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ABSTRACT

A numerical predictor-corrector (NPC) method for trajectory planning and closed-loop

guidance of low lift-to-drag (L/D) ratio vehicles during the skip entry phase of a lunar-return

mission is presented. The strategy calls for controlling the trajectory by modulation of the

magnitude of the vehicle’s bank angle. The magnitude of the bank angle used in the skip

phase is determined by satisfying the downrange requirement to the landing site. The problem

is formulated as a nonlinear univariate root-finding problem. Full three degree of freedom

(3DOF) nonlinear trajectory dynamics are included to achieve high accuracy of the landing

prediction. In addition, the proposed approach automatically yields a direct entry trajectory

when the downrange is such that a skip entry is no longer necessary. The same algorithm

repeatedly applied on-board in every guidance cycle realizes closed-loop guidance in the skip

entry phase. A number of issues are identified and addressed that are critical in closed-

loop implementations. Extensive 3DOF dispersion simulations are performed to evaluate the

performance of the proposed approach, and the results demonstrate very reliable and robust

performance of the algorithm in highly stressful dispersed conditions. Comparison is made

between the proposed algorithm and an earlier skip algorithm developed for the Apollo space

program. It is shown that the proposed algorithm is superior to the Apollo algorithm especially

when used for entries with long downranges.
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CHAPTER 1. INTRODUCTION

1.1 Atmospheric Reentry

With the development of space travel, significant emphasis has been placed on transporting

astronauts into space. However, as of this writing, no permanent space colonies have been

developed, thus requiring the return of the astronauts to Earth. Reentry is a dangerous part

of spaceflight as recent developments have shown. Several Russian Soyuz missions (TMA-1,

TMA-10, and TMA-11) missed their landing site by a large distance and potentially endangered

the safety of the cosmonauts onboard those vehicles. A typical spacecraft reentry will attempt

to use some of the vehicle’s aerodynamic capability to lessen the loads the crew is subject to and

also reduce the heat spike on the capsule. Aerodynamic lift provides critical maneuverability

for the vehicle as well. These particular Soyuz missions used a backup form of reentry guidance

whereby strictly a ballistic mode was used. The ballistic mode is designed to insure landing,

but this does not occur at the same landing site as the aerodynamic mode would have used.

Soyuz TMA-1 had some kind of computer problem [1] causing it to land over 500 km from

the expected landing site. Soyuz TMA-10 had a frayed wire which caused the ballistic mode

to activate [2] missing the landing site by 340 km. The latest failure in Soyuz TMA-11 is

still being studied, but it appears that a problem with capsule separation caused the backup

entry guidance mode to activate. This vehicle missed the landing target by 420 km[3]. The

cosmonauts in this mission may have been subject to up to eight times the force of gravity for

a period of time[3]. Fortunately in all these missions, the astronauts were not seriously injured,

but they had to wait for ground personnel to arrive to assist with operations. Accurate and

safe reentry guidance must be emphasized as a crucial component of space mission engineering

and design.
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1.2 Background

For entry vehicles with relatively low lift-to-drag (L/D) ratios, a known strategy since the

Apollo era for achieving long downrange is to allow the vehicle to skip out of the atmosphere[4,

5, 6, 7, 8, 9, 10, 11]. Figure 1.1 shows an illustration of this concept with the first entry, skip,

then reentry of the atmosphere and final entry phase to the landing site. The atmospheric exit

condition of the skip phase, including downrange, velocity, and flight path angle, must be such

that they lead to correct entry conditions for the final phase for successful landing. The two

essential functions of the entry guidance system in the skip phase are to plan the skip trajectory

and provide guidance commands to ensure the satisfaction of the required conditions at the

atmospheric exit. Given the critical importance of the skip trajectory and the relatively limited

maneuverability of such vehicles, early in the Apollo program it was already realized that the

skip trajectory would need to be designed on-board based on the actual flight condition.

Due to severely limited on-board computation capability at the time, the Apollo skip

entry trajectory planning algorithm had to rely on a number of approximations and empirical

equations to arrive at analytical expressions that relate the bank angle magnitude to the exit

condition of the skip trajectory[4, 5, 12]. The corresponding downrange in the skip phase is also

obtained by approximate analytical equations. From a particular skip exit state, the range in

the Kepler phase is computed analytically based on Keplerian orbit theory. The downrange in

the final entry phase is estimated by using the adjoints to the linearized trajectory dynamics as

the sensitivity coefficients. In this way, the total downrange is determined as an approximate

analytical function of the bank angle magnitude in the skip phase. A secant iteration scheme is

employed to find the required bank angle magnitude. Once such a reference trajectory is found,

the Apollo guidance system commands the bank angle to track the reference velocity and rate

of altitude profiles by a linear guidance law. The various approximations and linearization

assumptions have been found to limit the accuracy of the guidance, especially in the case

where the downrange is relative long in this work and others[9, 10]. This inaccuracy can have

a significant adverse impact on the success of the mission. For instance, for the class of entry

vehicles such as Apollo and Orion Crew Exploration Vehicle (CEV), the maximum variations
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Figure 1.1 Skip entry trajectory for lunar return mission.

in the downrange for a nominal entry mission that the vehicle can accommodate in the final

phase are on the order of ±370 km (200nm) due to the limited L/D ratio. Significant errors

arising from incorrect atmospheric exit conditions in the skip phase could render the vehicle

unable to satisfy the remaining range requirement in the final phase.

Improvement is sought in the guidance, and the literature provides many examples of

guidance methodology. For high lifting vehicles, the Space Shuttle guidance provides a mature

and well-tested method of tracking a pre-computed drag profile [13]. For low lifting vehicles,

various other methods have been suggested for atmospheric guidance. For direct entry, one

method is to extend the Space Shuttle entry guidance approach to track a pre-computed

drag profile[14, 15, 16, 17, 18]. Modern computer capabilities permit generation of a feasible

trajectory onboard the vehicle and use of a similar Shuttle-like tracking technique [27]. Analytic

approaches using asymptotic expansions and optimal control techniques have been attempted

for skip entry and aeroassist maneuvers[6, 8, 19, 20]. With the advent of flight computers,
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onboard calculation of a trajectory has become viable through the use of numerical predictor-

corrector methods[9, 10, 11, 20, 21, 22, 23, 24, 25, 26]. These methods are not limited by

the validity of the simplifications, approximations and empirical assumptions necessary for

any analytical treatment, thus they hold greater potential to be more accurate and adaptive.

In this paper, a numerical predictor-corrector approach motivated by similar principles is

developed for the skip entry problem.

The numerical method presented in this paper is for both purposes of trajectory planning

and closed-loop guidance for a low L/D vehicle during the skip entry phase. In the trajectory

planning, a linear bank angle magnitude profile is sought in skip phase and a specified constant

bank angle (e.g. 70◦) is flown in the final phase. The trajectory from the current condition in

the skip phase to the end of the final phase is numerically simulated. The initial magnitude of

the bank angle used in the skip phase is determined by satisfying the downrange requirement

to the landing site. The search for this required initial bank angle magnitude is formulated as

a nonlinear univariate root-finding problem. Unlike the Apollo skip-phase trajectory planning

approach, this method does not rely on approximations and empirical equations. Therefore,

full 3DOF nonlinear trajectory dynamics, including the effects of Earth rotation can be used

in the trajectory planning without any difficulty for achieving high accuracy of the landing

prediction. In addition, the proposed approach automatically yields a direct entry trajectory,

without a skip out of the atmosphere by the vehicle, when the downrange is such that a skip

entry is no longer necessary.

When the same algorithm is used in every guidance cycle update during the skip phase,

the solution effectively provides a closed-loop bank angle magnitude command. No additional

tracking guidance law is needed. The sign of the bank angle is determined by bank reversal

logic that keeps the crossrange within an envelope and steers the vehicle to the landing site.

Closed-loop guidance in the final phase is provided by another robust numerical predictor-

corrector method specifically developed for final phase entry guidance.[24]

The performance and robustness of the proposed algorithm also hinge on several critical

issues. In the planning algorithm and the guidance logic, the transition from one phase to
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another must not cause difficulty in the next phase. Thus, the phase transition logic is carefully

devised. The impact of the transient effects of bank reversals in the skip phase proves to

be significant on the subsequent trajectory. Thus bank reversals should be executed in the

direction of minimizing the time of reversals during the skip. It is found very helpful in

achieving required high precision that first-order fading memory filters are used to continuously

shape the lift and drag acceleration profiles in the planning and guidance algorithm. This is

particularly so in the presence of large atmospheric and aerodynamic uncertainties. For long

skip trajectories, Earth rotation tends to cause a final phase crossrange larger than the vehicle

can recover from, mainly in the presence of large dispersions with high drag and low lift. Taking

advantage of the planning algorithm, an automated targeting bias logic is developed for the

skip phase to compensate for such an occurrence.

Extensive 3DOF dispersion simulations using a capsule vehicle model similar to that of

the Orion CEV are conducted for several lunar-return mission scenarios with a wide spread of

initial downranges. The dispersions include those in entry condition at the first entry interface

due to de-orbit condition dispersions, aerodynamic coefficients, vehicle mass, and atmospheric

density. The end-to-end performance of the algorithms in guiding the vehicle through skip

entry to the end of the final phase entry flight is evaluated. In the 70,000 dispersed simulations,

99.857% of the trajectories end within 2.5 km to the landing site under highly stressful dispersed

conditions. The test results establish the viability and promising potential of this skip entry

trajectory planning and guidance approach.

The original Apollo skip guidance algorithm is used in a comparison study with the pro-

posed algorithm. To assess whether the Apollo skip guidance or the Apollo final phase guidance

is the most problematic in achieving high landing precision and worthy of improvement, the

various guidance sections are inter-mixed. For instance, the Apollo skip guidance is tested with

a numerical final phase and the proposed skip algorithm is tested with the Apollo final phase.

Different downranges and landing sites are tested to determine which algorithm performs well.
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1.3 Research Objectives and Dissertation Overview

This dissertation describes the development of a numerical predictor-corrector algorithm

for skip reentry. It provides a comparison of the Apollo skip guidance with the newly developed

numerical predictor-corrector algorithm. This work seeks to improve upon the Apollo algo-

rithm. The primary objective of this work is to devise an algorithm that guides the vehicle to

the parachute deployment condition above a landing site. Very high accuracy is sought under

stressful dispersion conditions. Secondary objectives include: 1) maintain g-loads within safe

limits for crew and vehicle 2) maintain heating loads within safe limits for vehicle heat shield

3) minimize fuel usage during vehicle maneuvering. Though these secondary objectives are not

directly addressed in this particular work, some possibilities for their achievement are outlined

in Chapter 9.

Chapter 2 discusses how a capsule is controlled and how the motion of a reentry vehicle

is simulated in a numerical environment. Chapter 3 discusses the baseline skip guidance

algorithm originally designed for the Apollo program. Chapter 4 discusses the new numerical

predictor-corrector algorithm for skip guidance. Chapter 5 discusses some critical issues that

arise in close-loop guidance using the numerical predictor-corrector that must be addressed

and in place for accurate guidance. Chapter 6 discusses the method by which the algorithms

are evaluated using specific vehicles and Monte-Carlo dispersion simulations. Chapter 7 gives

extensive results of testing the proposed numerical-predictor algorithm. Chapter 8 compares

the results of simulations run with the new algorithm compared with the Apollo skip guidance.

It also merges the skip phase of the new algorithm with the Apollo final phase guidance and

then the Apollo skip guidance with the numerical final phase guidance developed by Lu [24].

Chapter 9 gives some concluding remarks and potential future work for improvement.
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CHAPTER 2. PROBLEM FORMULATION

2.1 Bank Angle Modulation

For a blunt body like a capsule, generation of lift is accomplished by offsetting the center

of gravity (CG) from the center of pressure (CP). This is unlike a vehicle with wings, which

generates lift by a difference in pressure between the top and bottom surface. The CP is in

a fixed location dictated by the geometry of the vehicle. However, by adjustment of internal

components the CG can be moved so that in a trim condition, there is no rotation about the

CG in the longitudinal direction and we have the equilibrium condition, Eq. (2.1). The CG

is fixed in position once the design of the vehicle is completed; no active control of the CG

is performed during entry flight. The angle of attack is α. A schematic version of the lift

generation appears in Fig. 2.1.

ΣMG = nFN − aFA = 0 (2.1)

To control the vehicle’s downrange flight, the vehicle is rolled to cause lift out of plane as in

Fig. 2.2. By altering the bank angle, the vertical component of lift is made to vary. A smaller

bank angle produces a greater component of lift in the vertical plane and enables the vehicle

to remain aloft a greater distance. This effect is similar to introducing a slip into the flight

of an aircraft. A larger bank angle, even to the limit of pointing the lift vector towards the

ground, will reduce the vertical lift and shorten the distance aloft.

A horizontal component is coupled to the motion in the vertical plane. As the total magni-

tude of lift remains constant, the lift generated out of the vertical plane is seen in the horizontal

plane. This has the effect of altering the vehicle’s heading angle and causing a turn. Theoret-

ically, the vehicle could fly a constant bank angle, with the perfect amount of lift to carry it
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Figure 2.1 Generation of lift by CG offset from CP

to the landing site downrange of its entry point. However, the crossrange would not be zero.

Thus, the vehicle occasionally needs to reverse the bank angle from positive to negative or

vice versa to null out the cross range. During the finite time in changing the bank angle from

one side to the other, some time is spent with the vehicle bank angle at a point that will not

satisfy the downrange requirement. Thus, the vehicle’s bank angle is continuously monitored

and modified to ensure that it will satisfy all the both downrange and crossrange requirements.

2.2 Entry Vehicle Dynamics

To simulate a spacecraft’s entry flight, the dimensionless equations of three-dimensional

motion for a point mass about a rotating Earth are integrated. The equations are dimensionless

for purposes of numerical conditioning. These equations are: [28]

ṙ = V sin γ (2.2)

θ̇ =
V cos γ sinψ
r cosφ

(2.3)
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Figure 2.2 Modulation of bank angle by rolling

φ̇ =
V cos γ cosψ

r
(2.4)

V̇ = −D − sin γ
r2

+ Ω2r cosφ(sin γ cosφ− cos γ sinφ cosψ) (2.5)

V γ̇ = L cosσ + (V 2 − 1
r

)
cos γ
r

+ 2ΩV cosφ sinψ

+ Ω2r cosφ(cos γ cosφ+ sin γ cosψ sinφ) (2.6)

V ψ̇ =
L sinσ
cos γ

+
V 2 cos γ sinψ tanφ

r
− 2ΩV (tan γ cosψ cosφ− sinφ)

+
Ω2r sinψ sinφ cosφ

cos γ
(2.7)

with

D = ρ(VsV )2SrefCD/(2mg0) (2.8)

L = ρ(VsV )2SrefCL/(2mg0) (2.9)

The differentiation is with respect to a dimensionless time.

τ = t/τs (2.10)

with

τs =
√
R0/g0 (2.11)
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where, r is the distance from the center of the Earth, θ the longitude, φ the latitude, V the

atmospheric-relative velocity, γ the flight path angle of the relative velocity, ψ the heading

angle of the relative velocity vector measured from north, positive in a clockwise direction, and

σ the bank angle measured positive to the right from the view inside the vehicle. The Earth

rotation rate is Ω, Sref the reference area, ρ the local atmospheric density, D the drag force,

L the lift force, CD the coefficient of drag, CL the coefficient of lift, m the spacecraft mass,

and g0 the acceleration due to gravity at the Earth’s surface = 0.00981 km/s2. Note that r is

scaled by the Earth’s radius, R0 = 6378.135 km, and V is scaled by the dimensionless velocity:

Vs =
√
R0g0 (2.12)

Thus, the term Vs is included in Eqs. (2.8)-(2.9) to redimensionalize the velocity term. Then

the division by the weight of the vehicle gives the respective drag and lift forces in multiples

of gravitational acceleration, commonly known as g’s. One g of acceleration is equal to the

acceleration due to gravity at the Earth’s surface.

In the planning of the trajectory, the 1976 U.S. Standard Atmosphere is used as the atmo-

spheric model.[29] The equations of motion are integrated with a fourth order Runge-Kutta

method.

Initial entry conditions are assumed to be those on a lunar return trajectory. The entry

altitude is 121.9 km (400,000 ft). The velocity, flight path angle, heading, latitude, and longi-

tude are assumed to have been targeted via earlier de-orbit maneuvers to bring the spacecraft

to a point and heading that permit the guidance to ensure a safe entry. Specific cases are

described further in Chapter 7. A pre-specified final velocity, Vfinal, terminates the simula-

tion, which is targeted toward a landing site. For the purposes of the simulation, when the

vehicle has reached 150 m/s (500 ft/s) relative velocity, parachute deployment will occur and

the simulation for entry flight terminates.

To control the trajectory, the bank angle is varied to achieve pre-specified terminal con-

straints. The bank angle is tied into the flight path angle via Eq. (2.6) and the heading angle

via Eq. (2.7). It is responsible for achieving the longitudinal and lateral constraints. The bank
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Table 2.1 Entry variables

State Symbol Dimensions
Altitude none km
Radius r none

Longitude θ radians
Latitude φ radians

Relative Velocity none km/s
Relative Velocity V none
Flight Path Angle γ radians

Heading Angle ψ radians
Bank Angle σ radians

Drag D g’s
Lift L g’s

Density ρ kg/km3

Reference Area Sref km2

Drag Coefficient CD none
Lift Coefficient CL none

Mass m kg
Time t seconds

Dimensionless Time τ none

angle is determined by the guidance algorithm, which is described in Chapter 4.

To summarize the variables and their dimensionality, see Table 2.1. The constants are in

Table 2.2. For example, the inital altitude, typically given in kilometers, is converted to the

Earth centered distance by adding the Earth radius to it. Then this value is divided by the

Earth radius to give the dimensionless radius, r. Similarly, if velocity is given in kilometers per

second, this value is divided by the scale velocity, Vs to give the dimensionless relative velocity,

V . Also, the Earth rotation rate in radians per second is multiplied by the scale time, τs to

give the dimensionless rotation rate, Ω.



12

Table 2.2 Entry constants

State Symbol Value Dimensions
Earth Rotation Rate none 7.2921151e-5 radians/s
Earth Rotation Rate Ω 0.05879 none

Gravity g0 0.00981 km/s2

Radius of Earth R0 6378.135 km
Scale Velocity Vs 7.9100 km/s

Scale Time τs 806.329 seconds
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CHAPTER 3. APOLLO SKIP GUIDANCE

For the Apollo program, the reentry guidance sought to use a skip reentry. The stated

reasons were for mission flexibility and for trajectory flexibility. Mission flexibility refers to

adjusting to different reentry conditions and target locations. For example, depending on the

relative orbital positions of the Earth and Moon, the vehicle might be on different approach

angles and headings. Also, if the original landing site were unavailable due to weather or lack

of recovery crew, the landing site could be changed. Trajectory flexibility refers to achievement

of entry objectives in spite of atmospheric and vehicle uncertainties [4]. At the time of Apollo,

engineers did not have significant heritage in entry vehicle performance. Similarly, knowledge

of the atmosphere was limited.

3.1 Guidance Design

Fig. 3.1 will be referenced in the following simplified overview of the Apollo skip guidance.

Fig. 3.2 gives a more detailed overview of the guidance in relation to the flight condition. The

original design of the Apollo skip guidance appears in reference [12], though reference [4] con-

tains a more recently updated and detailed version of the guidance algorithm. Reference [4]

contains complete derivations and flowcharts for the entire guidance algorithm. However, cer-

tain gains and constants were unavailable in that document. Reference [9] lists these constants

and gains, but they appear to be from the earlier version, reference [12] of the Apollo skip

guidance. For this work, the gains and constants are used from a more recent document[30].

Reference[5] contains some information concerning the actual performance of the guidance

system during the Apollo 10 mission. However, the skipping capabilities of the guidance were

never utilized during that particular mission, nor any other Apollo Mission.
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Figure 3.1 Guidance flowchart for Apollo skip algorithm[4].
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Figure 3.2 Reentry guidance phases for Apollo skip algorithm[5].

The Apollo skip guidance is designed in a modular fashion whereby one part of the code

is executed until completion as shown in the figure. Certain sections such as navigation,

targeting, mode selector, and the lateral logic are executed during every call to the guidance.

The Apollo guidance accomplishes two objectives. First, a trajectory is designed that will

reach the landing site. Second guidance control laws are used to fly the designed trajectory

while not exceeding certain constraints on vehicle load.

When the guidance is called the first time, an initialization routine is run. This sets up

constants for the guidance that will be used and initializes the switches. It is only called once.

The navigation routine takes data from the onboard vehicle accelerometers. This data is used

to propagate the vehicle’s position and velocity vectors forward in time. The targeting routine

is called to update the vectors from the vehicle to the target site.

Next, the mode selector is run to decide which phase of guidance the vehicle is in. There is a

parameter called selector which is initialized during the initial roll subroutine. This parameter

is retained in memory and updated as the trajectory progresses. This begins the process of
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designing a trajectory to-be-flown and then actually flying it.

The initial roll subroutine calculates the reference drag level for the later constant drag

phase. It also determines an initial orientation, either lift up or lift down, for the vehicle

during the open-loop phase of flight. Once the initial pass has been made and the drag level

passes a threshold value of 1.4g0 as seen in Fig. 3.2, the closed-loop constant drag phase is

run. This phase is only run when the drag is high enough. Because the guidance relies on

measuring the drag when the vehicle is at the top of the sensible atmosphere where the density

is highly variable. The guidance might produce bank commands that are correspondingly

highly variable. This continues until the vehicle has slowed sufficiently and the trajectory

shallows out. Then, it will begin the Huntest phase of closed loop planning. This occurs once

the altitude rate is greater than -700 ft/s as shown in Fig. 3.2.

The Huntest phase is complex depending on the trajectory of the vehicle through different

branches. The main functions are: 1) calculate the vehicle state conditions at the pullout point

(bottom of the skip), 2) calculate the exit conditions of the upcontrol phase, and 3) calculate

the required L/D value during the upcontrol that will permit the vehicle to achieve those exit

conditions. A reference trajectory is calculated taking the vehicle to the pullout point and

the entire upcontrol phase. The complete derivation and equations are available [30]. During

Huntest, if the calculation of the vehicle’s exit velocity is greater than the circular satellite

velocity, or if the total range to-be-flown on the reference trajectory is an overshoot, it will

continue to run the constant drag segment. If there is an undershoot, the required L/D value

is updated using a secant method. This process continues until the predicted range-to-be flown

is within 25 nautical miles of the target.

The constant drag module calculates the L/D ratio of the vehicle required to track a

reference drag level and altitude rate. This is accomplished with a linear control law. It is

used once vehicle controllability is assured and during Huntest if the vehicle is expected to

overshoot the targeted site.

The upcontrol phase produces vehicle L/D commands to achieve the conditions at the

pullout point and the atmospheric exit. Typically the vehicle is still going down when the
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Huntest phase has converged, so it flies a modified constant drag profile to reach the pullout

point. This is labeled “Down Control” on Fig. 3.2. Once past the pullout, a control law is

used to generate L/D commands so the vehicle flies to the atmospheric exit conditions. This

continues until the drag decreases to be considered in a Kepler phase. As shown in Fig. 3.2,

this occurs at 0.2g0. If a loft trajectory were to occur where the vehicle does not fully exit the

atmosphere, the final phase guidance will begin.

During the ballistic or Kepler phase, the vehicle simply maintains a neutral position with

zero bank angle or full lift up. This continues until the drag starts to increase again. With the

drag greater than 0.2g0, the final phase begins at the second entry point.

The final phase guidance is based on a precomputed reference trajectory. A control law

is used to track the reference trajectory and produce bank angle commands for the vehicle.

The reference trajectory requires a table look-up and interpolation with vehicle velocity as the

indenpendent variable to produce the correct values for the control law. During final phase, if

the landing site is passed, full lift down is commanded.

During the final phase, large bank magnitudes can produce very high g-loads. A limitation

on the g-load is introduced to prevent exceeding the maximum vehicle capability. If the load

is less than half of the maximum permitted g-load, the computed bank angle is flown. When

between half the maximum g-load and the maximum g-load, a further computation involved

the altitude rate (ṙ) is done. Depending on this calculated value, the computed bank angle may

be flown or full lift up may be commanded (0 deg bank). If the maximum g-load is exceeded,

full lift up is commanded. In the Apollo guidance, the value of the maximum permitted g-load

is 8 g’s. However, it is stated that this value is chosen for safety, since the true maximum

g-load is 10 g’s.

Following computation of the required L/D value in the guidance phases where control

is possible (Constant Drag, Huntest, Down Control, Up Control, and Final), the guidance

computes the sign of the needed bank angle using the lateral logic. This computation requires

the crossrange of the vehicle to lie within a corridor. Bank reversals are commanded whenever

the crossrange exceeds this velocity-dependent corridor. The crossrange guidance also prevents
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the guidance from flying a bank angle within 15◦ of full lift up or down. This is to prevent

inadequate nulling of crossrange error in the event the guidance commands a bank angle near

full lift up or down. There are also conditions that prohibit roll reversals entirely. Normally,

the autopilot will roll in the shortest direction, but during high load portions of the upcontrol

phase, the vehicle is prevented from rolling through lift down.

3.2 Modifications for Current Use

For testing and comparison, the Apollo skip guidance is implemented in modern software

(MATLAB). The Apollo skip guidance required a number of modifications to the original

Apollo code for use. The Apollo code is modular in that each phase is designed to work

independently, but still needs to access to several variables from other modules. With repeated

function calls to the Apollo guidance in the code, a number of variables are stored for use in

future calls.

Next, the navigation subroutine is not used, since the simulation has direct access to the

exact state of the vehicle. As discussed in Chapter 6, perfect knowledge of the state was

assumed, whereas the navigation subroutine only assumes access to information from onboard

accelerometers. With modern Global Positioning System (GPS) data, as discussed in [10],

greater knowledge of vehicle state information is expected.

Next, the initialization and targeting subroutines perform a computation to determine the

range to the target based on the estimated time-to-go and earth rotation angle. Since the

vehicle velocity, V is already Earth-relative as in Eq. (2.6), the range-to-go is computed by

computing the arc length as in Eq. (4.4).

Bairstow mentions an error in the lateral logic routine (called “310” in Moseley [4]), that

is corrected [9]. The calculation for Y, (equivalent to χc in Eq. (4.8)) omits a conversion of the

variable LATBIAS from nautical miles to radians.

Also, the digital autopilot (referred to as DAP in much of the Apollo literature) was not

available, so the bank reversal was simulated with a separately written code to ensure bank

reversal in the shortest direction. This is also used in the proposed algorithm with further
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detail in Section 5.2.

3.3 Difficulties with Apollo

Throughout the Apollo skip guidance, numerous empirical relations and approximations

are made. Extensive study was made in [30] to show their development. However, it has

been shown in more recent work [9] and will be shown in this work that the Apollo guidance

is not accurate under longer range entries, with a wider range of entry conditions, and with

atmospheric, vehicle, and entry dispersions.

Specifically in Bairstow, two things were shown that cause inaccuracy at longer ranges

[9]. First, it was shown that the upcontrol phase guidance law does not properly guide the

vehicle to the calculated exit conditions. This was shown by examining the transition from

the skip phase to the final phase. Bairstow defined an “energy bucket”. The bucket gave a

corridor through which the vehicle’s combined range-to-go and total energy (a combination of

altitude and velocity) must lie. The bucket was found by evaluating the vehicle’s range-to-go

and the potential range that could be covered using either full lift up for the remainder of the

trajectory, or full lift down subject to a 10-g limit. Bairstow found that for longer ranges, the

Apollo final phase transition occurred with too much range-to-go and too little energy. This

led to studying the exit conditions for the upcontrol phase, since no control occurred during

the Kepler phase.

Bairstow found that during the last part of upcontrol, the vehicle was flying only moderate

bank angles leaving it with plenty of capability. Thus, the guidance was unaware of its predica-

ment of having too much range-to-go with too little energy. The upcontrol control law tracks a

reference altitude rate and a reference velocity. Bairstow found that although the velocity was

being tracked closely, the altitude rate was not. Since in the equations of motion, specifically

Eq. (2.2), the velocity was not in error, but the altitude rate was, this meant that the flight

path angle was significantly in error. This error caused a significantly different Kepler phase

to be flown for the longer trajectory, and prevented the final phase guidance from having any

chance of succeeding.



20

In a further study, Bairstow analyzed whether the reference trajectory via the exit condi-

tions were even valid. In the derivation of the range prediction equations for the Apollo skip

guidance, a purely ballistic orbit is assumed for the Kepler phase. At the altitudes encoun-

tered, drag plays a small, but significant role in modifying the vehicle’s path. Bairstow showed

this by using numerical simulation of the trajectory through Kepler phase from the calculated

upcontrol exit conditions. It was found that during longer range skips, accumulated drag slows

the vehicle and causes the undershoot.

One additional point it that the sensitivity of the trajectory must have been realized by the

original Apollo skip guidance designers because roll reversals are not allowed during upcontrol

while the drag is greater than 4.3 g’s.
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CHAPTER 4. ALGORITHM DESCRIPTION

4.1 Trajectory Planning

4.1.1 A Root Finding Method

In the planning of the complete entry trajectory from skip to the end of the final phase,

the magnitude of the bank angle in the skip phase is parameterized as a linear function of the

range-to-go sto−go until a specified threshold sthres which is set equal to 2000 km. Below sthres,

a constant bank angle magnitude of σf = 70◦ is used. Figure 4.1 shows this bank angle profile

which is continuous. Therefore the bank angle magnitude |σ| at any range-to-go sto−go ≥ sthres

is

|σ| = σf + (σ0 − σf )
sto−go − sthres
s0
to−go − sthres

, s0
to−go ≥ sto−go ≥ sthres (4.1)

where s0
to−go is the current range-to-go. For a given bank angle magnitude, the sign is assigned

by a bank reversal logic (more later). The corresponding skip trajectory is simulated on-board

from the current condition to the end of the entry trajectory, defined by a specified velocity.

Therefore, the skip trajectory planning problem is to determine the initial bank angle, σ0,

in the bank angle parameterization Eq. (4.1) that will meet the final condition on the miss

distance to the landing site at the specified final velocity. Fig. 4.2 shows the planning transition

logic.

The choice of sthres in the bank angle parameterization is such that it represents typical

downrange at the initiation of the final phase guidance. This value does not vary widely for

low L/D vehicles. Thus the skip and Kepler phases take place from s0
to−go to sthres. Even

though bank angle has no influence on the trajectory in the Kepler phase, one reason for

the parameterization in Fig. 4.1 is to maintain continuity of the bank angle. This feature is
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Figure 4.1 Bank angle parametrization with respect to range-to-go sto−go
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important in ensuring the convergence of the planning algorithm when the initial downrange

is short and the trajectory does not have full skip and Kepler phases. Another benefit of the

linear profile in Fig. 4.1 is that the skip trajectory will deplete the excess energy early in skip

phase (since the bank angle has larger magnitude). This tends to help alleviate the undesirable

need to fly a very large bank angle toward the end of the skip phase, and increase the robustness

of the guidance in the presence of severe atmospheric and aerodynamic uncertainties.

In the planning, the downrange covered is added as a seventh dimensionless equation of

motion to integrate with the other variables as given before.

ṡ = V cos γ/r (4.2)

The planning algorithm attempts to find the initial required bank angle |σ0| so that the down-

range flown along the complete entry trajectory is equal to the actual range-to-go to the landing

site. Through the integration of the equations of motion (2.2)-(2.7) and (4.2) with |σ| given

by Eq. (4.1), the search for σ0 becomes a root finding problem: at the current spacecraft state,

find the σ0 that will permit satisfying the downrange requirement:

smiss = s0
to−go − sf (|σ0|) = f(|σ0|) = 0 (4.3)

Through integration of the equations of motion, the range flown, sf is found at the specified

final velocity. The current range-to-go, s0
to−go is found by computing the great circle distance

from the current vehicle position to the landing site. The great-circle distance, s0
to−go in radians

between the current vehicle position (θ, φ) and the landing site (Θ∗,Φ∗) is:

cos(s0
to−go) = sinφ sin Φ∗ + cos Φ∗ cosφ cos(Θ∗ − θ) (4.4)

The resulting distance, smiss will be positive if the spacecraft undershoots the final position

and negative if there is an overshoot. If strictly the range-to-go s0
to−go computed at the final

vehicle position in Eq. (4.4) is used, the resulting function in Eq. (4.3), will be discontinuous

resulting in convergence difficulty. This stems from the fact the range-to-go at the end of the
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integration may have a significant component resulting from non-zero crossrange. Thus the

function in Eq. (4.3) is used.

A line search method is used to compute a search direction for the next bank angle in

Eq. (4.5).[31]

xn+1 = xn + αnpn (4.5)

The step length, α, is chosen to be one and the direction, pn, is chosen with a secant method.

This inexact line search is used to find the root or rather the exact bank angle that will permit

the final position of the vehicle to be as close as possible to the desired final position. Due to

the choice of the inexact step length, some difficulty is encountered in computing the update.

This is described in more detail below. The search direction is found from Eq. (4.6).[31]

pn = −B−1
n ∇fn = − xn − xn−1

f(xn)− f(xn−1)
f(xn) (4.6)

Thus, the update equation becomes the well-known secant method which is used to itera-

tively solve Eq. (4.3). The iterates are generated by the Eq. (4.7).

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn) (4.7)

where x = cosσ0. To start the secant iteration scheme appropriately for the first time, an

initial guess of the bank angle is required that will enable the spacecraft to reach the final

velocity following a skip trajectory. An arbitrary choice could result in the vehicle bouncing

off or diving steeply into the atmosphere. To find this initial bank angle, the algorithm begins

by assuming a bank angle of 0◦ in the numerical simulation of the trajectory. If the vehicle’s

altitude exceeds 300 km at any time, the spacecraft is assumed to have bounced out of the

atmosphere. Then the bank angle magnitude is incremented by a fixed amount of 2.5◦, and

the process repeats until the corresponding trajectory reenters the atmosphere following the

skip and ends in the final phase with an undershoot in the final range-to-go to the landing site.

The secant iteration stops when the miss distance to the parachute deployment condition

is achieved, i.e., at specified final velocity of 150 m/s (500 ft/s), the miss is less than 25 km
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(i.e., when |smiss| < 25km). Note that to convert smiss to kilometers, it must be multiplied by

R0 to give the correct units.

4.1.2 Bank Reversal

In order to actually fly toward the end conditions, the sign of the bank angle is determined

by a lateral logic that is similar to the one used in the Apollo entry guidance.[4, 5] A crossrange

threshold is defined as a linear function of the dimensionless velocity

χc = c1V + c0 (4.8)

where c0 and c1 are constants set equal to 8.71e-5 rad and 5.21e-3 rad respectively for this

work. Whenever the crossrange along the trajectory exceeds χc as defined above, the sign of

the bank angle is reversed. In the trajectory planning, the change of the bank angle sign is

achieved instantaneously without any rate or acceleration limits. If the rate and acceleration

limits are enforced, the number of bank reversals could be different in two successive iterations

of the secant search. This difference will result in a discontinuity in the miss-distance function

f , which will in turn cause convergence difficulties in the secant method. Instantaneous bank

reversal is done to avoid this possible problem. However, it should be stressed that the bank

angle rate and acceleration limits are enforced in the guidance command generation. A sample

plot of the crossrange variation over time is shown in Fig. 4.3. The reversal of the bank angle

ensures the crossrange remaining with the necessary corridor. The corridor shrinks over time

due to the decreasing velocity.

4.1.3 Issues in Continuity of Miss Function

The secant method requires that Eq. (4.3), be a continuous function. Several measures are

undertaken to insure this is the case. Some of these are within the planning, others are in the

root finding algorithm.

First, it was found that the phase transition between the skip phase and the final phase is

especially important. Originally, the determination of final phase was via a complex sequence

of events as shown in Fig. 4.4.
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In a particular type of trajectory that is on the edge of having a Kepler phase (bordering

the loft and normal skip paths) this type of transition logic is a problem. Depending on the

bank angle that is planned during the skip phase, different paths will followed. Originally a

constant bank angle was used during skip phase, but as this work developed, the linear profile

was evolved. For this discussion, the constant bank angle method is reverted to. In an iteration

of the secant method as shown in Fig. 4.5, a bank angle of about 100◦ is flown. This causes

the profile of the trajectory to appear in Fig. 4.6.

Since the load decreases below 0.05g, the path of normal skip is followed and the final

phase begins around 400s. Since the vehicle overshoots the target slightly (not shown in

figures), the bank angle is increased via the secant method. The resulting trajectory follows

that of Fig. 4.7. With this trajectory, the logic path followed is the loft trajectory whereby

the final phase begins when the vehicle is below 50 km in altitude. The altitude level where

the load is below 0.05g is approximate in the figure. With this path, the final phase begins

significantly later than in the first iteration. During the early part of the second entry, the

bank angle flown is much larger than it was with the first iteration. This affects the trajectory
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Figure 4.6 Discontinuous planning: time versus altitude-first iteration

so that it undershoots the landing site significantly more than it should have if the process was

continuous. Thus, a third iteration follows with a bank angle significantly smaller than the

first, creating a significant overshoot, and the problems continue as convergence is not possible.

With the implementation of range-to-go as the variable to determine transition to final phase,

these problems are eliminated. Since range-to-go is decreasing in a fashion that is common to

all trajectory types, the final phase begins at nearly the same point.

One other idea was to use the vehicle energy to determine the start of final phase. The

specific mechanical energy is calculated as in Eq. (4.9).

e =
1
r
− V 2

2
(4.9)

Using the dimensionless variables as before, the energy starts near zero and increases to

one at the end. A value of the energy must be chosen to signify the transition to final phase

during the planning. In using the planning logic above in Fig. 4.2 or Fig. 4.4, it is found that

longer range trajectories transition to final phase with significantly more energy remaining than
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Figure 4.7 Discontinuous planning: time versus altitude-second iteration

shorter range. The longest trajectories should switch to final phase with energy about equal to

0.51. The short trajectories transition around 0.57. This is because the longer skip trajectories

require less velocity reduction during the skip to reach the higher altitudes during the Kepler

phase. Due to the large difference in needed threshold values, it was not possible to find one

that satisfied all the different possible trajectories. If the transition value is set to 0.51, then

the shorter range trajectories remain in skip phase too short a time (transition occurs early in

the upcontrol phase). If the value is set to 0.57, then the longer range trajectories transition

to final phase too late, until the altitude has decreased to less than 50km in the second entry.

This does not leave enough margin for the final phase to reach the target. Fig. 4.8 gives the

representation of the planning transition logic using energy.

Due to the sensitivity of the final condition, the normal integration step size, h = 10s (or

0.01246 nondimensionalized) for the planning phase is adjusted so that the final velocity is

met exactly to enable better comparison of the resulting ranges flown for the secant method.

If V + V̇ h (with V̇ calculated from Eq. (2.5) with the current conditions) is less than or equal

to Vfinal, then the step size is set equal to the value in Eq. (4.10). This procedure takes place
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Figure 4.8 Phase transition logic with energy (discontinuous planning)

when V <= 1.5Vfinal.

h =
Vfinal − V

V̇
(4.10)

As discussed in Section 4.1.2, the bank reversals in the planning take place instantaneously.

This could cause a problem due to the finite time spent in reversal and with the number of

reversals occurring being different from one secant iteration to the next.

On occasion, the secant computation will calculate a bank angle that causes the ensuing

trajectory to skip out. Thus calculation of the miss distance is not possible. To restart the

computation, the current bank angle that skips out has 2.5◦ added to it and the trajectory is

re-simulated. This continues in a similar fashion as finding the initial angle for the secant until

the trajectory ends in an undershoot. Then the secant computation resumes.

Due to the inexact line search, the secant scheme will compute a value for cosσ > 1. A

check is performed to see if the previously converged bank angle is less than 15◦. If it is, then

it is assumed that the vehicle actually needs to fly a small bank angle. If not, then the inexact

line search caused a problem, and the procedure described for leaving the ground is followed

to restart the computation. A similar logic follows if cosσ < −1 and the previously converged
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bank angle is greater than 165◦.

4.2 Closed-Loop Guidance

Once the process in the preceding section converges, a feasible skip trajectory has been

found. Subsequent guidance commands in principle can be found by tracking this reference

trajectory as done in the Apollo design. For a vehicle with low L/D value, however, achieving

the kind of high precision required at the atmospheric exit (particularly in the flight path

angle) by tracking a fixed reference trajectory is difficult. This is because there are multiple

competing conditions in velocity, flight path angle, and range that need to be met, and the

vehicle’s limited maneuverability is inadequate to null all trajectory dispersions if they are not

small.

The guidance approach adopted in this work is to use the same algorithm described in

Section 4.1 repeatedly to generate a new skip trajectory using the current state as the initial

condition in every guidance cycle. The magnitude of the commanded bank angle in the current

cycle is then the one found in the solution. Since this solution, thus the bank angle, depends

on the current state of the trajectory, such a guidance command is closed-loop in nature. The

advantages of this approach over reference-tracking should be three-fold: (1) the vehicle should

always fly on a feasible trajectory that satisfies the required condition on range-to-go to the

landing site, provided that the algorithm converges; (2) there should be no need for separate

tracking guidance law and the generation and tuning of the associated gains; (3) it might be

possible to further incorporate the information from the vehicle health monitoring system in

the guidance solution in the event of degradation of vehicle capability due to partial system

failure. The risk, of course, is that the convergence is not achieved in one or several guidance

cycles. This risk arises most likely only in the case of severely abnormal situations. If non-

convergence occurs in just one guidance cycle, the previously obtained solution can always still

be used. One of the objectives of evaluation is to assess the robustness and reliability of the

algorithm through extensive testing.

On closed-loop guidance calls to the algorithm, the previously calculated bank angle is
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used as an initial guess for the initial to-be-flown bank angle for the skip phase rather than

beginning with zero bank angle. If this angle is still sufficient to bring the downrange error

within 25 km, the secant method is skipped and the previous bank angle is flown. Otherwise,

the secant method proceeds as above and determines a new bank angle magnitude.

During the finite time in a bank reversal in the actual flight, the above algorithm continues

to run, with the current state as the initial condition. The transient effects of the bank reversal

will cause the algorithm to yield a somewhat different bank angle once the reversal is completed.

Further discussion concerning this effect appears in Section 5.2.

No closed-loop guidance is performed in the Kepler phase where aerodynamic control is

ineffective.

In the final entry phase, closed-loop guidance is provided by another numerical predictor-

corrector algorithm.[24] This algorithm searches for a one-parameter linear bank-angle profile

that will result in the downrange flown by the vehicle be equal to the actual range-to-go to the

landing site. The reader is referred to Ref.[24] for detailed description of the algorithm and

performance evaluation based on Monte Carlo simulations of the final phase entry flight.
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CHAPTER 5. CRITICAL ISSUES IN CLOSED-LOOP GUIDANCE

In this chapter several issues critical to the success and performance of the proposed algo-

rithm when applied in closed-loop skip entry guidance are addressed.

5.1 Seamless Phase Transitions

The Apollo entry guidance[4] and a recent work[32] on Orion CEV have identified the need

for improved phase transition logic in the skip entry guidance. In the Apollo entry guidance, a

different strategy of guidance is used in each phase of the skip entry. Therefore, it is necessary

to ensure that the transition from one phase to another will not cause difficulty in the next

phase. In particular, the Apollo final phase guidance is based on tracking of a pre-stored

reference trajectory. If the transition into final phase guidance does not takes place at an

appropriate point, the guidance command could be severely saturated while attempting to

reach the reference conditions. Another critical situation, where smooth transition between

different phases of guidance is needed, occurs when a skip trajectory is not required, as in the

case where the initial downrange is relatively short.

Since this current skip guidance algorithm generates a reference trajectory at every time

step in the same manner and the guidance strategy is the same in each phase of the skip

trajectory, a well-defined transition point is not necessary between two phases. The final

phase guidance is of a very similar nature in generating the bank angle command, and it

integrates with the skip guidance smoothly. The starting point for the final phase guidance is

not constrained to a small neighborhood about a fixed reference trajectory because a feasible

trajectory is generated onboard based on the actual state conditions. All these traits in this

approach afford seamless and easy transition between phases of the guidance logic.
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Figure 5.1 shows the different phases in the skip entry guidance logic. The initial phase of

entry is an open-loop phase, flown with a 0◦ bank angle until the aerodynamic load reaches

0.05 g0. Following this, the skip is flown with a bank angle computed as described in Chapter

4.1. In the normal skip entry case, the skip phase continues when the flight path angle (FPA)

becomes positive. The skip trajectory is considered to have entered the Kepler phase when the

load is below 0.05 g0. The vehicle switches to the pre-planned bank angle of 70 degrees during

Kepler phase. The final phase begins once range-to-go has decreased below 2000 km.

In the case where the entry condition renders a skip trajectory completely unnecessary, this

algorithm will automatically adjust to the need or lack thereof for a skip. In the skip phase,

if the vehicle never has a positive flight path angle and the range-to-go continues to decrease

below 2000 km, the final phase guidance algorithm will take over. In such a case, a direct entry

naturally takes place instead. The path of “Direct Entry” in Fig. 5.1 is for this scenario. This

type of entry will also occur if the range-to-go is below 2000 km in the initial entry phase.

There are also cases where the skip is sufficiently short so that the vehicle does not leave

the atmosphere (loft trajectory), thus a Kepler phase does not exist. In this case, the skip

guidance continues to run with a positive flight path angle. Once the range-to-go is found to

be less than 2000 km, the final phase guidance is initiated, as indicated by the path of “Loft

Trajectory” in Fig. 5.1.

Figure 5.2 shows the typical altitude-versus-downrange profiles of the normal skip, loft and

direct entry trajectories. Figure 5.3 plots the corresponding closed-loop bank angle histories

for these trajectories. These and future plots show the downrange-to-go in kilometers, which

has been converted from Eq. (4.3) (in radians) by multiplying by the Earth’s radius, R0.

The present algorithm automatically adapts to all these different situations without a priori

indication on which kind of trajectory a particular mission will take.

5.2 Direction of Bank Reversals

The problem of steering or crossrange reduction is determined by whether to assign a

positive or negative value to the computed bank angle magnitude. The initial call to the bank
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Figure 5.3 Bank angle histories for different trajectory types

reversal logic assigns the bank angle a sign that is opposite to that of a crossrange variable χ

defined by

χ = sin−1[sin sto−go sin(ψ −Ψ)] (5.1)

where sto−go is the range-to-go, ψ the current heading angle, and Ψ the line-of-sight azimuth

angle along a great circle to the landing site. All the variables have units of radians. On

future calls, the sign of the bank angle will be reversed whenever the crossrange exceeds the

velocity-dependant threshold defined in Eqn. (4.8).

In the actual flight, instantaneous bank angle reversals are not possible as they were as-

sumed during the planning. The bank angle changes can occur at a metered rate that does

not exceed the vehicle-dependent rate and acceleration limits. Through testing, it is found

that the sensitivity of the trajectory with respect to the transient effects of the bank reversals

in the skip phase is rather high, and the transition in bank reversals must be performed in

an appropriate direction. If the pre-reversal bank angle has a magnitude greater than ninety

degrees, the vehicle has excess energy and a bank reversal from below (through full lift down)
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will help deplete some of the excess energy and cause a net effect of leaving the vehicle in the

middle of the downrange envelope. However, a bank reversal from above (through full lift up)

in this case will slow down the needed energy depletion. If such a “wrong cycle” repeats a few

times, soon the current downrange will be too short for the vehicle even if the vehicle flies with

full lift down in the skip phase. The situation is similar in nature (in the opposite sense) when

the pre-reversal bank angle magnitude is less than ninety degrees. Thus, it appears critical for

the guidance system to always command the roll in a skip phase bank reversal via the short

way rather than always from above or from below. If the bank angle has a magnitude equal to

90◦, the vehicle is on the path of zero lift to the target and has maximum margin with respect

to the downrange targeting capability.

5.3 Automated Targeting Bias

In the recent work by Rea and Putnam[32] on Orion CEV and this work, it is found neces-

sary to target a biased “landing site” for longer northbound and eastbound skip trajectories in

the bank reversal logic during the skip flight. In these situations, the effects of Earth rotation

tend to cause the vehicle to have a crossrange at the start of the final phase that is larger than

the final phase guidance can compensate for, mainly in the presence of large dispersions with

high drag and low lift. The target biasing is introduced to force the trajectory to veer more

toward the desired direction during the skip so as to have acceptable crossrange for the final

phase. The biased landing site is only targeted during the skip phase in the lateral logic (and

the longitudinal logic still uses the true landing site).

Perhaps the most effective biasing effect is achieved by moving the targeted site from the

true landing site along the direction of crossrange. The objectives to be achieved are to establish

how much bias should be used, and for a specified bias, determine what the coordinates of the

biased site should be. In this work the trajectory planning capability of the algorithm is used

to automate this process.

During the first call to the trajectory planning in the skip phase, the true landing site

coordinates are used. Once a converged solution is found, the value of the crossrange is
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examined at the point in the planned trajectory where the final phase begins. If the crossrange

is outside the velocity-dependent envelope in the lateral logic for bank reversal (cf. Eq. (4.8)),

the bias logic is executed. This logic determines the bias necessary to cause the crossrange

to have a sign opposite to that of the crossrange without bias. Otherwise the biasing logic is

bypassed.

When the biasing is determined to be needed, the targeted site is moved away from the

true landing site by a small amount δχ in the crossrange direction. Taking differentials of

Eq. (5.1), while keeping the range-to-go sto−go unchanged and current vehicle heading angle ψ

fixed, gives:

δχ cosχ = sin(sto−go) cos(ψ −Ψ)(−δΨ) (5.2)

The small increment δχ is selected for the target biasing (e.g., |δχ| = 0.15◦ to begin with).

The sign of δχ is opposite to that of the crossrange at the beginning of the final phase without

target biasing. The above equation determines δΨ since everything else in the equation is now

known. The great-circle distance between the current vehicle position (θ, φ) and the biased

site (Θ,Φ) is:

cos(sto−go) = sinφ sin Φ + cos Φ cosφ cos(Θ− θ) (5.3)

The azimuth angle from the vehicle location to this biased landing site is given by:

sin Ψ =
sin(Θ− θ) cos Φ

sin(sto−go)
(5.4)

Take differentials of Eqs. (5.3)-(5.4), keeping in mind that θ, φ, and sto−go are not changed by

the biasing. The following system of linear equations is obtained as a result: cos(Θ∗−θ) cos Φ∗

sin(sto−go) − sin(Θ∗−θ) sin Φ∗

sin(sto−go)

− cos Φ∗ cosφ sin(Θ∗ − θ) sinφ cos Φ∗ − sin Φ∗ cosφ cos(Θ∗ − θ)


 δΘ

δΦ

 =

 δΨ cos Ψ

0


(5.5)

where (Θ∗,Φ∗) are the coordinates of the true landing site. With δΨ already found from

Eq. (5.2), δΘ and δΦ are found easily from system (5.5). The coordinates of the biased

landing site are then computed by

Θ = Θ∗ + δΘ

Φ = Φ∗ + δΦ
(5.6)
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Figure 5.4 Crossrange biasing diagram

Note that since Eqs. (5.2) and (5.5) are linear in δχ, δΨ, δΘ and δΦ, any change in δχ means

the changes of the same proportion in δΘ and δΦ. A new skip trajectory is planned using the

biased target coordinates in Eq. (5.6). If the predicted crossrange condition at the beginning

of the final phase still does not satisfy the above stated criterion for stopping the biasing, the

bias δχ is doubled. This will lead to the increments of the same proportion in δΘ and δΦ (but

system (5.5) does not need to be resolved again). The biasing process is repeated using the

updated biased target until the stopping criterion is met.

Fig. 5.4 shows a schematic biasing.

Experience shows that the typical targeting bias for the long northbound entry is about

1.5◦ and the eastbound entry about 1.0◦.

Fig. 5.5 shows the crossrange with respect to the true landing site and the crossrange with

respect to the biased landing site. During the skip phase (before 300 s) of this particular

trajectory, the bank reversals are with respect to the biasing landing site, thus that particular

crossrange remains within the corridor. Following that is the Kepler phase. With the final

phase starting around 700s, the crossrange with respect to the true landing site is inside the
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Figure 5.5 True crossrange and biased crossrange

corridor. This allows the final phase guidance to maintain the crossrange within the corridor

until the target site is reached. This particular example is for an eastbound entry.

One note concerning the matrix in Eq. 5.5 is necessary. The matrix is not always invertible.

If sin(sto−go) equals zero, the system obviously has no solution. Following removal of the

sin(sto−go), applying a trigonometric identity, and factoring out the term cos Φ∗ which is zero

if the landing latitude (Φ∗) is at either pole (±90◦), the determinant of the matrix equals zero

in the following condition:

cos(Θ∗ − θ) tanφ = tan Φ∗ (5.7)

The conditions under which this equation hold true are not immediately obvious. A brute

force search is run to find conditions under which the conditions would be true. For this

search, the landing site is fixed at Edwards Air Force Base (EAFB) as described in Chapter

6.1. Then the position of the vehicle is varied to find the solution to Eq. (5.7). Fig. 5.6 shows
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the exclusionary lines for the vehicle position. If the vehicle position is along one of the arcs

shown in the Fig. 5.6, then the determinant is near zero. The vehicle initial entry conditions are

indicated by circles. Therefore, the trajectory enroute to EAFB will not encounter a condition

where the determinant is zero. Similar checks were performed for the other two landing sites

(near Hawaii and KSC). Neither landing site will encounter this problem.

5.4 Lift and Drag Filters

It is suggested in the literature and found to be true again in this work that appropriate use

of estimated information on the aerodynamic and density biases is very helpful in achieving

required high precision.[9, 21, 22, 23] This is particularly so in the presence of large atmo-

spheric and aerodynamic uncertainties. The dispersions include those in entry condition at

the first entry interface due to de-orbit condition dispersions, aerodynamics, vehicle mass, and
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atmospheric density. All the dispersions, except for those in the entry condition, affect only the

lift and drag accelerations. During the flight, the actual values of lift and drag accelerations

can be obtained from navigation data and accelerometer outputs. The effect of one source of

dispersion (e.g. density) cannot be distinguished from another (e.g. aerodynamic coefficients)

without another measurement (e.g. an air data system). Yet it is realized that only the com-

bined effect of these dispersions needs to be estimated. Toward this end, a first-order fading

memory filter is used[33]

Xn+1 = Xn + (1− β)(X∗ −Xn) (5.8)

where, X∗ is the current ratio of the measured variable (lift or drag acceleration) to its nominal

value based on the nominal model via Eq. (2.8) or (2.9), Xn is the past filtered ratio, and 0

< β < 1 is a gain, typically a value slightly less than one to emphasize past values over the

most recent value. For this work, β = 0.9 is used. To initialize the filter, the first past filtered

ratio, X0 is set to be equal to one. In each skip trajectory guidance cycle, the output of this

filter is used to multiply the nominal lift L (or drag D) profile in the integration/planning of

the trajectory, so the corresponding trajectory is computed based on the modified L and D.

This type of filter would be able to capture the combined effect of constant biases in mass,

density, and constant percentage dispersions in aerodynamic coefficients. However, in the

testing of the algorithm significant non-zero altitude-dependent components in the atmospheric

density dispersions are intentionally introduced via GRAM 2007 and the analytic model so the

algorithm would not benefit unrealistically from this feature of the filter (see section 6.2). In

the literature, the usefulness of such type of measures has been long recognized in atmospheric

entry and aeroassist maneuvers.[9, 21, 22, 23] With the exception of Ref.[23], similar estimation

has been applied to just drag or the L/D ratio. Experience in skip entry guidance shows that

application of such estimation to shape both drag and lift acceleration profiles in the on-line

trajectory planning and guidance has clear advantages over application only to D.

A second-order filter was also tested, but there was no visible improvement in results over

the first-order filter. The form of the filter is as follows[33]
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Xn+1 = Xn + ẊnTs + (1− β)(X∗ − (Xn + ẊnTs)) (5.9)

Ẋn+1 = Ẋn + (1− β2)/Ts(X∗ − (Xn + ẊnTs)) (5.10)

where, all the variables are the same as before with the additions of: Ẋn is the past-filtered-

derivative-ratio, and Ts is the sampling time. To initialize the filter, the first past-filtered-

derivative-ratio, Ẋ0 is set to be equal to zero. The sampling time used in this work was the

same as the guidance cycle of one second. (or 1 Hz)
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CHAPTER 6. VEHICLE AND DISPERSION MODELS FOR TESTING

6.1 Nominal Vehicle Model

The vehicle model used in the simulations in this paper is similar to that of the Orion

Crew Exploration Vehicle. The vehicle has a capsule configuration with a base diameter of

5 meters and weighs 8382 kg (18,464 lb). The vehicle flies a Mach-dependent trim angle of

attack profile, which is about 160.2◦ in the skip phase. The L/D value is 0.289 at this trim

angle-of-attack. The maximum rate and acceleration imposed on the bank angle in the 3DOF

simulations are 20◦/s and 10◦/s2, respectively, similar to those used in the literature.[22] The

mission conditions correspond to those from a lunar-return mission and landing at Edwards

Air Force Base (EAFB). One mission is included that simulates a return to Kennedy Space

Center (KSC).

6.2 Entry Condition Dispersion

The purpose of dispersion simulations is to evaluate the performance of the guidance al-

gorithm in the presence of significant deviations in trajectory state, vehicle, and environment

modeling uncertainties. Before discussing the entry condition dispersions, a slight deviation

to discuss coordinate systems is necessary. The state variables used in most of this work

(r, θ, φ, V, γ, ψ) can be converted to an Earth-centered Earth-fixed (ECEF) coordinate system

in the following manner. The position vector in the ECEF coordinate system can be repre-

sented as shown in Fig. 6.1.
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The conversion can be made as in Eq. (6.1),
x

y

z

 =


r cosφ cos θ

r cosφ sin θ

r sinφ

 (6.1)

The velocity components are converted to a local-vertical-local-horizontal (LVLH) coordi-

nate system as in Fig. 6.2,
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Figure 6.3 ECEF and LVLH coordinate transformation


Vup

Veast

Vnorth

 =


V sin γ

V cos γ sinψ

V cos γ cosψ

 (6.2)

The velocity in LVLH coordinates can be transformed to ECEF via Eq. (6.3) using rotation

matrices as in Fig. 6.3.
Vx

Vy

Vz

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ




Vup

Veast

Vnorth

 (6.3)

Now with the position and velocity in ECEF coordinates, a discussion of entry condition

dispersions can proceeed. The initial entry conditions except for altitude are perturbed via
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a covariance matrix. The initial entry conditions can be written as a function of deorbit

conditions in ECEF coordinates.

X̄EI = f(X̄deorb) (6.4)

Taking a partial derivative of this equation results in

∂X̄EI

∂X̄deorb
= C̄ (6.5)

This matrix, C̄, is a sensitivity matrix describing the relation between the dispersions at

the last deorbit burn and those at entry interface. It is found by propagating the nominal

entry interface conditions, X̄∗EI = (θ, φ, V, γ, ψ) backward three hours in time where the last

deorbit burn is expected to be performed. The resulting state vector is converted from the

nominal state conditions to ECEF coordinates as described in Eqs. (6.1)-(6.3).

The first dimensionless position, x in ECEF coordinates, X̄∗deorb = (x, y, z, Vx, Vy, Vz) is

perturbed by a small value (δ = 1e-5). Then, the new state vector is reconverted to the usual

state components via the inverse transformation of Eqs. (6.1)-(6.3), and propagated forward

until the altitude reaches the entry interface at 121.92 km (400,000 ft) giving the perturbed

state:

X̄ ′EI =
[
θ′EI φ′EI V ′EI γ′EI ψ′EI

]T
(6.6)

The first column of the sensitivity matrix can be computed as

C̄1 =
X̄ ′EI − X̄∗EI

δ
(6.7)

The second component of the sensitivity matrix can be computed in a similar fashion as

the first, by perturbing y. Ultimately to produce the sensitivity (covariance) matrix each

component must be perturbed.

C̄ =
[
C̄1|C̄2|C̄3|C̄4|C̄5|C̄6

]
(5x6) (6.8)

The deorbit condition dispersions in position and inertial velocity components are modeled

by zero-mean Gaussian dispersions (N(µ, σ2)) where µ is the mean, and σ2 is the standard

deviation. Each position component has a 3-sigma value of 135 m, and each inertial velocity
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Table 6.1 Dispersions in entry interface state and other parameters

State/Parameter Distribution 3-σ Value/Range 3-σ Value/Range
(northern entry) (eastern entry)

Longitude (deg) Zero-mean Gaussian 0.0749 0.2591
Latitude (deg) Zero-mean Gaussian 0.3202 0.1790

Relative velocity (m/s) Zero-mean Gaussian 12.9053 13.3611
Flight path angle (deg) Zero-mean Gaussian 0.1484 0.1505

Heading angle (deg) Zero-mean Gaussian 0.0973 0.0526
CL Zero-mean Gaussian 0.0778(20%) 0.0778(20%)
CD Zero-mean Gaussian 0.2696(20%) 0.2696(20%)

Mass (kg) Uniform ±5% ±5%
Atmospheric Density(analytic) Uniform ±40% ±40%

Atmospheric Density GRAM 07 dispersed

component has a 3-sigma value of 1.35 m/s. The entry condition dispersions are then obtained

by multiplying the deorbit dispersions with the co-variance matrix.



∆θ

∆φ

∆V

∆γ

∆ψ


= C̄



N(0, σ2
x)

N(0, σ2
y)

N(0, σ2
z)

N(0, σ2
V x)

N(0, σ2
V y)

N(0, σ2
V z)


(6.9)

The resultant dispersions in entry conditions are summarized in Table 6.1 for both north-

bound and eastbound entry missions. These entry condition dispersions are comparable to

those reported in the recent literature.[34]

6.3 Atmospheric Dispersions

For the dispersion in atmospheric density, it was originally chosen to use an analytic model.

However, to enhance the validity of the results, the NASA Global Reference Atmospheric Model

(GRAM) 2007 model was obtained. GRAM is a fairly large and detailed FORTRAN code that

increased the simulation runtime significantly. The primary test results of the proposed al-

gorithm are obtained with GRAM. However, in the comparison testing between the Apollo
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skip guidance and the present algorithm, the analytic model is used to reduce code complex-

ity. In figures below(6.4-6.5), the two perturbation models are compared to the US Standard

Atmosphere. The figures show similar dispersion in the upper atmosphere. However, the an-

alytic model shows greater dispersion in the lower atmosphere where the more significant (for

controlling the vehicle’s downrange) part of the skip trajectory actually takes place.

6.3.1 GRAM Atmosphere

For the atmospheric density dispersions, the 2007 version of the Earth Global Reference

Atmosphere Model (GRAM07) is used without any adjustments for wind. GRAM07 is the

most recent updated version of GRAM99[36], an industry standard for modeling atmospheric

properties and dispersions. It provides complete geographic and temporal variations (though

temporal variations are not studied in this work) rather than a standard atmosphere which

only provides variations with respect to altitude. It also simulates position-dependent and

altitude-dependent perturbations in the mean atmosphere. The strength of these factors is

controlled through a parameter known as RPSCALE. This is a scale factor on the 1-sigma

variation about the nominal atmospheric parameters. The nominal value of RPSCALE is 1.0,

which is used throughout all simulations. One hundred dispersed profiles of the GRAM07

atmosphere are shown in Fig. 6.4 relative to the 1976 US Standard Atmosphere. Note the

large magnitudes of dispersions in the upper atmosphere, but the dispersions near the ground

are smaller.

6.3.2 Analytic Model

For the analytic atmospheric dispersion, based on qualitative Shuttle flight data,[35] it was

decided to use a dispersion model with a constant bias and two sinusoidal variations, one with

long period, high magnitude and one with short period, low magnitude. Similar density waves

have been used in other work.[22] The density wave of the dispersed atmosphere used in the

simulations is represented by:
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Figure 6.4 Ratio of GRAM 07 perturbed atmosphere to US 76 standard
atmosphere as a function of altitude for 100 cases.
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ρtrue = ρnom{1 +Batm + [M1 +M2 sin(hω2)] sin(hω1 + λ)} (6.10)

where ρtrue is the actual atmospheric density, ρnom is the density computed from the 1976

U.S. standard atmosphere, Batm is a constant bias term, uniformly distributed with maximum

values of ±0.2. M1 is the magnitude of the low frequency sinusoidal variation, uniformly

distributed and constrained to between ±0.1−±0.19 so that the altitude-dependent sinusoid

dispersion will have a significant presence. The effect of having both positive and negative

values is to allow the atmosphere to be either thicker or thinner at any given altitude. The

current altitude is h measured in kilometers. The frequency of the sinusoidal variation, ω1, is

uniformly distributed to cause between one-half and two periods over the altitude range of the

vehicle (122 km to 0 km). The higher frequency sinusoid has similar parameters, M2, and ω2,

the magnitude and frequency respectively. M2 lies uniformly between 0 and 10% of M1. This

gives an approximate total atmospheric dispersion up to ±40%. The higher frequency, ω2, is

another uniform parameter to give between zero and 50 periods over the altitude range of the

vehicle. The phase of the low frequency sinusoid, λ, is chosen to minimize the dispersion at

the ground in the following manner. By equating ρtrue = ρnom at h = 0 in Eq. (6.10), this sets

up the following constraint:

Batm +M1 sinλ = 0 (6.11)

The corresponding λ is solved from this equation, provided |Batm/M1| ≤ 1. When this in-

equality condition is not satisfied, the phase parameter λ is chosen as λ = π/2 or −π/2,

whichever minimizes |Batm + M1 sinλ|. This way for each Batm and M1, λ is determined by

these conditions (thus λ is different in each dispersed run). One hundred dispersed profiles

of the atmosphere are shown in Fig. 6.5. Note the large variety of dispersions in the upper

atmosphere, but due to the selection of the phase angle, the dispersion near the ground is

relatively close to the nominal density.
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Figure 6.5 Density dispersion as a function of altitude for 100 cases.

6.4 Other Dispersions

The vehicle mass was perturbed uniformly up to 5%. With the nominal mass of 8382 kg,

this gives a range of values of 7962.9 to 8801.1 kg.

For the lift and drag coefficients, existing work uses a 10% zero-mean normally distributed

uncertainty in CL or CD.[22] To fully stress the algorithm developed in this paper, a 20%

zero-mean normally distributed uncertainty from the CL or CD at high Mach numbers was

used. This value is added to the nominally calculated CL or CD giving a constant bias at

all Mach numbers. The effects of constant biases in the aerodynamic coefficients are actually

more demanding as compared to Mach-dependent uncertainty, because their influence on L/D

is persistently in one direction and there is no benefit of averaging effects. At high Mach, the

nominal CL is 0.3892 and the nominal CD is 1.3479 giving a nominal L/D of 0.289. The L/D

standard deviation is about 0.0276 giving a total range of about 0.2070 to 0.3728. However in

simulation runs, (with 10,000 cases) the maximum L/D was about 0.43 with the minimum the

same value.
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It should be noted that navigation uncertainties are not considered here. However, it is

well recognized that the uncertainties of state-of-the-art navigation systems are not primary

factors affecting the performance of the entry guidance system.
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CHAPTER 7. EVALUATION OF PREDICTOR CORRECTOR

ALGORITHM

Simulations results are presented using the new predictor-corrector algorithm with GRAM

2007 as the atmospheric model.

Also, test results are shown with the analytic density dispersion model and four potential

guidance scenarios. These are described in Chapter 8.

7.1 Mission Setup

Several different entry mission scenarios are tested. They correspond to different downrange

distances and approach directions, resulting from different lunar return conditions. The initial

conditions are given in Tables 7.1 and 7.2. The first mission in Table 7.1 has a short initial

downrange of only 2200 km. There will be no skip trajectory for this mission. It is selected to

test how the algorithm automatically adapts to such cases. In Table 7.2, the case for landing

at KSC is considered the maximum range that a lunar return entry would endure based on the

worst-case scenario for the Earth-Moon orbital conditions [37]. The initial conditions used in

this case are chosen for that range. All the missions are run under exactly the same setting,

without any mission-dependent adjustments of guidance parameters or logic.

For each mission, 10,000 dispersion runs are performed. The guidance cycle is set at 1

Hz. The Orion CEV program has a landing precision requirement of 5 km [32]. Therefore in

testing, when the final position of the vehicle in a dispersed 3DOF simulation is within 2.5 km

to the landing site, it is considered a successful run as the remaining 2.5 km is allocated for

parachute drift. Any trajectory ending outside the 2.5 km radius, but within the 5 km radius

is regarded as a 50% success. Any trajectory ending outside the 5 km radius from the landing
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Table 7.1 Northbound initial conditions
Northbound Northbound Northbound Northbound

State Direct Short Range Medium Range Long Range
Altitude, h (km) 121.92 121.92 121.92 121.92

Longitude, θ (deg) 242.00 244.00 244.83 242.00
Latitude, φ (deg) 15.00 -3.00 -41.13 -55.00

Relative velocity, V (km/s) 10.98 10.98 10.98 10.98
Flight path angle, γ (deg) -5.576 -5.576 -5.576 -5.576

Heading angle, ψ (deg) 0.47 0.47 0.47 0.47
Downrange, s (km) 2200 4200 8400 10,000
Crossrange, χ (km) 7 204 298 42

Table 7.2 Eastbound initial conditions

State Eastbound(EAFB) Eastbound(EAFB) KSC
Medium Range Long Range Max Range

Altitude, h (km) 121.92 121.92 123.88
Longitude, θ (deg) 176.99 158.00 166.00
Latitude, φ (deg) 7.14 -7.00 -28.65

Relative velocity, V (km/s) 10.60 10.60 10.66
Flight path angle, γ (deg) -5.988 -5.988 -6.23

Heading angle, ψ (deg) 54.63 54.63 74.00
Downrange, s (km) 7300 10,000 13,519
Crossrange, χ (km) -17 -4.8 94.6

site is regarded as a failure.

7.2 Results

In Fig. 7.1, a plot of the nominal altitude versus downrange clearly shows the skip out of

the atmosphere for a northbound medium range case (8400 km). The complete bank angle

history is shown in Fig. 7.2 and only the skip phase in Fig. 7.3. The spike in bank angle

appearing around 175 seconds in Fig. 7.2 is the spacecraft rolling from -100◦ through 180◦

to a positive bank angle, which can be seen more clearly in Fig. 7.3. By rolling through full

lift down, the net effect is to maintain the maximum margin in bank angle capability. The

resultant command by the time the bank reaches the opposite side is slightly smaller than it

was at the beginning owing to the energy dissipated during the reversal. The ground track for

the northbound skip entry trajectory is given in Fig. 7.4. The ground track for the eastbound

skip entry also appears in Fig. 7.4. The altitude profile for a nominal eastbound medium range
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Figure 7.1 Altitude versus downrange-to-go for the nominal northbound
medium range case (8400km).

(7300 km) skip entry is very similar to Fig. 7.1. The bank angle time history is very similar

to Fig. 7.2.

In Fig. 7.5, the altitude versus downrange is shown for 100 dispersed trajectories for the

northbound medium range skip entry. All the trajectories follow a similar path in the down-

control phase, however they differ considerably during the up-control and Kepler phases. With

the normal start of the final phase with 2000 km downrange-to-go, the final phase guidance

has to respond to up to 13 km differences in altitude at this point. These kind of dispersions

would likely severely stress the Apollo final phase guidance. But with the seamless integration

of the current skip guidance and final phase guidance algorithm in Ref. [24], precision landing

is still achieved reliably.

Similarly, the altitude histories of 100 dispersed trajectories for the short-range (2200 km)

eastbound mission are plotted in Fig. 7.6. While the nominal trajectory for this mission is

a direct entry trajectory, some of the dispersed trajectories are actually loft trajectories as

can be seen from Fig. 7.6. The guidance algorithm automatically adapts to both direct entry
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Figure 7.2 Bank angle profile for the nominal northbound medium range
case (8400km).
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Figure 7.3 Close-up view of bank angle profile during skip phase for the
nominal northbound medium range case(8400km).
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Figure 7.4 Ground track for the nominal northbound and eastbound cases.
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Figure 7.5 Altitude versus downrange-to-go for 100 dispersed trajectories
(northbound, 8400 km).
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Figure 7.6 Altitude versus downrange-to-go for 100 dispersed trajectories
(northbound, 2200 km).

and loft entry cases without difficulty. Also, the load histories for 100 dispersed northbound

trajectories are shown in Fig. 7.7. The average peak g-load during the skip phase is about 4.2

g and about 5 g in the final phase. No load-relief maneuvers are taken. However, if necessary,

a predictive load-relief strategy developed in Ref. [24] can be applied in the final phase.

In Figs. 7.8-7.9, the final locations of the 10,000 dispersed entry trajectories for two mis-

sions are shown. The other northbound missions have plots very similar to Fig. 7.8. In all cases

except for one in the northbound long range (10,000 km) mission and a handful in the north-

bound maxium range (13,519 km), the vehicle’s position is within 2.5 km of the landing site at

the termination of entry guidance. The failure case for the 10,000 km will be discussed further

shortly. The very longest entry case (13,519 km) is at the ultimate limit of this particular

algorithm and has multiple failures all corresponding to overshoots.

Table 7.3 summarizes the final position statistics for 10,000 dispersed trajectories for each

of the missions in Table 7.1. Table 7.4 summarizes the final position statistics for 10,000

dispersed trajectories for each of the missions in Table 7.2.
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Figure 7.7 Time history of load for 100 dispersed trajectories (northbound,
8400 km).

Table 7.3 Statistics on final miss distances in 10,000 dispersed trajectories
(*See discussion)

Miss distance (km) Northbound Northbound Northbound Northbound
Direct Short Range Medium Range Long Range

Minimum 0.072 0.087 0.064 0.073
Maximum 1.584 1.736 1.594 2.335*
Average 0.941 0.890 0.968 0.930
Median 0.911 0.819 0.988 0.888

Standard Deviation 0.316 0.311 0.307 0.423
Number of Misses 0 0 0 1
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Figure 7.8 Final positions of 10,000 dispersed trajectories for the north-
bound direct case(2200km).
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Figure 7.9 Final positions of 10,000 dispersed trajectories for the east-
bound medium range case(7300km).
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The long range (10,000 km) mission has one case which fails to terminate within 5 km to the

landing site. In this case, the trajectory misses the landing site by 15 km. A closer examination

reveals that the reasons for the failure are the simultaneous concurrence of a particular pattern

of the relatively extreme dispersion in atmospheric density and an appreciable dispersion (about

20% reduction) in L/D. In Fig. 7.10, the ratio of the GRAM 07 dispersed density (ρtrue) to the

US 76 standard atmosphere (ρmodel) is shown for the case. The dispersed atmosphere is over

40% thicker during the downward phase of the skip. The extreme thickness in atmospheric

density relative to the modeled value early in the entry trajectory causes the vehicle to fly a

relatively small bank angle as seen in Fig. 7.11. Subsequently, the atmospheric density rapidly

thins, which, together with the reduction in L/D, requires the vehicle having to fly 180-deg

bank angle in order to deplete enough energy during the remainder of the skip phase. However,

this maneuver leaves no lateral control on the trajectory. Consequently, as the vehicle enters

the final phase after the Kepler phase, the crossrange is larger than expected, despite the

targeting bias. The rapid reduction in bank angle in Fig. 7.11 near the end of the trajectory

is a reflection of the guidance detecting that there is still a distance to cover to the landing

site as the velocity approaches the specified terminal value. This distance, however is due to

crossrange error. As the vehicle passes by (laterally) the landing site, the guidance commands

full lift-down to quickly terminate the entry trajectory, yielding a miss distance of 15 km.

If the atmospheric density profile could be known in advance to have the shape as in

Fig. 7.10, the guidance could use this information so that in the down-control phase, a suffi-

ciently large bank angle would be commanded, and this case would have been saved. Since the

actual atmospheric density profile ahead would be impossible to predict closely, it seems un-

likely that the predictor-corrector guidance could do more to alleviate such an extreme event.

As it currently stands, the guidance achieves 99.998% success rate in this more difficult mis-

sion. A risk assessment to examine the likelihood of an event of the above particular nature

and magnitudes in long range skip entry missions would help determine if further improvement

is warranted.

The entry to KSC pushes the limit of the algorithm’s capabilities with the stressful dis-
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Figure 7.10 Ratio of GRAM 07 atmosphere (ρtrue) to US 76 standard at-
mosphere (ρmodel) for the failed northbound long range case
(10,000km).
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Figure 7.11 Bank angle history for the failed northbound long range case
(10,000km).
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Table 7.4 Statistics on final miss distances in 10,000 dispersed trajectories
(**See discussion)

Miss distance (km) Eastbound Eastbound KSC
Medium Range Long Range Max Range

Minimum 0.064 0.113 0.147
Maximum 1.625 1.638 1076**
Average 0.949 0.839 1.694
Median 0.918 0.765 0.935

Standard Deviation 0.326 0.300 24.54
Number of misses 0 0 8

persions. It is remarkable that it still achieves 99.92% accuracy. The particular case that

missed by 1076 km severely affects the statistics. The other misses in order of worst to best

are 161,150,35,27,23,10, and 9 km. The reasons for these failures are extreme dispersions in

nominal parameters.

Very short direct entry cases benefit from some algorithm adjustments. The bank angle

actually flown during final phase is around 100◦. During the skip planning phase, the guidance

predicts an angle of 70◦. Due to the small time in “skip” phase (it is a direct entry, not an

actual skip), the algorithm cannot converge on an angle that will permit reaching the target.

The final phase in planning is flown with too small an angle. However, the guidance is actually

turned over to the final phase shortly thereafter, and the final phase guidance is able to reach

the landing site. A bank history for one of these cases is shown in Fig. 7.12. An adjustment

made is to change the range threshold to a smaller value around 500 km for the skip planning

and guidance. Since the skip and final phase guidance is very similar in nature, the skip

guidance is able to calculate a viable bank angle and not saturate as in Fig. 7.12. Also, this

will not affect the longer range entries as the range-to-go is examined during the first call to

the planning. If the range-to-go at this point is less than 3500 km, then the range threshold is

adjusted in this manner.
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Figure 7.12 Bank angle history of entry case of northbound 2500 km where
the skip phase bank angle saturates.
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CHAPTER 8. COMPARISON WITH APOLLO SKIP GUIDANCE

8.1 Setup

Improvement is sought for the skip guidance problem. Thus, to show improvement over

the Apollo skip guidance, comparison tests are run. This is made possible by the modularity

of the new skip algorithm and the Apollo algorithm. The test matrix in Table 8.1 is devised.

Table 8.1 Test matrix
Scenario Skip Algorithm Final Phase Algorithm

1 Apollo Skip Apollo Final
2 NPC Skip NPC Final from Lu [24]
3 Apollo Skip NPC Final from Lu [24]
4 NPC Skip Apollo Final

With the Apollo skip algorithm in hand, a study is performed to see how the Apollo algo-

rithm responds and prove the additional computation necessary in this algorithm is worthwhile.

For this additional study, all dispersions are retained as described in Chapter 6.2. However,

two changes are made.

First, given that the Apollo skip algorithm has a number of gains that are designed and

optimized for the Apollo capsule, this vehicle model is used in all tests. The vehicle has

a capsule configuration with a base diameter of 2 meters and weighs 5443 kg (12,000 lb).

The vehicle flies a Mach-dependent trim angle of attack profile, which is about 155.7◦ in

the skip phase. The L/D value is 0.3877 at this trim angle-of-attack. The maximum rate

and acceleration imposed on the bank angle in the 3DOF simulations are 20◦/s and 10◦/s2,

respectively, the same as used for the CEV. The Apollo skip algorithm does not have a bank

reversal algorithm as this was built into the autopilot, so the one from the earlier testing is
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Table 8.2 Initial conditions for comparison tests

State EAFB Hawaii Hawaii EAFB EAFB
Altitude, h (km) 121.92 121.92 121.92 121.92 191.92

Longitude, θ (deg) 242.00 154.00 144.40 244.83 242.00
Latitude, φ (deg) 12.00 10.00 1.50 -41.13 -55.00

Relative velocity, V (km/s) 10.98 10.63 10.63 10.98 10.98
Flight path angle, γ (deg) -5.576 -6.5 -6.0 -5.576 -5.576

Heading angle, ψ (deg) 0.47 59.78 56.9 0.47 0.47
Downrange, s (km) 2500 3600 5000 8400 10,000
Crossrange, χ (km) 9.7 -82.4 -22.9 298 42

used.

Second, the analytic atmospheric dispersion is used, rather than GRAM 2007 due to code

and time constraints. As shown in Chapter 6, the dispersions are similar.

Several different entry mission scenarios are tested. They correspond to different downrange

distances and approach directions, resulting from different lunar return conditions. The initial

conditions are given in Table 8.2. All the missions are run under exactly the same setting,

without any mission-dependent adjustments of guidance parameters or logic.

The landing site varies slightly under these conditions. Three cases from the earlier skip

testing were retained, with EAFB still the landing site. Two other cases with landing just

north of the Hawaiian Islands at (184.613◦E, 23.573◦N) are used.

8.2 Results and Discussion

With the four potential guidance scenarios and five potential reentry scenarios, there are

twenty different sets of statistics. The statistics for the different cases are outlined in Tables 8.3-

8.7.

The simulations show that the complete Apollo algorithm works for shorter trajectories,

but performs very poorly as the range increases. The NPC algorithms are successful at all

ranges. When mixing the different guidance modules, the NPC-Apollo performs well in the

middle ranges, but not as well for short and long ranges. The Apollo-NPC combination is

adequate at short ranges, but not at longer ranges where the Apollo skip guidance does not
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Table 8.3 Statistics on final miss distances in 500 dispersed trajectories for
2500 km EAFB case

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.922 0.195 0.089 N/A
Maximum 34.45 1.596 1.963 N/A
Average 1.813 0.952 0.909 N/A
Median 1.768 0.916 0.915 N/A

Standard Deviation 1.517 0.357 0.375 N/A
5km>Missed>2.5km 0 0 0 0

Missed>5km 1 0 0 500
Skipouts 0 0 0 500

Table 8.4 Statistics on final miss distances in 500 dispersed trajectories for
3600 km Hawaii case

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.263 0.255 0.053 0.428
Maximum 283.5 1.859 264.5 154.7
Average 7.168 0.908 4.102 16.01
Median 1.852 0.850 0.974 7.467

Standard Deviation 29.42 0.348 20.18 23.20
5km>Missed>2.5km 14 0 0 37

Missed>5km 31 0 19 288
Skipouts 0 0 0 0

Table 8.5 Statistics on final miss distances in 500 dispersed trajectories for
5000 km Hawaii case

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.617 0.255 0.166 0.921
Maximum 692.3 1.859 549.4 2.325
Average 204.9 0.908 94.76 1.744
Median 208.7 0.850 67.32 1.750

Standard Deviation 137.3 0.348 100.4 0.314
5km>Missed> 2.5km 3 0 7 0

Missed > 5km 466 0 351 0
Skipouts 0 0 0 0



71

Table 8.6 Statistics on final miss distances in 500 dispersed trajectories for
8400 km EAFB case

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.892 0.084 0.214 0.996
Maximum 1416 1.884 1398 32.22
Average 428.9 0.958 406.4 1.749
Median 434.9 0.930 413.2 1.665

Standard Deviation 239.8 0.355 236.9 1.412
5km> Missed> 2.5km 0 0 0 1

Missed >5km 466 0 466 2
Skipouts 0 0 0 0

Table 8.7 Statistics on final miss distances in 500 dispersed trajectories for
10,000 km EAFB case

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.872 0.195 0.109 0.912
Maximum 2394 2.283 2355 128.2
Average 1293 0.965 1264 1.988
Median 1503 0.935 1487 1.694

Standard Deviation 763.7 0.358 747.7 5.678
5km >Missed >2.5km 2 0 0 4

Missed> 5km 459 0 465 3
Skipouts 0 0 0 0
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perform well. The reasons for these failures are outlined below, though some discussion has

already been made in Chapter 3.

The Apollo final phase guidance follows a reference trajectory based on range to the target.

If the skip algorithm guides the vehicle to a reasonable final phase starting condition, then

the Apollo final phase algorithm is generally successful. However, the Apollo skip algorithm

is not successful with the longer ranges regardless of the final phase guidance algorithm that

is used. This is a well-known limitation of the Apollo algorithm [10]. The Apollo algorithm

calculates incorrect exit conditions for the upcontrol phase (the exit point of the skip). Also,

it does not take into account the finite amount of drag that occurs during the Kepler phase

for longer range skip entries. The Apollo skip algorithm was designed for shorter ranges, thus

the long time spent in the Kepler phase adds a significant amount of unexpected drag to the

trajectory. Extensive further analysis and details are available in the work by Bairstow [9] and

were discussed in Chapter 3.

It is found that choice of entry flight path angle strongly affects the accuracy and whether

or not a landing is made in the case of the Apollo algorithm. If the entry is too shallow, the

vehicle can skip out of the atmosphere; too steep an entry will cause the g-load to exceed vehicle

limits. It is found in testing, that depending on the combination of guidance algorithms, certain

initial flight path angles are more conducive to accurate landings than others. For example, in

the short entry case of 3600 km, with an entry flight path angle of -5.65◦ produces the statistics

in Table 8.8. Compare these results with those in Table 8.4. Clearly, the Apollo algorithm is

not as able to handle the change in flight path angle as well as the NPC algorithms are. The

NPC algorithm still achieves 100% success, however the Apollo algorithm has a failure rate

of 62% with the revised flight path angle as compared to the 7% failure rate with the earlier

flight path angle.

The combination of Apollo-NPC and NPC-Apollo are not optimized for phase transition.

This fact causes a significant number of failures. The NPC skip always transitions to final phase

when the range-to-go is 2,000 km. The Apollo skip guidance transitions in a fashion depending

on the trajectory type. For skip entries, where there is a Kepler phase, the final phase starts



73

Table 8.8 Statistics on final miss distances in 500 dispersed trajectories for
3600 km Hawaii case with revised FPA.

Miss distance (km) Apollo-Apollo NPC-NPC Apollo-NPC NPC-Apollo
Minimum 0.210 0.117 0.123 190.9
Maximum 912.6 1.653 739.6 2144
Average 237.6 0.936 3.135 758.8
Median 200.2 0.898 0.935 747.1

Standard Deviation 224.8 0.355 33.69 299.7
5km>Missed>2.5km 4 0 0 0

Missed>5km 375 0 9 500
Skipouts 0 0 1 0

when the drag is greater than 6.5 ft/s2 (about 0.2g0). For loft entries, if the vehicle is going

down and the velocity is less than a calculated amount (the predicted upcontrol exit velocity

plus 500 ft/s), then final phase is started. For direct type entries, final phase is started if the

predicted upcontrol exit velocity is less than 18,000 ft/s. These transitions typically occur

when the range is much less as the Apollo final phase reference trajectory has a maximum

starting range of about 1500 km. Thus the Apollo final phase guidance is not expecting to

be handed the reins which that much range-to-go. This is a problem in the shortest cases,

because the guidance is handed over to the Apollo final phase earlier than expected. The

result is saturation of the guidance command. Initially, the guidance commands a small bank

angle, but then quickly switches to full lift down and the vehicle skips out of the atmosphere.

The bank history for this case is shown in Fig. 8.1.

Fig. 8.1 shows a brief “skip” phase where the vehicle flies the initial entry (0◦). Once the

range-to-go is less than 2000 km, the guidance switches to final phase. At this point, the

vehicle still has a velocity of near its initial entry velocity of 11 km/s ( 36,000 ft/s) and flight

path angle of -3.15◦. The Apollo final phase reference trajectory was designed with the initial

velocity expected to be around 7.16 km/s (23,500 ft/s) and flight path angle of -2.0◦. Most

other cases start with the velocity and flight path angle in the neighborhood of the reference

condition as shown in Table 8.9. However, the large difference seen in the 2500 km case causes

the bank command to saturate. It is initially very small, but then quickly change to a large

value (near full lift down) suggesting the vehicle is on the edge of the reference trajectory.



74

0 100 200 300 400 500
−200

−150

−100

−50

0

50

100

150

200

Time, s

B
an

k 
an

gl
e,

 d
eg

re
es

Figure 8.1 Bank angle history for NPC-Apollo 2500 km entry case.

Table 8.9 Starting conditions for Apollo final phase

2500km 2500 km 5000km 5000km
Ref. Cond. NPC-Apollo Apollo-Apollo NPC-Apollo Apollo-Apollo

Velocity (km/s) 7.16 11.0 7.63 6.98 6.81
Flight Path Angle (deg) -2.0 -3.15 -1.05 0.00 -1.21

Drag (g’s) 0.186 0.304 3.89 0.10 0.19

Eventually the vehicle overshoots the target and skips out of the atmosphere. The remaining

cases in Table 8.9 are successful in guiding the vehicle to the target conditions. The main

difference in the 2500 km case appears to be due to different starting velocity in final phase.

The phase transition from Apollo skip guidance to NPC final phase is able to deal with

the wider range of initial conditions and thus is more successful at guiding the vehicle in this

case. However, in longer range cases, the Apollo skip guidance performs so poorly during skip

phase, that even the numerical final phase is unable to reach the target.

In summary, the NPC-NPC algorithm is 100% successful for all entry ranges. It is clear

that the Apollo skip guidance fails for longer range cases. Similarly, the Apoll final phase
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guidance has difficulty in the case of extreme diversions from the reference trajectory. This is

not a problem with the numerical final phase guidance, since it generates a reference trajectory

at every guidance step.
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

A method of skip entry guidance for a vehicle with a low L/D ratio is developed. The

approach combines both onboard skip trajectory planning and closed-loop guidance in one.

Unlike the Apollo skip entry guidance, the algorithm computes the bank angle required to

achieve the final range condition and the corresponding trajectory based on numerical solu-

tion of the full 3DOF dynamics, without further assumptions or simplifications. No particular

patterns of the trajectory are assumed. As a result, the algorithm is able to transition seam-

lessly between different phases of the skip trajectory and reliably adapts to different trajectory

patterns, regardless of whether the entry trajectory actually skips out of the atmosphere. Sev-

eral implementation issues are found to be critical to the performance and robustness of the

algorithm. They include appropriate direction for bank angle reversals, automated targeting

bias for long skip trajectories, and proper utilization of lift and drag acceleration filters for

enhanced robustness with respect to modeling uncertainties. The success of the algorithm as

compared to the Apollo skip entry guidance in extensive, stressful 3DOF end-to-end dispersion

simulations clearly demonstrates the high performance and robustness of the algorithm for a

wide range of mission scenarios.

9.2 Future Work

The skip guidance algorithm is very successful at guiding the vehicle to the target. However,

a number of measures and further studies are possible to improve the algorithm.

Also, the secondary objectives desired of the guidance include minimizing load and heat to

the vehicle. One possibility for these during the final phase is the method discussed in Lu [24].
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Generally during skip phase, the load is never too high. G-load limits are exceeded mainly in

the final phase when the guidance commands large bank angles (with lift down). This occurs

when the vehicle is in danger of overshooting the target. One possible load mitigation strategy

for the skip phase could be adjustment of the angle flown during the initial entry and the

Kepler phases. This only has a very small impact on the trajectory though.

Integrated heat load can be fairly large due to the length of time of the trajectory. For

short range entries, the maximum heat spike will need to be examined. Measures to reduce

these similar to the load reduction could be taken.

To minimize fuel usage, fewer bank reversals are necessary. This can be accomplished by

widening the corridor of acceptable crossrange. However, this may cause the biasing logic to

have greater difficulty in finding an appropriate biased target point.

Further study on dispersions can be performed. For instance, imprecise navigation data

could be fed into the planning algorithm to generate uncertainty on the vehicle state. In a

similar vein, a 6DOF simulation could be tested with the vehicle not able to perfectly fly

the commanded bank angle. A small test was performed adding some Gaussian noise to the

commanded bank angle. Due to the nature of the predictor-corrector algorithm, it was able to

continually update the command to permit reaching the target successfully.

Generally, the CL and CD dispersions are dependent on the Mach number. For this study, a

constant bias was used. As a Mach-dependent dispersion would receive benefit from averaging

effects, the constant dispersion used in this study is more stressful on the guidance algorithm.

Still, a study of this type would benefit from greater reality.

Using an exact line search may remove some of the issues encountered in converging on a

solution. It may also converge faster in terms of the number of secant iterations required. Due

to the greater computational expense, the cost in time of computation may not decrease since

the number of skip trajectories that need to be planned will increase.
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APPENDIX A. MATLAB SIMULATION ENVIRONMENT CODES

Secant Dispersion

This is the file that simulates one or more dispersed trajectories of the vehicle.

function secant_disp(ki,kf)
%This part is the "script" that selects the dispersed variables
%and calls the function that runs a simulation for one set of dispersed
%variables.
clear all;clc;close all;
if nargin==0

clear all;
end
global bias_atm Mag_atm1 omega_atm1 theta_atm Mag_atm2 omega_atm2
global CL_bias CD_bias lon_site lat_site lon_site_bias lat_site_bias

vehicle=2; %1=CEV, 2=Apollo
dispersions=1; %1 is on, 0 is off
if nargin==0

ki=1; %range of seeds to use, ki if initial, kf is final
kf=1;

end
filename=’test’; %name of file for saving data
entrycase=5; %which set of entry conditions and landing site
scenario=4; %which guidance pathway
% Scenarios
% 1=Full Apollo Guidance
% 2=Full NPC Guidance
% 3=Apollo Skip, NPC Final
% 4=NPC Skip, Apollo Final

%Earth parameters
R0=6378136.3; %Earth Radius, m
g0=9.80665; %Earth gravity, m/s^2
Vscale=sqrt(R0*g0); %Scale Velocity = 7908.4m/s

%Conversion factors
m2ft=3.28083989501; %meters to feet
ft2m=1/m2ft; %feet to meters
d2r=0.01745329251994; %degrees to radians = pi/180;
r2d=57.29577951308232; %radians to degrees= 180/pi;

%default entry conditions
altft=400000; %feet
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Lon_entry=244.826690629075; %degrees
Lat_entry=-41.1330892463129; %degrees
Vftpers=36013.7885790865; %velocity
gammaentry=-5.57559182971711; %flight path angle
headingentry=0.468530972644024; %heading angle (zero is north, pos CW)

%Default Landing site (Edwards AFB)
lon_site=242.1163; %deg
lat_site=34.9055; %deg

if entrycase==1 %Nominal Entry and landing condtions, 8400 km downrange
altft=400000;
Lon_entry=244.826690629075;
Lat_entry=-41.1330892463129;
Vftpers=36013.7885790865;
gammaentry=-5.57559182971711;
headingentry=0.468530972644024;
%Entry condition disperson co-variance matrix, nominal entry
stmEI =[ 0.3059 -0.4070 0.0956 5.9425 1.0608 1.1057;

-0.1782 -2.9285 1.8762 8.5371 -20.2060 23.7063;
0.0874 -0.2913 0.5757 0.9753 -0.7515 9.4148;
-0.1418 -1.4342 0.8705 4.5581 -10.7264 9.4930;
-0.5409 0.4266 -0.0646 -7.5863 -1.5741 -0.5982];

elseif entrycase==2 %Northbound entry for 4200 km downrange (loft)
Lon_entry=244;
Lat_entry=-3;
stmEI =[0.2489 -0.2441 0.1514 4.3169 1.3704 1.4268;

0.3246 -0.9266 3.0883 2.1815 -1.9421 32.1002;
0.2876 0.2195 0.6113 -1.0413 4.9439 7.9926;
0.0543 -0.5090 1.4626 1.8073 -2.8445 14.6425;
-0.3331 0.1462 0.0634 -3.8809 -0.8470 0.8406];

elseif entrycase==3%Northbound entry, 2500km downrange, (small skip)
Lon_entry=242;
Lat_entry=12;
stmEI =[0.2537 -0.2116 0.1586 4.3394 1.6033 1.4141;

0.5168 0.0011 3.2164 -0.3803 5.9975 31.6737;
0.3519 0.3919 0.5497 -1.5034 6.7635 6.4078;
0.1381 -0.0661 1.5301 0.5419 0.8167 14.9921;
-0.2503 0.1207 0.1334 -2.8442 -0.0490 1.3991];

elseif entrycase==4 %Northbound entry, 2200km downrange, (direct)
Lon_entry=242;
Lat_entry=15;
stmEI =[0.2582 -0.2050 0.1591 4.3713 1.6909 1.4019;

0.5582 0.1907 3.2161 -0.8792 7.5690 31.3289;
0.3605 0.4253 0.5328 -1.6185 7.0680 6.0359;
0.1576 0.0242 1.5312 0.3030 1.5627 14.9395;
-0.2338 0.1175 0.1462 -2.6321 0.1173 1.4878];

elseif entrycase==5 %Northbound entry for 10,000km downrange
Lon_entry=242;
Lat_entry=-55;
stmEI =[ 0.3657 -0.5397 0.0634 7.8211 0.9983 0.8793;

-0.5225 -3.3630 1.1913 8.8254 -25.5364 17.7734;
-0.0214 -0.4587 0.4951 1.5415 -2.9583 8.8957;
-0.2837 -1.6223 0.5418 4.4870 -12.8322 6.4257;
-0.6275 0.6506 -0.0612 -10.2017 -1.2937 -0.7876];

elseif entrycase==6 %Eastbound entry, 7300km downrange
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altft=400000;
Lon_entry=176.988152;
Lat_entry=7.135801517;
Vftpers=34787.29993376976;
gammaentry=-5.987650659018430;
headingentry=54.628060344205217;
stmEI =[ 0.1795 -2.9172 1.4579 16.6514 -16.9590 12.9336;

0.2173 -1.7634 1.1279 9.5158 -8.7220 13.0738;
0.4912 -0.7896 0.3258 9.3439 -0.8265 3.7542;
0.0456 -1.5729 0.9019 7.5047 -10.4114 8.8236;
0.0705 -0.2148 0.4570 1.5323 -0.4078 5.1000];

elseif entrycase==7 %Eastbound entry, 10,000km downrange
altft=400000;
Lon_entry=158;
Lat_entry=-7;
Vftpers=34787.29993376976;
gammaentry=-5.987650659018430;
headingentry=54.628060344205217;
stmEI =[-1.1682 -2.7782 1.3092 7.2926 -22.6977 12.7784;

-0.6887 -1.6684 1.0289 3.1898 -12.6107 12.9732;
0.1005 -0.8839 0.3731 7.5692 -4.2979 5.1503;
-0.7126 -1.4714 0.8084 1.7680 -13.1186 8.2080;
0.1676 0.5184 0.0993 -1.7337 4.4869 1.8135];

elseif entrycase==8 %3600km Apollo special case
%Nominal Entry and landing condtions
altft=400000;
Lon_entry=154;
Lat_entry=10;
Vftpers=34888.2526525112;
headingentry=59.7846978972999;
gammaentry=-6.5; %for testing (works well in scenario 4)
%Landing site
lon_site=184.613;
lat_site=23.573;

% Entry condition disperson co-variance matrix
stmEI =[-0.9635 -3.0094 1.3440 9.8926 -23.9346 11.6823;

-0.3732 -1.5413 0.8966 5.3189 -10.4169 10.8597;
0.1624 -0.9360 0.2571 8.4896 -4.5655 2.7681;
-0.5498 -1.5364 0.7938 3.3161 -13.0617 7.7529;
-0.0572 -0.4368 0.5202 2.1350 -2.6031 5.6410];

elseif entrycase==9 %Apollo special, 5000 km
%Nominal Entry and landing condtions
altft=400000;
Lon_entry=144.4;
Lat_entry=1.5;
Vftpers=34888.2526525112;
gammaentry=-6;
headingentry=56.9;

%Landing site
lon_site=184.613;
lat_site=23.573;

% Entry condition disperson co-variance matrix
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stmEI =[ -1.5500 -2.5711 1.3231 3.9620 -23.9557 12.1969;
-0.8059 -1.4668 0.9859 2.1001 -12.0007 12.1276;
-0.0333 -0.9260 0.3232 7.1721 -5.8820 4.0330;
-0.8919 -1.3396 0.8137 0.0109 -13.2062 8.1124;
0.0523 0.0516 0.3104 0.2178 1.0365 3.8263];

elseif entrycase==10 %Approach to KSC 13,519km downrange (7300nm)
altft=4.0644e+005;
Lon_entry=166.0000;
Lat_entry=-28.6500;
Vftpers=3.4976e+004;
gammaentry=-6.2296;

% headingentry=78.9862; %(from Tigges CEV paper, too far left)
headingentry=74;
stmEI =[-0.9738 -4.1202 0.4209 14.1195 -30.8349 6.8046;
-0.3368 -0.8458 0.2575 0.8223 -7.5102 5.7583;
0.1658 -0.9302 0.2528 7.8584 -4.4699 4.6700;
-0.5159 -1.7535 0.1944 4.2470 -14.5926 2.4623;
0.3272 2.1482 0.0486 -8.8792 15.2327 -0.0977];
%Landing site (KSC)
lon_site=280.651;
lat_site=28.585;

end
%Vehicle Parameters
if vehicle==1

mass_nom = 18464.4*0.454; % mass of the CEV (kg)
Sref = 19.648; % reference area of the CEV (m^2)

elseif vehicle==2
mass_nom = 5443.10844; %kilograms Apollo
Sref = 12.01707457427626; %m^2 Apollo

end

lon_site_bias=lon_site;
lat_site_bias=lat_site;

%Non-dimensionalization of Entry/Initial Conditions
altitude=altft*ft2m; %m
r1=(R0+altitude)/R0; %dimensionless
theta0=Lon_entry*d2r; %initial longitude (radians)
phi0=Lat_entry*d2r; %initial latitude(radians)
V0=Vftpers*ft2m/Vscale; %Velocity -> dimensionless
gamma0=gammaentry*d2r; %initial flight path angle (radians)
psi0=headingentry*d2r; %initial heading wrt north (radians)

origstate=[r1,theta0,phi0,V0,gamma0,psi0,0];

% Entry condition disperson co-variance matrix
% [stmEI]=icperturbation(origstate,mass_nom,Sref,vehicle)
% here are the "inputs":
% deltaPosX 0. N 33. # 1-sigma, m
% deltaPosY 0. N 33. # 1-sigma, m
% deltaPosZ 0. N 33. # 1-sigma, m
% deltaVelX 0. N .33 # 1-sigma, m/s
% deltaVelY 0. N .33 # 1-sigma, m/s
% deltaVelZ 0. N .33 # 1-sigma, m/s
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% The outputs (of cov. Matrix times the delta vector) are the
% perturbations in terrestrial latitude (deg), terrestrial longitude
% (deg), relative speed (m/s), relative flight path (deg), relative
% heading (deg).

load -ascii seeds\r_Seeds.dat % 2000x3, zero-mean normal dist, 1-sigm= 10 m
load -ascii seeds\V_Seeds.dat % 2000x3, zero-mean normal dist,1-sigm=0.1m/s
load -ascii seeds\Seeds_mass.dat % 2000, uniform in [0,1.0]
load -ascii seeds\Seeds_atmsphr.dat% 2000x2, uniform in [0,1.0]
load -ascii seeds\Seeds_aero_normal.dat % 1000x2, uni in normal dist[-1,1]

%========================================================================
if ki-kf==0

plots=1;
else

plots=0;
CL_error=zeros(1,kf-ki+1);
CD_error=zeros(1,kf-ki+1);
Mass_error=zeros(1,kf-ki+1);
Bias_error=zeros(1,kf-ki+1);
Mag_error1=zeros(1,kf-ki+1);
Omega_freq1=zeros(1,kf-ki+1);
Mag_error2=zeros(1,kf-ki+1);
Omega_freq2=zeros(1,kf-ki+1);
Total_mag=zeros(1,kf-ki+1);
down_miss=zeros(1,kf-ki+1);
final_long=zeros(1,kf-ki+1);
final_lat=zeros(1,kf-ki+1);
dlat=zeros(1,kf-ki+1);
dlon=zeros(1,kf-ki+1);
dV=zeros(1,kf-ki+1);
dgamma=zeros(1,kf-ki+1);
dpsi=zeros(1,kf-ki+1);

end
for j=1:kf-ki+1

p=ki+j-1; %Obtains correct seed

if plots==0
p

end
%This part produces the initial entry condition dispersions
DEOstate = [r_Seeds(p,:)/R0*4.5 V_Seeds(p,:)/Vscale*4.5]’;
DEIstate = stmEI*DEOstate;
dlon(j) = DEIstate(1);
dlat(j) = DEIstate(2);
dV(j) = DEIstate(3);
dgamma(j)= DEIstate(4);
dpsi(j) = DEIstate(5);

%If we don’t want dispersions, zero out the delta’s
if dispersions==0

dlon(j)=0;
dlat(j)=0;
dV(j)=0;
dgamma(j)=0;
dpsi(j)=0;
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end

%Add dispersions to nominal state values to get perturbed initial cond
state(1) = origstate(1);
state(2) = origstate(2)+dlon(j);
state(3) = origstate(3)+dlat(j);
state(4) = origstate(4)+dV(j);
state(5) = origstate(5)+dgamma(j);
state(6) = origstate(6)+dpsi(j);
state(7) = origstate(7); %downrange flown

%Determine perturbed value of mass.
mass_seed = Seeds_mass(p,1)-0.5;
mass_pert = mass_nom*(1+(mass_seed*2)*0.05); %max +/-5%

% Add atmospheric uncertainty for analytic dispersion
seed1 = Seeds_atmsphr(p,1)-0.5;
seed2 = (Seeds_atmsphr(p,2)-0.5)*1.8;
seed3 = Seeds_atmsphr(p,3)*.75+.25;
seed4 = Seeds_atmsphr(p,4)-.5;
seed5 = Seeds_atmsphr(p,5);

if seed2>=0
seed2=seed2+1;

elseif seed2<0
seed2=seed2-1;

end
bias_atm = 2*seed1*0.20;
Mag_atm1 = seed2*0.10;

% (pos values give thick atm in mid alt,
% neg values give thin atm in mid alt,
% zero values give no alt-dep dispersion)
% omega_atm= 0.046889442590892; % pi/67 is default
% theta_atm= -2.180359080476499; %pi/2-80*pi/67 is default

max_periods1=2;
%Values should permit max 2 periods over 120km
omega_atm1 = seed3*(max_periods1*2*pi/121.9);
Mag_atm2= 2*seed4 * .05*Mag_atm1;
max_periods2=50;
%Values should permit max 100 periods over 120km
omega_atm2 = seed5*(max_periods2*2*pi/121.9);

%Calculates phase of sinusoid dispersion. If possible, dispersion will
%be non-existent at surface, otherwise try to minimize dispersion at
%surface.
if abs(bias_atm/Mag_atm1)<=1

theta_atm=asin(-bias_atm/Mag_atm1);
else

theta_atm=pi/2;
diff1=abs(bias_atm+Mag_atm1*sin(theta_atm));
diff2=abs(bias_atm+Mag_atm1*sin(-theta_atm));
if diff1>diff2

theta_atm=-theta_atm;
end
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end

% Add aerodynamic uncertainty
seed6=Seeds_aero_normal(p,1)/2;
seed7=Seeds_aero_normal(p,2)/2;

if vehicle==1 %CEV
CL_nom=.3892;
CD_nom=1.3479;

elseif vehicle==2 %Apollo
CL_nom = 0.4717;
CD_nom = 1.2167;

end

CL_bias = 2*seed6*CL_nom*.20; %max CL_bias 20%, uniformly
CD_bias = 2*seed7*CD_nom*.20; %max CD_bias 20%, uniformly

%As before,if no dispersions needed,zero out everything and reset mass.
if dispersions==0

bias_atm=0;
Mag_atm1=0;
Mag_atm2=0;
CL_bias=0;
CD_bias=0;
mass_pert = mass_nom*1;

end

%Record values for later plotting
CL_error(j)=(CL_bias+CL_nom)/CL_nom*100;
CD_error(j)=(CD_bias+CD_nom)/CD_nom*100;
Mass_error(j)=(mass_pert-mass_nom)/mass_nom*100+100;
Bias_error(j)=bias_atm*100+100;
Mag_error1(j)=Mag_atm1*100+100;
Omega_freq1(j)=seed3*max_periods1;
Mag_error2(j)=Mag_atm2*100+100;
Omega_freq2(j)=seed5*max_periods2;
Total_mag(j)=(abs(Mag_atm1)+Mag_atm2)*100+100;

%Simulate dispersed trajectory
[down_miss(j),final_long(j),final_lat(j)]=simulate_entry...

(state,mass_nom,mass_pert,Sref,vehicle,plots,scenario);

[range234,Psi234] = sphereping(state(2),state(3),lon_site*pi/180,...
lat_site*pi/180);

CR = asin(sin(range234)*sin(state(6) - Psi234));% crossrange in rad
CR_km(j)=CR*R0/1000;
Actual_CL(j)=CL_bias;
Actual_CD(j)=CD_bias;
Actual_mass(j)=mass_pert;
Actual_bias(j)=bias_atm;
Actual_mag(j)=Mag_atm1;
Actual_freq(j)=omega_atm1;

% down_miss(j)=p;
% final_long(j)=0;
% final_lat(j)=0;

lon_site_bias=lon_site; %reset biased landing sites before next run
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lat_site_bias=lat_site;
clear functions %reset persistent variables in ext func before next run

end

if plots==0
indices=ki:kf;
data=[indices;down_miss;CL_error;CD_error;Mass_error;Bias_error;...

Mag_error1;Omega_freq1;Mag_error2;Omega_freq2;Total_mag;...
final_long;final_lat];

if ki==1
save(filename,’data’,’-ascii’)

end
end

if kf-ki~=249 && ki-kf~=0
figure
plot(ki:kf,down_miss,’x’)
xlabel(’index’)
ylabel(’Miss distance (km)’)

figure
subplot(3,3,1)
plot(CL_error,down_miss,’x’)
xlabel(’CL’)
ylabel(’Miss Distance(km)’)
subplot(3,3,2)
plot(CD_error,down_miss,’x’)
xlabel(’CD’)
ylabel(’Miss Distance(km)’)
subplot(3,3,3)
plot(Mass_error,down_miss,’x’)
xlabel(’mass’)
ylabel(’Miss Distance(km)’)
subplot(3,3,4)
plot(Bias_error,down_miss,’x’)
xlabel(’Bias Dispersion’)
ylabel(’Miss Distance(km)’)
subplot(3,3,5)
plot(Mag_error1,down_miss,’x’)
xlabel(’Mag1 Dispersion’)
ylabel(’Miss Distance(km)’)
subplot(3,3,6)
plot(Omega_freq1,down_miss,’x’)
xlabel(’Number of Atm Periods1’)
ylabel(’Miss Distance(km)’)
subplot(3,3,7)
plot(Mag_error2,down_miss,’x’)
xlabel(’Mag2 Dispersion’)
ylabel(’Miss Distance(km)’)
subplot(3,3,8)
plot(Omega_freq2,down_miss,’x’)
xlabel(’Number of Atm Periods2’)
ylabel(’Miss Distance(km)’)
subplot(3,3,9)
plot(Total_mag,down_miss,’x’)
xlabel(’Total Sin Magnitude’)
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ylabel(’Miss Distance(km)’)

figure
earthradius = almanac(’earth’,’radius’,’km’);
[latc,longc] = scircle1(lat_site,lon_site,2.5,[],earthradius);
[lat5,long5] = scircle1(lat_site,lon_site,5,[],earthradius);
plot(longc+360,latc,’r--’,long5+360,lat5,’k:’,final_long,final_lat,...

’x’,lon_site,lat_site,’r*’)
xlabel(’Longitude (deg)’,’Fontsize’,12)
ylabel(’Latitude (deg)’,’Fontsize’,12)
legend(’2.5 km’,’5km’)
set(gca,’Fontsize’,12)
axis tight square

figure
subplot(2,3,1)
plot(ki:kf,Actual_CL,’x’)
ylabel(’CL Bias’)
xlabel(’index’)

subplot(2,3,2)
plot(ki:kf,Actual_CD,’x’)
ylabel(’CD Bias’)
xlabel(’index’)

subplot(2,3,3)
plot(ki:kf,Actual_mass,’x’)
ylabel(’True Mass (kg)’)
xlabel(’index’)

subplot(2,3,4)
plot(ki:kf,Actual_bias,’x’)
ylabel(’Bias Dispersion’)
xlabel(’index’)

subplot(2,3,5)
plot(ki:kf,Actual_mag,’x’)
ylabel(’Mag Dispersion’)
xlabel(’index’)

subplot(2,3,6)
plot(ki:kf,Actual_freq,’x’)
ylabel(’Actual Frequency (rad/km)’)
xlabel(’index’)

std(dlon*r2d)*3
std(dlat*r2d)*3
std(dV*Vscale)*3
std(dgamma*r2d)*3
std(dpsi*r2d)*3
figure
subplot(2,3,1)
plot(ki:kf,dlon*r2d,’x’)
xlabel(’index’)
ylabel(’Longitude Dispersion (deg)’)
subplot(2,3,2)
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plot(ki:kf,dlat*r2d,’x’)
xlabel(’index’)
ylabel(’Latitude Dispersion (deg)’)
subplot(2,3,3)
plot(ki:kf,dV*Vscale,’x’)
xlabel(’index’)
ylabel(’Velocity Dispersion (m/s)’)
subplot(2,3,4)
plot(ki:kf,dgamma*r2d,’x’)
xlabel(’index’)
ylabel(’Gamma Dispersion (deg)’)
subplot(2,3,5)
plot(ki:kf,dpsi*r2d,’x’)
xlabel(’index’)
ylabel(’Heading Dispersion(deg)’)
subplot(2,3,6)
plot(ki:kf,CR_km,’x’)
xlabel(’index’)
ylabel(’Initial Crossrange(km)’)

end

Simulate Entry

This is the file that simulates one dispersed trajectory of the vehicle.

function [down_miss,final_long,final_lat]=simulate_entry(state,...
mass_nom,mass_pert,Sref,vehicle,plots,scenario)

global bias_atm Mag_atm1 omega_atm1 theta_atm Mag_atm2 omega_atm2
global CL_bias CD_bias
global lon_site lat_site
global lon_site_bias lat_site_bias
% Inputs
% state, a 7 element vector consisting of the following elements
% r = radius, dimensionless
% theta = longitude, radians
% phi = latitude, radians
% V = Relative Velocity, dimensionless
% gamma = Flight Path angle, radians
% psi = Heading angle, radians, zero north, positive clockwise
% s = downrange flown
% mass_nom= Spacecraft nominal mass, kilograms
% mass_pert=Spacecraft perturbed mass, kilograms
% Sref = Spacecraft Reference area, square meters
% vehicle = number corresponding to vehicle type 1-Apollo, 2-CEV, 3-Shuttle
% plots = 1 or 0 flag to display plots for this simulation

% Outputs
% arc = miss distance, nautical miles

%Earth parameters
R0=6378136.3; %m
g0=9.80665; %m/s^2
Vscale=sqrt(R0*g0); %7908.4m/s
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tscale=sqrt(R0/g0); %806.329s
%omega=7.2921151e-5*tscale; %converts rad/s to dimensionless

%Conversion factors
m2ft=3.28083989501; %meters to feet
%ft2m=1/m2ft; %feet to meters
d2r=0.01745329251994; %degrees to radians = pi/180;
r2d=57.29577951308232; %radians to degrees= 180/pi;

currentbank=0; %initial vehicle bank

PHIBKRATEMAXDEG=20; %vehicle maximum roll rate (deg/s)
PHIBKACCELMAXDEG=10; %vehicle maximum acceleration rate (deg/s^2)

altF=7620; %meters, 25000 feet
VF=150; %m/s

%Integration setup
tend=2500; %ending time for integration (seconds)
y=zeros(tend,7); %ending time for integration (seconds)
y(1,:)=state; %set first row of state matrix with ini. cond.
Vfinal=500/Vscale/m2ft; %final velocity non-dimensionlized (500 fps,152m/s)

hinput=1/tscale; %step size hinput=.0012399
p=1; %initialize counting variable

%For Matlab, initialize all the values to be recorded as zero
t=zeros(1,tend); %time
alt=zeros(1,tend); %altitude
load=zeros(1,tend); %g-load
secantbank=zeros(1,tend); %commanded bank
sigma=zeros(1,tend); %actual flown bank
iterations=zeros(1,tend); %number of iterations to converge
selector=zeros(1,tend); %phase of guidance
D=zeros(1,tend); %actual drag
L=zeros(1,tend); %actual lift
D_nom=zeros(1,tend); %nominally expected drag
L_nom=zeros(1,tend); %nominally expected lift
d_density=zeros(1,tend); %ratio of true density to dispersed
rho_true=zeros(1,tend); %true density
rho_nom=zeros(1,tend); %nominal density based on US 76 model
Dpsi=zeros(1,tend); %crossrange envelope
CR=zeros(1,tend); %crossrange with respect to true site
CR_bias=zeros(1,tend); %crossrange with respect to biased site
K_drag_est=zeros(1,tend); %drag multiplier
K_lift_est=zeros(1,tend); %lift multiplier

K_drag_est(1)=1; %initial drag multiplier is one
K_lift_est(1)=1; %initial lift multiplier is one
selector(1)=1; %phase of guidance is initially one
NCall=[]; %initalize roll reversal flag

%range-to-go part along great circle distance
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site*d2r,lat_site*d2r);
rangetogolanding_1st=arc*R0; %result in meters
while 1
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%True load is calculated in this section since it is assumed that
%accelerometers will be able to measure the actual g load.
alt(p)=(y(p,1)-1)*R0; %calculate altitude (meters)
[rho_nom(p),rho_a] = density(alt(p)/1000); %calculate density (kg/m^3)
[Vs]= Vsound(alt(p)/1000); %calculate speed of sound (m/s)
Vs=Vs/Vscale; %non-dimensionalize speed of sound
Mach=y(p,4)/Vs; %calculate mach number

%Find trim angle of attack (rad.) and lift and drag coefficients for
%particular vehicle
if vehicle==1

alpha = trim_alpha_CEV(Mach);
[CL,CD]=CLCD_CEV(Mach, alpha);

elseif vehicle==2
alpha = trim_alpha_Apollo(Mach);
[CL,CD]=CLCD_Apollo(Mach, alpha);

else
error(’vehicle unselected’)

end

CL = CL+CL_bias; %Perturb lift coefficient
CD = CD+CD_bias; %Perturb drag coefficient

%Use analytic density dispersion with alt (in meters to kilometers)
d_density(p)=(1+bias_atm+(Mag_atm1+Mag_atm2*sin(omega_atm2*alt(p)/...

1000))*sin(theta_atm + omega_atm1*alt(p)/1000));
rho_true(p) = d_density(p)*rho_nom(p);

%Find true drag and lift (g’s)
D(p)=rho_true(p)*(Vscale*y(p,4))^2*Sref*CD*.5/(mass_pert*g0);
L(p)=rho_true(p)*(Vscale*y(p,4))^2*Sref*CL*.5/(mass_pert*g0);

%Find nominal drag and lift (g’s)
D_nom(p)=rho_nom(p)*(Vscale*y(p,4))^2*Sref*(CD-CD_bias)*.5/...

(mass_nom*g0);
L_nom(p)=rho_nom(p)*(Vscale*y(p,4))^2*Sref*(CL-CL_bias)*.5/...

(mass_nom*g0);

load(p)=sqrt(L(p)^2+D(p)^2);
sigma(p)=currentbank;

%Compute arc length and azimuth to true landing site
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site*pi/180,...

lat_site*pi/180);
%Find crossrange to true landing site (rad)
CR(p) = asin(sin(arc)*sin(y(p,6) - azimuth));
Y = 0.25/24/2*y(p,4)+0.3*1852/R0;
if abs(currentbank)<15

Y = Y/2;
end
Dpsi(p) = Y; %Record crossrange envelope

%Compute arc length, azimuth, and crossrange to biased landing site
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site_bias*d2r,...
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lat_site_bias*d2r);
CR_bias(p) = asin(sin(arc)*sin(y(p,6) - azimuth));

%Run guidance for particular scenario and phase
if scenario==1

%Full Apollo Guidance
if mod(p+1,2)==0 %only runs every 2 seconds

[currentbank,secantbank(p),selector(p)]=Apollo_guidance(p,...
y(p,:),load(p),currentbank);

else
selector(p)=selector(p-1);
secantbank(p)=secantbank(p-1);

end
elseif scenario==2

%NPC Skip guidance
if selector(p)~=5

%Call lift and drag filters
K_lift_est(p)=filter_LD_ratios(y(p,1),y(p,4),L(p),mass_nom,...

Sref,1,vehicle);
K_drag_est(p)=filter_LD_ratios(y(p,1),y(p,4),D(p),mass_nom,...

Sref,0,vehicle);

[currentbank,selector(p),iterations(p),biased_counts,...
secantbank(p)]=Secant_guidance_disp(p,[y(p,1),y(p,2),...
y(p,3),y(p,4),y(p,5),y(p,6)],load(p),PHIBKRATEMAXDEG,...
PHIBKACCELMAXDEG,mass_nom,Sref,vehicle,K_drag_est(p),...
K_lift_est(p));

end
%Ping Lu NPC Final Phase guidance.
if selector (p)==5

if isempty(NCall)
NCall=1;

else
NCall=2;

end
%Everything sent to this function is nominal and with units
[currentbank,t_togo,iterations(p),secantbank(p),...

K_lift_est(p),K_drag_est(p)]=EntryGuidance_disp(lon_site,...
lat_site,alt(p),y(p,2)*r2d,y(p,3)*r2d,y(p,4)*Vscale,...
y(p,5)*r2d,y(p,6)*r2d,altF,VF,currentbank,L(p),D(p),...
PHIBKRATEMAXDEG,PHIBKACCELMAXDEG,mass_nom,Sref,1,NCall,...
vehicle);

selector(p+1)=5;
end

elseif scenario==3
%Apollo Skip Guidance only
if selector(p)~=5

if mod(p+1,2)==0
[currentbank,secantbank(p),selector(p)]=...

Apollo_guidance(p,y(p,:),load(p),currentbank);
else

selector(p)=selector(p-1);
secantbank(p)=secantbank(p-1);

end
end
%Ping Lu NPC Final Phase guidance.
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if selector (p)==5
if isempty(NCall)

NCall=1;
else

NCall=2;
end
%Everything sent to this function is nominal and with units
[currentbank,t_togo,iterations(p),secantbank(p),...

K_lift_est(p),K_drag_est(p)]=EntryGuidance_disp(lon_site,...
lat_site,alt(p),y(p,2)*r2d,y(p,3)*r2d,y(p,4)*Vscale,...
y(p,5)*r2d,y(p,6)*r2d,altF,VF,currentbank,L(p),D(p),...
PHIBKRATEMAXDEG,PHIBKACCELMAXDEG,mass_nom,Sref,1,NCall,...
vehicle);

selector(p+1)=5;
end

elseif scenario==4
%NPC Skip guidance
if selector(p)~=5

K_lift_est(p)=filter_LD_ratios(y(p,1),y(p,4),L(p),mass_nom,...
Sref,1,vehicle);

K_drag_est(p)=filter_LD_ratios(y(p,1),y(p,4),D(p),mass_nom,...
Sref,0,vehicle);

[currentbank,selector(p),iterations(p),biased_counts,...
secantbank(p)]=Secant_guidance_disp(p,[y(p,1),y(p,2),...
y(p,3),y(p,4),y(p,5),y(p,6)],load(p),PHIBKRATEMAXDEG,...
PHIBKACCELMAXDEG,mass_nom,Sref,vehicle,K_drag_est(p),...
K_lift_est(p));

end
%Apollo Final phase Guidance
if selector(p)==5

if mod(p+1,2)==0
[currentbank,secantbank(p+1),selector(p+1)]=...

Apollo_guidance_final(p,y(p,:),load(p),currentbank);
else

selector(p+1)=selector(p);
secantbank(p+1)=secantbank(p);

end
end

else
error(’scenario not selected’)

end

%End integration of trajectory if velocity below Vfinal
if y(p,4)<Vfinal

if (rangetogolanding_1st-y(p,7)*R0)/1000>5
’Undershoot (>5km)’

elseif (arc*R0)/1000<-5
’Overshoot (>5km)’

end
break

%End integration if time runs out
elseif round(t(p)*tscale)==tend

’time ran out’
break

%End integration if we’re overshot by 5000km or more.
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elseif (rangetogolanding_1st-y(p,7)*R0)/1000<-5000
’Overshoot (>5000km)’
break

end

p=p+1; %increment counting variable

%Call next integration time step
y(p,:)=myrungekutta_entry(@eqnofmotion_disp,t(p-1),y(p-1,:),...

hinput,mass_pert,Sref,currentbank,vehicle);
%Increase time.
t(p)=t(p-1)+hinput;

end

[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site*d2r,lat_site*d2r);
cross_miss=asin(sin(arc)*sin(y(p,6)-azimuth))*R0/1000;
down_miss=arc*R0/1000; % miss distance in kilometers

final_long=y(p,2)*r2d;
final_lat=y(p,3)*r2d;
if plots

%create a time vector that fits with the one used and is rescaled
p=p-1;
t=t(1:p)*tscale;
rangetogolanding=rangetogolanding_1st-s*R0;
r=y(1:p,1);
theta=y(1:p,2);
phi=y(1:p,3);
V=y(1:p,4);
gamma=y(1:p,5);
psi=y(1:p,6);
s=y(1:p,7);
Dpsi=Dpsi(1:p);
CR=CR(1:p);
Dpsi(2,:)=-Dpsi;
CR_bias=CR_bias(1:p);

sigma=sigma(1:p);
selector=selector(1:p);
iterations=iterations(1:p);
load=load(1:p);
secantbank=secantbank(1:p);
K_drag_est=K_drag_est(1:p);
K_lift_est=K_lift_est(1:p);

D=D(1:p);
L=L(1:p);
D_nom=D_nom(1:p);
L_nom=L_nom(1:p);
d_density=d_density(1:p);
rho_true=rho_true(1:p);
rho_nom=rho_nom(1:p);
Dist_to_target_kilometers=down_miss

figure
subplot(2,2,1)
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plot(t,((r*R0)-R0)/1000)
xlabel(’Time, s’)
ylabel(’Altitude, km’)
subplot(2,2,2)
plot(t,V*Vscale/1000)
xlabel(’Time, s’)
ylabel(’Velocity, km/s’)
subplot(2,2,3)
plot(V*Vscale/1000,((r*R0)-R0)/1000)
xlabel(’Velocity, km/s’)
ylabel(’Altitude, km’)
subplot(2,2,4)
plot(rangetogolanding/1000,(r*R0-R0)/1000,0,0,’r*’)
set(gca,’XDir’,’reverse’)
xlabel(’Downrange to-go, km’)
ylabel(’Altitude, km’)

figure
subplot(2,2,1)
earthradius = almanac(’earth’,’radius’,’km’);
[latc,longc] = scircle1(lat_site,lon_site,2.5,[],earthradius);
plot(theta*r2d,phi*r2d,longc+360,latc,’r’,final_long,final_lat,’x’,...

lon_site,lat_site,’r*’,lon_site_bias,lat_site_bias,’g*’)
xlabel(’Longitude, degrees’)
ylabel(’Latitude, degrees’)
axis equal
grid on
subplot(2,2,2)
plot(t,gamma*r2d)
xlabel(’Time, s’)
ylabel(’Flight Path Angle, degrees’)
subplot(2,2,3)
plot(t,load)
xlabel(’Time, s’)
ylabel(’Total Load, g’’s’)
subplot(2,2,4)
plot(t,psi*r2d)
xlabel(’Time, s’)
ylabel(’Heading, degrees’)

figure
plot(t,sigma,’’,t,abs(secantbank),’r--’)
xlabel(’Time, s’)
ylabel(’Bank angle, degrees’)
legend(’Flown Bank’,’Commanded Bank’)

figure
subplot(2,1,1)
plot(t,selector)
text(0,1,’iniroll’,’FontSize’,8)
text(0,2,’down’,’FontSize’,8)
text(0,3,’upcontrol’,’FontSize’,8)
text(0,4,’kepler’,’FontSize’,8)
text(0,5,’final’,’FontSize’,8)

subplot(2,1,2)
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plot(t,iterations)
xlabel(’Time,s’)
ylabel(’Iterations’)
Plottime

figure
subplot(2,2,1)
plot(t,D,t,D_nom)
xlabel(’Time, s’,’Fontsize’,12)
ylabel(’Drag g’’s’,’Fontsize’,12)
legend(’True Drag’,’Nominal Drag’)
set(gca,’Fontsize’,12)
subplot(2,2,2)
plot(t,K_drag_est)
xlabel(’Time, s’,’Fontsize’,12)
ylabel(’Drag Factor’,’Fontsize’,12)
set(gca,’Fontsize’,12)
subplot(2,2,3)
plot(t,L,t,L_nom)
xlabel(’Time, s’,’Fontsize’,12)
ylabel(’Gain value or g’’s’,’Fontsize’,12)
legend(’True Lift’,’Nominal Lift’)
set(gca,’Fontsize’,12)
subplot(2,2,4)
plot(t,K_lift_est)
xlabel(’Time, s’,’Fontsize’,12)
ylabel(’Lift Factor’,’Fontsize’,12)
set(gca,’Fontsize’,12)
Plottime4

decx=[0.5 7 30 100 1000];
decy=[11.5 10 8 4 4];
nomx=[0.5 5 300 1000];
nomy=[19 16 7.5 5];
autox=[0.5 300 1000];
autoy=[40 7.5 5];
x = 0:.01:10.1;
y=load;
n_elements = histc(y,x);
c_elements = cumsum(fliplr(n_elements));
figure
loglog(autox,autoy,’r’,’LineWidth’,2)
hold on
loglog(nomx,nomy,’b--’,’LineWidth’,2)
loglog(decx,decy,’g--’,’LineWidth’,2)
loglog(fliplr(c_elements),x)
legend(’Max for automated crew abort/escape’,...

’Nominal Entry (conditioned crew)’,...
’Deconditioned,ill, or injured crew’)

axis([0.1 1000 1 100])
ylabel(’g-load’)
xlabel(’time’)
grid on
hold off

figure
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subplot(2,2,1)
plot(t,d_density)
xlabel(’Time, s’)
ylabel(’\rho_{true}/\rho_{nom}’)
subplot(2,2,2)
plot(d_density,(r*R0-R0)/1000)
xlabel(’\rho_{true}/\rho_{nom}’)
ylabel(’altitude (km)’)
subplot(2,2,3)
semilogy(t,rho_true,t,rho_nom)
xlabel(’Time, s’)
ylabel(’Density (kg/m^3)’)
legend(’True’,’Nominal’)
subplot(2,2,4)
semilogx(rho_true,(r*R0-R0)/1000,rho_nom,(r*R0-R0)/1000)
xlabel(’Density (kg/m^3)’)
ylabel(’altitude (km)’)
legend(’True’,’Nominal’)

figure
plot(t,CR,’b-’,t,CR_bias,’r--’,t,Dpsi,’k:’,t,-Dpsi,’k:’)
legend(’CR’,’CR-bias’)
xlabel(’Time, s ’,’FontSize’,12)
ylabel(’Crossrange, radians’,’FontSize’,12)
set(gca,’Fontsize’,12)
text(10,0.005,’right of target’,’FontSize’,8)
text(10,-0.005,’left of target’,’FontSize’,8)

end

Runge-Kutta Entry

function x2=myrungekutta_entry(f,t,x,h,mass,Sref,bank,vehicle)

%Implements a 4th order Runge Kutta integration method
%f is the function in the equation x’=f(t,x)
%t is the current time, scalar
%x are the initial conditions which should be a row vector
%h is the step size, scalar
%x2 is the new conditions, as a row vector
%Christopher Brunner

p1=(h*f(t,x,mass,Sref,bank,vehicle))’;
p2=(h*f(t+.5*h,x+.5*p1,mass,Sref,bank,vehicle))’;
p3=(h*f(t+.5*h,x+.5*p2,mass,Sref,bank,vehicle))’;
p4=(h*f(t+h,x+p3,mass,Sref,bank,vehicle))’;

x2=x+ (p1 + 2*p2 + 2*p3 + p4)/6;

Dispersed Equations of Motion

function dydt=eqnofmotion_disp(t,y,mass,Sref,bank,vehicle)
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% Christopher Brunner
% Evaluate the 3-DOF equations of motion over a rotating spherical Earth;
% All state variables and time are dimensionless
% Use 1976 US Standard Atmosphere
% Use time as independent variable
% Inputs are:
% t, dimensionless time
% y, a vector consisting of 7 elements,
% r, the dimensionless position
% theta, longitude, in radians
% phi, latitude in radians
% V, dimensionless velocity
% gamma, flight path angle, negative down, in radians
% psi, heading angle, in radians
% s, range flown, scaled by Earth’s radius, dimensionless
% mass, Vehicle’s true mass in kilograms
% Sref, Vehicle area in square meters
% bank, current bank angle in degrees
% vehicle, a number corresponding to the vehicle being flown
% 1- Crew Exploration Vehicle
% 2- Apollo Command Capsule
%
% Output is a 7 element column vector consisting of the time derivatives
% of the input vector.
%
% Global predefined dispersion variables should be the atmospheric bias and
% magnitude, along with constant dispersions in lift and drag coefficient.
%
% April 2007
%

global bias_atm Mag_atm1 omega_atm1 theta_atm Mag_atm2 omega_atm2
global CL_bias CD_bias

R0=6378136.3; %m
g0=9.80665; %m/s^2
Vscale=sqrt(R0*g0); %7908.4m/s
tscale=sqrt(R0/g0); %806.329s
omega=7.2921151e-5*tscale; %converts rad/s to dimensionless
d2r=0.01745329251994; %degrees to radians = pi/180;

r=y(1);
%theta=y(2); %commented since not needed below
phi=y(3);
V=y(4);
gamma=y(5);
psi=y(6);
%s=y(7); %commented since not needed below

%convert s/c radius from dimensionless to altitude in kilometers
alt=(r-1)*R0/1000;

%Compute density from US 76 (rho in kg/m^3)
[rho,rho_a] = density(alt);

%Takes an input in kilometers of altitude and outputs in meters/second



97

[Vs]= Vsound(alt);

%convert from m/s to dimensionless
Vs=Vs/Vscale;

Mach=V/Vs;

if vehicle==1
%takes an input of mach number and outputs angle of attack, alpha in
%radians
alpha = trim_alpha_CEV(Mach);
% Compute CL and CD for the Apollo-like vehicle as functions of
% Mach number and angle of attack in radians
[Cl,Cd]=CLCD_CEV(Mach, alpha);

elseif vehicle==2
%takes an input of mach number and outputs angle of attack, alpha in
%radians
alpha = trim_alpha_Apollo(Mach);
% Compute CL and CD for the Apollo-like vehicle as functions of
% Mach number and angle of attack in radians
[Cl,Cd]=CLCD_Apollo(Mach, alpha);

end

Cl = Cl+CL_bias;
Cd = Cd+CD_bias;
rho = (1+bias_atm+(Mag_atm1+Mag_atm2*sin(omega_atm2*alt))*...
sin(theta_atm + omega_atm1*alt))*rho;

%Lift and drag
D=rho*(Vscale*V)^2*Sref*Cd*.5/(mass*g0);
L=rho*(Vscale*V)^2*Sref*Cl*.5/(mass*g0);

sigma=bank*d2r;
rdot=V*sin(gamma);
thetadot=V*cos(gamma)*sin(psi)/(r*cos(phi));
phidot=V*cos(gamma)*cos(psi)/r;
Vdot=-D-sin(gamma)/r^2+omega^2*r*cos(phi)*(sin(gamma)*cos(phi)-...

cos(gamma)*sin(phi)*cos(psi));
gammadot=1/V*(L*cos(sigma) + (V^2-1/r)*cos(gamma)/r + 2*omega*V*...

cos(phi)*sin(psi) + omega^2*r*cos(phi)*(cos(gamma)*cos(phi)+...
sin(gamma)*cos(psi)*sin(phi)));

psidot=1/V*(L*sin(sigma)/cos(gamma) + V^2*cos(gamma)*sin(psi)*tan(phi)...
/r - 2*omega*V*(tan(gamma)*cos(psi)*cos(phi)-sin(phi)) + ...
omega^2*r*sin(psi)*sin(phi)*cos(phi)/cos(gamma));

sdot=V*cos(gamma)/r;
dydt=[rdot thetadot phidot Vdot gammadot psidot sdot]’;

Density function

This function computes the atmospheric density based on the 1976 US standard atmo-

sphere.

function [rho,rho_a] = density(alt)



98

% Calculate the atmospehric density and gradient of density
% with respect to altitude by 1976 US standard atmosphere.
% alt in km (0<alt <130)
% rho=density in kg/m^3
% rho_a= d(rho)/d(alt) unit (kg/m^3/km)

rho_0 = 1.225;

a= -0.009334500409893852;
b= -0.07713480853494097;
c= -0.00382948508292597;
d= 5.242803244759748E-05;
e= 6.454862591920205E-07;
f= -2.031133609734722E-08;
g= 1.568378909033718E-10;
h= -3.928350728483702E-13;

x= alt;
if alt >130.0

x = 130.;
end

y = a+x*(b+x*(c+x*(d+x*(e+x*(f+x*(g+x*h))))));
rho = rho_0*exp(y);
dy = (b+x*(2.*c+x*(3.*d+x*(4.*e+x*(5.*f+x*(6.*g+7.*x*h))))));
rho_a= rho*dy;
return

Sound Velocity

This code calculates the speed of sound at a particular altitude.

function [V_sound]= Vsound(altitude)

%
% Calculate the speed of sound as a function of altitude
% Curve-fit to the 1976 US Standard Atmosphere
%
% Input:
% altitude -altitude in km (0=< alt =< 85 km)
% (For 85 km and above, the speed of sound is
% not well defined. This function truncates
% any input altitude greater than 85 km at 85 km
% so the speed of sound returned is constant
% for alt > 85 km)
%
% Output:
% Vsound -speed of sound (m/sec)
%
% by Ping Lu
% Iowa State University
% May 20, 2004
%
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alt = altitude;

if(alt > 85.0)
alt = 85.0;

end

if(alt < 0.0)
alt = 0.0;

end
a = 340.29112;
b = -0.87245462;
c = -300.10255;
d = 0.3077688;
e = 106.65518;
f = -0.052091446;
g = -18.273173;
c_h = 0.004143208;
c_i = 1.485658;
c_j = -0.00012124848;
c_k = -0.045201417;
h_s = sqrt(alt);
dum1 = a + c*h_s + e*alt + g*h_s*h_s*h_s + c_i*alt*alt + c_k*power(h_s,5.0);
dum2 = 1.0+b*h_s + d*alt + f*h_s*h_s*h_s + c_h*alt*alt + c_j*power(h_s,5.0);
V_sound=dum1/dum2;

CLCD Apollo

This function computes the lift and drag coefficients for the Apollo Command Module.

function [CL,CD]=CLCD_Apollo(Mach,alpha)

% Calculate CL and CD of Apollo Command Module
% near alpha= 155 deg (trim)
% Input
% Mach - Mach number (0.7<=Mach)
% alpha - angle of attack in rad (near 155 deg)

mach= Mach;
y = alpha;

if Mach >10
mach = 10;

elseif Mach <0.7
mach=0.7;

end

if y> 160/57.296
y = 160/57.296;

elseif y< 154.5/57.296
y= 155.0/57.296;

end

x =1.0/mach;
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z1 =1.041491644520038+x*(-0.4111523830941650+x*(1.514954425110922...
+x*(-1.487270049440492+x*(0.06769309935963811+x*0.2381479131194706))));

z2 =y*(0.4520310716015592+y*(-0.2398166259168704));
CL =z1+z2;

z1 =3.715227798263816+x*(-1.931052031762790+x*(7.930451805087150...
+x*(-11.24925503607193+x*(6.056043034756084+x*(-1.065359571892614)))));

z2 =y*(-2.650664383420442+y*0.6539634146341463);
CD =z1+z2;

CLCD CEV

This function computes the lift and drag coefficients for the Crew Exploration Vehicle.

function [CL,CD]=CLCD_CEV(Mach,alpha)

% Calculate CL and CD of the Crew Exploration Vehicle
% CEV 602A (April 2006)
% Most accurate when alpha is near the trim (Mach dependent)
% Input
% Mach - Mach number (0.5<=Mach<=33.7)
% alpha - angle of attack in rad (in the range of 150-170 deg )
% April 17, 2006
% By P. Lu

d2r=0.01745329251994; %degrees to radians = pi/180;

mach= Mach;
y = alpha;

if Mach >33.7
mach = 33.7;

elseif Mach <0.5
mach=0.5;

end

if y> 170*d2r
y = 170*d2r;

elseif y< 150*d2r
y= 150.0*d2r;

end

x = 1.0/mach;
z1 = 2.523457051642765+x*(-0.4349807599157984+...

x*(2.387583341651182+x*(-3.754388446751747+...
x*(2.197426333443260+x*-0.4333221758967753))));

z2 = y*-0.7594052924642753;
CL = z1+z2;

z1 =-7.972686129072812+x*(-1.823592134486534+...
x*(8.052361019744082+x*(-12.06958431525050+...
x*(6.977094607191365+x*-1.382017708945732))));

z2 =y*(5.901190368747020+y*-0.9122809306975412);
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CD = z1+z2;

return

trim alpha Apollo

This code calculates the trim angle of attack for the Apollo Command Module.

function alpha=trim_alpha_Apollo(Mach)

% Compute the trim alpha (rad) for the Apollo Command Module
% 0.4<Mach < 10

x = Mach;
if x>10

x=10;
elseif x<0.4

x=0.4;
end
x=x*x;
alpha=(2.874898382776241+x*(-4.214191310719779+x*(3.803336249031923...

+x*(-0.5584426652219696+x*0.02987059265081175))))/...
(1.0+x*(-1.499344405009540+x*(1.397512630553629+...
x*(-0.2055419628490292+x*0.01099359208645952))));

return

trim alpha CEV

This code calculates the trim angle of attack for the Crew Exploration Vehicle.

function alpha=trim_alpha_CEV(Mach)

% Compute the trim alpha (rad) for the Crew Exploration Vehicle
% CEV 602A (April 2006)
% 0.5<Mach < 33.7
% alpha in rad
% April 17, 2006, by P. Lu

x = Mach;
if x>33.7

x=33.7;
elseif x<0.45

x=0.45;
end

alpha=(168.0236229048111+x*(-250.0300295195276+x*(140.5100679500302...
+x*(-10.27112015846153+x*0.6120736978892660))))/...
(1.0+x*(-1.496351219250425+x*(0.8595875622553195+...
x*(-0.06035589947504183+x*(0.003613162469840939+x*...
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3.254315960973067E-06)))));
alpha=alpha/57.2958;

return
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APPENDIX B. SKIP GUIDANCE CODES

Secant Guidance

The following code is the main guidance algorithm that runs the secant iteration. It requires

several additional functions to run as given below.

function [varargout]=Secant_guidance_disp(p,state,load,PHIBKRATEMAXDEG,...
PHIBKACCELMAXDEG,mass,Sref,vehicle,K_drag,K_lift)

% Christopher Brunner
% Code started October 17,2006
% Version as of April 8, 2008
% Guidance function to compute skip bank angle and output rate-limited
% value.
% INPUTS
% p, current time in seconds
% state, a 6 element vector consisting of:
% r, dimensionless spacecraft radius
% theta, longitude radians
% phi, latitude radians
% Vin, dimensionless velocity
% gamma, flight path angle, radians
% psi, heading angle, radians
% load, spacecraft acceleration, g’s
% PHIBKRATEMAXDEG, max bank rate in deg/s
% PHIBKACCELMAXDEG, max bank acceleration in deg/s^2
% mass, vehicle mass in kg
% Sref, vehicle area in m^2
% vehicle, corresponding to the vehicle being used 1=CEV, 2=Apollo
% K_drag, scaling factor on drag, dimensionless
% K_lift, scaling factor on lift, dimensionless
%
% OUTPUTS
% currentbank = output actual bank angle of vehicle in degrees
% SELECTOR = phase number
% iterations = number of iterations to compute skip angle
% biased_counts = number of iterations for biasing
% SECANTBANK = converged skip bank angle in degrees
%
% Functions Required:
% skipranger.m
% sphereping.m
% crossbias.m
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% Bank_sign_Apollo.m
% shortest_bank_limiter.m
%==========================================================================
global lon_site_bias lat_site_bias
global lon_site lat_site

persistent SELECTOR a SECANTBANK Ncall bias_run biased_counts

secant_error=25000; % in m (25km=13.5nm)

R0=6378136.3; % Earth Radius, m
% g0=9.80665; % Earth gravity, m/s^2
% Vscale=sqrt(R0*g0); % Velocity scaling factor
d2r=0.01745329251994; % degrees to radians = pi/180;
r2d=57.29577951308232; % radians to degrees= 180/pi;

% Phases for SELECTOR
% Initial roll=1
% Down control=2
% Up control=3
% Kepler=4
% Final=5

kepbank=70; % in degrees, expected bank angle to fly in kepler phase
finalbank=70; % in degrees, expected bank angle to fly in final phase
g_thres=0.05; % load threshold to be inside atmosphere
range_thres=2000000; % range threshold to start final phase (2000 km), meters

%INITIALIZATION
if isempty(SELECTOR)

Ncall=1;
SELECTOR=1;
bias_run=1;
biased_counts=0;
SECANTBANK=0;

% final initial skip bank angle that causes trajectory to undershoot
% landing site
[predrangetogo_m,ground,crosscheck]=skipranger(0,state,SECANTBANK,...
kepbank,finalbank,1,mass,Sref,vehicle,K_drag,K_lift);
while predrangetogo_m<0 && SECANTBANK<180

SECANTBANK=SECANTBANK+2.5;
[predrangetogo_m,ground,crosscheck]=skipranger(0,state,SECANTBANK,...
kepbank,finalbank,1,mass,Sref,vehicle,K_drag,K_lift);

end
% Warnings for too small a bank and too large a bank
if SECANTBANK==0 && predrangetogo_m>0

warning(’vehicle has inadequate energy to reach landing site’)
elseif SECANTBANK==180

warning(’vehicle has too much energy’)
end
a=cos(SECANTBANK*d2r);

end
iterations=1;
ground_error=0;
% Begin computation of bank angle for skip phase
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if SELECTOR<=3 % Only run computation if we’re before kepler phase
% Next line makes initial computation of range based on previously
% computed solution
[fa,grounda,crosscheck]=skipranger(p,state,acos(a)*r2d,kepbank,...
finalbank,SELECTOR,mass,Sref,vehicle,K_drag,K_lift);
if abs(fa)>secant_error % secant only done if range error is large

% Perturb bank angle parameter and get new range
b=a-1e-3;
[fb,groundb,crosscheck]=skipranger(p,state,acos(b)*r2d,kepbank,...
finalbank,SELECTOR,mass,Sref,vehicle,K_drag,K_lift);
while 1

%error check to insure we don’t divide by zero if ranges were equal
if fb==fa

% arning(’divide by zero, prev bank angle used’)
a=cos(SECANTBANK*d2r);
iterations=-3;
break

end

% Guts of secant method, make correction in bank angle
s=(b-a)/(fb-fa);
b=a;
fb=fa;
a=a-fa*s;

% If secant computes a cosine of bank angle that is greater than
% -1, sets equal to -1, but this occurs only if SECANTBANK
% (previous angle) agrees with the assessment, otherwise a
% numerical problem with the perturbation size is assumed and we
% go into ground correction with a different perturbation step
% size
if a>1

if SECANTBANK<15
% warning(’a>1’)
a=.999;
iterations=-1;
break

else
% warning(’a>1, but SECANTBANK is larger than 15’)
a=1;% Setting a=1, forces the next call to
% rangepredictor to be off the ground and starts
% the ground fix loop
ground_error=1;

end
elseif a<-1

if SECANTBANK>165
% warning (’a<-1’)
a=-.999;
iterations=-2;
break

else
% warning(’a<-1, but SECANTBANK is smaller than 165’)
a=1; % Setting a=1, forces the next call to
% rangepredictor to be off the ground and starts
% the ground fix loop
ground_error=1;
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end
end
% Compute range with new bank angle.
[fa,grounda,crosscheck]=skipranger(p,state,acos(a)*r2d,...

kepbank,finalbank,SELECTOR,mass,Sref,vehicle,K_drag,K_lift);

% Next statements are if the trajectory leaves the ground.
if grounda==0 || ground_error==1

ground_error=0;
warning(’trajectory left ground...fixing’)
bankfix=acos(a)*r2d;
fa=-1;
while fa < 0

bankfix=bankfix+2.5;
[fa,grounda,crosscheck]=skipranger(p,state,bankfix,...
kepbank,finalbank,SELECTOR,mass,Sref,vehicle,K_drag,...

K_lift);
if bankfix>180 && grounda==0

bankfix=180
warning(’Bank angle=180, trajectory skips out’)
break

elseif bankfix>180 && grounda==1
bankfix=180
warning(’Bank angle=180’)
break

end
end
if abs(bankfix-180) <1e-4

a=-0.999
break
end
a=cos(bankfix*d2r);

b=a-1e-6;
[fb,groundb,crosscheck]=skipranger(p,state,acos(b)*r2d,...

kepbank,finalbank,SELECTOR,mass,Sref,vehicle,K_drag,...
K_lift);

end
% If range is small than permitted error, converged!
if abs(fa)<secant_error % 46.3km=25nm

break
elseif iterations==10

%warning(’Max iterations reached, prev. bank used,’)
a=cos(SECANTBANK*d2r);
break

end
iterations=iterations+1;

end
end

end
%Compute skip phase bank angle.
SECANTBANK=acos(a)*r2d;
%Compute range for purposes of
[arc, azimuth] = sphereping(state(2),state(3),lon_site_bias*d2r,...
lat_site_bias*d2r);
rangetogolanding=arc*R0; %result in meters
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if bias_run==1 && biased_counts==0 && abs(crosscheck)>1 && iterations<10...
&& SELECTOR>=2

% see if 1)Have we done biasing (bias_run==1)?
% 2)Does it need doing? (abs(crosscheck)>1)
% 3)Did we have a converged solution (iterations<10)
% 4)Are we far enough into trajectory to do it? (SELECTOR>=2)
bias_run=0;
biased_counts=1; % initialize the number of biases
reversed=crosscheck; % store the first direction to bias (+2 or -2)
crossbias(state,reversed/2,biased_counts); % bias the first time
while 1

[predrangetogo_m,ground,crosscheck]=skipranger(p,...
state,acos(a)*r2d,kepbank,finalbank,SELECTOR,mass,Sref,...
vehicle,K_drag,K_lift); % run biasing with new biased site.

if reversed==2 && crosscheck<0
break % quit if originally we were too far right, now we’re left

elseif reversed==-2 && crosscheck>0
break % quit if originally we were too far left, now we’re right

elseif biased_counts>12
warning(’crosscheck exceeds limits’)
break % quit if we’ve done biasing 12 times.

else
biased_counts=biased_counts+1; % increase count
crossbias(state,crosscheck,biased_counts); % run biasing

end
end

elseif bias_run==1 && abs(crosscheck)<=1 && iterations<10 && SELECTOR>=2
bias_run=0; % never do biasing as long as other criteria met.

end

if SELECTOR==1 && load<g_thres % Initial roll
ROLLC=0;
if rangetogolanding<range_thres % change to final phase

warning(’Direct Entry’)
SELECTOR=5;
SECANTBANK=finalbank;
ROLLC=SECANTBANK;

end
elseif SELECTOR==1 && load>g_thres % Transition to down control

SELECTOR=2;
ROLLC=SECANTBANK;

elseif SELECTOR==2 && state(5)<0 % Downcontrol
ROLLC=SECANTBANK;
if rangetogolanding<range_thres % change to final phase

warning(’Direct Entry’)
SELECTOR=5;
SECANTBANK=finalbank;
ROLLC=SECANTBANK;

end
elseif SELECTOR==2 && state(5)>0 % Transition to upcontrol

SELECTOR=3;
ROLLC=SECANTBANK;

elseif SELECTOR==3 && load>g_thres % Upcontrol
ROLLC=SECANTBANK;
if rangetogolanding<range_thres %change to final phase
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warning(’Loft entry’)
SELECTOR=5;
SECANTBANK=finalbank;
ROLLC=SECANTBANK;

end
elseif SELECTOR==3 && load<g_thres % transition to Kepler

SELECTOR=4;
SECANTBANK=kepbank;
ROLLC=SECANTBANK;

elseif SELECTOR==4 && load<g_thres % Kepler
SECANTBANK=kepbank;
ROLLC=SECANTBANK;
if rangetogolanding<range_thres % change to final phase

SELECTOR=5;
SECANTBANK=finalbank;
ROLLC=SECANTBANK;

end
elseif SELECTOR==4 && load>g_thres % transition to final

SECANTBANK=kepbank;
ROLLC=SECANTBANK;
if rangetogolanding<range_thres % change to final phase

SELECTOR=5;
SECANTBANK=finalbank;
ROLLC=SECANTBANK;

end
end

% With roll command from secant and transition logic, determine correct sign
% of bank angle and give to simulation the actual bank angle flown subject
% to rate and acceleration limits. For first call, Ncall is uninitialized.
if Ncall==1

sigma_sign=Bank_sign_Apollo(state,lon_site_bias*d2r,lat_site_bias*d2r,...
Ncall,SECANTBANK*d2r);

ROLLC=abs(ROLLC)*sigma_sign;
currentbank=shortest_bank_limiter(ROLLC*d2r,PHIBKRATEMAXDEG,...

PHIBKACCELMAXDEG,0)*r2d;
Ncall=2;

elseif SELECTOR<=3
sigma_sign=Bank_sign_Apollo(state,lon_site_bias*d2r,lat_site_bias*d2r,...

Ncall,SECANTBANK*d2r);
ROLLC=abs(ROLLC)*sigma_sign;
currentbank=shortest_bank_limiter(ROLLC*d2r,PHIBKRATEMAXDEG,...

PHIBKACCELMAXDEG,1)*r2d;
elseif SELECTOR>=4

sigma_sign=Bank_sign_Apollo(state,lon_site*d2r,lat_site*d2r,...
Ncall,SECANTBANK*d2r);

ROLLC=abs(ROLLC)*sigma_sign;
currentbank=shortest_bank_limiter(ROLLC*d2r,PHIBKRATEMAXDEG,...

PHIBKACCELMAXDEG,1)*r2d;
end
varargout={currentbank,SELECTOR,iterations,biased_counts,SECANTBANK};
return
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Skip Ranger

This is the file that simulates the planned trajectory given the skip bank angle. It also

includes a sub-function, to determine when to do bank reversals.

function [range_m,ground,crosscheck]=skipranger(thetime,state,skipbank,...
kepbank,finalbank,selector_in,mass,Sref,vehicle,K_drag,K_lift)

% Simulates skip phase with constant bank angle.
% Downrange is computed with respect to true landing site
% Crossrange bank reversals are done with respect to biased landing site.
%
% Outputs:
% range_m = range-to-go in meters, positive for undershoot, negative
% for overshoot
% ground = a flag; ground=0 vehicle skipped out (alt>200km)
% ground=1 vehicle hit ground w/o skip out
% crosscheck = a flag; =1 vehicle is left inside envelope
% =2 vehicle is left outside envelope
% =-1 vehicle is right inside envelope
% =-2 vehicle is right outside envelope
% Inputs:
% thetime = current time within outer simulation
% state = current state(r lon lat V gamma psi), dimensionless
% skipbank = skip phase bank angle 0<= skipbank <=180 (deg)
% finalbank = bank angle to fly for final phase (deg)
% selector = current phase 1=iniroll, 2=down, 3=up, 4=kep, 5=final
% mass = vehicle mass (kg)
% S_ref = vehicle reference area (m^2)
% vehicle = a flag; 1=CEV, 2=Apollo, 3=shuttle
% K_drag = Drag Density Gain (dimensionless)
% K_lift = Lift Density Gain(dimensionless)
% Functions Required:
%
% sphereping.m
% trim_alpha_CEV.m (or trim_alpha_Apollo.m)
% CLCD_CEV.m (or CLCD_Apollo.m)
% density.m
% Vsound.m
% myrungekutta_entry_bias.m
% eqnofmotion_bias.m (required by myrungekutta_entry_bias.m)
% Bank_sign_Apollo2.m (included function)
% Matlab function "zeros"
%
%==========================================================================
global lon_site_bias lat_site_bias lon_site lat_site
persistent range_thres

%Earth parameters
R0=6378136.3; %Earth Radius, m
g0=9.80665; %Earth surface gravity, m/s^2
Vscale=sqrt(R0*g0); %velocity scaling factor, =7908.4m/s
tscale=sqrt(R0/g0); %time scaling factor = 806.329s
omega=7.2921151e-5*tscale; %converts rad/s to dimensionless
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%Conversion factors
m2ft=3.28083989501; %meters to feet
d2r=0.01745329251994; %degrees to radians = pi/180;

%Integration setup
tend=2500; %total integration time, seconds
y=zeros(tend,7);
t=zeros(1,tend);
load=zeros(1,tend);
sigma=zeros(1,tend);
CR=zeros(1,tend);
Dpsi=zeros(1,tend);
CR_bias=zeros(1,tend);
selector_plot=zeros(1,tend);

y(1,:)=[state,0]; %initial state
Vfinal=500/Vscale/m2ft; %final velocity dimensionless (500 ft/s)
endflag=0;
finalfirst=1;
hinput=10/tscale; %step size, 10s=.0012399
p=1; %initialize counting variable
g_thres=0.05; % load threshold to be inside atmosphere
crosscheck=0; %initialize crosscheck variable
selector=selector_in; %set initial phase selector to input value
if selector==1

rangebank_cmd=0;
else

rangebank_cmd=skipbank;
end
%range-to-go part along great circle distance
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site_bias*d2r,...

lat_site_bias*d2r);
rangetogolanding=arc*R0; %result in meters
if isempty(range_thres)

% range threshold to begin transition to final phase (2000 km), meters
range_thres=2000000;
if rangetogolanding<3500000

%reduce final phase threshold if range is short
range_thres=500000;

end
end

while 1
% r(p)=y(p,1);
% theta(p)=y(p,2);
% phi(p)=y(p,3);
% V(p)=y(p,4);
% gamma(p)=y(p,5);
% psi(p)=y(p,6);
% range convered=y(,p,7);

alt=(y(p,1)-1)*R0; %result in meters
[rho,rho_a] = density(alt/1000); %compute density
Vs= Vsound(alt/1000); %compute sound velocity
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Vs=Vs/Vscale; %non-dimensionalize sound velocity
Mach=y(p,4)/Vs; %computer mach number
if vehicle==1

alpha = trim_alpha_CEV(Mach); %compute angle of attack
[Cl,Cd]=CLCD_CEV(Mach,alpha); %compute lift and drag coeff

elseif vehicle==2
alpha = trim_alpha_Apollo(Mach);%compute angle of attack
[Cl,Cd]=CLCD_Apollo(Mach,alpha);%compute lift and drag coeff

end
D=K_drag*rho*(Vscale*y(p,4))^2*Sref*Cd/(2*mass*g0); %Drag, g’s
L=K_lift*rho*(Vscale*y(p,4))^2*Sref*Cl/(2*mass*g0); %Lift, g’s

%Loading (results in g’s)
load(p)=sqrt(L^2+D^2);
selector_plot(p)=selector;

%Crossrange with respect to true landing site (only used for plotting)
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site*d2r,lat_site*d2r);
CR(p) = asin(sin(arc)*sin(y(p,6) - azimuth));% crossrange in rad
Y = 0.25/24/2*y(p,4)+0.3*1852/R0;
if abs(rangebank_cmd)<15

Y = Y/2;
end
Dpsi(p) = Y;

%Crossrange with respect to biased landing site
[arc, azimuth] = sphereping(y(p,2),y(p,3),lon_site_bias*d2r,...

lat_site_bias*d2r);
CR_bias(p) = asin(sin(arc)*sin(y(p,6) - azimuth));% crossrange in rad

if (selector==1 && load(p)<g_thres) %initial roll
rangebank_cmd=0;

elseif (selector==1 && load(p)>g_thres) %transition to skip
selector=2;
rangebank_cmd=finalbank + (skipbank-finalbank) * (arc*R0-...

range_thres)/(rangetogolanding-range_thres);
elseif (selector>=2 && selector<=4 && (arc*R0)>range_thres) %skip

rangebank_cmd=finalbank + (skipbank-finalbank) * (arc*R0-...
range_thres)/(rangetogolanding-range_thres);

if (selector==2 && y(p,5)>0) %selector changed only for plotting
selector=3;

elseif (selector==3 && load(p)<g_thres) %only for plotting
selector=4;

end
elseif (selector>=2 && selector<=4 && (arc*R0)<range_thres)

%transition to final phase
selector=5;
rangebank_cmd=finalbank;

elseif (selector==5) %final phase
rangebank_cmd=finalbank;

else
error(’error in skipranger’)

end

if finalfirst && selector==5
if CR(p)>Dpsi(p) %vehicle is heading too far right, bias to left
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crosscheck=2; %outside envelope
elseif CR(p)>0

crosscheck=1;
elseif CR(p)<-Dpsi(p)%vehicle is heading too left, bias to right

crosscheck=-2;
elseif CR(p)<0

crosscheck=-1;
else

crosscheck=0;
end
finalfirst=0;

end

%Bank reversal is done with respect to biased landing site.
if p == 1 % initialization of bank_reversal

sigma_sign=Bank_sign_Apollo2(y(p,:),lon_site_bias*d2r,...
lat_site_bias*d2r,p,rangebank_cmd*d2r);

rangebank_cmd=abs(rangebank_cmd)*sigma_sign;
rangebank=rangebank_cmd;

else % Normal bank reversal execution
sigma_sign=Bank_sign_Apollo2(y(p,:),lon_site_bias*d2r,...

lat_site_bias*d2r,p,rangebank_cmd*d2r);
rangebank_cmd=abs(rangebank_cmd)*sigma_sign;
rangebank=rangebank_cmd;

end

%record bank angle for plotting
sigma(p)=rangebank;

if endflag || alt<0
ground=1;
break

elseif alt>300000 %skipout
ground=0;
crosscheck=0;
break

end

if y(p,4)<Vfinal*1.5 %Insures that final time step causes integration
r=y(p,1); %to stop at as close to Vfinal as possible
phi=y(p,3);
V=y(p,4);
gamma=y(p,5);
psi=y(p,6);
Vdot=-D-sin(gamma)/r^2+omega^2*r*cos(phi)*(sin(gamma)*cos(phi)-...

cos(gamma)*sin(phi)*cos(psi));
if V+Vdot*hinput<=Vfinal

hinput=(Vfinal-V)/Vdot;
endflag=1;

end
end

p=p+1;

y(p,:)=myrungekutta_entry_bias(@eqnofmotion_bias,t(p-1),y(p-1,:),...
hinput,mass,Sref,rangebank,vehicle,K_drag,K_lift);
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t(p)=t(p-1)+hinput;
end

range_m=rangetogolanding-y(p,7)*R0;
%Make sure range is negative (overshoot), for skipouts
if (ground==0 && range_m > 0)

range_m=-range_m;
end
return
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

function sigma_sign=Bank_sign_Apollo2(x,lonHAC,latHAC,NCall,bank)

% This function determine the sign of the current bank angle command
% (i.e., when to perform a bank reversal) according Apollo lateral logic
% Inputs:
% x - Array of the current 6 states of 3DOF motion, dimensionless
% lonHAC - longitude of the HAC (target point), rad
% latHAC - latitude of the HAC (target point), rad
% NCall - Counter, integer (NCall=1 is the first call)
% bank - Commanded bank angle in rad
%
% Output:
% sigma_sign - The sign of the current bank command, 1 or -1

%====================================================================
persistent Nrev2

R0 = 6378135.; % m
r2d = 57.29577951308232;
lon = x(2); % longitude, rad
lat = x(3); % latitude, rad
V = x(4); % relative velocity,dimless
psi = x(6); % heading angle, rad

if lonHAC <0
lonHAC = 2*pi+lonHAC;

end
[range,Psi] = sphereping(lon,lat,lonHAC,latHAC);

Dpsi = psi - Psi;
CR = asin(sin(range)*sin(Dpsi));% crossrange in rad
%CR = CR*R0/1000/1.852 ; % crossrange in nm
KLat = 0.25/24*0.5;
Latbias = 0.3*1852/R0; % rad

%VSQ = V^2;
Y = KLat*V+Latbias;

%if V <0.1
% Y = 1*1852/R0;
%end

%KLat = 0.3/24;
%Y = KLat*VSQ+Latbias;
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if abs(bank*r2d)<15
Y = Y*0.5;

end
Dpsi = Y;

% Determine initial sign of the bank angle
if NCall == 1

if Psi >= psi
Nrev2 = 1;

else
Nrev2 =-1;

end
sigma_sign = Nrev2;
return

end

% Determine if a bank reversal is needed
if abs(CR) >= Dpsi

if CR >= Dpsi && Nrev2 == 1
Nrev2 =-1; % reversal from positve to negative

elseif CR <= -Dpsi && Nrev2 == -1
Nrev2 = 1; % reversal from negative to positive

end
end

sigma_sign = Nrev2;

return

Biasing Subroutine

This function modifies the landing site to a biased location.

function []=crossbias(state,crosscheck,multiplier)

% Christopher Brunner
% Latest version April 8,2008
% Computes a biased ’landing site’ based on current state, landing site,
% direction to bias, and distance to bias.
% INPUTS
% state, a 6 element vector consisting of:
% r, dimensionless spacecraft radius
% theta, longitude radians
% phi, latitude radians
% Vin, dimensionless velocity
% gamma, flight path angle, radians
% psi, heading angle, radians
% crosscheck - gives direction to bias
% multiplier - gives multiple of biases to make
% OUTPUTS
% None (file updates lon_site_bias and lat_site_bias)
%=========================================================================
global lon_site_bias lat_site_bias lon_site lat_site
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persistent delta_chi delta_site

lon=state(2);
lat=state(3);
psi=state(6);
d2r=0.017453292519943; %degrees to radians = pi/180;
r2d=57.295779513082323; %radians to degrees= 180/pi;

[arc, az] = sphereping(lon,lat,lon_site*d2r,lat_site*d2r);
if isempty(delta_chi)

delta_chi=crosscheck*.15*d2r;
chi=asin(sin(arc)*sin(psi-az));
delta_Psi=-delta_chi * cos(chi) / (sin(arc)*cos(psi-az));
a11=cos(lon_site*d2r-lon)*cos(lat_site*d2r)/sin(arc);
a12=-sin(lon_site*d2r-lon)*sin(lat_site*d2r)/sin(arc);
a21=-cos(lat_site*d2r)*cos(lat)*sin(lon_site*d2r-lon);
a22=sin(lat)*cos(lat_site*d2r)-sin(lat_site*d2r)*cos(lat)*...

cos(lon_site*d2r-lon);
b1=cos(az)*delta_Psi;
b2=0;
det=a11*a22-a21*a12;
if (abs(tan(lat)-sin(lat_site*d2r)*cos(lon_site*d2r-lon))< 1e-5 ...

|| lat_site==90)
warning(’ ill conditioned matrix’)

end
delta_site(1)=(a22*b1-a12*b2)/det;
delta_site(2)=(-b1*a21+a11*b2)/det;

end

lon_site_bias=lon_site+delta_site(1)*r2d*multiplier;
lat_site_bias=lat_site+delta_site(2)*r2d*multiplier;

return

Biased Equations of Motion

This function evaluates the right hand side of the equations of motion, producing the
derivatives at the current state.

function dydt=eqnofmotion_bias(t,y,mass,Sref,bank,vehicle,K_drag,K_lift)

% Christopher Brunner
% Evaluate the 3-DOF equations of motion over a rotating spherical Earth;
% All state variables and time are dimensionless
% Use 1976 US Standard Atmosphere
% Use time as independent variable
% Inputs are:
% t, dimensionless time
% y, a vector consisting of 7 elements,
% r, the dimensionless position
% theta, longitude, in radians
% phi, latitude in radians
% V, dimensionless velocity
% gamma, flight path angle, negative down, in radians
% psi, heading angle, in radians
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% s, range flown, scaled by Earth’s radius, dimensionless
% mass, Vehicle mass in kilograms
% Sref, Vehicle area in square meters
% bank, current bank angle in degrees
% vehicle, a number corresponding to the vehicle being flown
% 1- Crew Exploration Vehicle
% 2- Apollo Command Capsule
% 3- Space Shuttle
% K_drag, a constant relating the nominal drag to the true drag
% K_lift, a constant relating the nominal lift to the true lift
%
% Output is a 7 element column vector consisting of the time derivatives
% of the input vector.
% April 2007

R0=6378136.3; %m
g0=9.80665; %m/s^2
Vscale=sqrt(R0*g0); %7908.4m/s
tscale=sqrt(R0/g0); %806.329s
omega=7.2921151e-5*tscale; %converts rad/s to dimensionless
d2r=0.01745329251994; %degrees to radians = pi/180;

r=y(1);
%theta=y(2); %commented since not needed below
phi=y(3);
V=y(4);
gamma=y(5);
psi=y(6);
%s=y(7); %commented since not needed below

%convert s/c radius from dimensionless to altitude in kilometers
alt=(r-1)*R0/1000;

% Calculate the atmospheric density and gradient of density
% with respect to altitude by 1976 US standard atmosphere.
% alt in km (0<alt <130)
% rho=density in kg/m^3
% rho_a= d(rho)/d(alt) unit (kg/m^3/km)
[rho,rho_a] = density(alt);

%Takes an input in kilometers of altitude and outputs in meters/second
Vs= Vsound(alt);

%convert from m/s to dimensionless
Vs=Vs/Vscale;

Mach=V/Vs;

if vehicle==1
%takes an input of mach number and outputs angle of attack, alpha in
%radians
alpha = trim_alpha_CEV(Mach);
%Compute CL and CD for the Apollo-like vehicle as functions of
%Mach number and angle of attack in radians
[Cl,Cd]=CLCD_CEV(Mach, alpha);

elseif vehicle==2
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%takes an input of mach number and outputs angle of attack, alpha in
%radians
alpha = trim_alpha_Apollo(Mach);
%Compute CL and CD for the Apollo-like vehicle as functions of
%Mach number and angle of attack in radians
[Cl,Cd]=CLCD_Apollo(Mach, alpha);

end
%Lift and drag
D=K_drag*rho*(Vscale*V)^2*Sref*Cd/(2*mass*g0);
L=K_lift*rho*(Vscale*V)^2*Sref*Cl/(2*mass*g0);

sigma=bank*d2r;
rdot=V*sin(gamma);
thetadot=V*cos(gamma)*sin(psi)/(r*cos(phi));
phidot=V*cos(gamma)*cos(psi)/r;
Vdot=-D-sin(gamma)/r^2+omega^2*r*cos(phi)*(sin(gamma)*cos(phi)-cos(gamma)*...
sin(phi)*cos(psi));
gammadot=1/V*(L*cos(sigma) + (V^2-1/r)*cos(gamma)/r + 2*omega*V*...
cos(phi)*sin(psi) + omega^2*r*cos(phi)*(cos(gamma)*cos(phi)+...
sin(gamma)*cos(psi)*sin(phi)));
psidot=1/V*(L*sin(sigma)/cos(gamma) + V^2*cos(gamma)*sin(psi)*tan(phi)/r-...

2*omega*V*(tan(gamma)*cos(psi)*cos(phi)-sin(phi)) + ...
omega^2*r*sin(psi)*sin(phi)*cos(phi)/cos(gamma));

sdot=V*cos(gamma)/r;
dydt=[rdot thetadot phidot Vdot gammadot psidot sdot]’;

Runge Kutta Bias

This is the 4th order Runge-Kutta integration function. It calls the right hand side of the
equations of motion.

function x2=myrungekutta_entry_bias(f,t,x,h,mass,Sref,bank,vehicle,K_drag,...
K_lift)

%Implements a 4th order Runge Kutta integration method
%f is the function in the equation x’=f(t,x)
%t is the current time, scalar
%x are the initial conditions which should be a row vector
%h is the step size, scalar
%x2 is the new conditions, as a row vector
%Christopher Brunner

p1=(h*f(t,x,mass,Sref,bank,vehicle,K_drag,K_lift))’;
p2=(h*f(t+.5*h,x+.5*p1,mass,Sref,bank,vehicle,K_drag,K_lift))’;
p3=(h*f(t+.5*h,x+.5*p2,mass,Sref,bank,vehicle,K_drag,K_lift))’;
p4=(h*f(t+h,x+p3,mass,Sref,bank,vehicle,K_drag,K_lift))’;

x2=x+ (p1 + 2* p2 + 2* p3 +p4)/6;

Lift and Drag Ratio Filter

This describes the code for the filter on lift and drag.

function [X_filter]=filter_LD_ratios(r,V,X_meas,mass_nom,Sref,...
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lift_or_drag,vehicle)

%drag or lift filter
%This function is a firs-order filter that slowly corrects, on the basis of
%measured lift or drag acceleration, the modeling mismatch (due mainly to
%atmospheric density and/or aerodynamic coefficient)
%Inputs
% r: Postion radius (Non-dimensional)
% V Velocity (Non-dimensional)
% X_meas Measured lift or drag (g’s)
% mass_nom Nominal expected mass (kilograms)
% Sref Spacecraft area (square meters)
% lift_or_drag flag to indicate lift or drag is being filtered
% 1= used as a lift filter
% 0= used as a drag filter
% vehicle 1= CEV
% 2= Apollo
%Outputs
% X_filter Gain to be applied to nominal lift or drag (non-dim)
%
%Christopher Brunner
%June 7, 2007

persistent lift_past drag_past

if isempty(lift_past)&& isempty(drag_past)
lift_past=1;
drag_past=1;

end

%Earth parameters
R0=6378136.3; %m
g0=9.80665; %m/s^2
Vscale=sqrt(R0*g0); %7908.4m/s

alt=(r-1)*R0; %resultant altitude in meters
[rho_nom,rho_a] = density(alt/1000);
[Vs]= Vsound(alt/1000);
Vs=Vs/Vscale;
Mach=V/Vs;
if vehicle==1

alpha = trim_alpha_CEV(Mach);
[CL,CD]=CLCD_CEV(Mach, alpha);

elseif vehicle==2
alpha = trim_alpha_Apollo(Mach);
[CL,CD]=CLCD_Apollo(Mach, alpha);

end
if lift_or_drag==1 %Lift filter

K_lift_gain=0.9;
L_nom=rho_nom*(Vscale*V)^2*Sref*CL*0.5/(mass_nom*g0);
X_filter=K_lift_gain* lift_past + (1-K_lift_gain)*X_meas/L_nom ;
lift_past=X_filter;

elseif lift_or_drag==0 %Drag filter



119

K_drag_gain=0.9;
D_nom=rho_nom*(Vscale*V)^2*Sref*CD*0.5/(mass_nom*g0);
X_filter=K_drag_gain*drag_past + (1-K_drag_gain)*X_meas/D_nom ;
drag_past=X_filter;

else
error(’Must specify lift or drag filter’)

end

Arc Length Function - Sphereping

This computes the are length and azimuth between two points.

function [arc, azimuth] = sphereping(theta1,phi1,theta2,phi2)
% Everyting is in radian
% Evaluate the arc length and azimuth angle between two points:
% P1(theta1,phi1) and P2(tehta2,phi2) on the surface of a sphere
% theta = longitude, phi = latitude
% azimuth (measured clockwise from North) of the arc joining two point
% -180 (deg) < azimuth < 180 deg
% Applicable for 0< arc < 3.1415927 (PI).
% The dimensional length of the arc will be radius * arc.
%
% Ping Lu
% Jan. 12, 2001

Dlon=theta2-theta1;
Dlat=phi2-phi1;
if abs(Dlon) <1.0e-8 && abs(Dlat) < 1.0e-8

arc = 0.0;
azimuth = 0.0;
’Warning: Two points coincide when calling sphere.m’
return

else
sn1 = sin(phi1);
sn2 = sin(phi2);
cn1 = cos(phi1);
cn2 = cos(phi2);

arc0= sn2*sn1+cn2*cn1*cos(Dlon);
arc = acos(arc0);

sn = sin(Dlon)*cn2/sin(arc); % sin(azimuth)
cs = (sn2*cn1-cn2*sn1*cos(Dlon))/sin(arc); % cos(azimuth)

if abs(sn)>1
sn = sn/abs(sn);

end

if abs(cs)>1
cs = cs/abs(cs);

end
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% Determine the correct quadrant for azimuth

if cs >=0.0 && sn >=0.0 % 0 (deg) < azimuth < 90 (deg)
azimuth = asin(sn);

elseif cs<=0.0 && sn >=0.0 % 90 (deg) < azimuth < 180 (deg)
azimuth = acos(cs);

elseif cs >=0. && sn <=0.0 % -90(deg) < azimuth < 0 (deg)
azimuth = asin(sn);

elseif cs <=0.0 && sn <=0.0 % -180 (deg)< azimuth < -90 (deg)
azimuth = -acos(cs);

end
end

Shortest Bank Limiter

The following code determines the vehicle bank angle based on limited rate and acceleration.

It will roll in the shortest direction to the commanded angle.

function bankCMD = shortest_bank_limiter(sigma_CMD,PHIBKRATEMAXDEG,...
PHIBKACCELMAXDEG,DT_GUID)

% This function limits the rate and acceleration of bank angle command
% Modified by Chris Brunner
% This will decide change the bank angle in the shortest possible direction
% Inputs:
% sigma_CMD - Current bank command before passing the limiter, rad,
% PHIBKRATEMAXDEG - Maximum rate limit, deg/sec
% PHIBKACCELMAXDEG - Maximum acceleration, deg/sec^2
% DT_GUID - Time int between current time and previous call, sec.
% This input needs to be set to zero in the first call
% Output:
% bankCMD - Bank angle command subject to the rate and
% acceleration limits, rad
% Note: Since this function stores past values of bank angle and
% bank angle rate, it can only be used for bank angle in one calling
% function.
%====================================================================

if nargin==0
shortest_tester
return

end

persistent Past RatePast % used as static variables

d2r=0.01745329251994; %degrees to radians = pi/180;
r2d=57.29577951308232; %radians to degrees= 180/pi;

if abs(DT_GUID)<1.0e-6
bankCMD = sigma_CMD;
RatePast= 0;
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Past = sigma_CMD*r2d;
return

end

Cmd = sigma_CMD*r2d;

%No ambiguity with definition of quadrant, if we have angle =0,=90
if Past>=0 && Past<=90

PastQ=1;
elseif Past<=0 && Past>= -90

PastQ=2;
elseif Past<=-90 && Past>=-180

PastQ=3;
elseif Past>=90 && Past<=180

PastQ=4;
elseif (Past==0)

PastQ=5;
elseif (Past==90)

PastQ=6;
elseif (Past==-90)

PastQ=7;
elseif (Past==180)

PastQ=8;
end

if Cmd>=0 && Cmd<=90
CmdQ=1;

elseif Cmd<=0 && Cmd>=-90
CmdQ=2;

elseif Cmd<= -90 && Cmd>= -180
CmdQ=3;

elseif Cmd>=90 && Cmd<=180
CmdQ=4;

elseif (Cmd==0)
CmdQ=5;

elseif (Cmd==90)
CmdQ=6;

elseif (Cmd==-90)
CmdQ=7;

elseif (Cmd==180)
CmdQ=8;

end

switch(PastQ)
case(1)

switch(CmdQ)
case(1)

%direct, do nothing
case(2)

%ok, do nothing
case(3)

%tricky,
if Past+abs(Cmd)>180

Cmd=Cmd+360;
end
%otherwise leave default
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case(4)
%ok, do nothing

case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90
case(8) %Command is 180

end
case (2)

switch(CmdQ)
case(1)

%ok, do nothing
case(2)

%direct, do nothing
case(3)

%ok, do nothing
case(4)

%tricky
if abs(Past)+Cmd>180

Past=Past+360;
end

case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90
case(8) %Command is 180

Cmd=-180;

end
case(3)

switch(CmdQ)
case(1)

%tricky
if abs(Past)+Cmd >180

Past=Past+360;
end

case(2)
%ok, do nothing

case(3)
%direct, do nothing

case(4)
Past=Past+360;
%tricky

case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90

%Past=Past+360
case(8) %Command is 180

Cmd=-180;
end

case(4)
switch(CmdQ)

case(1)
%ok, do nothing

case(2)
%tricky
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if Past+abs(Cmd)>180
Cmd=Cmd+360;

end
case(3)

Cmd=Cmd+360;
%tricky

case(4)
%direct, do nothing

case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90

Cmd=Cmd+360;
case(8) %Command is 180

end
case(5) %Past flown angle is zero

switch(CmdQ)
case(1)
case(2)
case(3)
case(4)
case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90
case(8) %Command is 180

end
case(6) %past is +90

switch(CmdQ)
case(1)
case(2)
case(3) %tricky,

Cmd=Cmd+360;
case(4)
case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90
case(8) %Command is 180

end
case(7) %past is -90

switch(CmdQ)
case(1)
case(2)
case(3)
case(4) %tricky

Past=270;
case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90
case(8) %Command is 180

Cmd=-180;
end

case(8) %Past is 180
switch(CmdQ)

case(1)
case(2)

Past=-180;
case(3)



124

Past=-180;
case(4)
case(5) %Command is zero
case(6) %Command is +90
case(7) %Command is -90

Cmd=270;
case(8) %Command is 180

end
end

rateDesired = (Cmd - Past )/DT_GUID;
if rateDesired < -PHIBKRATEMAXDEG

rateDesired = -PHIBKRATEMAXDEG;
elseif rateDesired > PHIBKRATEMAXDEG

rateDesired = PHIBKRATEMAXDEG;
end

accelDesired = (rateDesired - RatePast)/DT_GUID;
if accelDesired < -PHIBKACCELMAXDEG

accelActual = -PHIBKACCELMAXDEG;
elseif accelDesired > PHIBKACCELMAXDEG

accelActual = PHIBKACCELMAXDEG;
else

accelActual = accelDesired;
end

rateActual = RatePast + accelActual*DT_GUID;
RatePast = rateActual;
Cmd = Past + rateActual*DT_GUID;
Past = Cmd;

if Cmd>180
Cmd=Cmd-360;

elseif Cmd< -180
Cmd=Cmd+360;

end
if Past>180

Past=Past-360;
elseif Past< -180

Past=Past+360;
end

bankCMD = Cmd*d2r;
return
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APPENDIX C. APOLLO GUIDANCE CODES

Apollo Guidance

This is the Apollo guidance in its modified versions as described in Chapter 3.

function [varargout]=Apollo_guidance(p,state,load,bank)

%This is the Apollo Skip Entry Guidance modified slightly to enable running
%the function in Matlab.
%Code started May 31,2006
%By Christopher Brunner
%
%INPUTS
%p, current time (integer - not used)
%state is a vector of 6 states compromised of
%r, dimensionless spacecraft radius
%long, longitude (radians)
%lat, latitude (radians)
%Vin, dimensionless velocity
%gamma, flight path angle, (radians)
%psi, heading angle, (radians)
%load, spacecraft acceleration, (g’s)
%bank, current bank angle, (degrees)
%
%OUTPUTS (see final line of code, vargargout=variable arguments out)
%flownbank - rate limited bank angle actually flown by the vehicle(deg)
%ROLLC*r2d - bank angle commanded by guidance (deg)
%selectorout - phase of guidance
% 1-initial roll
% 2-huntest/constant drag
% 3-upcontrol
% 4-Kepler
% 5-final (predict3)
%
%References:
%Morth, R., "Reentry Guidance for Apollo," MIT/IL R-532 Vol. I, 1966.
%
%Moseley, P. E., "The Apollo Entry Guidance: A Review of the Mathematical
%Development and its Operational Characteristics," TRW Note No.
%69-FMT-791, Dec. 1969, Houston,TX.
%
%Levine, G.M., "Apollo Guidance, Navigation, and Control," MIT-Charles
%Stark Draper Laboratory. R-577, Guidance System Operations Plan for
%Manned CM Earth Orbital and Lunar Missions using Program Colossus 3,
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%Section 5, Guidance Equations (Rev 15) January 1972, Cambridge,
%Massachusetts.
%
%Bairstow, S. H., "Reentry Guidance with Extended Range Capability for Low
% L/D Spacecraft," S. M. Thesis, Department of Aeronautics and
% Astronautics, MIT, Feb. 2006.
%
%Of the above, the 1st ref, is the earliest form of the guidance, the
%second is an update, and the 3rd contained many of the gains and constants
%necessary for the code to run. The last contained a mention of some
%errors found in the earlier references.

if nargin==0
secant_disp;
return

end

global lon_site lat_site % global variables for landing site (deg).

persistent GONEPAST HIND P05GSW INRLSW NOSWITCH SELECTOR Q7...
FACTOR LOD LAD KLAT LOVERDCMINR LOVERD DIFFOLD DLEWD Q2 KA K2ROLL...
D0 LEWD V1 A0 FACT1 FACT2 ALP VS1 AHOOK DHOOK VL Ncall%LATSW

%Define constants
R0=6378136.3; %m
g0=9.80665; %m/s^2
m2ft=3.28083989501; %meters to feet
Vscale=sqrt(g0*R0); %7908.4m/s
d2r=0.01745329251994; %degrees to radians = pi/180;
r2d=57.29577951308232; %radians to degrees= 180/pi;

PHIBKRATEMAXDEG=20; %max roll rate (deg/s)
PHIBKACCELMAXDEG=10; %max acceleration rate (deg/s^2)

% the following are all dimensionless
% rin=state(1); %input vehicle geocentric position
long=state(2); %input vehicle longitude
lat=state(3); %input vehicle latitude
Vin=state(4); %input vehicle relative velocity
gamma=state(5); %input vehicle flight path angle
psi=state(6); %input vehicle heading agnle

%conversion of inputs
% R=rin*R0*m2ft; %Vehicle geocentric position(ft)
V=Vin*Vscale*m2ft; %Vehicle relative velocity (ft/s)
D=load*g0*m2ft; %Vehicle load (ft/s^2)

%constants and gains
ATK=3437.7468; %Earth Radius (nm)
GS=32.2; %Gravity (fpss)
HS=28500; %Atm Scale height (ft)
% KWE=1546.70168; %Equatorial Earth Rate (fps)
RE=21202900; %Earth Radius (ft)
% REO=20925738.2; %Earth equatorial radius (ft)
VSAT=25766.1973; %Satellite Velocity at RE (fps)
%WIE=0.0000729211505; %Earth rate (rad/sec)
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C1=1.25; %Factor in ALP computation (none)
C16=0.01; %CONSTD gain on drag (none)
C17=0.001; %CONSTD gain on RDOT (none)
C18=500; %Bias velocity for final phase start (ft/s)
C20=210; %Max drag for down-lift (ft/s^2)
C21=140; %Drag for no lateral switch (ft/s^2)
CHOOK=0.25; %factor in AHOOK computation (none)
CH1=1.0; %factor in GAMMA1 computation (none)
COS15=0.965; %cos (15 deg.) (none)
DLEWD0=-0.05; %initial variation in LEWD (none)
%DT=2; %computation cycle time interval (sec)
GMAX=257.6; %Maximum acceleration (ft/s^2)
KA1=1.3; %factor in KA calculation (g’s)
KA2=0.2; %factor in KA calculation (g’s)
KA3=90; %factor in D0 calculation (ft/s^2)
KA4=40; %factor in D0 calculation (ft/s^2)
KB1=0.5; %optimized upcontrol gain (none)
KB2=0.0025; %optimized upcontrol gain (none)
KDMIN=0.5; %increment in Q7F, detects end of Kep phase(ft/s^2)
%KTETA=1000; %time of flight constant (none)
KLAT1=1/24; %factor in KLAT calculation (none)
K44=19749550; %gain used in initial roll section (ft/s)
LATBIAS=0.41252961; %lateral switch bias term (nm)
LEWD1=0.15; %nominal upcontrol L/D (none)
POINT1=0.1; %factor to reduce upcontrol gain (none)
Q3=0.07; %final phase drange/D V (nm / ft/s)
Q5=7050; %final phase drange/D gamma (nm/rad)
Q6=0.0349; %final phase initial flight path angle (rad)
Q7F=6; %min drag for upcontrol (ft/s^2)
Q7MIN=805; %min value for Q7 in FACTOR calculation (ft/s^2)
Q19=0.5; %factor in GAMMAL1 calculation (none)
% VFINAL1=27000; %velocity to start final phase on ini entry (ft/s)
VFINAL=26600; %factor in initial up-down calculation (ft/s)
VLMIN=18000; %minimum VL [exit velocity for upcontrol] (ft/s)
% VMIN=VSAT/2; %velocity to switch to relative vel (ft/s)
VRCONTRL=700; %RDOT to start into HUNTEST (ft/s)
VQUIT=1000; %velocity to stop steering (ft/s)

% LADPAD=0.3; %nominal vehicle L/D stated in documents
LADPAD=0.387700900791527; %Vehicle max L/D for vehicle I’m using.
% LODPAD=0.18; %final phase L/D stated in documents
LODPAD=0.21; %final phase L/D for vehicle I’m using
HEADSUP=1; %indicator for initial roll

%This section is the initialization routine (called just once)
if isempty(INRLSW)

GONEPAST=1; %indicates overshoot of target (switch 1 or 0)
%RELVELSW=0; %relative velocity switch (I always use relative)
%EGSW=0; %final phase switch
HIND=0; %inidicates iteration in huntest
% LATSW=1; %switch prevents rolling under during upcontrol
% P05GSW=0; %indicates drag greater than .05 times gravity
INRLSW=0; %indicates initial roll started
NOSWITCH=0; %inhibit lateral switch
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%This is section is a modification of the Apollo targeting to measure
%the great circle distance
[THETA, azimuth] = sphereping(long,lat,lon_site*d2r,lat_site*d2r);
LATANG=asin(sin(THETA)*sin(psi-azimuth));
K2ROLL=-sign(LATANG);

Q7=Q7F; %minimum drag for UPCONTROL
SELECTOR=’INITIALROLL’; %SELECTOR is the general "mode"
GOTO=’INITIALROLL’; %GOTO specifies which module to call
FACTOR=1;
LOD=LODPAD; %final phase L/D
LAD=LADPAD; %nominal L/D
KLAT=KLAT1*LAD; %lateral switch gain
LOVERDCMINR=LAD*COS15; %minimum commandable L/D (within 15deg)
LOVERD=-LAD*sign(HEADSUP); %choose an initial bank angle
DIFFOLD=0; %initialize for HUNTEST
DLEWD=DLEWD0; %initialize for HUNTEST
LEWD=LEWD1; %initialize for HUNTEST
Q2=-1992+3500*LAD; %final phase range (21600 nm)

else %This is the targeting routine that is called everytime except first
GOTO=SELECTOR;
[THETA, azimuth] = sphereping(long,lat,lon_site*d2r,lat_site*d2r);
LATANG=asin(sin(THETA)*sin(psi-azimuth));

end

%TARGETING
VSQ=V^2/VSAT^2; %normalized square of velocity (none)
LEQ=(VSQ-1)*GS; %gravity plus centripetal acceleration
RDOT=V*sin(gamma); %altitude rate (ft/s)

%This is an adaptation to determine if vehicle has past landing site
if abs(azimuth-psi)>pi/2 %Landing site is passed

GONEBY=1;
% RTOGO=-THETA;

else %not yet passed
GONEBY=0;
% RTOGO=THETA;

end

%Checking for drag to be bigger than .05 times gravity.
if D-.05*GS<0

P05GSW=1;
else

P05GSW=0;
end

runguidance=1;

while runguidance
switch(GOTO)

case (’INITIALROLL’)
if INRLSW==0; %this run on the first pass only

if P05GSW==1; %start guidance
INRLSW=1;
GONEPAST=0;
KA=(KA1*(LEQ/GS)^3+KA2)*GS;
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if KA-1.5*GS>0 %test if drag is high enough for linear
%theory to be applicable

KA=1.5*GS;
end
if V-VFINAL<0

SELECTOR=’KEPLER’; %set for ballistic mode
GOTO=’310’; %but execute lateral logic

else
D0=KA3*LEQ/GS+KA4; %compute ref drag level
%determine orientation of lift vector
if V-VFINAL+K44*(RDOT/V)^3>0

LOVERD=-LAD; %lift down
else

LOVERD=LAD; %lift up
end
GOTO=’310’;

end
else

GOTO=’310’;
end

else
if RDOT+VRCONTRL<0 %if rdot is smaller than -700 ft/s,

%wait for planning
if D-KA>0

GOTO=’CONSTD’; %drag high enough for closed loop
%drag tracking

else
GOTO=’310’; %drag too low, maintain lateral logic

end
else %otherwise starting planning

SELECTOR=’HUNTEST’;
GOTO=’HUNTEST’;

end
end

case (’HUNTEST’) %
if RDOT<0

V1=V+RDOT/LAD; %compute initial velocity for upcontrol
A0=(V1/V)^2*(D+RDOT^2/(2*C1*HS*LAD)); %compute initial

%drag for upcontrol
A1=A0;

else
V1=V+RDOT/LEWD; %compute initial velocity for upcontrol
A0=(V1/V)^2*(D+RDOT^2/(2*C1*HS*LEWD)); %compute initial

%drag for upcontrol
A1=D;

end
if LOVERD<0

V1=V1-VQUIT;
end
Q7=Q7F;
ALP=2*C1*A0*HS/(LEWD*V1^2);
FACT1=V1/(1-ALP);
FACT2=ALP*(ALP-1)/A0;
VL=FACT1*(1-sqrt(FACT2*Q7+ALP)); %upcontrol exit velocity
if VL-VLMIN<0 %if velocity is too small, start final phase

SELECTOR=’PREDICT3’;
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% EGSW=1;
GOTO=’PREDICT3’;

else
if VL-VSAT>0 %is exit velocity bigger than circular vel?

SELECTOR=’HUNTEST’; %if so, burn off more.
GOTO=’CONSTD’;

else
if V1-VSAT>0%is ini upcontrol vel bigger than circular?

VS1=VSAT;
else

VS1=V1;
end
DVL=VS1-VL; %initial vel for upcontrol minus exit vel
DHOOK=((1-VS1/FACT1)^2-ALP)/FACT2;
AHOOK=CHOOK*(DHOOK/Q7-1)/DVL;
GAMMAL1=LEWD*(V1-VL)/VL;
%flight path angle at upcontrol exit
GAMMAL=GAMMAL1-CH1*GS*DVL^2*(1+AHOOK*DVL)/(DHOOK*VL^2);

%if that angle is negative, replan since cannot reach that condition
if GAMMAL<0

VL=VL+GAMMAL*VL/(LEWD-(3*AHOOK*DVL^2+2*DVL)*...
(CH1*GS/(DHOOK*VL)));

%acceleration at exit of upcontrol
Q7=((1-VL/FACT1)^2-ALP)/FACT2;
GAMMAL=0;

end
GAMMAL1=GAMMAL1*(1-Q19)+Q19*GAMMAL;
GOTO=’RANGEPREDICTION’;

end
end

case (’RANGEPREDICTION’)
VBARS=VL^2/VSAT^2;
COSG=1-GAMMAL^2/2;
E=sqrt(1+(VBARS-2)*COSG^2*VBARS);
ASKEP=2*ATK*asin(VBARS*COSG*GAMMAL/E); %ballistic range
ASP1=Q2+Q3*VL; %final phase range
ASPUP=ATK/RE*(HS/GAMMAL1)*log(A0*VL^2/(Q7*V1^2));%upphase range
ASP3=Q5*(Q6-GAMMAL); %gamma correction
ASPDWN=-RDOT*V*ATK/(A0*LAD*RE); %range to pullout
ASP=ASKEP+ASP1+ASPUP+ASP3+ASPDWN; %total range
DIFF=ATK*THETA-ASP;
if abs(DIFF)-25<0;

SELECTOR=’UPCONTROL’; %plan is ok, so fly it now!
GOTO=’UPCONTROL’;

else
if HIND==0 && DIFF<0

DIFFOLD=DIFF; %planned range too long, fly const drag
Q7=Q7F;
GOTO=’CONSTD’;

else %planned range is undershoot
DLEWD=DLEWD*DIFF/(DIFFOLD-DIFF);
if LEWD+DLEWD<0 %adjust upcontrol reference L/D

DLEWD=-LEWD/2;
end
LEWD=LEWD+DLEWD;
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HIND=1;
DIFFOLD=DIFF;
Q7=Q7F;
GOTO=’HUNTEST’;

end
end

case (’CONSTD’)
%control law to maintain constant drag
LOVERD=-LEQ/D0+C16*(D-D0)-C17*(RDOT+2*HS*D0/V);
GOTO=’NEGTEST’;

case (’NEGTEST’)
if D-C20>0 %test for maximum drag for down lift.

% LATSW=0;
if LOVERD<0

LOVERD=0;
end

end
GOTO=’310’; %lateral logic

case (’UPCONTROL’)
if D-C21>0

NOSWITCH=1; %high drag so roll reversals are prohibited
end
if V-V1>0 %Have not yet hit the pullout condition

RDTR=LAD*(V1-V);
DR=(V/V1)^2*(A0-RDTR^2/(2*C1*HS*LAD));
LOVERD=LAD+C16*(D-DR)-C17*(RDOT-RDTR); %control law
GOTO=’NEGTEST’;

else
if D-Q7>0 %is drag greater than minimum?

if RDOT<0 && V-VL-C18<0 %going back down and
SELECTOR=’PREDICT3’; %start final phase
GOTO=’PREDICT3’;
% EGSW=1;

else %continue to fly the reference trajectory to exit
if A0-D<0%drag greater than start drag,full lift up

LOVERD=LAD;
GOTO=’310’;

else %remainder of the computation figures out the
% %needed L/D to fly the upcontrol trajectory.

%final phase ref velocity
VREF=FACT1*(1-sqrt(FACT2*D+ALP));
if VREF-VS1>0

RDOTREF=LEWD*(V1-VREF);
else

RDOTREF=LEWD*(V1-VREF)-CH1*GS*(VS1-...
VREF)^2*(1+AHOOK*(VS1-VREF))/...
(DHOOK*VREF);

end
if D-Q7MIN>0

FACTOR=(D-Q7)/(A1-Q7);
end
TEM1B=-KB2*FACTOR*(KB1*FACTOR*(RDOT-RDOTREF)...

+V-VREF);
if abs(TEM1B)-POINT1>0
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TEM1B=(POINT1+POINT1*(abs(TEM1B)-POINT1)...
)*sign(TEM1B);

end
LOVERD=LEWD+TEM1B;
GOTO=’NEGTEST’;

end
end

else %drag has decreased, switch to kepler
SELECTOR=’KEPLER’;
GOTO=’KEPLER’;

end
end

case (’KEPLER’)
if P05GSW==0 %load is small, so neutral bank commanded

ROLLC=0;
end
if D-(Q7F+KDMIN)>0

% EGSW=1;
SELECTOR=’PREDICT3’; %end ballistic phase
GOTO=’PREDICT3’;

else
ROLLC=bank*pi/180; %maintain previous bank
GOTO=’380’;

end
case (’PREDICT3’)

if V-VQUIT>0 %not yet to end of guidance
%this matrix is the reference trajectory
inter=[994 -690.9 41.15 .002507 -.03446 3.7 6.10*2;...

2103 -719 60 .003582 -.05551 10.4 10.91*2;...
3922 -694 81.5 .007039 -.09034 23.6 21.64*2;...
6295 -609 93.9 .01446 -.1410 46.3 48.35*2;...
8531 -493 98.5 .02479 -.1978 75.4 93.72*2;...
10101 -416 102.3 .03391 -.2372 99.9 141.1*2;...
14014 -352 118.7 .06139 -.3305 170.9 329.4;...
15951 -416 125.2 .07683 -.7500 210.3 465.5;...
18357 -566 120.4 .09982 -1.000 266.8 682.7;...
20829 -781 95.4 .1335 -1.000 344.3 980.5;...
23090 -927 28.1 .2175 -2.021 504.8 1385;...
23500 -820 6.4 .3046 -3.354 643.0 1508;...
35000 -820 6.4 .3046 -3.354 794.3 1508];

%this is the interpolation scheme on the reference traj.
for k=1:12 %index runs until 12 since there are 13

if inter(k,1) <=V && V<=inter(k+1,1)
break

end
end
grad=(V-inter(k,1))/(inter(k+1,1)-inter(k,1));
RDOTREFV=inter(k,2)+grad*(inter(k+1,2)-inter(k,2));
DREFRV=inter(k,3)+grad*(inter(k+1,3)-inter(k,3));
F2V=inter(k,4)+grad*(inter(k+1,4)-inter(k,4));
F1V=inter(k,5)+grad*(inter(k+1,5)-inter(k,5));
RTOGOV=inter(k,6)+grad*(inter(k+1,6)-inter(k,6));
F3V=inter(k,7)+grad*(inter(k+1,7)-inter(k,7));

%compute ranging potential
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PREDANGL=RTOGOV+F2V*(RDOT-RDOTREFV)+F1V*(D-DREFRV);
if GONEPAST==0

if GONEBY==0
%DNRNGERR=PREDANGL-THETA*ATK; %a display quantity
%compute vehicle L/D to fly to target
LOVERD=LOD+4*(ATK*THETA-PREDANGL)/F3V;

else
GONEPAST=1;
%DNRNGERR=MAXRNG;
LOVERD=-LAD; %landing site passed, full lift down

end
else

LOVERD=-LAD; %landing site prev passed, full lift down
end
GOTO=’GLIMITER’;

else %velocity is small, cmd neutral bank for end of guidance
ROLLC=0;
GOTO=’310’;

end

case (’GLIMITER’)
if GMAX/2-D>0 %g-load is less than half of max, fly regular cmd

GOTO=’310’;
else

if GMAX-D>0 %g-load is between one half and max g-load
X=sqrt(2*HS*(GMAX-D)*(LEQ/GMAX+LAD)+(2*HS*GMAX/V)^2);
if RDOT+X>0 %predicted g-load will be ok, fly cmd

GOTO=’310’;
else %g-load in danger of being exceeded, fly lift up

’g load nearly exceeded’;
LOVERD=LAD;
GOTO=’310’;

end
else %g-load is exceeded, fly lift up.

’g-load definitely exceeded’;
LOVERD=LAD;
GOTO=’310’;

end
end

case (’310’) %lateral logic
LOVERD1=LOVERD;
if GONEPAST==0;

%an error is noted by Bairstow here in the references above
Y=KLAT*VSQ+LATBIAS/ATK;
if abs(LOVERD)-LOVERDCMINR<0

%determine if crossrange is outside envelope
if K2ROLL*LATANG-Y>0

if NOSWITCH==1
%prohibit roll reversals if drag is large
%during upcontrol

else
K2ROLL=-K2ROLL; %reversal bank direction

end
end

else
%commanded bank angle is within 15deg of lift up,
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%reduce envelope size
Y=Y/2;
if K2ROLL*LATANG>0

if K2ROLL*LATANG-Y>0
if NOSWITCH==1

%as before, no reversal if drag is large
%during upcontrol

else
K2ROLL=-K2ROLL;

end
end

else
%limits bank to within 15 deg of full lift up or
%down
LOVERD1=LOVERDCMINR*sign(LOVERD);

end
end

end
LOVERD1OVERLAD=LOVERD1/LAD; %compute actual vehicle L/D
%if L/D is bigger than one, make sure it’s between +/- 1
if abs(LOVERD1OVERLAD)-1>0

LOVERD1OVERLAD=sign(LOVERD);
end
%compute roll command for autopilot (rad)
ROLLC=K2ROLL*acos(LOVERD1OVERLAD);
NOSWITCH=0; %reset upcontrol reversal prohibition
GOTO=’380’; %end guidance cycle.

case (’380’)
runguidance=0;

end
end

%Determine which phase the guidance is in
if strcmp(SELECTOR,’INITIALROLL’)

selectorout=1;
elseif strcmp(SELECTOR,’HUNTEST’)

selectorout=2;
elseif strcmp(SELECTOR,’UPCONTROL’)

selectorout=3;
elseif strcmp(SELECTOR,’KEPLER’)

selectorout=4;
elseif strcmp(SELECTOR,’PREDICT3’)

selectorout=5;
else

selectorout=0;
end

%Call "autopilot" which rate limits bank angle to reverse in the shortest
%direction
if isempty(Ncall) %first call to limiter.

Ncall=1;
flownbank=shortest_bank_limiter(ROLLC,PHIBKRATEMAXDEG,...

PHIBKACCELMAXDEG,0)*r2d;
else %future calls to bank limiter.

flownbank=shortest_bank_limiter(ROLLC,PHIBKRATEMAXDEG,...
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PHIBKACCELMAXDEG,2)*r2d;
end

%outputs
varargout={flownbank,ROLLC*r2d,selectorout};

Apollo Final Guidance

This is strictly the Apollo guidance for the final phase only with everything that is unnec-

essary removed.

function [varargout]=Apollo_guidance_final(p,state,load,bank)

%NOTE: This final is extracted from the regular Apollo skip guidance and
%contains only the final phase of guidance with minimal gains, etc.
%It also contains the g-limiter and lateral logic functions.
%INPUTS
%p, current time (integer - not used)
%state is a vector of 6 states compromised of
%r, dimensionless spacecraft radius
%long, longitude (radians)
%lat, latitude (radians)
%Vin, dimensionless velocity
%gamma, flight path angle, (radians)
%psi, heading angle, (radians)
%load, spacecraft acceleration, (g’s)
%bank, current bank angle, (degrees)
%
%OUTPUTS (see final line of code, vargargout=variable arguments out)
%flownbank - rate limited bank angle actually flown by the vehicle(deg)
%ROLLC*r2d - bank angle commanded by guidance (deg)
%selectorout - phase of guidance
% 1-initial roll
% 2-huntest/constant drag
% 3-upcontrol
% 4-Kepler
% 5-final (predict3)
%
%Code started May 31,2006
%By Christopher Brunner
%
%References:
%Morth, R., "Reentry Guidance for Apollo," MIT/IL R-532 Vol. I, 1966.
%
%Moseley, P. E., "The Apollo Entry Guidance: A Review of the Mathematical
%Development and its Operational Characteristics," TRW Note No.
%69-FMT-791, Dec. 1969, Houston,TX.
%
%Levine, G.M., "Apollo Guidance, Navigation, and Control," MIT-Charles
%Stark Draper Laboratory. R-577, Guidance System Operations Plan for
%Manned CM Earth Orbital and Lunar Missions using Program Colossus 3,
%Section 5, Guidance Equations (Rev 15) January 1972, Cambridge,
%Massachusetts.
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%
%Bairstow, S. H., "Reentry Guidance with Extended Range Capability for Low
% L/D Spacecraft," S. M. Thesis, Department of Aeronautics and
% Astronautics, MIT, Feb. 2006.
%
%Of the above, the 1st ref, is the earliest form of the guidance, the
%second is an update, and the 3rd contained many of the gains and constants
%necessary for the code to run. The last contained a mention of some
%errors found in the earlier references.

if nargin==0 %this provided a way in Matlab of me "running" from this file.
secant_disp;
return

end

global lon_site lat_site %bring global variables for landing site (deg).

persistent GONEPAST INRLSW NOSWITCH SELECTOR LOD LAD KLAT...
LOVERDCMINR LOVERD K2ROLL Ncall

%Define constants
R0=6378136.3; %m
g0=9.80665; %m/s^2
m2ft=3.28083989501; %meters to feet
Vscale=sqrt(g0*R0); %7908.4m/s
d2r=0.01745329251994; %degrees to radians = pi/180;
r2d=57.29577951308232; %radians to degrees= 180/pi;

PHIBKRATEMAXDEG=20; %max roll rate (deg/s)
PHIBKACCELMAXDEG=10; %max acceleration rate (deg/s^2)

% the following are all dimensionless
% rin=state(1); %input vehicle geocentric position
long=state(2); %input vehicle longitude
lat=state(3); %input vehicle latitude
Vin=state(4); %input vehicle relative velocity
gamma=state(5); %input vehicle flight path angle
psi=state(6); %input vehicle heading agnle

%conversion of inputs
% R=rin*R0*m2ft; %Vehicle geocentric position(ft)
V=Vin*Vscale*m2ft; %Vehicle relative velocity (ft/s)
D=load*g0*m2ft; %Vehicle load (ft/s^2)

%constants and gains
ATK=3437.7468; %Earth Radius (nm)
GS=32.2; %Gravity (fpss)
HS=28500; %Atm Scale height (ft)
VSAT=25766.1973; %Satellite Velocity at RE (fps)

COS15=0.965;%cos (15 deg.) (none)
GMAX=257.6;%Maximum acceleration (ft/s^2)
KLAT1=1/24;%factor in KLAT calculation (none)
LATBIAS=0.41252961;%lateral switch bias term (nm)
VQUIT=1000;%velocity to stop steering (ft/s)
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% LADPAD=0.3; %nominal vehicle L/D stated in documents
LADPAD=0.387700900791527; %Vehicle max L/D for vehicle I’m using.
% LODPAD=0.18; %final phase L/D stated in documents
LODPAD=0.21; %final phase L/D for vehicle I’m using
HEADSUP=1; %indicator for initial roll

%This section is the initialization routine (called just once)
if isempty(INRLSW)

GONEPAST=0; %indicates overshoot of target
INRLSW=1; %indicates initial roll started
NOSWITCH=0; %inhibit lateral switch

%This is section is a modification of the Apollo targeting to measure
%the great circle distance
[THETA, azimuth] = sphereping(long,lat,lon_site*d2r,lat_site*d2r);
LATANG=asin(sin(THETA)*sin(psi-azimuth));
K2ROLL=-sign(LATANG);
SELECTOR=’PREDICT3’; %SELECTOR is the general mode we’re in
GOTO=’PREDICT3’; %GOTO specifies which module to call.
LOD=LODPAD; %final phase L/D
LAD=LADPAD; %nominal L/D
KLAT=KLAT1*LAD; %lateral switch gain
LOVERDCMINR=LAD*COS15; %minimum commandable L/D
LOVERD=-LAD*sign(HEADSUP); %choose an initial bank angle

else %This is the targeting routine that is called everytime except first
GOTO=SELECTOR;
[THETA, azimuth] = sphereping(long,lat,lon_site*d2r,lat_site*d2r);
LATANG=asin(sin(THETA)*sin(psi-azimuth));

end

%TARGETING
VSQ=V^2/VSAT^2; %normalized square of velocity (none)
LEQ=(VSQ-1)*GS; %gravity plus centripetal acceleration
RDOT=V*sin(gamma); %altitude rate (ft/s)

%This is an adaptation to determine if vehicle has past landing site
if abs(azimuth-psi)>pi/2 %Landing site is passed

GONEBY=1;
% RTOGO=-THETA;

else %not yet passed
GONEBY=0;
% RTOGO=THETA;

end

runguidance=1;

while runguidance
switch(GOTO)

case (’PREDICT3’)
if V-VQUIT>0%not yet to end of guidance

%this matrix is the reference trajectory
inter=[994 -690.9 41.15 .002507 -.03446 3.7 6.10*2;...

2103 -719 60 .003582 -.05551 10.4 10.91*2;...
3922 -694 81.5 .007039 -.09034 23.6 21.64*2;...
6295 -609 93.9 .01446 -.1410 46.3 48.35*2;...
8531 -493 98.5 .02479 -.1978 75.4 93.72*2;...
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10101 -416 102.3 .03391 -.2372 99.9 141.1*2;...
14014 -352 118.7 .06139 -.3305 170.9 329.4;...
15951 -416 125.2 .07683 -.7500 210.3 465.5;...
18357 -566 120.4 .09982 -1.000 266.8 682.7;...
20829 -781 95.4 .1335 -1.000 344.3 980.5;...
23090 -927 28.1 .2175 -2.021 504.8 1385;...
23500 -820 6.4 .3046 -3.354 643.0 1508;...
35000 -820 6.4 .3046 -3.354 794.3 1508];

%this is the interpolation scheme on the reference traj.
for k=1:12 %index runs until 12 since there are 13

if inter(k,1) <=V && V<=inter(k+1,1)
break

end
end
grad=(V-inter(k,1))/(inter(k+1,1)-inter(k,1));
RDOTREFV=inter(k,2)+grad*(inter(k+1,2)-inter(k,2));
DREFRV=inter(k,3)+grad*(inter(k+1,3)-inter(k,3));
F2V=inter(k,4)+grad*(inter(k+1,4)-inter(k,4));
F1V=inter(k,5)+grad*(inter(k+1,5)-inter(k,5));
RTOGOV=inter(k,6)+grad*(inter(k+1,6)-inter(k,6));
F3V=inter(k,7)+grad*(inter(k+1,7)-inter(k,7));
%compute ranging potential
PREDANGL=RTOGOV+F2V*(RDOT-RDOTREFV)+F1V*(D-DREFRV);

if GONEPAST==0
if GONEBY==0

%DNRNGERR=PREDANGL-THETA*ATK; %a display quantity
%compute vehicle L/D to fly to target
LOVERD=LOD+4*(ATK*THETA-PREDANGL)/F3V;

else
GONEPAST=1;
%DNRNGERR=MAXRNG;
LOVERD=-LAD; %landing site passed, full lift down

end
else

LOVERD=-LAD;%landing site already passed,full lift down
end
GOTO=’GLIMITER’;

%velocity is small, command neutral bank for end of
%guidance
else

ROLLC=0;
GOTO=’310’;

end

case (’GLIMITER’)
if GMAX/2-D>0 %g-load is less than half of max, fly command

GOTO=’310’;
else

if GMAX-D>0 %g-load is between one half and max g-load
X=sqrt(2*HS*(GMAX-D)*(LEQ/GMAX+LAD)+(2*HS*GMAX/V)^2);
if RDOT+X>0 %predicted g-load will be ok, fly command

GOTO=’310’;
else %g-load in danger of being exceeded, fly lift up

’g load nearly exceeded’;
LOVERD=LAD;
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GOTO=’310’;
end

else %g-load is exceeded, fly lift up.
’g-load definitely exceeded’;
LOVERD=LAD;
GOTO=’310’;

end
end

case (’310’) %lateral logic
LOVERD1=LOVERD;
if GONEPAST==0;

%an error is noted by Bairstow here in the references above
Y=KLAT*VSQ+LATBIAS/ATK;
if abs(LOVERD)-LOVERDCMINR<0

%determine if crossrange is outside envelope
if K2ROLL*LATANG-Y>0

if NOSWITCH==1
%prohibit roll reversals if drag is large
%during upcontrol

else
K2ROLL=-K2ROLL; %reversal bank direction

end
end

else
%commanded bank angle is within 15deg of lift up,
%reduce envelope size
Y=Y/2;
if K2ROLL*LATANG>0

if K2ROLL*LATANG-Y>0
if NOSWITCH==1

%as before, no reversal if drag is large
%during upcontrol

else
K2ROLL=-K2ROLL;

end
end

else
%limits bank to within 15 deg of full lift up or
%down
LOVERD1=LOVERDCMINR*sign(LOVERD);

end
end

end
LOVERD1OVERLAD=LOVERD1/LAD; %compute actual vehicle L/D
%if L/D is bigger than one, make sure it’s between +/- 1
if abs(LOVERD1OVERLAD)-1>0

LOVERD1OVERLAD=sign(LOVERD);
end
%compute roll command for autopilot (rad)
ROLLC=K2ROLL*acos(LOVERD1OVERLAD);
NOSWITCH=0; %reset upcontrol reversal prohibition
GOTO=’380’; %end guidance cycle.

case (’380’)
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runguidance=0;
end

end

selectorout=5;
%Call "autopilot" which rate limits bank angle to reverse in the shortest
%direction
if isempty(Ncall) %first call to limiter.

Ncall=1;
flownbank=shortest_bank_limiter(ROLLC,PHIBKRATEMAXDEG,...

PHIBKACCELMAXDEG,0)*r2d;
else %future calls to bank limiter.

flownbank=shortest_bank_limiter(ROLLC,PHIBKRATEMAXDEG,...
PHIBKACCELMAXDEG,2)*r2d;

end
%outputs
varargout={flownbank,ROLLC*r2d,selectorout};
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