
Syracuse University
SURFACE

Dissertations - ALL SURFACE

7-1-2016

AN INFORMATION MODEL IN THE
DOMAIN OF DISASSEMBLY PLANNING
FOR SUSTAINABLE MANUFACTURING
Bicheng Zhu
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Part of the Engineering Commons

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL
by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Recommended Citation
Zhu, Bicheng, "AN INFORMATION MODEL IN THE DOMAIN OF DISASSEMBLY PLANNING FOR SUSTAINABLE
MANUFACTURING" (2016). Dissertations - ALL. 536.
https://surface.syr.edu/etd/536

https://surface.syr.edu?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/536?utm_source=surface.syr.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Disassembly, a process of separating the End of Life (EOL) product into discrete components for

re-utilizing their associated residual values, is an important part for the sustainable manufacturing.

This work focuses on the modeling of the disassembly planning related information, and develops

a Disassembly Information Model (DIM) based on an extensive investigation of various

informational aspects of the disassembly planning. The developed Disassembly Information

Model, which represents an appropriate systematization and classification of the products,

processes, uncertainties and degradations related information, follows a layered modeling

methodology. In this layered configuration, the DIM is subdivided into three distinct layers with

an intent to separate general knowledge into different levels of abstractions, and to reach a balance

between information reusability and information usability. The performance evaluation of the DIM

(usability and reusability) is accessed by successful implementations of the DIM model into two

prototype software applications in the domain of disassembly planning.

The first application, called the Disassembly Sequence Generator (DSG), identifies the optimal

disassembly sequence using a CAD based searching algorithm and a disassembly Linear

Programming (LP) model. The searching process results in an AND/OR graph, which represents

all the feasible disassembly sequences of a specific EOL product; whereas the LP model takes the

AND/OR graph as an input and determines the economically optimal process sequence among all

the possibilities.

The second application is called the Adaptive Disassembly Planning (ADP), which further takes

the EOL product uncertainty and degradation issues into consideration. In order to address these

issues, fuzzy logic and Bayesian Network methodologies are used to develop a Disassembly

Decision Network (DDN), which adaptively generates the optimal disassembly sequence based on

the current available information.

This research work is the first attempt to develop a comprehensive Information Model in the

domain of disassembly planning. The associated modeling methodology that has been developed

in this research is generic and scalable, and it could be widely adopted in other engineering

domains, like product assembly, production planning, etc. The ultimate objective of this work is

to standardize the DIM into a reference model that will be acknowledged and agreed upon by the

sustainable manufacturing community.

AN INFORMATION MODEL IN THE DOMAIN OF DISASSEMBLY PLANNING

FOR SUSTAINABLE MANUFACTURING

A Dissertation

By

Bicheng Zhu

B.S., Shanghai Jiao Tong University, 2007

M.S., Syracuse University, 2012

Submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Mechanical and Aerospace Engineering

Syracuse University

July, 2016

Copyright © 2016 Bicheng Zhu

All rights Reserved

iv

ACKNOWLEDGMENTS

This dissertation represents not only my work at the keyboard, it is a milestone in more than four

years of work in the Knowledge Engineering Laboratory at Syracuse University. Here, I wish to

express my sincere appreciation to those who have contributed to this thesis and supported me in

one way or the other during this amazing journey.

First of all, I am extremely grateful to my supervisor, Professor Utpal Roy, for his guidance and

all the useful discussions and brainstorming sessions, especially during the difficult problem

formulation stage. I also remain indebted for all the opportunities (NIST research visit/workshop,

technical research conferences, classroom teaching practice, industrial company collaboration,

etc.) that Dr. Roy provided for preparing me for a better researcher.

I would also like to thank my committee members, professor Young B. Moon, professor John F.

Dannenhoffer, professor Jianshun Zhang, professor Pranav Soman and professor Riyad S.

Aboutaha for serving as my committee members and providing all types of valuable suggestions

regarding to this work.

A big “Thank you!” also goes out to all the lab colleagues and friends, including Heng Zhang,

Yunpeng Li, Kai Sun, Hang Yin, Omer Yaman and Mehemet Ilteris Sarigecili, for all their useful

suggestions but also for being there to listen when I needed an ear.

Words cannot express the feelings I have for my parents (Jiafeng Zhu and Demei Xu) for their

constant unconditional support - both emotionally and financially. I would not be here if it not for

you. Thank you for having faith on me during this challenging journey.

Finally, I would like to acknowledge the most important person in my life – my wife Yunxing

Nian. She has been a constant source of strength and inspiration. There were times during the past

four years when everything seemed hopeless and I didn’t have any hope. It was her determination

and constant encouragement that ultimately made it possible for me to see this project through to

the end.

v

TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGMENTS ... iv
TABLE OF CONTENTS .. v
LIST OF TABLES .. vii
LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... x
 INTRODUCTION .. 1

1.1 Research Background ... 1
1.2 Information Modeling ... 3
1.3 Goal of the Information Model Development .. 4

1.4 Problem Statement .. 5
1.5 Research Contribution .. 7

1.6 Research Methodology and Thesis Outline .. 8
 BACKGROUND AND LITERATURE REVIEW .. 11

2.1 EOL Product Disassembly .. 11
2.2 Disassembly and Assembly .. 13

2.3 Computer Aided Disassembly Planning (CADP) ... 14
2.3.1 Representation Model .. 14
2.3.2 Disassembly Planning .. 17

2.4 Background of Information Model and Ontology .. 21
2.5 Modeling Elements for the Formal Information Model ... 21

2.6 Current Information Model in the Domain of Manufacturing .. 23

2.7 Observation and Findings ... 25

 DISASSEMBLY INFORMATION MODEL .. 26
3.1 Information Requirement for Disassembly Planning ... 26

3.1.1 Product Aspect Information ... 26
3.1.2 Process Aspect Information ... 29
3.1.3 Uncertainty related Information ... 31

3.1.4 Degradation related Information .. 33

3.2 Layered DIM Modelling Methodology .. 35
3.3 Formal Disassembly Information Model .. 38

3.3.1 Abstract Layer Models ... 39
3.3.2 Domain Layer Models ... 47

3.4 Formal DIM Implementation based on Web Ontology Language 61

3.4.1 Why using OWL for DIM implementation ... 61

3.4.2 OWL Implementation .. 63

 DISASSEMBLY SEQUENCE GENERATOR ... 69
4.1 Disassembly Sequencing Problem .. 69
4.2 Disassembly Sequence Generator Information Model ... 72

4.2.1 Disassembly Sequence Generator Information Requirement Analysis 72
4.2.2 Formal Disassembly Sequence Generator Information Model 74

4.2.3 OWL implementation .. 81
4.3 Populating the DIM... 81
4.4 A CAD API based Disassembly Sequence Generation Application 85

vi

4.4.1 Disassembly Sequencing ... 86

4.4.2 LP based Disassembly Process Optimization .. 99
4.5 Case Study .. 102

4.5.1 Sub Function Verification .. 102

4.5.2 Overall Procedure Verification .. 104
4.5.3 LP-Based Optimization Model Verification .. 108

 ADAPTIVE DISASSEMBLY PLANNING .. 111
5.1 Problem Definition.. 111
5.2 Adaptive Disassembly Planning Information Model .. 112

5.2.1 Requirement Analysis for the Adaptive Disassembly Planning Information Model 113
5.2.2 Formal Adaptive Disassembly Planning Information Model 117

5.3 Adaptive Disassembly Planning Application ... 123
5.3.1 Component/Assembly Reuse Value Estimation .. 124

5.3.2 Disassembly Decision Network based Disassembly Planning 128
5.3.3 The Complete Adaptive Disassembly Planning Procedure 130

5.4 Case Study .. 132
5.4.1 Description of the Case Study.. 133

5.4.2 Disassembly Decision Network for the Kitchen Exhaust Fan Assembly 135
5.4.3 Adaptive Sequence Generation for the Kitchen Exhaust Fan Assembly 139

 CONCLUSION AND FUTURE WORK ... 143

6.1 Overview of Disassembly Information Model (DIM) .. 143
6.2 Review of the Research Issues .. 145

6.3 Research Contribution .. 146
6.4 Future Work .. 147

REFERENCES ... 149

APPENDIX ... 157

BIBLIOGRAPHY ... 163

vii

LIST OF TABLES

Table 2.1: Summary on the Reviewed Disassembly Planning Work ... 20
Table 3.1: Product Aspect Information Requirement ... 29
Table 3.2: Process Aspect Information Requirement ... 31
Table 3.3: Uncertainty Related Information Requirement ... 33
Table 3.4: Degradation Related Information Requirement ... 35

Table 3.5: DIM OWL Implementation ... 64
Table 4.1: Summary of the DIM OWL Implementation Concept .. 82
Table 4.2: Coefficient Matrix Example .. 100
Table 5.1: Requirements for the Adaptive Disassembly Planning Information Model 117
Table 5.2: Semantic Rule R1 Definition ... 120

Table 5.3: Semantic Rule R1 Definition ... 121
Table 5.4: DIM OWL Implementation Concept Summarization ... 122

Table 5.5: Utility Information Regarding to the Disassembly Object .. 133
Table 5.6: Utility Information Regarding to the Disassembly Process 134

Table 5.7: Adaptive Disassembly Plan for the Kitchen Fan Assembly 141

viii

LIST OF FIGURES

Figure 1.1: EOL Product Recovery Option (Ziout, 2013) .. 3
Figure 1.2: The Overall Structure of the Dissertation... 10
Figure 2.1: The Structure of the Literature Review Chapter .. 11
Figure 2.2: The General Structure of a CADP System ... 14
Figure 2.3: An Example of the AND/OR Graph .. 15

Figure 2.4: An Example of the Task Precedence Graph ... 16
Figure 3.1: High Level Information Requirement for the EOL Product Disassembly Planning .. 26
Figure 3.2: A Simple Example of the DAG Network ... 33
Figure 3.3: CPT of the Fan Assembly .. 33
Figure 3.4: The Overall Structure of DIM .. 37

Figure 3.5: The Notations Used in Creating the UML Class Diagram ... 38
Figure 3.6: N-ary Relationship Information Model .. 40

Figure 3.7: An N-ary Relationship Example .. 40
Figure 3.8: Part-Whole Model .. 41

Figure 3.9: The Graph Information Model ... 42
Figure 3.10: A Graph Application Example ... 44

Figure 3.11: System Information Model ... 45
Figure 3.12: Aspect System Utilization in the Modelling of the Disassembly Planning System . 47
Figure 3.13: Product Information Model for Disassembly Planning .. 51

Figure 3.14: Comparisons between the Graph Model and the Product Model 52
Figure 3.15: An Example of the Product Topology .. 53

Figure 3.16: The Overall Structure of the Process Model .. 54

Figure 3.17: Disassembly Process Decomposition Example .. 55

Figure 3.18: AND/OR Graph of a Product ... 56
Figure 3.19: Comparison between Process model and N-ary Relation Model 57

Figure 3.20: The Structure of the Uncertainty Model... 58
Figure 3.21: Overall Structure of the Degradation Model .. 60
Figure 3.22: Importing Sub models into the Dependent Model ... 64

Figure 3.23: Relationship in the Process Sub Model .. 65

Figure 3.24: Implementing Object Property and Datatype Property .. 66
Figure 3.25: Implementing the Semantic Axioms related to the Class ConnectingComponent .. 67
Figure 3.26: DIM OWL Implementation Summary ... 68
Figure 4.1: Topological Feasibility Examples .. 70
Figure 4.2: An Example to Explain the Product Stability .. 71

Figure 4.3: An Example to Explain Product Topological Configuration 73

Figure 4.4: Structure of the Disassembly Sequence Generator Information Model 75

Figure 4.5: Examples of the ContactLoop Concept .. 77
Figure 4.6: An Example of the ContactLoopCluster Concept .. 79
Figure 4.7: An Example of Modelling the Local Geometrical Constraints 80
Figure 4.8: An Illustrative Example.. 82
Figure 4.9: Instance Population in Protégé ... 83

Figure 4.10: Detailed Populated Information about Part1 .. 84
Figure 4.11: Local Constraints of Part 1 ... 85
Figure 4.12: The Overall Structure of the Disassembly Sequence Generator Application 86

ix

Figure 4.13: Organizing Information into the “EOLProduct” Object .. 88

Figure 4.14: Details of the Interference Test along +X Direction .. 91
Figure 4.15: Unconstrained Subassembly Example ... 92
Figure 4.16: Pseudo Code for Finding All the Loops in a Graph ... 93

Figure 4.17: Pseudo Code for Determining Whether a Loop is a ContactLoop 95
Figure 4.18: Pseudo Code for Identifying the ContactLoopCluster ... 96
Figure 4.19: Pseudo Code for the Function “IsUnConstrainedsubAssembly” 97
Figure 4.20: Procedure for Finding All the Feasible Disassembly Process Sequences 98
Figure 4.21: An Example of Four Parts .. 99

Figure 4.22: Verification of Sub Functions at State 1 (Initial State) .. 103
Figure 4.23: Verification of Sub Functions at State 2 (When Part7 and Part10 have been

Detached) .. 104
Figure 4.24: Process Description for Generating One Feasible Disassembly Sequence 105

Figure 4.25: All the Generated Feasible Disassembly Sequences Related to the Case Study 107
Figure 4.26: One Simple Generated Feasible Disassembly Sequences Example 108

Figure 4.27: The Value Vector and Cost Matrix for the Case Study Product 109
Figure 4.28: The Optimal Disassembly Path .. 109

Figure 4.29: An Optimal Disassembly Path (Verification Scenario 1) 110
Figure 4.30: An Optimal Disassembly Path (Verification Case 2) ... 110
Figure 5.1: The Adaptive Disassembly Planning Information Model .. 118

Figure 5.2: High Level View of the Adaptive Disassembly Planning Application 123
Figure 5.3: High Level View of the Fuzzy Inference System .. 125

Figure 5.4: Fuzzy Influence Implementation in Matlab ... 127
Figure 5.5: The Complete Adaptive Disassembly Planning Procedure 131
Figure 5.6: Kitchen Exhaust Fan Assembly ... 133

Figure 5.7: The Feasible Disassembly Sequences of the Kitchen Exhaust Fan Assembly 134

Figure 5.8: The Disassembly Decision Network of the Kitchen Exhaust Fan Assembly 136
Figure 5.9: An Example Showing the CPT Definition ... 137
Figure 5.10: Process Utility Definition Example .. 137

Figure 5.11: Examples Showing the Disassembly Object Utility Definition 139
Figure 5.12: User Interfaces for the Adaptive Disassembly Planning Application 140

Figure 5.13: Reuse Value estimation for ABCD when Considering Degradation 142

x

LIST OF ABBREVIATIONS

ADP Adaptive Disassembly Planning

AsD Assembly Design Ontology

BN Bayesian Network

CADP Computer Aided Disassembly Planning

CPM Core Product Model

DAG Directed Acyclic Graph

DAO Design Activity Ontology

DDN Disassembly Decision Network

DFM Design for Manufacturing

DIM Disassembly Information Model

DL Description Logic

DPN Disassembly Petri Net

DSG Disassembly Sequence Generator

D-UN Disassembly Object Function Uncertainty Node

D-UTN Disassembly Object Utility Node

EOL End of Life

IM Information Model

IoT Internet of Things

LCU Life Cycle Unit

LP Linear Programming

MASON Manufacturing Semantic Ontology

MEU Maximum Expected Utility

OAM Open Assembly Model

OWL Web Ontology Language

P-DN Process Decision Node

PEID Product Embedded Information Device

PLM Product Lifecycle Management

P-UN Process Uncertainty Node (P-UN)

xi

P-UTN Process Utility Node

RoHS Restriction of Hazardous Substances Directive

SWRL Semantic Web Rule Language

TR Transition Arc

UML Unified Modeling Language

UN Uncertainty Node

URI Unified Resources Identifier

UTN Utility Node

W3C World Wide Web Consortium

WEEE Waste Electrical and Electronic Equipment

1

 INTRODUCTION

In this chapter, an overview of the research performed in this dissertation is presented. The chapter

begins by providing the technical context and background of the research. As the main topic of

this work, the concept of Information Model (IM) is further discussed in detail. The problem

statement, research contributions, and research methodology are then addressed. Lastly, this

chapter is wrapped up by outlining the structure of the overall dissertation.

1.1 Research Background

A succinct and comprehensive definition of End of Life (EOL) product is provided by the

European Economic Community, which defines the EOL product as “any substance or object

which the holder discards or intends or is required to discard” (Gharfalkar, Court, Campbell, Ali

& Hillier, 2015). Normally, the discarded EOL product may or may not be totally obsolete, and a

recovery process can be applied to restore the contained value as a form of energy, material or

product. Such recovery processes have been more and more studied under the popular paradigm

of sustainable manufacturing, which has the objective to carry out economically-sound

manufacturing/de-manufacturing processes that maximize the possible profits and minimize

negative environmental impacts by utilizing different recovery options, such as recycling, reuse,

and remanufacturing.

On the other hand, governments have already started to impose regulatory obligations on

manufacturing companies, which mandate manufacturers to set up plans for collection, recycling

and recovery for specific types of products. For instance, the Waste Electrical and Electronic

Equipment Directive is the European community’s directive on the Waste Electrical and Electronic

Equipment (WEEE), which became European law in February, 2003. The Restriction of

Hazardous Substances Directive (RoHS) was also adopted in February 2003 by the European

2

Union to restrict the use of certain hazardous substances in the electrical and electronic equipment.

In the United States, 25 states have passed legislative regulations, mandating statewide electronic

waste (e-waste) recycling and several more states are working on passing new laws or improving

the existing laws. All laws, except those in California and Utah use the “Producer Responsibility”

approach, where the manufacturers must pay for recycling. Also, 65% of the U.S. population has

been covered by a certain state level e-waste recycling laws since 2003 (Millar, 2005).

Both the potential economic profits and the regulatory laws motivate the study of the EOL product

recovery modeling and implementation. As indicated in figure 1.1, four major EOL product

recovery paths, named recycling, remanufacturing, direct reuse and disposal, have been identified

(indicated as a green ellipse). Even though these paths consider various recovery strategies, all of

them involve some level of disassembly process. In this sense, carrying out the disassembly

process “optimally” plays a critical role in the entire process of the EOL product recovery. Over

the years, various methods ranging from network theory to mathematical programming have been

applied in the domain of product disassembly (Dong & Arndt, 2003). Unfortunately, not much

work has been reported regarding the information aspect of the disassembly problem, which in the

author’s opinion, is the bottleneck of the current disassembly related research. In detail, the

challenge is that disassembly planners have limited knowledge on what information is critical in

the planning of the disassembly process, how to access this information, and, finally how to utilize

the updated on-site information (which is unknown in the beginning of the disassembly process)

for dynamically adapting the “optimal” disassembly process plan. Also, an EOL product is highly

independent and has to be treated individually, which further aggravates the above mentioned

problems.

3

Figure 1.1: EOL Product Recovery Option (Ziout, 2013)

1.2 Information Modeling

Information Model, originates from software engineering and is a representation of concepts,

relationships, constraints and rules for a chosen domain of discourse. It can provide a sharable,

stable, and organized structure of information under some domain context (Halpin, 2001).

In the domain of manufacturing, a notable development in the IM field is the NIST’s Core Product

Model (CPM). It is a Unified Modeling Language (UML) based model intended to capture the full

range of engineering information commonly shared in product development (Foufou, Fenves,

Bock, Rachuri & Sriram, 2005). CPM focuses on modeling the general, common and generic

product information, and excludes the information which is domain specific. NIST further

developed another information model called “Open Assembly Model” (OAM) (Baysal, Roy,

Sudarsan, Sriram & Lyons, 2004) which extends CPM. Along with the structural information, it

represents the function, form, and behavior information related to an assembly, and defines a

system level conceptual model. A comprehensive review on IM is presented in Chapter 2.

4

1.3 Goal of the Information Model Development

Generally, any Information Model has to meet two major goals: to be usable and to be reusable.

IEEE Standard defines reusability as “the degree to which a software module or other work product

can be used in more than one computing program or software system” (IEEE standard glossary of

software engineering terminology.1983). Similarly, Information Model reusability can be defined

as “the adaptation capability of an Information Model to arbitrary application contexts”, including

those contexts “that were not envisioned at the time of the creation of the Information Model”

(Cysneiros, Werneck & Kushniruk, 2005). It should be understood that it is not feasible and

desirable to develop an IM that is equally fitting to all application contexts (Borst, Akkermans &

Top, 1997); rather the goal of reusability is to design an IM which can be extended and adapted to

a large number of applications in the domain of interest.

On the other hand, usability denotes the degree to which the software component is useful for a

specific task or application. By definition, an IM is rarely ready for use, but must always be adapted

and refined to a knowledge base for the tentative application. Therefore, the goal of IM usability

can be rephrased as minimizing “the effort required to customize the IM so that it can be used by

humans or machines in a given application context” (Cysneiros, Werneck & Kushniruk, 2005).

As the reader might already have noticed, IM reusability and usability are contradicting each other:

increasing the reusability of knowledge implies the maximization of using this knowledge among

several kinds of tasks. The resulting IM would be general in nature; increasing usability implies

providing all information related to a specific task and the resulting IM would have redundant

information for other tasks and thus would not be appropriate. Consequently, it is difficult to

simultaneously achieve high degrees of usability and reusability: Specializing in one kind of task

makes the IM more useable for this particular task, but it also decreases the likelihood of its

5

reusability; a highly abstract IM, on the other hand, may be applicable to a variety of different

tasks, but it is unlikely to be proved useful for any of these tasks without extensive modification

and detailing. This is known as the reusability-usability trade-off problem in the literature (Klinker,

Bhola, Dallemagne, Marques & McDermott, 1991). In this research, a layered IM development

methodology is developed to address this issue and it is presented in detail in Chapter 3.

1.4 Problem Statement

Based on the initial review of the background of the product recovery & disassembly and the

Information Model, the overall research problem carried out in this dissertation can be summarized

as follows:

In detail, the research problem can be broken down to answer the following research questions:

Q1: What is the information required for disassembly planning and how to model it so that it can

be both usable and reusable in the domain of disassembly planning (Modeling Methodology)?

Hypothesis: Disassembly related information can be identified and generalized through the

literature reviews, and they can be partitioned into relevant sub models. A layered IM development

methodology can address the reusability-usability trade-off problem. To address this hypothesis,

the following objective is highlighted:

Objective: Identify the information requirements in the domain of disassembly planning and

develop a Disassembly Information Model (DIM) which serves as a consensual information basis

in the domain of disassembly. The developed DIM should provide basic information infrastructure,

which can be proved to be both useful and reusable.

Development and Implementation of a Disassembly Information Model (DIM) for efficient

disassembly planning activities.

6

Q2: How to implement the disassembly information model?

Hypothesis: Description Logic (DL) based Web Ontology Language (OWL), as recommended by

the World Wide Web Consortium (W3C) for the future semantic web, can be used to formally and

computationally implement the DIM. To address this hypothesis, the following objective is

highlighted:

Objective: Implementation of the Disassembly Information Model into formal Web Ontology

Language (OWL) so that specific product information can be published and accessed through the

web. Furthermore, semantic queries are developed for necessary information retrieval.

Q3: How to validate implemented Information Model?

Hypothesis: The performance of DIM (reusability-usability) can be partially validated through

disassembly planning related application developments. To address this hypothesis, the following

objective is highlighted:

Objective: Validating the whole DIM is a challenging process and there actually exists no formal

IM validation process. In practice, it is common that an IM is upgraded and modified for

improvement even after it has been published in the community. A good IM will be utilized by

different applications in the targeted domain by extending itself to meet the application

requirements. After years of such practices, it will be accepted by the domain community and

promote itself to the standard level or the reference model level. Thus, in this work, we partially

validate the usefulness and reusability of the DIM by developing of two disassembly planning

applications, (1) Disassembly Sequence Generator and (2) Adaptive Disassembly Planning

considering component and operation uncertainty, based on the DIM.

7

1.5 Research Contribution

To the author’s knowledge, this work is a first attempt for the development & utilization of a

comprehensive Information Model in the domain of disassembly planning, under the paradigm of

sustainable manufacturing. Detailed contributions are broken down into the following aspects:

• Formal disassembly information representation. Most of the current studies on disassembly

modeling are domain and algorithm specific, thus the information is isolated and

heterogeneous. That’s why information sharing is difficult. The developed DIM will be

targeted at providing a formal, consensual information foundation, which can be promoted

to a reference model in the future.

• DIM based disassembly planning application modeling. Most of the research works on

Information Modeling are focusing on the development of IM structure, whereas, the

application of IM in a real application task is lagging behind. This work fills in this gap by

developing two disassembly planning applications based on extension of DIM: (1)

Disassembly Sequence Generator and (2) Adaptive Disassembly Planning.

o Disassembly Sequence Generator: DIM is extended for Disassembly Sequence

Generator application, and a CAD based graph searching algorithm is developed to

find all possible disassembly sequences of a specific EOL product. The detail of

this application is presented in Chapter 4.

o Adaptive Disassembly Planning: DIM is extended for the Adaptive Disassembly

Planning. The fuzzy logic and Bayesian theorem are combined to handle the

uncertainty issues both in the component quality (well-maintained or broken) and

in the operation status (fail or success). The detail of this application is presented

in Chapter 5.

8

1.6 Research Methodology and Thesis Outline

The overall research methodology of this work consists of five logical steps which includes: (1) a

review of the current works and technologies (Chapter 2), (2) the development of new concepts

and methodologies (Chapter 3), (3) the implementation and testing of the developed concepts and

methods (Chapter 3, 4 & 5), (4) the overall evaluation of the results (Chapter 3, 4 & 5), and (5) the

possible future extensions of this work (Chapter 6). The detail information about each step is

described below:

Chapter 2 reviews the scientific background and establishes the terminologies required for

discussing the development and utilization of DIM, thus providing the basis for the subsequent

chapters.

It starts off by reviewing the research domain of product disassembly. After a systematic study,

we found that although much work has been done in recent years, a systematic and integrated

Information Model for various aspects of disassembly planning application has never been formed

as a coherent body of knowledge. Next, concepts of IM are presented: We first contrast the similar

but different perceptions of IM in the areas of philosophy and computer science. Next, the

specification of IM through informal and formal languages is discussed; the latter option is further

elaborated by describing the modeling capabilities of formal ontology languages. Then, we wrap

up the discussion of IM by reviewing the existing developments of IM in the domain of

manufacturing.

Chapter 3 comprehensively presents the development of DIM. The chapter starts with the

information requirement analysis in the domain of disassembly planning, which results in a high

level domain conceptualization. Next, a layered IM modeling methodology is proposed, with the

intention to find a modeling balance between IM reusability and usability. Detailed DIM model is

9

introduced afterwards, starting from the abstract models like “N-ary relationship Model” and

“Graph Model” in the upper layer to the specific models like “Disassembly Sequence Generator”

and “Adaptive Disassembly Planning” in the bottom layer (Figure 1.2). This chapter ends with the

formal OWL implementation of the DIM.

Chapter 4 presents the first application (Disassembly Sequence Generator) developed by utilizing

the proposed DIM. It focuses on finding all the feasible disassembly sequences from a given EOL

product and then locating the optimal one among them. The chapter starts with introducing the

role of “Disassembly Sequence Generator” in the overall disassembly planning process and a more

specific application level Disassembly Sequence Generator IM is further put forward by extending

the proposed DIM in chapter 3. Based on the information provided in the extended DIM, a CAD-

API based disassembly sequence generation algorithm is developed to find all the possible

disassembly paths of a given EOL product. Lastly, a Linear Programming (LP) model is developed

to find the theoretical optimal disassembly sequence among all the possibilities.

Chapter 5 presents the second application (Adaptive Disassembly Planning) developed by

utilizing the developed DIM. This application focuses on finding the optimal disassembly

sequence, considering economic benefits and product/operation uncertainties. In general, the

development of the application follows the same mechanism as described in chapter 4. A specific

Adaptive Disassembly Planning IM is developed by reusing and extending the original DIM

presented in Chapter 3. The fuzzy logic and Bayesian theorem are combined (for handling

uncertain issues) in a developed Disassembly Decision Network (DDN), which are used to

adaptively generate optimal disassembly step at each operation stage.

Chapter 6 suggests future works and concludes this dissertation. Extensions of DIM on other

disassembly related applications are suggested and contributions of the work are re-emphasized.

10

Introduction

Product
Disassembly

N-ary relationship Model

Conclusion and Future Study

Chapter 6

Chapter 1

Graph Model

Part-whole
relationship ModelSystem Model

Abstract Layer

Domain Layer

Application
LayerChapter 4 Chapter 5

Disassembly Planning
System Model

Disassembly Sequence Generator Adaptive Disassembly Planning

Chapter 4 Chapter 5

Disassembly Information Model Utilization

Disassembly Sequence Generator Adaptive Disassembly Planning

Product Model

Process Model Degradation Model

Uncertainty Model

Information Model
and Ontology

C
h

a
p

te
r 3

Figure 1.2: The Overall Structure of the Dissertation

11

 BACKGROUND AND LITERATURE REVIEW

In this chapter, a comprehensive review on the scientific background and an establishment of the

technical terminologies related to this work have been carried out. Two major topics are reviewed

in details: (1) EOL Product disassembly problem and (2) Information Model & Ontology (figure

2.1). The findings and observations from the literature survey has been further analyzed to lighten

the potential opportunities (hypothesis) for disassembly planning research.

2.1 EOL Product
Disassembly
Background

2.2 Disassembly and
Assembly

2.3 Computer Aided
Disassembly Planning
(CADP)

2.4 Background of
Information Model
and Ontology

2.5 Representation of
formal Information Model

2.6 Current
Manufacturing
Information Model

Findings and Observations

2.3.1 Representation
Model

2.3.1 Disassembly
Planning

Figure 2.1: The Structure of the Literature Review Chapter

2.1 EOL Product Disassembly

In the past decade, the majority of discarded electronics has been destined for landfills and

incineration with few economic considerations (Clegg & Williams, 1994). A large amount of

potential “residual value” in the EOL product, which could have been recovered through recycling

12

or reuse activity, is usually overlooked. By 2020, the number of discarded computers, televisions,

and other electronics containing hazardous as well as valuable materials could reach nearly three

billion units (Ilgin & Gupta, 2010). This calls for a systematic management strategy for EOL

product to achieve both optimal economic benefits and minimum environmental burdens.

A lot of industry attempts have already been made to address this issue. For examples, at the

Reutilization Center in Endicott, New York, IBM has laid out two disassembly lines—a stationary

disassembly line for larger computer machines and a conveyor-driven disassembly line for

personal and notebook computers (Grenchus, Keene & Nobs, 1997). The process mainly includes

customer shipment, receipt and inventory verification, process preparation, disassembly, sorting,

and component recovery. Sony has also incorporated the Design for Environment (DFE) principle

into its product development process. At the Sony Disassembly Evaluation Workshop in Stuttgart,

Germany, products are taken apart to assess the reuse and recycling qualities of electronic parts

(Ridder & Scheidt, 1998). The recovery facility can handle a set type of products which include

television, compact stereo system, etc. Every step during the disassembly process is clearly

documented and evaluated to help improve the future designs.

However, most of the existing EOL product recovering facilities are still following an ad-hoc

process when specifying the detailed steps (like disassembly sequences, recovery option selection,

etc.) in the product recovery, which makes the whole process economically non-optimized. Also,

the existing recovery facilities are operated by big companies like IBM that can only handle a

certain type of products specific to those companies; whereas a general independent recovering

facility serving a wider range of products and companies is still not available.

13

2.2 Disassembly and Assembly

Disassembly, as the core step in the EOL product recovery, is defined as “A systematic method

for separating a product into its constituent parts, components and subassembly” (Gungor & Gupta,

1999). A common misunderstanding is that the product disassembly process is the reverse of the

assembly process. Although one of the major incentives for studying the disassembly process in a

systematic way does come from the success of assembly planning, there are still critical differences

between the two domains of interest, which should not be overlooked:

1. The assembly process is deterministic in nature, whereas the disassembly process has a lot of

uncertainty issues. First of all, the products that come after their end of life services for

disassembly purposes are not the same, even though they were the same initially (at the

beginning of their product life). An example of such a case can be the same products with

different configurations (the user have added one memory card on his PC). Second, the part

might be broken or deformed after usage, thus the quality of the part is uncertain. Third, the

disassembly operation might not be successful all the time, a damage to the component could

have occurred during the disassembly process, possibly due to the harshness of the disassembly

process or due to operator error.

2. The objective of the disassembly process is to maximize the profits and/or minimize the

environmental impact and thus a complete disassembly is not always the target. Thus, a

concept called “disassembly depth” is introduced (Giudice, 2010), which deals with how much

effort should be expended in the disassembly of a product, or alternatively, how completely a

product should be disassembled. Such a “disassembly depth” has to be determined (and

probably adaptively modified) for each individual product. On the other hand, assembly

14

process follows a fixed assembly plan and targets on optimizing certain performance indicators

like throughput, machine utilization, etc.

2.3 Computer Aided Disassembly Planning (CADP)

Researchers are looking for tools and methods for aiding the disassembly planning process, and

they advocate the development of a Computer Aided Disassembly Planning (CADP) system. A

general structure of CADP can be represented in figure 2.2 below.

Figure 2.2: The General Structure of a CADP System

As it is evident in figure 2.2, the overall structure of a CADP system can be devided into three

layers: (1) Input Layer (Representative Model and database), (2) Computational Layer

(Disassembly Planner) and (3) Presentation Layer (Outputs). This dissertation mainly focuses on

the work related to the first two layers and notable relevant works are presented in the following

sections.

2.3.1 Representation Model

The representation model constitutes the main input for a disassembly planning system and its

main objective is to describe the relevant features of an EOL product or a disassembly process.

Two main representation models used in this thesis are briefly reviewed here:

15

(1) AND/OR Graph

An AND/OR graph (Homem de Mello & Sanderson, 1989) is a directed graph G = (N, D), where

N stands for nodes that denotes a product, part or subassembly. D stands for hyper arcs which

represents the set of feasible disassembly operations. Each node i can have k (k>=0) disassembly

choices, forming an OR-relation; an operation disassembles node i into m (m≥2) nodes, m arcs

link node i to these m-nodes, and form an AND-relation. Figure 2.3 is a simple example of the

AND/OR graph of a product. Arc 1 in the figure represents disassembly operation 1 and the

assembly ABCDE can be disassembled into subassembly ABCD and part E (which is not shown

in figure 2.3) through the disassembly operation 1. Similarly, operation 3 disassembles

subassembly ABCD into subassembly AB and subassembly CD. Each path in the AND/OR graph

forms a feasible disassembly sequence. As an example, path 0-1-3 in figure 2.3 is one of the

feasible disassembly sequences of product ABCDE (operation 0 is a pseudo operation denoting

the initialization of the disassembly process).

ABCDE

ABCD

BCDE

AB

CD
1

2

4

5

3

0

Figure 2.3: An Example of the AND/OR Graph

(2) Task precedence graph

Instead of representing nodes as parts and sub-assemblies, nodes represent disassembly operations

in the task precedence graph. Two disassembly operations are represented by two nodes connected

by a directed arc signifying one operation proceeded by the other. If the AND/OR graph in figure

2.3 is translated into a task precedence graph, it will look like that which is shown in figure 2.4

below.

16

0

2 1

3

4 5

Figure 2.4: An Example of the Task Precedence Graph

Please note that the Operation 0 has been considered as a pseudo operation and it is the

initialization of the disassembly process. After initialization, either operation 1 or operation 2 can

be executed. The doubly directed arc means either one operation can be done before or after the

other one, e.g. operation 4 can be done after operation 5 and vice versa. Though the task precedence

graph is a derivative of an AND/OR graph, it has the advantage in that the sequence-related

information is easily observable in the task precedence graph (Any goal node could be arrived at

following more than one path from a given starting node in the task precedence graph), whereas

such information is implicit in the AND/OR graph. For example, it is not clear from the AND/OR

graph that operation 4 can be done after operation 5 (figure 2.3) (Zhu, Sarigecili & Roy, 2013).

Besides the above representation model, other similar modeling derivatives have been proposed,

which includes disassembly petri net (Zussman, MengChu Zhou, & Caudill, 1998), connection

diagram (Lambert, A. J. D. (Fred) and Surendra M. Gupta, 2005), state diagram (Lambert, A. J.

D. (Fred) and Surendra M. Gupta, 2005), etc. A good description of these models can be found in

(Ghandi & Masehian, 2015).

17

2.3.2 Disassembly Planning

Based on the different representation model, different planning approaches and methods have been

proposed for the disassembly planning problem and most of them fit into the following categories:

(1) Graph-based approach

Graphs usually represent the structure of a system, process, product, organization, etc. They can

be considered as an abstraction of the reality. Graph theory has been used as a powerful tool to

solve the problems of disassembly planning. It has helped in representing the planning process by

providing tools like connection diagrams and AND/OR graphs. The characteristics and functions

of a disassembly system are explicitly expressed in the graph and different searching algorithms

are further applied to find all the feasible disassembly sequences according to the topological,

geometrical and technical constraints. Different strategies are further applied to locate the optimal

sequence with consideration of the plan effectiveness and cost-effectiveness. Several outstanding

graph-based approaches are briefly discussed below.

Penev et al. (Penev & de RON, 2002) used AND/OR graph theory and methods of dynamic

programming for the generation and evaluation of the feasible disassembly plans. A new economic

model is introduced to determine the optimal level of disassembly. Zhang et al. (Zhang & Kuo,

1996) developed a graph based heuristic approach for the generation of disassembly sequences

from CAD system directly. They proposed a component fastener graph to analyze the product

assembly relationship. A search for a set of cut-vertex and decomposition of the EOL product into

several subassemblies is further applied on the graph to simplify the disassembly analysis process.

Murayma et al. (Murayama, Oba, Abe & Yamamichi, 2001) described the disassembly sequence

generation using the idea of information entropy and heuristics to replace components at

maintenance stages. The advantage of this method is primarily in the reduction of searching time

18

and searching places for disassembly sequences. The author also developed a software tool

integrated with a CAD system and carried out an experiment for an electric drill using the tool. A

graph-based information modelling system to represent the process for disassembly and recycle

planning of consumer products was proposed by Kanai et al. (Kanai, Sasaki & Kishinami, 1999).

Four kinds of graph have been presented: (1) a configuration graph of sub-assemblies or fragments;

(2) a connection graph between parts and materials; (3) a process graph of disassembly, shredding,

and sorting activities; (4) a retrieval condition graph. Rules and procedures for transforming the

models of these activities are uniformly formulated. A vacuum cleaner is used as an example to

demonstrate the proposed graph-based method.

(2) Petri net-based approach

Besides the traditional graph-based disassembly analysis approach, Petri-Net (PN), as a graphical

and mathematical tool, provides a uniform environment for modelling and analyzing both static

and dynamic discrete events. They provide a very promising method for disassembly sequence

generation.

Zussman et al. (Zussman, MengChu & Caudill, 1998) proposed a complete and mathematically

sound Disassembly Petri Net (DPN) approach to model the disassembly processes. In their work,

the detailed construction and advantages of the proposed DPN have been discussed and a DPN

based searching algorithm has been proposed for the generation of the disassembly plan. They

further extended this work (Zussman & Meng Chu Zhou, 2000) and proposed a design and

implementation system for an adaptive process planner for disassembly processes. The system also

incorporates the uncertainty issue caused by the different product conditions.

19

Moore et al. (Moore, Gungor & Gupta, 1998) developed an algorithm for automatically generating

a DPN from a disassembly precedence matrix. The DPN representing the specific precedence

relationships among parts can be derived from a CAD representation of the product. A Reduced

Reachability Tree algorithm has been further proposed to identify the near-optimal disassembly

process plan from using the DPN.

(3) AI based approach

Many attempts have been made using Al techniques (Genetic algorithms, ant colony methods,

fuzzy logic, neural networks, etc.) in the disassembly sequence optimization. The objective is to

reduce this time by searching the best disassembly sequences without analyzing all the possible

alternatives. Several examples are discussed as below:

An example of the use of fuzzy logic in disassembly planning is proposed by Chevron et al.

(Chevron, Binder, Horacek & Perret, 1997). The main goal is to find the disassembly sequence

requiring the minimum completion time, taking into account the fuzzy model of the processes and

the constraints in available tool, destruction modes, etc. The problem of the generation of

disassembly sequences is approached as a travelling salesman problem (the traveler is the product

and the cities are the operations with their processing times). A modified branch-and-bound

method is used with an objective function evaluated according to fuzzy parameters.

Hsin Hao et al. (Hsin-Hao, Wang & Johnson, 2000) proposed a Neural Networks approach to the

planning of disassembly problem. The generation of sequences is again viewed as a variant of the

traveling salesman problem: to find the sequence of components to be disassembled (cities) having

the greatest profit (the shortest distance). This problem is approached using a Hopfield Neural

20

Network. As input, an N by N matrix of neurons is used: the rows of the matrix indicate the

disassembly operations to be scheduled, and the columns the disassembly sequences.

Lambert (A. J. D. Lambert, 1997) proposed a Linear Programming (LP) model to the disassembly

planning problems. The LP model tries to find the optimal disassembly sequence based on

maximizing the total value of the retrieved parts/subassembly and minimizing the total

disassembly operation cost associated with them.

Table 2.1: Summary on the Reviewed Disassembly Planning Work

Author Representation Model Information Involved

Penev et al. 2002 AND/OR graph Product, Process

Zhang and Kuo, 1996 Component-Fastener Graph Fastener, Product

Murayma et al. 2001 Information entropy

embedded product graph

Product

Kanai et al. Configuration graph

Connection graph

Process graph

Retrieval condition graph

Process

Condition Information

Product

Zussman et al. 1998 Disassembly Petri Net Process, Product

Moore et al. 1998 Disassembly Precedence

Matrix

Disassembly Petri Net

Process, Product

Chevron et al. 1997 Fuzzy Logic based Process

and Equipment Model

Process, Product,

Uncertainty

Hsin Hao et al. 2000 Disassembly Neural Network Product, Process

Lambert, 1997 AND/OR graph Process

A summary on the disassembly planning methods is presented in table 2.1. One important

observation can be identified here: although different researchers proposed different representation

models, the involved information (product, process, etc.) shared similarities among different

methods. The reuse of these concepts has not been explored, which could have made the

development processes of the CADP applications less time consuming.

21

2.4 Background of Information Model and Ontology

The Information Model, sometimes called ontology, is the consensual modelling of concepts and

relationship in a domain of interest. In this dissertation, we use the term IM and ontology

interchangeably. The word “Ontology” can be traced back to the 4th Century BC and is originally

a philosophical discipline concerned with the question of what exists and what is the essence of

things (Zuniga, 2001). Over the last decades, it has been adopted by computer scientists, firstly in

the field of Artificial Intelligence (AI) and more recently in other engineering areas like biology,

chemistry, medicine, etc. Within this community (engineering community), the term is used in a

narrower sense than that in the context of philosophy. It emphasizes on a formal representation of

contextual information, which contains precise definitions of certain entities in terms of their

properties and their relations to other entities. Such definitions are usually given in the form of

axioms formulated in a logic-based language, which can facilitate the automated knowledge

reasoning process (Kutz & Garbacz, 2014).

2.5 Modeling Elements for the Formal Information Model

Information Model, as a conceptual model, can be constructed with different modeling techniques

and be implemented in various kinds of languages (Uschold & Gruninger, 1996). Over the years,

researchers have explored different modelling paradigms such as description logic (Mann, 2003),

database modeling techniques (Bera, Krasnoperova & Wand, 2010), Semantic Web approach

(Memon, Ortiz-Arroyo & Larsen, 2005), etc. Despite the diversity among different approaches, all

of them have common modeling elements. In particular, most languages provide constructs for

classes, instance, relations, and attributes, although they may be named differently in the respective

implementations.

22

Class: A class represents a set or a category of things that have some properties or attributes in

common and they are differentiated from others by kind, type, or quality. It sometimes can also be

denoted as concept or frame depending on the different modelling paradigms. An example of a

class could be Product, Disassembly Process, Constraint, etc. (We will use the bold Calibri font,

with the capitalized first letter, in this dissertation to represent a class).

Instance: Entities that belong to a particular class are said to be instances or members of that class;

for example, steel and plastics are instances of the Material class. (We will use the italicized

Calibri font, with the lowercased first letter, in this dissertation to represent an instance of a class)

Relations: Relation describes the interrelation between classes and it can also be denoted as

properties, roles, slots, or associations in other modelling paradigms. Most modelling languages

support representing only relations among two classes and is by default directional, which means

that it points from a particular domain class to a designated range class. As an example, consider

the relation hasComponent, which refers from a Product (its domain) to a Component (its range).

We will use the bold italicized Calibri font, with the lowercased first letter, in this dissertation to

represent a relation. A special relation called inheritance relation is commonly supported in various

IM modeling paradigm, which is used to hierarchically organize the classes by specifying

parenthood relations. As an example, a Screw Connection class is inherited by Connection class

and it is a specialization or a subclass of the Connection class (every instance of Screw Connection

is also an instance of Connection class).

Attribute: Attributes represent features, characteristics, or parameters of classes and an attribute is

identified by a name and can take one or several values, which are usually restricted to a specific

datatype such as Boolean, string, integer, etc. We use the underlined Calibri font, with the

23

lowercased first letter, in this dissertation to represent an attribute of a class. As an example,

manufacturingCost is an attribute of class Component and it can take values of datatype double.

2.6 Current Information Model in the Domain of Manufacturing

Over the years, researchers have contributed to the development of IM or ontology in the domain

of manufacturing, with different focusing aspects. Some notable work is reviewed below.

Leimagnan et al. (Lemaignan, Siadat, Dantan & Semenenko, 2006) developed the Manufacturing

Semantic Ontology (MASON) to formally capture the concepts related to the manufacturing

industry. The semantics related to entity, resources and operation were captured in formal logic

using web ontology language (OWL). Two applications about automatic cost estimation and the

semantic-aware multi-agent system for manufacturing were discussed to demonstrate the

usefulness of the proposed MASON ontology.

Xiaomeng (Chang, 2008) selected the field of Design for Manufacturing (DFM) for his PhD study

and three primary aspects are investigated. First, a generalized DFM ontology is proposed and

developed, which fulfills the mathematical and logical constraints needed in the domain of DFM.

Second, the means to guide users to the proper information and integrate heterogeneous data

resources is investigated. Third, a decision support tool is developed to help designers consider the

design problem in a systematic way based on the developed DFM ontology.

Pavan (Kumar, 2008) developed an ontology called the Design Activity Ontology (DAO) to

explicitly represent the design activity that can cover phases of the design process from conceptual

phase through detail design phase. The ontology provides a formalized and structured vocabulary

of design activities for the exchange of design process models and it further enables design

processes to be modeled, analyzed and optimized in a consistent way.

24

Kim et al. (Kim, Manley & Yang, 2006) proposed a collaborative assembly design framework that

offers a shared conceptualization of assembly modeling, and an Assembly Design Ontology (AsD)

is developed to capture the joining intents of a product. AsD is claimed to serve as a formal, explicit

specification of assembly design so that it makes the assembly knowledge both machine-

interpretable and sharable.

Some industrial efforts have also been devoted to the development of the manufacturing related

Information Model. A notable development in this field is led by NIST. One of their work is the

NIST’s Core Product Model (CPM), which a unified modeling language (UML) based model

intended to capture the full range of engineering information commonly shared in product

development (Foufou, 2005). CPM focuses on modeling the general, common and generic product

information and excludes the information which is domain specific. NIST further developed

another information model called “Open Assembly Model” (OAM) (Baysal, 2004) which extends

CPM. Along with the structural information, it represents the function, form, and behavior of the

assembly, and defines a system level conceptual model.

Recently, NIST also proposed a disassembly information model (Feng & Kramer, 2013) and to

the author’s knowledge, this is the first attempt to develop disassembly related information model.

The developed model highlights the information content used for disassembly sequence

representation, feature modeling, equipment modeling, and inspection process modeling.

However, the NIST disassembly information model remains in the conceptual stage and the

implementation of the model has not been fully achieved. Also, the handling of

reusability/usability tradeoff issue and the uncertainty issue is not discussed.

25

2.7 Summary: Observation and Findings

An in-depth review of the disassembly planning problem and the Information Model has been

carried out in this chapter. Some observations and findings are summarized as follows:

Information Model provides a shared knowledge basis for a specific domain of interest and it is

necessary for any decision making purposes. Even though some work has been done in developing

manufacturing related Information Model, not sufficient attentions were paid towards the issues

related to the EOL product disassembly in a comprehensive manner. Even for the NIST

disassembly Information Model, certain issues like the reusability/usability trade off and the EOL

product uncertainty have not been well addressed.

In the disassembly research area, different representation models like AND/OR graph,

Component-Fastener Graph, Information entropy embedded product graph, etc. have been

proposed. A finding from the literature survey is that the involved information in different

proposed disassembly planning methods shares certain commonalties (product, process,

uncertainty, etc.), which should be generalized for better serving the disassembly research

community.

26

 DISASSEMBLY INFORMATION MODEL

In this chapter, the development and implementation of the proposed Disassembly Information

Model (DIM) are presented in detail. We start with the discussion and analysis of the information

requirements in the domain of disassembly planning, which puts forward a high level informal

domain conceptualization (section 3-1). Next, a layered DIM modelling methodology is presented,

with the intention to find a balance between IM reusability and usability (section 3-2). The detailed

DIM model is introduced afterwards in section 3-3, using UML class diagram as a graphical

notation. Lastly, the formal DIM implementation in OWL is presented in detail in section 3-4.

3.1 Information Requirement for Disassembly Planning

The information required for the EOL product disassembly planning can be broken down into four

categories: product related, process related, uncertainty related and component degradation related

(figure 3.1). The informal description of each category is presented below:

Figure 3.1: High Level Information Requirement for the EOL Product Disassembly

Planning

3.1.1 Product Aspect Information

The product related information describes the characteristics of the EOL product which needs to

be disassembled. Relevant concepts or terminologies in this domain include product, component

27

and liaison and they will be informally described below to convey a fundamental domain

understanding before the formal product aspect Information Model is presented.

Product and Component

In general, a product is an artifact or substance that is manufactured for sale. In any disassembly

process, the product represents the input to the disassembly process and it may consist of a number

of discrete parts, which are called components. A component is a material entity that can be

separated from a product through disassembly processes, without altering the component’s

intrinsic property (like mass, density, etc.). Furthermore, a component cannot be further separated

via non-destructive detaching processes.

In the domain of disassembly planning, further specification of the component according to their

characteristics is critical. From a higher level, components can be classified according to different

aspects like material composition (homogeneous or composite), functional type (connecting

function or non-connecting function) and component complexity (atomic component or complex

component). In detail, the following types of component are highlighted:

 Homogeneous Component: is a component consists of only homogeneous materials. Frame

and cover are the typical examples of the homogeneous component.

 Composite Component: is a component consists of different non homogeneous materials

linked in an irreversible way, such as a sandwich structure. The laminated glass, which is

constructed by combining two panes of glass fused together with a middle layer of

Polyvinyl Butylenes Film (PVB) acting as a bonding agent, is an example of composite

component,

 Connecting Component: is a component whose primary function is to connect other

components. Different fasteners fall under this category.

28

 Complex Component: A complex component is a cluster that consists of a set of

components, which cannot be separated from the whole without damaging certain

component permanently. Examples of such component can be printed circuit board and

electrical cables.

Liaison

Components are physically linked by liaison, which restricts the freedom of motion of the

components involved. The liaison concept can be classified into two main types to reflect the

different properties of the liaison. The main liaison types are:

 Component contact: Such liaison represents the relationship between components where

the involved components are connected with each other without any application of external

forces. We call this type of connection “component contact” and it is formed through

connections between component’s geometric entities like a vertex, an edge or a surface.

Examples of such case could be a cube resting on a panel (surface contact).

 Component connection: Such liaison represents the relationship between components

where a connection is established through a certain connecting component. Example of

such case could be a blender housing connected with a base panel by a set of screws

(connecting component).

From the discussion above, two Information Modeling requirements related to the product domain

aspect can be identified. The first one is the modeling of product hierarchy: a product is composed

of different components which are hierarchically organized by aggregating them into

subassemblies. Thus, the part-whole relationship needs to be modeled in the product domain

Information Model. Second modeling requirement relates to the topological arrangements of

components (or say product structure), which are realized by different component liaisons.

29

Information related to how components are connected to each other for achieving the final product

should be supplied. If the liaison belongs to the type of component connection, at least three

entities are then involved: two components are connected through one connecting component.

Thus, modeling of n-ary relationship (n>2), which involves more than two entities, should be

supported.

Basic product aspect information requirements can be summarized in table 3.1 below:

Table 3.1: Product Aspect Information Requirement

Basic Terminology Product

Component

 Homogeneous component

 Composite component

 Connecting component

 Complex component

Liaison

 Component Contact

 Component Connection

Modeling Requirement Product Hierarchy

 Part-whole relationship

Product Topology (Component Liaison)

 N-ary relationship

3.1.2 Process Aspect Information

The disassembly process accomplishes the basic transformations of the product’s physical states

and it can be divided into three different levels as follows:

 Task Level: Task represents the most abstract type of disassembly process, which only

specifies the target component to be disassembled. An example of a disassembly task could

be “detaching blender housing component” or “disassembling the screw from the PC

motherboard”. A sequential aggregation of disassembly tasks will provide a high level

disassembly plan.

30

 Operation Level: An operation represents the detailed process steps necessary to achieve a

certain task. The operation may not only include disconnection process, they may also

include the movement operations necessary to transfer the subassemblies to a different

location and other supplementary operations such as cleaning, fixturing, tool exchanging,

product reorienting (to guarantee access or stability), and testing.

 Action Level: An action represents the specific atomic process steps required to achieve a

certain operation. An important characteristic of an action is that it is performed without

the goal to directly change the object state (Hamidullah, Bohez & Irfan, 2006). It means

that an action alone should not be sufficient to change any part attributes or disestablish of

liaisons. As an example, a “movement” operation involves possibly two actions: motion

action and grip action. However, neither the motion action, nor the grip action alone

changes the state of the object (A motion action will not make any difference on the

component unless it is combined with a grip action).

Along with the detailed process classification, another important process related requirement is the

ability to represent all the feasible disassembly process sequences explicitly. In other words, this

requires the development of an Information Model that can mimic the traditional graph based

disassembly process representation, such as the state change graph. This requirement utilizes again

n-ary relationship because a state change normally involves three objects: pre-state, goal-state and

process step.

31

Basic process aspect information requirements thus can be summarized in table 3.2 below:

Table 3.2: Process Aspect Information Requirement

Basic Terminology Process

 Task

 Operation

 Action

Modeling Requirement Feasible Process Sequences

 N-ary relationship

Process Hierarchy

 Part-whole relationship

3.1.3 Uncertainty related Information

As mentioned in the previous sections, unlike the assembly process, the disassembly process has

various inherent uncertainty issues. Thus, extra information is needed for such uncertainty

handling. Two types of uncertainty are considered in this dissertation: (1) Component/assembly

function uncertainty and (2) Operation uncertainty.

 Component/assembly functional uncertainty: each component or assembly might associate

with a primary function, which contributes to the product overall function. Such function

may not be working when the EOL product becomes obsolete. Such functional/non-

functional information is critical in the disassembly planning process and can only be

revealed gradually during the disassembly process.

 Operational uncertainty: during the disassembly process, certain operations such as

unscrewing might not succeed due to the poor physical conditions of the component such

as deformation or corrosion. In such cases, extra special operations may be required to

handle the situation and it will incur a higher cost. Since this information is also unknown

at the beginning of the disassembly process, it is called operational uncertainty.

32

Both cases will be handled using the Bayesian Network (BN), which consists of a Directed Acyclic

Graph (DAG) and a set of local statistical distributions (Kwaan, 1994). The detailed procedures

for disassembly uncertainty handling using BN will be presented in detail in the chapter 5. Here

we only summarize the two important information elements necessary for the Bayesian theorem

based uncertainty handling: (1) the component/assembly influence dependency and (2) the

conditional probability table.

Component/assembly Influence dependency: is a directed acyclic graph (DAG) representing the

function dependency among components/assemblies. Figure 3.2 is a simple DAG example

describing that the function of the “Fan Assembly” is conditionally dependent on the function of

the “Motor” and function of the “Rotor Shaft”. Such information demonstrates the function failure

propagation in the EOL product and is critical in the adaptive disassembly planning.

Conditional Probability Table (CPT): consists of a set of discrete (not independent) random

variables to demonstrate the marginal probability of a single variable with respect to the others. A

simple CPT applied to the example in figure 3.2 is shown in figure 3.3. It says that the probability

of the “Fan Assembly” to be functional is conditionally dependent on two other variables: the

probability of the “Motor” to be functional and the probability of the “Rotor Shaft” to be

functional. As an example, when the motor is functional and the rotor shaft is not functional, the

probability of the fan assembly to be functional is 0.

33

Fan Assembly

Motor Rotor Shaft

Figure 3.2: A Simple Example of the DAG Network

 Motor Function Not Function

 Rotor Shaft Function Not Function Function Not Function

Fan Assembly Function 0.8 0 0 0

Not Function 0.2 1 1 1

Figure 3.3: CPT of the Fan Assembly

In summary, uncertainty related information requirement can be summarized in table 3.3 below:

Table 3.3: Uncertainty Related Information Requirement

Modeling Requirement Bayesian Networks

 Conditional Probability Table

 Component/assembly Influence

dependency

3.1.4 Degradation related Information

Component/assembly degradation is also a critical issue in the planning of disassembly.

Degradation is a gradual change in the properties (like tensile strength, color, shape, etc.) of the

component, which usually does not affect the overall function of a component until it reaches a

critical point. However, degradation does affect the economic quantification of EOL product or

component. For example, although some subassembly might work fine (functional) after the

function testing, the associated reuse value still could be lower than the expected average reuse

34

value (the subassembly is close to failure) or higher than the expected average reuse value (the

subassembly still has a long remaining useful life time). Information regarding to such remaining

useful life estimation should be supplied for the disassembly planning process.

The remaining useful life time estimation is a challenging research problem and in this thesis we

use the fuzzy logic based approach to quantify the component/subassembly reuse value through a

set of fuzzy linguistic variables and a set of heuristic rules. The detail of reuse value estimation

using fuzzy logic will be presented in detail in the following chapter (chapter 5). Here we only

summarize the important information elements necessary for carrying out the fuzzy logic based

reuse value estimation.

 Age: age represents the service time of a component or a product. This information could

be different among different components in the one product (component replacement

during the maintenance). Usually, high age indicates a lower reuse value.

 Condition parameter: age is an indicator variable for estimating the remaining component

useful lifetime. However, it is assumed that the component or subassembly is servicing

under certain controlled operational conditions. If the user is abusively using a certain

product or a product is operating under severe external environments, the age of the

component/product alone can no longer properly indicate the remaining useful life time.

Certain condition parameters (like operation noise, corrosion, etc.) should be included for

the estimation.

 Market demand: reuse value is also dependent on the market demand. A higher demand

normally will increase the average reuse value and a lower demand will decrease the reuse

value despite of the conditions of the product/component.

35

The above input variables will be modeled as linguistic variables, which is suitable for fuzzy

reasoning. Extra informational elements related to the linguistic variable are thus necessary, which

include membership function and fuzzy term definition. On top of that, the support of heuristic

based fuzzy rules should be provided in the developed DIM for the fuzzy reasoning process.

Basic uncertainty related information requirements can be summarized in table 3.4 below:

Table 3.4: Degradation Related Information Requirement

Modeling Requirement Fuzzy Logic

 Linguistic variable

o Age, Condition Variable, Market Demand

o Membership function

o Fuzzy term

 Fuzzy Rules

3.2 Layered DIM Modelling Methodology

From the analysis carried out in the previous section, DIM should be comprised of the information

related to the aspects of product, process, uncertainty and degradation and the modelling of which

involves certain information modeling patterns like n-ary relationship, part-whole relationship, etc.

Also, DIM should achieve certain balances between IM usability and reusability. Thus, a layered

modelling methodology has been proposed, in which DIM has been subdivided by means of layers

(Figure 3.4), with the intention to separate general knowledge into different level of abstractions.

Also, a “minimal ontological commitment” (Gruber, 1995) guideline is followed, which means

each layer holds only concepts/relationships and axioms that are essential for the function of the

current layer. Information that is not essential for the layer’s purpose are sourced out to lower

layers. Details of each layer are presented as follows:

 Abstract Layer: The Information Models in the abstract layer hold the fundamental

modeling concepts, which are independent of a particular problem or domain and can

36

therefore be universally applied. They describe the design guidelines (design pattern) for

the construction of the other sub models in the DIM. Models like n-ary relationship, part-

whole relationship, graph model and system model belong to this layer.

 Domain Layer: The Information Models in the domain layer capture the knowledge related

to a domain of expertise, such as disassembly planning in our case, and they generally don’t

target on solving a specific problem or task, but rather providing a domain knowledge

foundation for a range of different applications. Thus, the Information Model residing on

this layer is more specific than those in the abstract layer, but less specific than those in the

lower layer (application layer). The majority of the required disassembly domain

information discussed in section 3-1 (product, process, etc.) are implemented in the models

in this layer.

 Application Layer: represents the most specific Information Model which is directly usable

for a certain disassembly planning application. This thesis focuses on two disassembly

planning applications: (1) Disassembly Sequence Generator and (2) Adaptive Disassembly

Planning and they will be discussed in detail in chapter 4 and chapter 5 accordingly.

37

N-ary relationship Model

Graph Model

Part-whole
relationship Model

System Model

Abstract Layer

Domain Layer

Application
Layer

Disassembly Planning
System Model

Disassembly Sequence Generator Adaptive Disassembly Planner

Product Model

Process Model Degradation Model

Uncertainty Model

Figure 3.4: The Overall Structure of DIM

Such a layered DIM development methodology takes the IM reusability-usability trade-off

problem into account. The abstract or general knowledge is modeled in the sub models located on

the top layer of the DIM. They provide various design patterns which can be reused in various

application contexts and normally are not directly usable in any particular application due to the

high level of abstraction. On the other hand, knowledge in the models residing on the lower layer

is ready to be used, but is usually application specific and thus is hardly to be transferred to other

applications. Information Models in each layer of the DIM contain knowledge with certain degrees

of reusability and usability and the usability of the knowledge normally increases with descending

reusability when navigating from the top to the bottom layers of DIM.

38

In the following sections, DIM sub models in the abstract and domain layer will be presented in

detail, whereas the sub models in the application layer will be introduced in chapter 4 and chapter

5.

3.3 Formal Disassembly Information Model

In this thesis, the UML class diagram, which has the full modelling capabilities to represent the

major elements (class, relations, etc.) of an Information Model, has been adopted as a graphical

representation of the Disassembly Information Model. The UML class diagram notations are

summarized in figure 3.5 and they will be applied throughout this thesis.

Rectangular box with bold text represents a certain class and the instance of the class is denoted

as italicized regular text in a rectangular box. A class can have some attributes (sometimes called

data property), which can hold certain datatype. This is represented as a straight line connection

between a class and a data type (represented as rectangular boxes with dashed boundary lines).

The name of the attribute (data property) is annotated on top of the connection line as regular text

with a lowercase first letter.

Class

Super_Class

Sub_Class

Domain
Class

Range
Class

relationName

1 1

Cardinality:
1..* : one or more
1: exactly one

dataType

instance

Class
1 1

attributeName

Aggregate
Class

Part
Class1 1..*

hasPart

Figure 3.5: The Notations Used in Creating the UML Class Diagram

39

The inheritance relationship between classes is depicted through a solid line with a hollowed

arrowhead pointing from the subclass to the superclass. Binary relationships (sometimes called

object property) can exist between classes, which is denoted as a straight line connection between

classes. The name of the relationships is presented on top of the connection and cardinality

constraints (depicted by numbers placed close to classes of the respective relation) can be added if

necessary. Lastly, aggregation, as a special type of relationship, is important in this work, which

will be discussed in detail in the part-whole relationship sub model section. The annotation for

such relationship is a straight line connection with a hollowed diamond head pointing at the

aggregated class.

3.3.1 Abstract Layer Models

This section presents the Information Models residing on the abstract layer in detail.

(1) N-ary Relationship Model

N-ary relationship model presents the most fundamental modeling elements (concept and

relationship) in an Information Model. On top of that, we extend the traditional binary relationship

into the N-ary relationship, which can represent certain relations existing among more than two

objects. Figure 3.6 shows the N-ary relationship Information Model: everything is considered as

either an Object or a Relationship. A Relationship class involves two or more Objects and could

have certain attribute (relationAttribute) with different possible datatypes. In some scenarios,

directed N-ary relationship is necessary, which describes an N-ary relationship existing among

some Objects where at least one Object is distinguished as the origin of the relationship. The

DirectedRelationship class is thus modeled as an extension of the Relationship class and two new

object properties (hasOrigin and hasTarget) related to the DirectedRelationship class are

introduced to denote the direction among the objects involved in a relationship.

40

Object Relationship
involves

12..n

xsd:any

1

relationAttribute

0..*

Object
Directed

Relationship

hasTarget

11..n

hasOrigin

11

Figure 3.6: N-ary Relationship Information Model

As indicated before, the Information Models in the abstract layer provide a generic information

design pattern irrespective of its use in any particular application domains. Here, a simple

application example of representing an array ([a, b, b, c]) is shown in figure 3.7 below:

arrayExample

a b c

involves involves involves

1 2 4

size

3Object Relationship
involves

12..n

ArrayArray Element

xsd: integer

index1

1

xsd: integer

size1

1

4

index index index index

(a) Extension of N-ary Relationship model for
Representation of an Array

(b) Instantiated N-ary Relationship Model
 ([a, b, b, c])

Figure 3.7: An N-ary Relationship Example

An array involves several elements (in our case, English letters) in a sequential way. Thus, an

Array can be modelled as an extension of the Relationship class, which involves several Array

Elements (extension of the Object class). Each of the elements in an array has an index indicating

41

its position in the array and such information is modeled by the index data property, which

associates each Array Elements with an integer. The size information of an array can be considered

as a certain array attribute and thus data property size is modeled and it is an extension of the

relationAttribute data property. Figure 3.7 (b) shows how to represent array [a, b, b, c]:

arrayExample is being modeled as an instance of the Array class and a, b and c are instances of

the Array Elements class, which are being involved in the arrayExample relationship. The

information regarding the array size and the index of the array element is also shown accordingly.

(2) Part-Whole Model

The Part-Whole model represents the parthood relations among Objects, which is a common

scenario in the domain of disassembly. As examples, parthood relations can exist between product

and subassembly, between subassembly and component, between process and task and so on. The

Part-Whole model (Figure 3.8) is developed to represent a reusable design pattern for such

purpose. Two new classes are introduced: The Whole class represents the Object which will

aggregate other Objects, whereas the Part class represents the Object which is a part of the Whole

class. An instance of the Whole class must relate to some (more than one) instances of the Part

class through the hasPart object property.

Whole Part

Object

1 2..nhasPart

Figure 3.8: Part-Whole Model

(3) Graph Model

42

Graph is widely used for the representation of disassembly process or the structure of the EOL

product, thus the third Information Model in the abstract layer is the graph Information Model,

which is extended based on the N-ary relationship model and part-whole model. Figure 3.9

presents the overall structure of the Graph Information Model.

Node Arc

Object

Port ConnectingPoint

hasPort

1

1..n

hasConnectingPoint

1

2

Connector

isDirectlyConnectedTo 12

1 1..nisDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

1 1

1 1

isDirectlyConnectedTo

1

1

Object 1 1..n

hasConnectorTopology

Graph

Figure 3.9: The Graph Information Model

In order to model the Graph Information Model, the connection or topology information should be

added to the Object class first, which is being represented in the lower half of figure 3.9. The type

and number of connections that an Object may have can be constrained by means of the Connector

class. A Connector represents the interface through which an Object can be connected to another.

Thus, an instance of the Object class should aggregate one or more instances of the Connector

class. Such modeling requirements align with the design pattern used in the Part-Whole

Information Model (the Object class mimics the Whole class, whereas the Connector class mimics

the Part class) and thus the modelling mechanism between Object and Connector is same as that

43

defined in the Part-Whole sub model. On top of that, it is mandatory that a Connector instance is

connected to another Connector instance through isDirectlyConnectedTo object property.

The upper portion of the figure 3.9 further extends the connection or topology information to allow

for the representation of graphs. The major concepts in the model are the Node class and the Arc

class. Basically, an Arc cannot connect to more than two Nodes, which excludes arcs that fork. A

Node, on the other hand, can be connected to one or more Arcs.

Also, a Node may have a list of Ports, whereas an Arc should have exactly two ConnectingPoints.

Both of the Port class and the ConnectingPoint class denotes the interface information related to

the Node class and Arc class. Thus they are modelled as the specializations of the Connector class.

Also, the Port class and the ConnectingPoint class are related to each other through

isDirectlyConnectedTo object property.

An application example of the Graph Information Model is shown in figure 3.10 below. A graph

example with two nodes (A and B) is represented using the presented Graph Information Model.

Both node A and node B have one port (port_A_1 and port_B_1 respectively) that denotes the

connection interface and they are directly connected to the interface of arc A-B (connectingPoint

A-B-1 and connectingPoint A-B-2).

44

A B

node A node B

port_A_1 port_B_1

arc A-B

connectingPoint A-B-1

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

hasPort hasPort

port_A_1 port_B_1

connectingPoint
A-B-1

connectingPoint
A-B-2

connectingPoint A-B-2

hasConnectingPoint

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

Figure 3.10: A Graph Application Example

(4) System Model

The last model in the abstract layer is the System Model and its objective is to provide a design

pattern to represent different viewpoints of a complex system in a unified way. Systems are often

too complex to be understood and handled as a whole. If we take an EOL product disassembly

system as an example, related information could spread over several aspects like product, process,

uncertainty, etc. We thus use a technique for complexity reduction that is widely used in the field

of system engineering called the adaptation of viewpoint (Galster & Avgeriou, 2012). A viewpoint

is an abstraction of the whole system restricted to a particular set of concerns. Adopting a

viewpoint makes certain aspects of the system ‘visible’ while making other aspects ‘invisible’.

This way, we can focus on the specific viewpoints of a system, which is of special interest and

address separately to the issues in other system viewpoints.

Figure 3.11 presents the System Information Model, which is extended based on the Part-Whole

Information Model for representing the system hierarchy and the system decomposition. A System

class is thus introduced as a subclass of the Object class and can be specified into either a

CompositeSubSystem or an AtomicSubSystem. A CompositeSubSystem is a subsystem which

45

can be further broken down into other subsystems, whereas an AtomicSubSystem is an elementary

system that has no sub-systems of its own.

System

Aspect

isConsidered
UnderAspectOf

CompositeSubSystem AtomicSubSystem
contains

1 2..n

AspectSystem

ModelisModeledBy

models

1 0..n

11

Object

contains1

0

1

1

Figure 3.11: System Information Model

A special System called Model is also introduced here: a model is a system that is used or selected

to enable the understanding the original system. In more detail, a Model could be used to resemble

the physical object in a simplified way. An example could be an automotive mockup used for

vibration testing. A Model could also represent the modeled system by means of some symbolic

representation. Mathematical models or Information Models are the typical examples in this

category. Following this definition, the class Model is introduced as a subclass of the System class

(Figure 3.11). A System qualifies as a Model if it models some other System.

The last important concept in the System Information Model is called AspectSystem, which is

used to denote different aspects about the overall system that are relevant to a particular viewpoint.

46

AspectSystem is modeled as a subclass of the AtomicSubSystem class and is related to the Aspect

class through isConsideredUnderAspectOf object property.

The concept of AspectSystem plays a fundamental role in the modelling of the complex

disassembly planning system. A general idea is presented in figure 3.12 below: The

DisassemblyPlanningSystem class is being modeled as a specialization of the

CompositeSubSystem class, which contains several AspectSystems (Product, Process,

Uncertainty and Degradation). Each of the AspectSystem models the

DisassemblyPlanningSystem under specific viewpoint (Aspect) and is a standalone sub model. As

an example, the Product class is a subclass of AspectSystem, which targets on modeling the

structural viewpoint of the disassembly system. Similarly, the Process subclass focuses on how to

carry out each disassembly steps in order to achieve a certain component detachment task, thus it

describes the behavior aspect of the overall disassembly system. The whole

DisassemblyPlanningSystem is an aggregation of the four AspectSystems. The advantage of this

design pattern is that the aspect systems can be used and maintained independently of the overall

system.

47

Composite
SubSystem

AspectSystem
contains

1 1..n
Aspect

isConsidered
UnderAspectOf

1 1

Disassembly
Planning System

System Information Model

Product

Process

Uncertainty

Degradation

contains Structure

isConsidered
UnderAspectOf

Behavior

isConsidered
UnderAspectOf

Disturbance

isConsidered
UnderAspectOf

Failure mode

isConsidered
UnderAspectOf

Figure 3.12: Aspect System Utilization in the Modelling of the Disassembly Planning System

3.3.2 Domain Layer Models

The Information Models in the domain layer capture the knowledge related to the domain of

disassembly planning. Results from the disassembly planning requirement analysis (section 3.1)

indicate that information from four aspects (product, process, uncertainty and degradation) should

be included in the domain layer Information Models and each of them is modelled as a subclass of

the AspectSystem class, which represents a standalone sub-model representing a specific

48

viewpoint of the overall disassembly planning system. The following sections describe these

domain layer sub-models in detail.

(1) Product Model

The Product Model is shown in figure 3.13 and it is being imported into the disassembly planning

model to address the product aspect information requirements (refer to table 3.1 for detail). We

will present the Product Model according to the different modelling requirements identified.

Modelling of the System Aspect

The Product class represents the EOL product which is under study and it is being modeled as the

subclass of the AspectSubSystem class. It means that a product is considered as a subsystem which

represents a specific aspect (structure) of the overall disassembly planning system.

Modelling of Product Hierarchy (Part-whole relationship)

A certain EOL product contains one or more different components or subassemblies which are

organized in a hierarchical order and such requirement is achieved by introducing the

SubAssembly class and the Component class. The design pattern in the Part-Whole sub model in

the abstract layer is used here for modelling the parthood relationships among the product, the

subassembly and the component. Specifically, the Product class aggregates the SubAssembly class

and the Component class through the object properties hasSubAssembly and hasComponent.

Similar parthood relationship exists between the SubAssembly class and the Component class: an

instance of the SubAssembly class contains at least two instances of the Component class and the

object property hasComponent is used to address such relationship. Last but not least, it is possible

that an instance of the Component class can contain more than one other Component. This will

be described in detail when describing the classification of the Component class.

49

Component Classification

In the domain of disassembly planning, further specifications of the Component class according

to their characteristics are important. As it is described in the previous sections, the Component

class can be further classified according to the material composition (homogeneous or composite),

functional type (connecting function or non-connecting function) and component complexity

(atomic component or complex component). Thus, several Component subclasses are introduced

as follows:

ConnectingComponent is a subclass of the Component class whose primary function is to connect

other components. Examples of the ConnectingComponent can be screws, insert pins, etc. The

VirtualConnectingComponent class is further introduced as a special type of

ConnectingComponent, which is a virtual component used for disassembly planning. As an

example, a Velcro connection is a common type of connection in which no ConnectingComponent

is involved, but rather use self-engaging loops to achieve the binding between components. In

order to carry out disassembly planning analysis consistently for such cases, the concept of

VirtualConnectingComponent is introduced to emulate a virtual connecting component between

the connected components.

ConnectingComponent is the candidate component to be analyzed when carrying out the

disassembly process and it can be detached at least from one direction. In other words, a

ConnectingComponent contains at least one DegreeOfFreedom.

The OrdinaryComponent class represents all the components other than the

ConnectingComponent, whose primary function is not to connect other components. Examples of

the OrdinaryComponent can be the blender housing, the coffee maker jar, etc. for a blender

50

machine. Different from the ConnectingComponent, OrdinaryComponent is fully constrained on

all directions in the beginning of the disassembly process (we don’t consider movable

OrdinaryComponent in this thesis). Thus, an instance of the OrdinaryComponent class contains

zero DegreeOfFreedom.

The OrdinaryComponent class can be further classified into the AtomicOrdinaryComponent class

and the ComplexOrdinaryComponent class. The ComplexOrdinaryComponent is an

OrdinaryComponent which contains a set of irreversibly connected components. Examples of

such component can be electrical cables, printed circuit board, etc. The

AtomicOrdinaryComponent, on the other hand, represents the most elementary component and

contains no other component.

The last level of the component classification is related to the material composition (homogeneous

or composite), and depending on the number of the different types of homogeneous materials an

OrdinaryComponent contains, the OrdinaryComponent class can be further classified into either

the HomogeneousOrdinaryComponent class or the ComplexOrdinaryComponent class.

Product Topology (Component Liaison)

The final requirement in the Product Model is to model the EOL product topology and the

component liaison. Since the connection among components in an EOL product can be viewed as

a graph: node represents components, whereas connection between components is represented as

edges between nodes. The Graph Model in the abstract layer is thus used to model the product

structure. Figure 3.14 shows the comparison between the graph model and the relevant classes in

the Product Model for the modelling of the product topology.

51

Component ComponentContact
isDirectlyConnectedTo 12

1 1..n

ConnectingComponent

OrdinaryComponent

ConstrainingFeature

isDirectlyConnectedTo

hasConstraintFeature

1

1..n

SubAssembly

Atomic Ordinary
Component

Complex Ordinary
Component

Homogeneous Atomic
Ordinary Component

Composite Atomic
Ordinary Component

Homogeneous
Complex Ordinary

Component

Composite Complex
Ordinary Component

Connection

hasComponent

1

2..n

contains

Product

1

1..n

hasSubAssembly

Fastener

VirtualConnectingComponent

Product Model

ConnectingInterface

1

2

hasConnectingPoint

isDirectlyConnectedTo

isDirectlyConnectedTo

11

1
1

belongsTo

1

1

AspectSubSystem

Disassembly
Planning System

Disassembly Planning Model

contains

DegreeOfFreedom

11

1

1..n

hasDegreeOfFreedom

1

0

hasDegreeOfFreedom

Material
containsMaterial

1..n

1..n

belongsTo

1

11

1..n

Component

hasComponent

1

1

hasComponent

1

0..n

Figure 3.13: Product Information Model for Disassembly Planning

52

Node Arc

Port ConnectingPoint

hasPort

1

1..n

1

2

isDirectlyConnectedTo 12

1 1..nisDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

1 1

1 1

Component ComponentContact
isDirectlyConnectedTo 12

1 1..n

ConstrainingFeature

isDirectlyConnectedTo

hasConstraintFeature

1

1..n

ConnectingInterface

1

2

hasConnectingPoint

isDirectlyConnectedTo

isDirectlyConnectedTo

11

1
1

Graph
Model

Product
Structure

hasConnecting
Point

Figure 3.14: Comparisons between the Graph Model and the Product Model

An instance of the Component class, similar to the Node class in the Graph Model, is directly

connected to one of more instances of the ComponentContact class, which is comparable to the

Arc class in the Graph Model. Also, an instance of the ComponentContact class is directly

connected to exactly two Component instances.

Both of the Component class and the ComponentContact class contain some interfaces, through

which they connect to the each other. Such interface information is implemented by introducing

the ConstrainingFeature class and the ConnectingInterface class respectively. The

ConstrainingFeature class represents the component feature (face, edge or face) which has direct

contact with the features in the connected Component, whereas the ConnectingInterface class is

53

comparable to the ConnectingPoint class in the Graph Model and represents the interface of the

ComponentContact class.

An example of three connected components (Component_A, Component_B and Component_C) is

shown in figure 3.15 below. Component_A, Component_B and Component_C are instances of the

Component class and they contain certain features which is directly involved in a connection. As

an examples, A-f1 is the bottom planer surface of Component_A and it is modeled as an instance

of the ConstrainingFeature class, which means that A-f1 is the port or interface through which

Component_A is connected to the other component (Component_B in this case).

Similarly, we have ComponentContact_1, ComponentContact_2 and ComponentContact_3 being

modeled as the instances of the ComponentContact class and their role is similar to the role of the

arc in the Graph Model. Lastly, each ComponentContact instance holds exactly two interface

objects (ComponentInterface), through which it connects to the components. In the example in

figure 3.15, ComponentContact_1 is directly connected to CI_1 (ComponentInterface_1) and CI_2

(ComponentInterface_2).

Figure 3.15: An Example of the Product Topology

54

(2) Process Model

The disassembly process accomplishes the basic transformations of the product states in the

domain of disassembly and describes how disassembly of an EOL product can be achieved (i.e.

the behavior of the disassembly planning system). Similar to the Product Model, the Process Model

is also considered as a special sub system (subclass of the AspectSystem class), whose primary

function is to address the process related information requirements in the overall disassembly

planning system. Such requirements have been analyzed in section 3.1 and two major requirements

have been identified: (1) the modeling of the process hierarchy and (2) the modeling of all feasible

disassembly process sequences (refer to table 3.2 for detail). Figure 3.16 shows the overall

structure of the Process Model, which addresses these process related information requirements in

detail.

Process Model

Process

Task

Operation

Action

hasOperation

hasAction

DirectedN-aryRelation

DisassemblyObject

Component SubAssemblyProduct

breaks
1

1

Creates
1

2..n

xsd:double

normalCost

1

1..n

1

1..n

1 1

xsd:double

1

1

specialCost

AspectSubSystem

Disassembly
Planning System

Disassembly Planning Model

contains 1

1

Figure 3.16: The Overall Structure of the Process Model

55

Modeling of the process hierarchy

A disassembly Process can be analyzed from different hierarchical abstractions. Three types of

disassembly process are thus introduced: the disassembly Task, the disassembly Operation, and

the disassembly Action (refer to section 3.1.2 for detailed descriptions of these concepts).

Furthermore, parthood relationships exist among the Task class, the Operation class and the Action

class: an instance of the Task class contains one or more instances of the Operation class and an

instance of the Operation class contains one or more instances of the Action class.

An example of such a process hierarchy is illustrated in figure 3.17. The most abstract disassembly

process description resides at the task level, which only specifies the target component to be

detached at a certain disassembly stage. Such high level task (“Detaching Component A” in this

example) is further decomposed into three operation level processes (“Orientation of Product”,

“Tool Change” and “Disassembly of Component A”) which are necessary in order to achieve the

“Detaching Component A” task. Similarly, the operation level process can be further specified,

which presents the most concrete elemental action level disassembly process.

Detaching Component ATask Level Process

Operation Level Process

Action Level Process

Orientation of Product Tool Change
Disassembly of
component A

Linear
Movement of

Product

Grip of
product

Rotational
Movement of

Product

…... …...

Figure 3.17: Disassembly Process Decomposition Example

56

Modelling of all the feasible disassembly process sequences

The second requirement for the process model is to represent all the feasible process sequences,

which is a critical input information for the disassembly sequence optimization. Even though the

disassembly process can be analyzed under different abstraction levels, they can all be treated as

a type of N-ary relationship among different disassembly objects (Component, Subassembly or

Product). Let us take the AND/OR graph in figure 3.18 as an example; each edge represents a

disassembly process (the process is at the task level in this example) which involves at least three

disassembly objects: One Process breaks one DisassemblyObject which represents the pre-state

of the disassembly process and in the same time creates two or more disassembly objects which

represents the post-state of the disassembly process. In this example, task_1 is an instance of the

Process class which breaks the DisassemblyObject ABCDE (Product) and creates the

DisassemblyObject A (Component) and the DisassemblyObject ABCD (Subassembly). The whole

disassembly process sequence thus is an aggregation of the instances of the Process class.

ABCDE

ABCD

BCDE

ABCD

AB

CD

1

2

3

Figure 3.18: AND/OR Graph of a Product

The N-ary relation model in the abstract layer is used to model such modeling requirement. The

mechanisms to model the feasible disassembly process is analogous to the design pattern as

defined in the N-ary relation model (figure 3.19) with minor extensions. In detail, the Process class

57

is being modeled as an extension of the DirectedRelationship class and it relates to the

DisassemblyObject class through two object properties: breaks and creates, which are

comparable to the object properties defined in the N-ary relation Model (hasOrigin and

hasTarget). Similarly, two process attributes normalCost and specialCost are introduced to

represent the cost related information. This is comparable to the realtionAttribute data property

introduced in the N-ary relation Model.

Object

Directed Relationship

hasTarget

1

1..n

xsd:any
1

relationAttribute

0..*

Process

DisassemblyObject

breaks
1

1

creates
1

2..n

xsd:double

normalCost1 1

xsd:double

1

1

specialCost

N-ary relation
model

Process Model

hasOrigin
1

1

Figure 3.19: Comparison between Process model and N-ary Relation Model

(3) Uncertainty Model

Unlike the assembly process, the disassembly process has various uncertainty issues. Two types

of uncertainty are considered in this dissertation: (1) Component/subassembly/product functional

uncertainty and (2) the process uncertainty. Both cases are handled using the Bayesian theorem.

The disassembly uncertainty handling procedure is presented in detail in chapter 5. Here, we only

focus on modeling the required related information. Figure 3.20 presents the overall structure of

the Uncertainty Model.

58

AspectSubSystem

Disassembly
Object Process

functionalDepends

1

0..n

FunctionFailureProbabilityTable

contains
1

1

ProcessSuccessProbabilityTable

contains
1

1

ConditionalProbabilityTable

Uncertainty
Disassembly

Planning System

Disassembly Planning Model

contains 11..n

Uncertainty Model

1

0..n

1

0..n

relatesTo

relatesToComponent

SubAssembly

Product

Figure 3.20: The Structure of the Uncertainty Model

First of all, like the previous domain layer models, the Uncertainty class is being modeled as the

subclass of the AspectSubSystem class, whose primary focus is on the modelling of the

information related to the disturbance aspect in a disassembly planning system.

The Uncertainty class relates to two classes (DisassemblyObject and Process), which represent

the two specific uncertainty issues (component/subassembly/product functional uncertainty and

process uncertainty) studied in this thesis. The DisassemblyObject class is introduced to represent

the aggregation of the Product, the SubAssembly, and the Component instances. The functional

status of a DisassemblyObject instance might be dependent on the functional status of the other

DisassemblyObject instances and such a situation is realized by the object property

functionalDepends. As an example, “prepare food” is the function of a blender (Product) and

whether an old blender can function properly is conditionally dependent on the other

59

DisassemblyObjects contained in the blender (in this case, the functional status of the Motor

subassembly, of the central control unit, etc.).

Both of the DisassemblyObject class and the Process class contain a conditional probability table

which is used for carrying out uncertainty reasoning and such information is being modeled in the

FunctionFailureProbabilityTable class and the ProcessSuccessProbabilityTable class

accordingly.

(4) Degradation Model

Degradation is also a critical issue in the planning of disassembly. It usually refers to a gradual

change in the properties (like tensile strength, color, shape, etc.) of the component or subassembly,

which usually does not affect the overall function of the component/subassembly until reaching a

critical point. From the analysis in section 3-1, we know that the existence of degradation in the

EOL product has a lot of influences on the economic quantification of EOL products or

components, which is a critical issue in the disassembly planning process. The Degradation Model

is thus introduced to represent the relevant information necessary for the degradation analysis. In

this thesis we use the fuzzy logic approach to model the component/subassembly degradation and

quantify their reuse value through a set of fuzzy linguistic variables and a set of heuristic rules.

The procedure for reuse value estimation using fuzzy logic is presented in detail in chapter 5. Here

we only summarize the important informational elements necessary for carrying out the fuzzy

logic based reuse value estimation. Figure 3.21 presents the overall structure of the Degradation

Model.

Similar to the other domain level Information Models, the class Degradation is being modeled as

a sub class of the AspectSystem class, which represents the information related to the failure mode

60

of the disassembly objects (component, subassembly or product) in an EOL product. Like the

definition used in the Uncertainty Model, we introduce the class DisassemblyObject to represent

the aggregation of the Component class, the Subassembly class and the Product class. One

DisassemblyObject instance relates to several FuzzyVariable instances, which are used to infer the

reuse value of the DisassemblyObject. Each FuzzyVariable comprises of several other information

including the type of the variable (input or output), lower limit, upper limit and a set of

FuzzyTerms. Each FuzzyTerm further comprises of information like the name of the fuzzy term,

type of the membership function and the parameters for defining the membership function.

Degradation Model

DisassemblyObject

xsd:int hasAge

MarketDemand

hasMarketDemand

ConditionParameter

1

1

1

1

1

1..n

FuzzyVariable

Age

current
Value

currentValue

11

11

hasConditionParameter

xsd:double

lowerLimit

xsd:double

upperLimit

1

1

1

1

xsd:List {input, output}

1

1

variableType

FuzzyTerm

hasFuzzyTerm1

1..n

xsd:string xsd:string xsd:string

name functionType parameter

FuzzyRuleSet
hasRuleSet

11..n

1

1

1

1

1

1

Disassembly
Planning System

Disassembly Planning Model

contains 11..n
Degradation

AspectSubSystem

relatesTo

1

1..n

ReuseValue

1

1

hasReuseValue

Figure 3.21: Overall Structure of the Degradation Model

61

Four types of fuzzy variable (Age, MarketDemand, ConditionParameter and ReuseValue) are

identified in section 3-1 and they are being modeled as the sub class of the FuzzyVariable class.

Among them, the classes Age, MarketDemand, ConditionParameter are the fuzzy input variable

whereas the class ReuseValue is the fuzzy output variable. Lastly, each DisassemblyObject

contains a set of fuzzy rules to demonstrate the heuristic relations among the fuzzy variables. These

are defined in the FuzzyRuleSet class.

3.4 Formal DIM Implementation based on Web Ontology Language

DIM represents a conceptual information model in the domain of disassembly planning and it has

been implemented into the Web Ontology Language (OWL) for formal machine reasoning and

interpretation. Before presenting the DIM OWL implementation, the background and reason to

use OWL as the implementation language is briefly discussed below.

3.4.1 Why using OWL for DIM implementation

The implementation of DIM is under the paradigm of Internet of Things (IoT) and the concept of

“Life Cycle Unit” (LCU). Briefly, IoT provides a network to connect different physical objects,

which allows them to be sensed and controlled remotely across existing network infrastructure,

creating opportunities for more direct integration of the physical world into computer-based

systems, and resulting in improved efficiency, accuracy and economic benefit. LCU, on the other

hand, is developed specifically for the product disassembly process. As mentioned before, in a

disassembly factory, different products arrive continuously for disassembly, and individual

decisions regarding optimal disassembly sequences have to be made for every product. It is

difficult to predict any pre-defined disassembly process sequences a priori, so the detailed

information on how to disassemble each arriving product is needed. LCU is proposed under the

62

idea of decentralizing that information by integrating a physical device named Life Cycle Units

(LCU) into every product. The LCU stores information needed for disassembly. Once enough

disassembly information about a product is present, the optimal disassembly sequence can be

generated based on the actual physical status of the EOL product. Combining the LCU and IoT

technologies together, individualized EOL product information could be sensed and collected by

LCU and transferred to the central Product Lifecycle Management (PLM) system through the IoT

network. Now, disassembly researchers could have the potentials to tackle the problem of

disassembly information bottleneck.

The implementation of DIM thus should support the above new paradigm and it should have the

ability to (i) sensing the environment, (ii) store the data in the digital memory, (iii) communicate

with other facilities or smart products and (iv) carry out knowledge reasoning. This gives new

opportunities for solving the problem of EOL product disassembly in which product life cycle data

plays a fundamental role. In this dissertation, we focus on the information aspect and three

important related requirements (with OWL solutions) are listed below:

R1: LCU usually requires a fast processing with restricted resources and thus the DIM

implementation syntax needs to be compact.

Solution: OWL file is an XML based textual file, which can be processed or reasoned by

lightweight existing query and reasoning plugins.

R2: The implemented DIM is going to be published as a formal Disassembly Information Model

on the Web with the possibility to be connected to the other domain applications. Thus, the

implementing language should provide easy mechanisms for connecting DIM with other “things”

on the Internet without pre-assumptions.

63

Solution: In OWL, each object defined in the DIM is annotated with a Unified Resources Identifier

(URI), which helps other applications to access the information and connect to DIM through the

web. On top of that, OWL does not follow the traditional database approach, it adopts the open

world assumption (the truth value of a statement may be true irrespective of whether or not it is

known to be true), which facilitates the further extensions of the proposed DIM: users can add

knowledge to DIM as long as it did not semantically contradict with the current definitions and

such a validation process can usually be carried out automatically by certain reasoners like Pellet

or Hermit.

R3: The implemented DIM should facilitate the automated knowledge reasoning process.

Solution: Semantic Web Rule Language (SWRL) is supported by OWL, which extends the set of

OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be combined with an

OWL knowledge base to provide flexible and powerful knowledge reasoning capabilities.

3.4.2 OWL Implementation

Protégé 4.0 (Gennari et al., 2003), as an OWL editor, is used in this thesis to develop formal DIM

OWL implementation. The complete OWL implementation code can be accessed from:

http://disassembly-planning-ontology.sourceforge.net. Here, several OWL implementation issues

are discussed in detail and full summarization of DIM implementation is presented in the appendix.

(1) Model hierarchy

The DIM is a set of models distributed in three hierarchical layers, and certain dependence or

aggregation relationship exists among different sub models. As an example, the

“DisassemblyPlanningSystem” sub model, being the most complex sub model in the domain layer,

is actually an aggregation of four domain sub models (Product Model, Process Model, Uncertainty

http://disassembly-planning-ontology.sourceforge.net/

64

Model and Degradation Model). On top of that, the “DisassemblyPlanningSystem” model itself is

a system in nature, thus it is dependent on the System Model from the abstract layer.

DIM is thus implemented into 11 OWL sub models shown in table 3.5. Each OWL file represents

a sub model in the DIM and is classified into different layers (abstract layer, domain layer or

application layer). The dependence or aggregation relationship exists among models is realized by

importing the related sub models into the existing model. Figure 3.22 shows a screenshot of OWL

implementation of the “DisassemblyPlanningSystem” sub model, which imports 5 sub models it

depends on.

Table 3.5: DIM OWL Implementation

Abstract Layer Domain Layer Application Layer (Chapter 4 & 5)

N-ary-relationship.owl DisassemblyPlanning

System.owl

DisassemblySequenceGenerator.owl

Part-whole.owl Product.owl AdaptiveDisassemblyPlanner.owl

Graph.owl Process.owl

System.owl Uncertainty.owl

 Degradation.owl

Figure 3.22: Importing Sub models into the Dependent Model

65

(2) Modeling the Class Relationship

A large amount of the elements in the DIM are meant to model the relationships among classes

(specify how the individuals relate to other individuals). As an example, in the Process Model

(figure 3.23), the relationships “breaks” and “creates” relate the Process class with the

DisassemblyObject class and the relationship normalCost and specialCost relates the Process class

with a certain datatype class (xsd: double). In OWL, the entities describing the ways individuals

are related are called properties. Two types of properties can be further specialized: if the property

describes one individual’s relatedness to other individuals, like breaks and creates in the Process

Model, it is called “object property”; if the property relates individuals to data values (instead of

to other individuals), like the normalCost and the specialCost in the Process Model, it is called

“datatype property”. Figure 3.24 shows a screenshot of implementing the relationships existing in

the Process Model in Protégé.

Process

DisassemblyObject

breaks
1

1

creates
1

2..n

xsd:double

normalCost1 1

xsd:double

1

1

specialCost

Figure 3.23: Relationship in the Process Sub Model

66

Figure 3.24: Implementing Object Property and Datatype Property

(3) Modeling of the Class Axioms

The last important issue in implementing the DIM is to include semantic axioms to represent the

necessary and sufficient conditions of a certain class. As an example, in the Product Model,

different types of the Component class are specified. Figure 3.25 shows one type of the

Component in the component taxonomy named ConnectingComponent, which consists of two

important axioms to define the necessary and sufficient conditions that the ConnectingComponent

class holds:

A1 (Sufficient condition): ConnectingComponent is a Component which contains at least at one

degree of freedom, through which the ConnectingComponent can be detached.

A2 (Necessary condition): A ConnectingComponent instance belongsTo certain type of the

Connection. E.g. A screw is an instance of the ConnectingComponent class and it belongsTo the

screw connection.

67

…..
 <EquivalentClasses>
 <Class IRI="#ConnectingComponent"/>
 <ObjectIntersectionOf>
 <Class IRI="#Component"/>
 <ObjectSomeValuesFrom>
 <ObjectProperty IRI="#hasDegreeOfFreedom"/>
 <Class IRI="#DegreeOfFreedom"/>
 </ObjectSomeValuesFrom>
 </ObjectIntersectionOf>
 </EquivalentClasses>
 …..
 <SubClassOf>
 <Class IRI="#ConnectingComponent"/>
 <ObjectExactCardinality cardinality="1">
 <ObjectProperty IRI="#belongsTo"/>
 <Class IRI="#Connection"/>
 </ObjectExactCardinality>
 </SubClassOf>
 …..

ConnectingComponent

Connection

contains

DegreeOfFreedom

1

1..n

hasDegreeOfFreedom

belongsTo

1

11

1..n

Figure 3.25: Implementing the Semantic Axioms related to the Class ConnectingComponent

Both of the axioms can be implemented formally in OWL and they are shown on the left side of

figure 3.25. Generally, they follow the following syntax:

The sufficient condition is defined under the <EquivalentClasses> tag, formally as:

<axiom>::= EquivalentClasses(<description>)

Similarly, the necessary condition is defined under the <SubClassOf> tag, formally as:

<axiom> ::= SubClassOf(<description>)

Where, <description> can further be aggregation of several items including classes, restrictions,

etc. and the formal metadata for <description> can be presented as follows:

<description> ::= <classID>

 | <restriction>

 | unionOf({<description>})

68

 | intersectionOf({<description>})

 | complementOf(<description>)

 | oneOf({<individualID>})

(4) Summary of DIM OWL Implementation

Figure 3.26: DIM OWL Implementation Summary

Figure 3.26 above summarizes the DIM OWL implementation according to four schema metrics

(we include the two application level sub models as well, which are presented in chapter 4&5): (1)

number of classes, (2) number of object properties, (3) number of data properties and (4) number

of axioms. The detailed descriptions of the major DIM OWL implementation are presented in the

appendix.

0

50

100

150

200

250

300

350

DIM OWL Implementation

#Class # Object Propoerty # Data Property # Axiom

69

 DISASSEMBLY SEQUENCE GENERATOR

In this chapter 4 and next chapter 5, two disassembly planning applications are developed and

presented, with the intension to validate the reusability and usability quality of the proposed DIM.

Chapter four focuses on the problem of the disassembly sequence generation, which targets at

finding all the feasible disassembly sequences of an EOL product and further locating the

economically optimized one. We start with the disassembly sequence generation problem

definition and background review in section 4.1. Next, the Disassembly Sequence Generator

Information Model, residing on the application layer of the developed DIM, is presented in detail

in section 4.2. Section 4.3 presents an example to populate the proposed IM. The detailed

application algorithm for carrying out the sequence generation and optimization process in

presented in section 4.4. Lastly, the chapter is wrapped up in section 4.5 with a case study to verify

the application procedure presented in section 4.4.

4.1 Disassembly Sequencing Problem

Disassembly sequences are listings of disassembly processes (such as the separation of an

assembly into two or more subassemblies, or removing one or more connections between

components), through which an EOL product can be separated into small pieces. Unlike the

assembly process, which usually follows a pre-defined sequence of steps to achieve the final

deliverable, most of the disassembly planning yields multiple feasible disassembly sequences. A

disassembly sequence is said to be feasible if it satisfies the geometrical and topological constraints

related to the EOL product. Detailed definitions of these constraints are described below:

Topological Feasibility: topological feasibility is related to the connections in an EOL product. In

an ideal, so called “strongly connected product” case, where each component in the product is

connected with all the other components (contains the maximum number of possible connections),

every subset of the components can be considered as a topologically feasible subassembly (no

topological constraints are present). As an example shown in figure 4.1 (a) below: a product with

four components is being classified as a strongly connected product because each component in

70

the product is connected with all the other components (like component A is connected to

component B, C and D). Thus, all the combinations of the components can be considered as a

feasible subassembly (AB, AC, ABC, etc.).

A

B C

D

A

B C

D

(a) Strongly Connected Product Example (b) Weakly Connected Product Example

Figure 4.1: Topological Feasibility Examples

However, in a real life situation, the number of connections maybe far less than that in the

maximum possible case, which imposes certain topological constraints onto the product. In a

weakly connected product, there always exists at least one subset of components that is not

connected. Therefore, that subset does not correspond to a subassembly. Figure 4.1 (b) shows a

non-strongly connected product scenario. In this example, subset AB is not a subassembly because

component B is not connected to component A. Such topological constraint yields the infeasibility

of detaching component A and component B together as a subassembly.

Geometrical Feasibility: geometrical constraints explains the impracticality of specific

disassembly processes which are obstructed geometrically by the presence of some other

components. Two levels of geometrical constraints are necessary to be considered in order to

define the feasibility of a certain disassembly process:

 Detachability: the ability related to whether a component or subassembly can be detached

without interference (i.e. A collision free path exists for the detachment to take place).

71

 Stability: the ability of a product to hold its components together in a stable manner. A

feasible disassembly process should not yield an unstable subassembly (where the

subassembly falls apart spontaneously) without any further disassembly process. As an

example, in figure 4.2, both of the two examples are stable initially. A disassembly process:

“the detachment of part C” is under study, which will yield an unstable subassembly (part

B is movable) in both examples. However, “the detachment of part C” in example 2 can be

followed by another feasible disassembly process (detachment of part B) and finally result

in the full disassembly of the product. Thus, we still consider “the detachment of part C” a

feasible disassembly process for the product in example 2, even though it results in an

unstable state. However, in example 1, part B is not detachable from the product after part

C is detached (no further sequential feasible disassembly process exists). Thus, “the

detachment of part C” is not a feasible disassembly process for example 1 in figure 4.2.

Part A

Part B

Part C
Part A

Part B

Part C

x

y

(a) Example 1 (b) Example 2

Figure 4.2: An Example to Explain the Product Stability

Locating all the feasible disassembly process sequences is only the first objective of the

disassembly sequencing problem; the second one is to use an optimization technique on all the

feasible disassembly sequences for obtaining the economically optimal disassembly process. The

objective of the optimization model is to find a best “disassembly path” (among the feasible set of

72

disassembly sequences), which achieve a minimized disassembly process cost and maximized

retrieved components’ revenue. The details of the optimization model are discussed in section 4.4.

In summary, the objectives of the disassembly sequencing problem can be categorized into two

sub problems:

1. Identify all feasible disassembly process sequences

2. Obtain the optimal disassembly process sequence considering economic benefits

4.2 Disassembly Sequence Generator Information Model

The details of the Disassembly Sequence Generator Information Model are presented in this

section. We start with the information requirement analysis in section 4.2.1 and the formal model

is presented in section 4.2.2 using UML class diagram, with the OWL implementation summarized

at the end.

4.2.1 Disassembly Sequence Generator Information Requirement Analysis

From the problem definition presented in the section 4-1, the information required for solving the

disassembly sequencing problem can be considered from three aspects as follows:

 Information related to the product’s topological configuration. In the Product Model presented

in chapter 3, information related to the EOL product structure or topology has been modeled

by introducing the classes Product, SubAssembly and Component (refer to figure 3.13 for

details). In the disassembly process, more detailed classification of the SubAssembly class

should be elaborated. As an example, in figure 4.3, “Part6-Part1-Part2” can be an instance of

the SubAssembly class, since they are topologically connected (Part 6 is connected with Part

1 and Part 1 is connected to (contact connection) Part 2). However, in the view of EOL product

disassembly, such combination is not realistic. We would rather pick subassembly “Part6-

73

Part1-Part5” or subassembly “Part2-Part8-Part3-Part9-Part4” for candidate subassemblies to

be detached from the EOL product. Thus, two new types of subassembly, called ContactLoop

and ContactLoopCluster, are modeled to better serve the disassembly sequencing problem and

their formal definitions are given in detail in section 4.2.2.

x

y

z

Figure 4.3: An Example to Explain Product Topological Configuration

 Information related to the product’s geometrical constraints. Geometrical constraints are the

most important considerations in the planning of disassembly, which usually can be further

broken down into two types: the local geometrical constraints and the global geometrical

constraints. The local geometrical constraints restrict the components from moving along

certain directions, whereas the global geometrical constraints restrict the component from

being fully detached from the EOL product. Let us take the product from figure 4.2 (a) as an

example, Part C is locally constrained by Part B and Part A along the ±x direction and –y

direction and is globally constrained by Part A along the ±x direction. However, Part C is

74

detachable along + y direction, thus there is no global geometrical constraints along that

direction. The modeling of the global geometrical constraints requires the full descriptions of

the boundary representation of the whole product, which will yield a very large information

structure. We thus only include the information elements related to the local geometrical

constraints in the Disassembly Sequence Generator Information Model, the global geometrical

constraints are being handled using a CAD-API based simulation approach. This way, the

complex boundary representation of the whole product is condensed into one piece of

information which indicates the location and name of the related CAD file. The details of the

simulation approach are elaborated in section 4-4.

 Economic Information. Last information requirement relates to the economic evaluation of the

disassembly plan. The evaluation is based on the revenue that disassembly operators can expect

from the retrieved component or subassembly and the cost being spent through carrying out

the disassembly process. Such information is needed for the disassembly optimization process.

4.2.2 Formal Disassembly Sequence Generator Information Model

The Disassembly Sequence Generator Information Model deals with the information required for

the disassembly sequencing problem. It is residing on the application layer of the DIM and is being

extended based on the domain layer Product Model. The overall structure is shown in figure 4.4

below. We will describe the model according to the information requirements identified above in

the following sections.

75

ConstraintFeaturePair xsd:any
direction

belongsTo
target

1

1

1 1

ContactLoop

ContactLoopCluster

Disassembly Sequence Generator IM

Component

SubAssembly

Product

ConstrainingFeature

1

1..n

Product Model

Component
ContactLoopCluster/

ContactLoop

xsd: double

1

1

D
isca

rd
 C

o
st

1

1

R
ecycle V

a
lu

e

1

1

R
eu

se
 va

lu
e

1

1

D
isca

rd
 C

o
st

1

1
R

ecycle V
a

lu
e

1

1

R
eu

se
 va

lu
e

hasContactLoop
1

2..n

Figure 4.4: Structure of the Disassembly Sequence Generator Information Model

R1: Information related to the product topological configuration

As mentioned above, two special types of the SubAssembly class, named ContactLoop and

ContactLoopCluster are introduced for the disassembly sequencing problem. The details of these

two concepts are presented below:

76

Concept of ContactLoop

The main idea behind the ContactLoop concept is that most of the mechanical connections

involves a set of components that together forms a loop in the corresponding product connection

diagram. Figure 4.5 explains the concept with examples. The top left example is a simple screw

connection which connects two OrdinaryComponents (Part A and Part B) using a screw

(ConnectingComponent Part C). In its connection diagram, there exists a loop among Part A, Part

B and Part C (Part A has a contact connection with Part B, Part B has a threaded connection with

Part C and Part C has a threaded connection with Part A). Similar observation can be found in the

top right example where a screw is used to connect more than two components (Loop “Part A-

>Part B ->Part C”, loop “Part B->Part D->Part C” and loop “Part A->Part B->Part D->Part C”).

We call such loop ContactLoop, which is a special type of the SubAssembly class and forms a

“building block” for various complex mechanical connections: Different types of complex

connection are an aggregation of ContactLoops, we will explain more when describing the concept

of ContactLoopCluster in next section.

The concept of ContactLoop plays a critical role in the disassembly sequencing analysis: in every

stage of the disassembly planning, we need to identify such a subassembly so that we can

efficiently detach a set of components together (parallel disassembly) instead of only detaching

one component from the whole product (sequential disassembly).

77

Formally, for all the loops in an EOL product connection graph, if the loop has the following

properties, it is a ContactLoop:

Part A

Part B

Part C
Part A Part B

Part C

Screw Connection

Bolt Nut Connection

Part A

Part B

Part C

Part C

Part A Part B

Part C

Bolt Nut

Part A

Part B

VirtualComponent C

Part A Part B

Virtual_C

Insert Connection

Part A

Part B

Part C
Part A Part B

Part C

Screw Connection

Part D

Part D

Figure 4.5: Examples of the ContactLoop Concept

The concept of the ContactLoop is not restricted to the screw connection only, it can be well

applied to the other types of connections with minor modifications. For example, for the insert

connection (example on the bottom left of figure 4.5), where there is no ConnectingComponent

involved, the concept of VirtualConnectingComponent introduced in chapter 3 can be used to

mimic the role of the ConnectingComponent. For the Bolt-Nut connection (example on the bottom

right of figure 4.5), two ConnectingComponents (bolt and nut) are involved. However, the

ContactLoop is a loop, in which

 Only one ConnectingComponent exists in the Loop.

 All the OrdinaryComponent are constrained by the ConnectingComponent in the loop,

(i.e. all the OrdinaryComponents are connected to or have contact with the

ConnectingComponent in the loop).

78

connecting function is based on the joint effort of the bolt and the nut. Either one alone cannot

provide the connection function and thus cannot be considered as a ConnectingComponent. Also,

from the disassembly point of view, almost always bolt and nut are detached sequentially together.

Thus, we treat bolt and nut together as one ConnectingComponent. Under such mechanism, a

contact loop will be identified as well.

Concept of ContactLoopCluster

If we cluster a set of ContactLoops, more complex subassembly will be created and we call such

subassembly ContactLoopCluster. Formally, the definition of ContactLoopCluster is:

Figure 4.6 gives an example of the ContactLoopCluster concept. As shown in the contact diagram,

Part 4, Part 9 and Part 3 forms a ContactLoop and similarly, Part 2, Part 8 and Part 3 forms another

ContactLoop. Both of the loops share the same OrdinaryComponent (Part 3), thus “Part 4, Part 9,

Part 3, Part 8 and Part 2” forms a ContactLoopCluster. It is evident from figure 4.6 that the

identified ContactLoopCluster forms a more complex subassembly, compared to the original

ContactLoops.

In some cases, a ContactLoop can itself be a ContactLoopCluster. In the top right example in

figure 4.5, three ContactLoops are identified:

L1: Part A->Part B ->Part C (Part C is ConnectingComponent)

L2: Part B->Part D->Part C (Part C is ConnectingComponent)

ContactLoopCluster:

A Combination of ContactLoops, among which one or more OrdinaryComponents are being

shared by two or more ContactLoops.

79

L3: Part A->Part B->Part D->Part C (Part C is ConnectingComponent)

Among the above three ContactLoops, L3 is also a ContactLoopCluster since it is a combination

of L1 and L2 by sharing the same OrdinaryComponent Part B.

Similar to the reason for introducing the concept of ContactLoop into disassembly sequencing,

identifying the ContactLoopCluster first will result in a more efficient disassembly process

(parallel disassembly).

Figure 4.6: An Example of the ContactLoopCluster Concept

R2: Information related to the product local geometrical constraints

The local geometrical constraints are modeled by extending the class ConstrainingFeature located

in the Product Model. Recall, the class ConstrainingFeature represents the interface feature

through which a component is connected to (or constrained by) another component. However, in

the original Product Model, how the component is constrained by the ConstrainingFeatures of the

connecting components is unknown (we can only know what ConstrainingFeature a component

has). In other words, we need to combine pair wise ConstrainingFeatures of two connected

components. The class ConstraintFeaturePair is developed for such purpose, which represents a

80

placeholder to relate two ConstrainingFeatures involved in a connection, by introducing the object

properties belongsTo and target. Also, the ConstrainingFeature of a component restrains the

component from being detached along a certain direction. Such information is modeled by the data

property “direction” attached to the ConstraintFeaturePair class.

The example in figure 4.7 is used to explain the above concepts. Let’s look at the local constraints

of Component A: it is being locally constrained by Component C along +X and –X direction and

being locally constrained by Component B along –Y direction.

When mapping the above information to the Information Model concepts discussed above, we first

can know Component A has two ConstrainingFeatures (A-f1 and A-f2), through which it is being

locally constrained. Both A-f1 and A-f2 belong to a ConstraintFeaturePair instance

(ConstrainedFeaturePair_1 and ConstrainedFeaturePair_2 respectively), which can be identified

by the belongsTo object property.

Figure 4.7: An Example of Modelling the Local Geometrical Constraints

After locating the ConstraintFeaturePair information, we can further know the

ConstrainingFeature information of the other component from which Component A is being

81

constrained, through the object property target. Take ConstrainedFeaturePair_1 as an example,

we can know that ConstrainingFeatures A-f1 from Component A is constrained by the

ConstrainingFeatures C-f1 from Component C. We can also know, C-f1 is constraining

Component A along the +X and –X directions.

R3: Economic Information

Economic information can be separated into two aspects:

 Related to the disassembly object. This includes the reuse value, recycle value and discard

cost of the Component and the ContactLoopCluster.

 Related to the disassembly process. This includes the average process cost and special

process cost and they have been modeled in the Process Model in chapter 3.

The related information modeling elements are shown in figure 4.4: 3 data properties (ReuseValue,

RecycleValue and DiscardCost) have been included to present economic information related to the

Component class and the ContactLoopCluster class.

4.2.3 OWL implementation

The above Disassembly Sequence Generator Information Model has been implemented in OWL

by extending the Product Model residing on the domain layer of DIM and the relevant concepts

have been summarized in table 4.1 below.

4.3 Populating the DIM

In this section, we will use the model shown in figure 4.8 as an illustrative example for populating

the Disassembly Sequence Generator Information Model. This exemplary model is used

throughout this chapter for illustration and verification purposes. Relevant information in the case

82

study problem is populated into the related classes (Component, ConstrainingFeature and

ConstrainingFeaturePair) and figure 4.9 shows a screenshot of the Protégé implementation. We

expand the content in figure 4.9 and show only the detailed information related to one of the

component (Part1) in figure 4.10 (Information related to the other components are identical.)

Table 4.1: Summary of the DIM OWL Implementation Concept

Model Imported

Model

Class Class Axioms Object

Property

Datatype

Property
DisassemblySequence

Generator.owl
Product.owl Constraining

FeaturePair

target exactly 1

ConstrainingFeature

target reuseValue

 direction exactly 1 string belongsTo recycleValue

Component

discardCost exactly 1 double hasContact

Loop

discardCost

 recycleValue exactly 1 double direction

 reuseValue exactly 1 double

 Constraining

Feature

belongsTo some

ConstrainingFeaturePair

ContactLoop

Subclass of SubAssembly

 discardCost exactly 1 double

 recycleValue exactly 1 double

 reuseValue exactly 1 double

ContactLoop

Cluster

Subclass of SubAssembly

 discardCost exactly 1 double

 recycleValue exactly 1 double

 reuseValue exactly 1 double

 hasContactLoop min 2

ContactLoop

Figure 4.8: An Illustrative Example

83

Since Part 1 is not functioning as connecting purpose, it is being classified as an instance of the

class OridinaryComponent and it has five ConstrainingFeatures as follows:

Part1_f1_top_face: top face of part 1 (feature #1)

Part1_f2_bottom_face: bottom face of part 1 (feature #2)

Part1_f3_center_hole: hole feature in the center of part 1 (feature #3)

Part1_f4_right_hole: hole feature in the right of part 1 (feature #4)

Part1_f5_left_hole: hole feature in the left of part 1 (feature #5)

Figure 4.9: Instance Population in Protégé

Each ConstrainingFeature instance belongs to a certain ConstrainingFeaturePair, through which

the ConstrainingFeature information of the connected component can be revealed. As an example,

CF_Pair_1 is one of the ConstrainingFeaturePair instance and it relates one of the

ConstrainingFeature of Part 1(Part1_f1_top_face) to its connected component Part 7, through the

ConstrainingFeature of Part 7 (Part7_f1_bottom_face). Also, we can know, a direction

information is attached to the ConstrainingFeaturePair CF_Pair_1, which indicates that Part 1 is

being locally constrained by Part 7’s bottom face feature (Part7_f1_bottom_face) along +Y

direction.

84

Ordinary
Component

ConstrainingFeature
Constraining
FeaturePair

Part1_f1_top_face

Part1_f2_bottom_face

Part1_f3_center_hole

Part1_f4_right_hole

Part1_f5_left_hole

Part1

hasConstraining
Feature

CF_Pair_1

CF_Pair_2

CF_Pair_3

belongsTo

Part7_f1_bottom_face Part7

direction

+Y

ConstrainingFeature Component

Part6_f1_bottom_face Part6

direction

+Y

Part10_f1_bottom_face Part10

direction

+Y

hasConstraining
Feature

CF_Pair_4

CF_Pair_5

CF_Pair_6

direction

-Y

-Y

-Y

belongsTo

direction

direction

Part2_f1_top_face_1 Part2

Part5_f1_top_face Part5

Part4_f1_top_face Part4

hasConstraining
Feature

CF_Pair_7

hasConstraining
Feature

hasConstraining
Feature

+-X,+-Z

direction

Part6_f2_thread_face Part6
belongsTo

CF_Pair_8

+-X,+-Z

direction

Part7_f2_thread_face Part7belongsTo

CF_Pair_9

+-X,+-Z

direction

Part10_f2_thread_face Part10belongsTo

Part1_f1_top_face

Part1_f2_bottom_face

Part1_f4_right_hole Part1_f3_center_hole

Part1_f5_left_hole

Figure 4.10: Detailed Populated Information about Part1

85

In the disassembly planning, one important information is to locate the local constraints of a

component and such information is explicitly represented in the proposed DIM (refer to the

example in figure 4.10). A simple API call is developed to collect the information in a more

organized way. The exemplary output is shown in figure 4.11, which presents the local constraints

of Part1, along 6 principle axis.

x

Y

Z

Figure 4.11: Local Constraints of Part 1

4.4 A CAD API based Disassembly Sequence Generation Application

The overall structure of the Disassembly Sequence Generation application is presented in figure

4.12 below. The inputs to the application are the OWL implementation file for the Disassembly

Sequence Generator Information Model and the product CAD file. The OWL file contains the

necessary information structure for the sequencing problem and the product CAD file is used here

to handle the component global constraints, which is not included in the Disassembly Information

Model. The output of the application is a theoretically optimal disassembly process sequence,

based on the geometrical, topological and economic considerations. We consider this result

theoretic due to the fact that no disturbances or uncertainties are considered in this application and

it is optimal only if the status of all the components is like new and all the processes can success

86

without failure. A more realistic application which addresses the uncertainty issues is presented in

chapter 5.

The Disassembly Sequence Generator application can be broken into two parts: (1) the

disassembly sequencing, which focuses on identifying all the feasible disassembly process

sequences of an EOL product and (2) the Linear Programming (LP) based optimization, which

takes the result (AND/OR graph) from the first part as the input and find the economically optimal

process sequence. The disassembly sequencing part further consists of three main tasks: (1.1)

Construct “EOLProduct” object, (1.2) Interference Test and (1.3) Unconstrained Subassembly

Detection. Each of the tasks is presented in detail in the following sections.

Disassembly Sequence
Generator OWL

Construct
EOLProduct

Object

Interference
Test

Unconstrained
Subassembly

Detect Linear Optimization
Model

AND/OR
Graph

OWL file

TestAssembly.sldasm

Theoretically Optimized
Disassembly Sequence

CAD file Disassembly Sequence
Generator Application

`

Figure 4.12: The Overall Structure of the Disassembly Sequence Generator Application

4.4.1 Disassembly Sequencing

This section presents the details of the first part of the Disassembly Sequence Generator

application, which targets on identifying all the feasible disassembly process sequences of an EOL

87

Product. Three major involved tasks are elaborated first in the following paragraphs and then the

overall application procedure is presented at the end of section 4.4.1.

Construct the “EOLProduct” Object

The first task is to extract information from the OWL file and organize them into a certain

programming object, called “EOLProduct”, so that the application program can process the

information easily. In other words, this is the information preparation stage of the whole

application. The structure of the “EOLProduct” object is presented as follows:

 public class EOLProduct

 {

 public List<Component> ordinaryComponentList { get; set; }

 public List<Component> connectingComponentList { get; set; }

 public List<Component> allComponentList { get; set; }

 public Graph connectionGraph { get; set; }

 public String file { get; set; }

}

 public class Component

 {

 public String name { get; set; }

 public ComponentType type { get; set; }

 public String[] positiveXConstraints { get; set; }

 public String[] negativeXConstraints { get; set; }

 public String[] positiveYConstraints { get; set; }

 public String[] negativeYConstraints { get; set; }

 public String[] positiveZConstraints { get; set; }

 public String[] negativeZConstraints { get; set; }

 public String associatedAssemblyFile { get; set; }

 }

The “EOLProduct” object contains three lists (“ordinaryComponentList”,

“connectingComponentList” and “allComponentList”) registering the different types of

components in an EOL product (OrdinaryComponent, ConnectingComponent and general

Component). Each component is further an aggregated object, which comprises of the name

information, the component type information and the local constraint information. In this thesis,

we only consider 6 primary Cartesian directions (±X, ±Y and ±Z) as the possible disassembly

directions. Thus, the “local constraint” information is recorded in an array, which contains the

88

components that are geometrically restricting the current component moving along a certain

primary Cartesian direction. Also, a “file” information is included to record the associated CAD

file name of the EOL Product. Lastly, all the components are organized into a “connectionGraph”

object, which represents the topological arrangements of the components.

Figure 4.13: Organizing Information into the “EOLProduct” Object

Figure 4.13 shows the implementation of the Disassembly Sequence Generator application, with

annotations on the elements relating to the “Construct EOLProduct Object” task. The inputs of the

application are two files: (1) the Disassembly Sequence Generator OWL file and (2) the EOL

product CAD file and the locations of both files are being specified by the user. After locating the

two inputs, the OWL file will be queried and the retrieved information will be used to construct

89

the “EOLProduct” object. The result can be validated by checking the product connection graph

or the detailed component information, through button “Show Product Graph” and the button

“Show Component Detail”.

As an example, the detail information of Part1 is shown in lower dialog box in figure 4.13. It

contains the name of the component (Part1), the type of the component (OrdinaryComponent),

and the local component constraints along six primary directions (e.g. Part1 is being locally

constrained by Part6, Part7 and Part 10 along +X direction).

Interference Test

The goal of the interference test task is to address the issue related to the global constraints of the

component and to check whether a component can be detached from the product along a primary

direction without collisions with any other components. Since the detailed geometrical form

information is not modeled in the Disassembly Information Model, the interference test task

utilizes a CAD simulation based approach to check the detachability of the component. The detail

procedure is a recursive process as shown in figure 4.14 (we take the interference test function

along positive X direction as an example).

The function starts with the initialization of the CAD programming objects related to the product

under study, and Solidworks is used in this thesis for the implementation. There are three main

SolidWorks document types, namely Part Document, Assembly Document and Drawing

Document and each document type has its own programming object (PartDoc, DrawingDoc and

AssemblyDoc), through which the user can manipulate the CAD model programmatically. In the

proposed procedure, the “swApp” object is used to start the Solidworks application and the

90

“AssemblyDoc” object is used to provide access to the functions that perform certain assembly

operations.

The second step is to identify the size of the product along the detaching direction, in this case

along +X direction. The reason for this step is to analyze the boundary information for the

simulation process: how much movement along the detachment direction should be analyzed

before the successful detachment of the component can be confirmed.

The third step sets up the transformation details (displacement and direction) through a

transformation matrix and the detail definition of the matrix can be found in the Solidworks online

API tutorial (Dassault Systems, 2016). The direction is positive X in this case and the displacement

is set to 1.5 mm (a small displacement).

The fourth step starts the simulation process. Basically, the component under study is dragged

along the detachment direction (+X) for a small distance (1.5 mm) and then the whole assembly is

checked for interferences. If the number of interferences (being registered in the variable

“counter”) doesn’t equal to zero, the program will stop and return false, which means the

component cannot be detached along +X direction. If no interferences are identified, the procedure

will go back to the beginning of the step 4 and another dragging transformation will be applied to

the component (1.5 mm displacement along +X direction). The whole procedure will continue

until we reach the maximum size of the product along +X direction: the component is completely

outside of the remaining product. The simulation will stop at this point.

If the program does not return false during the simulation process (step 4), it means the component

can be detached from the product along +X direction. Thus, the program will release the resource

object (swApp and AssemblyDoc) and return true to the user.

91

PROCEDURE 1: INTERFERENCE TEST ALONG +X DIRECTION

function PositiveXInterferenceTest(String AssemblyFileName, String componentName)
1: Initiation: swApp, AssemblyDoc<- componentName
2: Identify size of the product
 boundary = swAssy.GetBox(1);
 SizeX = Math.Abs(boundary[0] - boundary[3]);
3: Set up transformation matrix
 swXform = (MathTransform)swMathUtil.CreateTransform(vXfm);
4: for i=0->sizeX, do
 drag (componentName, swXform);
 int counter=GetInterferenceCount ();
 if counter !=0
 return false;
 end if
 end for
5: Release Resource Object
6: Return true;
7: end function

Figure 4.14: Details of the Interference Test along +X Direction

Unconstrained Subassembly Detection

The goal of the unconstrained subassembly detection task is to carry out parallel disassembly

whenever possible, which will achieve more efficient disassembly process compared to the

sequential disassembly. The concepts of ContactLoop and ContactLoopCluster are used to define

the unconstrained subassembly in an EOL product: An unconstrained subassembly is either a

ContactLoop or a ContactLoopCluster in a product which satisfies the following conditions:

Definition of Unstrained Subassembly:

For each ContactLoop or ContactLoopCluster, check whether there exists an external edge,

which links to a ConnectingComponent that does not belong to the ContactLoop or the

ContactLoopCluster. If such edge cannot be identified, the ContactLoop or

ContactLoopCluster is an unconstrained subassembly.

92

Figure 4.15 explains the concept with an example. The product in the current stage contains two

unconstrained subassemblies:

 S1: Part1, Part5 and Part6

 S2: Part2, Part8, Part3, Part 9, Part4

S1 is a ContactLoop and S2 is a ContactLoopCluster. For S1, two external edges (e1 and e2) exist

and neither of them is connected to a ConnectingComponent (Part2 is an OridnaryComponent).

Similar observation can be made for S2: two external edges (e3 and e2) exist and both of them

connect to an OrdinaryComponent Part1. Thus, S1 and S2 are unconstrained subassembly.

On the other hand, Part 8, Part 2 and Part 3 form another ContactLoop S3, which is not an

unconstrained subassembly: S3 has an external edge e4 which connects to a

ConnectingComponent (Part9) that does not belong to the ContactLoop S3.

e1

e2

e3

e4

Figure 4.15: Unconstrained Subassembly Example

93

In order to identify the unconstrained subassembly in a product, information relating to the

ContactLoop and the ContactLoopCluster should be provided. Different from other information

in the DIM, which is static and can be determined a priori. The ContactLoop and

ContactLoopCluster information is dependent on each of the disassembly states. Thus, it is not

being identified in the beginning of the disassembly process, but rather being generated for each

disassembly state dynamically. The detailed procedure can be broken into four functions as shown

below.

F1->Identifying the Loops: The first function is to identify all the loops in the product connection

graph, and the pseudo codes are presented in figure 4.16. The procedure starts with the function

“findAllCycles”, which takes each edge in the graph and pass it on to the sub function

“findNewCycles” as input. The “findNewCycles” sub function then finds cycles that contains the

input edge and returns the results.

PROCEDURE 2: IDENTIFYLING LOOPS IN A GRAPH

function findALLCycles(graph)
1. Initialize cycles = new static List<int[]>()
2. for i=0->graph. Length(0), do
 for j=0->graph. Length(1), do
 findNewCycles(new int[] {graph[i, j]})
 end for
 end for
end function

SubFunction findNewCycles(int[] path)
1. int n = path[0];
2. for i=0->graph. Length(0), do
3. for y = 0->1, do
4. if graph[i , y] == n // edge pointing to the current node
5. x=graph [i, (y+1)%2]; //neighbor node
6. if !visited(x, path); //neighbor not on the path yet
7. add to the path;
8. findNewCycles (path);
9. end if
10. if (path.Length >2) && (x==path[path.Length-1]) //Cycle found
11. int[] p = normalize(path);
12. int[] inv = invert(p);
13. if (isNew(p) && isNew(inv))
14. cycles.Add(p);
15. end if
16. end if
17. end if
18. end for
19. end for
20. End Sub function

//Graph modelled as list of edges

//static int[,] graph = {{1, 2}, {1, 3}, {1, 4}, {2, 3}};

Figure 4.16: Pseudo Code for Finding All the Loops in a Graph

94

In the sub function “findNewCycles”, an outer loop scans all nodes of the graph and tries to locate

neighborhood edge that connects to the input edge. The neighborhood edge will be further sent to

the function “findNewCycles” to identify other connected edge (line 2 to line 8). The process will

continue by recursively calling the sub function “findNewCycles”, until a new cycle is found (the

path is longer than two nodes and the next neighbor is the start of the path) (line 10). In order to

avoid duplicate cycles, the identified cycles are normalized by rotating the smallest node to the

start. Cycles in reversed ordering are also taken into account (Line 11 to Line 14).

F2->Identifying of the ContactLoop: The second function is to find all the ContactLoops from the

loops identified from the previous procedure (F1). The main process is to apply each loop to the

“isContactLoop” function and those return true from the “isContactLoop” function are the

ContactLoops. Figure 4.17 shows the pseudo code for the “isContactLoop” function.

The “isContactLoop” function starts with checking whether only one ConnectingComponent

exists in the cycle (Line 1 to line 8). If more than one ConnectingComponent or no

ConnectingComponent is identified, the function will return false and the cycle is not a

ContactLoop. From line 9 to line 26, the function tests whether all the OrdinaryComponents are

connected to or has contact with the ConnectingComponent in the loop. It is done by retrieving

all the edges of one OrdinaryComponent and check whether one or more of these edges further

connect to the ConnectingComponent in the loop. If the checking returns true, the variable

“counter” will increment by one. Such process will be applied to all the OrdinaryComponents in

the loop and if in the end the value of the “counter” variable is less than the size of the input cycle

by one, it means all the OrdinaryComponents are connected to the ConnectingComponent and

the cycle is a ContactLoop.

95

PROCEDURE 3: CHECK WHETHER A CYCLE IS A CONTACTLOOP

function bool isContactLoop(List<String> cycle, Graph p1)
1. for i=0->cycle.Count(), do
2. if (p1.FindNode(cycle[i]).Type==Type.connectingComponent
3. numOfconnectingComponent++;
4. end if
5. end for
6. if numOfconnectingComponent!=1
7. return false;
8. end if
9. counter=0;
10. for i=0->cycle.Count(), do
11. if (p1.FindNode(cycle[i]).Type == Type.ordinaryComponent
12. List e1 = p1.FindNode(cycle[i]).OutEdges;
13. List e2 = p1.FindNode(cycle[i]).InEdges;
14. foreach edge in e1 and e2
15. if edge.TargetNode.Id == connectingComponetInLoopID
16. counter++;
17. if e.SourceNode.Id == connectingComponetInLoopID
18. counter++;
19. end foreach
20. end if
21. end for
22. if counter !=cycle.Count()-1
23. return false;
24. end if
25. return true
26. end function

Figure 4.17: Pseudo Code for Determining Whether a Loop is a ContactLoop

F3->Identifying ContactLoopCluster: The third function is to find all the ContactLoopClusters

and the main process steps are shown in figure 4.18. The procedure starts with initializing a “result”

variable with empty initial value, for storing the identified ContactLoopCluster. Then, a searching

over the ContactLoops is carried out (code section 2) to check whether two ContactLoops can be

clustered to form a ContactLoopCluster. If no ContactLoops can be merged or only one merger

happens, the procedure will end and the result will be returned (code section 3). If more than one

mergers occur, the procedure further checks whether the resulting combinations can be further

merged together to form a larger can cluster (code section 4). The process will continue until no

new clusters can be found.

96

PROCEDURE 4: GENERATE CONTACTLOOPCLUSTER

function List<String> GenerateContactLoopCluster(List<String> contactLoops)
1. Initialize empty List<String> result;
2. for i=0->contactLoops.Count(), do
 for j=i+1 -> contactLoops.Count(),do
 if canCluster (contactLoop[i], contactLoop[j])
 add to result;
 end if
 end for
 end for
3. if result.Count() == 0 or result.Count() == 1
 return result;
 end if
4. if result.Count()!= contactLoop.Count()
 do
 tempt = result.ToList();
 size = result.Count();
 merge(result);
 while (!sameList(tempt,result))
 end if
5. return result
6. end function

Figure 4.18: Pseudo Code for Identifying the ContactLoopCluster

F4->Identifying the Unstrained Subassembly: the last function is to identify all the unconstrained

subassemblies of the product. The process checks all the ContactLoops and ContactLoopClusters

identified in the previous steps and see if any of them loses constraints along certain disassembly

directions. The function “IsUnConstrainedsubAssembly” is implemented for such purpose and

figure 4.19 shows the major steps of the function.

The process is relatively simple and it recursively checks each node in the subassembly (the

subassembly can be either a ContactLoop or a ContactLoopCluster). If none of the nodes is

connected to an external ConnectingComponent, then it is an unstrained subassembly and the

function returns true.

97

PROCEDURE 5: IS UNCONSTRAINED SUBASSEMBLY

function bool IsUnConstrainedsubAssembly(List<String> subAssy, Graph p1)
1. for i=0->subAssy.Count(), do
 List e1=p1.FindNode(cycle[i]).Edges;
 foreach edge in e1
 if edge.TargetNode.Type == Type.ConnectingComponent
 and (!subAssy.Contains(e.TargetNode.Id)
 return false;
 end if
 end foreach
 end for
5. return true
6. end function

Figure 4.19: Pseudo Code for the Function “IsUnConstrainedsubAssembly”

Overall Procedure for Finding All Feasible Disassembly Process Sequences

The overall procedure for finding all the feasible disassembly process sequences is shown in figure

4.20 in the next page. It utilizes the sub functions (F2->F4) discussed above and can be broken

down into three parts. The first part is to pick any ConnectingComponent as a candidate

component to be detached and apply the interference test to it. The procedure continues to the

second part if the selected ConnectingComponent can pass the interference test. The second part

is to carry out the component level stability and disassembility check, which searches if there exists

an OrdinaryComponent which loses constraints due to the detachment of the

ConnectingComponent. If so, we need to check whether this OrdinaryComponent can be

detached without interferences. If there exists an interference, it means the detachment of the

original ConnectingComponent will result in an unstable product state, in which some

unconstrained component cannot be detached from the product. Such a situation is not allowed in

the disassembly process and the program will thus reject the detachment of the candidate

ConnectingComponent and start to test another candidate ConnectingComponent.

98

On the other hand, if the unconstrained OrdinaryComponent can be detached without

interferences and the product can reach a stable state. The subassembly level stability and

disassembility check will be further carried out, which checks if there exists an unconstrained

subassembly that cannot be detached (cannot pass the interference test). If there is no

unconstrained subassembly or the unconstrained subassembly can be detached without

interference, the program will accept the disassembly plan and continue to the next iteration.

void generate_And_OR_Graph

(EOLProduct p1, List<Pair> result)

Interference Test On
ConnectingComponent i

Pass?
No

i++

Disassemble
ConnectingComponent i

While !(Stable)

Interference Test on
OridnaryComponent which loses constraints

yesPass

Fail

Reject and Reset

Any
UnconstrainedSubAssembly?

No
Accept and Iterate

No

yes

Interference Test on
UnconstrainedSubAssembly

Pass
Accept and Iterate

fail

Reject and Reset

Try detaching
ConnectingComponent
in a EOL Product (Stable)

Component Level Stability
and Disassembility Check

Subassembly Level Stability
and Disassembility Check

Figure 4.20: Procedure for Finding All the Feasible Disassembly Process Sequences

99

4.4.2 LP based Disassembly Process Optimization

After identifying all the feasible disassembly process sequences, linear optimization can be applied

to find the economically optimal sequence. The LP model gives the optimal solution based on

maximizing the total value of the retrieved part/component and minimizing the total disassembly

cost associated to them. Take figure 4.21 as an example, if we assign each disassembly operation

(0, 1, 2, 3, 4, and 5) as a binary decision variable (x0, x1, x2, x3, x4, x5), the value we can retrieved

from a set of disassembly operations is:

Value=VABCDE *(x0-x1-x2) +VABCD *(x1-x3) +VBCDE *(x2) +VAB *(x3-x4) + VCD *(x3-x5) +VA *(x2+x4) +VB *(x4)

+VC *(x5) +VD *(x5)

If we carry out only operations 0, 1, 3, and 4 (x0=x1=x3=x4=1, other equals to 0). The above

equation tells us total value we can retrieved from such a disassembly plan is:

VABCDE *(1-1-0) +VABCD *(1-1) +VBCDE *(0) +VAB *(1-1) + VCD *(1-0) +VA *(0+1) +VB *(1) +VC *(0) +VD *(0)

 = VCD + VA + VB

ABCDE

ABCD

BCDE

AB

CD
1

2

4

5

3

0

Figure 4.21: An Example of Four Parts

We can put into a generalized formulation as follows:

 𝑉 = ∑ ∑ 𝑉𝑖 ∗ 𝑇𝑖,𝑗 ∗ 𝑥𝑗𝑗𝑖

where T is the coefficient matrix and the value of the element in the matrix (Ti j) equals to -1, 0 or

1. The subscript j corresponds to operation and subscript i correspond to part or subassembly. If

100

operation j disassembles subassembly i, Ti j= -1. If operation j assembles part i into a subassembly,

Ti j =1. For other conditions, Ti j= 0. For the example in figure 4.21, the T matrix is as follows:

Table 4.2: Coefficient Matrix Example

 0 1 2 3 4 5

ABCDE 1 -1 -1 0 0 0

ABCD 0 1 0 -1 0 0

BCDE 0 0 1 0 0 0

AB 0 0 0 1 -1 0

CD 0 0 0 1 0 -1

A 0 0 1 0 1 0

B 0 0 0 0 1 0

C 0 0 0 0 0 1

D 0 0 0 0 0 1

E 0 0 0 0 0 0

Follow the same analysis for the disassembly operation cost, the complete disassembly LP model

formulation is as follows:

Objective=V-C=∑ ∑ 𝑉𝑖 ∗ 𝑇𝑖,𝑗 ∗ 𝑥𝑗𝑗𝑖 − ∑ 𝐶𝑗,𝑘 ∗ 𝑦𝑗,𝑘𝑗,𝑘

S.T.

1. ∑ 𝑥𝑖,𝑖𝑛𝑖𝑛 ≥ ∑ 𝑥𝑖,𝑜𝑢𝑡𝑜𝑢𝑡 , ∀ 𝑖

2. ∑ 𝑥𝑖,𝑖𝑛𝑖𝑛 ≤ 1 , ∀ 𝑖

3. 𝑥𝑗 = {
1, 𝑖𝑓 𝑗 = 0

 ∑ 𝑦𝑘,𝑗𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. ∑ 𝑦𝑘,𝑗𝑘 = ∑ 𝑦𝑗,𝑘𝑘 , for j = 1,2,3. . . n

Constraints from AND/OR graph

Constraints from Task

Precedence graph

101

Decision variables are x j and y j, k and V i and 𝐶𝑗,𝑘 are constant coefficients representing the value

of each part/component and the cost of disassembly operation. All of the decision variables are

binary variables.

For every node in an AND/OR graph, the sum of the outgoing flow variables is equal to, or smaller

than, the sum of the incoming flow variables (constraint 1). Also, only one path can be selected for

a branch in the graph and thus the sum of the incoming flow variables should be less than 1

(constraint 2). As the initialization of the disassembly process, the decision variable of the first

process x0 should be equal to 1 (Constraint 3). Constraint 3 also indicates that a disassembly

operation variable related to operation j should be same on an AND/OR graph and a task

precedence graph. Lastly, constraint 4 says for every node in the task precedence graph, the sum

of the outgoing flow variables is equal to the sum of the incoming flow variables.

where,

𝑥𝑗 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑗

𝑦𝑗,𝑘 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑗, ∀𝑘

𝑥𝑖,𝑖𝑛 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑖
𝑥𝑖,𝑜𝑢𝑡 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑖

𝑖 ∈ {𝑠𝑢𝑏𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝐴𝑁𝐷/𝑂𝑅 𝑔𝑟𝑎𝑝ℎ}

𝑘, 𝑗 ∈ {0,1,2 … 𝑛}, where n represents the total number of operations

 Index i refers to a subassembly or a component in the AND/OR graph

 Index j refers to the disassembly operations, j=0,1,2…n, 𝑥0 is a pseudo operation which

represents the initialization of the disassembly process (EOL product is checked in). n

represents the total number of operations.

 𝑥𝑖,𝑖𝑛 refers to one of the incoming flow variables (i.e. disassembly operation variable 𝑥𝑗)

related to the subassembly (or the component) i.

 𝑥𝑖,𝑜𝑢𝑡 refers to one of the outgoing flow variables (i.e. disassembly operation variable 𝑥𝑗)

related to the subassembly (or the component) i.

 𝑦𝑘,𝑗 refers to the disassembly operation j which is sequentially located after the disassembly

operation k in the task precedence diagram.

102

4.5 Case Study

This section verifies the Disassembly Sequence Generator application through an example (the

graphical representation of the example is shown in figure 4.8). We start with the verification of

the involved sub functions, which include: (1) loop detection, (2) ContactLoop detection, (3)

ContactLoopCluster detection and (4) Unconstrained Subassembly detection, in section 4.5.1. The

overall procedure for generating all the feasible disassembly sequences (shown in figure 4.20) is

further validated in section 4.5.2. Lastly, in section 4.5.3, the LP-based optimization model is

applied to the case study to find the optimal disassembly sequence.

4.5.1 Sub Function Verification

Figure 4.22 shows the implementation of functions for (1) loop detection, (2) ContactLoop

detection, (3) ContactLoopCluster detection and (4) unconstrained subassembly detection.

Applying those functions to the initial state of the product as shown in figure 4.8. The following

results are obtained.

There are 41 cycles in the current connection graph, among which five are identified as

ContactLoop:

L1: Part2->Part7->Part1 L2: Part2->Part8->Part3 L3: Part1->Part10->Part4

L4: Part1->Part6->Part5 L5: Part9->Part4->Part3

These ContactLoops can be further clustered to form one ContactLoopCluster:

“CLC1: Part2->Part7->Part1->Part8->Part3->Part10->Part4->Part6->Part5->Part9”

There is no unconstrained subassembly at this state.

If the disassembly operator detaches Part7 and Part10, the EOL product reach a new state. The

results of the above sub functions are (shown in figure 4.23):

103

There are 17 cycles in the current connection graph, among which three are identified as

ContactLoop:

L1’: Part2->Part8->Part3 L2’: Part1->Part6->Part5 L3’: Part9->Part4->Part3

These ContactLoops can be further clustered to form one ContactLoopCluster:

“CLC1’: Part2->Part8->Part3->Part9->Part4”

Also, there is two unconstrained subassemblies at this state and they are:

L2’: Part1->Part6->Part5

CLC1’: Part2->Part8->Part3->Part9->Part4

From the results above, it is evident that the implemented sub functions return results as expected

and we thus can verify the proposed sub functions.

…...

Figure 4.22: Verification of Sub Functions at State 1 (Initial State)

 104

Figure 4.23: Verification of Sub Functions at State 2 (When Part7 and Part10 have been Detached)

4.5.2 Overall Procedure Verification

The overall procedure to generate all the feasible disassembly sequences has been shown in figure

4.20. Here, we apply the case study problem to the application to demonstrate the search process.

Figure 4.24 below shows the details of one search iteration, which generates one feasible

disassembly sequence.

The application procedure starts with picking any of the ConnectingComponent as the candidate

to be detached. In this example, Part9 is selected and the interference test is applied on it to check

whether Part9 can be detached without collisions with the other components. The result from the

 105

interference test will be true, which indicates no collisions will happen during the disassembly of

Part9. Next step is to check the component and subassembly level stability/disassembility. Because

the product reaches a stable state (state 2) after the detachment of Part9 (there exists no unstable

components or subassemblies), the detachment of Part9 is accepted as feasible disassembly step.

State 1 State 2 State 3 State 4 State 5

State 6

State 7

State 1 State 2 State 3 State 4 State 5

State 6

State 7

Figure 4.24: Process Description for Generating One Feasible Disassembly Sequence

At state 2, similar process will be applied. First, the application procedure will pick any of the

ConnectingComponent as the candidate to be detached and Part10 is selected. Interference test

will be further applied on Part10. However, in this state, even though Part10 can pass the

interference test, it does not immediately accept the detachment of Part10 as a feasible disassembly

process. It is because that the EOL product reached an unstable state (state 3) after Part10 is

disassembled: the component level stability check will identify that component Part4 loses

constraints along +x, -y, +z and –z directions and becomes unstable. Thus, further interference test

on the unstable component Part4 should be carried out. In this case, Part4 can be detached and the

EOL product will reach a stable state (State 4). Until this point, the application validates the

feasibility of the disassembly process, “detachment of Part10” and disassembly process,

 106

“detachment of Part4”, and suggests they should be carried out sequentially in order to reach a

stable state (State 4).

At state 4, similar process will be again applied and Part7 is selected as the candidate to be

detached. The interference test on Part7 will be passed successfully and the EOL product will reach

state 5 if Part7 is detached. However, the EOL product in state 5 contains subassembly level

instability: two unstrained subassemblies (S1: “Part1, Part5, Part6” and S2: “Part2, Part3, Part8”)

are identified. Thus, the interference test will be applied to them and parallel disassembly will be

applied to yield two stable subassemblies (State 6 and State 7).

The searching process will iterate as above until all the feasible disassembly sequences are

identified. The final result is shown in figure 4.25.

The result as shown in figure 4.25 identifies all the feasible disassembly sequences. We can see,

with a 10 parts product, we can have theoretically 10! (3,628,800) disassembly sequences.

However, the feasible disassembly sequences are much less (565 total for the case study problem)

due to the geometrical and topological constraints.

A further study on those generated feasible disassembly sequences shows that they are 100%

feasible in a real scenario, which means the application gives no error disassembly sequence that

is geometrically or topologically impractical.

 107

Figure 4.25: All the Generated Feasible Disassembly Sequences Related to the Case Study

 108

4.5.3 LP-Based Optimization Model Verification

The LP-based optimization model can be applied to generate an economically optimal disassembly

sequence. Instead of applying the LP model directly on the AND/OR graph as shown in figure

4.25, we pick a simpler example as shown in figure 4.26 below to validate the LP optimization

model, with the intension to be more concise and clear.

Figure 4.26 represents a product with six parts (ABCDEF). All the feasible disassembly sequences

are generated. Both total and partial disassembly is allowed as long as the profit is maximized. The

cost of disassembly operation is known, and has given in a matrix form (figure 4.26); because, the

cost of a certain disassembly operation is dependent on the previous operation. One single

disassembly operation may cost differently depending on a particular disassembly sequence that

has been previously followed till this operation. It means C1, 2 (cost of operation 2 carried out after

operation 1) is different from C3, 2 (cost of operation 2 carried out after operation 3). Also the

revenues of all the part, subassembly and assembly are known (figure 4.27). They can be positive

numbers which means they have some values for reuse or recycling; they can also be negative

numbers which means they can’t be reused or recycled and maybe hazardous to the environment:

so they have negative values. Given this information, an optimal disassembly sequence needs to

be determined so that the profit will be maximized.

ABCDEF

ABCDE

ABCDF

ABCD

BCD CD

AE

ABABF

0

1

2

4

5

3

9 11

12

13

7

8

10
6

Figure 4.26: One Simple Generated Feasible Disassembly Sequences Example

 109

Node Value ($)

ABCDEF -50

ABCDE -35

ABCDF -30

ABCD 200

ABF 220

BCD -30

AB 170

AE 160

CD 250

A 152

B 78

C 180

D 220

E 160

F 130

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 70 69 68 67 66 65 64 63 62 61 60 59 58 57

2 50 51 52 53 54 55 56 57 58 30 20 10 20 15

3 60 50 51 36 15 20 21 22 23 24 25 26 27 28

4 30 49 52 26 16 16 18 20 22 24 26 28 32 40

5 50 48 53 27 17 17 36 15 30 10 5 20 30 41

6 45 47 54 28 18 18 25 40 45 50 60 30 32 42

7 30 46 55 29 19 19 11 30 25 16 11 18 15 43

8 29 30 56 30 20 20 30 31 32 33 34 8 30 44

9 28 29 57 34 21 21 31 32 33 34 40 42 31 45

10 27 28 30 45 22 22 32 15 20 20 10 30 32 46

11 26 27 28 46 23 30 33 15 10 20 16 14 33 47

12 25 26 36 47 30 35 34 30 25 51 50 9 34 40

13 24 25 23 48 35 26 35 60 14 70 60 45 35 30

Figure 4.27: The Value Vector and Cost Matrix for the Case Study Product

Applying LP optimization model proposed in section 4.4.2, the optimal path of the problem in

figure 4.26 is shown in figure 4.28 below:

Figure 4.28: The Optimal Disassembly Path

In order to verify the model, the following two extreme cases are checked:

(1) Let us change the value of subassembly ABCD to extreme high. The program successfully

stops at node ABCD for part reuse, as shown in figure 4.29. It means that subassembly ABCD is

valuable enough for reuse and it should not be further disassembled.

 110

Figure 4.29: An Optimal Disassembly Path (Verification Scenario 1)

(2) Let us change the cost of disassembly operation C47 and C57 to very high values (big M).

Because of the high operation costs associated to the operation 7, the optimal disassembly

sequence will not continue through the arc 7 (which represents operation 7) and will detour to

operation 8 instead, as shown in figure 4.30.

Figure 4.30: An Optimal Disassembly Path (Verification Case 2)

From the analysis above, we can conclude that the optimization model is quite convincing and it

generates optimal disassembly sequence as expected.

 111

 ADAPTIVE DISASSEMBLY PLANNING

Chapter 5 focuses on the problem of the adaptive disassembly planning, which considers the

product and process uncertainties. We start with problem description in section 5.1. Next in section

5.2, the Adaptive Disassembly Planning Information Model is elaborated. Detailed application

method for carrying out the dynamic disassembly sequence generation is presented in section 5.3.

Lastly, the chapter is wrapped up with a case study to verify the overall application procedure.

5.1 Problem Definition

Adaptive disassembly planning considers all the feasible disassembly sequences as input and

determines the optimal disassembly sequence. It takes the following two extra issues into

consideration:

(1) Uncertainty issue: As mentioned in the previous chapters, unlike the assembly process, the

disassembly process has various uncertainty issues. Thus, extra information and special

mechanisms are needed for the uncertainty handling. Two types of uncertainties are considered in

this dissertation: (1) Component/assembly function uncertainty and (2) Operation uncertainty.

Component/assembly functional uncertainty: each component or assembly might be

associated with a primary function, which contributes to the product overall function.

When an EOL product is at the end of its service life, its component or subassembly might

not be functional, and such information is critical in the disassembly planning process.

However, it could only be realized gradually during the disassembly process.

Operational uncertainty: during the disassembly process, certain operation, such as

unscrewing, might not succeed due to the component’s current physical conditions (the

component may have deformed or corroded during its service period). Then, extra special

operations are necessary to handle such situations, which will incur a higher cost. Since

 112

this information is also unknown at the beginning of the disassembly process, it is called

the operation uncertainty.

(2) Degradation issue: Component/assembly degradation is also a critical factor in disassembly

planning. Degradation is a gradual change in properties (like tensile strength, color, shape, etc.) of

the component, which usually does not affect the overall function of a component until it reach to

a critical point. However, degradation does affect the economic quantification of EOL product or

component. For example, some subassembly might be functional, but the reuse value of the

subassembly still could be lower than the expected average reuse value (the subassembly is close

to failure) or higher than the expected average reuse value (the subassembly still has a long

remaining useful life time).

In order to handle the above two issues, extra information is needed and it has been identified in

chapter 3 (the Uncertainty Information Model and the Degradation Information Model in the

domain layer). However, some of the involved information for a specific EOL product can hardly

be acquired a priori (e.g. the condition of an internal component usually cannot be identified at the

beginning of the disassembly process). Rather, this information is revealed gradually during a

disassembly process. Thus, an “optimal” path is determined at each stage of the disassembly

process with the limited information available at the current time and will be re-evaluated after

reaching a new stage with more information identified. Thus, it is called adaptive disassembly

planning problem.

5.2 Adaptive Disassembly Planning Information Model

The Adaptive Disassembly Planning Information Model is presented in this section. We start with

the requirement analysis in section 5.2.1 and the formal Adaptive Disassembly Planning

 113

Information Model is described in section 5.2.2 using the UML class diagram as a graphical

notation.

5.2.1 Requirement Analysis for the Adaptive Disassembly Planning
Information Model

The required information for handling the uncertainty and degradation issue has been identified in

the domain level sub models (the Uncertainty Model and the Degradation Model). The Uncertainty

Model is based on the Bayesian Network theory, whereas the Degradation Model is based on the

Fuzzy Logic theory (refer to chapter 3 for details). From a high level view, the main information

in both of the models is basically statistical information, which provides certain degrees of belief

in the relevant issues. However, in order to make a disassembly decision, disassembly benefits

(utility) and disassembly constraints should also be considered and a certain disassembly decision

theory should be formed. In this dissertation, disassembly decision theory is defined as:

The fundamental idea of the disassembly decision theory is that a computer aided disassembly

planner is rational if and only if it chooses the feasible disassembly action (satisfying all the

constraints) that yields the highest expected disassembly utility, averaged over all the possible

outcomes of the action. This is also called the principle of Maximum Expected Utility (MEU) in

the traditional decision theory.

The realization of the Disassembly Decision Theory yields what we called Disassembly Decision

Network (DDN) and it can be described formally as a six-tuple: DDN= (P-DN, UTN, UN, TR,

CPT, F), where

Process Decision Node (P-DN): P-DN= {P-DN1, P-DN2, P-DN3…, P-DNN}, N>0, is a finite set of

process decision nodes denoted by a rectangle shape. Each of the nodes can take two possible

Disassembly Decision Theory = Probability Theory + Utility Theory + Disassembly Constraints

Modeling

 114

values (“carry out” or “don’t carry out”), which represents the two choices available to the

disassembly process planner regarding to a specific process decision.

Utility Node (UTN): UTN= {UTN1, UTN2, UTN3…, UTNN}, N>0, is a finite set of utility nodes

denoted by a diamond shape and they are used to enable the numerical evaluation of the

consequences of a decision. Two types of the utility nodes are further specified:

 Process Utility Node (P-UTN): represents the cost that is associated with a disassembly

process.

 Disassembly Object Utility Node (D-UTN): represents the utility that is associated with a

disassembly object, like component, subassembly, etc. The utility can be interpreted as the

reuse value, recycling value or discard cost depending on the disassembly context (type of

the disassembly object, whether or not the component is functioning, whether or not the

subassembly is further detached, etc.)

Uncertainty Node (UN): UN= {UN1, UN2, UN3…, UNN}, N>0, is a finite set of uncertainty or

chance nodes denoted by ellipse shapes and they are used to represent the random variables related

to the problem. Two types of the uncertainty nodes are further specified:

 Process Uncertainty Node (P-UN): is a variable representing whether or not a disassembly

process is successfully carried out and two values are possible for this type of uncertainty

node: {“success”, “fail”}.

 Disassembly Object Function Uncertainty Node (D-UN): is a variable representing whether

or not a disassembly object is performing its designed function properly and two values are

possible for this type of uncertainty node: {“function”, “not function”}.

 115

Transition Arc (TR): TR= {TR1, TR2, TR3 …, TRN}, N>0, is a finite set of directed arcs connecting

different types of nodes. The intuitive meaning of a transition arc from node X to node Y is that X

has a direct influence on Y, or there exists a causal relationship between X (cause) and Y (effect).

Based on the types of the nodes to be connected, five types of TRs are further specified as follows:

 Type 1 (P-DN → P-UTN): This type of transition arc connects a P-DN to a P-UTN, which

describes the influences of a process decision on the process utility. In general, if the

decision of a certain disassembly process is “carry out”, then the utility (cost) of the

relevant process is set to some negative value. On the other hand, if the decision of a certain

disassembly process is “do not carry out”, the relevant process utility (cost) should be zero.

 Type 2 (P-UN → P-UTN): This is a transition arc connecting from a P-UN to a P-UTN and

it describes the effect of the process uncertainty on the process utility. In general, if the

disassembly process is successfully executed without problem (the value of P-UN is

“success”), the process utility (cost) will be set to the average process cost. On the other

hand, if the disassembly process fails, a higher process utility (cost) should be applied.

 Type 3 (D-UN → D-UTN): This is a transition arc connecting from a D-UN to a D-UTN

and it describes the effect of the disassembly object function uncertainty on the disassembly

object utility (refer to chapter 3 for the definition of disassembly object). In general, if the

disassembly object is “not functioning”, it means this disassembly object cannot be reused

and thus the relevant utility is set to either the recycle value (if it is a component) or discard

cost (if it is a subassembly). On the other hand, if the disassembly object is “functioning”,

it means this disassembly object can be reused and the relevant utility should be set to the

reuse value.

 116

 Type 4 (P-DN → D-UTN): This is a transition arc connecting from a P-DN to a D-UTN

and it describes the influences of a process decision on the disassembly object utility. In

general, if a process disassembles the disassembly object, then the relevant utility is set to

zero (the disassembly object doesn’t exist anymore). Otherwise, the relevant utility will be

set to either the reuse value, the recycling value or the discard cost depending whether the

disassembly object is functioning properly.

 Type 5 (D-UN →D-UN): A transition arc connecting from a D-UN to a D-UN, which

describes the function dependency between different disassembly objects. As an example,

whether or not a computer is functioning properly is dependent on the functionality of its

internal component, like CPU, motherboard, etc. It can be represented as: D-UN CPU → D-

UN Computer, D-UN motherboard → D-UN Computer.

Conditional Probability Table (CPT): CPT= {CPT1, CPT2, CPT3…, CPTN}, N>0, is a finite set of

conditional probability tables and each is attached to an uncertainty node described above. For

each node, a CPT represents the conditional probability distribution 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖)), which

quantifies the effect of the parents on the node. This is the statistical information, which has been

included in the Uncertainty Model in the domain layer of DIM (refer to chapter 3 for detail).

Fuzzy model (F): F= {F1, F2, F3…, FN}, N>0, is a finite set of fuzzy models and each is attached

to a Disassembly Object Utility Node (D-UTN) described above. It is used to quantify the

degradation of disassembly objects by evaluating its real reuse value. The detail information

related to the fuzzy model has been included in the Degradation Model in the domain layer of DIM

(refer to chapter 3 for details.).

To summarize, the requirement for the Adaptive Disassembly Planning Information Model is to

provide information elements to support the construction of the Disassembly Decision Network

 117

described above. Also, some information has been modeled in the domain layer sub models like

Process Model, Uncertainty Model and Degradation Model. Thus, an integration of these models

is also needed. Table 5.1 summarizes the modeling requirements for the Adaptive Disassembly

Planning Information Model.

Table 5.1: Requirements for the Adaptive Disassembly Planning Information Model

R1 The modeling of different types of node: decision node, uncertainty node and utility node

R2 The modeling of five different types of transition arc.

R3 The linking to the uncertainty model and degradation model for the retrieval of relevant

statistical information.

5.2.2 Formal Adaptive Disassembly Planning Information Model

The Adaptive Disassembly Planning Information Model deals with the information required for

the adaptive disassembly planning problem. It is residing on the application layer of the DIM and

is being extended based on three domain layer sub models named Process model, Uncertainty

Model and Degradation Model. The overall structure is shown in figure 5.1 below. We will

describe the model according to the information requirements identified above in the following

sections.

R1->Node Modelling: Based on the definition of the Disassembly Decision Network, five classes

representing different types of nodes have been modeled in the Adaptive Disassembly Planning

Information Model: (1) class Process_Decision_Node representing P-DN, (2) class

Process_Utility_Node representing P-UTN, (3) class Process_Uncertainty_Node representing P-

UN, (4) class Disassembly_Object_Function_Uncertainty_Node representing D-UN, and (5)

class Disassembly_Object_Utility_Node representing D-UTN.

 118

R2->Transition Arc Modelling: Influences exist between different types of nodes and each of

which form a certain transition arc in the Disassembly Decision Network. From the requirement

analysis carried out in section 5.2.1, five types of transition arcs are identified and they are

implemented in the Adaptive Disassembly Planning Information Model by introducing the object

property “influence”, which connects two nodes as its domain object and range object.

xsd: double

xsd: double

Process Model

Process_Decision_Node

Process_Utility_Node

Process_Uncertainty_Node

influence

1

1

influence

1

1
Process

11 relatesTo

DisassemblyObject
Disassembly_Object_Utility_Node

Disassembly_Object_Function
Uncertainty_Node

influence

1

1

breaks

1

1

Creates

1

2..n

Process

1 1relatesTo

relatesTo

DisassemblyObject
relatesTo

11

11

ProcessSuccessProbabilityTable

contains

1

1

FunctionFailureProbabilityTable

contains
1

1

DisassemblyObject

relatesTo

1

1

Uncertainty Model

functionalDepends

1

0..n

Degradation Model

Adaptive Disassembly Planning

normalCost specialCost

1 1

1 1

reuseValue
1

1

Recycle
Value

1

1

Discard
Cost

1

1

Figure 5.1: The Adaptive Disassembly Planning Information Model

As shown in figure 5.1, three types of transition arcs (Type 1 to Type 3) have been explicitly

defined. As an example, type 1 transition arc indicates the causal effect of a process decision

(Process_Decision_Node) on the process utility (Process_Utility_Node). The two relevant nodes

are related through the object property “influence”: the domain of the “influence” object property

 119

is the Process_Decision_Node class, which indicates the cause, whereas the range of the

“influence” object property is the Process_Utility_Node class, which indicates the effect of the

cause.

A similar approach can be used to model Type 4 and Type 5 transition arc by introducing the

“influence” object property to link from the Process_Decision_Node class to the

Disassembly_Object_Utility_Node class (Type 4 (P-DN → D-UTN)); or to link from the

Disassembly_Object_Utility_Node class to the Disassembly_Object_Utility_Node class (Type 5

(D-UN →D-UN)). However, such an approach will yield redundant or duplicate information due

to the fact that the Type 4 and the Type 5 transition information have already been implicitly

indicated in the domain level Process Model and Uncertainty Model. Thus, we utilize semantic

rules to transfer such implicit information in the Process Model and Uncertainty Model to the

explicit Type 4 and Type 5 causal information, which can be utilized to construct the Disassembly

Decision Network. The detailed modeling mechanism is presented below:

Modeling of Type 4 (P-DN → D-UTN) Transition Arc: this type of transition arc describes the

influences of a process decision on the utility of the relevant disassembly object. An in-depth study

on this type of transition arc reveals that for a fixed process, the possible disassembly objects that

can be influenced by it have already been modeled in the Process Model: A Process has influences

on several DisassemblyObjects through the object property “breaks” and the object property

“creates” (refer to the Process Model in chapter 3 for detailed description). Thus, the relationship

between Process and DisassemblyObject in the Process Model actually indicates the influences of

Process_Decision_Node on the Disassembly_Object_Utility_Node.

 120

Thus, we don’t need to explicitly include that relationship in the Adaptive Disassembly Planning

Information Model; rather the following semantic rule (shown in table 5.2) has been added to

transfer the relationship between the Process class and the DisassemblyObject class in the Process

Model to the influence of the Process_Decision_Node on the Disassembly_Object_Utility_Node

in the Adaptive Disassembly Planning Information Model:

Table 5.2: Semantic Rule R1 Definition

Semantic Rule: R1

Antecedent (red line) Consequent (blue line)

Process_Decision_Node(?x), Process_Utility_Node(?y),
Process(?z), DisassemblyObject(?d),
Disassembly_Object_Utility_Node(?u), influence(?x, ?y),
relatesTo(?y, ?z), (breaks (?z, ?d) or creates (?z, ?d)),
relatesTo(?d, ?u)

influence (?x, ?u)

Graphical Explanation

Process Model

Process_Utility_NodeProcess
11 relatesTo

DisassemblyObject Disassembly_Object_Utility_Node

breaks

1

1

Creates

1

2..n

1 1relatesTo

Adaptive Disassembly Planning

Process_Decision_Node

influence
1

1

Modeling of Type 5 (D-UN →D-UN) Transition Arc: this type of transition arc describes the

functional dependency between different disassembly objects. Refer to figure 5.1, such

information has already been modeled in the Uncertainty Model through “functionalDepends”

object property. Thus, the following semantic rule (shown in table 5.3) has been included to

transfer the relevant information in the Uncertainty Model to the Adaptive Disassembly Planner

 121

Information Model, for representing the causal relationship between two

Disassembly_Object_Function_Uncertainty_Nodes.

Table 5.3: Semantic Rule R1 Definition

Semantic Rule: R2

Antecedent

(red line)

Consequent

(blue line)
Disassembly_Object_Function_Uncertainty_Node (?x1),

Disassembly_Object_Function_Uncertainty_Node (?x2),

DisassemblyObject(?o1), DisassemblyObject(?o2),

relatesTo(?x1, ?o1),

relatesTo(?x2,?o2),

functionalDepends(?o1, ?o2)

influence (?x1, ?x2)

Graphical Explanation

Disassembly_Object_Function
Uncertainty_Node ?x1

DisassemblyObject ?o1
relatesTo

Disassembly_Object_Function
Uncertainty_Node ?x2

DisassemblyObject ?o2
relatesTo

functionalDepends

Uncertainty ModelAdaptive Disassembly Planning

R3->Model Integration: the implementation of this requirement has been partially shown in the

previous discussion. The Adaptive Disassembly Planning Information Model links the Process

model, Uncertainty model and Degradation model through object property “relatesTo”. In detail,

the integration is implemented in the following four places:

(1) The Process_Uncertainty_Node class in the Adaptive Disassembly Planning Information

Model links to the Process class in the Uncertainty Model, through which the relevant process

related Conditional Probability Table (ProcessSuccessProbabilityTable) information can be

retrieved.

 122

(2) The Disassembly_Object_Function_Uncertainty_Node class in the Adaptive Disassembly

Planning Information Model links to the DisassemblyObject class in the Uncertainty Model,

through which the relevant function related conditional probability table

(FunctionFailureProbabilityTable) information can be retrieved.

(3) The Process_Utility_Node class in the Adaptive Disassembly Planning Information Model

links to the Process class in the Process Model, through which regular and special process costs

can be retrieved.

(4) The Disassembly_Object_Utility_Node class in the Adaptive Disassembly Planning

Information Model links to the DisassemblyObject class in the Process Model, through which the

related recycle value, reuse value and discard cost can be retrieved.

The Adaptive Disassembly Planning Information Model has been fully implemented in OWL and

table 5.4 below summarizes the major model concepts.

Table 5.4: DIM OWL Implementation Concept Summarization

Model Class Class Axioms Object

Property
Adaptive

Disassembly

Planning.owl
Disassembly_Object_

Utility_Node

relatesTo exactly 1 (Process model: DisassemblyObject) relatesTo

 relatesTo exactly 1 (Degradation model: DisassemblyObject)

 Disassembly_Object_

Function_Uncertainty_Node

influence exactly 1 Disassembly_Object_Utility_Node influence

 relatesTo exactly 1 (Uncertainty model: DisassemblyObject)

Process_Uncertainty_Node

influence exactly 1 Process_Utility_Node

 relatesTo exactly 1 (Uncertainty model: Process)

 Process_Utility_Node relatesTo exactly 1 (Process model: Process)

 Process_Decision_Node influence exactly 1 Process_Utility_Node

Imported Model

Process.owl

Degradation.owl

Uncertainty.owl

 123

5.3 Adaptive Disassembly Planning Application

This section discusses the detailed procedure for solving the adaptive disassembly planning

problem. A high level view of the procedure is shown in figure 5.2, which is an iterative process

involving two major sub-functions (indicated as green boxes in figure 5.2):

F1->Component/Assembly Reuse Value Estimation. This function uses a fuzzy logic based

approach for the component/assembly reuse value estimation. It takes the inputs from the human

observation and further calculates the reuse value of the component or assembly and updates the

Disassembly Decision Network accordingly.

F2->Disassembly Decision Making. This function carries out the Disassembly Decision Network

based sequence optimization. It takes two types of information as inputs: (1) the

component/assembly reuse value (the output of F1) and (2) the human observation on whether or

not a certain component/subassembly is functioning properly. The output will be an optimal

disassembly sequence, based on the current available information.

Component/Assembly
Reuse Value Estimation

(Fuzzy Inferring)

Disassembly Decision Making
(maximize the MEU)

Update DDN:
Reuse value

Human Observation

input
Update DDN:
Set Evidence

Optimal Disassembly
Sequence

Adaptive Disassembly Planning Application

Carry Out First Step Suggested

Figure 5.2: High Level View of the Adaptive Disassembly Planning Application

After an optimal disassembly sequence is generated, the disassembly operator will carry out the

first step in the suggested optimal disassembly sequence, which will yield a new disassembly state.

 124

New observation might be identified in the new disassembly state, which could affect both of the

sub functions (F1 and F2). Thus, F1 and F2 will be re-evaluated based on the new observations

and a new optimal disassembly sequence will be suggested. The whole process will iterate until

the product is fully disassembled or the optimal disassembly plan becomes stable (remain same

between iterations).

The following sections are organized as follows: two sub functions (F1 and F2) are discussed in

detail in section 5.3.1 and section 5.3.2 first. Then, section 5.3.3 presents the complete application

procedure in detail.

5.3.1 Component/Assembly Reuse Value Estimation

The goal of the first sub function is to estimate the component/assembly reuse value, which is an

important piece of information for constructing the Disassembly Decision Network. A concrete

mathematical model to quantify this information is challenging and is very much case dependent.

Thus, we use the idea of fuzzy inference, a technique that facilitates the modeling of a complex

system without the knowledge of its mathematical description, for the reuse value estimation. In

general, the fuzzy inference system consists of four modules as indicated in the figure 5.3 below.

Fuzzification module: transforms the system inputs, which are crisp numbers, into fuzzy sets by

applying the fuzzification functions. The system inputs are the critical variables identified in the

Degradation Model and they are component/assembly age, market demand and a set of conditional

parameters. It is assumed that these variables are sufficient to evaluate the component/assembly

reuse value (refer to chapter 3 for detailed discussion on these input variables).

 125

Mamdani
Inference EngineRule Base

Fuzzy Logic
Based Reuse Value Estimation

Age Market Demand Condition Parameter

Reuse Value

Fuzzification

De-Fuzzification

Figure 5.3: High Level View of the Fuzzy Inference System

Each of the input variable is modelled as a linguistic variable, which is a composite data structure

containing a set of fuzzy terms. Each fuzzy term further contains: (1) a linguistic value (values are

words in a natural or artificial language, e.g. Age = “Low”) which an input variable can take and

(2) a membership function, which is used to quantify the degree of truth (0 to 1) of classifying a

certain numerical value (e.g. Age = 2.5 years) into the linguistic value (e.g. Age = “Low”) the

fuzzy term represents.

The following is the xml code for the “Age”, “Market Demand” and “Operation Noise” (condition

parameter) linguistic variable.

 <Variable VariableName="Age" LowerLimit="0" UpperLimit="5" VariableType="Input">

 <FuzzyTerm Name="Low" FunctionType="NormalMembershipFunction" Parameters="0,1.2"></FuzzyTerm>

 <FuzzyTerm Name="Medium" FunctionType="NormalMembershipFunction"

Parameters="2.5,1"></FuzzyTerm>

 <FuzzyTerm Name="High" FunctionType="NormalMembershipFunction"

Parameters="5,1.2"></FuzzyTerm>

 </Variable>

 <Variable VariableName="OperationNoise" LowerLimit="0" UpperLimit="50" VariableType="Input">

 <FuzzyTerm Name="Normal" FunctionType="NormalMembershipFunction"

Parameters="0,13"></FuzzyTerm>

 <FuzzyTerm Name="Abnormal" FunctionType="NormalMembershipFunction"

Parameters="50,13"></FuzzyTerm>

 </Variable>

 <Variable VariableName="MarketDemand" LowerLimit="0" UpperLimit="200" VariableType="Input">

 <FuzzyTerm Name="Low" FunctionType="NormalMembershipFunction" Parameters="0,50"></FuzzyTerm>

 <FuzzyTerm Name="High" FunctionType="NormalMembershipFunction"

Parameters="200,52"></FuzzyTerm>

 </Variable>

 126

Knowledge base: stores IF-THEN rules provided by experts. In this dissertation, four general rules

related to the high reuse value and low reuse value are modeled:

 Low Reuse Value Rule

 R1: Age is High => Reuse Value will be Low

 R2: Market Demand is Low => Reuse Value will be Low

 R3: Condition Parameter is Worse => Reuse Value will be Low

 High Reuse Value Rule

 R4: Age is Low and Market Demand is High and Condition Parameter is Normal

=> Reuse Value will be High

Other customized rules can be added if needed and they can be acquired from the Degradation

Information Model. An example is shown below:

 Average Reuse Value Rule

 Age is Medium and Market Demand is High and Condition Parameter is Normal

=> Reuse Value will be Average

Inference engine and Defuzzification: Fuzzy inference engine is the main decision making module

in a fuzzy inference system. Its main operation is to convert the input fuzzy set into an output fuzzy

set through an inference process. Whereas, the defuzzification process transforms the fuzzy set

obtained by the inference engine into a crisp value.

In this dissertation, we use the popular Mamdani method for implementing the inference procedure

and the details of the Mamdani method can be found at (Vukadinovic, 2013). The defuzzification

process is based on the idea of “Centroid of Area”, which returns the center of the area under the

 127

aggregated curve. If we think of the area as a plate of equal density, the centroid is the point along

the x axis about which this shape would balance.

The sub function is implemented in Matlab and figure 5.4 shows the implementation of the method

for the reuse value estimation of subassembly ABCD.

Figure 5.4: Fuzzy Influence Implementation in Matlab

As shown in figure 5.4, the crisp input is [age= 3, Operation Noise=25, Market Demand=100].

Five fuzzy control rules are defined (four general and one customized, not shown in the figure 5.4)

and each will generate the fuzzy value of the output variable (ABCD’s reuse value). The five

generated fuzzy values will then be aggregated and further again be translated into crisp value, the

final inferred result is 40.1 (reuse value of subassembly ABCD).

 128

5.3.2 Disassembly Decision Network based Disassembly Planning

This section introduces a Disassembly Decision Network based adaptive disassembly planning

approach, which integrates the Bayesian probability theory and the maximum expected utility

(MEU) principle, for dynamically generating the optimal product disassembly sequence.

The determination of optimal disassembly sequence is to decide the value of each of the Process

Decision Node (P-DN), which can yield a maximum disassembly object utility and a minimum

the process utility (cost). If we annotate 𝑑𝑖 as one possible disassembly sequence, then 𝑑𝑖 can be

expanded as follows:

𝑑𝑖 = 𝑝𝐷𝑁𝑖 = {𝑝𝐷𝑁1,𝑖, 𝑝𝐷𝑁2,𝑖, 𝑝𝐷𝑁3,𝑖 … 𝑝𝐷𝑁𝑁,𝑖}

Where 𝑝𝐷𝑁 is short for P-DN. The first subscript represents the index of the process decision node

in the Disassembly Decision Network, whereas the second subscript indicates the decision value

(“carry out” or “do not carry out”) associated to that node.

Then, the expected utility (EU) of a disassembly plan 𝑑𝑖 is given by:

𝐸𝑈(𝑑𝑖|𝑒) = ∑ ∑{𝑃(𝑝𝑈𝑁𝑝,𝑗)|𝑒}

2

𝑗=1

∗ 𝑝𝑈𝑇𝑁𝑝(𝑑𝑖 , 𝑝𝑈𝑁𝑝,𝑗)

𝑛

𝑝=1

+ ∑ ∑{𝑃(𝑑𝑈𝑁𝑜,𝑗)|𝑒}

2

𝑗=1

∗ 𝑑𝑈𝑇𝑁𝑜(𝑑𝑖 , 𝑑𝑈𝑇𝑁𝑜,𝑗)

𝑘

𝑜=1

 𝑝𝑈𝑁𝑝,𝑗 represents the Process Uncertainty Node in DDN. The first subscript represents the

index of the process uncertainty node in the Disassembly Decision Network, whereas the

second subscript indicates the uncertainty value (“fail” or “success”) associated to that

node.

 𝑝𝑈𝑇𝑁𝑝 represents the Process Utility Node in DDN. The subscript represents the index of

the process associated to that node. 𝑝𝑈𝑇𝑁𝑝 can take different values depending on the

arguments 𝑑𝑖 and 𝑝𝑈𝑁𝑝,𝑗.

 129

 𝑑𝑈𝑁𝑜,𝑗 represents the Disassembly Object Function Uncertainty Node in DDN. The first

subscript represents the index of the Disassembly Object Function Uncertainty Node in the

Disassembly Decision Network, whereas the second subscript indicates the uncertainty

value (“function” or “not function”) associated to that node.

 𝑑𝑈𝑇𝑁𝑜 represents the Disassembly Object Utility Node in DDN. The subscript represents

the index of the disassembly object. 𝑑𝑈𝑇𝑁𝑜 can take different values depending on the

arguments 𝑑𝑖 and 𝑑𝑈𝑇𝑁𝑜,𝑗.

 𝑒 is set of evidence identified during the disassembly process.

The above equation describes the expected utility (EU) of a disassembly option 𝑑𝑖 given a set of

evidences. It is an aggregation of two parts: (1) the expected utility of the disassembly process and

(2) the expected utility of the disassembly object. Both of the parts are evaluated by calculating

the summation of the relevant utilities, weighted over the probability values of the relevant

uncertainty node.

In order to calculate the probability values like 𝑃(𝑑𝑈𝑁𝑜,𝑗)|𝑒 and 𝑃(𝑝𝑈𝑁𝑝,𝑗)|𝑒, Bayes rules are

used here. In general, the basic task is to compute the posterior probability for a set of query

variables (X) (in our case X is either 𝑑𝑈𝑁𝑜,𝑗 or 𝑝𝑈𝑁𝑝,𝑗), given some observed event—that is,

some assignment of values to a set of evidence variables (e).

𝑃(𝑋|𝑒) =
𝑃(𝑋, 𝑒)

𝑃(𝑒)
= 𝛼𝑃(𝑋, 𝑒) = 𝛼 ∑ 𝑃(𝑋, 𝑒, 𝑦)

𝑦

Y denotes the non-evidence, non-query variables Y1, Y2. . . , Yl (called the hidden variables) and

𝛼 is the normalization constant.

 130

Finally, the best decision D*, given the probability distribution and the utility model is given by:

𝐷∗ = 𝑚𝑎𝑥 𝐸𝑈(𝑑𝑖|𝑒)

The above equation indicates that the optimal disassembly sequence 𝑑𝑖∗, is a decision sequence

which maximizes the 𝐸𝑈(𝑑𝑖|𝑒).

5.3.3 The Complete Adaptive Disassembly Planning Procedure

The disassembly sequence (disassembly plan) generated in section 5.3.3 can only be considered

“optimal” at the current disassembly state, in which only limited information or evidence can be

identified. Carrying out one disassembly operation according to the plan puts forward the

disassembly object to a new state with possibly more evidences revealed, which can change the

“optimal” disassembly result generated by the DDN based Disassembly Planning function. Thus,

the complete adaptive disassembly planning procedure is developed here (figure 5.5) to iteratively

generate optimal disassembly sequence.

When an EOL product is taken into the disassembly facility, function testing is applied first, which

will provide certain evidences on whether certain component/assembly is working properly or not.

Notice that the function testing at this stage can only provide the functionality information about

some of the components or assemblies. Whether or not the other components or assemblies are

functioning properly is still uncertain to the disassembly operator. However, the probability of

them to be functional is updated based on the updated evidence. As an example, if the disassembly

operator identifies that a fan assembly is functional and updates that information to the DDN as

evidence, the probability of the motor to be functioning will be changed as follows:

 𝑃(𝑀𝑜𝑡𝑜𝑟 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔) → 𝑃(𝑀𝑜𝑡𝑜𝑟 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔 |𝐹𝑎𝑛 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔)

 131

Observation:
Function Testing

Update Evidence:
Function Status

Update Component/
Assembly Reuse Value

DDN based
Optimization

f1: fuzzy logic based
reuse value estimation

f2: DDN based
Disassembly Optimization

Observation:
Operation Succeed?

Carry out
Operation d’

yes No

D*

Take the current first
operation (d’) in the D*

Operation Status
Already Updated?

Yes

Update Evidence:
Operation Status

No

f1

f2

Figure 5.5: The Complete Adaptive Disassembly Planning Procedure

The next step is to update the component/assembly reuse value in the DDN using the first sub

function (f1: fuzzy logic based reuse value estimation), based on the identified age, market demand

and conditional parameter information.

The updated DDN will be sent to the second function (f2: DDN based disassembly optimization),

which will generate an optimal disassembly sequence D*, given the currently available identified

information.

 132

The disassembly operator will take the first operation (d’) suggested in the D* to be the candidate

disassembly operation at this stage. Another observation will be carried out to check whether d’

can be successfully executed without problems. If d’ can be successfully carried out, no updates

in DDN are necessary and d’ will be physically executed by the disassembly operator, which will

yield a new disassembly state. Lastly, the process will be re-routing back to the beginning (function

testing) and be applied to the new state.

On the other hand, if d’ cannot be successfully carried out, an operation status update (status of

d’=fail) is added to the DDN. With the new updated DDN, the optimization process (f2) is carried

out again. Two possible scenarios may happen: (1) a new D* will be generated to avoid d’ and (2)

same D* which insisting on carrying out the original d’. The first scenario is straightforward, which

indicates that the cost of executing d’, given the evidence the regular operation will fail, is not cost

effective and should be avoided. On the other hand, the second scenario indicates that even though

d’ fails using the regular operation, some special operation (possibly with higher operation cost)

should be applied, because the overall utility is still optimal compared to the other options. Lastly,

same as before, after carrying out one disassembly operation, either following the original d’ or

following the new d’, a new disassembly state is being reached. The process will re-route back to

the function testing step (beginning of the procedure), which will be applied to the new state.

5.4 Case Study

This section verifies the adaptive disassembly planning application using a kitchen exhaust fan

assembly. We start with the description of the case study in section 5.4.1. The disassembly decision

network for the case study is presented in section 5.4.2. Lastly, the detailed adaptive disassembly

decision making process is verified in section 5.4.3.

 133

5.4.1 Description of the Case Study

Figure 5.6 shows the picture of the case study product, which contains four components (A->D)

and one assembly (ABCD). Since all of them are associated with a design function, they thus can

have a reuse value after being disassembled. We call these types of disassembly objects module

here.

On the other hand, three other subassemblies (BCD, BC and BD) exist only in the context of

disassembly and they merely represent a stable state in the disassembly process and they don’t

have a designed function associated with them (i.e. they are not subassembly in the context of the

assembly process). Thus, these type of disassembly objects don’t have a reuse value. The utility

related information is listed in table 5.5 and table 5.6 below.

Figure 5.6: Kitchen Exhaust Fan Assembly

Table 5.5: Utility Information Regarding to the Disassembly Object

Disassembly Object Reuse Value Recycle Value Discard Cost

ABCD 55 N/A -10

BCD N/A N/A -5

BC N/A N/A -10

BD N/A N/A -5

A 22 N/A -15

B 10 3 N/A

C 15 2 N/A

D 10 4 N/A

 134

Table 5.6: Utility Information Regarding to the Disassembly Process

Operation Regular Operation Cost Special Operation Cost

t1 -5 -10

t2 -8 -16

t3 -5 -20

t4 -10 -15

t5 -8 -15

In table 5.5, there is no reuse value attached to subassembly BC, BD and BCD because they do

not have a designed function and they are only valid in the context of disassembly. Also,

components B, C and D contain only homogeneous material, and thus they can always be recycled

and no discard cost is assigned to them.

Another important piece of information regarding this case study is the process model related to

the product, which represents all the feasible disassembly sequences. It is shown in figure 5.7

below, using the petri net as a pictorial notation.

Figure 5.7: The Feasible Disassembly Sequences of the Kitchen Exhaust Fan Assembly

 135

Lastly, the incoming product has two specific uncertainty issues, which are unknown to the

disassembly operator in the beginning of the disassembly process:

(1) Blower Wheel is not rotating (i.e. ABCD is not functioning).

(2) Operation t3 cannot be executed in as a regular approach, some special process is needed.

5.4.2 Disassembly Decision Network for the Kitchen Exhaust Fan Assembly

Figure 5.8 shows the disassembly decision network for the kitchen exhaust fan assembly. In order

to present it more concisely, the network has been partitioned into different sub models. On the

top level, the disassembly decision network contains only two sub models: (1) process model and

(2) Bayesian net model. The process model contains the information related to the disassembly

object utility (node ABCD_V, A_V, etc.) and several operation sub models. Operation sub model

is further an aggregation of the process utility, the process uncertainty and the process decision

information. The Bayesian net sub model contains the disassembly object uncertainty information.

The model in the figure 5.8 is a realization of the definition of DDN defined in the section 5.2.1.

Five types of nodes and five types of transition arcs are instantiated for the kitchen exhaust fan

assembly. Specifically, they are:

Process Decision Node (P-DN): nodes “Operation1”, “Operation2”, etc.

Process Utility Node (P-UTN): nodes “t1_C”, “t2_C”, etc.

Disassembly Object Utility Node (D-UTN): nodes “ABCD_V”, “BCD_V”, “BD_V”, etc.

Process Uncertainty Node (P-UN): nodes “Operation_1_Result”, “Operation_2_Result”, etc.

Disassembly Object Function Uncertainty Node (D-UN): nodes “ABCDFunctionCondition”,

“AFunctionCondition”, etc.

 136

Process Model

Operation Sub Model

Disassembly
Decision Network

Bayesian Net

Figure 5.8: The Disassembly Decision Network of the Kitchen Exhaust Fan Assembly

Transition Arc (Type 1: P-DN → P-UTN): e.g. arc pointing from node “Operation2” to node

“t2_C”.

Transition Arc (Type 2: P-UN → P-UTN): e.g. arc pointing from node “Operation_2_Result” to

node “t2_C”.

Transition Arc (Type 3: D-UN → D-UTN): e.g. arc pointing from node

“ABCDFunctionCondition” to node “ABCD_V” (the arc is not shown in figure 5.8).

Transition Arc (Type 4 P-DN → D-UTN): e.g. arc pointing from node “Operation1” to node

“ABCD_V” (the arc is not shown in figure 5.8).

Transition Arc (Type 5 D-UN →D-UN): e.g. arc pointing from node “AFunctionCondition” to

node “ABCDFunctionCondition”.

 137

Also, conditional probability tables (CPT) are assigned to the relevant nodes. Figure 5.9 shows the

user interface to input the CPT for both disassembly object function uncertainty node and process

uncertainty node.

Function Conditional Probability Table for ABCD
Process Conditional Probability Table for
Operation2

Figure 5.9: An Example Showing the CPT Definition

Lastly, the utility information (both for the disassembly object utility and the process utility) needs

to be defined in the DDN. The process utility is relatively straightforward and it is based on

whether or not the operation is going to be carried out and whether or not the regular operation

will be successful. Figure 5.10 shows an example of the utility definition for operation 5. As it is

clear from figure 5.10, the utility (cost) of operation 5 is zero under the condition that operation 5

is not carried out. On the other hand, if operation 5 is to be carried out, the utility (cost) will be

either -8 (regular cost) or -15 (special cost), depending on whether or not operation 5 will be

executed successfully without a problem.

Figure 5.10: Process Utility Definition Example

 138

The definition of disassembly object utility is classified into two categories: (1) the disassembly

object is only a stable state and (2) the disassembly object is a module.

If the disassembly object represents a stable state, like the case for the subassembly BCD (figure

5.11), the only variables influencing the utility are the operation decision nodes pointing to it. If

we have 3 influencing operation decision nodes and each of which can take two decision values

(“carry out” or “do not carry out”), we can have 23=8 possible combinations. Each of the

combination will be assigned a utility value (either discard cost or recycling value). Some

combination is realistically impossible, such as carrying out operation 1, 2 and 3 in the example in

figure 5.11. The utility of such cases will be set to a large negative number (-10000), which insures

that it will not be selected as the optimal disassembly path. Some of the combination will yield a

zero utility, which means the subassembly is further disassembled into smaller components and

thus there is no utility (revenue or cost) associated with that.

A similar mechanism applies to the module type disassembly object, with only one extension: the

function uncertainty node has an effect on the utility. If the module is functioning, reuse value

could be applied to the utility value, otherwise the discard cost or recycling value will be applied.

 139

Figure 5.11: Examples Showing the Disassembly Object Utility Definition

5.4.3 Adaptive Sequence Generation for the Kitchen Exhaust Fan Assembly

This section verifies the adaptive disassembly sequence generation application using the kitchen

exhaust fan assembly. The user interfaces of the developed adaptive disassembly planning

application are shown in figure 5.12 below.

Running the application using the kitchen fan assembly by following procedure as defined in figure

5.5, the following adaptive results are generated as shown in table 5.7 below (without

component/assembly degradation consideration).

 140

Loading Disassembly Decision Network

Fuzzy Logic Based Reuse Value Estimation and DDN Updates

Detail User Interface for uncertainty handling and Plan generation

Evidence Updates

Figure 5.12: User Interfaces for the Adaptive Disassembly Planning Application

 141

Table 5.7: Adaptive Disassembly Plan for the Kitchen Fan Assembly

Stage D* Explanation
Initial Stage

(No observation)

Do not Carry out any disassembly

operation, retain the assembly

ABCD, which will yield an optimal

expected utility 15.48.

Stage 1:

Function testing->

ABCD is not

functioning

After function testing, the evident

that ABCD is not functioning is

updated to the DDN, a new D* is

generated, which indicates to carry

out operation 1, operation 3 and

operation 5. This plan will in the end

retrieve component A, B, C and D

with a possible expected utility 6.38

Stage 2: Take the

current operation in D*

(Op1) as candidate and

check whether it can be

executed successfully -

>

Op1 can be executed

successfully

Since Op1 can be executed

successfully, the generated D* will

remain same. However, the

expected utility is increasing from

6.38 to 7.38 due to the new

evidence.

Stage 2: Take the

current operation in D*

(Op3) as candidate and

check whether it can be

executed successfully -

>

Op3 can’t be executed

successfully

The evidence that Op3 can’t be

executed successfully is updated to

the DDN, a new D* is generated. It

suggests to carry out operation 1,

followed by operation 2 and

operation 4, which will avoid the

failed operation Op3.

The expected utility is 2.18 in this

stage.

Both of the two uncertainties have been identified at this point, thus the plan from stage 2 will be the

final plan (No change will happen to D* from this stage).

The application can also handle the component/assembly degradation issues, if assuming

subassembly ABCD is functioning. We want to know exactly how much reuse value should be

applied for ABCD in the DDN, the fuzzy model for ABCD is going to be used. By observing the

crisp values of the input variables (age=2.5 years, market demand=30 units and operation noise=10

 142

decibels), the reuse value of ABCD will be generated (figure 5.13), which indicates a lower value

(32.6) compared to the average reuse value (55). This new value will be sent back to update the

DDN. The whole process afterwards will be similar to that shown in table 5.7.

Figure 5.13: Reuse Value estimation for ABCD when Considering Degradation

 143

 CONCLUSION AND FUTURE WORK

This chapter concludes the dissertation and discusses the contributions of this research. In

particular, a summary of the Disassembly Information Model (DIM), which establishes the main

contribution of this work, is described in section 6.1. In section 6.2, the detailed research issues

presented in Chapter 1 are reviewed and how they are being addressed by DIM are discussed. The

main research contributions are highlighted in section 6.3. Lastly, possible future directions for

extending the work presented in this dissertation are discussed in section 6.4.

6.1 Overview of Disassembly Information Model (DIM)

DIM constitutes a layered information framework designed for multiple applications in the domain

of EOL product disassembly planning. DIM is hierarchically structured by layers, which divides

the associated Information Models into different levels of abstraction, and thus, separate the

general knowledge from the specific knowledge about particular domains and applications. A set

of sub models is thus developed and classified into three different layers named the abstract level,

the domain level and the application level.

The Information Models in the abstract layer hold fundamental modeling concepts, which is

independent of a particular problem or domain, and can therefore be universally applied. They

represent the design guidelines (or say design pattern) for the construction of the other sub models

in the DIM.

The Information Models in the domain layer capture the knowledge related to a domain of

expertise, such as disassembly planning in our case, and they generally don’t target at solving a

specific problem or task, but rather provides a common foundation for representing a range of

different applications. Thus, the Information Model residing on this layer is more specific than

those in the abstract layer, but less specific than those in the lower layers.

The Information Models in the application layer targets at modeling the most specific information

which is directly usable for a certain application. This dissertation focuses on two disassembly

 144

planning applications: (1) Disassembly Sequence Generator and (2) Adaptive Disassembly

Planner and the relevant sub models are developed in the application layer of DIM.

The layered structure of DIM reflects the design rationale to reach a balance between information

usability and information reusability. These two objectives are conflicting each other in nature:

usability implies in depth specialization to meet the requirements of a particular task, whereas

reusability requires a certain generality in order to facilitate different applications. Thus, it is

difficult to simultaneously achieve a high degree of usability and reusability at the same time. The

layered structure of DIM represents a reasonable compromise between information usability and

information reusability: models in the higher layers are more abstract and represents reusable

information design pattern, whereas models in the lower layers are more specific and can be

directly used to solve a specific disassembly planning problem.

DIM is discussed in the form of two complementary parts: (1) an formal DIM description using

the UML class diagram and (2) a formal Web Ontology Language (OWL) based DIM

implementation. In detail, the developed DIM consists of 11 sub models, comprising of

approximately 77 classes, 41 object properties, 14 data properties, 170 major class axioms and 2

semantic web rules. One shortcoming related to the OWL DIM implementation is that few

individuals (the instantiated class instances) have been added. We can consider it currently as a

lightweight Information Model.

Quality analysis for DIM

Analyzing the quality of an information model is always challenging task and enormous

recommendations have been suggested in the literatures. However, there is little consensus being

established as a standard. Thus, it is difficult to quantify the degree of quality due to the absence

of generally accepted key measures assessing an agreed set of quality indicators. On the other

 145

hand, more and more researchers believe that the development of Information Model should follow

the “Kaizen” approach, which suggests “continuous improvement during its lifecycle, both in the

development stage and the utilization stage”. In other word, Information Model is validated

through continuously being used in different applications, and through continuously updating and

modifying.

Thus, we believe that a continuous improvement process is inevitable to achieve a good usability-

reusability trade-off and thus an Information Model of high quality. In this thesis, we decided to

compensate the lack of formal measures by applying DIM to two prototypical software

applications. Even if formal measures for quality indicators were available, the degree of

(re)usability can be proven ultimately only by testing DIM in a (preferably large) number of

different software applications.

6.2 Review of the Research Issues

In this section, the research issues raised in chapter 1 are reviewed and how the developed DIM

addresses those issues is discussed.

Q1: What is the information required for disassembly planning and how to model them so that it

can be both usable and reusable in the domain of disassembly?

This research question relates to the methodology being utilized for the development of DIM. As

mentioned before, a layered IM development methodology is proposed and followed throughout

this research work, which provides a reasonable compromise between information reusability and

information reusability. The reusability can be shown from the extensive inheritance relationships

exists among different sub models residing on the different layers of the DIM, whereas the usability

criteria is validated through developing two DIM based disassembly planning related applications.

 146

Q2: How to implement the Disassembly Information Model?

This research question relates to the implementation choice of DIM. In this work, we use the

Description Logic (DL) based Web Ontology Language (OWL) for the implementation of DIM.

The OWL is developed to support the semantic web applications and it became a World Wide

Web Consortium (W3C) recommendation in February 2004. Through using the OWL

implementation in two disassembly related applications, we prove that OWL has the full capability

to formally and computationally implement the DIM.

Q3: How to validate implemented Disassembly Information Model?

This research question relates to the validation and quality analysis of DIM. Referring to section

5.1 of this dissertation, we compensated the lack of formal quality measures by applying DIM to

two prototype software applications. Even if formal measures for quality indicators were available,

the degree of (re)usability can be proven ultimately only by testing DIM in a (preferably large)

number of different software applications.

6.3 Research Contribution

To the author’s knowledge, this work is the first attempt for the development & utilization of a

comprehensive Information Model in the domain of disassembly planning, under the paradigm of

sustainable manufacturing. Two major contributions are listed as follows:

• Formal disassembly information representation. Most of the current researches on

disassembly modeling are domain and algorithm specific; thus the information is isolated

and heterogeneous. That’s why information sharing is difficult. The developed DIM targets

on providing a formal, consensual information foundation, which can be promoted to a

 147

reference model in the future. This contribution can be broken down into the following

aspects:

o The Generalization of disassembly planning domain information (Product,

Process, Uncertainty and Degradation aspect)

o Development of a layered Information Modeling methodology

o Implementation of DIM into Web Ontology Language for Machine Processing

• DIM based disassembly planning application modeling. Most of the research on

Information Modeling focuses on the development of IM structure, whereas, the

application of IM in a real application task is lagging behind. This work fills in this gap by

developing two disassembly planning applications based on the extension of DIM: (1)

Disassembly Sequence Generator and (2) Adaptive Disassembly Planning. This

contribution can be broken down into the following aspects:

o DIM Extension Mechanism

o Development of a CAD-API based Disassembly Sequence Generator

o Development of a Decision Network based Adaptive Disassembly Planner

6.4 Future Work

While this thesis has demonstrated the utilization potentials of applying the DIM in the domain of

disassembly planning, many opportunities for extending the scope of this thesis remain. This

section presents some of these directions.

From a Light Weight IM to a Reference Model:

The foremost important future work will be to continuously extend and modify the DIM and to

upgrade it a reference model (standard). Two parts of work related to this aspect are: (1) the

 148

population of more instances (or say individuals) in the DIM and (2) apply DIM to more

disassembly planning related applications. The first part of the work will bring DIM to a heavy

weight IM and second part of the work will further modify and validates the DIM.

Automated Disassembly:

Another possible direction for the future work is related to the development of the automated

disassembly system, which could be a popular research topic. As the reader might notice, there is

little information being modeled regarding the disassembly equipment, due to the fact that no

standardized equipment for EOL product disassembly are available in practice. However,

extending DIM for disassembly equipment is well supported by the current DIM structure and the

advantages could be enormous: by relating product with process and finally with equipment, an

information loop, from design to realization can be constructed, which will facilitate not only the

disassembly decision making, but also equipment level uncertainty handling like equipment

reconfiguration planning.

Integrating DIM with Smart Manufacturing infrastructure:

Finally, the last direction of future work focuses on the integration of DIM with the smart

manufacturing infrastructure, for better decision making throughout the lifecycle of the product.

The scenario is that DIM provide information structure, which is integrated into the LCU system.

Data are being collected throughout the lifecycle of the product and can be sent back to the central

PLM system for various decision makings, like design suggestion, preventive maintenance, etc.

 149

REFERENCES

Baysal, M. M., Roy, U., Sudarsan, R., Sriram, R. D., & Lyons, K. W. (2004). The open assembly

model for the exchange of assembly and tolerance information: Overview and example.

Proceedings of 2004 ASME Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, 4, 759-770.

Bera, P., Krasnoperova, A., & Wand, Y. (2010). Using ontology languages for conceptual

modeling. Journal of Database Management, 21(1), 1-28.

 Borst, P., Akkermans, H., & Top, J. (1997). Engineering ontologies. International Journal of

Human-Computer Studies, 46(2-3), 365-406.

Chang, X. (2008). Ontology development and utilization in product design (Ph.D.). Available from

ProQuest Dissertations & Theses Global. (1020385575).

Chevron, D., Binder, Z., Horacek, P., & Perret, R. (1997). Disassembling process modelling and

operations planning under imprecise operation time. Proceedings of 13th IFAC World

Congress. L, 367-372.

Clegg, A. J., & Williams, D. J. (1994). The strategic and competitive implications of recycling and

design for disassembly in the electronics industry. Proceedings of 1994 IEEE International

Symposium On Electronics and The Environment, 6-12.

 150

 Cysneiros, L. M., Werneck, V. M., & Kushniruk, A. (2005). Reusable knowledge for satisficing

usability requirements. Proceedings of 13th IEEE International Conference on Requirements

Engineering, 463-464.

Dassault Systems. (2016). Support and resources for SOLIDWORKS API (application

programming interface). Retrieved from https://www.solidworks.com/sw/support/api-

support.htm

Dimitris, K., Asbjørn, R., & Bjørn, M. (2008). PROMISE final activity report. Retrieved from

http:// http://cordis.europa.eu/

Dong, J., & Arndt, G. (2003). A review of current research on disassembly sequence generation

and computer aided design for disassembly. Proceedings of the Institution of Mechanical

Engineers, Part B (Journal of Engineering Manufacture), 217, 299-312.

Feng, S. C., Kramer, T., Sriram, R. D., Lee, H., Joung, C. B., & Ghodous, P. (2013). Disassembly

process information model for remanufacturing. Journal of Computing and Information

Science in Engineering, 13(3), 51-69.

Foufou, S., Fenves, S. J., Bock, C., Rachuri, S., & Sriram, R. D. (2005). A core product model for

PLM with an illustrative XML implementation. Proceedings of the International Conference

on Product Life Cycle Management. Switzerland: Inderscience Enterprises Limited. 21-32.

Galster, M., & Avgeriou, P. (2012). A variability viewpoint for enterprise software systems. 2012

Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2012) & European

Conference on Software Architecture (ECSA 2012), 267-71.

 151

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubezy, M., Eriksson, H., Tu, S.

W. (2003). The evolution of protégé: An environment for knowledge-based systems

development. International Journal of Human-Computer Studies, 58(1), 89-123.

Ghandi, S., & Masehian, E. (2015). Review and taxonomies of assembly and disassembly path

planning problems and approaches. Computer-Aided Design, 67–68, 58-86.

Gharfalkar, M., Court, R., Campbell, C., Ali, Z., & Hillier, G. (2015). Analysis of waste hierarchy

in the European waste directive 2008/98/EC. Waste Management, 39, 305-313.

Giudice, F. (2010). Disassembly depth distribution for ease of service: A rule-based approach.

Journal of Engineering Design, 21(4), 375-411.

Grenchus, E., Keene, R., & Nobs, C. (1997). Demanufacturing of information technology

equipment. Proceedings of the 1997 IEEE International Symposium On Electronics and the

Environment, 157-160.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human-Computer Studies, 43(5–6), 907-928.

Gungor, A., & Gupta, S. M. (1999). Issues in environmentally conscious manufacturing and

product recovery: A survey. Computers & Industrial Engineering, 36(4), 811-853.

Gutierrez, C., Garbajosa, J., Diaz, J., & Yague, A. (2013). Providing a consensus definition for the

term "smart product". 2013 20th IEEE International Conference and Workshops on The

Engineering of Computer Based Systems (ECBS), 203-211.

 152

Halpin, T. A. (2001). Information modeling and relational databases: From conceptual analysis to

logical design, Morgan Kaufmann. ISBN-13: 978-1558606722

Hamidullah, Bohez, E., & Irfan, M. A. (2006). Assembly features: Definition, classification, and

instantiation. 2nd Annual International Conference on Emerging Technologies 2006, ICET

2006, November 13, 2006 - November 14, 617-623.

Homem de Mello, L. S., & Sanderson, A. C. (1989). A correct and complete algorithm for the

generation of mechanical assembly sequences. Proceedings of IEEE International Conference

On Robotics and Automation, 1, 56-61.

Hsin-Hao, H., Wang, M. H., & Johnson, M. R. (2000). Disassembly sequence generation using a

neural network approach. Journal of Manufacturing Systems, 19(2), 73-82.

IEEE standard glossary of software engineering terminology. (1983). (ANSI/IEEE Standard, No.

729). USA: Inst. Electrical & Electronics. Engineering, USA.

Ilgin, M. A., & Gupta, S. M. (2010). Environmentally conscious manufacturing and product

recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management,

91(3), 563-591.

Kanai, S., Sasaki, R., & Kishinami, T. (1999). Graph-based information modeling of product-

process interactions for disassembly and recycle planning. Environmentally Conscious

Design and Inverse Manufacturing, Proceedings of First International Symposium On

EcoDesign, 772-777.

 153

Kim, K., Manley, D. G., & Yang, H. (2006). Ontology-based assembly design and information

sharing for collaborative product development. Computer-Aided Design, 38(12), 1233-1250.

Kiritsis, D. (2011). Closed-loop PLM for intelligent products in the era of the internet of things.

Computer-Aided Design, 43(5), 479-501.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D., & McDermott, J. (1991). Usable and

reusable programming constructs. Knowledge Acquisition, 3(2), 117-135.

Kumar, P. P. (2008). Design process modeling: Towards an ontology of engineering design

activities (M.S.). Available from ProQuest Dissertations & Theses Global. (304676073).

Kutz, O., & Garbacz, P. (2014). Formal ontology in information systems. Proceedings of

FOIS’2014. Amsterdam: IOS Press, 3-15.

Kwaan, J. R. (1994). Bayesian belief networks for industrial applications. Proceedings of Adaptive

Computing and Information Processing, 2, 625-640.

Lambert, A. J. D. (Fred) and Surendra M. Gupta. (2005). Disassembly modeling for assembly,

maintenance, reuse, and recycling. United States: CRC Press.

Lambert, A. J. D. (1997). Optimal disassembly of complex products. International Journal of

Production Research, 35(9), 2509-2524.

Lemaignan, S., Siadat, A., Dantan, J., and Semenenko, A. (2006). MASON: A proposal for an

ontology of manufacturing domain. IEEE Workshop On Distributed Intelligent Systems:

Collective Intelligence and its Applications, 195-200.

 154

Mann, C. J. H. (2003). The description logic handbook - theory, implementation and applications.

Cambridge University Press, ISBN-13: 978-0521150118.

Memon, N., Ortiz-Arroyo, D., & Larsen, H. L. (2005). Analysis of state of art in semantic web

languages - an overview. Mehran University Research Journal of Engineering and

Technology, 24(3), 197-210.

Millar, S. A. (2005). E-waste legislation. Paper, Film and Foil Converter, 79(5), 16-18.

Moore, K. E., Gungor, A., & Gupta, S. M. (1998). A petri net approach to disassembly process

planning. Computers & Industrial Engineering, 35(1–2), 165-168.

Murayama, T., Oba, F., Abe, S., & Yamamichi, Y. (2001). Disassembly sequence generation using

information entropy and heuristics for component replacement. Proceedings of IEEE

International Symposium On Assembly and Task Planning, 208-213.

PENEV, K. D., PENEV, K. D., & de RON, A. J. (02). Determination of a disassembly strategy.

International Journal of Production Research, 34(2), 495-506.

Ridder, C., & Scheidt, L. (1998). Practical experience in the Sony disassemly evaluation

workshop. Proceedings of the 1998 IEEE International Symposium On Electronics and the

Environment, 94-98.

Um, J., Joo-Sung Yoon, & Suk-Hwan Suh. (2008). An architecture design with data model for

product recovery management systems. Resources, Conservation & Recycling, 52(10), 1175-

84.

 155

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. The

Knowledge Engineering Review, 11(02), 93-136.

Vukadinovic, D. (2013). Fuzzy logic: Applications, systems, and technologies. Hauppauge, New

York: Nova Science Publishers, Inc. ISBN: 978-1-62417-151-2.

Wang, L., Wang, X. V., Gao, L., and Váncza, J. (2014). A cloud-based approach for WEEE

remanufacturing. CIRP Annals - Manufacturing Technology, 63(1), 409-412.

Xia, K., Gao, L., Wang, L., & Li, W. (2015). A semantic information services framework for

sustainable WEEE management toward cloud-based remanufacturing. Journal of

Manufacturing Science and Engineering, 137(6), 11-22.

Zhang, H. C., & Kuo, T. C. (1996). A graph-based approach to disassembly model for end-of-life

product recycling. 19th IEEE/CPMT Symposium on Electronics Manufacturing Technology,

247-254.

Zhu, B., Sarigecili, M. I., & Roy, U. (2013). Disassembly information model incorporating

dynamic capabilities for disassembly sequence generation. Robotics and Computer-Integrated

Manufacturing, 29(5), 396-409.

Ziout, A. (2013). Innovative design for active disassembly and sustainable product recovery

(Ph.D.). Available from ProQuest Dissertations & Theses Global. (1465052255).

Zuniga, G. L. (2001). Ontology: Its transformation from philosophy to information systems.

Proceedings of FOIS'01: 2nd International Conference on Formal Ontology in Information

Systems, 187-97.

 156

Zussman, E., & Meng Chu Zhou. (2000). Design and implementation of an adaptive process

planner for disassembly processes. IEEE Transactions on Robotics and Automation, 16(2),

171-179.

Zussman, E., MengChu Zhou, & Caudill, R. (1998). Disassembly petri net approach to modeling

and planning disassembly processes of electronic products. Proceedings of the 1998 IEEE

International Symposium On Electronics and the Environment, 331-336.

 157

APPENDIX

Summary of DIM Model

Model Imported Model Class Class Axioms Object Property Datatype

Property

N-ary-relationship.owl

N/A Object involves relationAttribute

 Relationship involves min 2 Object hasOrigin

Directed

Relationship

Subclass of Relationship hasTarget

 hasOrigin exactly 1 Object

 hasTarget some Object

Part_whole.owl

N-ary-relationship.owl Part Subclass of Object hasPart

 Whole hasPart some Part

 Subclass of Object

Graph.owl

Part_whole.owl Object hasConnector some Connector hasConnectingPoint

Arc

hasConnectingPoint exactly 2 ConnectingPoint hasConnector

 isDirectlyConnectedTo exactly 2 Node

 Subclass of Object

Connector

isDirectlyConnectedTo exactly 1 Connector hasPort

 Subclass of Object

 Subclass of Relationship

 Connecting

Point

isDirectlyConnectedTo exactly 1 Port isDirectlyConnectedTo

 Subclass of Connector

Port

isDirectlyConnectedTo exactly 1 ConnectingPoint

 Subclass of Connector

Node

hasPort some Port

 isDirectlyConnectedTo some Arc

 Subclass of Object

System.owl

Part_whole.owl Aspect Subclass of Object contains

 System Subclass of Object isConsideredUnderAspectOf

 Atomic

SubSystem

Equivalent To: System

and (contains exactly 0 AtomicSubSystem)

isModeledBy

 Subclass of System

 Aspect

System

Equivalent To: AtomicSubSystem

and (isConsideredUnderAspectOf exactly 1 Aspect)

models

 Subclass of AtomicSubSystem

 Composite

SubSystem

Equivalent To: System

and (contains some AtomicSubSystem)

 Subclass of System

 158

Summary of DIM Model Continued

 Model Imported

Model

Class Class Axioms Object Property Datatype

Property

System.owl
Part_whole.owl Model models exactly 1 System

 Subclass of System

DisassemblyPlanning

System.owl

System.owl

Disassembly

PlanningSystem

Subclass of CompositeSubSystem

Product.owl contains exactly 1 Product

Process.owl contains exactly 1 Process

Degradation.owl contains exactly 1 Uncertainty

Uncertainty.owl contains exactly 1 Degradation

Product.owl

System.owl Structure Subclass of Aspect belongsTo

Component

containsMaterial some Material contains

 hasConstraintFeature some ConstrainingFeature

 isDirectlyConnectedTo some ComponentContact

 Subclass of Feature

Connecting

Component

Equivalent To: Component

 And (hasDegreeOfFreedom some DegreeOfFreedom)

containsMaterial

 belongsTo exactly 1 Connection

 Subclass of Component

 Fastener Subclass of ConnectingComponent hasComponent

VirtualConnecting

Component

Equivalent To: ConnectingComponent

 and (not (Fastener))

hasConnectingPoint

 Subclass of ConnectingComponent

OrdinaryComponent

Equivalent To: OrdinaryComponent

 and (hasDegreeOfFreedom exactly 0

DegreeOfFreedom)

hasConstraintFeature

 Subclass of Component

AtomicOrdinary

Component

Equivalent To: OrdinaryComponent

 and (hasComponent exactly 1 Component)

hasDegreeOfFreedom

 Subclass of Component

CompositeAtomic

OrdinaryComponent

Equivalent To: AtomicOrdinaryComponent

 and (containsMaterial min 2 Material)

hasSubAssembly

 Subclass of AtomicOrdinaryComponent

HomogeneousAtomic

OrdinaryComponent

Equivalent To: AtomicOrdinaryComponent

and (containsMaterial exactly 1 Material)

isDirectlyConnectedTo

 Subclass of AtomicOrdinaryComponent

 159

Summary of DIM Model Continued

Model Imported

Model

Class Class Axioms Object Property Datatype

Property

Product.owl

System.owl
ComplexOrdinary

Component

Equivalent To: OrdinaryComponent

and (hasComponent min 2 Component)

 Subclass of OrdinaryComponent

CompositeComplex

OrdinaryComponent

Equivalent To: ComplexOrdinaryComponent

and (containsMaterial min 2 Material)

 Subclass of ComplexOrdinaryComponent

HomogeneousComplex

OrdinaryComponent

Equivalent To: ComplexOrdinaryComponent

and (containsMaterial exactly 1 Material)

 Subclass of ComplexOrdinaryComponent

ComponentContact

hasConnectingPoint exactly 2 ConnectingInterface

 isDirectlyConnectedTo exactly 2 Component

 Subclass of Object

ConnectingInterface

isDirectlyConnectedTo exactly 1 ConstrainingFeature

 Subclass of Object

Connection

contains some ConnectingComponent

 Subclass of Object

ConstrainingFeature

belongsTo exactly 1 Component

 isDirectlyConnectedTo exactly 1 ConnectingInterface

 Subclass of Object

 DegreeOfFreedom Subclass of Object

 Material Subclass of Object

SubAssembly

hasComponent min 2 Component

 Subclass of Object

Product

Equivalent To: AspectSystem

and (isConsideredUnderAspectOf exactly 1 Structure)

 Subclass of AspectSystem

 hasComponent some Component

 hasSubAssembly some SubAssembly

Process.owl

System.owl Behavior Subclass of Aspect breaks normalCost

 DisassemblyObject Subclass of Object creates specialCost

 Component Subclass of DisassemblyObject hasAction

 Product Subclass of DisassemblyObject hasOperation

 SubAssembly Subclass of DisassemblyObject

 160

Summary of DIM Model Continued

Model Importe

d Model

Class Class Axioms Object Property Datatype

Property

Process.owl

System.owl

Process

Equivalent To: AspectSystem

and (isConsideredUnderAspectOf exactly 1 Behavior)

 Subclass of AspectSystem

 breaks exactly 1 DisassemblyObject

 creates min 2 DisassemblyObject

 Subclass of DirectedRelationship

 normalCost some double

 specialCost some double

 Action Subclass of Process

Operation

Subclass of Process

 hasAction some Action

Task

Subclass of Process

 hasOperation some Operation

Uncertainty.owl

System.owl Disturbance Subclass of Aspect contains

 ConditionalProbabilityTable Subclass of Object functionalDepends

 FunctionFailure

ProbabilityTable

Subclass of ConditionalProbabilityTable relatesTo

 ProcessSuccess

ProbabilityTable

Subclass of ConditionalProbabilityTable

DisassemblyObject

contains exactly 1 FunctionFailureProbabilityTable

 Subclass of Object

 Component Subclass of DisassemblyObject

 Product Subclass of DisassemblyObject

 SubAssembly Subclass of DisassemblyObject

Process

contains exactly 1 ProcessSuccessProbabilityTable

 Subclass of Object

Uncertainty

AspectSystem

and (isConsideredUnderAspectOf min 1 Disturbance)

 Subclass of AspectSystem

 161

Summary of DIM Model Continued

Model Imported

Model

Class Class Axioms Object Property Datatype

Property
Degradation.owl System.owl DisassemblyObject hasAge exactly 1 Age hasAge functionType

 DisassemblyObject

FuzzyTerm

hasConditionParameter some ConditionParameter hasConditionParameter lowerLimit

 hasMarketDemand exactly 1 MarketDemand hasFuzzyTerm name

 hasReuseValue exactly 1 ReuseValue hasMarketDemand parameter

 hasRuleSet some RuleSet hasReuseValue upperLimit

 Subclass of Object hasRuleSet variableType

 functionType exactly 1 string relatesTo

 FuzzyTerm

FuzzyVariable

name exactly 1 string

 Subclass of Object

 parameter exactly 1 string

 hasFuzzyTerm some FuzzyTerm

 lowerLimit exactly 1 double

 Subclass of Object

 upperLimit exactly 1 double

 variableType exactly 1 string

 Age Subclass of FuzzyVariable

 ConditionParameter Subclass of FuzzyVariable

 MarketDemand Subclass of FuzzyVariable

 ReuseValue Subclass of FuzzyVariable

 RuleSet Subclass of Object

 Degradation Subclass of AspectSystem

 Degradation relatesTo some DisassemblyObject

 relatesTo some DisassemblyObject

 162

Summary of DIM Model Continued

Model Imported

Model

Class Class Axioms Object Property Datatype

Property
DisassemblySequence

Generator.owl
Product.owl Constraining

FeaturePair

target exactly 1 ConstrainingFeature target reuseValue

 direction exactly 1 string belongsTo recycleValue

Component

discardCost exactly 1 double hasContactLoop discardCost

 recycleValue exactly 1 double direction

 reuseValue exactly 1 double

 Constraining

Feature

belongsTo some ConstrainingFeaturePair

ContactLoop

Subclass of SubAssembly

 discardCost exactly 1 double

 recycleValue exactly 1 double

 reuseValue exactly 1 double

ContactLoop

Cluster

Subclass of SubAssembly

 discardCost exactly 1 double

 recycleValue exactly 1 double

 reuseValue exactly 1 double

 hasContactLoop min 2 ContactLoop

Adaptive

Disassembly

Planning.owl

Process.owl Disassembly_Object_

Utility_Node

relatesTo exactly 1 (Process model:

DisassemblyObject)

relatesTo

 Degradation

.owl

relatesTo exactly 1 (Degradation model:

DisassemblyObject)

 Uncertainty

.owl

Disassembly_Object_

Function_Uncertainty

_Node

influence exactly 1 Disassembly_Object_Utility_Node influence

 relatesTo exactly 1 (Uncertainty model:

DisassemblyObject)

 Process_Uncertainty_Node influence exactly 1 Process_Utility_Node

 relatesTo exactly 1 (Uncertainty model: Process)

 Process_Utility_Node relatesTo exactly 1 (Process model: Process)

 Process_Decision_Node influence exactly 1 Process_Utility_Node

 163

BIBLIOGRAPHY

PERSONAL INFORMATION

Name: Bicheng Zhu

Email: bizhu@syr.edu

Contact: 315-416-1643

Address: Link 277 Syracuse University,

Syracuse, NY 13244

EDUCATION

12/2012- 6/2016

L.C. Smith College of Engineering & Computer Science, Syracuse University,

Doctor of Philosophy in Mechanical and Aerospace engineering

8/2010- 12/2012

L.C. Smith College of Engineering & Computer Science, Syracuse University,

Master of Science in Mechanical and Aerospace engineering

9/2003- 7/2007

School of Mechanical Engineering, Shanghai Jiao Tong University

Bachelor of Science in Thermal Energy and Power Engineering (Vehicle Engine)

Bachelor of Science in Computer Technology and Application

WORK & INTERN EXPERIENCE

9/1/2015-Present

Research Assistantship at L.C. Smith College of Engineering & Computer Science

Topic: Computational Platform for Bio-Product Design

12/2012 – 05/15/2015

Teaching Assistant at L.C. Smith College of Engineering & Computer Science

Teaching and tutoring in courses/labs:

 MAE 184: Engineering Graphics

 MEE 571: Computer Aided Design

 MAE 321: Manufacturing Processes

 MAE 635: Advanced Mechanics of materials

 164

9/ 2007—7/2010

Structural Engineer at Shanghai Koito Automotive Lamp Co., Ltd

Major Designed Model:

 SGM 308 NGS CAR-Tail light kits

 SGM 308 NGS CAR- High mount stop lamp

 GMX 353 Tail light kits

 SGM 618 (Excelle) Tail light kits

 B61 Tail light kits

12/ 2006 –6/2007

Intern at Saint-Gobain Automobile Glass Company

7/ 2006 –9/2006

Intern at Shanghai Maple Engine Co., Ltd

ACADEMIC PUBLICATIONS

1. Zhu, B., Mehmet I. S., Roy, U., Disassembly information model incorporating dynamic

capabilities for disassembly sequence generation, Robotic sand Computer Integrated

Manufacturing, v 29, n 5, p 396-409, Oct. 2013

2. Mehmet I. Sarigecili*, Mehmet Murat Baysal, Bicheng Zhu and Utpal Roy, A disassembly

process model for end-of-life (EOL) activities of manufactured products, International

Journal of Sustainable Manufacturing, Vol. 3, No. 1, p37-56, 2013

3. Zhu, B., Roy, U., Ontology-based disassembly information system for enhancing

disassembly planning and design, Int J Adv Manuf Technol., DOI 10.1007/s00170-014-

6704-8, 2015

4. Heng Zhang, Bicheng Zhu, Yunpeng Li, Omer Yaman and Utpal Roy, Development and

Utilization of A Process-oriented Information Model for Sustainable Manufacturing,

Journal of Manufacturing System, doi:10.1016/j.jmsy.2015.05.003.

5. Zhu, B., Mehmet I. S., Roy, U., Disassembly information model incorporating dynamic

capabilities for disassembly sequence generation, GSCM 2012 conference, Turkey, 2012

6. Mehmet I. Sarigecili*, Mehmet Murat Baysal, Bicheng Zhu and Utpal Roy, A disassembly

process model for end-of-life (EOL) activities of manufactured products, GSCM 2012

conference, Turkey, 2012

7. Bicheng Zhu and Utpal Roy, Uncertain Information Representation And Its Usage In

Disassembly Modeling, Proceedings of the ASME Design Engineering Technical

Conference, v 2 A, 2013, ASME 2013 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, IDETC/CIE

2013

8. Utpal Roy, Bicheng Zhu, Denial Rice, The Information Framework for Material Behavior

Representation, IEEE International Conference on Automation Science and Engineering,

p 380-385, 2013

 165

9. Bicheng Zhu, Utpal Roy, Towards A Semantic Web Approach for Disassembly Planning,

Proceedings of ASME 2014 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, IDETC/CIE 2014, Buffalo

(Accept)

10. Utpal Roy, Bicheng Zhu, Development of Material Information Model for the Injection

Molding Process and Product, Proceedings of ASME 2014 International Design

Engineering Technical Conferences & Computers and Information in Engineering

Conference, IDETC/CIE 2014, Buffalo

11. Omer Yaman, Bicheng Zhu, and Utpal Roy, Towards The Development Of An Ontology-

Based Product Requirement Model, Proceedings of the ASME 2014 International

Mechanical Engineering Congress and Exposition & Computers and Information in

Engineering Conference IMECE/CIE 2014

12. Utpal Roy, Bicheng Zhu, Yunpeng Li, Heng Zhang and Omer Yaman, Mining Big Data

In Manufacturing: Requirement Analysis, Tools And Techniques, Proceedings of the

ASME 2014 International Mechanical Engineering Congress and Exposition & Computers

and Information in Engineering Conference IMECE/CIE 2014

13. Utpal Roy, Yunpeng Li and Bicheng Zhu, Building a Rigorous Foundation for

Performance Assurance Assessment Techniques for “Smart” Manufacturing Systems,

2014 IEEE International Conference on Big Data, Washington DC, USA, Oct

RESEARCH FOCUS

 Information Modeling

 Ontology Engineering

 Product Disassembly

 Sustainable Manufacturing

 PLM System

	Syracuse University
	SURFACE
	7-1-2016

	AN INFORMATION MODEL IN THE DOMAIN OF DISASSEMBLY PLANNING FOR SUSTAINABLE MANUFACTURING
	Bicheng Zhu
	Recommended Citation

	_

