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ABSTRACT

Launch mission planning and ascent guidance is one of the most notable engineering fields

where optimization tools and optimal control theory have found routine applications. Optimal-

ity is critical to achieve the full performance of a launch vehicle. In the case of a multi-stage

launch, allowing for optimized coast arcs between burns can significantly reduce propellant

consumption and enhance mission capability. These coast arcs, however, render the optimal

control problem more sensitive and increase algorithm convergence difficulties. This work

presents detailed improvements to an analytical multiple-shooting (AMS) method for reliable

generation of the optimal exo-atmospheric ascent trajectory. The trajectory consists of two

burns separated by an optimized coast arc. The problem is in closed-form and quadratures.

A strong effort is made in increasing the robustness, reliability, and flexibility of the algo-

rithm. The improvements include an introduction of a more sophisticated numerical method,

replacement of the current coast arc solution with a completely general, compact, and easily

implementable method capable of determining the solution to machine precision, and a direct

treatment of the orbital insertion conditions and resulting unknown multipliers. An aerospace

industry standard trajectory optimization software, Optimal Trajectories by Implicit Simu-

lation (OTIS), is employed to compare the results and verify the improved AMS algorithm.

A wide range of mission scenarios are tested using the algorithm in open-loop solution and

closed-loop simulation.
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CHAPTER 1. INTRODUCTION

1.1 Background

Launch mission planning and ascent guidance is one of the most notable engineering fields

where optimization tools and optimal control theory have found routine applications. Opti-

mization is critical to meeting mission requirements such as safety and reliability as well as cost

requirements. Goals for NASA’s 2nd generation RLV program [1] includes significant improve-

ments in these areas including a requirement to reduce the risk of crew loss to approximately 1

in 10,000 missions while lowering the cost of delivering payloads to low-Earth orbit to less than

$1,000 per pound. Indeed, advancements in launch vehicle guidance are not only required, but

contribute significantly to achieving such goals [2].

Traditionally, ascent guidance is partitioned into an atmospheric phase and a vacuum

phase separated by a predetermined time or event. The atmospheric phase employs an open-

loop guidance scheme in which the launch vehicle steering commands are predetermined and

obtained via parameter optimization for a given set of vehicle constraints and atmospheric con-

ditions. Any mission or system parameter change requires re-planning of the ascent trajectory

and is a labor intensive and time consuming process. However, much research exists aimed

at developing robust on-board guidance algorithms for generation of optimal ascent trajectory

steering commands in closed-loop for the atmospheric phase of ascent.

The vacuum phase employs a closed-loop guidance scheme in which the launch vehicle

steering commands are generated on-board at each guidance cycle and are determined from

current conditions including the vehicle state information. When solving the optimal ascent

problem on-board repeatedly with the current conditions as the initial conditions, the guidance

solution is in effect closed-loop. On-board algorithms for solving the optimal ascent problem
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have provided the foundation for upper stage closed-loop ascent guidance dating back to the

1960s. Applications of classical exo-atmospheric optimal ascent guidance algorithms include

the Iterative Guidance Mode (IGM) used for the Saturn V rockets [3] and Powered Explicit

Guidance (PEG) [4] used on the Space Shuttle. Additionally, an algorithm termed (OPGUID)

developed by Brown and Johnson [5] represents another early attempt at closed-loop exo-

atmospheric ascent guidance. In this work, the optimal ascent problem is solved as a boundary

value problem using a tailored numerical integration algorithm where at each guidance cycle

the solution is updated using only a single Newton iteration.

In the case of a multi-stage launch, allowing for an optimized coast arc between two burns

is significantly more efficient in propellant consumption and allows for increased deliverable

payload mass and increased mission capability. In addition to launch, many orbit transfer prob-

lems as well as some mission abort scenarios require the use of multiple burn arcs separated

by disproportionately long coast arcs. As a result, much research exists seeking robust and

reliable guidance algorithms capable of handling multi-burn trajectory optimization. Some of

the earliest research in this area was also done by Brown et. al. [6]. Here an indirect shooting

method was developed for optimization of multiple-burn rocket flights. The algorithm, named

(SWITCH), was a multi-burn-arc version of the original single-burn-arc algorithm (OPGUID)

mentioned previously. Jezewski [7, 8] extended this work by introducing a linear gravity field

approximation resulting in reduced computation time with minimal to no loss in solution ac-

curacy. A production algorithm termed ‘Gamma Guidance’ was developed by Hardtla [10]

and was used for the IUS spacecraft. Recent research on multi-burn trajectory optimization

addresses atmospheric fight as well. Gath and Calise [11] introduced a hybrid ascent guid-

ance method that was later improved by Calise et. al. [12] to a free final time formulation in

which coast arcs are optimized. In another recent effort, Dukeman and Calise [13] develops a

numerical multiple-shooting algorithm and introduces alternate forms of the switching condi-

tions which allow for more general terminal conditions. In similar works, Lu et. al. [14] and

Zhang [15] present an analytical multiple-shooting (AMS) method within the framework of

conventional multiple-shooting, however the propagation of the state/costate is all analytical.
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1.2 Overview

The analytical multiple-shooting (AMS) method lays the foundation for the work presented

in this thesis and a detailed development of the method is presented. The primary effort in

this work is to strive for enhanced robustness and reliability of the algorithm. In addition,

efforts are made to further prove the efficiency and validity of the algorithm as a valuable

tool in on-board applications for closed-loop ascent guidance. In this approach the optimal

trajectory includes segments of burn and coast arcs. Instead of seeking maximum generality,

the development in this work is presented in a burn-coast-burn sequence, however as will be

discussed, there is no methodological difficulty in extending the development to an arbitrary

sequence of burn and coast segments.

Most of the existing work uses the classical or some modified version of the Newton-Raphson

method for numerical solutions. One contribution of this thesis is to enhance the reliability and

convergence of the algorithm by adopting the highly-regarded Powell’s dog-leg method [16].

This method has been proven to converge for problems where the Newton-Raphson method

has failed, even for a substantial range of initial guesses.

For the optimized coast arc segment of the ascent trajectory, the current approach opts

to solve a Gauss orbit determination problem by implementing the f and g series [25, 26]

in orbital mechanics. This method does suffer from some deficiencies wherein the required

series coefficients cannot be easily determined recursively from an algorithm implementation

viewpoint. Another contribution of this work is to implement Goodyear’s method [17, 18] of

orbit determination. This method is similar to the f and g series, however Goodyear’s method

provides a completely general solution for both the state and its partial derivatives. This

provides an efficient and easily implementable solution for all cases of two-body motion.

The trajectory terminal conditions introduce unknown Lagrange multipliers that must be

addressed in solving the optimal ascent problem. Most of the existing work addresses this

by eliminating the unknown multiplier from the problem using either numerical or analytical

techniques. This decreases the number of unknowns that must be iterated on when finding the

the optimal solution numerically. Adopting Powell’s dog-leg method in place of the classical
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Newton-Raphson method allows these multipliers to be including as unknowns in the optimal

ascent problem with little noticeable decrease in convergence rates. For this reason, this ability

has been added to the analytical multiple-shooting algorithm as a user configurable option.

To verify the results obtained from the analytical multiple-shooting method, an industry

standard aerospace trajectory optimization software, Optimal Trajectories by Implicit Simu-

lation (OTIS) [19], is used to compute and compare the burn-coast-burn optimal trajectory

found under identical conditions. An overview of OTIS and is capabilities will be presented.

Furthermore, the analytical multiple-shooting algorithm is used to generate optimal steering

commands driving closed-loop simulations under a full nonlinear gravity model. The closed-

loop simulations act as checks on the validity of the optimal open-loop trajectories found

from the AMS method. If the closed-loop trajectory matches the open-loop one closely, the

approximations adopted in the development of the AMS method are justified.

The current algorithm is built on a two-stage launch vehicle framework such that the first

burn is of fixed duration determined by the vehicles available propellant. For single-stage

launch vehicle missions and orbit transfer missions it is desirable to extend this framework to

optimize the first burn as well. Development is presented showing necessary equations enabling

this ability.
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CHAPTER 2. MATHEMATICAL BACKGROUND

2.1 Optimal Control Theory

Launch vehicle trajectory optimization can have a significant impact on fuel usage for a

given payload, or on delieverable payload mass for vehicles of the same gross weight. For

these reasons, the need to optimize the guidance commands to meet such objectives becomes

very important and some method of optimization is required. Optimal control theory [23, 27]

provides the methodology to accomplish this task. Considering the necessity and significance

of optimal control theory application to launch vehicle ascent planning and guidance problems,

a general overview and brief development of the theory as it applies to the problems of interest

is presented below.

2.1.1 Problem Formulation

A general nonlinear time-varying dynamic system can be described by the state equation

ẋ = f (x,u, t) , x(t0) = x0 (2.1)

where x(t) ∈ Rn is the system state vector, u(t) ∈ Rm is the system control input vector,

and x(t0) = x0 is the state at the initial time t0. A Bolza functional performance index is

associated with the system and is of the form

J = φ (xf , tf ) +

∫ tf

t0

L (x,u, t) dt (2.2)

where φ and L are scalar functions and in many practical applications the initial time can be

set to zero.

The optimal control problem is to find the input u∗(t), t0 ≤ t ≤ tf such that u∗(t) and

the corresponding state x∗(t) minimize the performance index in Eq. (2.2) while satisfying the
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state equation (2.1) and an additional boundary condition on the final state of the form

Ψ (xf , tf ) = 0 (2.3)

where Ψ ∈ Rp and xf = x(tf ) is the state at the final time tf .

2.1.2 Development

Lagrange multipliers are used to augment the state equation (2.1) and terminal constraints

in Eq. (2.3) to the performance index in Eq. (2.2) and is given by

J ′ = φ (xf , tf ) − νTΨ (xf , tf ) +

∫ tf

t0

[

L(x,u, t) − pT (f(x,u, t) − ẋ)
]

dt (2.4)

where the constant multiplier ν ∈ Rk and the time-varying multiplier p(t) ∈ Rn, referred

to as the costate vector, are the Lagrange multipliers augmenting the terminal and dynamic

constraints respectively.

A Hamiltonian function is defined as

H = pT f(x,u, t) − L(x,u, t) =

n
∑

i=1

pifi(x,u, t) − L(x,u, t) (2.5)

allowing the augmented performance index to be expressed as

J ′ = φ (xf , tf ) − νTΨ (xf , tf ) +

∫ tf

t0

[

pT ẋ−H
]

dt (2.6)

The constrained minimum of J corresponds to the unconstrained minimum of J ′ found by

determining the increment of J ′ as a function of increments in x, p, ν, u, and t resulting in

the following expression [27].

dJ ′ =
(

φx − Ψx
T ν + p

)T
dx

∣

∣

∣

tf
+

(

φt − Ψt
T ν −H

)

dt
∣

∣

tf

− ΨT
∣

∣

tf
dν −

(

−H + pT ẋ− pT ẋ
)

dt
∣

∣

t0
− pTdx

∣

∣

t0

+

∫ tf

t0

[

(−Hx − ṗT )δx −Huδu + (−Hp + ẋ)T δp
]

dt (2.7)

where the x, p, u, and t subscripts refer to partials with respect to that variable.
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2.1.3 Necessary Conditions (The Maximum Principle)

The resulting necessary conditions are a set of conditions that u∗(t) and x∗(t) must satisfy.

These conditions are given below.

State equation:

ẋ =
∂H

∂p
= f (x,u, t) , t0 ≤ t ≤ tf (2.8)

Costate equation:

ṗ = −∂H
∂x

= −∂f
∂x

T

p +
∂L

∂x
, t0 ≤ t ≤ tf (2.9)

The optimal solution must satisfy the Pontryagin Maximum Principle of optimality [28] which

states that the Hamiltonian must be maximized over all admissible control values u for optimal

values of the state and costate. This can be expressed as

H(x∗,u∗,p, t) = max
u

H(x∗,u,p, t) (2.10)

where ∗ represents optimal values. This principle will be useful in determining the optimal

control input for the launch vehicle vacuum ascent problem. When the control u is uncon-

strained the optimality condition (2.10) necessitates the stationarity condition which can be

seen from equation (2.7).

Stationarity condition:

∂H(p,x∗,u∗, t)

∂u
=
∂f

∂u

T

p− ∂L

∂u
= 0 (2.11)

For the launch vehicle vacuum ascent problem presented later, the final state xf and the final

time tf are both free and independent allowing the coefficients of dx|tf and dt|tf in equation

(2.7) to be set to zero independently. This results in two transversality conditions as follows.

Costate Transversality condition:

pf = − ∂φ

∂xf

+
∂Ψ

∂xf

T

ν (2.12)

where pf = p(tf ) is the costate at the final time tf .

Hamiltonian Transversality condition:

H(tf ) =
∂φ

∂tf
− ∂Ψ

∂tf
(2.13)
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2.1.4 Additional Conditions

Another important condition derived from the Hamiltonian in Eq. (2.5) is as follows. The

time derivative of the Hamiltonian can be expressed as [27]

Ḣ =
∂H

∂t
+
∂H

∂x

T

ẋ +
∂H

∂u

T

u̇ + ṗT f =
∂H

∂t
+
∂H

∂u

T

u̇ +

(

∂H

∂x
+ ṗ

)T

f (2.14)

From the costate equation and stationarity condition above in Eqs. (2.9) and (2.11) respec-

tively, it can be seen that if u(t) is optimal then Eq. (2.14) simplifies to

Ḣ =
∂H

∂t
(2.15)

For optimal control problems where the functions f and L are not explicit functions of time,

such as the launch vehicle vacuum ascent problem presented later, the above expression simply

becomes

Ḣ = 0 (2.16)

and the Hamiltonian takes a constant value along the optimal trajectory.

Further, from the Hamiltonian transversality condition in Eq. (2.13), since the functions φ

and Ψ are not explicit functions of the final time tf , then

H(tf ) = 0 (2.17)

and therefore from satisfaction of the condition (2.16), the Hamiltonian is zero over the entire

optimal trajectory.
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CHAPTER 3. VACUUM ASCENT PROBLEM FORMULATION

3.1 Problem Description

Executing multiple burn sequences separated by optimized coast arcs are theoretically

more efficient on fuel usage. In the most general sense, any combination of powered / un-

powered stages can be included in the ascent problem, and there are no difficulties extending

the methodology presented below to these cases. However, the vacuum ascent problem devel-

opment presented consists of one optimal coast arc between two powered stages. Using Space

Shuttle terminology, the first powered stage is a continuation of endo-atmospheric flight be-

ginning just after the launch vehicle clears the atmosphere and lasts until main engine cut-off

(MECO). The optimal coast arc then precedes the second powered stage or orbital maneuver

system (OMS) burn. An assumption made for this development is that the initial condition

(r0,V0) at the beginning of the first powered stage is known. Also, for the current devel-

opemnt, MECO time is predetermined by the launch vehicle’s propellant mass and flow rate.

Therefore, the objective of the problem is to optimize the coast arc duration such that the

OMS burn will meet orbital insertion conditions while maximizing deliverable payload mass.

3.2 Reference Frames and Transformations

The multi-stage exo-atmospheric ascent guidance problem formulation uses two reference

frames:

1. Earth Centered Inertial (ECI)

2. Guidance (Plumbline)
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3.2.1 Earth Centered Inertial Frame

In the Earth centered inertial (ECI) frame, the z axis points north along the rotation

axis. The x axis lies on the equator along the mean vernal equinox. The y axis completes a

right-handed coordinate system. Figure 3.1 illustrates the coordinate system.

Figure 3.1 Earth Centered Inertial frame

3.2.2 Guidance (Plumbline)

The ascent guidance, or sometimes referred to as plumbline, reference frame is also an Earth

centered inertial frame. The x axis points parallel to the launch site local vertical direction

and is positive outward. The z axis lies along the launch azimuth or downrange direction. The

y axis completes a right-handed coordinate system. The launch azimuth Az for an ascending

orbit is given by:

Az = sin−1

(

cos i

cos Φc

)

(3.1)

and for a descending orbit:

Az =
π

2
+ sin−1

(

cos i

cos Φc

)

(3.2)
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where i is the target orbit inclination and Φ0 the launch site geocentric latitude. Refer to

Figure 3.2.

Figure 3.2 Launch site with projected target orbit

3.2.3 Coordinate Transformation

The ascent guidance problem and its solution implementation uses the Guidance inertial

reference frame, however it may be useful to convert to the Earth Centered Inertial frame.

Let TEG be the transformation matrix from the ECI to guidance frame. This becomes

TEG =













cos Θ cos Φc sin Θ cos Φc sin Φc

− sin Θ cosAz + cos Θ sin Φc sinAz cos Θ cosAz + sin Θ sinΦc sinAz − cos Φc sinAz

− sin Θ sinAz − cos Θ sin Φc cosAz cos Θ sinAz − sin Θ sinΦc cosAz cos Φc cosAz













(3.3)

where Θ and Φc are the longitude and geocentric latitude of the launch site respectively. Az

is the launch azimuth defined in Eq. (3.1) and Eq. (3.2).
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3.3 Ascent Dynamics

After the launch vehicle reaches an altitude where aerodynamic forces can be ignored the

vacuum flight equations of motion become

ṙ = V (3.4)

V̇ = g(r) +
T1T

m(t)
(3.5)

ṁ = − T

g0Isp
(3.6)

where r ∈ R3 and V ∈ R3 are the position and velocity vectors in the guidance inertial frame.

Gravitational acceleration is a function of r, and g0 is it’s magnitude at some reference radius

R0. The unit vector 1T defines the direction of the engine thrust with magnitude T . Engine

performance defined by the specific impulse Isp is used to determine the vehicles mass flow rate

ṁ. Using another reference radius r̄ (e.g., an average value of r along the ascent trajectory),

a so-called linear approximation to the gravitational acceleration [9] can be made

g = − µ

r̄2
r

r̄
= −ω̄2r (3.7)

where µ is the Earth’s gravitational parameter, and ω̄ =
√

µ/r̄3 is the Schuler frequency at

r̄. This preserves the gravitational acceleration direction in the ascent flight, and enables an

analytical solution to the co-state equation in optimal vacuum flight as shown will be shown.

Variation in gravitational acceleration magnitude due to this approximation has negligible

influence on the solution. One closed-loop guidance algorithm implementation is to at each

guidance cycle update r̄ thus further minimizing any effects of the approximation.

Convergence of the numerical methods presented in this paper are improved by conditioning

problem parameters. Distances are normalized by the reference radius R0, velocities by
√
R0g0,

and time by
√

R0/g0. Continuing use of the variables r and V, now representing dimensionless

parameters, the above equations of motion become

r′ = V (3.8)

V′ = −ω2r +AT1T (3.9)
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m′ = −T
c

(3.10)

where now the differentiation is with respect to the nondimensional time τ = t/
√

R0/g0,

ω =
√

(R0/r̄)3 is the nondimensional Schuler frequency, AT = T/mg0 is the instantaneous

thrust acceleration in g, and c = Isp/
√

R0/g3
0 is piecewise constant that depending on algorithm

implementation, can be updated for each powered stage or during each guidance cycle as

discussed above.

3.4 Optimal Control Problem

The launch vehicle ascent trajectory optimization objective as mentioned previously is to

determine the duration of coast arc to minimize the fuel usage or equivalently maximize payload

mass, while meeting orbital insertion conditions.

3.4.1 Performance Index

The thrust direction unit vector 1T is the control variable to be determined by the opti-

mization problem during the launch vehicle ascent trajectory. The performance index can be

written as

J = −
∫ τf

τ0

m′dτ =

∫ τf

τ0

T

c
dτ (3.11)

where τ0 is the start of the first powered stage and τf is the unknown end time of the OMS

burn. Clearly this objective function will maximize the orbital insertion mass m(τf ).

3.4.2 Orbital Insertion Conditions

The orbital insertion conditions are specified in terms of k equality constraints (k ≤ 6) on

the final state

Ψ(rf ,Vf ) = 0 (3.12)

From standard optimal control theory, the terminal constraints are adjoined to the performance

index in Eq. (3.11) with a constant associated Lagrange multiplier ν ∈ Rk which results in
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the transversality conditions

pr(τf ) =

(

∂Ψ

∂rf

)T

ν (3.13)

pV (τf ) =

(

∂Ψ

∂Vf

)T

ν (3.14)

where pr and pV are the costate vectors corresponding to the inertial position and velocity

vectors respectively. Typical oribital insertion conditions will include a subset of the six target

orbital elements. The 6 transversality conditions in Eqs. (3.13-3.14) can be manipulated

into 6 − k independent conditions by eliminating the Lagrange multipler ν. This decreases

the number variables and associated equations required for the guidance algorithm. This

manipulation, however, depends on the form of terminal conditions used and may not always

be desired, for example when the terminal conditions change during the ascent for unanticipated

reasons. The current algorithm implementation [15] uses this manipulation. This work adds

the flexibility to solve for the Lagrange multiplier ν directly.

The final time τf of the OMS burn is free and must be determined by the optimal control

problem. Also, because the terminal constraints in Eq. (3.12) are independent of the time τf ,

an additional transversality condition must be satisfied and demands that

H(τf ) = 0 (3.15)

This will become useful in regards to the switching functioned described later.

3.4.3 Hamiltonian and Additional Necessary Conditions

Again from standard optimal control theory, the dynamic system in Eqs. (3.8-3.10) are

adjoined to the performance index in Eq. (3.11) with a time varying costate vector resulting

in the Hamiltonian

H = pr
TV− ω2pV

T r + pV
T1TAT − pm

T

c
− T

c
(3.16)

where pm is the costate variable corresponding to the state variable m. This can be rewritten

as

H = pr
TV− ω2pV

T r + T

(

pV
T1T

mg0
− pm

c
− 1

c

)

:= HNT + TS (3.17)
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where HNT is the portion of the Hamiltonian having no thrust influence. A second adjoint

dynamical system in the costate must be satisfied.







p′

r

p′

V






= −







∂H
∂r

∂H
∂V






=







ω2pV

−pr






(3.18)

Additionally, the optimal control problem must satisfy the optimality condition mentioned

previously in section (2.1.3) wherein the thrust direction unit vector 1T must be chosen to

maximize the Hamiltonian (3.17) for optimal values of the state and costate.

H(x∗,u∗,p, t) = max
u

H(x∗,u,p, t) (3.19)

Inspection of Eq. (3.17) requires the control vector 1T be aligned with the costate vector pV ,

or 1T = pV /‖pV ‖. For this reason, the costate vector pV is also referred to as the primer

vector [29].

The second term in Eq. (3.17) involves a switching function S that determines when the

vehicle is using full thrust or coasting [14, 13, 30].

T =











Tmax if S > 0,

0 if S < 0.
(3.20)

The case when S = 0 for finite times is not considered. In the current framework of the burn-

coast-burn sequence presented, let τOMS be the start of the OMS burn. It is then necessary

that S(τOMS) = 0 and S(τ) > 0 for τ > τOMS. Noticing that the Hamiltonian is not an

explicit function of τ , its value remains constant along an optimal trajectory. Further, it has

been seen from Eq. (3.15) that Hamiltonian is zero at τf and therefore must be zero along the

entire optimal trajectory. This results in an alternative expression

HNT (τOMS) = 0 (3.21)

This equivalent expression avoids the necessity to explicitly compute the costate pm along the

trajectory.
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CHAPTER 4. APPROACH

4.1 Analytical Ascent Solutions

The vacuum ascent optimization problem presented above has a semi-analytic solution

[30, 15]. The use of the linear gravity approximation in Eq. (3.7) allows a closed-form solution

of the costate equation (3.18). This combined with quadratures allows an approximate closed-

form solution of the state equations (3.8-3.9). This development is presented below. Again, τ0

is the start of the first powered stage just after the vehicle exits the atmosphere. Rewrite the

costate vectors pr and pV in the form

λ(τ) =







pV (τ)

−pr(τ)/ω






, λ0 =







pV0

−pr0
/ω






(4.1)

where pV0
and pr0

are to be determined initial conditions for the costate at τ0. It can be

verified that for τ ≥ τ0 the costate equation Eq. (3.18) has closed-form solution

λ(τ) =







cos[ω(τ − τ0)]I3 sin[ω(τ − τ0)]I3

− sin[ω(τ − τ0)]I3 cos[ω(τ − τ0)]I3






λ0 := Φ(τ − τ0)λ0 (4.2)

where I3 is a 3 × 3 unit matrix. Rewrite the state vectors r and V as

x(τ) =







r(τ)

V(τ)/ω






, x0 =







r0

V0/ω






(4.3)

It can be verified that the state equations (3.8-3.9) have the following solution

x(τ) =







cos[ω(τ − τ0)]I3 sin[ω(τ − τ0)]I3

− sin[ω(τ − τ0)]I3 cos[ω(τ − τ0)]I3






x0+









∫ τ

τ0

1

ω
sin[ω(τ − σ)]AT (σ)1PV (σ) dσ

∫ τ

τ0

1

ω
cos[ω(τ − σ)]AT (σ)1PV (σ) dσ









(4.4)
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where 1PV = pV /‖pV ‖ and as already stated is the direction of optimal thrust 1T . Also, note

that the thrust acceleration AT (·) is time varying because the vehicle mass is changing. After

some trigonometric manipulation, Eq. (4.4) can be written as

x(τ) = Φ(τ − τ0)x0 + Γ(τ)I(τ, τ0) (4.5)

where

Γ(τ) =
1

ω







sin(ωτ)I3 − cos(ωτ)I3

cos(ωτ)I3 sin(ωτ)I3






(4.6)

and

I(τ, τ0) =







Ic(τ, τ0)

Is(τ, τ0)






(4.7)

with

Ic(τ, τ0) =

∫ τ

τ0

cos(ωσ)AT (σ)1PV (σ) dσ :=

∫ τ

τ0

ic(σ) dσ ∈ R3 (4.8)

Is(τ, τ0) =

∫ τ

τ0

sin(ωσ)AT (σ)1PV (σ) dσ :=

∫ τ

τ0

is(σ) dσ ∈ R3 (4.9)

The forcing thrust integrals Ic(·,·) and Is(·,·) can be closely approximated with numerical

quadrature formulas. Such formulas include the trapezoidal rule, Simpson’s rule, the 3/8-

rule, and Milnes rule which are all Newton-Cotes formulas of varying complexity wherein the

integrands ic and is are replaced by suitable interpolating polynomials. This approach opts

to use Milne’s rule [24] with the justification of considerably higher precision with little added

computation margin. This leads to the approximations

Ij(τ, τ0) ≈ (τ − τ0)

90
[7ij(τ0) + 32ij(τ0 + δ) + 12ij(τ0 + 2δ)

+ 32ij(τ0 + 3δ) + 7ij(τ0 + 4δ)], j = c, s (4.10)

Note that equation (4.10) requires the values of the primer vector pV at τ0 + iδ in evaluating

the thrust integrals. These values are calculated from the propagation of Eq. (4.2) with the

initial guess λ0. Also, if τ − τ0 grows too large for longer powered stages, additional segments

in time grid may be used as necessary to decrease approximation error.
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4.2 f and g Series Coast State Propagation

During coast phases where AT = 0, the vehicle position and velocity can still be obtained

by propagating Eq. (4.4). This closed-form solution is efficient and convenient in that it does

not require any algorithm implementation changes from powered stages. However, the linear

gravity approximation allowing this closed-form solution may introduce undesirable error as

the coast time increases. In some cases, this error is too dominant to ignore. For this reason,

the current approach [15] opts to solve a Guass orbit determination problem implementing the

f and g series in orbital mechanics [25, 26]. This gives an alternate method to propagate the

state over the coast phase. The inverse-square gravity model is used, and this method does not

compromise the solution accuracy even for large coasts having relatively large radial distance

changes. In either case, the vehicle state at the end of the coast is uniquely defined by it’s

state at the beginning and the coast time. The costate λ will continue to propagate using Eq.

(4.2)

The f and g series is a Taylor series expansion of the state in time, with all coefficients

expressed as functions of r0 and V0. Let τMECO be the instant of Main Engine Cut-Off

(MECO) and τOMS be the start of the second or orbital maneuver system burn. The vehicle

state at the end of the coast can be expressed as

rOMS = f ·rMECO + g·VMECO (4.11)

VOMS = ḟ ·rMECO + ġ·VMECO (4.12)

where f and g are defined as

f(r0,V0, τ) =

inf
∑

n=0

(τOMS − τMECO)n

n!
Fn (4.13)

g(r0,V0, τ) =
inf
∑

n=0

(τOMS − τMECO)n

n!
Gn (4.14)

where Fn and Gn are the series coefficients and can be found in Reference 25. The derivatives

ḟ and ġ are with respect to coast duration.
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4.3 Multiple Shooting Formulation

The solution to the optimal vacuum ascent problem is, in principle, reduced to a root-

finding problem.The problem consists of 8 unknowns: pr0
∈ R3, pV0

∈ R3, τOMS, and τf .

Directly solving for the unknowns is in essence a single-shooting approach.

The single-shooting approach can suffer from sensitivity problems in the burn-coast-burn

sequence presented. This is amplified by increasingly long coast times and low thrust mag-

nitude OMS burns. Regarding rapid mission planning, and especially the ability for in flight

mission changes, the robustness of the algorithm is of the highest importance. To this end,

algorithm convergence is enhanced using a multiple-shooting formulation [24] adding two addi-

tional nodes to the numerical problem [13, 15, 30]. One node is placed at the end of first burn,

τMECO. Recall that this time is considered specified by propellant availability. The second

node is placed at τOMS, where the coast ends and the second burn begins. The formulation is

illustrated in Figure 4.1. A solution vector stacked with the state and costate is defined and

expressed in compact form as

y(τ) =







x(τ)

λ(τ)






∈ R12 (4.15)

The propagation of y along the first burn interval (τ, τMECO) is determined by the initial

condition y0 at τ0 and the closed form solutions given by Eqs. (4.2) and (4.5). The propagated

value of y at τMECO is denoted by y−

MECO indicating its value as τ → τMECO from the left.

At both nodes added to the formulation, introduce a to-be-determined vector

y+
MECO =







x+
MECO

λ+
MECO






(4.16)

y+
OMS =







x+
OMS

λ+
OMS






(4.17)

where the + denotes guessed solution vectors at their respective nodes. The propagation of y

along the coast arc in the interval (τMECO, τOMS) is now determined from from the guessed

solution vector y+
MECO as the starting condition. The costate is again computed from the
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closed-from solution in Eq. (4.2), however the vehicle state during the coast is computed using

the f and g series in Eqs. (4.11) and (4.12). Again, the propagated value of y at τOMS is

denoted by y−

OMS indicating its value as τ → τOMS from the left. Finally, the propagation

of y during the second burn interval (τOMS, τf ) is computed similarly to the first burn but

with y+
OMS as the starting condition. The addition of the nodes to the formulation and their

to-be-determined vectors y+
MECO and y+

OMS requires the following continuity conditions

y−

MECO − y+
MECO = 0 (4.18)

y−

OMS − y+
OMS = 0 (4.19)

Figure 4.1 Multiple-shooting formulation

This multiple-shooting formulation increases the total number of unknowns by 24 with the

introduction of y+
MECO ∈ R12 and y+

OMS ∈ R12. The continuity conditions in Eqs. (4.18) and

(4.19) provide exactly the same number of equations and thus the dimension of the root finding

problem is increased to 8 + 24 = 32. The introduction of the linear gravity approximation and
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thrust quadratures make the problem completely analytical, both in function evaluation and its

Jacobian computation. The unknowns and constraints of the problem are summarized below.

4.4 Equality Constraints

As discussed previously, a current algorithm implementation [15] eliminates the terminal

constraint Lagrange multiplier ν from the problem formulation. The unknowns in the problem

are given as

z = (λ0, λ+
MECO, x

+
MECO, τOMS, λ+

OMS, x
+
OMS, τf ) ∈ R32 (4.20)

The vacuum ascent solution is found from 32 equality constraints that z must meet. These

constraints include those required from the optimization problem in section (3.4) and the

continuity conditions introduced in section (4.3). The continuity conditions in Eqs. (4.18) and

(4.19) take the form

s1(z) = Φ(τMECO − τ0)λ0 − λ+
MECO = 0 (4.21)

s2(z) = Φ(τMECO − τ0)x0 + Γ(τMECO)I0(τMECO, τ0) − x+
MECO = 0 (4.22)

s3(z) = Φ(τOMS − τMECO)λ+
MECO − λ+

OMS = 0 (4.23)

s4(z) = xfg(τOMS − τMECO,x
+
MECO) − x+

OMS = 0 (4.24)

where the thrust integral I0(τMECO, τ0) = (I0
c , I

0
s)

T has components defined in Eqs. (4.8-

4.9) and λ, propagated by Eq. (4.2) with λ0, is used in computation of the primer vector

direction 1PV (·). The vehicle state vector x at τOMS is computed with the f and g series with

initial condition x+
MECO and is represented above as xfg(τOMS − τMECO,x

+
MECO). The above

conditions in Eqs. (4.21-4.22) provide 24 constraint equations. The switching condition in Eq.

(3.21) between the end of the coast arc and start of the second burn at τOMS is expressed as

s5(z) = λ+
OMS

T
x+

OMS = 0 (4.25)

This provides one additional constraint equation. The final vehicle state and costate, deter-

mined in the interval (τOMS , τf ) by propagating Eqs. (4.2) and (4.5) with initial conditions
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λ+
OMS and x+

OMS, are expressed as

λf = Φ(τf − τOMS)λ+
OMS (4.26)

xf = Φ(τf − τOMS)x+
OMS + Γ(τf )IOMS+(τf , τOMS) (4.27)

where again the thrust integral IOMS+(τf , τOMS) = (IOMS+
c , IOMS+

s )T has components defined

in Eqs. (4.8-4.9) and λ, propagated by Eq. (4.2) with λ+
OMS, is used in computation of the

primer vector direction 1PV (·). As mentioned previously in section (3.4.2), the trasversality

conditions are manipulated into 6 − k independent conditions that, when combined with the

k orbital insertion conditions in Eq. (3.12), constitute another 6 constraint equations in the

form

s6(z) = s6(xf ,λf ) = 0 (4.28)

The specific form of Eq. (4.28) will depend on the set or orbital insertion conditions. The

final equality constraint is the transversality condition on the Hamiltonian H(τf ) = 0 (see

Eq. 3.15). This constraint can be simplified and even under certain conditions eliminated and

replaced by a trivial constraint [30]. This last constraint can be expressed as

s7(z) = H(τf ) = 0 (4.29)

The optimal ascent problem is reduced to a multivariate zero-finding problem of a system of

32 nonlinear algebraic equations

s(z) = 0, z ∈ R32 (4.30)

where s(·) = (s1, s2, s3, s4, s5, s6, s7) : R32 → R32 is a smooth vector function.

4.5 Modified Newton-Raphson Method

The classical Newton-Raphson method is simple, efficient, and possibly the most com-

monly used numerical algorithm for solving nonlinear algebraic equations. The current ap-

proach adopts this method and introduces a small modification aimed at enhancing algorithm

convergence. A set of general nonlinear algebraic equations can be expressed in the form below.

fi(x) = fi(x1, x2, ..., xn) = 0, i = 1, 2, . . . , n (4.31)
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At each iteration, the current solution estimate x(k) is replaced by a new estimate

x(k+1) = x(k) + δ(k) (4.32)

where δ(k) solves the linear system

f(x(k)) = f′(x(k))δ(k) (4.33)

where

f′(x(k)) =

[

df

dx

]

x=x(k)

(4.34)

is the Jacobian of the system in Eq. (4.31). Given a good initial estimate, this method usually

converges quickly to a solution, however, under certain circumstances it is susceptible to various

weaknesses causing the method to diverge rapidly or even converge to an undesired or incorrect

solution. Two such weaknesses arise when the initial estimate is far from the solution and when

the Jacobian matrix is or nearly is singular.

A strategy used to increase convergence reliability is to restrict the predicted step size, but

retain its direction. The current solution x(k) is now replaced by the new estimate

x(k+1) = x(k) + γ(k)δ(k) (4.35)

where γ(k) is determined to prevent the new estimate x(k+1) from being worse than the original

estimate x(k). Let the sum of squares of residuals be expressed as

F (x) = fT (x)f(x) (4.36)

The step size parameter γ(k) is calculated to achieve the improvement

F (x(k+1)) < F (x(k)) (4.37)

The current algorithm implementation determines γ(k) from

γ(k) = max
j

{

1

2j

∣

∣

∣
F (x(k) +

1

2j
δ(k)) < F (x(k))

}

, j = 0, 1, 2, . . . (4.38)

wherein γ(k) is halved until Eq. (4.38) is satisfied. This is applied to the system of equations

outlined in section (4.4). A solution z is sought satisfying Eq. (4.30) where the required system

Jacobian ds(z)
dz

∈ R32×32 is determined analytically using the state and costate solutions above

in section (4.1).
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CHAPTER 5. POWELL’S HYBRID DOGLEG METHOD

5.1 Introduction

The modified Newton-Raphson method above provides more reliable convergence than the

classical method when the initial estimate is far from the solution; however it still has its

deficiencies. It has been proven [16] that for certain systems this method will converge to an

incorrect solution even for a substantial range of initial estimates.

5.2 Levenberg-Marquardt Method

Yet another modification to the classical Newton-Raphson method which overcomes this

deficiency is the Levenberg-Marquardt method [16]. Here the current solution x(k) is replaced

with the new estimate

x(k+1) = x(k) + η(k) (5.1)

such that η(k) solves a linear system of the form

{

µ(k)In + f′(x(k))
T
f′(x(k))

}

η(k) = −f′(x(k))
T
f(x(k)) (5.2)

where In is a n dimensional unit matrix and µ(k), similar to γ(k) in Eq. (4.35), is a positive

number whose value is calculated to provide the improvement given by Eq. (4.37). When the

parameter µ(k) = 0, Eq. (5.2) becomes just the classical Newton-Raphson iteration, and if µ(k)

is large the solution will tend to a small negative multiple of the gradient of F (x) at x = x(k)

given as

η(k) ≈ −f′(x(k))f(x(k)))/µ(k) = −1

2

[

d

dx
F (x)

]

x=x(k)

/µ(k) (5.3)

Therefore this iteration blends the classical method with the steepest descent method applied

to the function F (x).
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5.3 Hybrid Dogleg Development

Powell’s Hybrid Dogleg method is very similar to the Levenberg-Marquardt method and

provides improved reliability over the modified Newton-Raphson method. This more sophisti-

cated method is adopted to replace the modified Newton-Raphson in the current implementa-

tion. Aside from this methods enhanced performance, two additional attractive and notable

differences from its competitors include

(i) Explicit expressions for the Jacobian matrix f′(x) are not required.

(ii) One of two stopping conditions will be satisfied in a finite number of iterations.

The algorithm description, in the case where explicit expressions for the Jacobian are available,

outlined in [16], is presented below. Again, it should be noted that an analytical Jacobian is

preferable, but not required.

An iteration of the hybrid dogleg method requires the current solution estimate x(k), a step

length ∆(k), and two parameters E and M . The step length ∆(k), again similar to γ(k) in Eq.

(4.35) and µ(k) in Eq. (5.2), is calculated to restrict the displacement from x(k) ensuring a

decrease in the value of F (x). However, it is desired to keep ∆(k) as large as possible to prevent

the algorithm from performing an unnecessarily high number of iterations to convergence. The

parameters E and M are positive fixed parameters that govern the stopping conditions of the

algorithm. The iteration stops if the function F (x) becomes less than E, or if the distance from

x(k) to the predicted solution x(k+1) exceeds M due to a small gradient of F (x). Therefore, M

is set to an over-estimate of the distance from x1 to the problem solution to ensure its related

stopping condition is only met if the algorithm is converging to a stationary point of F (x),

and E is set to some very small error tolerance value.

The algorithm first calculates both the full classical Newton-Raphson correction δ(k) and

the gradient of F (x) at x(k) given by

g(k) = 2f′(x(k))f(x(k)) (5.4)
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A stopping condition test of the form

F (x(k)) ≥M‖g(k)‖2 (5.5)

is performed and if it holds the iteration is finished due to the likelihood that x(k) is converging

to a local minimum of F (x). Note this test is not influenced by singularity in the Jacobian.

If the test in Eq. (5.5) does not hold then a new displacement δ̄
(k)

is calculated. This

displacement is just set to the classical Newton-Raphson displacement if the condition ∆(k) ≥

‖δ(k)‖ holds; otherwise the displacement takes the form

δ̄
(k)

= α1δ
(k) − β1g

(k) (5.6)

where α1 and β1 are positive scalars such that

‖δ̄(k)‖2 = ∆(k) (5.7)

A first attempt is to step along the steepest descent direction of F (x) whereby α1 = 0 and

δ̄
(k)

= −β1g
(k), β1 = ∆(k)/‖g(k)‖2 (5.8)

under the condition that this step does not go beyond the predicted minimum point of F (x)

along this direction given by

x(k) −
{

1
2‖g

(k)‖2
2/‖f′(x(k))g(k)‖2

2

}

g(k) (5.9)

To ensure this condition, another test on ∆(k) of the from

∆(k) ≤ 1
2‖g

(k)‖3
2/‖f′(x(k))g(k)‖2

2 (5.10)

must be satisfied. If the condition in Eq. (5.10) is violated, the new solution estimate {x(k) +

δ̄
(k)} lies on a line connecting the point given by the Newton-Raphson method {x(k) + δ(k)} to

the point given in Eq. (5.9) such that unique values for α1 and β1 are determined by satisfying

the length condition in Eq. (5.7). The displacement δ̄
(k)

is now specified for all cases and

it can be seen that the algorithm interpolates between the classical Newton-Raphson method

and the steepest descent method.
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The function value f(x(k) +
¯

δ(k)) is evaluated and if the expected equality

F (x(k) + δ̄
(k)

) < F (x(k)) (5.11)

holds, then algorithm defines the new solution estimate x(k+1) = x(k) +
¯

δ(k) and a second

stopping convergence test of the form

F (x(k+1)) < E (5.12)

is performed. However, if the condition in Eq. (5.11) does not hold then the algorithm defines

x(k+1) = x(k) and the step length ∆(k) must be reduced for the next iteration.

Revising the step length ∆(k) depends on the predicted value of the sum of squares of

residuals at x(k) +
¯

δ(k) given by

Υ(k) =
{

f(x(k)) + f′(x(k))δ̄
(k)

}2
(5.13)

This value, which is less than F (x(k)), is used in a test given by

F (x(k) + δ̄
(k)

) > (1 − ǫ)F (x(k)) + ǫΥ(k) (5.14)

where ǫ, 0 < ǫ < 1, is a defined constant. If this passes, it is assumed that the Jacobian f′(x(k))

does not adequately approximate f(x) over the distance ‖δ̄(k)‖2 and therefore ∆(k) is reduced

by a constant factor ζ, 0 < ζ < 1. As mentioned previously, it is desired to keep ∆(k) as large

as possible to decrease the total number of iterations, thus if the condition in Eq. (5.14) fails,

∆(k) may be increased by some strategy such that the condition ∆(k+1) ≤ D∆(k), D > 1 for a

constant D is satisfied.

This is applied to the system of equations outlined in section (4.4). A solution z is sought

satisfying Eq. (4.30) where the required system Jacobian ds(z)
dz

∈ R32×32 is determined analyt-

ically using the state and costate solutions above in section (4.1).
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CHAPTER 6. GOODYEAR TWO-BODY PROBLEM

6.1 Introduction

As presented in section (4.2), the current approach opts to solve a Gauss orbit determination

problem implementing the f and g series in orbital mechanics. This approach provides a more

accurate solution than simply continuing the propagation of the launch vehicle’s state using

the closed form solution (4.4) as a result of the linear gravity approximation, however, the

the required series coefficients in equations (4.13-4.14) and their partial derivatives have to be

implemented manually in a computer program. Therefore only a fixed number of terms can

be implemented in any given software, which limits the accuracy of the f and g series when

the coast time is long. This conflict between the general applicability of the algorithm and

programming complexity is not easily resolved with the f and g series approach. For these

reasons, the f and g series is replaced by Goodyear’s method [17, 18] of orbit determination.

This method is similar to the f and g series in that both are Taylor series expansions where all

coefficients are functions of the initial state; however, Goodyear’s method is an expansion of the

state in a regularizing variable ψ introduced below resulting in a completely general solution

for both the state and its partial derivatives. This provides an efficient, compact, accurate,

and easily implementable solution for all cases of two-body motion. A detailed development

of the Goodyear method including all equation derivations can be found in Reference [18], of

which a brief overview is reflected below.
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6.2 Method Development

6.2.1 Regularizing Transformation

In the absence of thrust the two-body problem can be expressed by the differential equation

r̈ = − µ

r3
r (6.1)

where r ∈ R3 is the position vector expressed in the guidance inertial frame, r is its magnitude,

and µ is the Earth’s gravitational parameter.

A regularizing transformation is made from t to a new variable ψ defined by the differential

equation

ψ̇ =
1

r
(6.2)

where ψ is zero at the initial time t0.

In order to simplify derivative expressions to follow, two additional quantities are defined

by

σ = rT ṙ (6.3)

and

α = ṙT ṙ− 2
µ

r
(6.4)

The quantity α has an important property wherein its derivative with respect to ψ results in

the following.

α′ = 2ṙT ṙ′ + 2
µ

r2
r′ (6.5)

However, from the differential equation (6.1) above it is seen that

ṙ′ = r̈t′ = − µ

r2
r (6.6)

and therefore

α′ = −2ṙT
( µ

r2
r
)

+ 2
µ

r2
σ

= −2
µ

r2
σ + 2

µ

r2
σ

= 0 (6.7)
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The quanity α remains constant for every value of ψ. The significance of this property is that

it allows all ψ derivatives of t to be written as simple functions of its first two derivatives t′

and t′′. Similarly, all ψ derivatives of r can be written as simple functions of r′ and r′′. This

results in the simplified expressions:

t′ = r (6.8)

t′′ = rT ṙ = σ (6.9)

t′′′ = αr + µ = αt′ + µ (6.10)

t′′′′ = αt′′ (6.11)

t′′′′′ = αt′′′ = α2t′ + αµ (6.12)

t′′′′′′ = α2t′′ (6.13)

t′′′′′′′ = α2t′′′ = α3t′ + α2µ (6.14)

...

and

r′ = ṙr (6.15)

r′′ = −µ(r/r) + σṙ (6.16)

r′′′ = αr′ (6.17)

r′′′′ = αr′′ (6.18)

r′′′′′ = αr′′′ = α2r′ (6.19)

r′′′′′′ = α2r′′ (6.20)

r′′′′′′′ = α2r′′′ = α3r′ (6.21)

...

A further inspection of the results above reveal that all ψ derivatives of both t and r can be
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written as functions of r, its time derivative ṙ, and its magnitude r resulting in the following.

t′ = r (6.22)

t′′ = σ (6.23)

t′′′ = αr + µ (6.24)

t′′′′ = ασ (6.25)

t′′′′′ = α2r + αµ (6.26)

t′′′′′′ = α2σ (6.27)

t′′′′′′′ = α3r + α2µ (6.28)

...

and

r′ = rṙ (6.29)

r′′ = −µ(r/r) + σṙ (6.30)

r′′′ = α(rṙ) (6.31)

r′′′′ = α(−µ(r/r) + σṙ) (6.32)

r′′′′′ = α2(rṙ) (6.33)

r′′′′′′ = α2(−µ(r/r) + σṙ) (6.34)

r′′′′′′′ = α3(rṙ) (6.35)

...

6.2.2 Series Solution

The above results are used in Taylor series expansions of both t and r. Expanding t in

terms of the regularizing variable ψ gives

t = t0 + t0
′ψ +

1

2
t0

′′ψ2 +
1

3!
t0

′′′ψ3 +
1

4!
t0

′′′′ψ4 + . . . (6.36)

where t0, t0
′, t0

′′, t0
′′′, t0

′′′′, . . . are evaluated with the initial position r0, velocity ṙ0, and

magnitude r0 at the initial time t0 using the equations from the previous section. The quantities
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σ and α are evaluated using the initial values as well, where σ0 represents this value. The

quantity α was shown previously to take the same value for any value of ψ. Substituting the

derivative expressions into equation (6.36) and collecting coefficients of r0, σ0, and µ yields the

following.

t = t0 + r0

(

ψ +
α

3!
ψ3 +

α2

5!
ψ5 +

α3

7!
ψ7 + . . .

)

+ σ0

(

1

2!
ψ2 +

α

4!
ψ4 +

α2

6!
ψ6 +

α3

8!
ψ8 + . . .

)

+ µ

(

1

3!
ψ3 +

α

5!
ψ5 +

α2

7!
ψ7 +

α3

9!
ψ9 + . . .

)

(6.37)

which gives the value of t correpsonding to a value of ψ. Similarly, expanding r in terms of

the regularizing variable ψ gives

r = r0 + r0
′ψ +

1

2
r0

′′ψ2 +
1

3!
r0

′′′ψ3 +
1

4!
r0

′′′′ψ4 + . . . (6.38)

using the equations from the previous section. Substituting the derivative expressions into

equation (6.38) and collecting coefficients of r0 and ṙ0 yields the following.

r =r0

[

1 − µ

r0

(

1

2!
ψ2 +

α

4!
ψ4 +

α2

6!
ψ6 +

α3

8!
ψ8 + . . .

)]

+ṙ0







r0

(

ψ + α
3!ψ

3 + α2

5! ψ
5 + α3

7! ψ
7 + . . .

)

+σ0

(

1
2!ψ

2 + α
4!ψ

4 + α2

6! ψ
6 + α3

8! ψ
8 + . . .

)






(6.39)

which gives the value of r correpsonding to a value of ψ.

6.2.3 Coordinate Solution

The series solutions above are conveniently expressed by defining transcendental functions

of the form

s0 = 1 +
α

2!
ψ2 +

α2

4!
ψ4 +

α3

6!
ψ6 + . . . (6.40)

s1 = ψ +
α

3!
ψ3 +

α2

5!
ψ5 +

α3

7!
ψ7 + . . . (6.41)

s2 =
1

2!
ψ2 +

α

4!
ψ4 +

α2

6!
ψ6 +

α3

8!
ψ8 + . . . (6.42)

s3 =
1

3!
ψ3 +

α

5!
ψ5 +

α2

7!
ψ7 +

α3

9!
ψ9 + . . . (6.43)
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with corresponding ψ derivatives

s0
′ = αs1 (6.44)

s1
′ = s0 (6.45)

s2
′ = s1 (6.46)

s3
′ = s2 (6.47)

The values of the transcendental functions s0, s1, s2, and s3, are determined by solving the

equation

t = t0 + r0s1 + σ0s2 + µs3 (6.48)

for ψ from which r(t− t0) can be found from

r = r0s0 + σ0s1 + µs3 (6.49)

Additionally, the quantities f and g are defined as

f = 1 − µ s2/r0 (6.50)

g = (t− t0) − µ s3 (6.51)

where the corresponding time derivatives are given as

ḟ = −µ s1/(r r0) (6.52)

ġ = 1 − µ s2/r (6.53)

This allows the solution for the final position r and veloicity ṙ to be expressed in a compact

form given below.

r = f r0 + g ṙ0 (6.54)

ṙ = ḟ r0 + ġ ṙ0 (6.55)

The solutions above are functions of the initial conditions r0 and ṙ0 as well as the gravita-

tional parameter µ and the times t and t0. The differential relationships dr and dṙ in terms

of dr0 and dṙ0 are also important and are found by differentiating the coordinate solution
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equations (6.54-6.55) and combining the results after eliminating all differentials other than

dr, dṙ, dr0, dṙ0, dµ, dt, and dt0. In the launch vehicle application, µ is constant, and therefore

dµ is zero. Also, in the current formulation, t0 corresponds to the fixed main engine cut-off

time and therefore dt0 is zero. The derivation of the differentials is very involved. This results,

however, in compact and completely general expressions given in [18].
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CHAPTER 7. TERMINAL CONSTRAINT MULTIPLIER

7.0.4 Introduction

As first mentioned in section (3.4.2), this work adds the flexibility to solve for the Lagrange

multiplier ν directly. Elimination of ν depends on the specific form of orbital insertion condi-

tions used and may not always be desired, and may not always be possible. It certainly does

not lend itself to unanticipated changes in insertion conditions resulting from abort scenarios

such as Return to Launch Site (RTLS), Trans-Atlantic Landing (TAL), and Abort to Orbit

(ATO). Including ν in the solution of course increases the number of unknowns and equality

constraints, however the added benefit may prove to outweigh an otherwise significantly small

savings in computation effort. Additionally, the robustness of the a current algorithm is fur-

ther improved with the introduction of the Hybrid Dogleg method discussed previously. The

unknowns and constraints of the problem are summarized below.

7.1 Equality Constraints

In this formulation, the unknowns in the problem are given as

z = (λ0, λ+
MECO, x

+
MECO, τOMS, λ+

OMS, x
+
OMS , τf , ν) ∈ R32+k (7.1)
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where ν ∈ Rk. The continuity and switching conditions s1 − s5 remain unchanged and are

listed again below.

s1(z) = Φ(τMECO − τ0)λ0 − λ+
MECO = 0 (7.2)

s2(z) = Φ(τMECO − τ0)x0 + Γ(τMECO)I0(τMECO, τ0) − x+
MECO = 0 (7.3)

s3(z) = Φ(τOMS − τMECO)λ+
MECO − λ+

OMS = 0 (7.4)

s4(z) = xfg(τOMS − τMECO,x
+
MECO) − x+

OMS = 0 (7.5)

s5(z) = λ+
OMS

T
x+

OMS = 0 (7.6)

Theses equations provide 25 constraint equations. The final costate λf and vehicle state xf are

still given by Eqs. (4.26) and (4.27), however the constraint s6 in Eq. (4.28) is changed. The

transversality conditions are no longer manipulated and combined with the orbital insertion

conditions. Now both conditions provide independent constraints on the problem and are

expressed as

s6(z) = Ψ(rf ,Vf ) = 0 (7.7)

s7(z) = Tλλf −
(

∂Ψ

∂xf

)T

ν = 0 (7.8)

where

Tλ =

































0 0 0 −ω 0 0

0 0 0 0 −ω 0

0 0 0 0 0 −ω

ω 0 0 0 0 0

0 ω 0 0 0 0

0 0 ω 0 0 0

































(7.9)

Together Eqs. (7.7) and (7.8) constitute 6 + k constraint equations. The final transversality

condition on the Hamiltonian remains unchanged and provides the last constraint equation.

s8(z) = H(τf ) = 0 (7.10)
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This optimal ascent problem now becomes a multivariate zero-finding problem of a system of

32 + k nonlinear algebraic equations

s(z) = 0, z ∈ R32+k (7.11)

where s(·) = (s1, s2, s3, s4, s5, s6, s7, s8) : R32+k → R32+k is a smooth vector function. As can

be seen, the dimension of the system of equations depends on the number or orbital insertion

conditions.
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CHAPTER 8. TERMINAL MODES AND NECESSARY EQUATIONS

8.1 Introduction

As noted above in section (3.4.2), the orbital insertion conditions are specified in terms of

k equality constraints on the final state; however, typical conditions are specified by a defined

subset of the six target orbital elements. This chapter will introduce various terminal modes

and give their corresponding constraint equations in the form of Eq. (3.12).

For the typical orbital insertion conditions, the terminal constraint multipliers can be elim-

inated from the problem as mentioned in section (3.4.2). This is accomplished by manipulating

the 6 transversality equations (3.13-3.14) into 6 − k independent conditions thus eliminating

the unknown multiplier vector ν. This process is unique and depends on the specific form

of terminal conditions. The current implementation takes this approach and the resulting

independent conditions for each mode will be given when available.

This work adds the flexibility to solve for the terminal Lagrange multiplier vector ν directly.

The 6 transversality equations (3.13-3.14) become additional constraint equations for the prob-

lem. For identical terminal conditions, this procedure adds k unknowns to the problem with k

additional constraint equations; however, this is a more general and flexible approach and may

be more favorable as previously mentioned. This chapter will give these additional constraint

equations for all terminal modes. This approach is well suited for non typical modes in which

the elimination of the multiplier vector ν is inconvenient, too time consuming, or simply not

possible.

Keeping inline with the current algorithm implementation resulting from previous work, it

should be noted that in this chapter the final state and costate variable definitions vary slightly
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from those in Eq. (4.1) and Eq. (4.3), and are given as

xf =







rf

Vf






(8.1)

pf =







pVf

prf






(8.2)

8.2 Mode 31

This mode consists of three orbital insertion conditions defined by the desired target orbital

element values for the semi-major axis a∗, eccentricity e∗, and inclination i∗. The ascending

node, true anomaly, and argument periapsis are considered free. This is a so-called free attach-

ment mode in that the final flight path angle γf is unconstrained. However, a typical situation

is to force γf = 0 thereby requiring the insertion point be at either the perigee or apogee of

the target orbit (See Mode 43/44 below).

A unit vector is constructed that relates the vehicle’s final position and velocity to the

target orbit inclination. Define a z-axis unit vector in the Earth centered inertial (ECI) frame

as

1NE =













0

0

1













(8.3)

This vector transformed to the guidance frame is given by

1NG = TEG 1NE (8.4)

where TEG is the transformation matrix as defined in section (3.2.3).

From orbital mechanics, the magnitude of the required final angular momentum vector of

the vehicle at the orbital insertion point is given by

h∗ =
√

a∗(1 − e∗2) (8.5)
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Using the above expressions, the three orbital insertion conditions Ψ ∈ R3 can be written

as

1

2
(rf ×Vf )T (rf ×Vf ) − 1

2
h∗2 = 0 (8.6)

1

2
Vf

TVf − 1

rf
+

1

2a∗
= 0 (8.7)

1NG
T (rf ×Vf ) − h∗ cos i∗ = 0 (8.8)

where rf = ‖rf‖.

8.2.1 Manipulated Independent Conditions

The 6 transversality equations (3.13-3.14) are manipulated into 3 independent conditions

eliminating the unknown multiplier vector ν ∈ R3. After much algebraic manipulation this

results in the conditions

(

hf
Tprf

)

[

hf
T (rf × 1NG)

]

+
(

hf
TpVf

)

[

hf
T (Vf × 1NG)

]

= 0 (8.9)

rf
3Vf

Tprf
− rf

TpVf
= 0 (8.10)

prf

T (rf ×VN ) (rf × hf )T (Vf × rN ) + pVf

T (Vf × rN ) (Vf × hf )T (rf ×VN ) = 0 (8.11)

where hf = rf ×Vf is the angular momentum vector, rN = rf × 1NG, and VN = Vf × 1NG.

8.2.2 Additional Transversality Conditions

The 6 transversality conditons (3.13-3.14) involving the Lagrange multipler ν ∈ R3 are

given by

prf
− (Vf × hf ) ν1 −

1

rf 3
rfν2 − (Vf × 1NG) ν3 = 0 (8.12)

pVf
+ (rf × hf ) ν1 −Vfν2 + (rf × 1NG) ν3 = 0 (8.13)

8.3 Mode 41

Mode 41 consists of four orbital insertion conditions defined by the desired target orbital

element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, and ascending node Ω∗.
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The true anomaly and argument periapsis are considered free. This is also a free attachment

mode in that the final flight path angle γf is unconstrained allowing the insertion point to be

located at any point on the target orbit.

A unit angular momentum vector of the desired target orbital plane is constructed from

the target inclination and ascending node. This vector, defined in the ECI frame is given as

1HE =













sin Ω∗ sin i∗

− cos Ω∗ sin i∗

cos i∗













(8.14)

This vector transformed to the guidance frame is given by

1HG = TEG 1HE (8.15)

where TEG is the transformation matrix as defined in section (3.2.3).

Again, the magnitude of the required final angular momentum vector of the vehicle at the

orbital insertion point is given by

h∗ =
√

a∗(1 − e∗2) (8.16)

Using the above expressions, the four orbital insertion conditions Ψ ∈ R4 can be written

as

rf ×Vf − hf
∗ = 0 ∈ R3 (8.17)

1

2
Vf

TVf − 1

rf
+

1

2a∗
= 0 (8.18)

where rf = ‖rf‖ and hf
∗ = h∗1HG

8.3.1 Manipulated Independent Conditions

The 6 transversality equations (3.13-3.14) are manipulated into 2 independent conditions

eliminating the unknown multiplier vector ν ∈ R4. After much algebraic manipulation this

results in the conditions

prf

TVf − 1

rf 3
pVf

T rf = 0 (8.19)

prf

T (rf × hf
∗) + pVf

T (Vf × hf
∗) = 0 (8.20)
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8.3.2 Additional Transversality Conditions

The 6 transversality conditons (3.13-3.14) involving the Lagrange multipler ν ∈ R4 are

given by

prf
+ skew (Vf )













ν1

ν2

ν3













− 1

rf 3
rfν4 = 0 (8.21)

pVf
− skew (rf )













ν1

ν2

ν3













−Vfν4 = 0 (8.22)

8.4 Mode 43/44

This mode involves four orbital insertion constraints defined by the desired target orbital

element values for the semi-major axis a∗, eccentricity e∗ inclination, i∗, and a final flight path

angle γf , which is set to zero. Therefore the insertion point is at the perigee or apogee of the

target orbit and the final dimensionless position and velocity are given by

r∗f = a∗(1 − e∗) (8.23)

V ∗

f =

√

1 + e∗

a∗(1 − e∗)
(8.24)

for the perigee and

r∗f = a∗(1 + e∗) (8.25)

V ∗

f =

√

1 − e∗

a∗(1 + e∗)
(8.26)

for the apogee.

A unit vector is constructed that relates the vehicle’s final position and velocity to the

target orbit inclination. Define a z-axis unit vector in the ECI frame as

1NE =













0

0

1













(8.27)
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This vector transformed to the guidance frame is given by

1NG = TEG 1NE (8.28)

where TEG is the transformation matrix as defined in section (3.2.3).

Using the above expressions, the four orbital insertion conditions Ψ ∈ R4 can be written

as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (8.29)

1

2
Vf

TVf − 1

2
V ∗

f
2 = 0 (8.30)

1NG
T (rf ×Vf ) − r∗fV

∗

f cos i∗ = 0 (8.31)

rf
TVf = 0 (8.32)

8.4.1 Manipulated Independent Conditions

Substituting Ψ into Eqs. (3.13-3.14) results in 6 transversality conditions. Performing

strategic dot and cross product operations on these conditions enables the elimination of the

multiplier vector ν ∈ R4. This results in 2 additional independent constraint equations given

by

Vf
Tprf

r∗f
2 − rf

TpVf
V ∗

f
2 = 0 (8.33)

[

(rf ×Vf )T
prf

] [

(rf ×Vf )T (rf × 1NG)
]

+
[

(rf ×Vf )T pVf

] [

(rf ×Vf )T (Vf × 1NG)
]

= 0 (8.34)

8.4.2 Additional Transversality Conditions

The 6 transversality conditons (3.13-3.14) involving the Lagrange multipler ν ∈ R4 are

given by

prf
− rfν1 − (Vf × 1NG) ν3 −Vfν4 = 0 (8.35)

pVf
−Vfν2 + (rf × 1NG) ν3 − rfν4 = 0 (8.36)
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8.5 Mode 46

This mode involves four insertion conditions defined by the desired final position magnitude

r∗f , velocity magnitude V ∗

f , inclination i∗, and flight path angle γ∗f .

Again, a unit vector is constructed that relates the vehicle’s final position and velocity to

the desired inclination. Define a z-axis unit vector in the ECI frame as

1NE =













0

0

1













(8.37)

This vector transformed to the guidance frame is given by

1NG = TEG 1NE (8.38)

where TEG is the transformation matrix as defined in section (3.2.3).

The four resulting insertion conditions can be written as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (8.39)

1

2
Vf

TVf − 1

2
V ∗

f
2 = 0 (8.40)

1NG
T (rf ×Vf ) − r∗fV

∗

f cos γ∗f cos i∗ = 0 (8.41)

rf
TVf − r∗fV

∗

f sin γ∗f = 0 (8.42)

8.5.1 Manipulated Independent Conditions

Substituting Ψ into Eqs. (3.13-3.14) results in 6 transversality conditions. Elimination of

the multiplier vector ν ∈ R4 results in 2 additional independent constraint equation given by

(

Vf
Tprf

)

r∗f −
(

rf
TpVf

)

V ∗

f + r∗fV
∗

f sin γ∗f

[

Vf
TpVf

− rf
Tprf

]

= 0 (8.43)

(

hf
Tprf

)

(

hf
T rN

)

+
(

hf
TpVf

)

(

hf
TVN

)

= 0 (8.44)

where hf = rf ×Vf is the angular momentum vector, rN = rf × 1NG, and VN = Vf × 1NG.
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8.5.2 Additional Transversality Conditions

The 6 transversality conditions (3.13-3.14) involving the Lagrange multiplier ν ∈ R4 are

given by

prf
− rfν1 − (Vf × 1NG) ν3 −Vfν4 = 0 (8.45)

pVf
−Vfν2 + (rf × 1NG) ν3 − rfν4 = 0 (8.46)

8.6 Mode 51

Mode 51 consists of five orbital insertion conditions defined by the desired target orbital

element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, ascending node Ω∗,

and and a final flight path angle γf , which is set to zero. The true anomaly and argument of

the periapsis are considered free. The insertion point is at the perigee or apogee of the target

orbit and the final position and velocity are given again as

r∗f = a∗(1 − e∗) (8.47)

V ∗

f =

√

1 + e∗

a∗(1 − e∗)
(8.48)

for the perigee and

r∗f = a∗(1 + e∗) (8.49)

V ∗

f =

√

1 − e∗

a∗(1 + e∗)
(8.50)

for the apogee. As was done for mode 41, a unit angular momentum vector of the desired

target orbital plane is constructed from the target inclination and ascending node and is given

as

1HE =













sin Ω∗ sin i∗

− cos Ω∗ sin i∗

cos i∗













(8.51)

This vector transformed to the guidance frame is given by

1HG = TEG 1HE (8.52)
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where TEG is the transformation matrix as defined in section (3.2.3).

Again, the magnitude of the required final angular momentum vector of the vehicle at the

orbital insertion point is given by

h∗ =
√

a∗(1 − e∗2) (8.53)

Using the above expressions, the five orbital insertion conditions Ψ ∈ R5 can be written as

1

2
rf

T rf − 1

2
r∗f

2 = 0 (8.54)

1

2
Vf

TVf − 1

2
V ∗

f
2 = 0 (8.55)

rf
TVf = 0 (8.56)

rf
T1HG = 0 (8.57)

Vf
T1HG = 0 (8.58)

8.6.1 Manipulated Independent Conditions

Substituting Ψ into Eqs. (3.13-3.14) results in 6 transversality conditions. Elimination of

the multiplier vector ν ∈ R5 results in 1 additional independent constraint equation given by

(

Vf
Tprf

)

r∗f
2 −

(

rf
TpVf

)

V ∗

f
2 = 0 (8.59)

8.6.2 Additional Transversality Conditions

The 6 transversality conditions (3.13-3.14) involving the Lagrange multiplier ν ∈ R5 are

given by

prf
− rfν1 −Vfν3 − 1HGν4 = 0 (8.60)

pVf
−Vfν2 − rfν3 − 1HGν5 = 0 (8.61)
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CHAPTER 9. VARIABLE FIRST BURN

9.1 Introduction

Replacing the modified Newton-Raphson method with Powell’s hybrid dogleg method, re-

placing the f and g series in orbital mechanics with the more general Goodyear’s method

for coast state propagation, and adding the flexibility of solving for the terminal constraint

Lagrange multipliers directly are all aimed at increasing the robustness and capability of the

current analytical multiple-shooting burn-coast-burn optimal ascent guidance algorithm. Pow-

ell’s hybrid dogleg method is a more robust numerical non-linear equation solver in the general

sense and increases both the convergence reliability and rate in the burn-coast-burn application.

The use of a regularizing transformation variable discussed in the development of Goodyear’s

method in chapter (6) allows for a completely general solution of the two-body problem and its

easy implementation provides enhanced performance over the more traditional f and g series.

Adding the flexibility to solve for the terminal constraint Lagrange multipliers directly allows

the algorithm to handle non typical orbital insertion conditions and eliminates the need to

analytically manipulate each unique set of orbital insertion conditions in order to remove the

multipliers from the problem.

Each of the additions and enhancements to the current analytical multiple-shooting burn-

coast-burn optimal ascent guidance algorithm are implemented on the current framework

wherein the first burn is of fixed duration determined by available propellant. This lends

itself to two stage vehicle configurations where a main booster vehicle is jettisoned after ex-

hausting its propellant supply. An orbital vehicle would then begin an optimized coast before

turning on its engines and maneuvering itself into the desired target orbit. This framework

can be expanded to include any number of optimized burn / coast sequences as mentioned in
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section (3.1). This chapter will develop the necessary equations enabling this generality. In

the context of the burn-coast-burn sequence presented in this work, the first burn is no longer

of fixed duration and the resulting necessary conditions are given. Such a sequence could be

optimized for a single stage vehicle.

9.2 Development

First introduced in section (3.4.3) and rewritten below for convenience, the Hamiltonian is

given as

H = pr
TV− ω2pV

T r + T

(

pV
T1T

mg0
− pm

c
− 1

c

)

:= HNT + TS (9.1)

where HNT is the portion of the Hamiltonian having no thrust influence. The optimal control

problem must satisfy the optimality condition (2.10) wherein the thrust direction unit vector

1T is chosen to maximize the Hamiltonian (9.1) for optimal values of the state and costate

requiring alignment with the costate vector pV , or 1T = pV /‖pV ‖. The Hamiltonian can be

then be written as

H = pr
TV− ω2pV

T r + T

(‖pV ‖
mg0

− pm

c
− 1

c

)

:= HNT + TS (9.2)

In addition, the switching function S determines the vehicle thrust pattern according to the

rule

T =











Tmax if S > 0,

0 if S < 0.
(9.3)

For the launch vehicle vacuum ascent problem, it was seen that Hamiltonian remains constant

along an optimal trajectory, and further, is is identically equal to zero.

H(τf ) = 0, τ0 ≤ τ ≤ τf (9.4)

At each interior thrust on/off switching point τi, S = 0, and therefore HNT = 0. However,

applying the condition HNT = 0 at multiple switching points is not sufficient as HNT itself

remains identically zero along coast arcs.

For a completely general set of terminal constraints, the term HNT at the final time τf can

be non-zero. One approach at determining the interior switching point necessary conditions is
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to initialize the switching function at the first free switching point τ1 using equation (9.4) [13].

S(τ1) = −HNT (τ1)

T
(9.5)

If the following switching point τ2 corresponds to the end of a coast arc, then the second

switching condition is given by

S(τ2) = S(τ1) + [S(τ2) − S(τ1)] = S(τ1) +
‖pV (τ2)‖ − ‖pV (τ1)‖

mg0
(9.6)

using the fact that the vehicle mass and mass costate are constant along a coast arc. If the

following switching condition corresponds to the end of a burn arc, then the second switching

condition is given by

S(τ2) = S(τ1) +
HNT (τ1) −HNT (τ2)

T
(9.7)

again using the fact that the Hamiltonian is identically zero on a burn arc. The switching

functions can be calculated using this approach resulting in the interior point necessary con-

ditions

S(τi) = 0, i = 1, 2, . . . , n (9.8)

where n is the number of free switching points.

For typical terminal constraints such as those in chapter (8), it can be seen that in the

absence of thrust the condition HNT (τf ) = 0 is automatically satisfied [30]. This allows the

interior point necessary conditions to be expressed in a simplified form as

‖pV (τi)‖ − ‖pV (τi−1)‖ = 0, , i = 1, 2, . . . , n, across a coast arc (9.9)

HNT (τi+1) −HNT (τi) = 0, i = 1, 2, . . . , n, across a burn arc (9.10)

Both approaches determine the interior switching point necessary conditions without needing

to numerically integrate the mass costate pm.

9.3 Burn Coast Burn Implementation

In the current framework it was necessary that S(τOMS) = 0, or alternativelyHNT (τOMS) =

0. This provided the only necessary condition in determining the optimal switching time τOMS.
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Expanding the framework to allow the first burn to be of variable duration requires the

addition of a switching condition at τMECO where the first burn ends and the coast begins.

This condition is determined from equation (9.9) and is given simply as

‖pV (τOMS)‖ − ‖pV (τMECO)‖ = 0 (9.11)

Recalling the multiple shooting formulation discussed in section (4.3), nodes are placed

at τMECO and τOMS. At each node, propagated and guessed primer vector solutions can be

written as p−

V (τMECO), p+
V (τMECO), p−

V (τOMS), and p+
V (τOMS) where the - and + represent

propagated and guessed respectively. Refer to figure (4.1). Unlike the propagated solutions, the

guessed solutions p+
V (τMECO) and p+

V (τOMS) are independent and therefore writing equation

(9.11) as

‖p+
V (τOMS)‖ − ‖p+

V (τMECO)‖ = 0 (9.12)

or alternatively

1

2
p+

V (τOMS)
T
p+

V (τOMS) − 1

2
p+

V (τMECO)
T
p+

V (τMECO) = 0 (9.13)

decreases the implementation complexity as the Jacobian computation is greatly simplified.
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CHAPTER 10. VERIFICATION AND VALIDATION METHODS

10.1 Introduction

The multiple shooting formulation approach and the numerical methods presented above

for the launch vehicle vacuum ascent trajectory optimization problem must be verified to en-

sure the accuracy of the optimal trajectories found. Two methods are adopted to accomplish

this task. An industry standard aerospace trajectory optimization software, Optimal Trajec-

tories by Implicit Simulation (OTIS) [19, 20, 21], is used as another but very different method

of solving the burn-coast-burn sequence optimization problem under identical conditions. Ad-

ditionally, the approach presented above is verified using closed-loop simulated trajectories. A

series of test cases for the terminal modes presented above is performed and results presented.

The test cases are specifically chosen to allow comparisons among the modes and to emphasize

desired characteristics of the optimized trajectories and consequences resulting from a given

modes constraint enforcement. The two verification methods are briefly discussed below.

10.2 Closed-Loop Verification

Closed-loop simulations provide an ultimate check for the validity of the open-loop solution

determined by analytical multiple shooting formulation above. In closed-loop simulations, the

optimization problem utilizing the analytical multiple shooting approach is solved in every ∆t

seconds (known as the guidance cycle) using the current condition as the initial condition.

A new optimal ascent solution is generated from the vechicle’s current state to the orbital

insertion point. The trajectory is simulated by numerically integrating the vehicle dynamics in

Eqs. (3.4-3.5) with an inverse-square gravity field. The thrust direction and throttle commands

are from from the optimal solution just found. If the closed-loop trajectory closely matches
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the open-loop solution, the validity of the algorithm is verified.

10.3 OTIS Verification

10.3.1 Briefing and Capabilities

The Optimal Trajectories by Implicit Simulation (OTIS) [19, 20, 21] program is a general

purpose program used to perform trajectory performance studies. OTIS contains no embedded

vehicle specific aerodynamic or propulsion models and therefore allows the user to simulate a

wide variety of vehicles including launch vehicles. OTIS can be used to analyze multi-vehicle

problems, such as a multi-stage launch system with a fly back booster; where trajectories are

generated for all elements of the launch stack including the fly back of the booster. Trajectory

generation, targeting and optimization can all be accomplished using OTIS. The default non-

linear optimization package used in solving problems with OTIS is SLSQP and is included with

OTIS. However, as the problems become more complex, such as the launch vehicle vacuum

ascent trajectory optimization problem, CPU times will become excessively large. Another

optimizer, SNOPT [22], developed at Standard University can be used with OTIS. SNOPT is

a sparse optimizer and OTIS lends itself well to sparse optimization techniques. SNOPT is

available as a package that must be obtained seperately from OTIS. SNOPT is the nonlinear

optimization package utilized for this study.

To accommodate the trajectory optimization procedure, the trajectory is divided into sub

arcs called phases linked together by events. During each phase, the number of vehicle states,

controls, path constraints, and vehicle definition remain unchanged. Targeting information is

then specified at the events. Discontinuities such as time, control, and certain state variables

are allowed to occur at the events. The linking of phases is accomplished with either linear or

nonlinear constraints and how they are linked defines a complete trajectory. OTIS allows for

seven different phase types.

1. A Analytic propagation

2. E Explicit integration
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3. I Implicit integration

4. P Pseudo-Spectral integration

5. J Jump phase

6. S State transformation

7. T Transformation of coordinates

The launch vehicle optimal vacuum ascent problem uses both the implicit integration (I) and

jump (J) phases of OTIS. The fundamental idea behind implicit integration is to form a

representation of the system states along the trajectory and then enforce constraints such that

the representation agrees with the equations of motion for a finite number of nodes along

the trajectory while also satisfying any path constraints and boundary conditions. For the

launch vehicle optimal vacuum ascent problem, vehicle states and controls become independent

parameters in the optimization problem. A representation is shown below in Figure (10.1).

OTIS implements four types of implicit integration: collocation, quadrature, nodal general

Figure 10.1 Implicit Integration [20]

defects, and segment level general defects.

The primary implicit integration method adopted for the launch vehicle optimal vacuum

ascent problem is collocation. The vehicles equations of motion are evaluated using state
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and control estimates at “cardinal nodes” along the trajectory to provide time derivatives

at these nodes. Using both these states and corresponding time derivatives, a polynomial

representation of the vehicle states is created using Hermite interpolation. This polynomial

representation is then used to evaluate the vehicle states at nodes interior to the cardinal

nodes. At these interior nodes, time derivatives are evaluated both from differentiation of the

polynomial representation and also from direct evaluation of the vehicles equations of motion.

The objective of the collocation procedure is to then drive the difference between these two

time derivatives, or “defects”, at the interior nodes to zero. This procedure can be visualized

below in Figure (10.2).

Figure 10.2 Collocation Defects [20]

10.3.2 Burn-Coast-Burn Application

The implementation of OTIS to solve the launch vehicle optimal vacuum ascent problem is

described below. As mentioned previously, OTIS divides the trajectory into multiple phases.

For the launch vehicle optimal vacuum ascent problem of concern, the trajectory is divided

into four phases.

The first phase of the trajectory, as mentioned previously, is a continuation of the endo-

atmospheric flight and begins just after the launch vehicle clears the atmosphere and consists

of a “Super-X-33” vehicle with a X-37 vehicle piggy-backed. Necessary vehicle information
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is given in the next chapter. This phase continues until all the X-33’s propellant burns off

and is referred to as main engine cut-off (MECO). Therefore this phase is of fixed time and

depends on the vehicles total mass and its propellant mass flow rate. This is an implicit

integration (I) phase with the inertial roll, pitch, and yaw angles as the independent controls.

The information required by OTIS to fully define this phase includes the vehicle’s propulsion

model; initial and final coordinates, control values, mass values and time estimates; and any

boundary constraints. A final boundary constraint on the vehicle’s mass is specified for this

phase which will fix the phase time. OTIS uses the Earth Centered Inertial (ECI) frame

whereas the analytical multiple-shooting formulation uses the Guidance or Plumbline Inertial

frame. A simple coordinate transformation will suffice, however it should be noted that OTIS

requires a specific Julian date offset guaranteeing the ECI frame x-axis alignment with 0◦

longitude.

The second phase of the trajectory is a Jump (J) phase wherein the the empty weight

of the X-33 vehicle is jettisoned from the X-37; and hence this phase does not require any

independent controls or propulsion models. The information required by OTIS to define this

phase includes initial and final coordinate guesses, mass values, and times; as well as a jump

deletion parameter specifying the amount of weight to be jettisoned from the current stacked

configuration. This phase results in essentially a zero length phase with a very large reduction

in vehicle weight.

The X-37 will begin a time optimized unpowered coast arc before maneuvering into the

specified orbit during the last powered phase. This coast arc is the third phase of trajectory and,

being unpowered, does not required any independent controls or propulsion models. Again,

the information required by OTIS to define this phase includes initial and final coordinate

guesses, vehicle mass, and time estimates. This is an implicit integration (I) phase using the

collocation method where the initial state of the vehicle fully defines its trajectory during the

unpowered coast.

Upon completion of the optimized coast, the X-37 begins the trajectory’s second powered

stage, or Orbital Maneuver System (OMS) burn, into the desired orbit satisfying all orbital
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insertion conditions. This is an implicit integration (I) phase with the inertial roll, pitch, and

yaw angles as the independent controls. The information required by OTIS to fully define

this phase includes the vehicle’s propulsion model; initial and final coordinates, control values,

mass values and time estimates; and any boundary constraints. The final boundary constraints

specified will depend on the desired target orbit and will typically be a subset of the six target

orbital elements.

The optimization objective in OTIS is specified by desired parameters to be optimized

and their corresponding phases of optimization. For the launch vehicle optimal vacuum ascent

problem, the optimization parameter is the final weight of the last powered stage in phase four.
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CHAPTER 11. RESULTS

11.1 Launch Configuration

The two stage vehicle configuration discussed previously is used for the verification of the

AMS method for the burn-coast-burn vacuum ascent trajectory optimization problem and

consists of a “super X-33” reusable launch vehicle with a piggy-backed X-37 orbital vehicle.

All necessary data for these vehicles are shown below.

Data required for the X-33 reusable launch vehicle are given below in Table (11.1).

Table 11.1 X-33 Data

Thrust (vac) 2,303,000 N

Isp (vac) 711.395 sec

Empty Weight 37,557 kg

Data required for the X-37 orbital vehicle are given below in Table (11.2).

Table 11.2 X-37 Data

Thrust (vac) 29,269 N

Isp (vac) 330 sec

Empty Weight 1,270 kg

Propellant Weight 3,628.74 kg

Payload Weight 544.31 kg

The launch site for all test cases shown below is at Kennedy Space Center (KSC),

(longitude=−80.85◦, latitude 28.29◦). This information is necessary in establishing the guid-

ance inertial frame for the launch as well as the required guidance to ECI coordinate transfor-

mation. The computation of the optimal first stage ascent trajectory through the atmosphere

is divided into two segments: the endo-atmospheric portion and the exo-atmospheric portion,
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separated at a given altitude around 90 km resulting in a mass of approximately 70,0000

kg. The exo-atmospheric portion of the first stage is the first vacuum burn of the analytical

multiple-shooting problem formulation and the second burn the second stage of the launch

vehicle. The endo-atmospheric solution is obtained from methodology outlined in References

14 and 15. For different target orbital insertion conditions, the optimal endo-atmospheric solu-

tions results in somewhat different exo-atmospheric ascent initial conditions necessary for the

AMS method, however, in this study the same exo-atmospheric ascent initial conditions are

used for all test cases.

11.2 Mode 31 / 43 Comparisons

As mentioned previously, mode 31 consists of three orbital insertion conditions defined

by the desired target orbital element values for the semi-major axis a∗, eccentricity e∗, and

inclination i∗. This is a free attachment mode in that the final flight path angle γf is not

constrained. Mode 43 requires the same orbital insertion conditions as mode 31 in addition

to constraining the final flight path angle to zero such that the insertion point is the perigee

of the target orbit. A set of test cases with target orbital insertion conditions as well as an

identical set for mode 43 including the final γf = 0 constraint is given below in Table 11.3 . In

addition, three circular target orbits for Mode 43 are listed.
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Table 11.3 Mode 31 & 43 Target Orbits

Case Mode perigee alt. (km) e i (deg) γf (deg)

1 31 300 0.1 51.6 Free
2 31 500 0.1 51.6 Free
3 31 1000 0.1 51.6 Free
4 31 300 0.3 51.6 Free
5 31 500 0.3 51.6 Free
6 31 1000 0.3 51.6 Free
7 31 500 0.1 28.5 Free
8 31 500 0.3 28.5 Free

9 43 300 0.1 51.6 0.0
10 43 500 0.1 51.6 0.0
11 43 1000 0.1 51.6 0.0
12 43 300 0.3 51.6 0.0
13 43 500 0.3 51.6 0.0
14 43 1000 0.3 51.6 0.0
15 43 500 0.1 28.5 0.0
16 43 500 0.3 28.5 0.0
17 43 1000 0.0 51.6 0.0
18 43 500 0.0 51.6 0.0
19 43 500 0.0 51.6 0.0

Results for mode 31 and 43 test cases in Table 11.3 are listed in Tables 11.4 and 11.5,

respectively. Recalling that the burn time of the first vacuum burn is fixed and determined

from propellant availability, the difference in converged second burn time directly translates

into the difference in deliverable payload mass, or vehicle performance. Both the second

vacuum burn time and mass are listed for convenience. In terms of vehicle performance, all

methods match quite closely and is very noteworthy in that OTIS is a direct approach using

collocation, a very different method than the indirect AMS method that finds the trajectory

based on optimal control necessary conditions. Further, the extent to which the open-loop

AMS trajectory matches the full non-linear gravity closed-loop simulation driven by a current

condition open-loop AMS solution at each guidance cycle is reassuring. The small differences

in the open-loop AMS solution and the converged closed-loop simulation is to be expected and

results from approximations made in the Analytical Multiple-Shooting problem formulation

such as the linear gravity approximation and thrust quadrature approximations for each burn.

During the coast phase the launch vehicle is trading kinetic energy for potential energy. The

higher the orbital insertion altitude, the longer the coast arc tends to be, and the more critical
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is its length to the performance of the vehicle. Figures 11.1 and 11.2 show the closed-

loop altitude and velocity profiles along with their corresponding body axis pitch and yaw

angle time histories with respect to the guidance frame (see Fig 3.2) defined with a 2-3-1

rotation sequence. The small yaw angles in figure 11.2 are due to the fact that the launch

azimuth is oriented in the direction defined by the target orbit inclination so as to minimize

the yaw maneuvers, a common practice in launch vehicle guidance. Some cases were found

where, depending on insertion conditions, higher altitudes did not always translate to a longer

coast arc, however, the presence of the optimized coast arc remains very significant to vehicle

performance.

The performance index on the final mass in the optimal burn-coast-burn problem appears

to be fairly insensitive to the coast time. Indeed, significant differences in the converged coast

time between OTIS and the AMS method does not result in significant differences in orbital

insertion mass. This disagreement in optimal coast times becomes much more noticeable for

higher altitude orbital insertions. The two methods do, however, find similar solutions for the

lower altitude orbits. These results are illustrated in Figures 11.3 and 11.4, which show the

altitude and velocity profiles for both OTIS and the closed-loop AMS simulation for cases 2

and 3. The small changes in insertion mass even for disproportionately large changes in coast

time results in a “flat optimum” and it was found that direct methods such as OTIS tend to

converge to different solutions, most notably in the converged coast time, depending on initial

guess inputs. The AMS method, an indirect method, did not suffer from this problem and was

consistently able to converge to the same solution for the same case for large changes in the

initial guess.

An important comparison between all mode 31 and the respective mode 43 test cases is

seen from the value of the true anomaly at insertion. Mode 43 requires the insertion point

be the perigee of the resulting target orbit, which evident from the table is not always the

optimal insertion point. This result is consistent with both the AMS method and OTIS.

This is exemplified by test case 6 and 14 which results in a difference in second burn time of

approximately 5 seconds equating to a deliverable payload difference of 45.25 kg, a substantial
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difference assuming payload mass of 500 kg. Figures 11.5 and 11.6 show the optimized

ascent trajectory and insertion target orbit for case 6. This illustrates the non-perigee optimal

insertion point and shows the true anomaly at insertion. Figure 11.6 is viewed in the direction

of the target orbit angular momentum vector allowing this to be seen easily.

Table 11.4 Mode 31 Results

Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

1
OTIS 24.6240 334.0512 2421.7212 7.43432
AMS 20.0371 334.3829 2416.8352 0.00000

AMS closed-loop 26.4927 331.7147 2438.4000 6.21815

2
OTIS 135.2167 345.9007 2314.5505 11.41668
AMS 126.1379 346.8496 2304.0113 0.00000

AMS closed-loop 134.5228 343.6698 2329.8000 11.13721

3
OTIS 293.8752 389.6641 1918.7385 10.29114
AMS 226.0024 390.5117 1908.8694 0.00000

AMS closed-loop 243.9442 388.0392 1922.5500 12.08240

4
OTIS 54.2115 386.7927 1944.7088 2.38447
AMS 43.9989 386.6586 1943.7401 0.00000

AMS closed-loop 53.1648 384.5900 1958.7500 1.29348

5
OTIS 152.4945 395.3354 1867.4451 6.08704
AMS 132.0432 396.0864 1858.4179 0.00000

AMS closed-loop 142.8387 393.3418 1877.3000 6.75834

6
OTIS 257.3082 427.3834 1577.5918 11.21645
AMS 207.8629 429.6897 1554.3082 0.00000

AMS closed-loop 226.6251 425.4743 1587.7000 12.72862

7
OTIS 129.0704 345.5416 2317.7982 12.07388
AMS 129.1712 345.9306 2312.3279 0.00000

AMS closed-loop 137.6387 342.7682 2338.8500 10.95298

8
OTIS 126.4071 394.4810 1875.1728 8.65202
AMS 135.5817 395.3242 1865.3161 0.00000

AMS closed-loop 146.4793 392.5993 1886.3500 6.55688
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Table 11.5 Mode 43 Results

Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

9
OTIS 34.1034 334.7211 2415.6628 0.00000
AMS 18.1730 334.3978 2416.6999 0.00001

AMS closed-loop 26.7410 331.8191 2438.4000 0.00688

10
OTIS 159.6698 346.2189 2311.6721 0.00000
AMS 120.9575 346.9562 2303.0468 0.00000

AMS closed-loop 130.6213 344.5979 2320.7500 0.05877

11
OTIS 307.5751 390.7985 1908.4785 0.00000
AMS 219.6417 390.9169 1905.2019 0.00001

AMS closed-loop 238.4151 390.0967 1904.4500 0.33734

12
OTIS 36.9882 387.9814 1933.9577 0.00000
AMS 35.0215 386.7056 1943.3146 0.00000

AMS closed-loop 50.0246 384.6953 1958.7500 0.01839

13
OTIS 166.2501 396.8354 1853.8786 0.00000
AMS 112.2931 396.3527 1856.0081 0.00000

AMS closed-loop 126.6136 394.5985 1868.2500 0.01075

14
OTIS 293.3618 431.1413 1543.6039 0.00000
AMS 187.5651 430.6763 1545.3795 0.00000

AMS closed-loop 206.4970 430.4641 1542.4500 0.06999

15
OTIS 170.3501 348.4420 2291.5658 0.00000
AMS 106.7140 350.5581 2270.4490 0.41001

AMS closed-loop 128.8965 346.3061 2302.6500 0.11132

16
OTIS 172.6211 397.0370 1852.0556 0.00000
AMS 115.9672 395.5898 1862.9119 0.00000

AMS closed-loop 130.4734 393.7107 1877.3000 0.08649

17
OTIS 27.7985 302.1463 2710.2808 N/A
AMS 21.4543 301.3659 2715.6387 N/A

AMS closed-loop 26.5988 298.4510 2737.0500 N/A

18
OTIS 174.1365 315.1391 2592.7694 N/A
AMS 132.5598 315.9119 2583.9970 N/A

AMS closed-loop 139.9287 313.4425 2601.3000 N/A

19
OTIS 319.0053 366.0883 2131.9660 N/A
AMS 240.3386 365.9951 2130.7439 N/A

AMS closed-loop 258.0000 365.2223 2130.7000 N/A



63

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

Time (sec)

A
lti

tu
de

 (
km

)

 

 

Case  9
Case 10
Case 11

0 100 200 300 400 500 600 700 800
2000

4000

6000

8000

10000

Time (sec)

V
el

oc
ity

 (
m

/s
)

 

 

Case  9
Case 10
Case 11

2nd Burn Starts

Coast Begins

Coast
1st Burn

2nd Burn

Figure 11.1 Altitude and velocity profiles of the AMS closed-loop burn–

coast-burn ascent trajectories for cases 9-11
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Figure 11.5 AMS closed-loop ascent trajectory and target insertion orbit

for case 6

Perigee

Insertion Point Trajectory

ν = 12.789°

Figure 11.6 AMS closed-loop ascent trajectory and target insertion orbit

illustrating true anomaly at insertion for case 6
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11.3 Mode 41 / 51 Comparisons

Mode 41 consists of four orbital insertion conditions defined by the desired target orbital

element values for the semi-major axis a∗, eccentricity e∗, inclination i∗, and ascending node

Ω∗. This is a free attachment mode in that the final flight path angle γf is not constrained.

Mode 51 requires the same orbital insertion conditions as mode 41 in addition to constraining

the final flight path angle to zero such that the insertion point is the perigee of the target

orbit. Modes 41 and 51 are similar to modes 31 and 43 respectively and differ only from

the additional constraint on the ascending node. This fixes the target orbital plane leaving

the only unknown the location of the perigee on the orbit. A set of test cases with target

orbital insertion conditions as well as an identical set for mode 51 including the final γf = 0

constraint is given below in Table 11.6 . In addition, three circular target orbits for Mode 51

are listed. This set of test cases is identical to those of 31 and 43 with the addition of a fixed

ascending node Ω∗. It should be noted that for the initial conditions used for all test cases in

this work, target orbits with unconstrained ascending nodes converge to approximately 255◦

for inclinations of 51.6◦ and 185◦ for inclinations of 28.5◦.

Table 11.6 Mode 41 & 51 Target Orbits

Case Mode perigee alt. (km) e i (deg) γf (deg) Ω (deg)

20 41 300 0.1 51.6 Free 250
21 41 500 0.1 51.6 Free 250
22 41 1000 0.1 51.6 Free 250
23 41 300 0.3 51.6 Free 250
24 41 500 0.3 51.6 Free 250
25 41 1000 0.3 51.6 Free 250
26 41 500 0.1 28.5 Free 180
27 41 500 0.3 28.5 Free 180

28 51 300 0.1 51.6 0.0 250
29 51 500 0.1 51.6 0.0 250
30 51 1000 0.1 51.6 0.0 250
31 51 300 0.3 51.6 0.0 250
32 51 500 0.3 51.6 0.0 250
33 51 1000 0.3 51.6 0.0 250
34 51 500 0.1 28.5 0.0 180
35 51 500 0.3 28.5 0.0 180
36 51 1000 0.0 51.6 0.0 250
37 51 500 0.0 51.6 0.0 250
38 51 500 0.0 51.6 0.0 250
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Results for mode 41 and 51 test cases in Table 11.6 are listed in Tables 11.7 and 11.8,

respectively. Again, both the second vacuum burn time and mass are listed for convenience.

In terms of vehicle performance, all methods match quite closely as was the case for modes

31 and 43. The open-loop AMS trajectory continues to match the full non-linear gravity

AMS closed-loop simulation which is evidence the AMS method has no problem handling the

additional constraint on the problem. For modes 31 and 43 it was seen that for higher orbital

insertion altitudes, the longer the coast arc tends to be, and the more critical is its length to the

performance of the vehicle. This trend is again seen for mode 51 wherein the insertion point

must be the perigee of the target orbit. However, from the results in Table 11.7, longer coast

arcs for higher insertion altitudes is not the typical outcome for mode 41. This is explained

by the variation of optimal insertion points found in terms of the true anomaly at insertion in

addition to the unconstrained target orbit perigee direction which can be much different from

the corresponding mode 51 cases.

The ascending node constraint enforced in modes 41 and 51 appears to be the dominate

constraint. Enforcing the ascending node constraint Ω in addition to the semi-major axis a,

eccentricity e, and inclination i fully defines the target orbital plane leaving the only unknown

the perigee direction. It can be seen from Table 11.6 that the target orbit ascending node

for modes 41 and 51 are set at approximately a 5◦ offset from their natural unconstrained

converged values for the initial conditions used in this work. Enforcing this constraint has

a very noticeable impact on vehicle performance. Every mode 41 and 51 case results in a

significantly lower final mass than the corresponding mode 31 and 43 case as shown in Tables

11.7 and 11.8. Constraining the ascending node to the values in Table 11.6 forces the launch

vehicle to make substantial out of plane maneuvers during ascent to align itself with the

target orbital plane. These out of plane maneuvers require longer second burn times causing

a significant decrease in final vehicle mass at insertion. For modes 31 and 43 it was shown

(see Fig. 11.2) that the yaw angle is generally very small during the ascent due to the initial

launch azimuth direction. Expensive out of plane maneuvers result in much larger yaw angles

during the ascent as illustrated in Figure 11.8 with a comparison of case 33 and corresponding
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case 14. Figure 11.7 shows the altitude and velocity profiles for these cases. As seen in the

figures, both cases have very similar velocity and altitude profiles. In case 33, however, the

large yawing motion during the ascent results in a longer second burn time by approximately

7 seconds translating into a final mass reduction of approximately 63 kg. Further verifying

these results, Figures 11.9 and 11.10 show two views of the optimized trajectory and target

insertion orbit for mode 41 test case 25. Again, easily seen from the figures, the launch vehicle

performs substantial yawing maneuvers to align and insert itself into the desired target orbit.

These results are consistent for both the AMS method and OTIS.

Similar to modes 31 and 43, the performance index on the final mass in the optimal burn-

coast-burn problem continues to be fairly insensitive to the coast time. Significant differences

in the converged coast time between OTIS and the AMS method does not result in significant

differences in orbital insertion mass. This disagreement in optimal coast times is again more

noticeable for higher altitude orbital insertions. The small changes in insertion mass for dis-

proportionately large changes in coast time is in part due to the “flat optimum” characteristics

of the optimal ascent problem as mentioned previously. Further understanding of the terminal

mode constraints can help explain this “flat optimum” most often resulting in optimal coast

time disagreement between the AMS and OTIS methods. Is is to be noted and understood

that the desired target orbits are not fully defined. Mode 41 and 51 does fix the target orbital

plane as mentioned, but does not constrain the perigee location. Given this, for any test case

the AMS and OTIS methods may not insert into the same orbit and in general they will not,

however, both satisfy the terminal constraints at insertion. This freedom helps explain why

both methods can agree in terms of vehicle performance even with substantial disagreement

in optimal coast time. This can be demonstrated by analyzing a mode 51 case wherein the

orbital plane and insertion point on the orbit are fixed. Figure 11.11 shows the AMS and

OTIS trajectories and insertion orbits for mode 51 case 33. Both insertions must be at the

perigee of the target orbit, and from Table 11.8, it is seen that the optimized coast arc for the

OTIS trajectory is substantially longer that that found by the AMS method. For this reason,

it is expected that the OTIS insertion point be somewhat downrange of the AMS insertion
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and indeed this is the result. Figure 11.12 illustrates the “flat optimum” characteristic of the

problem, again for case 33, by sweeping the coast time over a 200 second window bracketing

the original converged coast times found by both the OTIS and AMS methods. As can be

seen from figure, the variation in final burn time is very insensitive to the coast duration in

this range. Discussed above, the only remaining unconstrained orbital insertion parameter is

the argument of perigee, the variation of which is also shown in the figure. Easily seen from

the figure, increasing the coast time simply pushes the perigee direction and insertion point

further downrange from the launch site, and visa versa.

In regards to the solutions obtained from OTIS, a few comments should be noted. In

many cases, adjusting the guessed final burn time values was required to obtain the optimal

solution found. Further change of these values could prevent OTIS from retrieving the same

solution, or in some situations even a similar solution. It was observed that adjusting the coast

and or final burn time bounds would additionally have a significant impact on the converged

solution. This prevented obtaining a sweep solution simply by adjusting the coast time duration

while leaving all other parameters unchanged. In addition, scaling of problem parameters

highly influenced convergence rates and final solutions. It is recognized that OTIS is a very

general trajectory optimization software allowing for much user configuration, hence and a more

complete knowledge of its proper use in regards to this specific problem may have relieved some

of these issues.
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Table 11.7 Mode 41 Results

Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

20
OTIS 259.9649 351.9201 2260.1084 28.88764
AMS 219.0324 352.1562 2255.9867 20.38100

AMS closed-loop 231.6762 349.9753 2275.5000 19.04381

21
OTIS 270.9058 361.7805 2170.9273 11.64281
AMS 191.2724 363.3863 2154.3536 0.98688

AMS closed-loop 204.5619 364.9046 2139.7500 1.61218

22
OTIS 299.9342 398.2460 1841.1204 8.97000
AMS 211.8645 401.6461 1808.1027 10.88184

AMS closed-loop 227.6674 400.0388 1813.9500 12.15001

23
OTIS 265.5381 399.2454 1832.0815 10.57011
AMS 210.3717 397.9093 1841.9211 6.07592

AMS closed-loop 227.1023 396.1889 1850.1500 5.03092

24
OTIS 222.2749 407.0645 1761.3633 2.34400
AMS 158.6010 407.3729 1756.2756 3.49641

AMS closed-loop 174.9292 404.9382 1777.7500 4.93180

25
OTIS 285.9631 442.5412 1440.4989 11.85391
AMS 149.9988 438.8672 1471.2519 11.49603

AMS closed-loop 164.2296 436.9191 1488.1500 14.74207

26
OTIS 130.6578 345.4328 2318.7820 12.48016
AMS 88.9099 346.4386 2307.7307 12.04604

AMS closed-loop 94.3723 343.9121 2329.8000 15.26107

27
OTIS 219.2165 396.1688 1859.9077 0.00000
AMS 15.7832 396.0942 1858.3475 12.37148

AMS closed-loop 21.0860 393.6329 1877.3000 16.89375
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Table 11.8 Mode 51 Results

Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg) True Anomaly (deg)

28
OTIS 188.2341 356.1665 2221.7026 0.23231
AMS 168.6447 356.3202 2218.3019 0.00000

AMS closed-loop 177.0205 354.2091 2230.2500 0.16114

29
OTIS 228.3949 366.3698 2129.4199 0.22885
AMS 188.8833 363.5015 2153.3116 0.00001

AMS closed-loop 198.4591 361.0573 2166.9000 0.01260

30
OTIS 326.8909 398.5508 1838.3637 0.22111
AMS 230.6249 401.1288 1812.7843 0.00001

AMS closed-loop 248.3052 399.9408 1823.0000 0.02116

31
OTIS 182.9739 399.9333 1825.8598 0.19379
AMS 170.6421 399.4623 1827.8661 0.00000

AMS closed-loop 182.1409 397.6953 1841.1000 0.03067

32
OTIS 235.0993 405.9083 1771.8204 0.14380
AMS 180.8982 405.2135 1761.5226 0.00000

AMS closed-loop 193.6338 404.8655 1777.7500 0.00441

33
OTIS 317.0431 438.8030 1474.3089 0.13850
AMS 201.6559 437.9284 1479.7483 0.00000

AMS closed-loop 220.8111 437.2554 1479.1000 0.09196

34
OTIS 151.4102 347.6747 2298.5052 0.22882
AMS 122.5030 346.2990 2308.9943 0.00000

AMS closed-loop 132.1887 343.9411 2329.8000 0.00545

35
OTIS 158.9689 397.0465 1851.9692 0.14366
AMS 114.0376 395.8322 1860.7183 0.00000

AMS closed-loop 128.4066 394.1371 1868.2500 0.00323

36
OTIS 200.4568 330.3483 2455.2113 N/A
AMS 171.1778 330.8833 2448.5065 N/A

AMS closed-loop 178.0483 328.7342 2465.5500 N/A

37
OTIS 159.8574 339.3094 2374.1639 N/A
AMS 196.6761 337.2291 2391.0771 N/A

AMS closed-loop 204.6825 334.6980 2411.2500 N/A

38
OTIS 337.8690 380.0354 2005.8236 N/A
AMS 248.9145 378.2907 2019.4688 N/A

AMS closed-loop 265.7263 377.1271 2022.1000 N/A
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Figure 11.7 Altitude and velocity profiles of the AMS closed-loop burn–

coast-burn ascent trajectories for cases 14 and 33
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plumbline (guidance) frame for cases 14 and 33
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Figure 11.9 View 1: AMS closed-loop ascent trajectory and target inser-

tion orbit for case 25 illustrating large out of plane motion

(orbit shading for visual convenience)

Figure 11.10 View 2: AMS closed-loop ascent trajectory and target inser-

tion orbit for case 25 illustrating large out of plane motion

(orbit shading for visual convenience)
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Figure 11.11 AMS closed-loop and OTIS ascent trajectories and orbital

insertion perigee direction for case 33
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Figure 11.12 OTIS coast time sweep for case 33



75

11.4 Mode 46 Results

Mode 46 involves four insertion conditions defined by the desired final position magnitude

r∗f , velocity magnitude V ∗

f , inclination i∗, and flight path angle γ∗f . This mode is unlike the

others in that it is not defined from typical orbital elements and the conditions need not

represent values on any target orbit. Rather, this mode provides the ability to define a desired

launch abort energy condition where, if met, the launch vehicle can glide unpowered if necessary

to a determined landing site. Conditions for three cases are listed in Table 11.9.

Table 11.9 Mode 46 Target Orbits

Case Mode altitude (km) velocity (m/s) i (deg) γf (deg)

39 46 122 7500 51.6 -1
40 46 122 7500 51.6 -2
41 46 100 7000 40 -1

The results for these three cases are listed in Table 11.10. All methods agree closely, both

in optimized coast length and final burn time, however the OTIS trajectories have somewhat

lager second burn times resulting in reduced final mass. The initial conditions used for these

cases are the same as all previous cases and are conditions taken from a typical ascent. This

results in a higher initial altitude than would most likely be experienced in an abort scenario,

thus increasing the convergence difficulty. Figure 11.13 shows both the AMS and OTIS altitude

and velocity profiles as well as the flight path angle time histories for case 40.

Table 11.10 Mode 46 Results

Case Method Coast (sec) 2nd Burn (sec) Final Mass (kg)

39
OTIS 0.9908 272.5345 2978.1001
AMS 0.0000 267.9072 3018.4401

AMS closed-loop 0.1315 265.6799 3035.7000

40
OTIS 0.3931 267.7783 3021.1169
AMS 0.1763 263.2835 3060.2844

AMS closed-loop 0.0392 260.8845 3080.9500

41
OTIS 0.9037 226.0943 3398.1224
AMS 0.0007 222.9545 3425.2613

AMS closed-loop 0.0318 221.4846 3433.9000
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CHAPTER 12. SUMMARY AND CONCLUSIONS

The Analytical Multiple-Shooting (AMS) method for optimal burn-coast-burn vacuum as-

cent trajectories is the foundation for the work presented in this thesis. This method maintains

the simplicity of traditional single-shooting approaches for exo-atmospheric ascent trajectory

optimization while improving robustness by overcoming convergence problems due to increased

sensitivity caused in the presence of coast arcs. The optimal launch vehicle vacuum ascent prob-

lem formulation is presented in addition to a detailed development of the Analytical Multiple-

Shooting approach. Under the burn-coast-burn framework, the ascent trajectory is treated as

three segments in which the costate is expressed in closed-form solution and state in analytical

solution involving thrust quadratures. Continuity conditions at interior nodes, orbital insertion

conditions, and transversality conditions constitute a system of nonlinear algebraic equations

with analytic Jacobian.

A strong effort was made to enhance the robustness and reliability of the algorithm. Most

notable is the replacement of the modified Newton-Raphson method with the more robust and

highly regarded Powell’s Dogleg method. This method performed very well and was seen to

provide reliable convergence for some situations in which the Newton method could not. The

ascending node constraint enforced in modes 41 and 51 was dominate and resulted in increased

convergence difficulties where the modified Newton-Raphson method proved insufficient for

some scenarios. Powell’s method handled this difficult constraint with ease, and for all cases

tested was able to converge with no difficulties.

In addition, the f and g series approach to Keplerian motion in the coast arc is replaced

by the well established Goodyear’s method of orbit determination. The accuracy of the f and

g series is limited by a fixed number of terms calculated in the software implementation and
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can deteriorate as the coast time increases. This trade-off between general applicability of

the algorithm and the programming overhead and complexity inherent in the f and g series

approach is alleviated with the use of Goodyear’s method. The Goodyear method provided

an easily implementable and completely general solution for both the state and its partial

derivatives which can be determined to machine accuracy. Concerning the results presented,

differences in optimal coast trajectories found from the two methods are indistinguishable

which is expected. Expanding the framework to any number of burn / coast combinations, or

for interplanetary missions wherein very long duration coast arcs are essential, the methods

differences would become much more significant and the generality of Goodyear’s method

proves very beneficial.

This work also adds the functionality to solve for the unknown Lagrange multipliers directly

as part of the nonlinear algebraic equations. This eliminates the need to a priori remove

the multipliers from the problem with some numerical or analytical methods. This deemed

successful for the majority of terminal modes presented in this paper. This did in some

circumstances present convergence difficulties primarily caused by numerical conditioning and

scaling issues, however, when feasible, this provided another check on the validity of the current

algorithm implementation.

A series of open-loop and closed-loop simulations for different terminal constraint or orbital

insertion conditions were explored for a two stage launch vehicle consisting of the “Super X-33”

and X-37 vehicles. Similar results between these two simulations demonstrated the effective-

ness, robustness, and reliability of the Analytical Multiple-Shooting approach. In addition, the

results produced by the AMS method were verified with the industry standard aerospace tra-

jectory optimization software, Optimal Trajectories by Implicit Simulation (OTIS). The extent

to which OTIS and AMS matched in terms of the problem objective or vehicle performance

determined by deliverable payload mass further verified the AMS algorithm. The variation

in optimized coast arc arc solution time resulted in the “flat optimum” characteristic of the

ascent problem, approximations made in the AMS approach, flexibility in target insertion orbit

found, and in general by the much different methods used by the OTIS and AMS methods as
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discussed. In regards to OTIS, the software is very general and allowed for a large amount

user configurability. This configurability, however, appears to require an expert knowledge of

all its capabilities and its proper use for the desired problem. For the vacuum ascent problem

presented in this thesis, the insertion conditions can be enforced by constraining a variety of

parameters and it was noticed that changing these parameters can have a significant effect on

the optimized trajectory. Additionally, with respect to the coast duration, a slight change in

the coast duration guess or even a small change in either the upper or lower bounds containing

this guess may cause an unexpected and significant change in the converged result. Also, the

upper and lower bounds are not restricting in the sense that a small change in them retains

significant margin around the original converged result. Not only does this converged result

often change significantly, the difficulty in obtained the solution changes as well. These exam-

ples are not to suggest defects in the software, but only to report some notable findings from

its use in this work.

The development and resulting necessary equation were presented to expand the burn-

coast-burn framework to any number of optimized burn-coast combinations. For single-stage

launch missions as well as orbital transfer missions it is desirable to have this capability.

Implementing this framework into the AMS algorithm is an evident and beneficial extension

of the this work.



80

BIBLIOGRAPHY

[1] The Space Launch Initiative: Technology to Pioneer the Space Frontier, NASA Marshall

Space Flight Center, Pub. 8-1250, FS-2001-06-12-MSFC, June 2001.

[2] Hanson, J. M., “A Plan for Advanced Guidance and Control Technology for 2nd Gen-

eration Reusable Launch Vehicles”, AIAA Paper 2002-4557, Guidance, Navigation, and

Control Conference and Exhibit, Monterey, CA, August 5–8, 2002.

[3] Smith, I. E., “General Formulation of the Iterative Guidance Mode”, NASA TM X-53414,

March 1966.

[4] McHenry, R. L., Brand, T. J., Long, A. D., Cockrell, B. F., and Thibodeau III, J. R.,

“Space Shuttle Ascent Guidance, Navigation, and Control”, Journal of the Astronautical

Sciences, Vol. XXVII, No. 1, 1979, pp. 1–38.

[5] Brown, K. R., and Johnson, G. W., “Real-Time Optimal Guidance”, IEEE Transactions

on Automatic Control, Vol. AC-12, No.5, 1967, pp. 501–506.

[6] Brown, K. R., Harrold, E. F., and Johnson, B. W., “Rapid Optimization of Multiple-Burn

Rocket Trajectories”, NASA CR-1430, September 1969.

[7] Jezewski, D. J., “Optimal Analytic Trajectories”, AIAA Journal, Vol. 10, No. 5, 1972, pp.

680–685.

[8] Jezewski, D. J., “N-Burn Optimal Analytic Trajectories”, AIAA Journal, Vol. 11, No. 10,

1973, pp. 1373–1376.

[9] Jezewski, D. J., “An Optimal, Analytic Solution to the Linear Gravity, Constant-Thrust

Trajectory Problem”, Journal of Spacecraft and Rockets, Vol. 8, No. 7, 1971, pp 793–796.



81

[10] Hardtla, J, W., “Gamma Guidance for Inertial Upper State/IUS/”, AIAA Paper 78-1292,

Guidance and Control Conference, Palo Alto, CA, August 7–9, 1978.

[11] Gath, P. F., and Calise, A. J., “Optimization of Launch Vehicle Ascent Trajectories with

Path Constraints and Coast Arcs”, Journal of Guidance, Control, and Dynamics, Vol. 24,

No. 2, 2001, pp. 296–304.

[12] Calise, A. J., Tandon, S., Young, D. H., and Kim, S., “Further Improvements to a Hybrid

Method for Launch Vehicle Ascent Trajectory Optimization”, AIAA Paper 2000-4261,

Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, August 14–17,

2000.

[13] Dukeman, G. A., and Calise, A. J., “Enhancements to an Atmospheric Ascent Guidance

Algorithm”, AIAA Paper 2003-5638, Guidance, Navigation, and Control Conference and

Exhibit, Austin, TX, August 11–14, 2003.

[14] Lu, P., Zhang, L. and Sun, H., “Ascent Guidance for Responsive Launch: a Fixed-Point

Approach”, AIAA Paper 2005-6453, Guidance, Navigation, and Control Conference and

Exhibit, San Francisco, CA, August 15–18, 2005.

[15] Zhang, L., “A Fixed Point Framwork for Launch Vehicle Ascent Guidance”, Ph. D. Dis-

sertation, Department of Aerospace Engineering, Iowa State University, Ames, IA, 2006.

[16] Powell, M. J. D., “A Hybrid Method for Nonlinear Equations”, Chapt. 6, Numerical

Methods for Nonlinear Algebraic Equations, edited by Rabinpwitz, P., Gorden and Breach

Science Publisher, Inc., New York, 1970, pp. 87–114.

[17] Goodyear, W. H., “Completely General Closed-Form Solution for Coordinates and Partial

Derivatives of the Two-Body Problem”, The Astronomical Journal, Vol. 70, No. 3, 1965,

pp. 189–192.

[18] Goodyear, W. H. “A General Method for the Computation of Cartesian Coordinates and

Partial Derivatives of the Two-Body Problem”, NASA CR-522, September 1966.



82

[19] Hargraves, C. R., and Paris, S. W., “Direct Trajectory Optimization Using Nonlinear

Programming and Collocation”, Journal of Guidance, Control, and Dynamics, Vol. 10,

No. 4, 1987, pp 338–342.

[20] Optimal Trajectories by Implicit Simulation (OTIS), Volume I – Formulation Manual

[21] Optimal Trajectories by Implicit Simulation (OTIS), Volume II – User’s Manual

[22] Gill, P.E., User’s Guide for SNOPT Version 7: Software for Large Scale Nonlinear Pro-

gramming, May 30, 2006.

[23] Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Hemisphere, Washington, DC,

1975.

[24] Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New

York, 1993, pp. 125–131.

[25] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Dover

Publications, Inc., New York, NY, 1971, pp. 251-258.

[26] Danby, J. M. A., Fundamentals of Celestial Mechanics, 2nd. Edition, Willmann-Bell, Inc.,

Richmond, VA, 1988.

[27] Lewis, F. L., and Syrmos, V. L., Optimal Control, 2nd. Edition, John Wiley & Sons, Inc.,

New York, NY, 1995.

[28] Pontryagin, L. S., Boltyanskii, V. G., Gramkreledze, Q. V., and Mishchenko, E. F., The

Mathematical Theory of Optimal Processes, Intersciences, New York, 1962.

[29] Lawden, D. F., Optimal Trajectories for Space Navigation, Butterworth, London, UK,

1963.

[30] Lu, P., Griffin, B., Dukeman, G. A., and Chavez, F. R., “Rapid Optimal Multi-Burn As-

cent Planning and Guidance”, AIAA Paper 2007-6773, Guidance, Navigation, and Control

Conference and Exhibit, Hilton Head, SC, August 20–23, 2007.


	2007
	Improvements to an analytical multiple-shooting approach for optimal burn-coast-burn ascent guidance
	Brian Joseph Griffin
	Recommended Citation


	thesis.dvi

