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ABSTRACT

The objective of this dissertation is to investigate a fast and reliable method to

generate three-dimensional optimal ascent trajectories for hypersonic air-breathing ve-

hicles. The problem is notoriously difficult because of the strong nonlinear coupling

amongst aerodynamics, propulsion, vehicle attitude and trajectory state. As such an al-

gorithm matures, the ultimate goal is to realize optimal closed-loop ascent guidance for

hypersonic air-breathing vehicles. The problem is formulated as a fuel-optimal control

problem. The corresponding necessary conditions are given. It is shown how the original

problem of search for the optimal control commands can be reduced to a univariate root-

finding problem at each point along the trajectory. A finite difference scheme is used to

numerically solve the associated two-point-boundary-value problem. Evaluation of the

approach is done through open-loop solutions and closed-loop simulations. The results

show promising potential of the proposed approach as a rapid trajectory optimization

tool for the class of hypersonic air-breathing vehicles.
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CHAPTER 1. INTRODUCTION

1.1 History of Hypersonic Vehicles

The term Hypersonic was first used in 1946 by Hsue-shen Tsien, an aerodynamicist

at the California Institute of Technology (1). The term describes flight “at speeds where

aerodynamic heating dominates the physics of the problem,”(1) which, on average, are

speeds greater than Mach 5. Vehicles that exceed that range are missiles, rockets,

and the Space Shuttle. However, the holy grail in the aerospace industry is a single-

stage, reusable, air-breathing vehicle that can achieve orbit. The desire is driven by the

reduction in cost of payloads delivered to low Earth orbit. Such a vehicle could deliver

payloads into orbit by entering orbit itself or releasing the payload and return back for

a runway landing.

In 1957, Convair was first to investigate a combined engine system that allowed the

vehicle to take off from a runway and enter orbit(1). The concept, called Space Plane,

had highly-swept wings, and had a length of 235 feet. Gross take off weight was 450,000

pounds, of which 270,000 pounds was fuel. Rocket power would accelerate the vehicle

to Mach 3 and to an altitude of 40,000 feet and then transition to ramjets. At Mach 7

the ramjets would shut down and move back to rocket power.

The inability for the Convair Space Plane to use an air-breathing engine to propel

past Mach 7 was due to the capability of the ramjet engine. The answer to that problem

was a scramjet (supersonic ramjet) engine. The first open-literature study of theoretic

scramjet performance was published in 1958 by Weber and MacKay at NACA’s Lewis
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Figure 1.1 Convair’s Space Plane Concept

Flight Propulsion Laboratory(2). The advantage of such an engine is the ability for a

single unit that could take off from a runway and go into orbit. The Aerospace Plane

concept continued in the late 50’s and 60’s with companies like Lockheed and Republic

Aviation joining in the design of a single-stage to orbit (SSTO) vehicle.

The desire for a SSTO vehicle faded after the Aerospace Plane era of the 50’s and

60’s. It was not until the Ronald Reagan administration implemented the Strategic

Defense Initiative (SDI) that an interest in a space plane concept returned. The result

of SDI’s expectation of high demand in access to space was the National Aerospace Plane

(NASP), designated the X-30. NASP had several different iterations, beginning with the

program baseline, a result of the Copper Canyon studies. Following this initial design was

the government baseline, which had a gross weight of 80,000 pounds. Five companies

then developed their own conceptual designs, with the following weight estimates for

NASP listed in Tabel 1.1.

NASP continued through the early 90’s. Figure 1.2 shows the concept drawing of

the X-30 in 1990. The vehicle had grown to weigh 400,000 pounds, used two vertical

stabilizers instead of one, three scramjet engines, and a single rocket engine that gave

approximately 60,000 pounds of thrust. Faced with budget overruns and delays, the Air
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Table 1.1 Weight Estimates for NASP

Rockwell International 175,000 pounds
McDonnell Douglas 245,000 pounds
General Dynamics 280,000 pounds
Boeing 340,000 pounds
Lockheed 375,000 pounds

Force initiated the formal termination of NASP in 1995.

Figure 1.2 X-30 Concept of 1990

Research on hypersonic flight continued on even after the end of NASP. A component

of the Aerospace Plane concept that had not been flight tested was the scramjet engine.

NASA’s Hyper-X (X-43A) program was designed to test such critical technologies. The

program was announced in 1996. The vehicle was 12 feet long and weighed 2,800 pounds.

The vehicle was designed to be boosted to test conditions by a Pegasus rocket and would

then separate for free flight. Figures 1.3 and 1.4 are images of the vehicle, while Figure 1.5
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depicts the trajectory of the vehicle.

Figure 1.3 NASA Hyper-X (X-43A)

Figure 1.4 Layout Diagram of Hyper-X (X-43A)

Three vehicles were built for flight test. The first two vehicles were planned Mach

7 flights and the last vehicle was slated for a Mach 10 flight. The first flight attempt

occurred in June 2001. The Pegasus was air-dropped at 24,000 feet but after about eight

seconds the control surfaces began to fail and the vehicle started going out of control.

The safety officer initiated the termination system and the first vehicle did not have
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Figure 1.5 NASA Hyper-X (X-43A) Trajectory

the opportunity to fly. The second flight took place in March 2004, after analysis was

conducted to fix the issues encountered in the first flight. This time the booster rocket

was successful in taking the X-43A to the Mach 7 test condition and the first successful

flight of a scramjet engine occurred. Data from the accelerometers showed that the

X-43A gained speed while the engine was on. In November of that same year the final

X-43A vehicle took flight and was tested at Mach 9.65, for a total scramjet engine on

time of 10 to 12 seconds.

In early 2004, following the success of X-43A, the Air Force Research Laboratory

(AFRL) selected a Pratt & Whitney and Boeing Phantom Works to began flight test on

the Scramjet Engine Demonstrator - Waverider. In September of 2005 the vehicles was

given the X-designation X-51A. Similar to the X-43A, the X-51A would be carried by a

B-52 to approximately 50,000 ft and then rocket boosted to between Mach 4.6 to Mach

4.8. The 25 foot long vehicle would separate and the scramjet engine ignited and ran

for nearly 300 seconds, 30 times longer than the X-43A. Figure 1.6 is a artist rendering

of the vehicle.

On May 25, 2010 the first X-51, Vehicle FTV-1, took flight. It was deemed a success,
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Figure 1.6 X-51A Waverider

however the the flight lasted just over 200 seconds, not the planned 300 seconds. The

scramjet burn time was 140 seconds. The vehicle accelerated from Mach 4.5 to Mach 5,

using JP-7 jet fuel.

1.2 Cheap Access To Space

It has been said that current technology launch systems have payload costs of ap-

proximately $10,000 per pound. However, the true cost of launch is dependent on cost

accounting methodology and therefore has been controversial. For the Space Shuttle, it

is estimated that each launch costs $400 million which comes out to $7,000 to $8,000 per

pound (4). Table 1.2 shows the cost of payloads for various vehicles, in 1994 dollars(4).

Table 1.2 Expendable launch vehicle payload costs in 1994 dollars

Launch Vehicle Payload to 160 n.m. due East, lb Payload $/lb
Delta 10,100 3960
Atlas Centar 18,100 6077
Titan IV 44,400 4054
Proton 38,000 1974
Saturn V 270,000 4241
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The advantage of a SSTO air-breathing vehicle is the cost savings of putting a pay-

load to orbit. By using air as the oxidizer rather than carrying it onboard, a substantial

weight savings can be realized. Recent projects such as the X-33 Advanced Technology

Demonstrator had a goal of reducing payload cost by an order of magnitude. Achieve-

ment of this goal could be done with a SSTO air-breathing vehicle.

1.3 Motivation

The guidance system of an aerospace vehicle impacts the performance of any aerospace

vehicle. The purpose of the guidance system is to establish and/or follow a desired trajec-

tory and control the vehicle through attitude and propulsion commands. The trajectory

should meet all vehicle constraints and fulfill any objectives outlined. The system can be

characterized as “outer-loop”, since the system steers the vehicle in a certain direction

where the flight control system (inner-loop) stabilizes the vehicles attitude.

Current guidance technology within the atmosphere is considered “open-loop.” The

optimal trajectory is determined offline, including off-nominal case and abort scenarios.

In regards to the Space Shuttle, it can take two engineers ten days to get a first stage

optimal trajectory.(5) First, a three degree of freedom (3DOF) model is used to obtain

the guidance commands. At this point, the commands are checked with flight control

system in a six degree of freedom (6DOF) simulation. Any changes in flight schedule

can result in significant atmosphere effects, requiring a repeat in the guidance process.

On day of flight, the trajectory is update with the current winds and uploaded to the

flight computer.

In the 1980’s it was realized that all future launch vehicles would have to incorporate

onboard algorithms that “maximize payload capability, achieve high accuracy, adapt to

changing mission demands and environment, and be fault tolerant while minimizing the

costs for software design, life cycle maintenance, and launch operations.”(3). Hardtla
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et al. concluded with a set of requirements for onboard guidance algorithms, a few of

which are

• Easy to maintain and adapt to the current mission.

• Able to maximize the payload delivered from launch to orbit.

• Adaptable to new missions that were not in the original design requirements.

• Reliable, self-starting, and robust

To date, the goal of onboard guidance is still being sought after. The difficulty for

onboard guidance of a hypersonic air-breathing SSTO vehicle is due to the nonlinear

coupling between the aerodynamics, propulsion, vehicle attitude, and trajectory state.

Additionally, application of optimal control theory to determine an optimal trajectory

leads to a two point boundary value (TPBVP), which have been computationally inten-

sive to solve.

1.4 Previous Work

Past research on ascent guidance for hypersonic SSTO vehicles have been done with

NASP in mind. The nonlinearity of the problem has resulted in simplification of the

problem to solve the TPBVP. In addition, the goal of an onboard, closed-loop guidance

requires a converge solution to be obtain relatively fast.

Some of the earliest research was conducted by Corban and Calise (6; 7; 8; 9). For

that research, the vehicle dynamics were restricted to a vertical plane and were repre-

sented using a four state model. In attempt to reduce the problem further for possible

on-board real-time implementation, singular perturbation theory is applied. The theory

separates the dynamics into two time scales, describing fast dynamics and slow dy-

namics. The authors suggested that altitude and flight path angle change much faster
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than energy and mass. The equations are reduced to the energy state approximation,

which leads to the derivation of the ascent profile. When the boundary layer analysis

was conducted, it resulted in an optimal feedback guidance law for control. However,

when state inequality constraints are introduced, an additional calculations is needed.

It is noted in (9) that the application of singular perturbation analysis onto problems

with state inequality constraints is not fully developed. In order to avoid this, a non-

linear transformation technique is used to control the altitude and flight path dynamics

(the fast dynamics). Additional assumptions are made to employ the use of feedback

linearization.

Cliff and Well (10; 11) expanded on singular perturbation method by using three-

dimensional ascent dynamics. The vehicle was represented by a point mass over a

spherical non-rotating Earth. A performance index using a weighted sum of time and

final fuel weight is investigated, allowing a trajectory to minimize both final time and

fuel consumed. To reduce the problem using time scale separation, the authors introduce

three time scales. They hypothesized that cross range position, downrange position, and

fuel weight changed slower than energy and velocity heading, which were slower than

change in height and flight path angle. When reduced to the slow dynamics, a upper

mach limit was required to find a atmospheric cruise solution. The energy-heading

dynamics were also analyzed, resulting in feedback control charts that would allow a

controller to be developed.

Van Buren and Mease (12; 13; 14) began their investigation by first characterizing

fuel minimized optimal trajectories obtained from optimization software. They expanded

their research by creating a feedback controller using geometric control theory. The

dynamics of the problem are modeled by a point mass in the vertical plane over a non-

rotating spherical Earth. Time scale separation is used to separate the energy and mass

dynamics from the altitude and flight path angle dynamics, similar to Corban et al. Van

Buren et al. verified that the time scale separation was valid by comparing their optimal
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trajectories to those obtained from a optimization package. Two controllers can be

designed separately for each set of dynamics and combined into one feedback controller.

The “slow” controller would control the slow dynamics to minimize fuel consumption

while the “fast” controller would ensure time scale separation and vehicle stabilization.

Schmidt et al. (15; 16; 17) continues using energy-state methods to develop a fuel

optimal ascent trajectory. The dynamics are two-dimensional describing longitudinal

motion over a spherical non-rotating Earth. Their approach differs in that they changes

the independent variable from time to weight of fuel burned. Because of this change,

the solution algorithm is,

“At each energy level, E, operate the vehicle so as to maximize dE/dWfuel”

(energy change per weight of fuel burned).

This algorithm allows the trajectory to be generated graphically. In order to handle

constraints, the vehicle would fly along the constraint when the trajectory violated said

constraint. A feedback controller was then developed to track the optimal trajectory.

Kremer et al. (18) realized that hard constraints could be problematic when using

singular perturbation methods. For example, if the vehicle is perturbed into a constraint

region, then no solution can be determined. Kremer proposed using soft constraints (i.e

constraints that can be violated for short duration) in developing the optimal ascent

trajectory. The soft constraint is implemented using a penalty function to discourage

the solution from entering the constrained region. In this approach, a solution can be

obtained when a vehicle is perturbed into a constraint region. A resulting guidance law

was shown to handle a dynamic pressure constraint for the ascent guidance problem.

Lu used inverse dynamics to produce an optimal trajectory (19; 20; 21; 22; 23). He

models the problem using two-dimensional point mass equations over a spherical non-

rotating Earth. By using an inverse dynamic approach, he can find the solution to the

problem for a given altitude and throttle profile. Those two variables are parametrized
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and the problem is reduced into a nonlinear programming problem. One advantage to

this approach is that quick ascent profiles can be generated for a desired profile, although

they would be non-optimal. In References (19) and (20), the guidance law is handled by

observing the characteristics of the resulting trajectories. It was noted that there were

three segments of flight, initial climb out, midcourse cruise, and final pull up. The mid-

course cruise had near unity of the equivalence ratio, small angle-of-attack, slow varying

flight path angle, and dynamic pressure at the maximum constraint. A feedback con-

troller is developed that mimicked these characteristics. In Ref. (21) the guidance laws

were developed to track the desired flight profiles. The guidance laws were evaluated by

showing the vehicles performance in the presence of density perturbations, aerodynamic

model perturbations, and engine model perturbations. Lastly, Lu investigated three-

dimensional ascent profiles, but noted that the vehicle used large bank during the initial

portion of flight and then remains in planar motion and having characteristics similar

to two-dimensional optimal trajectories.

In Ref. (24), Paus solves the three-dimensional equations of motion for a rigid body

vehicle on a spherical rotating Earth. The ascent trajectory optimization problem is

reduced by linearizing the problem at discrete set of points within a time interval. The

equations of motion are then integrated within each subinterval using transition matrices

given piecewise constant or linear control. The controls are adjusted by using a non-

linear programming (NLP) solver that includes the path constraints. For that research,

the vehicle used for evaluation was the Sänger 2 vehicle. Only the second phase of

flight was addressed, where the vehicle is on ramjet power accelerating from Mach =

3 to Mach ≈ 6.8, beginning at an altitude of 19 km and ends at about 30 km. A

feedback controller was generated using feedback linearization. The following onboard

guidance algorithm was proposed: 1) Generate state and control estimates; 2) Evaluate

cost function and boundary conditions at final time and check path constraints at the

specified time intervals; 3) Adjust the final time and control using a NLP solver; 4)
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Guide the vehicle along the trajectory using a feedback controller in between trajectory

calculations. A feedback controller was developed using feedback linearization.

Recent research has focused on closed-loop guidance and fault tolerant autonomous

systems (25). Although much of the discussion is on rocket based vehicles, the same

applies to hypersonic vehicles. Specific to ascent guidance, abort planning requires time

consuming trajectory planning for a range of scenarios, such as engine loss. Additionally,

non-catastrophic events, such as thrust reduction or off-nominal engine performance,

would effect the ability to track a predetermined trajectory and also need to be taken

into consideration. Integrated vehicle health management systems are suggested to be

added so that failure detection can occur, allowing both the inner loop controller and

outer loop guidance system to adapt. Closed loop guidance would allow for onboard

rapid re-planning of trajectories and can reduce mission design.

For onboard, closed-loop guidance to be feasible, convergence to an optimal solu-

tion need to be fast enough to be generated by an inflight computer. The approach in

Lu et al.(26) was to pose the ascent guidance problem as a two point boundary value

problem (TPBVP) and use a finite difference method to solve the optimal control prob-

lem. A rocket based reusable launch vehicle (RLV) was studied. An indirect method,

also known as the calculus of variation method, is used for optimization. The indirect

method can produce very accurate results, but are sensitive to changes to any parame-

ter (i.e. changes to the dynamics, vehicle, etc.). Detailed mathematical analysis of each

problem is required. Solution convergence was quick and showed closed-loop guidance

was possible.

The same approach is used in this study, applied to a generic hypersonic vehicle

(GHV). Because the method used has promise to be used closed-loop, the resulting

guidance algorithm could be incorporated with a fault tolerant autonomous system.

Additionally, the research done here is to expand the work done on guidance for NASP.

The restriction for only vertical plane dynamics is not used here. Unlike rocket based
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vehicles, a hypersonic vehicle has the ability to cover a larger cross range. The inclusion

of both vertical and lateral dynamics allows for an optimize trajectory to be determined

given a wider range of terminal conditions. This work also avoids the two time scale

separation approach. State constraints are easily incorporated into the optimal control

problem for which a solution to the TPBVP can be obtained. Finally, the previous

research on NASP ascent guidance used a simplified vehicle model. The approach in

Ref. (26) allows for a more complex model.

1.5 Overview of Dissertation

Chapter 2 is a brief overview of optimal control theory. The general formulation of

the optimal control problem is presented. The effects of both control and state variable

constraints are reviewed. Additionally, inequality constraints are examined.

Chapter 3 starts by describing the coordinate systems that are involved with the

ascent guidance problem. Included in the discussion is the formulation of the vehicle

body axis. Next, the equations of motion for a vehicle in an inertial coordinate system are

presented. Finally, the equations are nondimensionalized for better number conditioning.

Chapter 4 formulates the ascent guidance problem as an optimal control problem.

The objective for the guidance algorithm is to find the vehicle orientation for any given

time. Special care is taken in the derivation of the costate, optimality, and transver-

sality equations. Path constraints that are typical for hypersonic air-breathing vehicles

are considered. The result of the optimal control problem formulation is a two-point

boundary value problem.

Chapter 5 describes the vehicle used in this research. The GHAME (Generic Hyper-

sonic Aerodynamics Model Example) vehicle geometry is given, as well as descriptions

of the aerodynamic data and engine model. Since the costate equations in the opti-

mal control problem are specific to the engine model, the costate equation derivation is
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revisited.

Chapter 6 describes the numerical method used in solving the two point boundary

value problem. The finite difference algorithm takes advantage of the special structure

of the Jacobian matrix and using Gauss eliminations and sequential back substitution,

results in a fast and efficient algorithm. Efficient in the sense of storage of the matrix

coefficients. The boundary conditions for the Jacobian are solved analytically and de-

scribed in the chapter. Finally, a secant method is used to adjust the final time because

the finite difference method solves the fixed final time problem.

Chapter 7 presents the results to the ascent guidance problem. First, the solution

from the finite difference method is compared to a commercial optimization software.

This is done to verify and validate the technique. The commercial software is based on

a pseudospectral method and used the same aerodynamic and engine model as the finite

difference method. Various open-loop trajectories at different initial and final conditions

are shown. This is done to demonstrate the capability of the scheme as well as to show

the characteristics of the trajectories. Angle-of-attack constraints are include in some

of the open-loop solutions. Closed-loop simulations were also conducted to show the

feasibility of using the guidance algorithm with a flight control system. Simulations

were done with varied initial and final conditions, and some included either angle-of-

attack or dynamic pressure constraints. Winds were included in all the closed-loop

simulations. Lastly, atmospheric and vehicle model perturbed solutions are shown.

The final chapter, Chapter 8, summarizes the research done in this dissertation.

1.6 Main Contributions

The research conducted for this dissertation was done to expand on work previous

done on SSTO air-breathing hypersonic vehicles and incorporate some recent develop-

ments in on-board ascent guidance. The main contributions of this work are as follows:
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• Expand on the previous research of hypersonic air-breathing guidance and generate

three-dimensional fuel-optimal ascent trajectories.

• Incorporate an engine model that is dependent on the state of the vehicle so that

the coupling between aerodynamics, propulsion, vehicle attitude and trajectory

state are included in the development of the optimal trajectory.

• Incorporate control and state constraints that are typical to this class of vehicle.

• Validate the solution to the optimal ascent trajectory problem with a commercial

available optimization software.

• Investigate the effects of initial and final conditions on the trajectory of a hyper-

sonic air-breathing vehicle.

• Provide a guidance algorithm that can be used for onboard trajectory calculation.

• Illustrate closed-loop feasibility and capability.
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CHAPTER 2. OPTIMAL CONTROL THEORY

The goal of optimal control is to create an input to a system, u∗, to drive the system

along a trajectory, x∗, such that a performance index, J , is minimized.

2.1 Problem Formulation

Describe the system by

ẋ(t) = f(x, u, t) (2.1)

where x ∈ Rn is the state of the system, u ∈ Rm is the control input, and t is time. The

associated performance index (also described as the cost function) can be written as

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t)dt (2.2)

where φ(x(tf ), tf ) is the final weighting function and depends on the final state, x(tf ),

and final time, tf , L(x(t), u(t), t) is the weighting function and depends on the state

and input, x(t) and u(t) respectively, along the trajectory, and [t0, tf ] is the specified

time interval. In addition to minimizing the cost function, the state must satisfy a final

condition

ψ(x(tf ), tf ) = 0 (2.3)

for a given function ψ ∈ Rp.

To minimize the cost function, Eq. (2.2), subject to the constraints, Eqs.(2.1) and

(2.3), Lagrange multipliers are used to combine both functions with the performance
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index. The updated performance index to be minimized is written as

J ′ = φ(x(tf ), tf ) + νTψ(x(tf ), tf ) +

∫ tf

t0

[
L(x, u, t) + λT (t)(f(t)(x, u, t)− ẋ)

]
dt (2.4)

where λ(t) ∈ Rn is the Lagrange multiplier associated with Eq. (2.1) and is a function of

time since Eq. (2.1) holds true for the entire trajectory, and ν ∈ Rp is the constant multi-

plier associated with Eq. (2.3). Define the following constant function, the Hamiltonian,

as

H(x, u, t) , L(x, u, t) + λTf(x, u, t) (2.5)

then Eq. (2.4) can be rewritten as

J ′ = φ(x(tf ), tf ) + νTψ(x(tf ), tf ) +

∫ tf

t0

[
H(x, u, t)− λtẋ

]
dt. (2.6)

The calculus of variation formulation is used to minimize the augmented performance

index (28; 29). The reason is because the change in J ′ will depend on the time and state

differentials, dt and dx. If x(t) is a continuous function of time, t, then the differentials

dx(t) and dt are not independent. However, one can define a small change in x(t) that

is independent of time. Define the variation in x(t), δx(t), as the incremental change in

x(t) when time is held fixed. The following relationship can then be established,

dx(tf ) = δx(tf ) + ẋ(tf )dtf . (2.7)

To minimize the updated performance index, its derivative is set to zero. From Eq. (2.6),

the effect of changing the independent variables can be shown to be

dJ ′ =
(
φx + ψTx ν

)T
dx|tf +

(
φt + ψTt ν

)
dt|tf + ψT |tfdν

+
(
H − λT ẋ

)
dt|tf −

(
H − λT ẋ

)
dt|t0

+

∫ tf

t0

[
HT
x δx+HT

u δu− λT δẋ+ (Hλ − ẋ)T δλ
]
dt (2.8)

where the subscript means the derivative with respect to that variable. Integration by

parts can be done to eliminate the variation in ẋ,

−
∫ tf

t0

λT δẋdt = −λT δx|tf + λT δx|t0 +

∫ tf

t0

λ̇T δxdt. (2.9)
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When substituting Eq. (2.9) into Eq. (2.8), the resulting terms at t = tf are dependent

on both dx(t) and δx(tf ). Using Eq. (2.7), δx(tf ) can be replaced with terms of dx(t)

and dtf , resulting in

dJ ′ =
(
φx + ψTx ν − λ

)T
dx|tf +

(
φt + ψTt ν +H − λT ẋ+ λT ẋ

)
dt|tf

+ψT |tfdν −
(
H − λT ẋ+ λT ẋ

)
dt|t0 + λTdx|t0

+

∫ tf

t0

[(
Hx + λ̇

)T
δx+HT

u δu+ (Hλ − ẋ)t δλ

]
dt

= (1)dx|tf + (2)dt|tf + (3)dν + (4)dt|t0 + (5)dx|t0 +

∫ tf

t0

(6)dt. (2.10)

Setting to zero the coefficients of the independent increments (terms 1-6 above) in

Eq. (2.10) give the necessary conditions for the minimum of J ′, and therefore the mini-

mum of J . First, setting to zero the three parts in term 6 results in the state equation,

costate equation, and stationary condition. Since both t0 and x(t0) are known and

fixed, then terms 4 and 5 are automatically equal to zero. Term 3 is just the final-state

constraint. Lastly, terms 1 and 2 need special consideration. Since dx(tf ) and dtf are

not independent, they can not be independently set equal to zero. Rather, the entire

expression must be zero at t = tf . For fixed final state problems, dx(tf ) = 0 and only

the term associated with dtf is considered. For fixed final time problems, dtf = 0, and

the term associated with dx(tf ) is considered. Table 2.1 summarizes the optimal control

problem.

2.1.1 Functions of the Control Variable Constraints

Consider the optimal control problem with the following control variable equality

constraint

C(u, t) = 0 (2.11)
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Table 2.1 Optimal Control Problem

System Equation: ẋ = f(x, u, t), t ≥ t0
Performance Index: J = φ(x(tf ), tf ) +

∫ tf
t0
L(x, u, t)dt

Final-state Constraint: ψ(x(tf ), tf ) = 0
Hamiltonian: H(x, u, t) = L(x, u, t) + λTf(x, u, t)
State Equation: ẋ = ∂H

∂λ
= f, t ≥ t0

Costate Equation: − λ̇ = ∂H
∂x

= ∂fT

∂x
λ+ ∂L

∂x
, t ≤ tf

Stationary Condition: 0 = ∂H
∂u

= ∂L
∂u

+ ∂fT

∂u
λ

Boundary Conditions: x(t0)given
(φx + ψTx ν − λ)T |tfdx(tf ) + (φt + ψTt ν +H)|tfdtf = 0

where C is a scalar function. Adjoin the constraint, Eq. (2.11), to the Hamiltonian with

a Lagrange multiplier µ(t), resulting in

H = L+ λTf + µC. (2.12)

This change only effects the stationary condition, giving

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
λ+ µ

∂C

∂u
. (2.13)

All other equations in Table 2.1 remain the same.

2.1.2 Functions of Control and State Variables Constraints

This time, consider the following constraint

C(x, u, t) = 0 (2.14)

where ∂C/∂u 6= 0 for any u. Using the same procedure as above, the constraint is added

to the Hamiltonian to give

H = L+ λTf + µC. (2.15)

The same stationary equation given above, Eq. (2.13), applies in this case. Additionally,

the costate equation is modified to give

− λ̇ =
∂H

∂x
=
∂fT

∂x
λ+

∂L

∂x
+ µ

∂C

∂x
. (2.16)

All other equations in Table 2.1 remain the same.
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2.1.3 Functions of the State Variable Constraints

Consider a constraint which has no explicit dependence on the control variable

S(x, t) = 0. (2.17)

The constraint applies to all time, t0 ≤ t ≤ tf , and therefore its time derivative along

the path must also be zero, i.e.

dS

dt
=
∂S

∂t
+
∂S

∂x
ẋ =

∂S

∂t
+
∂S

∂x
f(x, u, t) = 0. (2.18)

If the above equation has an explicit dependence on u, then Eq. (2.18) is the same

type of constraint as Eq. (2.14). If no explicit dependence is present, then another time

derivative is taken and repeated until some explicit dependence on u does occur. If this

occurs on the q-th time derivative, dqS/dtq, then the constraint is called a q-th order

state variable equality constraint. The additional q components of x would need to be

eliminated, using the following q relationships

S(x, t)

S(1)(x, t)

...

S(q−1)(x, t)


= 0. (2.19)

In this form, the qth total time derivative is treated as a control variable constraint in

the form of Eq. (2.14) with the additional q equations, Eq. (2.19).

2.1.4 Inequality Constraints on the Control Variable

If instead of an equality constraint as in Eq. (2.11), the following inequality constraint

on the control variable is given

C(u, t) ≤ 0. (2.20)
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The same process is repeated, resulting in the same equations as Eqs. (2.12) and (2.13),

but the following requirement applies,

µ

 ≥ 0, C = 0

= 0, C < 0.
(2.21)

2.1.5 Inequality Constraints on Functions of Control and State Variables

If instead of an equality constraint as in Eq. (2.14), the following inequality constraint

on the control variable is given

C(x, u, t) ≤ 0. (2.22)

The same process as the equality constraint is followed. Define the Hamiltonian as

H = L+ λTf + µC (2.23)

where

µ

 > 0, C = 0

= 0, C < 0
(2.24)

and the costate equations are given by

− λ̇ =
∂H

∂x
=


∂fT

∂x
λ+ ∂L

∂x
+ µ∂C

∂x
, C = 0

∂fT

∂x
λ+ ∂L

∂x
, C < 0.

(2.25)

The stationary condition also changes to

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
λ+ µ

∂C

∂u
. (2.26)

When C < 0, then µ = 0 and Eq. (2.26) determines the control, u(t). When C = 0,

Eqs. (2.22) and (2.26) together determine the control, u(t) and µ(t), since µ(t) is needed

for Eq. (2.25).
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2.1.6 Inequality Constraints on Functions of the State Variables

If instead of an equality constraint as in Eq. (2.20), the following inequality constraint

on the control variable is given

C(x, t) ≤ 0. (2.27)

The same process as in Section 2.1.3 is used, taking successive total time derivatives

of Eq. (2.27) and substituting the state equation until an expression that is explicitly

dependent on u. The constraint is again refereed as a q-th order state variable inequality

constraint, where q is the number of time derivatives. Now S(q)(x, u, t), the q-th total

time derivative of S, is treated the same as C(x, u, t) in Section (2.1.5). The Hamiltonian

is defined as

H = L+ λTf + µS(q) (2.28)

where

S(q) = 0 on the constraint boundary, S = 0 (2.29)

µ = 0 off the constraint boundary, S < 0. (2.30)

The costate equations are then

− λ̇ =
∂H

∂x
=


∂fT

∂x
λ+ ∂L

∂x
+ µ∂S

(q)

∂x
, S = 0

∂fT

∂x
λ+ ∂L

∂x
, S < 0

(2.31)

and the stationary condition are given as

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
λ+ µ

∂S(q)

∂u
. (2.32)

Also, as before, the following condition is necessary for µ

µ(t) ≥ 0 on S = 0, if minimizing J. (2.33)
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The constraint may only be active for part of the path. If this occurs, there may be

a jump condition that is required for the costate equations. Additionally, the interior

boundary conditions (the endpoints on the constraint boundary) where the constraint

is active, needs to meet the following tangency constraints

S(x, t)

S(1)(x, t)

...

S(q−1)(x, t)


= 0. (2.34)
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CHAPTER 3. THREE-DIMENSIONAL ASCENT

GUIDANCE

3.1 Coordinate Systems

Describing the ascent guidance problem can be simplified by using different coordi-

nate systems. Certain frames of reference “make sense” when describing the position

and velocity of the vehicle. All coordinate systems used will be orthogonal and right-

handed. Three different coordinate frames are used here, the Earth-Center Inertial

frame, the Guidance frame, and the Vehicle Body frame.

3.1.1 Earth-Center Inertial Coordinate System

The Earth-Center Inertial (ECI) coordinate system has its origin at the center of the

Earth and is shown in Figure 3.1. The equator lies in the XI and YI plane, where the

positive XI direction points towards the Greenwich Meridian. The ZI axis is parallel

to the axis of rotation and points towards the north pole. YI completes the right hand

rule.

3.1.2 Guidance Coordinate System

The Guidance coordinate system has its origin at the center of the Earth and is also

shown in Figure 3.1. The x-axis, XG, points from the origin towards the launch site,

while the z-axis, ZG, points downrange in the launch azimuth direction. The y-axis, YG,
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YI

ZI
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XG

YG

ZG

launch 
site

equatorial
plane

i

projection of
orbital plane

Figure 3.1 Earth Centered Inertial and Guidance Coordinate Systems

completes the right-hand system. The launch azimuth, Az, is defined by

Az = sin−1
(

cos i

cos Φ

)
, for ascending orbit (3.1)

Az =
π

2
+ sin−1

(
cos i

cos Φ

)
, for descending orbit (3.2)

where the longitude and geocentric latitude of the launch site is defined by (Θ,Φ), and

i is the target orbital inclination.

3.1.3 Vehicle Body Coordinate System

The Vehicle Body coordinate system has its origin at the center of the aircraft and

is shown in Figure 3.2. The body X-axis, Xb, points out the nose of the aircraft. The

body Y-axis, Yb, points out the right wing. The body Z-axis, Zb, completes the right

hand rule. Additionally, the figure depicts the Euler angles φ, θ, ψ, representing roll,

pitch, and yaw, respectively.
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Figure 3.2 Vehicle Body Coordinate System Showing Euler Angles

3.1.4 Coordinate Transformations

The following transformation, TEP , transforms coordinates from the ECI coordinate

frame to the Guidance frame

TEP =


cos Θ cos Φ sin Θ cos Φ sin Φ

− sin Θ cosAz + cos Θ sin Φ sinAz cos Θ cosAz + sin Θ sin Φ sinAz − cos Φ sinAz

− sin Θ sinAz − cos Θ sin Φ cosAz cos Θ sinAz − sin Θ sin Φ cosAz cos Φ cosAz

 .
(3.3)

The transformation from Vehicle Body frame to the Guidance frame is determine by

the sequence of pitch-yaw-roll and is given by

TBP =


cos θ cosψ sin θ sinφ− cos θ sinψ cosφ sin θ cosφ+ cos θ sinψ sinφ

sinψ cosψ cosφ − cosψ sinφ

− sin θ cosψ cos θ sinφ+ sin θ sinψ cosφ cos θ cosφ− sin θ sinψ sinφ

 . (3.4)

From the transformation matrix, TBP , the unit vectors of the body axes in the Guidance

frame are simply the columns of the matrix. The unit vector of the body x-axis in the
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Guidance frame is given by

~1b =


cos θ cosψ

sinψ

− sin θ cosψ

 . (3.5)

The unit vector of the body y-axis in the Guidance frame is

~1y =


sin θ sinφ− cos θ sinψ cosφ

cosψ cos θ

cos θ sinφ+ sin θ sinψ cosφ

 . (3.6)

And finally, the unit vector of the body z-axis in the Guidance frame is

~1z =


sin θ cosφ+ cos θ sinψ sinφ

− cosψ sinφ

cos θ cosφ− sin θ sinψ sinφ

 . (3.7)

Also, the body z-axis can be found using

~1z = ~1b × ~1y = −~1n (3.8)

where ~1n is the body normal unit vector. Using the body axes in the Guidance frame,

the Euler angles can be determined using the following equations

θ = − tan−1
(

1bz
1bx

)
(3.9)

ψ = tan−1
(

1by
1bx cos θ − 1bz sin θ

)
(3.10)

φ = − tan−1
(

1zy
1yy

)
(3.11)

where 1bx, 1by, and 1bz are the components of the unit vector ~1b, 1yy is the y-component

of the unit vector ~1y, and 1zy is the y-component of the unit vector ~1z.
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3.1.5 Vehicle body axis frame definitions

The vehicle body axis frame (xb,yb,zb) is selected so that the vehicles flies at a zero

sideslip angle(26), described as the zero-sideslip formulation. This formulation places

the vehicles symmetric plane in the same plane formed by the body-axis, ~1b, and the

Earth relative velocity vector, ~Vr, resulting in the sideslip angle being zero. In the

presence of any crosswinds, there is a required roll angle to null the sideslip angle. This

is described as the “fly into the wind” maneuver. The unit vector for the body x-axis is

the same as ~1b. The unit vector for the body y-axis is then defined as

~1y =
~1Vr × ~1b
||~1Vr × ~1b||

(3.12)

where ~1Vr = ~Vr/Vr. The Earth relative velocity, ~Vr is defined as

~Vr = ~V − ~ωE ×~r (3.13)

where ~ωE is the Earth rotation rate vector in the Guidance frame. The unit vector

for the body z-axis is found by ~1z = ~1b × ~1y. Define the body normal unit vector by

~1n = −~1z, then

~1n = ~1b ×
~1b × ~Vr

||~1b × ~Vr||
( α > 0 ). (3.14)

From Figure 3.3, it is obvious that

cosα = ~1Tb ~1Vr or | sinα| = ||~1Vr × ~1b||. (3.15)

Using the above definitions, when α crosses zero there is an instantaneous 180-degree

rotation of ~1n. To avoid this, ~1n should be defined as

~1n = ~1b ×
~Vr × ~1b
||~1b × ~Vr||

( α < 0 ). (3.16)

Equation (3.14) and Eq. (3.16) should be use together to determine ~1n, depending on

the sign of α. The same situation can arise for the body-y axis. The following equation
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Figure 3.3 Vehicle Body Frame with Relative Velocity

for ~1y prevents an instantaneous 180-degree rotation

~1y = ~1Vr ×
~1b

sinα
. (3.17)

3.2 Equations of motion

The equations of motion for a vehicle in an inertial coordinate system are given as

~̇r = ~V (3.18)

~̇V = ~g(~r) +
T~1b
m(t)

+
~A

m(t)
+

~N

m(t)
(3.19)

ṁ = − T

G0Isp
(3.20)

where ~r and ~V ∈ R3 are inertial position and velocity vectors, ~g is acceleration due to

gravity, T is vehicle thrust, ~1b is the unit vector defining the vehicles body axis, ~A and

~N are the aerodynamics forces along the body longitudinal and normal direction, respec-

tively, m(t) is the mass of the vehicle at time t, G0 is is the gravitational acceleration

magnitude at the surface of the Earth, and Isp is the specific impulse of the engine.
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The aerodynamic forces can be found using

A =
1

2
ρV 2

r SrefCA(Ma,α) (3.21)

N =
1

2
ρV 2

r SrefCN(Ma,α) (3.22)

where ρ is atmospheric density, and Sref is the vehicle’s reference area. CA, CN are the

axial force coefficient and normal force coefficient, respectively, which are functions of

Mach number, Ma, and angle-of-attack, α. Thrust can be generalized by

T = f(Isp, φt, α,Ma, ~x) (3.23)

where φt is the engine throttle and ~x is the state of the vehicle.

3.3 Non-dimensionalization

For better numerical conditioning, the equations of motion are nondimensionalized.

Distance is normalized by R0, the Earth’s radius at the equator, time is normalized by√
R0/G0, velocities are normalized by

√
R0G0, and mass is normalized by m0, the initial

mass of the vehicle. The following are the normalized equations, where the prime denotes

differentiation with respect to nondimensional time. Let all variable names remain the

same as their dimensional counterpart.

~r′ = ~V (3.24)

~V′ = − 1

r3
~r− A~1b + T~1b +N~1n (3.25)

m′ = −
√
R0

G0

T ·m
Isp

(3.26)

where Isp is dimenionsal. The thrust, T , and aerodynamic forces, A and N , are nondi-

mensionalized and their magnitudes are in g’s. A and N are given by the following
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equations,

A =
R0

2m0m(t)
ρ(r)V 2

r SrefCA(Ma, α) (3.27)

N =
R0

2m0m(t)
ρ(r)V 2

r SrefCN(Ma, α) (3.28)

where ρ and Sref remain dimensional. Vr is nondimensional relative velocity, given by

~Vr = ~V − ~ωE ×~r− ~Vw (3.29)

where ~ωE is the dimensionless angular rotation rate vector, and ~Vw is the dimensionless

wind velocity. The general formulation for non-dimenisonal thrust acceleration is given

by

T =
TDim

mm0G0

(3.30)

where TDim is dimensional thrust given by Eq. (3.23). The equation would be specific to

the engine model used.
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CHAPTER 4. OPTIMAL CONTROL PROBLEM

The guidance problem for the Generic Hypersonic Vehicle (GHV) is to find the body-

axis orientation, ~1b(t), for any given time. This determines the thrust direction and the

aerodynamic forces during the atmospheric portion of the ascent. The engine throttle,

φt, is a second control variable. However, for this research, φt is assumed to be given.

The initial conditions, ~r0 and ~V0 are also assumed to be known. The final conditions

(where t = tf ) will also be given, and can be written as k (0 < k ≤ 7) algebraic conditions

~Ψ
(
~rf , ~Vf ,mf

)
= 0, ~Ψ ∈ Rk (4.1)

where ~rf = ~r(tf ), ~Vf = ~V(tf ), and mf = m(tf ).

4.1 Problem Formulation

4.1.1 Cost Function and Hamiltonian

In order to apply optimal control theory, a performance index is needed. For ascent

trajectories, performance indices are typically chosen to minimized fuel consumption

and thereby maximizing the payload. Denote the performance index by

J = φ
(
~rf , ~Vf ,mf , tf

)
(4.2)

where only final weighting function, φ is used and no weight function, L, is used as in

Eq. (2.2). For this research, the cost function is maximize final weight or

J = −mf . (4.3)
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Using the equations of motion, the Hamiltonian function can be denoted as

H = ~PT
r
~V + ~PT

V

[
− 1

r3
~r + (T − A)~1b +N~1n

]
+ Pm

(
−
√
R0

G0

T ·m
Isp

)
(4.4)

where ~Pr and ~PV ∈ R3 are the costate vectors associated with the position and ve-

locity states, and Pm ∈ R is the costate scaler associate with mass. Unlike the rocket

formulation in Ref. (26), the costate for mass is included. In the rocket formulation,

the engine throttle was given, which is the same for the rocket. However, for rockets

in general, mass rate is only a function of the throttle, therefore, the variation of mass

is a prescribed function of time. In regards to the GHV, mass rate is a function of the

throttle, the state of the vehicle, and α, thus a function ~1b. Therefore it is included in

the Hamiltonian function.

The necessary conditions for the optimal solution can be represented as (28)

~P′r = −∂H
∂~r

(4.5)

~P′V = −∂H
∂ ~V

(4.6)

P ′m = −∂H
∂m

(4.7)

0 =
∂H

∂~1b
(4.8)

In addition to the terminal constraints given by Eq. (4.1), the optimal solution must

meet the following transversality conditions

~Pr(tf ) = −∂φ(~rf , ~Vf ,mf , tf )

∂~rf
+

(
∂ ~Ψ

∂~rf

)T

~ν (4.9)

~PV (tf ) = −∂φ(~rf , ~Vf ,mf , tf )

∂ ~Vf

+

(
∂ ~Ψ

∂ ~Vf

)T

~ν (4.10)

Pm(tf ) = −∂φ(~rf , ~Vf ,mf , tf )

∂mf

+

(
∂ ~Ψ

∂mf

)T

~ν (4.11)

H
(
~Pr, ~PV , Pm,~r

∗, ~V∗,m∗, ~1∗b , t
) ∣∣∣∣

tf

=
∂φ

∂tf
(4.12)
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where ~ν ∈ Rk is a constant multiplier vector and the asterisk means the optimal values

of the relevant variables. The final condition, Eq. (4.12), is used when the final time, tf ,

is not specified. The first three transversality conditions can be combined to eliminate ν,

leaving 7−k independent conditions involving only the final states, ~xf =
(
~rTf

~VT
f mf

)T
and costates, ~Pf =

(
~PT
rf

~PT
Vf

Pmf

)T
.

4.1.2 Costate Equations

The costate equations can be derived from the first order necessary conditions given

by Eqs. (4.5), (4.6), and (4.7).

~P′r =
1

r3
~Pv −

3
(
~PT
V~r
)

r5
~r− ~PT

V
~1b

(
∂T

∂~r
− ∂A

∂~r

)
− ~PT

V
~1n

(
∂N

∂~r

)
−N

(
∂~1n
∂~r

)T

~PV

+m

√
R0

G0

Pm

[
∂T

∂~r

1

Isp
+ T

∂

∂~r

(
I−1sp
)]

(4.13)

~P′v = −~Pr − ~PT
V
~1b

(
∂T

∂ ~V
− ∂A

∂ ~V

)
− ~PT

V
~1n
∂N

∂ ~V
−N

(
∂~1n

∂ ~V

)T

~Pv

+Pm

√
R0

G0

m

[
∂T

∂ ~V

1

Isp
+ T

∂

∂ ~V

(
I−1sp
)]

(4.14)

P ′m = −~PT
V
~1b

(
∂T

∂m
− ∂A

∂m

)
− ~PT

V
~1n
∂N

∂m
+ Pm

√
R0

G0

(
I−1sp
)
·
(
m
∂T

∂m
+ T

)
(4.15)

These equations are similar to the costate equations in the rocket problem formulation(26),

however, since mass rate is included in the Hamiltonian, those terms are present in the

costate equations for position and velocity. Additionally, an extra costate equation is

present, Eq. (4.15). The deviation in Eqs. (4.13) and (4.14) from the rocket costates

come from the evaluation of ∂T/∂~r and ∂T/∂ ~V. The dependency of thrust on the state

of the vehicle require those terms in the GHV formulation, whereas, in the rocket for-

mulation, the dependence on position is due to thrust loss from back pressure and there

is no dependency on velocity.
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Using the following relationships

∂ρ

∂~r
=

∂ρ

∂r

~r

r
(4.16)

∂V 2
r

∂~r
= 2~ωE × ~Vr ⇒

∂Vr
∂~r

=
1

Vr
(~ωE × ~Vr) (4.17)

∂α

∂~r
= ~ωE ×

∂α

∂ ~V
(4.18)

∂α

∂ ~V
=

1

Vr sinα
(~1Vr cosα− ~1b) (4.19)

the following expansions can be determined for ∂A/∂~r and ∂N/∂~r

∂A

∂~r
=

R0

2m0m
Sref

[
V 2
r CA

∂ρ

∂r

~r

r
+ 2ρCA

(
~ωE × ~Vr

)
+ ρVr

(
∂CA
∂Ma

∂Ma

∂Vr

∂Vr
∂~r

+
∂CA
∂Ma

∂Ma

∂Vs

∂Vs
∂~r

+
∂CA
∂α

∂α

∂~r

)]
(4.20)

=
R0

2m0m
Sref

[(
V 2
r CA

∂ρ

∂r
− ρVrM2

a

∂CA
∂Ma

∂Vs
∂r

)
~r

r

+

(
2ρCA + ρMa

∂CA
∂Ma

)(
~ωE × ~Vr

)
+ ρV 2

r

∂CA
∂α

(
~ωE ×

∂α

∂ ~V

)]
(4.21)

∂N

∂~r
=

R0

2m0m
Sref

[
V 2
r CN

∂ρ

∂r

~r

r
+ 2ρCN

(
~ωE × ~Vr

)
+ ρVr

(
∂CN
∂Ma

∂Ma

∂Vr

∂Vr
∂~r

+
∂CN
∂Ma

∂Ma

∂Vs

∂Vs
∂~r

+
∂CN
∂α

∂α

∂~r

)]
(4.22)

=
R0

2m0m
Sref

[(
V 2
r CN

∂ρ

∂r
− ρVrM2

a

∂CN
∂Ma

∂Vs
∂r

)
~r

r

+

(
2ρCN + ρMa

∂CN
∂Ma

)(
~ωE × ~Vr

)
+ ρV 2

r

∂CN
∂α

(
~ωE ×

∂α

∂ ~V

)]
(4.23)

where Vs(r) is nondimensional speed of sound. The following are the expansions for

∂A/∂ ~V and ∂N/∂ ~V

∂A

∂ ~V
=

R0

2m0m
ρSref

[(
2Vr

∂Vr

∂ ~V

)
CA + V 2

r

(
∂CA
∂α

∂α

∂ ~V
+
∂CA
∂Ma

∂Ma

∂Vr

∂Vr

∂ ~V

)]
(4.24)

=
R0

m0m
ρSref

[(
CA +

1

2
Ma

∂CA
∂Ma

)
~Vr +

1

2
V 2
r

∂CA
∂α

∂α

∂ ~V

]
(4.25)
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∂N

∂ ~V
=

R0

2m0m
ρSref

[(
2Vr

∂Vr

∂ ~V

)
CN + V 2

r

(
∂CN
∂α

∂α

∂ ~V
+
∂CN
∂Ma

∂Ma

∂Vr

∂Vr

∂ ~V

)]
(4.26)

=
R0

m0m
ρSref

[(
CN +

1

2
Ma

∂CN
∂Ma

)
~Vr +

1

2
V 2
r

∂CN
∂α

∂α

∂ ~V

]
. (4.27)

The following are the expansions for ∂A/∂m and ∂N/∂m

∂A

∂m
=

R0

2m0

ρV 2
r SrefCA

(
− 1

m2

)
(4.28)

∂N

∂m
=

R0

2m0

ρV 2
r SrefCN

(
− 1

m2

)
. (4.29)

In the costate equations, Eqs. (4.13) to (4.15), the terms associated with the differ-

ential of ~1n with respect to position and velocity can be shown to be zero. When α > 0,

use Eq. (3.14) to get(
∂~1n

∂ ~V

)
=

1

||~1b × ~Vr||
(~1b~1

T
b − I3×3)−

(~1b ~Vr)~1b − ~Vr

||~1b × ~Vr||2

(
∂||~1b × ~Vr||

∂ ~V

)T

=
1

||~1b × ~Vr||
(~1b~1

T
b − I3×3)−

~1n

||~1b × ~Vr||
(~1b × (~Vr × ~1b))T

||~1b × ~Vr||

=
1

||~1b × ~Vr||
(~1b~1

T
b + ~1n~1

T
n − I3×3)

=
1

Vr sinα
(~1b~1

T
b + ~1n~1

T
n − I3×3) (4.30)

(
∂~1n
∂r

)
=

1

||~1b × ~Vr||

{
~1b

[
(−ω̃E)T~1b

]T
+ ω̃E

}
− (~1Tb

~Vr)~1b − ~Vr

||~1b × ~Vr||2

(
∂||~1b × ~Vr||

∂~r

)T

=
1

Vr sinα

[
~1b(~ωE × ~1b)T~1n(~ω × ~1n)T + ω̃E

]
(4.31)

where ω̃E = −∂ ~Vr/∂~r is the skew symmetric matrix formed by ~ωE and I3×3 is a 3 × 3

identity matrix. When α < 0 and using Eq. (3.16) results in the terms(
∂~1n

∂ ~V

)
= − 1

||~1b × ~Vr||
(~1b~1

T
b + ~1n~1

T
n − I3×3)

=
1

Vr sinα
(~1b~1

T
b + ~1n~1

T
n − I3×3) (4.32)
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(
∂~1n
∂~r

)
=

1

Vr sinα

[
~1b(~ωE × ~1b)T~1n(~ωE × ~1n)T + ω̃E

]
. (4.33)

Using the following

~ωE × ~1b = ω̃E~1b (4.34)

ω̃TE = −ω̃E (4.35)

~1b(~ωE × ~1b)T = ~1b(ω̃E~1b)
T = ~1b~1

T
b ω̃

T
E (4.36)

~1n(~ωE × ~1n)T = ~1n~1
T
n ω̃

T
E (4.37)

the term associated with the differential of ~1n with respect to position, ∂~1n/∂~r then

becomes (
∂~1n
∂~r

)T

~PV =
1

Vr sinα

[
~1b(~ωE × ~1b)T + ~1n(~ωE × ~1n)T + ω̃E

]T
~PV

=
1

Vr sinα
ω̃E[~1b~1

T
b + ~1n~1

T
n − I3×3]~PV (4.38)

The bracketed term in the above equation can then be show to be zero

[~1b~1
T
b + ~1n~1

T
n − I3×3]~PV = (~1b~PV )~1b + (~1n~PV )~1n − ~PV

= PV cos(Φ− α)~1b + PV sin(Φ− α)~1n − ~PV

= 0. (4.39)

This simplification is a result of ~1b, ~1n, and ~PV being contained in the same plane in the

optimal solution and that the unit vectors, ~1b and ~1n being orthogonal to each other.

See Section 4.1.3 for details.

The differentiation of thrust with respect to the states, ∂T/∂~r, ∂T/∂ ~V, and ∂T/∂m,

are dependent on the engine model used. In Chapter 5, the engine model is presented

and those terms are given. The expanded costate equations, Eqs. (4.13) to (4.15), are

given in detail in Appendix B.
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4.1.3 Optimality Condition

The final necessary condition, Eq. (4.8), is used to determine the optimal control. In

carrying out the differentiation, it must be noted that the aerodynamic forces, A and

N , and the thrust, T , are functions of ~1b through their dependence on α. To evaluate

the differential, the following relationships are established,

∂α

∂~1b
=

cosα

sinα
~1b −

1

sinα
~1Vr (4.40)

∂~1n

∂~1b
=

1

||~1b × ~1Vr ||

[(
~1Tb ~1Vr

)
I3×3 + ~1b~1

T
Vr

]
+

1

||~1b × ~1Vr ||3
[(
~1Tb ~1Vr

)
~1b − ~1Vr

] [(
~1b~1

T
Vr

)
~1Vr − ~1b

]T
. (4.41)

Define the following

s = ||~1b × ~1Vr || (4.42)

a =
[(
~1TVr

~1b

)(
~PT
V
~1b

)
−
(
~PT
V
~1Vr

)]
(4.43)

b =

[
−
(
~PT
V
~1b

) ∂A
∂α

+
∂N

∂α

(
~PT
V
~1n

)]
(4.44)

c =

[
~PT
V
~1b − Pm

√
R0

G0

m

Isp

]
∂T

∂α
. (4.45)

The differential, Eq. (4.8), is evaluated and like terms are collected giving the following

optimal control vector

~1∗b = − 1
b+c
tanα
− aN

s3

{[
T − A+

N

s

(
~1Tb ~1Vr

)]
~PV

+

[
N

s

(
~PT
V
~1b

)
+
aN

s3

(
~1TVr

~1b

)
− b+ c

sinα

]
~1Vr

}
, c1

(
~x, ~P, ~1∗b

)
~PV + c2

(
~x, ~P, ~1∗b

)
~Vr (4.46)

where c1 and c2 are scalar functions of the state, ~x, costate, ~P, and the optimal control,

~1∗b . When compared to the rocket formulation(26), the optimal control has an included

term, c, resulting from thrust dependance on angle-of-attack. However, the same conclu-

sion can be made, that the optimal control, ~1∗b , lies in a plane formed by ~PV and ~Vr and
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the search for the optimal body axis orientation can be reduced to a one-dimensional

search in such a plane. Let

cos Φ = ~1TPV
~1Vr (4.47)

where ~1PV and ~1Vr are unit vectors in the direction of ~PV and ~Vr, respectively, and

Φ is the angle between ~PV and ~Vr. Figure 4.1 illustrates the plane. The following

1y

1n PV

1b

Vr

n

αΦ

Symmetric plane
of vehicle

zG

xG

yG

Figure 4.1 Body axes, ~PV , and ~Vr in Guidance System(26)

relationships can be determined from the figure

~1Tb
~PV = Pv cos (Φ− α) (4.48)

~1Tn
~PV = Pv sin (Φ− α) . (4.49)
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These relationships allow the Hamiltonian to be rewritten as

H = ~PT
r
~V − 1

r3
~PT
V~r + (T − A) ~PT

V
~1b +N~PT

V
~1n − Pm

mT

Isp

√
R0

G0

= ~PT
r
~V − 1

r3
~PT
V~r + (T − A)Pv cos (Φ− α) +NPv sin (Φ− α)

−Pm
mT

Isp

√
R0

G0

(4.50)

and the necessary condition can be rewritten as

∂H

∂α
= 0 (4.51)

Evaluating the differential gives the following results(
∂T

∂α
− ∂A

∂α

)
Pv cos (Φ− α) + (T − A)Pv sin (Φ− α)

+
∂N

∂α
Pv sin (Φ− α)−NPv cos (Φ− α)− Pm

m

Isp

√
R0

G0

∂T

∂α
= 0. (4.52)

This equation is more complex than found in Ref. (26), but nevertheless, it is still a root

finding problem. With known costate values and relative velocity, and given that A, N ,

T , ∂A/∂α, ∂N/∂α, and ∂T/∂α, are functions of angle-of-attack, the above equation can

be solved numerically.

Once α is determined, ~1∗b can be determined from the following equation

~1∗b =
sinα

sin Φ
~1PV +

sin(Φ− α)

sin Φ
~1Vr (4.53)

where the constants c1 and c2 in Eq. (4.46) are determined by taking the dot product of

Eq. (4.46) with ~1PV and ~1Vr and using the relationships from Eqs. (4.48) and (4.49).

4.1.4 Transversality Conditions

The end boundary conditions for the optimal control problem are given by the

transversality conditions, Eqs. (4.9)-(4.11), and the final conditions given by Eq. (4.1).

The additional constant vector, ~ν, can be eliminated using the transversality conditions.
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In this research, the given final conditions for the guidance problem are final altitude

(r∗f ), final velocity (V ∗f ), final orbital inclination (i∗), and final flight path angle( γ∗f ).

Note that in this formulation, γ∗f does not have to be zero. For a fixed final time, these

conditions can be written as functions of the states in the following way

Ψ1 =
1

2
~rTf~rf −

1

2
r∗

2

f = 0 (4.54)

Ψ2 =
1

2
~VT
f
~Vf −

1

2
V ∗

2

f = 0 (4.55)

Ψ3 = ~1TN

(
~rf × ~Vf

)
−
∣∣∣∣∣∣~rf × ~Vf

∣∣∣∣∣∣ cos i∗ = 0 (4.56)

Ψ4 = ~rTf
~Vf − r∗fV ∗f sin γ∗f = 0 (4.57)

where ~1TN is the unit vector parallel to the polar axis of the Earth and pointing to the

North. These equations give four of the seven required terminal constraints. Note the

difference with the approach in Ref. (26), where final velocity is included as a terminal

constraint, rather than iterated to determine the time of flight. Substituting the above

equations and the final cost function, Eq. (4.3), into the transversality conditions gives

~Pr(tf ) = ν1~rf + ν3

~Vf × ~1n −
~Vf × ~hf∣∣∣∣∣∣~rf × ~Vf

∣∣∣∣∣∣ cos i∗

+ ν4 ~Vf (4.58)

~PV (tf ) = ν2 ~Vf + ν3

~1n ×~rf − ~rf × ~hf∣∣∣∣∣∣~rf × ~Vf

∣∣∣∣∣∣ cos i∗

+ ν4~rf (4.59)

Pm(tf ) = 1 (4.60)

In order to remove the constant vector ~ν, the following manipulations are done. The

dot product of ~rf and Eq. (4.58) and (4.59) are combined with the dot product of ~Vf

and Eq. (4.58) and (4.59) to give Eq. (4.61). Next, the angular momentum vector,

~hf = ~rf × ~VF , is dotted with Eq. (4.58) and (4.59) and combined to give Eq. (4.62).
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The final condition is the same as Eq. (4.60).(
~VT
f
~Vf

)(
~rTf
~PVf

)
−
(
~rTf~rf

) (
~VT
f
~Prf

)
−
(
~VT
f~rf

) [
~rTf
~Prf − ~VT

f
~PVf

]
= 0 (4.61)

−~hTf ~Prf

[
~hTf

(
~1n ×~rf

)]
+ ~hTf

~PVf

[
~hTf

(
~Vf × ~1n

)]
= 0 (4.62)

Pmf − 1 = 0 (4.63)

Equations (4.54) to (4.57) combined with Eqs. (4.61) to (4.63) give the seven terminal

boundary conditions.

4.1.5 Ascent Guidance Path Constraints

4.1.5.1 Dynamic Pressure Constraint

Dynamic pressure is a concern because in excess it can cause large structural loading

as well as excessive heating on the vehicle. For these reasons, the dynamic pressure is

regulated below a maximum value. Dynamic pressure is defined as

q̄ =
1

2
ρV 2

r . (4.64)

The constraint can be written as

S1 = q̄ − q̄max ≤ 0. (4.65)

Since S1 is function of the state only, the derivative of S1 is taken until an explicit

function of both state and control is obtained. The derivative is given by

Ṡ1 =
1

2r

∂ρ

∂r
V 2
r ~r

T ~V + ρ~VT
r
~̇Vr (4.66)

where

~̇Vr = ~̇V − ~ωE × ~V − ~̇VW . (4.67)

The dynamic pressure constraint is a first order constraint since the control, ~1b, appears

in the first derivative of the constraint (through ~V, Eq. (3.25)).
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The addition of the constraint to the optimal control problem modifies the costate

equation to give

~̇P = −∂H
∂~X
− λq

∂Ṡ1

∂ ~X
(4.68)

where λq is a constant multiplier. When the constraint is not active (i.e. S1 < 0), λq = 0

and the costate is determine as if no constraint is present. If the constraint is active for

some finite time interval, [t1, t2], then S2 = 0, and λq satisfies the modified optimality

condition

∂H

∂~1b
+ λq

∂Ṡ1

∂~1b
= 0. (4.69)

Additionally, since the costate equation will be determined by two different conditions,

the costate will have a jump at t1

~P(t+1 ) = ~P(t−1 ) + k
∂S1

∂ ~X
(4.70)

where k is a constant multiplier. The second term in the modified optimality condition,

Eq. (4.69), can be shown to be in the form

∂Ṡ1

∂~1b
= d1

(
~X, ~1b

)
~Vr + d2

(
~X, ~1b

)
~1b (4.71)

where d1 and d2 are scalar functions of the state vector (~X) and control vector (~1b).

Equation (4.69) can then be used to show that the optimal control, ~1∗b lies in the plane

of ~Pv and ~Vr. As before, the modified optimality condition can be rewritten as

∂H

∂α
+ λq

∂Ṡ1

∂α
= 0. (4.72)

Because S1 = 0 during the specified time interval, this requires Ṡ1 = 0. Using this and

Equation (4.72), the optimal solution can be found numerically.

However, the necessity for determining the time t1 can pose an implementation issue.

An accurate guess can lead to the solution process converging quickly, while a arbitrary
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guess can lead to slow convergence. To keep the guidance algorithm simple, the follow-

ing implementation is used. It is known that the engine throttle is more effective in

regulating the dynamic pressure by slowing down the increase in velocity. To throttle

the engine, first, the optimal body axis (~1b) is determined where no constraint on the

dynamic pressure is considered. Consider the time derivative of dynamic pressure at

time t

˙̄q(t) =
1

2
V 2
r

∂ρ

∂r

~rT ~V

r
+ ρ~VT

r
~̇V (4.73)

, d1 + d2η(t) (4.74)

Tt = η(t)T, 0 ≤ η(t) ≤ 1 (4.75)

where η(t) is a scalar value to scale the thrust, Tt is the thrust produced by the engine,

and d1 and d2 are scalar functions of state and and the optimal control, α∗. T in

Eq. (4.75) can be defined differently depending on the engine model. If the engine is

linearly dependant on throttle, than T is the portion of the thrust equation not a function

of the throttle. However, if the engine model is a nonlinear function of throttle, then

η scales the total thrust produce by the engine and T is the thrust produced assuming

full throttle. The values for scalar functions can be shown to be

d1 =
1

2
V 2
r

∂ρ

∂r

~rT ~V

r
− ρ

[
~rT ~Vr

r3
+ AVr cosα +NVr sinα

]
(4.76)

d2 = ρVrT cosα (4.77)

where ~̇V in Eq. (4.73) is found from Eq. (3.25) and T is replaced by Tt. Using the above

equations, and by letting δ > 0 be a small time increment, the first order approximation

of dynamic pressure at time t+ δ is given by

q̄(t+ δ) ≈ q̄(t) + ˙̄q(t)δ (4.78)

= q̄(t) + [d1 + d2η(t)] δ. (4.79)

An on-board guidance algorithm would determine the entire ascent trajectory (~X) and

the control vector (~1b) from the current condition to the targeted final condition for
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each guidance cycle. The attitude command used is the first data point in the guidance

solution. The scalar value, η, throttles the engine linearly. This throttle command

is determined at the current time t so that q̄(t + δ) ≤ q̄max. Using the first order

approximation for dynamic pressure at time t+ δ gives

η(t) ≤ q̄max − q̄(t)− d1δ
d2δ

, ηq. (4.80)

In all likelihood, a minimum throttle setting, ηmin > 0, will need to be observed. The

command throttle η is given by

η =

 ηq, if ηmin ≤ ηq ≤ 1

ηmin, if ηq < ηmin

. (4.81)

An important thing to note is when the thrust is not a linear function of throttle. In

this case, η is used to scale the thrust, T , to obtained a desired thrust, Tt. The dynamic

pressure controller would need to implement a way of finding the throttle necessary to

command the desired thrust. This could be done by using a root finding algorithm. The

value of η would be determined by Eq. (4.81), which would determine Tt from Eq. (4.75).

The thrust, T , is found from Eq. (3.23), and assumes full throttle. However, the root

finding algorithm would find the throttle, φt, required to obtain the desired thrust, or

φt = f−1(Tt, Isp, α,Ma, ~x). (4.82)

4.1.5.2 Angle-of-Attack Constraint

The necessity to regulate angle-of-attack may be needed during the ascent of the

vehicle. Two more constraints are used to bound α,

S2 = α− αmax ≤ 0 (4.83)

S3 = −α + αmin ≤ 0. (4.84)
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Only the first constraint, Eq. (4.83), is discussed, since both equations are of similar

form. Because the control appears explicitly in Eq. (4.83), the constraint is a zeroth-

order constraint. The modified costate equation is given by

~̇P = −∂H
∂~X
− λα

∂S2

∂ ~X
. (4.85)

When S2 is not active (S2 < 0), then the multiplier λα = 0 and the optimal control

problem is treated as in the unconstrained case. When the constraint is active, S2 = 0,

then the constant multiplier needs to satisfy the new optimally condition

∂H

∂~1b
+ λα

∂S2

∂~1b
= 0. (4.86)

Using Eq. (4.40) then

∂S2

∂~1b
=

∂α

∂~1b
=

cosα

sinα
~1b −

1

sinα
~1Vr . (4.87)

Using the above result and following the same steps as done previously, it can be shown

that the optimal control, ~1∗b , lies in the plane formed by ~Pv and ~Vr. Because of this,

the optimality condition can be rewritten

∂H

∂α
+ λα

∂S2

∂α
= 0. (4.88)

Solving for λα gives

λα = − ∂H/∂α
∂S2/∂α

= −∂H
∂α

(4.89)

where ∂H/∂α is given by Eq. (4.52). In the time segement when S2 = 0, the angle-of-

attack is determined by the constraint

α = αmax. (4.90)

The control, ~1b, is then determined as before (using Eq. (4.53)). The constant λα is then

determined from Eq. (4.89) and used to calculate the costates.
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CHAPTER 5. VEHICLE CHARACTERISTICS

The hypersonic vehicle model used was taken from White et al. (30). The Generic

Hypersonic Aerodynamics Model Example (GHAME) represents a single stage to orbit

vehicle that can take off horizontally from conventional runways, accelerate to orbital

velocities, and either insert into low Earth orbit or return to Earth for horizontal landing.

The vehicle geometry is based off a cylinder 20 feet in diameter and 120 feet in length.

Attached to the cylinder are two 10 ◦ half angle cones to represent the nose and the tail

of the aircraft. Finally, the wing and tail are modeled as thin triangular plates. The

referece area, Sref, is 6000 ft2, the reference cord, c̄, is 75 ft, and the reference span, b,

is 80 ft. The overall length of the vehicle is 234.4 ft. The vehicle is estimated to have

a gross take off weight of 300,000 pounds. The configuration of the vehicle is shown in

Figure 5.1.

5.1 GHAME Aerodynamic Data

The GHAME aerodynamic model is based loosely on empirical data. Included in the

data were aerodynamic anomalies, coming from the space shuttle, lifting body type vehi-

cles, a swept double-delta configuration vehicle, and 6 ◦ half-angle cones using modified

Newtonian impact flow theory. Lift and drag, L and D respectively, for the GHAME

model are given as

L = CLq̄Sref (5.1)

D = CDq̄Sref (5.2)
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Figure 5.1 GHAME Aircraft Configuration (30)

where q̄ is the dynamic pressure. The lift and drag coeffients, CL and CD respectively,

are given by

CL = CL0(Ma, α) + CLα(Ma, α)α + CLδe(Ma, α)δe (5.3)

CD = CD0(Ma, α) + CDα(Ma, α)α (5.4)

where α is angle of attack, Ma is Mach number, δe is the elevon deflection, and the other

coefficients were determined by look up table, where the range for Mach is 0 < Ma < 24,

and for angle-of-attack is −3 ◦ < α < 21 ◦. The data tables for GHAME are provided in

Appendix A. To increase computation efficiency, curve fits of the data were used. The

curve fit equations are also provided in Appendix A. For this research, elevons were not

used, i.e. δe = 0.

In the non-dimensional equations of motion (Eqs. (3.24) and (3.25)) both axial and

normal force are needed, but the GHAME model provides lift and drag coefficients.

Therefore, the following conversions are used to find the axial and normal force coefficient
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in Eqs. (3.27) and (3.28)

CA = −CL sinα + CD cosα (5.5)

CN = CD cosα + CD sinα. (5.6)

5.2 GHAME Engine Model

The engine model was develop to represent the full flight envelope of the vehicle. For

the range of flight of the GHAME vehicle, multiple engine cycles would be needed. This

would include a turbojet cycle, ramjet cycle, and scramjet cycle. It was assumed that

the engine would automatically change from one cycle to the next and that the engine

had a variable inlet. The breakpoints for the cycles were: turbojet, 0 < Ma < 2; ramjet,

2 < Ma < 6; scramjet, 6 < Ma.

The development of the engine model begins with the following thrust equation(31)

T = ṁG0Isp (5.7)

where Isp is the specific impulse, ṁ is the mass rate, and G0 is the gravitational accel-

eration magnitude at the surface of the Earth. Assume the weight flow rate, ṁG0, to

be the air that passes through the intake of the engine, with an area Ac = 300 ft2. The

weight flow rate is then given

ṁG0 = G0ρVrAc (5.8)

where ρ is atmospheric density and Vr is Earth relative velocity. The above equation

assumes that air enters the cowl uniformly. However, this is not true for scramjet engines,

so the authors of GHAME introduced a capture-area coefficient, CT . The coefficient

depends on both angle-of-attack and Mach number, CT = f(α,Ma). Then, the effective

weight flow can be written as

ṁG0 = G0ρVrCT (α,Ma)Ac. (5.9)
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Fuel flow is handled by a throttle command, φt and varies from 0 to 2. The fuel/air

ratio of the engine is adjusted to stoichiometric ratio, which is 0.029φt. Lastly, Isp is

a function of the throttle setting and Mach number. Combining all of the above into

Eq. (5.7) results in the following thrust model

T = 0.029φtIsp(Ma, φt)ρG0VrCT (α,Ma)Ac. (5.10)

The specific impulse, Isp, and capture-area coefficient, CT , are found using lookup tables.

Again, in this research, a curve fit was used to represent both values. The data tables

and curve fits are provided in Appendix A. An important note is that thrust for this

vehicle, and air-breathing hypersonic vehicles in general, are functions of the state but

this is not true for rockets. The thrust model from Eq. (5.10) was nondimensionalized

for use in the optimal control formulation, giving

T = 0.029

√
G0

R0

φtIsp(Ma, φt)
R0

m0m(τ)
ρ(r)VrAcCT (α,Ma) (5.11)

where Isp, ρ, and Ac remain dimensional, τ is nondimensional time, r is nondimensional

position magnitude, R0 is the Earth’s radius at the equator, m is nondimensional mass,

m0 is the initial mass of the vehicle, and Vr is nondimensional Earth relative velocity

magnitude.

5.3 Costate Equations Continued

The costate equation derivation in the previous chapter required the terms ∂T/∂~r,

∂T/∂ ~V, and ∂T/∂m. Using Eq. (5.10) and the simplifications from Section 4.1.2, the
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following are the expanded terms

∂T

∂~r
=

√
G0

Ro

(0.029φt)
R0

m0m
Ac ·[

ρVrCT

(
∂Isp
∂Ma

∂Ma

∂Vr

∂Vr
∂~r

+
∂Isp
∂Ma

∂Ma

∂Vs

∂Vs
∂~r

)
+ IspVrCT

∂ρ

∂~r
+ ρCT Isp

∂Vr
∂~r

+ρVrIsp

(
∂CT
∂Ma

∂Ma

∂Vr

∂Vr
∂~r

+
∂CT
∂Ma

∂Ma

∂Vs

∂Vs
∂~r

+
∂CT
∂α

∂α

∂~r

)]
=

{√
G0

R0

(0.029φt)
R0

m0m
Ac

}
·[(

−ρM2
aCT

∂Isp
∂Ma

∂Vs
∂r

+ IspVrCT
∂ρ

∂r
− ρIspM

2
a

∂CT
∂Ma

∂Vs
∂r

)
~r

r
+ ρIspVr

∂CT
∂α

(
~ωE ×

∂α

∂ ~V

)
+

(
ρ

Vr
MaCT

∂Isp
∂Ma

+
ρ

Vr
IspCT +

ρ

Vs
Isp
∂CT
∂Ma

)(
~ωE × ~Vr

)]
(5.12)

∂T

∂ ~V
=

√
G0

R0

(0.029φt)ρ
R0

m0m
Ac

[
VrCT

∂Isp
∂Ma

∂Ma

∂Vr

∂Vr

∂ ~V
+ IspCT

~Vr

Vr

+IspVr

(
∂CT
∂α

∂α

∂ ~V
+
∂CT
∂Ma

∂Ma

∂Vr

∂Vr

∂ ~V

)]
=

√
G0

R0

(0.029φt)ρ
R0

m0m
Ac

[(
MaCT

∂Isp
∂Ma

+ IspCT + IspMa
∂CT
∂Ma

) ~Vr

Vr

+IspVr
∂CT
∂α

∂α

∂ ~V

]
(5.13)

∂T

∂m
= 0.029φt

√
G0

R0

Ispρ
R0

m0

VrCTAc

(
− 1

m2

)
(5.14)

where ~r and ~V are nondimensional position and velocity, respectively, ~Vr is nondimen-

sional Earth relative velocity, ~ωE is nondimensional Earth rotation rate vector, and Vs

is nondimensional speed of sound.
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CHAPTER 6. NUMERICAL METHOD

The optimal control problem can be summarized with the following equations

Hamiltonian: H(x, u, P, t) , L(x, u, t) + P Tf(x, u, t) (6.1)

Dynamics: ẋ = f(x, u, t) =

(
∂H

∂P

)T
(6.2)

Costate Equations: Ṗ = −
(
∂L

∂x

)T
−
(
∂f

∂x

)T
P = −

(
∂H

∂x

)T
(6.3)

Optimality Condition:

(
∂H

∂u

)T
=

(
∂L

∂u

)T
+

(
∂f

∂u

)T
P = 0 (6.4)

Terminal Constraints: φf (xf , tf ) = 0 (6.5)

Path Constraints: S(x, u, t) ≤ 0 (6.6)

where H, the Hamiltonian, is a function of the states, x, the costates, P , the control,

u, and time, t. The weighting function or performance index is denoted as L, and is a

function of the state, control, and time. The terminal constraints, Eq. (6.5) are functions

of final time, tf , and the state at final time, xf = x(tf ). Finally, the path constraints,

Eq. (6.6), are a function of the state, control, and time.

The solution to the above problem can be determined by restating the optimal control

problem as a two point boundary value problem (TPBVP). First, substitute the opti-

mal control determined from Eq. (6.4) into the state and costate equations, Eqs. (6.2)
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and (6.3). Let ~y = (~xT ~PT )T ∈ R2n with n = 7, then the complete TPBVP is given by

d~y

dt
= ~f(t, ~y) (6.7)

~B0(~y0) = 0 (6.8)

~Bf (~yf ) = 0 (6.9)

where t is time, ~B0(~y0) = 0 are the given initial conditions, and ~Bf (~yf ) = 0 are the final

conditions (Eq. (6.5)).

6.1 Finite Difference Method

A numerical solution to the TPBVP can be obtained using a finite difference method (32).

Let tf be a specified final time. As recommend by Keller(32) and Press(34), the first

order ordinary differential equations (ODEs) in Eqs. (6.7) to (6.9) are replaced by ap-

proximate finite difference equations (FDEs) on a grid of points over the given time

domain. Divide the time domain into M subintervals of equal length,

tk = t0 + kh, k = 0, 1, ...,M ; h =
tf − t0
M

(6.10)

where tk is a given time node, t0 is the initial time, and tf is a specified final time.

A central difference scheme is used to represent the differential, resulting in the FDE

equivalent of Eq. (6.7)

~yk − ~yk−1 = h~f

(
tk−1/2,

~yk − ~yk−1
2

)
, k = 1, 2, ...,M (6.11)

where ~yk = ~y(t0 + kh) is the value of the solution at node tk. Rewriting Eq. (6.11) and

the boundary conditions gives the following

~Ek = ~yk − ~yk−1 − h~f
(
tk−1/2,

~yk − ~yk−1
2

)
= 0 (6.12)

~E0 = ~B0(~y0) = 0 (6.13)

~EM = ~Bf (~yf ) = 0. (6.14)
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Let ~Y = (~yT0 ~yT1 . . . ~yTM)T ∈ R2n(M+1) refer to the set of unknown variables. Equa-

tion (6.12) represents 2n equations for each node coupling 4n (2×2n) variables at nodes

k and k − 1. Also, Eq. (6.12) is valid on M points of the grid, giving 2nM equations

for the 2n(M + 1) variables. The boundary conditions, Eqs. (6.13) and (6.14), are the

remaining 2n equations. Equations (6.12) to (6.14) can be summarized by

~E(~Y) = 0. (6.15)

The problem is a root finding problem for a system of 2n(M + 1) nonlinear algebraic

equations. It has been shown that under certain conditions of smoothness and boundary

conditions(32):

• Both the original TPBVP and the finite difference problem have a unique solution;

• The solution to the finite difference problem, ~Yk, is a second-order approximation

to the solution of the TPBVP at time tk, ~Y
∗(tk), i.e.,

||~Y∗(tk)− ~Yk|| = O(h2), K = 0, 1, . . . ,M. (6.16)

6.2 FDE Solution Algorithm

The Modified Newton Method has been show to work well in solving the FDE prob-

lem, Eq. (6.15) (33). The algorithm begins with an initial guess, ~Yj,k, which are the

values of the 2n variables, Yj, at M + 1 points tk. The initial guess is adjusted by a

value ∆~Yj,k so that the updated value, ~Yj,k + ∆~Yj,k, is a closer approximation to the

solution. To determine the equation for the increments, the FDE’s are expanded in first

order Taylor series with respect to small changes, ∆~Yk,

~Ek(~Yk + ∆~Yk, ~Yk−1 + ∆~Yk−1) ≈ ~Ek(~Yk, ~Yk−1) +
2n∑
n=1

∂~Ek

∂Yn,k−1
∆Yn,k−1 +

2n∑
n=1

∂~Ek

∂Yn,k
∆Yn,k. (6.17)
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The solution is found when Eq. (6.15) is met, (i.e. the updated value ~E(~Y + ∆~Y) is

zero). Let

Sj,n =
∂Ej,k
∂Yn,k−1

, Sj,n+2N
∂Ej,k
∂Yn,k

, n = 1, 2, . . . , 2N (6.18)

then the set of equations at an interior point can be written as

2N∑
n=1

Sj,n∆Yn,k−1 +
4N∑

n=2N+1

Sj,n∆Yn−2N,k = −Ej,k, j = 1, 2, . . . , 2N. (6.19)

Additionally, the endpoints can be expanded in a first order Taylor series. With

Sj,n =
∂Ej,1
∂Yn,1

, n = 1, 2, . . . , 2N (6.20)

the first boundary can be expanded to

2N∑
n=1

Sj,n∆Yn,1 = −Ej,1, n = N + 1, N + 2, . . . , 2N. (6.21)

Similarly, with

Sj,n =
∂Ej,M+1

∂Yn,M
, n = 1, 2, . . . , 2N (6.22)

the second boundary can be written as

2N∑
n=1

Sj,n∆Yn,M = −Ej,M+1, n = 1, 2, . . . , N. (6.23)

Equations (6.19), (6.21), and (6.23) represent a set of linear equations to be solved

for the correction term ∆~Y, and are iterated until the corrections are sufficiently small.

Because each Sj,n couples only points k and k−1, these equations have a special structure.

Figure 6.1 shows the structure for the case of five variables, four grid points, three

initial boundary conditions, and two end conditions. The coefficients of the FDEs are

represented by “x”, “V” represents a component of the unknown solution vector, “B” is

a component of the known right-hand side, and the empty space represent zeros. This

“block diagonal” structure allows the equations to be solved using a special form of
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Figure 6.1 Matrix Structure of a Set of Linear FDEs

Gaussian elimination which minimizes the number of operations. Standard Gaussian

elimination uses elementary operations to manipulate the algebraic linear equations to

produce unity in the diagonal elements and zeros below the diagonal. The block structure

of this problem allows the linear equations to be reduce more than the standard from.

An added benefit of this structure is that it minimizes storage of matrix coefficients.

Figure 6.2 represents the final from after the Gaussian elimination, which allows the

solution to be determined by a back-substituting procedure.

The update to the solution is then given by

~Yj = ~Yj−1 + σj∆~Yj, 0 < σj ≤ 1 (6.24)

where j denotes the j-th iteration, and the step size parameter, σ, begins with a value

of 1 and is halved until the following condition is met

σj = max
0≤i

{
1

2i

∣∣∣∣~ET

[
~Yj−1 +

∆~Yj

2i

]
~E

[
~Yj−1 +

∆~Yj

2i

]
< ~ET (~Yj−1)~E(~Yj−1)

}
. (6.25)
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Figure 6.2 Target Structure of the Gaussian Elimination

By choosing this step size, the sequence
{
||~E(~Y)||

}
is guaranteed to be monotoni-

cally decreasing. Convergence is achieved when ||~E(~Yj)|| is less than some prescribed

tolerance. Although the step size selection in Eq. (6.25) requires additional function

evaluations, the result is a more robust algorithm, especially when the initial guess is

not close to the final solution. The step size selection is a critical element in the success

of the finite difference approach in solving the given optimal ascent problem.

6.3 Jacobian (∂~E/∂ ~Y) Calculation

The Jacobian ∂~E/∂ ~Y required by the Modified Newton Method, is evaluated by a fi-

nite difference approximation because of the complexity of an analytical evaluation. The

complexity is due to the needed second-order partial derivatives on the right hand side

of the state equations. Additionally, if a path constraint is active, the added Lagrange

multiple from the constraint (i.e. the angle-of-attack constraint) further adds complex-
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ity. Finite difference evaluation are fast because the functions evaluations are algebraic.

Also, it was shown previously (27) that numerical Jacobians and analytical Jacobians

are numerically the same when comparing values between the 6th and 8th digit. Lastly,

the generic nature of the finite difference method requires no change in code when differ-

ent vehicle configurations are used. The analytical method would require time-intensive

derivation of the Jacobian for any vehicle change.

For the boundary conditions, Eqs. (6.13) and (6.14), the Jacobian can be easily be

determined analytically. Since the starting boundary condition is ~E0(~Y0) = ~B0(~Y0) =

~X(t0)− ~X0 = 0, the Jacobian is given by the following matrices.

∂~E0

∂ ~X0

=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(6.26)

∂~E0

∂~P0

=



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (6.27)

At the final boundary condition, ~EM(~YM) = ~Bf (~Yf ) = 0, the Jacobian is given by
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the following matrices

∂~EM

∂ ~XM

=



~rf 0 0

0 ~Vf 0

~Vf × ~1N −
~Vf×~hf
hf

cos(i) −~rf × ~1N +
~rf×~hf
hf

cos(i) 0

~Vf ~rf 0

V 2
f
~Pvf + ~Vf (~r

T
f
~Prf )+ −r2f ~Prf +~rf (~r

T
f
~Prf )− 0

~Prf (
~VT
f~rf )− ~Vf (~V

T
f
~Pvf ) ~rf (~V

T
f
~Pvf )− ~Pvf (

~VT
f~rf )

C̄1 C̄2 0

0 0 0



(6.28)

∂~EM

∂~PM

=



0 0 0

0 0 0

0 0 0

0 0 0

−r2f ~Vf +~rf (~V
T
f~rf ) V 2

f ~rf − ~Vf (~V
T
f~rf ) 0

(~hTf
~RN)hf (~hTf

~VN)~hf 0

0 0 1



(6.29)

where ~RN , ~VN , C̄1, C̄2 are defined as

~RN = ~rf × ~1N (6.30)

~VN = ~Vf × ~1N (6.31)

C̄1 = (~hTf
~Prf )(~1N × ~hf + ~Vf × ~RN) + (~hTf

~RN)(~Vf × ~Prf )

+(~hTf
~Pvf )(

~Vf × ~VN) + (~hTf
~VN)(~Vf × ~Pvf ) (6.32)

C̄2 = (~hTf
~Pvf )(~1N × ~hf + ~VN ×~rf ) + (~hTf

~VN)(~Pvf ×~rf )

(~hTf
~Prf )(

~RN ×~rf ) + (~hTf
~RN)(~Prf ×~rf ). (6.33)

In some instances, the approximations rf ≈ r∗f and γf ≈ γ∗f are used to simplify the

Jacobian.



60

6.4 Final Time Adjustment

In order to solved the boundary value problem, the finite difference scheme assumes a

fixed final time. However, the ascent guidance problem is a free final time problem. The

following algorithm is used to adjust the final time and satisfy the final transversality

condition, Eq. (4.12). First, a solution to the fixed final time problem is solved. The

Hamiltonian is then evaluated at the final time, giving H(tf1). The final time is then

perturbed by some value, δ, so tf2 = tf1 + δ. A new trajectory is generated and the

Hamiltonian evaluated at the new final time, H(tf2). The objective is to find a final

time to satisfy the terminal constraint, so an updated value is calculated using the

secant method

tf3 = tf2 −
tf2 − tf1

H(tf2)−H(tf1)
H(tf2). (6.34)

This process is repeated until |H(tf )| < ε. The above equation can be generalized as

tfk+1
= tfk −

tfk − tfk−1

H(tfk)−H(tfk−1
)
H(tfk). (6.35)

6.5 Initial Guess

The finite difference method needs an initial guess, ~Yj,k. The initial guess used begins

with a vacuum solution for a rocket using constant thrust, as described in Ref. (27).

The resulting vacuum trajectory is a single burn trajectory with constant mass rate.

The algorithm provides state, costate, and final time information. However, since the

algorithm uses a constant mass rate, the mass is treated as an explicit function of time

and the mass costate is not needed. The solution does not provide either the mass state

or the associated mass costate, Pm. In order to remedy the lack of information, the

vacuum solution is appended the values using the following process. For the mass state,

the initial mass is known and the time vector is given by the rocket vacuum solution.
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The dimensionless mass rate is

m′ = −
√
r0
g0

mT

Isp
. (6.36)

This allows the mass state to be determined by integrating the above equation forward

in time.

The mass costate is determined by Eq. (4.15) with some simplification. Since the

guess is a vacuum solution, both aerodynamic forces, A and N , can be removed. Second,

it is a well known result for optimal rocket flight in a vacuum, that the optimal body

x-axis aligns with the costate vector ~Pv (27). The equation can then be rewritten as

P ′m = −~PT
v
~Pv

(
∂T

∂m

)
. (6.37)

The costate vector ~Pv is provide by rocket vacuum solution. Finally, the transversality

condition, Eq. (4.60), gives the end condition Pm(tf ) = 1. This allows the mass costate

to be determined by integrating the above equation backwards in time.

In order to develop a full atmospheric solution, a homotopy method is applied to

gradually introduce the aerodynamic terms. Only the atmospheric density is modified,

ρ̂ = κρ, 0 ≤ κ ≤ 1 (6.38)

where the modified density, ρ̂, is placed everywhere ρ appears in the state, costate, and

path constraint equations. The homotopy parameter, κ, begins at 0 and solves the

vacuum solution for the hypersonic vehicle, using the initial guess described. The term

is then increased and the previous solution is used as the initial guess until κ = 1. In

this research, once the atmospheric solution was found, all other variations of initial and

final conditions could be solved using the original atmospheric solution.

6.6 Algorithm Modification for Changes in Vehicle

The desired algorithm to find an optimal solution would be independent of vehicle

used. Much effort was done to minimize any changes needed to the overall algorithm
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if the vehicle model was changed. This section outlines what items need to be changed

when either the vehicle model is changed or the final conditions.

The optimal control problem is defined for a vehicle in an inertial coordinate system

where the aerodynamic forces, A and N , act in the body longitudinal and normal direc-

tion respectively, and thrust acts in the body longitudinal direction. The derivation of

the necessary conditions remain the same for all vehicles described by those equations

of motion.

The expansion of the costates is where any changes to algorithm and therefore the

code need to be made. In general, the aerodynamic forces can be found using Eqs. (3.21)

and (3.22), however both the normal and axial force coefficients, CN and CA respectively,

are unique to a vehicle. The expanded costates need these terms as well as their partial

with respect to Mach and angle-of-attack.

In general, hypersonic vehicles have an engine that are functions state and attitude

of the vehicle. But, the engine model used in this research was unique to the GHAME

model. The costate equation took this into account, however, the differentiation of

thrust with respect to the states, ∂T/∂~r, ∂T/∂ ~V, and ∂T/∂m, would change with the

engine model used. Therefore, the expansion of the costate terms that involved those

differentiations would need to be updated. Additionally, the engine model would need

to supply the effect of thrust due to changes in Mach and angle-of-attack.

Lastly, the transversality conditions are dependent on the final conditions specified

by the user. If a different set of final conditions are desired, the user would need to find

the seven terminal boundary conditions as a function solely of states and costates. The

algorithm would then need to be adjusted where the Jacobian (∂~E/∂ ~Y) calculation is

made.
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CHAPTER 7. ANALYSIS AND RESULTS

7.1 Open-Loop Solutions

7.1.1 Verification and Validation

To check the validity of the finite difference method, open-loop results are compared

to results from a commercial optimization software based on a pseudospectral method,

Direct and Indirect Dynamic Optimization (DIDO). DIDO is a MATLABTM program

that solves optimal control problems using the optimization engine Sparse Nonlinear

Optimizer (SNOPT). The software approximates the problem by pseudospectral tech-

niques into a finite dimensional problem and obtains a solution numerically (35). The

ascent trajectory optimization problem solved in DIDO is modeling the dynamics of a

2-dimensional point mass over a non-rotating Earth. The DIDO solution uses 50 nodes

and the cost function is to minimize final mass. The finite difference method uses 100

nodes. Additionally, winds are not included and the rotation of the Earth is removed.

Both methods use the same initial conditions and final target conditions. The same

aerodynamic and engine model are used for both methods.

Figures 7.1 to 7.4 show the comparison of two trajectories generated using DIDO and

the finite difference method. The following initial conditions are used: initial altitude of

76,000 feet; initial velocity of 5,500 ft/s; initial weight of 280,000 pounds. The throttle

command is assumed to be set at the maximum value, φt = 2. From various DIDO runs

it was determined that the optimal value is always the upper bound. The final conditions
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were: final altitude of 130,000 feet; final velocity of 14,000 ft/s; final inclination angle

of 51.6 ◦; final flight path angle of 0 ◦.
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Figure 7.1 Altitude Comparison of Finite Difference Method with Opti-
mization Software

Both methods are solving the free final time problem. The final time for the finite

difference method is 176.8 seconds, while DIDO results in a final time of 177.4 seconds.

Final weight for the finite difference method is 228,100 pounds and 228,500 pounds for

the DIDO solution. Although the final conditions are close, the trajectory profiles show

some differences. The DIDO solution overshoots the final altitude much more than

the finite difference method. This is reflected in the angle-of-attack comparisons. The

difference can be attributed to the lack of dynamics in the 2D model. The comparison

supports the validity of the finite difference approach.

7.1.2 Unconstrained Open-loop Solutions and Trajectory Trends

This section provides several open-loop solutions to illustrate the characteristics of

trajectories for a hypersonic vehicle. Various initial and final conditions were selected and

the resulting trajectories are presented. The first set of solutions shown have fixed final
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Figure 7.2 Velocity Comparison of Finite Difference Method with Opti-
mization Software
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Figure 7.3 Angle-of-Attack Comparison of Finite Difference Method with
Optimization Software
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Figure 7.4 Weight Comparison of Finite Difference Method with Optimiza-
tion Software

conditions, while the initial altitude is varied. The final conditions are: final inclination

(i∗f ), 51.6 ◦; final flight path (γ∗f ), 0 ◦; final altitude (r∗f − R0), 130, 000ft; final velocity

(v∗f ), 14, 000ft/s. Initial velocity is 5,500 ft/s and initial mass is 280,000 lbs. Table 7.1

lists the variations in initial altitude for each trajectory, as well as the resulting final

time and final weight. Figures 7.5 to 7.9 show the trajectory profiles.

Table 7.1 Open-Loop Comparison - Altf 130, 000ft, Vf 14, 000ft/s

Initial Altitude, ft Final Time, s Final Weight, lbs
55,000 101.3 233,138
60,000 129.3 233,744
65,000 144.4 234,113
70,000 155.8 234,344
75,000 165.0 234,501
80,000 173.2 234,617
85,000 180.5 234,711
90,000 185.4 234,769
95,000 190.2 234,795

Both Table 7.1 and Figure 7.5 show that as the vehicles initial altitude increases,
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Figure 7.5 Altitude Comparison - Altf 130, 000ft, Vf 14, 000ft/s
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Figure 7.6 Velocity Comparison - Altf 130, 000ft, Vf 14, 000ft/s
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Figure 7.7 Angle-of-Attack Comparison - Altf 130, 000ft, Vf 14, 000ft/s
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Figure 7.8 Dynamic Pressure Comparison - Altf 130, 000ft, Vf 14, 000ft/s
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Figure 7.9 Weight Comparison - Altf 130, 000ft, Vf 14, 000ft/s

total time increases yet final weight decreases. The behavior is counterintuitive. Since

the vehicle is traveling a greater distance it would be expected that travel would require

additional time. The response can be explained from the engine model, restated below

T = (0.029φt)ρIspG0V CTAc. (7.1)

As altitude increases, density (ρ) decreases, causing thrust to decrease. Therefore, at

lower altitudes the vehicle has a larger acceleration than at higher altitudes. This allows

the vehicle to achieve the target velocity in a shorter amount of time and as a conse-

quence, meet the final altitude in the same short time frame. Additionally, since thrust

directly effects mass rate, as seen in Eq. (7.2), the increase in thrust at lower altitudes

also increases mass rate, resulting in more fuel being consumed.

ṁ = − T

G0Isp
(7.2)

The small flight path angle (and small angle-of-attack seen in Figure 7.7) in the high

initial altitude cases can also be explained by the above reasoning. Since the atmosphere
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is thin, the engine is unable to produce adequate thrust to reach the desired velocity.

The optimal solution requires the altitude to initially stay near constant to achieve the

targeted velocity.

In the next set of solutions, the initial conditions are held constant, and the final

altitude is varied. Initial altitude is 90,000 ft, initial velocity is 5,500 ft/s, final velocity

is 14,000 ft/s, final inclination is 51.6 ◦, and final flight path is 0 ◦. Final altitude is

varied from 130,000 ft to 200,000 ft, and the results are summarized in Table 7.2 and

Figures 7.10 to 7.14 show the various trajectories comparisons.

Table 7.2 Open-Loop Comparison - AltI 90, 000ft, Vf 14, 000ft/s

Final Altitude, ft Final Time, s Final Weight, lbs
130,000 185.4 234,770
140,000 178.3 234,570
150,000 172.7 232,800
160,000 169.3 233,930
170,000 167.2 233,530
180,000 165.6 233,130
190,000 165.3 232,730
200,000 166.0 232,350

Once again, the data shows a counterintuitive behavior, as the final altitude increases

the final time decreases. However, fuel consumption increases even though the time

of flight is shorter. A closer look at the profiles reveals why this occurs. In order

for the vehicle to attain higher altitudes, the optimal trajectory keeps the vehicle at

lower altitudes initially to quickly increase the speed. This can be seen in the velocity

comparison plot, Fig. 7.11, and the angle-of-attack plot, Fig. 7.12. This is even more

pronounced for the altf = 180, 000ft, altf = 190, 000ft, and altf = 200, 000ft cases,

where the vehicle initially has a negative flight path angle and the altitude decreases

in the early moments of the trajectory. The lower altitude results in higher thrust and

therefore faster rate of fuel consumption, resulting in the lower final weight, similar to

the previous set of cases.
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Figure 7.12 Angle-of-Attack Comparison - AltI 90, 000ft, Vf 14, 000ft/s
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Figure 7.13 Dynamic Pressure Comparison - AltI 90, 000ft, Vf 14, 000ft/s
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Figure 7.14 Weight Comparison - AltI 90, 000ft, Vf 14, 000ft/s

The next set of trajectories have the same conditions as previous, with the exception

of final velocity, which is set at 16,000 ft/s. Table 7.3 has the summary of results and

Figures 7.15 to 7.19 are the plots of the different trajectories.

Table 7.3 Open-Loop Comparison - AltI 90, 000ft, Vf 16, 000ft/s

Final Altitude, ft Final Time, s Final Weight, lbs
130,000 274.0 214,900
140,000 280.8 214,710
150,000 288.3 214,380
160,000 295.2 213,950
170,000 300.9 213,450
180,000 305.8 212,920
190,000 310.0 212,400
200,000 313.5 211,900

Unlike the previous set of solutions, the increase in final velocity causes an increase

in final time and decrease in final weight when the final altitude is increased. The lowest

final altitude, altf = 130, 000ft/s overshoots the final altitude and the latter portion of

the trajectory has a negative flight path angle before leveling out. This dive is needed to
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Figure 7.15 Altitude Comparison - AltI 90, 000ft, Vf 16, 000ft/s
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Figure 7.16 Velocity Comparison - AltI 90, 000ft, Vf 16, 000ft/s
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Figure 7.17 Angle-of-Attack Comparison - AltI 90, 000ft, Vf 16, 000ft/s
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Figure 7.18 Dynamic Pressure Comparison - AltI 90, 000ft, Vf 16, 000ft/s
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Figure 7.19 Weight Comparison - AltI 90, 000ft, Vf 16, 000ft/s

increase the speed to meet the final velocity requirement. The optimal solution is using

the potential energy and the increasing density to help increase the vehicles acceleration.

Another observation, as the final altitude condition increases, there are occurrences of

“two-peak” trajectories. These two-peak trajectories are also taking advantage of the

potential to kinetic energy conversion and the thrust increase from the drop in altitude.

These trajectories resulting for the optimal control problem finds that the solution keeps

fuel consumption minimized rather than maintaining lower altitudes for a longer duration

to increase thrust and therefore velocity.

Table 7.4 and Figures 7.20 to 7.24 are resulting data and trajectory profiles for

solutions with the same initial and final conditions as the previous set of trajectories,

however, the initial altitude is lowered to 75,000 ft.

When compared to the previous set of trajectories, the same characteristics are

present. The increase in final altitude results in longer flight time and lower final weight.

In comparison, the lower altitude results in 20 additional seconds of final time and only
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Figure 7.20 Altitude Comparison - AltI 75, 000ft, Vf 16, 000ft/s
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Figure 7.21 Velocity Comparison - AltI 75, 000ft, Vf 16, 000ft/s
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Figure 7.22 Angle-of-Attack Comparison - AltI 75, 000ft, Vf 16, 000ft/s
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Figure 7.23 Dynamic Pressure Comparison - AltI 75, 000ft, Vf 16, 000ft/s
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Table 7.4 Open-Loop Comparison - AltI 75, 000ft, Vf 16, 000ft/s

Final Altitude, ft Final Time, s Final Weight, lbs
130,000 251.5 214,650
140,000 260.5 214,460
150,000 269.8 214,140
160,000 277.9 213,720
170,000 284.6 212,230
180,000 290.3 212,710
190,000 295.3 212,190
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Figure 7.24 Weight Comparison - AltI 75, 000ft, Vf 16, 000ft/s
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200 to 500 pounds of additional fuel usuage. Also note the requirement of the two-peak

trajectories.

7.1.3 Constrained Open-loop Solutions

Two constraints were considered in this research, however the dynamic pressure con-

straint is only being enforced during closed-loop simulations (see Section 4.1.5.1). The

angle-of-attack constraint was implemented in the open-loop trajectory generation. Four

solutions are presented to show the effect of the constraint on the trajectory. Initial al-

titude is 85,000 ft and initial velocity is 5,500 ft/s. Final flight path angle is 0 ◦, and

final inclination is 51.6 ◦. The final altitude and velocity conditions are varied. Although

angle-of-attack was small for many of the previous solutions, a limit of 8.5 ◦ was selected

to demonstrate the finite difference method’s capability in enforcing the constraint. Ta-

ble 7.5 list the various final conditions and the resulting flight time and final weight.

Figures 7.25 to 7.29 are plots the resulting trajectory profiles. For comparison, trajec-

tories with the same initial and final conditions without the constraint are included. A

dashed line in the plots are used to signify the unconstrained solutions.

Table 7.5 Open-Loop Comparison with α Constraint - AltI 85, 000ft

Final Alt, ft Final V, ft/s Final Time, s Final Weight, lbs
130,000 14,000 178.0 234,710.9 Constrained
130,000 14,000 180.5 234,711.0 Unconstrained
130,000 16,000 262.9 214,842.4 Constrained
130,000 16,000 268.5 214,840.0 Unconstrained
150,000 16,000 280.0 214,331.2 Constrained
150,000 16,000 284.4 214,336.5 Unconstrained
170,000 16,000 293.0 213,402.1 Constrained
170,000 16,000 297.0 213,414.2 Unconstrained

Figure 7.27 clearly shows that for various initial and final conditions, the constraint

on angle-of-attack is enforced. The table shows the constrained solutions requiring

slightly more fuel than the unconstrained trajectories. However, when comparing the
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Figure 7.25 Altitude Comparison with α Constraint
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Figure 7.26 Velocity Comparison with α Constraint
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Figure 7.27 Angle-of-Attack Comparison with α Constraint

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

Time, s

D
y
n

a
m

ic
 P

re
s
s
u

re
, 
p

s
f

Figure 7.28 Dynamic Pressure Comparison with α Constraint
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final times, these trajectories require a shorter flight time when the constraint is active

than the unconstrained solutions. The longer time can be associated with the increased

angle of attack allowing for an increase altitude and therefore a decrease in thrust.

However, the trajectories for final altitude of 130,000 ft and final velocity of 16,000 ft/s

this not true, with the constrained solution requiring less time and less fuel than the

unconstrained solution.

7.2 Closed-Loop Simulations

Closed-loop simulation is done to test the feasibility of using the finite difference

method as a guidance algorithm with a flight control system. The guidance algorithm

is required to issue a command each guidance cycle. In this research, the update rate

is 1 Hz. For the finite difference method to be a viable option as a guidance algorithm,

it is required that a converged solution to the optimal control problem be found within

the guidance cycle (i.e. within one second). The current state of the vehicle (time,

position, velocity, etc) is passed to the algorithm and used to calculate an updated

optimal trajectory and the first body vector in the resulting trajectory calculation is

passed as the guidance command. Simulations were ran with various initial and final

conditions, as done with the open-loop solutions. Also, angle-of-attack and dynamic

pressure constraints are used for a subset of the closed-loop simulations.

Unlike the open-loop trajectories, winds are included in the both trajectory calcula-

tion and the closed-loop simulations. The wind profiles are based from measured wind

velocities at various altitudes at NASA Kennedy Space Center. Smoothing was done on

the data for guidance purposes. The east and north velocity components, u and v re-

spectively, are obtained each guidance cycle using the current altitude and interpolating

the data. The wind magnitude is given by

Vw =
√
u2 + v2. (7.3)
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One set of winds was used for guidance calculations while another was used in simu-

lations. This was done to illustrate the difference between actual winds and measured

winds, since it is common for measured wind data to be greater than three hours old.

Since the finite difference method solves the free final time problem, the guidance

algorithm could adjust the final time each guidance cycle. To speed up the guidance

algorithm and assist with convergence of the optimal trajectory, when the guidance

system determined there were 50 seconds left in the ascent, no additional adjustments

were made to the final time. However, a trajectory is still calculated using the fixed

final time approach. With only 20 seconds remaining in the simulation, no additional

trajectories are calculated and the previous solution is iterated and used to issue the

guidance commands. Stopping the calculation for final time was justified because with

little time left there was little to effect the final time. Altitude would be sufficiently high

so that dynamic pressure would not cause that constraint to become active. Also, the

angle-of-attack constraint would already be incorporated in the fixed final time solution.

Finally, using the open-loop solution with only 20 seconds left was justified for the same

reasons. Finally, any changes in the dynamics from using these simplifications would

minimally effect the final mass.

7.2.1 Unconstrained Closed-loop Simulations

The first set of plots, Figures 7.30 to 7.35, show a comparison of an open-loop solution

and closed-loop simulations. The initial conditions are: initial altitude 85,000 ft; initial

velocity 5,500 ft; initial weight 280,000 lbs. Final conditions are: final altitude 130,000 ft;

final velocity 14,000 ft/s; final inclination 51.6 ◦; final flight path angle 0 ◦. No constraints

are enforced, but as mentioned before, winds are included in the guidance calculations

and simulations.

From the altitude and velocity comparison, there is little differences that can be seen

between the open-loop guidance calculation and the closed-loop simulation. Table 7.6
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Figure 7.30 Closed-Loop vs. Open-Loop - Altitude Comparison
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Figure 7.31 Closed-Loop vs. Open-Loop - Velocity Comparison
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Figure 7.32 Closed-Loop vs. Open-Loop - Weight Comparison
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Figure 7.33 Closed-Loop vs. Open-Loop - Angle-of-Attack Comparison
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Figure 7.34 Closed-Loop vs. Open-Loop - Dynamic Pressure Comparison
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Figure 7.35 Closed-Loop vs. Open-Loop - Throttle Comparison
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show the numerical differences for the final altitude, velocity, time, and weight. The

angle-of-attack comparison, Figure 7.33, show a very small difference of commanded

angle-of-attack throughout the fight, up until the last 20 seconds. That time frame is

the portion of the algorithm where the last open-loop solution is used and commands are

interpolated from that solution. Any difference here is attributed to the interpolation

scheme. Additionally, this short duration accounts for part of the differences in final

altitude, velocity, and weight. Finally, since dynamic pressure was not a constraint,

there is no portion that shows an “activation period” in Figures 7.34 and 7.35.

Table 7.6 Closed-loop Simulation with No Constraints

Final Altitude, ft Final Velocity, ft/s Final Time, s Final Weight, lbs
130,000 14,000 179.6 234,450
130,072 14,010 179.6 234,356

7.2.2 Constrained Closed-loop Simulations

When incorporating the dynamic pressure constraint, one needs to be careful how the

throttle is determined. In Section 4.1.5.1, it is shown that dynamic pressure is regulated

by a throttle command, η. However, this is assuming that thrust is linear with throttle,

Tnew = η(t)T0, where Tnew is the desired thrust after the constraint is enforced, and T0

is the thrust portion not associated with the throttle. When compared to the GHAME

engine model, the thrust is not linear with throttle, φt, since Isp is a function of φt. For

closed-loop simulations, the GHAME engine throttle is determined by employing a root

finding algorithm. First the desired thrust is found using the dynamic pressure regulator

and the root finding code finds the necessary throttle, φt, to match the desired thrust.

The following table and figures depict several runs with various constraints activated.

Initial altitude is 85,000 feet, initial velocity is 5,500 ft/s, while final altitude is 130,000

ft, final velocity is 16,000 ft/s, final inclination is 51.6 ◦, and final flight path angle is 0 ◦.
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Table 7.7 Closed-loop Simulation with Constraints

Final Time, s Final Weight, lbs Constraint
267.3 214,250 None
258.9 214,400 α = 8.25 ◦

266.0 214,150 α = 8.75 ◦

258.9 213,040 α = 8.25 ◦, q̄ < 1000 psf
267.3 213,840 q̄ < 1000 psf
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Figure 7.36 Closed-loop Simulation with Constraints - Altitude Compari-
son

The figures show that all constraints are met for the various simulations. From the

altitude and velocity comparisons, Figures 7.36 and 7.37, the profiles with the largest

difference are the one that include the dynamic pressure constraint. The adjustment

to throttle early in flight prevents the vehicle form gaining speed and altitude when

compared to the other simulations. From the data in Table 7.7, the final weight is

effected by the dynamic pressure constraint while the final time is effected by the angle-

of-attack constraint. The angle-of-attack effecting the final time was seen in the open-
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Figure 7.37 Closed-loop Simulation with Constraints - Velocity Comparison
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Figure 7.38 Closed-loop Simulation with Constraints - Angle-of-Attack
Comparison
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Figure 7.39 Closed-loop Simulation with Constraints - Weight Comparison
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Figure 7.40 Closed-loop Simulation with Constraints - Dynamic Pressure
Comparison
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Figure 7.41 Closed-loop Simulation with Constraints - Thrust Comparison
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son
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loop results. The dynamic pressure constraint effecting final mass can be explained by

the lowered throttle setting. The reduced throttle prevented the vehicle from gaining

the altitude as quickly, as seen in Figure 7.36. Since the vehicle is at lower altitudes

during most of the flight, density is higher, and therefore thrust is higher during the

portion of flight when throttle is set to the maximum value. The result is an increased

mass rate and lower final weight.

An additional comment is needed in regards to the dynamic pressure constraint. The

throttle command, η, in Eq. (4.80) contains a user selected parameter, δ. From various

simulations, it was noted that a value too small would cause the throttle command to

jitter. When considering the throttle bandwidth, it would be safe to assume that rapid

changing commands would be unattainable by the engine. Too large of a value would

result in over control of the throttle and extending the time of flight as well as increased

fuel usage. It was observed that dimensional values for δ between 1.5s and 20s allowed

the throttle to be adjusted properly. The value of δ used in Eq. (4.80) is nondimensional,

so the values 1.5s < δ < 20s need to be nondimensionalized.

7.2.3 Atmospheric and Vehicle Model Perturbed Solutions

7.2.3.1 Atmospheric Model Perturbations

In any given launch there are a multitude of disturbances that cannot be modeled

exactly. The ability for a guidance algorithm to handle these disturbance is critical to the

success of the algorithm. To test the robustness, atmospheric, engine, and aerodynamic

model perturbations are done. The same initial and final conditions are used for each

run. For the first set of solutions, only the atmospheric density is varied. Initial altitude

is 85,000 ft, initial velocity is 5,500 ft/s, initial weight is 280,000 lbs, final altitude is

130,000 ft, final velocity is 14,000 ft/s, final inclination is 51.6 ◦, and final flight path

angle is 0 ◦.



95

Table 7.8 Closed-loop Simulation with Density Perturbations

Final Time, s Final Weight, lbs Atmosphere
179.6 234,360 No Variation
195.4 235,480 10% decrease
185.4 234,960 5% decrease
181.2 234,530 2% decrease
178.9 234,140 2% increase
179.6 233,620 5% increase
186.2 232,700 10% increase
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Figure 7.43 Closed-loop Simulation with Density Perturbations - Altitude
Comparison
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Figure 7.44 Closed-loop Simulation with Density Perturbations - Velocity
Comparison
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Figure 7.46 Closed-loop Simulation with Density Perturbations - Weight
Comparison
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Figure 7.47 Closed-loop Simulation with Density Perturbations - Dynamic
Pressure Comparison
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Figure 7.48 Closed-loop Simulation with Density Perturbations - Thrust
Comparison

The variation in density are shown in Table 7.8. When the density is decreased the

final time begins to increase. Also shown is a decrease in the fuel usage (i.e. an increase

in final weight). This is to be expected since thrust decreases due to the reduction in

density, which results in a lowered mass rate. The reduced thrust then requires the

vehicle to fly longer to meet the final requirements.

When the density is increased by small percentage, the final time has a slight de-

creases. The cause can be associated to an increase in thrust as a result of the density

rise. The 5% increase results in a final time similar with the nominal case, but with

an increase in fuel usage. Since density was increased, mass rate would increase due

to the rise in thrust. With the 10% increase in density, the final time is longer than

the nominal case and the final weight is lower. Although thrust would be larger due to

the increase in density, drag would also increase. Both Figures 7.43 and 7.44 show that

the increase in drag effects the altitude and velocity profiles. The reduced acceleration

requires the vehicle to fly for a longer duration. This longer duration coupled with the



99

increased thrust results in more fuel being consumed.

For comparison, open-loop simulations were done with the upper and lower extreme

cases. The simulation found the optimal solution using nominal conditions and use the

generated body axis commands. The density was then perturbed and no corrections

were made to the commands to adjust for these variations. Initial conditions for these

simulations were: initial altitude is 85,000 ft; initial velocity is 5,500 ft/s; initial weight

is 280,000 lbs. Final conditions desired were: final altitude is 130,000 ft; final velocity is

14,000 ft/s; final inclination is 51.6 ◦; final flight path angle is 0 ◦. Only the final altitude

and velocity are presented to illustrate the differences.

Table 7.9 list a few of the final states and variables resulting from the simulations.

Figures 7.49 - 7.52 show the resulting trajectory profiles.

Table 7.9 Open-loop Simulation with Density Perturbations

Final Time, s Final Weight, lbs Final Altitude, ft Final Velocity, ft/s Density
179.6 234,360 130,060 14,010 No Variation
179.6 232,550 130,410 14,370 10% decrease
179.6 236,420 129,400 13,620 10% increase

The table shows that the final times are all identical, this is due to the simulations

being ran open-loop. Final weight for the decreased density case was about 1,800 pounds

lower, final atlitude was higher than desired, as well as final velocity. Since the density

was lower than expected, drag was lower. This allowed the vehicle to gain speed faster,

as shown in the altitude and velocity profiles. The final weight was much lower due

to velocity. Thrust is linearly dependent on velocity (Eq. (7.1)), and since velocity is

higher it resulted in a higher mass rate, even though the lowered density would account

for some lost of thrust.

For the case where density was increased, final altitude was lower than expected as

well as final velocity. This again was due to the drag. Since density was increased,

drag was larger preventing the vehicle from gaining speed and altitude. This resulted in
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Figure 7.49 Open-loop Simulation with Density Perturbations - Altitude
Comparison
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Figure 7.50 Open-loop Simulation with Density Perturbations - Velocity
Comparison
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Figure 7.51 Open-loop Simulation with Density Perturbations - Weight
Comparison
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the vehicle lower the targeted altitude and velocity. Also, since velocity was lower, this

resulted in a lower thrust and mass rate, leading to the larger final weight.

7.2.3.2 Thrust Model Perturbations

The following table and figures represent solutions to the thrust model perturbed

solutions. The initial altitude is 85,000 ft, initial velocity is 5,500 ft/s, initial weight is

280,000 lbs, final altitude is 130,000 ft, final velocity is 14,000 ft/s, final inclination is

51.6 ◦, and final flight path angle is 0 ◦. The total thrust is adjusted by some factor.

Table 7.10 Closed-loop Simulation with Thrust Perturbations

Final Time, s Final Weight, lbs Thrust
179.6 234,360 No Variation
193.9 232,510 10% decrease
180.3 233,420 5% decrease
187.0 235,160 5% increase
197.1 235,510 10% increase
216.1 236,290 20% increase

The data shows that as the thrust is reduced, the final time is longer than nomi-

nal while final weight is decreased. This can be explained by the fact that the lower

thrust keeps the vehicle from accelerating and requires longer time to meet the final

requirements, as evident in Figure 7.54. Additionally, the vehicle must remain at lower

altitudes to keep thrust as large as possible. The longer flight time coupled with the

lower altitude allows mass rate to be larger and results in an increase use of fuel.

As the thrust increases, the final time continues to grow, but final weight is larger

(less fuel is required). The altitude profile, Figure 7.53, shows that the thrust increase

causes the vehicle to have a large overshoot. Since the vehicle has increased thrust, the

solution takes the vehicle to the upper atmosphere to keep the mass rate low. Since the

total distance traveled is much larger than the nominal cause, the final time is increased.

However, since the vehicle is experiencing lower density, the mass rate is kept low and
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Figure 7.53 Closed-loop Simulation with Thrust Perturbations - Altitude
Comparison
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Figure 7.54 Closed-loop Simulation with Thrust Perturbations - Velocity
Comparison
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Figure 7.55 Closed-loop Simulation with Thrust Perturbations - An-
gle-of-Attack Comparison
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Figure 7.56 Closed-loop Simulation with Thrust Perturbations - Weight
Comparison
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Figure 7.57 Closed-loop Simulation with Thrust Perturbations - Dynamic
Pressure Comparison
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Figure 7.58 Closed-loop Simulation with Thrust Perturbations - Thrust
Comparison
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results in a larger final weight.

Again, open-loop simulations were done with the upper and lower extreme cases. The

simulations were ran using the commands from a nominal case but the engine model

is perturbed to generate the trajectory profile. Initial conditions for these simulations

were: initial altitude of 85,000 ft; initial velocity of 5,500 ft/s; initial weight of 280,000

lbs. Final conditions desired were: final altitude of 130,000 ft; final velocity of 14,000

ft/s; final inclination of 51.6 ◦; final flight path angle of 0 ◦. As before, only the final

altitude and velocity are presented to show the differences.

Table 7.11 Open-loop Simulation with Thrust Perturbations

Final Final Final Final Thrust
Time, s Weight, lbs Altitude, ft Velocity, ft/s
179.6 234,360 130,060 14,010 No Variation
179.6 236,560 126,620 13,570 10% decrease
179.6 231,690 135,700 14,620 20% increase
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Figure 7.59 Open-loop Simulation with Thrust Perturbations - Altitude
Comparison
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Figure 7.60 Open-loop Simulation with Thrust Perturbations - Velocity
Comparison
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Figure 7.62 Open-loop Simulation with Thrust Perturbations - Thrust
Comparison

From Table 7.11, the decrease in thrust results in the vehicle not achieving both the

final altitude and velocity requirement. Because thrust is lower, the vehicle cannot gain

the necessary speed or altitude. Additionally, since thrust is lower, mass rate is lower

resulting in the final weight to be higher at the end of the simulation as compared to the

nominal case. The increase in thrust show the vehicle ending at a much higher altitude

and faster velocity that desired. Additionally, the increase in thrust causes the final

weight to be significantly lower. Figures 7.59 to 7.62 plot the resulting trajectories.

7.2.3.3 Aerodynamic Model Perturbations

The following table and figures represent solutions to perturbations of the GHAME

aerodynamic model. The initial altitude is 85,000 ft, initial velocity is 5,500 ft/s, initial

weight is 280,000 lbs, final altitude is 130,000 ft, final velocity is 14,000 ft/s, final in-

clination is 51.6 ◦, and final flight path angle is 0 ◦. The lift coefficient CL (repeated in
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Eq. (7.4)) is varied by multipling CL0 by some factor.

CL = CL0(Ma, α) + CLα(Ma, α)α + CLδe(Ma, α)δe (7.4)

Table 7.12 Closed-loop Simulation with Aerodynamic Perturbations

Final Time, s Final Weight, lbs CL0

179.6 234,360 No Variation
204.0 234,550 10% decrease
192.9 234,590 5% decrease
163.7 234,890 5% increase
148.7 234,070 10% increase
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Figure 7.63 Closed-loop Simulation with Aerodynamic Perturbations - Al-
titude Comparison

The data in Table 7.12 show as CL0 is decreased, final time increases. Additionally,

when observing Figure 7.63, the decrease in CL0 causes the vehicle to overshoot final

altitude. This can be explained by observing the total lift coefficient, CL, in Figure 7.69.

Notice that the decrease in CL0 causes CL to increase. This is because CL0 is negative,
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Figure 7.64 Closed-loop Simulation with Aerodynamic Perturbations - Ve-
locity Comparison
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Figure 7.66 Closed-loop Simulation with Aerodynamic Perturbations -
Weight Comparison
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Figure 7.67 Closed-loop Simulation with Aerodynamic Perturbations - Dy-
namic Pressure Comparison
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Figure 7.68 Closed-loop Simulation with Aerodynamic Perturbations -
Thrust Comparison
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Comparison



113

so a reduction causes the overall lift to increase. The increase in lift allows the vehicle to

gain altitude quicker, but does not provide any way of increasing velocity. Additionally,

the increase in altitude reduces the density and will negatively effect the thrust generated.

The solution requires the final time to be longer to achieve the final velocity requirement.

As CL0 is increased, the opposite occurs. Total lift is decreased, allowing the vehicle

to stay lower in the atmosphere. This allows the thrust to be larger and the vehicle

achieving the final altitude and velocity requirements sooner.

For completeness, the simulations were conducted open-loop for the two extreme

perturbed cases. Simulations were ran using commands generated from a nominal case

but the aerodynamic model is changed for the simulation. Initial conditions were: initial

altitude is 85,000 ft; initial velocity is 5,500 ft/s; initial weight is 280,000 lbs. Final

conditions desired were: final altitude is 130,000 ft; final velocity is 14,000 ft/s; final

inclination is 51.6 ◦; final flight path angle is 0 ◦. For comparison purposes, only final

altitude and velocity are presented to show difference between closed-loop and open-loop

simulations.

Table 7.13 Open-loop Simulation with Aerodynamic Perturbations

Final Final Final Final CL0

Time, s Weight, lbs Altitude, ft Velocity, ft/s
179.6 234,360 130,060 14,010 No Variation
179.6 240,710 129,920 13,300 10% decrease
179.6 225,750 130,450 14,870 10% increase

Table 7.13 shows that the decreased CL0 resulted in lower altitude and slower velocity

than desired. Since CL0 was lowered, the total lift, Figure 7.73, increased. This increase

in lift allows the vehicle to gain altitude quickly but does allow velocity to increase. The

altitude plot, Figure 7.70, shows the vehicle achieving the final altitude near 120 seconds

into the flight, but then the vehicle has a negative flight path angle and falls below the

required altitude at the end of the simulation. Since the vehicle was higher than the
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Figure 7.70 Open-loop Simulation with Aerodynamic Perturbations - Alti-
tude Comparison
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Figure 7.72 Open-loop Simulation with Aerodynamic Perturbations -
Weight Comparison
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nominal trajectory, the density was lower and therefore mass rate was lower. This would

result in a higher final weight. With CL0 increasing, total lift would be decreased. Since

the vehicle flew lower than the nominal, the vehicle was able to gain higher speeds due

to the increased density. This caused the vehicle to have a larger velocity than desired at

the of the simulation. Additionally, the final weight was much lower due to the increase

in density.

7.2.3.4 Varying Atmospheric Model Perturbations

Next, a simulation was conducted using a perturbations that were varied over the

entire trajectory. To this point, only constant perturbations were used. Density was

varied using the following equation,

ρ = (1 + 0.2 sin(2πhkm/15)) ρ∗ (7.5)

where hkm is the altitude in kilometers, and ρ∗ is the nominal density at the given

condition. The simulation was ran with initial altitude at 85,000 ft, initial velocity at

5,500 ft/s, and initial weight at 280,000 lbs. Final altitude was set at 130,000 ft, final

velocity at 14,000 ft/s, final inclination at 51.6 ◦, and final flight path angle at 0 ◦. For

comparison, a nominal profile and an open-loop simulation is shown.

Table 7.14 Simulations with Varying Density Perturbations

Final Final Final Final Type
Time, s Weight, lbs Altitude, ft Velocity, ft/s
179.6 234,360 130,060 14,010 Nominal
180.5 233,840 130,090 14,010 Closed-loop
179.6 233,470 127,450 14,240 Open-loop

Table 7.14 shows the varying density model required the vehicle to use more fuel, but

is able to meet both the final altitude and velocity requirements with an additional second

of flight time. The open-loop simulation is lower than the final altitude requirement and
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Figure 7.74 Simulations with Varying Density Perturbations - Altitude
Comparison
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Figure 7.76 Simulations withVarying Density Perturbations - Angle-of-At-
tack Comparison

0 20 40 60 80 100 120 140 160 180 200
2.3

2.4

2.5

2.6

2.7

2.8

2.9
x 10

5

Time, s

W
e

ig
h

t,
 l

b
s
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Figure 7.78 Simulations with Varying Density Perturbations - Dynamic
Pressure Comparison
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Figure 7.80 Simulations with Varying Density Perturbations - Density
Comparison

faster than the final velocity requirement. The density comparison, Figure 7.80, shows

that at lower altitude the perturbed density is lower and at altitudes above 100, 000 ft it is

higher until approximately 125, 000 ft. The altitude profile of the closed-loop simulation

shows the effect of the variability. The open-loop trajectory goes much higher than

the targeted altitude midway in flight, but then drops in altitude and goes under than

desired altitude.

7.3 Discussion

The ascent trajectory problem was formulated as a fuel-optimal control problem. A

finite difference method was proposed to solve the resulting two-point boundary value

problem. The preceding chapter showed that the finite difference method could solve a

variety of ascent trajectories with and without path constraints. The various open-loop

solutions show that the resulting trajectories are highly dependent on the engine model
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used. Although it is expected that an air-breathing scramjet engine would be a function

of attitude, vehicle state, and throttle, the development of that model would effect the

trajectories.

The initial and final conditions of trajectories also effected the trajectory profile. The

initial conditions would be dependent on the efficiency of the previous engine cycles,

particularly the ramjet engine portion. The final condition would depended on mission

objective and if any additional engine cycles would be used, such as a rocket engine.

As mentioned, the finite difference scheme could solve for a wide range of initial and

final conditions. Some of the resulting trajectories seemed counterintuitive, but the

evaluations of the trajectory profile validated the solutions.

The finite difference method also was shown to feasible as a guidance algorithm.

Closed-loop simulations were shown to be accurate and the finite difference method was

fast enough to be used as the guidance scheme. Even in the presence of constraints,

atmospheric variations, engine model variations, and aerodynamic model variations, the

vehicle was able to achieve the final conditions.
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CHAPTER 8. SUMMARY AND CONCLUSION

This dissertation presented a method to generate a three-dimensional optimal ascent

trajectory for hypersonic air-breathing vehicle. The commands were generated by solv-

ing the two point boundary value problem generated by the optimal control problem

that minimized fuel usage. A finite difference scheme was used to solve the TPBVP

numerically. Open-loop results were shown to describe the various characteristics of the

ascent trajectory. Closed-loop simulations were done to show the potential for on-board

trajectory optimization. The guidance algorithm was called once each guidance cycle

and solved the optimal control problem using the current vehicle state, atmospheric

effects, and path constraints.

A brief overview of optimal control theory was presented, showing the general for-

mulation of an optimal control problem. The effects of state and control constraints

on the control problem were reviewed. The optimal ascent of a hypersonic vehicle was

then formulated, first by developing the equations of motion that govern the dynamics

of the vehicle. The equations were then non-dimensionalized for numerical conditioning.

Data for lift and drag coefficients, thrust coefficients, atmospheric density, and speed

of sound were curve fitted to reduce the computational burden due to the aerodynamic

model. Path constraints for dynamic pressure and angle-of-attack were considered in

the formulation of the optimal control problem. The solution to the problem results in

the optimal control, the body axis direction.

The vehicle selected for evaluation of the algorithm was GHAME model, developed at

the NASA Dryden Flight Research Center. The model represents a single stage to orbit
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vehicle that is capable of taking off horizontally and accelerate to orbital velocities. The

vehicles aerodynamic model is based loosely on empirical data. It included information

from the space shuttle, lifting bodies, double-delta configuration vehicle, and theoretical

data from 6 degree half-angle cones. The engine model was developed to represent

the full flight envelope of the vehicle. Multiple engines are modeled, which included a

turbojet cycle, a ramjet cycle, and scramjet cycle.

The classical finite difference method was selected to solve the two-point boundary

value problem that results from the optimal control formulation. The algorithm takes

advantage of a special structure of the Jacobian matrix and using Gauss eliminations

and sequential back substitution, results in a fast and efficient algorithm. The initial

guess for the algorithm was taken from a analytical vacuum optimal ascent guidance

algorithm. Additionally, a secant method was used to adjust the final time because the

finite difference method solves the fixed final time problem.

The guidance scheme was compared to a commercial optimization software based

on a pseudospectral method for verification and validation. The same aerodynamic

and engine model was used in both methods. The comparison supports the validity

of the finite difference method. Then, various open-loop trajectories were generated

to show the characteristics of trajectories for a hypersonic vehicle. Various initial and

final conditions were shown, as well as trajectories with angle-of-attack constraints.

Closed-loop simulations were also conducted to test the feasibility of using the guidance

algorithm with a flight control system. Simulations were ran with various initial and

final conditions, as well as simulations with both angle-of-attack and dynamic pressure

constraints. Additionally, the simulations incorporated wind profiles to show that the

guidance solution could incorporate winds and not need any pre-launch adjustment or

a-priori planning. It was also shown that the closed-loop solution closely matched the

open-loop solution. Lastly, simulations with perturbed atmospheric and vehicle models

were conducted to illustrated the algorithms capability to handle such mis-modeling.
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APPENDIX A. GHAME AERODYNAMIC MODEL

Tables

The aerodynamic data are arrays of size 9 by 13. The rows are Mach break points

and the columns are angle-of-attack ,α, break points, which are given below. Just note

that each row is broken into two lines of text to fit on the page.

Mach = [0.4 0.6 0.8 0.9 0.95 1.05 1.2 1.5 2.0 3.0 6.0 12.0 24.0] (A.1)

α = [−3.0 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0] (A.2)
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Aerodynamic Tables

CL0 =

0.04508 0.05491 0.04723 0.06222 0.06411 0.07569 0.06492
0.04782 0.0348 0.01583 -0.00175 -0.00547 -0.00468

-0.03575 -0.0381 -0.04375 -0.038 -0.038 -0.0315 -0.03675
-0.03905 -0.02965 -0.02475 -0.02075 -0.01871 -0.01562

-0.11693 -0.1169 -0.13532 -0.13317 -0.14505 -0.13861 -0.14068
-0.12433 -0.09539 -0.06776 -0.04593 -0.03483 -0.02893

-0.22054 -0.21782 -0.23228 -0.22108 -0.25401 -0.23254 -0.25132
-0.21391 -0.16617 -0.11392 -0.0791 -0.05409 -0.04481

-0.32599 -0.32773 -0.33138 -0.30955 -0.34726 -0.35937 -0.3657
-0.31249 -0.24995 -0.17259 -0.12465 -0.08445 -0.06985

-0.4196 -0.43704 -0.43095 -0.43224 -0.44946 -0.49158 -0.42414
-0.41519 -0.34693 -0.24957 -0.18941 -0.14139 -0.11688

-0.56105 -0.58493 -0.53773 -0.53748 -0.52428 -0.52394 -0.53246
-0.48735 -0.42815 -0.32392 -0.26223 -0.21567 -0.17836

-0.72859 -0.68972 -0.61593 -0.60137 -0.52399 -0.54559 -0.6464
-0.53332 -0.49102 -0.38885 -0.34431 -0.30273 -0.25036

-0.9232 -0.80347 -0.69635 -0.65836 -0.5002 -0.54335 -0.77975
-0.56663 -0.54949 -0.45683 -0.4364 -0.40437 -0.33438
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CLα =

0.05483 0.05972 0.0617 0.06832 0.07085 0.07335 0.07145
0.05858 0.04392 0.02805 0.01379 0.00956 0.00794

0.05472 0.05805 0.06173 0.06613 0.07078 0.07272 0.06948
0.05817 0.04417 0.02854 0.01513 0.01012 0.0084

0.0546 0.05638 0.06177 0.06395 0.07072 0.07208 0.06752
0.05775 0.04442 0.02904 0.01647 0.01068 0.00886

0.05827 0.05833 0.06255 0.06275 0.0717 0.06993 0.06987
0.0583 0.04527 0.02967 0.01815 0.01139 0.00946

0.06087 0.0617 0.06328 0.06192 0.07006 0.07203 0.07093
0.05973 0.0472 0.03138 0.02038 0.01297 0.01076

0.06092 0.06287 0.0637 0.06452 0.06976 0.0747 0.06717
0.06097 0.04957 0.03409 0.02342 0.0163 0.0135

0.0644 0.06678 0.06455 0.06533 0.06792 0.06927 0.06722
0.05978 0.05017 0.03582 0.02613 0.01986 0.01645

0.06872 0.06725 0.06368 0.06343 0.06215 0.06448 0.06847
0.05725 0.0495 0.03651 0.02863 0.02319 0.01921

0.07303 0.06772 0.06282 0.06153 0.05638 0.0597 0.06972
0.05472 0.04882 0.0372 0.03112 0.02652 0.02197]
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CD0 =

0.02941 0.03035 0.03127 0.03633 0.04871 0.06964 0.07106
0.07076 0.06228 0.04472 0.02961 0.02122 0.01766

0.03594 0.03714 0.04141 0.04936 0.06265 0.08447 0.08354
0.08047 0.07067 0.05161 0.03553 0.02584 0.0215

0.03261 0.03394 0.03647 0.04104 0.05359 0.07359 0.07468
0.07486 0.06681 0.04947 0.03502 0.02583 0.0215

0.01436 0.01489 0.01049 0.01345 0.02174 0.04174 0.04369
0.05006 0.04731 0.03597 0.02594 0.02021 0.01685

-0.02306 -0.02386 -0.04433 -0.03845 -0.04007 -0.0209 -0.01598
0.0001 0.00808 0.00925 0.00672 0.00797 0.00672

-0.08415 -0.09375 -0.13162 -0.13204 -0.14179 -0.12953 -0.09461
-0.07789 -0.05773 -0.03957 -0.02957 -0.01836 -0.01507

-0.18718 -0.23091 -0.25573 -0.25708 -0.26424 -0.25284 -0.23458
-0.17409 -0.1419 -0.10402 -0.07789 -0.05742 -0.04744

-0.31882 -0.40962 -0.38482 -0.39617 -0.4082 -0.4232 -0.38219
-0.31589 -0.26256 -0.19187 -0.14391 -0.11319 -0.09366

-0.47897 -0.62884 -0.54072 -0.56164 -0.5777 -0.62233 -0.56587
-0.48309 -0.40512 -0.29579 -0.22221 -0.17988 -0.14894
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CDα =

-0.00323 -0.00348 -0.00507 -0.00646 -0.00677 -0.00716 -0.00588
-0.00475 -0.00419 -0.00356 -0.00319 -0.00256 -0.00213

-0.00107 -0.0012 -0.00173 -0.00157 -0.00163 -0.00132 -0.00121
-0.00137 -0.00151 -0.00158 -0.0018 -0.00153 -0.00128

0.0011 0.00109 0.0016 0.00331 0.00352 0.00453 0.00347
0.00201 0.00117 0.0004 -0.00041 -0.00051 -0.00043

0.00415 0.00425 0.00595 0.00764 0.00858 0.00939 0.00838
0.00607 0.00448 0.00281 0.00139 0.00068 0.00056

0.00794 0.0082 0.0115 0.01248 0.01444 0.01514 0.01402
0.011 0.00841 0.00554 0.00347 0.00204 0.00169

0.01227 0.01323 0.01769 0.01907 0.02153 0.02275 0.01922
0.01645 0.01309 0.00908 0.00619 0.00407 0.00336

0.01816 0.02137 0.02453 0.02588 0.02791 0.0291 0.02683
0.0215 0.01766 0.01269 0.00896 0.0064 0.00529

0.02424 0.02993 0.02995 0.0317 0.0338 0.03633 0.03326
0.02777 0.02305 0.01663 0.01197 0.00904 0.00749

0.03033 0.03849 0.03537 0.03752 0.03969 0.04357 0.03969
0.03404 0.02844 0.02057 0.01498 0.01169 0.00968
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Engine Model Tables

The engine model data are arrays of size 9 by 13. For CT , rows are Mach break

points and the columns are angle-of-attack, α, break points. For Isp, the rows are Mach

break points and the columns are throttle position, φt. The breakpoints are given below.

Mach = [0.4 0.6 0.8 0.9 0.95 1.05 1.2 1.5 2.0 3.0 6.0 12.0 24.0] (A.3)

α = [−3.0 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0] (A.4)

φt = [0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00] (A.5)

CT =

1.09449 0.5301 0.31459 0.26226 0.24452 0.22157 0.20981
0.23464 0.34159 0.62377 1.45141 2.76052 4.68122

1.18766 0.58304 0.35204 0.29597 0.27698 0.25238 0.23978
0.26638 0.38098 0.68332 1.57007 2.97269 5.03057

1.28082 0.63590 0.38950 0.32969 0.30943 0.28319 0.26975
0.29813 0.42037 0.74286 1.68873 3.18486 5.37993

1.37399 0.68875 0.42696 0.36341 0 .34188 0.31401 0.29973
0.32987 0.45975 0.80240 1.80739 3.39702 5.72929

1.46715 0.74161 0.46441 0.39713 0.37433 0.34482 0.32970
0.36162 0.49914 0.86194 1.92605 3.60919 6.07865

1.56032 0.79447 0.50187 0.43085 0.40679 0.37563 0.35967
0.39337 0.53852 0.92148 2.04471 3.82136 6.42801

1.65348 0.84732 0.53933 0.46457 0.43924 0.40644 0.38964
0.42511 0.57791 0.98102 2.16336 4.03352 6.77737

1.74664 0.90018 0.57678 0.49829 0.47169 0.43726 0.41962
0.45688 0.61729 1.04057 2.28202 4.24569 7.12673

1.83981 0.95304 0.61424 0.53201 0.50414 0.46807 0.44959
0.48860 0.65668 1.10011 2.40068 4.45786 7.47609
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Isp=

0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000
0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000

1693.1500 1693.1500 1686.9000 1682.2125 1679.0875 1661.9000 1636.9000
1568.1500 1443.1500 1568.1500 1318.1500 0755.6500 0505.6500

2262.3999 2262.3999 2253.5625 2246.9343 2242.5156 2218.2126 2182.8625
2085.6499 1908.9000 2085.6499 1732.1499 0936.7750 0583.2750

2699.6499 2699.6499 2688.8250 2680.7063 2675.2937 2645.5249 2602.2251
2483.1499 2266.6501 2483.1499 2050.1499 1075.9000 0642.9000

3068.1499 3068.1499 3055.6499 3046.2749 3040.0249 3005.6499 2955.6499
2818.1499 2568.1499 2818.1499 2318.1499 1193.1500 0693.1500

3392.6501 3392.6501 3378.6748 3368.1936 3361.2063 3322.7749 3266.8750
3113.1499 2833.6499 3113.1499 2554.1501 1296.4000 0737.4000

3686.8999 3686.8999 3671.5874 3660.1030 3652.4468 3610.3374 3549.0874
3380.6499 3074.3999 3380.6499 2768.1499 1390.0250 0777.5250

3956.4001 3956.4001 3939.8625 3927.4595 3919.1907 3873.7124 3807.5625
3625.6499 3294.8999 3625.6499 2964.1501 1475.7750 0814.2750

4206.6499 4206.6499 4188.9751 4175.7188 4166.8813 4118.2749 4047.5750
3853.1499 3499.6499 3853.1499 3146.1499 1555.4000 0848.4000
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Curve Fits

The following equations represent the curve fits to the data in the previous tables,

where α is angle-of-attack, Ma is Mach number, and φt is the engine throttle seen in the

thrust equation.

y = α (A.6)

x =
1.0

Ma

(A.7)

CD0 = 0.02288046350678314 + x ∗ (−0.009838883993226041 +

x ∗ (0.5191974766999029 + x ∗ (−0.6054070629390214))) +

y ∗ (0.0004492661130680898 + y ∗ (−0.0001089326853701854 +

y ∗ (−1.245491956603068E-05))) + x ∗ y ∗ (0.005322199262109339 +

y ∗ (−0.001552558275058275) + x ∗ (−0.006230753754297086)) (A.8)

CDα = −0.001711432610477896 + x ∗ (0.003113436406775853 +

x ∗ (−0.02328020149614377 + x ∗ (0.03471224427423899))) +

y ∗ (0.0001836383876779103 + y ∗ (1.503198421948422E-05 +

y ∗ (−6.403541588726772E-08))) + x ∗ y ∗ (0.001373090167597314 +

y ∗ (2.274919524919525E-05) + x ∗ (0.0001312248959652615)) (A.9)

CL0 = 0.01525858829887088 + x ∗ (−0.5487052370434285 +

x ∗ (2.365405789423327 + x ∗ (−2.918197694819037))) +

y ∗ (0.002628151805075891 + y ∗ (−0.0009599723118316869

+y ∗ (3.915139044768676E-06))) + x ∗ y ∗ (−0.05342505647854649

+y ∗ (0.001639042138417138) + x ∗ (0.0008215234304324364)) (A.10)
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CLα = 0.004056183731744061 + x ∗ (0.07649021439311123 +

x ∗ (−0.07390202521762121 + x ∗ (0.1634541706944361))) +

y ∗ (−8.894049021791353E-05 + y ∗ (6.502099116161616E-05 +

y ∗ (−1.212869435091657E-06))) + x ∗ y ∗ (0.001871609094346339 +

y ∗ (−8.018308080808081E-05) + x ∗ (−0.002465907725710150)) (A.11)

y = log(Ma) (A.12)

x = α (A.13)

CT = 0.2600464082059642 +

x ∗ (0.01527537816578171 + x ∗ (−1.924001924002474E-08)) +

y ∗ (−0.6017185588104934 + y ∗ (0.6909092174165687)) +

x ∗ y ∗ (0.02169241439073307) (A.14)

f1 =
1√
φt

(A.15)

f2 =
1

φt
(A.16)

f3 = Ma (A.17)

f4 = Ma ∗ log(Ma) (A.18)

f5 = Ma ∗
√
Ma (A.19)

f6 = Ma ∗Ma (A.20)

f7 = Ma ∗Ma ∗ log(Ma) (A.21)
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z = 0.1040565990642441 + 0.3649668348281674 ∗ f1

−0.02987940888679714 ∗ f2 + 1.455398174797576 ∗ f3

+0.7012132017557569 ∗ f4− 2.188899162976031 ∗ f5

+0.6295934403674957 ∗ f6− 0.1053092147726738 ∗ f7 (A.22)

z =
1

z
(A.23)

Isp = 1000.0 ∗ z (A.24)
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APPENDIX B. EXPANDED COSTATE EQUATIONS

~P′r =
1

r3
~PV +

−3
(
~PT
V~r
)

r4
+ ~PT

V
~1b

(
R0SrefA1

2m0m
− χτ2

)
−

~PT
V
~1n
R0SrefN1

2m0m
+

√
R0

G0

mPm

(
χτ2
Isp

+
TMa

I2spVs

∂Isp
∂Ma

∂Vs
∂r

)}
~r

r
+{

~PT
V
~1b

(
R0SrefA2

2m0m
− χτ1

)
− ~PT

V
~1n
R0SrefN2

2m0m
+

m

√
R0

G0

Pm

(
χ

Isp
τ1 −

T

I2spVsVr

∂Isp
∂Ma

)}(
~ωe × ~Vr

)
+{

~PT
V
~1b

(
R0SrefρV

2
r

2m0m

∂CA
∂α
− χρVrIsp

∂CT
∂α

)
−

~PT
V
~1n
R0SrefρV

2
r

2m0m

∂Cn
∂α

+

√
R0

G0

χmPm
Isp

ρVr
∂CT
∂α

}(
~ωe ×

∂α

∂ ~V

)
(B.1)

χ =

√
G0

R0

(0.029φt)
R0

m0m
Ac (B.2)

τ1 =
ρMaCT
Vr

∂Isp
∂Ma

+
ρCT Isp
Vr

+
ρ

Vs
Isp
∂CT
∂α

(B.3)

τ2 = IspVrCT
∂ρ

∂r
− ρM2

A

(
CT

∂Isp
∂Ma

∂Vs
∂r

+ Isp
∂CT
∂Ma

∂Vs
∂r

)
(B.4)

A1 = V 2
r CA

∂ρ

∂r
− ρVrM2

a

∂CA
∂Ma

∂Vs
∂r

(B.5)

A2 = 2ρCA + ρMa
∂CA
∂Ma

(B.6)

N1 = V 2
r CN

∂ρ

∂r
− ρVrM2

a

∂CN
∂Ma

∂Vs
∂r

(B.7)

N2 = 2ρCN + ρMa
∂CN
∂Ma

(B.8)
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~P′V = ~Pr +
{
~PT
V
~1b
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χρτ̄1
V
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− ~PT

V
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(
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