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ABSTRACT

Approximation models such as surrogate models provide a tractable substitute to expensive

physical simulations and an effective solution to the potential lack of quantitative models of

system behavior. These capabilities not only enable the efficient design of complex systems,

but is also essential for the effective analysis of physical phenomena/characteristics in the

different domains of Engineering, Material Science, Biomedical Science, and various other

disciplines. Since these models provide an abstraction of the real system behavior (often

a low-fidelity representative) it is important to quantify the accuracy and the reliability

of such approximation models without investing additional expensive system evaluations

(simulations or physical experiments). Standard error measures, such as the mean squared

error, the cross-validation error, and the Akaike’s information criterion however provide

limited (often inadequate) information regarding the accuracy of the final surrogate model

while other more effective dedicated error measures are tailored towards only one class of

surrogate models. This lack of accuracy information and the ability to compare and test

diverse surrogate models reduce the confidence in model application, restricts appropriate

model selection, and undermines the effectiveness of surrogate-based optimization.

A key contribution of this dissertation is the development of a new model-independent

approach to quantify the fidelity of a trained surrogate model in a given region of the de-

sign domain. This method is called the Predictive Estimation of Model Fidelity (PEMF).

The PEMF method is derived from the hypothesis that “the accuracy of an approximation

model is related to the amount of data resources leveraged to train the model”. In PEMF,

intermediate surrogate models are iteratively constructed over heuristic subsets of sample

points. The median and the maximum errors estimated over the remaining points are used

to determine the respective error distributions at each iteration. The estimated modes of the

error distributions are represented as functions of the density of intermediate training points

through nonlinear regression, assuming a smooth decreasing trend of errors with increasing

sample density. These regression functions are then used to predict the expected median

and maximum errors in the final surrogate models. It is observed that the model fidelities

estimated by PEMF are up to two orders of magnitude more accurate and statistically more

stable compared to those based on the popularly-used leave-one-out cross-validation method,

when applied to a variety of benchmark problems.



By leveraging this new paradigm in quantifying the fidelity of surrogate models, a novel

automated surrogate model selection framework is also developed. This PEMF-based model

selection framework is called the Concurrent Surrogate Model Selection (COSMOS). COS-

MOS, unlike existing model selection methods, coherently operates at all the three levels

necessary to facilitate optimal selection, i.e., (1) selecting the model type, (2) selecting the

kernel function type, and (3) determining the optimal values of the typically user-prescribed

parameters. The selection criteria that guide optimal model selection are determined by

PEMF and the search process is performed using a MINLP solver. The effectiveness of

COSMOS is demonstrated by successfully applying it to different benchmark and practical

engineering problems, where it offers a first-of-its-kind globally competitive model selection.

In this dissertation, the knowledge about the accuracy of a surrogate estimated using

PEMF is applied to also develop a novel model management approach for engineering opti-

mization. This approach adaptively selects computational models (both physics-based mod-

els and surrogate models) of differing levels of fidelity and computational cost, to be used

during optimization, with the overall objective to yield optimal designs with high-fidelity

function estimates at a reasonable computational expense. In this technique, a new adap-

tive model switching (AMS) metric defined to guide the switching of model from one to the

next higher fidelity model during the optimization process. The switching criterion is based

on whether the uncertainty associated with the current model output dominates the latest

improvement of the relative fitness function, where both the model output uncertainty and

the function improvement (across the population) are expressed as probability distributions.

This adaptive model switching technique is applied to two practical problems through Par-

ticle Swarm Optimization to successfully illustrate: (i) the computational advantage of this

method over purely high-fidelity model-based optimization, and (ii) the accuracy advantage

of this method over purely low-fidelity model-based optimization.

Motivated by the unique capabilities of the model switching concept, a new model refine-

ment approach is also developed in this dissertation. The model refinement approach can

be perceived as an adaptive sequential sampling approach applied in surrogate-based opti-

mization. Decisions regarding when to perform additional system evaluations to refine the

model is guided by the same model-uncertainty principles as in the adaptive model switching

technique. The effectiveness of this new model refinement technique is illustrated through

application to practical surrogate-based optimization in the area of energy sustainability.
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PART I

Technical Preliminaries



CHAPTER 1

Background, Motivation, Objectives and Impact

In this chapter, an overview of the research performed in this dissrtation is presented. We

begin by providing the technical context and background of the research. Research objectives,

motivation, and impact are then presented, followed by the outline of the dissertation.

1.1 Surrogate Modeling

Complex systems such as an aircraft or a wind farm, often involve a large number of

design parameters, and the analysis of the performance of such systems generally demands

computationally expensive simulations and/or expensive physical experiments. The direct

application of simulations/experiments in a design process can be anywhere between chal-

lenging to prohibitive from a time/cost perspective. As a result, designers often choose to (i)

simplify the model for the sake of computational efficiency by making assumptions, or (ii)

limit the design space exploration. Surrogate modeling is a more pragmatic, yet highly ef-

fective solution to this challenge in complex system design. Surrogate models are commonly

used to provide a tractable and inexpensive approximation of the actual system behavior in

many routine engineering analysis and design activities, e.g., domain exploration, sensitivity

analysis, development of empirical models, and optimization. In the design literature, sur-

rogate models, which are purely mathematical models and are not directly derived from the

physics of the system being modeled, are referred to by several names: response surfaces,

approximation models, or metamodels. Figure 1.1 illustrates the different areas of surrogate

modeling application. The process of surrogate modeling construction can be defined as

1
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follows: “Given a set of input data points xi ∈ Rm, i = 1, · · · , np, and the corresponding

output/function values, f(xi), obtain a global approximation function, f̃(x), that represents

the original function over a given design domain”.
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Figure 1.1: Applications of Surrogate Modeling

The process of surrogate modeling generally involves the following steps:

1. Performing a design of experiments (DOE);

2. Executing the sample experiments (e.g., high fidelity simulations or physical experi-

ments) to generate the training data;

3. Selecting and training the appropriate surrogate model using the training data; and

4. Testing the accuracy of the surrogate models (prior to model implememntation).

The selection of points in the design variable space where the response should be eval-

uated is commonly referred to as a Design of Experiments (DOE). DOE techniques are
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originally developed to study the behavior of systems through physical experiments (e.g., in

experimental chemistry [1]). DOE can be defined as the design of a controlled information

gathering exercise for a system or phenomenon where variation is known to be present [2]. Al-

though traditionally, controlled experiments referred only to physical experiments, in modern

times, they would include both physical experiments and computational experiments (i.e.,

simulation-based experiments such as Finite Element Analysis). The planning of a DOE

(i.e., the choice of the set of points in the design variable space) can have a considerable

impact on the accuracy and the efficiency of the surrogate model. The typical DOE strategy

is to generate a distribution of sample points throughout the design space in a uniform fash-

ion. There are many techniques to determine how to distribute the sample points, including

Factorial and Central Composite designs [3], Latin Hypercube design [4], Orthogonal arrays

[5], and Sobol sequence[6]. In practice, the number of sample points is, in general, limited

(due to computational expense or budget).

1.1.1 Surrogate Model Construction

The sample points used to construct surrogate models are generally called training

points. Once an appropriate DOE has been performed and the training points have been

defined, the next step is to choose an approximating model and the training method. Both

parametric and nonparametric methods are available for surrogate model construction. Ma-

jor surrogate modeling methods include Polynomial Response Surfaces [7], Kriging [8, 9],

Radial Basis Functions (RBF) [10], Neural Networks [11], Support Vector Regression [12],

and hybrid surrogates [13, 14]. In Chapter 2, we present a review of the state-of-the-art

surrogate modeling techniques.
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1.1.2 Testing The Accuracy of The Surrogate Model

The final step in the surrogate modeling process is to evaluate the expected accuracy

or inversely the estimation error of the surrogate model. Two popular error metrics are

(i) the root mean squared error (RMSE), which is a global error measure and provides an

understanding of the model accuracy over the entire design domain; and (ii) the maximum

absolute error (MAE), which provides an understanding of the maximum local deviation

of the model estimation from the actual output. Popular approaches for assessing these

error metrics include [13]: (i) split sample, (ii) cross-validation, (iii) boot-strapping, and (iv)

Akaike’s information criterion (AIC).

The knowledge of the regional and global accuracy of a surrogate is crucial for (i) model

selection, (ii) further improvement of the surrogate model (model refinement), e.g., using

adaptive sampling [15] or active learning [16], (iii) iterative surrogate-based optimization

[17, 18], and (iv) quantifying the uncertainty associated with the surrogate model. Other

applications of error metrics include the construction of hybrid models and conservative

surrogate models. A detailed review and discussion on state-of-the-art measures of surrogate

model fidelity and their application is provided in Chapter 2.

1.1.3 Variable Fidelity Optimization

The major pitfall in using low-fidelity models (e.g., surrogate models) in optimization

is that they can often mislead the search process due to underestimation or overestimation

of a criteria function, leading to suboptimal or infeasible solutions. To address this issue and

provide optimum designs with high-fidelity system evaluations, “Variable Fidelity Optimiza-

tion” methods can be applied. In these methods, model switching strategies integrate models

of different fidelity into the optimization process, with the overall objective to identify opti-
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mal designs that have high fidelity function estimates at a reasonable computational expense.

A detailed review of Variable Fidelity Optimization approaches is given in Chapter 2.

1.1.4 Model Refinement

In spite of the rapid growth of the surrogate modeling paradigm, the low fidelity of

these models often limits their use in practical engineering design optimization. When sur-

rogate models are used to represent the behavior of a complex system, it is often challenging

to simultaneously obtain high accuracy over the entire design space. When such surrogates

are used for optimization, it becomes challenging to find the optimum/optima with desired

certainty. “Model Refinement” approaches offer a powerful solution to this challenge. In

these approaches, the accuracy and robustness of the surrogate model is improved by adding

points where additional evaluations of the high fidelity model / experiment are desired to be

performed. ‘Model Refinement’ methods used to improve the accuracy of the surrogate mod-

els during the optimization process, it is known as “Surrogate-based Optimization (SBO)”.

In typical SBO, the optimization process is repeated multiple times, where each time the ac-

curacy of the surrogate model is improved by the addition of new sample points. A detailed

review of Model Refinement approaches is given in Chapter 2.

1.2 Motivation, Objectives and Impact of the Research in this

Dissertation

1.2.1 Research Motivation

In the era of complex system design, surrogate models are being considered integral

components of the design process, especially as an alternative or complement to computa-

tionally expensive simulations and physical experiments. Surrogate models have been widely
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incorporated in the leading commercially analysis and optimization packages (e.g., Genesis,

modeFRONTIER, and iSIGHT).

However the construction and use of surrogate models is almost always plagued with

one or both of the following realities: (i) scarcity of data, since high-fidelity data is expensive,

and (ii) lack of knowledge of the underlying functional form of the system behavior being

modeled. As a result, surrogate models are generally expected to introduce a degree of

uncertainty in characterizing the real system behavior. In surrogate-based analysis and

optimization, the quantitative knowledge of the uncertainty arising from model inaccuracies

is critical to estimating the reliability of the final feasible or optimal designs. As such,

developing a reliable and model-independent measure of surrogate uncertainty, which does

not require additional system evaluations, is critical to the success of these models in practical

complex system design.

Owing to the availability of multiple surrogate modeling techniques with diverse func-

tional characteristics, the selection of the most suitable surrogate model for a given experi-

mental or simulation data set is far from intuitive. This selection is also critical to facilitate

effective and reliable usage of surrogate models in any application. A systematic surrogate

model selection framework that coherently operates at three levels (i.e., choice of model type,

kernel type, and hyper-parameter value) is thus needed.

Population-based heuristic optimization algorithms (e.g., evolutionary algorithms and

swarm optimization algorithms) have been proven to be very effective in solving complex

design optimization problems, especially those involving highly nonlinear functions. The

computational cost of the high-fidelity simulation models (e.g., CFD, FEA models) and

the large number of function evaluations (often demanded by heuristic algorithms) limit

their applicability to practical complex system design. One approach to address this issue
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is Variable Fidelity Optimization, which effectively integrates the information from models

with different levels of fidelity into the heuristic optimization process is needed.

1.2.2 Research Question

How to understand, analyze, and quantify the regional and global fidelity of surrogate

models, without having to exploit its functional characteristics (i.e., model-independence),

and while remaining minimally sensitive to undesirable outliers? In successfully addressing

this question, we can lay the foundation to address the following corollary questions: (i)

How to construct a rigorous framework to perform globally competitive surrogate model

selection; and (ii) How to formulate a model-based optimization process that integrates

models of varying fidelity to offer high computational efficiency while not compromising the

reliability of the optimal design decisions.

1.2.3 Research Objective

The primary goal of this dissertation is to develop a ‘model-independent’ approach

to quantifying the fidelity of the ‘actual surrogate’ without requiring additional system

evaluations, and use this model fidelity measure to formulate novel strategies for global model

selection, adaptive model switching, and model refinement (in variable fidelity optimization)

. In this context, the actual surrogate refers to the surrogate model constructed using all

available training points (and not any subset of training points, as is the case with cross-

validation). Specific research objectives are as follows:

(I) Predictive Estimation of Model Fidelity (PEMF)

To formulate a predictive approach to estimating surrogate model fidelity and ex-

plore the effectiveness of the ensuing error measures by applying them to different
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benchmark problems of varying dimensionality.

(II) Automated surrogate model selection

To develop a new automated surrogate model selection framework which allows the

simultaneous selection of the most suitable surrogate type, kernel type, and hyper-

parameter values from a comprehensive candidate pool of surrogates through a synergy

of PEMF and Mixed Integer Nonlinear Programing (MINLP).

(III) Model switching metric for variable fidelity optimization

To develop a new model switching approach to integrate models with different levels

of fidelity (including physics-based analytical models, surrogate models, and com-

putational models) into a population-based optimization process, such as to obtain

high-fidelity design decision at a reasonable computational expense.

(IV) Model refinement approach for surrogate-based optimization

To develop a new model-independent approach to refining surrogate models during

optimization, through adaptive sampling that preserves a desired level of fidelity and

robustness.

(V) To apply the new error estimation (PEMF), model selection, and variable fidelity

optimization methods to practical engineering design problems in order to explore the

effectiveness of these methods.

1.2.4 Research Impact

The new surrogate model error estimation paradigm developed here, can provide

uniquely useful information about the accuracy of the surrogate model in regions of in-



9

terest or in the entire design domain. This method can extract more pertinent information

regarding the model (compared to most of the existing methods), which exploiting limited

resources already available to construct surrogate models. This error estimation in turn sig-

nificantly improves the usability of the surrogate model in real life complex system design

applications.

The proposed model selection framework to select the globally-best surrogate model,

will allow for radically improved design space exploration capability. This framework can

encourage the modeling and analysis community to develop more advanced analysis tools

that can better capture physical behaviors of a system.

The proposed approach in variable fidelity and surrogate-based design optimization will

allow more effective and powerful MDO methodologies to be developed, which will ultimately

lead to the strengthening of the design process.

It should be noted that, application of surrogate modeling is not restricted to the

engineering design. The frameworks and approaches developed in this dissertation have

the potential to significantly impact other non-engineering fields that involve expensive ex-

periments (simulation-based or physical experiments), such as chemistry, material science,

finance (for cost modeling), and biomedical science.

1.3 Dissertation Outline and Structure

This section provides a basic outline of the reminder of this dissertation, which is also

illustrated in Fig. 1.2. As shown in the figure, the dissertation is divided into four major

parts, which are listed below:

• Part I Technical Preliminaries

This part presents the necessary technical preliminaries pertaining to the content of the
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dissertation. Chapter 2 reviews the literature in the areas associated with the research

objectives of this dissertation and discussion the gaps in the current paradigm.

• Part II Surrogate Model Uncertainty Quantification

This part describes the formulation of the error estimation method. Chapter 3 provides

the mathematical formulations of the method called the Predictive Estimation of Model

Fidelity (PEMF), followed by the validation of the method through a set of standard

numerical examples. Further statistical analysis and parametric analysis of PEMF are

presented in Chapter 4

• Part III Model Selection & Variable Fidelity Optimization

This part focuses on the implementation of PEMF (from Part II) in the development

of model selection and variable fidelity optimization methods. Chapter 5 develops the

Concurrent Surrogate Model Selection (COSMOS) framework based on the Predictive

Estimation of Model Fidelity (PEMF), which is a novel approach to identifying a

globally-competetive surrogate models. Chapter 6 develops a new model management

approach for engineering analysis. Chapter 7 develops a new adaptive surrogate-based

optimization (SBO) approach.

• Part IV Practical Application: Error Quantification, Model Selection, Vari-

able Fidelity Optimization

Chapters 8 and 9 of this dissertation present the application of the PEMF-based
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methodologies (from Chapters 5, 6, and 7) to practical engineering design problems,

including CFD-based problems and design problems in the area of energy sustainability.

• Part V Concluding Remarks and Future Work

Chapter 10 of this dissertation provides concluding remarks for this dissertation and

outlines potential directions for further research in the concerned areas of interest.

.
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Figure 2.1: Chapter 2 orientation

This chapter reviews the literature in the following key areas of focus: (i) surrogate

modeling techniques; (ii) error measures; (iii) model selection; (iv) surrogate-based opti-

mization; and (v) variable fidelity modeling. Key observations from the literature review will

be also discussed, which form the foundation of the proposed research.

2.1 Surrogate Modeling

Several reviews of the state-of-the-art surrogate modeling and approximation strategies

have been reported in the literature ([19], [20],and [21]). Surrogate modeling is concerned

with the construction of purely mathematical models to define relationships between specific

system inputs and outputs. Over the past couple of decades, surrogate models are being

extensively used in the analysis and optimization of complex systems or in the solution of

complex problems. Major surrogate modeling methods include (i) Polynomial Response

13
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Surface Methodology [22], (ii) Kriging [23, 24], (iii) Radial Basis Functions (RBF) [10, 25,

26, 27], (iv) Extended Radial Basis Functions (E-RBF) [28], (v) Artificial Neural Networks

(ANN) [11, 29], and (vi) Support Vector Regression (SVR) [29, 30, 31, 32]. Table 2.1 provides

a list of standard sampling techniques, and surrogate modeling methods, which extends the

preexisting work by Simpson et al. [33].

Table 2.1: Techniques for surrogate modeling

Design of Experiments Surrogate Modeling
(Fractional) Factorial Polynomial (linear, quadratic)
Central Composite Splines (linear, cubic)
Latin Hypercube Kriging
Hammersley Sequence Radial Basis Functions (RBF)
Uniform Designs Extended RBF
Sobol Sequence Support Vector Regression (SVR)
Random Selection Artificial Neural Network (ANN)
Box-Behnken Hybrid Models
Plackett-Burman
Orthogonal Arrays

• Quadratic Response Surfaces (QRS):

Quadratic Response Surfaces (QRS) is one of the oldest and most popular type of

surrogate model. The generic expression for a n-variable QRS is given by:

f (x) = C0 + C1X +XTC2X (2.1)

where X is the n−dimensional input vector, and C0, C1, C2 are respectively the scalar

coefficient (constant term), the coefficient vector (of length n) for the linear terms, and

the n× n coefficient matrix for the quadratic terms.

• Radial Basis Functions (RBF)

The idea of using Radial Basis Functions (RBF) as interpolating functions was intro-

duced by Hardy [10]. The RBF approximation is a linear combination of basis functions
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(Ψ) across all sample points, given by

f̃(x) = W TΨ =

np∑

i=1

wiψ
(
‖x− xi‖

)
(2.2)

where np denotes the number of selected sample points; wi are the weights evaluated

using the pseudo inverse method on sample points’ responses; ψ is basis function

expressed in terms of the Euclidean distance, r = ‖x− xi‖, of a point x from a given

sample point, xi. Table 2.2 listed the five different types of basis functions for RBF.

In this table, σ represents the shape parameter of the basis function. The shape

parameter, σ = 0, corresponds to a constant basis function [34].

• Extended Radial Basis Functions (E-RBF)

The Extended Radial Basis Functions (E-RBF), developed by Mullur and Messac [28],

is an important advancement over the standard radial basis function model. The E-

RBF surrogate model uses a linear combination of radial and non-radial basis functions.

The Non-Radial Basis Functions (N-RBF) are not defined in terms of the Euclidean

distance, r. Instead, N-RBFs are defined as functions of individual coordinates of

the generic point, x, relative to a given data point, xi, in each dimension separately.

Further details of the E-RBF model, and of the essence of the two hyper-parameters

(σ and λ) in the functional form of the E-RBF surrogate model, can be found in the

paper by Mullur and Messac [28].

• Kriging

Kriging [23] is an approach to approximate irregular data. The kriging approximation

function consists of two components: (i) a global trend function, and (ii) a deviation
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function representing the departure from the trend function. The trend function is

generally a polynomial (e.g., constant, linear, or quadratic). The general form of the

kriging surrogate model is given by [24]:

F̄ (x) = f̂(x, ϕ) + Z(x) (2.3)

where F̄ (x) is the unknown function of interest, Z(x) is the realization of a stochastic

process with the mean equal to zero, and a nonzero covariance, and f̂ is the known

approximation function

f̂(x, ϕ) = f(x)Tϕ (2.4)

where ϕ is the regression parameter matrix.

The i, j − th element of the covariance matrix, Z(x), is given by

COV [Z(xi), Z(xj)] = σ2
zRij (2.5)

where Rij is the correlation function between the ith and the jth data points; and

σ2
z is the process variance, which scales the spatial correlation function. The popular

types of correlation functions are listed in Table 2.2. The correlation function con-

trols the smoothness of the Kriging model estimation, based on the influence of other

nearby points on the point of intrest. In Kriging, the regression function coefficients,

the process variance, and the correlation function parameters, {ϕ, σ2
z , θ}, each can be

predefined or estimated using parameter estimation methods such as Maximum Likeli-

hood Estimation (MLE). The regression function coefficients and the process variance
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can be estimated using MLE, as given by

ϕ = (F t R−1F )−1 F TR−1Y (2.6)

σ2
z =

1

n
(Y − Fϕ̃)T R−1 (Y − Fϕ̃)

where Y = [y1 y2 ...] represents the vector of the actual output at the training points;

R is a correlation matrix; and F is a matrix of f(x) evaluated by Kriging at each

training point[35].

• Artificial Neural Networks (ANN)

A neural network generally contains an input layer, one or more hidden layers, and an

output layer. Figure 2.2 shows a typical three layer feedforward neural network. An

ANN is developed by defining the following three types of parameters:

1. The interconnection pattern between different layers of neurons;

2. The learning process for updating the weights of the interconnections; and

3. The activation function that converts a neuron’s weighted input to its output

activation.

One of the drawbacks associated with neural networks for function approximation is

the uncertainty in specifying several of the network parameters, such as the number of

neurons, the number of layers, the type of activation function, and the optimization

algorithm used to train the network. In addition, the training process generally needs

to be supervised in order to avoid “over-fitting” [2, 36].
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Input Layer Hidden Layer Output Layer

Figure 2.2: A generic topology of neural networks [2]

• Support Vector Regression (SVR)

Support Vector Regression (SVR) is a relatively newer regression type surrogate model.

For a given training set of instance-label pairs (xi, yi), i = 1, ..., np, where xi ∈ Rn

and y ∈ 1,−1m, a linear SVR is defined by f(x) = < w, x > +b, where b is a bias

and < ., . > denotes the dot product. To train the SVR, the error, |ξ| = |y − f(x)|, is

minimized by solving the following convex optimization problem:

Min { 1

2
‖w‖2 + CΣ

np
i=1ξi + ξ̃i}

subject to (2.7)

(wTxi + b)− yi ≤ ε+ ξi

yi − (wtxi + b) ≤ ε+ ξ̃i

ξi, ξ̃i ≥ 0, i = 1, 2, ..., np

In Eq.2.7, ε ≥ 0 represents the difference between the actual and the predicted values;
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ξi and ξ̃i are the slack variables; C represents the flatness of the function; np represents

the number of training points. By applying kernel functions, K(α, β) =< φ(α), φ(β) >,

under KKT conditions, the original problem is mapped into a higher dimensional space.

The dual form of SVR for nonlinear regression could be represented as

Max {
np∑

i=1

αiyi − ε

np∑

i=1

|α| − 1

2

np∑

i,j=1

αi.αj < φ(xi), φ(xj) >}

subject to (2.8)
np∑

i=1

αi = 0, − C ≤ αi ≤ C for i = 1, ..., np

The standard Kernel functions used in SVR are listed in Table 2.2. The performance

of SVR depends on its penalty parameter C and kernel parameters γ, r, and d. The

parameter C > 0 is user-specified and represents the trade-off between flatness and

the amount up to which errors larger than ǫ are tolerated. Figure 2.3 shows a typical

cost function, the ǫ-insensitive loss function. The above formulation is the primal

form of the quadratic programming problem. In most cases, the dual form with fewer

number of constraints is easier to solve, and is widely used to define the final form of

the approximation. It can be shown that the dual form is convex and therefore has a

unique minimum. Typical mapping functions allowed are radial basis functions, such

as the gaussian function.

2.2 Model Uncertainty: Quantification and Impact

Computational approximation models, both physics-based models(e.g., FEA) and sta-

tistical models (e.g., surrogates), are crucial building blocks of most design processes. An

informed application of such computational models demands the knowledge of how uncer-
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Figure 2.3: ǫ-insensitive loss function [36]

Table 2.2: Basis or Kernel functions and their hyper-parameters in the Surrogate
Models

Type of model Type of basis/correlation/kernel function Hyper parameter

RBF Linear: r

shape parameter, σ
Cubic: r3

Thin plate spline: r2ln(r)

Gaussian: e(−r2/2σ)

Multiquadric: (r2 + σ2)1/2

Kriging Linear: max(1 − θr, 1)

correlation function parameter, θ
Exponential: e(−θr)

Gaussian: e(−θr)2

Cubic: 1− 0.5ξ + 0.5ξ2; ξ = max(1− θr, 1)
Spherical: 1− 3ξ2 + 2ξ3; ξ = max(1− θr, 1)

SVR Linear: (xT
i xj)

kernel parameters; γ, r, and d
Polynomial: (γ xT

i xj + r)d, γ > 0

Radial Basis Function: e− γ‖xi−xj‖
2

, γ > 0
Sigmoid: tanh(γ xT

i xj + r)

tainties, both Aleatory and Epistemic, propagate through the design process. Aleatory

uncertainty refers to the inherent variability that exists in physical process (e.g., uncertainty

in model inputs and in the parameter of the design). Epistemic uncertainty refers to the

uncertainty introduced by approximation models (e.g., uncertainty due to the insufficient

data, over-simplification of complex physical phenomena, and model assumptions) [2].

2.2.1 Uncertainty in Physics-based Modeling

A Physics-based model is consider to reflect a real physical systems. However, “a

Physics-based model is just a reduced and parsimonious representation of a physical, chemi-
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cal, or biological system in a mathematical, abstract, numerical, or experimental form [37]”.

Constructing a Physics-based model is the process of idealizing the real system into a rel-

atively simplified form by making a set of assumptions. Mathematical of computational

models are generally unlikely to provide an exact representations of the real system due to

the assumptions made during the modeling process [38]. Physics-based models also depends

on the modeling process (e.g., different element types, shape functions, and mesh sizes can

be used in Finite Element Analysis of a system). A prediction error of a Physics-based model

is considered as an unknown variable, and called predictive uncertainty [38, 39]. Generally,

this uncertainty is represented by a probability distribution when statistically sufficient ex-

perimental data are presented to estimate the error distribution. Different methodologies

have been developed to propagate probability distributions representing predictive uncer-

tainty. The three popular approaches for uncertainty propagation are [2, 38, 40]: (i) sam-

pling methods (i.e., Monte Carlo Simulation (MCS)), (ii) local expansion-based methods

(i.e., polynomial approximation using Taylor series), and (iii) the most probable point (i.e.,

First-order reliability method (FORM)).

• Sampling Methods:

In these methods, a set of sample points are generated for the input variables. At each

generated sample, the value of the random functions are computed to attain stochastic

information about system responses. The implementation procedure of Monte Carlo

Simulation (MCS) [41], which is the most popular method in this category, include (i)

Selecting the distributions to represent random variables, (ii) Sample generation based

on the selected distribution, (iii) Simulation the outputs using sample data, and (iv)

Estimating the probabilistic information of the output [38].
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• Local Expansion-based Methods:

The concept of these methods is to calculate statistical moments of system output based

on a small perturbation in input variables. Taylor series expansion method, which is

the most popular method in this category, involves expansion of a system output as a

series in terms of a small perturbation in input variables and the subsequent solution

of the series coefficients [38]. In this approach, the mean and standard deviation of

the random function are approximated by first building a polynomial approximation

of the function constructed using a Taylor series expansion about a point of interest,

followed by determining the moments of this polynomial approximation [2].

• Most Probable Point Methods:

The first-order reliability method (FORM) and second-order reliability methods (SORM) [42]

in this category are the two popular approximation methods that estimate the proba-

bility of failure associated with a limit-state function. The distinction between the

two methods depends on the utilization of a first-order or a second-order Taylor

series expansion to approximate a limit-state function at the Most Probable Point

(MPP) [2, 38, 40].

2.2.2 Uncertainty in Surrogate Modeling

Methods for quantifying the fidelity of or (inversely) the error in statistical models can

be broadly classified into: (i) methods that require additional data, and (ii) methods that

use existing data [43]. The former can be significantly expensive and is thus not a practical

option in a majority of applications. Error quantification methods can also be classified into

global and local error estimation methods [44]. The performance of the surrogate over the
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entire domain is evaluated by global error measures, while local or point-wise error measures

provide the surrogate accuracy in different locations of the design domain. Table. 2.3 provides

a list of popular surrogate modeling methods, and the error estimation techniques commonly

used for these surrogates.

Table 2.3: Techniques for surrogate model construction and validation

RMSE F -test ANOVA Split sample Bootstrapping Cross-validation AIC

PRS X X X X

Kriging X X X X X X X

RBF X X X

E-RBF X X X

ANN X X X

SVR X X X X

2.2.2.1 Global Error Measurement

Popular approaches of model independent global error measures include [13]: split

sample, cross-validation, and bootstrapping. In a split sample strategy, the sample data is

divided into training and test data. The former is used to construct a surrogate; and the

latter is used to test the performance of the surrogate.

Limited data sets make determining prediction error of surrogate models more difficult

(assuming there is not enough data available to hold out as an independent test sample).

In this scenario, the alternative approaches which enable the estimation of surrogate model

error using the training data (i.e., without requiring additional system evaluations such as

bootstrapping and cross validation) are becoming increasingly important [45, 46, 47]. The

idea for cross-validation (which is still the current paradigm) originated in the 1930s [48],

and it was developed and refined in the 1970s by Stone [49] [50].

Cross-validation is a popular technique to estimate the error of surrogate without
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investing any additional system evaluations. The q-fold cross-validation technique operates

through the following five steps [51]:

1. splits the sample points randomly into q (approximately) equal subsets;

2. leaves out each of these subsets in turn (one at a time), and construct an intermediate

surrogate using the remaining q − 1 subsets;

3. estimates the error of the intermediate surrogate using the omitted subset;

4. aggregate the q sets of errors evaluated to yield a global error measure.

A k -fold cross-validation approach is a variation of q-fold approach, in which all the

possible subsets of size k are used to evaluate cross-validation error. In leave-one-out cross-

validation approach (k = 1), at each iteration, the training set is created by taking all sample

points except one, and the left out point is used for estimating the error between the surrogate

prediction and the actual value. The bootstrapping approach generates m sub-samples from

the sample points. Each sub-sample is a combination of all samples with replacement.

Different variants of the bootstrapping approach can be used for model identification and

determining confidence intervals for surrogates [13].

The mean squared error (MSE) or root mean square error (RMSE) provides a global

error measure over the entire design domain. The RMSE evaluated at a set of test points

(NTest) is given by:

RMSE =

√√√√ 1

NTest

NTest∑

i=1

(yi − ŷi)2 (2.9)

where yi and ŷi are the actual and the predicted values at the ith test point, respectively. The

RMSE thus provides information about the accuracy of the actual surrogate. However RMSE

requires additional system evaluations at test points in the case of interpolating surrogates.
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The maximum absolute error (MAE) and relative absolute error (RAE) are indicative of

local deviations:

MAE = max
i=1,...,NTest

|yi − ŷi| (2.10)

RAEi = |yi − ŷi
yi

| (2.11)

The prediction sum of square (PRESS) is based on the leave-one-out cross-validation

error:

PRESS =
1

N

N∑

i=1

(ŷi − ŷ
(−i)
i )2 (2.12)

where ŷi and ŷ
(−i)
i are the surrogate estimations at the ith training point respectively predicted

by the surrogate constructed using all sample points and the surrogate constructed using all

sample points except the ith point [13]. Goel et al. [52, 53] compared different error measures

including PRESS and MSE for Kriging, and found that PRESS provided better performance

compared to the other methods, as a fidelity prediction and as a surrogate model selection

criterion. Acar and Rais-Rohani [54] used the same cross validation error metric to construct

weighted surrogates. In 2013, Aute et al. [55] used the cross validation error as a sequential

sampling criterion to determine the location of sample point in the design space.

Meckesheimer et al. [43] used the root mean square error of k -fold cross-validation

(RMSECV), i.e., root mean square of PRESS (PRESSRMS), to measure the global accuracy

of the surrogate over the entire design domain:

RMSECV =

√√√√1

k

k∑

i=1

(ŷi − ŷ
(−i)
i )2 (2.13)

where k is the number of omitted sample points. The variation of k from 1 to 10 was studied;
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for each k value, the average of the error measured on all possible combinations of k points

were used to provide a measure of the global accuracy of the surrogate. They also compared

this error measure with the actual error estimated on additional test points to show the

practicality of the RMSECV as a fidelity characterizing method without using additional

system evaluations.

Viana et al. [51] applied the RMSECV approach as a criterion in surrogate model

selection and in constructing a weighted average surrogate. They also showed that better

results can be achieved using the leave-one-out approach. Later, Viana et al. [56] used

RMSECV to estimate the safety margin for a conservative surrogate model. Zhang et al. [57]

applied relative absolute error of cross-validation (RAECV) for characterizing the uncertainty

in surrogate models, where the normalized RAECV at the ith training point is defined based

on the leave-one-out approach. This characterization was used in conjunction with support

vector machines to segregate the design space into sub-spaces based on the level of model

errors.

2.2.2.2 Local Error Measurement

Standard local error measures include: (i) the mean squared errors for Kriging [17], and

(ii) the linear reference model (LRM) [58]. In stochastic surrogate models like Kriging, the

errors at two different points of the design domain are not independent; and the correlation

between the points is related to the distance between them. When the distance between

the two points is small, the correlation tends to one, and when the distance is large, the

correlation tends to zero. According to this correlation strategy, if the point x∗ is close to

sample points, the prediction confidence at that point is higher than that when the point is

far away from all the sample points. This concept is reflected in the local error estimation
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method for Kriging predictor at the special point x∗. This error is equal to zero at the sample

points and is equal to the approximation error variance in the stochastic process. The LRM

is a model independent method for quantifying the local performance of a surrogate. The

LRM considers the region with oscillations as a high-error location. This method categorizes

errors of a surrogate in the design domain based on the deviation of the surrogate from the

local linear interpolation [58].

2.2.3 Observations and Research Needs

From the literature survey of surrogate model error estimation methods provided above,

we identify that the state-of-the-art surrogate model error measures are subject to one or

more of the following limitations:

• They are model-dependent (and hence may not be suitable for global model compari-

son, and effective model selection);

• They require additional system evaluations (and hence are expensive);

• They quantify errors in intermediate surrogate models (e.g., PRESS), which are often

not representative of the errors in the actual surrogate model that will be used for

design and analysis; and

• They generally do not provide an understanding of the uncertainty introduced by a

surrogate in a design process (i.e., provides deterministic error measures).

It is also evident that there is a need for the development of new error measures, or

the modification of existing approaches to extract the maximum pertinent information from

the limited resources generally available to construct surrogate model. It is also desirable

that such error quantification approaches have the following characteristics:
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i Be independent of the type of model (e.g., Radial basis function, Polynomial response

surface, Gaussian processes),

ii Provide a predictive estimate of the error of the actual model, and

iii Provide direct opportunity for model selection and model refinement

2.3 Model Selection

2.3.1 Existing Model Selection Method

The selection of a suitable surrogate model for a given experimental or simulated data

set is critical to the intended use of surrogates. While a suitable surrogate model can be se-

lected intuitively (experience-based selection), based on an understanding of the data charac-

teristics and/or the application constraints [59, 60, 61], the development of general guidelines

might not be practical due to the diversity of system behavior among design applications.

In the context of practical application, there are several common pitfalls to intuitive model

selection. First, only a few candidate surrogates, which the user is well acquainted, are gen-

erally considered, thereby often failing to exploit the large and fast-growing pool of available

surrogates. More importantly, in designing complex multidisciplinary systems, it’s highly

unlikely that single users will have significant experience in multiple disciplines to enable

them to make a reliable, insightful choice of models, that will represent complex system be-

havior. Automated model selection approaches, based on the quantitative decision-making

techniques, could fill this crucial gap in the surrogate modeling paradigm.

In the literature, error measures have been used to select the model type and basis

functions for a given sequence of data [25, 62, 63, 64]. Consequently, the best surrogate
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model, F̄ ∗, among a set of candidates, F̄ ∈ Γ, is defined as the one fulfilling

F̄ ∗ = argmin
F̄∈Γ

ε(F̄ ) (2.14)

where Γ and ε(F̄ ) respectively represent the set of candidate surrogates and the error in the

predictions of surrogate F̄ . Popular error measures used for model selection include [13]: (i)

split sample, (ii) cross-validation [65], (iii) bootstrapping, (iv) Akaike’s information criterion

(AIC) [66, 67], and (v) Schwarz’s Bayesian information criterion (BIC) [67]. A definition of

i-iv methods are provided in Section 2.2. In Akaike’s information, the performance of the

surrogate is relatively estimated based on a penalized likelihood. AIC is equal to the sum of

a negative log likelihood and a penalty term, as given by

AIC = −2 logL(θ̂) + 2k (2.15)

In this equation, L(θ̂) is the maximized likelihood function, and k is the number of

free parameters in the model, which is a measure of complexity or the compensation for

the bias in the lack of fit when the maximum likelihood estimators are used [66]. Bayesian

information criterion (BIC) is just a variation of AIC in which the penalty term is increased,

as given by

BIC = −2 logL(θ̂) + k lnn (2.16)

The selection of the model type and kernel function without considering the effect

of hyper-parameter(s) could lead to suboptimal selections, a concern that often remains

unaddressed in error-based model selection. To further elucidate this issue, we will consider
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the example of the Multiquadric radial basis function, ψ (‖x− xi‖, σ) = (‖x− xi‖2 + σ2)
1/2

,

where the function f̄(x) =
∑np

i=1wiψ (‖x− xi‖) is a universal RBF approximation if the

shape parameter, σ, is allowed to vary and the summation runs over all the training points.

Figure 2.4(a) shows the different functional forms predicted by the RBF Multiquadric

surrogate model for the one-dimensional test problem, when different values of σ are pre-

scribed. This figure clearly demonstrates the strong sensitivity of the predicted function to

the hyper-parameter. In this case, we see that σ = 1.05 approximately leads to the RBF

models that resembles the actual function most closely. Further evidence towards this ob-

servation is provided by Fig. 2.4(b), which shows the variation of the model error (predicted

on additional test points) with the hyper-parameter, σ.
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Figure 2.4: The impact of shape hyper parameter (σ) in a RBF surrogate with
Multiquadric basis function constructed for a 1-D problem; f(x) =
(6x− 2)2 sin[2(6x− 2)], x ∈ [−1 1]

To mitigate the possibility of constructing a suboptimal version of a surrogate model

with a selected Kernel (or basis) function, one can perform hyper-parameter optimization.

Hyper-parameter optimization generally involves minimizing the estimated model errors with
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respect to the hyper-parameters [68, 69]. Examples of hyper-parameter(s) optimization for

a given model and Kernel function exist in the literature. Martin and Simpson [35] used

maximum likelihood estimation (MLE) and cross-validation methods to find the optimum

hyper-parameter value for the Gaussian correlation function in Kriging. The likelihood func-

tion in that case defines the probability of observing the training data for a particular set

of parameters. Mongillo [70] used maximum likelihood estimation (MLE) and leave-one-out

cross-validation methods to select an optimal shape parameter in a Gaussian RBF. These

efforts however did not consider model type selection. Gorissen et al. [60] provided the

leave-one-out cross-validation and AIC error measures in the SUrrogate MOdeling (SUMO)

Toolbox to select the best model type and hyper parameter value(s) for a given problem

using a genetic algorithm. These important contributions further demonstrate the need for

automated model selection towards realizing the full potential of surrogate models/meta-

models in complex system design and analysis. Unified approaches to perform automated

surrogate model selection simultaneously at all three levels (model type, kernel type, and

hyper-parameter value) is however rare in the literature.

2.3.2 Observations and Research Needs

Existing automated model selection techniques generally operate only at one of the

following levels:

(i) Selecting the model type (e.g., Quadratic Response Surfaces (QRS) [25], Kriging

[8, 9], Moving Least Square [71, 72], Radial Basis Functions (RBF) [10], Support Vector

Regression(SVR) [73], and Neural Networks [11]),

(ii) Selecting the basis function, kernel function, or correlation function (e.g., Lin-

ear, Gaussian, and Multiquadric functions), and
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(iii) Optimizing the hyper-parameter(s) of a selected function. Hyper-parameters are

control parameters (e.g., shape parameter in RBF), that are more often than not pre-

scribed by users and not estimated during the standard training process.

As such, it is unfortunate that unified approaches to performing automated surro-

gate model selection simultaneously at all three levels (model type, kernel type, and hyper-

parameter value) has remained a largely unexplored research topic. The capability of imple-

menting selection at three levels, as illustrated in Fig. 2.5, avoids limiting assumptions on

the choice of constituent functions and hyper-parameter values.

Types of model Types of basis/kernel Hyper-parameter(s)

• RBF 
• Kriging 
• E-RBF 
• SVR 
• QRS 
• …

• Linear 
• Cubic 
• Exponential 
• Gaussian 
• Multiquadric 
• …

• Shape Parameter (in RBF) 
• Correlation Parameter (in 

Kriging) 
• Kernel’s Parameter(s) (in SVR) 
• …

Figure 2.5: Elements of 3-level Surrogate Model Selection

In the absence of a three-level model selection approach, we will usually fall short of

exploiting the full potential of the surrogate models at our disposal. A systematic surrogate

model selection framework that coherently operates at all the three levels listed above is thus

needed.

An effective model selection framework should offer these important features:

(i) Allows simultaneous selection of model type, kernel type, and optimized hyper-parameter

values

(ii) Uses an error metric (as selection criteria) that is model independent and reliable (i.e.,

accurate and less sensitive to the DOE)
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(iii) Can search a comprehensive candidate pool of diverse model types and Kernel types

within a reasonable time frame.

2.4 Variable Fidelity Optimization

Variable fidelity models refers to models with different levels of fidelity, where the

computational cost of the model is generally related to the accuracy of the model estimation.

In addition to low, medium, and high fidelity physics-based models, surrogate models (or

mathematical approximation models) can also be used as candidates within a set of variable

fidelity models.

Besides direct implementation of a surrogate model as a black-box function (directly

substituting a high fidelity model or data), low fidelity physic-based models can also be

combined with a surrogate model to achieve a hybrid model of greater accuracy than its

individual components (as illustrated in Fig. 2.6). Low fidelity physic-based models (e.g.,

the vortex lattice computational fluid dynamics method) are generally less complex than

a high fidelity model and often provides a less faithful representation of the physics of the

system[74]. In many cases, these models can be obtained by simplifying either the analysis

model (e.g., using coarse finite element mesh) or the original physical formulation (e.g.,

using simplified boundary conditions or geometry). To their advantage, low fidelity physics-

based models often inherit the major features of true models, while being significantly less

expensive. Hence, these models could provide a reliable foundation for the construction

of high-quality hybrid approximation models. These hybrid models, also called tuned low

fidelity models, are expected to reflect the most prominent physical features of the system,

and at the same time preserve computational efficiency. Two well-known approaches for

constructing tuned low fidelity (TLF) models are multiplicative and additive approaches, as
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given in Eqs. 2.17 and 2.18, respectively [75].

Multiplicative approach : y
TLF

= A× y
LF

(2.17)

Additive approach : y
TLF

= B + y
LF

(2.18)

In both of these approaches, the tuning functions (A and B) are trained using the

associated values of the high and low fidelity model for a given DoE, as shown below:

A(X) =
y
HF

(X)

y
LF
(X)

B(X) = y
HF

(X)− y
LF
(X)

where X = {X1, X2, X3, ..., XNs}

NS : Number of sample points

(2.19)

and where yHF (.) and yLF (.) respectively represent the functional responses of the low and the

high fidelity models. In surrogate-based tuned low fidelity models, the tuning (or correction)

of a low fidelity model are performed using surrogate model constructed through a DoE of

the high fidelity model[76, 77, 78].

2.4.1 Model Switching & Model Management

The major pitfall in using low fidelity models in optimization is that they can often

mislead the search process, leading to suboptimal or infeasible solutions. To address this

issue and provide optimum designs with high fidelity system evaluations, model switching

or model management strategies can be applied. Different model management strategies
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Figure 2.6: Variable Fidelity Models

have been reported in the literature, for integrating low fidelity models within optimization

algorithms. One class of model management strategies are developed based on the Trust-

Region methods [79, 80, 81, 82, 83]. The basic idea of the Trust-region is to solve an

optimization problem, Min
x∈RP

f(x), using the high fidelity model (f(x)) where x0 is the initial

guess; in solving this optimization problem using a gradient-based algorithm, the kth iteration

is computed as xk+1 = xk +λ ∆x, where λ is the step length and ∆x is the decent direction.

As ∆x is fixed, the problem reduces to a one-dimensional optimization problem: Min
λ

f(xk+

λ∆x). To improve the computational efficiency of the problem, the low fidelity model, f̂(x),

can be used in the latter optimization problem. Assuming the low fidelity model is only valid

in the vicinity of xk (e.g., xk + γ), the optimization search for λ is changed to the following

constrained optimization problem:

Min
λ

f(x+ λ∆x), subject to : ||λ∆x|| < γ (2.20)

where γ is the trust-region radius. In the Trust-Region based model management methods

developed by Alexandrov et al. [84] and by Toropove and Alvarez in 1998 [85], the parameter

γ is adaptively increased (or decreased) depending on how well the low fidelity model, f̂(x),
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predicts the improvement in the high fidelity model. This criterion is estimated by computing

the ratio of the actual to the predicted improvement in the objective function, as given by

f(xk)− f(xk + λk∆xk)

f̂(xk)− f̂(xk + λk∆xk)
(2.21)

The Trust-Region method seeks the agreement of the function and its gradient values in the

low fidelity model with those estimated in the high fidelity model. However, these techniques

may not be directly applicable in problems where gradients are expensive to evaluate, or

where zero-order algorithms are being used for optimization.

The model management approaches used in heuristic optimization algorithms can be

broadly classified into two different approaches which are (i) individual-based evolution con-

trol, and (ii) generation-based evolution control [86]. In the individual-based approach, se-

lected individuals (controlled individuals) within a generation are evaluated using a high

fidelity model. In the generation-based approach, the whole population at a certain gener-

ation (controlled generation) is evaluated using the high fidelity model. Graning et al. [87]

explored different individual-based evolution frameworks such as (i) the Best Strategy[88],

where the best individuals at each generation are selected as controlled individuals, (ii) the

Pre-Selection method [89], where the offspring of the best individuals are selected as con-

trolled individuals, and (iii) the Clustering Technique [90], where the k-means clustering

technique is used to find the “controlled individual cluster” based on the distance from the

best individual.
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2.4.2 Model Refinement & Surrogate-based Optimization

“Model Refinement” approaches offer a powerful solution to this challenge by providing

the surrogate models with reasonable accuracy during the optimization process. In the

typical SBO approach, the optimization process is repeated multiple times, where each time

the surrogate model is improved by the addition of new sample points.

Another important area of application of surrogate model error measures is “model

refinement”. In these approach, that is developed for non-physics-based low fidelity models

(e.g., surrogate model), the accuracy and robustness of the surrogate model is improved by

adding points where additional evaluations of the high fidelity model / physical experiment

are desired to be performed.

In the literature, there are three approaches for generating sample points, which are (i)

Single stage sampling, (ii) Traditional sequential sampling, (iii) Adaptive sampling. These

approaches are illustrated in Fig. 2.7. In the Single stage (or space filling) method, all the

sample points are generated in one stage (Fig. 2.7(a)). This approach attempts to assign

the locations of all sample points over the entire design space in one step. In the Sequential

sampling approach, sample points are generated in an iterative process (Fig. 2.7(b)). In

this approach, the intermediate surrogate model is fitted to the response of a portion of

the sample points and is updated at each iteration by including the response of new infill

points (for improving the surrogate accuracy). In one class of sequential sampling method,

the location information of the current global optimum at each iteration is also used for

adding infill points and updating the surrogate model. In the literature, the word sequential

is sometimes referred to as adaptive or application driven, and the new sample points are

known as infill points or update points.

The ‘Model Refinement’ strategies used to improve the accuracy of the surrogate models
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Figure 2.7: Sampling strategies

during the optimization process are known as “Surrogate-Based Optimization” strate-

gies (Fig. 2.7(c)). Surrogate-Based Optimization (SBO) generally refers to the concept of

reduction of analysis and optimization time by adopting surrogates for the objective and

constraint functions. SBO has been shown to be effective and robust for the design of

computationally expensive system functions. SBO has been widely used in single or mul-
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tidisciplinary optimizations with various applications (aerospace design, automotive design,

electronic packaging, structure optimization, decision making) [20]. An important objective

in SBO is to achieve an acceptable level of accuracy while attempting to minimize the overall

computational effort.

In SBO approaches, Infill points are generally added in (i) the region where the opti-

mum is located (local exploitation); and/or (ii) the entire design space to improve the global

accuracy of the surrogate (global exploration)[16, 78, 91]. Infill points can be added in a

fully sequential (one-at-a-time), or can be added in a batch sequential manner. There exist

various criteria for determining the locations of the infill points including (i) Index-based cri-

teria (e.g., (Integrated- and maximum) Mean Square Error (MSE) and Maximum Entropy

criteria) and (ii) Distance-based criteria (e.g., Euclidean distance, Mahalonobis distance,

and Weighted distance criteria) [17, 92, 93, 94, 95, 96]. Jin et al. [97] reviewed different

one-at-a-time sequential sampling criteria, and illustrated their potential benefits over single

stage methods [98, 99]. Loeppky et al. [100] explored different batch and one-at-a-time

sequential criteria for the Gaussian process model. They pointed out that these criteria

perform better under the batch sequential approach, and one-at-a-time augmentation would

be likely impractical due to the higher computational cost (especially in the case of physical

experiments).

Over the last two decades, different Surrogate-Based Optimization strategies have been

developed [17, 101, 102, 103]. Trosset and Torczon in 1997 [104] proposed an approach where

the balance between exploitation and exploration was considered using the aggregate merit

function, f̂(x) − ρdmin(x), where, dmin(x) = Min
x

‖x − xi‖, ρ > 0. It is important to

note that, this technique is independent of the type of surrogate modeling technique being

considered. Another approach which is independent of the type pf surrogate modeling, is
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Adaptive Sequential Sampling (ASS) developed by Mehmani et. al. [18]. Adaptive Sequential

Sampling (ASS) is a recently developed adaptive approach to add infill points during SBO.

In this approach, both local exploitation and global exploration aspects are considered for

updating the surrogate during optimization, where multiple iterations of the SBO process is

performed to increase the quality of the optimal solution. This approach adaptively improves

the accuracy of the surrogate in the region of the current global optimum as well as in the

regions of higher relative errors. Based on the initial sample points and the fitted surrogate,

the ASS method adds infill points at each iteration in the locations of: (i) the current

optimum found based on the fitted surrogate; and (ii) the points generated using cross-over

between sample points that have relatively higher cross-validation errors.

Jones et al. in 1998 [17] developed a well-known model management strategy that

is based on an Expected Improvement (EI) criterion, and is called Efficient Global Opti-

mization (EGO). This powerful approach is however generally limited to surrogate mod-

els based on Gaussian processes. Assuming fmin is the objective function value of the

optimum in the training data, the expected improvement in an infill point x is given

by E(I(x)) = E(max(fmin − F (x)), 0). In this case, F (x) is a Gaussian distribution,

F (x) ∼ N (f̂(x), σ2(x)), where the posterior mean, f̂(x), is used as a surrogate model, and

the posterior variance σ2(x) gives an estimate of the uncertainty involved in the surrogate

prediction. The expected improvement can be estimated by

E(I(x)) = (fmin − f̂(x))Φ(
fmin − f̂(x)

σ(x)
) + σ(x)φ(

fmin − f̂(x)

σ(x)
) (2.22)

where Φ(.) and φ(.) denote the standard normal density and distribution functions, re-

spectively [101]. Subsequently, an infill point can be found by maximizing the expected
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improvement, X infill = argmax
x

(E(I(x))).

In the literature, we can find a wide spectrum of optimization algorithms used for SBO:

gradient-based methods, evolutionary methods, and swarm-based methods, which are listed

in Table 2.4.

Table 2.4: Optimization algorithms

Gradient-based methods Population-based methods Other methods
1) Adjoint equation 1) Genetic algorithm 1) Random search
2) Newton’s method 2) Memetic algorithm 2) Grid search
3) Steepest descent 3) Swarm based optimization 3) Simulated annealing
4) Conjugate gradient 4) Harmony search 4) Direct search
5) Sequential quadratic 5) Ant colony optimization 5) Indirect Optimization based

programming 6) Bees algorithm on Self-Organization

2.4.3 Observations and Research Needs

A survey of existing model switching and model refinement approaches for integrating

models with different levels of fidelity into an optimization process is provided in this sec-

tion. Several of the existing model refinement strategies are found to be defined for specific

types of low fidelity model, e.g., EGO works primarily for Gaussian process-based surrogate

models. On the other hand, most of existing model switching techniques generally consider

the combination of only two models of different fidelities (e.g., Trust-region methods, and

individual- and generation-based techniques). In addition, some of them need to estimate

the gradient of low and high-fidelity models (e.g., Trust-region method which seeks the agree-

ment of the function and its gradient values in the low-fidelity model with those estimated

in the high-fidelity model.). It is evident from the above discussion that there is apprecia-

ble scope (and need) for advancing the state of the art in Variable Fidelity Optimization.

Specifically, the development of a model switching strategy that can be applied to different

types of low fidelity models (i.e., physics-based and non-physics-based low fidelity models),
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and allows adaptive switching between more than two models are need to be pursued. There

is also significant interest in developing model-independent Model Refinement approach that

be capable of refining different surrogate models during optimization process using heuristic

optimization algorithms.
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CHAPTER 3

Predictive Estimation of Model Fidelity (PEMF)

How do we develop a reliable surrogate model error measure, which extracts

maximum pertinent information from the limited available resources?
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Figure 3.1: Chapter 3 orientation

In this chapter, we present a new model-independent approach for quantifying the fi-

delity of surrogate models, called “Predictive Estimation of Model Fidelity (PEMF)”. The

PEMF method advances the current paradigm in providing reliable information regarding the

fidelity of surrogate models, which improves the flexibility of model selection and the con-

fidence in surrogate-based optimization. The PEMF method is derived from the hypothesis

that “the accuracy of an approximation model is related to the resources leveraged to train

Portions of this chapter previously appeared as:

Mehmani, A., Chowdhury, S., and Messac, A.,“Predictive Quantification of Surrogate Model Fidelity based
on Modal Variations with Sample Density,” Structural and Multidisciplinary Optimization, 2015,

Mehmani, A., Chowdhury, S., Zhang, J., and Messac, A., “Quantifying Regional Error in Surrogates by
Modeling its Relationship with Sample Density,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference, AIAA, Boston, Massachusetts, April 2013, and

Mehmani, A., Chowdhury, S., Zhang, J., and Messac, A., “Regional Error Estimation of Surrogates
(REES),” 14th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, Indi-
anapolis, Indiana, September 2012.
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the model”.

The remainder of the chapter is organized as follows: Section 3.1 presents the overview

of this research; the formulation of the proposed model fidelity quantification approach is

described in Section 3.2; numerical experiments and results are respectively presented in

Sections 3.4 and 3.5, respectively. The Chapter summary is provided in Section 3.6.

3.1 Chapter Introduction

The method developed in this chapter, called Predictive Estimation of Model Fidelity

(PEMF), is designed to address two primary objectives. The first objective is to develop

a model-independent methodology for quantifying the fidelity of the ‘actual surrogate’

without requiring additional system evaluations . In this context, the ‘actual surro-

gate’ refers to the surrogate model constructed using all available training points (and not

any subset of training points, as used in cross-validation). With this approach, we provide

error information for the actual model that is to be used for function analysis or optimization

(assuming surrogate construction is not an end in itself). The second objective is to track the

variation of the surrogate model error with an increasing density of training points, thereby

creating opportunities for global model selection and model refinement.

3.2 Predictive Estimation of Model Fidelity (PEMF)

The PEMF method determines the model fidelity within the design domain (defined by

the user) by analyzing the variation in the model error distribution with increasing number

of training points. This measure of fidelity can provide uniquely useful information about the

accuracy of the surrogate model in regions of interest or the entire design domain, thereby

significantly improving the usability of the surrogate in model-based design applications.

In the context of surrogate-based design, this information can be directly applied for (i)
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surrogate model refinement [97, 105, 106], (ii) surrogate model selection [35, 60, 107], and

(iii) uncertainty analysis [108, 109]. In these applications, PEMF is either enabling more

informed use of the constructed surrogate model or the platform to identify and use the

surrogate that is most suited to the concerned design process. A flowchart describing the

PEMF algorithm is illustrated in Fig. 3.2, and the major steps are described below:

Generate or acquire a sample data set, {X}

Identify {Xin} and {Xout}

Choose number of iterations, Nitr

Set t = 1

Choose number of sample combinations, Mt

Set k = 1

Define a subset {ßk} of nt points.

where {ßk} ⊂ {Xin} and nt−1 < nt

Define intermediate training and test points,

{Xt
TR} = {Xout} + {ßk}

{XTE} = {X} − {Xt
TR}

Construct an Intermediate Surrogate, fk
t

Estimate Ek
med and Ek

max of fk
t

Check if k = Mt

Fit a distribution of the median and the

maximum errors over all Mt combinations

Satisfy MT Criterion?

Use the modal error values at the

last iteration of PEMF to

represent the error measures of the

final surrogate model:

EPEMF

med
= MoN

itr

med

EPEMF

max
= MoN

itr

max

Determine Motmed, and Motmax

Check if t = Nitr

k=k + 1t=t + 1

Construct final surrogate mdoel using

Train VESD regression functions

using Motmed, and Motmax ∀t

Extrapolate the VESD function to

estimate the error measures of the

final surrogate mdoel:

EPEMF

med
= VESDmed ({Xin})

EPEMF
max

= VESDmax ({Xin})

NO

NO

NO

YES

YES

YES

Figure 3.2: The Predictive Estimation of Model Fidelity (PEMF) algorithm

3.2.1 Generating sample data

In this step, a set of experimental designs are generated based on a user-specified

distribution or given by a DOE. The expensive system evaluation (simulation or physical

experiments) is then performed over the sample data points. The entire set of sample points

is represented by {X}. This sample input-output data might also be given by other measured
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data sources.

3.2.2 Defining the region of interest

The entire set of sample points is divided into inside and outside sets based on the

boundaries of the user-defined region of interest, and are represented by {Xin} and {Xout},

respectively.

3.2.3 Quantifying the variation of the error distribution with sample density

This step is an iterative process, where the number of iterations (N itr) is to be guided

by the dimension of the problem, the number of sample points in the inside set, and the

observed stability of error variation. In this first development and implementation of PEMF,

the number of iterations are fixed (prescribed by the user). At each iteration, sample points

are divided into a set of intermediate training data {XTR} and a set of intermediate test

data {XTE}, i.e.,
{X t

TR} = {Xout}+ {ßk}

{X t
TE} = {X} − {X t

TR}

where, {ßti} ⊂ {Xin}

t = 1, 2, 3, ..., N itr

(3.1)

where {ßk} represents a kth subset of inside-region sample points. At each iteration t, the

size of {ßk} is defined by nt, where nt+1 > nt and n1 ≥ 1.

At each iteration, the total number of possible sample combinations is defined by

M t where M t ≤
(
Ni

nt

)
; the term Ni represents the number of inside-region sample points.

In low dimensional problems, all possible subsets of size nt could be used, while in high
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dimensional problems, a fraction of subsets could be used to avoid intractable computational

cost. Intermediate surrogates fk
t , are constructed at the tthiteration for all combinations,

k = 1, 2, ...,M t, using the intermediate training points. These surrogate models are then

evaluated over the intermediate test points.

The median and the maximum errors for each combination (Ek
med and Ek

max) are then

estimated using the RAE values on the intermediate test points (e1, e2, ..., emt). Probability

distribution functions are used to represent the distribution of median and maximum errors

over the M t different combinations at each iteration, thereby providing an understanding of

the uncertainty directly associated with the surrogate model. A chi-square (χ2) goodness-

of-fit criterion [110] is used to select the most suitable type of distribution from a list of

candidates such as lognormal, Gamma, Weibull, logistic, log logistic, t location scale, inverse

Gaussian, and generalized extreme value distribution. The χ2 criterion is defined based on

the error between the observed and the assumed PDF of the distribution. Assuming observed

frequencies of m intervals of the random variable are represented by o1, o2, ..., om; the

corresponding theoretical frequencies are represented by t1, t2, ..., tm; and the χ2 criterion

is given by

χ2 =

m∑

i=1

(oi − ti)
2

ti
(3.2)

The mode of the median and the maximum error distributions at each iteration (Motmed

and Motmax) are evaluated to provide a measure of central tendency, and are used to relate

the variation of the surrogate error with the sample density.
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3.2.4 Predicting the fidelity of the final surrogate model

The final surrogate model is constructed using the entire set of training data. Regres-

sion models are applied to represent the statistical mode of the median error distribution

(Momed) and that of the maximum error distribution (Momax) at each iteration as monotonic

functions of the number of inside-region training points, nt. These regression functions are

called the variation of error with sample density (VESD), and are expressed as

tEMo
med = Fmed

(
nt
)

tEMo
max = Fmax

(
nt
) (3.3)

The VESD regression functions are then used to predict the fidelity of the final sur-

rogate under the condition that a Monotonic Trend (MT) Criterion is satisfied. The MT

criterion is defined to statistically test the feasibility of a monotonic decrease of the model

fidelity with increasing sample density. If the MT criterion is not satisfied, a stable imple-

mentation of the k-fold cross-validation (PEMF-based k-fold) is used instead of the VESD

functions to represent the surrogate model fidelity. The formulation and application of the

MT criterion is described in the following subsection.

3.2.4.1 Constructing and Testing Functions to Represent the Variation of Error

with Sample Density (VESD)

The selection of the type of regression function is critical to quantify the variation

of error with training point density. In this chapter, two types of regression functions are

used to represent the variation of maximum and median error as functions of the number of

inside-region training points. These functions are



50

Type 1 Exponential regression function

F (nt) = a0 e
−a1 (nt) (3.4)

Type 2 Multiplicative regression function

F (nt) = a0 (nt)−a1 (3.5)

where a0 and a1 are regression coefficients known as initial value and rate of decay, respec-

tively. These coefficients are determined using the least square method such that a0, a1 > 0,

and nt ≥ 1. The smaller the rate of decay (a1), the lower the sensitivity of surrogate model

accuracy to sample density. Numerical experiments exploring linear, polynomial, multiplica-

tive, exponential, and other standard regression functions indicated that exponential and

multiplicative functions are the most suitable choice in this context. In this chapter, the

root mean squared error metric is used to select the best-fit regression model. The choice

of these regression functions assume a smooth monotonic decrease of the model error with

increasing density or number of training points within the region of interest.

Intuitively, most surrogate modeling scenarios are expected to conform to the monoton-

ically decreasing trend of the model error (with sample density). However, in certain cases,

the variation of the estimated error (Motmed and Motmax; t = 1, 2, ..., N itr) with sample density

(over iterations) may not follow the monotonically decreasing trend. Such cases may arise

due to a highly non-uniform distribution of sample points or a highly skewed distribution of

nonlinearity of the actual output function over the input space. To consider the possibility

of such non-conforming cases, and avoid unreasonable inaccuracies in error predictions using
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the fitted VESD function, the feasibility of the monodically decreasing trend of model error

is statistically tested using a criterion called the Monotonic Trend (MT) criterion. If the

MT criterion is satisfied by the fitted VESD regression function, this VESD function is con-

sidered admissible and is used to predict the error in the final surrogate model (constructed

over all sample points). Otherwise, a stable implementation of k-fold cross-validation, called

PEMF-based k-fold cross-validation, is used to represent the error in the final surrogate.

The PEMF-based k-fold cross-validation method is defined as the modal value of the error

of the intermediate surrogate model constructed using nNitr
sample points (i.e., the modal

error value in the last iteration of PEMF). The median and the maximum error measures of

the final surrogate are then respectively given by MoN
itr

med and MoN
itr

max (as is further defined in

Eq. 3.10).

In the MT test, we use the Pearson correlation coefficient [111] to measure the linear

correlation between the log-level and the log-log transformation of Error with respect to

the Sample density in the Type 1 and Type 2 VESD functions. In this test, the following

standard mathematical properties are employed:

(i) if a (x, y) input/output data set follows an exponential relationship, the transformed

(x, log y) follows a linear relationship, and

(ii) if a (x, y) input/output data set follows a purely pth order power relationship, the

transformed (log x, log y) follows a linear relationship.

In this test, the Pearson coefficient for the Type 1 and Type 2 VESD functions is

defined as:

ρ
λ,ϕ

=
Cov(λ, ϕ)

σλ σϕ
(3.6)
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where

λ = ln(Mot=1,2,...,N itr

) (3.7)

ϕ =

{
nt=1,2,...,N itr

VESD Type 1

ln(nt=1,2,...,N itr

) VESD Type 2

(3.8)

In Eq. 3.6, Cov is the covariance, σ is the standard deviation, and ρ
λ,ϕ

is a Indicator of

Monotonicity (defined by the Pearson Correlation Coefficient). The closer ρ
λ,ϕ

is to −1, the

stronger is the monotonic (decreasing) relationship between the model error measure and

sample density. If the threshold condition value of ρ
λ,ϕ

is given by ρcr, then p =
ρcr√

(1−ρ2cr)/dF

follows a t-distribution with the degrees of freedom given by dF = Nitr − 2. The threshold

condition value, ρcr, for a Ccr level of confidence can then be determined by

ρcr =
p
Ccr,dF√

(p2
Ccr,dF

+ dF )
(3.9)

For a given level of confidence (Ccr), if the Indicator of Monotonicity, ρ
λ,ϕ

, is not greater

than the threshold condition value of ρcr, the monotonically decreasing characteristics is

considered to hold. In that case, the fitted regression function (VESD) is used to predict

the fidelity of the final surrogate model (V ESD ({Xin})). Conversely, if the Indicator of

Monotonicity (ρ
λ,ϕ

) is greater than the threshold condition value of ρcr, the VESD function

is discarded, and instead a stable implementation of k-fold cross-validation (PEMF-based

k-fold) is used, as shown below:
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EPEMF =

{
V ESD ({Xin}) ρ

λ,ϕ
≤ ρcr

MoN
itr

ρ
λ,ϕ

> ρcr

(3.10)

3.3 Investigating the Stability of PEMF error measures

The individual steps of the PEMF method at each iteration is somewhat analogous to

k-fold cross-validation. In k-fold cross-validation, errors are generally evaluated for a specific

value of k. In the PEMF method, the errors are evaluated iteratively for different values

of k, in order to predict the level of error in the final surrogate. This novel approach gives

PEMF the predictive capability that is otherwise lacking in standard k-fold or leave-one-out

cross-validation. More importantly, PEMF seeks to formulate and use more stable measures

of error compared to those in cross-validation. In k-fold cross-validation, for one specific

k, mean errors are used to represent the level of error, as shown in the pseudo code under

Algorithm 1. In the PEMF method, the median error on each heuristic set of intermediate

test points is first estimated, followed by the determination of the statistical mode of the

median errors. The modal error value is then used to represent the level of error at any

given k. The novel use of the modal value of median errors (and similarly modal value of

maximum errors) promotes a monotonic decrease of the error measure with sample density,

as opposed to the untraceable noisy variation that is often characteristic of mean or RMS

error measures.

To illustrate the potential greater stability of PEMF error measures (with respect to

their relation to sample density) compared to conventional measures, a two design variable

benchmark problem (Branin-Hoo function (Sec.3.4.2)) is considered. The size of the sample

data set, N , is defined to be 500, and the region of interest is set to be the entire design
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Algorithm 1 : Standard K-fold cross validation

INPUT:
Set k
Set N=

(
Ni

k

)

for j = 1, 2, ..., N do
for i = 1, 2, ..., K do
Estimate actual value on ith training point; yi = System (xi)
Estimate predicted value on ith training point; ŷi = Surrogate (xi)
Estimate RAE on ith training point; RAEi = |yi−ŷi

yi
|

end for
Evaluate mean of the relative absolute errors value;
Ej = mean(RAEi), i = 1, 2, ..., K

end for
Evaluate mean of the mean errors value;
Ek−fold = mean(Ej), j = 1, 2,...,N
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Figure 3.3: Variation of Estimated Modal values of Median Errors with Sample
Density using PEMF (Branin-Hoo Function)
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standard k-fold cross-validation (Branin-Hoo Function)
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space. The numerical settings of this problem is given by

Ni = N, nt = 20 + 2t, and M t = 200

, t = 1, 2, 3, ..., 50

Based on this definition, at the first iteration, the intermediate surrogates are constructed

using 22 sample points, and tested over 478 points, i.e., N1
TR = 22, and N1

TE = 478, where

N1
TR and N1

TE represent the number of training points and test points, respectively. In the

same way, at the last iteration, N50
TR = 120, and N50

TE = 380.

The relation of the Mode of Median and the Mean of the Mean errors with sample

density in different surrogates (Kriging, RBF, and E-RBF) are illustrated in Fig. 3.3 and

Fig. 3.4, respectively. These figures illustrate that the mode of median errors decrease

with a practically monotonic trend, with increasing number of training points. Such a

monotonic tendency cannot be associated with the Mean of the Mean error, as shown in

Figs. 3.4(a)- 3.4(c). It is also important to consider that model errors may not follow a

normal distribution, and that the most probable value of error (modal value) might be of

greater practical importance (more insightful) than a mean value. From these perspectives,

PEMF error measures are likely to provide a more meaningful understanding of the fidelity

of a surrogate model in the context of its use in analysis and design.

3.4 Application of the PEMF Method

3.4.1 Surrogate models

The effectiveness of the PEMF method in predicting the regional and global errors is

explored for application with Kriging, RBF, and E-RBF surrogate on Branin-Hoo function
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with two design variables, Perm function with 10 design variables, and Dixon & Price function

with 50 design variables. The median and maximum errors evaluated using PEMF are

compared with the actual error evaluated on additional test points. To perform a fair

comparison, the estimated median and maximum errors on heuristic subsets of additional

test points are used to fit error distributions. The statistical mode of the median and the

maximum error distributions (estimated over additional test points) are used as reference

values (as shown in Algorithm 2), to investigate performance of PEMF.

Algorithm 2 : Quantifying the mode of median and maximum errors, estimated on addi-
tional test points (for performance validation of PEMF)

INPUT:
Set Number of additional test points N test

Set Size of combinations, n (n < N test)

Set Number of combinations, P (P <
(
Ntest

n

)
)

for i = 1, 2, ..., N test do
Estimate actual value on ith test point; yi = System (xi)
Estimate predicted value on ith test point; ŷi = Surrogate (xi)
Estimate RAE on ith test point; RAEi = |yi−ŷi

yi
|

end for
for j = 1, 2, ..., P do
Select a random subset of size n from RAEs,
Evaluate the median and maximum of the selected RAEs value RAEmed and RAEmax;
RAEmed = median(RAEi), RAEmax = max(RAEi), and i = 1, 2, ..., n.

end for
Fit a distribution of the median and the maximum errors over all P combinations

Determine the mode of the error distributions; EActual
Mo−med and EActual

Mo−max

To illustrate the potential greater effectiveness of the PEMF error metric over popular

cross-validation error, the mean and maximum errors given by leave-one-out cross-validation

are also compared with the actual mean and maximum errors. In this case, the mean and

maximum errors estimated on additional test points (as described in Algorithm 3) are used

as reference values.
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To implement the Kriging method, the DACE (design and analysis of computer exper-

iments) package developed by Lophaven et al. [112] is used. The bounds on the correlation

parameters in the nonlinear optimization in Kriging, θl and θu, are specified to be 0.1 and

20, respectively. In the Kriging surrogate, the zero-order polynomial function is used as the

regression model. To implement the RBF surrogate, the multiquadric radial basis function

[10] is used, where the shape parameter is set to c = 0.9. In implementing the E-RBF

surrogate [28], the shape parameter is set to c = 0.9, the λ parameter is set to 4.75, and the

order of monomial in the non-radial basis functions is fixed at 2.

Algorithm 3 : Quantifying the mean and maximum error estimated on additional test
points (for performance validation of cross-validation)

INPUT:
Set Number of additional test points, N test

for i = 1, ..., N test do
Estimate actual value on ith test point; yi = System (xi)
Estimate predicted value on ith test point; ŷi = Surrogate (xi)
Estimate RAE on ith test point; RAEi = |yi−ŷi

yi
|

end for
Evaluate the mean and maximum of the relative absolute errors value;
EActual
mean = mean(RAEi) and EActual

max = max(RAEi),
i = 1, 2, ..., N test

Table 3.1: Numerical setup for the benchmark functions

Function
Type of Total No. of No. of No. of No. of training

Error Measure sample points, {X} iterations, N itr inside-region points, {Xin} points at each iteration, nt

Branin-Hoo Case I Regional Error 30 4 11 2t
Branin-Hoo Case II Global Error 30 4 30 19+2t
Perm Global Error 50 4 50 30+4t
Dixon & Price Global Error 200 4 200 150+10t

3.4.2 Numerical Experiments

PEMF is first applied to the following popular 2D benchmark function:
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Branin-Hoo function

f(x) =

(
x2 −

5.1x21
4π2

+
5x1
π

− 6

)2

+ (3.11)

10

(
1− 1

8π

)
cos(x1) + 10

where x1 ∈ [−5 10], x2 ∈ [0 15]

The effectiveness of the PEMF method in predicting the global error in high dimen-

sional problems is then explored by applying it to two other analytical benchmark test

problems:

• Perm Function (10 variables)

f(x) =
∑n

k=1{
∑k

j=1(j
k + 0.5)[(

xj

j
)k − 1]}2 (3.12)

where xi ∈ [−n n+ 1], i = 1, ..., n

n = 10

• Dixon & Price Function (50 variables)

f(x) = (x1 − 1)2 +
∑n

i=2 i (2x
2
i − xi−1)

2
(3.13)

where xi ∈ [−10 10], i = 1, ..., n

n = 50

The numerical settings for the application of PEMF in predicting the median and

maximum errors of surrogate models for the benchmark functions are provided in Table 3.1,
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which lists (i) the number of training points, (ii) the number of iterations, (iii) the number

of inside-region training points based on the predefined region’s boundary, and (iv) the

size of the training set at each iteration. Two different cases of error quantification are

explored for the Branin-Hoo function. In case I, the PEMF method is used for regional error

measurement, where the boundaries of the region of interest are defined as: x1 ∈ [−2 7], x2 ∈

[3 12]. While in case II, PEMF is used as a global error measurement method to estimate

the model fidelity in entire design domain. To implement the MT criterion, the threshold

condition value (ρcr) in benchmark problems is estimated to be ρcr =
p0.95,2√
(p2

0.95,2
+2)

= −0.950,

for a specified level of confidence of Ccr = 0.95 and N itr = 4.

3.4.3 Performance Criteria

The errors evaluated on additional test points, summarized under Algorithm 2 and Al-

gorithm 3, are used to compare the performance of PEMF and leave-one-out cross-validation.

Although PEMF and leave-one-out cross-validation have different mathematical characteris-

tics, the purpose of their application in testing surrogates (for analysis/design/optimization)

is the same. In this chapter, we therefore compare the PEMF method with the popular

leave-one-out cross-validation method, particularly with respect to their abilities to predict

the quality or fidelity of surrogate models. This comparison is driven by the premise that the

primary ‘end-use’ applications of PEMF and cross-validation methods are similar, namely

model testing, model selection, and model refinement. The relative differences between the

actual errors and the PEMF errors are evaluated as

Rmed
PEMF =

∣∣∣∣
EActual

Mo−med −EPEMF
med

EActual
Mo−med

∣∣∣∣× 100%

Rmax
PEMF =

∣∣∣∣
EActual

Mo−max − EPEMF
max

EActual
Mo−max

∣∣∣∣× 100%

(3.14)
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The relative difference between the actual errors and the errors given by leave-one-out

cross-validation are evaluated as

Rmean
CV =

∣∣∣∣
EActual

mean − ECV
mean

EActual
mean

∣∣∣∣× 100%

Rmax
CV =

∣∣∣∣
EActual

max −ECV
mean

EActual
max

∣∣∣∣× 100%

(3.15)

In this section, the number of additional test points used to compare the error measures

is equal to 50 times of the number of inside-region sample points (50×Ni).

3.5 Results and Discussion

3.5.1 Investigating the Performance of PEMF

Figures 3.5 and 3.7 show the VESD regression functions constructed to predict the

median errors in the surrogates for Case I and II, respectively. For the sake of illustration,

all the regression coefficients in the figures are rounded to two decimal places. The Indicator

of Monotonicity, ρ
λ,ϕ

, for each model is also shown in these figures. The distributions of

median errors, and the mode of the median error distributions (Momed) are shown for each

iteration. In these figures, the shaded ∆ symbol represents the quantified mode of median

errors at each iteration; the hollow ∆ symbol represents the predicted mode of median error

in the final surrogate models.

Table 3.2: Median Error Estimated using PEMF and a large pool of additional
test points (EActual

Mo−med)

Kriging RBF E-RBF

PEMF Actual PEMF Actual PEMF Actual

Regional Modal Error (case I ) 0.081 0.088 0.109 0.104 0.049 0.053
Global Modal Error (case II ) 0.108 0.097 0.155 0.099 0.033 0.068

Actual: Error evaluated on a large pool of additional test points
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Figure 3.5: VESD function to predict the regional median error (EPEMF
med ) in

Branin-Hoo Function (case I )
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(a) 1st iteration
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(b) 2nd iteration
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(c) 3rd iteration
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(d) 4th iteration
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(e) RBF - 1st iteration
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(f) RBF - 2nd iteration
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(g) RBF - 3rd iteration
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(h) RBF - 4th iteration
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(i) E-RBF - 1st iteration
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(j) E-RBF - 2nd iteration
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(k) E-RBF - 3rd iteration
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Figure 3.6: Distribution determination based on the χ2 criterion on median re-
gional error frequency diagrams in Kirigng model constructed for
Branin-Hoo Function (case I )
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Figure 3.7: VESD function to predict the global median error (EPEMF
med ) in Branin-

Hoo Function (case II )
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(a) Kriging - 1st iteration
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(b) Kriging - 2nd itera-
tion
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(c) Kriging - 3rd iteration
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(d) Kriging - 4th iteration
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(e) RBF - 1st iteration
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(f) RBF - 2nd iteration
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(g) RBF - 3rd iteration
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(h) RBF - 4th iteration
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(i) E-RBF - 1st iteration
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(j) E-RBF - 2nd iteration
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(k) E-RBF - 3rd iteration
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(l) E-RBF - 4th iteration

Figure 3.8: Distribution determination based on the χ2 criterion on median
global error frequency diagrams in Branin-Hoo Function (case II )
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It is observed from Figs. 3.5 and 3.7 that the mode of the error distributions gener-

ally decrease with density of inside-region training points, since the estimated Indicator of

Monotonicity in the two cases are less than the pre-estimated threshold (ρcr). Based on these

observations, the variation of error with training point density can be represented by apply-

ing the VESD regression functions described in Section 2.2. The predicted median (EPEMF
med )

errors and actual errors in the final surrogates in Cases I and II are provided in Table 3.2.

The PEMF error is within the same order of magnitude as the actual errors , which is a

significant achievement in surrogate model error quantification. It is also important to note

that PEMF provides additional helpful insights into the performance of the surrogates for

the concerned problem. For example, in these case studies, it is observed (from Figs. 3.5 and

3.9) that the regional accuracy of the Kriging surrogate model is significantly more sensitive

to the sample density than that of the RBF and E-RBF surrogates.
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Figure 3.9: VESD function to predict the regional maximum error (EPEMF
max ) in

Branin-Hoo Function (case I )

For the two cases of the Branin-Hoo problem, the VESD functions used to predict

the mode of the maximum error, and the Indicator of Monotonicity (ρ
λ,ϕ

) are illustrated

in Figs. 3.9 and 3.10. The mode of the maximum error distributions in the intermediate

surrogates is represented by the solid square symbol; the hollow square symbol represents

the predicted mode of maximum error in the final surrogate. It is again observed that the
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Figure 3.10: VESD function to predict the global maximum error (EPEMF
max ) in

Branin-Hoo Function (case II )

Table 3.3: Maximum Error Estimated using PEMF and a large pool of additional
test points (EActual

Mo−max)

Kriging RBF E-RBF

PEMF Actual PEMF Actual PEMF Actual

Regional Modal Error (case I ) 0.442 0.336 0.373 0.402 0.187 0.394
Global Modal Error (case II ) 0.358 0.302 0.370 0.309 0.191 0.330

Actual: Error evaluated on a large pool of additional test points

mode of the maximum error distributions decrease with increasing density of inside-region

training points and the MT criterion is satisfied in the two cases. The predicted maximum

error (EPEMF
max ) and the actual errors evaluated on additional test points (Algorithm 2) in the

final surrogate models for Cases I and II are given in Table 3.3.

3.5.1.1 Comparing PEMF with cross-validation

Figures 3.11 and 3.12 illustrate how the PEMF error measure and the RAE given by

leave-one-out cross-validation compare with the actual error evaluated on additional test

points. In these figures, the y-axis represents the relative difference of the error measures

compared with the actual errors. These comparisons are given for all three types of surrogate

models constructed, i.e., Kriging, RBF, and E-RBF.

The performance criteria defined in Section 3.3 (i.e., R-values in Eqs. 3.14 and 3.15) are
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applied to compare the performance of the PEMF method and the cross-validation method

with the actual errors in Cases I and II. The comparison results are provided in Tables

3.4 and 3.5. The smaller R-value obtained in each case is shown in boldface. From Figs.

3.11-3.12 and Tables 3.4-3.5, it is observed that the measure of surrogate model fidelity

provided by the PEMF method is up to two orders of magnitude more accurate than the

RAE estimated by leave-one-out cross-validation.
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Figure 3.11: Comparison of the PEMF and CV error measures with the Actual
regional error in Branin-Hoo Function (case I)

Table 3.4: Relative differences of the regional errors evaluated using PEMF and
CV from the actual errors in Branin-Hoo Function (case I )

Kriging RBF E-RBF

Rmed
PEMF Rmean

CV Rmed
PEMF Rmean

CV Rmed
PEMF Rmean

CV

Median or Mean Error 7.61 % 162.87 % 4.70 % 91.33 % 6.15 % 263.36 %
Maximum Error 31.18 % 95.66 % 7.07 % 23.99 % 52.63 % 86.92 %

3.5.2 Application of PEMF to higher dimensional benchmark problems

The VESDmed and VESDmax regression functions, and the Indicator of Monotonicity for

these two benchmark problems are illustrated in Figs. 3.13-3.16. It is observed that in most of
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Figure 3.12: Comparison of the PEMF and CV error measures with the Actual
global error in Branin-Hoo Function (case II)

Table 3.5: Relative differences of the global errors evaluated using PEMF and
CV from the actual errors in Branin-Hoo Function (case II )

Kriging RBF E-RBF

Rmax
PEMF Rmax

CV Rmax
PEMF Rmax

CV Rmax
PEMF Rmax

CV

Median or Mean Error 11.34 % 301.89 % 56.57 % 488.25 % 51.47 % 232.15 %
Maximum Error 18.54 % 179.49 % 19.74% 528.38 % 42.12 % 199.36 %

the cases the MT criterion is satisfied, and hence the VESD function can be used to predict

the median and maximum errors of the constructed surrogates. The MT criterion is however

not satisfied for the following cases: the median error of the Kriging model constructed for

the Perm Function (Fig. 3.13(a)), and the median error of the RBF model (Fig. 3.15(b)) and

the maximum error of the Kriging model (Fig. 3.16(a)) constructed for the Dixon & Price

Function. Therefore, in these three cases, the PEMF-based k-fold cross-validation (i.e., the

modal value of the error in the last iteration) are automatically considered to be the error

measure of the surrogate model constructed using all sample points.

The comparison of the PEMF error measure and the RAE given by leave-one-out cross-

validation with the actual error evaluated on additional test points are illustrated through
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bar diagrams in Figs. 3.17-3.18. In these figures, the y-axis represents the relative difference

of the error measures compared with the actual errors. The comparison results are also

provided in Tables 3.6-3.7. A smaller R-value indicates a more accurate error metric. In

these tables, the smaller R-values obtained for each case are shown in boldface. From Figs.

3.17-3.18 and Tables 3.6-3.7, it is observed that the PEMF method is up to two orders of

magnitude more accurate than the leave-one-out cross-validation for these 10-50 dimensional

test problems. These observations again establish the effectiveness of PEMF as a new more

accurate approach to quantify surrogate model errors.
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Figure 3.13: VESD function to predict the global median error (EPEMF
med ) in Perm

Function
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Figure 3.14: VESD function to predict the global maximum error (EPEMF
max ) in

Perm Function
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Figure 3.15: VESD function to predict the global median error (EPEMF
med ) in Dixon

& Price Function
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Figure 3.16: VESD function to predict the global maximum error (EPEMF
max ) in

Dixon & Price Function
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Figure 3.17: Comparison of the PEMF and CV error measures with the Actual
global error in Perm Function
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Table 3.6: Relative differences of the global errors evaluated using PEMF and
CV from the actual errors in Perm Function

Kriging RBF E-RBF

Rmed
PEMF Rmean

CV Rmed
PEMF Rmean

CV Rmed
PEMF Rmean

CV

Median or Mean Error 2.61 % 135.11 % 29.60 % 103.40 % 21.32 % 53.96 %
Maximum Error 55.75 % 309.70 % 27.45 % 137.70 % 38.59 % 97.53 %
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Figure 3.18: Comparison of the PEMF and CV error measures with the Actual
global error in Dixon & Price Function

3.6 Chapter Summary

This chapter has made major advances in developing a new reliable approach to quan-

tify the accuracy of surrogate models in a given region of the design domain or the entire

design domain. Such an approach is useful for informed decision-making when using meta-

moels for analysis and optimization. This method called the Predictive Estimation of Model

Table 3.7: Relative differences of the global errors evaluated using PEMF and
CV from the actual errors in Dixon & Price Function

Kriging RBF E-RBF

Rmax
PEMF Rmax

CV Rmax
PEMF Rmax

CV Rmax
PEMF Rmax

CV

Median or Mean Error 5.20 % 42.88 % 5.39 % 60.93 % 56.72 % 116.79 %
Maximum Error 49.93 % 247.45 % 56.68% 292.39 % 131.54 % 257.32 %
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Fidelity (PEMF), is a model-independent method for predicting the error in the actual sur-

rogate constructed using all available sample points. In this method, intermediate surrogate

models are constructed iteratively using multiple heuristic subsets of the available sample

points. The remaining sample points are used to evaluate the error in the estimated function

at that iteration. In this method, the model error at each iteration is defined by the mode of

the median error and the maximum error distributions – this is expected to promote greater

stability compared to mean or mean squared error measures. Regression models are then

developed to represent the error in the surrogates as a function of the density of training

points. These regression models are then extrapolated to predict the fidelity of the final

surrogate under the condition that a Monotonic Trend (MT) criterion is satisfied. The MT

criterion is a mechanism to statistically test the feasibility of the monotonic relationship

between the modal error values and training sample density. If the MT criterion is not

satisfied, the estimated modal error values from the last iteration is used to represent the

measure of fidelity of the surrogate model – which is essentially a more stable implementa-

tion of k-fold cross-validation. The effectiveness of the new PEMF method is illustrated by

applying it to 2-variable, 10-variable, and 50-variable benchmark problems, where the types

of surrogate models constructed include Kriging, RBF, and E-RBF surrogates. These nu-

merical experiments show that the proposed method provides up to two orders of magnitude

greater accuracy in measuring surrogate model error compared to the relative absolute error

estimated by leave-one-out cross-validation.



CHAPTER 4

Practical Implementation & Parametric Analysis of Predictive

Estimation of Model Fidelity (PEMF)

How robust is the PEMF method?, and How does the PEMF method compare

with other approaches, such as leave-one-out cross-validation?

Part II: 
Surrogate Model  

Uncertainty Quantification 

CHAPTER 3 

Predictive Estimation of Model Fidelity 

CHAPTER 5 

Concurrent Surrogate Model Selection 

CHAPTER 4 

Practical Implementation & Parametric Anal. 

Figure 4.1: Chapter 4 orientation

4.1 Chapter Introduction

In the previous chapter, major advances in developing a new reliable approach to

quantify the accuracy of surrogate models were presented. This method, called, “Predictive

Portions of this chapter previously appeared as:

Mehmani, A., Chowdhury, S., and Messac, A.,“Predictive Quantification of Surrogate Model Fidelity based
on Modal Variations with Sample Density,” Structural and Multidisciplinary Optimization, 2015, and

Mehmani, A., Chowdhury, S., Zhang, J., and Messac, A., “Quantifying Regional Error in Surrogates by
Modeling its Relationship with Sample Density,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics and Materials Conference, AIAA, Boston, Massachusetts, April 2013
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Estimation of Model Fidelity (PEMF)” is a surrogate model-independent method for pre-

dicting the error in the actual surrogate constructed using all available sample points. In

this chapter, we further investigate the robustness of the PEMF method in predicting the

regional and global errors for applications with Kriging, RBF, and E-RBF surrogate models.

To this end, statistical testing is performed (on a set of 500 randomly generated sample

sets) to measure the significance of the difference between the PEMF error and the actual

error evaluated on additional test points. Likewise, the statistical test is also performed on

leave-one-out cross-validation.

In Chapter 3 we observed that the PEMF method requires the specification of two

parameters before implementation: (i) β, which controls the fraction fold in the first iteration

of PEMF, and (ii) δ, which controls the incremental value (step size) in PEMF. This chapter

provides some guidelines regarding the choice of appropriate values for these parameters.

Parameter analysis of the PEMF method enables minimization or correction of the bias that

measures.

In chapter 3 we also performed a preliminary assessment of the accuracy of the PEMF

method. We compared the performance of PEMF with the popular leave-one-out cross-

validation on different benchmark problems. There is, however, the need to further investi-

gate the potential advantages of using the PEMF method approach over other related error

measurement methods. In this chapter, we explore how the PEMF method depends on

the β and δ parameters. In the present chapter, we also extend the discussion comparing

the PEMF approach with three different cross-validation derived methods: (i) leave-one-out

cross-validation, (ii) k-fold cross-validation, and (iii) q-fold cross-validation.

The remainder of the chapter is organized as follows: Section 4.2 presents the statistical

tests performed on the results of the PEMF and the leave-one-out cross validation method.
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Parametric analysis on defining guidelines regarding the two parameters under the PEMF

method is presented in Section 4.3. Section 4.4 illustrates the effectiveness and the utility of

PEMF in quantifying a global error in practical problems. The Chapter summary is provided

in Section 4.5.

4.2 Statistical test on results of PEMF and leave-one-out cross-

validation method

In this section, statistical tests are performed to illustrate the robustness of the PEMF

method. The paired t-test [113] is applied to measure the significance of the difference

between estimated error measures, and the actual error evaluated on additional test points.

A set of 500 paired sample data is generated using optimal Latin Hypercube, which is

defined as X1, X2, X3, ..., X500. The size of each sample data set is defined to be Ni = 30,

with all sample points denoted as inside-region sample points, i.e., the PEMF method is

applied as a global error measurement. In this test, it is assumed that the size of inside-

region training set at each iteration, t, is given by

nt = ⌊ Ni

N itr + 1
t⌋ (4.1)

where the function ⌊x⌋ returns the largest integer less than or equal to x. The differences

between the errors estimated using PEMF and the actual error on each pair of observation
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are defined as

DPEMF
med = EPEMF

med −EActual
Mo−med

(4.2)

DPEMF
max = EPEMF

max −EActual
Mo−max
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Figure 4.2: Distribution of the Residual of median error estimated using PEMF
(EPEMF

med ) for Branin-Hoo Function

The frequency histogram of the residuals in different types of surrogates (Kriging, RBF,

and E-RBF), for the median and maximum errors estimated using PEMF, are illustrated in

Figs. 4.2 and Fig.4.4, respectively. In these figures, the 10th and the 90th percentiles of the

residuals are illustrated using black dashed lines.

It is readily evident from the histograms in Figs. 4.2 and 4.4 that the residuals do not
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Figure 4.3: Distribution of the Residual of mean error estimated using leave-
one-out cross-validation (ECV

mean) for Branin-Hoo Function

necessarily follow a normal distribution. Hence, statistical methods based on a resampling

approach such as the Bootstrapping method should be applied to perform the statistical

inference [114]. In Bootstrapping method, it is assumed that the statistics of the sampling

distribution is the probability of all possible values of the estimated statistics calculated

from a sample of size n drawn from a given population [115]. To evaluate the 90% bootstrap

confidence intervals (CI), after creating n bootstrapped sets from the original residuals,

the mean value for each bootstrapped data set is independently computed. The 90% CI

from the set of computed mean values are then estimated using the normal approximation

method. Assuming the normal approximation is normally distributed with sample mean

d∗ and standard deviation s∗D for the n = 1000 bootstrapped resamples, a 90% confidence



76

interval on the difference in means, µD, is defined as

d∗ − t0.05,n−1 ×
s∗D√
n

≤ µD ≤ d∗ + t0.05,n−1 ×
s∗D√
n

(4.3)

In this case, t0.05,n−1 is the upper 0.05% point of the t distribution with n − 1 degrees of

freedom. Confidence intervals that are narrower and closer to zero indicate higher level of

robustness of the error measurement.

Table 4.1 presents the 90% confidence intervals (CI) for residuals of the mode of median

and maximum errors estimated using the PEMF method in different surrogates.
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Figure 4.4: Distribution of the Residual of maximum error estimated using
PEMF (EPEMF

max ) for Branin-Hoo Function

Likewise, the statistical test is also performed for leave-one-out cross-validation. In

this test, the same 500 paired sample data are used where the differences between the mean
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Figure 4.5: Distribution of the Residual of maximum error estimated using
leave-one-out cross-validation ECV

max for Branin-Hoo Function

and maximum errors estimated by the cross-validation method and the actual error on each

pair of observation are given by

DCV
mean = ECV

mean −EActual
mean

(4.4)

DCV
max = ECV

max − EActual
max

The actual errors are errors evaluated on additional test points, as given by Algorithm 3.

The frequency histogram of the residuals in different types of surrogates (Kriging,

RBF, and E-RBF), for the mean and maximum errors estimated using cross-validation, are

illustrated in Figs. 4.3 and 4.5, respectively. We again use the normal approximation method
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Table 4.1: 90% bootstrapped CIs for residuals of EPEMF
med and ECV

mean in different
surrogates

Measure Kriging RBF E-RBF

EPEMF
med 0.057 ≤ µD ≤ 0.059 0.028 ≤ µD ≤ 0.029 0.017 ≤ µD ≤ 0.017

ECV
mean 0.296 ≤ µD ≤ 0.299 0.400 ≤ µD ≤ 0.404 0.373 ≤ µD ≤ 0.377
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Figure 4.6: Interquartile Range box plot of the residuals of the central tendency
of surrogate model errors (median in PEMF; and mean in leave-one-
out cross-validation) for Branin-Hoo Function

Table 4.2: 90% bootstrapped CIs for residuals of EPEMF
max and ECV

max in different
surrogates

Measure Kriging RBF E-RBF

EPEMF
max −3.479 ≤ µD ≤ −3.469 −5.389 ≤ µD ≤ −5.376 −4.991 ≤ µD ≤ −4.980

ECV
max −12.934 ≤ µD ≤ −12.829 20.175 ≤ µD ≤ 20.317 16.344 ≤ µD ≤ 16.473
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Figure 4.7: Interquartile Range box plot of the residuals of the maximum sur-
rogate error for Branin-Hoo Function

to estimate the 90% bootstrapped confidence intervals on the difference in the means, µD,

for the residuals of errors, which are reported in Table 4.2.

To compare the PEMF method and the leave-one-out cross-validation method, the

distribution of the residuals of each surrogate is described by a box plot. The box plot

indicates the deviation of the central tendency from zero (which is the expected value).

Figures 4.6 and 4.7 respectively illustrate the distribution of residuals of the median and

maximum errors estimated using PEMF and the mean error estimated using cross-validation

in different surrogate models. From the results of the statistical test on PEMF and cross-

validation (Figs. 4.2-4.7 and Tables 4.1-4.2), it is readily evident that the confidence intervals

and the 25th and 75th percentiles for PEMF are significantly closer to zero (up to two orders

of magnitude closer) compared to that for cross-validation. These observations show that
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PEMF is expected to provide far superior robustness in quantifying surrogate model errors

compared to standard leave-one-out cross-validation.

4.3 Parametric Analysis on PEMF’s Parameters

The PEMF method requires the specification of two regularization parameters: (i)

Fraction fold in the first iteration β and (ii) Normalized incremental value δ as given below

β =
N({X t=1

TR })
N({X})

(4.5)

δ =
N({X t=2

TR })−N({X t=1
TR })

N({X})

where N(�) represents the size of a set, {�}; {X t
TR
} represents the training set at tth iteration

of PEMF; and {X t
TE

} represents the test set at tth iteration of PEMF. As illustrated in

Eq.4.5, the first regularization parameter, β controls the fraction fold in the first iteration

of PEMF, and the second regularization parameter, δ controls the Incremental value or step

size (∆ = δ × N({X})) in PEMF.

This section presents the analyzing of these parameters and their effects on the bias

of the PEMF method. Such an analysis allows to tune the bias of the PEMF method as

desired. To perform this analysis, the following assumptions have been made on the total

number of iteration in PEMF (T ) and the fraction fold in the first iteration:
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Tmin ≤ T ≤ Tmax; Tmin = 3, Tmax = 7 (4.6)

βmin = 0.5 (4.7)

Under these assumptions, the parametric analysis is performed in two different cases

defined below:

CASE I: β + T× δ = 1

The lower and upper bound of the two regularization parameters β and δ in this case

are given by

3 ≤ 1− β

δ
≤ 7

βmax = 1− Tmin × D

T
= 0.7 (4.8)

δmax =
1− βmin

Tmin

= 0.2

δmin = 0.1

CASE II: β + T× δ = 1− δ

The lower and upper bound of the two regularization parameters β and δ in this case

are given by

3 ≤ 1− (δ + β)

δ
≤ 7

βmax = 1− Tmin + 1× D

T
= 0.6 (4.9)

δmax =
1− βmin

Tmin + 1
= 0.15

δmin = 0.2
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In this analysis, we consider five representative mathematical functions from 6D to

16D. These functions are illustrated in Table 4.3. Number of training points in all of these

problems is equal to 10×D.

Table 4.3: Functions linst for Parametric Analysis

No.
Function Dimension Design
f(x) D domain

1a f(x) = −∑4
i=1 ci exp

{
−∑6

j=1Aij (xj − Pij)
2
}

6 xi ∈ [0 1]

2 f(x) =
∑10

i=1 {(ln(xi − 2))2 + (ln(xi − 2))2} − (
∏10

i=1 xi)
2 10 xi ∈ [2 10]

3b f(x) =
∑10

i=1

{
xi(cj + ln

xj

x1+x2+...+x10
)
}

10 xi ∈ [10−6 10−5]

4
f(x) = x21 + x22 + x1 ∗ x2 − 14× x1 − 16× x2 + (x3 − 10)2

10 xi ∈ [1 10]+4× (x4 − 5)2 + (x5 − 3)2 + 2× (x6 − 1)2 + 5× x27

+7× (x8 − 11)2 + 2× (x9 − 10)2 + (x10− 7)2 + 45

5c f(x) =
∑16

i=1

∑16
i=1

{
aij(x

2
i + xi + 1)(x2j + xj + 1)

}
16 xi ∈ [0 5]

a This function is Hartmann; the constants c, A, and P, are a 1× 4 vector, a 4× 6 matrix, and a 4× 6 matrix, respectively.
b cj = [−6.089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.100,−10.708,−26.662,−22.179]

c This function is Hock & Schittkowski No.119; the constant a is 16 × 16 matrix

The relative difference between the errors evaluated on additional test points and the

PEMF error is used to estimate the normalized bias of the PEMF method in different

combinations of regularization parameters:

γ
PEMFβ,δ

=

∣∣∣∣
EActual

Mo−med − EPEMF
med

EActual
Mo−med

∣∣∣∣× 100% (4.10)

Figures 4.8 - 4.12 illustrate the normalized bias of the PEMF method in different

combinations of β and δ in Case I and Case II using Kriging and RBF surrogate models.

In Function 1, the maximum bias of the PEMF method is estimated in Case I for both the

Kriging and RBF models with δ = 0.1 and β = 0.6 and 0.7 (from Fig. 4.8). For the second

function, the maximum bias of the PEMF method is observed in Case II with δ = 0.1 for

RBF model, and δ ≥ 1.4 for Kriging model, as illustrated in Fig.4.9.
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(b) Case II: Kriging
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(c) Case I: RBF
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(d) Case II: RBF

Figure 4.8: Function 1 (6D) - the normalized bias of the PEMF method in dif-
ferent combinations of β and δ in Case I and Case II

The bias of the PEMF method in Function 3 for the Kriging model (Figs. 4.10(a) -

4.10(b)) varies between %10 to %30 in Case I, and it varies between %10 to %60 in Case II.

In this function, the maximum bias is again occurs in Case II for both the Kriging and

RBF models. In Function 4, the bias of the PEMF method is less than %25 for all the

combinations of δ and β in Case I and Case II in both the RBF and Kriging models. In

this function, the maximum error is estimated in Case II as shown in Fig. 4.11(d). The %20

bias is estimated in Case II for both models.

In Function 5 with 16 design variables, the minimum bias is observed in Case I. In

Kriging and RBF models, the bias is less than %40 with δ ≤ 0.105 and β ∈ [0.5, 0.6, 0.7].

As it is shown in Fig. 4.12. In this function, the maximum bias is estimated for Case II

with higher value of the δ. Our preliminary investigations and the parametric analysis in
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(a) Case I: Kriging
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(b) Case II: Kriging
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(c) Case I: RBF
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(d) Case II: RBF

Figure 4.9: Function 2 (10D) - the normalized bias of the PEMF method in
different combinations of β and δ in Case I and Case II

the results of the PEMF method by changing the regularization parameters (Fraction fold

in the first iteration β and Normalized incremental value δ) shows that: (i) in most of the

cases of these five test functions, the minimum bias is estimated in Case I. (ii) the effect of

the δ parameter is relatively more than the β parameter, and (iii) in most of the cases we

can expect the better results from PEMF with δ = 0.1 and Case I.

We also compare the performance of the PEMF method with three other well-known

cross-validation derived error measurement techniques, discussed previously in Chapter2: (i)

leave-one-out cross-validation, (ii) q-fold cross-validation (q = 10), and (iii) k-fold cross-

validation (k = 10). This analysis will allow us to understand the relative merits and

demerits of each measures. Note that, in this section we consider all the combination of

PEMF regularization parameters (illustrated in Figs. 4.8 and 4.12) under the conditions
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(a) Case I: Kriging
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(b) Case II: Kriging
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(c) Case I: RBF
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(d) Case II: RBF

Figure 4.10: Function 3 (10D) - the normalized bias of the PEMF method in
different combinations of β and δ in Case I and Case II

provided in case I and case II. The comparison results are provided in Figures 4.13 and

4.17. It is observed that, in all of the cases the results of the PEMF method is at least an

order of magnitude better than those estimated using cross-validation derived error mea-

surement techniques. These results also show that in the worst scenario of the regularization

parameters selection, the results of the PEMF method are still highly accuratecompared to

the other three approaches.

4.4 Application of the PEMF Method on Wind Farm Power Gen-

eration Problem

In this section, the effectiveness and the impact of the PEMF method is illustrated

using a wind farm power generation model, adopted from the Unrestricted Wind Farm Layout
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(a) Case I: Kriging
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(b) Case II: Kriging
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(c) Case I: RBF
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(d) Case II: RBF

Figure 4.11: Function 4 (10D) - the normalized bias of the PEMF method in
different combinations of β and δ in Case I and Case II

Optimization (UWFLO) framework[116, 117]. Surrogates are developed using Kriging, RBF,

E-RBF, and QRS to represent the power generation of an array-like wind farm. It is assumed

that turbines are arranged in a row-column pattern over the farm site. Hence, the wind farm

power generation can be represented as a function of the streamwise spacing and spanwise

spacing between turbines, with respect to the south direction (as shown in Fig. 4.18).

The annual average power generation of a wind farm is a complex and expensive func-

tion of the turbine features, the turbine arrangement (or farm layout), and the local wind

resource variations. A surrogate model offers a more tractable (and inexpensive) representa-

tion of the farm power generation in terms of key design parameters. To train the surrogate

model, the actual annual-average wind farm power generation is estimated using an ad-

vanced power generation model developed by Chowdhury et al. [116, 117]. The reliability
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(a) Case I: Kriging
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(b) Case II: Kriging
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(c) Case I: RBF
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(d) Case II: RBF

Figure 4.12: Function 5 (16D) - the normalized bias of the PEMF method in
different combinations of β and δ in Case I and Case II
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Figure 4.13: Function 1 (6D): Comparison of the PEMF and CV-derived error
measures



88

0

50

100

150

200

250

PEMF k−fold q−fold LOO

Error Measure

N
o
rm

a
li
z
e
d
B
ia
s
o
f
E
rr
o
r
E
st
im

a
to

r,
γ
%

(a) Kriging

0

50

100

150

200

250

PEMF k−fold q−fold LOO

Error Measure

N
o
rm

a
li
z
e
d
B
ia
s
o
f
E
rr
o
r
E
st
im

a
to

r,
γ
%

(b) RBF

Figure 4.14: Function 2 (10D): Comparison of the PEMF and CV-derived error
measures
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Figure 4.15: Function 3 (10D): Comparison of the PEMF and CV-derived error
measures

of surrogate applications in wind farm design and analysis is subject to the accuracy of the

surrogate in the concerned parameter ranges.

The PEMF method enables a unique quantification of the fidelity of the surrogate,

thereby allowing more informed decision-making in wind farm design and analysis (than

possible with conventional surrogate application). This case is expected to illustrate the

effectiveness of the PEMF method for a complex practical engineering problem. In this

problem, the surrogates are constructed to represent the power generation of an array-like
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Figure 4.16: Function 4 (10D): Comparison of the PEMF and CV-derived error
measures
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Figure 4.17: Function 5 (16D): Comparison of the PEMF and CV-derived error
measures

100-turbine wind farm as a function of the streamwise spacing (xh) and the spanwise spacing

(xl) between turbines. The turbines are arranged in a 10×10 patterns in this case. The

bivariate normal distributions of wind data obtained for a site in North Dakota[118] is used

for this problem. The lower and upper bounds of xh and xl, based on the wind turbine rotor

diameter (D), are specified as
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streamwise spacing

spanwise spacing

wind direction

Figure 4.18: Wind farm array schematic

5D < xh < 30D

1.1D < xl < 10D

To predict the level of the surrogates error in the entire domain in the wind farm

power generation problem, the region of interest is defined as equal to the design space

({X} = {Xin} and N({X}) = 30). In this problem, the size of the inside-region training

points at each iteration is defined by the following ascending series; nt = 19, 21, 24, 27.

The predicted levels of error estimated using PEMF and Actual (on large number of

validation points) in different surrogates are shown in Fig. 4.19. This figure shows the

great potential of the the PEMF method in predicting the surrogate model error. It is also

observed that, Kriging has relatively higher accuracy in this problem based on the PEMF’s

predicted errors and actual errors evaluated on test points. This observation shows that

PEMF can be effectively used as a model selection method to select the best surrogate for

applications such as optimization.
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Figure 4.19: Comparison of the performance of the PEMF with Actual error in
the Wind Farm Power Generation problem

The comparison results based on the performance criteria (R-values define in Chap-

ter 3) between PEMF and leave-one-out cross-validation, are also provided in Figs. 4.20 in

different surrogate models. It is observed that the PEMF method is up to two orders of

magnitude more accurate than leave-one-out cross-validation in predicting levels of errors.

4.5 Chapter Summary

In this chapter, statistical testing was performed to investigate the robustness of the

PEMF method in predicting regional and global errors. This test was also performed on

leave-one-out cross-validation. It was observed that the PEMF method is statistically more

stable in predicting model fidelity than those based on cross-validation. Considering the

results of the previous chapter (Chapter 3) and the current chapter, the PEMF method can

be considered the ideal model-independent approach for quantifying the fidelity of surrogate

models.

In this chapter, we also explored the dependency of the PEMF method on β and δ
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Figure 4.20: Comparison of the PEMF and CV error measures with the Actual
global error in Wind Farm Power Generation problem

regularization parameters. A series of mathematical examples is used to demonstrate the

effectiveness of the PEMF method under varying regularization parameters. This preliminary

investigations on PEMF parameters revealed that PEMF results are not unduly sensitive to

β and δ. We have also provided useful insights into the performance of three different cross-

validation derived methods: (i) leave-one-out cross-validation, (ii) k-fold cross-validation,

and (iii) q-fold cross-validation. In particular, we found that, for the benchmark problems

considered, PEMF results are highly accurate (at least an order of magnitude) compared to

the other three approaches.
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Figure 5.1: Chapter 5 orientation

The vision of this chapter is to enable the identification of globally best surrogate models

for any given application, a technique that is neither limited to any particular class of models

nor makes a limiting assumption regarding the surrogate/kernel type and the value of hyper-

parameters. In doing so, this chapter outlines the development of a novel model selection

framework to perform optimal model searching concurrently at all the three levels necessary to

facilitate optimal selection, i.e., (i) optimal model type (e.g., RBF), (ii) optimal kernel type

Portions of this chapter previously appeared as:

Chowdhury, S., Mehmani, A., and Messac, A., “A Framework for Collaborative Surrogate Model Selection
(COSMOS),” ASME 2014 International Design Engineering Technical Conferences (IDETC) and Comput-
ers and Information in Engineering Conference (CIE), Paper No. DETC2014-35358, Buffalo, New York,
August 17-20, 2014, and

Mehmani, A., Chowdhury, S., and Messac, A., “A Novel Approach to Simultaneous Selection of Surrogate
Models, Constitutive Kernels, and Hyper-parameter Values,” AIAA SciTech Conference, Paper No. 6.2014-
1487, National Harbor, Maryland, January 13-17, 2014.
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(e.g., multiquadric), and (iii) optimal values of hyper-parameters (e.g., shape parameter).

This automated model selection framework is called “Concurrent Surrogate Model Selection

(COSMOS)”.

The reminder of the chapter is organized as follows: Section 5.1 presents the overview

of the Concurrent Surrogate Model Selection (COSMOS) framework; Section 5.2 presents the

concept and the formulation of the COSMOS framework; The formulation of Predictive Error

Estimation of Model Fidelity (PEMF) with certain modifications in COSMOS, is provided in

Section 5.3. Section 5.4 describes the surrogate models used to demonstrate COSMOS, and

the different benchmark problems to which COSMOS is applied; the numerical settings and

results of case studies are also shown and discussed in this section. The chapter summary is

provided in Section 5.6.

5.1 Chapter Introduction

The objectives of this chapter are to develop, implement, and test the effectiveness

of the new 3-level automated model selection framework called COSMOS, which uses the

Predictive Estimation of Model Fidelity (PEMF) approach to quantify and compare the

accuracy of candidate models. Two different approaches, with the same objective to perform

the three level selection, are developed and investigated in this chapter. These approaches

are:

(I) Cascaded technique: In this approach PEMF-based selection is performed in a nested

loop, with “hyper-parameter optimization” at the innermost level and “model-type

selection” at the outermost level . Although simple in implementation and reliable

in outcome, this approach could become computationally expensive as the number of

candidate model-types and candidate kernel/basis functions increase.

(II) One Step technique: In this approach, model selection is performed at the three levels

simultaneously by formulating and solving a mixed integer nonlinear programming
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(MINLP) problem that minimizes the model errors computed by PEMF. This approach

is more complex and also more sensitive to the optimization strategy, compared to the

Cascaded approach. However, the One-Step technique is expected to be significantly

less expensive (more time efficient) and unique in implementation, and hence more

universally applicable.

5.2 Development of COSMOS

5.2.1 3-Level automated model selection

The 3-level model selection is performed by minimizing the model error, where the

error measure of interest depends on the type of application and the user preference. For

example, when surrogate models are used for analysis (or design domain exploration) or

as empirical model representing experimental data, median error could be treated as the

selection criteria (e.g., power generation of a wind farm). On the other hand, in structural

optimization applications that demand conservative surrogates (i.e., to model vehicle crash

simulation [119]), maximum error would be a more suitable selection criteria. Similarly, if

robustness is a concern, then the variance of the surrogate model error could be deemed an

important selection criteria.

Depending on the problem and the available data set, these criteria might be mutually

conflicting or mutually promoting, which could then respectively lead to a set of Pareto

models or a single optimum model. In this chapter, these criteria are evaluated using a new

advanced surrogate error estimation method called Predictive Estimation of Model Fidelity

(PEMF) [120, 121]. The inputs and outputs of PEMF (in the COSMOS framework) are
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illustrated in Fig. 7.2, and can be expressed as

[Emo
med, E

mo
max, E

σ2

med, E
σ2

max, E
mo
med,α] = ̥PEMF (m, k, u, {X}) (5.1)

where m, k, and u respectively represent the model type, the kernel type, and the vector of

hyper-parameter values for that model-kernel combination; {X} represents the set of sample

data used for training the surrogate. In Eq. 5.1, the terms Emo
med and Emo

max respectively

denote the predicted modal values of the median and the maximum errors in the surrogate

model; the terms Eσ2

med and E
σ2

max respectively represent the variance values of the median and

maximum errors in the surrogate–these two measures reflect the robustness of the surrogate.

Together, these four criteria provide an understanding of the uncertainty in the surrogate.

Another selection criteria (Emo
med,α) formulated in this chapter is the (expected) most

probable value of the median error on a hypothetically-larger sample set if the same surrogate

(i.e., same m, k, and u) was constructed over α-times greater number of sample points

(assuming the additional sample point would not impact the current sample distribution,

{X}). This novel error measure, Emo
med,α, indicates the expected capability of candidate

surrogates if a larger set of sample data could be made available, thereby helping users

understand the cost-to-benefit ratio of performing additional high-fidelity simulations or

experiments in this context. A brief description of the PEMF method in estimating these

selection criteria, is provided in Section 3.2.

The two novel approaches developed to implement the 3-level model selection using

PEMF, i.e., (i) Cascaded technique, and (ii) One-Step technique, are described next.
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Figure 5.2: The inputs and outputs of the PEMF method

5.2.1.1 Cascaded technique

A flowchart of the 3-level Cascaded model selection technique is illustrated in Fig. 5.3.

In this technique, for each candidate basis (or kernel) function of a candidate surrogate model,

hyper-parameter optimization is performed to simultaneously minimize the five different

model selection criteria. These criteria are offered by PEMF as illustrated in Fig. 7.2. For

each model-kernel combination, where m denotes the model type and k denotes the kernel

function type, the hyper-parameter optimization problem can be expressed as

Min
umk

{Emo
med, E

mo
max, E

σ2

med, E
σ2

max, E
mo
med,α}

subject to (5.2)

umin
mk ≤ umk ≤ umax

mk

m : Model type, m = 1, 2, ..., NM

k : Kernel function, k = 1, 2, ..., Nm
K

where NM and Nm
K respectively represent the total number of surrogate model candidates

and the number of basis (or kernel) functions available for the mth surrogate model; and

umk is the vector of continuous variables that represent the hyper-parameter value(s) of the

corresponding kernel function. Although, all five criteria functions (to be minimized) are si-
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multaneously included in this optimization problem definition, in practice it is recommended

to pursue bi-objective optimization – i.e., at a time considering any two objectives/criteria

of interest.

The multiobjective hyper-parameter optimization can be solved using powerful heuris-

tic algorithms, such as Evolutionary Algorithms (EA), and Particle Swarm Optimization

(PSO) algorithm. In implementing the Cascaded technique, the total numbers of candidate

surrogate models and constitutive Kernel types are assumed to be small enough to be directly

compared, post hyper-parameter optimization of each candidate model-kernel combination.

Assuming the multiobjective optimization is effective in finding the global Pareto solutions,

this approach can yield reliable surrogate model choices and is practically effective when we

have a small number of candidate models. An illustration of the application of the Cascased

technique is presented in Fig. 5.4.

Figure 5.4 presents the solutions of the hyper-parameter optimization, when using only

the Support Vector Regression (SVR) model with the Linear Kernel function, for represent-

ing the Branin-Hoo test function. In this illustration, the median and the maximum error

of the model are selected as model selection criteria. It is evident from this figure that

the Pareto solutions offer helpful flexibility in deciding the best hyper-parameter (penalty

parameter, C) depending on the user preference regarding the allowable error. In Fig. 5.4,

the anchor solutions A and C represent the optimal hyper-parameter for the SVR surrogate

with the lowest median error and the maximum error, respectively. It is also interesting to

see how solution B offers an attractive trade-off at a small compromise in both the median

and the maximum errors in comparison to the respective anchor points.
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Figure 5.3: The 3-level Cascaded model selection technique based on PEMF

The computational time of the 3-level Cascaded model selection technique is given by

T =

NM∑

m=1

Nm
K∑

k=1

tmk (5.3)

where tmk is the computational time invested in the hyper-parameter optimization for the

kth kernel of the mth surrogate model.

In this context, it is important to note that each function call in a hyper-parameter

optimization involves the error quantification of a candidate model, which involves training

multiple intermediate models in PEMF. As a result, the computational time of each multi-
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Figure 5.4: Optimal solutions given by the multiobjective hyper-parameter opti-
mization with the SVR-Linear model for the Baranin-Hoo test func-
tion

objective hyper-parameter optimization could be significant. The Cascaded approach could

thus turn out to be expensive if a large number of surrogate model candidates and Kernel

candidates are considered (i.e., NM , NK ≫ 1).

5.2.1.2 One-Step technique

To escape the potentially high computational cost of the Cascaded technique, the

three-level automated model selection could also be performed by solving a single (uniquely

formulated) mixed integer nonlinear programming (MINLP) problem. The major compo-

nents and the flow of information in the One-Step technique is illustrated in Fig. 5.5. The

general form of this MINLP problem can be expressed as
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Min
m,k,u

{Emo
med, E

mo
max, E

σ2

med, E
σ2

max, E
mo
med,α}

subject to (5.4)

m ≤ NM , m ∈ Z>0

k ≤ NK(m), k ∈ Z>0

u = [u11 u12 ... u21 u22 ... umk
... u

NMNK
]

umin
mk ≤ umk ≤ umax

mk

In Eq. 5.4, m and k are integer design variables that denote the model type and the

corresponding kernel function type, respectively; and umk is the vector of continuous vari-

ables that represent the hyper-parameter values for the kth kernel of the mth candidate

surrogate, with umin
mk and umax

mk as the vectors of specified lower and upper bounds of the

hyper-parameters. Direct solution of the MINLP problem (Eq. 5.4) could be cumbersome

when models with different numbers of candidate kernel choices, and kernels comprising dif-

fering numbers of hyper-parameters are considered. Since, the variation in the number of

hyper-parameter (HP ) among surrogate kernels is quite small (0 ≤ NHP ≤ 2), it is deemed

not practically worth to formulate a complex optimization that considers differing number

of hyper-parameters simultaneously. Instead, the global pool of model-kernel candidates

is divided into three smaller pool of model-kernel candidates based on the number of con-

stituent hyper-parameters in them. Each candidate pool, represented by Φp, comprises all

those model-kernel combinations which include p hyper-parameter(s). Subsequently, optimal

model selection is performed separately (in parallel) for each candidate pool. Each model-
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Table 5.1: Candidate model-kernel combinations and their integer-codes

Surrogate Kernel Φ0 Φ1 Φ2 Hyper-Parameter(s)

Radial Basis Function

Linear 1 - - -
Cubic 2 - - -
Gaussian - 1 - Shape parameter, σ
Multiquadric - 2 - Shape parameter, σ

Kriging

Linear - 3 - Correlation parameter, θ
Exponential - 4 - Correlation parameter, θ
Gaussian - 5 - Correlation parameter, θ
Spherical - 6 - Correlation parameter, θ

Support Vector Regression
Linear - 7 - Penalty parameter, C
Gaussian - - 1 Kernel parameter, γ and Penalty parameter, C
Sigmoid - - 2 Kernel parameter, γ and Penalty parameter, C

kernel combination/candidate within a particular candidate pool (Φp) is then assigned a

single unique integer code, as opposed to two separate integer codes, as given by Eq. 5.4.

The candidate model-kernels considered in this dissertation are listed in Table 5.1, where

the integer code assigned to each candidate is shown under their respective hyper-parameter

class (Φp).

For the Φ0 class of model-kernel combinations, PEMF is applied to all the candidates,

followed by the application of a Pareto filter to determine the final set of non-dominated

or Pareto optimal surrogate models. For all Φp with p > 0, the mixed integer non-linear

programming (MINLP) problem (Eq. 5.4) is reformulated as described in Eq. 5.5

Min
z,u

{Emo
med, E

mo
max, E

σ2

med, E
σ2

max, E
mo
med,α}

subject to (5.5)

z ≤ N(Φp), z ∈ Z>0

0 ≤ u ≤ 1



104

…

…
…

…
…

M K HP

RBF

Kriging

…

Linear

Gaussian

Multiquadric

Gaussian

Spherical
…
…

…

…
…

Pool of Models

0.1 < σ < 3

0.1 < θ < 20
0.1 < θ < 20

Classification based on #HPs

Optimal Model Selector Problem Information

Solve MINLP for class 

Solve MINLP for class 

Solve MINLP for class 

…

Solve MINLP for class 

Pareto Filtering

Selected Models

Training Data

Selection Criteria

1. Mode of median error 

2. Mode of maximum error 

3. Variance of median error 

4. Variance of max error 

5. Error in N+!N samples

Final Pareto Optimal Set :

Φ1

…

Φ0

Φ2

Φp

(Φ0,Φ1,Φ2, ...,Φp)

(M∗, f(M∗
))

Median error

M
a
x
 e

rr
o

r

M∗
= [m∗, k∗, u∗

]

f∗
= [εmed(M

∗
), εmax(M

∗
)]

where

Figure 5.5: The 3-level One-Step model selection technique(M: Surrogate model
type; K: Kernel function type; HP: Hyper-parameter; u: vector of
Hyper-parameter values)
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Table 5.2: Range of hyper-parameters

Surrogate Hyper-parameter Lower
bound

Upper
bound

RBF Shape parameter, σ 0.1 3.0
Kriging Correlation parameter, θ 0.1 20
SVR Kernel width parameter, γ 0.1 10
SVR Penalty parameter, C 0.1 100

In Eq. 5.5, z is the integer variable that denotes the combined model-kernel type; u

is the vector of continuous variables that represent the hyper-parameter values; and N(Φp)

represents the size of the set of Φp, which is the total number of candidate model-kernel types

available under the pth hyper-parameter class (Φp). It should be noted that a consistent range

of (0,1) is used for each hyper-parameter where the hyper-parameters are scaled based on the

user-specified upper and lower bounds. The upper and lower bounds on the hyper-parameters

used in this dissertation, as listed in Table 5.2, are motivated by recommendations in the

existing literature [70, 112, 122, 123]. The normalized value of the Hyper parameters are

unscaled before being used in the PEMF method, as given by

ū = umin + (umax − umin)× u (5.6)

where ū and u are the unscaled and scaled values of a hyper-parameter, respectively; and

umin and umax are respectively the user-specified lower and upper bounds on the hyper-

parameter value (u). It should be noted that all five model selection criteria offered by

PEMF are included in the optimization formulation of the One-Step technique, however, in

practice it is again recommended to pursue bi-objective optimization.

Once the Pareto optimal surrogate models for each Φp have been obtained, a Pareto
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filter is applied to the collective set of optimal models from all Φp to determine the globally

optimal set of surrogate models. The criteria functions in this MINLP problem could often

be multimodal, since the integer codes of the model-kernel types do not necessarily follow

the order of error in these candidate types. Hence, heuristic multi-objective optimization

algorithms that are also capable of dealing with mixed-integer variables are considered to

be an appropriate choice for solving these MINLP problems. In this dissertation, the bi-

nary Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [124] is used to solve the

multi-objective MINLP problems. In addition to the set of Pareto optimal surrogate mod-

els, i.e., the optimal model-kernel types and the corresponding optimal hyper-parameter

values (M∗ = [m∗, k∗, u∗]), this technique also provides the estimated error of the optimal

surrogates.
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Figure 5.6: Optimal solutions given by the simultaneous model selection using
One-Step technique for the Baranin-Hoo test function
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An illustration of the selection of the best trade-off surrogates for the Baranin-Hoo test

function using the One-Step technique, when the median and the maximum errors are used

as selection criteria, is provided in Fig. 5.6. Three types of surrogate models with multiple

Kernels function choices for each candidate model are considered in this illustrative problem.

A detailed description of this problem is expressed in Section 5.4. In Fig.5.6, the surrogate

model (A) with the lowest median error is the one that is constructed using RBF with the

Multiquadric basis function, and a shape parameter, σ = 2.98. The surrogate model (C) with

the lowest maximum error is the one that is constructed using Kriging with the Gaussian

correlation function, and a hyper-parameter, θ = 2.15. The error measure (PEMF) used

to quantify model accuracy and compare surrogates in the model selection techniques is

discussed next.

5.3 Predictive Estimation of Model Fidelity (PEMF) in COSMOS

framework

In the COSMOS framework, a comprehensive set of five different selection criteria can

be specified (in any combination) to drive the surrogate model selection. The first two criteria

(Emo
med, E

mo
max) respectively represent the (predicted) most probable values of the median error

and the maximum error in the surrogate – which stochastically accounts for the sensitivity of

the surrogate accuracy to the choice (number and location) of training points. Advancements

are made to PEMF in this dissertation to formulate and use three other selection criteria.

The 3rd and the 4th criteria (Eσ2

med, E
σ2

max) respectively represent the variance in the median and

the maximum error of the surrogate model – these two measures reflect the robustness of the

surrogate. Together, these four criteria provide an understanding of the uncertainty in the
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surrogate. Another new selection criteria (5th criterion:Emo
med,α) formulated in this dissertation

is the (expected) most probable value of the median error on a hypothetically-larger sample

set, assuming both the actual and the hypothetically larger sets of sample points follow the

same overall distribution.

In this chapter, the PEMF method (Chapter 3) is applied to estimate all the five se-

lection criteria for any given candidate surrogate. In the PEMF method, for a set of N

sample points, intermediate surrogates are constructed at each iteration, t, using M t heuris-

tic subsets of nt training points (called intermediate training points). These intermediate

surrogates are then tested over the corresponding remaining N − nt points (called inter-

mediate test points). The median error is then estimated for each of the M t intermediate

surrogates at that iteration, and a parametric probability distribution is fitted to yield the

modal value, Emo,t
med . The smart use of the modal value of the median error promotes a mono-

tonic variation of error with sample point density, unlike mean or root mean squared error

which are highly susceptible to outliers [120]. This approach gives PEMF an important ad-

vantage over conventional cross-validation-based error measures, as illustrated by Mehmani

et al. [120, 121]. A similar approach is used to estimate the modal value of the maximum

error (Emo,t
max ) at any t

th iteration.

In the original PEMF method, the distribution functions to be fitted over the median

and the maximum errors at each iteration were selected using the chi-square goodness-of-fit

criterion [110]. The following distributions were considered: lognormal, Gamma, Weibull,

logistic, log logistic, t-location scale, inverse gaussian, and generalized extreme value dis-

tribution. However, in order to control the computational expense of PEMF within model

selection, only the lognormal distribution is used. This distribution has been previously

observed (from numerical experiments) to be effective in general. The PDFs of the median
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and the maximum errors, pmed and pmax, can thus be expressed as

pmed =
1

Emedσmed

√
2π

exp(
(ln(Emed − µmed))

2

2σ2
med

)

pmax =
1

Emaxσmax

√
2π

exp(
(ln(Emax − µmax))

2

2σ2
max

)

(5.7)

In the above equations, Emed and Emax respectively represent the median and the

maximum relative absolute errors estimated over a heuristic subset of training points at

any given iteration in PEMF. The parameters, (µmed,σmed) and (µmax,σmax) represent the

generic parameters of the lognormal distribution. The modal values of the median and the

maximum errors at any iteration, t, can then be expressed as

Emo
med|t = exp(µmed − σ2

med)|t

Emo
max|t = exp(µmax − σ2

max)|t
(5.8)

The variance of the median and the maximum errors at any iteration, t, can then be

expressed as

Eσ2

med|t =
(
exp

(
σ2
med

)
− 1
)
exp

(
2µmed + σ2

med

)
|t

Eσ2

max|t =
(
exp

(
σ2
max

)
− 1
)
exp

(
2µmax + σ2

max

)
|t

(5.9)

Once we have the history of median and maximum errors at different sample size

(< N), the variation of the modal values and the variance of the errors with sample density

are then modeled using the multiplicative (E = a0n
a1 ) or the exponential (E = a0e

a1n)

regression functions. Alternatively, if the type of median/maximum error distribution is

fixed (e.g., lognormal distribution with parameters µ and σ ), standard regression functions
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could also be used to instead model the variation of the parameters of the distribution as

functions of the number of training points. Since the variance in the errors could both

increase or decrease with increasing number of sample points (for practical sample sizes),

other regression functions (e.g., linear and polynomial functions) are allowed to be used to

fit the variation of Eσ2

med and Eσ2

max. The root mean squared error metric is used to select

the best-fit regression model. These regression functions are then used to predict the modal

values and the variance of the median and the maximum errors in the final surrogate, where

the final surrogate is trained using all the N sample points.

The PEMF error measures promote a monotonic decrease of the median and maximum

errors with sample density 3. Since the rate of error decrease (given by the regression

functions) is likely different for different surrogates, it is possible that the order of dominance

among candidate surrogates may change if a higher number of sample points were made

available – this scenario is uniquely accounted for by the 5th selection criteria in COSMOS.

Since the modal value of the median error at N+αN sample points (the 5th selection criteria:

Emo
med,α) is predicted by further extrapolation of the regression function, the specified value

of α should be small (lower than 0.3 or 30%).

5.4 Numerical Experiments with COSMOS

The effectiveness of the new model selection framework (COSMOS) is investigated

by considering a pool of models comprised of the following three popular model types: (i)

Kriging, (ii) RBF, and (iii) SVR. In this chapter four benchmark problems are used as case

studies for this investigation. The results are compared with model selection based on the

actual error estimated on a large set of additional test points (for validation). The different

forms of the kernel/basis/correlation functions currently considered in COSMOS are given
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in Table 5.3. It could be said that COSMOS is one of the most comprehensive surrogate

model selection framework both in methodology (3-level selection) and implementation (i.e.,

in terms of the pool of candidate model-kernels considered). The candidate surrogate mod-

els and the different forms of the kernel/basis/correlation functions currently considered in

COSMOS are described in Chapter 2. COSMOS offers five different criteria for selection

of optimal surrogates. Any combination of these criteria can be chosen by the user. In

the current implementation, three of the most practically pertinent pairwise combinations

(Emo
med − Emo

max, E
mo
med −Eσ2

med, and Emo
med −Emo

med,α) are allowed to be selected. Using more than

two criteria could prove to be taxing on the complex multiobjective optimal model selection

process, and is also an unlikely scenario in practice.

Table 5.3: Basis or Kernel functions and their hyper-parameters in the candidate
surrogate models

Type of model Type of basis/correlation/kernel function Hyper-parameter

RBF Linear: r

shape parameter, σ
Cubic: r3

Gaussian: e(−r2/2σ)

Multiquadric: (r2 + σ2)1/2

Kriging Linear: max(1 − θr, 1)

correlation function parameter, θ
Exponential: e(−θr)

Gaussian: e(−θr)2

Spherical: 1− 3ξ2 + 2ξ3; ξ = max(1 − θr, 1)
SVR Linear: (xTi xj)

kernel parameters; γ, r, and dGaussian: e− γ‖xi−xj‖2 , γ > 0
Sigmoid: tanh(γ xTi xj + r)

The effectiveness of the COSMOS framework is illustrated by performing model se-

lection for the following four analytical benchmark functions: (i) the 2-variable Branin-Hoo

function, (ii) the 3-variable Hartmann function, (iii) the 10-variable Perm function, and (iv)

the 50-variable Dixon & Price function. These functions have been widely used for inves-

tigating new surrogate models and other related research [51, 125]. The equations of these



112

four test functions are given below:

Branin-Hoo function (2 variables):

f(x) =

(
x2 −

5.1x21
4π2

+
5x1
π

− 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10 (5.10)

where x1 ∈ [−5 10], x2 ∈ [0 15]

Hartmann function (3 variables):

f(x) = −
4∑

i=1

ci exp

{
−

n∑

j=1

Aij (xj − Pij)
2

}
(5.11)

where x = (x1 x2 . . . xn) xi ∈ [0 1]

In this function, the number of variables, n = 3; the constants c, A, and P, are respectively

a 1× 4 vector, a 4× 3 matrix, and a 4× 3 matrix.

Perm Function (10 variables):

f(x) =
∑n

k=1{
∑k

j=1(j
k + 0.5)[(

xj

j
)k − 1]}2 (5.12)

where xi ∈ [−n n + 1], i = 1, ..., n

n = 10
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Dixon & Price Function (50 variables)

f(x) = (x1 − 1)2 +
∑n

i=2 i (2x
2
i − xi−1)

2
(5.13)

where xi ∈ [−10 10], i = 1, ..., n

n = 50

5.5 Results and Discussion

Table 5.4: Problem properties and optimization settings

Problem
Problem Properties Optimization Settings PEMF Settings

Dimension Sample Size Population Size
Maximum No. of No. of No. of training

Generations iterations, N it points at each iteration, nt

Branin-Hoo 2 30 30 60 4 19+2t
Hartmann-3 3 30 30 60 4 19+2t
Perm 10 50 50 60 4 30+4t
Dixon & Price 50 200 50 60 4 150+10t

The sample size used for training the surrogates and the settings specified for optimal

model selection in each application are summarized in Table 5.4. The numerical settings for

the implementation of PEMF in the COSMOS framework are also provided in Table 5.4,

which lists (i) the number of iterations, and (iv) the size of training points at each iteration (as

a function of iteration). The Optimal Latin Hypercube based on Translational Propagation

algorithm [126] is adopted to determine the locations of the full set of training points {X},

and the set of additional test points used for validation in the benchmark problems. In this

section, the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [124] is applied

to perform the hyper-parameter optimization in the Cascaded technique, and to solve the

mixed integer nonlinear programming problem formulated in the One-Step technique.

Three different model selection tests are performed using COSMOS, each involving a

unique pair of selection criteria, as listed below:
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TEST I: Apply COSMOS to (i) minimize the modal value of the median error Emo
med , and

(ii) minimize the modal value of the maximum error Emo
max;

TEST II: Apply COSMOS to (i) minimize the modal value of the median error Emo
med ,

and (ii) minimize the standard deviation of the median error Eσ2

med;

TEST III: Apply COSMOS to (i) minimize the modal value of the median error Emo
med ,

and (ii) minimize the expected modal value of the median error at 20% more number of

sample points Emo
med,α, α = 0.2;

TEST I: (Emo
med − Emo

max)

In this test, for validation purposes, the results yielded by the COSMOS framework are

compared with those given by using the actual median and the maximum errors evaluated

on a large set of additional test points (50×Number of Training Points). To perform a fair

comparison, the estimated median and maximum errors on heuristic subsets of additional

test points are also used to fit error distributions. The statistical mode of the median and

the maximum error distributions are then used as the selection criteria. The method used

to estimate the actual median and the maximum errors is presented as a pseudocode in

Algorithm 2 in the Chapter 3.

Figure 5.7 illustrates the best trade-offs between the median and the maximum error

estimated using PEMF obtained through hyper-parameter optimizations of each model-

kernel combinations for the Branin-Hoo test function. To select the best model using the

Cascaded technique, the hyper-parameter optimization results are added together and a

Pareto filter is then applied to determine the final Pareto set of models.

The final optimal solutions, including the best trade-offs between the median and the

maximum errors (in the Φ0, Φ1, and Φ2 classes) for the six test problems are illustrated
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(b) RBF - Multiquadric basis function
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(c) Kriging - Exponential correlation
function
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(d) Kriging - Gaussian correlation
function
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(e) Kriging - Spherical correlation
function
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(f) SVR - Linear kernel function
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(g) SVR - Sigmoid kernel function
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Figure 5.7: Application of COSMOS in surrogate constructed for Branin-Hoo
Function



116

Table 5.5: The set of Pareto Surrogate Models given by (i) Cascaded technique,
(ii) One-Step technique, and (iii) Model selection based on actual
error

Problem Cascaded technique One-step technique Actual error

Branin-Hoo
- RBF (Multi-
quadric)

- RBF (Multi-
quadric)

- RBF (Multi-
quadric)

- Kriging (Gaussian) - Kriging (Gaussian) - Kriging (Gaussian)
- RBF (Cubic)

Hartmann-3
- RBF (Gaussian) - RBF (Gaussian) - RBF (Gaussian)
- RBF (Multiquadric) - RBF (Multiquadric) - Kriging (Gaussian)
- Kriging (Gaussian) - Kriging (Gaussian)

Perm –

- RBF (Linear) - RBF (Linear)
- RBF (Multiquadric) - RBF (Multiquadric)
- Kriging (Linear) - Kriging (Linear)
- SVR (Sigmoid) - SVR (Sigmoid)

- Kriging (Gaussian)

Dixon & Price –
- RBF (Linear) - RBF (Cubic)
- RBF (Cubic)

in Figs. 5.8, 7.7, and 5.11-5.12. Each figure shows the results from a particular test for a

particular problem. In each of these figures, the ’O’, the ’X’, and the ’+’ symbols respectively

represent the Pareto solutions of model selection under Φ0, Φ1, and Φ2 classes (i.e., different

hyper-parameter classes). The final Pareto optimal solutions in these figures are encircled

by square symbols, and are derived by applying a Pareto Filter.

The Pareto optimal surrogate models obtained by the Cascaded and the One-Step

techniques are listed in Table 5.5. The surrogate models selected based on the actual error

for each problem are also provided in Table 5.5 for validation purposes. For each of the

test problems, the Pareto optimal solutions with the lowest values of the median error and

the maximum error are respectively written in boldface and italic. In the practical design

problems (i.e., the Airfoil design and Three-pane window problems), the model selection

based on the actual error estimated using additional test points is not provided due to the

high computational cost.
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It is observed from Table 5.5 that in both the Cascaded and the One-Step techniques

for the Branin-Hoo test function, the RBF with the Multiquadratic basis function (from Φ1

class) is the best model with the lowest median error. The lowest maximum error is given

by the Kriging model with the Gaussian correlation function (also from the Φ1 class). We

observe from Fig. 5.8 that the results of the Cascaded and the One-Step techniques follow

the same trend as those given by using the actual error. Interestingly, in this problem,

the Pareto solutions from different classes occupy distinct regions of the objective space,

as illustrated in Fig. 5.8(a). It is readily evident from Figs. 5.8(a), 5.8(b), and 5.8(c) that

the optimal solutions from the Φ1 class are significantly superior to that from the other two

classes. The Pareto solution with the lowest maximum error (the lower anchor) comes at a

small compromise in the median error, and hence can be considered as an attractive best

trade-off model.

For the Hartmann test function, RBF with the Gaussian and Multiquadratic basis

functions and Kriging with the Gaussian correlation function under Φ1 class constitute the

set of Pareto models in both Cascaded and One-Step techniques. It is observed from Fig. 7.7

that in this problem, the Pareto solutions given by COSMOS for diffident Hyper-parameter

classes have a larger spread than those given by the actual error. However, in terms of the

best trade-off models, there is a fair agreement between the results of COSMOS and those

determined from the actual errors. In the Hartmann function, unlike the Branin-Hoo test

function, there is some overlap between the final solutions from the different Hyper-parameter

classes.

Before we move on to the results for the higher dimensional benchmark problems

(with larger sample sets), where the error estimation is more expensive, it is important to

appraise the cost benefits of the One-Step technique compared to the Cascaded technique.
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Figure 5.8: Trade-offs between modal values of median and maximum error -
Branin-Hoo test function (2-variable): Pareto models and final pop-
ulation of models from all Φ classes

Figure 5.10 shows the computational cost of the One-Step and the Cascaded model selection

techniques for the Branin-Hoo and the Hartmann test functions. This figure shows that the

computational cost of the One-Step model selection technique is significantly lower (< 17%)

than that of the Cascaded technique. The high efficiency of the One-Step technique makes

it uniquely helpful in the context of selecting an appropriate surrogate from a large global

pool of candidate model types and kernel functions especially in the case of large sample

sets (e.g., in high dimensional problems). Therefore, in this dissertation, only the One-Step

technique is used to select the best surrogate model for the problems with high number of
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(c) One-Step - using Actual Error (for val-
idation)

Figure 5.9: Trade-offs between modal values of median and maximum error -
Hartmann test function (3-variable): Pareto models and final popu-
lation of models from all Φ classes

sample points (the 10-variable Perm and the 50-variable Dixon and Price functions).

Figure 5.11 and Table 5.5 show that for the Perm test function, at least one model-

kernel combination from each of the three classes (Φ0,Φ1, and Φ2) contribute to the Pareto

optimal set. In this test problem, Kriging with Linear correlation function and SVR with

Sigmoid kernel function are selected as the best models with the lowest median error and

the lowest maximum error, respectively. It is important to note from Table 5.5 that there is

promising agreement between the model-kernel combinations chosen by COSMOS and those

chosen based on the actual error. From the COSMOS and the actual error results, we also

observe that a Pareto solution from the Φ0 class (RBF-Linear) is located at the elbow of
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Figure 5.11: Trade-offs between modal values of median and maximum error -
Perm test function (10-variable): Pareto models and final popula-
tion of models from all Φ classes

the Pareto Frontier, hance represents a practically atractive best trade-off model choice.

For the Dixon & Price test function, the anchor Pareto optimal models with the lowest

median and the lowest maximum errors are the RBF-linear and the RBF-Cubic models,

respectively. In this test problem, the model-kernel candidates with no hyper-parameter (Φ0

class) perform the best, and those with two hyper-parameters (Φ2 class) perform the worst.

Figure 5.12 shows that the Pareto solutions from different classes occupy distinct regions of
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Figure 5.12: Trade-offs between modal values of median and maximum error -
Dixon & Price test function (50-variable): Pareto models and final
population of models from all Φ classes

the objective space. Table 5.5 shows that one model type, RBF, dominates the other model

types in this test problem. Comparing Fig. 5.12(a) with Fig. 5.12(b), it is observed that

the RBF-Cubic model solution from the Φ0 class (RBF-Cubic) dominates the solutions from

other classes in the actual result. While, in COSMOS, two solutions from Φ0 class dominates

all the other solutions. This small difference can be attributed to the error of the PEMF

method in estimating the modal value of the median error (< 35%).

Next the performance of the COSMOS method is investigated to show that how it

performs better than simply selecting the kernel functions and the hyper parameter values

recommended in the literature. The median and the maximum errors of the models selected

using COSMOS are therefore compared with the errors of (i) the Kriging model with the

Gaussian correlation function (where the correlation parameter is obtained using the MLE

technique [35], (ii) the RBF with a multiquadrics basis function (where the shape parameter

is set to σ = 0.9 [28], and (iii) support vector regression (SVR) with a linear kernel function

(where the penalty parameter is set to C = 50 [122]). The median and the maximum errors

of the models in each cases for the four benchmark functions are illustrated in Table. 5.6.
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Table 5.6: Comparison of the performance of the COSMOS with the current
paradigm in benchmark problems

Median Error Maximum Error

Kriging1 RBF 2 SVR 3 COSMOS Kriging 1 RBF 2 SVR 3 COSMOS

Problem Model Error Model Error

Branin Hoo 0.12 0.16 0.57
RBF

0.048 0.36 0.37 2.29
Kriging

0.13Multiquadric Gaussian
σ = 2.98 θ = 2.15

Hartmann-6 0.45 0.26 0.38
Kriging

0.09 0.76 0.91 0.84
RBF

0.64Gaussian Gaussian
θ = 2.92 σ = 0.33

Dixon & Price 0.11 0.079 0.10
RBF

0.071 0.34 0.23 0.30
RBF

0.20
Linear Cubic

Perm 0.70 0.38 0.66

Kriging

0.43 1.20 1.72 5.61

SVR

0.79
Linear Sigmoid
θ = 6.26 C = 79.02

λ = 8.31
1 Kriging-Gaussian. Correlation parameter is obtained using a MLE technique [35]
2 RBF -Multiquadrics. Shape parameter is set to σ = 0.9 [28]
3 SVR-Linear. Penalty parameter is set to C = 50 [122]

It is observed that, for the Branin Hoo function, COSMOS offers models which have 60%

lower median error and 63% lower maximum error, respectively, than the next best models

(obtained by Kriging). In Hartmann function, the models selected using COSMOS have 65%

and 15% lower median and maximum error than the next best model (obtained by RBF and

Kriging). The median and the maximum errors of the models selected using COSMOS for

the Dixon & Price function are 10% and 13% lower than the next best model, respectively.

The model selected using COSMOS based on the median error is not the best model for the

Perm function. In this function, the RBF with multiquadrics basis function (σ = 0.9) has

0.11% lower error than the model selected using COSMOS. However, in this function, the

model selected using COSMOS based on the maximum error criterion has 34% lower error.

TEST II (Emo
med −Eσ2

med) and TEST III (Emo
med − Emo

med,α)

The surrogate models in the Pareto Optimal set for each benchmark problems (under

Test II and Test III) are listed in Table5.7. The Pareto optimal solutions as well as the

solutions in the final population for the benchmark problems are shown in Figs. 5.13 to 5.16.
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Again, each figure shows the results from Test II and Test III for a particular problem. In

each of these figures, the blue ’O’,, the green ’X’, and the black ’+’ symbols respectively

represent the final results of model selection under Φ0, Φ1, and Φ2 classes. The final Pareto

optimal solutions in these figures are encircled by red square symbols.

Table 5.7: The set of Pareto Surrogate Models given by COSMOS

Problem Test II, min[Emo
med, E

σ2

med] Test III, min[Emo
med, E

mo
med,α]

Branin Hoo RBF-Gaussian, RBF-
Multiquadric

RBF-Multiquadric

Hartmann-3 RBF-Cubic, RBF-Gaussian,
RBF-Multiquadric

RBF-Gaussian

Perm RBF-Multiquadric, Kriging-
Linear, Kriging-Exponential

RBF-Multiquadric

Dixon and Price RBF-Linear, Kriging-
Gaussian, SVR-Sigmoid

Kriging-Spherical

For the Branin Hoo function problem, RBF-Multiquadric (under class Φ1) was selected

as the best surrogate model by COSMOS in Tests III and as one of the Pareto optimal

surrogates in Test I and II. For the Hartmann function, RBF-Gaussian (under class Φ1)

constituted the set of Pareto models in both Tests I, II and II; In this test problem, surrogate-

kernels with one hyper-parameter performed the best and those with two hyper-parameter

performed the worst.

For the Perm function, at least one surrogate-kernel combination from each of the three

Φ classes contributed to the Pareto optimal set in the case of Tests I and II. In contrast,

RBF-Multiquadric is the sole optimum model in Test III for the Perm function. Figures 5.15

and 5.11 show that for the Perm function,
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Figure 5.13: Branin-Hoo test function (2-variable): Pareto models and final pop-
ulation of models from all Φ classes under Test II and Test III
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Figure 5.14: Hartmann test function (3-variable): Pareto models and final pop-
ulation of models from all Φ classes under Test II and Test III

5.6 Chapter Summary

This chapter presents a new model selection framework that identifies the best surro-

gate model (or set of models) from a diverse pool of candidates, based on error measures

given by the Predictive Estimation of Model Fidelity (PEMF) method. This framework is

called the Concurrent Surrogate Model Selection (COSMOS) framework, and is aimed to al-

low the selection of globally-optimal surrogates by simultaneously operating at the following

three levels: (i) selecting optimal model type, (ii) selecting optimal kernel/basis function
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Figure 5.15: Perm test function (10-variable): Pareto models and final popula-
tion of models from all Φ classes under Test II and Test III
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Figure 5.16: Dixon & Price test function (50-variable): Pareto models and final
population of models from all Φ classes under Test II and Test III

type, and (iii) finding optimum values of the hyper-parameters in the kernel. Another key

feature of COSMOS is the flexibility (given to the users) in using different criteria for model

selection, e.g., the median error and the maximum error or the median and the variance of

error. The two primary components of the COSMOS framework are (i) the error estimation

method (PEMF) which provides the criteria functions to guide surrogate model selection,

and (ii) the optimal model selector that formulates and solves multiobjective mixed integer

nonlinear programming problems to search for the Pareto optimal set of surrogate models.
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The PEMF method provides a model-independent approach to quantify the modal values

of the median and the maximum errors in a surrogate, and has been shown to be signifi-

cantly more accurate than typical leave-one-out cross validation (as illustrated in Chapter 3)

– thereby facilitating effective selection of globally competitive surrogate model(s) for any

given training data set.

In this chapter, COSMOS was applied to four analytical benchmark functions (with 2-

50 variables). The results of the proposed model selection approach are compared with those

based on error estimated on a large set of additional test points (for validation), resulting in

reasonable agreement. The pool of candidate models tested include three major surrogate

model types (Kriging, RBF, and SVR), with different kernel types for each candidate model.

Widely different sets of surrogates models were selected as the optimum set in the four

problems. In some of the cases, a diverse pool of model-kernel combinations were observed

to form the Pareto optimal set, whereas in the other cases the Pareto front was comprised

of the same model-kernel combination with different Hyper-parameter values.



CHAPTER 6

Variable-Fidelity Optimization with Adaptive Model Switching

(AMS)

How do we facilitate the applicability of population-based heuristic optimiza-

tion algorithms in practical complex system design?

Part III: 
Model Selection & 

Variable Fidelity Optimization (VFO) 

CHAPTER 5 

Concurrent Surrogate Model Selection 

CHAPTER 6 

VFO with Model Switching

CHAPTER 7 

VFO with Model Refinement

Figure 6.1: Chapter 6 orientation

This chapter presents a novel model switching technique, called “Adaptive Model Switch-

ing (AMS)”, to be implemented in population-based heuristic optimization. This technique

adaptively selects different computational models (both physics-based and surrogate models)

to be used during optimization, with the overall objective to identify optimal designs that have

high fidelity function estimates at a reasonable computational expense. The model switching

technique replaces the current model with the next higher fidelity model, when a stochastic

switching criterion is met at a given iteration during the optimization process. The switch-

Portions of this chapter previously appeared as:

Mehmani, A., Chowdhury, S., Tong, W., and Messac, A., “Adaptive Switching of Variable-Fidelity Models
in Population-based Optimization Algorithm,” Engineering and Applied Sciences Optimization, 2015, and

Mehmani, A., Chowdhury, S., and Messac, A., “Managing Variable Fidelity Models in Population-based
Optimization using Adaptive Model Switching,” The AIAA Aviation and Aeronautics Forum and Exposi-
tion, Paper No. AIAA-2014-2436, Atlanta, Georgia, Jun 16-20, 2014.
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ing criterion is based on whether the uncertainty associated with the current model output

dominates the latest improvement of the relative fitness function.

The remainder of this chapter is organized as follows: Section 6.1 presents the overview

of this research. Section 6.2 presents the concept and the formulation of the new Adaptive

Model Switching (AMS) metrics. A description of the model error quantification methods

used in this chapter and the related process, including the advancements that are made to

PEMF in the AMS metric, are provided in Section 6.2.3. Section6.3 presents the application

of AMS on Shape Optimization of a Cantilever Composite Beam. The chapter summary is

provided in Section 6.5.

6.1 Chapter Introduction

The primary objective of this chapter is to investigate a new adaptive model man-

agement strategy that significantly reduces the computational cost of optimization while

converging to the optimum with high fidelity model evaluation. This method is designed to

work with population-based optimization algorithms (e.g., GAs, PSOs), and assumes that

models of different level of fidelity are available to the user. Specifically, a new stochastic

model switching metric, called Adaptive Model Switching (AMS), is formulated in this chap-

ter. The AMS technique is implemented through a powerful version of the Particle Swarm

Optimization (PSO) algorithm that involves explicit diversity preservation, called Mixed-

Discrete PSO [127]. The effectiveness of this implementation is investigated by application

to two engineering design optimization problems.
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6.2 Variable Fidelity Optimization with Adaptive Model Switch-

ing (AMS)

6.2.1 Major steps in Optimization with AMS

In optimization based on variable fidelity models, the important question is when and

where to integrate the models with different levels of fidelity. In this chapter, the “when

to integrate” question is particularly addressed. Increasing fidelity too early in the design

process can be computationally expensive while wasting resources to explore undesirable

regions of the design domain. On the other hand, switching to a higher fidelity model too

late might mislead the search process early on to suboptimal regions of the design domain,

i.e., leading to scenarios where the global optimum is outside of the region spanned by

the population of candidate solutions in later iterations. In this section, a novel model

management strategy called, Adaptive Model Switching (AMS) metric is developed to avoid

both these undesirable scenarios. AMS can be perceived as a decision-making tool for the

timing of model-switching or model integration. The implementation of the proposed AMS

in population-based algorithm involves the following five major steps:

Step 1 Models are first ranked from the lowest fidelity to the high fidelity, based on the

error associated with each model, Mi for i = 1, ..., n. where model M1 has the lowest

fidelity and model Mn has the highest fidelity. Assuming the distribution of model

error is known for each model, the ranking is performed using the modal values of the

error distributions.

Step 2 The initial population is then generated at t = 1, using M1.

Step 3 At every iteration (t) of the heuristic optimization algorithm, the current model, Mi,
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is used to update the function values of the population, and then set t = t+ 1. In this

chapter, Particle Swarm Optimization is the chosen heuristic optimization algorithm.

Step 4 The following stopping criteria is checked after every iteration.

The optimization algorithm stops when the relative changes in the fitness function

value is less than a predefined function tolerance, δF . To avoid termination before

reaching the high fidelity model (Mn), the function tolerance must be specified to be

less than the modal error of the (n− 1)th model (Mn−1).

IF the termination criteria is satisfied, the current optimum (the best global solution

in case of PSO) is identified as the final optimum and the optimization process is

terminated.

ELSE, Go To Step 5

Step 5 The switching metric (AMS metric) is evaluated in this step.

IF the AMS metric is satisfied, a switching event occurs, and the model is upgraded

from Mi to Mi+1.

Go To Step 3

A flowchart of the algorithm for optimization with AMS is shown in Fig. 7.3. In

practice, the AMS technique (Step 5) need not be applied at every iteration; the user can

specify it to be applied after every ∆t iteration. In the flowchart, AMS is shown to be applied

at every iteration, for the sake of simplicity.

In the following subsection, the novel components of the AMS method (Fig. 7.3) are

described. Subsequently, an overview of the Mixed-Discrete PSO algorithm, which is used

for implementing the AMS method and investigating its performance, is provided.
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Figure 6.2: Adaptive Model Switching in population-based optimization

6.2.2 The Adaptive Model Switching (AMS) Metric

In this chapter, it is assumed that the uncertainty associated with each model (Mi; i =

1, .., n) is known (or can be evaluated) in the form of an error distribution, Pi. Under this

assumption, the fitness function values evaluated using the ith model can be related to the

corresponding high fidelity estimation as

yiHF = ŷiLF + εi (6.1)

In Equation 6.1, ŷiLF and εi respectively represent the response of the ith low fidelity

model and the stochastic error associated with it; and yiHF is the corresponding high fidelity

model response. The relative improvement in the fitness function value (∆f) can be con-

sidered to follow an unknown distribution, Θ, over the population of solutions. Here, ∆f in

the tth iteration (t ≥ 2) can be expressed as
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∆f t
k =

{
|f

t
k − f t−1

k

f t
k

| if f t
k 6= 0

|f t
k − f t−1

k | if f t
k = 0

where k = 1, 2, 3, ..., Npop

(6.2)

The model switching criteria is then defined based on “whether the uncertainty asso-

ciated with a model response is higher than the observed improvement in the relative fitness

function of the population”. Due to the practical unavailability of reliable local measures

of model error (i.e., ε as a function of x), the model switching criteria is designed using

the stochastic global measures of model error and the distribution of solution improvement.

Based on prior experience or practical design requirements, the designer is likely to be cog-

nizant of what levels of global model error, η, is acceptable for a particular low fidelity

model in an optimization process. Hence, η can be perceived as a user-preference. The

critical probability, pcr for that low fidelity model with an error distribution P is then defined

as the probability of the model error to be less than η. This definition can be expressed as

pcr = Pr[ε ≤ η] =

∫ η

0

P(ε′) dε′ (6.3)

The critical probability (pcr) essentially indicates a critical bound in the error distri-

bution P (0 ≤ ε ≤ η). If the predefined cut-off value (β) of the Θ distribution lies inside

this region, the current low fidelity model is considered to be no more reliable for use in the

optimization process. As illustrated in Fig. 6.3, assuming that Θ and P follow a log-normal

distribution, pcr = Pr[ε ≤ η∗], and β∗ is the pre-computed cut-off value in the Θ distribution.

The model with the P error distribution can be used in the optimization process provided

that η∗ ≤ β∗.
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Figure 6.3: The illustration of the AMS Metric

The Adaptive Model Switching (AMS) metric is formulated as a hypothesis testing

that is defined by a comparison between

(I) the distribution of the relative fitness function improvement(Θ) over the entire popula-

tion, and

(II) the distribution of the error associated with the ith model (Pi) over the entire design

space.

This statistical test for the ith model can be stated as

H0 : QPi
(pcr) ≥ QΘ(1− pcr)

H1 : QPi
(pcr) < QΘ(1− pcr)

0 < pcr < 1

(6.4)

where Q represents a quantile function of a distribution; The p-quantile, for a given distri-

bution function, Ψ, is defined as

QΨ(p) = inf{x ∈ R : p ≤ Ψ(c.d.f.)(x)} (6.5)
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Figure 6.4: The illustration of the AMS hypothesis test (comparing the model
error distribution (Pi) and the distribution of fitness function im-
provement (Θ))

In Eq. 6.4, pcr or the critical probability is an Indicator of Conservativeness (IoC). The

IoC is based on user preferences, and regulates the trade-off between optimal solution relia-

bility and computational cost in the AMS-based optimization process. Generally, the higher

the IoC (closer to 1), the higher the solution reliability and the greater the computational

cost; under these conditions, model switching events will occur early on in the optimization

process.

For the sake of illustration, assume Θ and Pi follow a log-normal distribution, and

pcr = p∗. In this case, the null hypothesis will be rejected, and the optimization process

will use the current model (Mi) if QΘ > QPi
, as illustrated in Fig. 6.4(a). Conversely, if

QΘ < QPi
, the null hypothesis will be accepted, and the optimization process will switch

to the next higher fidelity model (Mi+1), as shown in Fig. 6.4(b).

In this chapter, Kernel Density Estimation (KDE) is adopted to model the distribution

of the relative improvement in the fitness function over consecutive ∆t iterations. Since the

distribution of fitness function improvement over the population (for different problems)
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may not follow any particular probability model, and is also observed to be multimodal at

times, KDE is a suitable choice in this context. KDE is a standard non-parametric approach

to estimate the probability density function of random variables. Here, it is assumed that

∆f = (∆f1, ∆f2, ∆f3, ..., ∆fNpop) is an independent and identically distributed sample

drawn from a distribution with an unknown density Θ∆f . The kernel density estimator can

then be used to determine Θ∆f , as the average spacings of rows and columns are variable

for difference rows and columns, which are given by

Θ̃∆f (x;H) = N−1
pop

Npop∑

i=1

KH(x− xi) (6.6)

Here, the kernel K(x) is a symmetric probability density function, H is the bandwidth

matrix which is symmetric and positive-definite, and KH(x) = |H|−1/2K(H−1/2x). The

choice of K is not as crucial as the choice of the H estimator for the accuracy of kernel

density estimation [128]. In this chapter, we consider K(x) = (2π)−d/2exp(−1
2
xTx), the

standard normal throughout. The Mean Integrated Squared Error (MISE) method is used

as a criterion for selecting the bandwidth matrix, H [129], where

MISE(H) = E(

∫
[Θ̃∆f (x;H)−Θ∆f(x)]

2) (6.7)

6.2.3 Quantifying Model Uncertainties

The uncertainties associated with surrogate models and surrogate-based tuned low

fidelity models are determined using an advanced surrogate error estimation method, called

Predictive Estimation of Model Fidelity or PEMF 3. A detailed description of the PEMF

method is provided in Chapter 3. In this chapter fundamental modification to the original
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PEMF is made to provide the p-quantile of the surrogate error distribution. In the original

PEMF, the PDFs of the median error, pmed is expressed as

pmed =
1

Emedσmed

√
2π

exp(
(ln(Emed − µmed))

2

2σ2
med

) (6.8)

In the above equation, Emed represents the median of the relative errors estimated

over a heuristic subset of training points at any given iteration in PEMF. The parameters,

(µmed, σmed) are the generic parameters of the log-normal distribution. In this variation of

the PEMF method, the modal and median values of the median error distribution at any

iteration, r, are then estimated as

Emo
med|r = exp(µmed − σ2

med)|r

Emed
med |r = exp(µmed)|r

(6.9)

Once the history of modal and median errors at different sample size (< Ns) are

estimated, the variation of the modal and median values of the errors with sample density are

then modeled using the multiplicative regression functions (See Eqs 3.4 and 3.5 in Chapter 3).

These regression functions are then used to predict the modal values of the median nd the

median errors in the final surrogate, where the final surrogate is trained using all the Ns

sample points. The predicted modal and the median error values, εmod and εmed, are then

used to define the distribution of the error in the final surrogate model, or in other words

the response uncertainty of the surrogate model. The location and scale parameters of the

error distribution is then given by
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µ
ǫ
= ln εmed

σǫ =

√
ln(

εmed

εmod
)

(6.10)

Subsequently, the p-quantile of the error distribution associated with surrogate model

is estimated by

QP
SM

(p) = P−1
SM

(p|µǫ, σǫ) = exp(µǫ + Φ−1(p) σǫ) (6.11)

In the case of physics-based low fidelity (PLF) models, the uncertainty in their output

is quantified through an inverse assessment process, by comparing the physics-based low

fidelity model responses with the high fidelity model responses. In this case, the relative

absolute error (RAE
PLF

) of a PLF model is estimated as

RAEPLFi
=

{ |HFi − PLFi

HFi
| if HFi 6= 0

|HFi − PLFi| if HFi = 0

where i =1, 2, 3, ..., Ns (Number of sample points)

(6.12)

A DoE of NS high fidelity evaluations is used to perform the above-stated error quan-

tification, and also to train the surrogate models and the tuned low fidelity models. The

uncertainty of the low fidelity physics-based models is represented by a log-normal distribu-

tion, lnN (µPLF , σPLF ), where the p-quantile of this distribution is defined as
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QP
PLF

(p) = P−1
PLF

(p|µ
PLF

, σ
PLF

) = exp(µ
PLF

+ Φ−1(p) σ
PLF

)

where

µ
PLF

= ln(
m2

RARPLF√
v2RARPLF

+m2
RARPLF

) σ
PLF

=

√
ln(1 +

vRARPLF

m2
RARPLF

)

(6.13)

In Eq. 6.13, Φ−1(.) is the inverse of the c.d.f of the standard normal distribution with

zero mean and unit variance, and mRARPLF
and vRARPLF

are the mean and the variance of

RAEi=1,2,3,...,Ns, respectively.

6.2.4 Optimization Algorithm: Particle Swarm Optimization

In the proposed model management methodology, optimization is performed using an

advanced implementation of the Particle Swarm Optimization (PSO). PSO was originally

developed for solving continuous nonlinear optimization problems by Russel Eberhart and

James Kennedy in 1995 [130]. Several advanced versions of this algorithm have been reported

in the literature since then. In this article, one particular advanced implementation of the

PSO algorithm called Mixed-Discrete PSO (MDPSO), which was developed by Chowdhury

et al [127], is used. The advantages that the MDPSO algorithm provides over a conventional

PSO algorithm include: (i) an ability to deal with both discrete and continuous design

variables, and (ii) an explicit diversity preservation capability that mitigates the possibility

of premature stagnation of particles. Further description of the MDPSO algorithm can be

found in the paper by Chowdhury et al. [127]
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6.3 Numerical Experiments with AMS

6.3.0.1 Shape Optimization of a Cantilever Composite Beam

In this optimization problem, the maximum deflection of a cantilever composite beam

(shown in Fig. 6.5) is minimized. This beam is subjected to a parabolically-distributed load,

q(x) = q0(1 − x2

L2 ) [76]. In this problem, the fiber direction Young’s modulus, EL, and the

composite weight density, ρ, are given by

EL = Efνf + Em(1− νf)

ρ = ρfνf + ρm(1− νf)

where (6.14)

νf + νm = 1

In Eq. 6.14, Ef and Em are the elastic modulus for graphite and epoxy resin, respec-

tively; ρf and ρm are the weight density of the graphite fiber and epoxy resin, respectively;

and νf and νm respectively represent the fiber volume fraction and the matrix volume fraction

in the continuous fiber composite material

q(x)

x = 0 x = L

Figure 6.5: Cantilever composite beam subjected to a parabolic distributed load
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The design variables include (i) the second moment of area (x1), (ii) the depth of

the beam (x2), and (iii) the fiber volume fraction (x3). The side constraints on the design

variables and the values of the fixed design parameters are listed in Table 6.1 and Table 6.2,

respectively.

Table 6.1: Design variables for the cantilever composite beam design problem

Description Notation Lower limit Upper limit

Second moment of area, I [mm4] x1 3.3E4 20.8E4
Depth of the beam, h [mm] x2 20 50
Fiber volume fraction, νf x3 0.40 0.90

Table 6.2: Specified fixed design parameters for the beam design problem

Parameter Value

Parabolic distributed load, q0 [N/mm] 1
Length of the beam, L [mm] 1000
Elastic modulus of graphite fiber, Ef [N/mm2] 2.30E5
Elastic modulus of epoxy resin, Em [N/mm2] 3.45E5
Weight density of graphite fiber, ρf [N/mm3] 1.72E − 5
Weight density of epoxy resin, ρm [N/mm3] 1.20E − 5

The beam optimization problem is defined as

Minimize :
δmax

δ0
, [δ0] = 12.93 (6.15)

subject to

W/W0 ≤ 1, [W0] = 2.9E4 (6.16)

σmax/σ0 ≤ 1, [σ0] = 200 (6.17)

x42
1.2E6x1

≤ 1 (6.18)

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, 3 (6.19)
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In the optimization formulation, the inequality constraints (Eqs. 6.16, 6.17, and 6.18)

are related to the allowable weight, the maximum stress, and a geometric restriction on the

beam design (depth ≤ 10× width). The weight and the maximum stress are given by

W = AρL =
12I

h2
× (12 + 5.2νf)10

−6 × L =
x1
x2

(1440 + 624x3) (6.20)

σmax =
q0L

2h

8I
=

1E6x2
8x1

(6.21)

The models used to estimate the maximum deflection, dmax, are described next.

6.3.0.2 Structural models with different levels of fidelity

To develop the high fidelity physics-based structural model (MB
HF
) and the low fidelity

physics-based or PLF structural model (MB
PLF

), the Finite Element Analysis package ANSYS

is used. In ANSYS, the PLF Finite Element model is constructed using 2 beam elements,

while the HF Finite Elemet model comprises 1000 beam elements. The third model (MB
SM
)

in this problem is a surrogate model constructed using Kriging with Gaussian correlation

function. A set of 30 high fidelity function evaluations are used for this purpose. The fourth

model (MB
TLF

) is a tuned low fidelity model constructed using the Multiplicative form where

C(x) =
δmax|HF

δmax|PLF

(6.22)

The distribution of the error in the tuned low fidelity model (TLF) and the surrogate

model (SM) are estimated using PEMF (Chapter 3) and are illustrated in Figs. 6.6(a) and

6.6(c), respectively. The distribution of the error in the Physics-based low fidelity model

(PLF) is estimated using the inverse assessment process, by leveraging the same 30 high

fidelity samples that were used to construct the TLF and SM; the PLF error distribution is
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Figure 6.6: Distributions of the model errors for the cantilever beam design
problem

shown in Fig. 6.6(b)

6.4 Results and Discussion

For the cantilever beam design problem, the four model types, the error distribution

parameters and Q(pcr) associated with each model, and the number of calls made by AMS

to each model are listed in Table 6.3. It can be seen from Fig. 6.6 and Table 6.3 that the

tuned low fidelity model provides the highest degree of accuracy and the surrogate model

is the least accurate among the three low fidelity models. Hence, the initial population of

particles is generated using the surrogate model in this case.
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Table 6.3: Models with different levels of fidelity used in the cantilever beam
optimization problem (the high fidelity model is assumed to be a true
representation of the system behavior)

Model
Location parameter Scale parameter Q(pcr) Number of calls made

µ σ pcr = 0.3 Npop ×No. of Iter.

Surrogate model 1.22 1.20 1.75 30× 3
Physics-based low fidelity model −2.30 0.001 0.097 30× 6
Tuned low fidelity model −12.52 0.99 0.0001 30× 7
High fidelity model - - - 30× 4

Figures 6.7(a)-6.7(d) illustrate the distribution of the relative fitness function improve-

ments (QΘ) at different iterations during the optimization process. The (1-pcr)-quantile of

the QΘ distribution, and the pcr-quantile of the error distributions of the tuned low fidelity

model, the surrogate model, and the physics-based low fidelity model are also shown in these

figures.

The convergence history of the cantilever beam optimization performed by PSO-AMS

is illustrated in Fig. 6.8. The AMS technique adaptively switches the model type three

times during the optimization process at the 3rd, the 9th, and the 16th iteration, therefore

resulting in an optimum design with a high fidelity function estimate. There is a substantial

discontinuity in the estimated function value at the first switching event (3rd iteration), which

can be attributed to the high inaccuracy of the surrogate model –the Q(pcr) value of the

surrogate model (MB
SM
)is orders of magnitude higher than those of the other models (MB

PLF

and MB
TLF

). To avoid the termination of PSO before reaching the high fidelity model (MB
HF
),

the relative function tolerance is set to δ = 1e− 5, which is smaller than the modal error of

the tuned low fidelity model (which is the most accurate low fidelity model).

In Table 6.4, the optimization results obtained by PSO-AMS is compared with the

results yielded by running MDPSO solely using the surrogate model (PSO-SM), solely using

the physics-based low fidelity model (PSO-PLF), solely using the tuned low fidelity model
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Figure 6.7: Distribution of the fitness function improvements in different iter-
ations of the beam optimization with PSO-AMS (also showing the
model error distributions)

(PSO-TLF), and solely using the high fidelity model (PSO-HF). Interestingly, the PSO-

AMS, PSO-TLF, and PSO-HF arrive at the same optimum design with f ∗ = 0.5435. It

is seen from Table 6.4 that PSO-AMS provides this same optimum design at a 33% lower

computational expense compared to PSO-TLF and a 119% lower computational expense

compared to PSO-HF (both expense differences are estimated with respect to PSO-AMS

expense). It is important to note from Table 6.4 that the performance of the surrogate

model-based optimization (PSO-SM) is significantly worse than that of the others. The error

in the surrogate model (MB
SM
) at its optimum (X∗

SM
) is more than 99%, which is expected

from the predicted PEMF error of this model (Fig. 6.6(c)).
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Figure 6.8: Optimization history of the cantilever beam optimization with PSO-
AMS

Table 6.4: Cantilever beam design: Optimization results using different ap-
proaches

Approach
x∗1 x∗2 x∗3

Optimum function Model in Computational time[min] HF response
δmax/δ0 last iteration over at optimum

(e+ 4) (f ∗) Function evaluation (f
HF

(x∗))

PSO-SM 2.82 43.28 0.71 0.0010 SM 5.7/990 0.8800
PSO-PLF 3.58 48.72 0.89 0.5011 PLF 18.4/330 0.5550
PSO-TLF 3.62 50.00 0.90 0.5435 TLF 46.8/720 0.5435
PSO-HF 3.62 50.00 0.90 0.5435 HF 76.85/870 0.5435
PSO-AMS 3.62 50.00 0.90 0.5435 HF 35.1/630 0.5435

PSO-SM: optimization performed by MDPSO solely using the surrogate model
PSO-PLF: optimization performed by MDPSO solely using the physics-based low fidelity model
PSO-TLF: optimization performed by MDPSO solely using the tuned low fidelity model
PSO-HF: optimization performed by MDPSO solely using the high fidelity model
PSO-AMS: optimization performed by MDPSO using AMS

The contributions of the four different models, in terms of computing time spent and

function calls made, in the beam optimization performed by PSO-AMS are illustrated in

Figures 6.9(a) and 6.9(b). It is observed that, unlike the airfoil problem, the surrogate

model does not have a significant contribution in the beam optimization process in terms of

function calls. Due to its high inaccuracy (Q(pcr) = 1.75), the fitness function improvement

of the particles is quickly dominated by the error distribution of the surrogate model (in only

3 iterations). In this optimization process, the tuned low fidelity model (MB
TLF

) makes the
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Figure 6.9: Percentage-contribution of each model in the cantilever beam opti-
mization problem using PSO-AMS

highest contribution in terms of computing time and function calls. This case study again

shows that the uncertainty in the lower fidelity models could exceed the relative function

improvement across constitutive iterations way ahead of reaching convergence in practical

optimization. Such likely scenarios make this variable fidelity optimization technique (AMS)

a unique tool for designing complex systems, where fast low fidelity models are almost

indispensable.

6.5 Chapter Summary

This chapter presented a novel model management technique that is implemented in

population-based optimization algorithms to provide high fidelity optimum designs at rea-

sonable computational expense. The optimization process is started using the model with
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the highest computational efficiency, which is often the model with the lowest fidelity (which

could be a physics-based low fidelity model or a surrogate model). A novel switching metric

(called Adaptive Model Switching or AMS) is then used to determine when to switch to the

next higher fidelity model during the optimization iterations. Assuming that the uncertain-

ties associated with the lower fidelity models follow a probabilistic distribution (lognormal

pdf is used here), the proposed model switching metric is defined as: “a probability estimate

of whether the uncertainty associated with a model exceeds the improvement in the relative

fitness function over the population of solutions”. In this chapter, the new adaptive model

switching technique (AMS) is applied to cantilever composite beam design. A powerful

version of the Particle Swarm Optimization (mixed-discrete PSO) algorithm is used to im-

plement and investigate the performance of AMS. The results indicate that AMS along with

Mixed Discrete PSO improve the efficiency of the optimization process significantly when

compared to optimization solely using high fidelity models, while reaching at the same or a

better optimum. The value of the optimum with AMS is also better than that accomplished

using only single low fidelity models for optimization.
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Variable-Fidelity Optimization with Adaptive Model Refinement

(AMR)

How do we find the optimum/optima with certainty in surrogate-based design

optimization?
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Figure 7.1: Chapter 7 orientation

In this chapter, the important challenge in using surrogate models in optimization,

which is misleading the search process due to underestimation or overestimation of a system

behavior and leading to suboptimal or infeasible solutions, is addressed. We develop a new

model-independent surrogate-based design approach to refine the surrogate model during op-

timization. The proposed approach, called Adaptive Model Refinement (AMR), is designed

to work particularly with population-based optimization algorithms. In AMR, reconstruction

Portions of this chapter previously appeared as:

Mehmani, A., Chowdhury, S., and Messac, A., Variable-Fidelity Optimization with In-Situ Surrogate Model
Refinement, ASME 2015 International Design Engineering Technical Conferences (IDETC) and Computers
and Information in Engineering Conference (CIE), Paper No. DETC2015-47188, Boston, MA, August 2-5,
2015.

Mehmani, A., Tong, W. Chowdhury, S., and Messac, A., “Surrogate-based Particle Swarm Optimization
for Large-scale Wind Farm Layout Design,” 11th World Congress on Structural and Multidisciplinary
Optimization, Sydney, Australia, June 7-12, 2015.
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(or refinement) of the model is performed by sequentially adding a batch of new samples at

any given iteration (of surrogate-based optimization (SBO)) when a switching metric is met.

In this approach, the model switching metric (developed in Chapter 6) is applied.

The remainder of this chapter is organized as follows: Section 7.1 presents the overview

of this research; Section 7.2 presents the concept and the formulation of the new surrogate

based design optimization method, called Adaptive Model Refinement (AMR). The advance-

ments that are made to PEMF to determine the batch size (to be added) in SBO process is

provided in Section 7.2.2. Section 7.3 describes the surrogate models used to demonstrate

COSMOS, and the different benchmark problems to which COSMOS is applied. The nu-

merical settings and results of case studies are also shown and discussed in this section. The

chapter summary is provided in Section 7.5.

7.1 Chapter Introduction

The primary objective of this chapter is to investigate a new surrogate-based optimiza-

tion approach that reduces the computational cost of optimization while converging to the

optimum/optima with certainty. In its current form, this method is designed to work with

population-based optimization algorithms (e.g., GAs, PSOs). The proposed SBO approach

has the following characteristics:

(i) It is independent of the type of model (e.g., Radial basis function, Polynomial response

surface, Gaussian processes). Hence, it can be implemented in conjunction with differ-

ent types of surrogate models instead of strategies which are defined for specific types

of model (e.g., EGO works primarily for Gaussian process-based surrogate models);

(ii) It uses a reliable surrogate model (with a desired level of fidelity) at any given iteration

of SBO. Hence, it can lead the search process to the reliable optimum solution; and

(iii) It determines the optimal batch size for the infill points for the upcoming iteration

of SBO. Hence, the computational efficiency of the population-based heuristic opti-
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mization algorithms can be significantly improved over the one-at-a-time sequential

approaches and the approaches which the batch size is predefined by the user.

7.2 Surrogate-based optimization with Adaptive Model Refine-

ment

7.2.1 Major steps in Surrogate-based Optimization with AMR

In this section, we develop a method called, Adaptive Model Refinement (AMR). The

major components of the surrogate-based optimization using AMR method include:

(i) The model switch metric (Chapter 6): This metric is perceived as a decision-making tool

for the timing of surrogate model refinement. Performing model refinement (by adding

infill points) too early in the optimzaiton process can be computationally expensive

while wasting resources to explore undesirable regions of the design domain. On the

other hand, updating surrogate model too late might mislead the search process early

on to suboptimal regions of the design domain, i.e., leading to scenarios where the global

optimum is outside of the region spanned by the population of candidate solutions in

later iterations.

(ii) The Predictive Estimation of Model Fidelity (Chapter 3): In AMR method, the PEMF

method with certain implementation is used to quantify the surrogate model fidelity,

and identify the optimal batch size (e.g., size of infill points). The inputs and outputs

of PEMF (in the AMR method) are illustrated in Fig. 7.2 and can be expressed as:

[P(µε,σε), Γ
Infill] = f

PEMF
(X, ε∗) (7.1)
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where the vector X represents the sample data (input and output) used for training

the surrogate model; and ε∗ is the desired fidelity in the model refinement process. In

Eq. 7.1, P(µε,σε), and ΓInfill respectively represent the distribution of the error in the

surrogate model, and the batch size for the infill points to achieve a desired level of

fidelity in the AMR method. A brief description of the KDE and PEMF methods are

provided in the following sections.

Sample data set ({X})
PEMF

Infill Size (ΓInfill)Desired fidelity (ε∗)

Error distribution P(µε,σε)

Figure 7.2: The inputs and outputs of the PEMF method

(iii) Optimization algorithm: Mixed-Discrete PSO (MDPSO): In the proposed surrogate-

based optimization methodology, optimization is performed using an advanced imple-

mentation of the Particle Swarm Optimization (PSO). In this chapter, we use one

particular advanced implementation of the PSO algorithm called Mixed-Discrete PSO

(MDPSO), which was developed by Chowdhury et al [127].

The surrogate-based optimization using AMR approach is implemented by observation

the following major steps:

Step 1 A set of initial sampling points are generated in the design space using design of

experiment methods (Latin Hypercube (LH) sampling [98] is applied to sample the

whole design space in the first iteration). An initial surrogate model is then constructed

using the initial set of sample points.

Step 2 The initial population is generated at t = 1, using the initial surrogate model.
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Figure 7.3: Adaptive Model Refinement in Surrogate-based Optimization

Step 3 At every iteration (t) of the heuristic optimization algorithm, the current surrogate

model is used to update the function values of the population, and then set t = t+ 1.

Particle Swarm Optimization is the chosen heuristic optimization algorithm.

Step 4 The stopping criterion is checked. The following two different methods can be used

as the stopping criteria: (i) the difference between optimum values of five consecutive

iterations is less than a threshold value, (ii) the maximum allowed number of evalu-

ations of function is reached. In this chapter, the optimization algorithm stops when

the relative changes in the fitness function values in five consecutive iterations is less

than a predefined function tolerance, δF . If the termination criterion is satisfied, the

current optimum (the best global solution in case of PSO) is identified as the final

optimum and the optimization process is terminated. Otherwise, go to Step 5.

Step 5 The model switching criteria (developed in Chapter 6) is evaluated in this step. If

the switching metric is satisfied, a model refinement occurs, and the surrogate model

is updated. Go to Step 3
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A flowchart of the AMR method is shown in Fig. 7.3. In the flowchart, the metric is

shown to be applied at every iteration, for the sake of simplicity. In the following subsections,

we describe the novel component of the AMR method (Fig. 7.3); the model switching criteria

was explained in Chapter 6. Next, we provide an overview of the AMR method in estimating

the optimal batch size for the infill points for the upcoming iteration of SBO.

7.2.2 The Adaptive Model Refinement (AMR)

In the previous section, the concepts of the AMR method is defined. Based on the

AMR method, the model refinement will be performed at the t∗-th iteration of SBO, when

the model switching metric is met, under the condition that

QP
SMCURR

≥ Qt=t∗

Θ (7.2)

where SMCURR represents the current surrogate model in the optimization process. Model

refinement is performed to efficiently improve the fidelity of the current surrogate model

to achieve the “desired fidelity” for the upcoming iterations of SBO. In this chapter, the

desired fidelity, ε∗mod, is determined using the history of the fitness function improvement in

the optimization process, which is given by:

ε∗mod = |1− Qt=t∗

Θ −Qt=t∗−τ
Θ

Qt=t∗
Θ

| × εCURR
mod (7.3)

In Equation 7.3, εCURR
mod is the predicted modal error value associated with the current

surrogate model; and τ (∈ Z<t∗) is a user-defined parameter which regulates the occurrences

of the “surrogate model refinement” in the proposed SBO approach. Numerical experiments

exploring different values for the τ indicated that the 3 ≤ τ ≤ 5 can be the suitable choice.
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The novel and unique strategy of tracking the variation of error with an increasing

density of training points in the PEMF method 3 is then applied to determine the batch

size for the samples to be added to the current sample points (XCURR). To do this end,

the desired batch size (ΓInfill) is estimated using the inverse of regression functions used to

represent the variation of error with sample density (the Type 1 and Type 2 VESD functions

given in Equations 3.4 and 3.5, respectively), as shown below:

ΓInfill =

{ ⌈ ln(ε∗
mod

)−ln(aCURR)

bCURR ⌉ −NCURR
s Type 1

⌈exp( ln(ε∗mod)−ln(aCURR)

bCURR )⌉ −NCURR
s Type 2

(7.4)

where aCURR and bCURR are regression coefficients of the VESD function in the current

surrogate model, determined using the least square method; and XCURR represents the size

of the current sample points.

The location of the new infill points (XInfill|N(XInfill) = ΓInfill) in the input space is

determined based on a hypercube (̥) enclosing promising current candidate designs in the

optimization process. The lower bound (L̥
j ) and the upper bound (U̥

j ) of the j
th dimension

of the current hypercube (̥) are estimated by

L̥
j =Min{xmin

j , Xmin
j }

U̥
j =Max{xmax

j , Xmax
j }

(7.5)

In Equation 7.5, xmin
j and xmax

j are respectively the lower and the upper bounds of the

entire set of the current candidate solutions in the jth dimension of the design space; and

Xmin
j and Xmax

j are the lower and upper bounds of the jth dimension of the design space,

respectively.
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The distance-based criterion is then applied to select the optimum setting for the new

infill points (XInfill ⊂ ̥) based upon the current sample points (XCURR). The objective

of this criterion is to minimize the correlation between the current and the new points and

yield a design which is distributed uniformly, as given by

Max
XInfill ⊂ ̥

Min
xs, xt ∈ XUPDATED

D(xs
, xt) (7.6)

where D denotes the Euclidean distance; and XUPDATED (XUPDATED = {XCURR, XInfill}, and

N(XUPDATED) = NCURR
s + ΓInfill) is the updated training set which is used to refine (reconstruct)

the current surrogate model. An appealing feature of this distance based criterion is that it

is computationally efficient and reasonably easy to implement in a batch sequential manner.

However, the proposed AMR method can also use other sequential sampling criteria. The

updated surrogate models will be used in the next iteration of the PSO in the AMR method.

The PEMF error measures used in the proposed SBO approach is discussed next.

7.3 Numerical Experiments with AMR

The effectiveness of the proposed AMR metric in surrogate based optimization is ex-

plored using Kriging, RBF, and E-RBF surrogate models for the following three analytical

test functions: (i) the 5-varible Rosenbrock function, (ii) the 6-variable Hartmann function,

and (iii) the 10-variable Levy function. The equations of these three test functions are given

below:
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Rosenbrock Function (5 variables):

f(x) =

N/2∑

i=1

[100(x22i−1 − x2i)
2 + (x2i−1 − 1)2] (7.7)

where x = (x1 x2 . . . xn) xi ∈ [−5 10]

n = 5

Hartmann Function (6 variables):

f(x) = −
4∑

i=1

ci exp

{
−

n∑

j=1

Aij (xj − Pij)
2

}
(7.8)

where x = (x1 x2 . . . xn) xi ∈ [0 1]

In Hartmann-6, n = 6; the constants c, A, and P, are a 1 × 4 vector, a 4 × 6 matrix, and a

4× 6 matrix, respectively.

Levy Function (10 variables)

f(x) = sin2(πw1) +
∑d−1

i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)]

+(wd − 1)2[1 + sin2(2πwd)] (7.9)

where wi = 1 + xi−1
4

i = 1 2 . . . n

x = (x1 x2 . . . xn) xi ∈ [−10 10]

n = 10

These three test problems are not computationally expensive, but they have char-
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acteristics (e.g., having several local minima) typically encountered with computationally

expensive practical engineering global optimization problems.

7.4 Results and Discussion

In this chapter, the initial number of sample points (initial investment) for training

the surrogates in each application is N({XInitial}) = 5× d, where d is a problem dimension.

To implement PEMF in the AMR method, the size of training points at each iteration (as

a function of iteration) is determined by

nr =
(
r − (N itr + 1)

)
× ⌈ℓ×Ns⌉ (7.10)

where ℓ and N itr are the normalized incremental value and the number of iteration. Theses

parameters are pre-specified to ℓ = 0.1 and N itr = 4. In this section, the AMR metric is

applied at every iteration δ = 1, the Indicator of Conservativeness (IoC) is pre-specified to

pcr = 0.3, the population size of PSO is pre-specified to Npop = 100, and the PSO algorithm

converges by satisfying the predefined function tolerance, δf = 1e− 5.

Figures 7.4(a)-7.4(c) represent the improvement of the model fidelity through sequen-

tial model refinement process of the AMR method for the three benchmark problems in

conjunction with different surrogate models (Kriging, RBF, and ERBF). These figures illus-

trate that the errors decrease with sequentially adding batch of infill points in SBO, thus

showing that the batch size of the infill points and the location of these points determined by

the AMR method resulted in lower surrogate model error in the refined (updated) surrogate

model. It should be noted that the novel use of the modal value in the PEMF method,

promotes a decrease of the error measure with infill points, as opposed to the untraceable
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Figure 7.4: The improvement of the surrogate model fidelity through sequential
model refinement process with AMR

noisy variation that is often characteristic of mean or RMS error measures [121]. It is also

important to note that AMR provides additional helpful insights into the performance of the

surrogates which can be used in the context of Adaptive Model Selection. For example, in

the Hartmann function, it is observed (from Fig. 7.4(b)) that although the predicted error

of the initial ERBF model is relatively higher than that of Kriging and RBF (using initial

sample points), ERBF is significantly more sensitive to the infill points than that of the RBF
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and Kriging surrogates.

Figures 7.5(a)-7.5(h) illustrate the distribution of the fitness function improvement at

different iterations during the SBO process of the Rozenbrok function using AMR-RBF. In

these figures, Q represents (1−pcr)-quantile of the Θ distribution. The error distributions of

the surrogate models constructed in the model refinment process (the 1st surrogate model to

the 5th surrogate model), which are determined through the AMR method, are also shown

in these figures. In this case, model refinement through AMR occurs at the 8th, the 14th,

the 24th, the 29th, the 32th, and the 36th iterations.

The convergence history of the benchmark optimization problems for different surrogate

models are illustrated in Figs. 7.6(a)- 7.8(c). These figures also indicate: (i) the active

surrogate model at each iteration (using different symbols/colors), (ii) the size of data set

(N(XUPDATED) = NCURR
s + ΓInfill) used to refine (update) the active surrogate model in

the AMR method, and (iii) the iteration that the model refinement is performed (the AMR

metric is met). In these problems, the optimization progresses converges by satisfying the

predefined function tolerance, δf = 1e− 5.

Next, we investigate how the AMR method performs better than simply using the

single stage sampling strategy for SBO. The results yielded by the AMR method are therefore

compared with the results yielded by running MDPSO using the surrogate model constructed

in the one-step method. The optimum results thus obtained in each case are reported in

Table 7.1. The final columns of this table shows the actual function estimate at the optimum

design obtained under each optimization run. It is observed that the AMR method provides

the better optimum values in most of the cases.
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Figure 7.5: Distribution of the fitness function improvements in different itera-
tions of the global optimization problem with AMR-RBF (also show-
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Figure 7.6: Rosenbrock function (5-variable): Optimization history of the global
optimization problem

7.5 Chapter Summary

This chapter presented a novel surrogate-based optimization (SBO) method that is

implemented in population-based optimization algorithms to provide high fidelity optimum

designs at reasonable computational expense. The proposed method, called Adaptive Model

Refinement (AMR), is designed to refine the surrogate model by sequentially adding a batch

of new samples at any given iteration of SBO when a switching model metric is met. The op-
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Figure 7.7: Hartmann function (6-variable): Optimization history of the global
optimization problem

timization process is started using the initial surrogate model constructed over an initial set

of uniform sample points. A novel model-independent metric is then used to determine when

to refine the current surrogate model during the optimization iterations. The uncertainty

in the current surrogate model output and the batch size of the new samples is determined

by Predictive Estimation of Model Fidelity (with certain modifications). Different surrogate

models (e.g., Kriging, RBF, and E-RBF) are used in conjunction with Particle Swarm Op-



163

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
O
b
je
ct
iv
e
F
u
n
ct
io
n

Iteration Number

 

 

1s t RBF model
2nd RBF model
3rd RBF model
4th RBF model
5th RBF model
6th RBF model

(a) RBF

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
b
je
ct
iv
e
F
u
n
ct
io
n

Iteration Number

 

 

1s t Kriging model
2nd Kriging model
3rd Kriging model
4th Kriging model
5th Kriging model
6th Kriging model

(b) Kriging

0 10 20 30 40
−14

−12

−10

−8

−6

−4

−2

0

2

O
b
je
ct
iv
e
F
u
n
ct
io
n

Iteration Number

 

 

1s t ERBF model
2nd ERBF model
3rd ERBF model
4th ERBF model
5th ERBF model
6th ERBF model

(c) ERBF

Figure 7.8: Levy function (10-variable): Optimization history of the global op-
timization problem

timization to investigate the performance of the new AMR method for SBO. To this end,

three benchmark optimization problems are solved. The performance of the AMR method

is also compared with that of the single stage sampling. The results indicate that the AMR

method improves the efficiency and the accuracy of SBO over the single stage method.
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Table 7.1: Optimization results using different optimization approaches

Function/Problem Surrogate dAMR dSS GAMR GSS GANA

Rosenbrock
Kriging 2.2859 3.2559 0.0902 1.0348e+03

0.0000RBF 2.2119 4.0290 0.0114 453.2797
E-RBF 2.6833 1.6983 23.2000 336.9315

Hartmann
Kriging 0.0039 0.1608 -3.3220 -2.6727

-3.3223RBF 0.2519 0.4441 -2.6279 -0.7588
E-RBF 0.0521 0.5680 -3.2622 -0.1684

Levy
Kriging 2.1783 1.8403 0.5011 2.0017

0.0000RBF 1.5224 2.5657 0.3532 1.3473
E-RBF 2.2209 4.0980 0.2110 1.8871

dAMR: the distances between the optimal design found using the AMR method and the actual optimum
dSS: the distances between the optimal design found using the single stage method and the actual optimum
GANA: the (analytically found) actual optimum objective value
GAMR: the the actual function estimate at the optimum design obtained under the AMR method
GSS: the the actual function estimate at the optimum design obtained under the single stage method
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CHAPTER 8

Application of PEMF-derived Methods to CFD-based Problems

What is the effectiveness of PEMF-derived method in CFD-based design prob-

lems?

Part IV: 
Practical Application 
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Variable Fidelity Optimization)

CHAPTER 7 

VFO with Model Refinement

CHAPTER 8 
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CHAPTER 9 

PEMF-derived to Complex Practical Prob. 

Figure 8.1: Chapter 8 orientation

8.1 Chapter Introduction

This chapter presents the application of the frameworks and approaches developed in

Chapters 5, 6, and 7 of this dissertation in different CFD-based design problems. Each of

these problems is presented in a stand-alone fashion so that they can be read independently.

Inevitably, this involves some repetition of the parts already covered in earlier chapters of

this dissertation.

The remainder of this chapter is organized as follows: Section 8.2 presents two different

CFD-based problems to illustrate important aspects of the new model selection framework

(COSMOS) outlined in Chapter5. These problems include: (i) airfoil design problem, and

(ii) the three-pane window heat transfer problem. In Section 8.3 the proposed model switch-

ing metric in variable fidelity optimization discussed in Chapter6 is applied to a CFD-based

design problem through Particle Swarm Optimization, which is aerodynamic shape opti-

mization of airfoil. The chapter summary is provided in Section 9.7.
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8.2 Numerical Case Studies with COSMOS

In this section, the effectiveness of the new model selection framework (COSMOS)

developed in chapter5 is investigated by considering a pool of models comprised of the

following three popular model types: (i) Kriging, (ii) RBF, and (iii) SVR. The different

forms of the kernel/basis/correlation functions currently considered in COSMOS are given

in Chapter 5. COSMOS offers five different criteria for selection of optimal surrogates. Any

combination of these criteria can be chosen by the user. In the current implementation,

three of the most practically pertinent pairwise combinations (Emo
med − Emo

max, E
mo
med − Eσ2

med, and

Emo
med − Emo

med,α) are allowed to be selected. Using more than two criteria could prove to be

taxing on the complex multiobjective optimal model selection process, and is also an unlikely

scenario in practice.

8.2.1 Airfoil Design Problem:

In this problem, the lift-to-drag ratio (CL/CD) of a Wortmann FX60.126 series airfoil

[131] is represented as a function of four design variables, which include the angle of incidence

(ranging from 0 to 10) and the three shape variables (each ranging from -0.01 to 0.01). As

illustrated in Fig. 8.2, the three shape variables represent the distances (i) between the

middle of the suction side and the horizontal axis (x1), (ii) between the middle of pressure

side and the horizontal axis (x2), and (iii) between the trailing edge and the horizontal axis

(x3). These three shape variables allow a modification of the un-deformed airfoil profile.

With respect to the initial airfoil design, two cubic splines are added to the suction and the

pressure sides. Each of these splines is characterized by 3 points, defined on the leading

edge, the middle span, and the trailing edge. To develop the high fidelity aerodynamics

model of this airfoil, the commercial Finite Volume Method tool, FLUENT, is used, which
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solves the Reynolds-averaged Navier-Stokes (RANS) equations. The chord length of the

airfoil is specified to be 1.0m, and the incoming wind velocity is specified to be 25.0m/s.

The structured CFD mesh is constructed using 9,838 quadrangular cells and 10,322 node

points.
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Figure 8.2: Design variables governing the shape geometry of the Airfoil

8.2.2 Three-Pane Window Heat Transfer Problem:

The performance of a Three-pane window varies with climatic conditions [132]. The

heat transfer through the window is a function of environmental conditions and the window

material and dimensions. A simplified schematic and the geometrical dimensions of the

Three-pane window is shown in Fig. 8.3. The heat transfer simulation model of the side

channels and the air gap is created using the computational fluid dynamics (CFD) software

Fluent. The model simulates the steady-state heat transfer process. In this problem, the

middle tinted pane is made of a generic bronze glass, and the other two panes are made

of clear glass. To reduce the computational expense of the window heat transfer model, a

surrogate model is used to represent the heat flux through the inner pane, Q̇w. The inputs

for the surrogate model are (i) the atmospheric temperature, (ii) the wind speed, and (iii)

the solar radiation.
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t = 0.006 m
Din = 0.024 m
Dout = 1.012 m

Figure 8.3: Schematic of the three-pane window [132]

Table 8.1: Three-pane window geometry

Property Symbol Value Units

Hight of the glass hg 1.000 m
Width of the glass wg 0.500 m
Inner gap depth Din 0.024 m
Outer gap depth Dout 1.012 m
Pane thickness t 0.006 m

8.2.3 Results and Discussion

The sample size used for training the surrogates and the settings specified for optimal

model selection in each application are summarized in Table 8.2. The numerical settings for

the implementation of PEMF in the COSMOS framework are also provided in Table 8.2,

which lists (i) the number of iterations, and (iv) the size of training points at each iteration (as

a function of iteration). In this section, the Elitist Non-dominated Sorting Genetic Algorithm

Table 8.2: Problem properties and optimization settings

Problem
Problem Properties Optimization Settings PEMF Settings

Dimension Sample Size Population Size
Maximum No. of No. of No. of training

Generations iterations, N it points at each iteration, nt

Airfoil design 4 30 30 60 4 19+2t
Three-pane window 3 30 30 60 4 19+2t
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(NSGA-II) [124] is applied to perform the hyper-parameter optimization in the Cascaded

technique, and to solve the mixed integer nonlinear programming problem formulated in the

One-Step technique.

Table 8.3: The set of Pareto Surrogate Models given by (i) Cascaded technique,
and (ii) One-Step technique

Problem Cascaded technique One-step technique

Airfoil Design
- RBF (Cubic) - RBF (Cubic)
- RBF (Gaussian) - RBF (Gaussian)
- RBF (Multi-
quadric)

- RBF (Multi-
quadric)

Three-pane window
- Kriging (Gaussian) - Kriging (Gaussian)
- RBF (Cubic) - RBF (Cubic)

The final optimal solutions, including the best trade-offs between the median and the

maximum errors (in the Φ0, Φ1, and Φ2 classes) for these two CFD-based test problems are

illustrated in Figs. 8.4, 8.5, and 8.6-8.7. Each figure shows the results from a particular

test for a particular problem. In each of these figures, the ’O’, the ’X’, and the ’+’ symbols

respectively represent the Pareto solutions of model selection under Φ0, Φ1, and Φ2 classes

(i.e., different hyper-parameter classes). The final Pareto optimal solutions in these figures

are encircled by square symbols, and are derived by applying a Pareto Filter.

Three different model selection tests are performed using COSMOS, each involving a

unique pair of selection criteria, as listed below:

TEST I: Apply COSMOS to (i) minimize the modal value of the median error Emo
med , and

(ii) minimize the modal value of the maximum error Emo
max;

TEST II: Apply COSMOS to (i) minimize the modal value of the median error Emo
med ,

and (ii) minimize the standard deviation of the median error Eσ2

med;



171

TEST III: Apply COSMOS to (i) minimize the modal value of the median error Emo
med ,

and (ii) minimize the expected modal value of the median error at 20% more number of

sample points Emo
med,α, α = 0.2;

TEST I: (Emo
med − Emo

max)

The Pareto optimal surrogate models obtained by the Cascaded and the One-Step

techniques under Test I are listed in Table 8.3. For each of the test problems, the Pareto

optimal solutions with the lowest values of the median error and the maximum error are

respectively written in boldface and italic.

For the Airfoil design problem, it is observed from Table 5.5 that in both the Cascaded

and the One-Step techniques, the RBF with the Multiquadric and Gaussian basis functions

are respectively the best models in terms of the median and the maximum errors. For the

Airfoil design problem, the optimal model selection yielded by COSMOS perfectly matches

that given by the Actual error (Table 5.5), although the Pareto solutions occur at different

regions of the objective space. In this case, again a single model type (RBF ) with different

kernels (Cubic, Gaussian, and Multiquadric) constitutes the set of Pareto models. It is also

observed from Fig. 8.4(b) that the Pareto solution from the Φ0 class (RBF-Cubic), appearing

as the lower anchor point offers an attractive trade-off at a small compromise in the median

error.

In the Three-pane window problem, the same model-kernel combination (Kriging-

Gaussian) provides all the best trade-off solutions under the One-Step technique. In contrast,

under the Cascaded technique, the lowest median error is accomplished by the RBF-Cubic

model. This disagreement can be attributed to the very small difference between the median

errors estimated for the Kriging-Gaussian and the RBF-Cubic models for this problem.
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Figure 8.4: Trade-offs between modal values of median and maximum error -
Airfoil Design: Pareto models and final population of models from
all Φ classes
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Figure 8.5: Trade-offs between modal values of median and maximum error -
Window model: Pareto models and final population of models from
all Φ classes

Next the performance of the COSMOS method is investigated to show that how it

performs better than simply selecting the kernel functions and the hyper parameter values

recommended in the literature. The median and the maximum errors of the models selected

using COSMOS are therefore compared with the errors of (i) the Kriging model with the

Gaussian correlation function (where the correlation parameter is obtained using the MLE
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Table 8.4: Comparison of the performance of the COSMOS with the current
paradigm in engineering problems

Median Error Maximum Error

Kriging1 RBF 2 SVR 3 COSMOS Kriging 1 RBF 2 SVR 3 COSMOS

Problem Model Error Model Error

Airfoil Design 0.007 0.005 0.05
RBF

0.0015 0.017 0.041 0.08
RBF

0.008Multiquadric Cubic
σ = 0.274

Window model 0.06 0.24 0.44
Kriging

0.044 0.09 0.59 0.51
RBF

0.069Gaussian Cubic
θ = 0.1

1 Kriging-Gaussian. Correlation parameter is obtained using a MLE technique [35]
2 RBF -Multiquadrics. Shape parameter is set to σ = 0.9 [28]
3 SVR-Linear. Penalty parameter is set to C = 50 [122]

technique [35], (ii) the RBF with a multiquadrics basis function (where the shape parameter

is set to σ = 0.9 [28], and (iii) support vector regression (SVR) with a linear kernel function

(where the penalty parameter is set to C = 50 [122]). The median and the maximum errors

of the models in each cases for these two practical problems are illustrated in Table. 8.5.

It is observed that, for the Air foil design problem, COSMOS offers models which have

70% lower median error and 20% lower maximum error, respectively, than the next best

models (obtained by RBF and Kriging). In the Window model, the models selected using

COSMOS have 26% and 23% lower median and maximum error than the next best model

(obtained by Kriging).

TEST II (Emo
med −Eσ2

med) and TEST III (Emo
med − Emo

med,α)

The surrogate models in the Pareto Optimal set for the Airfoil design problem and

Three-pane window problem (under Test II and Test III) are listed in Table 8.5. The Pareto

optimal solutions as well as the solutions in the final population for these CFD-based prob-

lems are shown in Figs. 8.6 to 8.7. Again, each figure shows the results from Test II and

Test III for a particular problem. In each of these figures, the blue ’O’,, the green ’X’, and

the black ’+’ symbols respectively represent the final results of model selection under Φ0,
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Φ1, and Φ2 classes. The final Pareto optimal solutions in these figures are encircled by red

square symbols.

Table 8.5: The set of Pareto Surrogate Models given by COSMOS

Problem Test II, min[Emo
med, E

σ2

med] Test II, min[Emo
med, E

mo
med,α]

Airfoil Design RBF (Linear), RBF (Cubic),
RBF (Multiquadric)

RBF (Multiquadric)

Window model Kriging (Spherical), Kriging
(Gaussian)

Kriging (Gaussian)

For the Airfoil design problem, RBF-Linear, RBF-Cubic, and RBF-Multiquadric con-

stituted the set of Pareto models in Test II (Table 8.5 and Fig. 8.6(a); and RBF-Multiquadric

was selected as the single optimum surrogate model in Test III (Table 8.5 and Fig. 8.6(b)).

In the Three-pane window problem; in Test II where the variance of the median error is con-

sidered, Kriging-Spherical and Kriging-Gaussian are included in Pareto optimal set (from

Fig. 8.7(a)). In contrast, Kriging-Gaussian is the sole optimum model in Test III for the

Three-pane window problem (from Table 8.5 and Fig. 8.7(b) and ).
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8.3 Numerical Case Study with Adaptive Model Switching

In this section, the proposed AMS-based optimization developed in chapter 6 is ap-

plied to the Airfoil design problem through Particle Swarm Optimization. This application

illustrates: (i) the computational advantage of this method over purely high fidelity model-

based optimization, and (ii) the accuracy advantage of this method over purely low fidelity

model-based optimization.

8.3.1 Aerodynamic shape optimization of 2D airfoil

This section describes a 2D airfoil design problem where the ratio of the coefficients of

lift and drag (CL/CD) of the Wortmann FX60.126 2D airfoil [131] is to be maximized. The

lift-to-drag ratio (CL/CD) is expressed as a function of four design variables, which include

the angle of incidence (ranging from 0 to 10) and the three normalized shape variables (each

ranging from -0.01 to 0.01). As illustrated in Fig. 8.2, the three shape variables define the

distances (i) between the middle of the suction side and the horizontal axis (x1), (ii) between

the middle of pressure side and the horizontal axis (x2), and (iii) between the trailing edge and
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the horizontal axis (x3). These three shape variables allow a modification of the un-deformed

airfoil profile. With respect to the initial airfoil design, two cubic splines are added to the

suction and the pressure sides. Each of these splines is characterized by 3 points, defined on

the leading edge, the middle span, and the trailing edge. The chord length of the airfoil is

equal to 1 m. The design constraints are the side constraints on the design variables which

are listed in Table 8.6.

Table 8.6: Design variables in airfoil optimization problem

Description Notation Lower limit Upper limit

Distance between the middle of suction side and horizontal axis x1 -0.01 0.01
Distance between the middle of pressure side and horizontal axis x2 -0.01 0.01
Distance between the trailing edge and horizontal axis x3 -0.01 0.01
Incidence angle x4 0◦ 10◦

8.3.2 Aerodynamic models with different level of fidelity

To develop a high fidelity aerodynamic model for determining CL and CD (MA
HF),

the commercial Finite Volume Method package, FLUENT, is used. The Reynolds-averaged

Navier-Stokes (RANS) formulation is used along with a Reynolds model to represent the

turbulence. The CFD mesh is constructed using quadrangular cells[131], characterized by

9,838 quadrangular cells and 10,322 grid points (Fig. 8.8(a)).

The low fidelity physics-based model (MA
PLF) is constructed based on the assumptions

that the fluid is steady, incompressible, and irrotational. In this model, the Navier-Stokes

equations are solved using the Finite Element method. Triangular T3 elements used for

demonstration, as shown in Fig. 8.8(b). The incoming velocity in the analysis is set to

25 m/s. The computational time of the High and Low fidelity physics-based models are

approximately 300 seconds and 30 seconds, respectively (i.e., an order of magnitude apart).

The pressure field around the airfoil for the low and high fidelity aerodynamic models at a
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(a) High fidelity model mesh
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Figure 8.8: Fine and coarse mesh for CFD of airfoil [131]

1.0171e+05

1.0054e+0

1.0066e+0

1.0077e+0

1.0089e+0

1.0101e+0

1.0112e+0

1.0124e+0

1.0136e+0

1.0147e+0

1.0159e+0

10.50

X

(a) High fidelity model

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1  

x

 

y

1.0124

1.0126

1.0128

1.013

1.0132

1.0134

1.0136

1.0138

x 10
5

(b) Low fidelity physics-based model

Figure 8.9: Pressure field around the airfoil at a baseline design

baseline design (x1 = 0, x2 = 0, x3 = 0, and x4 = 5◦) are illustrated in Fig. 8.9.

The third model is a surrogate model (MA
SM) constructed using a DoE of high fidelity

evaluation involving 30 sample points. The fourth model is a tuned low fidelity model

(MA
TLF). In this article, the tuned low fidelity model is constructed using the Multiplicative

approach, as given by

F̃ (x, a) = f(x)× C(x) (8.1)
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where F̃ is a tuned low fidelity model; f(x) is a low fidelity model; C(x) is an explicit tuning

surrogate constructed using the high fidelity samples, as shown below:

C(x) =

CL

CD
|
HF

CL

CD
|
PLF

(8.2)

where CL and CD are respectively the lift and drag coefficients.

The surrogate model (MA
SM) and the surrogate component of the tuned low fidelity

model (MA
TLF) are both constructed using Kriging with a Gaussian correlation function [8, 9].

Kriging is an interpolating method that is widely used for representing irregular data. Under

the Kriging approach, the zero-order polynomial function is used as a regression model. In

this article the Optimal Latin Hypercube is adopted to determine the locations of the sample

points. The PEMF method is then applied to estimate the error in the surrogate models

constructed using the high fidelity responses, and the low fidelity model. To estimate the

error in the physics-based low fidelity FEA model, the inverse assessment process defined in

Section 6.2.3, is applied. Figures 8.10(a)-8.10(c) illustrate the distributions of the error in

the tuned low fidelity model, the surrogate model, and the physics-based low fidelity model.

It is observed from Fig. 8.10 that the accuracy of the physics-based low fidelity model is less

than that of the surrogate model. It is also readily evident that the computational cost of

the physics-based low fidelity model is more than that of the surrogate model. Therefore, in

this problem, the physics-based low fidelity model is not included as a model choice in the

variable fidelity optimization.
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Figure 8.10: Distribution of the model errors: aerodynamic CL/CD ratio of the
2D airfoil

8.3.3 Results and Discussion

In the airfoil optimization problem, the initial population of particles is generated using

the fastest model, which is the surrogate model. The AMS technique adaptively switches the

model type twice during optimization (over a total of 22 iterations), resulting in an optimum

design with a high fidelity function estimate.

The model types, the error distribution parameters associated with each model, and

the number of calls made to each model in this optimization are listed in Table 8.7. The total

number of calls made to each model is equal to the product of the particle population and

the number of iterations during which that particular model is used for system evaluation.
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In this problem, the AMS technique is applied at every iteration δ = 1.

Table 8.7: Models with different levels of fidelity used in the airfoil optimization
problem (the high fidelity model is assumed to be a true representa-
tion of the system behavior)

Model
Location parameter Scale parameter Q(pcr) Number of calls made

µ σ pcr = 0.3 Npop ×No. of Iter.

Surrogate model −2.6793 0.9628 0.0414 30× 13
Tuned low fidelity model −3.3197 0.9547 0.0219 30× 6
High fidelity model - - - 30× 3

Figure 8.11(a)-8.11(f) illustrate the distribution of the fitness function improvement at

different iterations during the optimization process. In these figures, Q represents (1− pcr)-

quantile of the Θ distribution. The error distributions of the surrogate model and the tuned

low fidelity model, which are determined apriori, are also shown in these figures. Through

AMS, model switching, from surrogate model to tuned low fidelity model and from tuned low

fidelity model to high fidelity model, occur at the 14th and the 20th iteration, respectively.

The convergence history of the airfoil optimization is illustrated in Fig. 8.12. This

figure also indicates which model is active at each iteration. It is observed that, from the

first iteration till the 13th iteration the surrogate model (MA
SM) is active, before switching to

the tuned low fidelity model that remains active till the 19th iteration. Interestingly, most

of the objective function improvement occurs under the tuned low fidelity model (more than

10% increase in the CL/CD ratio). The final switching event, from the tuned low fidelity to

the high fidelity model, occurs at the 19th iteration. The optimization progresses with the

high fidelity model for another 3 iterations before reaching convergence. In this case, the

algorithm converges by satisfying the predefined function tolerance, δf = 1e− 5.

Next, the performance of the AMS method is investigated to show how it performs

better than simply using the individual low fidelity models for optimization or running the
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Figure 8.11: Distribution of the fitness function improvements in different iter-
ations of the airfoil optimization with PSO-AMS (also showing the
model error distributions)
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optimization solely on the high fidelity model. The results yielded by the PSO-AMS are

therefore compared with the results yielded by running MDPSO solely using the surrogate

model (PSO-SM), solely using the tuned low fidelity model (PSO-TLF), and solely using

the high fidelity model (PSO-HF). The optimum results thus obtained, the computational

cost, and the total number of function evaluations in each case are reported in Table 8.8.

The final column of this table shows the high fidelity function estimate at the optimum

design obtained under each optimization run (e.g., y∗
HF

(x∗
SM

) and y∗
HF

(x∗
TLF

)). It is observed

that the PSO-AMS not only requires 185% less computing time compared to PSO-HF, it

also provides the best optimum value that is 5% better that the next best value (where

the 2nd best is obtained by PSO-TLF). It is also observed that, in the PSO-TLF approach,

the optimum is located in the region where the TLF model has more than 8% error. This

optimum is in the vicinity of the high fidelity optimum yielded by the AMS method. The

optimization performed solely using the tuned low fidelity model (PSO-TLF) incurs a higher
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computational cost in comparison with that performed using the AMS method, which is

attributed to the high number of function evaluations invested to satisfy the termination

criterion (δf = 1e− 5) in the former.

Table 8.8: 2D Airfoil Design: Optimization results using different optimization
approaches

Approach x∗1 x∗2 x∗3 x∗4

Optimum function Model in Computational time[hr] HF response
CL/CD last iteration over at optimum
(f ∗) Function evaluation (f

HF
(x∗))

PSO-SM 0.0003 0.0003 0.0003 4.8300 59.69 SM 0.275/990 59.43
PSO-TLF -0.0028 -0.0058 -0.0014 2.7911 70.54 TLF 9.96/1380 65.20
PSO-HF 7.14E-5 -0.0021 -0.0018 4.8273 59.57 HF 25.7/360 59.57
PSO-AMS -0.0020 -0.0004 -0.0009 2.8313 68.75 HF 9.01/660 68.75

PSO-SM: optimization performed by MDPSO solely using the surrogate model
PSO-TLF: optimization performed by MDPSO solely using the tuned low fidelity model
PSO-HF: optimization performed by MDPSO solely using the high fidelity model
PSO-AMS: optimization performed by MDPSO using AMS

Figures 8.13(a) and 8.13(b) illustrate the contribution, in terms of computing time

and function evaluations, of the three different models in the airfoil design optimization

performed by PSO-AMS. These figures show that the overall computational cost is highly

sensitive to the number of high fidelity model evaluations, which is expected. It is also

observed that the surrogate model dominates the optimization process in terms of function

calls, while the computational expense of this model is significantly lower than that of the

tuned low fidelity and the high fidelity models. This observation supports the hypothesis that

a probabilistic AMS technique can provide a significantly better balance between accuracy

of the optimum and computational efficiency, compared to purely low fidelity or purely high

fidelity optimizations.

8.4 Chapter Summary

This chapter presents the application of the frameworks and approaches developed in

Chapters 5, 6, and 7 of this dissertation in different CFD-based design problems.
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Figure 8.13: Percentage-contribution of each model in the airfoil optimization
problem performed by PSO-AMS

In the first section of this chapter, COSMOS framework was applied to two practical

CFD-based design problems (Airfoil design and Three-pane window heat transfer problems).

The pool of candidate models tested include three major surrogate model types (Kriging,

RBF, and SVR), with different kernel types for each candidate model. Widely different sets

of surrogates models were selected as the optimum set in the these problems. In some of the

cases, a diverse pool of model-kernel combinations were observed to form the Pareto optimal

set, whereas in the other cases the Pareto front was comprised of the same model-kernel

combination with different Hyper-parameter values. Other observations that emphasize the

need for model-independent and automated surrogate model selection (COSMOS), in order

to truly bring surrogate modeling into mainstream engineering design, are as follows: (i)
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There is often a significant spread of the trade-offs between the median and the maximum

errors; and (ii) In some cases due to the nature of the Pareto front (elbow front), a single

or few optimal models can be considered as the most attractive trade-offs from a practical

perspective.

In the second part of this chapter, the new adaptive model switching technique (AMS)

developed in chapter 6 is applied to 2D Airfoil design problem. A powerful version of the

Particle Swarm Optimization (mixed-discrete PSO) algorithm is also used to implement

and investigate the performance of AMS. The results indicate that AMS along with Mixed

Discrete PSO improve the efficiency of the optimization process significantly when compared

to optimization solely using high fidelity models with up to 185% reduction in computing

time, while reaching at the same or a better optimum. The value of the optimum with AMS

is also better than that accomplished using only single low fidelity models for optimization.



CHAPTER 9

Application of PEMF-derived Methods to a Complex Practical

Problem

What is the effectiveness of PEMF-derived methods in complex engineering

systems?

Part IV: 
Practical Application 

(Error Quantification, Model Selection, and 

Variable Fidelity Optimization)

CHAPTER 8 

PEMF-derived to CFD-based Design Prob. 

CHAPTER 9 

PEMF-derived to Complex Practical Prob. 

CHAPTER 10 

Concluding Remarks and Future Work 

Figure 9.1: Chapter 9 orientation

9.1 Chapter Introduction

This chapter presents the application of the frameworks and approaches developed in

Chapters 5, 6, and 7 of this dissertation in a complex engineering system. This problem is

in the area of energy sustainability, and is presented in a stand-alone fashion so that it can

be read independently. Inevitably, this involves some repetition of the parts already covered

in earlier chapters of this dissertation.

The remainder of this chapter is organized as follows: Section 9.2 presents the expla-

nation and the formulation of the Very Large Utility-scale Wind Farm. In Section 9.5, the

COSMOS framework is applied to select the best surrogate model to quantify the average

energy production of the very large 500-turbine wind farms. In Sectio 9.6, the AMR ap-

proach is used to maximize to maximize the average annual energy production of the farm

through layout optimization. The chapter summary is provided in Section 9.7.

186
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9.2 A Very Large Utility-scale Wind Farm

Wind farm layout optimization (WFLO) is the process of optimizing the location of

turbines in a wind farm site, with the possible objective of maximizing the energy produc-

tion or minimizing the average cost of energy. Conventional WFLO methods not only limit

themselves to prescribing the site boundaries, they are also generally applicable to design-

ing only small-to-medium scale wind farms (<100 turbines). Large-scale wind farms entail

greater wake-induced turbine interactions, thereby increasing the computational complexity

and expense by orders of magnitude. In this chapter, we further advance the Unrestricted

WFLO framework by designing the layout of large-scale wind farms with 500 turbines (where

energy production is maximized). First, the high-dimensional layout optimization problem

(involving 2N variables for a N turbine wind farm) is reduced to a 6-variable problem through

a novel mapping strategy, which allows for both global siting (overall land configuration) and

local exploration (turbine micrositing). Secondly, a surrogate model is used to substitute

the expensive analytical WF energy production model; the high computational expense of

the latter is attributed to the factorial increase in the number of calls to the wake model for

evaluating every candidate wind farm layout that involves a large number of turbines. The

powerful Concurrent Surrogate Model Selection (COSMOS) framework (from Chapter 5) is

applied to identify the best surrogate model to represent the wind farm energy production

as a function of the reduced variable vector. To accomplish a reliable optimum solution,

the surrogate-based optimization (SBO) is performed by implementing the Adaptive Model

Refinement (AMR) technique within Particle Swarm Optimization (PSO) (developed in

Chapter 7). In AMR, both local exploitation and global exploration aspects are considered

within a single optimization run of PSO, unlike other SBO methods that often either require

multiple (potentially misleading) optimizations or are model-dependent. By using the AMR
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approach in conjunction with PSO and COSMOS, the computational cost of designing very

large wind farms is reduced by a remarkable factor of 26, while preserving the reliability

of this WFLO within 0.05% of the WFLO performed using the original energy production

model.

9.3 Mapping of the Layout for a Large Scale Wind Farm

In this section, we present a mapping approach to quantify the layout of a very large

wind farm using six mapping factors:

(i) the maximum allowable streamwise and spanwise spacings between neighboring tur-

bines (smax and rmax),

(ii) the average spacings of rows and columns (dr and dc),

(iii) the normalized local radial displacement,

(iv) the turbine rotor diameter (D),

(v) the number of turbines (Nturb),

(vi) the farm site orientation (φ), and

(vii) the maximum number of rows and/or the maximum side length of the wind farm.

he maximum allowable streamwise and spanwise spacings between neighboring turbines

are determined based on the size of turbine rotor diameter. the average spacings of rows and
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columns are variable for difference rows and columns, and given by

dr = (rmax − rmin)×
{
Aπ

j

Nrow
− ⌊1

2
+ (Aπ

j

Nrow
)⌋ + 1

}
+ rmin

dc = (smax − smin)×
{
Bπ

i

Ncolumn

− ⌊1
2
+ (Bπ

i

Ncolumn

)⌋+ 1
}
+ smin

(9.1)

where smin and rmin are the minimum streamwise and spanwise, respectively; A and B are

design factors in mapping function; i and j are respectively the row and column indexes; Nrow

and Ncolumn are number of rows and column, respectively. By this definition, non-uniform

spacings between rows and columns are allowed.

In this section, the normalized local radial displacement is expressed as the Gaussian

distribution with zero mean (µ = 0) and the variable standard deviation (σ) [133]. The

actual radial displacement is obtained by multiplying the minimum streamwise/spanwise

between turbines. This allows the turbines not to be restricted to be in the grid form. The

side length of the wind farm can provided based on the average land usage of US commercial

wind farms. Therefore, the coordinates of the turbine at the I th row and the J th column are

given by

XI =
J∑

j=1

[
(rmax − rmin)× {Aπ j

Nrow

− ⌊1
2
+ (Aπ

j

Nrow

)⌋+ 1}+ rmin

]
+ rminr̂(0, σ)

YJ =

I∑

i=1

[
(smax − smin)× {Bπ i

Ncolumn
− ⌊1

2
+ (Bπ

i

Ncolumn
)⌋+ 1}+ smin

]
+ sminr̂(0, σ)

(9.2)

The upper and lower bounds of the mapping design factors are listed in Table9.1.

Figure 9.2 shows the input design factors and output of the layout mapping, provided in this

chapter.
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Table 9.1: Upper and lower bounds of mapping design factors

Design factors Lower bound Upper bound

rmax 5D 15D
smax 5D 15D
A −20 20
B −20 20
σ 0 1

Mapping 

Wind Farm Layout
Wind Farm Layout

(X,Y)

rmax

smax

A
B
σ

φ

Input:
Output:

Figure 9.2: Input and output structure of the Wind Farm Layout Mapping

9.4 Energy Production Model

In this section, first, the wind farm power generation model is adopted from the Unre-

stricted Wind Farm Layout Optimization (UWFLO) framework [134] to estimate the total

power extracted by a wind farm. This power generation model quantifies the wind farm

power output as a function of the turbine features, the location of turbines, and the incom-

ing wind conditions [134]. A generalized power curve is used to evaluate the power output

of each turbine. This generalized power curve is scaled back to represent the approximated

power response of a particular commercial turbine, using the corresponding manufacturer

specifications. For Turbine-i, the power generation, Pi, can be evaluated using the following

equations:

Pi

Pr
=





Pn

(
Ui−Uin

Ur−Uin

)
, if Uin < Ui < Ur

1, if Ur < Ui < Uout

0, if Uout < Ui or Ui < Uin

(9.3)
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where Ui is the velocity immediately in front of Turbine-i. Estimation of Ui accounts for

wake merging scenarios and the possibility of partial wake-rotor overlap. Uin, Uout, and

Ur are respectively the turbine cut-in, cut-out, and rated speeds, reported by the turbine

manufacturer. The function Pn represents a polynomial fit for the generalized power curve,

generated using the power curve data reported for the “GE 1.5 MW xle” turbine [135].

This power generation model also allows for a variable induction factor. According to

the 1-D flow assumption [136], the induction factor a and the power coefficient, CP , can be

related by

CP = 4a(1− a)2 (9.4)

where the power coefficient itself can be expressed as a function of incoming wind speed and

turbine characteristics, as given by

CP =
Pi

P0
=

Pi

1
8
ρπD2

iU
3
∞

(9.5)

In Eq.(9.5), P0 represents the power available from the wind; and U∞ is the incoming

wind speed at the hub height.

Subsequent solution of the non-linear equation, Eq.(9.4), gives the induction factor for

each turbine based on the estimated approaching wind conditions. Thereafter, the overall

power output of a N -turbine wind farm, Pfarm, can then be given by

Pfarm =
N∑

i=1

Pi (9.6)

The wake effects are integrated in this model, particularly in the process of determining

the effective wind speed immediately in front of any turbine (Ui). Given the predicted wake
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growth, the location of turbines, and the turbine features, an influence matrix is created to

determine whether a turbine is influenced by the wake of other upstream turbines for a given

wind direction. As a result, the velocity immediately in front of each turbine is dynamically

evaluated using a wake model, and in the same order in which the turbines encounter the

wind coming from a particular direction. The Katic model [137] is used here to account for

the wake merging and partial wake-rotor overlap. If Turbine-i is in the influence of multiple

wakes created by K upstream turbines, the corresponding velocity deficit, vi, is given by

vi =

√√√√
K∑

k=1

Aki

Ai
(ukif )

2
(9.7)

where ukif represents the velocity deficit in the wake (created by Turbine-k) at the location

of Turbine-i; and Aki is the effective influence area of the wake (created by Turbine-k) on

Turbine-i. If Turbine-i is completely in the wake of Turbine-k, Aki = Ai; otherwise, Aki

denotes the overlapping area between the wake of Turbine-k and Turbine-i, estimated by

standard geometrical intersection formula.

The wake model used in this section is adopted from Frandsen et al. [138] . In this

model, the growth of the wake at a distance s behind any Turbine-j and the velocity deficit

are respectively formulated as

Dwake,j = D (β + αs)1/2 (9.8)

and

uf =
U∞

2

(
1±

√
1− 2

A

Awake

CT

)
(9.9)
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where α defines the initial wake speed deficit that must be determined experimentally; CT is

the turbine thrust coefficient; Awake is the effective influence area of the wake with respect

to the wake width at the current location; and the wake expansion parameter β is given by

β =
1 +

√
1− CT

2
√
1− CT

=

(
Deff

D

)2

, s = x/D (9.10)

For the “±” sign in Eq.(9.9), the “+” applies to cases in which the induction factor

a ≤ 0.5; while the “−” applies to a > 0.5. It is also noted that the Eq.(9.10) uses an effective

rotor diameter, Deff , to account for the near wake approximation, which is given by

Deff = D

√
1 +

√
1− CT

2
√
1− CT

(9.11)

Next, the annual energy production (AEP) is estimated by integrating the power gen-

eration function over the estimated annual wind distribution. Assuming the farm operates

365× 24 hours), the annual energy production can be approximate by

Efarm = 365×
np∑

i=1

Pfarm(U
i, θ)) p(U i, θi)× (

Umax × 360

np

) (9.12)

where np is the number of segmentation (in numerical integration); U i and θi represent the

speed and the direction of the ith segment in incoming wind condition. In this section, the

probability of wind speed and direction p(U i, θi), is estimated by Multivariate and Multi-

modela Wind Distribution (MMWD) model. This model uses a KDE joint distribution to

represent multimodal distributed wind data. Using AEP estimated in Eq.9.12, the average

annual energy production can be expressed as
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Ēfarm =
Efarm

365× 24
. (9.13)

Figure 9.3 shows the input and output structure of the average annual energy produc-

tion model.

Mod

Turbine features
Layout (X,Y )
Wind conditions
Fram site orientation φ

Output:Input:
Ēfarm

Figure 9.3: Input and output structure of the average annual energy production
model

Below are other assumptions applied to the numerical experiments:

1. The GE-1.5MW-XLE turbine is chosen as the specified turbine-type in this problem.

The features of this turbine are listed in Table 9.2.

Table 9.2: Features of the GE-1.5MW-XLE turbine [135]

Turbine feature Value
Rated power (Pr0) 1.5MW
Rated wind speed (Ur0) 11.5m/s
Cut-in wind speed (Uin0) 3.5m/s
Cut-out wind speed (Uout0) 20.0m/s
Rotor-diameter (D) 82.5m
Hub-height (H) 80.0m

2. The minimum streamwise (smin) and spanwise (rmin) are set to the same value: 4D;

and

3. The wind data this problem is obtained from the North Dakota Agricultural Weather

Network (NDAWN). The local wind distribution is shown in Fig. 9.5, and the onshore
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wind farm scenario is assumed, and the ambient turbulence (10%) is constant over the

entire farm site.

The wind data used in this problem is obtained from the North Dakota Agricultural

Weather Network (NDAWN) [118]. We use the daily averaged data for wind speed and

direction, measured at the Baker station between the years 2000 and 2009. Fig. 9.4

shows the Baker station, and further details are provided in Table 9.3.

Figure 9.4: Baker station setup [118]

Table 9.3: Details of the NDAWN station at Baker, ND [118]

Parameter Value
Location Baker, ND
Period of Record 01/01/2000 to 12/31/2009
Latitude 48.167
Longitude -99.648
Elevation 512m
Measurement height 3m

The wind speed data is recorded at a height of 3m. To determine the wind speed at

the pertinent heights, the log-profile is used. For a recorded wind speed Um at a height

zm, the log profile can be expressed as

U

Um
=

ln z
z0

ln zm
z0

(9.14)
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where z0 is the average roughness length in the farm region, and U is the wind speed at

a height z. The estimated annual distribution of wind speed and direction is illustrated

by a Windrose diagram in Fig. 9.5. In the Windrose diagram, each of the sixteen sectors

represent the respective probability of wind blowing from that direction.

Figure 9.5: Wind rose diagram for the site at Baker

9.5 Surrogate Model Selection using COSMOS

In this section the Concurrent Surrogate Model Selection (COSMOS) framework (de-

veloped in Chapter 5) is applied to select the best surrogate model to represent the average

annual energy production of a large-scale wind farm as a function of the mapping factors

illustrated in Table 9.1 and the farm site orientation (φ). The input and output structure of

the surrogate models is illustrated in Fig.9.6. In this problem, the number of sample points

for training the surrogate models considered in the COSMOS framework is N({X}) = 200.

To implement the PEMF in the COSMOS, the number of training points at each iteration

is determined by
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nr =
(
r − (N itr + 1)

)
× ⌈ℓ×Ns⌉ (9.15)

where ℓ and N itr are the normalized incremental value and the number of iteration. Theses

parameters are pre-specified to ℓ = 0.1 and N itr = 4.

COSMOS Framework

Training data set

Pool of 

Surrogate and Kernel 

Candidates

Best  

Surrogate Model

rmax

smax

A

B

σ

φ

Input: Output:
Ēfarm

Figure 9.6: Model selection for the average annual energy production of a large-
scale wind farm

The different forms of the kernel/basis/correlation functions currently considered in

COSMOS are given in Chapter 5. COSMOS offers five different criteria for selection of

optimal surrogates. Any combination of these criteria can be chosen by the user. In the

current implementation, three of the most practically pertinent pairwise combinations are

selected, as listed below:

TEST I: (i) minimize the modal value of the median error Emo
med , and (ii) minimize the

modal value of the maximum error Emo
max;

TEST II: (i) minimize the modal value of the median error Emo
med , and (ii) minimize the

standard deviation of the median error Eσ2

med;
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TEST III: (i) minimize the modal value of the median error Emo
med , and (ii) minimize

the expected modal value of the median error at 20% more number of sample points

Emo
med,α, α = 0.2;

9.5.1 Results and Discussion

The surrogate models in the Pareto Optimal set for the average annual energy pro-

duction of a large-scale wind farm under Test I, Test II, and Test III are listed in Table

9.4.

Table 9.4: The set of Pareto Surrogate Models given by COSMOS for the wind
farm problem

TEST Pareto Surrogate Model

Test I: min[Emo
med, E

mo
max] Kriging-Linear, SVR-Sigmoid

Test II: min[Emo
med, E

σ
med] Kriging-Linear, Kriging-Exponential, SVR-Sigmoid

Test III: min[Emo
med, E

mo
med,α] SVR-Sigmoid

The final optimal solutions, including the best trade-offs between the median and the

maximum errors (in the Φ0, Φ1, and Φ2 classes) for this problem is illustrated in Fig. 9.7.

Each sub-figure shows the results from a particular test for the wind farm problem. In

each of these figures, the ’O’, the ’X’, and the ’+’ symbols respectively represent the Pareto

solutions of model selection under Φ0, Φ1, and Φ2 classes (i.e., different hyper-parameter

classes). The final Pareto optimal solutions in these figures are encircled by square symbols,

and are derived by applying a Pareto Filter.

In this problem, the selected surrogate model will be used as an initial model in the

surrogate-based optimization process. In the surrogate-based optimization process, the fi-

delity of surrogate model iteratively should be improved by adding infill points in the op-

timization process. Therefore, Kriging model with Linear correlation function could be the
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Figure 9.7: Pareto models and final population of models from all Φ classes

best choice. The SVR model with the Sigmoid kernel function is not selected because of the

the high variance error of this model.

9.6 Variable Fidelity Optimization using AMR

In this section, the Adaptive Model Refinement (AMR) approach (developed in Chap-

ter 7) is applied to a wind farm layout design problem. The objective is to maximize the

average annual energy production of the farm through layout optimization. In this problem,

the farm layout optimization is started using the best surrogate model selected in Sec. 9.5

(Kriging model with Linear correlation function). To reach a reliable optimum solution, a



200

refinement of the surrogate is then performed by sequentially adding batches of new samples

using the Adaptive Model refinement approach.

max
V

: f = Ēfarm

V = {v1, v2, . . . , v6}

subject to

g1(v) ≤ 0

g2(v) ≤ 0

V Lower ≤ vi ≤ V Upper

The upper and lower bounds of design variables (vi = 1, 2, ..., 6) are listed in Table 9.5.

These variables include the mapping factors (that defines the coordinates of the wind turbines

in the farm), and the farm site orientation (φ). In Eq. 9.16, g1(v)= ‖AMW − 45(hectare/MW )‖

is the land area constraints. This constraint is defined based on the average land usage of

US commercial wind farms in 2009. In this equation, g2(v) =
∑N=500

i,j=1,i 6=jmax{[4D − dij]} is the

minimum inter-turbine spacing constraints.

Table 9.5: Upper and lower bounds of design variables

Design variables Lower bound Upper bound Baseline

rmax 5D 15D 10D
smax 5D 15D 10D
A −20 20 0.1
B −20 20 0.1
σ 0 1 0
φ 0 90 0

Table 9.5 also contains a baseline set of values, roughly representative of a layout.
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These baseline values and the upper and lower bounds were used to generate a filled contour

plot of the average annual energy production (see Figure 9.8) by varying the inputs pairwise

and keeping the remaining variables at the baseline value.
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Figure 9.8: Wind farm problem: Each tile shows a contour of the wind farm
average annual energy production versus two of the six mapping
factors (variables), with the remaining four variables held at the
baseline value

As expected, in this problem, it is observed from Fig. 9.8 that all the design variables

are active and they are involved in interactions with other variables. It is also observed that

smax and ramx are clearly very active in power energy of the wind farm.

9.6.1 Results and Discussion

In this problem, the AMR metric is applied at every iteration δ = 1, the Indicator of

Conservativeness (IoC) is pre-specified to pcr = 0.3. The IoC regulates the trade-off between

optimal solution reliability and computational cost in SBO. Generally, the higher the IoC

(closer to 1), the higher the solution reliability and the greater the computational cost; under

these conditions, model switching events will occur early on in the optimization process The
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population size of PSO is pre-specified to Npop = 300, and the PSO algorithm converges

by satisfying the predefined function tolerance, δf = 1e − 6. In this problem the model

refinement will be implemented if the current size of data set is less than N({X}) = 500 In this

optimization problem, the initial population of particles is generated using the Kriging model

with Linear correlation function. The AMR approach adaptively improve the fidelity of the

surrogate model ten times during the optimization process (over a total of 110 iterations),

resulting in an optimum design with a reasonable level of fidelity.

Figure 4.19 represents the improvement of the model fidelity for the wind farm prob-

lem through the sequential model refinement process using the AMR method. This figure

illustrates that the error decreases with sequential addition of batches of infill points in SBO,

thus showing that the batch size of the infill points and the location of these points deter-

mined by the AMR method resulted in lower surrogate model error in the refined (updated)

surrogate model. It should also be noted that the novel use of the modal value in the PEMF

method (developed in Chapter 3), promotes a decrease of the error measure with infill points,

as opposed to the untraceable noisy variation that is often characteristic of mean or RMS

error measures [121].

The convergence history of the optimization problem is illustrated in Fig. 9.10. These

figures also indicate: (i) the active surrogate model at each iteration (using different col-

ors), (ii) the size of data set (N({X}) = NCurrent({X}) + ΓInfill) used to refine (update) the active

surrogate model in the AMR approach, and (iii) the iteration that the model refinement is

performed (the AMR metric is met). It is observed that, from the first iteration till the

8th iteration the initial surrogate model with N({X}) = 200 is active, before refining the model

using additional 19 sample data through the AMR approach. The final switching event, from

the surrogate model constructed using N({X}) = 496 training points to the surrogate model
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Figure 9.9: The improvement of the surrogate model fidelity through sequential
model refinement process with AMR

constructed using N({X}) = 513, occurs at the 96th iteration. The optimization progresses using

the surrogate model constructed using N({X}) = 513 training points for another 14 iterations

before reaching convergence. In this case, the algorithm converges by satisfying the prede-

fined function tolerance, δf = 1e− 6.
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Figure 9.10: Convergence history of the surrogate-based optimization using
AMR

Next, we investigate how the AMR method performs better than simply using the

single stage sampling strategy for SBO. The result yielded by the AMR method are therefore

compared with the results yielded by running MDPSO using the surrogate model constructed

in the one-step method (using all 500 sample points). The optimum results are thus obtained,
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and the total number of function evaluations in each case are reported in Table 9.6. The final

column of this table shows the actual function estimate for the optimum design obtained

under each optimization run. It is observed that the PSO-AMR not only requires 26 times less

computing time compared to PSO-HF, it also provides the optimum value that is 14.9 MWh

better that simply using the single stage sampling strategy for SBO. It is also observed that,

in the PSO-AMR approach, the optimum is located in the region where the SM model has

0.63% error.

Table 9.6: Optimization results using different optimization approaches

Approach
v∗1 v∗2 v∗3 v∗4 v∗5 v∗6

Optimum Model in No. of HF response
AMWfunction Ēfarm last HF function at optimum

× D × D (degree) (f ∗ × 108) iteration evaluations (f
HF

(v∗)× 108)

PSO-SM 14.03 13.40 15.68 4.72 0.05 70.73 2.3013 SM 500 2.1248 29.7085
PSO-HF 13.70 13.54 16.27 4.92 0.08 69.69 2.2760 HF 300× 45 2.2760 43.80
PSO-AMR 12.65 12.57 9.99 -2.53 0.03 72.17 2.2892 SM 513 2.2748 44.74

PSO-SM: optimization performed by MDPSO solely using the surrogate model with all 500 sample points
PSO-HF: optimization performed by MDPSO solely using the high fidelity model
PSO-AMR: optimization performed by MDPSO using AMR approach (surrogate-based optimization using AMR)

Figure 9.11 presents an illustration of the optimal layout. It can be observed that

the spacing between rows and columns is nonuniform. It is also observed that there is

a relatively higher degree of freedom in location of turbines, owing to the allowed radial

displacement. The number of rows and column, and the land are per MW installed (LAMI)

are also illustrated in this figure.

9.7 Chapter Summary

This chapter presented a new approach for layout optimization of very large scale wind

farms based on the methods developed in Chapters 5, 6, and 7 of this dissertation . A

mapping of the wind farm layout to the detailed turbine coordinates was created, allowing

the wind farm layout to be represented by a set of 6 parameters. As a result, the design

variable space for optimizing the layout of a large scale wind farm is significantly reduced.
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Land Area per MW Installed (LAMI) = 44.74
Number of Rows = 25
Number of Columns = 20
φ = 72.17

Figure 9.11: Illustration of the optimized wind farm layout

The COSMOS framework was then applied to select the globally-best surrogate model to

represent the energy production of the wind farm as a function of the reduced set of lay-

out variables. Surrogate-based optimization was then preformed using the Adaptive Model

Refinement approach, implemented through Particle Swarm Optimization. The objective

of wind farm layout optimization was to maximize the average annual energy production

of a 500-turbine wind farm. The results indicated that AMR along with Mixed Discrete

PSO improved the efficiency of the optimization process by a factor of 26 when compared

to optimization using the standard energy production model, while retaining an accuracy of

within 0.05% of the latter.
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Concluding Remarks and Future Work

What are the important contributions of this dissertation? Is there potential

for future improvement?

Part IV: 
Conclusions 

REFERE

CHAPTER 9 

PEMF-derived to Complex Practical Prob. 

CHAPTER 10 

Concluding Remarks and Future Work 

Figure 10.1: Chapter 10 orientation

In this chapter, we conclude with the observations made from the research performed to

date. In addition, we also present an overview of potential improvements to the algorithms

and methods developed.

10.1 Summary of Contributions in the Dissertation

Below is a summary of the important contributions of this dissertation:

1. Reliable ‘model-independent’ methodology for quantifying the fidelity of

the ‘actual surrogate’:

207
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In this dissertation, a model-independent methodology for quantifying the fidelity of

the ‘actual surrogate’ without requiring additional system evaluations was developed.

The developed error measurement, Predictive Estimation of Model Fidelity (PEMF), is

derived from the hypothesis that the accuracy of approximation models is related to the

amount of data resources leveraged to train the model. The PEMF method quantifies

the level of surrogate fidelity in any given region of the design domain, which can then

be applied for informed decision-making based on the surrogates. The smart use of

the modal value in this error measure makes it significantly less susceptible to outliers

and the Design of Experiments. This new paradigm in surrogate modeling was shown

to be highly reliable and robust in comparison to cross-validation (which is still the

current paradigm).

2. Tracking the variation of the surrogate model error with an increasing den-

sity of training points:

We proposed a novel method which provides maximum pertinent information regarding

the behavior of the model in comparison to the current paradigm. The PEMF method

does this by tracking the trend exhibited by the error with an increasing number

of sample points (or tracking the progress in model fidelity as additional knowledge

becomes available) irrespective of the model type. We also proposed a criterion, called

Monotonic Trend Criterion (MTC), to statistically test the feasibility of the monotonic

decrease of the model fidelity with increasing sample density in any given region.

3. A new model selection framework to identify the globally-competitive sur-

rogate model:
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In this dissertation, a new model selection framework for identifying the best sur-

rogate model (or set of models) from a diverse pool of candidates was developed.

This framework, called Concurrent Surrogate Model Selection (COSMOS), selects the

globally-optimal surrogates by simultaneously operating at the following three levels:

(i) selecting the optimal model type, (ii) selecting the optimal kernel/basis function

type, and (iii) finding the optimum values of the hyper-parameters in the kernel.

4. Flexibility in using different criteria in surrogate model selection:

The model selection framework proposed in this dissertation, COSMOS, gives users the

unique flexibility to use different criteria for model selection. These criteria include:

(i) the (predicted) most probable values of the median error and the maximum error

in the surrogate which stochastically account for the sensitivity of the surrogate

accuracy to the choice (number and location) of training points;

(ii) the variance in the median and the maximum error of the surrogate model (which

reflect the robustness of the surrogate model); and

(iii) the (expected) most probable value of the median error on a hypothetically-larger

sample set.

5. Variable fidelity optimization using Adaptive Model Switching

In this dissertation, we developed a novel model management technique to be imple-

mented in population-based optimization algorithms to provide high fidelity optimal
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designs at reasonable computational expense. This model management technique,

called the Adaptive Model Switching Metric (AMS), is perceived as a decision-making

tool for the timing of model-switching or model integration during the optimization

process using models with different levels of fidelity. This criterion is defined based on

“whether the uncertainty associated with a model response is higher than the observed

improvement in the relative fitness function of the population”. The AMS criterion

along with Mixed Discrete PSO improved the efficiency of the optimization process

significantly.

6. Surrogate-based optimization using Adaptive Model Refinement

In this dissertation, we developed a new model-independent surrogate-based optimiza-

tion (SBO) approach to be used in population-based optimization algorithms. The

proposed method, called Adaptive Model Refinement (AMR), is designed to refine the

surrogate model by sequentially adding a batch of new samples at any given iteration

of SBO when a switching metric is met. In this approach, the Adaptive Model Switch-

ing (AMS) metric and Predictive Estimation of Model Fidelity (with some important

advancements) are used to determine the timing of model refinement and the batch

size for the samples to be added, respectively.

10.2 Limitations and Future Work

Throughout the dissertation, we have mentioned a number of issues that should be

investigated in the future. In this section,we further elaborate on potential future research.
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10.2.1 Predictive Estimation of Model Fidelity (PEMF)

In Chapter 3 of this dissertation, we developed the PEMF method for quantifying the

fidelity of the surrogate model. It can be said about any ongoing research that there will

always remain certain aspects that need further investigation and careful handling. The

same is true about the developmental work presented in this document. Below, we identify

some aspects of the PEMF approach that need further development.

(i) In the PEMF method, there are two factors that need to be chosen carefully: (i) the

number of iterations and (ii) the initial ratio of the numbers of intermediate training

points to test points. Chapter 3 provided some preliminary guidelines regarding the

choice of appropriate values for these factors. Future research efforts could consider

dynamically setting these factors during the surrogate model construction, and adap-

tively determine these two factors as functions of the dimension and the strength of

the sample data.

(ii) In this dissertation, we introduced a novel concept for quantifying the level of surrogate

errors in any given region of the design domain. There remains an opportunity to

develop strategies for choosing the appropriate sample size (or the boundaries of the

region) in which the Predictive Estimation of Model Fidelity (PEMF) is feasible.

10.2.2 Concurrent Surrogate Model Selection (COSMOS)

In Chapter 5 of this dissertation, we developed the COSMOS framework to search for

a globally-competitive surrogate model. However, some aspects of the COSMOS framework

still need further development as discussed below.

(i) In this dissertation, the COSMOS framework was used to select the best surrogate
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model for the entire design domain. Future research efforts could consider determining

the best-suited surrogate models for different regions of the design domain.

(ii) The COSMOS framework was implemented to select the best models among surrogate

models, which were constructed using uniform sample points. Future research should

pursue testing of COSMOS on nonuniform sample sets (e.g., samples following specified

probability distributions).

(iii) Future work may also include implementing the COSMOS framework for network

weights estimation in Artificial Neural Network (ANN). Hyper-parameter optimization

in the COSMOS framework could avoid the over-fitting issue (due to the sum-squared

error) in ANN. Apart from providing the best value for the network weights, the pre-

dictive ability of ANN models can be readily compared with that of other models

(regression and interpolation models e.g., Kriging) using COSMOS, where ANN will

serve as a member of the pool of candidate models available for selection.

10.2.3 Variable Fidelity Optimization

In Chapters 6 and 7 of this dissertation, we developed two metrics for variable fidelity

optimization and surrogate-based optimization. These two metrics facilitate the applicability

of population-based heuristic optimization algorithms in practical complex system design.

Below we present some aspects of these metrics that need further development.

(i) In this dissertation, the proposed model management and surrogate-based design op-

timization approaches are design for single-objective population-based heuristic opti-

mization algorithms. However, complex design problems are almost always character-

ized by the presence of multiple objectives. In the future, modified versions of these
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metrics for multi-objective population-based heuristic optimization algorithms should

be developed.

(ii) In the developed model switching metric in this dissertation, the critical probability

(or Indicator of Conservativeness) that regulates the trade-off between optimal solution

reliability and the total computational cost of the optimization process, is predefined by

the user (based on prior experience or practical design requirements). A more intuitive

definition of the Indicator of Conservativeness as a function of a system complexity,

computational resources, and a desired robustness would further establish the wide

potential of these metrics for optimizing complex practical systems.

(iii) Future research efforts should seek to consider the possibility of switching back to the

lower fidelity model in the variable fidelity optimization using the developed Adaptive

Model Switching metric, for the sake of computational efficiency. In this scenario, a

backward switching event (switching to a lower fidelity model) will be allowed if the

averaged quantile value of the distribution of the fitness function improvement in κ sub-

sequent iterations (
∑κ

t=1 Q
t
θ

κ
) is more than that of the prior model uncertainty (QPi−1

) in

the variable fidelity optimization process. Such scenarios are not uncommon in heuris-

tic and stochastic optimization processes, where the slope of the objective function

convergence can both increase and decrease dramatically at an iteration. However,

allowing backward switching can change the ranking among the candidate solutions in

the population, thereby running the risk of leading the population astray in search of

optimum. Careful investigation is thus needed to consider the trade-offs between the

risk and gain (in computational efficiency) that backward switching is associated with.

(iv) Physics-based models are fundamentally constructed based on physical understand-
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ing of the real systems (unlike surrogate models). In these models, input parameters

(e.g., dimension and material property) have their own physical meaning and are often

determined experimentally. Therefore, future research in the AMS metric should also

pursue implementing a method (e.g., Bayesian Model Averaging) to quantify model un-

certainty associated with the physics-based model while considering a prior uncertainty

in input parameters.

10.2.4 Conservative surrogate model

In future research, the global and regional maximum error estimated using PEMF

can be used to construct a more reliable conservative surrogate model. This model can be

used to conservatively approximate the response of the complex system in reliability-based

optimization, and assure the obtained optimum/optima satisfy the design constraints and

criteria.

10.2.5 Hybrid surrogate model

In future research, the regional error estimated using PEMF can be used to appro-

priately combines the favorable attributes of characteristically different surrogate modeling

methods, and construct a more accurate hybrid surrogate model.

10.2.6 Large-scale applications

(i) Future research should also consider the implementation of the PEMF-based approaches

(which have been developed in this dissertation) to solve complex large-scale problems

in different engineering disciplines, such as computational fluid dynamics and vehicle

crash simulations.
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(ii) In large-scale complex system optimization problems (e.g., aerodynamics shape opti-

mization of helicopter rotor blades), the selection of the highest fidelity model from

two or more available Physics-based simulation models (e.g., LES, DNS, and RANS) is

generally challenging. To solve these challenging problems, the uncertainty in the out-

put of different models can be defined as the variation in the output given by different

alternatives for the same model, where the alternatives are in the same class of compu-

tational expense and fidelity. Future research efforts should consider this uncertainty

in informed modeling (such as the Adaptive Model Switching metric, the COSMOS

framework, and the Adaptive Model Refinement approach). This future work is nec-

essary to enhance the applicability of the developed methods and frameworks in this

dissertation.

We do not claim the developed methods to be entirely perfect; indeed, we have identified

potential areas of further improvement and some possible limitations. However, even in

their present form, the methods developed in this dissertation can lead to better decisions

and ultimately better systems through the power of surrogate modeling and optimization.
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Gambit and Fluent Journal Files: 2D airfoil design problem
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/ Journal F i l e f o r GAMBIT 2 . 3 . 1 6 , Database 2 . 3 . 1 4 , lnx86 SP2006033020

/ I d e n t i f i e r ” a i r f o i l ”

/ F i l e opened f o r wr i t e Tue Jun 5 15 :13 : 17 2014 .

s o l v e r s e l e c t ”FLUENT 5/6”

import iceminput ” v e r t i c e s 1 . dat ” \

ver tex edge

import iceminput ” v e r t i c e s 2 . dat ” \

ver tex edge

edge s p l i t ” edge . 1” pe r c enta r c l eng th 0 .3 connected

edge s p l i t ” edge . 2” pe r c enta r c l eng th 0 .3 connected
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edge c r e a t e ”FH” s t r a i g h t ” ver tex . 1” ”F”
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edge modify ”GC” backward
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edge modify ”EG” backward
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edge mesh ”EG” s u c c e s s i v e r a t i o 1 1 .15 i n t e r v a l s 40
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edge p i c k l i n k ”CD”

edge mesh ”CD” s u c c e s s i v e r a t i o 1 1 .15 i n t e r v a l s 40

edge modify ”DE” backward

edge p i c k l i n k ”DE”

edge mesh ”DE” f i r s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 40

ver tex summarize

edge p i c k l i n k ”edge . 1”

edge mesh ” edge . 1” l a s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 40

edge p i c k l i n k ”edge . 2”

edge mesh ” edge . 2” l a s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 40

edge p i c k l i n k ”edge . 3”

edge mesh ” edge . 3” f i r s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 40

edge p i c k l i n k ”edge . 4”

edge mesh ” edge . 4” f i r s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 40

edge p i c k l i n k ”AF”

edge mesh ”AF” f i r s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 80

edge p i c k l i n k ”EF”

edge mesh ”EF” f i r s t l e n g t h r a t i o 1 0 .02 i n t e r v a l s 80

edge p i c k l i n k ”FH”

edge mesh ”FH” s u c c e s s i v e r a t i o 1 1 .15 i n t e r v a l s 40

f a c e mesh ”ABCG” ”GCDE” ”AFHIG” ”EFHJG” map s i z e 1

group c r e a t e ” f a r f i e l d 1 ” edge ”AF” ”EF”

group c r e a t e ” f a r f i e l d 2 ” edge ”AB” ”DE”

group c r e a t e ” f a r f i e l d 3 ” edge ”BC” ”CD”

group c r e a t e ” A i r f o i l ” edge ”edge . 1” ”edge . 2” ”edge . 3” ”edge . 4”

phys i c s c r e a t e ” A i r f o i l ” btype ”WALL” group ” A i r f o i l ”

phys i c s c r e a t e btype ”PRESSURE FAR FIELD” group ” f a r f i e l d 1 ”

phys i c s c r e a t e btype ”PRESSURE FAR FIELD” group ” f a r f i e l d 2 ”
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phys i c s c r e a t e btype ”PRESSURE FAR FIELD” group ” f a r f i e l d 3 ”

export f l u en t 5 \

”Air fo i lGam to Fluent .msh” \

nozval

Fluent.jou

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ReadSubMenu∗Case . . . ” )

( cx−gui−do cx−se t−text−entry ” Se l e c t F i l e ∗Text” ”Air fo i lGam to Fluent .msh”)

( cx−gui−do cx−ac t i va te−item ” Se l e c t F i l e ∗OK”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗FileMenu ∗Batch Options . . . ” )

( cx−gui−do cx−se t−togg le−button ”Batch Options∗Frame1 ( Options ) ∗Table1 ( Options )

∗CheckButton1 ( Confirm F i l e Overwr ite ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Batch Options∗Frame1 ( Options ) ∗Table1 ( Options ) ∗

CheckButton1 ( Confirm F i l e Overwr ite ) ”)

( cx−gui−do cx−se t−togg le−button ”Batch Options∗Frame1 ( Options ) ∗Table1 ( Options )

∗CheckButton1 ( Confirm F i l e Overwr ite ) ” #t )

( cx−gui−do cx−ac t i va te−item ”Batch Options∗Frame1 ( Options ) ∗Table1 ( Options ) ∗

CheckButton1 ( Confirm F i l e Overwr ite ) ”)

( cx−gui−do cx−ac t i va te−item ”Batch Options∗PanelButtons∗PushButton1(Apply ) ”)

( cx−gui−do cx−ac t i va te−item ”Batch Options∗PanelButtons∗PushButton1( Close ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ModelsSubMenu∗ So lve r . . . ” )

( cx−gui−do cx−ac t i va te−item ” So lve r ∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ModelsSubMenu∗Viscous . . . ” )

( cx−gui−do cx−se t−togg le−button ”Viscous Model∗Table1∗Frame1 (Model ) ∗ToggleBox1

(Model ) ∗Laminar” #t )

( cx−gui−do cx−ac t i va te−item ”Viscous Model∗Table1∗Frame1 (Model ) ∗ToggleBox1 (

Model ) ∗Laminar ”)
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( cx−gui−do cx−se t−togg le−button ”Viscous Model∗Table1∗Frame1 (Model ) ∗ToggleBox1

(Model ) ∗Reynolds S t r e s s ” #f )

( cx−gui−do cx−ac t i va te−item ”Viscous Model∗Table1∗Frame1 (Model ) ∗ToggleBox1 (

Model ) ∗Reynolds S t r e s s ”)

( cx−gui−do cx−ac t i va te−item ”Viscous Model∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ModelsSubMenu∗Energy . . . ” )

( cx−gui−do cx−ac t i va te−item ”Energy∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗DefineMenu∗Mate r i a l s . . . ” )

( cx−gui−do cx−ac t i va te−item ”Mate r i a l s ∗PanelButtons∗PushButton1( Close ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗DefineMenu∗Operating Condit ions . . . ” )

( cx−gui−do cx−ac t i va te−item ”Operating Condit ions∗PanelButtons∗PushButton1(OK)

”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗DefineMenu∗Boundary Condit ions . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 (

Zone ) ” ’ ( 3) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 ( Zone ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (

Type ) ” ’ ( 12) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (Type ) ”)

( cx−gui−do cx−ac t i va te−item ”Question ∗OK”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” v e l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ” ’ ( 0 ) )

( cx−gui−do cx−ac t i va te−item ” ve l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗Table1

∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” v e l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ” ve l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗Table1

∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ”)
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( cx−gui−do cx−se t−r ea l−entry− l i s t ” v e l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗Table6∗RealEntry2(X−Ve lo c i ty ) ” ’ ( VAR UX) )

( cx−gui−do cx−se t−r ea l−entry− l i s t ” v e l o c i t y−i n l e t −5−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗Table7∗RealEntry2(Y−Ve lo c i ty ) ” ’ ( VAR UY) )

( cx−gui−do cx−ac t i va te−item ” ve l o c i t y−i n l e t −5−1∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 (

Zone ) ” ’ ( 4) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 ( Zone ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (

Type ) ” ’ ( 12) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (Type ) ”)

( cx−gui−do cx−ac t i va te−item ”Question ∗OK”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” v e l o c i t y−i n l e t −4−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ” ve l o c i t y−i n l e t −4−1∗Frame4∗Frame1 (Momentum) ∗Table1

∗DropDownList2 ( Ve lo c i ty Sp e c i f i c a t i o n Method) ”)

( cx−gui−do cx−se t−r ea l−entry− l i s t ” v e l o c i t y−i n l e t −4−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗Table6∗RealEntry2(X−Ve lo c i ty ) ” ’ ( VAR UX) )

( cx−gui−do cx−se t−r ea l−entry− l i s t ” v e l o c i t y−i n l e t −4−1∗Frame4∗Frame1 (Momentum) ∗

Table1∗Table7∗RealEntry2(Y−Ve lo c i ty ) ” ’ ( VAR UY) )

( cx−gui−do cx−ac t i va te−item ” ve l o c i t y−i n l e t −4−1∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗PanelButtons∗PushButton1(

Cancel ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗DefineMenu∗Boundary Condit ions . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 (

Zone ) ” ’ ( 5) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame1∗Li s t1 ( Zone ) ”)
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( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (

Type ) ” ’ ( 10) )

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗Table1∗Frame2∗Li s t2 (Type ) ”)

( cx−gui−do cx−ac t i va te−item ”Question ∗OK”)

( cx−gui−do cx−ac t i va te−item ” pres sure−out l e t −3−1∗PanelButtons∗PushButton1(OK)

”)

( cx−gui−do cx−ac t i va te−item ”Boundary Condit ions∗PanelButtons∗PushButton1(

Cancel ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ControlsSubMenu∗ So lu t i on . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on Contro l s∗Table2∗Frame1 (

D i s c r e t i z a t i o n ) ∗Table1 ( D i s c r e t i z a t i o n ) ∗DropDownList1 ( Pres sure ) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on Contro l s∗Table2∗Frame1 ( D i s c r e t i z a t i o n ) ∗

Table1 ( D i s c r e t i z a t i o n ) ∗DropDownList1 ( Pres sure ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on Contro l s∗Table2∗Frame1 (

D i s c r e t i z a t i o n ) ∗Table1 ( D i s c r e t i z a t i o n ) ∗DropDownList2 (Momentum) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on Contro l s∗Table2∗Frame1 ( D i s c r e t i z a t i o n ) ∗

Table1 ( D i s c r e t i z a t i o n ) ∗DropDownList2 (Momentum) ”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on Contro l s∗PanelButtons∗PushButton1 (OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ In i t ia l i zeSubMenu ∗ I n i t i a l i z e . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on I n i t i a l i z a t i o n ∗DropDownList1 (

Compute From) ” ’ ( 2 ) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on I n i t i a l i z a t i o n ∗DropDownList1 (Compute

From) ”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on I n i t i a l i z a t i o n ∗PanelButtons∗PushButton1(

OK) ”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on I n i t i a l i z a t i o n ∗PanelButtons∗PushButton1(

Cancel ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗MonitorsSubMenu∗Res idua l . . . ” )
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( cx−gui−do cx−se t−r ea l−entry− l i s t ”Res idua l Monitors∗Frame2∗Table2∗RealEntry11

” ’ ( 1e−06) )

( cx−gui−do cx−se t−r ea l−entry− l i s t ”Res idua l Monitors∗Frame2∗Table2∗RealEntry17

” ’ ( 1e−06) )

( cx−gui−do cx−se t−r ea l−entry− l i s t ”Res idua l Monitors∗Frame2∗Table2∗RealEntry23

” ’ ( 1e−06) )

( cx−gui−do cx−se t−togg le−button ”Res idua l Monitors∗Table1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Res idua l Monitors∗Table1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ”)

( cx−gui−do cx−ac t i va te−item ”Res idua l Monitors∗PanelButtons∗PushButton1 (OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗MonitorsSubMenu∗Force . . . ” )

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton1 ( Pr int ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton1 ( Pr int ) ”)

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ”)

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton3 (Write ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton3 (Write ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Force Monitors∗Frame1∗Frame2∗Frame1∗Li s t1 (

Wall Zones ) ” ’ ( 0) )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame2∗Frame1∗Li s t1 (Wall

Zones ) ”)
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( cx−gui−do cx−se t−r ea l−entry− l i s t ”Force Monitors∗Frame1∗Frame3∗Frame1 ( Force

Vector ) ∗RealEntry1(X) ” ’ ( Angle X DRAG) )

( cx−gui−do cx−se t−r ea l−entry− l i s t ”Force Monitors∗Frame1∗Frame3∗Frame1 ( Force

Vector ) ∗RealEntry2(Y) ” ’ ( Angle Y DRAG) )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗PanelButtons∗PushButton1(Apply ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Force Monitors∗Frame1∗Frame1∗DropDownList2 (

Co e f f i c i e n t ) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗DropDownList2 (

Co e f f i c i e n t ) ”)

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton1 ( Pr int ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton1 ( Pr int ) ”)

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton2 ( Plot ) ”)

( cx−gui−do cx−se t−togg le−button ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton3 (Write ) ” #f )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame1∗Frame1 ( Options ) ∗

ToggleBox1 ( Options ) ∗CheckButton3 (Write ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Force Monitors∗Frame1∗Frame2∗Frame1∗Li s t1 (

Wall Zones ) ” ’ ( 0) )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗Frame1∗Frame2∗Frame1∗Li s t1 (Wall

Zones ) ”)

( cx−gui−do cx−se t−r ea l−entry− l i s t ”Force Monitors∗Frame1∗Frame3∗Frame1 ( Force

Vector ) ∗RealEntry1(X) ” ’ ( Angle X LIFT ) )
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( cx−gui−do cx−se t−r ea l−entry− l i s t ”Force Monitors∗Frame1∗Frame3∗Frame1 ( Force

Vector ) ∗RealEntry2(Y) ” ’ ( Angle Y LIFT ) )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗PanelButtons∗PushButton1(Apply ) ”)

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗PanelButtons∗PushButton1( Close ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗MonitorsSubMenu∗Force . . . ” )

( cx−gui−do cx−ac t i va te−item ”Force Monitors∗PanelButtons∗PushButton1( Close ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗ReportMenu∗Reference Values . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Reference Values∗DropDownList1 (Compute From

) ” ’ ( 3 ) )

( cx−gui−do cx−ac t i va te−item ”Reference Values∗DropDownList1 (Compute From) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ”Reference Values∗DropDownList3 ( Reference

Zone ) ” ’ ( 1 ) )

( cx−gui−do cx−ac t i va te−item ”Reference Values∗DropDownList3 ( Reference Zone ) ”)

( cx−gui−do cx−ac t i va te−item ”Reference Values∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗SolveMenu∗ I t e r a t e . . . ” )

( cx−gui−do cx−se t−i n t eg e r−entry ” I t e r a t e ∗Table1∗Frame2 ( I t e r a t i o n ) ∗Table2 (

I t e r a t i o n ) ∗ IntegerEntry1 (Number o f I t e r a t i o n s ) ” 1500)

( cx−gui−do cx−ac t i va te−item ” I t e r a t e ∗PanelButtons∗PushButton1(OK) ”)

( cx−use−window 2)

( cx−gui−do cx−ac t i va te−item ” I t e r a t e ∗PanelButtons∗PushButton1( Cancel ) ”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗PlotMenu∗XY Plot . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Table7∗DropDownList1 (Y

Axis Function ) ” ’ ( 0 ) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Table7∗DropDownList1 (Y Axis

Function ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Table7∗DropDownList2” ’ ( 3 )

)

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Table7∗DropDownList2 ”)
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( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ” ’ (

0 1) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ” ’ (

0) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−se t−text−entry ” Se l e c t F i l e ∗Fi l t e rTex t ” ”∗ . xy ”)

( cx−gui−do cx−ac t i va te−item ” Se l e c t F i l e ∗Apply”)

( cx−gui−do cx−se t−text−entry ” Se l e c t F i l e ∗Text” ” p r e s s u r e a b s a i r f o i l . xy ”)

( cx−gui−do cx−ac t i va te−item ” Se l e c t F i l e ∗OK”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗PlotMenu∗XY Plot . . . ” )

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ” ’ (

0) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Frame9∗Li s t9 ( Sur fa c e s ) ”)

( cx−gui−do cx−se t−togg le−button ” So lu t i on XY Plot ∗Frame1 ( Options ) ∗ToggleBox1 (

Options ) ∗CheckButton4 (Write to F i l e ) ” #f )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Frame1 ( Options ) ∗ToggleBox1 (

Options ) ∗CheckButton4 (Write to F i l e ) ”)

( cx−gui−do cx−se t− l i s t −s e l e c t i o n s ” So lu t i on XY Plot ∗Table7∗DropDownList1 (Y

Axis Function ) ” ’ ( 0) )

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗Table7∗DropDownList2 ”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗PanelButtons∗PushButton1(OK) ”)

( cx−gui−do cx−se t−text−entry ” Se l e c t F i l e ∗Text” ” p r e s s u r e a b s a i r f o i l . xy ”)

( cx−gui−do cx−ac t i va te−item ” Se l e c t F i l e ∗OK”)

( cx−gui−do cx−ac t i va te−item ” So lu t i on XY Plot ∗PanelButtons∗PushButton2( Cancel )

”)

( cx−gui−do cx−ac t i va te−item ”MenuBar∗FileMenu ∗Exit ”) )



APPENDICES B

The List of Probability Distribution Functions

B.1 Weibull Distribution

The 2-parameter Weibull distribution is the most widely accepted distribution for wind

speed. The Weibull pdf and cdf are expressed as

f(x;α, β) =
β

α

(x
α

)β−1

exp

[
−
(x
α

)β]
(B.1)

and

F (x;α, β) = 1− exp

[
−
(x
α

)β]
(B.2)

where x ≥ 0.

The estimated shape parameter β̂ can be solved using an iterative procedure, given by

β̂ =



∑n

i=1

(
xβ̂i ln xi

)

∑n
i=1 x

β̂
i

− 1

n

n∑

i=1

ln xi



−1

(B.3)

The estimated scale parameter α̂ can be solved using

α̂ =

(
1

n

n∑

i=1

xβ̂i

) 1

β̂

(B.4)
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B.2 Gamma Distribution

The Gamma pdf and cdf are expressed as

f(x; k, θ) = xk−1
exp

(
−x
θ

)

θkΓ(k)
(B.5)

and

F (x; k, θ) =
γ
(
k,
x

θ

)

Γ(k)
(B.6)

where x ≥ 0 and k, θ > 0. The estimated parameter k̂ can be obtained by solving

ln(k̂)− ψ(k̂) = ln

(
1

n

n∑

i=1

xi

)
− 1

n

n∑

i=1

ln(xi) (B.7)

where ψ(k̂) = Γ′(k̂)/Γ(k̂) is the digamma function. The estimated scale parameter θ̂ can be

solved using

θ̂ =
1

k̂n

n∑

i=1

xi. (B.8)

B.3 Normal Distribution

The Normal pdf and cdf are expressed as

f(x;µ, σ) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(B.9)

and

F (x;µ, σ) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
. (B.10)



249

The estimated parameter µ̂ and σ̂ are expressed as

µ̂ =
1

n

n∑

i=1

xi and σ̂ =
1

n

n∑

i=1

(xi − µ̂)2. (B.11)

B.4 Lognormal Distribution

The Lognormal pdf and cdf are expressed as

f(x;µL, σL) =
1

x
√

2πσ2
L

exp

[
−(ln(x)− µL)

2

2σ2
L

]
(B.12)

and

F (x;µL, σL) =
1

2

[
1 + erf

(
ln(x)− µL

σL
√
2

)]
. (B.13)

The estimated parameter µ̂L and σ̂L are expressed as

µ̂L =
1

n

n∑

i=1

xi and σ̂L =
1

n

n∑

i=1

(xi − µ̂L)
2. (B.14)

B.5 Rayleigh Distribution

The Rayleigh pdf and cdf are expressed as

f(x; b) =
x

b2
exp

(
− x2

2b2

)
(B.15)

and

F (x; b) = 1− exp

(
− x2

2b2

)
(B.16)
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where x ≥ 0. The estimated parameter b̂ is given by

b̂ =

(
1

2n

n∑

i=1

x2i

)1/2

. (B.17)
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