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SUMMARY 

 

A new utility has been developed with extensive capabilities in identifying nuclide decay 

and transmutation characteristics, allowing for accurate and efficient tracking of the change 

in isotopic concentrations in nuclear reactor fuel over time. This tool, named the 

Application Programming Interface for Depletion Analysis (APIDA), employs both a 

matrix exponential method and a linear chain method to solve for the end-of-time-step 

nuclide concentrations for all isotopes relevant to nuclear reactors. The Chebyshev 

Rational Approximation Method (CRAM) was utilized to deal with the ill-conditioned 

matrices generated during the course of lattice depletion calculations, and a complex linear 

chain solver was developed to handle isotopes reduced from the burnup matrix due to either 

radioactive stability or a sufficiently low neutron-induced reaction cross section.  The entire 

tool is housed in a robust but simple application programming interface (API). The 

development of this API allows other codes, particularly numerical neutron transport 

solvers, to incorporate APIDA as the burnup solver in a lattice depletion code in memory, 

without the need to write or read from the hard disk. Specifically, APIDA was developed 

for coupling with the coarse mesh radiation transport method (COMET) – a numerical 

transport solver extensively validated and shown to provide efficient and accurate whole 

core solutions to host of different reactor types. The APIDA code was benchmarked using 

numerous decay and transmutation chains. Burnup solutions produced by APIDA were 

shown to provide material concentrations comparable to the analytically solved Bateman 

equations - well below 0.01% relative error for even the most extreme cases using isotopes 

with vastly different decay constants. For further benchmarking, APIDA was coupled with 



  

 xii 

the transport solver in the SERPENT code for a fuel pin cell depletion problem. A 

sensitivity analysis was also conducted to determine the optimal number of isotopes to 

track for a typical pressurized water reactor (PWR) problem in order to accurately track 

the change in eigenvalue of the core. Results show APIDA to be effective and efficient in 

solving lattice depletion problems, in addition to being successful in terms of portability 

for users to implement via the API. 
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CHAPTER 1 

 

INTRODUCTION 

 

 The world’s energy demands are at historic levels and the need for clean, 

sustainable, and dependable power is unquestionably at the forefront of modern society. 

Nuclear power is increasingly becoming the most powerful tool to combat the impending 

energy crisis, subsequently making adequate tools to safely operate nuclear reactors and 

accurately track the changes in fuel over the core lifetime vital to ensuring the advent of a 

new fleet of nuclear power plants. 

 Nuclear fuel in fission reactors undergoes constant and significant change during 

operation with criticality, radioactivity, and material performance all affected as a result. 

The formation of new isotopes following the absorption of a neutron in the fuel causes 

power shifts and flux profile changes; consequently, these phenomena need to be 

monitored to ensure safe and efficient reactor operation. Tracking the transmutation of fuel 

is also important after the core lifetime, as radiation shielding and national security become 

a significant concern once spent fuel is removed and stored for either permanent disposal 

or reprocessing.  

 Computer simulation is the primary tool used in reactor analysis and design. 

Multiple codes are deployed by both researchers and operators to monitor the neutron 

population and distribution in the core, calculate the core eigenvalue (k-effective), track 

the change and formation of isotopes, and ensure proper heat transfer and cooling. Of those 
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facets, accurately tracking the material composition in the fuel is relevant to reactor 

lifetime, fuel utilization, used nuclear fuel management, and nuclear safeguards.  

 The current push in reactor physics research is to create all-encompassing codes 

capable of capturing all the multiphysics present in the complicated core of a nuclear 

reactor – thermal hydraulics, material performance, radiation shielding, and kinetics being 

the most relevant. This work aims to create a novel burnup module with sufficient 

modernization to couple with current and future neutron transport solution methods. 

 

1.1 Motivation 

 One emerging code in constant development at the Georgia Institute of Technology 

is the Coarse Mesh Radiation Transport Method (COMET). A hybrid deterministic-

stochastic transport solution method, COMET uses incident flux response expansions to 

quickly and accurately calculate core eigenvalues, fuel pin fissions density distributions, 

and other important values. COMET has been shown to provide solutions with Monte 

Carlo accuracy at a fraction of the computational time for PWRs, BWRs, CANDU reactors, 

HTGRs, and ABTR [8, 19, 32, 33, 34, 35]. 

 COMET presents a wholesale advancement in the archives of response matrix 

solution methods, particularly those applied to reactor physics and medical physics. While 

COMET in its current form is a powerful resource in reactor design, it also has the potential 

to be applied effectively as a lattice depletion tool. The purpose of this work was to develop 

an accurate and efficient burnup tool to couple with COMET in the future. This work was 

performed in coincidence with another Ph.D. project in the Computational Reactors and 

Medical Physics (CRMP) laboratory at The Georgia Institute of Technology. The 
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coinciding project involved developing a response function generation tool to work in 

conjunction with the burnup solver to track the change in nuclide concentration in reactor 

problems over time. Ultimately, these new tools will be implemented within the COMET 

framework to create one cohesive, deployable program capable of solving challenging 

reactor problems. 

 

1.2 Objectives 

 The research in this study addresses the need for more efficient ways to accurately 

predict the change in isotopics in reactor fuel during the course of operation. While 

methods do currently exist to calculate the end-of-life-cycle nuclide concentrations in 

reactor fuel, they do so with a number of limitations. The majority of these limitations lie 

in the transport method used to generate reaction rates at each burnup time step, but several 

burnup tools currently in use are handcuffed in some way as well. 

 The purpose of this project is to develop a burnup module to couple with the 

COMET method, ultimately creating an efficient and accurate lattice depletion tool. En 

route to the ultimate goal of a fully capable lattice depletion tool, significant work was 

done in developing an API framework for an efficient Bateman equation solver. Numerous 

methods have been developed over the past 40 years to solve these equations with most of 

those employing numerous liberties and workarounds to circumvent the difficulties caused 

by the wide-range in eigenvalues present in almost every burnup calculation. This work 

aims to provide a tool powerful enough to solve any type of burnup problem with any 

number of isotopes. In doing so, the following goals were laid out: 
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1. Develop an efficient and accurate method for solving the decay/depletion equations 

(the Bateman equations). 

2. Verification of this solver for a number of simple and complex decay/transmutation 

chains. 

3. Create an API framework for this solver with a clean, but robust front-end interface. 

4. Benchmark the burnup tool using a widely used transport and lattice depletion code 

(SERPENT). 

5. Introduce the concept of coupling COMET and APIDA to be implemented in future 

work. 
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CHAPTER 2 

 

BACKGROUND AND THEORY 

 

 In this section, the fundamental theory of radioactive decay is outlined and 

described briefly. The relevance of radioactive decay and other pathways for transmutation 

is also discussed, and the basis for the Bateman equations governing burnup is developed. 

The role of fission, with specific mention of fission product yield curves for different 

isotopes, is also reviewed in this section. Finally, the importance of neutron-induced 

reactions is considered with special note of the ones most relevant to burnup calculations. 

 

2.1 Radioactive Decay 

 Among the different pathways for an isotope to change its given mass and energy, 

the most fundamental one in nuclear physics is radioactive decay. There are a number of 

radioactive nuclides that occur naturally on earth and a host of others made via human 

intervention, and all of them exhibit radioactive characteristics thanks to the lack of 

stability in their respective nuclei. 

 The stability of a particular nucleus is determined primarily by its average binding 

energy, BE, per nucleon. The binding energy is defined as the energy released when the 

atom is “created” from its constituent parts – hydrogen atoms (H) plus neutrons (N). The 

average binding energy can then be calculated using the known masses for each particle – 

hydrogen (mH), neutron (mn), and electron (mE) [25]. 
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  H n E
AVG

Zm

Z

Nm
BE

N

m 


   (1) 

 

 The probability of an atom fissioning has a particularly strong correlation to the 

binding energy of a nucleus. The stability curve in relation to binding energy per nuclear 

particle seen below shows a steady decline towards a threshold where particles are capable 

of fissioning. As explained in the figure, once a particle’s mass becomes unwieldy, the 

binding energy per nucleon decreases enough for the atom to undergo fission.  

 

 

Figure 1. Plot of the binding energy per nucleon and related notes on nuclear stability [20].  

 

 The mode of decay varies by isotope and is determined by the quantum mechanical 

properties of its nucleus. There are several decay types, the most pertinent of which to 

burnup calculations are outlined below in Table 1. 
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Table 1: Decay modes and their associated reactions. 

Decay Mode Reaction 

Gamma (γ) 
*A A

z zX X    

Alpha (α) 
4

2

A A

z zX Y 

   

Beta (β-) 1

A A

z zX Y  

    

Beta (β+) 1

A A

z zX Y  

    

Electron Capture (EC) 1

*A A

z zX e Y 

    

Proton (p) 
1

1

A A

z zX Y p

   

Neutron (n) 
1A A

z zX X n   

Spontaneous fission  Fission ProductsA

z X   

 

While there are other decay modes not outlined in Table 1, they have extremely low 

probability of occurring and have negligible contributions in regards to burnup 

calculations. 

 In addition to the method of disintegration, the other important parameter in 

radioactivity is the half-life of a particular isotope. Since radioactive decay of a material is 

a statistical phenomenon, there is no way predicting when a single nucleus will decay. 

Instead, one uses an isotope’s decay probability (λ) to characterize the likelihood it will 

disintegrate over a given time.  

 Considering a given concentration of a radioactive nuclide N, the time rate of 

change of that nuclide over time can be defined as, 

 ( )
dN

N t
dt

   , (2) 

the solution of which is  



  

 8 

   0

tN t N e   , (3) 

where N0 is the initial concentration of the nuclide. 

 Consequently, the exponential nature of decay allows one to calculate a useful 

property: the amount of time it takes for a given number of nuclides to decay to half of its 

initial amount, or its ‘half-life’. 

 

 

 

1/20
1/2 0

1/2

2

2

T
N

N

l

T e

T

N

n











  (4) 

 Experimental evaluation of half-lifes are extremely important as their accuracy 

affects burnup calculations significantly. Table 2 shows some half-lifes of interest. 

 

Table 2: Half-lifes of interest [9].  

Nuclides Half-life 

U235 7x108y 

U238 4.5x109y 

Pu238 87.7y 

Pu239 24,110y 

Pu240 6,536y 

Xe135 9.2 hours 

I135 6.57 hours 

Cs137 30.17y 
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2.2 Bateman Equations 

 The formalization of tracking decay in Equation 3 is valid for one isotope, but the 

extension to a chain of decay products is quite natural. Tracking the decay of a nuclide and 

its subsequent products creates a system of coupled, first order, ordinary differential 

equations known as the Bateman equations. The simplest of these equations is when there 

are no sources for the production of isotopes outside of decay. Equation 5 shows the result 

of tracking the decay of an isotope being produced by a single parent isotope [16]. 

 

    1 1i i
i

i i

dN
N N

dt
          (5) 

 atom density of nuclide 

 radioactive decay constant of nuclide 

i

i

N i

i




 

  

 Given an arbitrary set of nuclides, the generalized solution to Ni in the proposed 

system of ordinary differential equations is as follows, 

 

 0

1 1 2

1

1

1

( ) ...

( )

ji

i
j

k
k

t

i i

j

k j

e
N t N



  

 















  (6) 

0

1

 atom density of nuclide 

 initial atom density of the first nuclide in the chain 

 radioactive decay constant of nuclide 

i

i

N i

N

i







 

 Equation 6 describes the solution when the only driver for time rate of change is 

the first nuclide in the linear chain. Taking transmutation, the changing of one element into 
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another via nuclear bombardment, into account, the resulting solution is shown in Equation 

7 [16]. 

 

 
1

1

1 1

0 0

1( ) ...

( )

j ii i

l l l i
l j

t t

i i i

i
k j

k l
k j

e e
N t N N

 

 


 





 

 






 
 
   

    
  

 
 

 


  (7)

  

0

 atom density of nuclide 

 initial atom density of the  nuclide in the chain 

 chain-linking precursor decay constant of nuclide  including decay of other 

nuclides ( and)  reaction rate s 

i

i

th

i

N i

N i

i









(

 effective decay constant of nucl

)

ide i i



 

 

 

 In this form of the Bateman equation, new decay constants are introduced in order 

to account for destruction driven by the presence of a reactor flux (φ) and the production 

via chain-linking precursors.  

 The most extensive form of the Bateman equation includes production from an 

external source, generally fission product generation in the presence of a reactor flux [16]. 
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 1

1

1 1

1

0 0

1

0 0

1 / 1
( ) ...

( )

,

j
ii i

l l l i
l j

t
t

j

i i i

i
k j

k k

i i

k l

f

k j

K

k

k

e e
Q t P P

P y N




 


 

 





 












 
 

   
    

  
 
 



 




  (8) 

0

2

2

  fission product yield fraction from  fissile nuclide 

 inital concentration of parent fissile nuclide 

 fission cross section of parent fissile nuclide  ( )

 reactor flux ( /

k th th

i

k

k

f

i k

k

f cm

y

n c

N

m













0 1

)

 initial constant rate of formation for nuclide  (sec )

 atoms of nuclide  produced at tim)  ( e

i

i

s

P i

Q i tt





 

  

 Equation 8 was formulated assuming the initial amount of nuclide Ni to be zero and 

a constant production represented by Pi. It is also important to note the units of the two 

terms, where Qi is the nuclide concentration in atoms, whereas Pi is the constant rate of 

production of nuclide i with units of sec-1.  

 The linear nature of the Bateman equations allows these equations to be solved 

separately and then combined for the total solution by the property of superposition. In the 

case of no reactor flux, only the basic Bateman equation (Equation 6) is used. When a 

reactor flux is present, the Bateman equations with production and the effective decay 

constants are summed together (Equations 7 and 8). 

 Further discussed in Chapter 3, this set of Bateman equations is the basis for the 

commonly utilized linear chain methods present in some burnup codes.  
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2.3 Nuclear fission, fissile isotopes, and fission products 

 Nuclear fission is a reaction predicated by the formation of a compound nucleus. A 

nuclide amenable to a particular reaction, quantified by its specific reaction cross section, 

absorbs a neutron and its nucleus becomes unstable. Generally, nuclides are more inclined 

to undergo fission if they are neutron rich (i.e. large number of nucleons), an expected 

outcome when accounting for the importance of binding energy per nucleon. One of the 

most common examples in regards to fission in nuclear reactors is shown in Equation 9. 

 235 236 144 89

92 92 56 36

* 3 FissionU n U Ba Kr n E        (9) 

 In this example, an isotope commonly used in light water reactor fuel (235U) 

undergoes fission. It initially becomes a compound nucleus with an excited state, but 

effectively instantaneously fissions, resulting into two large fission products, an excess of 

neutrons with some given energy, and a release of energy, the magnitude of which is 

dependent on the excess mass and the excitation level of the compound nucleus. The 

neutrons produced as a result of the fission are monumentally important in sustaining the 

fission chain reaction in a nuclear reactor core. The incoming energy of the neutron and 

the target nucleus undergoing fission both affect the eventual fission products and the 

amount of excess neutrons released.   

 The result of one atom fissioning is not always the same. Depending on the energy 

of the incoming neutron and the state of the target nucleus, different isotopes can be 

produced as a result of the fission. Predicting which nuclides are created as the result of an 

atom fissioning is achieved using empirically generated fission yield curves. Compiled 

using experimental data, these curves have a distinct “double hump”, a phenomenon that 

correlates with what is observed in fission events – the formation of two large fission 
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products, one of which is usually 60 – 80 nucleons heavier than the other. Figure 2 shows 

the fission yield curves for 235U and 239Pu when they absorb a thermal neutron and 

consequently fission. 

 

Figure 2. Fission product yield distribution for thermal fission of 235U and 239Pu [25]. 

 

 Most current nuclear reactors operate with the assumption of incident neutrons with 

thermal energies dominating the fission chain reaction, but fission can occur at varying 

energies. Figure 2 shows the distribution of fission products from thermal fission – 

generally the boundary, or upper limit, for thermal fission is 0.0253 eV. The current set of 

nuclear data (ENDF/B-VII libraries) contain data for fissions in 3 different energy regions 

– thermal, epithermal (upper boundary of 2.0 MeV), and high energy fission (upper 

boundary of 14 MeV) [12]. Not all fissionable isotopes contain data for each energy region. 



  

 14 

For isotopes with data for 2 or more energy groups, standard linear interpolation is usually 

implemented to calculate the resulting yield of each fission product. 

 

2.4 Other neutron-nuclide interactions 

 Fission is the primary contributor to the reaction rates highlighted in Equations 7 

and 8 for the fissionable nuclides tracked in a given problem, but reaction rates constitute 

all neutron-induced reactions in burnup calculations. Isotopes that don’t undergo fission 

still contribute to the production of other isotopes via other reactions. Table 3 outlines the 

neutron-nuclide interactions of interest. 

 

Table 3. Neutron-nuclide interactions relevant to burnup calculations. 

Decay Mode Reaction 

( , 2 )n n  1 2A A

Z ZX n X n    

( ,3 )n n  2 3A A

Z ZX n X n    

( , 4 )n n  2 4A A

Z ZX n X n    

( , )n   1A A

Z ZX n X     

( , )n p  
1

A A

Z ZX n Y p    

( , )n d  1

1

A A

Z ZX n Y d

    

( , )n t  2

1

A A

Z ZX n Y t

    

3( , )n He  
2 3

2

A A

Z ZX n Y He

    

( , )n   3

2

A A

Z ZX n Y 

    
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 In terms of applications to burnup up problems and Bateman equations, neutron-

nuclide interactions are treated effectively as constants – a phase-space integral of the 

microscopic cross section times the scalar flux.  

 

    iRR dX XX     (10) 

  

 The phase-space X constitutes the independent variables acknowledged in 

formulating the original problem; generally, space, energy, angle. The result is effectively 

an average reaction rate with the same units as the decay constant (seconds-1). 

 

2.5 Decay and fission yield data 

 As with any nuclear engineering application, a topic worthy of consideration is the 

methods used in acquiring and validating the accuracy of the prerequisite data used for 

calculations. Cross sections are important in any transport calculation but burnup solution 

methods uniquely require decay data and fission product yield data.  

 The primary source of most radioactive decay data is from the Evaluated Nuclear 

Data Files (ENDF/B-*). ENDF/B libraries, the latest and most commonly used being 

ENDF/B-VII, contain an enormous amount of data for every nuclide relevant to most 

calculations [7]. ENDF/B-VII is comprised for 14 sublibraries with 3 libraries being the 

most pertinent in regards to burnup – radioactive decay data (RDD), spontaneous fission 

product yields (SFY), and neutron-induced fission product yields (NFY).  

 The ENDF/B-VII library is widely used and validated by numerous high-pedigree 

simulation codes both in industry and research laboratories. Oak Ridge National Lab 
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(ORNL) utilizes the ENF/B-VII libraries to construct their own set of decay and yield 

libraries, publicly distributed as part of the Scale code package via the Radiation Safety 

Information Computational Center (RSICC). For sake of comparison and ease of use, the 

decay libraries from the Scale code package were used in this study, but future work will 

implement a data reader to extract data directly from the ENDF libraries.  

 

2.6 Burnup problems, systems of differential equations, and matrix structure 

 The formalizations of the decay equations and the solutions via Bateman equations 

in the previous sections are the foundation for burnup and depletion analysis. For the 

purposes of this thesis and the development of a burnup tool, the subsequent generalized 

equation is used to begin building the foundation for the solution method implemented in 

this work. 

 

 
1 Destruction

Product

1

ion

( )
m

ij j j ik k k i i i

j

m
i

k

dN
y RR N RR N

dt
b N 

 

       (11) 

    i iRR dX XX     

 

 

 atom density of nuclide 

 radioactive decay constant of nuclide 

 neutron absorption cross-section for nuclide  over phase-space 

  neutron angular flux over phase-space 
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i

i

i

ij

N i

i

X i X

b

XX





 







  ratio of all other nuclides to nuclide 

 branching ratio for neutron absorption by other nuclides that lead to nuclide ik

i

y i
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 Equation 11 shows the time rate of change of the concentration of nuclide Ni as a 

balance equation with the net result being the sum of the destruction and production of the 

nuclide of interest. The necessary assumptions in forming Equation 11 are as follows: a 

homogenous medium; space-averaged and energy-integrated reaction rate over one energy 

group; sufficiently small time step to assume a constant flux. In most lattice depletion 

applications, these assumptions are acceptable and provide accurate solutions if utilized 

appropriately. 

 Production of Ni can result from the decay of another nuclide Nj into Ni with the 

probability of said reaction expressed by its associated branching ratio bij, or production 

can come from nuclide Nk participating in a reaction under the influence of a flux resulting 

in the production of nuclide Ni. Destruction of Ni is determined by two factors, both of 

which are dependent on the type of problem and isotope. If the nuclide is unstable, its decay 

probability (λ) determines the removal rate. If there is irradiation, implying a flux (ϕ), then 

the nuclide’s reaction rate determines the removal rate. If both principles are appropriate, 

then the decay probability and reaction rate are summed to constitute the removal 

coefficient for the nuclide Ni. 

   Equation 11 is valid for all isotopes being tracked in a given problem, the end result 

being a system of first order, ordinary differential equations. The structure of the matrix in 

burnup problems is distinct and consistent – extremely sparse with the non-zero elements 

bunched near the diagonal, save for the fission products which are bunched up to the right 

side of the matrix. This matrix structure assumes the nuclides are arranged in ascending 

order by atomic mass.  
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Figure 3. Structure of a burnup matrix with 1606 nuclides in ascending order [22]. 

 

 In the preceding figure, the sparsity pattern of a typical burnup matrix is shown 

given the presence of a neutron flux. The fission product distribution is condensed on the 

right hand side, rendering the matrix ‘almost’ upper triangular in structure and behavior. 

This serves as an advantage when using certain matrix solution methods such as LU 

factorization.  
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CHAPTER 3 

 

CURRENT TECHNOLOGIES AND METHODOLOGIES 

 

 Burnup and depletion codes previously developed or currently in development 

support numerous options in regards to both solution methodologies and applications for 

reactor operations and nuclear safeguards. Among the applications currently of interest and 

being pursued by developers are: 

 Calculating the change in eigenvalue over the core lifetime; 

 Tracking fissile isotopes as well as major and minor actinides inside of fuel 

elements;  

 Optimizing the utilization of nuclear fuel; 

 Studying open and closed fuel cycles; 

 Estimating the nuclide concentration at end-of-life fuel cycle for nonproliferation 

and national security. 

 This section will focus on the two main methods used to solve the depletion 

Bateman equations – matrix exponential methods and linear chain methods. This section 

will also discuss current methods for coupling burnup and transport.  

 

3.1 Linear Chain Methods 

 In terms of utilizing the generalized solutions to burnup problems represented by 

the Bateman equations described in Chapter 2, linear methods are the most basic and 



  

 20 

straightforward to apply. At their core, linear chain methods are based on identifying the 

relevant nuclide decay chains and calculating the solution for each chain. While simple to 

implement for a low number of chains, the method becomes more complicated when many 

chains are involved. An example of such a chain is illustrated in Figure 4. 

 

 

Figure 4. Decay chain pathways for Sm [16]. 

 Isolating the pathways of production for 150Sm, there are 6 unique pathways for 

147Nb to eventually decay into each particular isotope of Sm. Enumerating each of these 

pathways into linear chains is the most taxing facet of linear chain methods. Figure 5 

illustrates the 6 pathways in the previous decay scheme for 150Sm. 
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Figure 5. Enumerated linear chain pathways for 150Sm [16]. 

 Given the particular pathways defined by the nuclides being tracked, the Bateman 

equations outlined in Chapter 2 (Equations 6 – 8) can be utilized appropriately to solve for 

the final concentration of each nuclide after a prescribed time interval. Once the solution 

for each linear chain is generated, they can be summed together as a result of the 

superposition principle.  

 The primary advantage of a linear chain method is the ability to directly and 

explicitly find solutions – each linear chain is solved for using the Bateman equations, 

minimizing the computational overhead. This approach works effectively for a problem 

involving a low number of nuclides (< 200), but the need to explicitly model each pathway 

for each nuclide being tracked hinders the extension of these methods to problems 

involving several hundreds of nuclides. 

 Some current codes utilizing the linear chain methods are PENBURN (the burnup 

module associated with PENTRAN), HELIOS, and CINDER’90 [17, 25, 29]. 
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3.2 Matrix Exponential Methods 

 The alternative approach to dealing with burnup problems is to embrace the natural 

development of a system of ordinary differential equations and use a numerical matrix 

solver. Historically, matrix exponential methods have been applied with varied success in 

multiple fuel decay and transmutation codes.  

 For a chosen set of isotopes, Equation 11 can be set up in matrix notation as follows, 

 

 N N A  . (12) 

 = transition matrix containing coefficients for decay and transmutation

 = nuclide concentration vector, . .  for all 

 = first derivative in time of nuclide concentration

iN s t N N i

N





A

  

 

The solution can be given in the form of an exponential as follows, 

 

    exp 0N t N A  . (13) 

(0) = initial nuclide concentration vectorN  

 

 Consider the solution proposed in Equation 13 – the exponential term can be 

represented by an infinite series expansion as in Equation 13, and plugged back into the 

solution in Equation 14. 

 

  
   

2

0

exp ...
2! !

m

m

t t
t I t

m



    
A A

A A  . (14) 
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   

 
2 3

... 0
2! 3!

t t
N t N

 
     
  

A A
AI  . (15) 

 

Now, a recursion relation can be developed by looking at an arbitrary iN , 
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 . (16) 

 

Considering the definition for iN  in Equation 14, the recursion relation below can be 

applied: 

 

 

 

1

0 0

1

i i

n

i i

n

j j

j

N

t
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n

R

R R


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 , (17) 

 
0

n

i i

n

N R




  , (18) 

 

 Given the construction of the solution in Equation 17, this method only requires the 

storage of two successive vectors - nR  and 1nR   - in addition to the updated value for the 

solution and the transition matrix [11]. This method of representing the exponential of the 

matrix as a Taylor series expansion has been the main solver in the ORIGEN for the past 

several decades [3, 4]. 
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 The implementation described in the preceding equations is the most naïve of the 

matrix exponential methods. Most burnup problems require tracking up to 1000 or so 

isotopes with a wide range of half-lifes, potentially spanning 30 orders of magnitude. 

Consequently, the resulting transition matrix has a wide spectrum of eigenvalues, 

introducing numerical instabilities and false solution convergence. Matrix exponentiation 

is a valid way to solve Equation 13, but the process used to effectively exponentiate the 

matrix must handle the difficulties presented by burnup problems [18].   

 Historically, burnup codes have used this naïve approximation to the exponential 

of the matrix with some modifications. Generally a valid way to approximate an 

exponential, the Taylor series expansion method breaks down catastrophically for a matrix 

with an even modestly wide range of eigenvalues. Some codes attempt to remedy this by 

using a scaling and squaring method, shown in the following equation, 

 

 
At

At n

n

e e
 

  
 

 . (19) 

 

While using this method does induce the desired effect of minimizing the norm of the 

matrix multiplied by the time step, it does a poor job of handling isotopes if they are 

produced at a faster rate than they decay. These methods also suffer from a limitation in 

terms of length of time step, generally breaking down for any time interval greater than 106 

seconds [21]. 

 One of the most recent advancements in matrix exponentiation and burnup solution 

methodologies is the Chebyshev Rational Approximation Method (CRAM), the primary 
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burnup solver in the Monte Carlo-based lattice-depletion code SERPENT [15]. CRAM 

provides multiple advantages, allowing one to compute more accurate solutions with some 

computational speedup and without the potential breakdowns associated with poorly 

conditioned matrices. For those reasons, CRAM was chosen as the solver for this study. 
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CHAPTER 4 

 

DEVELOPMENT OF BURNUP SOLVER 

 

 Development of the burnup solver in the APIDA code involved studies into 

multiple linear chain methods and matrix exponential methods. Literature review and 

implementation of proof-of-concept algorithms led to the conclusion CRAM was the most 

effective and flexible method for solving burnup equations.  

 While CRAM, and inherently any numerical matrix solver, handles the requisite 

transition matrices in burnup problems well, it cannot be applied to nuclides that introduce 

zeros into the diagonals of said matrices. Consequently, a novel decay chain solver needs 

to be applied to solve for the time rate of change of nuclide concertation for those particular 

isotopes.  

 The APIDA tool is the result of combining the two preceding methods – a hybrid 

matrix exponentiation and linear chain solver for burnup problems. The following section 

briefly outlines the theory and foundation of CRAM. For a more complete analysis, the 

reader is encouraged to refer to the work done by Pusa, et al in references [23]. 

 

4.1 The Chebyshev Rational Approximation Method (CRAM) 

 As discussed in earlier sections, the nature of burnup problems and the inherent 

properties of the isotopes of interest leads to the generation of poorly conditioned matrices. 

The inclusion of both short- and long-lived isotopes results in a large spectrum of 

eigenvalues in the problem matrix. Additionally, the time interval for each burnup 
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calculation has a significant effect on the behavior of the matrix. Historically, these 

problems have been circumvented by reducing the transition matrix and removing the 

short-lived or stable isotopes which inflate the norm of the problem (the product of the 

transition matrix and the time interval). While effective, this method requires 

computational overhead to check which nuclides must be removed from the matrix and 

consequently tracked as a decay chain.  

 The matrices produced in burnup problems exhibit one unique property which can 

be exploited to produce more accurate answers in a relatively quick time period – the 

eigenvalues of the burnup matrix have been found to be bounded near the negative real 

axis [21]. Physically, this is a natural outcome of generating the burnup matrix; the 

diagonal elements represent the removal coefficients for a particular isotope and are always 

negative. For methods requiring solutions near the origin (the Taylor series expansion of 

the matrix exponential), this presents a mathematical hurdle.   

 CRAM takes advantage of this property and allows burnup matrices to be solved 

accurately without the removal of short-lived isotopes. Like most burnup matrix 

exponential solvers, CRAM utilizes an approximation to the given solution for the 

following system of differential equations. 

 

 
'( ) ( )

( ) exp( ) (0)

N t N t

N t t N





A

A
  (20) 

  

  Given a rational function capable of approximating the exponential of a value, the 

matrix exponential can be computed if the approximation is valid in the complex plane 
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[23]. Applying the Cauchy integral formula, the matrix exponential can be approximated 

as, 

 

  
11

exp( ) ( ) ,
2 i

t exp z z t dz






 A I A   (21) 

 

where I is the identity matrix, z is the independent variable of the rational function R(z) 

approximating the exponential function, and Γ is the closed contour around the spectrum 

of At.  

 Using resolvent formalism, one can define the following relation, 

 

  
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,
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  (22) 

 

where the series B(z) is defined as 

 

 1

1 2

0 2 1( ) ... n

n n n

nz z z z 

    B B B B B   (23) 

 

where Bi is a matrix independent of the variable z [28]. 

 Consequently, the eigenvalues of the matrix At are equivalent to the poles of the 

rational functions in the formalism of the resolvent. Using the matrix exponential 

approximation with the Cauchy integral formula, the following holds, 
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where the asymptotic behavior of Rf(z) as z  -∞ is defined Rf = (1)  and the singularities 

of Rf correspond to the eigenvalues of the problem matrix At. As mentioned earlier, the 

eigenvalues are confined to the negative real axis, thus the contour Γ can be extended to 

the complex plane as a hyperbolic/parabolic function.  

 Using these properties, the contour integral in Equation 23 can be approximated 

with rational functions. With the poles and residues of the integral representing the nodes 

and weights, numerical integration can effectively approximate the matrix exponential.  

 Defining the rational function with an order k, the partial fraction decomposition of 

the approximation is as follows, 
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where α0 is the limit of the rational function as z  ∞ and the residues, αj, correspond to 

the poles αj. Knowing the poles can form conjugate pairs, the real coefficients and forming 

the real-valued rational function r(x) can be applied as follows, 
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 This real, rational function serves as the approximation to the matrix exponential 

and provides the solution to the problem proposed in Equation 19 as follows: 
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 In practice, any rational function can be used to approximate the exponential. The 

Chebyshev rational approximation itself is well defined, but the difficulty comes in 

generating the coefficients (αj and θj) to a precision sufficient enough to provide accurate 

answers.   

 

4.2 Partial Fraction Coefficients (PFD) Generation  

 The rational function coefficients can be computed via any method but are more 

practically applied in the form of partial fraction coefficients. These coefficients can be 

computed directly by solving for the roots of the polynomials, but numerical difficulties 

arise for higher order approximations [10]. Precomputed coefficients are available in 

current literature, but even the most widely used sets suffer from round-off errors.  

 One method for generating these coefficients is through the application of 

quadrature formulas to the contour integrals over the left complex plane. As highlighted in 

Equation 23, the computation of the matrix exponential exp(At) can be approximated with 

high accuracy by contour integrals when the eigenvalues of the matrix At are confined to 

the negative real axis. Given the exponential nature of the function, the integral 
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asymptotically decays as the function approaches -∞, allowing the integral to be 

approximated by a quadrature set [29]. 

 The work by Weideman presents some useful options for rational approximations 

to the exponential functions using quadrature rules [29]. One of the simplest and most 

effective quadrature rules for approximating exponentials are parabolic sets. The analyses 

done by Weideman includes optimizations for the parameters in each quadrature set, 

including balancing the error terms of each approximation.  

 Considering the integral term in Equation 23 illustrating the properties outlined for 

matrix exponential approximations, any optimized contours can be used. The one proposed 

by Gallopoulos and used in this work to generate quadrature coefficients is shown below 

[10]. 

 

    20.1309 0.11 049 ,.2500x N ixx      (28) 

 

where ϕ is defined from the real plane to the complex plane. This particular parabola is 

shown to yield a convergence rate of 2.85-N [10]. 

 Using the proposed parabola, the exponential can now be approximated using the 

following rational approximation, 
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where the two coefficients, αk and θk, are defined as 
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The term h in Equation 29 is the discretization length for the quadrature scheme used in 

approximating the contour integral.   

 

4.3 Direct matrix solver using LU factorization 

 Once the partial coefficients are generated for the rational approximation, the 

solution to Equation 19 can be generated with a direct matrix solver. For this study, a matrix 

solver was developed based on a block-LU factorization. A direct solver was chosen over 

an iterative solver due to the ill-conditioned nature of the matrix and to take advantage of 

the well-known structure of the burnup matrix. Of the direct methods, the most well-known 

is LU factorization. Consider the generalized problem, 

 

 ,x bA   (31) 

 

and a factorization of A such that L is a lower triangular matrix and U is an upper triangular 

matrix as follows, 

 

 .x x b A LU   (32) 

 

With the LU factorization available, the problem can now be solved in two steps, 
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U
   (33) 

 

Solving these two matrix problems is extremely efficient due to the convenient structures 

of U and L. The computational overhead of generating L and U can be minimized by 

implementing an efficient factorization algorithm, such as the “block” LU algorithm 

outlined in the MATLAB script in Figure 6. 

 

                function [L,U] = block_LU(A) 
                n = size(A, 1); I = eye(n); O = zeros(n); 
                L = I;  % Identity matrix 
                U = O;  % Matrix of zeros 
                    for k = 1:n 
                        if k == 1 
                            v(k:n) = A(k:n,k); 
                        else 
                            z = L(1:k-1,1:k-1)\A(1:k-1,k); 
                            size(z); 
                            U(1:k-1,k) = z; 
                            v(k:n) = A(k:n,k)-L(k:n,1:k-1)*z; 
                        end 
                        if k < n, L(k+1:n,k) = v(k+1:n)/v(k); end 
                        U(k,k) = v(k); 
                    end 
  
                end 

Figure 6. MATLAB script for the block LU factorization algorithm implemented in 

APIDA. 

 

 The implementation of this algorithm in APIDA differs from the script above as it 

explicitly handles the complex variables introduced by the Chebyshev rational 

approximation and uses optimized matrix-vector operations written specifically for burnup 

matrices. The efficiency of the algorithm in APIDA is remarkable, solving problems 
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tracking over 1000 isotopes on the order of seconds with partial coefficient orders up to 

30. 

 

4.4 Linear chain solver for stable nuclides 

 Burnup problems produce strictly structured and highly sparse matrices. 

Specifically, the resulting transition matrix containing all of the coefficients corresponding 

to the set of ordinary differential equations governing the problem can be generated with 

recursive logic. 

 For the problem presented below, 

 

 '( ) ( ),N t N t A   (34) 

 

where N is the vector of nuclide concentrations and A is the transition matrix holding all 

the relevant coefficients. The elements of A are defined as follows, 
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where, lij is the decay branching ratio of nuclide j to nuclide i, 𝜆j is the disintegration 

constant of nuclide j, fij is the yield fraction of the fission of nuclide j yielding nuclide i, σj
f 

is the fission cross section of nuclide j, σj
nn is the cross section for non-fission neutron 

reactions for nuclide j, nnij is the branching ratio of a non-fission neutron reaction with 
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nuclide j yielding nuclide i, σj is the total cross section of nuclide j, and ϕ is the neutron 

flux.  

 Observing the elements along the diagonal matrix, there are scenarios in which the 

condition number of A could be cumbersome or even infinite in the case of an extremely 

small magnitude along the diagonal or a zero element (i.e. a stable isotope with little to no 

reactions). In this case, the transition matrix needs to be reduced – the row and column 

associated with the isotope in question must be removed from the matrix. This allows the 

transition matrix to be full and amenable to exponentiation. Consequently, the isotopes 

reduced from the transition matrix need to have their final concentrations solved for in a 

different manner. 

 In order to find the final concentrations for the reduced nuclides, a linear chain 

method was utilized in APIDA. For each nuclide not included in the transition matrix, 

solutions provided by the appropriate Bateman equations are applied to each nuclide. For 

cases where there is no irradiation and no external sources of production of nuclide Ni, the 

following equation is used, 
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where 𝜆j is the disintegration constant of nuclide j and N1
0 is the initial concentration of the 

first parent nuclide of the chain. 
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In the case of neutron irradiation and the production of nuclide Ni with precursors, the 

following equation is used, 
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  (37) 

 

where ηi is the chain-linking precursor decay constant of nuclide Ni (including decay from 

other nuclides and reaction transmutation) and μi is the effective decay constant of nuclide 

i (total removal rate including decay and reactions). 

 In both cases described above, the branching ratio calculator in the APIDA code is 

utilized to cycle backwards through each nuclide’s decay scheme and enumerate the linear 

chains for each chain. Expectedly, the resulting set of decay constants and reaction rates 

are strongly associated with the coinciding coefficients in the transition matrix.  
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CHAPTER 5 

API DEVELOPMENT FOR APIDA 

Traditionally, lattice depletion codes have been some transport solution method of 

choice (discrete ordinates, Monte Carlo, collision probability method, etc.) and an 

associated burnup solver specifically designed and tailored for the prescribed neutronics 

code. Historically, these the methods are inextricably linked – specifically, the burnup 

solver cannot be extracted and implemented with another transport solver. Widely used 

lattice depletion codes like HELIOS, SERPENT, CASMO, and PARAGON all use self-

developed depletion modules virtually impossible to utilize without their associated 

transport codes [15, 26]. This presents numerous hurdles, chiefly the inability to 

independently validate the burnup solver and the impracticality of attempting to integrate 

the module with a novel transport solution method. APIDA presents a significant step in 

providing a universal burnup solver capable of integration with any code via a simple 

Application Programming Interface (API). 

 

5.1 Communication between transport solver and burnup module 

The basic procedure of any lattice depletion method is first to determine the 

physical characteristics (flux) at one discrete time with a transport solver, and then to use 

that information to calculate the generation, destruction, and change in nuclide 

concentrations over one or more prescribed time steps with a burnup solver. Once the new 

nuclide concentrations in the fuel have been calculated, the information is relayed back to 

the transport solver to calculate the new physical characteristics (flux, eigenvalue, etc.). 
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 Efficient iteration between the transport and burnup modules in a lattice depletion 

code is key to minimizing its computation time. Historically, these modules were coupled 

using text files. In essence, the two codes were treated as “black boxes” in relation to one 

another. Figure 7 illustrates a typical iterative cycle between a transport solver and a burnup 

module. 

 

Figure 7. Flowchart of communication between transport solver and burnup module 

using text inputs. 

 

 While this method has allowed for relatively seamless independent code 

development, it presents some serious problems in modern implementations. The most 

prominent issue this setup presents is difficulty with large-scale embedding. Cluster 

computing has become an integral part of reactor modeling, especially in regards to multi-

physics applications. The need for high performance computing has forced developers to 

abandon the model in Figure 7, since the “black box” model requires writing an input to 
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the hard disk. The preferred option in coupling two codes is to do so “in-memory” with the 

use of an Application Programming Interface (API). Rather than generating text inputs to 

be read by both of the code modules, an API allows the “parent” program to call upon the 

secondary code module in-memory without the need to stop and generate a text file or 

touch the hard disk.  

 

5.2 Object-oriented framework in APIDA 

APIDA is a code written in the C++ programming language and contains numerous 

features for users interested in all aspects of burnup calculations. All the features are 

housed within classes, each with their own API suited to the particular information being 

retrieved.  

 The key to the portability and utility of APIDA in terms of seamless integration 

with other codes is the object-oriented framework of the API. The data pertinent to the 

burnup problem is stored in exposed data containers where the user only needs to provide 

the data necessary to run a calculation. Programming these structures in C++ allows for 

these objects to be instantiated simultaneously in a massively parallel environment 

(multiple processors over multiple nodes). The C++ programming language allows for 

memory to be allocated on the heap, making it possible to instantiate multiple instances 

without threatening the integrity of the data with overwrites. 

 Discussed in the next section, the APIDA code is separated into multiple objects 

representing the important variables in a burnup calculation. The data for each important 

variable is encapsulated within different objects available to the user with “get” and “set” 



  

 40 

functions. Each object, or “class,” contains multiple functions publicly available to the 

user, allowing for the manipulation of private data.  

 

5.3 Classes and features in APIDA 

 As mentioned in the previous section, the APIDA framework is broken down into 

multiple classes, each responsible for handling the requisite steps for a burnup calculation. 

The main classes inherently instantiated for a burnup calculation are the following: 

 ‘apida.h’ – container for the front-end user API. 

 ‘library_builder.h’ – container for library data (decay and fission yields). 

 ‘tran_mat.h’ – container for transition matrix. 

 ‘depletion.h’ – container for solver methods for burnup problems. 

 ‘output_proc.h’ – container for output processing methods.  

 Each class contains a suite of methods used to handle the operations required by 

each step of a burnup calculation. The ‘apida’ class serves as the front-end interface, 

allowing user to run a calculation with only the data absolutely required to complete a 

calculation – the list of nuclides being tracked, their corresponding initial concentrations, 

the reaction rates of each type by nuclide, and the time step. If desired, users can access 

burnup data explicitly (half-lifes, fission yields, decay modes, etc.) via the methods 

available in each class. Each class, along with their corresponding methods, are described 

in Appendix A. 
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5.4 Implementation of APIDA 

 The purpose of APIDA is to provide a simple and straightforward way to 

incorporate a burnup solver using the C++ interface.  Future work for APIDA includes 

incorporating compatibility with more programming languages (C, FORTRAN, etc.) using 

“wrappers” to make the code interface amenable to other languages.  

 The implementation of an API is non-trivial for users inexperienced in coupling 

codes – consequently, a simple example of the use of APIDA to solve a burnup problem is 

shown below in Figure 8. Benchmark problem #6 (described in Chapter 6) follows the 

fission and capture of 238U to produce 135Xe and several isotopes of Pu. In order to run the 

calculation, the steps are as follows: 

1. Initialize the instance of the ‘apida’ class. 

2. Provide a vector containing the ZAID of the isotopes to be tracked. 

3. Provide a vector containing the initial concentrations of the isotopes to be tracked. 

4. Provide a vector with the time steps (cumulative) for the calculation. 

5. Provide the reaction rates for each isotope (description given in comments of code 

example). 

6. Initialize the library to gather data for the calculation. 

7. Set the initial concentrations, time steps, and reaction rates. 

8. Run the calculation. 

9. Retrieve the final concentrations for each nuclide at each time step. 

 APIDA contains numerous other features to allow for more robust calculations or 

to access specific data for other applications. A description of publicly available functions 

in certain APIDA classes is available in Appendix A. 
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#include <vector> 
#include "apida/apida.h" 
 

using namespace std; 
 

int main(int argc, char** argv) { 
 

    // initialize apida class 
    apida* case1 = new apida; 
     

    vector<int> nuclides; // nuclides 
    vector<double> conc_i; // initial concentrations 
     

    nuclides.push_back(922380); // U238 
    nuclides.push_back(922390); // U239 
    nuclides.push_back(932390); // Np239 
    nuclides.push_back(942390); // Pu239 
    nuclides.push_back(942400); // Pu240 
    nuclides.push_back(531350); // I135 
    nuclides.push_back(541350); // Xe135 
    nuclides.push_back(551350); // Cs135 
       

    conc_i.push_back(1E12); // U238 
    conc_i.push_back(0); // U239 
    conc_i.push_back(0); // Np239 
    conc_i.push_back(0); // Pu239 
    conc_i.push_back(0); // Pu240 
    conc_i.push_back(0); // I135 
    conc_i.push_back(0); // Xe135 
    conc_i.push_back(0); // Cs135 
     

    vector<double> time; // time steps 
        

    time.push_back(0); 

    time.push_back(1E6); 

     

    vector< vector<double> > rxns; 
    vector<double> row_hold(10, 0.0); // 10 types of rxns 
//   /* column neutron-nuclide interactions (n_i to n_j) 

//    * 1. (n,gamma) (+000010) 

//    * 2. (n,2n)    (-000010) 

//    * 3. (n,3n)    (-000020) 

//    * 4. (n,4n)    (-000030) 

//    * 5. (n,p)     (-010000) 

//    * 6. (n,d)     (-010010) 

//    * 7. (n,t)     (-010020) 

//    * 8. (n,He-3)  (-020020) 

//    * 9. (n,alpha) (-020030) 

//    * 10. Fission 

//    */  

Figure 8. Example input using APIDA to solve Benchmark Problem #6. 
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    // -------------------------------------------------------------- 
    // START OF API FUNCTIONALITY 

    // initialize the library and read in decay + fission yield data 

    case1->initialize_library(nuclides, conc_i, Avg_FE); 

 

    // set the initial concentrations 
    case1->set_initial_concentrations(conc_i); 

     

    // set times 
    case1->set_times(time); 

     

    // set reaction rates 
    case1->set_rxn_rates(rxns); 

 

    // run the burnup calculation 
    case1->run(); 

       

    vector< vector<double> > final_conc; 
     

    // retrieve the new concentrations 
    case1->get_concentrations(final_conc); 

 

    // ----> send new concentrations to transport code   
     

    return 0; 
} 

Figure 8 continued 

 

5.5 Coupling APIDA and COMET 

 As highlighted in Chapter 1, the motivation for this work was to expand the utility 

and capability of the COMET method. Extensively validated to provide accurate and 

efficient numerical transport solutions to whole core reactor problems, extending the 

capabilities of COMET to include depletion at the assembly level (and eventually the whole 

core level) would provide an invaluable resource in terms of reactor design and fuel cycle 

analysis. 
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 Section 5.1 includes a discussion of the general communication between a transport 

solver and a burnup module, but this section will expound on the specific information 

needed in a COMET calculation to perform a lattice depletion burnup step.  

 The COMET method takes advantage of the natural structure of a modern nuclear 

reactor core – a lattice of square assemblies organized into some Cartesian geometry. The 

basis of COMET is the generation of incident flux response function coefficients for unique 

coarse meshes – fuel assemblies are generally modeled for each coarse mesh. For each 

coarse mesh, a fixed source calculation (with the fission source scaled by 1/keff) is 

performed. The boundary condition is an incident neutron flux with a phase space 

distribution that is the tensor product of a delta function in energy and Legendre 

polynomials in space (x, y) and direction (azimuthal and polar angles) on the mesh 

boundary. Historically, the energy variable has been treated discretely similar to 

multigroup theory but recent work has been done to expand the energy treatment into the 

continuous regime.  

 Since the boundary conditions are not known a priori, vacuum boundaries in the 

fixed source calculations are used to pre-compute the response function expansion 

coefficient library needed to perform an iterative deterministic sweep to find the core 

solution (e.g., keff and the pin fission density distribution in the entire core) for an arbitrary 

arrangement of the unique coarse meshes in the core. For fuel coarse meshes, the response 

functions depend on the core eigenvalue (keff) which is not known a priori. As a result, the 

response library is generated for a grid of keff. Recent work has been implemented in 

COMET using a new method which does not require interpolation of the library as well 

[33]. The truncation of Legendre expansions and the interpolation in keff are the only 
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approximations in COMET. For a more thorough description of the coarse mesh transport 

method consult the work done by Zhang and Rahnema [32]. 

 Traditionally, COMET has been employed for whole core problems with the 

assemblies acting as the coarse meshes. For the purposes of this study, pin cells were 

chosen for the coarse meshes in order to conduct assembly-level lattice depletion problems. 

Using a smaller volume for a coarse mesh introduces difficulties in terms of statistics when 

using stochastic methods to generate the response functions. Recent work done by Hon to 

develop a Monte Carlo based response function generator shows promise in terms of 

quickly pre-computing response functions [13]. The code developed by Hon, a Stochastic 

Particle Response Calculator (SPaRC) is another step being taken to make COMET 

amenable to coupling with APIDA.  

 In order to provide APIDA the necessary reaction rates, specifically the neutron-

induced reactions in Table 3, response functions need to be generated for each type of 

reaction. Once the deterministic sweep is performed to generate the final solution, the 

currents for each coarse mesh and each surface are used with the pre-computed reaction-

dependent response functions to generate the reaction rates. Note that these reaction rates 

need to be given for each isotope; consequently, response functions must be generated and 

tracked for each isotope as well.  

 Once these reaction rates are given, they are scaled according to the power and used 

by APIDA to generate new material concentrations. These new material concentrations are 

then used to generate new response functions and the calculation can be looped until the 

final burnup step. A flowchart outlining the general communication and order of operations 

in a COMET-based lattice depletion calculation is shown in Figure 9.  
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Figure 9. Flowchart of COMET-burnup coupling.  
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CHAPTER 6 

DESCRIPTION OF BENCHMARK PROBLEMS 

 In order to validate the methods in APIDA, the burnup solver was benchmarked 

against several decay chains solved using analytical methods. Once verified for explicit 

decay chains, APIDA was then applied to lattice depletion problems and benchmarked for 

a pin cell case.  

 

6.1 Analytical benchmarks with Mathematica 

 Initial benchmarking of APIDA was done with analytical solutions generated in the 

Wolfram Alpha tool Mathematica [30]. Numerous decay chains were chosen, with and 

without reactions and fission yields, over a wide range of decay probabilities. The problems 

were chosen with the purpose of challenging the methods in APIDA to ensure accuracy of 

solutions for any given set of isotopes. The proceeding tables and figures describe the 

burnup problems model by APIDA and validated in Mathematica. The corresponding 

results are in Chapter 7. 

 Benchmark problem #1 is a simple decay scheme – 238U alpha decays into 234Th, 

which then itself decays. While lacking complexity, this decay scheme tests the methods 

in APIDA due to the wide range of eigenvalues in the transition matrix. 
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Figure 10. Description of Benchmark #1. 

 Benchmark problem #2 is another fairly simple decay scheme, but now introduces 

two types of decay – alpha decay and beta decay.  

 

Figure 11. Description of Benchmark #2. 
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Figure 12. Description of Benchmark #3. 

 

 Benchmark problem #4 follows the production of 237Np via 235U. This problem 

includes the decay of each isotope, but now incorporates reaction rates – specifically the 

(n,γ) reactions involved in producing 237Np. This method tests the reaction rate branching 

ratio calculator in APIDA. 

 

Figure 13. Description of Benchmark #4. 
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 Benchmark problem #5 is a complex actinide chain following the decay and 

transmutation of 238U. This problem includes a wide range of decay probabilities, reaction 

rates, and a closed decay loop from 244Cm to 240Pu. 

 

Figure 14. Description of Benchmark #5. 

 

 The final analytical benchmark problem follows the production of a fission product 

important to reactivity – 135Xe. This problem tests the fission yield calculator in the APIDA 

code. 
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Figure 15. Description of Benchmark #6. 

 

6.2 Lattice depletion pin cell benchmark 

 As a first order application to test the methods in APIDA, a single fuel pin cell was 

modeled and depleted. Two fuel pin cells were modeled – one without burnable absorber 

and one with gadolinium integrated into the fuel. The parameters for each pin cell were 

based on the AREVA European Pressurized Reactor design [1, 2]. It is a standard 
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pressurized water reactor (PWR) fuel pin design – a cylindrical fuel pin surrounded by 

zirconium-based cladding with a small gap, encapsulated in a moderator (water) with 

boron. The fuel pin design is illustrated in Figure 16 and the geometric parameters for the 

pin cell are shown in Table 4. 

 

Figure 16. Illustration of fuel pin cell depletion problem. 
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Table 4. Geometric parameters for fuel pin cell. 

Pin Pitch 1.259840 cm 

Cladding Outer 

Radius 
0.474980 cm 

Cladding Inner 

Radius 
0.417957 cm 

Fuel Pellet Radius 0.409575 cm 

Boron 

Concentration 
1000 ppm 

Moderator Density 0.7 g/cm3 

Fuel Density 10.4 g/cm3 

Fuel Temperature 900 K 

Moderator 

Temperature 
600 K 

 

Two types of fuel pins were modeled – one with UO2 enriched to 3.5wt% and another with 

integrated fuel burnable absorber in the form of Gd2O3. The fuel parameters for each pin 

cell problem are shown in Tables 5 and 6. 

Table 5. Fuel parameters for UO2 pin cell. 

Fuel Composition UO2 

Fuel Enrichment 3.5 wt% 235U 

Fuel Density 10.4 g/cm3 

Cladding 

Composition 
Natural Zr 

Cladding Density 6.514 g/cm3 

Moderator Density 0.7 g/cm3 

Soluble Boron Concentration 1000 ppm 

 



  

 54 

Table 6. Fuel parameters for pin cell with gadolinium. 

Fuel Composition 
UO2 + 

Gd2O3 

Fuel Enrichment 
2.27 wt% 

235U 

Gad Enrichment 
8.0 wt% 

Gd2O3 

Fuel Density 10.4 g/cm3 

Cladding 

Composition 
Natural Zr 

Cladding Density 6.514 g/cm3 

Moderator Density 0.7 g/cm3 

Soluble Boron Concentration 1000 ppm 

 

In regards to isotopics, a sensitivity analysis was conducted using the fuel pin cell 

problem to determine the proper number of nuclides to track during a depletion calculation 

in order effectively capture the physics of transmutation in a reactor core. By default, the 

SERPENT code tracks 1094 isotopes regardless of how many nuclides the user specifies 

in the input file. While all encompassing, this may not be necessary for all calculations and 

could potentially lead to numerical instability in both depletion and transport calculations 

if material concentrations are too low.  

 For the sensitivity analysis, a ‘first-step’ investigation was conducted to see how 

the number of isotopes being tracked affected the change in eigenvalue over one burnup 

step, in this case 250 MWD/MTU. The SERPENT calculation was run with the codes built-

in burnup solver to produce a reference solution for the first burnup step.  Then the transport 

solution from the initial steady state calculation in SERPENT was used to run a burnup 

calculation for the first step using APIDA. The APIDA calculation was run several times, 
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each with a different number of isotopes ranging from 250 to 1049. Once a reasonable 

number of isotopes was determined, APIDA was then coupled with the transport solver in 

SERPENT to run fuel pin cell lattice depletion calculations over several time steps.  

 In addition to the results generated by SERPENT and the results generated by 

coupling APIDA to serpent, HELIOS was also used to produce pin cell depletion results 

for further comparison. HELIOS is an extensively validated lattice depletion code utilizing 

method of characteristics (MOC) and collision probability (CPM) solvers in 2D general 

geometry for transport solutions and a linearized chain method for burnup. An illustration 

of the fuel pin cell model in HELIOS is shown in Figure 17. 
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Figure 17. Geometry of fuel pin cell in HELIOS. 
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CHAPTER 7 

RESULTS 

 

7.1 Analytical benchmarks with Mathematica 

 The results from the analytical benchmark problem described in Chapter 6 validated 

the APIDA method in terms of solving well-defined decay and transmutation schemes. 

Tables 7, 8, and 9 show the percent relative error in the final concentration generated by 

APIDA for each benchmark. The mean weighted error is defined below. 
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Table 7. APIDA results compared to Mathematica solutions for benchmarks #1 and #2. 

 

Benchmark #1 Benchmark #2 

 Relative Error (%)  Relative Error (%) 

U-238 0.0058 Np-237 8.02E-13 

Th-234 0.0034 Pa-233 5.76E-13 

 U-234 3.54E-07 

 

The results from Benchmark #1 exhibit the largest errors for material concentrations of all 

the benchmarks when compared to the analytical solution produced in Mathematica, but 

they are still acceptable by a significant margin. The errors produced in benchmark #1 are 

inherent in all numerical solvers, as each benchmark was also validated using the intrinsic 
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matrix exponential function in MATLAB. The mean weighted error for Benchmark #1 is 

5.84E-3% and the mean weighted error for Benchmark #2 is 3.38E-9%. 

 

Table 8. APIDA results compared to Mathematica solutions for benchmarks #2 and #3. 

 

Benchmark #3 Benchmark #4 

Relative Error (%) Relative Error (%) 

Pb-211 9.91E-12 U-235 5.84E-05 

Bi-211 7.31E-07 U-236 3.12E-05 

Tl-207 2.76E-01 U-237 6.37E-08 

Pb-207 8.92E-03 Np-237 1.08E-08 

 

For benchmarks #3 and #4, the relative percent errors remain extremely low and more than 

acceptable. The linear chain solver for stable isotopes in APIDA is also shown to be 

effective, solving for the final concentration of the stable nuclide Pb-207. The mean 

weighted error for Benchmark #3 is 1.92E-3% and the mean weighted error for Benchmark 

#4 is 1.18E-7%. 
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Table 9. APIDA results compared to Mathematica solutions for benchmarks #5 and #6. 

 

Benchmark #5 Benchmark #6 

Relative Error (%) Relative Error (%) 

U-238 5.12E-06 U-238 1.27E-04 

U-239 5.21E-06 U-239 1.27E-04 

Np-239 2.52E-09 Np-239 2.38E-09 

Pu-239 5.96E-09 Pu-239 1.34E-08 

Pu-240 1.28E-08 Pu-240 1.41E-08 

Pu-241 3.21E-09 I-135 1.48E-07 

Pu-242 4.50E-06 Xe-135 2.19E-10 

Pu-243 1.54E-05 Cs-135 3.59E-11 

Am241 5.59E-06   

Am-243 2.91E-06   

Am-244 9.76E-07   

Cm-244 5.01E-07   

 

The relative percent errors remain remarkably low for benchmark problems #5 and #6, 

validating the capabilities in APIDA to incorporate reaction rates and to properly apply 

fission yield fractions. In benchmark #6, the production of Xe-135 is of particular 

importance to reactor operations as it is a strong neutron absorber. The mean weighted 

error for Benchmark #5 is 4.65E-8% and the mean weighted error for Benchmark #6 is 

8.27E-9%. 
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 In order to validate the capability of APIDA to solve for nuclide concentrations 

over multiple time steps, benchmark problems #4 and #5 were solved over a number of 

time intervals. Plots showing the APIDA solutions imposed on the analytical solutions are 

shown in Figures 18 and 19. 

 

 

Figure 18. APIDA solution points plotted over the analytical solution to benchmark #4. 

 

 

Figure 19. APIDA solution points plotted over the analytical solution to benchmark #5. 
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7.2 Isotopic sensitivity analysis with a fuel pin cell 

 As discussed in Chapter 6, the number of nuclides tracked in a problem is of 

considerable interest given the effect of problem size on both memory and solution 

accuracy. To provide some perspective on the implications of increasing the number of 

nuclides tracked in a problem, the sparsity pattern of burnup matrix produced when tracked 

274 isotopes is shown in Figure 20 and the coinciding sparsity pattern from tracking 1049 

isotopes is shown in Figure 21.  

 

Figure 20. Sparsity pattern of the burnup matrix when tracking 274 isotopes. 
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Figure 21. Sparsity pattern of the burnup matrix when tracking 1049 isotopes. 

 

 The fuel pin cell described in Chapter 6 was modeled in SERPENT and burned for 

one time step – 250 MWD/MTU. The eigenvalue produced by SERPENT using their 

burnup solver produced an eigenvalue of 1.20613 with a standard deviation (S.D.) of 27 

pcm. The transport solution, namely the reaction rates, produced by the steady state 

calculation, in SERPENT was then used in APIDA to solve for the change in nuclide 

concentration. Calculations were run using a different number of isotopes to observe the 
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effect on the eigenvalue once the new concentrations were applied. The results comparing 

the SERPENT eigenvalue to the eigenvalues produced using the APIDA material 

concentrations for a varying number of isotopes are shown in Tables 10 and 11. A listing 

of the specific isotopes used for each calculation is available in Appendix B. SERPENT 

transport calculations were run 15000 histories per cycle, 1000 total cycles with 200 cycles 

skipped. 

 

Table 10. Comparison of APIDA eigenvalues to the SERPENT eigenvalue for one 

burnup step tracking 274 nuclides to 665 nuclides. 

 

Number of  

isotopes k-eff S.D. 

Diff. from  

SERPENT (pcm) 

274 1.234 0.00026 -2781 

298 1.23312 0.00027 -2693 

322 1.23281 0.00026 -2662 

347 1.22936 0.00026 -2317 

372 1.22862 0.00027 -2243 

397 1.22822 0.00026 -2203 

422 1.21075 0.00026 -456 

447 1.21004 0.00027 -385 

471 1.21033 0.00027 -414 

496 1.20777 0.00027 -158 

519 1.20715 0.00027 -96 

544 1.20789 0.00026 -170 

569 1.20794 0.00027 -175 

594 1.20774 0.00027 -155 

619 1.20738 0.00027 -119 

644 1.20605 0.00027 14 

665 1.20655 0.00026 -36 
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Table 11. Comparison of APIDA eigenvalues to the SERPENT eigenvalue for one 

burnup step tracking 687 nuclides to 1049 nuclides. 

 

Number of  

isotopes k-eff S.D. 

Diff. from  

SERPENT (pcm) 

687 1.20604 0.00026 15 

713 1.20608 0.00026 11 

738 1.20614 0.00027 5 

762 1.20615 0.00027 4 

788 1.20612 0.00027 7 

813 1.20597 0.00028 22 

836 1.20552 0.00026 67 

861 1.20571 0.00027 48 

885 1.20568 0.00029 51 

909 1.20668 0.00029 -49 

931 1.20591 0.00029 28 

952 1.20576 0.00029 43 

972 1.20567 0.00027 52 

991 1.20584 0.00029 35 

1013 1.20596 0.00026 23 

1036 1.20597 0.00026 22 

1049 1.20599 0.00027 20 

 

 As expected, increasing the number of isotopes yields a solution closer the 

reference calculation provided by SERPENT, which tracks over 1000 isotopes for each 

calculation. The threshold for the minimum number of isotopes appears to begin around 

644 nuclides. The grouping of the isotopes also plays a considerable part, as the isotopes 

important to fully realizing the transmutation pathways for important nuclides needs to be 

included. This phenomenon is illustrated for in Figure 22. After approximately 600 

isotopes, the oscillation of difference between the APIDA solution and the SERPENT 

solution is within the standard deviation of the calculation. 
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Figure 22. Convergence of APIDA generated eigenvalues in SERPENT to the reference 

solution given different numbers of isotopes. 

 

 This process was repeated for the fuel pin with gadolinium described in Chapter 6. 

The fuel pin cell was modeled in SERPENT and burned for one time-step – 250 

MWD/MTU. The eigenvalue produced by SERPENT using their burnup solver produced 

an eigenvalue of 0.212881 with a standard deviation (S.D.) of 86 pcm. The results 

comparing the SERPENT eigenvalue to the eigenvalues produced using the APIDA 

material concentrations for a varying number of isotopes are shown in Tables 12 and 13. 

A listing of the specific isotopes used for each calculation is available in Appendix B. 

SERPENT transport calculations were run 15000 histories per cycle, 1000 total cycles with 

200 cycles skipped. 
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 Table 12. Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin 

eigenvalue for one burnup step tracking 274 nuclides to 665 nuclides. 

 

Number of  

isotopes k-eff S.D. 

Diff. from  

SERPENT (pcm) 

274 0.212909 0.00086 -2.8 

298 0.212744 0.00086 13.7 

322 0.213017 0.00086 -13.6 

347 0.213021 0.00089 -14 

372 0.212901 0.00087 -2 

397 0.213046 0.00089 -16.5 

422 0.21247 0.00086 41.1 

447 0.212942 0.00090 -6.1 

471 0.21315 0.00088 -26.9 

496 0.213171 0.00083 -29 

519 0.213054 0.00089 -17.3 

544 0.212823 0.00090 5.8 

569 0.212944 0.00087 -6.3 

594 0.212567 0.00085 31.4 

619 0.213158 0.00087 -27.7 

644 0.21276 0.00090 12.1 

665 0.212723 0.00090 15.8 
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Table 13. Comparison of APIDA eigenvalues to the SERPENT gadded fuel pin 

eigenvalue for one burnup step tracking 687 nuclides to 1049 nuclides. 

 

Number of 

isotopes k-eff S.D. 

Diff. from 

SERPENT (pcm) 

687 0.212795 0.00083 8.6 

713 0.212818 0.00086 6.3 

738 0.213179 0.00087 -29.8 

762 0.212368 0.00085 51.3 

788 0.212982 0.00085 -10.1 

813 0.212633 0.00085 24.8 

836 0.21298 0.00086 -9.9 

861 0.212771 0.00085 11 

885 0.213166 0.00085 -28.5 

909 0.212603 0.00087 27.8 

931 0.212986 0.00085 -10.5 

952 0.21308 0.00089 -19.9 

972 0.212924 0.00086 -4.3 

991 0.213116 0.00088 -23.5 

1013 0.212672 0.00089 20.9 

1036 0.212924 0.00085 -4.3 

1049 0.213096 0.00081 -21.5 

 

 Unlike the fuel pin modeled with no gadolinium, the eigenvalue does not vary 

significantly given the number of isotopes tracked over one time-step in the gadded fuel 

pin. The low eigenvalue and the slightly higher standard deviation does factor into the 

analysis, but the depressed amount of fissions and reactions in the isotopes important to 

criticality likely decreases the dependence on the number of isotopes for one time-step. 

The behavior of the eigenvalue is plotted in Figure 23. 
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Figure 23. Convergence of APIDA generated eigenvalues in SERPENT to the reference 

solution of the gadded fuel pin given different numbers of isotopes. 

 

 Figure 24 does not show the same asymptotic behavior as Figure 23, and the 

oscillations around 0 are statistical and well within the standard deviations reported by 

SERPENT. This likely results from the eigenvalue of the gadded fuel pin staying relatively 

flat over the first few burnup steps. While somewhat illuminating, these results are not 

entirely conclusive and further work should be performed with more particle histories to 

provide more insight. 
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7.3 Multi-step pin cell depletion calculation  

 The UO2 fuel pin cell used in the sensitivity study was also used in the multi-step 

depletion calculation to compare APIDA to SERPENT and HELIOS. Results were 

generated with both SERPENT and HELIOS up to a total burnup of 10,000 MWD/MTU 

at intervals of 500 MWD/MTU, with the first two steps at 250 MWD/MTU for higher 

fidelity. Two sets of SERPENT results are shown. The transport solutions from SERPENT 

were used at each steps by APIDA to generate the new material concentrations for the next 

step. The power was fixed at 34 W/g and calculations were run without xenon equilibrium 

and with predictor-corrector turned off. The results using SERPENT were generated 

running 15000 histories per cycle with 1000 total cycles and 200 inactive cycles. Figure 24 

shows the change in the eigenvalue (k-effective) over these burnup steps using SERPENT, 

HELIOS, and APIDA, with APIDA results generated with 738 isotopes tracked and 1049 

isotopes tracked. 
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Figure 24. Eigenvalue (k-eff) as a function of burnup resulting from SERPENT, HELIOS, 

and APIDA calculations. 

 

 The depletion curve generated by APIDA shows excellent agreement with 

SERPENT, especially when tracking 1049 isotopes. The curve generated when tracking 

738 isotope seems to diverge as the fuel pin is burned more, indicating added importance 

to some of the less dominant actinides in terms of pathways of transmutation. One 

noticeable difference between the burnup methods used in SERPENT and APIDA is the 

imposed limit used by SERPENT for fission product yields. SERPENT cuts off the 

tracking of fission products if the fission yield fraction is 1x10-6 or less, a variable which 

could have significant effects in terms of pathways of transmutation and the production of 

important fission products. The statistical nature of Monte Carlo calculations, especially 
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when it’s not clear if the source has converged to the correct solution, also contributes to 

some of the differences in the eigenvalue. 

 In addition to the core eigenvalue, the atom density of certain isotopes is of 

considerable interest in fuel cycle analysis. One of the most important fission products 

related to criticality analysis is 135Xe as it acts as a strong neutron absorber, depressing the 

fission density in the fuel pin. Figure 25 shows the production of 135Xe as calculated by 

SERPENT and APIDA, as well as the relative difference over several burnup steps. 

 

 

Figure 25. Production of 135Xe as a function of burnup resulting from SERPENT and 

APIDA calculations. 
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Another factor in criticality is the enrichment of 235U in UO2 fuel. Figure 26 shows the 

change in 235U atomic density in the fuel pin cell over several burnup steps. The relative 

difference between SERPENT and APIDA oscillates around zero, bounded by 

approximately 0.05%. 

 

Figure 26. Change in 235U as a function of burnup resulting from SERPENT and APIDA 

calculations. 

 

Finally, a parameter with significance to nuclear nonproliferation and national security is 

the ratio of 240Pu to 239Pu. This ratio is key in determining the viability of plutonium as a 

special nuclear material for weapons production. Figure 27 shows the ratio of 240Pu to 239Pu 

as a function of burnup. 
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Figure 27. Ratio of 240Pu to 239Pu as a function of burnup resulting from SERPENT and 

APIDA calculations. 

 

Initially divergent, the relative difference starts to approach zero as the fuel pin is burned 

more. This is a phenomenon which should be investigated further, as this ratio of interest 

is particularly important during the early stages of burnup when the amount of 239Pu is still 

dominant and makes the plutonium more amenable for weapons production. The culprit in 

this analysis may be the extremely low atomic density at the first time step (on the order of 

1x10-10). The relative agreement between APIDA and SERPENT is encouraging, but more 

work should be done to benchmark APIDA with transport codes to ensure proper 

communication between modules. 
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CHAPTER 8 

 

CONCLUSIONS 

In this dissertation, a robust, powerful, and portable burnup tool was developed 

with the capability to easily couple with any transport solver in memory to efficiently 

perform lattice depletion calculations. The new code, APIDA, employs a novel hybrid 

burnup solver and presents completely new code module capable of seamless integration 

within independently developed transport solvers.  

The APIDA code was validated with Mathematica to benchmark the burnup tool 

and its ability to calculate material concentrations after multiple time steps. The solutions 

produced by the APIDA code resulted in a relative percent error of well below 1% for all 

nuclides, even with the most numerically taxing problem descriptions.  

 The APIDA framework was built from the ground up as an object-oriented API in 

the C++ language and the pertinent public classes were described in the manuscript. A 

simple example implementation was provided to show the ease of use in terms of 

integration with other codes in memory.  

 A sensitivity analysis was conducted to investigate the effect on the core eigenvalue 

of number of nuclides in a burnup calculation. Using a wide range of isotopes, the APIDA 

code results indicate the effect of tracking more the about 600 isotopes is not significant 

for the EPR fuel pin cell problem described in this study. For the fuel pin with integrated 

burnable absorber, the number of isotopes being tracked had little to no impact in terms of 

eigenvalue, but further work can be done with a different concentration of gadolinium.  
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 The APIDA code was also benchmarked with the SERPENT code to track the 

change in eigenvalue of a pin cell over multiple time steps. The results generated by APIDA 

showed excellent agreement with the SERPENT reference solution and maintained high 

accuracy in terms of tracking the change in nuclide concentration over time. APIDA was 

shown to provide accurate solutions for some of the more important parameters related to 

criticality and nuclear nonproliferation, namely the buildup of 135Xe and the ratio of 240Pu 

to 239Pu. 

 Overall, the capabilities of APIDA were shown to be both powerful and easy to 

implement. Future work for APIDA includes the implementation of a more general library 

reader class to handle raw ENDF files. The next step in elevating COMET as a multi-

physics code is to refactor the framework to make it more conducive for interfacing with 

APIDA and other modules in the future. The methods in APIDA can also be expanded to 

handle some of the lesser occurring but still present neutron-induced reactions not 

considered in this study. The APIDA code should also be integrated with a massively 

parallel transport code to validate the thread-safe nature of the API framework in APIDA. 
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APPENDIX A 

CLASSES AND FUNCTIONS IN APIDA 

Tables A.1 through A.4 list and describe the public functions available to the user in the 

APIDA code. 

Table A1. Functions and descriptions of the ‘apida’ class. 

Class: apida 

Function Type Description 

apida(); void Constructor to initialize the ‘apida’ 

class. 

~apida(); virtual Destructor to kill instance of class. 

initialize_library(vector<int>,  

vector<double>, vector<double>); 

void Function to initialize library class and 

read in decay data. 

set_initial_concentrations(vector<double>); void Function to set initial concentration 

vector. 

set_new_concentrations(vector<double>); void Function to set new concentrations 

after a time step. 

set_times(vector<double>); void Function to set time steps. 

set_rxn_rates(vector< vector<double>>); void 2-d vector holding reaction rates for 

each isotope. 

get_concentrations( 

vector< vector<double>>); 

void Function to retrieve all concentrations 

after each time step. 

get_concentrations_at_step( 

vector<double>); 

void Function to retrieve concentrations at a 

specific time step. 

run(); void Function to run burnup calculation. 
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Table A2. Functions and descriptions of the ‘library_builder’ class. 

Class: library_builder 

Function Type Description 

Library_builder(); void Constructor to initialize class. 

~Library_builder(); virtual Destructor to kill instance of class. 

get_lib_type(int); int Function to get type of library for an isotope. 

get_hl_units(int); int Function to get half-life unites for an isotope. 

get_half_life(int); double Function to get half-life of an isotope. 

get_beta_1(int); 

double Function to get probability an isotope decays 

via beta emission. 

get_beta_2(int); 

double Function to get probability an isotope decays 

via beta emission to a metastable state. 

get_posit_1(int); 

double Function to get probability an isotope decays 

via positron emission. 

get_posit_2(int); 

double Function to get probability an isotope decays 

via positron emission to a metastable state. 

get_alpha(int); 

double Function to get probability an isotope decays 

via alpha particle emission. 

get_isomer(int); 

double Function to get probability an isotope decays 

via isomeric transition. 

get_spont_fiss(int); 

double Function to get probability an isotope decays 

via spontaneous fission. 

get_delayed(int); 

double Function to get probability an isotope decays 

via delayed neutron emission. 

get_decay_heat(int); double Function to get decay heat. 
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Table A2 (continued) 

get_recover_gx(int); 

double Function to get fraction of recoverable energy 

per disintegration from gamma and x-rays. 

get_nat_abund(int); 

double Function to get atom percent abundance of 

naturally occurring isotopes. 

get_water_rcg(int); 

double Function to get radioactivity concentration in 

water. 

get_air_rcg(int); 

double Function to get radioactivity concentration in 

air. 

get_beta_double(int); 

double Function to get probability an isotope decays 

via double beta emission. 

get_neutron_decay(int); 

double Function to get probability an isotope decays 

via neutron emission. 

get_beta_alpha(int); 

double Function to get probability an isotope decays 

via beta and alpha emission. 

get_fiss_array(int); 

double Function to get isotope from fissionable 

isotope array. 

get_yield_frac(int,int); 

double Function to get fission yield fraction from one 

isotope to a specific fission product. 

interpolate_yields(vector<double>, 

int,); 

double Function to interpolate and get the fission 

yield fraction from one isotope to a specific 

product given multiple yield energies. 
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Table A3. Functions and descriptions of the ‘tran_mat’ class. 

Class: tran_mat 

Function Type Description 

tran_mat(); void Constructor to initialize class. 

~tran_mat() virtual Destructor to kill instance of class. 

construct_transition_matrix(Library_builder*, 

vector<vector<double>>,vector<int>,bool); 

void Function to construct transition 

matrix for burnup calculation. 

convert_to_lambda(double,int); 

double Function to convert  half-life in 

seconds to decay probability (1/s). 

branching_ratio_calculator(Library_builder*, 

int,int,int); 

double Function to calculate branching 

ratio of one isotope decaying to 

another. 

neutron_rxn_calc(Library_builder*,int,int,int&); 

bool Function to calculate if an isotope 

is produced via a neutron induced 

reaction. 

fission_yield_calculator(Library_builder*, 

int,int,int,int); 

double Function to calculate the fission 

yield fraction of an isotope. 

print_transition_matrix(vector<int>, 

vector<double>,vector<double>,constchar*); 

void Function to print the transition 

matrix in MATLAB sparse matrix 

format. 

reduce_transition_matrix(vector<int>,bool, 

vector<double>&,vector<double>&, 

vector<double>&,bool&); 

void Function to reduce the transition 

matrix and remove isotopes 

causing a zero diagonal element. 
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Table A4. Functions and descriptions of the ‘depletion’ class. 

Class: depletion 

Function Type Description 

depletion(); void Constructor to initialize class. 

~depletion(); 

virtual Destructor to kill instance of 

class. 

set_library(Library_builder*); 

void Function to set pointer to library 

class. 

set_initial_conc(vector<double>,vector<double>, 

tran_mat*); 

void Function to set initial 

concentration. 

set_reaction_rates(vector<vector<double>>); void Function to set reaction rates. 

set_time_interval(double); void Function to set time intervals. 

set_final_conc_u(vector<double>); 

void Function to set final 

concentration of isotopes not 

reduced from the matrix. 

set_final_conc_s(vector<double>); 

void Function to set final 

concentration of isotopes 

reduced from the matrix. 

get_new_conc(vector<double>&,tran_mat*); 

void Function to get final 

concentrations. 

get_time(); 

double Function to get time interval for 

a substep. 

get_initial_conc_u(int); 

double Function to get initial 

concentration of a reduced 

isotope. 

 



  

 81 

Table A4 (continued) 

 

get_initial_conc_s(int); 

double Function to get initial 

concentration of a not  reduced 

isotope. 

run(depletion*,tran_mat*,bool,bool,int,int); void Function to run calculation. 
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APPENDIX B 

LIST OF ISOTOPES IN SENSITIVITY ANALYSIS 

Table B1. Isotopes used in 274 nuclide calculations. 

Isotope #  Isotope #  Isotope #  Isotope #  

1 10010 36 360860 71 441010 106 501160 

2 10020 37 370850 72 441020 107 501170 

3 10030 38 370860 73 441030 108 501180 

4 20030 39 370870 74 441040 109 501190 

5 40090 40 380840 75 441050 110 501200 

6 60120 41 380860 76 441060 111 501220 

7 70140 42 380870 77 451030 112 501230 

8 80160 43 380880 78 451050 113 501240 

9 80170 44 380890 79 461020 114 501250 

10 280610 45 380900 80 461040 115 501260 

11 280620 46 390890 81 461050 116 511210 

12 280640 47 390900 82 461060 117 511230 

13 290630 48 390910 83 461070 118 511240 

14 290650 49 400900 84 461080 119 511250 

15 310690 50 400910 85 461100 120 511260 

16 310710 51 400920 86 471070 121 521220 

17 320700 52 400930 87 471090 122 521230 

18 320720 53 400940 88 471101 123 521240 

19 320730 54 400950 89 471110 124 521250 

20 320740 55 400960 90 481060 125 521260 

21 320760 56 410930 91 481080 126 521271 

22 330750 57 410940 92 481100 127 521280 

23 340760 58 410950 93 481110 128 521291 

24 340770 59 420920 94 481120 129 521300 

25 340780 60 420940 95 481130 130 521320 

26 340790 61 420950 96 481140 131 531270 

27 340800 62 420960 97 481150 132 531290 

28 340820 63 420970 98 481151 133 531300 

29 350790 64 420980 99 481160 134 531310 

30 350810 65 420990 100 491130 135 531350 

31 360800 66 421000 101 491150 136 541260 

32 360820 67 430990 102 501120 137 541280 
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Table B1 (continued) 

33 360830 68 440980 103 501130 138 541290 

34 360840 69 440990 104 501140 139 541300 

35 360850 70 441000 105 501150 140 541310 

 

Isotope #  Isotope #  Isotope #  

141 541320 176 601450 211 661580 

142 541330 177 601460 212 661600 

143 541340 178 601470 213 661610 

144 541350 179 601480 214 661620 

145 541360 180 601500 215 661630 

146 551330 181 611470 216 661640 

147 551340 182 611480 217 671650 

148 551350 183 611481 218 671661 

149 551360 184 611490 219 681640 

150 551370 185 611510 220 681660 

151 561300 186 621470 221 681670 

152 561320 187 621480 222 681680 

153 561330 188 621490 223 681700 

154 561340 189 621500 224 882230 

155 561350 190 621510 225 882240 

156 561360 191 621520 226 882250 

157 561370 192 621530 227 882260 

158 561380 193 621540 228 892260 

159 561400 194 631510 229 892270 

160 571380 195 631520 230 902270 

161 571390 196 631530 231 902280 

162 571400 197 631540 232 902290 

163 581380 198 631550 233 902300 

164 581390 199 631560 234 902320 

165 581400 200 631570 235 902330 

166 581410 201 641520 236 902340 

167 581420 202 641530 237 912310 

168 581430 203 641540 238 912320 

169 581440 204 641550 239 912330 

170 591410 205 641560 240 922320 

171 591420 206 641570 241 922330 

172 591430 207 641580 242 922340 
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Table B1 (continued) 

173 601420 208 641600 243 922350 

174 601430 209 651590 244 922360 

175 601440 210 651600 245 922370 

 

Isotope #  

246 922380 

247 922390 

248 922400 

249 922410 

250 932350 

251 932360 

252 932370 

253 932380 

254 932390 

255 942360 

256 942370 

257 942380 

258 942390 

259 942400 

260 942410 

261 942420 

262 942430 

263 942440 

264 952410 

265 952420 

266 952421 

267 952430 

268 952440 

269 952441 

270 962410 

271 962420 

272 962430 

273 962440 

274 962450 
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Table B2. Additional isotopes used in 298 nuclide calculations. 

Isotope 

#  

1 360851 

2 360870 

3 360880 

4 380910 

5 380920 

6 390911 

7 390920 

8 390930 

9 400970 

10 410970 

11 430991 

12 511270 

13 511280 

14 521311 

15 521340 

16 531320 

17 531330 

18 531340 

19 541331 

20 551380 

21 561390 

22 571410 

23 571420 

24 591450 
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Table B3. Additional isotopes used in 322 nuclide calculations. 

Isotope 

#  

1 350830 

2 360831 

3 370880 

4 370890 

5 390940 

6 390950 

7 421010 

8 421020 

9 431010 

10 461090 

11 511290 

12 511310 

13 521270 

14 521310 

15 521330 

16 521331 

17 541311 

18 541380 

19 551390 

20 561410 

21 561420 

22 571430 

23 591460 

24 601490 

25  
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Table B4. Additional isotopes used in 347 nuclide calculations. 

Isotope 

#  

1 330770 

2 340830 

3 350840 

4 360890 

5 370900 

6 380930 

7 380940 

8 410951 

9 431040 

10 431050 

11 451031 

12 461120 

13 501210 

14 501211 

15 501270 

16 501280 

17 511300 

18 511330 

19 521290 

20 541351 

21 541370 

22 581450 

23 581460 

24 591470 

25 621560 
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Table B5. Additional isotopes used in 372 nuclide calculations. 

Isotope 

#  

1 320770 

2 340810 

3 360900 

4 370901 

5 370910 

6 400980 

7 421030 

8 431030 

9 451070 

10 471120 

11 471130 

12 481170 

13 491151 

14 511301 

15 511320 

16 511321 

17 531360 

18 541390 

19 551400 

20 571440 

21 591480 

22 591490 

23 601510 

24 601520 

25 932400 
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Table B6. Additional isotopes used in 397 nuclide calculations. 

Isotope 

#  

1 320780 

2 330780 

3 340840 

4 350850 

5 350860 

6 350870 

7 380950 

8 410981 

9 410990 

10 421040 

11 481131 

12 481180 

13 491171 

14 501291 

15 501300 

16 531341 

17 531370 

18 551410 

19 561430 

20 571450 

21 581470 

22 581480 

23 591440 

24 611500 

25 641590 
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Table B7. Additional isotopes used in 422 nuclide calculations. 

Isotope 

#  

1 350880 

2 360910 

3 401000 

4 410960 

5 410991 

6 411010 

7 421050 

8 441070 

9 441080 

10 461110 

11 471150 

12 491170 

13 501231 

14 501290 

15 501301 

16 521350 

17 531321 

18 531361 

19 541400 

20 551381 

21 561440 

22 611520 

23 611530 

24 621550 

25 651610 
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Table B8. Additional isotopes used in 447 nuclide calculations. 

Isotope 

#  

1 330790 

2 340791 

3 340811 

4 340850 

5 340860 

6 370920 

7 370930 

8 390960 

9 390961 

10 390970 

11 400990 

12 410980 

13 431020 

14 431060 

15 451051 

16 491191 

17 501251 

18 501310 

19 501311 

20 501320 

21 521360 

22 531380 

23 571460 

24 611540 

25 631580 
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Table B9. Additional isotopes used in 471 nuclide calculations. 

Isotope 

#  

1 300720 

2 320750 

3 330810 

4 330820 

5 330830 

6 350820 

7 350841 

8 350890 

9 370940 

10 401010 

11 401020 

12 411000 

13 431070 

14 451090 

15 481171 

16 501171 

17 511281 

18 521251 

19 551420 

20 561450 

21 571461 

22 591481 

23 591510 

24 601530 
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Table B10. Additional isotopes used in 496 nuclide calculations. 

Isotope 

#  

1 320800 

2 340870 

3 360920 

4 380960 

5 390990 

6 411020 

7 411021 

8 411030 

9 411040 

10 421060 

11 431021 

12 451060 

13 461130 

14 461140 

15 471091 

16 471160 

17 481190 

18 501271 

19 511341 

20 541410 

21 551430 

22 571470 

23 581490 

24 591500 

25 621570 
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Table B11. Additional isotopes used in 519 nuclide calculations. 

Isotope 

#  

1 310720 

2 310730 

3 330800 

4 340831 

5 390980 

6 390981 

7 441090 

8 451080 

9 471111 

10 471131 

11 471170 

12 481200 

13 491190 

14 491211 

15 511220 

16 521370 

17 531390 

18 561460 

19 581500 

20 601540 

21 611550 

22 621580 

23 631590 

24 661660 
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Table B12. Additional isotopes used in 544 nuclide calculations. 

Isotope 

#  

1 280660 

2 290670 

3 300690 

4 300740 

5 310740 

6 310750 

7 310760 

8 310770 

9 310780 

10 310790 

11 310800 

12 320790 

13 320791 

14 320810 

15 320820 

16 320830 

17 320840 

18 320860 

19 330760 

20 330821 

21 330840 

22 330850 

23 330860 

24 330870 

25 340880 

 

 

 

 

 

 

 



  

 96 

Table B13. Additional isotopes used in 569 nuclide calculations. 

Isotope 

#  

1 340890 

2 350900 

3 350910 

4 360930 

5 360940 

6 370950 

7 370960 

8 380970 

9 380980 

10 380990 

11 390931 

12 391000 

13 391010 

14 391020 

15 401030 

16 401040 

17 401050 

18 410971 

19 411001 

20 411041 

21 411050 

22 411060 

23 421070 

24 421080 

25 430980 
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Table B14. Additional isotopes used in 594 nuclide calculations. 

Isotope 

#  

1 431000 

2 431080 

3 431090 

4 431100 

5 441100 

6 441110 

7 441120 

8 451040 

9 451081 

10 451100 

11 451110 

12 451120 

13 451130 

14 451140 

15 461111 

16 461150 

17 461160 

18 461170 

19 461180 

20 471140 

21 471151 

22 471180 

23 471190 

24 481191 

25 481210 
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Table B15. Additional isotopes used in 619 nuclide calculations. 

Isotope 

#  

1 481211 

2 481220 

3 481230 

4 481240 

5 491180 

6 491200 

7 491210 

8 491220 

9 491230 

10 491231 

11 491240 

12 491241 

13 491250 

14 491251 

15 491260 

16 491270 

17 491271 

18 491280 

19 491290 

20 491291 

21 491300 

22 501191 

23 501281 

24 501330 

25 501340 
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Table B16. Additional isotopes used in 644 nuclide calculations. 

Isotope 

#  

1 511261 

2 511340 

3 511350 

4 511360 

5 521380 

6 531280 

7 531331 

8 531400 

9 531410 

10 541420 

11 541430 

12 551341 

13 551351 

14 551361 

15 551440 

16 551450 

17 561351 

18 561371 

19 561470 

20 561480 

21 571480 

22 571490 

23 581510 

24 581520 

25 591441 
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Table B17. Additional isotopes used in 665 nuclide calculations. 

Isotope 

#  

1 591520 

2 591530 

3 591540 

4 601550 

5 601560 

6 611460 

7 611521 

8 611541 

9 611560 

10 611570 

11 621590 

12 631600 

13 641610 

14 641620 

15 651620 

16 651630 

17 661650 

18 671660 

19 671670 

20 681690 

21 902310 
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Table B18. Additional isotopes used in 687 nuclide calculations. 

Isotope 

#  

1 300750 

2 300760 

3 310810 

4 330880 

5 350920 

6 381000 

7 410931 

8 421090 

9 441130 

10 451061 

11 451150 

12 471161 

13 471171 

14 471181 

15 471200 

16 481300 

17 491201 

18 491221 

19 491261 

20 491281 

21 511370 

22 541341 

23 551320 

24 571500 
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Table B19. Additional isotopes used in 713 nuclide calculations. 

Isotope 

#  

1 300770 

2 300780 

3 310820 

4 320771 

5 370970 

6 390901 

7 451101 

8 451160 

9 461190 

10 471210 

11 471221 

12 481250 

13 481260 

14 491310 

15 521390 

16 521400 

17 531301 

18 541440 

19 551460 

20 581530 

21 611580 

22 621600 

23 631610 

24 651640 

25 681660 

26 912340 
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Table B20. Additional isotopes used in 738 nuclide calculations. 

Isotope 

#  

1 300770 

2 300780 

3 310820 

4 320771 

5 370970 

6 390901 

7 451101 

8 451160 

9 461190 

10 471210 

11 471221 

12 481250 

13 481260 

14 491310 

15 521390 

16 521400 

17 531301 

18 541440 

19 551460 

20 581530 

21 611580 

22 621600 

23 631610 

24 651640 

25 681660 

26 912340 
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Table B21. Additional isotopes used in 763 nuclide calculations. 

Isotope 

#  

1 290690 

2 310840 

3 350821 

4 360950 

5 370980 

6 381010 

7 390891 

8 431120 

9 451020 

10 451170 

11 471201 

12 471220 

13 471230 

14 481231 

15 481280 

16 481310 

17 501350 

18 531260 

19 531420 

20 551470 

21 561490 

22 631620 

23 641640 

24 661651 

25 661680 
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Table B22. Additional isotopes used in 788 nuclide calculations. 

Isotope 

#  

1 290710 

2 290720 

3 290730 

4 320870 

5 340771 

6 340910 

7 350930 

8 391040 

9 411080 

10 421110 

11 431130 

12 441160 

13 451180 

14 461210 

15 471100 

16 471240 

17 511241 

18 571370 

19 581540 

20 591560 

21 601580 

22 611590 

23 621610 

24 631541 

25 671680 
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Table B23. Additional isotopes used in 813 nuclide calculations. 

Isotope 

#  

1 280680 

2 290680 

3 290700 

4 290701 

5 290740 

6 290750 

7 300800 

8 310741 

9 310830 

10 401060 

11 411090 

12 451190 

13 461091 

14 461220 

15 491330 

16 531430 

17 541450 

18 571520 

19 611600 

20 631630 

21 641650 

22 651580 

23 651660 

24 671690 

25 932410 
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Table B24. Additional isotopes used in 836 nuclide calculations. 

Isotope 

#  

1 280670 

2 280690 

3 280700 

4 280710 

5 290660 

6 320751 

7 350940 

8 360980 

9 370990 

10 381020 

11 421120 

12 431140 

13 441170 

14 471250 

15 491181 

16 511380 

17 521410 

18 561361 

19 561500 

20 621460 

21 621620 

22 641660 

23 651670 
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Table B25. Additional isotopes used in 861 nuclide calculations. 

Isotope 

#  

1 280720 

2 290760 

3 290770 

4 330890 

5 340920 

6 350800 

7 391050 

8 401070 

9 431150 

10 451200 

11 461230 

12 481290 

13 501360 

14 541460 

15 551480 

16 561510 

17 571530 

18 581550 

19 591570 

20 601590 

21 611610 

22 631521 

23 631640 

24 651680 

25 661690 
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Table B26. Additional isotopes used in 885 nuclide calculations. 

Isotope 

#  

1 280730 

2 280740 

3 300810 

4 320731 

5 360970 

6 411100 

7 411110 

8 421130 

9 441180 

10 451210 

11 461240 

12 471260 

13 491161 

14 491340 

15 511221 

16 511390 

17 531440 

18 591400 

19 621630 

20 631650 

21 641670 

22 681671 

23 681720 

24 691710 
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Table B27. Additional isotopes used in 909 nuclide calculations. 

Isotope 

#  

1 270670 

2 270680 

3 270690 

4 270700 

5 280750 

6 290780 

7 310700 

8 350950 

9 360810 

10 370861 

11 381030 

12 401080 

13 431160 

14 441190 

15 451041 

16 471080 

17 471270 

18 481320 

19 511200 

20 591421 

21 631500 

22 681710 

23 691720 

24 912350 
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Table B28. Additional isotopes used in 931 nuclide calculations. 

Isotope 

#  

1 260660 

2 260670 

3 270660 

4 270710 

5 320710 

6 330900 

7 410941 

8 451220 

9 461071 

10 471280 

11 481090 

12 491140 

13 521210 

14 541270 

15 581391 

16 601410 

17 671640 

18 671700 

19 671710 

20 681650 

21 912300 

22 952400 
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Table B29. Additional isotopes used in 952 nuclide calculations. 

Isotope 

#  

1 290681 

2 410920 

3 420930 

4 430970 

5 461030 

6 491120 

7 521231 

8 641510 

9 651690 

10 661590 

11 661700 

12 661710 

13 671701 

14 671720 

15 822080 

16 822100 

17 822120 

18 892280 

19 922300 

20 942450 

21 952450 
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Table B30. Additional isotopes used in 972 nuclide calculations. 

Isotope 

#  

1 260680 

2 300691 

3 350801 

4 370840 

5 380871 

6 451010 

7 471060 

8 511201 

9 551310 

10 561310 

11 581370 

12 651570 

13 671630 

14 671641 

15 812080 

16 832120 

17 862200 

18 882220 

19 882280 

20 902260 

21 922310 
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Table B31. Additional isotopes used in 991 nuclide calculations. 

Isotope 

#  

1 431170 

2 481111 

3 491131 

4 531250 

5 661570 

6 681630 

7 812070 

8 822110 

9 832100 

10 832110 

11 842100 

12 842160 

13 862180 

14 862190 

15 862220 

16 872230 

17 882270 

18 892250 

19 932340 
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Table B32. Additional isotopes used in 1013 nuclide calculations. 

Isotope 

#  

1 280630 

2 280650 

3 300820 

4 380850 

5 430960 

6 471071 

7 481070 

8 491110 

9 551300 

10 671620 

11 812090 

12 822090 

13 822140 

14 832130 

15 832140 

16 842110 

17 842140 

18 842150 

19 842180 

20 872210 

21 872220 

22 942371 
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Table B33. Additional isotopes used in 1036 nuclide calculations. 

Isotope 

#  

1 260590 

2 260690 

3 270610 

4 270620 

5 270720 

6 270730 

7 280760 

8 290790 

9 310850 

10 320880 

11 340930 

12 370830 

13 421140 

14 441200 

15 471050 

16 671631 

17 802060 

18 812060 

19 812100 

20 842120 

21 842130 

22 852170 

23 852180 
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Table B34. Additional isotopes used in 1049 nuclide calculations. 

Isotope 

#  

1 260600 

2 270600 

3 270601 

4 290640 

5 390880 

6 400880 

7 400890 

8 410910 

9 551280 

10 551290 

11 832090 

12 862170 

13 962400 

14 962460 
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APPENDIX C 

PARAMETERS FOR BENCHMARK PROBLEMS 

 

Table C1. Parameters for Benchmark #1. 

 Time step (seconds) = 5.00E+17 

 Initial Concentration Final Concentration 

U-238 1.0000E+10 8.56077093E+08 

Th-234* 0.0000E+00 1.26423127E-02 

*Non-physical, but still mathematically correct. 

 

Table C2. Parameters for Benchmark #2. 

 Time step (seconds) =1.00E+12  

 Initial Concentration Final Concentration 

Np-237 1.00E+12 9.89807657E+11 

Pa-233 0.00E+00 3.40955164E+04 

U-234 0.00E+00 9.51933360E+09 
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Table C3. Parameters for Benchmark #3. 

Time step (seconds) = 1.00E+04 

 Initial Concentration Final Concentration 

Pb-211 1.00E+10 4.07570892E+08 

Bi-211 1.00E+04 2.56832069E+07 

Tl-207 1.00E+01 6.57809821E+07 

Pb-207 0.00E+00 9.50078286E+09 

 

 

Table C4. Parameters for Benchmark #4. 

Time step (seconds) = 8.64E+04  

 Initial Concentration Final Concentration 

U-235 1.00E+12 1.76886902E+08 

U-236 1.00E+02 1.52830284E+09 

U-237 1.00E+02 9.22519446E+11 

Np-237 1.00E+02 7.57753646E+10 
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Table C5. Parameters for Benchmark #5. 

Time step (seconds) = 8.64E+04 

 Initial Concentration Final Concentration 

U-238 1.00E+10 1.76896303E+06 

U-239 1.00E+03 1.52835126E+07 

Np-239 0.00E+00 4.95776250E+09 

Pu-239 0.00E+00 7.45536885E+05 

Pu-240 0.00E+00 1.54790667E+04 

Pu-241 0.00E+00 3.48985976E+08 

Pu-242 0.00E+00 5.94369007E+08 

Pu-243 0.00E+00 1.68096243E+09 

Am241 0.00E+00 6.98479021E+08 

Am-243 0.00E+00 2.63960541E+00 

Am-244 0.00E+00 6.27192533E+08 

Cm-244 0.00E+00 9.42659550E+08 
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Table C6. Parameters for Benchmark #6. 

Time step (seconds) = 8.64E+04 

 Initial Concentration Final Concentration 

U-238 1.00E+12 1.67017008E+07 

U-239 0.00E+00 4.36483823E+06 

Np-239 0.00E+00 6.72015319E+11 

Pu-239 0.00E+00 1.53111500E+11 

Pu-240 0.00E+00 8.39445242E+10 

I-135 0.00E+00 8.54352141E+07 

Xe-135 0.00E+00 2.99196873E+08 

Cs-135 0.00E+00 7.96828259E+08 
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