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Abstract 

Computational fluid dynamics (CFD) has become a widely used tool in research and engineering 

for the study of a wide variety of problems.  However, confidence in CFD solutions is still dependent 

on comparisons with experimental data.  In order for CFD to become a trusted resource, a quantitative 

measure of error must be provided for each generated solution.  Although there are several sources of 

error, the effects of the resolution and quality of the computational grid are difficult to predict à priori.  

This grid-induced error is most often attenuated by performing a grid refinement study or using 

solution adaptive grid refinement.  While these methods are effective, they can also be 

computationally expensive and even impractical for large, complex problems. 

This work presents a method for estimating the grid-induced error in CFD solutions of the 

Navier-Stokes and Euler equations using a single grid and solution or a series of increasingly finer 

grids and solutions.  The method is based on the discrete error transport equation (DETE), which is 

derived directly from the discretized PDE and provides a value of the error at every cell in the 

computational grid.  The DETE is developed for two-dimensional, laminar Navier-Stokes and Euler 

equations within a generalized unstructured finite volume scheme, such that an extension to three 

dimensions and turbulent flow would follow the same approach. 

The usefulness of the DETE depends on the accuracy with which the source term, the grid-

induced residual, can be modeled.  Three different models for the grid-induced residual were 

developed: the AME model, the PDE model, and the extrapolation model.  The AME model consists 

of the leading terms of the remainder of a simplified modified equation.  The PDE model creates a 

polynomial fit of the CFD solution and then uses the original PDE in differential form to calculate the 

residual.  Both the AME and PDE are used with a single grid and solution.  The extrapolation model 

uses a fine grid solution to calculate the grid-induced residual on the coarse grid and then extrapolates 

that residual back to the fine grid. 

The DETE and residual models were then evaluated for four flow problems: (1) steady flow past 

a circular cylinder; (2) steady, transonic flow past an airfoil; (3) unsteady flow of an isentropic vortex; 

(4) unsteady flow past a circular cylinder with vortex shedding.  Results demonstrate the fidelity of 

the DETE with each residual model as well as usefulness of the DETE as a tool for predicting the 

grid-induced error in CFD solutions.
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Chapter 1.  Overview 

Introduction 

Computational fluid dynamics (CFD) has become a prevalent tool in research and engineering 

applications for the study of a wide variety of flow problems.  Due to continuing advancements in 

computational technology and algorithm development, it is possible to use CFD to model ever larger 

(e.g., whole aircraft) and more complex (e.g., multi-physics) flows.  However, the confidence in 

computational models is still very much tied to comparison with experimental data.  In order for CFD 

to become a useful and widely accepted tool for design and analysis, a quantitative measure of error 

must be provided for each generated solution. 

The sources of error in CFD can be attributed to (1) inadequate modeling of the underlying 

physics or material properties of the problem; (2) insufficient information at the domain boundaries; 

(3) non-physical effects generated by the numerical method of solution; (4) poor-quality and/or low-

resolution computational grids.  The first three sources are well-documented for various governing 

equations, boundary conditions, and numerical schemes during the development and validation 

process.  As with any other analysis tool, the end-user has no control of these limitations but must be 

knowledgeable of them in order to properly pose the problem to be studied.  On the other hand, the 

quality and resolution of the computational grid are directly influenced by the experience of the user 

who generates it and can have large effects on the solution accuracy.  The grid must be sufficiently 

fine to represent the geometry of the problem being studied, as well as allow the numerical scheme to 

resolve the physics of the governing equations.  The geometric quality of the cells (i.e. skewness, 

aspect ratio, etc.) can also introduce error in the numerical solution.  Therefore, if we accept the 

limitations of current CFD algorithms and models, it is especially important to minimize the grid-

induced error in order to ensure the best possible solution. 

The main types of numerical error are round-off and discretization errors [1].  Round-off error is 

the result of a limited number of significant digits available in computer memory and can be 

mitigated by ensuring that the numerical scheme is stable so that round-off errors do not grow as the 

solution proceeds.  It is also common to use as many significant digits as possible (or is practical) and 

to normalize data in order to avoid creating round-off error during mathematical operations.  

Discretization error is defined as the difference between the exact solution to the original differential 

equation and the exact solution to the discretized equation for a given computational grid.  

Discretization error contains both the error due to the reformulation of the differential equation into a 

discretized form (i.e., the result of truncation error) and the grid-induced error.  The grid-induced 
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error can be described as the difference between the grid-independent solution of the discretized 

equation and the solution on any given computational grid.  While the grid-induced error will 

approach zero in the limit as the grid is continually refined, the truncation error may remain.  To 

eliminate discretization error entirely, the numerical scheme must be both stable and consistent.  In 

this case, in the limit as the grid spacing and time step approach zero, the discretization error will 

disappear.  

Traditionally, attenuating the effects of grid-induced error has been accomplished through a grid-

refinement study using r- and/or h-refinement methods.  In r-refinement methods, the nodes of the 

computational cells are moved to increase resolution where necessary, keeping the overall number of 

degrees of freedom in the problem the same.  The simplest r-refinement procedure treats the grid 

nodes as a system of linear springs, where the spring constants are often a function of the local flow 

solution and its gradients.  When using h-refinement, existing cells are sub-divided in order to 

increase resolution, which in turn increases the number of degrees of freedom in the problem.  Again, 

refinement takes place in cells which are typically “marked” as a function of local flow gradients.  

Both types of refinement may be performed globally or locally within the domain, but in either case, 

care must be taken to preserve the geometric quality of the grid.  These methods can also be 

computationally intensive and may require several solutions to be generated in order to reach a grid-

independent solution that minimizes grid-induced error.  Often, especially for large, complex 

problems, time and computational resource limits restrict the use of grid refinement, making it 

infeasible to find a grid-independent solution.  In this situation, it is especially important to have a 

measure of the solution accuracy. 

Error-Estimation Methods 

Classifications 

Several researchers have developed different approaches to estimate the error present in CFD 

solutions.  Roache [2] has reviewed and classified these methods into two categories: those based on 

multiple grids, and those based on a single grid.  Methods based on multiple grids most commonly 

employ Richardson extrapolation [3-5], which requires multiple solutions to be generated on a series 

of increasingly finer grids (at least three).  While these methods give very definitive and accurate 

information on the grid-induced error, they may become prohibitively expensive for large, complex 

problems. 
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Single-grid methods can further be subclassified as either algebraic or PDE.  Algebraic methods 

have mostly been developed in relation to solution-adaptive grid refinement [6-13], and typically only 

consider gradients of the scalar fields (e.g., the second derivative of pressure or velocity scaled by the 

cell volume).  Shih, et al. [14] and Gu, et al. [15,16] have also proposed grid quality measures that 

account for the vector and tensor nature of the flow field and link the solution to the geometry and 

size of cells in the grid. 

Single-grid PDE methods, first proposed by Babuska, et al. [17,18], recognize that errors can be 

transported by advection and diffusion from the point where they are generated in the grid. Therefore, 

a transport equation for error was needed to describe the generation and evolution of errors.  This 

error transport equation method is the subject of ongoing research and is the focus of the work 

presented here. 

The following sections will outline the most prominent contemporary error estimation methods: 

Richardson extrapolation, the adjoint variable method, and the error transport equation method.   

Richardson Extrapolation 

As an error estimation method, Richardson extrapolation [19] exploits the monotone convergence 

behavior of smooth solutions to predict a refined solution based on at least two solutions on two grids, 

one fine and one coarse.  For a problem domain represented by a grid Ωh, where h is the characteristic 

length (i.e., grid spacing), the error, eh, between the exact solution, Q, and the numerical solution, Qh, 

may be represented as [3]: 

 
2 3

1 2 3h he Q Q a h a h a h= − = + + …  (1.1) 

The coefficients a1, a2, etc. are local functions of the coordinates, but are assumed to not depend on 

the grid spacing.  For a solution in the asymptotic range, where the leading term dominates, the error 

can be expressed as 

 ( )P

h he Q Q C hα α α= − =  (1.2) 

where P is order of the discretization, α is the grid refinement factor, and C is a coefficient which may 

be a local function of the coordinates [3].  If solutions on two uniformly and successively coarser 

grids having grid spacing of 2h and 4h (α = 2 and 4) are available, it is possible to solve for the three 

unknowns in Eq. (1.2): 

 ( ) ( ) ( )2 4 2ln ln 2h h h hP Q Q Q Q= − −    (1.3) 
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 ( ) ( )22 2 1P P

ext h hQ Q Q= − −  (1.4) 

 ( ) p

ext hC Q Q h= −  (1.5) 

Here, Qext denotes the extrapolated estimate for the exact solution, Q.  From Eq. (1.4), an estimate of 

the error can be written as 

 2

2 1

h h
h P

Q Q
e

−
=

−
 (1.6) 

Although it is not strictly necessary to double the grid spacing for each successive grid, in 

practice, this method is used in order to simplify the grid generation as well as the Richardson 

extrapolation analysis.   

The Richardson extrapolation method requires that the numerical solution be within the 

asymptotic range; that is, the solution must be monotonically approaching a unique solution.  

Therefore, the computational grid must still adequately resolve the flow characteristics in order to 

provide any meaningful error estimates.  As noted previously, Richardson extrapolation provides 

accurate information about the error present in the numerical solution, but at least three solutions on 

sufficiently fine grids must be stored.  For large, complex problems, the computational resources 

required may make this approach infeasible.  If, however, the main interest of the problem is only a 

functional output of the solution, such as lift or drag, Richardson extrapolation can easily be applied 

to provide error estimation of the function using only that data.  Another limitation is the manner in 

which the information about error is provided.  The value of the error is given locally but does not 

provide any indication of how or where it is produced.   

Adjoint Variable Method 

More recently, the adjoint variable method has been presented as a sort of hybrid between 

multiple grid methods and single grid algebraic methods and has become popular as an error 

estimation and grid refinement tool.  The adjoint variable method generally seeks to quantify the 

uncertainty in a functional output of the solution, such as lift or drag, rather than local values of error 

in the flow variables.  These methods make use of the concept of duality, where an equivalent 

(adjoint) formulation of the primary flow problem is utilized.  By using the dual problem, the error in 

the functional output of interest can be related to local errors of the primary flow solution through the 

adjoint variables.  The following overview is based on a discrete approach to the adjoint variable 

method [12,20]. 
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Consider a problem domain represented by grid ΩH, where H is the characteristic length for the 

discretization (e.g. grid spacing), which is too coarse to generate a grid-independent solution, but still 

resolves most flow features.  The functional output of interest is denoted by the integral quantity f(Q) 

where Q is the exact solution to the system of PDEs that govern the flow problem.  The 

approximation of this solution and integral on ΩH is denoted by fH(QH).  In addition, there exists a 

grid Ωh which is created by uniformly subdividing each cell in ΩH; however, no solution will be 

generated on this finer grid.  Rather, the goal is to estimate the functional output on the finer grid, 

fh(Qh).  First, the functional output is expanded in a Taylor series about the coarse grid solution, 

 ( ) ( ) ( )
H
h

H Hh
h h h h h h

h Q

f
f Q f Q Q Q

Q

∂
= + − +

∂
…  (1.7) 

The quantity Qh
H
 represents the coarse grid solution mapped onto the fine grid through some 

interpolation operator: 

 
H H

h h HQ I Q≡  (1.8) 

The interpolation operator, Ih
H
, must be chosen carefully depending on the type of discretization used 

and the characteristics of the governing equations. 

The nonlinear residual operator that represents the discretization of the governing equations on 

the fine grid is written as: 

 ( ) 0h hF Q =  (1.9) 

Linearizing this residual operator about the coarse grid solution, 

 ( ) ( ) ( )
H
h

H Hh
h h h h h h

h U

F
F Q F Q Q Q

Q

∂
≈ + − +

∂
…  (1.10) 

Isolating the (Qh-Qh
H
) term in Eq. (1.10) and substituting into Eq. (1.7) provides an approximation for 

the functional output on the fine grid: 

 ( ) ( ) ( ) ( )H
h

T
H H

h h h h h h hQ
f Q f Q F Q≈ − Ψ  (1.11) 

Here, Ψh is the adjoint variable solution which satisfies the following relation, 

 H
h

H H
h h

T T

h h
h Q

h hQ Q

F f

Q Q

   ∂ ∂
   Ψ =
 ∂ ∂    

 (1.12) 
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In order to evaluate Eq. (1.11), the adjoint variable solution would need to be calculated on the fine 

grid.  To avoid this expense, the fine grid adjoint variable solution is replaced by the interpolated 

coarse grid solution: 

 ( ) ( ) ( ) ( )T
H H H

h h h h h h hf Q f Q F Q≈ − Ψ  (1.13) 

Again, the adjoint variable solution is mapped to the fine grid through an interpolation operator, ϒh
H
, 

 
H H

h h HΨ ≡ ϒ Ψ  (1.14) 

where ΨH is obtained from the solution of the adjoint equations on the coarse grid: 

 

T T

H H
H

H H

F f

Q Q

   ∂ ∂
Ψ =   ∂ ∂   

 (1.15) 

Although the actual discretized flow equations are not solved on the fine grid, it is used to 

evaluate the functional output using the interpolated flow solution and adjoint solution, so there must 

be sufficient additional computational resources available to hold the fine grid geometric information.  

Another barrier to implementing this method with existing flow solvers is the requirement to compute 

the Jacobians of the residual and functional operators, which could be quite complicated and time 

consuming depending on the structure of the code. 

In addition to providing an estimate of the error in the functional output, the adjoint variable 

solution may also be used for grid refinement.  The local value of the adjoint variables have been used 

as a refinement indicator, since relatively large values have been associated with areas with high 

sensitivity to grid spacing [12]. 

Error Transport Equation Method 

Babuska, et al. [17,18] first proposed a method for deriving equations to describe the generation 

and transport of error within a finite element framework.  This approach was later applied to finite 

difference and finite volume methods by Ferziger [21], van Straalen, et al. [22], and Zhang, et al. 

[23,24].  To illustrate, consider a differential operator, L, which represents the governing equations 

operating on the exact solution, Q: 

 ( ) 0L Q =  (1.16) 

When an approximate solution, Qh, produced on a grid with spacing h is substituted, it will produce a 

residual since it will not satisfy the original equations: 
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 ( )hL Q R=  (1.17) 

If the differential operator is linear, or linearized, then subtracting Eq. (1.17) from Eq. (1.16) yields 

the error transport equation, 

 ( )hL e R= −  (1.18) 

where the error is defined as: 

 h he Q Q≡ −  (1.19) 

Since the error is relative to the exact solution, the error transport equation can account for error 

generated by both the grid and the numerical scheme.  Roache [2] and Qin and Shih [25] note that this 

method is only valid for finite expansion methods such as finite element and spectral methods.  In 

finite volume and finite difference methods, the differential operator in Eq. (1.17) is replaced by a 

discrete operator, so subtracting Eq. (1.17) from Eq. (1.16) will not result in Eq. (1.18).  Finite 

difference and finite volume methods can be unified with finite expansion methods in integral form 

using the method of weighted residuals; however, the differential form in Eq. (1.18) can only be 

recovered if the weighting function is continuous, as in finite expansion methods. 

To address this inconsistency, Qin and Shih [25] take a slightly different approach that derives a 

set of discrete error transport equations (DETEs) directly from the discretized governing equations, 

with no regard to the original PDE.  As a result, their method cannot account for the error due to the 

numerical scheme and only provides a measure of the grid-induced error.  Instead of the differential 

operator, Eq. (1.16) can be written as a discrete operator, LD, operating on a grid with grid spacing H, 

a time step ∆tH, and a solution obtained on that grid, QH, 

 ( ), , 0D H HL Q H t∆ =  (1.20) 

If a solution from a finer grid, Qh, is substituted, it will produce a residual because the solution does 

not satisfy the discretized equations on the coarser grid: 

 ( ), , h

D h H HL Q H t R∆ =  (1.21) 

The subscript for the residual denotes that it is defined on the coarse grid, and the superscript denotes 

that it is the result of the fine grid solution.  Subtracting Eq. (1.20) from Eq. (1.21) yields the DETE, 

 ( ), , h

D H H HL e H t R∆ =  (1.22) 

where the error in this case is defined as: 
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 H h He Q Q= −  (1.23) 

In general, the error in Eq. (1.23) is only an estimate of the error for the solution QH.  If the fine grid 

solution is a grid-independent solution, the predicted error will be the total grid-induced error.  

Furthermore, if the grid-independent solution converges to the exact solution for the problem, then 

the predicted error will also include the discretization error.  In any case, the predicted error in Eq. 

(1.23) can be a useful tool in estimating the accuracy of a given solution as well as the sensitivity of 

the solution to changes in grid spacing. 

Qin and Shih [25-30] showed their method to work well for a number of one-dimensional model 

equation problems, as well as the two-dimensional Euler equations.  They also demonstrated the 

DETE derived for the Euler equations can predict the error for high Reynolds number viscous flows 

when properly modified [31], since convection dominates diffusion in these conditions. 

DETE Residual Modeling 

It is obvious from Eq. (1.22) that the error can be considered a direct function of the residual.  If a 

fine grid solution is available, it is a simple exercise to produce the residual and solve for the error 

between the coarse grid and fine grid solutions.  That fact becomes academic, however, since it would 

be simpler to difference the two solutions in order to obtain the error.  Therefore, for the DETE 

method to be useful, it would be best to model the residual using a single solution, or if multiple 

solutions are available, the residual should be defined on the finest grid. 

Zhang, et al. [23,24] based their residual model on a modified equation approach, which has been 

used to estimate the truncation error in classic CFD analysis, and applied it to hyperbolic conservation 

law equations in one dimension.  The error solutions based on this residual model were shown to be 

inaccurate in regions of large error or large gradients.  Celik and Hu [32] presented a general 

framework for calculating a similar residual, which makes use of the differencing inherent in any 

numerical scheme and does not require the modified equation to be worked out analytically – a major 

advantage since the modified equation is entirely dependent on the numerical scheme and can be 

quite complicated and tedious to derive.  This approach showed the same accuracy problems when 

tested on several different model equations, however. 

Shih and Qin [30] proposed a number of residual modeling approaches, including a variation of 

the modified equation.  They also suggest using a higher-order solution in place of the fine grid 

solution and using a series of refined grids to extrapolate the residual on the finest grid.  Most of these 

methods have not been fully tested. 
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An approach similar to the DETE, called the method of nearby problems, has recently been 

introduced by Roy, et al. [33-35].  Conceptually, the procedure of this method is to model the 

residual, then solve Eq. (1.21) for the fine grid solution using the coarse grid.  Their residual model is 

an approximation to the truncation error (the difference between the original differential equation and 

the discretized version), which is essentially an evaluation of Eq. (1.17).  First, they produce a 

continuous, multi-zone spline fit of the numerical solution.  Then, the spline fit is inserted into the 

differential form of the original PDE, which yields the residual.  Tests on a number of model equation 

problems, as well as incompressible Navier-Stokes solutions, have shown favorable results.  

However, the spline fit procedure can be problem dependent in terms of the number of zones required 

to accurately spline fit the solution and adds some additional complexity compared to other methods. 

Research Objective & Approach 

The remainder of this dissertation will focus on the research conducted on error estimation using 

a discrete error transport equation.  The goals of this work are: 

1. Develop a DETE-based method and code for estimating local values of error in CFD 

solutions of the Navier-Stokes and Euler equations.  The method must be able to provide 

an estimate of the error in a solution generated on a single grid or in the solution obtained 

on the finest grid from a series of solutions on increasingly refined grids.  This method 

must also be able to estimate the error in solutions of steady or unsteady flows. 

2. Develop and evaluate methods to model residual in the DETE. 

3. Demonstrate the usefulness of the DETE method and residual models for both steady and 

unsteady solutions of the Navier-Stokes and Euler equations. 

To this end, a DETE method will be presented in the framework of an unstructured, finite volume 

scheme, and validated for accuracy.  Without a loss of generality, the DETE will be derived for the 

two-dimensional, laminar Navier-Stokes equations; the Euler equations are obtained by simply 

eliminating the diffusion terms.  The reduced complexity of this approach was chosen to provide a 

clear demonstration of the DETE, but an extension to three dimensions and turbulent flow would 

follow naturally.  Three different residual models will then be discussed which make use of a single 

grid and solution, as well as multiple grids and solutions.  Finally, these residual models will be 

evaluated for four different test problems: (1) steady, laminar flow past a circular cylinder; (2) steady, 

transonic, inviscid flow past an airfoil; (3) unsteady, inviscid flow of a passively convected vortex; 

(4) unsteady, laminar flow past a circular cylinder with vortex shedding. 
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Chapter 2.  Navier-Stokes Finite Volume Scheme 

This chapter presents the two-dimensional laminar Navier-Stokes equations discretized in a 

second-order-accurate unstructured finite volume scheme with explicit time stepping.  Corresponding 

implementations are derived for no-slip wall, symmetry, and far field boundary conditions.  Finally, 

the formal order of accuracy for the numerical scheme will be verified. 

Navier-Stokes Equations 

The continuity, momentum, and energy equations for two-dimensional, laminar, compressible 

flow of a calorically and thermally perfect gas can be written in conservation form as 

 0
Q

t

∂
+∇ +∇ =

∂
i if g  (2.1) 

where, 

 
u

Q
v

E

ρ
ρ
ρ

 
 
 

=  
 
  

 (2.2) 
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   + +   

f  (2.3) 
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g  (2.4) 

 
4 2 4 2

, ,
3 3 3 3

xx xy yx yy

u v v u v u

x y x y y x
τ τ τ τ

∂ ∂ ∂ ∂ ∂ ∂
= − = = + = −

∂ ∂ ∂ ∂ ∂ ∂
 (2.5) 

 ( )2 21
,

1 2 Pr

pCp
E u v q Tρ

γ
= + + =

−
 (2.6) 

Here, ρ is density; p is pressure; u and v are x and y components of velocity, respectively.  The heat 

transfer variable, q, is defined by Fourier’s law using the specific heat at constant pressure, Cp, the 
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Prandtl number, Pr, and temperature, T.  For this implementation, Cp, Pr, and the ratio of specific 

heats, γ, are assumed to be constant.  The dynamic viscosity, µ, is calculated as a function of 

temperature according to Sutherland’s model. 

Finite Volume Formulation 

Integrating Eq. (2.1) over arbitrary control volume i with volume, Vi, 

 

V

V 0

i

Q
d

t

∂ +∇ +∇ = ∂ ∫ i if g  (2.7) 

Assuming the control volume does not change in time, and applying Gauss’ theorem, Eq. (2.7) 

becomes: 

 ( )1
ˆ ˆ 0

V
i

i

i S

Q
dS

t

∂
+ =

∂ ∫ f n + g ni i�  (2.8) 

 

V

1
V

V
i

i

i

Q Q d= ∫  (2.9) 

where S denotes the surface of the control volume and n is the surface normal vector.  If the surface of 

the control volume is described by Ji number of faces, the surface integral in Eq. (2.8) can be written 

as a sum of the mean flux across each face, 

 ( ), , ,

1

1
0

V

iJ

i
i j i j i j

ji

Q
S

t =

∂
+ + =

∂ ∑ f g  (2.10) 

 ( )
,

,

,

1
ˆ

i j

i j

i j S

dS
S

= ∫f f ni  (2.11) 

Eq. (2.10) is the finite volume form of the Navier-Stokes equations to be solved for each cell.  For a 

finite volume scheme, the value of the conservative variable Q will always be referenced to the cell 

average value, so for convenience, the overbar denoting the average quantity will be dropped from 

here on. 

Numerical Fluxes 

Up to this point, the finite volume equations are still exact interpretations of the original PDE.  In 

order to approximate the Riemann problem at each cell face, the inviscid fluxes are evaluated using a 

Rusanov flux formulation [36].  For first and second order accurate schemes, where Q is a constant or 
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linear function within each cell, the face mean flux is only required to be evaluated at the face center.  

Hence, the face mean inviscid flux can simply be written as: 

 ( ) ( ) ( ),

1
ˆ

2
i j L R j n R Lavg

V a Q Q = + − + −
 

f f f ni  (2.12) 

Here, the subscripts L and R denote that the term is evaluated at the left or right state of the cell face 

center respectively, as defined by the face normal (see Figure 2.1).  The quantity Vn is the velocity in 

the face normal direction, and a is the speed of sound.  These values are averaged across the cell face. 

The viscous fluxes at the face are calculated according to a method presented by Wang [37].  

First, the solution gradients are found in the cell face tangent direction and the direction connecting 

the face neighbor cell centers: 

 
1

ˆ ˆ ,
2

j i

L j R j

j

Q QdQ dQ
Q Q

dm d

−
 = ∇ ⋅ +∇ ⋅ = m m

ℓ ℓ
 (2.13) 

The solution values and gradients at the face are then approximated as 

 ( )1 ˆ ˆ,
2

y y x x

f L R f

y x x y x y y x

dQ dQ dQ dQ
m m

d dm d dmQ Q Q Q
m m m m

   − −   
= + ∇ = +   

− −   
   

i j

ℓ ℓ
ℓ ℓ

ℓ ℓ ℓ ℓ
 (2.14) 

The viscous flux is evaluated using the values from Eq. (2.14), 

 ( ),
ˆ,i j f f jQ Q= ∇g g ni  (2.15) 

For inviscid flow, the viscous fluxes are simply neglected from Eq. (2.10); the rest of the numerical 

scheme remains unchanged. 

 
Figure 2.1.  Schematic of face neighbor cells; ● – cell centers; ■ – face center 
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Reconstruction 

For second-order spatial accuracy, this scheme calculates the gradients in each cell using a linear 

least squares reconstruction which is expanded about the cell center, see Appendix B.  The 

reconstruction uses the cell average values of the conservative variables in each cell and its face 

neighbors.  For a two-dimensional problem, the value of Q can then be calculated at any point within 

the cell according to the expression, 

 ( ) ( )( , ) i i i i iQ x y Q b x x c y y= + − + −  (2.16) 

where xi and yi are the coordinates of the cell center, and the coefficients are calculated by 

 ( )( ) ( )( )
1 1

1 i iJ J

i yy j i j i xy j i j i

j j

b I Q Q x x I Q Q y y
ψ = =

 
= − − − − − 

 
∑ ∑  (2.17) 

 ( )( ) ( ) ( )
1 1

1 i iJ J

i xx j i j i xy j i j i

j j

c I Q Q y y I Q Q x x
ψ = =

 
= − − − − − 

 
∑ ∑  (2.18) 

 ( )2

1

iJ

xx j i

j

I x x
=

= −∑  (2.19) 

 ( )2

1

iJ

yy j i

j

I y y
=

= −∑  (2.20) 

 ( )( )
1

iJ

xy j i j i

j

I x x y y
=

= − −∑  (2.21) 

 
2

xx yy xyI I Iψ = −  (2.22) 

For cells which contain one or more boundary faces, the reconstruction stencil includes ghost cells 

whose cell center is located by reflecting the boundary cell center across the boundary face.  The 

conservative variable values for the ghost cells are calculated from imposed boundary conditions. 

Time Integration 

Equation (2.10) can be rewritten to define a residual operator, Γ, 

 ( )i
i

Q
Q

t

∂
= Γ

∂
 (2.23) 

 ( ) ( ) ( ) ( ) ( ) ,

1

1 1
ˆ ˆ,

V 2

iJ

i L R j n R L f f j i javg
ji

Q V a Q Q Q Q S
=

  Γ = − + − + − + ∇   
∑ f f n g ni i  (2.24) 
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For simplicity, the time derivative in Eq. (2.23) is approximated in an explicit fashion by a two-stage 

second-order-accurate Runge Kutta scheme: 

 

( )

( )

(1)

1 (1) (1)1

2

n n

i i i i

n n

i i i i i

Q Q t Q

Q Q Q t Q+

= +∆ Γ

 = + +∆ Γ 

 (2.25) 

where the superscript n denotes the known time level data, n+1 is the time level sought, and (1) is an 

intermediate time step for numerical accuracy.  The time step size is calculated as: 

 ( )
( ) ,

1

V
i

i
i J

n i jj
j

t CFL

V a S
=

∆ =
+∑

 (2.26) 

The CFL number coefficient is used to under-relax the numerical scheme to improve stability, and its 

size is adjusted depending on the characteristics of the problem.  For steady state problems, the local 

value of the time step is used, whereas for unsteady problems, the global minimum time step value is 

used for every cell. 

Boundary Conditions 

At any face which comprises part of a domain boundary, the grid convention is such that the 

normal points outward from the interior cell.  Thus, the left state values of the conservative variables, 

QL, at the wall face are found by evaluating Eq. (2.16), which in turn are used to calculate the values 

of the primitive variables, ρL,uL,vL,TL,and pL.   These values yield the right state values through the 

imposition of the boundary condition and are then used to calculate the face mean flux.  In order to 

find the cell average values for the boundary ghost cell, the boundary condition is simply applied to 

the cell average values of the interior cell. 

No-slip Wall 

The no-slip wall boundary condition is used to model walls where the normal and tangential 

velocity components at the wall are both zero.  The right state values of the velocity components are 

the negative of the left state values, which enforces a zero velocity at the interface: 

 ( ) ( ), ,R R L Lu v u v= −  (2.27) 

The pressure boundary condition is a zero normal pressure gradient, 0p n∂ ∂ = , implemented as 

 R Lp p=  (2.28) 
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The temperature boundary condition can either be modeled as an isothermal wall, 

 constantRT =  (2.29) 

 or an adiabatic wall, 0T n∂ ∂ = , 

 R LT T=  (2.30) 

Once these right state quantities are known, the right state density is calculated directly from the 

perfect gas equation, 

 ( )
R

R

gas R

p

R T
ρ =  (2.31) 

Symmetry 

The symmetry condition can be used to model either a symmetry plane or an inviscid wall.  Flow 

tangency is enforced by reflecting the left state normal component of velocity at the right state such 

that the normal component of velocity is zero at the interface, 

 
( )
( )

ˆ2

ˆ2

R L L x

R L L y

u u n n

v v n n

= −

= −

V

V

i

i
 (2.32) 

The right state values of the density and pressure are set equal to the left state values to enforce zero 

normal gradients, 

 R Lρ ρ=  (2.33) 

 R Lp p=  (2.34) 

Far Field 

The far field, or characteristic, boundary condition is used at boundaries far from any source of 

disturbance in the flow where Re 1≫ locally.  In this case, the Navier-Stokes equations collapse to 

the Euler equations.  A characteristic boundary condition neglects the influence of the face tangential 

flow and treats the boundary as a one-dimensional problem in the face normal direction. Integrating 

the compatibility equation for the one-dimensional problem along the characteristics (the eigenvalues 

of the Jacobian matrix, Q∂ ∂f ) yields the Riemann invariants: 

 1 2 3

2 2
, ,

1 1
n n

p a a
w w V w Vγρ γ γ

= = − = +
− −

 (2.35) 
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The Riemann invariants are used to set the boundary values of density, pressure, and the normal 

components of velocity.  The tangential component of velocity is conserved across the boundary face. 

Subsonic 

For subsonic inflow, two invariants are specified from free stream flow conditions.  In this case, 

w1 and w2 are specified because the face normal direction is outward (opposite the flow direction).  

The remaining invariant, w3, is specified from the left state values from the interior cell.  The right 

state primitives are then calculated by the following expressions: 

 

( )( )

( ) ( )

( ) ( )
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3 2
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2 3
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1 1
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R

R x x
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R
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∞

∞

−

= − −

= + +

= + +

 
=  
 

=

V m

V m

i

i  (2.36) 

For an outflow boundary, the normal direction is aligned with flow, so w2 is specified from free 

stream values, and w1 and w3 are calculated from interior cell values.  The equations to find the right 

state values of the primitives remain the same. 

Supersonic 

For supersonic inflow, all invariants are specified by the free stream conditions.  Thus, the right 

state conservative variables are also defined by the free stream: 

 RQ Q∞=  (2.37) 

At a supersonic outflow boundary, the invariants are all defined by the left state values.  The right 

state values are then simply extrapolated from the internal cell: 

 R LQ Q=  (2.38) 

Verification of Numerical Accuracy 

The numerical scheme outlined here has been designed to have second-order spatial accuracy.  

This section will present two test problems to verify the order of accuracy of the implemented finite 

volume scheme for both inviscid and laminar flow. 
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Isentropic Vortex 

First, the passive convection of an isentropic vortex in an inviscid flow is investigated.  The 

domain is a square [0,10] by [0,10], with a non-dimensional mean flow (u,v) = (1,1), p = ρ = T = 1, 

and characteristic boundaries on all sides.  The isentropic vortex is initiated with its center at (xc,yc) = 

(5,5) as perturbations to the mean flow given by: 

 
( ) ( )
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2
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 

−
= − −

= +

= −

 (2.39) 

The vortex strength for this problem was set to β = 5.0.  This problem is time dependant, so the 

solution was calculated up to t = 2.0 and compared with the exact solution in order to verify the order 

of accuracy.  The L1 and L∞ norms of the error in u and the associated orders of accuracy are given for 

a series of four uniformly refined grids in Table 2.1.  The second order of accuracy is verified by both 

the L1 and L∞ error for this problem. 

 

Grid Size 
 

L1 Error L1 Order 
 

L∞ Error L∞ Order 

20x20 
 

6.83E-003 ---- 
 

1.45E-001 ---- 

40x40 
 

1.52E-003 2.17 
 

3.02E-002 2.26 

80x80 
 

2.84E-004 2.42 
 

6.04E-003 2.32 

160x160 
 

5.73E-005 2.31 
 

1.18E-003 2.35 

Table 2.1.  Error norms and order of accuracy for isentropic vortex propagation problem 

 

Poiseuille Flow 

The second problem studied is laminar Poiseuille flow at ReD = 1000 with adiabatic walls.  The 

domain is set to [0,5] by [0,0.5] with a plane of symmetry at y = 0.5.  In this case, the inflow and 

outflow boundaries are set to the exact incompressible flow solution, which is described by the 

following relations: 
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( )2

constant, 0

1

2

p p

x y

p
u y Dy

xµ

∂ ∂
= =

∂ ∂

∂ = − ∂ 

 (2.40) 

where D is the representative diameter of the channel. 

Steady state solutions were calculated for a series of four uniformly refined grids and compared 

with the exact solution.  The L1 and L∞ norms of the error in u and the orders of accuracy are given in 

Table 2.2.  There is a slight loss of accuracy compared to results of the previous problem which may 

be attributed to the difficulty in achieving a converged solution to this incompressible problem with a 

compressible formulation.  However, the order of the scheme does trend toward full second order 

accuracy as the grid is refined. 

 

Grid Size   L1 Error L1 Order   L∞ Error L∞ Order 

10x10 1.90E-002 ---- 4.11E-002 ---- 

20x20 6.44E-003 1.57 1.48E-002 1.47 

40x40 1.57E-003 2.04 4.19E-003 1.82 

80x80 3.61E-004 2.12 9.26E-004 2.18 

Table 2.2.  Error norms and order of accuracy for Poiseuille flow problem 
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Chapter 3.  DETE Finite Volume Scheme 

This chapter will describe how the finite volume scheme developed for the Navier-Stokes 

equations in the previous chapter is modified to represent the DETE.  This includes the linearization 

of the residual operator in Eq. (2.23), and derivation of the boundary conditions for the error variables 

which correspond to the boundary conditions for the flow variables. 

DETE Equations 

Since the DETE is based on the discretized flow equations, the strategy for implementation and 

solution is nearly identical.  Recall from Chapter 1 that the discrete operator, LD, must be linear.  In 

this case, the residual operator defined in Eq. (2.23) contains non-linear terms in the form of the face 

mean fluxes.  These terms must be linearized in order to make the DETE, Eq. (1.22), valid. 

Linearization 

The face mean fluxes in Eq. (2.10) are linearized by Taylor series expansion with respect to a 

coarse grid solution, denoted by the subscript H.  The linearized fluxes for an arbitrary solution Q are 

approximated as: 

 ( ) ( )
H

H H

Q

Q Q Q
Q

∂
+ −
∂

f
f = fɶ  (3.1) 

 ( ) ( ) ( )
H H

H H H

Q Q

Q Q Q Q Q
Q Q

∂ ∂
= + − + ∇ −∇

∂ ∂∇
g g

g gɶ  (3.2) 

The convection, diffusion, and diffusion gradient Jacobian matrices in Eq. (3.2) are provided in 

Appendix A.  Substituting these expressions into Eq. (2.24) yields the linearized residual operator: 

 ( ) ( ) ( ) ( ) ( ) ,

1

1 1
ˆ ˆ,

V 2

i

H

J

i L R j n R L f f j i javg Qji

Q V a Q Q Q Q S
=

   
Γ = − + − + − + ∇  

   
∑ f f n g nɶ ɶɶ ɶi i  (3.3) 

The linear operator on the coarse grid can now be defined as: 

 ( ) ( ), , 0D H

Q
L Q H t Q

t

∂
∆ = −Γ =

∂
ɶ  (3.4) 

Rewriting Eq. (1.22) using the linear operator forms the DETE, 

 ( ) hH
H H

e
e R

t

∂
−Γ =

∂
ɶ  (3.5) 
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Note that the first term of the expansions in the linearized fluxes will drop out when subtracting Eq. 

(1.20) from Eq. (1.21).  The linearized residual operator is simplified in this case, and can be written 

as, 

 ( ) ( ) ( ) ( ) ( ) ,

1

1 1
ˆ ˆ,

V 2

i

H

J
e e e

i H L R j n R L f f j i javg Qji

e V a e e e e S
=

   
Γ = − + − + − + ∇  

   
∑ f f n g nɶ ɶɶ ɶi i  (3.6) 

 

where the fluxes are now defined for the error variables, denoted by the superscript e.  Substituting 

the definition of the error, Qh - QH, into Eqs. (3.1) and (3.2) yields the error fluxes: 

 

H

e

H

Q

e
Q

∂
=
∂

f
fɶ  (3.7) 

 

H H

e

H H

Q Q

e e
Q Q

∂ ∂
= + ∇
∂ ∂∇

g g
gɶ  (3.8) 

Since it is based on the discretized flow equations, the approach for solving the DETE is the same.  

The reconstruction of the error variables uses the same linear least squares method outlined 

previously.  The time step is calculated by evaluating Eq. (2.26) with the flow variables from the 

coarse grid solution. 

The DETE is solved on the coarse grid, using the coarse grid flow solution, and does not require 

any information from a more refined grid or solution, provided the residual can be adequately 

modeled.  Also, because of the similarity to the Navier-Stokes scheme, the DETE can be 

implemented very efficiently.  The main expense of the DETE formulation is the calculation of the 

flux Jacobians, although these would already be available if an implicit scheme were used for the 

flow solution. 

Boundary Conditions 

The DETE requires the boundary conditions derived for the flow problem to be modified.  This 

section describes the error boundary conditions corresponding to no-slip wall, symmetry, and far field 

boundary conditions.  The same system of left state, right state, and ghost cell values used in the flow 

problem is used for the error variables. 
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Since the flow boundary conditions are defined in terms of the flow primitive variables, the error 

boundary conditions must also be defined in terms of the error in these variables.  The error in u, v, p, 

a, and T are calculated using the coarse grid flow primitives: 

 
( )
( )

u

u

e ue
e

e

ρ ρ

ρρ

−
=

+
 (3.9) 

 
( )
( )

v

v

e ve
e

e

ρ ρ

ρρ

−
=

+
 (3.10) 

 ( ) ( ) ( )1
1

2
p E u u u v v v ve e e e u e e e v e ue veρ ρ ρ ργ ρ ρ  = − − + + + + +   

 (3.11) 

 
( )
( )

1
2

p

a

p e
e a

eρ

γ

ρ

 +
 = −

+  
 (3.12) 

 

1

p gas

T

e R Te
e

e

ρ

ρρ

− −
=

+
 (3.13) 

No-slip Wall 

At a no-slip wall, the flow velocity is specified, so the error in the velocity components must be 

zero at the interface.  Hence, the right state values of the velocity error components are reflected: 

 ( ) ( )u uR L
e e= −  (3.14) 

 ( ) ( )v vR L
e e= −  (3.15) 

The zero normal pressure gradient also results in a zero normal gradient for the error in pressure, 

 ( ) ( )p pR L
e e=  (3.16) 

Likewise, an adiabatic wall will create a zero normal gradient for the error in temperature, 

 ( ) ( )T TR L
e e=  (3.17) 

For an isothermal wall, the right state temperature is constant, so the right state error in temperature is 

simply zero.  Using these conditions, the right state values of the error in the conservative variables 

can then be evaluated, 
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 ( )
1

p gas T

R
T R

e R e
e

T e
ρ

ρ− −
=  

+  
 (3.18) 

 ( ) ( )u u u RR
e e e u eρ ρρ = + +   (3.19) 

 ( ) ( )v v v RR
e e e v eρ ρρ = + +   (3.20) 

 ( )
( ) ( ) ( )1

1 2

p R
E u u v v u vR R

e
e u e e v e e ue veρ ρ ρ ρρ ρ

γ
 = + + + + + + −

 (3.21) 

Symmetry 

The flow tangency condition requires zero velocity in the normal direction at the boundary face; 

it follows that there should also be zero error in the normal component of velocity.  The right state 

values of the error in the velocity components are calculated as: 

 ( ) ( ) 2u u u x v y xR L L
e e e n e n n = − +   (3.22) 

 ( ) ( ) 2v v u x v y yR L L
e e e n e n n = − +   (3.23) 

 

The right state errors in density and velocity are set equal to the left state values, satisfying the zero 

normal gradient imposed on the corresponding primitive variables, 

 ( ) ( )
R L

e eρ ρ=  (3.24) 

 ( ) ( )p pR L
e e=  (3.25) 

The remaining errors in the conservative variables are found by evaluating Eqs. (3.19) - (3.21). 

Far Field 

The error far field boundary conditions make use of the errors in the Riemann invariants, which 

are: 

 

( )
1 1 2 3

2 2

1 1

p a a
w w u x v y w u x v y

p e e e
e w e e n e n e e n e n

e
γ

ρ
γ γρ

+
= − = + − = + +

− −+
 (3.26) 
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Subsonic 

For subsonic inflow, the w1 and w2 invariants are specified by the free stream conditions, which 

implies the error in these invariants is zero.  The error in the w3 invariant is calculated from the left 

state values, and the right state values of the error in the primitive variables are: 

 ( ) ( ) ( )3

1
1

4
a wR L

e eγ= −  (3.27) 

 ( ) ( )3

1

2
u w xR L

e e n=  (3.28) 

 ( ) ( )3

1

2
v w yR L

e e n=  (3.29) 

 ( ) ( )
1

1 22
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1

1
aR

R

e e a a
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γ
γγ

ρ γ

−
−−

   = + −     
 (3.30) 

 ( ) ( )1p R
R

e w e
γ γ

ρρ ρ = + −  
 (3.31) 

As before, the right state errors in the conservative variables are then constructed by evaluating Eqs. 

(3.19) - (3.21).  At an outflow boundary, the w2 invariant is specified by the free stream conditions, so 

it follows that ew2 is zero.  The w1 and w3 invariants and their errors are calculated from the left state 

values, and the right state errors in the primitive variables are: 

 ( ) ( )3

1

2
u w x u x v y xR L

e e n e m e m m= + +  (3.32) 

 ( ) ( )3

1

2
v w y u x v y yR L

e e n e m e m m= + +  (3.33) 

 ( ) ( )
( )

1
12 1

1

1 1 1

a R R

R
w

a e a
e

w e w

γ γ

ρ γ γ

− − +  
 = −  +    

 (3.34) 

 ( ) ( )( )1 1 1p w RRR
e w e e w

γ γ
ρρ ρ= + + −  (3.35) 

Supersonic 

At supersonic boundaries, the invariants are always specified by upstream values.  Therefore, at 

an inflow boundary, where the right state values are defined by the free stream conditions, the right 
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state error in the conservative variables is zero.  The outflow boundary simply extrapolates the error 

in the conservative variables from the interior boundary cell, 

 R Le e=  (3.36) 
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Chapter 4.  Validation of DETE Solutions 

Although the accuracy of the numerical scheme has been verified, the ability of the DETE to 

solve for the error, H h He Q Q= − , using the exact residual, 
h

HR , has not yet been demonstrated.  This 

chapter presents four test problems which will be used to evaluate the accuracy of the DETE 

solutions.  These problems will be tested with multiple grids with several levels of refinement as well 

as manufactured grid defects in order to illustrate the robustness of the method. 

Steady Flow 

Circular Cylinder 

The problem of steady laminar flow past a circular cylinder (hereafter referred to as steady 

cylinder) is studied here.  The flow has ReD = 40, T∞ = 300 K, and M∞ = 0.3 in order to achieve better 

convergence with the given compressible finite volume scheme.  Adiabatic, no-slip wall conditions 

are used at the cylinder surface, and characteristic boundaries are used at the far field.  These flow 

conditions produce a stable recirculation zone which extends approximately two diameters 

downstream of the cylinder, as shown in Figure 4.1.  All grids are circular, with the far field located 

fifteen cylinder diameters from the cylinder surface.  Two cases are presented: (1) a series of 

uniformly refined grids and (2) a single grid with and without a localized defect. 

  

Figure 4.2.  Grid 1 for steady cylinder 

Case 1 

Figure 4.1.  Streamlines of steady laminar 

flow past a circular cylinder, ReD = 40 
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Case 1 uses four grids, which are successively and uniformly refined from the base grid, Grid 1, 

shown in Figure 4.2.  Grids 1 through 4 contain 3,250, 13,000, 52,000, and 208,000 cells respectively.  

The error on Grid 1 was solved using the DETE with three different residuals resulting from the flow 

solutions on Grids 2 through 4.  A comparison of these DETE solutions with the actual error (found 

by subtracting the two flow solutions) for the x-momentum conserved variable is shown in Figure 

4.3.  The contour lines of each DETE solution lie on top of the actual error contours, which indicates 

the DETE has accurately solved for the error between the two given flow solutions, even where there 

are multiple levels of refinement between the grids.  It should be noted, however, the fine grid 

solutions have been integrated over the fine grid cells contained in each coarse grid cell in order to be 

represented on the coarse grid.  This procedure produces the correct cell average value on the coarse 

grid but may cause a loss of detail in the fine grid solution.  

For Case 2, Grid 2 from Case 1 is locally coarsened to create a grid defect downstream of the 

cylinder in an area that interacts with the recirculation zone.  This grid is labeled as Grid 2D in Figure 

4.4.  The DETE is solved on Grid 2D, using the flow solution on Grid 2D with a residual resulting 

from the solution on Grid 2.  The DETE solution is compared with the actual error in the x-

momentum in Figure 4.5.  Again, the DETE solution agrees well with the actual error, even though 

the error solution is generated on an imperfect grid.  Since the only difference between the two grids 

is the localized defect, this case also demonstrates how the error is generated at the defect and is then 

transported by the flow through the DETE.  

Figure 4.3.  Comparison of DETE solution and actual error of x-momentum (kg/m-s) for steady 

cylinder Case 1 

(a) Grid 2 - Grid 1 (b) Grid 3 - Grid 1 (c) Grid 4 - Grid 1 
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Transonic Airfoil 

The next problem is steady, transonic, inviscid flow past a symmetric NACA0012 airfoil 

(referred to as transonic airfoil).  The free stream flow conditions are M∞ = 0.85 and α = 1̊, which 

results in a strong shock forming above the airfoil near the 80% chord position, and a weaker shock 

below near the 60% chord position, as illustrated by the contours of pressure in Figure 4.6.  The 

airfoil surface is represented by a symmetry condition; the far field, located fifteen chord lengths from 

the airfoil, uses characteristic boundary conditions.  Again, a series of four grids are used which are 

uniformly refined from the base grid, Grid 1, shown in Figure 4.7.  Grids 1 through 4 contain 1,800, 

7,200, 28,800, and 115,200 cells respectively.  The DETE solutions on Grid 1 which were generated 

by using residuals resulting from flow solutions on Grids 2 through 4 are compared with the actual 

error of x-momentum in Figure 4.8.  In spite of the strong gradients surrounding the shock, the DETE 

solution matches the actual error very well. 

Figure 4.5.  Comparison of DETE solution and 

actual error of x-momentum (kg/m-s) for steady 

cylinder Case 2 

Figure 4.4.  Grid 2D for steady cylinder Case 2 
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Unsteady Flow 

Solving the DETE for unsteady flow requires that the residual be not only spatially accurate, but 

temporally accurate as well.  In order to validate the DETE for this type of problem, the coarse grid 

and fine grid solutions are generated simultaneously using the smallest time step calculated on either 

grid.  At each step in the time integration, the value of the residual is calculated to update the DETE 

solution on the coarse grid. 

(a)  Grid 2 - Grid 1 (b)  Grid 3 - Grid 1 (c)  Grid 4 - Grid 1 

Figure 4.8.  Comparison of DETE solutions and actual error of x-momentum (kg/m-s) for transonic 

airfoil problem 

Figure 4.7.  Grid 1 for transonic airfoil 

problem 

Figure 4.6.  Contours of pressure for 

transonic airfoil at α = 1̊ 
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Isentropic Vortex 

This problem is a slightly modified version of the passive convection of an isentropic vortex 

which was presented in Chapter 2 to verify the order of accuracy of the numerical scheme.  In this 

case, the domain is rectangular with dimensions [0,40] by [0,20].  The boundary conditions are far 

field on all sides.  The three grids used for this problem contain 3,200, 12,800, and 51,200 equally 

spaced, square cells.  The same vortex strength is used, initially centered at (10,10), but the mean 

flow is now defined as (u,v) = (1,0) and p = ρ = T = 1 so that the vortex propagation is aligned with 

the grid.  The DETE and flow solutions were integrated up to t = 20; the DETE solutions are 

compared with the actual error in x-momentum at t = 5.2, 10, 15.2, and 20 in Figure 4.9.  As before, 

the contours of the DETE solution overlap the actual error.  Using the exact residual, the DETE is 

able to simulate the production and transport of error as the coarse grid flow solution is slowly 

degraded by numerical diffusion. 

 

(a)  Grid 2 - Grid 1 

(b)  Grid 3 - Grid 1 

t = 5.2 t = 10 t = 15.2 t = 20 

Figure 4.9.  Comparison of DETE solutions and actual error of x-momentum (kg/m-s) for 

isentropic vortex problem 
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Unsteady Circular Cylinder 

The final problem simulates ReD = 300 flow past a circular cylinder, which creates periodic 

vortex shedding (i.e., a Von Karman vortex street), see Figure 4.10. This problem will be denoted as 

unsteady cylinder.  The cylinder is represented by a no-slip, adiabatic wall; the far field is located 

fifteen diameters from the cylinder surface, and uses characteristic boundary conditions.  Three grids 

are used for this problem which contain a mix of quadrilateral and triangular cells clustered about the 

cylinder and wake region to capture the vortex shedding, although only Grid 1 and Grid 2 solutions 

are considered for this demonstration.  Grid 1, shown in Figure 4.11, contains 5,466 cells; Grid 2 and 

3 are uniformly refined from Grid 1, and contain 21,864 and 87,456 cells respectively.  The mean 

flow velocity is in the x-direction, but an initial perturbation of 5% of the mean flow velocity is 

imposed in the y-direction in order to instigate the unsteady, periodic shedding.  The flow solutions 

and DETE solutions were run from t = 0 to t = 2. 

The DETE solutions at t = 0.5, 1, 1.5, and 2 are shown in Figure 4.12 and compared with the 

actual error of x-momentum.  Again, the contours of the DETE solutions overlap the actual error 

showing the high level of accuracy of the DETE.  It is also instructive in this case to examine the time 

history of the lift coefficient for the cylinder.  DETE solutions are added to the coarse grid flow 

solution in order to create a “corrected” solution, which, if accurate, should match the fine grid 

solution.  The flow solutions on the coarse and fine grids, Grid 1 and Grid 2 respectively, are 

compared with the Grid 1 solution plus the DETE solution on Grid 1 in Figure 4.13.  In addition to 

the magnitude of the lift coefficient, there is a noticeable difference in the frequency of the shedding 

between flow solutions on Grid 1 and Grid 2.  The Grid 1 plus DETE solution matches the Grid 2 

solution very well, which indicates that the exact residual accounts for this change in the time-

dependent nature of the problem. 
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Figure 4.11.  Grid 1 for unsteady cylinder problem 

Figure 4.10.  Contours of vorticity for ReD = 300 flow past a circular cylinder 
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t = 0.5 

t = 1 

t = 1.5 

t = 2 

Figure 4.12.  Comparison of DETE solution on Grid 1 and actual error of x-momentum 

(kg/m-s) relative to Grid 2 flow solution for unsteady cylinder problem 
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Figure 4.13.  Comparison of time history of lift coefficient for unsteady 

cylinder problem 
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Chapter 5.  Residual Modeling 

As noted before, the residual calculated by using a fine grid solution interpolated to the coarse 

grid is not terribly useful since the error could be obtained by simply differencing the two solutions.  

Therefore, it is necessary to have a residual model to predict the value of the residual on the finest 

grid to be used for analysis.  Three different residual models will be presented in this chapter; two 

based on a single grid and solution, one based on multiple grids and solutions. 

First, it may useful to explore the characteristics of residual and how it corresponds to the error.  

To do so, we will make use of the steady cylinder problem presented in the previous chapter.  

Consider how the location of the error correlates to the location of the residual.  Conceptually, the 

DETE describes how error is generated through the residual.  If the residual is zero everywhere in the 

domain, the error must also be zero.  Therefore, the location of non-zero values of the residual should 

correspond to sources of error. 

The steady cylinder case with the intentional grid defect illustrates this concept quite well.  If the 

uniform grid solution is considered a grid independent solution, then the error on the grid with the 

defect should originate in the area of the defect itself.  The grid-induced residual of the x-momentum 

conserved variable is shown in Figure 5.1, overlaid by the grid defect cells for reference.  The contour 

level range of this plot has been restricted to 10% of the minimum and maximum values to highlight 

the areas of the greatest residual.  Note that the residual is almost entirely contained within the defect 

cells and their immediate neighbors.  Examining the error in x-momentum overlaid 

Figure 5.2.  Error of x-momentum for grid 

with localized defect 

Figure 5.1.  Residual of x-momentum for grid 

with localized defect 
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with the defect cells in Figure 5.2, it is clear that the error is produced at the defect (the area with the 

largest residual values), and is then transported by the flow.  There are areas downstream of the 

defect, and within the recirculation zone, where error exists, but the values of the residual are quite 

small.  This clearly shows that the location of error does not necessarily correspond to where it is 

generated.  

Identifying the source of error is also a useful idea for adaptive grid refinement.  By adapting to 

the location of error, the grid may be refined unnecessarily in areas that do not produce error.  

Adapting to areas of large values of the residual, on the other hand, could be used to refine the grid 

more precisely, using fewer cells than traditional gradient-based adaption schemes.  

 

Figure 5.4.  Trend of residual magnitude vs. absolute value of error 

gradient for steady cylinder problem with localized grid defect 

(a)  Grid 2 - Grid 1 (b)  Grid 3 - Grid 2 (c)  Grid 4 - Grid 3 

Figure 5.3.  Trends of residual magnitude vs. absolute value of error gradient for steady 

cylinder problem with uniformly refined grids 
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Another way to examine the idea of error generation is to compare the magnitude of the gradient 

of the error with the magnitude of the residual.  Figure 5.3 plots the absolute values of the residual 

and error gradients of x-momentum for the uniformly refined steady cylinder case; the residuals for 

Grids 1 through 3 were obtained using the solution on the next most refined grid.  Figure 5.4 presents 

the same information for the steady cylinder case with the localized grid defect.  There is generally a 

linear relationship between the magnitudes of the error gradient and the residual.  This behavior 

suggests the residual acts as a point source/sink for the error, injecting error into the solution and 

allowing it to be convected and diffused away. 

As the grid is continually refined and the solution approaches grid independence, the difference 

between solutions becomes increasingly small.  Therefore, the residual from each successively 

refined solution should also become small, at least in the global sense.  Returning to the method of 

Richardson extrapolation, if a solution is convergent, then estimates of the grid independent solution 

(GI) using solutions on grids with spacing h, 2h, and 4h can be written as: 

 

( )
( )2 2 4

1

4 1
2

GI h h hP
Q Q Q Q

h
h

+ −
−

≃  (5.1) 

 

( )
( )2

1

2 1
GI h h hP

Q Q Q Q
h

h

+ −
−

≃  (5.2) 

Combining Eqs. (5.1) and (5.2) yields an expression for the rate of convergence and the order of the 

numerical scheme, P, 
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h h

h h

Q Q

Q Q
P

 −
 − =  (5.3) 

Equation (5.3) is normally used to verify the order of a numerical scheme, but if it is rewritten in 

terms of the error estimate from Eq. (1.23) and grid spacing, 
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e
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P
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 
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then rearranged, 
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h
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an expression for the behavior of the error as a function of grid spacing is obtained.  If these are 

global measures of error, and the numerical scheme is globally second order accurate, then the error 

should be a nearly parabolic function of the grid spacing (i.e., P = 2).  Since the error is a direct 

function of the residual, it follows that the residual should behave in the same way. 

The L1 norms of the residuals (resulting from a solution on the next finest grid) of each 

conserved variable, normalized by the coarsest grid values, are plotted on a log-log scale as a function 

of normalized grid spacing for the uniformly refined steady cylinder problem in Figure 5.5.  The 

residuals show a trend approaching zero, but the slopes of the residuals are somewhere between one 

and two, which implies that the error relative to a single level of refinement is not converging at the 

expected second-order rate for this numerical scheme. 

If the finest grid solution is considered to be grid-independent, then the error and the residual on 

each coarser grid relative to the finest grid solution should approach zero as the grid spacing 

approaches that of the finest grid.  The L1 norms of the residuals relative to the finest grid solution for 

the uniformly refined steady cylinder problem are shown in Figure 5.6.  As before, the residuals in 

this case do not quite converge at a second-order rate, but the slopes at h/h0 = 0.5 are much closer to 

two. 

The fact that the L1 norms of the residuals in Figure 5.5 and Figure 5.6 do not converge at the 

expected second-order rate is not entirely unexpected.  It was shown during the validation of the finite 

Figure 5.6.  Residual relative to finest grid 

vs. grid spacing 
Figure 5.5.  Residual relative to a single level 

of refinement vs. grid spacing 
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volume scheme that the rate of convergence could be problem dependent, and was not even constant 

on every grid used in each test problem.  However, the residuals for the steady cylinder problem 

exhibit rates of convergence somewhere between first-order and second-order, which generally agrees 

with the rate of convergence observed for the laminar Poiseuille flow problem. 

Approximate Modified Equation (AME) Model 

A natural analogue for the residual may be an expression to calculate the truncation error (TE) – 

the difference between the original PDE and the discretized version.  By expanding the discretized 

PDE in terms of Taylor series, one can recover the differential form of the original PDE plus some 

extra terms which are collected and called the truncation error.  In simplistic notation, the PDE can be 

written as the finite volume equation (FVE) plus the truncation error, 

 PDE FVE TE= +  (5.6) 

A solution of the finite volume equation which approximates the PDE is then 

 FVE TE= −  (5.7) 

If Eq.(5.7) is compared with the linear operator on a coarse grid with a fine grid solution (i.e., an 

approximation of the linear operator on the fine grid with the fine grid solution), 

 ( ), , h

D h H HL Q H t R∆ =  (5.8) 

there is an obvious relationship between the terms of the truncation error and the value of the residual. 

The classic approach for determining the truncation error for a given numerical scheme is the 

modified equation.  While the modified equation can readily be derived for simple model equations 

and difference schemes, the process can be quite complicated and tedious for most PDEs and 

numerical schemes of interest.  Therefore, the AME model presented here uses an approximate form 

of the modified equation, similar to the approach used by Zhang, et al. [23].  It should be noted that 

this analysis assumes equal grid spacing and regular quadrilateral or equilateral triangular cells.  The 

following derivation will not hold for a completely general unstructured grid.  Starting with Eq. (2.10)

, and writing the time derivative as a forward Euler difference for simplicity, 
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If the n+1 time level solution is written as a Taylor series expanded about the n time level and then 

substituted, the original differential time derivative is recovered with higher order terms: 
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t t =

∂ ∆ ∂
 + = − + + ∆ ∂ ∂ ∑ f g  (5.10) 

The left and right state fluxes in the Rusanov flux formulation are expanded in terms of cell average 

values, 

 ( ) ( )2 2,L i j i R j j jO O′= + ⋅∇ + = + ⋅∇ +f f f f f fℓ ℓℓ ℓℓ ℓℓ ℓℓ ℓ  (5.11) 

and, using the assumption of a smooth solution, the face neighbor cell average flux is approximated 

as: 

 ( ) ( )2

j i j j i O′+ − ⋅∇ +f f f≃ ℓℓ ℓℓ ℓℓ ℓℓ ℓ  (5.12) 

The terms ℓ and ℓ’ are vectors connecting the cell centers and the face center, as defined in Figure 5.7.  

The convective flux can now be written as: 

 ( ) ( )( )2

,
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ˆ2 2

2
i j i j i j j i j jO ϕ ′+ ⋅∇ + ⋅ ∇ −∇ + ⋅ −

 
f f f f f n≃ ℓℓ ℓℓ ℓℓ ℓℓ ℓ  (5.13) 

where φj is the spectral radius term of the Rusanov flux evaluated at the cell face.  A similar process 

is used to expand the diffusive terms, and after carrying out the summation on the ℓj terms, the 

gradients of the fluxes reappear, 
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For this explicit time integration scheme, the second order time derivative term will be small 

compared to the summation on the RHS, so it is neglected.  Subtracting Eq. (5.14) from the original 

PDE yields the approximate modified equation.  The residual based on the AME model is then 

defined as: 

 ( ) ( )( ) ,

1

1
ˆ

2V

iJ
AME

j j j j i i j j i j

ji

R Sϕ
=

 ′ ′= ⋅ ∇ +∇ − ⋅ ∇ +∇ ⋅ − ∑ f g f g nℓ ℓℓ ℓℓ ℓℓ ℓ  (5.15) 

It should be noted that this residual model has been derived for this numerical scheme only.  Other 

schemes that may use different forms of the convective flux, for example, will produce a different 

expression.  



40 

 

 

PDE Model 

For error estimation using the method of nearby problems (which is functionally similar to the 

DETE), Roy et al. [33-35] advocate a residual model which evaluates the original governing PDE 

with a continuous spline fit of the numerical solution. The spline fit requires that the domain be 

divided into smaller sub-domains in order to properly capture all flow features.  Depending on the 

characteristics of the flow, the number of sub-domains could be quite large, and must be carefully 

positioned to avoid discontinuities.  In this model, we propose using a small, local stencil of face and 

node neighbor cells to generate a least squares polynomial fit of cell average data for each cell in the 

domain.  The polynomial fits of neighboring cells are not required to be continuous.   

In general, any order polynomial may be used, but this investigation is limited to first, second, 

and third degree polynomials to keep the stencil small (see Figure 5.8).  For instance, a first degree 

polynomial requires at least three cells in the stencil, but a third degree polynomial requires at least 

ten cells.  In order to get a system that is not poorly conditioned, it is better to use more than the 

minimum number of cells.  Thus, the size of the stencil can grow quickly, which is undesirable in 

areas of large gradients and near discontinuities.  Details of the least squares polynomial fit procedure 

can be found in Appendix B.  To find the cell average residual, the governing PDE is integrated over 

each cell using the polynomial fit of the solution data by way of three point Gauss quadrature; any 

non-zero integral yields a value for the residual. 

Figure 5.7.  Schematic of face neighbor geometry for AME Model; ● – cell centers; 

■ – face center 
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While the PDE model uses a potentially expensive least squares fit of the solution data, it does 

not require any analytical derivations which are dependent on the numerical scheme.  Therefore, the 

PDE model should be much easier to implement than the AME model, especially for numerical 

schemes which are more complicated than the one used here.  

Extrapolation Model 

Another possible technique for modeling the residual is to extrapolate the exact residual from the 

coarse grid to the fine grid.  From the analysis of the residual based on Richardson extrapolation 

presented earlier, the residual can be written as a function of the grid spacing if a problem is 

convergent.  The fine grid residual extrapolated from the coarse grid is written as: 
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 (5.16) 

Of course, as with Richardson extrapolation, the rate of convergence, P, which should be used with 

this expression is actually a local value and is problem dependent.  However, to calculate P locally 

would require at least three grids and solutions, and this method would provide no advantage over 

using Richardson extrapolation.  Therefore, two assumptions are made: (1) the solution is globally 

and locally convergent everywhere; (2) the rate of convergence for any problem is the formal 

theoretical order of accuracy for the numerical scheme.  The first assumption will not hold for every 

cell in the domain; in areas where the solution is particularly sensitive to grid spacing, the residual 

(a)  First degree polynomial 

stencil 

(b)  Second degree polynomial 

stencil 

Figure 5.8.  Computational stencils for least square polynomial fit 
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may actually increase as the grid is refined, even when the solution is globally convergent.  The 

second assumption will also not hold for every problem studied.  As seen in the verification of the 

numerical scheme in Chapter 2, and the rate of convergence plots for the residual presented earlier, 

the actual rate of convergence is quite problem dependent.  If the problem does not stray too far from 

these assumptions though, the added accuracy of using the actual grid-induced residual and solving 

the DETE on the fine grid may prove useful. 
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Chapter 6.  Evaluation of Residual Models 

The accuracy of the residual models will be evaluated for the same set of test problems used to 

validate the DETE solution accuracy in Chapter 4.  Results for this wide array of flow conditions will 

highlight strengths and weaknesses in each model. 

The PDE and extrapolation models have some variability in their implementation.  The PDE 

model may use any degree polynomial in the least squares fit; therefore, first, second, and third 

degree polynomials will be tested to assess which of those works best.  The DETE solutions with 

each degree polynomial will be denoted as PDE_1, PDE_2, and PDE_3 respectively. The 

extrapolation model relies on the global order of accuracy to scale the residual after it is interpolated 

from the coarse grid to the fine grid.  It has been shown that the current numerical scheme does not 

exhibit formal second order accuracy for every problem studied, so the extrapolation model will be 

evaluated using both first-order and second-order convergence rates (i.e., P = 1 and P = 2).  The 

DETE solutions using the extrapolation model will be denoted as E_1 and E_2 for the different 

convergence rates.  Correspondingly, DETE solutions using the AME model will be denoted as AME. 

Steady Flow 

Circular Cylinder 

The solutions of the DETE with the AME residual model on Grids 1 through 3 are presented in 

Figure 6.1(a-c), and are compared with the actual error in x-momentum on each grid relative to a 

single level of refinement in Figure 6.1(d-f).  If the AME model contained all terms of the truncation 

error, the DETE solutions should compare well with the error relative to the finest grid.  However, 

because of the simplifications made during the derivation of the AME, these results show that the 

DETE solutions with the AME model generally under-predict the error relative to a single level of 

refinement.  The DETE solutions in Figure 6.1 show better agreement as the grid is refined, but on all 

grids, the distribution pattern and sign of the error are predicted well. 

In order to investigate how well the DETE solution with the AME residual model predicts the 

error in the boundary layer around the cylinder, it is useful to compare the coarse and fine flow 

solutions with the coarse grid solution “corrected” by the DETE solution.  Profiles of the pressure 

coefficient on the cylinder surface are presented in Figure 6.2, Figure 6.3, and Figure 6.4.  The DETE 

solutions generally agree well with the fine grid flow solutions, although the DETE solution is not as 

accurate near the separated flow region found near 0.25 ≤ X/D ≤ 0.5.  As the grid is refined, the 
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difference between the flow solutions becomes smaller as expected and the DETE solutions with the 

AME residual model predict this trend. 

The DETE solutions using the PDE residual model with each polynomial fit on Grids 1 through 3 

are plotted in Figure 6.5(a-i), and are compared with the actual error in x-momentum in Figure 6.5(j-

l).  It is immediately apparent that the PDE_1 results greatly over-estimate the magnitude of the error 

and do not agree with the actual error.  There is less difference between the PDE_2 and PDE_3 

results, although the PDE_3 results may be slightly more accurate.  As in the AME results, the results 

using the PDE model seem to be more accurate as the grid is refined.  Examining the pressure 

coefficient plots for the PDE models in Figure 6.6, Figure 6.7, and Figure 6.8, the PDE_1 results are 

very poor, but the PDE_2 and PDE_3 results almost match the fine grid solutions exactly.  Even in 

the separated flow region where the AME model was not as accurate, the higher degree polynomial 

PDE models exhibit excellent performance.  

The DETE solutions using the extrapolation residual model on Grids 2 and 3 are given in Figure 

6.9(a-d), and are compared again with the actual error in x-momentum in Figure 6.9(e,f).  The E_1 

results appear to over-estimate the magnitude of the error, but the general distribution of error is well 

represented.  This would seem to indicate that the residual is not being scaled correctly for this 

problem.  The E_2 results on the other hand, agree much better with the actual error.  Figure 6.10 and 

Figure 6.11 show the pressure coefficient plots for the extrapolation models.  Both the E_1 and E_2 

results over-predict the magnitude of the error in the boundary layer region, although the E_2 results 

are slightly better. 

To directly compare the residual models for this problem, several profiles of the error in x-

momentum in the wake region downstream of the cylinder are plotted for the best performers from 

each model.  The PDE_1 and E_1 results are omitted since they compared poorly with actual error. 

Figure 6.12 shows the error along the line Y/D = 0 on Grids 1through 3.  On each grid, the single grid 

AME and PDE residual models agree with the actual error best in the region up to X/D = 5, but the 

extrapolation model is more accurate further downstream.  Figure 6.13 presents the error along 

several transverse cuts through the wake region for Grids 1 through 3.  These plots show the same 

general behavior; the extrapolation model tends to be more accurate further downstream, and the 

AME and PDE models perform better in the region closer to the cylinder.  This indicates that the 

AME and PDE residual models are sensitive to grid spacing, much like the actual flow solution, since 

the grid used in this problem becomes coarser further downstream.  The grid spacing is built into both 

of these models: the AME model uses the distance from the cell center to the face center in the Taylor 
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series expansion of the fluxes; the PDE model uses a least squares polynomial fit where the data is 

weighted by the grid spacing.  In general, the AME and PDE models become more accurate further 

downstream as the grid is refined. 

 

(a) Grid 1 AME (b) Grid 2 AME (c) Grid 3 AME 

(d) Grid 2 – Grid 1 (e) Grid 3 – Grid 2 (f) Grid 4 – Grid 3 

Figure 6.1.  DETE solutions using AME residual model and actual error in x-momentum 

(kg/m-s) for steady cylinder problem 
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(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.3.  Pressure coefficient on surface of cylinder, DETE results on Grid 2 using AME 

residual model 

(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.2.  Pressure coefficient on surface of cylinder, DETE results on Grid 1 using AME 

residual model 
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(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.4.  Pressure coefficient on surface of cylinder, DETE results on Grid 3 using AME 

residual model 
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(a) Grid 1 PDE_1 (b) Grid 2 PDE_1 (c) Grid 3 PDE_1 

(d) Grid 1 PDE_2 (e) Grid 2 PDE_2 (f) Grid 3 PDE_3 

(g) Grid 1 PDE_3 (h) Grid 2 PDE_3 (i) Grid 3 PDE_3 

(j) Grid 2 - Grid 1 (k) Grid 3 - Grid 2 (l) Grid 4 - Grid 3 

Figure 6.5.  DETE solutions using PDE residual model and actual error in x-momentum (kg/m-s) for 

steady cylinder problem 
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(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.7.  Pressure coefficient on surface of cylinder, DETE results on Grid 2 using PDE 

residual model 

(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.6. Pressure coefficient on surface of cylinder, DETE results on Grid 1 using PDE 

residual model 
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(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.8.  Pressure coefficient on surface of cylinder, DETE results on Grid 3 using PDE 

residual model 
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(a) Grid 2 E_1 (b) Grid 3 E_1 

(c) Grid 2 E_2 (d) Grid 3 E_2 

(e) Grid 3 - Grid 2 (f) Grid 4 - Grid 3 

Figure 6.9.  DETE solutions using extrapolation residual model and actual error in x-momentum 

(kg/m-s) for steady cylinder problem 
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(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.11.  Pressure coefficient on surface of cylinder, DETE results on Grid 3 using 

extrapolation residual model 

(a) Entire surface (b) Enlargement of 0 ≤ X/D ≤ 0.5 

Figure 6.10.  Pressure coefficient on surface of cylinder, DETE results on Grid 2 using 

extrapolation residual model 
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(a) Grid 1 

(b) Grid 2 

(c) Grid 3 

Figure 6.12.  Comparison of DETE solutions and actual error in x-momentum (kg/m-s) with 

various residual models along Y/D = 0 
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(a) Grid 1 

(b) Grid 2 

(c) Grid 3 

Figure 6.13.  Comparison of DETE solutions and actual error in x-momentum (kg/m-s) with 

various residual models along transverse cuts through wake region 
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Transonic Airfoil 

The solutions of the DETE using the AME model on Grids 1 through 3 are presented in Figure 

6.14(a-c), and compared with the actual error in x-momentum for the transonic airfoil problem in 

Figure 6.14(d-f).  As in the steady cylinder problem, the plotted contours of the DETE solution tend 

to underestimate the magnitude of the error.  However, the location and general distribution of error 

agree with the actual error results.  Plots of the pressure coefficient for the DETE solution are 

compared with the coarse and fine grid solutions in Figure 6.17, Figure 6.16, and Figure 6.15.  On 

each grid, the largest error is found near the shocks on the top and bottom of the airfoil, as would be 

expected, and the locations of the shocks in the DETE solutions agree well with the fine grid 

solutions.  The DETE solutions on each grid also have a greater slope than the coarse grid flow 

solutions at the shocks, which is indicative of reducing the numerical dissipation of the shock due to 

grid spacing.  

DETE solutions using the PDE residual model with each polynomial fit on Grids 1 through 3 are 

given in Figure 6.18(a-i) and are compared with the actual error in x-momentum in Figure 6.18(j-l).  

At first glance, the DETE solutions from all three PDE residual models appear to over-predict the 

error near the shocks and/or the leading edge of the airfoil, especially on Grids 2 and 3.  Comparing 

the pressure coefficient profiles on Grids 1 through 3 in Figure 6.19, Figure 6.20, and Figure 6.21, 

this observation is reinforced.  The results on Grid 1 are comparable with the DETE solutions using 

the AME model, but the Grid 2 and Grid 3 DETE solutions exhibit large oscillations on both sides of 

the shocks, and the location of the shocks themselves is incorrect.  As noted in the discussion of the 

PDE residual model, using a stencil which includes cells near a discontinuity for the least square 

polynomial fit can produce poor results.  This is the most likely culprit for the inaccuracy of the PDE 

model results in this case. 

The DETE solutions using the extrapolation model on Grids 2 and 3 are shown in Figure 6.22(a-

d), and are compared with the actual error in x-momentum in Figure 6.22(e,f).  The E_1 results look 

similar to the PDE model results for both grids, but the E_2 results appear to have reasonable 

agreement with the actual error on Grid 3.  Examining the pressure coefficient profiles in Figure 6.23 

and Figure 6.24, neither extrapolation model compares well with the flow solutions on Grid 2.  On 

Grid 3 however, both extrapolation models predict the location of the shock well. 

The DETE solutions using all residual models appear to have larger oscillations before and after 

the shock than the flow solutions.  The oscillations in the flow solutions are known to be a numerical 

artifact and are usually eliminated by using a limiting procedure during the reconstruction of the cell 
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average data; no limiter is used in the current numerical scheme.  Since the DETE uses the same 

reconstruction process as the flow solution, there may be oscillations in the DETE solution that are 

compounded by those found in the flow solution.  It is not immediately known if adding a limiter 

would reduce the oscillations in both the flow and DETE solutions, or if some additional oscillation 

may be a result of the residual models themselves. 

(a) Grid 1 AME (b) Grid 2 AME (c) Grid 3 AME 

(d) Grid 2 – Grid 1 (e) Grid 3 – Grid 2 (f) Grid 4 – Grid 3 

Figure 6.14.  DETE solutions using AME residual model and actual error in x-momentum (kg/m-s) 

for transonic airfoil problem 
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Figure 6.17.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 3 using 

AME residual model 

Figure 6.16.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 2 using 

AME residual model 

Figure 6.15.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 1 using 

AME residual model 



58 

 

(a) Grid 1 PDE_1 (b) Grid 2 PDE_1 (c) Grid 3 PDE_1 

(d) Grid 1 PDE_2 (e) Grid 2 PDE_2 (f) Grid 3 PDE_3 

(g) Grid 1 PDE_3 (h) Grid 2 PDE_3 (i) Grid 3 PDE_3 

(j) Grid 2 - Grid 1 (k) Grid 3 - Grid 2 (l) Grid 4 - Grid 3 

Figure 6.18.  DETE solutions using PDE residual model and actual error in x-momentum (kg/m-s) 

for transonic airfoil problem 
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Figure 6.21.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 3 using 

PDE residual model 

Figure 6.20.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 2 using 

PDE residual model 

Figure 6.19.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 1 using 

PDE residual model 
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(a) Grid 2 E_1 (b) Grid 3 E_1 

(c) Grid 2 E_2 (d) Grid 3 E_2 

(e) Grid 3 - Grid 2 (f) Grid 4 - Grid 3 

Figure 6.22.  DETE solutions using extrapolation residual model and actual error in 

x-momentum (kg/m-s) for transonic airfoil problem 
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Unsteady Flow 

Isentropic Vortex 

Results for the isentropic vortex problem are presented at four different solution times: t = 5.2, 

10, 15.2, and 20.  DETE solutions on Grid 1 using the AME residual model are plotted in Figure 

6.25(a), and are compared with the actual error in x-momentum relative to the Grid 2 flow solution in 

Figure 6.25(b).  The DETE solutions on Grid 2 are shown in Figure 6.26(a), and compared with the 

actual error relative to the Grid 3 flow solution in Figure 6.26(b).  The Grid 1 DETE results generally 

under-predict the magnitude of the error, similar to the steady flow results, but are closer to the actual 

error values at the earlier solution times.  The Grid 2 DETE results, however, slightly over-predict the 

magnitude of the error, which, again, highlights the grid-dependency of the AME model.  DETE 

solutions on both grids seem to predict the location of error well. 

The DETE solutions on Grid 1 using the PDE residual model with each polynomial fit are given 

in Figure 6.27(a-c), and compared with the actual error in x-momentum relative to the Grid 2 flow 

solution in Figure 6.27(d).  The Grid 2 DETE solutions are shown in Figure 6.28(a-c), compared to 

the actual error relative to the Grid 3 solution in Figure 6.28(d).  For this problem, the PDE_1 and 

PDE_2 solutions behave very similarly, and are much more accurate than the PDE_3 solution on 

Grid 1.  On Grid 2, however, the PDE_3 solution agrees better with the actual error than the other two 

Figure 6.24.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 3 using 

extrapolation residual model 

Figure 6.23.  Pressure coefficient on surface 

of airfoil, DETE results on Grid 2 using 

extrapolation residual model 
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solutions.  This is most likely a result of grid spacing and the stencil used for the least squares 

polynomial fit.  On Grid 1, the stencil required for the third degree polynomial is of comparable size 

to the vortex itself, so the data variation is smeared out by the least squares fit.  As the grid is refined, 

and the physical size of the stencil is reduced so that it contains a less varied set of data, the least 

squares fit will be better. 

Figure 6.29(a,b) presents the DETE solutions on Grid 2 using the extrapolation model, compared 

with the actual error in x-momentum relative to the Grid 3 flow solution in Figure 6.29(c).  As in the 

steady flow problems, the E_1 results greatly over-predict the magnitude of the error.  The E_2 

results agree with the actual error best out of all the residual models, which could be expected since it 

was shown in Chapter 2 that the solution to this problem converges globally at a near second-order 

rate. 

t = 5.2 t = 10 t = 15.2 t = 20 

(a) Grid 1 AME 

(b) Grid 2 - Grid 1 

Figure 6.25.  DETE solutions on Grid 1 using AME residual model and actual error in 

x-momentum (kg/m-s) for unsteady isentropic vortex problem 
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t = 5.2 t = 10 t = 15.2 t = 20 

(a) Grid 2 AME 

(b) Grid 3 - Grid 2 

Figure 6.26.  DETE solutions on Grid 2 using AME residual model and actual error in 

x-momentum (kg/m-s) for unsteady isentropic vortex problem 
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t = 5.2 t = 10 t = 15.2 t = 20 

(a) Grid 1 PDE_1 

(b) Grid 1 PDE_2 

(c) Grid 1 PDE_3 

(d) Grid 2 - Grid 1 

Figure 6.27.  DETE solutions on Grid 1 using PDE residual model and actual error in 

x-momentum (kg/m-s) for unsteady isentropic vortex problem 
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t = 5.2 t = 10 t = 15.2 t = 20 

(a) Grid 2 PDE_1 

(b) Grid 2 PDE_2 

(c) Grid 2 PDE_3 

(d) Grid 3 - Grid 2 

Figure 6.28.  DETE solutions on Grid 2 using PDE residual model and actual error in 

x-momentum (kg/m-s) for unsteady isentropic vortex problem 
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t = 5.2 t = 10 t = 15.2 t = 20 

(a) Grid 2 E_1 

(b) Grid 2 E_2 

(c) Grid 3 - Grid 2 

Figure 6.29.  DETE solutions on Grid 2 using extrapolation residual model and actual 

error in x-momentum (kg/m-s) for unsteady isentropic vortex problem 
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Unsteady Circular Cylinder 

The unsteady cylinder problem presents an extra challenge for the residual models.  Since the 

frequency of the vortex shedding is dependent on the grid spacing, the residual model must be able to 

account for changes in the spatial and temporal behavior of the solution.  The DETE solutions for 

Grid 1 with the AME and PDE_3 residual models are presented for t = 0.5, 1, 1.5, and 2 in Figure 

6.30(a) and Figure 6.31(a), and are compared with the actual error relative to the Grid 2 solution.  

These residual models were chosen because they performed well in the previous problems studied, 

but also because their results for this problem are representative of the other models.  The AME and 

PDE_3 results behave very similarly.  Initially, the magnitude of the error is under-predicted, but as 

the solution progresses, the error magnitude continues to grow and becomes greatly over-predicted.  

In both sets of solutions, the location and sign of the error are incorrect in some areas, which is likely 

caused by the residual model not predicting the change in the frequency of the shedding.  The lift 

coefficient time histories of the DETE solutions are compared with the flow solutions in Figure 6.32.  

While the Grid 1 flow solution reaches a periodic state around t = 1, the oscillations of the DETE 

solution continue to grow in magnitude at what appears to be a steady rate.   

The same phenomenon is observed in the Grid 2 lift coefficient time histories of the AME, 

PDE_3, and E_2 DETE solutions in Figure 6.33.  It was expected that the E_2 results would 

outperform the others because, by using the exact residual on the coarse grid, the extrapolation model 

contains the difference in time dependent behavior between the coarse and fine grid flow solutions.  

The grid-induced residual that is scaled in the extrapolation model was also shown to be able to 

accurately predict the error between the coarse and fine grids during the validation of the DETE in 

Chapter 4.  When the exact residual is interpolated to the fine grid and scaled; however, the accuracy 

of the residual seems to be lost.  In fact, these results show magnitude of the E_2 error solution grows 

faster than the solutions using the other two residual models. 

Since the residual models perform well in previous problems where the time dependent behavior 

of the problem is unchanged, it must be assumed that the poor performance of the DETE solutions in 

this case must be due to this aspect of the solutions.  This could be a serious limitation to the 

usefulness of the DETE for unsteady problems and future research should investigate the time 

dependency of the residual models. 
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t = 0.5 

t = 1 

t = 1.5 

t = 2 

(a) Grid 1 AME (b) Grid 2 - Grid 1 

Figure 6.30.  DETE solutions on Grid 1 using AME residual model and actual error in 

x-momentum (kg/m-s) for unsteady cylinder problem 
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t = 0.5 

t = 1 

t = 1.5 

t = 2 

(a) Grid 1 PDE_3 (b) Grid 2 - Grid 1 

Figure 6.31.  DETE solutions on Grid 1 using PDE residual model and actual error in 

x-momentum (kg/m-s) for unsteady cylinder problem 
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Figure 6.33.  Time history of lift coefficient, DETE solutions on Grid 2 using 

AME and PDE residual models 

Figure 6.32.  Time history of lift coefficient, DETE solutions on Grid 1 using AME 

and PDE residual models 
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Chapter 7. Summary 

For computational fluid dynamics (CFD) to become a widely accepted design tool, some 

quantification of the numerical uncertainty in a solution must be available.  Error sources include 

improper modeling of flow physics or boundary conditions, spatial and temporal inaccuracies in the 

numerical scheme, and computational grids with insufficient resolution or poor-quality cells.  While 

an experienced engineer can easily choose the correct physical models, boundary conditions, and 

numerical scheme, it is often impossible to attenuate the effects of the grid à priori.  One could 

certainly create a grid which is fine enough to generate a grid-independent solution and eliminate the 

grid as a source of error, but time and computational resource limitations make this approach 

impractical.  Therefore it is necessary to have a method of estimating the uncertainty of a CFD 

solution for the types of problems and grids used in engineering applications. 

This study presents an approach for estimating the grid-induced error of CFD solutions which is 

based on the discrete error transport equation (DETE).  The DETE is derived on the discretized flow 

equations, and describes the transport of error throughout the computational domain which is 

generated by the grid-induced residual.  A DETE for the laminar, compressible, Navier-Stokes 

equations has been derived within the framework of an unstructured finite volume scheme which is 

second-order accurate in space and time.  The accuracy of the DETE scheme was then demonstrated 

through a series of test problems by using exact values of the residual. 

The usefulness of the DETE depends on the accuracy with which the grid-induced residual can be 

modeled.  Three different residual models were presented; two based on a single grid and flow 

solution, and one based on two grids and solutions.  The approximate modified equation (AME) 

model uses the difference between the differential and discretized forms of the governing PDE to 

estimate the residual in a computational cell.  The PDE model creates a least squares polynomial fit of 

the data in a localized stencil surrounding each cell and then evaluates the differential form of the 

governing PDE with that polynomial fit.  Wherever the polynomial fit does not satisfy the governing 

PDE, the model produces a residual.  The extrapolation model uses the exact value of the grid-

induced residual which may be found using two different grids and solutions and then extrapolates 

that residual from the coarse grid to the fine grid by scaling it according to the formal order of 

accuracy of the numerical scheme. 

Each residual model was evaluated with four test problems: (1) steady, laminar flow past a 

circular cylinder; (2) steady, transonic, inviscid flow past an airfoil; (3) unsteady, inviscid flow of an 

isentropic vortex; (4) unsteady, laminar flow past a circular cylinder. 
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For the steady cylinder problem, the AME and PDE residual models performed best in the region 

near the cylinder where the grid resolution was quite fine.  While these models still predicted the 

general distribution of error elsewhere, the extrapolation model was more accurate in predicting the 

magnitude of the error in the wake region downstream of the cylinder where the grid was coarser.   

The results for the transonic airfoil problem showed the AME residual model worked best 

overall, although the extrapolation model worked equally well as the grid was more refined.  The 

PDE model introduced large oscillations in the solution near the shocks on the top and bottom of the 

airfoil.  This is most likely due to the fact that the stencil of cells used to create the polynomial fit 

straddled the discontinuity of the shock, creating a poor least squares representation of the data.  In 

the future, this problem could be avoided using strategies common to high-order finite volume 

schemes which alter the stencils of cells near shock so that they do not include the discontinuity. 

In the case of the isentropic vortex, the extrapolation model performed best of all the models 

tested on the finer grid.  This problem was shown to converge at (or above) a second-order rate; 

therefore, it should be expected in this case that the exact residual from the coarse grid scaled by the 

formal order of accuracy would approximate the exact residual on the fine grid.  On the coarsest grid, 

where the extrapolation model cannot be used, results were mixed for the AME and PDE models.  

The size of the stencil used for the third degree polynomial fit on the coarse grid seemed to smear out 

the variation of the data, since it was approximately the same size as the vortex itself.  In this case, the 

PDE model with first and second degree polynomial fits worked best since the stencil is much 

smaller.  Both the AME model and the PDE model with a third degree polynomial fit worked better 

on the fine grid, however. 

The unsteady cylinder problem with periodic vortex shedding draws attention to one of the 

current limitations of these residual models.  The frequency of the vortex shedding changes with the 

grid resolution, which means the problem is both spatially and temporally dependent on the grid.  

During the validation of the DETE, it was shown that the error would reach a stable periodic state 

along with the flow, and the fine grid solution could be recovered using the exact residual.  Each of 

the residual models produced a DETE solution that became periodic, but the magnitude of the 

oscillations grew in time.  The appearance is similar to what one would expect if error were 

accumulating: new error is continually produced but never dissipated, so it continues to add to the 

existing error.  Since the DETE was shown to work well with the exact residual, and the residual 

models are fairly accurate for the other problems studied, it seems straightforward to assume the 

residual models do not properly account for the changing time dependent behavior of this problem.  
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Future research should be conducted to better understand the nature of the time dependency of the 

residual, and improve the state of residual modeling. 

Overall, the PDE model using a first degree polynomial fit and the extrapolation model with a 

first-order rate of convergence performed poorly in comparison to the actual error and the DETE 

results using other residual models. 

The DETE using the various residual models has been shown to provide meaningful error 

estimates for a variety of flow problems.  While the predicted error was not the total grid-induced 

error (the error relative to a grid-independent solution), the DETE solution does generally compare 

well with the actual error relative to a single level of uniform grid refinement.  This estimation can 

supply valuable information about the sensitivity of the solution to changes in grid spacing, and 

therefore can be used to decide whether further grid refinement is necessary.
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Appendix A 

The Jacobian matrices used in the linearization of the residual operator for the DETE are detailed 

here, reproduced from information provided in a textbook by Chung [38].  Beginning with the 

convective terms: 
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For the diffusion terms, define the following quantities: 
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Then the diffusion term Jacobians are: 
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where, 
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The diffusion gradient Jacobians are written as: 
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where, 
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Appendix B 

This section derives the least squares reconstruction technique used to fit cell average data on the 

computational grid.  If some set of data, ( ),F x y , is to be represented by a first degree polynomial, 

( ),G x y , centered about coordinates ( ),c cx y , 

 ( ) 0 1 2,G x y a a x a y= + +  (B.1) 

where, 

 ( ) ( ) ( ), , ,c cx y x y x y= −  (B.2) 

then the least squares problem is described by: 
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Here, N denotes the number of data points to be used, and j is the index of the coefficients.  

Evaluating Eq. (B.4) for each coefficient creates a set of linear algebraic equations, 
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Solving Eq. (B.5) yields the values of the coefficients for the least squares function G.  In this case, 

however, we wish to constrain these equations such that the coefficient a0 is the value of the data at 

( ),c cx y .  Adding this constraint, the system becomes: 

 

2

1

2

2

F xax x y

F yax y y

      =     
       

∑∑ ∑
∑∑ ∑

 (B.6) 

where, 

 ( ) ( ), 0,0F F x y F= −  (B.7) 

This simple system can be solved algebraically for the coefficients, 
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It is possible to use this same procedure for higher order polynomial representations of G where it 

becomes more convenient to numerically solve for the coefficients.  In this case, the greater number 

of unknowns not only increases the size of the algebraic system but can also cause conditioning 

problems with the left hand side matrix.
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