convergence rate of 2.85-N [10].

 Using the proposed parabola, the exponential can now be approximated using the

following rational approximation,

  
1

,
k

N
k

k

r z
z








 (29)

where the two coefficients, αk and θk, are defined as

 32

 

   
2

,

' .k

k k

x

k ke x
h

x

i



 

 




 
 (30)

The term h in Equation 29 is the discretization length for the quadrature scheme used in

approximating the contour integral.

4.3 Direct matrix solver using LU factorization

 Once the partial coefficients are generated for the rational approximation, the

solution to Equation 19 can be generated with a direct matrix solver. For this study, a matrix

solver was developed based on a block-LU factorization. A direct solver was chosen over

an iterative solver due to the ill-conditioned nature of the matrix and to take advantage of

the well-known structure of the burnup matrix. Of the direct methods, the most well-known

is LU factorization. Consider the generalized problem,

 ,x bA (31)

and a factorization of A such that L is a lower triangular matrix and U is an upper triangular

matrix as follows,

 .x x b A LU (32)

With the LU factorization available, the problem can now be solved in two steps,

 33

.

y b

x y





L

U
 (33)

Solving these two matrix problems is extremely efficient due to the convenient structures

of U and L. The computational overhead of generating L and U can be minimized by

implementing an efficient factorization algorithm, such as the “block” LU algorithm

outlined in the MATLAB script in Figure 6.

 function [L,U] = block_LU(A)
 n = size(A, 1); I = eye(n); O = zeros(n);
 L = I; % Identity matrix
 U = O; % Matrix of zeros
 for k = 1:n
 if k == 1
 v(k:n) = A(k:n,k);
 else
 z = L(1:k-1,1:k-1)\A(1:k-1,k);
 size(z);
 U(1:k-1,k) = z;
 v(k:n) = A(k:n,k)-L(k:n,1:k-1)*z;
 end
 if k < n, L(k+1:n,k) = v(k+1:n)/v(k); end
 U(k,k) = v(k);
 end

 end

Figure 6. MATLAB script for the block LU factorization algorithm implemented in

APIDA.

 The implementation of this algorithm in APIDA differs from the script above as it

explicitly handles the complex variables introduced by the Chebyshev rational

approximation and uses optimized matrix-vector operations written specifically for burnup

matrices. The efficiency of the algorithm in APIDA is remarkable, solving problems

 34

tracking over 1000 isotopes on the order of seconds with partial coefficient orders up to

30.

4.4 Linear chain solver for stable nuclides

 Burnup problems produce strictly structured and highly sparse matrices.

Specifically, the resulting transition matrix containing all of the coefficients corresponding

to the set of ordinary differential equations governing the problem can be generated with

recursive logic.

 For the problem presented below,

 '() (),N t N t A (34)

where N is the vector of nuclide concentrations and A is the transition matrix holding all

the relevant coefficients. The elements of A are defined as follows,

 

 
 ,

 ,

 ,

f nn

ij j ij ij jj

ij

i i

l f n

i j

n
a

i j   

  

  
 

 


 (35)

where, lij is the decay branching ratio of nuclide j to nuclide i, 𝜆j is the disintegration

constant of nuclide j, fij is the yield fraction of the fission of nuclide j yielding nuclide i, σj
f

is the fission cross section of nuclide j, σj
nn is the cross section for non-fission neutron

reactions for nuclide j, nnij is the branching ratio of a non-fission neutron reaction with

 35

nuclide j yielding nuclide i, σj is the total cross section of nuclide j, and ϕ is the neutron

flux.

 Observing the elements along the diagonal matrix, there are scenarios in which the

condition number of A could be cumbersome or even infinite in the case of an extremely

small magnitude along the diagonal or a zero element (i.e. a stable isotope with little to no

reactions). In this case, the transition matrix needs to be reduced – the row and column

associated with the isotope in question must be removed from the matrix. This allows the

transition matrix to be full and amenable to exponentiation. Consequently, the isotopes

reduced from the transition matrix need to have their final concentrations solved for in a

different manner.

 In order to find the final concentrations for the reduced nuclides, a linear chain

method was utilized in APIDA. For each nuclide not included in the transition matrix,

solutions provided by the appropriate Bateman equations are applied to each nuclide. For

cases where there is no irradiation and no external sources of production of nuclide Ni, the

following equation is used,

 0

1

0

1

1

1 2 1() ... ,

()

ji

ii
j

k
k j

t

i i

k j

e
N t N N



  

 






 





 (36)

where 𝜆j is the disintegration constant of nuclide j and N1
0 is the initial concentration of the

first parent nuclide of the chain.

 36

In the case of neutron irradiation and the production of nuclide Ni with precursors, the

following equation is used,

1

1

1

0 0

1

1

() ... ,

()

ji i

l l l i
l j

k l

t

i i i

k

j

j

k

e
N t N N



 

 









 




 
 
 

  
 
 
 

 


 (37)

where ηi is the chain-linking precursor decay constant of nuclide Ni (including decay from

other nuclides and reaction transmutation) and μi is the effective decay constant of nuclide

i (total removal rate including decay and reactions).

 In both cases described above, the branching ratio calculator in the APIDA code is

utilized to cycle backwards through each nuclide’s decay scheme and enumerate the linear

chains for each chain. Expectedly, the resulting set of decay constants and reaction rates

are strongly associated with the coinciding coefficients in the transition matrix.

 37

CHAPTER 5

API DEVELOPMENT FOR APIDA

Traditionally, lattice depletion codes have been some transport solution method of

choice (discrete ordinates, Monte Carlo, collision probability method, etc.) and an

associated burnup solver specifically designed and tailored for the prescribed neutronics

code. Historically, these the methods are inextricably linked – specifically, the burnup

solver cannot be extracted and implemented with another transport solver. Widely used

lattice depletion codes like HELIOS, SERPENT, CASMO, and PARAGON all use self-

developed depletion modules virtually impossible to utilize without their associated

transport codes [15, 26]. This presents numerous hurdles, chiefly the inability to

independently validate the burnup solver and the impracticality of attempting to integrate

the module with a novel transport solution method. APIDA presents a significant step in

providing a universal burnup solver capable of integration with any code via a simple

Application Programming Interface (API).

5.1 Communication between transport solver and burnup module

The basic procedure of any lattice depletion method is first to determine the

physical characteristics (flux) at one discrete time with a transport solver, and then to use

that information to calculate the generation, destruction, and change in nuclide

concentrations over one or more prescribed time steps with a burnup solver. Once the new

nuclide concentrations in the fuel have been calculated, the information is relayed back to

the transport solver to calculate the new physical characteristics (flux, eigenvalue, etc.).

 38

 Efficient iteration between the transport and burnup modules in a lattice depletion

code is key to minimizing its computation time. Historically, these modules were coupled

using text files. In essence, the two codes were treated as “black boxes” in relation to one

another. Figure 7 illustrates a typical iterative cycle between a transport solver and a burnup

module.

Figure 7. Flowchart of communication between transport solver and burnup module

using text inputs.

 While this method has allowed for relatively seamless independent code

development, it presents some serious problems in modern implementations. The most

prominent issue this setup presents is difficulty with large-scale embedding. Cluster

computing has become an integral part of reactor modeling, especially in regards to multi-

physics applications. The need for high performance computing has forced developers to

abandon the model in Figure 7, since the “black box” model requires writing an input to

Transport Solver

Input file for

burnup module

(FIDO)

Burnup Solver

Input for

transport solver

Reaction

Rates
Nuclide

Concentrations

Updated Nuclide

Concentrations

 39

the hard disk. The preferred option in coupling two codes is to do so “in-memory” with the

use of an Application Programming Interface (API). Rather than generating text inputs to

be read by both of the code modules, an API allows the “parent” program to call upon the

secondary code module in-memory without the need to stop and generate a text file or

touch the hard disk.

5.2 Object-oriented framework in APIDA

APIDA is a code written in the C++ programming language and contains numerous

features for users interested in all aspects of burnup calculations. All the features are

housed within classes, each with their own API suited to the particular information being

retrieved.

 The key to the portability and utility of APIDA in terms of seamless integration

with other codes is the object-oriented framework of the API. The data pertinent to the

burnup problem is stored in exposed data containers where the user only needs to provide

the data necessary to run a calculation. Programming these structures in C++ allows for

these objects to be instantiated simultaneously in a massively parallel environment

(multiple processors over multiple nodes). The C++ programming language allows for

memory to be allocated on the heap, making it possible to instantiate multiple instances

without threatening the integrity of the data with overwrites.

 Discussed in the next section, the APIDA code is separated into multiple objects

representing the important variables in a burnup calculation. The data for each important

variable is encapsulated within different objects available to the user with “get” and “set”

 40

functions. Each object, or “class,” contains multiple functions publicly available to the

user, allowing for the manipulation of private data.

5.3 Classes and features in APIDA

 As mentioned in the previous section, the APIDA framework is broken down into

multiple classes, each responsible for handling the requisite steps for a burnup calculation.

The main classes inherently instantiated for a burnup calculation are the following:

 ‘apida.h’ – container for the front-end user API.

 ‘library_builder.h’ – container for library data (decay and fission yields).

 ‘tran_mat.h’ – container for transition matrix.

 ‘depletion.h’ – container for solver methods for burnup problems.

 ‘output_proc.h’ – container for output processing methods.

 Each class contains a suite of methods used to handle the operations required by

each step of a burnup calculation. The ‘apida’ class serves as the front-end interface,

allowing user to run a calculation with only the data absolutely required to complete a

calculation – the list of nuclides being tracked, their corresponding initial concentrations,

the reaction rates of each type by nuclide, and the time step. If desired, users can access

burnup data explicitly (half-lifes, fission yields, decay modes, etc.) via the methods

available in each class. Each class, along with their corresponding methods, are described

in Appendix A.

 41

5.4 Implementation of APIDA

 The purpose of APIDA is to provide a simple and straightforward way to

incorporate a burnup solver using the C++ interface. Future work for APIDA includes

incorporating compatibility with more programming languages (C, FORTRAN, etc.) using

“wrappers” to make the code interface amenable to other languages.

 The implementation of an API is non-trivial for users inexperienced in coupling

codes – consequently, a simple example of the use of APIDA to solve a burnup problem is

shown below in Figure 8. Benchmark problem #6 (described in Chapter 6) follows the

fission and capture of 238U to produce 135Xe and several isotopes of Pu. In order to run the

calculation, the steps are as follows:

1. Initialize the instance of the ‘apida’ class.

2. Provide a vector containing the ZAID of the isotopes to be tracked.

3. Provide a vector containing the initial concentrations of the isotopes to be tracked.

4. Provide a vector with the time steps (cumulative) for the calculation.

5. Provide the reaction rates for each isotope (description given in comments of code

example).

6. Initialize the library to gather data for the calculation.

7. Set the initial concentrations, time steps, and reaction rates.

8. Run the calculation.

9. Retrieve the final concentrations for each nuclide at each time step.

 APIDA contains numerous other features to allow for more robust calculations or

to access specific data for other applications. A description of publicly available functions

in certain APIDA classes is available in Appendix A.

 42

#include <vector>
#include "apida/apida.h"

using namespace std;

int main(int argc, char** argv) {

 // initialize apida class
 apida* case1 = new apida;

 vector<int> nuclides; // nuclides
 vector<double> conc_i; // initial concentrations

 nuclides.push_back(922380); // U238
 nuclides.push_back(922390); // U239
 nuclides.push_back(932390); // Np239
 nuclides.push_back(942390); // Pu239
 nuclides.push_back(942400); // Pu240
 nuclides.push_back(531350); // I135
 nuclides.push_back(541350); // Xe135
 nuclides.push_back(551350); // Cs135

 conc_i.push_back(1E12); // U238
 conc_i.push_back(0); // U239
 conc_i.push_back(0); // Np239
 conc_i.push_back(0); // Pu239
 conc_i.push_back(0); // Pu240
 conc_i.push_back(0); // I135
 conc_i.push_back(0); // Xe135
 conc_i.push_back(0); // Cs135

 vector<double> time; // time steps

 time.push_back(0);

 time.push_back(1E6);

 vector< vector<double> > rxns;
 vector<double> row_hold(10, 0.0); // 10 types of rxns
// /* column neutron-nuclide interactions (n_i to n_j)

// * 1. (n,gamma) (+000010)

// * 2. (n,2n) (-000010)

// * 3. (n,3n) (-000020)

// * 4. (n,4n) (-000030)

// * 5. (n,p) (-010000)

// * 6. (n,d) (-010010)

// * 7. (n,t) (-010020)

// * 8. (n,He-3) (-020020)

// * 9. (n,alpha) (-020030)

// * 10. Fission

// */

Figure 8. Example input using APIDA to solve Benchmark Problem #6.

 43

 // --
 // START OF API FUNCTIONALITY

 // initialize the library and read in decay + fission yield data

 case1->initialize_library(nuclides, conc_i, Avg_FE);

 // set the initial concentrations
 case1->set_initial_concentrations(conc_i);

 // set times
 case1->set_times(time);

 // set reaction rates
 case1->set_rxn_rates(rxns);

 // run the burnup calculation
 case1->run();

 vector< vector<double> > final_conc;

 // retrieve the new concentrations
 case1->get_concentrations(final_conc);

 // ----> send new concentrations to transport code

 return 0;
}

Figure 8 continued

5.5 Coupling APIDA and COMET

 As highlighted in Chapter 1, the motivation for this work was to expand the utility

and capability of the COMET method. Extensively validated to provide accurate and

efficient numerical transport solutions to whole core reactor problems, extending the

capabilities of COMET to include depletion at the assembly level (and eventually the whole

core level) would provide an invaluable resource in terms of reactor design and fuel cycle

analysis.

 44

 Section 5.1 includes a discussion of the general communication between a transport

solver and a burnup module, but this section will expound on the specific information

needed in a COMET calculation to perform a lattice depletion burnup step.

 The COMET method takes advantage of the natural structure of a modern nuclear

reactor core – a lattice of square assemblies organized into some Cartesian geometry. The

basis of COMET is the generation of incident flux response function coefficients for unique

coarse meshes – fuel assemblies are generally modeled for each coarse mesh. For each

coarse mesh, a fixed source calculation (with the fission source scaled by 1/keff) is

performed. The boundary condition is an incident neutron flux with a phase space

distribution that is the tensor product of a delta function in energy and Legendre

polynomials in space (x, y) and direction (azimuthal and polar angles) on the mesh

boundary. Historically, the energy variable has been treated discretely similar to

multigroup theory but recent work has been done to expand the energy treatment into the

continuous regime.

 Since the boundary conditions are not known a priori, vacuum boundaries in the

fixed source calculations are used to pre-compute the response function expansion

coefficient library needed to perform an iterative deterministic sweep to find the core

solution (e.g., keff and the pin fission density distribution in the entire core) for an arbitrary

arrangement of the unique coarse meshes in the core. For fuel coarse meshes, the response

functions depend on the core eigenvalue (keff) which is not known a priori. As a result, the

response library is generated for a grid of keff. Recent work has been implemented in

COMET using a new method which does not require interpolation of the library as well

[33]. The truncation of Legendre expansions and the interpolation in keff are the only

 45

approximations in COMET. For a more thorough description of the coarse mesh transport

method consult the work done by Zhang and Rahnema [32].

 Traditionally, COMET has been employed for whole core problems with the

assemblies acting as the coarse meshes. For the purposes of this study, pin cells were

chosen for the coarse meshes in order to conduct assembly-level lattice depletion problems.

Using a smaller volume for a coarse mesh introduces difficulties in terms of statistics when

using stochastic methods to generate the response functions. Recent work done by Hon to

develop a Monte Carlo based response function generator shows promise in terms of

quickly pre-computing response functions [13]. The code developed by Hon, a Stochastic

Particle Response Calculator (SPaRC) is another step being taken to make COMET

amenable to coupling with APIDA.

 In order to provide APIDA the necessary reaction rates, specifically the neutron-

induced reactions in Table 3, response functions need to be generated for each type of

reaction. Once the deterministic sweep is performed to generate the final solution, the

currents for each coarse mesh and each surface are used with the pre-computed reaction-

dependent response functions to generate the reaction rates. Note that these reaction rates

need to be given for each isotope; consequently, response functions must be generated and

tracked for each isotope as well.

 Once these reaction rates are given, they are scaled according to the power and used

by APIDA to generate new material concentrations. These new material concentrations are

then used to generate new response functions and the calculation can be looped until the

final burnup step. A flowchart outlining the general communication and order of operations

in a COMET-based lattice depletion calculation is shown in Figure 9.

 46

Figure 9. Flowchart of COMET-burnup coupling.

Set up geometry

and materials

Set up cross

section library

Initialize model (input)

Run response function

generator (SPaRC)

Run transport solver

(COMET)

Calculate reaction

rates for burnup

Solve Bateman equations for

new nuclide concentrations

(APIDA)

Final time

step?

STOP

Update fuel

composition

NO YES

Call burnup module in-memory

 47

CHAPTER 6

DESCRIPTION OF BENCHMARK PROBLEMS

 In order to validate the methods in APIDA, the burnup solver was benchmarked

against several decay chains solved using analytical methods. Once verified for explicit

decay chains, APIDA was then applied to lattice depletion problems and benchmarked for

a pin cell case.

6.1 Analytical benchmarks with Mathematica

 Initial benchmarking of APIDA was done with analytical solutions generated in the

Wolfram Alpha tool Mathematica [30]. Numerous decay chains were chosen, with and

without reactions and fission yields, over a wide range of decay probabilities. The problems

were chosen with the purpose of challenging the methods in APIDA to ensure accuracy of

solutions for any given set of isotopes. The proceeding tables and figures describe the

burnup problems model by APIDA and validated in Mathematica. The corresponding

results are in Chapter 7.

 Benchmark problem #1 is a simple decay scheme – 238U alpha decays into 234Th,

which then itself decays. While lacking complexity, this decay scheme tests the methods

in APIDA due to the wide range of eigenvalues in the transition matrix.

 48

Figure 10. Description of Benchmark #1.

 Benchmark problem #2 is another fairly simple decay scheme, but now introduces

two types of decay – alpha decay and beta decay.

Figure 11. Description of Benchmark #2.

 Benchmark problem #3 is similar to the first two benchmarks, but the introduction

of a stable isotope (207Pb) tests the linearized chain method in APIDA used to solve for the

concentrations of stable isotopes.

238
U

234
Th

α

4.4680E+09

years

24.1 days

237
Np

233
Pa

α

2.1440E+06 years
234

U

β
-

26.975 days

2.4550E+05 years

 49

Figure 12. Description of Benchmark #3.

 Benchmark problem #4 follows the production of 237Np via 235U. This problem

includes the decay of each isotope, but now incorporates reaction rates – specifically the

(n,γ) reactions involved in producing 237Np. This method tests the reaction rate branching

ratio calculator in APIDA.

Figure 13. Description of Benchmark #4.

207
Tl

211
Pb

α

2.14 minutes

211
Bi

β
-

36.1 minutes

β
-

4.77 minutes

207
Pb

237
Np

(n,γ)
 237

U

β
-

6.75 days

(n,γ)
 236

U
 235

U

2.144E+6 years

 50

 Benchmark problem #5 is a complex actinide chain following the decay and

transmutation of 238U. This problem includes a wide range of decay probabilities, reaction

rates, and a closed decay loop from 244Cm to 240Pu.

Figure 14. Description of Benchmark #5.

 The final analytical benchmark problem follows the production of a fission product

important to reactivity – 135Xe. This problem tests the fission yield calculator in the APIDA

code.

 51

Figure 15. Description of Benchmark #6.

6.2 Lattice depletion pin cell benchmark

 As a first order application to test the methods in APIDA, a single fuel pin cell was

modeled and depleted. Two fuel pin cells were modeled – one without burnable absorber

and one with gadolinium integrated into the fuel. The parameters for each pin cell were

based on the AREVA European Pressurized Reactor design [1, 2]. It is a standard

 52

pressurized water reactor (PWR) fuel pin design – a cylindrical fuel pin surrounded by

zirconium-based cladding with a small gap, encapsulated in a moderator (water) with

boron. The fuel pin design is illustrated in Figure 16 and the geometric parameters for the

pin cell are shown in Table 4.

Figure 16. Illustration of fuel pin cell depletion problem.

 53

Table 4. Geometric parameters for fuel pin cell.

Pin Pitch 1.259840 cm

Cladding Outer

Radius
0.474980 cm

Cladding Inner

Radius
0.417957 cm

Fuel Pellet Radius 0.409575 cm

Boron

Concentration
1000 ppm

Moderator Density 0.7 g/cm3

Fuel Density 10.4 g/cm3

Fuel Temperature 900 K

Moderator

Temperature
600 K

Two types of fuel pins were modeled – one with UO2 enriched to 3.5wt% and another with

integrated fuel burnable absorber in the form of Gd2O3. The fuel parameters for each pin

cell problem are shown in Tables 5 and 6.

Table 5. Fuel parameters for UO2 pin cell.

Fuel Composition UO2

Fuel Enrichment 3.5 wt% 235U

Fuel Density 10.4 g/cm3

Cladding

Composition
Natural Zr

Cladding Density 6.514 g/cm3

Moderator Density 0.7 g/cm3

Soluble Boron Concentration 1000 ppm

 54

Table 6. Fuel parameters for pin cell with gadolinium.

Fuel Composition
UO2 +

Gd2O3

Fuel Enrichment
2.27 wt%

235U

Gad Enrichment
8.0 wt%

Gd2O3

Fuel Density 10.4 g/cm3

Cladding

Composition
Natural Zr

Cladding Density 6.514 g/cm3

Moderator Density 0.7 g/cm3

Soluble Boron Concentration 1000 ppm

In regards to isotopics, a sensitivity analysis was conducted using the fuel pin cell

problem to determine the proper number of nuclides to track during a depletion calculation

in order effectively capture the physics of transmutation in a reactor core. By default, the

SERPENT code tracks 1094 isotopes regardless of how many nuclides the user specifies

in the input file. While all encompassing, this may not be necessary for all calculations and

could potentially lead to numerical instability in both depletion and transport calculations

if material concentrations are too low.

 For the sensitivity analysis, a ‘first-step’ investigation was conducted to see how

the number of isotopes being tracked affected the change in eigenvalue over one burnup

step, in this case 250 MWD/MTU. The SERPENT calculation was run with the codes built-

in burnup solver to produce a reference solution for the first burnup step. Then the transport

solution from the initial steady state calculation in SERPENT was used to run a burnup

calculation for the first step using APIDA. The APIDA calculation was run several times,

 55

each with a different number of isotopes ranging from 250 to 1049. Once a reasonable

number of isotopes was determined, APIDA was then coupled with the transport solver in

SERPENT to run fuel pin cell lattice depletion calculations over several time steps.

 In addition to the results generated by SERPENT and the results generated by

coupling APIDA to serpent, HELIOS was also used to produce pin cell depletion results

for further comparison. HELIOS is an extensively validated lattice depletion code utilizing

method of characteristics (MOC) and collision probability (CPM) solvers in 2D general

geometry for transport solutions and a linearized chain method for burnup. An illustration

of the fuel pin cell model in HELIOS is shown in Figure 17.

 56

Figure 17. Geometry of fuel pin cell in HELIOS.

 57

CHAPTER 7

RESULTS

7.1 Analytical benchmarks with Mathematica

 The results from the analytical benchmark problem described in Chapter 6 validated

the APIDA method in terms of solving well-defined decay and transmutation schemes.

Tables 7, 8, and 9 show the percent relative error in the final concentration generated by

APIDA for each benchmark. The mean weighted error is defined below.

N

i i

i

avg

RE FD

MWE
N FD







 (38)

Table 7. APIDA results compared to Mathematica solutions for benchmarks #1 and #2.

Benchmark #1 Benchmark #2

 Relative Error (%) Relative Error (%)

U-238 0.0058 Np-237 8.02E-13

Th-234 0.0034 Pa-233 5.76E-13

 U-234 3.54E-07

The results from Benchmark #1 exhibit the largest errors for material concentrations of all

the benchmarks when compared to the analytical solution produced in Mathematica, but

they are still acceptable by a significant margin. The errors produced in benchmark #1 are

inherent in all numerical solvers, as each benchmark was also validated using the intrinsic

 58

matrix exponential function in MATLAB. The mean weighted error for Benchmark #1 is

5.84E-3% and the mean weighted error for Benchmark #2 is 3.38E-9%.

Table 8. APIDA results compared to Mathematica solutions for benchmarks #2 and #3.

Benchmark #3 Benchmark #4

Relative Error (%) Relative Error (%)

Pb-211 9.91E-12 U-235 5.84E-05

Bi-211 7.31E-07 U-236 3.12E-05

Tl-207 2.76E-01 U-237 6.37E-08

Pb-207 8.92E-03 Np-237 1.08E-08

For benchmarks #3 and #4, the relative percent errors remain extremely low and more than

acceptable. The linear chain solver for stable isotopes in APIDA is also shown to be

effective, solving for the final concentration of the stable nuclide Pb-207. The mean

weighted error for Benchmark #3 is 1.92E-3% and the mean weighted error for Benchmark

#4 is 1.18E-7%.

 59

Table 9. APIDA results compared to Mathematica solutions for benchmarks #5 and #6.

Benchmark #5 Benchmark #6

Relative Error (%) Relative Error (%)

U-238 5.12E-06 U-238 1.27E-04

U-239 5.21E-06 U-239 1.27E-04

Np-239 2.52E-09 Np-239 2.38E-09

Pu-239 5.96E-09 Pu-239 1.34E-08

Pu-240 1.28E-08 Pu-240 1.41E-08

Pu-241 3.21E-09 I-135 1.48E-07

Pu-242 4.50E-06 Xe-135 2.19E-10

Pu-243 1.54E-05 Cs-135 3.59E-11

Am241 5.59E-06

Am-243 2.91E-06

Am-244 9.76E-07

Cm-244 5.01E-07

The relative percent errors remain remarkably low for benchmark problems #5 and #6,

validating the capabilities in APIDA to incorporate reaction rates and to properly apply

fission yield fractions. In benchmark #6, the production of Xe-135 is of particular

importance to reactor operations as it is a strong neutron absorber. The mean weighted

error for Benchmark #5 is 4.65E-8% and the mean weighted error for Benchmark #6 is

8.27E-9%.

 60

 In order to validate the capability of APIDA to solve for nuclide concentrations

over multiple time steps, benchmark problems #4 and #5 were solved over a number of

time intervals. Plots showing the APIDA solutions imposed on the analytical solutions are

shown in Figures 18 and 19.

Figure 18. APIDA solution points plotted over the analytical solution to benchmark #4.

Figure 19. APIDA solution points plotted over the analytical solution to benchmark #5.

 61

7.2 Isotopic sensitivity analysis with a fuel pin cell

 As discussed in Chapter 6, the number of nuclides tracked in a problem is of

considerable interest given the effect of problem size on both memory and solution

accuracy. To provide some perspective on the implications of increasing the number of

nuclides tracked in a problem, the sparsity pattern of burnup matrix produced when tracked

274 isotopes is shown in Figure 20 and the coinciding sparsity pattern from tracking 1049

isotopes is shown in Figure 21.

Figure 20. Sparsity pattern of the burnup matrix when tracking 274 isotopes.

 62

Figure 21. Sparsity pattern of the burnup matrix when tracking 1049 isotopes.

 The fuel pin cell described in Chapter 6 was modeled in SERPENT and burned for

one time step – 250 MWD/MTU. The eigenvalue produced by SERPENT using their

burnup solver produced an eigenvalue of 1.20613 with a standard deviation (S.D.) of 27

pcm. The transport solution, namely the reaction rates, produced by the steady state

calculation, in SERPENT was then used in APIDA to solve for the change in nuclide

concentration. Calculations were run using a different number of isotopes to observe the

 63

effect on the eigenvalue once the new concentrations were applied. The results comparing

the SERPENT eigenvalue to the eigenvalues produced using the APIDA material

concentrations for a varying number of isotopes are shown in Tables 10 and 11. A listing

of the specific isotopes used for each calculation is available in Appendix B. SERPENT

transport calculations were run 15000 histories per cycle, 1000 total cycles with 200 cycles

skipped.

Table 10. Comparison of APIDA eigenvalues to the SERPENT eigenvalue for one

burnup step tracking 274 nuclides to 665 nuclides.

Number of

isotopes k-eff S.D.

Diff. from

SERPENT (pcm)

274 1.234 0.00026 -2781

298 1.23312 0.00027 -2693

322 1.23281 0.00026 -2662

347 1.22936 0.00026 -2317

372 1.22862 0.00027 -2243

397 1.22822 0.00026 -2203

422 1.21075 0.00026 -456

447 1.21004 0.00027 -385

471 1.21033 0.00027 -414

496 1.20777 0.00027 -158

519 1.20715 0.00027 -96

544 1.20789 0.00026 -170

569 1.20794 0.00027 -175

594 1.20774 0.00027 -155

619 1.20738 0.00027 -119

644 1.20605 0.00027 14

665 1.20655 0.00026 -36

 64

Table 11. Comparison of APIDA eigenvalues to the SERPENT eigenvalue for one

burnup step tracking 687 nuclides to 1049 nuclides.

Number of

isotopes k-eff S.D.

Diff. from

SERPENT (pcm)

687 1.20604 0.00026 15

713 1.20608 0.00026 11

738 1.20614 0.00027 5

762 1.20615 0.00027 4

788 1.20612 0.00027 7

813 1.20597 0.00028 22

836 1.20552 0.00026 67

861 1.20571 0.00027 48

885 1.20568 0.00029 51

909 1.20668 0.00029 -49

931 1.20591 0.00029 28

952 1.20576 0.00029 43

972 1.20567 0.00027 52

991 1.20584 0.00029 35

1013 1.20596 0.00026 23

1036 1.20597 0.00026 22

1049 1.20599 0.00027 20

 As expected, increasing the number of isotopes yields a solution closer the

reference calculation provided by SERPENT, which tracks over 1000 isotopes for each

calculation. The threshold for the minimum number of isotopes appears to begin around

644 nuclides. The grouping of the isotopes also plays a considerable part, as the isotopes

important to fully realizing the transmutation pathways for important nuclides needs to be

included. This phenomenon is illustrated for in Figure 22. After approximately 600

isotopes, the oscillation of difference between the APIDA solution and the SERPENT

solution is within the standard deviation of the calculation.

 65

Figure 22. Convergence of APIDA generated eigenvalues in SERPENT to the reference

solution given different numbers of isotopes.

 This process was repeated for the fuel pin with gadolinium described in Chapter 6.

The fuel pin cell was modeled in SERPENT and burned for one time-step – 250

MWD/MTU. The eigenvalue produced by SERPENT using their burnup solver produced

an eigenvalue of 0.212881 with a standard deviation (S.D.) of 86 pcm. The results

comparing the SERPENT eigenvalue to the eigenvalues produced using the APIDA

material concentrations for a varying number of isotopes are shown in Tables 12 and 13.

A listing of the specific isotopes used for each calculation is available in Appendix B.

SERPENT transport calculations were run 15000 histories per cycle, 1000 total cycles with

200 cycles skipped.

 66

 Table 12. Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin

eigenvalue for one burnup step tracking 274 nuclides to 665 nuclides.

Number of

isotopes k-eff S.D.

Diff. from

SERPENT (pcm)

274 0.212909 0.00086 -2.8

298 0.212744 0.00086 13.7

322 0.213017 0.00086 -13.6

347 0.213021 0.00089 -14

372 0.212901 0.00087 -2

397 0.213046 0.00089 -16.5

422 0.21247 0.00086 41.1

447 0.212942 0.00090 -6.1

471 0.21315 0.00088 -26.9

496 0.213171 0.00083 -29

519 0.213054 0.00089 -17.3

544 0.212823 0.00090 5.8

569 0.212944 0.00087 -6.3

594 0.212567 0.00085 31.4

619 0.213158 0.00087 -27.7

644 0.21276 0.00090 12.1

665 0.212723 0.00090 15.8

 67

Table 13. Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin

eigenvalue for one burnup step tracking 687 nuclides to 1049 nuclides.

Number of

isotopes k-eff S.D.

Diff. from

SERPENT (pcm)

687 0.212795 0.00083 8.6

713 0.212818 0.00086 6.3

738 0.213179 0.00087 -29.8

762 0.212368 0.00085 51.3

788 0.212982 0.00085 -10.1

813 0.212633 0.00085 24.8

836 0.21298 0.00086 -9.9

861 0.212771 0.00085 11

885 0.213166 0.00085 -28.5

909 0.212603 0.00087 27.8

931 0.212986 0.00085 -10.5

952 0.21308 0.00089 -19.9

972 0.212924 0.00086 -4.3

991 0.213116 0.00088 -23.5

1013 0.212672 0.00089 20.9

1036 0.212924 0.00085 -4.3

1049 0.213096 0.00081 -21.5

 Unlike the fuel pin modeled with no gadolinium, the eigenvalue does not vary

significantly given the number of isotopes tracked over one time-step in the gadded fuel

pin. The low eigenvalue and the slightly higher standard deviation does factor into the

analysis, but the depressed amount of fissions and reactions in the isotopes important to

criticality likely decreases the dependence on the number of isotopes for one time-step.

The behavior of the eigenvalue is plotted in Figure 23.

 68

Figure 23. Convergence of APIDA generated eigenvalues in SERPENT to the reference

solution of the gadded fuel pin given different numbers of isotopes.

 Figure 24 does not show the same asymptotic behavior as Figure 23, and the

oscillations around 0 are statistical and well within the standard deviations reported by

SERPENT. This likely results from the eigenvalue of the gadded fuel pin staying relatively

flat over the first few burnup steps. While somewhat illuminating, these results are not

entirely conclusive and further work should be performed with more particle histories to

provide more insight.

 69

7.3 Multi-step pin cell depletion calculation

 The UO2 fuel pin cell used in the sensitivity study was also used in the multi-step

depletion calculation to compare APIDA to SERPENT and HELIOS. Results were

generated with both SERPENT and HELIOS up to a total burnup of 10,000 MWD/MTU

at intervals of 500 MWD/MTU, with the first two steps at 250 MWD/MTU for higher

fidelity. Two sets of SERPENT results are shown. The transport solutions from SERPENT

were used at each steps by APIDA to generate the new material concentrations for the next

step. The power was fixed at 34 W/g and calculations were run without xenon equilibrium

and with predictor-corrector turned off. The results using SERPENT were generated

running 15000 histories per cycle with 1000 total cycles and 200 inactive cycles. Figure 24

shows the change in the eigenvalue (k-effective) over these burnup steps using SERPENT,

HELIOS, and APIDA, with APIDA results generated with 738 isotopes tracked and 1049

isotopes tracked.

 70

Figure 24. Eigenvalue (k-eff) as a function of burnup resulting from SERPENT, HELIOS,

and APIDA calculations.

 The depletion curve generated by APIDA shows excellent agreement with

SERPENT, especially when tracking 1049 isotopes. The curve generated when tracking

738 isotope seems to diverge as the fuel pin is burned more, indicating added importance

to some of the less dominant actinides in terms of pathways of transmutation. One

noticeable difference between the burnup methods used in SERPENT and APIDA is the

imposed limit used by SERPENT for fission product yields. SERPENT cuts off the

tracking of fission products if the fission yield fraction is 1x10-6 or less, a variable which

could have significant effects in terms of pathways of transmutation and the production of

important fission products. The statistical nature of Monte Carlo calculations, especially

 71

when it’s not clear if the source has converged to the correct solution, also contributes to

some of the differences in the eigenvalue.

 In addition to the core eigenvalue, the atom density of certain isotopes is of

considerable interest in fuel cycle analysis. One of the most important fission products

related to criticality analysis is 135Xe as it acts as a strong neutron absorber, depressing the

fission density in the fuel pin. Figure 25 shows the production of 135Xe as calculated by

SERPENT and APIDA, as well as the relative difference over several burnup steps.

Figure 25. Production of 135Xe as a function of burnup resulting from SERPENT and

APIDA calculations.

 72

Another factor in criticality is the enrichment of 235U in UO2 fuel. Figure 26 shows the

change in 235U atomic density in the fuel pin cell over several burnup steps. The relative

difference between SERPENT and APIDA oscillates around zero, bounded by

approximately 0.05%.

Figure 26. Change in 235U as a function of burnup resulting from SERPENT and APIDA

calculations.

Finally, a parameter with significance to nuclear nonproliferation and national security is

the ratio of 240Pu to 239Pu. This ratio is key in determining the viability of plutonium as a

special nuclear material for weapons production. Figure 27 shows the ratio of 240Pu to 239Pu

as a function of burnup.

 73

Figure 27. Ratio of 240Pu to 239Pu as a function of burnup resulting from SERPENT and

APIDA calculations.

Initially divergent, the relative difference starts to approach zero as the fuel pin is burned

more. This is a phenomenon which should be investigated further, as this ratio of interest

is particularly important during the early stages of burnup when the amount of 239Pu is still

dominant and makes the plutonium more amenable for weapons production. The culprit in

this analysis may be the extremely low atomic density at the first time step (on the order of

1x10-10). The relative agreement between APIDA and SERPENT is encouraging, but more

work should be done to benchmark APIDA with transport codes to ensure proper

communication between modules.

 74

CHAPTER 8

CONCLUSIONS

In this dissertation, a robust, powerful, and portable burnup tool was developed

with the capability to easily couple with any transport solver in memory to efficiently

perform lattice depletion calculations. The new code, APIDA, employs a novel hybrid

burnup solver and presents completely new code module capable of seamless integration

within independently developed transport solvers.

The APIDA code was validated with Mathematica to benchmark the burnup tool

and its ability to calculate material concentrations after multiple time steps. The solutions

produced by the APIDA code resulted in a relative percent error of well below 1% for all

nuclides, even with the most numerically taxing problem descriptions.

 The APIDA framework was built from the ground up as an object-oriented API in

the C++ language and the pertinent public classes were described in the manuscript. A

simple example implementation was provided to show the ease of use in terms of

integration with other codes in memory.

 A sensitivity analysis was conducted to investigate the effect on the core eigenvalue

of number of nuclides in a burnup calculation. Using a wide range of isotopes, the APIDA

code results indicate the effect of tracking more the about 600 isotopes is not significant

for the EPR fuel pin cell problem described in this study. For the fuel pin with integrated

burnable absorber, the number of isotopes being tracked had little to no impact in terms of

eigenvalue, but further work can be done with a different concentration of gadolinium.

 75

 The APIDA code was also benchmarked with the SERPENT code to track the

change in eigenvalue of a pin cell over multiple time steps. The results generated by APIDA

showed excellent agreement with the SERPENT reference solution and maintained high

accuracy in terms of tracking the change in nuclide concentration over time. APIDA was

shown to provide accurate solutions for some of the more important parameters related to

criticality and nuclear nonproliferation, namely the buildup of 135Xe and the ratio of 240Pu

to 239Pu.

 Overall, the capabilities of APIDA were shown to be both powerful and easy to

implement. Future work for APIDA includes the implementation of a more general library

reader class to handle raw ENDF files. The next step in elevating COMET as a multi-

physics code is to refactor the framework to make it more conducive for interfacing with

APIDA and other modules in the future. The methods in APIDA can also be expanded to

handle some of the lesser occurring but still present neutron-induced reactions not

considered in this study. The APIDA code should also be integrated with a massively

parallel transport code to validate the thread-safe nature of the API framework in APIDA.

 76

APPENDIX A

CLASSES AND FUNCTIONS IN APIDA

Tables A.1 through A.4 list and describe the public functions available to the user in the

APIDA code.

Table A1. Functions and descriptions of the ‘apida’ class.

Class: apida

Function Type Description

apida(); void Constructor to initialize the ‘apida’

class.

~apida(); virtual Destructor to kill instance of class.

initialize_library(vector<int>,

vector<double>, vector<double>);

void Function to initialize library class and

read in decay data.

set_initial_concentrations(vector<double>); void Function to set initial concentration

vector.

set_new_concentrations(vector<double>); void Function to set new concentrations

after a time step.

set_times(vector<double>); void Function to set time steps.

set_rxn_rates(vector< vector<double>>); void 2-d vector holding reaction rates for

each isotope.

get_concentrations(

vector< vector<double>>);

void Function to retrieve all concentrations

after each time step.

get_concentrations_at_step(

vector<double>);

void Function to retrieve concentrations at a

specific time step.

run(); void Function to run burnup calculation.

 77

Table A2. Functions and descriptions of the ‘library_builder’ class.

Class: library_builder

Function Type Description

Library_builder(); void Constructor to initialize class.

~Library_builder(); virtual Destructor to kill instance of class.

get_lib_type(int); int Function to get type of library for an isotope.

get_hl_units(int); int Function to get half-life unites for an isotope.

get_half_life(int); double Function to get half-life of an isotope.

get_beta_1(int);

double Function to get probability an isotope decays

via beta emission.

get_beta_2(int);

double Function to get probability an isotope decays

via beta emission to a metastable state.

get_posit_1(int);

double Function to get probability an isotope decays

via positron emission.

get_posit_2(int);

double Function to get probability an isotope decays

via positron emission to a metastable state.

get_alpha(int);

double Function to get probability an isotope decays

via alpha particle emission.

get_isomer(int);

double Function to get probability an isotope decays

via isomeric transition.

get_spont_fiss(int);

double Function to get probability an isotope decays

via spontaneous fission.

get_delayed(int);

double Function to get probability an isotope decays

via delayed neutron emission.

get_decay_heat(int); double Function to get decay heat.

 78

Table A2 (continued)

get_recover_gx(int);

double Function to get fraction of recoverable energy

per disintegration from gamma and x-rays.

get_nat_abund(int);

double Function to get atom percent abundance of

naturally occurring isotopes.

get_water_rcg(int);

double Function to get radioactivity concentration in

water.

get_air_rcg(int);

double Function to get radioactivity concentration in

air.

get_beta_double(int);

double Function to get probability an isotope decays

via double beta emission.

get_neutron_decay(int);

double Function to get probability an isotope decays

via neutron emission.

get_beta_alpha(int);

double Function to get probability an isotope decays

via beta and alpha emission.

get_fiss_array(int);

double Function to get isotope from fissionable

isotope array.

get_yield_frac(int,int);

double Function to get fission yield fraction from one

isotope to a specific fission product.

interpolate_yields(vector<double>,

int,);

double Function to interpolate and get the fission

yield fraction from one isotope to a specific

product given multiple yield energies.

 79

Table A3. Functions and descriptions of the ‘tran_mat’ class.

Class: tran_mat

Function Type Description

tran_mat(); void Constructor to initialize class.

~tran_mat() virtual Destructor to kill instance of class.

construct_transition_matrix(Library_builder*,

vector<vector<double>>,vector<int>,bool);

void Function to construct transition

matrix for burnup calculation.

convert_to_lambda(double,int);

double Function to convert half-life in

seconds to decay probability (1/s).

branching_ratio_calculator(Library_builder*,

int,int,int);

double Function to calculate branching

ratio of one isotope decaying to

another.

neutron_rxn_calc(Library_builder*,int,int,int&);

bool Function to calculate if an isotope

is produced via a neutron induced

reaction.

fission_yield_calculator(Library_builder*,

int,int,int,int);

double Function to calculate the fission

yield fraction of an isotope.

print_transition_matrix(vector<int>,

vector<double>,vector<double>,constchar*);

void Function to print the transition

matrix in MATLAB sparse matrix

format.

reduce_transition_matrix(vector<int>,bool,

vector<double>&,vector<double>&,

vector<double>&,bool&);

void Function to reduce the transition

matrix and remove isotopes

causing a zero diagonal element.

 80

Table A4. Functions and descriptions of the ‘depletion’ class.

Class: depletion

Function Type Description

depletion(); void Constructor to initialize class.

~depletion();

virtual Destructor to kill instance of

class.

set_library(Library_builder*);

void Function to set pointer to library

class.

set_initial_conc(vector<double>,vector<double>,

tran_mat*);

void Function to set initial

concentration.

set_reaction_rates(vector<vector<double>>); void Function to set reaction rates.

set_time_interval(double); void Function to set time intervals.

set_final_conc_u(vector<double>);

void Function to set final

concentration of isotopes not

reduced from the matrix.

set_final_conc_s(vector<double>);

void Function to set final

concentration of isotopes

reduced from the matrix.

get_new_conc(vector<double>&,tran_mat*);

void Function to get final

concentrations.

get_time();

double Function to get time interval for

a substep.

get_initial_conc_u(int);

double Function to get initial

concentration of a reduced

isotope.

 81

Table A4 (continued)

get_initial_conc_s(int);

double Function to get initial

concentration of a not reduced

isotope.

run(depletion*,tran_mat*,bool,bool,int,int); void Function to run calculation.

 82

APPENDIX B

LIST OF ISOTOPES IN SENSITIVITY ANALYSIS

Table B1. Isotopes used in 274 nuclide calculations.

Isotope # Isotope # Isotope # Isotope #

1 10010 36 360860 71 441010 106 501160

2 10020 37 370850 72 441020 107 501170

3 10030 38 370860 73 441030 108 501180

4 20030 39 370870 74 441040 109 501190

5 40090 40 380840 75 441050 110 501200

6 60120 41 380860 76 441060 111 501220

7 70140 42 380870 77 451030 112 501230

8 80160 43 380880 78 451050 113 501240

9 80170 44 380890 79 461020 114 501250

10 280610 45 380900 80 461040 115 501260

11 280620 46 390890 81 461050 116 511210

12 280640 47 390900 82 461060 117 511230

13 290630 48 390910 83 461070 118 511240

14 290650 49 400900 84 461080 119 511250

15 310690 50 400910 85 461100 120 511260

16 310710 51 400920 86 471070 121 521220

17 320700 52 400930 87 471090 122 521230

18 320720 53 400940 88 471101 123 521240

19 320730 54 400950 89 471110 124 521250

20 320740 55 400960 90 481060 125 521260

21 320760 56 410930 91 481080 126 521271

22 330750 57 410940 92 481100 127 521280

23 340760 58 410950 93 481110 128 521291

24 340770 59 420920 94 481120 129 521300

25 340780 60 420940 95 481130 130 521320

26 340790 61 420950 96 481140 131 531270

27 340800 62 420960 97 481150 132 531290

28 340820 63 420970 98 481151 133 531300

29 350790 64 420980 99 481160 134 531310

30 350810 65 420990 100 491130 135 531350

31 360800 66 421000 101 491150 136 541260

32 360820 67 430990 102 501120 137 541280

 83

Table B1 (continued)

33 360830 68 440980 103 501130 138 541290

34 360840 69 440990 104 501140 139 541300

35 360850 70 441000 105 501150 140 541310

Isotope # Isotope # Isotope #

141 541320 176 601450 211 661580

142 541330 177 601460 212 661600

143 541340 178 601470 213 661610

144 541350 179 601480 214 661620

145 541360 180 601500 215 661630

146 551330 181 611470 216 661640

147 551340 182 611480 217 671650

148 551350 183 611481 218 671661

149 551360 184 611490 219 681640

150 551370 185 611510 220 681660

151 561300 186 621470 221 681670

152 561320 187 621480 222 681680

153 561330 188 621490 223 681700

154 561340 189 621500 224 882230

155 561350 190 621510 225 882240

156 561360 191 621520 226 882250

157 561370 192 621530 227 882260

158 561380 193 621540 228 892260

159 561400 194 631510 229 892270

160 571380 195 631520 230 902270

161 571390 196 631530 231 902280

162 571400 197 631540 232 902290

163 581380 198 631550 233 902300

164 581390 199 631560 234 902320

165 581400 200 631570 235 902330

166 581410 201 641520 236 902340

167 581420 202 641530 237 912310

168 581430 203 641540 238 912320

169 581440 204 641550 239 912330

170 591410 205 641560 240 922320

171 591420 206 641570 241 922330

172 591430 207 641580 242 922340

 84

Table B1 (continued)

173 601420 208 641600 243 922350

174 601430 209 651590 244 922360

175 601440 210 651600 245 922370

Isotope #

246 922380

247 922390

248 922400

249 922410

250 932350

251 932360

252 932370

253 932380

254 932390

255 942360

256 942370

257 942380

258 942390

259 942400

260 942410

261 942420

262 942430

263 942440

264 952410

265 952420

266 952421

267 952430

268 952440

269 952441

270 962410

271 962420

272 962430

273 962440

274 962450

 85

Table B2. Additional isotopes used in 298 nuclide calculations.

Isotope

1 360851

2 360870

3 360880

4 380910

5 380920

6 390911

7 390920

8 390930

9 400970

10 410970

11 430991

12 511270

13 511280

14 521311

15 521340

16 531320

17 531330

18 531340

19 541331

20 551380

21 561390

22 571410

23 571420

24 591450

 86

Table B3. Additional isotopes used in 322 nuclide calculations.

Isotope

1 350830

2 360831

3 370880

4 370890

5 390940

6 390950

7 421010

8 421020

9 431010

10 461090

11 511290

12 511310

13 521270

14 521310

15 521330

16 521331

17 541311

18 541380

19 551390

20 561410

21 561420

22 571430

23 591460

24 601490

25

 87

Table B4. Additional isotopes used in 347 nuclide calculations.

Isotope

1 330770

2 340830

3 350840

4 360890

5 370900

6 380930

7 380940

8 410951

9 431040

10 431050

11 451031

12 461120

13 501210

14 501211

15 501270

16 501280

17 511300

18 511330

19 521290

20 541351

21 541370

22 581450

23 581460

24 591470

25 621560

 88

Table B5. Additional isotopes used in 372 nuclide calculations.

Isotope

1 320770

2 340810

3 360900

4 370901

5 370910

6 400980

7 421030

8 431030

9 451070

10 471120

11 471130

12 481170

13 491151

14 511301

15 511320

16 511321

17 531360

18 541390

19 551400

20 571440

21 591480

22 591490

23 601510

24 601520

25 932400

 89

Table B6. Additional isotopes used in 397 nuclide calculations.

Isotope

1 320780

2 330780

3 340840

4 350850

5 350860

6 350870

7 380950

8 410981

9 410990

10 421040

11 481131

12 481180

13 491171

14 501291

15 501300

16 531341

17 531370

18 551410

19 561430

20 571450

21 581470

22 581480

23 591440

24 611500

25 641590

 90

Table B7. Additional isotopes used in 422 nuclide calculations.

Isotope

1 350880

2 360910

3 401000

4 410960

5 410991

6 411010

7 421050

8 441070

9 441080

10 461110

11 471150

12 491170

13 501231

14 501290

15 501301

16 521350

17 531321

18 531361

19 541400

20 551381

21 561440

22 611520

23 611530

24 621550

25 651610

 91

Table B8. Additional isotopes used in 447 nuclide calculations.

Isotope

1 330790

2 340791

3 340811

4 340850

5 340860

6 370920

7 370930

8 390960

9 390961

10 390970

11 400990

12 410980

13 431020

14 431060

15 451051

16 491191

17 501251

18 501310

19 501311

20 501320

21 521360

22 531380

23 571460

24 611540

25 631580

 92

Table B9. Additional isotopes used in 471 nuclide calculations.

Isotope

1 300720

2 320750

3 330810

4 330820

5 330830

6 350820

7 350841

8 350890

9 370940

10 401010

11 401020

12 411000

13 431070

14 451090

15 481171

16 501171

17 511281

18 521251

19 551420

20 561450

21 571461

22 591481

23 591510

24 601530

 93

Table B10. Additional isotopes used in 496 nuclide calculations.

Isotope

1 320800

2 340870

3 360920

4 380960

5 390990

6 411020

7 411021

8 411030

9 411040

10 421060

11 431021

12 451060

13 461130

14 461140

15 471091

16 471160

17 481190

18 501271

19 511341

20 541410

21 551430

22 571470

23 581490

24 591500

25 621570

 94

Table B11. Additional isotopes used in 519 nuclide calculations.

Isotope

1 310720

2 310730

3 330800

4 340831

5 390980

6 390981

7 441090

8 451080

9 471111

10 471131

11 471170

12 481200

13 491190

14 491211

15 511220

16 521370

17 531390

18 561460

19 581500

20 601540

21 611550

22 621580

23 631590

24 661660

 95

Table B12. Additional isotopes used in 544 nuclide calculations.

Isotope

1 280660

2 290670

3 300690

4 300740

5 310740

6 310750

7 310760

8 310770

9 310780

10 310790

11 310800

12 320790

13 320791

14 320810

15 320820

16 320830

17 320840

18 320860

19 330760

20 330821

21 330840

22 330850

23 330860

24 330870

25 340880

 96

Table B13. Additional isotopes used in 569 nuclide calculations.

Isotope

1 340890

2 350900

3 350910

4 360930

5 360940

6 370950

7 370960

8 380970

9 380980

10 380990

11 390931

12 391000

13 391010

14 391020

15 401030

16 401040

17 401050

18 410971

19 411001

20 411041

21 411050

22 411060

23 421070

24 421080

25 430980

 97

Table B14. Additional isotopes used in 594 nuclide calculations.

Isotope

1 431000

2 431080

3 431090

4 431100

5 441100

6 441110

7 441120

8 451040

9 451081

10 451100

11 451110

12 451120

13 451130

14 451140

15 461111

16 461150

17 461160

18 461170

19 461180

20 471140

21 471151

22 471180

23 471190

24 481191

25 481210

 98

Table B15. Additional isotopes used in 619 nuclide calculations.

Isotope

1 481211

2 481220

3 481230

4 481240

5 491180

6 491200

7 491210

8 491220

9 491230

10 491231

11 491240

12 491241

13 491250

14 491251

15 491260

16 491270

17 491271

18 491280

19 491290

20 491291

21 491300

22 501191

23 501281

24 501330

25 501340

 99

Table B16. Additional isotopes used in 644 nuclide calculations.

Isotope

1 511261

2 511340

3 511350

4 511360

5 521380

6 531280

7 531331

8 531400

9 531410

10 541420

11 541430

12 551341

13 551351

14 551361

15 551440

16 551450

17 561351

18 561371

19 561470

20 561480

21 571480

22 571490

23 581510

24 581520

25 591441

 100

Table B17. Additional isotopes used in 665 nuclide calculations.

Isotope

1 591520

2 591530

3 591540

4 601550

5 601560

6 611460

7 611521

8 611541

9 611560

10 611570

11 621590

12 631600

13 641610

14 641620

15 651620

16 651630

17 661650

18 671660

19 671670

20 681690

21 902310

 101

Table B18. Additional isotopes used in 687 nuclide calculations.

Isotope

1 300750

2 300760

3 310810

4 330880

5 350920

6 381000

7 410931

8 421090

9 441130

10 451061

11 451150

12 471161

13 471171

14 471181

15 471200

16 481300

17 491201

18 491221

19 491261

20 491281

21 511370

22 541341

23 551320

24 571500

 102

Table B19. Additional isotopes used in 713 nuclide calculations.

Isotope

1 300770

2 300780

3 310820

4 320771

5 370970

6 390901

7 451101

8 451160

9 461190

10 471210

11 471221

12 481250

13 481260

14 491310

15 521390

16 521400

17 531301

18 541440

19 551460

20 581530

21 611580

22 621600

23 631610

24 651640

25 681660

26 912340

 103

Table B20. Additional isotopes used in 738 nuclide calculations.

Isotope

1 300770

2 300780

3 310820

4 320771

5 370970

6 390901

7 451101

8 451160

9 461190

10 471210

11 471221

12 481250

13 481260

14 491310

15 521390

16 521400

17 531301

18 541440

19 551460

20 581530

21 611580

22 621600

23 631610

24 651640

25 681660

26 912340

 104

Table B21. Additional isotopes used in 763 nuclide calculations.

Isotope

1 290690

2 310840

3 350821

4 360950

5 370980

6 381010

7 390891

8 431120

9 451020

10 451170

11 471201

12 471220

13 471230

14 481231

15 481280

16 481310

17 501350

18 531260

19 531420

20 551470

21 561490

22 631620

23 641640

24 661651

25 661680

 105

Table B22. Additional isotopes used in 788 nuclide calculations.

Isotope

1 290710

2 290720

3 290730

4 320870

5 340771

6 340910

7 350930

8 391040

9 411080

10 421110

11 431130

12 441160

13 451180

14 461210

15 471100

16 471240

17 511241

18 571370

19 581540

20 591560

21 601580

22 611590

23 621610

24 631541

25 671680

 106

Table B23. Additional isotopes used in 813 nuclide calculations.

Isotope

1 280680

2 290680

3 290700

4 290701

5 290740

6 290750

7 300800

8 310741

9 310830

10 401060

11 411090

12 451190

13 461091

14 461220

15 491330

16 531430

17 541450

18 571520

19 611600

20 631630

21 641650

22 651580

23 651660

24 671690

25 932410

 107

Table B24. Additional isotopes used in 836 nuclide calculations.

Isotope

1 280670

2 280690

3 280700

4 280710

5 290660

6 320751

7 350940

8 360980

9 370990

10 381020

11 421120

12 431140

13 441170

14 471250

15 491181

16 511380

17 521410

18 561361

19 561500

20 621460

21 621620

22 641660

23 651670

 108

Table B25. Additional isotopes used in 861 nuclide calculations.

Isotope

1 280720

2 290760

3 290770

4 330890

5 340920

6 350800

7 391050

8 401070

9 431150

10 451200

11 461230

12 481290

13 501360

14 541460

15 551480

16 561510

17 571530

18 581550

19 591570

20 601590

21 611610

22 631521

23 631640

24 651680

25 661690

 109

Table B26. Additional isotopes used in 885 nuclide calculations.

Isotope

1 280730

2 280740

3 300810

4 320731

5 360970

6 411100

7 411110

8 421130

9 441180

10 451210

11 461240

12 471260

13 491161

14 491340

15 511221

16 511390

17 531440

18 591400

19 621630

20 631650

21 641670

22 681671

23 681720

24 691710

 110

Table B27. Additional isotopes used in 909 nuclide calculations.

Isotope

1 270670

2 270680

3 270690

4 270700

5 280750

6 290780

7 310700

8 350950

9 360810

10 370861

11 381030

12 401080

13 431160

14 441190

15 451041

16 471080

17 471270

18 481320

19 511200

20 591421

21 631500

22 681710

23 691720

24 912350

 111

Table B28. Additional isotopes used in 931 nuclide calculations.

Isotope

1 260660

2 260670

3 270660

4 270710

5 320710

6 330900

7 410941

8 451220

9 461071

10 471280

11 481090

12 491140

13 521210

14 541270

15 581391

16 601410

17 671640

18 671700

19 671710

20 681650

21 912300

22 952400

 112

Table B29. Additional isotopes used in 952 nuclide calculations.

Isotope

1 290681

2 410920

3 420930

4 430970

5 461030

6 491120

7 521231

8 641510

9 651690

10 661590

11 661700

12 661710

13 671701

14 671720

15 822080

16 822100

17 822120

18 892280

19 922300

20 942450

21 952450

 113

Table B30. Additional isotopes used in 972 nuclide calculations.

Isotope

1 260680

2 300691

3 350801

4 370840

5 380871

6 451010

7 471060

8 511201

9 551310

10 561310

11 581370

12 651570

13 671630

14 671641

15 812080

16 832120

17 862200

18 882220

19 882280

20 902260

21 922310

 114

Table B31. Additional isotopes used in 991 nuclide calculations.

Isotope

1 431170

2 481111

3 491131

4 531250

5 661570

6 681630

7 812070

8 822110

9 832100

10 832110

11 842100

12 842160

13 862180

14 862190

15 862220

16 872230

17 882270

18 892250

19 932340

 115

Table B32. Additional isotopes used in 1013 nuclide calculations.

Isotope

1 280630

2 280650

3 300820

4 380850

5 430960

6 471071

7 481070

8 491110

9 551300

10 671620

11 812090

12 822090

13 822140

14 832130

15 832140

16 842110

17 842140

18 842150

19 842180

20 872210

21 872220

22 942371

 116

Table B33. Additional isotopes used in 1036 nuclide calculations.

Isotope

1 260590

2 260690

3 270610

4 270620

5 270720

6 270730

7 280760

8 290790

9 310850

10 320880

11 340930

12 370830

13 421140

14 441200

15 471050

16 671631

17 802060

18 812060

19 812100

20 842120

21 842130

22 852170

23 852180

 117

Table B34. Additional isotopes used in 1049 nuclide calculations.

Isotope

1 260600

2 270600

3 270601

4 290640

5 390880

6 400880

7 400890

8 410910

9 551280

10 551290

11 832090

12 862170

13 962400

14 962460

 118

APPENDIX C

PARAMETERS FOR BENCHMARK PROBLEMS

Table C1. Parameters for Benchmark #1.

 Time step (seconds) = 5.00E+17

 Initial Concentration Final Concentration

U-238 1.0000E+10 8.56077093E+08

Th-234* 0.0000E+00 1.26423127E-02

*Non-physical, but still mathematically correct.

Table C2. Parameters for Benchmark #2.

 Time step (seconds) =1.00E+12

 Initial Concentration Final Concentration

Np-237 1.00E+12 9.89807657E+11

Pa-233 0.00E+00 3.40955164E+04

U-234 0.00E+00 9.51933360E+09

 119

Table C3. Parameters for Benchmark #3.

Time step (seconds) = 1.00E+04

 Initial Concentration Final Concentration

Pb-211 1.00E+10 4.07570892E+08

Bi-211 1.00E+04 2.56832069E+07

Tl-207 1.00E+01 6.57809821E+07

Pb-207 0.00E+00 9.50078286E+09

Table C4. Parameters for Benchmark #4.

Time step (seconds) = 8.64E+04

 Initial Concentration Final Concentration

U-235 1.00E+12 1.76886902E+08

U-236 1.00E+02 1.52830284E+09

U-237 1.00E+02 9.22519446E+11

Np-237 1.00E+02 7.57753646E+10

 120

Table C5. Parameters for Benchmark #5.

Time step (seconds) = 8.64E+04

 Initial Concentration Final Concentration

U-238 1.00E+10 1.76896303E+06

U-239 1.00E+03 1.52835126E+07

Np-239 0.00E+00 4.95776250E+09

Pu-239 0.00E+00 7.45536885E+05

Pu-240 0.00E+00 1.54790667E+04

Pu-241 0.00E+00 3.48985976E+08

Pu-242 0.00E+00 5.94369007E+08

Pu-243 0.00E+00 1.68096243E+09

Am241 0.00E+00 6.98479021E+08

Am-243 0.00E+00 2.63960541E+00

Am-244 0.00E+00 6.27192533E+08

Cm-244 0.00E+00 9.42659550E+08

 121

Table C6. Parameters for Benchmark #6.

Time step (seconds) = 8.64E+04

 Initial Concentration Final Concentration

U-238 1.00E+12 1.67017008E+07

U-239 0.00E+00 4.36483823E+06

Np-239 0.00E+00 6.72015319E+11

Pu-239 0.00E+00 1.53111500E+11

Pu-240 0.00E+00 8.39445242E+10

I-135 0.00E+00 8.54352141E+07

Xe-135 0.00E+00 2.99196873E+08

Cs-135 0.00E+00 7.96828259E+08

 122

REFERENCES

[1] AREVA - U.S. EPR Final Safety Analysis Report - AREVA Design Control

Document Rev. 5 - Tier 2 Chapter 04 - Reactor - Section 4.3 Nuclear Design. 2013.

[2] AREVA - U.S. EPR Final Safety Analysis Report - AREVA Design Control

Document Rev. 5 - Tier 2 Chapter 01 - Introduction and General Description of the

Plant - Section 1.2 General Plant Description. 2013.

[3] Ball, S.J., Adams, R.K., MATEXP: A General Purpose Digital Computer Program for

Solving Ordinary Differential Equations by the Matrix Exponential Method,

ORNL/TM-1933, Union Carbide Corporation (Nuclear Division), Oak Ridge National

Laboratory, Oak Ridge, Tenn., August 1967.

[4] Bell, M.J. "ORIGEN: the ORNL isotope generation and depletion code." (1973).

[5] Bateman, H. Proc. Cambridge Phil. Soc., no. 15, p. 423, 1910.

[6] Cetnar, J., “General solution of Bateman equations for nuclear transmutations,”

Annals of Nuclear Energy, vol. 33, no. 7, pp. 640–645, 2006.

[7] Chadwick, M. B. and others, “ENDF/B-VII.0: Next Generation Evaluated Nuclear

Data Library for Nuclear Science and Technology,” Nuclear Data Sheets, vol.107, pp.

2931–3060, 2006.

[8] Connolly, K., Rahnema, F. “Heterogeneous Coarse Mesh Radiation Transport Method

for Neutronic Analysis of Prismatic Reactors,” Ann. Nucl. Energy, 56, 87-101 (2013).

[9] Duderstadt, J.J., Hamilton, L.J., Nuclear reactor analysis. Wiley, New York. 1976.

[10] Gallopoulos, E., Saad, Y., “Efficient Solution of Parabolic Equations by Krylov

Approximation Methods,” SIAM J. Sci. Stat. Comput., 13, 5, 1236 (1992).

[11] Gauld, I., others, “Isotopic Depletion and Decay Methods and Analysis Capabilities in

Scale.” Nuclear Technology, Vol . 174, 169-195, (2009).

[12] Gauld, I., Wiarda, D., “ORIGEN Data Libraries.” Scale manual. Oak Ridge National

Laboratory. 2009.

[13] Nave, C. Hyperphysics – Nuclear Binding Energy. Copyright 1998. Accessed 2015.

(http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html)

 123

[14] Kotlyar, D., Shwageraus, E., (2013), On the use of predictor–corrector method for

coupled Monte Carlo burnup codes. Annals Of Nuclear Energy. August 1,

2013;58:228-237.

[15] Lepannen, J., “PSG2/Serpent—A Continuous-Energy Monte Carlo Reactor Physics

Burnup Calculation Code,” VTT Technical Research Centre of Finland. 2008.

[16] Manalo, K. (2008), Development, Optimization, and Testing of a 3-D Zone Based

Burnup/Depletion Solver for Deterministic Transport. Nuclear and Radiological

Engineering. Gainesville, FL, University of Florida. MS.

[17] Manalo, K. (2013), Detailed Analysis of Phase Space Effects in Fuel

Burnup/Depletion for PWR Assembly & Full Core Models Using Large-Scale Parallel

Computation. Nuclear and Radiological Engineering. Atlanta, GA, Georgia Institute

of Technology. PhD.

[18] Moler, C., Van Loan, C., “Nineteen Dubious Ways to Compute the Exponential of a

Matrix, Twenty-Five Years Later,” SIAM Rev., 45 (2003).

[19] Mosher, S, Rahnema, F., “The Incident Flux Response Expansion Method for

Heterogeneous Coarse Mesh Transport Problems,” Transport Theory and Statistical

Physics, 35, No. 1, 55-86 (2006).

[20] Pusa, M., Leppanen, J. (2010), “Computing the Matrix Exponential in Burnup

Calculations.” Nuclear Science And Engineering, 164(2), 140-150.

[21] Pusa, M., “Numerical methods for nuclear fuel burnup calculations.” Ph.D. Thesis.

Aalto University. Finland. May 2013.

[22] Pusa, M., “Rational Approximations to the Matrix Exponential in Burnup

Calculations,” Nuclear Science and Engineering, vol. 169, no. 2, pp. 155–167, 2011.

[23] SCALE, a modular code system for performing standardized computer analyses for

licensing evaluation / prepared for Spent Fuel Project Office, Office of Nuclear

Material Safety and Safeguards, U.S. Nuclear Regulatory Commission. (2000).

Washington, DC.

[24] Shultis, J., Faw, R., Fundamentals of Nuclear Science and Engineering. CRC Press

2002.

[25] Simeonov, T., November 2003. “Release Notes – Helios System Version 1.8,”

Studsvik Scandpower Report, SSP-03/221.

[26] Skutnik, S., Havlůj, F., Lago, D., Gauld, I., (2013), Development of an Object-

Oriented ORIGEN for Advanced Nuclear Fuel Modeling Applications. M&C 2013:

 124

International Conference on Mathematics and Computational Methods Applied to

Nuclear Science and Engineering, Sun Valley, ID (USA), 5-9 May 2013.

[27] Rothblum, U. “Resolvent Expansions of Matrices and Applications.” Linear Algebra

and its Applications. 38:33-49, (1981).

[28] Weideman, J., Trefethen, L. N., “Parabolic and Hyperbolic Contours for Computing

 the Bromwich Integral,” Math. Comp., 76, 259, 1341. 2007.

[29] X-5 Monte Carlo Team, “MCNP—A General Monte Carlo N-Particle Transport Code,

Version 5,” Los Alamos National Laboratory. 2005.

[30] Zhang, D., Rahnema, F., “An Efficient Hybrid Stochastic/Deterministic Coarse Mesh

Neutron Transport Method,” Ann. Nucl. Energy, 41, 1–11 (2012).

[31] Zhang, D., Rahnema, F., “A Whole-Core Coarse Mesh Neutron Transport Method in

2-D Cylindrical (R, Theta) Geometry,” Nucl. Eng. Des., 265, 997-1004 (2013).

[32] Zhang, D., Rahnema, F., “High Order Perturbation Theory for Incident Flux Response

Expansion Methods,” Nucl. Sci. Eng., 176, No. 1, 69-80 (2014).

[33] Zhang, D., Rahnema, F., “A Fission Collision Separation Method for Efficient Incident

Flux Response Expansion Coefficient Generation,” Ann. Nucl. Energy, 73, 264–269

(2014).

 125

VITA

Daniel Edgardo Lago

Daniel Lago was born in Caguas, Puerto Rico in 1989 and moved to the continental

United States shortly thereafter. Daniel graduated from Cypress Creek High School in

Orlando, FL in May of 2007. The University of Florida in Gainesville, FL was Daniel’s

next destination, the institution where he earned his B.S. in Nuclear and Radiological

Engineering in May of 2011. Daniel then elected to attend graduate school at the Georgia

Institute of Technology, earning his M.S. in Nuclear and Radiological Engineering in

December of 2013.

Daniel currently lives in Atlanta with his lovely wife Lily and his loyal dog Dusty.

The latter bears a striking resemblance to Daniel, especially when the doctoral candidate

eschews shaving for several months. When he is not working, Daniel enjoys running,

brewing his own beer, and following his favorite sports team, the Jacksonville Jaguars.

