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ABSTRACT 

Disassembly, a process of separating the End of Life (EOL) product into discrete components for 

re-utilizing their associated residual values, is an important part for the sustainable manufacturing. 

This work focuses on the modeling of the disassembly planning related information, and develops 

a Disassembly Information Model (DIM) based on an extensive investigation of various 

informational aspects of the disassembly planning. The developed Disassembly Information 

Model, which represents an appropriate systematization and classification of the products, 

processes, uncertainties and degradations related information, follows a layered modeling 

methodology. In this layered configuration, the DIM is subdivided into three distinct layers with 

an intent to separate general knowledge into different levels of abstractions, and to reach a balance 

between information reusability and information usability. The performance evaluation of the DIM 

(usability and reusability) is accessed by successful implementations of the DIM model into two 

prototype software applications in the domain of disassembly planning.  

The first application, called the Disassembly Sequence Generator (DSG), identifies the optimal 

disassembly sequence using a CAD based searching algorithm and a disassembly Linear 

Programming (LP) model. The searching process results in an AND/OR graph, which represents 

all the feasible disassembly sequences of a specific EOL product; whereas the LP model takes the 

AND/OR graph as an input and determines the economically optimal process sequence among all 

the possibilities. 

The second application is called the Adaptive Disassembly Planning (ADP), which further takes 

the EOL product uncertainty and degradation issues into consideration.  In order to address these 

issues, fuzzy logic and Bayesian Network methodologies are used to develop a Disassembly 

Decision Network (DDN), which adaptively generates the optimal disassembly sequence based on 

the current available information.  

This research work is the first attempt to develop a comprehensive Information Model in the 

domain of disassembly planning. The associated modeling methodology that has been developed 

in this research is generic and scalable, and it could be widely adopted in other engineering 

domains, like product assembly, production planning, etc. The ultimate objective of this work is 

to standardize the DIM into a reference model that will be acknowledged and agreed upon by the 

sustainable manufacturing community.          
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1 

 INTRODUCTION 

 

In this chapter, an overview of the research performed in this dissertation is presented. The chapter 

begins by providing the technical context and background of the research. As the main topic of 

this work, the concept of Information Model (IM) is further discussed in detail. The problem 

statement, research contributions, and research methodology are then addressed.  Lastly, this 

chapter is wrapped up by outlining the structure of the overall dissertation. 

 

1.1 Research Background 

A succinct and comprehensive definition of End of Life (EOL) product is provided by the 

European Economic Community, which defines the EOL product as “any substance or object 

which the holder discards or intends or is required to discard” (Gharfalkar, Court, Campbell, Ali 

& Hillier, 2015). Normally, the discarded EOL product may or may not be totally obsolete, and a 

recovery process can be applied to restore the contained value as a form of energy, material or 

product. Such recovery processes have been more and more studied under the popular paradigm 

of sustainable manufacturing, which has the objective to carry out economically-sound 

manufacturing/de-manufacturing processes that maximize the possible profits and minimize 

negative environmental impacts by utilizing different recovery options, such as recycling, reuse, 

and remanufacturing. 

On the other hand, governments have already started to impose regulatory obligations on 

manufacturing companies, which mandate manufacturers to set up plans for collection, recycling 

and recovery for specific types of products. For instance, the Waste Electrical and Electronic 

Equipment Directive is the European community’s directive on the Waste Electrical and Electronic 

Equipment (WEEE), which became European law in February, 2003. The Restriction of 

Hazardous Substances Directive (RoHS) was also adopted in February 2003 by the European 
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Union to restrict the use of certain hazardous substances in the electrical and electronic equipment. 

In the United States, 25 states have passed legislative regulations, mandating statewide electronic 

waste (e-waste) recycling and several more states are working on passing new laws or improving 

the existing laws.  All laws, except those in California and Utah use the “Producer Responsibility” 

approach, where the manufacturers must pay for recycling. Also, 65% of the U.S. population has 

been covered by a certain state level e-waste recycling laws since 2003 (Millar, 2005).   

Both the potential economic profits and the regulatory laws motivate the study of the EOL product 

recovery modeling and implementation. As indicated in figure 1.1, four major EOL product 

recovery paths, named recycling, remanufacturing, direct reuse and disposal, have been identified 

(indicated as a green ellipse). Even though these paths consider various recovery strategies, all of 

them involve some level of disassembly process. In this sense, carrying out the disassembly 

process “optimally” plays a critical role in the entire process of the EOL product recovery. Over 

the years, various methods ranging from network theory to mathematical programming have been 

applied in the domain of product disassembly (Dong & Arndt, 2003). Unfortunately, not much 

work has been reported regarding the information aspect of the disassembly problem, which in the 

author’s opinion, is the bottleneck of the current disassembly related research. In detail, the 

challenge is that disassembly planners have limited knowledge on what information is critical in 

the planning of the disassembly process, how to access this information, and, finally how to utilize 

the updated on-site information (which is unknown in the beginning of the disassembly process) 

for dynamically adapting the “optimal” disassembly process plan. Also, an EOL product is highly 

independent and has to be treated individually, which further aggravates the above mentioned 

problems.      
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Figure 1.1: EOL Product Recovery Option (Ziout, 2013) 

 

1.2 Information Modeling 

Information Model, originates from software engineering and is a representation of concepts, 

relationships, constraints and rules for a chosen domain of discourse. It can provide a sharable, 

stable, and organized structure of information under some domain context (Halpin, 2001).  

In the domain of manufacturing, a notable development in the IM field is the NIST’s Core Product 

Model (CPM). It is a Unified Modeling Language (UML) based model intended to capture the full 

range of engineering information commonly shared in product development (Foufou, Fenves, 

Bock, Rachuri & Sriram, 2005). CPM focuses on modeling the general, common and generic 

product information, and excludes the information which is domain specific. NIST further 

developed another information model called “Open Assembly Model” (OAM) (Baysal, Roy, 

Sudarsan, Sriram & Lyons, 2004) which extends CPM. Along with the structural information, it 

represents the function, form, and behavior information related to an assembly, and defines a 

system level conceptual model. A comprehensive review on IM is presented in Chapter 2.  



4 

1.3 Goal of the Information Model Development 

Generally, any Information Model has to meet two major goals: to be usable and to be reusable. 

IEEE Standard defines reusability as “the degree to which a software module or other work product 

can be used in more than one computing program or software system” (IEEE standard glossary of 

software engineering terminology.1983). Similarly, Information Model reusability can be defined 

as “the adaptation capability of an Information Model to arbitrary application contexts”, including 

those contexts “that were not envisioned at the time of the creation of the Information Model” 

(Cysneiros, Werneck & Kushniruk, 2005). It should be understood that it is not feasible and 

desirable to develop an IM that is equally fitting to all application contexts (Borst, Akkermans & 

Top, 1997); rather the goal of reusability is to design an IM which can be extended and adapted to 

a large number of applications in the domain of interest.  

On the other hand, usability denotes the degree to which the software component is useful for a 

specific task or application. By definition, an IM is rarely ready for use, but must always be adapted 

and refined to a knowledge base for the tentative application. Therefore, the goal of IM usability 

can be rephrased as minimizing “the effort required to customize the IM so that it can be used by 

humans or machines in a given application context” (Cysneiros, Werneck & Kushniruk, 2005). 

As the reader might already have noticed, IM reusability and usability are contradicting each other: 

increasing the reusability of knowledge implies the maximization of using this knowledge among 

several kinds of tasks. The resulting IM would be general in nature; increasing usability implies 

providing all information related to a specific task and the resulting IM would have redundant 

information for other tasks and thus would not be appropriate.  Consequently, it is difficult to 

simultaneously achieve high degrees of usability and reusability: Specializing in one kind of task 

makes the IM more useable for this particular task, but it also decreases the likelihood of its 
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reusability; a highly abstract IM, on the other hand, may be applicable to a variety of different 

tasks, but it is unlikely to be proved useful for any of these tasks without extensive modification 

and detailing. This is known as the reusability-usability trade-off problem in the literature (Klinker, 

Bhola, Dallemagne, Marques & McDermott, 1991). In this research, a layered IM development 

methodology is developed to address this issue and it is presented in detail in Chapter 3.   

1.4 Problem Statement 

Based on the initial review of the background of the product recovery & disassembly and the 

Information Model, the overall research problem carried out in this dissertation can be summarized 

as follows:  

In detail, the research problem can be broken down to answer the following research questions: 

Q1: What is the information required for disassembly planning and how to model it so that it can 

be both usable and reusable in the domain of disassembly planning (Modeling Methodology)?  

Hypothesis: Disassembly related information can be identified and generalized through the 

literature reviews, and they can be partitioned into relevant sub models. A layered IM development 

methodology can address the reusability-usability trade-off problem. To address this hypothesis, 

the following objective is highlighted: 

Objective: Identify the information requirements in the domain of disassembly planning and 

develop a Disassembly Information Model (DIM) which serves as a consensual information basis 

in the domain of disassembly. The developed DIM should provide basic information infrastructure, 

which can be proved to be both useful and reusable.   

 

Development and Implementation of a Disassembly Information Model (DIM) for efficient 

disassembly planning activities.   
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Q2: How to implement the disassembly information model?  

Hypothesis: Description Logic (DL) based Web Ontology Language (OWL), as recommended by 

the World Wide Web Consortium (W3C) for the future semantic web, can be used to formally and 

computationally implement the DIM. To address this hypothesis, the following objective is 

highlighted: 

Objective: Implementation of the Disassembly Information Model into formal Web Ontology 

Language (OWL) so that specific product information can be published and accessed through the 

web. Furthermore, semantic queries are developed for necessary information retrieval.   

Q3: How to validate implemented Information Model?  

Hypothesis: The performance of DIM (reusability-usability) can be partially validated through 

disassembly planning related application developments. To address this hypothesis, the following 

objective is highlighted: 

Objective: Validating the whole DIM is a challenging process and there actually exists no formal 

IM validation process. In practice, it is common that an IM is upgraded and modified for 

improvement even after it has been published in the community. A good IM will be utilized by 

different applications in the targeted domain by extending itself to meet the application 

requirements. After years of such practices, it will be accepted by the domain community and 

promote itself to the standard level or the reference model level. Thus, in this work, we partially 

validate the usefulness and reusability of the DIM by developing of two disassembly planning 

applications, (1) Disassembly Sequence Generator and (2) Adaptive Disassembly Planning 

considering component and operation uncertainty, based on the DIM.  
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1.5 Research Contribution   

To the author’s knowledge, this work is a first attempt for the development & utilization of a 

comprehensive Information Model in the domain of disassembly planning, under the paradigm of 

sustainable manufacturing. Detailed contributions are broken down into the following aspects:  

• Formal disassembly information representation. Most of the current studies on disassembly 

modeling are domain and algorithm specific, thus the information is isolated and 

heterogeneous. That’s why information sharing is difficult. The developed DIM will be 

targeted at providing a formal, consensual information foundation, which can be promoted 

to a reference model in the future.   

•  DIM based disassembly planning application modeling. Most of the research works on 

Information Modeling are focusing on the development of IM structure, whereas, the 

application of IM in a real application task is lagging behind. This work fills in this gap by 

developing two disassembly planning applications based on extension of DIM: (1) 

Disassembly Sequence Generator and (2) Adaptive Disassembly Planning. 

o Disassembly Sequence Generator: DIM is extended for Disassembly Sequence 

Generator application, and a CAD based graph searching algorithm is developed to 

find all possible disassembly sequences of a specific EOL product. The detail of 

this application is presented in Chapter 4.  

o Adaptive Disassembly Planning: DIM is extended for the Adaptive Disassembly 

Planning. The fuzzy logic and Bayesian theorem are combined to handle the 

uncertainty issues both in the component quality (well-maintained or broken) and 

in the operation status (fail or success). The detail of this application is presented 

in Chapter 5.  
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1.6 Research Methodology and Thesis Outline 

The overall research methodology of this work consists of five logical steps which includes: (1) a 

review of the current works and technologies (Chapter 2), (2) the development of new concepts 

and methodologies (Chapter 3), (3) the implementation and testing of the developed concepts and 

methods (Chapter 3, 4 & 5), (4) the overall evaluation of the results (Chapter 3, 4 & 5), and (5) the 

possible future extensions of this work (Chapter 6). The detail information about each step is 

described below: 

Chapter 2 reviews the scientific background and establishes the terminologies required for 

discussing the development and utilization of DIM, thus providing the basis for the subsequent 

chapters.  

It starts off by reviewing the research domain of product disassembly. After a systematic study, 

we found that although much work has been done in recent years, a systematic and integrated 

Information Model for various aspects of disassembly planning application has never been formed 

as a coherent body of knowledge. Next, concepts of IM are presented:  We first contrast the similar 

but different perceptions of IM in the areas of philosophy and computer science. Next, the 

specification of IM through informal and formal languages is discussed; the latter option is further 

elaborated by describing the modeling capabilities of formal ontology languages. Then, we wrap 

up the discussion of IM by reviewing the existing developments of IM in the domain of 

manufacturing.  

Chapter 3 comprehensively presents the development of DIM. The chapter starts with the 

information requirement analysis in the domain of disassembly planning, which results in a high 

level domain conceptualization. Next, a layered IM modeling methodology is proposed, with the 

intention to find a modeling balance between IM reusability and usability. Detailed DIM model is 
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introduced afterwards, starting from the abstract models like “N-ary relationship Model” and 

“Graph Model” in the upper layer to the specific models like “Disassembly Sequence Generator” 

and “Adaptive Disassembly Planning” in the bottom layer (Figure 1.2). This chapter ends with the 

formal OWL implementation of the DIM.    

Chapter 4 presents the first application (Disassembly Sequence Generator) developed by utilizing 

the proposed DIM. It focuses on finding all the feasible disassembly sequences from a given EOL 

product and then locating the optimal one among them. The chapter starts with introducing the 

role of “Disassembly Sequence Generator” in the overall disassembly planning process and a more 

specific application level Disassembly Sequence Generator IM is further put forward by extending 

the proposed DIM in chapter 3. Based on the information provided in the extended DIM, a CAD-

API based disassembly sequence generation algorithm is developed to find all the possible 

disassembly paths of a given EOL product. Lastly, a Linear Programming (LP) model is developed 

to find the theoretical optimal disassembly sequence among all the possibilities.     

Chapter 5 presents the second application (Adaptive Disassembly Planning) developed by 

utilizing the developed DIM. This application focuses on finding the optimal disassembly 

sequence, considering economic benefits and product/operation uncertainties. In general, the 

development of the application follows the same mechanism as described in chapter 4. A specific 

Adaptive Disassembly Planning IM is developed by reusing and extending the original DIM 

presented in Chapter 3. The fuzzy logic and Bayesian theorem are combined (for handling 

uncertain issues) in a developed Disassembly Decision Network (DDN), which are used to 

adaptively generate optimal disassembly step at each operation stage.  

Chapter 6 suggests future works and concludes this dissertation. Extensions of DIM on other 

disassembly related applications are suggested and contributions of the work are re-emphasized.  
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Figure 1.2: The Overall Structure of the Dissertation 
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 BACKGROUND AND LITERATURE REVIEW 

In this chapter, a comprehensive review on the scientific background and an establishment of the 

technical terminologies related to this work have been carried out. Two major topics are reviewed 

in details: (1) EOL Product disassembly problem and (2) Information Model & Ontology (figure 

2.1). The findings and observations from the literature survey has been further analyzed to lighten 

the potential opportunities (hypothesis) for disassembly planning research.  

 

2.1 EOL Product 
Disassembly 
Background 

2.2 Disassembly and 
Assembly

2.3 Computer Aided 
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(CADP)

2.4 Background of 
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2.5 Representation of 
formal Information Model 

2.6 Current 
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Figure 2.1: The Structure of the Literature Review Chapter 

2.1 EOL Product Disassembly  

In the past decade, the majority of discarded electronics has been destined for landfills and 

incineration with few economic considerations (Clegg & Williams, 1994). A large amount of 

potential “residual value” in the EOL product, which could have been recovered through recycling 
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or reuse activity, is usually overlooked. By 2020, the number of discarded computers, televisions, 

and other electronics containing hazardous as well as valuable materials could reach nearly three 

billion units (Ilgin & Gupta, 2010). This calls for a systematic management strategy for EOL 

product to achieve both optimal economic benefits and minimum environmental burdens.   

A lot of industry attempts have already been made to address this issue. For examples, at the 

Reutilization Center in Endicott, New York, IBM has laid out two disassembly lines—a stationary 

disassembly line for larger computer machines and a conveyor-driven disassembly line for 

personal and notebook computers (Grenchus, Keene & Nobs, 1997). The process mainly includes 

customer shipment, receipt and inventory verification, process preparation, disassembly, sorting, 

and component recovery. Sony has also incorporated the Design for Environment (DFE) principle 

into its product development process. At the Sony Disassembly Evaluation Workshop in Stuttgart, 

Germany, products are taken apart to assess the reuse and recycling qualities of electronic parts 

(Ridder & Scheidt, 1998). The recovery facility can handle a set type of products which include 

television, compact stereo system, etc. Every step during the disassembly process is clearly 

documented and evaluated to help improve the future designs.  

However, most of the existing EOL product recovering facilities are still following an ad-hoc 

process when specifying the detailed steps (like disassembly sequences, recovery option selection, 

etc.) in the product recovery, which makes the whole process economically non-optimized. Also, 

the existing recovery facilities are operated by big companies like IBM that can only handle a 

certain type of products specific to those companies; whereas a general independent recovering 

facility serving a wider range of products and companies is still not available.  
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2.2 Disassembly and Assembly 

Disassembly, as the core step in the EOL product recovery, is defined as “A systematic method 

for separating a product into its constituent parts, components and subassembly” (Gungor & Gupta, 

1999). A common misunderstanding is that the product disassembly process is the reverse of the 

assembly process. Although one of the major incentives for studying the disassembly process in a 

systematic way does come from the success of assembly planning, there are still critical differences 

between the two domains of interest, which should not be overlooked:  

1. The assembly process is deterministic in nature, whereas the disassembly process has a lot of 

uncertainty issues. First of all, the products that come after their end of life services for 

disassembly purposes are not the same, even though they were the same initially (at the 

beginning of their product life). An example of such a case can be the same products with 

different configurations (the user have added one memory card on his PC). Second, the part 

might be broken or deformed after usage, thus the quality of the part is uncertain. Third, the 

disassembly operation might not be successful all the time, a damage to the component could 

have occurred during the disassembly process, possibly due to the harshness of the disassembly 

process or due to operator error.  

2. The objective of the disassembly process is to maximize the profits and/or minimize the 

environmental impact and thus a complete disassembly is not always the target. Thus, a 

concept called “disassembly depth” is introduced (Giudice, 2010), which deals with how much 

effort should be expended in the disassembly of a product, or alternatively, how completely a 

product should be disassembled. Such a “disassembly depth” has to be determined (and 

probably adaptively modified) for each individual product. On the other hand, assembly 
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process follows a fixed assembly plan and targets on optimizing certain performance indicators 

like throughput, machine utilization, etc.  

2.3 Computer Aided Disassembly Planning (CADP) 

Researchers are looking for tools and methods for aiding the disassembly planning process, and 

they advocate the development of a Computer Aided Disassembly Planning (CADP) system.  A 

general structure of CADP can be represented in figure 2.2 below. 

 

Figure 2.2: The General Structure of a CADP System 
 

As it is evident in figure 2.2, the overall structure of a CADP system can be devided into three 

layers: (1) Input Layer (Representative Model and database), (2) Computational Layer 

(Disassembly Planner) and (3) Presentation Layer (Outputs).  This dissertation mainly focuses on 

the work related to the first two layers and notable relevant works are presented in the following 

sections.  

2.3.1 Representation Model  

The representation model constitutes the main input for a disassembly planning system and its 

main objective is to describe the relevant features of an EOL product or a disassembly process. 

Two main representation models used in this thesis are briefly reviewed here:  
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(1) AND/OR Graph 

An AND/OR graph (Homem de Mello & Sanderson, 1989) is a directed graph G = (N, D), where 

N stands for nodes that denotes a product, part or subassembly. D stands for hyper arcs which 

represents the set of feasible disassembly operations. Each node i can have k (k>=0) disassembly 

choices, forming an OR-relation; an operation disassembles node i into m (m≥2) nodes, m arcs 

link node i to these m-nodes, and form an AND-relation. Figure 2.3 is a simple example of the 

AND/OR graph of a product. Arc 1 in the figure represents disassembly operation 1 and the 

assembly ABCDE can be disassembled into subassembly ABCD and part E (which is not shown 

in figure 2.3) through the disassembly operation 1. Similarly, operation 3 disassembles 

subassembly ABCD into subassembly AB and subassembly CD. Each path in the AND/OR graph 

forms a feasible disassembly sequence. As an example, path 0-1-3 in figure 2.3 is one of the 

feasible disassembly sequences of product ABCDE (operation 0 is a pseudo operation denoting 

the initialization of the disassembly process).  

ABCDE

ABCD

BCDE

AB

CD
1

2

4

5

3

0

 
Figure 2.3: An Example of the AND/OR Graph 

(2) Task precedence graph 

Instead of representing nodes as parts and sub-assemblies, nodes represent disassembly operations 

in the task precedence graph. Two disassembly operations are represented by two nodes connected 

by a directed arc signifying one operation proceeded by the other. If the AND/OR graph in figure 

2.3 is translated into a task precedence graph, it will look like that which is shown in figure 2.4 

below. 
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Figure 2.4: An Example of the Task Precedence Graph 

 

Please note that the Operation 0 has been considered as a pseudo operation and it is the 

initialization of the disassembly process. After initialization, either operation 1 or operation 2 can 

be executed. The doubly directed arc means either one operation can be done before or after the 

other one, e.g. operation 4 can be done after operation 5 and vice versa. Though the task precedence 

graph is a derivative of an AND/OR graph, it has the advantage in that the sequence-related 

information is easily observable in the task precedence graph (Any goal node could be arrived at 

following more than one path from a given starting node in the task precedence graph), whereas 

such information is implicit in the AND/OR graph. For example, it is not clear from the AND/OR 

graph that operation 4 can be done after operation 5 (figure 2.3) (Zhu, Sarigecili & Roy, 2013).  

Besides the above representation model, other similar modeling derivatives have been proposed, 

which includes disassembly petri net (Zussman, MengChu Zhou, & Caudill, 1998), connection 

diagram (Lambert, A. J. D. (Fred) and Surendra M. Gupta, 2005), state diagram (Lambert, A. J. 

D. (Fred) and Surendra M. Gupta, 2005), etc. A good description of these models can be found in 

(Ghandi & Masehian, 2015).  
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2.3.2 Disassembly Planning  

Based on the different representation model, different planning approaches and methods have been 

proposed for the disassembly planning problem and most of them fit into the following categories:  

(1) Graph-based approach 

Graphs usually represent the structure of a system, process, product, organization, etc. They can 

be considered as an abstraction of the reality. Graph theory has been used as a powerful tool to 

solve the problems of disassembly planning. It has helped in representing the planning process by 

providing tools like connection diagrams and AND/OR graphs. The characteristics and functions 

of a disassembly system are explicitly expressed in the graph and different searching algorithms 

are further applied to find all the feasible disassembly sequences according to the topological, 

geometrical and technical constraints. Different strategies are further applied to locate the optimal 

sequence with consideration of the plan effectiveness and cost-effectiveness. Several outstanding 

graph-based approaches are briefly discussed below. 

Penev et al. (Penev & de RON, 2002) used AND/OR graph theory and methods of dynamic 

programming for the generation and evaluation of the feasible disassembly plans. A new economic 

model is introduced to determine the optimal level of disassembly. Zhang et al. (Zhang & Kuo, 

1996) developed a graph based heuristic approach for the generation of disassembly sequences 

from CAD system directly. They proposed a component fastener graph to analyze the product 

assembly relationship. A search for a set of cut-vertex and decomposition of the EOL product into 

several subassemblies is further applied on the graph to simplify the disassembly analysis process. 

Murayma et al. (Murayama, Oba, Abe & Yamamichi, 2001) described the disassembly sequence 

generation using the idea of information entropy and heuristics to replace components at 

maintenance stages. The advantage of this method is primarily in the reduction of searching time 
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and searching places for disassembly sequences. The author also developed a software tool 

integrated with a CAD system and carried out an experiment for an electric drill using the tool. A 

graph-based information modelling system to represent the process for disassembly and recycle 

planning of consumer products was proposed by Kanai et al. (Kanai, Sasaki & Kishinami, 1999). 

Four kinds of graph have been presented: (1) a configuration graph of sub-assemblies or fragments; 

(2) a connection graph between parts and materials; (3) a process graph of disassembly, shredding, 

and sorting activities; (4) a retrieval condition graph. Rules and procedures for transforming the 

models of these activities are uniformly formulated. A vacuum cleaner is used as an example to 

demonstrate the proposed graph-based method. 

(2) Petri net-based approach 

Besides the traditional graph-based disassembly analysis approach, Petri-Net (PN), as a graphical 

and mathematical tool, provides a uniform environment for modelling and analyzing both static 

and dynamic discrete events. They provide a very promising method for disassembly sequence 

generation.  

Zussman et al. (Zussman, MengChu & Caudill, 1998) proposed a complete and mathematically 

sound Disassembly Petri Net (DPN) approach to model the disassembly processes. In their work, 

the detailed construction and advantages of the proposed DPN have been discussed and a DPN 

based searching algorithm has been proposed for the generation of the disassembly plan. They 

further extended this work (Zussman & Meng Chu Zhou, 2000) and proposed a design and 

implementation system for an adaptive process planner for disassembly processes. The system also 

incorporates the uncertainty issue caused by the different product conditions. 
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Moore et al. (Moore, Gungor & Gupta, 1998) developed an algorithm for automatically generating 

a DPN from a disassembly precedence matrix. The DPN representing the specific precedence 

relationships among parts can be derived from a CAD representation of the product. A Reduced 

Reachability Tree algorithm has been further proposed to identify the near-optimal disassembly 

process plan from using the DPN.  

(3) AI based approach 

Many attempts have been made using Al techniques (Genetic algorithms, ant colony methods, 

fuzzy logic, neural networks, etc.) in the disassembly sequence optimization. The objective is to 

reduce this time by searching the best disassembly sequences without analyzing all the possible 

alternatives. Several examples are discussed as below:  

An example of the use of fuzzy logic in disassembly planning is proposed by Chevron et al. 

(Chevron, Binder, Horacek & Perret, 1997). The main goal is to find the disassembly sequence 

requiring the minimum completion time, taking into account the fuzzy model of the processes and 

the constraints in available tool, destruction modes, etc. The problem of the generation of 

disassembly sequences is approached as a travelling salesman problem (the traveler is the product 

and the cities are the operations with their processing times). A modified branch-and-bound 

method is used with an objective function evaluated according to fuzzy parameters. 

Hsin Hao et al. (Hsin-Hao, Wang & Johnson, 2000) proposed a Neural Networks approach to the 

planning of disassembly problem. The generation of sequences is again viewed as a variant of the 

traveling salesman problem: to find the sequence of components to be disassembled (cities) having 

the greatest profit (the shortest distance). This problem is approached using a Hopfield Neural 



20 

Network. As input, an N by N matrix of neurons is used: the rows of the matrix indicate the 

disassembly operations to be scheduled, and the columns the disassembly sequences. 

Lambert (A. J. D. Lambert, 1997) proposed a Linear Programming (LP) model to the disassembly 

planning problems. The LP model tries to find the optimal disassembly sequence based on 

maximizing the total value of the retrieved parts/subassembly and minimizing the total 

disassembly operation cost associated with them.  

Table 2.1: Summary on the Reviewed Disassembly Planning Work 

Author Representation Model  Information Involved   

Penev et al. 2002 AND/OR graph Product, Process  

Zhang and Kuo, 1996 Component-Fastener Graph Fastener, Product 

Murayma et al. 2001 Information entropy 

embedded product graph 

Product 

Kanai et al.  Configuration graph 

Connection graph 

Process graph 

Retrieval condition graph 

Process 

Condition Information  

Product 

Zussman et al. 1998 Disassembly Petri Net Process, Product 

Moore et al. 1998 Disassembly Precedence 

Matrix 

Disassembly Petri Net 

Process, Product 

Chevron et al. 1997 Fuzzy Logic based Process 

and Equipment Model  

Process, Product, 

Uncertainty 

Hsin Hao et al. 2000 Disassembly Neural Network Product, Process 

Lambert, 1997 AND/OR graph Process 

A summary on the disassembly planning methods is presented in table 2.1. One important 

observation can be identified here: although different researchers proposed different representation 

models, the involved information (product, process, etc.) shared similarities among different 

methods. The reuse of these concepts has not been explored, which could have made the 

development processes of the CADP applications less time consuming. 
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2.4 Background of Information Model and Ontology  

The Information Model, sometimes called ontology, is the consensual modelling of concepts and 

relationship in a domain of interest. In this dissertation, we use the term IM and ontology 

interchangeably. The word “Ontology” can be traced back to the 4th Century BC and is originally 

a philosophical discipline concerned with the question of what exists and what is the essence of 

things (Zuniga, 2001). Over the last decades, it has been adopted by computer scientists, firstly in 

the field of Artificial Intelligence (AI) and more recently in other engineering areas like biology, 

chemistry, medicine, etc. Within this community (engineering community), the term is used in a 

narrower sense than that in the context of philosophy. It emphasizes on a formal representation of 

contextual information, which contains precise definitions of certain entities in terms of their 

properties and their relations to other entities. Such definitions are usually given in the form of 

axioms formulated in a logic-based language, which can facilitate the automated knowledge 

reasoning process (Kutz & Garbacz, 2014).   

2.5 Modeling Elements for the Formal Information Model  

Information Model, as a conceptual model, can be constructed with different modeling techniques 

and be implemented in various kinds of languages (Uschold & Gruninger, 1996). Over the years, 

researchers have explored different modelling paradigms such as description logic (Mann, 2003), 

database modeling techniques (Bera, Krasnoperova & Wand, 2010), Semantic Web approach 

(Memon, Ortiz-Arroyo & Larsen, 2005), etc. Despite the diversity among different approaches, all 

of them have common modeling elements.  In particular, most languages provide constructs for 

classes, instance, relations, and attributes, although they may be named differently in the respective 

implementations.  
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Class: A class represents a set or a category of things that have some properties or attributes in 

common and they are differentiated from others by kind, type, or quality. It sometimes can also be 

denoted as concept or frame depending on the different modelling paradigms. An example of a 

class could be Product, Disassembly Process, Constraint, etc. (We will use the bold Calibri font, 

with the capitalized first letter, in this dissertation to represent a class).  

Instance: Entities that belong to a particular class are said to be instances or members of that class; 

for example, steel and plastics are instances of the Material class. (We will use the italicized 

Calibri font, with the lowercased first letter, in this dissertation to represent an instance of a class) 

Relations: Relation describes the interrelation between classes and it can also be denoted as 

properties, roles, slots, or associations in other modelling paradigms. Most modelling languages 

support representing only relations among two classes and is by default directional, which means 

that it points from a particular domain class to a designated range class. As an example, consider 

the relation hasComponent, which refers from a Product (its domain) to a Component (its range). 

We will use the bold italicized Calibri font, with the lowercased first letter, in this dissertation to 

represent a relation. A special relation called inheritance relation is commonly supported in various 

IM modeling paradigm, which is used to hierarchically organize the classes by specifying 

parenthood relations. As an example, a Screw Connection class is inherited by Connection class 

and it is a specialization or a subclass of the Connection class (every instance of Screw Connection 

is also an instance of Connection class).   

Attribute: Attributes represent features, characteristics, or parameters of classes and an attribute is 

identified by a name and can take one or several values, which are usually restricted to a specific 

datatype such as Boolean, string, integer, etc. We use the underlined Calibri font, with the 
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lowercased first letter, in this dissertation to represent an attribute of a class. As an example, 

manufacturingCost is an attribute of class Component and it can take values of datatype double.  

2.6 Current Information Model in the Domain of Manufacturing 

Over the years, researchers have contributed to the development of IM or ontology in the domain 

of manufacturing, with different focusing aspects. Some notable work is reviewed below. 

Leimagnan et al. (Lemaignan, Siadat, Dantan & Semenenko, 2006) developed the Manufacturing 

Semantic Ontology (MASON) to formally capture the concepts related to the manufacturing 

industry. The semantics related to entity, resources and operation were captured in formal logic 

using web ontology language (OWL). Two applications about automatic cost estimation and the 

semantic-aware multi-agent system for manufacturing were discussed to demonstrate the 

usefulness of the proposed MASON ontology.  

Xiaomeng (Chang, 2008) selected the field of Design for Manufacturing (DFM) for his PhD study 

and three primary aspects are investigated. First, a generalized DFM ontology is proposed and 

developed, which fulfills the mathematical and logical constraints needed in the domain of DFM. 

Second, the means to guide users to the proper information and integrate heterogeneous data 

resources is investigated. Third, a decision support tool is developed to help designers consider the 

design problem in a systematic way based on the developed DFM ontology.   

Pavan (Kumar, 2008) developed an ontology called the Design Activity Ontology (DAO) to 

explicitly represent the design activity that can cover phases of the design process from conceptual 

phase through detail design phase. The ontology provides a formalized and structured vocabulary 

of design activities for the exchange of design process models and it further enables design 

processes to be modeled, analyzed and optimized in a consistent way. 
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Kim et al. (Kim, Manley & Yang, 2006) proposed a collaborative assembly design framework that 

offers a shared conceptualization of assembly modeling, and an Assembly Design Ontology (AsD) 

is developed to capture the joining intents of a product. AsD is claimed to serve as a formal, explicit 

specification of assembly design so that it makes the assembly knowledge both machine-

interpretable and sharable.  

Some industrial efforts have also been devoted to the development of the manufacturing related 

Information Model. A notable development in this field is led by NIST. One of their work is the 

NIST’s Core Product Model (CPM), which a unified modeling language (UML) based model 

intended to capture the full range of engineering information commonly shared in product 

development (Foufou, 2005). CPM focuses on modeling the general, common and generic product 

information and excludes the information which is domain specific. NIST further developed 

another information model called “Open Assembly Model” (OAM) (Baysal, 2004) which extends 

CPM. Along with the structural information, it represents the function, form, and behavior of the 

assembly, and defines a system level conceptual model. 

Recently, NIST also proposed a disassembly information model (Feng & Kramer, 2013) and to 

the author’s knowledge, this is the first attempt to develop disassembly related information model. 

The developed model highlights the information content used for disassembly sequence 

representation, feature modeling, equipment modeling, and inspection process modeling. 

However, the NIST disassembly information model remains in the conceptual stage and the 

implementation of the model has not been fully achieved. Also, the handling of 

reusability/usability tradeoff issue and the uncertainty issue is not discussed.        
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2.7 Summary: Observation and Findings  

An in-depth review of the disassembly planning problem and the Information Model has been 

carried out in this chapter. Some observations and findings are summarized as follows: 

Information Model provides a shared knowledge basis for a specific domain of interest and it is 

necessary for any decision making purposes. Even though some work has been done in developing 

manufacturing related Information Model, not sufficient attentions were paid towards the issues 

related to the EOL product disassembly in a comprehensive manner.  Even for the NIST 

disassembly Information Model, certain issues like the reusability/usability trade off and the EOL 

product uncertainty have not been well addressed.        

In the disassembly research area, different representation models like AND/OR graph, 

Component-Fastener Graph, Information entropy embedded product graph, etc. have been 

proposed. A finding from the literature survey is that the involved information in different 

proposed disassembly planning methods shares certain commonalties (product, process, 

uncertainty, etc.), which should be generalized for better serving the disassembly research 

community.  
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 DISASSEMBLY INFORMATION MODEL 

 

In this chapter, the development and implementation of the proposed Disassembly Information 

Model (DIM) are presented in detail. We start with the discussion and analysis of the information 

requirements in the domain of disassembly planning, which puts forward a high level informal 

domain conceptualization (section 3-1). Next, a layered DIM modelling methodology is presented, 

with the intention to find a balance between IM reusability and usability (section 3-2). The detailed 

DIM model is introduced afterwards in section 3-3, using UML class diagram as a graphical 

notation. Lastly, the formal DIM implementation in OWL is presented in detail in section 3-4. 

 

3.1 Information Requirement for Disassembly Planning  

The information required for the EOL product disassembly planning can be broken down into four 

categories: product related, process related, uncertainty related and component degradation related 

(figure 3.1). The informal description of each category is presented below:  

 
 

Figure 3.1: High Level Information Requirement for the EOL Product Disassembly 

Planning 
 

3.1.1 Product Aspect Information 

The product related information describes the characteristics of the EOL product which needs to 

be disassembled. Relevant concepts or terminologies in this domain include product, component 
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and liaison and they will be informally described below to convey a fundamental domain 

understanding before the formal product aspect Information Model is presented. 

Product and Component 

In general, a product is an artifact or substance that is manufactured for sale. In any disassembly 

process, the product represents the input to the disassembly process and it may consist of a number 

of discrete parts, which are called components. A component is a material entity that can be 

separated from a product through disassembly processes, without altering the component’s 

intrinsic property (like mass, density, etc.). Furthermore, a component cannot be further separated 

via non-destructive detaching processes.     

In the domain of disassembly planning, further specification of the component according to their 

characteristics is critical. From a higher level, components can be classified according to different 

aspects like material composition (homogeneous or composite), functional type (connecting 

function or non-connecting function) and component complexity (atomic component or complex 

component). In detail, the following types of component are highlighted:  

 Homogeneous Component: is a component consists of only homogeneous materials. Frame 

and cover are the typical examples of the homogeneous component.  

 Composite Component: is a component consists of different non homogeneous materials 

linked in an irreversible way, such as a sandwich structure.  The laminated glass, which is 

constructed by combining two panes of glass fused together with a middle layer of 

Polyvinyl Butylenes Film (PVB) acting as a bonding agent, is an example of composite 

component,  

 Connecting Component: is a component whose primary function is to connect other 

components. Different fasteners fall under this category.  
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 Complex Component:  A complex component is a cluster that consists of a set of 

components, which cannot be separated from the whole without damaging certain 

component permanently. Examples of such component can be printed circuit board and 

electrical cables.  

Liaison 

Components are physically linked by liaison, which restricts the freedom of motion of the 

components involved. The liaison concept can be classified into two main types to reflect the 

different properties of the liaison. The main liaison types are:  

 Component contact: Such liaison represents the relationship between components where 

the involved components are connected with each other without any application of external 

forces. We call this type of connection “component contact” and it is formed through 

connections between component’s geometric entities like a vertex, an edge or a surface. 

Examples of such case could be a cube resting on a panel (surface contact). 

 Component connection: Such liaison represents the relationship between components 

where a connection is established through a certain connecting component. Example of 

such case could be a blender housing connected with a base panel by a set of screws 

(connecting component).   

From the discussion above, two Information Modeling requirements related to the product domain 

aspect can be identified. The first one is the modeling of product hierarchy: a product is composed 

of different components which are hierarchically organized by aggregating them into 

subassemblies. Thus, the part-whole relationship needs to be modeled in the product domain 

Information Model. Second modeling requirement relates to the topological arrangements of 

components (or say product structure), which are realized by different component liaisons. 
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Information related to how components are connected to each other for achieving the final product 

should be supplied.  If the liaison belongs to the type of component connection, at least three 

entities are then involved: two components are connected through one connecting component. 

Thus, modeling of n-ary relationship (n>2), which involves more than two entities, should be 

supported.  

Basic product aspect information requirements can be summarized in table 3.1 below:  

Table 3.1: Product Aspect Information Requirement 

Basic Terminology  Product 

Component 

 Homogeneous component 

 Composite component 

 Connecting component 

 Complex component 

Liaison 

 Component Contact 

 Component Connection 

Modeling Requirement  Product Hierarchy 

 Part-whole relationship 

Product Topology (Component Liaison) 

 N-ary relationship 

3.1.2 Process Aspect Information 

The disassembly process accomplishes the basic transformations of the product’s physical states 

and it can be divided into three different levels as follows:  

 Task Level: Task represents the most abstract type of disassembly process, which only 

specifies the target component to be disassembled.  An example of a disassembly task could 

be “detaching blender housing component” or “disassembling the screw from the PC 

motherboard”. A sequential aggregation of disassembly tasks will provide a high level 

disassembly plan.  



30 

 Operation Level: An operation represents the detailed process steps necessary to achieve a 

certain task. The operation may not only include disconnection process, they may also 

include the movement operations necessary to transfer the subassemblies to a different 

location and other supplementary operations such as cleaning, fixturing, tool exchanging, 

product reorienting (to guarantee access or stability), and testing. 

 Action Level:  An action represents the specific atomic process steps required to achieve a 

certain operation.  An important characteristic of an action is that it is performed without 

the goal to directly change the object state (Hamidullah, Bohez & Irfan, 2006). It means 

that an action alone should not be sufficient to change any part attributes or disestablish of 

liaisons. As an example, a “movement” operation involves possibly two actions: motion 

action and grip action. However, neither the motion action, nor the grip action alone 

changes the state of the object (A motion action will not make any difference on the 

component unless it is combined with a grip action).   

Along with the detailed process classification, another important process related requirement is the 

ability to represent all the feasible disassembly process sequences explicitly. In other words, this 

requires the development of an Information Model that can mimic the traditional graph based 

disassembly process representation, such as the state change graph. This requirement utilizes again 

n-ary relationship because a state change normally involves three objects: pre-state, goal-state and 

process step.  
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Basic process aspect information requirements thus can be summarized in table 3.2 below:  

Table 3.2: Process Aspect Information Requirement 

Basic Terminology  Process 

 Task 

 Operation 

 Action 

Modeling Requirement  Feasible Process Sequences 

 N-ary relationship 

Process Hierarchy 

 Part-whole relationship 

3.1.3 Uncertainty related Information 

As mentioned in the previous sections, unlike the assembly process, the disassembly process has 

various inherent uncertainty issues. Thus, extra information is needed for such uncertainty 

handling. Two types of uncertainty are considered in this dissertation: (1) Component/assembly 

function uncertainty and (2) Operation uncertainty.  

 Component/assembly functional uncertainty: each component or assembly might associate 

with a primary function, which contributes to the product overall function. Such function 

may not be working when the EOL product becomes obsolete. Such functional/non-

functional information is critical in the disassembly planning process and can only be 

revealed gradually during the disassembly process.  

 Operational uncertainty: during the disassembly process, certain operations such as 

unscrewing might not succeed due to the poor physical conditions of the component such 

as deformation or corrosion. In such cases, extra special operations may be required to 

handle the situation and it will incur a higher cost. Since this information is also unknown 

at the beginning of the disassembly process, it is called operational uncertainty. 
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Both cases will be handled using the Bayesian Network (BN), which consists of a Directed Acyclic 

Graph (DAG) and a set of local statistical distributions (Kwaan, 1994). The detailed procedures 

for disassembly uncertainty handling using BN will be presented in detail in the chapter 5. Here 

we only summarize the two important information elements necessary for the Bayesian theorem 

based uncertainty handling: (1) the component/assembly influence dependency and (2) the 

conditional probability table.  

Component/assembly Influence dependency: is a directed acyclic graph (DAG) representing the 

function dependency among components/assemblies. Figure 3.2 is a simple DAG example 

describing that the function of the “Fan Assembly” is conditionally dependent on the function of 

the “Motor” and function of the “Rotor Shaft”. Such information demonstrates the function failure 

propagation in the EOL product and is critical in the adaptive disassembly planning.      

Conditional Probability Table (CPT): consists of a set of discrete (not independent) random 

variables to demonstrate the marginal probability of a single variable with respect to the others. A 

simple CPT applied to the example in figure 3.2 is shown in figure 3.3.  It says that the probability 

of the “Fan Assembly” to be functional is conditionally dependent on two other variables: the 

probability of the “Motor” to be functional and the probability of the “Rotor Shaft” to be 

functional. As an example, when the motor is functional and the rotor shaft is not functional, the 

probability of the fan assembly to be functional is 0.  
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Fan Assembly

Motor Rotor Shaft

 

Figure 3.2: A Simple Example of the DAG Network 

 Motor Function Not Function 

 Rotor Shaft Function Not Function Function Not Function 

Fan Assembly Function 0.8 0 0 0 

Not Function 0.2 1 1 1 

Figure 3.3: CPT of the Fan Assembly 

In summary, uncertainty related information requirement can be summarized in table 3.3 below:  

Table 3.3: Uncertainty Related Information Requirement 

Modeling Requirement  Bayesian Networks 

 Conditional Probability Table  

 Component/assembly Influence 

dependency 

 

3.1.4 Degradation related Information 

Component/assembly degradation is also a critical issue in the planning of disassembly. 

Degradation is a gradual change in the properties (like tensile strength, color, shape, etc.) of the 

component, which usually does not affect the overall function of a component until it reaches a 

critical point. However, degradation does affect the economic quantification of EOL product or 

component. For example, although some subassembly might work fine (functional) after the 

function testing, the associated reuse value still could be lower than the expected average reuse 
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value (the subassembly is close to failure) or higher than the expected average reuse value (the 

subassembly still has a long remaining useful life time). Information regarding to such remaining 

useful life estimation should be supplied for the disassembly planning process.  

The remaining useful life time estimation is a challenging research problem and in this thesis we 

use the fuzzy logic based approach to quantify the component/subassembly reuse value through a 

set of fuzzy linguistic variables and a set of heuristic rules. The detail of reuse value estimation 

using fuzzy logic will be presented in detail in the following chapter (chapter 5). Here we only 

summarize the important information elements necessary for carrying out the fuzzy logic based 

reuse value estimation. 

 Age: age represents the service time of a component or a product. This information could 

be different among different components in the one product (component replacement 

during the maintenance). Usually, high age indicates a lower reuse value.  

 Condition parameter: age is an indicator variable for estimating the remaining component 

useful lifetime. However, it is assumed that the component or subassembly is servicing 

under certain controlled operational conditions. If the user is abusively using a certain 

product or a product is operating under severe external environments, the age of the 

component/product alone can no longer properly indicate the remaining useful life time. 

Certain condition parameters (like operation noise, corrosion, etc.) should be included for 

the estimation. 

 Market demand: reuse value is also dependent on the market demand. A higher demand 

normally will increase the average reuse value and a lower demand will decrease the reuse 

value despite of the conditions of the product/component.   
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The above input variables will be modeled as linguistic variables, which is suitable for fuzzy 

reasoning. Extra informational elements related to the linguistic variable are thus necessary, which 

include membership function and fuzzy term definition. On top of that, the support of heuristic 

based fuzzy rules should be provided in the developed DIM for the fuzzy reasoning process.  

Basic uncertainty related information requirements can be summarized in table 3.4 below:  

 

Table 3.4: Degradation Related Information Requirement 

Modeling Requirement  Fuzzy Logic  

 Linguistic variable 

o Age, Condition Variable, Market Demand 

o Membership function 

o Fuzzy term 

 Fuzzy Rules 

 

3.2 Layered DIM Modelling Methodology 

From the analysis carried out in the previous section, DIM should be comprised of the information 

related to the aspects of product, process, uncertainty and degradation and the modelling of which 

involves certain information modeling patterns like n-ary relationship, part-whole relationship, etc. 

Also, DIM should achieve certain balances between IM usability and reusability. Thus, a layered 

modelling methodology has been proposed, in which DIM has been subdivided by means of layers 

(Figure 3.4), with the intention to separate general knowledge into different level of abstractions. 

Also, a “minimal ontological commitment” (Gruber, 1995) guideline is followed, which means 

each layer holds only concepts/relationships and axioms that are essential for the function of the 

current layer.  Information that is not essential for the layer’s purpose are sourced out to lower 

layers. Details of each layer are presented as follows:  

 Abstract Layer: The Information Models in the abstract layer hold the fundamental 

modeling concepts, which are independent of a particular problem or domain and can 
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therefore be universally applied. They describe the design guidelines (design pattern) for 

the construction of the other sub models in the DIM. Models like n-ary relationship, part-

whole relationship, graph model and system model belong to this layer.  

 Domain Layer: The Information Models in the domain layer capture the knowledge related 

to a domain of expertise, such as disassembly planning in our case, and they generally don’t 

target on solving a specific problem or task, but rather providing a domain knowledge 

foundation for a range of different applications. Thus, the Information Model residing on 

this layer is more specific than those in the abstract layer, but less specific than those in the 

lower layer (application layer). The majority of the required disassembly domain 

information discussed in section 3-1 (product, process, etc.) are implemented in the models 

in this layer.  

 Application Layer: represents the most specific Information Model which is directly usable 

for a certain disassembly planning application. This thesis focuses on two disassembly 

planning applications: (1) Disassembly Sequence Generator and (2) Adaptive Disassembly 

Planning and they will be discussed in detail in chapter 4 and chapter 5 accordingly.   



37 

N-ary relationship Model

Graph Model

Part-whole 
relationship Model

System Model

Abstract Layer

Domain Layer

Application 
Layer

Disassembly Planning 
System Model

Disassembly Sequence Generator Adaptive Disassembly Planner

Product Model

Process Model Degradation Model

Uncertainty Model

 

Figure 3.4: The Overall Structure of DIM 

Such a layered DIM development methodology takes the IM reusability-usability trade-off 

problem into account. The abstract or general knowledge is modeled in the sub models located on 

the top layer of the DIM. They provide various design patterns which can be reused in various 

application contexts and normally are not directly usable in any particular application due to the 

high level of abstraction. On the other hand, knowledge in the models residing on the lower layer 

is ready to be used, but is usually application specific and thus is hardly to be transferred to other 

applications.  Information Models in each layer of the DIM contain knowledge with certain degrees 

of reusability and usability and the usability of the knowledge normally increases with descending 

reusability when navigating from the top to the bottom layers of DIM.   
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In the following sections, DIM sub models in the abstract and domain layer will be presented in 

detail, whereas the sub models in the application layer will be introduced in chapter 4 and chapter 

5.  

3.3 Formal Disassembly Information Model  

In this thesis, the UML class diagram, which has the full modelling capabilities to represent the 

major elements (class, relations, etc.) of an Information Model, has been adopted as a graphical 

representation of the Disassembly Information Model. The UML class diagram notations are 

summarized in figure 3.5 and they will be applied throughout this thesis.  

Rectangular box with bold text represents a certain class and the instance of the class is denoted 

as italicized regular text in a rectangular box. A class can have some attributes (sometimes called 

data property), which can hold certain datatype. This is represented as a straight line connection 

between a class and a data type (represented as rectangular boxes with dashed boundary lines). 

The name of the attribute (data property) is annotated on top of the connection line as regular text 

with a lowercase first letter.  

Class

Super_Class

Sub_Class

Domain 
Class

Range 
Class

relationName

1 1

Cardinality: 
1..* : one or more
1: exactly one 

dataType

instance

Class
1 1

attributeName

Aggregate 
Class

Part 
Class1 1..*

hasPart

 

Figure 3.5: The Notations Used in Creating the UML Class Diagram  
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The inheritance relationship between classes is depicted through a solid line with a hollowed 

arrowhead pointing from the subclass to the superclass. Binary relationships (sometimes called 

object property) can exist between classes, which is denoted as a straight line connection between 

classes. The name of the relationships is presented on top of the connection and cardinality 

constraints (depicted by numbers placed close to classes of the respective relation) can be added if 

necessary. Lastly, aggregation, as a special type of relationship, is important in this work, which 

will be discussed in detail in the part-whole relationship sub model section. The annotation for 

such relationship is a straight line connection with a hollowed diamond head pointing at the 

aggregated class.     

3.3.1 Abstract Layer Models 

This section presents the Information Models residing on the abstract layer in detail.    

(1) N-ary Relationship Model  

N-ary relationship model presents the most fundamental modeling elements (concept and 

relationship) in an Information Model. On top of that, we extend the traditional binary relationship 

into the N-ary relationship, which can represent certain relations existing among more than two 

objects. Figure 3.6 shows the N-ary relationship Information Model: everything is considered as 

either an Object or a Relationship. A Relationship class involves two or more Objects and could 

have certain attribute (relationAttribute) with different possible datatypes. In some scenarios, 

directed N-ary relationship is necessary, which describes an N-ary relationship existing among 

some Objects where at least one Object is distinguished as the origin of the relationship. The 

DirectedRelationship class is thus modeled as an extension of the Relationship class and two new 

object properties (hasOrigin and hasTarget) related to the DirectedRelationship class are 

introduced to denote the direction among the objects involved in a relationship.  



40 

Object Relationship
involves

12..n

xsd:any

1

relationAttribute

0..*

Object
Directed 

Relationship

hasTarget

11..n

hasOrigin

11

 

Figure 3.6: N-ary Relationship Information Model 

As indicated before, the Information Models in the abstract layer provide a generic information 

design pattern irrespective of its use in any particular application domains. Here, a simple 

application example of representing an array ([a, b, b, c]) is shown in figure 3.7 below: 

arrayExample

a b c

involves involves involves

1 2 4

size

3Object Relationship
involves

12..n

ArrayArray Element

xsd: integer

index1

1

xsd: integer

size1

1

4

index index index index

(a) Extension of N-ary Relationship model for 
Representation of an Array

(b) Instantiated N-ary Relationship Model 
     ([a, b, b, c])  

Figure 3.7: An N-ary Relationship Example 

An array involves several elements (in our case, English letters) in a sequential way. Thus, an 

Array can be modelled as an extension of the Relationship class, which involves several Array 

Elements (extension of the Object class). Each of the elements in an array has an index indicating 
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its position in the array and such information is modeled by the index data property, which 

associates each Array Elements with an integer. The size information of an array can be considered 

as a certain array attribute and thus data property size is modeled and it is an extension of the 

relationAttribute data property. Figure 3.7 (b) shows how to represent array [a, b, b, c]: 

arrayExample is being modeled as an instance of the Array class and a, b and c are instances of 

the Array Elements class, which are being involved in the arrayExample relationship. The 

information regarding the array size and the index of the array element is also shown accordingly.  

(2) Part-Whole Model  

The Part-Whole model represents the parthood relations among Objects, which is a common 

scenario in the domain of disassembly. As examples, parthood relations can exist between product 

and subassembly, between subassembly and component, between process and task and so on. The 

Part-Whole model (Figure 3.8) is developed to represent a reusable design pattern for such 

purpose. Two new classes are introduced: The Whole class represents the Object which will 

aggregate other Objects, whereas the Part class represents the Object which is a part of the Whole 

class. An instance of the Whole class must relate to some (more than one) instances of the Part 

class through the hasPart object property.  

Whole Part

Object

1 2..nhasPart

 

Figure 3.8: Part-Whole Model 

 

 

 

 

(3) Graph Model  
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Graph is widely used for the representation of disassembly process or the structure of the EOL 

product, thus the third Information Model in the abstract layer is the graph Information Model, 

which is extended based on the N-ary relationship model and part-whole model. Figure 3.9 

presents the overall structure of the Graph Information Model.  

Node Arc

Object

Port ConnectingPoint

hasPort

1

1..n

hasConnectingPoint

1

2

Connector

isDirectlyConnectedTo 12

1 1..nisDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

1 1

1 1

isDirectlyConnectedTo

1

1

Object 1 1..n

hasConnectorTopology

Graph

 

Figure 3.9: The Graph Information Model 

 

In order to model the Graph Information Model, the connection or topology information should be 

added to the Object class first, which is being represented in the lower half of figure 3.9. The type 

and number of connections that an Object may have can be constrained by means of the Connector 

class. A Connector represents the interface through which an Object can be connected to another. 

Thus, an instance of the Object class should aggregate one or more instances of the Connector 

class. Such modeling requirements align with the design pattern used in the Part-Whole 

Information Model (the Object class mimics the Whole class, whereas the Connector class mimics 

the Part class) and thus the modelling mechanism between Object and Connector is same as that 
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defined in the Part-Whole sub model. On top of that, it is mandatory that a Connector instance is 

connected to another Connector instance through isDirectlyConnectedTo object property.  

The upper portion of the figure 3.9 further extends the connection or topology information to allow 

for the representation of graphs. The major concepts in the model are the Node class and the Arc 

class. Basically, an Arc cannot connect to more than two Nodes, which excludes arcs that fork. A 

Node, on the other hand, can be connected to one or more Arcs.  

Also, a Node may have a list of Ports, whereas an Arc should have exactly two ConnectingPoints. 

Both of the Port class and the ConnectingPoint class denotes the interface information related to 

the Node class and Arc class. Thus they are modelled as the specializations of the Connector class. 

Also, the Port class and the ConnectingPoint class are related to each other through 

isDirectlyConnectedTo object property.  

An application example of the Graph Information Model is shown in figure 3.10 below. A graph 

example with two nodes (A and B) is represented using the presented Graph Information Model. 

Both node A and node B have one port (port_A_1 and port_B_1 respectively) that denotes the 

connection interface and they are directly connected to the interface of arc A-B (connectingPoint 

A-B-1 and connectingPoint A-B-2).    
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A B

node A node B

port_A_1 port_B_1

arc A-B

connectingPoint A-B-1

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

hasPort hasPort

port_A_1 port_B_1

connectingPoint 
A-B-1

connectingPoint 
A-B-2

connectingPoint A-B-2

hasConnectingPoint

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

isDirectlyConnectedTo

 

Figure 3.10: A Graph Application Example 

(4) System Model  

The last model in the abstract layer is the System Model and its objective is to provide a design 

pattern to represent different viewpoints of a complex system in a unified way. Systems are often 

too complex to be understood and handled as a whole.  If we take an EOL product disassembly 

system as an example, related information could spread over several aspects like product, process, 

uncertainty, etc. We thus use a technique for complexity reduction that is widely used in the field 

of system engineering called the adaptation of viewpoint (Galster & Avgeriou, 2012). A viewpoint 

is an abstraction of the whole system restricted to a particular set of concerns. Adopting a 

viewpoint makes certain aspects of the system ‘visible’ while making other aspects ‘invisible’. 

This way, we can focus on the specific viewpoints of a system, which is of special interest and 

address separately to the issues in other system viewpoints.   

Figure 3.11 presents the System Information Model, which is extended based on the Part-Whole 

Information Model for representing the system hierarchy and the system decomposition. A System 

class is thus introduced as a subclass of the Object class and can be specified into either a 

CompositeSubSystem or an AtomicSubSystem. A CompositeSubSystem is a subsystem which 
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can be further broken down into other subsystems, whereas an AtomicSubSystem is an elementary 

system that has no sub-systems of its own. 

System

Aspect

isConsidered
UnderAspectOf

CompositeSubSystem AtomicSubSystem
contains

1 2..n

AspectSystem

ModelisModeledBy

models

1 0..n

11

Object

contains1

0

1

1

 

Figure 3.11: System Information Model 

A special System called Model is also introduced here: a model is a system that is used or selected 

to enable the understanding the original system. In more detail, a Model could be used to resemble 

the physical object in a simplified way. An example could be an automotive mockup used for 

vibration testing. A Model could also represent the modeled system by means of some symbolic 

representation. Mathematical models or Information Models are the typical examples in this 

category. Following this definition, the class Model is introduced as a subclass of the System class 

(Figure 3.11). A System qualifies as a Model if it models some other System.  

The last important concept in the System Information Model is called AspectSystem, which is 

used to denote different aspects about the overall system that are relevant to a particular viewpoint. 
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AspectSystem is modeled as a subclass of the AtomicSubSystem class and is related to the Aspect 

class through isConsideredUnderAspectOf object property.  

The concept of AspectSystem plays a fundamental role in the modelling of the complex 

disassembly planning system. A general idea is presented in figure 3.12 below: The 

DisassemblyPlanningSystem class is being modeled as a specialization of the 

CompositeSubSystem class, which contains several AspectSystems (Product, Process, 

Uncertainty and Degradation). Each of the AspectSystem models the 

DisassemblyPlanningSystem under specific viewpoint (Aspect) and is a standalone sub model. As 

an example, the Product class is a subclass of AspectSystem, which targets on modeling the 

structural viewpoint of the disassembly system. Similarly, the Process subclass focuses on how to 

carry out each disassembly steps in order to achieve a certain component detachment task, thus it 

describes the behavior aspect of the overall disassembly system. The whole 

DisassemblyPlanningSystem is an aggregation of the four AspectSystems. The advantage of this 

design pattern is that the aspect systems can be used and maintained independently of the overall 

system. 
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Figure 3.12: Aspect System Utilization in the Modelling of the Disassembly Planning System 

3.3.2 Domain Layer Models  

The Information Models in the domain layer capture the knowledge related to the domain of 

disassembly planning. Results from the disassembly planning requirement analysis (section 3.1) 

indicate that information from four aspects (product, process, uncertainty and degradation) should 

be included in the domain layer Information Models and each of them is modelled as a subclass of 

the AspectSystem class, which represents a standalone sub-model representing a specific 
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viewpoint of the overall disassembly planning system.  The following sections describe these 

domain layer sub-models in detail.  

(1) Product Model  

The Product Model is shown in figure 3.13 and it is being imported into the disassembly planning 

model to address the product aspect information requirements (refer to table 3.1 for detail). We 

will present the Product Model according to the different modelling requirements identified. 

Modelling of the System Aspect 

The Product class represents the EOL product which is under study and it is being modeled as the 

subclass of the AspectSubSystem class. It means that a product is considered as a subsystem which 

represents a specific aspect (structure) of the overall disassembly planning system. 

Modelling of Product Hierarchy (Part-whole relationship)  

A certain EOL product contains one or more different components or subassemblies which are 

organized in a hierarchical order and such requirement is achieved by introducing the 

SubAssembly class and the Component class. The design pattern in the Part-Whole sub model in 

the abstract layer is used here for modelling the parthood relationships among the product, the 

subassembly and the component. Specifically, the Product class aggregates the SubAssembly class 

and the Component class through the object properties hasSubAssembly and hasComponent. 

Similar parthood relationship exists between the SubAssembly class and the Component class: an 

instance of the SubAssembly class contains at least two instances of the Component class and the 

object property hasComponent is used to address such relationship. Last but not least, it is possible 

that an instance of the Component class can contain more than one other Component. This will 

be described in detail when describing the classification of the Component class.  
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Component Classification 

In the domain of disassembly planning, further specifications of the Component class according 

to their characteristics are important. As it is described in the previous sections, the Component 

class can be further classified according to the material composition (homogeneous or composite), 

functional type (connecting function or non-connecting function) and component complexity 

(atomic component or complex component). Thus, several Component subclasses are introduced 

as follows: 

ConnectingComponent is a subclass of the Component class whose primary function is to connect 

other components. Examples of the ConnectingComponent can be screws, insert pins, etc. The 

VirtualConnectingComponent class is further introduced as a special type of 

ConnectingComponent, which is a virtual component used for disassembly planning. As an 

example, a Velcro connection is a common type of connection in which no ConnectingComponent 

is involved, but rather use self-engaging loops to achieve the binding between components. In 

order to carry out disassembly planning analysis consistently for such cases, the concept of 

VirtualConnectingComponent is introduced to emulate a virtual connecting component between 

the connected components.  

ConnectingComponent is the candidate component to be analyzed when carrying out the 

disassembly process and it can be detached at least from one direction. In other words, a 

ConnectingComponent contains at least one DegreeOfFreedom.   

The OrdinaryComponent class represents all the components other than the 

ConnectingComponent, whose primary function is not to connect other components. Examples of 

the OrdinaryComponent can be the blender housing, the coffee maker jar, etc. for a blender 
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machine. Different from the ConnectingComponent, OrdinaryComponent is fully constrained on 

all directions in the beginning of the disassembly process (we don’t consider movable 

OrdinaryComponent in this thesis). Thus, an instance of the OrdinaryComponent class contains 

zero DegreeOfFreedom.  

The OrdinaryComponent class can be further classified into the AtomicOrdinaryComponent class 

and the ComplexOrdinaryComponent class. The ComplexOrdinaryComponent is an 

OrdinaryComponent which contains a set of irreversibly connected components. Examples of 

such component can be electrical cables, printed circuit board, etc. The 

AtomicOrdinaryComponent, on the other hand, represents the most elementary component and 

contains no other component.     

The last level of the component classification is related to the material composition (homogeneous 

or composite), and depending on the number of the different types of homogeneous materials an 

OrdinaryComponent contains, the OrdinaryComponent class can be further classified into either 

the HomogeneousOrdinaryComponent class or the ComplexOrdinaryComponent class.  

Product Topology (Component Liaison) 

The final requirement in the Product Model is to model the EOL product topology and the 

component liaison. Since the connection among components in an EOL product can be viewed as 

a graph: node represents components, whereas connection between components is represented as 

edges between nodes. The Graph Model in the abstract layer is thus used to model the product 

structure.  Figure 3.14 shows the comparison between the graph model and the relevant classes in 

the Product Model for the modelling of the product topology. 
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Figure 3.13: Product Information Model for Disassembly Planning
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Figure 3.14: Comparisons between the Graph Model and the Product Model 

 

An instance of the Component class, similar to the Node class in the Graph Model, is directly 

connected to one of more instances of the ComponentContact class, which is comparable to the 

Arc class in the Graph Model. Also, an instance of the ComponentContact class is directly 

connected to exactly two Component instances.  

Both of the Component class and the ComponentContact class contain some interfaces, through 

which they connect to the each other. Such interface information is implemented by introducing 

the ConstrainingFeature class and the ConnectingInterface class respectively. The 

ConstrainingFeature class represents the component feature (face, edge or face) which has direct 

contact with the features in the connected Component, whereas the ConnectingInterface class is 
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comparable to the ConnectingPoint class in the Graph Model and represents the interface of the 

ComponentContact class.  

An example of three connected components (Component_A, Component_B and Component_C) is 

shown in figure 3.15 below. Component_A, Component_B and Component_C are instances of the 

Component class and they contain certain features which is directly involved in a connection. As 

an examples, A-f1 is the bottom planer surface of Component_A and it is modeled as an instance 

of the ConstrainingFeature class, which means that A-f1 is the port or interface through which 

Component_A is connected to the other component (Component_B in this case).     

Similarly, we have ComponentContact_1, ComponentContact_2 and ComponentContact_3 being 

modeled as the instances of the ComponentContact class and their role is similar to the role of the 

arc in the Graph Model. Lastly, each ComponentContact instance holds exactly two interface 

objects (ComponentInterface), through which it connects to the components. In the example in 

figure 3.15, ComponentContact_1 is directly connected to CI_1 (ComponentInterface_1) and CI_2 

(ComponentInterface_2).  

 

Figure 3.15: An Example of the Product Topology 
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(2) Process Model  

The disassembly process accomplishes the basic transformations of the product states in the 

domain of disassembly and describes how disassembly of an EOL product can be achieved (i.e. 

the behavior of the disassembly planning system). Similar to the Product Model, the Process Model 

is also considered as a special sub system (subclass of the AspectSystem class), whose primary 

function is to address the process related information requirements in the overall disassembly 

planning system. Such requirements have been analyzed in section 3.1 and two major requirements 

have been identified: (1) the modeling of the process hierarchy and (2) the modeling of all feasible 

disassembly process sequences (refer to table 3.2 for detail). Figure 3.16 shows the overall 

structure of the Process Model, which addresses these process related information requirements in 

detail.  
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Figure 3.16: The Overall Structure of the Process Model 
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Modeling of the process hierarchy 

A disassembly Process can be analyzed from different hierarchical abstractions. Three types of 

disassembly process are thus introduced: the disassembly Task, the disassembly Operation, and 

the disassembly Action (refer to section 3.1.2 for detailed descriptions of these concepts). 

Furthermore, parthood relationships exist among the Task class, the Operation class and the Action 

class: an instance of the Task class contains one or more instances of the Operation class and an 

instance of the Operation class contains one or more instances of the Action class.  

An example of such a process hierarchy is illustrated in figure 3.17. The most abstract disassembly 

process description resides at the task level, which only specifies the target component to be 

detached at a certain disassembly stage. Such high level task (“Detaching Component A” in this 

example) is further decomposed into three operation level processes (“Orientation of Product”, 

“Tool Change” and “Disassembly of Component A”) which are necessary in order to achieve the 

“Detaching Component A” task. Similarly, the operation level process can be further specified, 

which presents the most concrete elemental action level disassembly process.  

 

Detaching Component ATask Level Process

Operation  Level Process

Action Level Process

Orientation of Product Tool Change
Disassembly of 
component A

Linear 
Movement of 

Product

Grip of 
product

Rotational 
Movement of 

Product

…... …...

 
 

Figure 3.17: Disassembly Process Decomposition Example 
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Modelling of all the feasible disassembly process sequences 

The second requirement for the process model is to represent all the feasible process sequences, 

which is a critical input information for the disassembly sequence optimization. Even though the 

disassembly process can be analyzed under different abstraction levels, they can all be treated as 

a type of N-ary relationship among different disassembly objects (Component, Subassembly or 

Product). Let us take the AND/OR graph in figure 3.18 as an example; each edge represents a 

disassembly process (the process is at the task level in this example) which involves at least three 

disassembly objects: One Process breaks one DisassemblyObject which represents the pre-state 

of the disassembly process and in the same time creates two or more disassembly objects which 

represents the post-state of the disassembly process.  In this example, task_1 is an instance of the 

Process class which breaks the DisassemblyObject ABCDE (Product) and creates the 

DisassemblyObject A (Component) and the DisassemblyObject ABCD (Subassembly). The whole 

disassembly process sequence thus is an aggregation of the instances of the Process class. 

ABCDE

ABCD

BCDE

ABCD

AB

CD

1

2

3

 

Figure 3.18: AND/OR Graph of a Product 

 

The N-ary relation model in the abstract layer is used to model such modeling requirement. The 

mechanisms to model the feasible disassembly process is analogous to the design pattern as 

defined in the N-ary relation model (figure 3.19) with minor extensions. In detail, the Process class 
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is being modeled as an extension of the DirectedRelationship class and it relates to the 

DisassemblyObject class through two object properties: breaks and creates, which are 

comparable to the object properties defined in the N-ary relation Model (hasOrigin and 

hasTarget). Similarly, two process attributes normalCost and specialCost are introduced to 

represent the cost related information. This is comparable to the realtionAttribute data property 

introduced in the N-ary relation Model. 
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1..n
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1
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1
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Process Model
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1

1

 
 

Figure 3.19: Comparison between Process model and N-ary Relation Model 

(3) Uncertainty Model  

Unlike the assembly process, the disassembly process has various uncertainty issues. Two types 

of uncertainty are considered in this dissertation: (1) Component/subassembly/product functional 

uncertainty and (2) the process uncertainty. Both cases are handled using the Bayesian theorem. 

The disassembly uncertainty handling procedure is presented in detail in chapter 5. Here, we only 

focus on modeling the required related information. Figure 3.20 presents the overall structure of 

the Uncertainty Model. 
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Figure 3.20: The Structure of the Uncertainty Model  

First of all, like the previous domain layer models, the Uncertainty class is being modeled as the 

subclass of the AspectSubSystem class, whose primary focus is on the modelling of the 

information related to the disturbance aspect in a disassembly planning system.   

The Uncertainty class relates to two classes (DisassemblyObject and Process), which represent 

the two specific uncertainty issues (component/subassembly/product functional uncertainty and 

process uncertainty) studied in this thesis. The DisassemblyObject class is introduced to represent 

the aggregation of the Product, the SubAssembly, and the Component instances. The functional 

status of a DisassemblyObject instance might be dependent on the functional status of the other 

DisassemblyObject instances and such a situation is realized by the object property 

functionalDepends. As an example, “prepare food” is the function of a blender (Product) and 

whether an old blender can function properly is conditionally dependent on the other 
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DisassemblyObjects contained in the blender (in this case, the functional status of the Motor 

subassembly, of the central control unit, etc.).  

Both of the DisassemblyObject class and the Process class contain a conditional probability table 

which is used for carrying out uncertainty reasoning and such information is being modeled in the 

FunctionFailureProbabilityTable class and the ProcessSuccessProbabilityTable class 

accordingly.  

(4) Degradation Model  

Degradation is also a critical issue in the planning of disassembly. It usually refers to a gradual 

change in the properties (like tensile strength, color, shape, etc.) of the component or subassembly, 

which usually does not affect the overall function of the component/subassembly until reaching a 

critical point. From the analysis in section 3-1, we know that the existence of degradation in the 

EOL product has a lot of influences on the economic quantification of EOL products or 

components, which is a critical issue in the disassembly planning process. The Degradation Model 

is thus introduced to represent the relevant information necessary for the degradation analysis. In 

this thesis we use the fuzzy logic approach to model the component/subassembly degradation and 

quantify their reuse value through a set of fuzzy linguistic variables and a set of heuristic rules.  

The procedure for reuse value estimation using fuzzy logic is presented in detail in chapter 5. Here 

we only summarize the important informational elements necessary for carrying out the fuzzy 

logic based reuse value estimation. Figure 3.21 presents the overall structure of the Degradation 

Model.  

Similar to the other domain level Information Models, the class Degradation is being modeled as 

a sub class of the AspectSystem class, which represents the information related to the failure mode 
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of the disassembly objects (component, subassembly or product) in an EOL product. Like the 

definition used in the Uncertainty Model, we introduce the class DisassemblyObject to represent 

the aggregation of the Component class, the Subassembly class and the Product class. One 

DisassemblyObject instance relates to several FuzzyVariable instances, which are used to infer the 

reuse value of the DisassemblyObject. Each FuzzyVariable comprises of several other information 

including the type of the variable (input or output), lower limit, upper limit and a set of 

FuzzyTerms. Each FuzzyTerm further comprises of information like the name of the fuzzy term, 

type of the membership function and the parameters for defining the membership function. 
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Figure 3.21: Overall Structure of the Degradation Model 
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Four types of fuzzy variable (Age, MarketDemand, ConditionParameter and ReuseValue) are 

identified in section 3-1 and they are being modeled as the sub class of the FuzzyVariable class.  

Among them, the classes Age, MarketDemand, ConditionParameter are the fuzzy input variable 

whereas the class ReuseValue is the fuzzy output variable. Lastly, each DisassemblyObject 

contains a set of fuzzy rules to demonstrate the heuristic relations among the fuzzy variables. These 

are defined in the FuzzyRuleSet class. 

3.4 Formal DIM Implementation based on Web Ontology Language  

DIM represents a conceptual information model in the domain of disassembly planning and it has 

been implemented into the Web Ontology Language (OWL) for formal machine reasoning and 

interpretation. Before presenting the DIM OWL implementation, the background and reason to 

use OWL as the implementation language is briefly discussed below. 

3.4.1 Why using OWL for DIM implementation  

The implementation of DIM is under the paradigm of Internet of Things (IoT) and the concept of 

“Life Cycle Unit” (LCU). Briefly, IoT provides a network to connect different physical objects, 

which allows them to be sensed and controlled remotely across existing network infrastructure, 

creating opportunities for more direct integration of the physical world into computer-based 

systems, and resulting in improved efficiency, accuracy and economic benefit. LCU, on the other 

hand, is developed specifically for the product disassembly process. As mentioned before, in a 

disassembly factory, different products arrive continuously for disassembly, and individual 

decisions regarding optimal disassembly sequences have to be made for every product. It is 

difficult to predict any pre-defined disassembly process sequences a priori, so the detailed 

information on how to disassemble each arriving product is needed. LCU is proposed under the 
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idea of decentralizing that information by integrating a physical device named Life Cycle Units 

(LCU) into every product. The LCU stores information needed for disassembly. Once enough 

disassembly information about a product is present, the optimal disassembly sequence can be 

generated based on the actual physical status of the EOL product. Combining the LCU and IoT 

technologies together, individualized EOL product information could be sensed and collected by 

LCU and transferred to the central Product Lifecycle Management (PLM) system through the IoT 

network. Now, disassembly researchers could have the potentials to tackle the problem of 

disassembly information bottleneck.   

The implementation of DIM thus should support the above new paradigm and it should have the 

ability to (i) sensing the environment, (ii) store the data in the digital memory, (iii) communicate 

with other facilities or smart products and (iv) carry out knowledge reasoning. This gives new 

opportunities for solving the problem of EOL product disassembly in which product life cycle data 

plays a fundamental role. In this dissertation, we focus on the information aspect and three 

important related requirements (with OWL solutions) are listed below:  

R1: LCU usually requires a fast processing with restricted resources and thus the DIM 

implementation syntax needs to be compact.   

Solution: OWL file is an XML based textual file, which can be processed or reasoned by 

lightweight existing query and reasoning plugins.   

R2: The implemented DIM is going to be published as a formal Disassembly Information Model 

on the Web with the possibility to be connected to the other domain applications. Thus, the 

implementing language should provide easy mechanisms for connecting DIM with other “things” 

on the Internet without pre-assumptions.  
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Solution: In OWL, each object defined in the DIM is annotated with a Unified Resources Identifier 

(URI), which helps other applications to access the information and connect to DIM through the 

web. On top of that, OWL does not follow the traditional database approach, it adopts the open 

world assumption (the truth value of a statement may be true irrespective of whether or not it is 

known to be true), which facilitates the further extensions of the proposed DIM: users can add 

knowledge to DIM as long as it did not semantically contradict with the current definitions and 

such a validation process can usually be carried out automatically by certain reasoners like Pellet 

or Hermit.    

R3: The implemented DIM should facilitate the automated knowledge reasoning process. 

Solution:  Semantic Web Rule Language (SWRL) is supported by OWL, which extends the set of 

OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be combined with an 

OWL knowledge base to provide flexible and powerful knowledge reasoning capabilities. 

3.4.2 OWL Implementation  

Protégé 4.0 (Gennari et al., 2003), as an OWL editor, is used in this thesis to develop formal DIM 

OWL implementation.  The complete OWL implementation code can be accessed from: 

http://disassembly-planning-ontology.sourceforge.net. Here, several OWL implementation issues 

are discussed in detail and full summarization of DIM implementation is presented in the appendix. 

(1) Model hierarchy  

The DIM is a set of models distributed in three hierarchical layers, and certain dependence or 

aggregation relationship exists among different sub models. As an example, the 

“DisassemblyPlanningSystem” sub model, being the most complex sub model in the domain layer, 

is actually an aggregation of four domain sub models (Product Model, Process Model, Uncertainty 

http://disassembly-planning-ontology.sourceforge.net/
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Model and Degradation Model). On top of that, the “DisassemblyPlanningSystem” model itself is 

a system in nature, thus it is dependent on the System Model from the abstract layer.  

DIM is thus implemented into 11 OWL sub models shown in table 3.5. Each OWL file represents 

a sub model in the DIM and is classified into different layers (abstract layer, domain layer or 

application layer). The dependence or aggregation relationship exists among models is realized by 

importing the related sub models into the existing model. Figure 3.22 shows a screenshot of OWL 

implementation of the “DisassemblyPlanningSystem” sub model, which imports 5 sub models it 

depends on.  

Table 3.5: DIM OWL Implementation 

Abstract Layer Domain Layer Application Layer (Chapter 4 & 5) 

N-ary-relationship.owl DisassemblyPlanning

System.owl 

DisassemblySequenceGenerator.owl 

Part-whole.owl Product.owl AdaptiveDisassemblyPlanner.owl 

Graph.owl  Process.owl  

System.owl Uncertainty.owl  

 Degradation.owl  

 

 
Figure 3.22: Importing Sub models into the Dependent Model 
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(2) Modeling the Class Relationship   

A large amount of the elements in the DIM are meant to model the relationships among classes 

(specify how the individuals relate to other individuals). As an example, in the Process Model 

(figure 3.23), the relationships “breaks” and “creates” relate the Process class with the 

DisassemblyObject class and the relationship normalCost and specialCost relates the Process class 

with a certain datatype class (xsd: double). In OWL, the entities describing the ways individuals 

are related are called properties. Two types of properties can be further specialized: if the property 

describes one individual’s relatedness to other individuals, like breaks and creates in the Process 

Model, it is called “object property”; if the property relates individuals to data values (instead of 

to other individuals), like the normalCost and the specialCost in the Process Model, it is called 

“datatype property”.  Figure 3.24 shows a screenshot of implementing the relationships existing in 

the Process Model in Protégé.  
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Figure 3.23: Relationship in the Process Sub Model 
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Figure 3.24: Implementing Object Property and Datatype Property 

 

(3) Modeling of the Class Axioms   

The last important issue in implementing the DIM is to include semantic axioms to represent the 

necessary and sufficient conditions of a certain class. As an example, in the Product Model, 

different types of the Component class are specified.  Figure 3.25 shows one type of the 

Component in the component taxonomy named ConnectingComponent, which consists of two 

important axioms to define the necessary and sufficient conditions that the ConnectingComponent 

class holds:  

A1 (Sufficient condition): ConnectingComponent is a Component which contains at least at one 

degree of freedom, through which the ConnectingComponent can be detached.  

A2 (Necessary condition): A ConnectingComponent instance belongsTo certain type of the 

Connection. E.g. A screw is an instance of the ConnectingComponent class and it belongsTo the 

screw connection.  
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…..   
   <EquivalentClasses>
        <Class IRI="#ConnectingComponent"/>
        <ObjectIntersectionOf>
            <Class IRI="#Component"/>
            <ObjectSomeValuesFrom>
                <ObjectProperty IRI="#hasDegreeOfFreedom"/>
                <Class IRI="#DegreeOfFreedom"/>
            </ObjectSomeValuesFrom>
        </ObjectIntersectionOf>
    </EquivalentClasses>
   …..
    <SubClassOf>
        <Class IRI="#ConnectingComponent"/>
        <ObjectExactCardinality cardinality="1">
            <ObjectProperty IRI="#belongsTo"/>
            <Class IRI="#Connection"/>
        </ObjectExactCardinality>
    </SubClassOf>
   …..

ConnectingComponent

Connection

contains

DegreeOfFreedom

1

1..n

hasDegreeOfFreedom

belongsTo

1

11

1..n

 

Figure 3.25: Implementing the Semantic Axioms related to the Class ConnectingComponent 

 

Both of the axioms can be implemented formally in OWL and they are shown on the left side of 

figure 3.25.  Generally, they follow the following syntax:  

The sufficient condition is defined under the <EquivalentClasses> tag, formally as: 

<axiom>::= EquivalentClasses( <description> ) 

Similarly, the necessary condition is defined under the <SubClassOf> tag, formally as:  

<axiom> ::= SubClassOf( <description> ) 

Where, <description> can further be aggregation of several items including classes, restrictions, 

etc. and the formal metadata for <description> can be presented as follows: 

<description> ::= <classID> 

                | <restriction> 

                | unionOf( {<description>} ) 
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                | intersectionOf( {<description>} ) 

                | complementOf( <description> ) 

                | oneOf({<individualID>} ) 

(4) Summary of DIM OWL Implementation    

 

 

Figure 3.26: DIM OWL Implementation Summary 

 

Figure 3.26 above summarizes the DIM OWL implementation according to four schema metrics 

(we include the two application level sub models as well, which are presented in chapter 4&5): (1) 

number of classes, (2) number of object properties, (3) number of data properties and (4) number 

of axioms. The detailed descriptions of the major DIM OWL implementation are presented in the 

appendix.  
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 DISASSEMBLY SEQUENCE GENERATOR 

 

In this chapter 4 and next chapter 5, two disassembly planning applications are developed and 

presented, with the intension to validate the reusability and usability quality of the proposed DIM. 

Chapter four focuses on the problem of the disassembly sequence generation, which targets at 

finding all the feasible disassembly sequences of an EOL product and further locating the 

economically optimized one. We start with the disassembly sequence generation problem 

definition and background review in section 4.1. Next, the Disassembly Sequence Generator 

Information Model, residing on the application layer of the developed DIM, is presented in detail 

in section 4.2. Section 4.3 presents an example to populate the proposed IM. The detailed 

application algorithm for carrying out the sequence generation and optimization process in 

presented in section 4.4. Lastly, the chapter is wrapped up in section 4.5 with a case study to verify 

the application procedure presented in section 4.4.        

 

 

4.1 Disassembly Sequencing Problem  

Disassembly sequences are listings of disassembly processes (such as the separation of an 

assembly into two or more subassemblies, or removing one or more connections between 

components), through which an EOL product can be separated into small pieces. Unlike the 

assembly process, which usually follows a pre-defined sequence of steps to achieve the final 

deliverable, most of the disassembly planning yields multiple feasible disassembly sequences. A 

disassembly sequence is said to be feasible if it satisfies the geometrical and topological constraints 

related to the EOL product. Detailed definitions of these constraints are described below:  

Topological Feasibility: topological feasibility is related to the connections in an EOL product. In 

an ideal, so called “strongly connected product” case, where each component in the product is 

connected with all the other components (contains the maximum number of possible connections), 

every subset of the components can be considered as a topologically feasible subassembly (no 

topological constraints are present). As an example shown in figure 4.1 (a) below: a product with 

four components is being classified as a strongly connected product because each component in 
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the product is connected with all the other components (like component A is connected to 

component B, C and D). Thus, all the combinations of the components can be considered as a 

feasible subassembly (AB, AC, ABC, etc.).   

A

B C

D

A

B C

D

(a) Strongly Connected Product Example (b) Weakly Connected Product Example
 

Figure 4.1: Topological Feasibility Examples 

However, in a real life situation, the number of connections maybe far less than that in the 

maximum possible case, which imposes certain topological constraints onto the product. In a 

weakly connected product, there always exists at least one subset of components that is not 

connected. Therefore, that subset does not correspond to a subassembly. Figure 4.1 (b) shows a 

non-strongly connected product scenario. In this example, subset AB is not a subassembly because 

component B is not connected to component A. Such topological constraint yields the infeasibility 

of detaching component A and component B together as a subassembly.  

Geometrical Feasibility: geometrical constraints explains the impracticality of specific 

disassembly processes which are obstructed geometrically by the presence of some other 

components. Two levels of geometrical constraints are necessary to be considered in order to 

define the feasibility of a certain disassembly process:  

 Detachability: the ability related to whether a component or subassembly can be detached 

without interference (i.e. A collision free path exists for the detachment to take place).  
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 Stability: the ability of a product to hold its components together in a stable manner. A 

feasible disassembly process should not yield an unstable subassembly (where the 

subassembly falls apart spontaneously) without any further disassembly process. As an 

example, in figure 4.2, both of the two examples are stable initially. A disassembly process: 

“the detachment of part C” is under study, which will yield an unstable subassembly (part 

B is movable) in both examples. However, “the detachment of part C” in example 2 can be 

followed by another feasible disassembly process (detachment of part B) and finally result 

in the full disassembly of the product. Thus, we still consider “the detachment of part C” a 

feasible disassembly process for the product in example 2, even though it results in an 

unstable state. However, in example 1, part B is not detachable from the product after part 

C is detached (no further sequential feasible disassembly process exists). Thus, “the 

detachment of part C” is not a feasible disassembly process for example 1 in figure 4.2.  

Part A

Part B

Part C
Part A

Part B

Part C

x

y

(a) Example 1 (b) Example 2
 

Figure 4.2: An Example to Explain the Product Stability 
 

Locating all the feasible disassembly process sequences is only the first objective of the 

disassembly sequencing problem; the second one is to use an optimization technique on all the 

feasible disassembly sequences for obtaining the economically optimal disassembly process. The 

objective of the optimization model is to find a best “disassembly path” (among the feasible set of 
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disassembly sequences), which achieve a minimized disassembly process cost and maximized 

retrieved components’ revenue. The details of the optimization model are discussed in section 4.4.  

In summary, the objectives of the disassembly sequencing problem can be categorized into two 

sub problems:  

1. Identify all feasible disassembly process sequences  

2. Obtain the optimal disassembly process sequence considering economic benefits   

4.2 Disassembly Sequence Generator Information Model  

The details of the Disassembly Sequence Generator Information Model are presented in this 

section. We start with the information requirement analysis in section 4.2.1 and the formal model 

is presented in section 4.2.2 using UML class diagram, with the OWL implementation summarized 

at the end.     

4.2.1 Disassembly Sequence Generator Information Requirement Analysis  

From the problem definition presented in the section 4-1, the information required for solving the 

disassembly sequencing problem can be considered from three aspects as follows: 

 Information related to the product’s topological configuration. In the Product Model presented 

in chapter 3, information related to the EOL product structure or topology has been modeled 

by introducing the classes Product, SubAssembly and Component (refer to figure 3.13 for 

details). In the disassembly process, more detailed classification of the SubAssembly class 

should be elaborated. As an example, in figure 4.3, “Part6-Part1-Part2” can be an instance of 

the SubAssembly class, since they are topologically connected (Part 6 is connected with Part 

1 and Part 1 is connected to (contact connection) Part 2). However, in the view of EOL product 

disassembly, such combination is not realistic. We would rather pick subassembly “Part6-
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Part1-Part5” or subassembly “Part2-Part8-Part3-Part9-Part4” for candidate subassemblies to 

be detached from the EOL product. Thus, two new types of subassembly, called ContactLoop 

and ContactLoopCluster, are modeled to better serve the disassembly sequencing problem and 

their formal definitions are given in detail in section 4.2.2.  

x

y

z  

Figure 4.3: An Example to Explain Product Topological Configuration 

 

 Information related to the product’s geometrical constraints. Geometrical constraints are the 

most important considerations in the planning of disassembly, which usually can be further 

broken down into two types: the local geometrical constraints and the global geometrical 

constraints. The local geometrical constraints restrict the components from moving along 

certain directions, whereas the global geometrical constraints restrict the component from 

being fully detached from the EOL product. Let us take the product from figure 4.2 (a) as an 

example, Part C is locally constrained by Part B and Part A along the ±x direction and –y 

direction and is globally constrained by Part A along the ±x direction. However, Part C is 
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detachable along + y direction, thus there is no global geometrical constraints along that 

direction. The modeling of the global geometrical constraints requires the full descriptions of 

the boundary representation of the whole product, which will yield a very large information 

structure. We thus only include the information elements related to the local geometrical 

constraints in the Disassembly Sequence Generator Information Model, the global geometrical 

constraints are being handled using a CAD-API based simulation approach. This way, the 

complex boundary representation of the whole product is condensed into one piece of 

information which indicates the location and name of the related CAD file. The details of the 

simulation approach are elaborated in section 4-4.  

 Economic Information. Last information requirement relates to the economic evaluation of the 

disassembly plan. The evaluation is based on the revenue that disassembly operators can expect 

from the retrieved component or subassembly and the cost being spent through carrying out 

the disassembly process. Such information is needed for the disassembly optimization process.  

4.2.2 Formal Disassembly Sequence Generator Information Model 

The Disassembly Sequence Generator Information Model deals with the information required for 

the disassembly sequencing problem. It is residing on the application layer of the DIM and is being 

extended based on the domain layer Product Model. The overall structure is shown in figure 4.4 

below. We will describe the model according to the information requirements identified above in 

the following sections.  
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Figure 4.4: Structure of the Disassembly Sequence Generator Information Model 

R1: Information related to the product topological configuration 

As mentioned above, two special types of the SubAssembly class, named ContactLoop and 

ContactLoopCluster are introduced for the disassembly sequencing problem.  The details of these 

two concepts are presented below: 
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Concept of ContactLoop  

The main idea behind the ContactLoop concept is that most of the mechanical connections 

involves a set of components that together forms a loop in the corresponding product connection 

diagram. Figure 4.5 explains the concept with examples. The top left example is a simple screw 

connection which connects two OrdinaryComponents (Part A and Part B) using a screw 

(ConnectingComponent Part C). In its connection diagram, there exists a loop among Part A, Part 

B and Part C (Part A has a contact connection with Part B, Part B has a threaded connection with 

Part C and Part C has a threaded connection with Part A). Similar observation can be found in the 

top right example where a screw is used to connect more than two components (Loop “Part A-

>Part B ->Part C”, loop “Part B->Part D->Part C” and loop “Part A->Part B->Part D->Part C”).   

We call such loop ContactLoop, which is a special type of the SubAssembly class and forms a 

“building block” for various complex mechanical connections: Different types of complex 

connection are an aggregation of ContactLoops, we will explain more when describing the concept 

of ContactLoopCluster in next section.  

The concept of ContactLoop plays a critical role in the disassembly sequencing analysis: in every 

stage of the disassembly planning, we need to identify such a subassembly so that we can 

efficiently detach a set of components together (parallel disassembly) instead of only detaching 

one component from the whole product (sequential disassembly).  
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Formally, for all the loops in an EOL product connection graph, if the loop has the following 

properties, it is a ContactLoop: 

Part A

Part B

Part C
Part A Part B

Part C

Screw Connection

Bolt Nut Connection

Part A

Part B

Part C

Part C

Part A Part B

Part C

Bolt Nut

Part A

Part B

VirtualComponent C

Part A Part B

Virtual_C

Insert Connection

Part A

Part B

Part C
Part A Part B

Part C

Screw Connection

Part D

Part D

 

Figure 4.5: Examples of the ContactLoop Concept 

The concept of the ContactLoop is not restricted to the screw connection only, it can be well 

applied to the other types of connections with minor modifications. For example, for the insert 

connection (example on the bottom left of figure 4.5), where there is no ConnectingComponent 

involved, the concept of VirtualConnectingComponent introduced in chapter 3 can be used to 

mimic the role of the ConnectingComponent. For the Bolt-Nut connection (example on the bottom 

right of figure 4.5), two ConnectingComponents (bolt and nut) are involved. However, the 

ContactLoop is a loop, in which  

 Only one ConnectingComponent exists in the Loop.  

 All the OrdinaryComponent are constrained by the ConnectingComponent in the loop, 

(i.e. all the OrdinaryComponents are connected to or have contact with the 

ConnectingComponent in the loop). 
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connecting function is based on the joint effort of the bolt and the nut. Either one alone cannot 

provide the connection function and thus cannot be considered as a ConnectingComponent. Also, 

from the disassembly point of view, almost always bolt and nut are detached sequentially together. 

Thus, we treat bolt and nut together as one ConnectingComponent. Under such mechanism, a 

contact loop will be identified as well.   

Concept of ContactLoopCluster  

If we cluster a set of ContactLoops, more complex subassembly will be created and we call such 

subassembly ContactLoopCluster. Formally, the definition of ContactLoopCluster is:  

Figure 4.6 gives an example of the ContactLoopCluster concept. As shown in the contact diagram, 

Part 4, Part 9 and Part 3 forms a ContactLoop and similarly, Part 2, Part 8 and Part 3 forms another 

ContactLoop. Both of the loops share the same OrdinaryComponent (Part 3), thus “Part 4, Part 9, 

Part 3, Part 8 and Part 2” forms a ContactLoopCluster. It is evident from figure 4.6 that the 

identified ContactLoopCluster forms a more complex subassembly, compared to the original 

ContactLoops.  

In some cases, a ContactLoop can itself be a ContactLoopCluster. In the top right example in 

figure 4.5, three ContactLoops are identified:  

L1: Part A->Part B ->Part C (Part C is ConnectingComponent) 

L2: Part B->Part D->Part C (Part C is ConnectingComponent) 

ContactLoopCluster: 

A Combination of ContactLoops, among which one or more OrdinaryComponents are being 

shared by two or more ContactLoops.  
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L3: Part A->Part B->Part D->Part C (Part C is ConnectingComponent) 

Among the above three ContactLoops, L3 is also a ContactLoopCluster since it is a combination 

of L1 and L2 by sharing the same OrdinaryComponent Part B. 

Similar to the reason for introducing the concept of ContactLoop into disassembly sequencing, 

identifying the ContactLoopCluster first will result in a more efficient disassembly process 

(parallel disassembly).  

 

Figure 4.6: An Example of the ContactLoopCluster Concept 

R2: Information related to the product local geometrical constraints 

The local geometrical constraints are modeled by extending the class ConstrainingFeature located 

in the Product Model. Recall, the class ConstrainingFeature represents the interface feature 

through which a component is connected to (or constrained by) another component. However, in 

the original Product Model, how the component is constrained by the ConstrainingFeatures of the 

connecting components is unknown (we can only know what ConstrainingFeature a component 

has). In other words, we need to combine pair wise ConstrainingFeatures of two connected 

components. The class ConstraintFeaturePair is developed for such purpose, which represents a 
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placeholder to relate two ConstrainingFeatures involved in a connection, by introducing the object 

properties belongsTo and target. Also, the ConstrainingFeature of a component restrains the 

component from being detached along a certain direction. Such information is modeled by the data 

property “direction” attached to the ConstraintFeaturePair class.  

The example in figure 4.7 is used to explain the above concepts. Let’s look at the local constraints 

of Component A: it is being locally constrained by Component C along +X and –X direction and 

being locally constrained by Component B along –Y direction.  

When mapping the above information to the Information Model concepts discussed above, we first 

can know Component A has two ConstrainingFeatures (A-f1 and A-f2), through which it is being 

locally constrained. Both A-f1 and A-f2 belong to a ConstraintFeaturePair instance 

(ConstrainedFeaturePair_1 and ConstrainedFeaturePair_2 respectively), which can be identified 

by the belongsTo object property.   

 

Figure 4.7: An Example of Modelling the Local Geometrical Constraints 

After locating the ConstraintFeaturePair information, we can further know the 

ConstrainingFeature information of the other component from which Component A is being 
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constrained, through the object property target. Take ConstrainedFeaturePair_1 as an example, 

we can know that ConstrainingFeatures A-f1 from Component A is constrained by the 

ConstrainingFeatures C-f1 from Component C.  We can also know, C-f1 is constraining 

Component A along the +X and –X directions.  

R3: Economic Information 

Economic information can be separated into two aspects:  

 Related to the disassembly object. This includes the reuse value, recycle value and discard 

cost of the Component and the ContactLoopCluster.  

 Related to the disassembly process. This includes the average process cost and special 

process cost and they have been modeled in the Process Model in chapter 3. 

The related information modeling elements are shown in figure 4.4: 3 data properties (ReuseValue, 

RecycleValue and DiscardCost) have been included to present economic information related to the 

Component class and the ContactLoopCluster class.  

4.2.3 OWL implementation 

The above Disassembly Sequence Generator Information Model has been implemented in OWL 

by extending the Product Model residing on the domain layer of DIM and the relevant concepts 

have been summarized in table 4.1 below.  

4.3 Populating the DIM  

In this section, we will use the model shown in figure 4.8 as an illustrative example for populating 

the Disassembly Sequence Generator Information Model. This exemplary model is used 

throughout this chapter for illustration and verification purposes. Relevant information in the case 
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study problem is populated into the related classes (Component, ConstrainingFeature and 

ConstrainingFeaturePair) and figure 4.9 shows a screenshot of the Protégé implementation. We 

expand the content in figure 4.9 and show only the detailed information related to one of the 

component (Part1) in figure 4.10 (Information related to the other components are identical.)    

Table 4.1: Summary of the DIM OWL Implementation Concept  

Model Imported 

Model  

Class Class Axioms Object 

Property 

Datatype 

Property 
DisassemblySequence 

Generator.owl 
Product.owl Constraining 

FeaturePair 

target exactly 1 

ConstrainingFeature 

target reuseValue 

  direction exactly 1 string belongsTo recycleValue 

  

Component 

discardCost exactly 1 double hasContact 

Loop 

discardCost 

  recycleValue exactly 1 double  direction 

  reuseValue exactly 1 double   

  Constraining 

Feature 

belongsTo some 

ConstrainingFeaturePair 

  

  

ContactLoop 

Subclass of SubAssembly   

  discardCost exactly 1 double   

  recycleValue exactly 1 double   

  reuseValue exactly 1 double   

  

ContactLoop 

Cluster 

Subclass of SubAssembly   

  discardCost exactly 1 double   

  recycleValue exactly 1 double   

  reuseValue exactly 1 double   

  hasContactLoop min 2 

ContactLoop 

  

 

 
Figure 4.8: An Illustrative Example 
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Since Part 1 is not functioning as connecting purpose, it is being classified as an instance of the 

class OridinaryComponent and it has five ConstrainingFeatures as follows: 

Part1_f1_top_face: top face of part 1 (feature #1) 

Part1_f2_bottom_face: bottom face of part 1 (feature #2) 

Part1_f3_center_hole: hole feature in the center of part 1 (feature #3) 

Part1_f4_right_hole: hole feature in the right of part 1 (feature #4) 

Part1_f5_left_hole: hole feature in the left of part 1 (feature #5) 

                  

 
 

Figure 4.9: Instance Population in Protégé 
                     

Each ConstrainingFeature instance belongs to a certain ConstrainingFeaturePair, through which 

the ConstrainingFeature information of the connected component can be revealed. As an example, 

CF_Pair_1 is one of the ConstrainingFeaturePair instance and it relates one of the 

ConstrainingFeature of Part 1(Part1_f1_top_face) to its connected component Part 7, through the 

ConstrainingFeature of Part 7 (Part7_f1_bottom_face). Also, we can know, a direction 

information is attached to the ConstrainingFeaturePair CF_Pair_1, which indicates that Part 1 is 

being locally constrained by Part 7’s bottom face feature (Part7_f1_bottom_face) along +Y 

direction.  
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Figure 4.10: Detailed Populated Information about Part1 
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In the disassembly planning, one important information is to locate the local constraints of a 

component and such information is explicitly represented in the proposed DIM (refer to the 

example in figure 4.10). A simple API call is developed to collect the information in a more 

organized way. The exemplary output is shown in figure 4.11, which presents the local constraints 

of Part1, along 6 principle axis.  

x

Y

Z  

Figure 4.11: Local Constraints of Part 1 

4.4 A CAD API based Disassembly Sequence Generation Application  

The overall structure of the Disassembly Sequence Generation application is presented in figure 

4.12 below. The inputs to the application are the OWL implementation file for the Disassembly 

Sequence Generator Information Model and the product CAD file. The OWL file contains the 

necessary information structure for the sequencing problem and the product CAD file is used here 

to handle the component global constraints, which is not included in the Disassembly Information 

Model.  The output of the application is a theoretically optimal disassembly process sequence, 

based on the geometrical, topological and economic considerations. We consider this result 

theoretic due to the fact that no disturbances or uncertainties are considered in this application and 

it is optimal only if the status of all the components is like new and all the processes can success 
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without failure. A more realistic application which addresses the uncertainty issues is presented in 

chapter 5.   

The Disassembly Sequence Generator application can be broken into two parts: (1) the 

disassembly sequencing, which focuses on identifying all the feasible disassembly process 

sequences of an EOL product and (2) the Linear Programming (LP) based optimization, which 

takes the result (AND/OR graph) from the first part as the input and find the economically optimal 

process sequence. The disassembly sequencing part further consists of three main tasks: (1.1) 

Construct “EOLProduct” object, (1.2) Interference Test and (1.3) Unconstrained Subassembly 

Detection. Each of the tasks is presented in detail in the following sections.  

Disassembly Sequence 
Generator OWL

Construct 
EOLProduct 

Object 

Interference 
Test

Unconstrained 
Subassembly 

Detect Linear Optimization 
Model

AND/OR 
Graph

OWL file

TestAssembly.sldasm

Theoretically Optimized 
Disassembly Sequence

CAD file Disassembly Sequence 
Generator Application

`

 

Figure 4.12: The Overall Structure of the Disassembly Sequence Generator Application 

4.4.1 Disassembly Sequencing  

This section presents the details of the first part of the Disassembly Sequence Generator 

application, which targets on identifying all the feasible disassembly process sequences of an EOL 
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Product. Three major involved tasks are elaborated first in the following paragraphs and then the 

overall application procedure is presented at the end of section 4.4.1.   

Construct the “EOLProduct” Object 

The first task is to extract information from the OWL file and organize them into a certain 

programming object, called “EOLProduct”, so that the application program can process the 

information easily. In other words, this is the information preparation stage of the whole 

application. The structure of the “EOLProduct” object is presented as follows: 

    public class EOLProduct 

    { 

        public List<Component> ordinaryComponentList { get; set; } 

        public List<Component> connectingComponentList { get; set; }       

        public List<Component> allComponentList { get; set; } 

        public Graph connectionGraph { get; set; } 

        public String file { get; set; } 

} 

    public class Component 

    { 

        public String name { get; set; } 

        public ComponentType type { get; set; } 

        public String[] positiveXConstraints { get; set; } 

        public String[] negativeXConstraints { get; set; } 

        public String[] positiveYConstraints { get; set; } 

        public String[] negativeYConstraints { get; set; } 

        public String[] positiveZConstraints { get; set; } 

        public String[] negativeZConstraints { get; set; } 

        public String associatedAssemblyFile { get; set; } 

    } 

The “EOLProduct” object contains three lists (“ordinaryComponentList”, 

“connectingComponentList” and “allComponentList”) registering the different types of 

components in an EOL product (OrdinaryComponent, ConnectingComponent and general 

Component).  Each component is further an aggregated object, which comprises of the name 

information, the component type information and the local constraint information. In this thesis, 

we only consider 6 primary Cartesian directions (±X, ±Y and ±Z) as the possible disassembly 

directions. Thus, the “local constraint” information is recorded in an array, which contains the 
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components that are geometrically restricting the current component moving along a certain 

primary Cartesian direction. Also, a “file” information is included to record the associated CAD 

file name of the EOL Product. Lastly, all the components are organized into a “connectionGraph” 

object, which represents the topological arrangements of the components.     

 

Figure 4.13: Organizing Information into the “EOLProduct” Object 

Figure 4.13 shows the implementation of the Disassembly Sequence Generator application, with 

annotations on the elements relating to the “Construct EOLProduct Object” task. The inputs of the 

application are two files: (1) the Disassembly Sequence Generator OWL file and (2) the EOL 

product CAD file and the locations of both files are being specified by the user. After locating the 

two inputs, the OWL file will be queried and the retrieved information will be used to construct 
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the “EOLProduct” object. The result can be validated by checking the product connection graph 

or the detailed component information, through button “Show Product Graph” and the button 

“Show Component Detail”.   

As an example, the detail information of Part1 is shown in lower dialog box in figure 4.13. It 

contains the name of the component (Part1), the type of the component (OrdinaryComponent), 

and the local component constraints along six primary directions (e.g. Part1 is being locally 

constrained by Part6, Part7 and Part 10 along +X direction).  

Interference Test 

The goal of the interference test task is to address the issue related to the global constraints of the 

component and to check whether a component can be detached from the product along a primary 

direction without collisions with any other components. Since the detailed geometrical form 

information is not modeled in the Disassembly Information Model, the interference test task 

utilizes a CAD simulation based approach to check the detachability of the component. The detail 

procedure is a recursive process as shown in figure 4.14 (we take the interference test function 

along positive X direction as an example). 

The function starts with the initialization of the CAD programming objects related to the product 

under study, and Solidworks is used in this thesis for the implementation. There are three main 

SolidWorks document types, namely Part Document, Assembly Document and Drawing 

Document and each document type has its own programming object (PartDoc, DrawingDoc and 

AssemblyDoc), through which the user can manipulate the CAD model programmatically. In the 

proposed procedure, the “swApp” object is used to start the Solidworks application and the 
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“AssemblyDoc” object is used to provide access to the functions that perform certain assembly 

operations.  

The second step is to identify the size of the product along the detaching direction, in this case 

along +X direction. The reason for this step is to analyze the boundary information for the 

simulation process: how much movement along the detachment direction should be analyzed 

before the successful detachment of the component can be confirmed.  

The third step sets up the transformation details (displacement and direction) through a 

transformation matrix and the detail definition of the matrix can be found in the Solidworks online 

API tutorial (Dassault Systems, 2016). The direction is positive X in this case and the displacement 

is set to 1.5 mm (a small displacement).   

The fourth step starts the simulation process. Basically, the component under study is dragged 

along the detachment direction (+X) for a small distance (1.5 mm) and then the whole assembly is 

checked for interferences. If the number of interferences (being registered in the variable 

“counter”) doesn’t equal to zero, the program will stop and return false, which means the 

component cannot be detached along +X direction. If no interferences are identified, the procedure 

will go back to the beginning of the step 4 and another dragging transformation will be applied to 

the component (1.5 mm displacement along +X direction). The whole procedure will continue 

until we reach the maximum size of the product along +X direction: the component is completely 

outside of the remaining product. The simulation will stop at this point.   

If the program does not return false during the simulation process (step 4), it means the component 

can be detached from the product along +X direction. Thus, the program will release the resource 

object (swApp and AssemblyDoc) and return true to the user.   
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PROCEDURE 1: INTERFERENCE TEST ALONG +X DIRECTION

function PositiveXInterferenceTest(String AssemblyFileName, String componentName)
1: Initiation: swApp, AssemblyDoc<- componentName
2: Identify size of the product
    boundary = swAssy.GetBox(1);
    SizeX = Math.Abs(boundary[0] - boundary[3]);
3: Set up transformation matrix
    swXform = (MathTransform)swMathUtil.CreateTransform(vXfm);       
4: for i=0->sizeX, do
          drag (componentName, swXform);
          int counter=GetInterferenceCount (); 
          if counter !=0
                 return false; 
          end if
     end for     
5: Release Resource Object
6: Return true; 
7: end function

 

Figure 4.14: Details of the Interference Test along +X Direction  

Unconstrained Subassembly Detection  

The goal of the unconstrained subassembly detection task is to carry out parallel disassembly 

whenever possible, which will achieve more efficient disassembly process compared to the 

sequential disassembly. The concepts of ContactLoop and ContactLoopCluster are used to define 

the unconstrained subassembly in an EOL product: An unconstrained subassembly is either a 

ContactLoop or a ContactLoopCluster in a product which satisfies the following conditions:  

 

Definition of Unstrained Subassembly: 

 

For each ContactLoop or ContactLoopCluster, check whether there exists an external edge, 

which links to a ConnectingComponent that does not belong to the ContactLoop or the 

ContactLoopCluster. If such edge cannot be identified, the ContactLoop or 

ContactLoopCluster is an unconstrained subassembly.  
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Figure 4.15 explains the concept with an example. The product in the current stage contains two 

unconstrained subassemblies: 

 S1: Part1, Part5 and Part6 

 S2: Part2, Part8, Part3, Part 9, Part4 

S1 is a ContactLoop and S2 is a ContactLoopCluster. For S1, two external edges (e1 and e2) exist 

and neither of them is connected to a ConnectingComponent (Part2 is an OridnaryComponent). 

Similar observation can be made for S2: two external edges (e3 and e2) exist and both of them 

connect to an OrdinaryComponent Part1. Thus, S1 and S2 are unconstrained subassembly.  

On the other hand, Part 8, Part 2 and Part 3 form another ContactLoop S3, which is not an 

unconstrained subassembly: S3 has an external edge e4 which connects to a 

ConnectingComponent (Part9) that does not belong to the ContactLoop S3.  

 

e1

e2

e3

e4

 

Figure 4.15: Unconstrained Subassembly Example 
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In order to identify the unconstrained subassembly in a product, information relating to the 

ContactLoop and the ContactLoopCluster should be provided. Different from other information 

in the DIM, which is static and can be determined a priori. The ContactLoop and 

ContactLoopCluster information is dependent on each of the disassembly states. Thus, it is not 

being identified in the beginning of the disassembly process, but rather being generated for each 

disassembly state dynamically. The detailed procedure can be broken into four functions as shown 

below.  

F1->Identifying the Loops: The first function is to identify all the loops in the product connection 

graph, and the pseudo codes are presented in figure 4.16. The procedure starts with the function 

“findAllCycles”, which takes each edge in the graph and pass it on to the sub function 

“findNewCycles” as input. The “findNewCycles” sub function then finds cycles that contains the 

input edge and returns the results.  

PROCEDURE 2: IDENTIFYLING LOOPS IN A GRAPH

function findALLCycles(graph)
1. Initialize cycles = new static List<int[]>()
2. for i=0->graph. Length(0), do
           for j=0->graph. Length(1), do        
                  findNewCycles(new int[] {graph[i, j]})
           end for
     end for       
end function

SubFunction findNewCycles(int[] path)
1. int n = path[0];
2. for i=0->graph. Length(0), do
3.          for y = 0->1, do
4.                if   graph[i , y] == n  //  edge pointing to the current node             
5.                      x=graph [i, (y+1)%2]; //neighbor node
6.                      if !visited(x, path); //neighbor not on the path yet
7.                             add to the path;
8.                             findNewCycles (path);
9.                      end if  
10.                    if (path.Length >2) && (x==path[path.Length-1]) //Cycle found
11.                           int[] p = normalize(path);
12.                           int[] inv = invert(p);
13.                           if (isNew(p) && isNew(inv))
14.                                cycles.Add(p);
15.                            end if
16.                       end if
17.                  end if
18.            end for
19.       end for 
20. End Sub function

//Graph modelled as list of edges

//static int[,] graph = {{1, 2}, {1, 3}, {1, 4}, {2, 3}};

 

Figure 4.16: Pseudo Code for Finding All the Loops in a Graph 
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In the sub function “findNewCycles”, an outer loop scans all nodes of the graph and tries to locate 

neighborhood edge that connects to the input edge. The neighborhood edge will be further sent to 

the function “findNewCycles” to identify other connected edge (line 2 to line 8). The process will 

continue by recursively calling the sub function “findNewCycles”, until a new cycle is found (the 

path is longer than two nodes and the next neighbor is the start of the path) (line 10). In order to 

avoid duplicate cycles, the identified cycles are normalized by rotating the smallest node to the 

start. Cycles in reversed ordering are also taken into account (Line 11 to Line 14).    

F2->Identifying of the ContactLoop: The second function is to find all the ContactLoops from the 

loops identified from the previous procedure (F1). The main process is to apply each loop to the 

“isContactLoop” function and those return true from the “isContactLoop” function are the 

ContactLoops. Figure 4.17 shows the pseudo code  for the “isContactLoop” function. 

The “isContactLoop” function starts with checking whether only one ConnectingComponent 

exists in the cycle (Line 1 to line 8). If more than one ConnectingComponent or no 

ConnectingComponent is identified, the function will return false and the cycle is not a 

ContactLoop. From line 9 to line 26, the function tests whether all the OrdinaryComponents are 

connected to or has contact with the ConnectingComponent in the loop. It is done by retrieving 

all the edges of one OrdinaryComponent and check whether one or more of these edges further 

connect to the ConnectingComponent in the loop. If the checking returns true, the variable 

“counter” will increment by one. Such process will be applied to all the OrdinaryComponents in 

the loop and if in the end the value of the “counter” variable is less than the size of the input cycle 

by one, it means all the OrdinaryComponents are connected to the ConnectingComponent and 

the cycle is a ContactLoop. 
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PROCEDURE 3: CHECK WHETHER A CYCLE IS A CONTACTLOOP

function  bool isContactLoop(List<String> cycle, Graph p1)
1.     for i=0->cycle.Count(), do
2.          if  (p1.FindNode(cycle[i]).Type==Type.connectingComponent
3.       numOfconnectingComponent++;
4.    end if 
5.  end for
6.  if numOfconnectingComponent!=1
7.    return false;   
8.  end if
9.  counter=0;
10. for i=0->cycle.Count(), do
11.   if (p1.FindNode(cycle[i]).Type == Type.ordinaryComponent
12.      List e1 = p1.FindNode(cycle[i]).OutEdges;
13.      List e2 = p1.FindNode(cycle[i]).InEdges;
14.      foreach edge in e1 and e2
15.          if edge.TargetNode.Id == connectingComponetInLoopID
16.             counter++;
17.          if e.SourceNode.Id == connectingComponetInLoopID
18.             counter++;
19.      end foreach
20.   end if
21. end for
22. if counter !=cycle.Count()-1
23.    return false;
24. end if
25. return true
26. end function

 

Figure 4.17: Pseudo Code for Determining Whether a Loop is a ContactLoop 

F3->Identifying ContactLoopCluster: The third function is to find all the ContactLoopClusters 

and the main process steps are shown in figure 4.18. The procedure starts with initializing a “result” 

variable with empty initial value, for storing the identified ContactLoopCluster. Then, a searching 

over the ContactLoops is carried out (code section 2) to check whether two ContactLoops can be 

clustered to form a ContactLoopCluster. If no ContactLoops can be merged or only one merger 

happens, the procedure will end and the result will be returned (code section 3). If more than one 

mergers occur, the procedure further checks whether the resulting combinations can be further 

merged together to form a larger can cluster (code section 4). The process will continue until no 

new clusters can be found. 
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PROCEDURE 4: GENERATE CONTACTLOOPCLUSTER 

function  List<String> GenerateContactLoopCluster(List<String> contactLoops)
1.    Initialize empty List<String> result;
2.    for i=0->contactLoops.Count(), do
              for j=i+1 -> contactLoops.Count(),do
                    if canCluster (contactLoop[i], contactLoop[j])
                       add to result; 
                    end if
              end for
          end for
3.    if result.Count() == 0 or result.Count() == 1
              return result;
       end if
4.    if result.Count()!= contactLoop.Count()
              do
        tempt = result.ToList();
        size = result.Count();
        merge(result);
      while  (!sameList(tempt,result))
   end if  
5.    return result
6.    end function

 

Figure 4.18: Pseudo Code for Identifying the ContactLoopCluster 

 

F4->Identifying the Unstrained Subassembly: the last function is to identify all the unconstrained 

subassemblies of the product. The process checks all the ContactLoops and ContactLoopClusters 

identified in the previous steps and see if any of them loses constraints along certain disassembly 

directions. The function “IsUnConstrainedsubAssembly” is implemented for such purpose and 

figure 4.19 shows the major steps of the function.   

The process is relatively simple and it recursively checks each node in the subassembly (the 

subassembly can be either a ContactLoop or a ContactLoopCluster). If none of the nodes is 

connected to an external ConnectingComponent, then it is an unstrained subassembly and the 

function returns true.    
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PROCEDURE 5: IS UNCONSTRAINED SUBASSEMBLY

function  bool IsUnConstrainedsubAssembly(List<String> subAssy, Graph p1)
1.    for i=0->subAssy.Count(), do
             List e1=p1.FindNode(cycle[i]).Edges;
            foreach edge in e1 
                    if  edge.TargetNode.Type == Type.ConnectingComponent 
                    and (!subAssy.Contains(e.TargetNode.Id)
                         return false;
                    end if
            end foreach
        end for 
5.    return true
6.    end function

 

Figure 4.19: Pseudo Code for the Function “IsUnConstrainedsubAssembly” 

Overall Procedure for Finding All Feasible Disassembly Process Sequences  

 

The overall procedure for finding all the feasible disassembly process sequences is shown in figure 

4.20 in the next page. It utilizes the sub functions (F2->F4) discussed above and can be broken 

down into three parts. The first part is to pick any ConnectingComponent as a candidate 

component to be detached and apply the interference test to it. The procedure continues to the 

second part if the selected ConnectingComponent can pass the interference test. The second part 

is to carry out the component level stability and disassembility check, which searches if there exists 

an OrdinaryComponent which loses constraints due to the detachment of the 

ConnectingComponent. If so, we need to check whether this OrdinaryComponent can be 

detached without interferences. If there exists an interference, it means the detachment of the 

original ConnectingComponent will result in an unstable product state, in which some 

unconstrained component cannot be detached from the product. Such a situation is not allowed in 

the disassembly process and the program will thus reject the detachment of the candidate 

ConnectingComponent and start to test another candidate ConnectingComponent.  
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On the other hand, if the unconstrained OrdinaryComponent can be detached without 

interferences and the product can reach a stable state. The subassembly level stability and 

disassembility check will be further carried out, which checks if there exists an unconstrained 

subassembly that cannot be detached (cannot pass the interference test).  If there is no 

unconstrained subassembly or the unconstrained subassembly can be detached without 

interference, the program will accept the disassembly plan and continue to the next iteration.   

 

void generate_And_OR_Graph 

(EOLProduct p1, List<Pair> result)

Interference Test On
ConnectingComponent i

Pass?
No

i++

Disassemble 
ConnectingComponent i

While !(Stable)

Interference Test on
OridnaryComponent which loses constraints

yesPass

Fail

Reject and Reset

Any
UnconstrainedSubAssembly?

No
Accept and Iterate

No

yes

Interference Test on
UnconstrainedSubAssembly

Pass
Accept and Iterate

fail

Reject and Reset

Try detaching 
ConnectingComponent 
in a EOL Product (Stable)

Component Level Stability 
and Disassembility Check

Subassembly Level Stability 
and Disassembility Check

 

Figure 4.20: Procedure for Finding All the Feasible Disassembly Process Sequences 
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4.4.2 LP based Disassembly Process Optimization 

After identifying all the feasible disassembly process sequences, linear optimization can be applied 

to find the economically optimal sequence. The LP model gives the optimal solution based on 

maximizing the total value of the retrieved part/component and minimizing the total disassembly 

cost associated to them. Take figure 4.21 as an example, if we assign each disassembly operation 

(0, 1, 2, 3, 4, and 5) as a binary decision variable (x0, x1, x2, x3, x4, x5), the value we can retrieved 

from a set of disassembly operations is:  

Value=VABCDE *(x0-x1-x2) +VABCD *(x1-x3) +VBCDE *(x2) +VAB *(x3-x4) + VCD *(x3-x5) +VA *(x2+x4) +VB *(x4) 

+VC *(x5) +VD *(x5) 

If we carry out only operations 0, 1, 3, and 4 (x0=x1=x3=x4=1, other equals to 0). The above 

equation tells us total value we can retrieved from such a disassembly plan is:  

VABCDE *(1-1-0) +VABCD *(1-1) +VBCDE *(0) +VAB *(1-1) + VCD *(1-0) +VA *(0+1) +VB *(1) +VC *(0) +VD *(0) 

 = VCD + VA + VB 

ABCDE

ABCD

BCDE

AB

CD
1

2

4

5

3

0

 

Figure 4.21: An Example of Four Parts 

We can put into a generalized formulation as follows:  

 𝑉 = ∑ ∑ 𝑉𝑖 ∗ 𝑇𝑖,𝑗 ∗ 𝑥𝑗𝑗𝑖  

where T is the coefficient matrix and the value of the element in the matrix (Ti j) equals to -1, 0 or 

1. The subscript j corresponds to operation and subscript i correspond to part or subassembly. If 
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operation j disassembles subassembly i, Ti j= -1. If operation j assembles part i into a subassembly, 

Ti j =1. For other conditions, Ti j= 0. For the example in figure 4.21, the T matrix is as follows: 

Table 4.2: Coefficient Matrix Example 

 0 1 2 3 4  5 

ABCDE 1 -1 -1 0 0  0 

ABCD 0 1 0 -1 0  0 

BCDE 0 0 1 0 0  0 

AB 0 0 0 1 -1  0 

CD 0 0 0 1 0  -1 

A 0 0 1 0 1  0 

B 0 0 0 0 1  0 

C 0 0 0 0 0  1 

D 0 0 0 0 0  1 

E 0 0 0 0 0  0 

 

Follow the same analysis for the disassembly operation cost, the complete disassembly LP model 

formulation is as follows: 

Objective=V-C=∑ ∑ 𝑉𝑖 ∗ 𝑇𝑖,𝑗 ∗ 𝑥𝑗𝑗𝑖 − ∑ 𝐶𝑗,𝑘 ∗ 𝑦𝑗,𝑘𝑗,𝑘  

S.T.  

1. ∑ 𝑥𝑖,𝑖𝑛𝑖𝑛 ≥ ∑ 𝑥𝑖,𝑜𝑢𝑡𝑜𝑢𝑡  , ∀ 𝑖    

2.  ∑ 𝑥𝑖,𝑖𝑛𝑖𝑛 ≤ 1 , ∀ 𝑖  

3. 𝑥𝑗 = {
1,             𝑖𝑓 𝑗 = 0

     ∑ 𝑦𝑘,𝑗𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         

4. ∑ 𝑦𝑘,𝑗𝑘 = ∑ 𝑦𝑗,𝑘𝑘 , for j = 1,2,3. . . n  

 

 

 

 

Constraints from AND/OR graph 

Constraints from Task 

Precedence graph 
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Decision variables are x j and y j, k and V i and 𝐶𝑗,𝑘 are constant coefficients representing the value 

of each part/component and the cost of disassembly operation. All of the decision variables are 

binary variables.  

For every node in an AND/OR graph, the sum of the outgoing flow variables is equal to, or smaller 

than, the sum of the incoming flow variables (constraint 1). Also, only one path can be selected for 

a branch in the graph and thus the sum of the incoming flow variables should be less than 1 

(constraint 2). As the initialization of the disassembly process, the decision variable of the first 

process x0 should be equal to 1 (Constraint 3).  Constraint 3 also indicates that a disassembly 

operation variable related to operation j should be same on an AND/OR graph and a task 

precedence graph. Lastly, constraint 4 says for every node in the task precedence graph, the sum 

of the outgoing flow variables is equal to the sum of the incoming flow variables.  

where, 

𝑥𝑗  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑗   

𝑦𝑗,𝑘 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑗, ∀𝑘 

 

𝑥𝑖,𝑖𝑛 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑖  
𝑥𝑖,𝑜𝑢𝑡 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, ∀𝑖   
 

𝑖 ∈ {𝑠𝑢𝑏𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦 𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝐴𝑁𝐷/𝑂𝑅  𝑔𝑟𝑎𝑝ℎ} 

𝑘, 𝑗 ∈ {0,1,2 … 𝑛}, where n represents the total number of operations 
 

 Index i refers to a subassembly or a component in the AND/OR graph 

 Index j refers to the disassembly operations, j=0,1,2…n, 𝑥0 is a pseudo operation which 

represents the initialization of the disassembly process (EOL product is checked in). n 

represents the total number of operations.  

 𝑥𝑖,𝑖𝑛 refers to one of the incoming flow variables (i.e. disassembly operation variable 𝑥𝑗) 

related to the subassembly (or the component) i.  

 𝑥𝑖,𝑜𝑢𝑡 refers to one of the outgoing flow variables (i.e. disassembly operation variable 𝑥𝑗) 

related to the subassembly (or the component) i.  

 𝑦𝑘,𝑗 refers to the disassembly operation j which is sequentially located after the disassembly 

operation k in the task precedence diagram.   
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4.5 Case Study  

This section verifies the Disassembly Sequence Generator application through an example (the 

graphical representation of the example is shown in figure 4.8). We start with the verification of 

the involved sub functions, which include: (1) loop detection, (2) ContactLoop detection, (3) 

ContactLoopCluster detection and (4) Unconstrained Subassembly detection, in section 4.5.1. The 

overall procedure for generating all the feasible disassembly sequences (shown in figure 4.20) is 

further validated in section 4.5.2. Lastly, in section 4.5.3, the LP-based optimization model is 

applied to the case study to find the optimal disassembly sequence.  

4.5.1 Sub Function Verification 

Figure 4.22 shows the implementation of functions for (1) loop detection, (2) ContactLoop 

detection, (3) ContactLoopCluster detection and (4) unconstrained subassembly detection. 

Applying those functions to the initial state of the product as shown in figure 4.8. The following 

results are obtained.  

There are 41 cycles in the current connection graph, among which five are identified as 

ContactLoop: 

L1: Part2->Part7->Part1    L2: Part2->Part8->Part3     L3: Part1->Part10->Part4    

L4: Part1->Part6->Part5    L5: Part9->Part4->Part3 

These ContactLoops can be further clustered to form one ContactLoopCluster:  

“CLC1: Part2->Part7->Part1->Part8->Part3->Part10->Part4->Part6->Part5->Part9” 

There is no unconstrained subassembly at this state.  

If the disassembly operator detaches Part7 and Part10, the EOL product reach a new state.  The 

results of the above sub functions are (shown in figure 4.23):  
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There are 17 cycles in the current connection graph, among which three are identified as 

ContactLoop: 

L1’: Part2->Part8->Part3     L2’: Part1->Part6->Part5    L3’: Part9->Part4->Part3 

These ContactLoops can be further clustered to form one ContactLoopCluster: 

“CLC1’: Part2->Part8->Part3->Part9->Part4”   

Also, there is two unconstrained subassemblies at this state and they are:  

L2’: Part1->Part6->Part5     

CLC1’:  Part2->Part8->Part3->Part9->Part4 

From the results above, it is evident that the implemented sub functions return results as expected 

and we thus can verify the proposed sub functions.   

…...  
 

Figure 4.22: Verification of Sub Functions at State 1 (Initial State) 
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Figure 4.23: Verification of Sub Functions at State 2 (When Part7 and Part10 have been Detached) 

 

4.5.2 Overall Procedure Verification  

The overall procedure to generate all the feasible disassembly sequences has been shown in figure 

4.20. Here, we apply the case study problem to the application to demonstrate the search process. 

Figure 4.24 below shows the details of one search iteration, which generates one feasible 

disassembly sequence.  

The application procedure starts with picking any of the ConnectingComponent as the candidate 

to be detached. In this example, Part9 is selected and the interference test is applied on it to check 

whether Part9 can be detached without collisions with the other components. The result from the 
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interference test will be true, which indicates no collisions will happen during the disassembly of 

Part9. Next step is to check the component and subassembly level stability/disassembility. Because 

the product reaches a stable state (state 2) after the detachment of Part9 (there exists no unstable 

components or subassemblies), the detachment of Part9 is accepted as feasible disassembly step.  

State 1 State 2 State 3 State 4 State 5

State 6

State 7

State 1 State 2 State 3 State 4 State 5

State 6

State 7
 

Figure 4.24: Process Description for Generating One Feasible Disassembly Sequence 

At state 2, similar process will be applied. First, the application procedure will pick any of the 

ConnectingComponent as the candidate to be detached and Part10 is selected. Interference test 

will be further applied on Part10. However, in this state, even though Part10 can pass the 

interference test, it does not immediately accept the detachment of Part10 as a feasible disassembly 

process. It is because that the EOL product reached an unstable state (state 3) after Part10 is 

disassembled: the component level stability check will identify that component Part4 loses 

constraints along +x, -y, +z and –z directions and becomes unstable. Thus, further interference test 

on the unstable component Part4 should be carried out. In this case, Part4 can be detached and the 

EOL product will reach a stable state (State 4). Until this point, the application validates the 

feasibility of the disassembly process, “detachment of Part10” and disassembly process, 
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“detachment of Part4”, and suggests they should be carried out sequentially in order to reach a 

stable state (State 4).  

At state 4, similar process will be again applied and Part7 is selected as the candidate to be 

detached. The interference test on Part7 will be passed successfully and the EOL product will reach 

state 5 if Part7 is detached. However, the EOL product in state 5 contains subassembly level 

instability: two unstrained subassemblies (S1: “Part1, Part5, Part6” and S2: “Part2, Part3, Part8”) 

are identified. Thus, the interference test will be applied to them and parallel disassembly will be 

applied to yield two stable subassemblies (State 6 and State 7).     

The searching process will iterate as above until all the feasible disassembly sequences are 

identified. The final result is shown in figure 4.25.  

The result as shown in figure 4.25 identifies all the feasible disassembly sequences. We can see, 

with a 10 parts product, we can have theoretically 10! (3,628,800) disassembly sequences. 

However, the feasible disassembly sequences are much less (565 total for the case study problem) 

due to the geometrical and topological constraints.   

A further study on those generated feasible disassembly sequences shows that they are 100% 

feasible in a real scenario, which means the application gives no error disassembly sequence that 

is geometrically or topologically impractical. 
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Figure 4.25: All the Generated Feasible Disassembly Sequences Related to the Case Study 
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4.5.3 LP-Based Optimization Model Verification 

The LP-based optimization model can be applied to generate an economically optimal disassembly 

sequence. Instead of applying the LP model directly on the AND/OR graph as shown in figure 

4.25, we pick a simpler example as shown in figure 4.26 below to validate the LP optimization 

model, with the intension to be more concise and clear.      

Figure 4.26 represents a product with six parts (ABCDEF). All the feasible disassembly sequences 

are generated. Both total and partial disassembly is allowed as long as the profit is maximized. The 

cost of disassembly operation is known, and has given in a matrix form (figure 4.26); because, the 

cost of a certain disassembly operation is dependent on the previous operation. One single 

disassembly operation may cost differently depending on a particular disassembly sequence that 

has been previously followed till this operation. It means C1, 2 (cost of operation 2 carried out after 

operation 1) is different from C3, 2 (cost of operation 2 carried out after operation 3). Also the 

revenues of all the part, subassembly and assembly are known (figure 4.27). They can be positive 

numbers which means they have some values for reuse or recycling; they can also be negative 

numbers which means they can’t be reused or recycled and maybe hazardous to the environment: 

so they have negative values. Given this information, an optimal disassembly sequence needs to 

be determined so that the profit will be maximized.  

ABCDEF

ABCDE

ABCDF

ABCD

BCD CD

AE

ABABF

0

1

2

4

5

3

9 11

12

13

7

8

10
6

 

Figure 4.26: One Simple Generated Feasible Disassembly Sequences Example   
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Node Value ($) 

ABCDEF -50 

ABCDE -35 

ABCDF -30 

ABCD 200 

ABF 220 

BCD -30 

AB 170 

AE 160 

CD 250 

A 152 

B 78 

C 180 

D 220 

E 160 

F 130 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 70 69 68 67 66 65 64 63 62 61 60 59 58 57 

2 50 51 52 53 54 55 56 57 58 30 20 10 20 15 

3 60 50 51 36 15 20 21 22 23 24 25 26  27 28 

4 30 49 52 26 16 16 18 20 22 24 26 28 32 40 

5 50 48 53 27 17 17 36 15 30 10 5 20 30 41 

6 45 47 54 28 18 18 25 40 45 50 60 30 32 42 

7 30 46 55 29 19 19 11 30 25 16 11 18 15 43 

8 29 30 56 30 20 20 30 31 32 33 34 8 30 44 

9 28 29 57 34 21 21 31 32 33 34 40 42 31 45 

10 27 28 30 45 22 22 32 15 20 20 10 30 32 46 

11 26 27 28 46 23 30 33 15 10 20 16 14 33 47 

12 25 26 36 47 30 35 34 30 25 51 50 9 34 40 

13 24 25 23 48 35 26 35 60 14 70 60 45 35 30 
 

Figure 4.27: The Value Vector and Cost Matrix for the Case Study Product 

 

Applying LP optimization model proposed in section 4.4.2, the optimal path of the problem in 

figure 4.26 is shown in figure 4.28 below: 

 

Figure 4.28: The Optimal Disassembly Path 

In order to verify the model, the following two extreme cases are checked: 

(1) Let us change the value of subassembly ABCD to extreme high. The program successfully 

stops at node ABCD for part reuse, as shown in figure 4.29. It means that subassembly ABCD is 

valuable enough for reuse and it should not be further disassembled. 
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Figure 4.29: An Optimal Disassembly Path (Verification Scenario 1) 

(2)  Let us change the cost of disassembly operation C47 and C57 to very high values (big M). 

Because of the high operation costs associated to the operation 7, the optimal disassembly 

sequence will not continue through the arc 7 (which represents operation 7) and will detour to 

operation 8 instead, as shown in figure 4.30. 

 

Figure 4.30: An Optimal Disassembly Path (Verification Case 2) 

 

From the analysis above, we can conclude that the optimization model is quite convincing and it 

generates optimal disassembly sequence as expected.  
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 ADAPTIVE DISASSEMBLY PLANNING 

 

Chapter 5 focuses on the problem of the adaptive disassembly planning, which considers the 

product and process uncertainties. We start with problem description in section 5.1. Next in section 

5.2, the Adaptive Disassembly Planning Information Model is elaborated. Detailed application 

method for carrying out the dynamic disassembly sequence generation is presented in section 5.3. 

Lastly, the chapter is wrapped up with a case study to verify the overall application procedure.  

 

5.1 Problem Definition   

Adaptive disassembly planning considers all the feasible disassembly sequences as input and 

determines the optimal disassembly sequence. It takes the following two extra issues into 

consideration: 

(1) Uncertainty issue: As mentioned in the previous chapters, unlike the assembly process, the 

disassembly process has various uncertainty issues. Thus, extra information and special 

mechanisms are needed for the uncertainty handling. Two types of uncertainties are considered in 

this dissertation: (1) Component/assembly function uncertainty and (2) Operation uncertainty.  

Component/assembly functional uncertainty: each component or assembly might be 

associated with a primary function, which contributes to the product overall function. 

When an EOL product is at the end of its service life, its component or subassembly might 

not be functional, and such information is critical in the disassembly planning process. 

However, it could only be realized gradually during the disassembly process.  

Operational uncertainty: during the disassembly process, certain operation, such as 

unscrewing, might not succeed due to the component’s current physical conditions (the 

component may have deformed or corroded during its service period). Then, extra special 

operations are necessary to handle such situations, which will incur a higher cost. Since 
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this information is also unknown at the beginning of the disassembly process, it is called 

the operation uncertainty. 

(2) Degradation issue: Component/assembly degradation is also a critical factor in disassembly 

planning. Degradation is a gradual change in properties (like tensile strength, color, shape, etc.) of 

the component, which usually does not affect the overall function of a component until it reach to 

a critical point. However, degradation does affect the economic quantification of EOL product or 

component. For example, some subassembly might be functional, but the reuse value of the 

subassembly still could be lower than the expected average reuse value (the subassembly is close 

to failure) or higher than the expected average reuse value (the subassembly still has a long 

remaining useful life time).  

In order to handle the above two issues, extra information is needed and it has been identified in 

chapter 3 (the Uncertainty Information Model and the Degradation Information Model in the 

domain layer). However, some of the involved information for a specific EOL product can hardly 

be acquired a priori (e.g. the condition of an internal component usually cannot be identified at the 

beginning of the disassembly process). Rather, this information is revealed gradually during a 

disassembly process. Thus, an “optimal” path is determined at each stage of the disassembly 

process with the limited information available at the current time and will be re-evaluated after 

reaching a new stage with more information identified. Thus, it is called adaptive disassembly 

planning problem.  

5.2 Adaptive Disassembly Planning Information Model 

The Adaptive Disassembly Planning Information Model is presented in this section. We start with 

the requirement analysis in section 5.2.1 and the formal Adaptive Disassembly Planning 
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Information Model is described in section 5.2.2 using the UML class diagram as a graphical 

notation.  

5.2.1 Requirement Analysis for the Adaptive Disassembly Planning 
Information Model 

The required information for handling the uncertainty and degradation issue has been identified in 

the domain level sub models (the Uncertainty Model and the Degradation Model). The Uncertainty 

Model is based on the Bayesian Network theory, whereas the Degradation Model is based on the 

Fuzzy Logic theory (refer to chapter 3 for details). From a high level view, the main information 

in both of the models is basically statistical information, which provides certain degrees of belief 

in the relevant issues. However, in order to make a disassembly decision, disassembly benefits 

(utility) and disassembly constraints should also be considered and a certain disassembly decision 

theory should be formed. In this dissertation, disassembly decision theory is defined as:  

The fundamental idea of the disassembly decision theory is that a computer aided disassembly 

planner is rational if and only if it chooses the feasible disassembly action (satisfying all the 

constraints) that yields the highest expected disassembly utility, averaged over all the possible 

outcomes of the action. This is also called the principle of Maximum Expected Utility (MEU) in 

the traditional decision theory.  

The realization of the Disassembly Decision Theory yields what we called Disassembly Decision 

Network (DDN) and it can be described formally as a six-tuple: DDN= (P-DN, UTN, UN, TR, 

CPT, F), where 

Process Decision Node (P-DN): P-DN= {P-DN1, P-DN2, P-DN3…, P-DNN}, N>0, is a finite set of 

process decision nodes denoted by a rectangle shape. Each of the nodes can take two possible 

Disassembly Decision Theory = Probability Theory + Utility Theory + Disassembly Constraints 

Modeling 
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values (“carry out” or “don’t carry out”), which represents the two choices available to the 

disassembly process planner regarding to a specific process decision.  

Utility Node (UTN): UTN= {UTN1, UTN2, UTN3…, UTNN}, N>0, is a finite set of utility nodes 

denoted by a diamond shape and they are used to enable the numerical evaluation of the 

consequences of a decision. Two types of the utility nodes are further specified:  

 Process Utility Node (P-UTN): represents the cost that is associated with a disassembly 

process.  

 Disassembly Object Utility Node (D-UTN): represents the utility that is associated with a 

disassembly object, like component, subassembly, etc.  The utility can be interpreted as the 

reuse value, recycling value or discard cost depending on the disassembly context (type of 

the disassembly object, whether or not the component is functioning, whether or not the 

subassembly is further detached, etc.)  

Uncertainty Node (UN): UN= {UN1, UN2, UN3…, UNN}, N>0, is a finite set of uncertainty or 

chance nodes denoted by ellipse shapes and they are used to represent the random variables related 

to the problem. Two types of the uncertainty nodes are further specified: 

 Process Uncertainty Node (P-UN): is a variable representing whether or not a disassembly 

process is successfully carried out and two values are possible for this type of uncertainty 

node: {“success”, “fail”}.  

 Disassembly Object Function Uncertainty Node (D-UN): is a variable representing whether 

or not a disassembly object is performing its designed function properly and two values are 

possible for this type of uncertainty node: {“function”, “not function”}.  
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Transition Arc (TR): TR= {TR1, TR2, TR3 …, TRN}, N>0, is a finite set of directed arcs connecting 

different types of nodes. The intuitive meaning of a transition arc from node X to node Y is that X 

has a direct influence on Y, or there exists a causal relationship between X (cause) and Y (effect). 

Based on the types of the nodes to be connected, five types of TRs are further specified as follows:  

 Type 1 (P-DN → P-UTN): This type of transition arc connects a P-DN to a P-UTN, which 

describes the influences of a process decision on the process utility. In general, if the 

decision of a certain disassembly process is “carry out”, then the utility (cost) of the 

relevant process is set to some negative value. On the other hand, if the decision of a certain 

disassembly process is “do not carry out”, the relevant process utility (cost) should be zero.    

 Type 2 (P-UN → P-UTN): This is a transition arc connecting from a P-UN to a P-UTN and 

it describes the effect of the process uncertainty on the process utility. In general, if the 

disassembly process is successfully executed without problem (the value of P-UN is 

“success”), the process utility (cost) will be set to the average process cost. On the other 

hand, if the disassembly process fails, a higher process utility (cost) should be applied.  

 Type 3 (D-UN → D-UTN): This is a transition arc connecting from a D-UN to a D-UTN 

and it describes the effect of the disassembly object function uncertainty on the disassembly 

object utility (refer to chapter 3 for the definition of disassembly object).  In general, if the 

disassembly object is “not functioning”, it means this disassembly object cannot be reused 

and thus the relevant utility is set to either the recycle value (if it is a component) or discard 

cost (if it is a subassembly). On the other hand, if the disassembly object is “functioning”, 

it means this disassembly object can be reused and the relevant utility should be set to the 

reuse value.  
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 Type 4 (P-DN → D-UTN): This is a transition arc connecting from a P-DN to a D-UTN 

and it describes the influences of a process decision on the disassembly object utility. In 

general, if a process disassembles the disassembly object, then the relevant utility is set to 

zero (the disassembly object doesn’t exist anymore). Otherwise, the relevant utility will be 

set to either the reuse value, the recycling value or the discard cost depending whether the 

disassembly object is functioning properly.  

 Type 5 (D-UN →D-UN): A transition arc connecting from a D-UN to a D-UN, which 

describes the function dependency between different disassembly objects. As an example, 

whether or not a computer is functioning properly is dependent on the functionality of its 

internal component, like CPU, motherboard, etc. It can be represented as: D-UN CPU → D-

UN Computer, D-UN motherboard → D-UN Computer.  

Conditional Probability Table (CPT): CPT= {CPT1, CPT2, CPT3…, CPTN}, N>0, is a finite set of 

conditional probability tables and each is attached to an uncertainty node described above. For 

each node, a CPT represents the conditional probability distribution 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖)), which 

quantifies the effect of the parents on the node. This is the statistical information, which has been 

included in the Uncertainty Model in the domain layer of DIM (refer to chapter 3 for detail).  

Fuzzy model (F):  F= {F1, F2, F3…, FN}, N>0, is a finite set of fuzzy models and each is attached 

to a Disassembly Object Utility Node (D-UTN) described above. It is used to quantify the 

degradation of disassembly objects by evaluating its real reuse value. The detail information 

related to the fuzzy model has been included in the Degradation Model in the domain layer of DIM 

(refer to chapter 3 for details.).  

To summarize, the requirement for the Adaptive Disassembly Planning Information Model is to 

provide information elements to support the construction of the Disassembly Decision Network 
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described above. Also, some information has been modeled in the domain layer sub models like 

Process Model, Uncertainty Model and Degradation Model. Thus, an integration of these models 

is also needed.  Table 5.1 summarizes the modeling requirements for the Adaptive Disassembly 

Planning Information Model.  

Table 5.1: Requirements for the Adaptive Disassembly Planning Information Model 

R1 The modeling of different types of node: decision node, uncertainty node and utility node 

R2 The modeling of five different types of transition arc. 

R3 The linking to the uncertainty model and degradation model for the retrieval of relevant 

statistical information.  

5.2.2 Formal Adaptive Disassembly Planning Information Model 

The Adaptive Disassembly Planning Information Model deals with the information required for 

the adaptive disassembly planning problem. It is residing on the application layer of the DIM and 

is being extended based on three domain layer sub models named Process model, Uncertainty 

Model and Degradation Model. The overall structure is shown in figure 5.1 below. We will 

describe the model according to the information requirements identified above in the following 

sections. 

R1->Node Modelling: Based on the definition of the Disassembly Decision Network, five classes 

representing different types of nodes have been modeled in the Adaptive Disassembly Planning 

Information Model: (1) class Process_Decision_Node representing P-DN, (2) class 

Process_Utility_Node representing P-UTN, (3) class Process_Uncertainty_Node representing P-

UN, (4) class Disassembly_Object_Function_Uncertainty_Node representing D-UN, and (5) 

class Disassembly_Object_Utility_Node representing D-UTN.  
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R2->Transition Arc Modelling: Influences exist between different types of nodes and each of 

which form a certain transition arc in the Disassembly Decision Network. From the requirement 

analysis carried out in section 5.2.1, five types of transition arcs are identified and they are 

implemented in the Adaptive Disassembly Planning Information Model by introducing the object 

property “influence”, which connects two nodes as its domain object and range object.  
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Figure 5.1: The Adaptive Disassembly Planning Information Model 

As shown in figure 5.1, three types of transition arcs (Type 1 to Type 3) have been explicitly 

defined. As an example, type 1 transition arc indicates the causal effect of a process decision 

(Process_Decision_Node) on the process utility (Process_Utility_Node). The two relevant nodes 

are related through the object property “influence”:  the domain of the “influence” object property 
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is the Process_Decision_Node class, which indicates the cause, whereas the range of the 

“influence” object property is the Process_Utility_Node class, which indicates the effect of the 

cause.  

A similar approach can be used to model Type 4 and Type 5 transition arc by introducing the 

“influence” object property to link from the Process_Decision_Node class to the 

Disassembly_Object_Utility_Node class (Type 4 (P-DN → D-UTN)); or to link from the 

Disassembly_Object_Utility_Node class to the Disassembly_Object_Utility_Node class (Type 5 

(D-UN →D-UN)). However, such an approach will yield redundant or duplicate information due 

to the fact that the Type 4 and the Type 5 transition information have already been implicitly 

indicated in the domain level Process Model and Uncertainty Model. Thus, we utilize semantic 

rules to transfer such implicit information in the Process Model and Uncertainty Model to the 

explicit Type 4 and Type 5 causal information, which can be utilized to construct the Disassembly 

Decision Network.  The detailed modeling mechanism is presented below:  

Modeling of Type 4 (P-DN → D-UTN) Transition Arc: this type of transition arc describes the 

influences of a process decision on the utility of the relevant disassembly object. An in-depth study 

on this type of transition arc reveals that for a fixed process, the possible disassembly objects that 

can be influenced by it have already been modeled in the Process Model: A Process has influences 

on several DisassemblyObjects through the object property “breaks” and the object property 

“creates” (refer to the Process Model in chapter 3 for detailed description). Thus, the relationship 

between Process and DisassemblyObject in the Process Model actually indicates the influences of 

Process_Decision_Node on the Disassembly_Object_Utility_Node.  
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Thus, we don’t need to explicitly include that relationship in the Adaptive Disassembly Planning 

Information Model; rather the following semantic rule (shown in table 5.2) has been added to 

transfer the relationship between the Process class and the DisassemblyObject class in the Process 

Model to the influence of the Process_Decision_Node on the Disassembly_Object_Utility_Node 

in the Adaptive Disassembly Planning Information Model: 

Table 5.2: Semantic Rule R1 Definition 

Semantic Rule: R1  

Antecedent  (red line) Consequent (blue line) 

Process_Decision_Node(?x), Process_Utility_Node(?y), 
Process(?z), DisassemblyObject(?d), 
Disassembly_Object_Utility_Node(?u), influence(?x, ?y), 
relatesTo(?y, ?z), (breaks (?z, ?d) or creates (?z, ?d)), 
relatesTo(?d, ?u) 

influence (?x, ?u) 

Graphical Explanation  

Process Model

Process_Utility_NodeProcess
11 relatesTo

DisassemblyObject Disassembly_Object_Utility_Node

breaks

1

1

Creates

1

2..n

1 1relatesTo

Adaptive Disassembly Planning

Process_Decision_Node

influence
1

1

 

 

Modeling of Type 5 (D-UN →D-UN) Transition Arc: this type of transition arc describes the 

functional dependency between different disassembly objects. Refer to figure 5.1, such 

information has already been modeled in the Uncertainty Model through “functionalDepends” 

object property. Thus, the following semantic rule (shown in table 5.3) has been included to 

transfer the relevant information in the Uncertainty Model to the Adaptive Disassembly Planner 
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Information Model, for representing the causal relationship between two 

Disassembly_Object_Function_Uncertainty_Nodes.  

Table 5.3: Semantic Rule R1 Definition 

Semantic Rule: R2  

Antecedent  

(red line) 

Consequent  

(blue line) 
Disassembly_Object_Function_Uncertainty_Node (?x1), 

Disassembly_Object_Function_Uncertainty_Node (?x2), 

DisassemblyObject(?o1), DisassemblyObject(?o2), 

relatesTo(?x1, ?o1), 

relatesTo(?x2,?o2), 

functionalDepends(?o1, ?o2) 

 

influence (?x1, ?x2) 

Graphical Explanation  

Disassembly_Object_Function
Uncertainty_Node ?x1

DisassemblyObject ?o1
relatesTo

Disassembly_Object_Function
Uncertainty_Node ?x2

DisassemblyObject ?o2
relatesTo

functionalDepends

Uncertainty ModelAdaptive Disassembly Planning

 

 

R3->Model Integration: the implementation of this requirement has been partially shown in the 

previous discussion. The Adaptive Disassembly Planning Information Model links the Process 

model, Uncertainty model and Degradation model through object property “relatesTo”. In detail, 

the integration is implemented in the following four places:  

(1) The Process_Uncertainty_Node class in the Adaptive Disassembly Planning Information 

Model links to the Process class in the Uncertainty Model, through which the relevant process 

related Conditional Probability Table (ProcessSuccessProbabilityTable) information can be 

retrieved.  
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(2) The Disassembly_Object_Function_Uncertainty_Node class in the Adaptive Disassembly 

Planning Information Model links to the DisassemblyObject class in the Uncertainty Model, 

through which the relevant function related conditional probability table 

(FunctionFailureProbabilityTable) information can be retrieved.  

(3) The Process_Utility_Node class in the Adaptive Disassembly Planning Information Model 

links to the Process class in the Process Model, through which regular and special process costs 

can be retrieved.  

(4) The Disassembly_Object_Utility_Node class in the Adaptive Disassembly Planning 

Information Model links to the DisassemblyObject class in the Process Model, through which the 

related recycle value, reuse value and discard cost can be retrieved.  

The Adaptive Disassembly Planning Information Model has been fully implemented in OWL and 

table 5.4 below summarizes the major model concepts.  

Table 5.4: DIM OWL Implementation Concept Summarization 

Model Class Class Axioms Object 

Property 
Adaptive 

Disassembly 

Planning.owl 
Disassembly_Object_ 

Utility_Node 

relatesTo exactly 1 (Process model: DisassemblyObject) relatesTo 

 relatesTo exactly 1 (Degradation model: DisassemblyObject)  

 Disassembly_Object_ 

Function_Uncertainty_Node 

influence exactly 1 Disassembly_Object_Utility_Node influence 

 relatesTo exactly 1 (Uncertainty model: DisassemblyObject)  

 
Process_Uncertainty_Node 

influence exactly 1 Process_Utility_Node  

 relatesTo exactly 1 (Uncertainty model: Process)  

 Process_Utility_Node relatesTo exactly 1 (Process model: Process)  

 Process_Decision_Node influence exactly 1 Process_Utility_Node  

Imported Model 

Process.owl 

Degradation.owl 

Uncertainty.owl 
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5.3 Adaptive Disassembly Planning Application  

This section discusses the detailed procedure for solving the adaptive disassembly planning 

problem. A high level view of the procedure is shown in figure 5.2, which is an iterative process 

involving two major sub-functions (indicated as green boxes in figure 5.2): 

F1->Component/Assembly Reuse Value Estimation. This function uses a fuzzy logic based 

approach for the component/assembly reuse value estimation. It takes the inputs from the human 

observation and further calculates the reuse value of the component or assembly and updates the 

Disassembly Decision Network accordingly.  

F2->Disassembly Decision Making. This function carries out the Disassembly Decision Network 

based sequence optimization. It takes two types of information as inputs: (1) the 

component/assembly reuse value (the output of F1) and (2) the human observation on whether or 

not a certain component/subassembly is functioning properly. The output will be an optimal 

disassembly sequence, based on the current available information.  

Component/Assembly 
Reuse Value Estimation

(Fuzzy Inferring)

Disassembly Decision Making
(maximize the MEU)

Update DDN:
Reuse value

Human Observation

input
Update DDN:
Set Evidence

Optimal Disassembly 
Sequence

Adaptive Disassembly Planning Application 

Carry Out First Step Suggested
 

Figure 5.2: High Level View of the Adaptive Disassembly Planning Application 

After an optimal disassembly sequence is generated, the disassembly operator will carry out the 

first step in the suggested optimal disassembly sequence, which will yield a new disassembly state. 
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New observation might be identified in the new disassembly state, which could affect both of the 

sub functions (F1 and F2). Thus, F1 and F2 will be re-evaluated based on the new observations 

and a new optimal disassembly sequence will be suggested. The whole process will iterate until 

the product is fully disassembled or the optimal disassembly plan becomes stable (remain same 

between iterations).  

The following sections are organized as follows:  two sub functions (F1 and F2) are discussed in 

detail in section 5.3.1 and section 5.3.2 first. Then, section 5.3.3 presents the complete application 

procedure in detail. 

5.3.1 Component/Assembly Reuse Value Estimation 

The goal of the first sub function is to estimate the component/assembly reuse value, which is an 

important piece of information for constructing the Disassembly Decision Network. A concrete 

mathematical model to quantify this information is challenging and is very much case dependent. 

Thus, we use the idea of fuzzy inference, a technique that facilitates the modeling of a complex 

system without the knowledge of its mathematical description, for the reuse value estimation.  In 

general, the fuzzy inference system consists of four modules as indicated in the figure 5.3 below.  

Fuzzification module: transforms the system inputs, which are crisp numbers, into fuzzy sets by 

applying the fuzzification functions. The system inputs are the critical variables identified in the 

Degradation Model and they are component/assembly age, market demand and a set of conditional 

parameters. It is assumed that these variables are sufficient to evaluate the component/assembly 

reuse value (refer to chapter 3 for detailed discussion on these input variables). 
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Figure 5.3: High Level View of the Fuzzy Inference System 

Each of the input variable is modelled as a linguistic variable, which is a composite data structure 

containing a set of fuzzy terms. Each fuzzy term further contains: (1) a linguistic value (values are 

words in a natural or artificial language, e.g. Age = “Low”) which an input variable can take and 

(2) a membership function, which is used to quantify the degree of truth (0 to 1) of classifying a 

certain numerical value (e.g. Age = 2.5 years) into the linguistic value (e.g. Age = “Low”) the 

fuzzy term represents.      

The following is the xml code for the “Age”, “Market Demand” and “Operation Noise” (condition 

parameter) linguistic variable.  

  <Variable VariableName="Age" LowerLimit="0" UpperLimit="5" VariableType="Input"> 

    <FuzzyTerm Name="Low" FunctionType="NormalMembershipFunction" Parameters="0,1.2"></FuzzyTerm> 

    <FuzzyTerm Name="Medium" FunctionType="NormalMembershipFunction" 

Parameters="2.5,1"></FuzzyTerm> 

    <FuzzyTerm Name="High" FunctionType="NormalMembershipFunction" 

Parameters="5,1.2"></FuzzyTerm> 

  </Variable> 

  <Variable VariableName="OperationNoise" LowerLimit="0" UpperLimit="50" VariableType="Input"> 

    <FuzzyTerm Name="Normal" FunctionType="NormalMembershipFunction" 

Parameters="0,13"></FuzzyTerm> 

    <FuzzyTerm Name="Abnormal" FunctionType="NormalMembershipFunction" 

Parameters="50,13"></FuzzyTerm> 

  </Variable> 

  <Variable VariableName="MarketDemand" LowerLimit="0" UpperLimit="200" VariableType="Input"> 

    <FuzzyTerm Name="Low" FunctionType="NormalMembershipFunction" Parameters="0,50"></FuzzyTerm> 

    <FuzzyTerm Name="High" FunctionType="NormalMembershipFunction" 

Parameters="200,52"></FuzzyTerm> 

  </Variable> 
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Knowledge base: stores IF-THEN rules provided by experts. In this dissertation, four general rules 

related to the high reuse value and low reuse value are modeled:  

 Low Reuse Value Rule 

 R1: Age is High => Reuse Value will be Low  

 R2: Market Demand is Low => Reuse Value will be Low  

 R3: Condition Parameter is Worse => Reuse Value will be Low  

 High Reuse Value Rule 

 R4: Age is Low and Market Demand is High and Condition Parameter is Normal 

=> Reuse Value will be High 

Other customized rules can be added if needed and they can be acquired from the Degradation 

Information Model. An example is shown below:  

 Average Reuse Value Rule 

 Age is Medium and Market Demand is High and Condition Parameter is Normal 

=> Reuse Value will be Average 

Inference engine and Defuzzification: Fuzzy inference engine is the main decision making module 

in a fuzzy inference system. Its main operation is to convert the input fuzzy set into an output fuzzy 

set through an inference process. Whereas, the defuzzification process transforms the fuzzy set 

obtained by the inference engine into a crisp value. 

In this dissertation, we use the popular Mamdani method for implementing the inference procedure 

and the details of the Mamdani method can be found at (Vukadinovic, 2013). The defuzzification 

process is based on the idea of “Centroid of Area”, which returns the center of the area under the 
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aggregated curve. If we think of the area as a plate of equal density, the centroid is the point along 

the x axis about which this shape would balance.  

The sub function is implemented in Matlab and figure 5.4 shows the implementation of the method 

for the reuse value estimation of subassembly ABCD.  

 

Figure 5.4: Fuzzy Influence Implementation in Matlab  

 

As shown in figure 5.4, the crisp input is [age= 3, Operation Noise=25, Market Demand=100]. 

Five fuzzy control rules are defined (four general and one customized, not shown in the figure 5.4) 

and each will generate the fuzzy value of the output variable (ABCD’s reuse value). The five 

generated fuzzy values will then be aggregated and further again be translated into crisp value, the 

final inferred result is 40.1 (reuse value of subassembly ABCD).        
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5.3.2 Disassembly Decision Network based Disassembly Planning 

This section introduces a Disassembly Decision Network based adaptive disassembly planning 

approach, which integrates the Bayesian probability theory and the maximum expected utility 

(MEU) principle, for dynamically generating the optimal product disassembly sequence.    

The determination of optimal disassembly sequence is to decide the value of each of the Process 

Decision Node (P-DN), which can yield a maximum disassembly object utility and a minimum 

the process utility (cost).  If we annotate 𝑑𝑖 as one possible disassembly sequence, then 𝑑𝑖 can be 

expanded as follows:  

𝑑𝑖 = 𝑝𝐷𝑁𝑖  = {𝑝𝐷𝑁1,𝑖, 𝑝𝐷𝑁2,𝑖, 𝑝𝐷𝑁3,𝑖 … 𝑝𝐷𝑁𝑁,𝑖} 

Where 𝑝𝐷𝑁 is short for P-DN. The first subscript represents the index of the process decision node 

in the Disassembly Decision Network, whereas the second subscript indicates the decision value 

(“carry out” or “do not carry out”) associated to that node.  

Then, the expected utility (EU) of a disassembly plan 𝑑𝑖 is given by:  

𝐸𝑈(𝑑𝑖|𝑒) = ∑ ∑{𝑃(𝑝𝑈𝑁𝑝,𝑗)|𝑒}

2

𝑗=1

∗ 𝑝𝑈𝑇𝑁𝑝(𝑑𝑖 , 𝑝𝑈𝑁𝑝,𝑗)

𝑛

𝑝=1

+ ∑ ∑{𝑃(𝑑𝑈𝑁𝑜,𝑗)|𝑒}

2

𝑗=1

∗ 𝑑𝑈𝑇𝑁𝑜(𝑑𝑖 , 𝑑𝑈𝑇𝑁𝑜,𝑗) 

𝑘

𝑜=1

 

 𝑝𝑈𝑁𝑝,𝑗 represents the Process Uncertainty Node in DDN. The first subscript represents the 

index of the process uncertainty node in the Disassembly Decision Network, whereas the 

second subscript indicates the uncertainty value (“fail” or “success”) associated to that 

node.  

 𝑝𝑈𝑇𝑁𝑝 represents the Process Utility Node in DDN. The subscript represents the index of 

the process associated to that node. 𝑝𝑈𝑇𝑁𝑝 can take different values depending on the 

arguments 𝑑𝑖 and 𝑝𝑈𝑁𝑝,𝑗. 
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 𝑑𝑈𝑁𝑜,𝑗 represents the Disassembly Object Function Uncertainty Node in DDN. The first 

subscript represents the index of the Disassembly Object Function Uncertainty Node in the 

Disassembly Decision Network, whereas the second subscript indicates the uncertainty 

value (“function” or “not function”) associated to that node.  

 𝑑𝑈𝑇𝑁𝑜 represents the Disassembly Object Utility Node in DDN. The subscript represents 

the index of the disassembly object. 𝑑𝑈𝑇𝑁𝑜 can take different values depending on the 

arguments 𝑑𝑖 and 𝑑𝑈𝑇𝑁𝑜,𝑗. 

 𝑒 is set of evidence identified during the disassembly process.  

The above equation describes the expected utility (EU) of a disassembly option 𝑑𝑖 given a set of 

evidences. It is an aggregation of two parts: (1) the expected utility of the disassembly process and 

(2) the expected utility of the disassembly object. Both of the parts are evaluated by calculating 

the summation of the relevant utilities, weighted over the probability values of the relevant 

uncertainty node.      

In order to calculate the probability values like 𝑃(𝑑𝑈𝑁𝑜,𝑗)|𝑒 and 𝑃(𝑝𝑈𝑁𝑝,𝑗)|𝑒, Bayes rules are 

used here. In general, the basic task is to compute the posterior probability for a set of query 

variables (X) (in our case X is either 𝑑𝑈𝑁𝑜,𝑗 or 𝑝𝑈𝑁𝑝,𝑗), given some observed event—that is, 

some assignment of values to a set of evidence variables (e).  

𝑃(𝑋|𝑒) =
𝑃(𝑋, 𝑒)

𝑃(𝑒)
= 𝛼𝑃(𝑋, 𝑒) = 𝛼 ∑ 𝑃(𝑋, 𝑒, 𝑦)

𝑦

 

Y denotes the non-evidence, non-query variables Y1, Y2. . . , Yl  (called the hidden variables) and 

𝛼 is the normalization constant.  
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Finally, the best decision D*, given the probability distribution and the utility model is given by:  

𝐷∗ = 𝑚𝑎𝑥 𝐸𝑈(𝑑𝑖|𝑒) 

The above equation indicates that the optimal disassembly sequence 𝑑𝑖∗, is a decision sequence 

which maximizes the 𝐸𝑈(𝑑𝑖|𝑒). 

5.3.3 The Complete Adaptive Disassembly Planning Procedure 

The disassembly sequence (disassembly plan) generated in section 5.3.3 can only be considered 

“optimal” at the current disassembly state, in which only limited information or evidence can be 

identified. Carrying out one disassembly operation according to the plan puts forward the 

disassembly object to a new state with possibly more evidences revealed, which can change the 

“optimal” disassembly result generated by the DDN based Disassembly Planning function. Thus, 

the complete adaptive disassembly planning procedure is developed here (figure 5.5) to iteratively 

generate optimal disassembly sequence.  

When an EOL product is taken into the disassembly facility, function testing is applied first, which 

will provide certain evidences on whether certain component/assembly is working properly or not. 

Notice that the function testing at this stage can only provide the functionality information about 

some of the components or assemblies. Whether or not the other components or assemblies are 

functioning properly is still uncertain to the disassembly operator. However, the probability of 

them to be functional is updated based on the updated evidence. As an example, if the disassembly 

operator identifies that a fan assembly is functional and updates that information to the DDN as 

evidence, the probability of the motor to be functioning will be changed as follows:  

 𝑃(𝑀𝑜𝑡𝑜𝑟 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔) →  𝑃(𝑀𝑜𝑡𝑜𝑟 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔 |𝐹𝑎𝑛 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑛𝑔) 
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Figure 5.5: The Complete Adaptive Disassembly Planning Procedure 

The next step is to update the component/assembly reuse value in the DDN using the first sub 

function (f1: fuzzy logic based reuse value estimation), based on the identified age, market demand 

and conditional parameter information.  

The updated DDN will be sent to the second function (f2: DDN based disassembly optimization), 

which will generate an optimal disassembly sequence D*, given the currently available identified 

information.  
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The disassembly operator will take the first operation (d’) suggested in the D* to be the candidate 

disassembly operation at this stage. Another observation will be carried out to check whether d’ 

can be successfully executed without problems. If d’ can be successfully carried out, no updates 

in DDN are necessary and d’ will be physically executed by the disassembly operator, which will 

yield a new disassembly state. Lastly, the process will be re-routing back to the beginning (function 

testing) and be applied to the new state.  

On the other hand, if d’ cannot be successfully carried out, an operation status update (status of 

d’=fail) is added to the DDN. With the new updated DDN, the optimization process (f2) is carried 

out again. Two possible scenarios may happen: (1) a new D* will be generated to avoid d’ and (2) 

same D* which insisting on carrying out the original d’. The first scenario is straightforward, which 

indicates that the cost of executing d’, given the evidence the regular operation will fail, is not cost 

effective and should be avoided. On the other hand, the second scenario indicates that even though 

d’ fails using the regular operation, some special operation (possibly with higher operation cost) 

should be applied, because the overall utility is still optimal compared to the other options.  Lastly, 

same as before, after carrying out one disassembly operation, either following the original d’ or 

following the new d’, a new disassembly state is being reached. The process will re-route back to 

the function testing step (beginning of the procedure), which will be applied to the new state.  

5.4 Case Study 

This section verifies the adaptive disassembly planning application using a kitchen exhaust fan 

assembly. We start with the description of the case study in section 5.4.1. The disassembly decision 

network for the case study is presented in section 5.4.2. Lastly, the detailed adaptive disassembly 

decision making process is verified in section 5.4.3.  
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5.4.1 Description of the Case Study 

Figure 5.6 shows the picture of the case study product, which contains four components (A->D) 

and one assembly (ABCD). Since all of them are associated with a design function, they thus can 

have a reuse value after being disassembled. We call these types of disassembly objects module 

here.  

On the other hand, three other subassemblies (BCD, BC and BD) exist only in the context of 

disassembly and they merely represent a stable state in the disassembly process and they don’t 

have a designed function associated with them (i.e. they are not subassembly in the context of the 

assembly process). Thus, these type of disassembly objects don’t have a reuse value. The utility 

related information is listed in table 5.5 and table 5.6 below. 

 

Figure 5.6: Kitchen Exhaust Fan Assembly 

Table 5.5: Utility Information Regarding to the Disassembly Object 

Disassembly Object Reuse Value  Recycle Value Discard Cost 

ABCD 55 N/A -10 

BCD N/A N/A -5 

BC N/A N/A -10 

BD N/A N/A -5 

A 22 N/A -15 

B 10 3 N/A 

C 15 2 N/A 

D 10 4 N/A 
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Table 5.6: Utility Information Regarding to the Disassembly Process 

Operation Regular Operation Cost Special Operation Cost 

t1 -5 -10 

t2 -8 -16 

t3 -5 -20 

t4 -10 -15 

t5 -8 -15 

 

In table 5.5, there is no reuse value attached to subassembly BC, BD and BCD because they do 

not have a designed function and they are only valid in the context of disassembly. Also, 

components B, C and D contain only homogeneous material, and thus they can always be recycled 

and no discard cost is assigned to them.  

Another important piece of information regarding this case study is the process model related to 

the product, which represents all the feasible disassembly sequences. It is shown in figure 5.7 

below, using the petri net as a pictorial notation.    

 

Figure 5.7: The Feasible Disassembly Sequences of the Kitchen Exhaust Fan Assembly 
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Lastly, the incoming product has two specific uncertainty issues, which are unknown to the 

disassembly operator in the beginning of the disassembly process:  

(1) Blower Wheel is not rotating (i.e. ABCD is not functioning). 

(2) Operation t3 cannot be executed in as a regular approach, some special process is needed.  

5.4.2 Disassembly Decision Network for the Kitchen Exhaust Fan Assembly 

Figure 5.8 shows the disassembly decision network for the kitchen exhaust fan assembly. In order 

to present it more concisely, the network has been partitioned into different sub models. On the 

top level, the disassembly decision network contains only two sub models: (1) process model and 

(2) Bayesian net model. The process model contains the information related to the disassembly 

object utility (node ABCD_V, A_V, etc.) and several operation sub models. Operation sub model 

is further an aggregation of the process utility, the process uncertainty and the process decision 

information. The Bayesian net sub model contains the disassembly object uncertainty information.  

The model in the figure 5.8 is a realization of the definition of DDN defined in the section 5.2.1. 

Five types of nodes and five types of transition arcs are instantiated for the kitchen exhaust fan 

assembly. Specifically, they are:  

Process Decision Node (P-DN): nodes “Operation1”, “Operation2”, etc.  

Process Utility Node (P-UTN): nodes “t1_C”, “t2_C”, etc. 

Disassembly Object Utility Node (D-UTN): nodes “ABCD_V”, “BCD_V”, “BD_V”, etc.  

Process Uncertainty Node (P-UN): nodes “Operation_1_Result”, “Operation_2_Result”, etc. 

Disassembly Object Function Uncertainty Node (D-UN): nodes “ABCDFunctionCondition”, 

“AFunctionCondition”, etc.  
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Figure 5.8: The Disassembly Decision Network of the Kitchen Exhaust Fan Assembly 

Transition Arc (Type 1: P-DN → P-UTN): e.g. arc pointing from node “Operation2” to node 

“t2_C”. 

Transition Arc (Type 2: P-UN → P-UTN): e.g. arc pointing from node “Operation_2_Result” to 

node “t2_C”. 

Transition Arc (Type 3: D-UN → D-UTN): e.g. arc pointing from node 

“ABCDFunctionCondition” to node “ABCD_V” (the arc is not shown in figure 5.8). 

Transition Arc (Type 4 P-DN → D-UTN): e.g. arc pointing from node “Operation1” to node 

“ABCD_V” (the arc is not shown in figure 5.8). 

Transition Arc (Type 5 D-UN →D-UN): e.g. arc pointing from node “AFunctionCondition” to 

node “ABCDFunctionCondition”. 
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Also, conditional probability tables (CPT) are assigned to the relevant nodes. Figure 5.9 shows the 

user interface to input the CPT for both disassembly object function uncertainty node and process 

uncertainty node.   

Function Conditional Probability Table for ABCD
Process Conditional Probability Table for 
Operation2  

Figure 5.9: An Example Showing the CPT Definition 

 

Lastly, the utility information (both for the disassembly object utility and the process utility) needs 

to be defined in the DDN. The process utility is relatively straightforward and it is based on 

whether or not the operation is going to be carried out and whether or not the regular operation 

will be successful. Figure 5.10 shows an example of the utility definition for operation 5. As it is 

clear from figure 5.10, the utility (cost) of operation 5 is zero under the condition that operation 5 

is not carried out. On the other hand, if operation 5 is to be carried out, the utility (cost) will be 

either -8 (regular cost) or -15 (special cost), depending on whether or not operation 5 will be 

executed successfully without a problem.  

 

Figure 5.10: Process Utility Definition Example 
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The definition of disassembly object utility is classified into two categories: (1) the disassembly 

object is only a stable state and (2) the disassembly object is a module.  

If the disassembly object represents a stable state, like the case for the subassembly BCD (figure 

5.11), the only variables influencing the utility are the operation decision nodes pointing to it. If 

we have 3 influencing operation decision nodes and each of which can take two decision values 

(“carry out” or “do not carry out”), we can have 23=8 possible combinations. Each of the 

combination will be assigned a utility value (either discard cost or recycling value).  Some 

combination is realistically impossible, such as carrying out operation 1, 2 and 3 in the example in 

figure 5.11. The utility of such cases will be set to a large negative number (-10000), which insures 

that it will not be selected as the optimal disassembly path. Some of the combination will yield a 

zero utility, which means the subassembly is further disassembled into smaller components and 

thus there is no utility (revenue or cost) associated with that.    

A similar mechanism applies to the module type disassembly object, with only one extension: the 

function uncertainty node has an effect on the utility. If the module is functioning, reuse value 

could be applied to the utility value, otherwise the discard cost or recycling value will be applied.  
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Figure 5.11: Examples Showing the Disassembly Object Utility Definition  

 

5.4.3 Adaptive Sequence Generation for the Kitchen Exhaust Fan Assembly 

This section verifies the adaptive disassembly sequence generation application using the kitchen 

exhaust fan assembly. The user interfaces of the developed adaptive disassembly planning 

application are shown in figure 5.12 below.  

Running the application using the kitchen fan assembly by following procedure as defined in figure 

5.5, the following adaptive results are generated as shown in table 5.7 below (without 

component/assembly degradation consideration).  
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Fuzzy Logic Based Reuse Value Estimation and DDN Updates

Detail User Interface for uncertainty handling and Plan generation

Evidence Updates

 

Figure 5.12: User Interfaces for the Adaptive Disassembly Planning Application 
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Table 5.7: Adaptive Disassembly Plan for the Kitchen Fan Assembly 

Stage  D* Explanation 
Initial Stage  

(No observation) 

 

Do not Carry out any disassembly 

operation, retain the assembly 

ABCD, which will yield an optimal 

expected utility 15.48. 

Stage 1:  

Function testing->  

ABCD is not 

functioning 

 

After function testing, the evident 

that ABCD is not functioning is 

updated to the DDN, a new D* is 

generated, which indicates to carry 

out operation 1, operation 3 and 

operation 5. This plan will in the end 

retrieve component A, B, C and D 

with a possible expected utility 6.38  

Stage 2: Take the 

current operation in D* 

(Op1) as candidate and 

check whether it can be 

executed successfully -

> 

Op1 can be executed 

successfully 

 
 

Since Op1 can be executed 

successfully, the generated D* will 

remain same. However, the 

expected utility is increasing from 

6.38 to 7.38 due to the new 

evidence.   

 

Stage 2: Take the 

current operation in D* 

(Op3) as candidate and 

check whether it can be 

executed successfully -

> 

Op3 can’t be executed 

successfully 

  

The evidence that Op3 can’t be 

executed successfully is updated to 

the DDN, a new D* is generated. It 

suggests to carry out operation 1, 

followed by operation 2 and 

operation 4, which will avoid the 

failed operation Op3.  

The expected utility is 2.18 in this 

stage.  

 

Both of the two uncertainties have been identified at this point, thus the plan from stage 2 will be the 

final plan (No change will happen to D* from this stage).  

 

 

The application can also handle the component/assembly degradation issues, if assuming 

subassembly ABCD is functioning. We want to know exactly how much reuse value should be 

applied for ABCD in the DDN, the fuzzy model for ABCD is going to be used. By observing the 

crisp values of the input variables (age=2.5 years, market demand=30 units and operation noise=10 
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decibels), the reuse value of ABCD will be generated (figure 5.13), which indicates a lower value 

(32.6) compared to the average reuse value (55). This new value will be sent back to update the 

DDN. The whole process afterwards will be similar to that shown in table 5.7.  

 
Figure 5.13: Reuse Value estimation for ABCD when Considering Degradation 
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 CONCLUSION AND FUTURE WORK 

This chapter concludes the dissertation and discusses the contributions of this research. In 

particular, a summary of the Disassembly Information Model (DIM), which establishes the main 

contribution of this work, is described in section 6.1.  In section 6.2, the detailed research issues 

presented in Chapter 1 are reviewed and how they are being addressed by DIM are discussed. The 

main research contributions are highlighted in section 6.3. Lastly, possible future directions for 

extending the work presented in this dissertation are discussed in section 6.4. 

 

6.1 Overview of Disassembly Information Model (DIM)  

DIM constitutes a layered information framework designed for multiple applications in the domain 

of EOL product disassembly planning. DIM is hierarchically structured by layers, which divides 

the associated Information Models into different levels of abstraction, and thus, separate the 

general knowledge from the specific knowledge about particular domains and applications. A set 

of sub models is thus developed and classified into three different layers named the abstract level, 

the domain level and the application level.  

The Information Models in the abstract layer hold fundamental modeling concepts, which is 

independent of a particular problem or domain, and can therefore be universally applied. They 

represent the design guidelines (or say design pattern) for the construction of the other sub models 

in the DIM. 

The Information Models in the domain layer capture the knowledge related to a domain of 

expertise, such as disassembly planning in our case, and they generally don’t target at solving a 

specific problem or task, but rather provides a common foundation for representing a range of 

different applications. Thus, the Information Model residing on this layer is more specific than 

those in the abstract layer, but less specific than those in the lower layers. 

The Information Models in the application layer targets at modeling the most specific information 

which is directly usable for a certain application. This dissertation focuses on two disassembly 
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planning applications: (1) Disassembly Sequence Generator and (2) Adaptive Disassembly 

Planner and the relevant sub models are developed in the application layer of DIM.  

The layered structure of DIM reflects the design rationale to reach a balance between information 

usability and information reusability. These two objectives are conflicting each other in nature: 

usability implies in depth specialization to meet the requirements of a particular task, whereas 

reusability requires a certain generality in order to facilitate different applications. Thus, it is 

difficult to simultaneously achieve a high degree of usability and reusability at the same time. The 

layered structure of DIM represents a reasonable compromise between information usability and 

information reusability: models in the higher layers are more abstract and represents reusable 

information design pattern, whereas models in the lower layers are more specific and can be 

directly used to solve a specific disassembly planning problem.   

DIM is discussed in the form of two complementary parts: (1) an formal DIM description using 

the UML class diagram and (2) a formal Web Ontology Language (OWL) based DIM 

implementation. In detail, the developed DIM consists of 11 sub models, comprising of 

approximately 77 classes, 41 object properties, 14 data properties, 170 major class axioms and 2 

semantic web rules. One shortcoming related to the OWL DIM implementation is that few 

individuals (the instantiated class instances) have been added. We can consider it currently as a 

lightweight Information Model.  

Quality analysis for DIM 

Analyzing the quality of an information model is always challenging task and enormous 

recommendations have been suggested in the literatures. However, there is little consensus being 

established as a standard. Thus, it is difficult to quantify the degree of quality due to the absence 

of generally accepted key measures assessing an agreed set of quality indicators. On the other 
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hand, more and more researchers believe that the development of Information Model should follow 

the “Kaizen” approach, which suggests “continuous improvement during its lifecycle, both in the 

development stage and the utilization stage”. In other word, Information Model is validated 

through continuously being used in different applications, and through continuously updating and 

modifying.    

Thus, we believe that a continuous improvement process is inevitable to achieve a good usability-

reusability trade-off and thus an Information Model of high quality. In this thesis, we decided to 

compensate the lack of formal measures by applying DIM to two prototypical software 

applications. Even if formal measures for quality indicators were available, the degree of 

(re)usability can be proven ultimately only by testing DIM in a (preferably large) number of 

different software applications.  

6.2 Review of the Research Issues  

In this section, the research issues raised in chapter 1 are reviewed and how the developed DIM 

addresses those issues is discussed. 

Q1: What is the information required for disassembly planning and how to model them so that it 

can be both usable and reusable in the domain of disassembly?  

This research question relates to the methodology being utilized for the development of DIM. As 

mentioned before, a layered IM development methodology is proposed and followed throughout 

this research work, which provides a reasonable compromise between information reusability and 

information reusability. The reusability can be shown from the extensive inheritance relationships 

exists among different sub models residing on the different layers of the DIM, whereas the usability 

criteria is validated through developing two DIM based disassembly planning related applications.   
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Q2: How to implement the Disassembly Information Model?  

This research question relates to the implementation choice of DIM. In this work, we use the 

Description Logic (DL) based Web Ontology Language (OWL) for the implementation of DIM. 

The OWL is developed to support the semantic web applications and it became a World Wide 

Web Consortium (W3C) recommendation in February 2004. Through using the OWL 

implementation in two disassembly related applications, we prove that OWL has the full capability 

to formally and computationally implement the DIM.  

Q3: How to validate implemented Disassembly Information Model?  

This research question relates to the validation and quality analysis of DIM. Referring to section 

5.1 of this dissertation, we compensated the lack of formal quality measures by applying DIM to 

two prototype software applications. Even if formal measures for quality indicators were available, 

the degree of (re)usability can be proven ultimately only by testing DIM in a (preferably large) 

number of different software applications. 

6.3 Research Contribution  

 

To the author’s knowledge, this work is the first attempt for the development & utilization of a 

comprehensive Information Model in the domain of disassembly planning, under the paradigm of 

sustainable manufacturing. Two major contributions are listed as follows:  

• Formal disassembly information representation. Most of the current researches on 

disassembly modeling are domain and algorithm specific; thus the information is isolated 

and heterogeneous. That’s why information sharing is difficult. The developed DIM targets 

on providing a formal, consensual information foundation, which can be promoted to a 
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reference model in the future.  This contribution can be broken down into the following 

aspects: 

o The Generalization of disassembly planning domain information (Product, 

Process, Uncertainty and Degradation aspect) 

o Development of a layered Information Modeling methodology  

o Implementation of DIM into Web Ontology Language for Machine Processing  

• DIM based disassembly planning application modeling. Most of the research on 

Information Modeling focuses on the development of IM structure, whereas, the 

application of IM in a real application task is lagging behind. This work fills in this gap by 

developing two disassembly planning applications based on the extension of DIM: (1) 

Disassembly Sequence Generator and (2) Adaptive Disassembly Planning. This 

contribution can be broken down into the following aspects:  

o DIM Extension Mechanism 

o Development of a CAD-API based Disassembly Sequence Generator    

o Development of a Decision Network based Adaptive Disassembly Planner  

6.4 Future Work 

 

While this thesis has demonstrated the utilization potentials of applying the DIM in the domain of 

disassembly planning, many opportunities for extending the scope of this thesis remain. This 

section presents some of these directions. 

From a Light Weight IM to a Reference Model: 

The foremost important future work will be to continuously extend and modify the DIM and to 

upgrade it a reference model (standard). Two parts of work related to this aspect are: (1) the 
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population of more instances (or say individuals) in the DIM and (2) apply DIM to more 

disassembly planning related applications. The first part of the work will bring DIM to a heavy 

weight IM and second part of the work will further modify and validates the DIM.   

Automated Disassembly: 

Another possible direction for the future work is related to the development of the automated 

disassembly system, which could be a popular research topic. As the reader might notice, there is 

little information being modeled regarding the disassembly equipment, due to the fact that no 

standardized equipment for EOL product disassembly are available in practice. However, 

extending DIM for disassembly equipment is well supported by the current DIM structure and the 

advantages could be enormous: by relating product with process and finally with equipment, an 

information loop, from design to realization can be constructed, which will facilitate not only the 

disassembly decision making, but also equipment level uncertainty handling like equipment 

reconfiguration planning.  

Integrating DIM with Smart Manufacturing infrastructure:  

Finally, the last direction of future work focuses on the integration of DIM with the smart 

manufacturing infrastructure, for better decision making throughout the lifecycle of the product. 

The scenario is that DIM provide information structure, which is integrated into the LCU system. 

Data are being collected throughout the lifecycle of the product and can be sent back to the central 

PLM system for various decision makings, like design suggestion, preventive maintenance, etc.  
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APPENDIX 

Summary of DIM Model  

Model Imported Model  Class Class Axioms Object Property Datatype 

Property 

N-ary-relationship.owl 

N/A Object  involves relationAttribute 

 Relationship involves min 2 Object hasOrigin  

 
Directed 

Relationship 

Subclass of Relationship hasTarget  

 hasOrigin exactly 1 Object   

 hasTarget some Object   

Part_whole.owl 

N-ary-relationship.owl Part Subclass of Object hasPart  

 Whole hasPart some Part   

  Subclass of Object   

Graph.owl 

Part_whole.owl Object hasConnector some Connector hasConnectingPoint  

 

Arc 

hasConnectingPoint exactly 2 ConnectingPoint hasConnector  

 isDirectlyConnectedTo exactly 2 Node   

 Subclass of Object   

 

Connector 

isDirectlyConnectedTo exactly 1 Connector hasPort  

 Subclass of Object   

 Subclass of Relationship   

 Connecting 

Point 

isDirectlyConnectedTo exactly 1 Port isDirectlyConnectedTo  

 Subclass of Connector   

 
Port 

isDirectlyConnectedTo exactly 1 ConnectingPoint   

 Subclass of Connector   

 

Node 

hasPort some Port   

 isDirectlyConnectedTo some Arc   

 Subclass of Object   

System.owl 

Part_whole.owl Aspect Subclass of Object contains  

 System Subclass of Object isConsideredUnderAspectOf  

 Atomic 

SubSystem 

Equivalent To: System 

and (contains exactly 0 AtomicSubSystem) 

isModeledBy  

 Subclass of System   

 Aspect 

System 

Equivalent To: AtomicSubSystem 

and (isConsideredUnderAspectOf exactly 1 Aspect) 

models  

 Subclass of AtomicSubSystem   

 Composite 

SubSystem 

Equivalent To: System 

and (contains some AtomicSubSystem) 

  

 Subclass of System   
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Summary of DIM Model Continued 

 Model Imported 

Model  

Class Class Axioms Object Property Datatype 

Property 

System.owl 
Part_whole.owl Model models exactly 1 System   

  Subclass of System   

DisassemblyPlanning 

System.owl 

System.owl 

Disassembly 

PlanningSystem 

Subclass of CompositeSubSystem   

Product.owl contains exactly 1 Product   

Process.owl contains exactly 1 Process   

Degradation.owl contains exactly 1 Uncertainty   

Uncertainty.owl contains exactly 1 Degradation   

Product.owl 

System.owl Structure Subclass of Aspect belongsTo  

 

Component 

containsMaterial some Material contains  

 hasConstraintFeature some ConstrainingFeature   

 isDirectlyConnectedTo some ComponentContact   

 Subclass of Feature   

 

Connecting 

Component 

Equivalent To: Component 

 And (hasDegreeOfFreedom some DegreeOfFreedom) 

containsMaterial  

 belongsTo exactly 1 Connection   

 Subclass of Component   

 Fastener Subclass of ConnectingComponent hasComponent  

 
VirtualConnecting 

Component 

Equivalent To: ConnectingComponent 

 and (not (Fastener)) 

hasConnectingPoint  

 Subclass of ConnectingComponent   

 

OrdinaryComponent 

Equivalent To: OrdinaryComponent 

 and (hasDegreeOfFreedom exactly 0 

DegreeOfFreedom) 

hasConstraintFeature  

 Subclass of Component   

 
AtomicOrdinary 

Component 

Equivalent To: OrdinaryComponent 

 and (hasComponent exactly 1 Component) 

hasDegreeOfFreedom  

 Subclass of Component   

 
CompositeAtomic 

OrdinaryComponent 

Equivalent To: AtomicOrdinaryComponent 

 and (containsMaterial min 2 Material) 

hasSubAssembly  

 Subclass of AtomicOrdinaryComponent   

 
HomogeneousAtomic 

OrdinaryComponent 

Equivalent To: AtomicOrdinaryComponent 

and (containsMaterial exactly 1 Material) 

isDirectlyConnectedTo  

 Subclass of AtomicOrdinaryComponent   
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Summary of DIM Model Continued 

Model Imported 

Model  

Class Class Axioms Object Property Datatype 

Property 

Product.owl 

System.owl 
ComplexOrdinary 

Component 

Equivalent To: OrdinaryComponent 

and (hasComponent min 2 Component) 

  

 Subclass of OrdinaryComponent   

 
CompositeComplex 

OrdinaryComponent 

Equivalent To: ComplexOrdinaryComponent 

and (containsMaterial min 2 Material) 

  

 Subclass of ComplexOrdinaryComponent   

 
HomogeneousComplex

OrdinaryComponent 

Equivalent To: ComplexOrdinaryComponent 

and (containsMaterial exactly 1 Material) 

  

 Subclass of ComplexOrdinaryComponent   

 

ComponentContact 

hasConnectingPoint exactly 2 ConnectingInterface   

 isDirectlyConnectedTo exactly 2 Component   

 Subclass of Object   

 
ConnectingInterface 

isDirectlyConnectedTo exactly 1 ConstrainingFeature   

 Subclass of Object   

 
Connection 

contains some ConnectingComponent   

 Subclass of Object   

 

ConstrainingFeature 

belongsTo exactly 1 Component   

 isDirectlyConnectedTo exactly 1 ConnectingInterface   

 Subclass of Object   

 DegreeOfFreedom Subclass of Object   

 Material Subclass of Object   

 
SubAssembly 

hasComponent min 2 Component   

 Subclass of Object   

 

Product 

Equivalent To: AspectSystem 

and (isConsideredUnderAspectOf exactly 1 Structure) 

  

 Subclass of AspectSystem   

 hasComponent some Component   

 hasSubAssembly some SubAssembly   

Process.owl 

System.owl Behavior Subclass of Aspect breaks normalCost 

 DisassemblyObject Subclass of Object creates specialCost 

 Component Subclass of DisassemblyObject hasAction  

 Product Subclass of DisassemblyObject hasOperation  

 SubAssembly Subclass of DisassemblyObject   
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Summary of DIM Model Continued 

Model Importe

d Model  

Class Class Axioms Object Property Datatype 

Property 

Process.owl 

System.owl 

Process 

Equivalent To: AspectSystem 

and (isConsideredUnderAspectOf exactly 1 Behavior) 

  

 Subclass of AspectSystem   

 breaks exactly 1 DisassemblyObject   

 creates min 2 DisassemblyObject   

 Subclass of DirectedRelationship   

 normalCost some double   

 specialCost some double   

 Action Subclass of Process   

 
Operation 

Subclass of Process   

 hasAction some Action   

 
Task 

Subclass of Process   

 hasOperation some Operation   

Uncertainty.owl 

System.owl Disturbance Subclass of Aspect contains  

 ConditionalProbabilityTable Subclass of Object functionalDepends  

 FunctionFailure 

ProbabilityTable 

Subclass of ConditionalProbabilityTable relatesTo  

 ProcessSuccess 

ProbabilityTable 

Subclass of ConditionalProbabilityTable   

 
DisassemblyObject 

contains exactly 1 FunctionFailureProbabilityTable   

 Subclass of Object   

 Component Subclass of DisassemblyObject   

 Product Subclass of DisassemblyObject   

 SubAssembly Subclass of DisassemblyObject   

 
Process 

contains exactly 1 ProcessSuccessProbabilityTable   

 Subclass of Object   

 

Uncertainty 

AspectSystem  

and (isConsideredUnderAspectOf min 1 Disturbance) 

  

 Subclass of AspectSystem   
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Summary of DIM Model Continued 

Model Imported 

Model  

Class Class Axioms Object Property Datatype 

Property 
Degradation.owl System.owl DisassemblyObject hasAge exactly 1 Age hasAge functionType 

  DisassemblyObject 

FuzzyTerm 

hasConditionParameter some ConditionParameter hasConditionParameter lowerLimit 

  hasMarketDemand exactly 1 MarketDemand hasFuzzyTerm name 

  hasReuseValue exactly 1 ReuseValue hasMarketDemand parameter 

  hasRuleSet some RuleSet hasReuseValue upperLimit 

  Subclass of Object hasRuleSet variableType 

  functionType exactly 1 string relatesTo  

  FuzzyTerm 

FuzzyVariable 

name exactly 1 string   

  Subclass of Object   

  parameter exactly 1 string   

  hasFuzzyTerm some FuzzyTerm   

   lowerLimit exactly 1 double   

   Subclass of Object   

   upperLimit exactly 1 double   

   variableType exactly 1 string   

  Age Subclass of FuzzyVariable   

  ConditionParameter Subclass of FuzzyVariable   

  MarketDemand Subclass of FuzzyVariable   

  ReuseValue Subclass of FuzzyVariable   

  RuleSet Subclass of Object   

  Degradation Subclass of AspectSystem   

  Degradation relatesTo some DisassemblyObject   

  relatesTo some DisassemblyObject   
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Summary of DIM Model Continued 

Model Imported 

Model  

Class Class Axioms Object Property Datatype 

Property 
DisassemblySequence 

Generator.owl 
Product.owl Constraining 

FeaturePair 

target exactly 1 ConstrainingFeature target reuseValue 

  direction exactly 1 string belongsTo recycleValue 

  

Component 

discardCost exactly 1 double hasContactLoop discardCost 

  recycleValue exactly 1 double  direction 

  reuseValue exactly 1 double   

  Constraining 

Feature 

belongsTo some ConstrainingFeaturePair   

  

ContactLoop 

Subclass of SubAssembly   

  discardCost exactly 1 double   

  recycleValue exactly 1 double   

  reuseValue exactly 1 double   

  

ContactLoop 

Cluster 

Subclass of SubAssembly   

  discardCost exactly 1 double   

  recycleValue exactly 1 double   

  reuseValue exactly 1 double   

  hasContactLoop min 2 ContactLoop   

Adaptive 

Disassembly 

Planning.owl 

Process.owl Disassembly_Object_ 

Utility_Node 

relatesTo exactly 1 (Process model: 

DisassemblyObject) 

relatesTo  

 Degradation 

.owl 

 

relatesTo exactly 1 (Degradation model: 

DisassemblyObject) 

  

 Uncertainty 

.owl 

Disassembly_Object_ 

Function_Uncertainty 

_Node 

influence exactly 1 Disassembly_Object_Utility_Node influence  

  relatesTo exactly 1 (Uncertainty model: 

DisassemblyObject) 

  

  Process_Uncertainty_Node influence exactly 1 Process_Utility_Node   

  relatesTo exactly 1 (Uncertainty model: Process)   

  Process_Utility_Node relatesTo exactly 1 (Process model: Process)   

  Process_Decision_Node influence exactly 1 Process_Utility_Node   
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