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ABSTRACT 

A first-kind integral equation relating the surface contact pressure to surface 

displacement is used to form an iterative algorithm which efficiently solves the problem 

of steady rolling of a cylinder on a viscoelastic half-space. The immediate solution is the 

contact pressure, but the quantity of interest is the friction coefficient (ratio of drag force 

to normal force), or effective resistance to rolling motion, which is readily obtained from 

the contact pressure. The so-called generalized N-parameter Maxwell model is used to 

characterize the rheology and is quite general and capable of representing realistic 

polymeric, elastomeric and rubber compounds. An iterative algorithm, like the Newton 

Raphson method, is used to obtain consistent equilibrium values of the contact stress 

profile and surface displacement for a given total resultant load. The friction coefficient is 

subsequently determined by integration of the interface pressure about the center of the 

rolling cylinder. As the employed integral equation formulation is in terms of the creep 

functions, a conversion of the creep parameters to relaxation parameter is also required. 

Results are provided for a typical rubber compound, showing the effects of velocity and 

applied load on friction coefficient.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

 Energy losses in rolling motion can account for most of the power required to 

drive many common processes, such as automobile tires on highways, train wheels on 

steel tracks, drawing or rolling of metals in manufacturing processes, advancement of 

paper through printing rolls or the motion of conveyors over supporting idlers. This type 

of energy loss in rolling motions is especially pronounced if the material of either the 

roller or rolled material undergoes plastic or viscoelastic deformation during the process, 

such as in metal drawing or rolling of polymer materials. Since most materials do exhibit 

properties of viscoelasticity under specific circumstances and conditions, the need for 

rigorous study of these processes is warranted. 

Analytical models and specific studies of rolling friction as specialized to various 

problems are not new, and many of these models can be quite sophisticated and involved, 

such as those used in the design of automobile tires to minimize energy losses at the 

tire/road interface.  The rubber tire industry has been keenly interested in this issue since 

the invention of pneumatic tires, where a rubber compounds is the energy losing medium.  

The same issue is present in the design of large conveyor belts, where a rubber “backing” 

layer is vulcanized over the surface of the belt that rolls over the carrying idlers.  This 

interface layer is usually a rubber compound which is specifically tailored to minimize 

energy absorption as it deforms, and rubber compounds generally exhibit viscoelastic 

behavior as they are deformed.  As the steel rolls (idlers) of a conveyor are much stiffer 

than the rubber belt backing, a simple model of this problem would be that of rigid 

cylinder rolling on a viscoelastic layer. 

The focus of this work is to build on one of the most efficient analytical models 

already available for this problem and extend it so as to make it a practical design tool for 

conveyor systems.  Specifically, an integral equation formulation of the problem of 

uniform rolling motion of a cylinder over a viscoelastic half-space is used as a basis of an 

iterative algorithm to solve this nonlinear contact problem.  The result is an efficient 
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computational methodology that can be effectively used in the design and analysis of 

conveyor systems. 

1.2 Literature Review 

Several numerical and analytical methods have been developed to solve problems 

involving rolling and sliding contact with elastic and viscoelastic materials. This work 

presents an extension of the work of several authors including Gonzalez and Abascal
1
, 

Kong and Wang
2
, Chertok, Golden and Graham

3
, Lynch

4
, Goryacheva and Sadeghi

5
, 

Nuttall, Lodewijks and Breteler
6
, Rudolphi and Reicks

7
 and Goodier and Loutzenheiser

8
. 

Gonzalez and Abascal formulated the problem of steady-state moving loads along 

the boundary of a 2D viscoelastic material by integral equations of the second kind 

(boundary elements). They used a three-parameter rheological model (the standard linear 

solid) along with the boundary element formulation [1].  

Similarly, a boundary element method approach for steady rolling contact over a 

viscoelastic solid was provided by Kong and Wang. The main focus in their work was on 

calculating the normal and tangential contact pressures [2]. 

Chertok, Golden and Graham emphasized the determination of the hysteretic 

friction for the rolling contact problem, where also the standard linear solid model was 

employed. They developed a numerical algorithm to study the variation of contact 

interval length, pressure and coefficient of hysteretic friction with varying loads and 

varying speeds of the indentor [3]. 

Lynch presented a complete numerical method for solving steady state linear 

viscoelastic stress analysis problem. The emphasis of this work was a mixed boundary 

value formulation with special case of viscoelastic sheet rolling to obtain a numerical 

solution algorithm [4]. 

An analytical model was developed by Goryacheva and Sadeghi to investigate the 

effects of viscoelastic layer coatings. The effects of geometry and mechanical properties 

of a thin viscoelastic layer bonded to an elastic semi-infinite plane in contact with a 
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rolling/sliding elastic cylinder were investigated. Variation of normal and tangential 

stress distribution and indentation of the contact zone were presented [5]. 

Nuttall, Lodewijks and Breteler studied the problem of rolling friction due to 

hysteresis and the relationship between traction and slip in wheel driven belt conveyors. 

In this report they have concentrated on comparing the rolling friction at varying speeds 

with the variation in the impressed normal force. Three-parameter and seven-parameter 

models are used and variation of traction and rolling friction with respect to the 

complexity of the model was studied. Important conclusions were made in this report, 

such as when considering applied traction, there is no significant difference between 

three-parameter and seven-parameter models, but when predicting the rolling friction due 

to hysteresis, the complexity of the model has a significant effect. 

Rudolphi and Reicks used the mechanical model of cylinder on a one-dimensional 

viscoelastic bed (Winkler foundation), along with a generalized N-parameter Maxwell 

model for the viscoelastic behavior, for predicting the indentation and rolling resistance 

of a linear viscoelastic material backing on a conveyor belt. In that report they have 

developed a method that can be directly used to design and minimize the power required 

for conveyor systems. Emphasis was also made on temperature dependent material 

modeling and variation of indentation resistance with speed of the belt. 

As most of the above mentioned researchers have considered only a simplified 

model of the viscoelastic foundation, or a three-parameter material model practical 

behavior is not simulated. Real polymeric materials are expected to have a high load rate 

dependence, for which a three parameter model is deficient. Hence, considering a more 

complex model is important in order to predict realistic viscoelastic behavior. In the 

current work, the viscoelastic rolling contact problem is addressed by incorporating a 

generalized N-parameter Maxwell model.  
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1.3 Thesis Organization 

The first chapter of this thesis provides an introduction to the current work and 

references some important works that form a foundation in this field. Chapter 2 explains 

various rheological models that are capable of representing the behavior of realistic 

viscoelastic materials. Conversion of the relaxation modulus into creep compliance is 

also described in Chapter 2. Chapter 3 deals with developing the viscoelastic formulation 

from the classic Boussinesq problem of linear elasticity. The most part of Chapter 3 is a 

summary of a technical report by Goodier and Loutzenheiser [8], which forms the 

analytical and integral equation formulation, and foundation for the present work. 

Chapter 4 presents results for the developed numerical process, providing the contact 

pressure and also the variation of friction coefficient according to the velocity and also 

the normal load applied on the backing material. Finally, a discussion and conclusions 

drawn from this work are presented in Chapter 5. 
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CHAPTER 2. VISCOELASTIC PROPERTIES 

2.1 Viscoelasticity 

Viscoelasticity is used to describe the property of a material that exhibits both 

viscous and elastic properties. Due to the viscous element of this behavior, the relation 

between stress and strain in such materials depends on time. Mathematical models of 

viscous materials are often referred to as rheological models and are central to all 

analytical descriptions of viscoelasticity. Mechanical analogies of these rheological 

models consist of series or parallel combination of springs and dashpots, where the 

springs account for the elastic behavior and dashpots represent the time dependent or 

viscous behavior. Each rheological model differs in the arrangement of these elements.  

The elastic components, as mentioned previously, can be modeled as linear springs which 

obey Hooke’s law. 

Eσ ε=     (2.1)  

where � is the stress, E is the elastic modulus of the material and � is the strain that 

occurs under the given stress, �. 

The viscous components are modeled as linear dashpots which obeys Newton’s law 

d

dt

ε
σ η=

  (2.2)  

where � is the stress, � is the viscosity of the material and �� / �� is the strain rate. 

 Rheological Models 

Various rheological models of viscoelastic material behavior can be defined by 

simple arrangements of the mechanical elements of springs and dashpots. The two 
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fundamental building blocks are the Maxwell element (spring and dashpot in series) and 

 

Figure 1: Rheological models for viscoelastic solids 

the Kelvin-Voigt element (spring and dashpot in parallel) as shown in Figure 1 (a) and 

(b), respectively. The Maxwell element serves as simple model for a viscoelastic fluid, 

since the element can deform indefinitely under stress. The Kelvin-Voigt serves as a 

simple model for a viscoelastic solid, since indefinite deformation under stress is 

prevented by the spring.  Another arrangement, and what is known as the standard linear 

solid, is shown in Figure 1(c) and a generalization of that, known as the N-parameter 

Maxwell model is shown in Figure 1(d).  The standard linear solid contains more 

(b) Kelvin-Voigt element 

E η

(c) Generalized Maxwell model 
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1η
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2η
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3η
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4η

4E
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η
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flexibility than the Kelvin-Voigt element and is often used to model viscoelastic solids 

with a narrow range of response times, as permitted by the single viscous element.  For 

realistic polymeric and rubber materials, that simple model is severely limited, but for the 

generalized Maxwell mode, and by suitable selection of the 12 +N  parameters (spring 

and dashpot strengths), a real viscoelastic material can be represented.  Of course, the 

choice of the parameters must be done to match the experimentally determined 

stress/strain/strain rate behavior of the actual material. 

 The analytical relationships appropriate to the three models of Figure 1, or 

constitutive equations, may be determined through the following rules: 

(a) For elements connected in parallel, their strains are equal and the total stress 

is equal to the sum of the individual stresses. 

(b) For elements connected in series, their stress is equal and the total strain is 

equal to the sum of the individual strains. 

Using these principles, the constitutive equation for the Maxwell element is readily 

established to be 

1d d

dt E dt

ε σ σ

η
= +  (2.3) 

while for the Kelvin-Voigt element, one has 

d
E

dt

ε
σ ε η= +

 (2.4)  

Similarly, for the standard linear solid, the constitutive equation is  

0 11
0

11

1

E Ed d
E

EE dt dt

η σ ε
σ ε

η

 
 +

+ = +  
 
 

    (2.5)
  

For the generalized Maxwell model, equation (2.5) is generalized to 

0
0

1 1

1

i

N

i

i

N N
i

i ii i

E
d d

NE
E Edt dt

σ ε
σ ε

η η

=

= =

+ = +
∑

∑ ∑
   (2.6) 
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For all these constitutive equations (2.3)-(2.6) it is noted that there is the explicit 

appearance of the strain rate term, which of course makes the response of any of the 

models a function of time.  

Creep and stress relaxation are the two important characteristic properties of the 

viscoelastic materials. Creep is the slow, progressive deformation of the material under 

constant stress. The strain increases with time in these materials. The ratio of � (t) and �0 

is called the creep compliance.  

0

( )
( )

t
t

ε
γ

σ
=

  (2.7)
  

Stress relaxation is defined as the property of the material where the stress decreases 

when held at constant strain. The ratio of (t) to �0 is called the relaxation modulus. 

0

( )
( )

t
E t

σ

ε
=

  (2.8)
  

For the generalized N-Maxwell model that is considered in the present work the 

relaxation modulus is represented in the form of a Prony series as given by the equation 

below. 

1

( ) i
e

tN

i

i

E t E E e ρ
−

=

= +∑
  (2.9)

  

In the above equation constants Ee and Ei are calculated experimentally and depend 

entirely on the material properties and behavior, t is the time and the parameter ρi is 

called the relaxation time and is defined as 

i
i

iE

η
ρ =

   (2.10)
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2.2 Conversion of Relaxation Modulus to Creep Compliance 

In formulating problems of viscoelasticity, there are several common methods to 

incorporate the viscoelastic effects.  One is to use the relaxation spectrum, or relaxation 

form of the storage and loss moduli, through equations like (2.9).  Another would be 

through a similar form called the creep spectrum.  As the formulation to be subsequently 

used in the contact problem herein is in the form of the creep spectrum, and the common 

experimentally-determined values are the relaxation values, it is necessary to convert 

between the two The numerical method developed by S. W. Park and R. A. Schapery [9] 

is used in the present work for this conversion and is summarized in the following 

section. It is noted that there are various ways to perform this conversion, but that of Park 

and Schapery is especially accurate and straight forward.  

NUMERICAL METHOD: 

Consider the relaxation modulus in the form of Prony series and given by the eq. the 

creep compliance is given by 

1

( )

0

( ) (1 )
N

j

j

t

g j
t

t e τγ γ γ
η =

−
+ += −∑

   (2.11)
  

where γg is the glassy compliance, η0 the shear zero or the long time viscosity, γj is the 

retardation strength and τj is the retardation time. In the above equation η0 →∞ for the 

case of a viscoelastic solid. Hence, as the solid case is of current interest, the second term 

of equation (2.11) will be absent, and the creep compliance will be of the form 

1

( )

( ) (1 )
N

j

j

t

g jt e τγ γ γ
=

−
+= −∑

   (2.12) 

Now, the important relation between the relaxation and creep spectrum is in the form of 

an integral relationship, relating E(t) and γ(t). The relationship is 

0

( )
( ) 1 (t>0)

t
d

E t d
d

γ τ
τ τ

τ
− =∫    (2.13) 

This convolution relationship can then e used to determine the unknown creep 

compliance γ(t) from the known relaxation modulus E(t). Substituting equations (2.3) and 
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(2.5) into (2.13) and carrying out integration will give the required creep constants (creep 

spectrum). One has 

[( ] ( )

1 10

( ) 1i j

t m N
jt

i ge
ji j

E Ee e d
τ ρ τ τγ

γ δ τ τ
τ

− − −

= =

  
+ + =  

  
∑ ∑∫    (2.14) 

where δ( ) denotes the Dirac delta function.  

( ) ( ) ( ) [( ) ( )]

1 1 1 10 0

( ) 1i j i j i

t tm N m N
j i jt t

g e i e

j ji j i j

E
E E e E e d e e d

ρ τ τ ρ τ τ τ ργ γ
γ τ τ

τ τ
− − − − −

= = = =

+ + + =∑ ∑ ∑∑∫ ∫
         

 (2.15)
  

The integrations in the above equation can be evaluated as 

( ) ( )

0

(1 )j j

t

t
je d e

τ τ ττ τ− −= −∫
   (2.16)

  

[( ) ( )]
i j

[( ) ( )]

i j0

(1 )  , 

                                  , =

j i

j i

i j t t

t
i j

e

e d
t

τ ρ

τ τ τ ρ

ρ τ
ρ τ

ρ τ
τ

ρ τ

− −

− −


− ≠ −

= 



∫

 (2.17)

  

so substituting (2.10) and (2.11) into (2.9) and rearranging gives 

( ) ( ) ( )
1 1 1

1 1 ,ji i i

tN m mt t t
i i

e j g e i i j
j i i

i j

E
e e E e E E e

τρ ρ ρρ
γ γ ρ τ

ρ τ

 
−− − − 
 

= = =

      − + − = − + ≠     −      
∑ ∑ ∑

 (2.18) 

and 

( )( ) ( )( )
i j

1 1

1 1 , =

1

i

N m ti tt j i
e j g

e i
j i j

mtE
e E e E E e

i

τ ρρ γ γ ρ τ
τ

− −−

= =

  
+ − = − + ∑      = 

∑ ∑
 (2.19)

  

 

In equation (2.12) and (2.13), γg can be expressed in terms of Ee and Ei’s as  

1

1
g

m

e i
i

E E
γ

=

=
+ ∑

   (2.20)

  

In matrix form equation (2.1) is reduced to 
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[ ]{ } { }

  ,

or

 j=1,2,.......,n ; k=1,2,......,pkj j k

A B

A B

γ

γ

=

=

   

 (2.21) 

( ) ( )( )

( ) ( )

(1 ) ( ),  

1

(1 ) ( )                  , =

1

k j k jk i

k j k i

t tti i

e i j

i j
kj

t tk i

e i j

j

m E
E e e e

iA
m t E

E e e

i

τ τρ

τ ρ

ρ
ρ τ

ρ τ

ρ τ
τ

− −−

− −


− + − ≠∑

− == 
 − + ∑

=

 (2.22) 

( )

1 1

1 ( ) ( )
k i

m m
t

k e i e i

i i

B E E e E E
ρ−

= =

= − + +∑ ∑   (2.23) 

If in the above equation, one knows Ee, Ei, ρi, tk and τj the only unknown is γj. To 

solve this equation, the collocation method is used when p = N and the least squares 

method is used when p > N. The values of τj are specified and the tk values depend on the 

method used. In the collocation method tk can be calculated from tk = aτk where a can be 1 

or ½. In the least squares method, values of tk can be considered at equidistant intervals 

on the log t axis. 
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CHAPTER 3. THE VISCOELASTIC FORMULATION 

This chapter deals with the formulation of a viscoelastic contact problem in which 

a rigid circular roller is rolling on the initially flat viscoelastic semi-infinite base. In order 

to achieve this, a brief description of elastic solution has been addressed first.  

3.1 Elastic Solution 

The starting point to develop the integral equation formulation of the viscoelastic contact 

problem is the well known Boussinesq problem, (displacement due to a distributed force 

on an elastic half-space) is readily available (Love, p. 192 [10]). The vertical (normal to 

the surface) displacement in this problem is given by 

1
( , ,0) ( , ,0)e

z
u x y P x y

υ

µ

−
=  (3.1) 

where e

zu  is the displacement in the z-direction, the superscript e denotes the elastic 

solution, υ  is Poisson’s ratio, µ  the shear stress modulus and P is the potential of the 

contact pressure distribution. The potential is given by 

1 ( ', ')
( , , ) ' '

2 '
A

q x y
P x y z dx dy

rπ
= ∫∫  (3.2) 

where 2 2 2
' ( ') ( ')r x x y y z= − + − + and q is the normal pressure distribution 

In a two dimensional contact problem, the load does not vary with y, so the problem can 

then be considered in only the (x, z) direction with load q(x) and displacement in z-

direction.  The two dimensional elastic solution is then  

2 2
0 0

1 ( ') 1
( ,0,0) ( ') log ' ' constant

2 ( ') ( ')

l l
q x

P x q x x x dx
x x yπ π

∞

−∞

= =  −  + 
− +

∫ ∫ ∫  (3.3) 

and the vertical displacement is given by 

0

1 1
( ') log ' ' constant

l

e

zu q x x x dx
υ

µ π

−
= − +∫  (3.4) 

The arbitrary constant can be eliminated by referring the displacement to a specific point 

on the surface, so that the above equation can be written 
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0 0

0

1
( ) ( ) ( ') log ' log ' '

l

e e

z zu x u x q x x x x x dx
υ

µ

−
− =  − − −  ∫  (3.5) 

This equation relates the surface displacement to the surface pressure, or stress, in the 

form of what is called an integral equation of the first kind.  If the pressure q(x) were 

known, then one could directly determine the surface displacement from the equation by 

quadrature, or integration.  However, if the displacement were known, then one would be 

faced with the determination of the pressure q(x), which is then truly an integral equation 

problem.  Also, since in this case, the unknown is entirely under the integral sign, the 

equation is referred to one of the first kind, as opposed to one of the second kind, where 

the unknown is present both under the integral sign and outside of it.  It is also noted that 

the logarithmic term under the integral is called the kernel of the equation and plays a 

very important role in how easily and accurately this type of equation can be solved. 

 

3.2 Viscoelastic Solution

 

As discussed in the previous section, the stress-strain relations of a viscoelastic 

material depend on time. Hence, viscoelastic solutions can be found by removing the 

time dependency by a Laplace’s transform of the applicable equations, which reduces the 

problem to an associated elastic problem. The solution of this problem can be found 

similar to the elastic solution with an additional s parameter. Once the solution for an 

associated elastic problem is found, a viscoelastic solution is just the inverse Laplace 

transform of the elastic with the various elastic parameters replace by their viscoelastic 

counterparts. The process is known as the correspondence principle of viscoelasticity. 

Following this method, the two dimensional viscoelastic surface displacement is given by 

0

( , , ) ( , ) ( ) ( , )
e e

z z zu x y u x y u x VT y d

τ

τ γ ζ ζ ζ= + +∫  (3.6) 

In the above equation 
z

u is the viscoelastic displacement and e

zu is the elastic 

displacement. Viscoelastic material properties and behavior are included in the above 
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equation in the form of ( )γ τ function. ( )γ τ for materials represented in the form of 

mathematical models is given by 

1

( ) i

N
b

i

i

f e
τγ τ −

=

=∑  (3.7) 

where, 

1 ,  & 
j

i i

g j j

T T
f b T

γ
τ

γ τ τ

    
= = =        
    

        (3.8) 

Boundary conditions used in solving the above three dimensional viscoelastic problem 

are 

   
( , , 0) ( , ,0) 0 for all x and yxz yzx y x yτ τ= =

                                                               (3.9)                     
 

( , ,0) 0 outside the contact area
z

x yσ =
                                                                       (3.10)

 

*( , , 0) ( , ) within the contact areazu x y x y w x b y cδ α β= + + + − −
                             (3.11)

 

where  and xz yzτ τ are the shear stresses, is the normal stress, ,   andδ α β are the constants 

that depend on the contact area and *
w  is the shape of the contact surface. 

Once the pressure distribution is known inside the contact area, the friction coefficient as 

defined by 

*

*

F

N
χ =  (3.12) 

can be determined, where F* is the resultant horizontal force of the contact stress 

distribution, as given by 

* ( , )
 ( , )  z

A

u x y
F q x y dxdy

x

∂
= −

∂∫∫  (3.13) 

and the resultant vertical force of the contact stress distribution as defined by 

* ( , )
A

N q x y dxdy= ∫∫  (3.14) 

 By the above definition of the friction coefficient, it is analogous to the coefficient of 

sliding friction for a block on a plane or the Coloumb friction coefficient. To simplify the 

solution, it is desirable to non-dimensionalize all the above equations. This can be 

achieved using a characteristic length parameter of VT, where, V is the velocity of the 
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moving load and T is a characteristic time constant. Similarly, the following non-

dimensional parameters are introduced 

x

VT
ξ =  

y

VT
η =  

( , ,0)
( , ) z

u x y
v

VT
ξ η =  

0

0

1 1
( , ) ( , )Q q x y

υ
ξ η

µ π

−
=  

Using these non-dimensional parameters, the non-dimensional elastic displacement 

would then be 

2 2

1 ( ', ')
( , ) ' '

2 ( ') ( ')

e

A

Q
v d d

ξ η
ξ η ξ η

ξ ξ η η
=

− + −
∫∫    (3.15) 

By the viscoelastic correspondence principle, the viscoelastic displacement would then be 

0

2 2 2 2
0

( , , ) ( , ) ( ) ( , )

1 1 ( )
( , , ) ( ', ') ' '

2 ( ') ( ') ( ') ( ')

e e

A

v v v d

d
v Q d d

τ

τ

ξ η τ ξ η γ ζ ξ ζ η ζ

γ ζ ζ
ξ η τ ξ η ξ η

ξ ξ η η ξ ζ ξ η η

= + +

 
= + 

 − + − + − + −  

∫

∫∫ ∫
 (3.16) 

Non-dimensional forms of forces *N and *F are represented by N and F respectively, i.e. 

*

0

2

0

*

0

2

0

1 1
( , )

( )

1 1 ( , )
( , )

( )

A

A

N
N Q d d

VT

F v
F Q d d

VT

υ
ξ η ξ η

µ π

υ ξ η
ξ η ξ η

µ π ξ

−
= =

− ∂
= = −

∂

∫∫

∫∫
   (3.17) 
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Figure 2. Two dimensional viscoelastic contact-cylinder on a viscoelastic strip. 

In the current work a steady state two dimensional contact problem is solved. Assuming 

that the equations above are independent of η  would then convert the problem to be two 

dimensional. 

0 0
0

0 0

' '
( , ) ( , ) ( ') log ( ) log '

' '
v v Q d d

λ τξ ξ ξ ζ ξ
ξ τ ξ τ ξ γ ζ ζ ξ

ξ ξ ξ ζ ξ

 − + −
− = + 

− + − 
∫ ∫    (3.18)  

is the equation that gives the displacement of a 2D viscoelastic problem where 

l

VT
λ =  

is the non dimensional form of the contact length l=a+b. 

Every viscoelastic material reaches a steady state after an infinite amount of time. Hence, 

a steady state solution would then be 

Rolling cylinder on a 

viscoelastic half-space 

R

V

a b

lx =
x

*N

( )xq
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[ ]0 0

0

0

( ) ( ) ( ') ( ') ( ') '

( ) log ( ) log

v v Q K K d

K d

λ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ γ ζ ξ ζ ζ
∞

− = − − −

= + +

∫

∫
   (3.19) 

The horizontal and vertical forces will then be 

*

0

0 0

*

0

0 0

1 1
( )

1 1 ( )
( )

N
N Q d

VT

F v
F Q d

VT

λ

λ

υ
ξ ξ

µ π

υ ξ
ξ ξ

µ π ξ

−
= =

− ∂
= = −

∂

∫

∫
   (3.20) 

To satisfy the boundary condition mentioned in equation (3.11), the viscoelastic 

displacement is written as 

( ) ( ) (0) ( ) ( )v v v w wξ ξ αξ ξ β β= − = + − − −    (3.21) 

where α is the angle of tilt of the contacting rigid profile and β is the profile itself. For a 

rolling cylinder, the surface of the cylinder at the contact region can be approximated to 

be a parabola where, 

21
( ) ( )

2
w ξ β ξ β

ρ
− = − −  

and where ρ is the dimensionless form of the radius R given by 

R

VT
ρ =  

Equation (3.21) with a zero-angle of tilt is 

21 1
( )

2
v ξ ξβ ξ

ρ

 
= − 

 
   (3.22) 

Equations (3.19) and (3.22) both give the displacement inside the contact region hence 

2

0 0

' ' 1 1
( ') log ( ) log '

' ' 2
Q d d

λ ξ ζ ξ
ξ γ ζ ζ ξ ξβ ξ

ξ ξ ξ ζ ξ ρ

∞ −  
+ = −   

− + −   
∫ ∫    (3.23) 

Introducing now, new dimensionless quantities 
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0

0

*

0

0 0

1 1
'( ) ( ) ( )

1 2
' 2 2 '( )

R
Q Q q x

VT

R N
N N Q d

VT VT

λ

υ
ξ ρ ξ

µ π

υ
ρ ξ ξ

µ π

−
= =

−
= = = ∫

   (3.24) 

equation (3.23) then becomes 

[ ] 2

0

1
'( ') ( ') ( ') '

2
Q K K d

λ

ξ ξ ξ ξ ξ ξβ ξ− − − = −∫    (3.25) 

This equation (3.25) represents the integral equation (of the first kind) which can 

subsequently used to solve the rolling contact problem. The integral equation is then 

converted into N number of linear algebraic equations and can be written as 

( ) ( ) ( ){ } 2

1

1
'

2

N

i i i

i

Q K Kξ ξ ξ ξ ξβ ξ
=

− − − − = −  ∑  (3.26) 

 

Figure 3. Discretization of the interface stress 

Linear interpolation 
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3Q′

Discretization of the contact region and 

interpolation of the interface contact stress 
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In figure 3, the contact pressure at the ends of the contact length are known and 

therefore there are (n-1) number of Q' unknowns. The unknown of the equation (3.26) is 

the normalized interface pressure Q' and contact profile β when λ is given. However, in 

the actual situation, what is actually prescribed is the normal load resultant N*, so, like 

most contact problems, an iteration process is required to determine a consistent 

load/stress/contact length values that satisfy the equation. This iterative, numerical 

algorithm is developed in the following chapter. 
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CHAPTER 4. A NUMERICAL/ITERATIVE ALGORITHM FOR CONTACT 

Having derived all the pertinent equations required to solve the viscoelastic 

contact problem, this chapter describes a numerical and iterative solution. All the 

viscoelastic equations derived earlier uses the material properties in the form of creep 

function of the material. As discussed in the earlier chapters, expressing material 

properties in terms of relaxation parameters is the most common way to characterize the 

material, since these properties are a direct result of strain controlled experimental 

measurements. Hence, the first step in obtaining a solution is to convert the relaxation 

parameters into the corresponding creep parameters. If the relaxation and creep functions 

represented in the form of equations (2.3) and (2.6) then creep parameters can be 

expressed in terms of relaxation parameters using equations (2.14) and (2.15).  

The equations derived in chapter 3, specifically equation (3.19)-(3.22), determine 

the pressure distribution, resultant horizontal and vertical forces, and friction coefficient 

for a given contact length, radius of the cylinder, velocity and time constant. But, the 

contact length is always dependent on the vertical force acting. Hence, an iterative 

process is required which makes an initial guess of contact length according to the given 

vertical force.  

Let, the normalized load acting on the backing material be N', the contact length λ 

and let N0' denote the desired load on the cylinder or roller. The following algorithm, 

similar to the Newton-Raphson method for solving nonlinear equations, forms a process 

to iterate to a consistent load and contact length.  
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1. Given a target load value 

2. Estimate initial contact length from long-term (elastic) value  

3. Set initial values                   and 

4. Set error tolerance Tol and iteration index  

while 

increment index 1i i= +  

generate grid for this 
i

λ λ=  

solve the integral equation for Q′  

integrate to get 
i

N ′  

converged: 0 0N N Tol′ − ≤  

yes: exit loop 

no: estimate new contact length ( )1 0
1 2 1

1 2

i

i i i i

i i

N N

N N
λ λ λ λ−

− − −

− −

 ′−
= + − 

− 
 

continue 

end 

 

0N ′

1 02 Nλ ′=

0 1 / 2λ λ= 0 0N =

0i =
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Figure 4. The iteration process.
 

Once, the appropriate contact length is found the pressure distribution and the 

friction coefficient are found using equations (3.24) and (3.25). In this way, the 

developed program calculates the pressure distribution and coefficient of friction from 

the given data of vertical force, radius of cylinder, velocity and time constant. 
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CHAPTER 5. RESULTS 

In this chapter results like contact pressure and friction coefficient have been 

presented for a contact problem with a rigid cylinder rolling on a realistic viscoelastic 

backing material.  

5.1 Material Properties 

As mentioned earlier, the behavior of the material is represented in the form of 

relaxation modulus. Figure 5 shows the master curve for a typical rubber compound used 

in conveyor belt coverings. It shows the storage and loss moduli of the material as a 

function of frequency, as constructed from data measured from frequency sweeps, at 

various fixed temperatures, over a limited range of frequencies as is practical in a 

dynamic mechanical analyzer (DMA). Typical temperature ranges are -80°C to +80°C in 

increment of 10°C and typical frequency ranges are about 0.1 Hz. to 100 Hz. The data at 

a fixed temperature are then shifted horizontally on the frequency axis to overlay on a 

single plot to form a graph like that shown. Justification for extending the data to a broad 

range of frequencies, hence time scales, is called the correspondence principle of 

viscoelasticity, and allows measured properties at moderate frequencies to be extended to 

a much broader time and frequency scale by taking data at a range of temperatures. 

 



24 

 

 

Figure 5. A master curve of the viscoelastic storage and loss moduli  

From this plot the relaxation strengths and relaxation times may be determined 

and Figure 6 shows the plot of relaxation strengths and the corresponding relaxation 

times. 
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Figure 6. A discrete relaxation spectrum  

This relaxation spectrum is converted to creep compliance by the process outlined 

in chapter 2.2 and Figure 7 shows the source relaxation modulus and computed creep 

compliance for the material of figure 6. 
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Figure 7. Relaxation and creep function vs time. 
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5.2 Two Dimensional Rolling Cylinder Problem 

In this section the results for the contact problem are presented. As check cases, 2 

sets of results, corresponding to the results presented in Goodier and Loutzenheiser [8], 

are obtained first. In these check cases results are obtained for one-parameter and five-

parameter models. Plots shown below depict the contact pressure profile for a one 

parameter (Figure 8) with different material properties (varying f) and a five parameter 

(Figure 9) models. 

 

Figure 8. Contact pressure profiles for the one-parameter model 

Figure 8 shows the contact pressure profiles for a one parameter model with 

different material properties represented by f.  
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Figure 9. Contact pressure profile for the five-parameter model. 

Table 1.  

Number of parameters β/λ β/λ 

(Goodier & 

Loutzenheiser) 

Friction 

coefficient 

Friction 

coefficient 

(Goodier & 

Loutzenheiser) 

1  

(with f=10 and n=40) 

0.1959 0.1952 0.43093 0.4308 

5 

 (n=40) 

0.46992 0.4694 0.040523 0.0402 

 

Table 1 shows the contact length for one parameter and five parameter models 

compared with the results from Goodier & Loutzenheiser. 
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Goodier and Loutzenheiser’s formulation calculates the contact stress and normal 

force acting with the given contact length. This is further modified in the current work to 

calculate the contact pressure and contact length with the given normal force. Contact 

pressure is calculated for normal force of 2000 N/m and a velocity of 5 m/s. Plot shown 

below (Figure 10) represents the variation of contact pressure along the contact length. 

Figure 10. Contact pressure along the contact surface. 
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Figure 11. Normalized contact pressure along the contact length. 

Friction coefficient is plotted by varying the normal load acting on the backing 

material and also the velocity. Figure 12 shows the plot of friction coefficient varying 

according to the normal load and velocity. 
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Figure 12. Variation of friction coefficient with velocity and normal load. 
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CHAPTER 6. DISCUSSION & CONCLUSIONS 

From the results and example problems there are several conclusions evident from 

this study and implementation of the viscoelastic rolling contact formulation and solution. 

Although the issue of converting the relaxation modulus to creep compliance is a 

peripheral one to the main goal of determination of the rolling resistance, the conversion 

methodology provided by Park and Schapery [9] is a very efficient and accurate way to 

perform the conversion.  Furthermore, for any given viscoelastic material of the substrate 

and the relaxation parameters, this conversion need only be done once prior to the contact 

iteration solution. 

The integral equation formulation of the contact problem as given by Goodier and 

Loutzenheiser [8] forms a very elegant and ultimately efficient numerical formulation.  

When combined with a simple iterative algorithm to determine a consistent contact 

length/applied force pair, for a given material, speed and the roll radius, the solution is 

relatively quick and accurate.  In all the cases examined here, the solution converged with 

less than 10 iterations for an error tolerance of 410 − .  The integral equation method, 

requiring integration only over the length of the contact, requires only a discretization of 

the contact length, the remainder of the domain of the problem – the semi-infinite 

viscoelastic base – and the far-field boundary conditions are all taken into account by the 

kernel of the integral equation. 

As a consequence of the integral equation formulation being one of the first kind, 

the numerical solution suffers from the non-uniqueness associated with numerical 
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solution of these type of resulting equations.  This effect reveals itself in the jagged 

behavior of the solution near the front (where the contact first occurs, right side) edge of 

the contact region for certain viscoelastic material parameters and speeds.  Goodier and 

Loutzenheiser [8] allude to and discuss this problem in their report, even doing some 

numerical experiments to remove this effect from the numerical solution, but to no 

particular avail.  Although this effect is also present in this study with realistic 

viscoelastic materials, its effect in the rolling resistance factor is not expected to be 

serious, since some oscillatory behavior of the interface pressure in the local vicinity of 

the leading point of contact does not effect the integrated moment of that pressure profile, 

which determines both the contact resultant force and moment about the roller center.  

Tolerance of this oscillatory behavior is evident in the simple test problems with single 

parameter materials. 

The rolling friction coefficient as predicted by the present approach also agrees 

qualitatively with simpler models, i.e., from the last example above, the friction 

coefficient shows a weak dependency on the speed, and approaches zero as the speed 

goes to zero.   The dependence on the impressed contact force is more dramatic and 

follows more weak power dependence on the force, all other parameters held constant.  

This is qualitatively evident from the last example.  Simpler solutions show this 

dependency to be proportional to ( ) 3
1

force Impressed . 
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