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ABSTRACT

Hurricanes and other extreme wind events cause immense devastation to our econ-

omy every year. Modern buildings should be designed to withstand extreme wind so that

it reduces the financial strain on the economy. An experimental study was performed

to compare aerodynamic performance of new roof designs. Traditional roof shapes were

also included in this study to determine if the new designs had any merit in aerodynamic

roof load mitigation. An atmospheric boundary layer wind tunnel was used with the

characteristic wind of a suburban boundary terrain. Wind tunnel models were built

using a rapid prototyping method. A 1:100 geometric length scale was used for all mod-

els. The experiment was performed at one wind speed but repeated for seven building

orientations. All six force components of the building were measured using a load cell.

The results obtained from measurement of the roof loads showed that the largest reduc-

tion was achieved with the leading-edge spoiler, which resulted in 32.3% reduction of

roof uplift. A few other methods also demonstrated adequate roof load mitigation. The

leading-edge spoiler can be built with the least amount of construction material and it

can be easily integrated into an existing or new building. The aerodynamic modifica-

tion of buildings provides a cost effective solution to reducing the economic impact of

hurricanes and other extreme wind phenomena.
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CHAPTER 1 INTRODUCTION

1.1 Objective and Motivation

Hurricanes are the costliest wind events in the United States in terms of economic

loss: NOAA estimates an average annual U.S. economic loss of $6.3 billion from wind

of which hurricanes cause the majority of the damage. The deadliest storm in U.S.

history occurred in Galveston, TX in 1900. A category 4 hurricane killed about 6000

people and 700 million dollars in damages. In 1969 the most intense hurricane in U.S.

History hit the Gulf Coast. A category 5 hurricane named Camile, killed 256 people

(7). In 2005 Hurricane Katrina caused $81.2 billion in damages and killed 1,836 people

(8). Statistics show that hurricanes cause economic strain and immense devastation in

the United States. As population density on the southeast coastal areas increases, the

economic impact of these storms will increase.

The objective of this research is to develop cost effective ways to protect low-rise res-

idential structures from extreme winds caused by hurricanes and other wind phenomena

causing strait line winds. A gable roof is one of the most predominant and simplistic roof

used for current residential structures. A gable roofed building was studied through wind

tunnel investigation to determine any possible improvement that could be developed to

make it more wind resistant. Two methods were chosen to achieve this result. The first

method was to develop new roof shapes, which could be applied to newly constructed

buildings. The second method was to develop economical adaptations to gable roofs in

existing buildings. Both the methods were tested in a boundary layer wind tunnel at
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Iowa State University. The purpose was to conduct a parametric study to compare the

aerodynamic performances of the new roof shapes and adaptations of the existing roofs.

1.2 Thesis Organization

The research presented in this thesis, outlines the development and testing of aerody-

namic mitigation models, which have a primary goal of reducing the wind loading around

a one-story gable roofed residential building. Chapter 2 provides theoretical background

utilized in the development phase. The first section outlines the mechanics of a hurricane

and the devastation it causes to our society. The next section provides background in the

boundary layer theory of the interaction of a viscous fluid with a solid surface, and flow

separation. Boundary layer separation is defined and a separation theory is developed.

The last section outlines the research done in the past on bluff body wind mitigation.

Chapter 3 provides a detailed description of all models. This chapter provides physical

and pictorial descriptions of each model. Chapter 4 describes the experimental setup

and procedure used during the experimental phase of the research. Chapter 5 presents

the summary of the experimental results. This section also develops the performance

index and presents a comparison study utilizing this index. Chapter 6 provides a brief

summary of the findings and presents a few conclusions based on these findings. This

chapter also presents a set of suggestions and topics for future research. Appendix A

contains the graphical results of the aerodynamically modified models. Appendix B

contains the graphical results of the aerodynamically adapted models. Appendix C con-

tains the results of the passive pressure equalization models. Appendix D contains the

graphical results of all the mitigation models.
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CHAPTER 2 BACKGROUND

This research investigates mitigation methods in straight-line wind in an atmospheric

boundary layer. Some the natural wind events which cause this type of wind are gusts

and hurricanes. Hurricanes cause the most damage therefore a section detailing the

growth and decay of a hurricane will be developed in the following section to better

understand the mechanics behind this devastating event.

2.1 Hurricane Formation and Dissipation

Hurricanes predominantly form over warm oceans, where a system of thunderstorms

exists in regions of low surface pressure. High and low pressure regions tend to form in

the tropics because of the difference in atmospheric heating over the land and water. The

difference in the flow of air between the ocean surface and land masses is also a source

of this pressure variation. A hurricane is a system of thunderstorms with low pressure

at its center. The driving force behind hurricanes is condensation. Solar heating causes

water vapor to evaporate releasing heat which rises and as this process continues water

vapor begins to rise and gets condensed at higher altitude releasing more heat. The

low pressure center tends to draw air to the center, but the Coriolis effect (caused by

the rotation of earth) causes a counterclockwise rotation in the Northern Hemisphere

about the low pressure region. As the air rotates towards the center it is forced upwards

turning into mechanical energy. This energy increases the wind speeds, which in turn

increase the surface evaporation and the vapor condensation fueling the hurricane. The
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released energy causes updrafts which increase the height of the storm accelerating the

condensing process. As the hurricane develops, it becomes more difficult for air to reach

the center. The centrifugal force of the stronger winds at the center tends to force the

air outward. This motion results in the formation of rain bands (Figure 2.1).

Figure 2.1 Structure of a tropical hurricane (9)

As the tropical storm becomes fully developed and reaches the lowest hurricane

category, the air can no longer reach the center. A region of calm weather forms at the

center called the eye. The eye wall surrounds the eye of the hurricane, which is a region

closest to the center and therefore has the largest spiraling inward air with the strongest

winds. The hurricane has enough energy to become self sustaining. A hurricane will

eventually decay as a result of four causes; dry air, mountainous land regions, cool ocean

surface water, and dry land. Dry air coming off land can slow down the condensation

process. Mountainous land regions can affect the inflow into the center of the hurricane,

disrupting the flow and weakening the hurricane. As the hurricane makes landfall, it no

longer has access to sufficient warm water over the dry land and therefore the winds in

the eye wall decrease and the pressure increases at the center of the low pressure region,

diminishing the strength of the hurricane (17).
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Cat Wind Speeds (mph) Central Storm Surge
(1 min. avg.) Pressure (above normal) Description

(mph) (mb) (ft)
1 74 - 95 > 980 4 - 5 No damage to

building structures
2 96 - 110 965 - 979 6 - 8 Some roof, door and window

damage of buildings
3 111 - 130 945-964 9 - 12 Some structural damage to

residences and utility buildings
4 131 - 155 920 - 944 13 - 18 Some complete roof

structure failures
5 > 155 < 920 > 18 Some complete

building failures

Table 2.1 Saffir-Simpson hurricane scale (19)

A hurricane is rated by the Saffir-Simpson scale (Table 2.1), which is a category

rating to represent the intensity of a hurricane. The rating is used to predict potential

property damage and flooding that may occur from a hurricane landfall. The reason

hurricanes are so damaging is because of storm surge. Storm surge is the ocean water

a hurricane pushes up on land as it makes landfall (17). A category 4 hurricane can

actually have a higher storm surge than a category 5 hurricane, therefore causing more

property damage. The Gulf coast is particularly affected by the storm surge because of

the continental shelf which causes waters to rise even higher. Hurricane season typically

runs from June to November in the United States with the peak occurring in August

and September.

2.2 Boundary Layer Theory and Flow Separation

The topic of this research is three-dimensional, unsteady, turbulent flow of a stream

of incompressible viscous fluid past a bluff body. A critical step to develop the mitigation

methods was to understand boundary layer theory and utilize this information to control
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boundary layer separation. This section provides the theory used during the development

of the mitigation methods.

The analytical solution to the viscous equations of motion, conservation of mass,

momentum, and energy, are extremely complicated. The equations of motion were

derived for viscous flow by Navier (1827) and Stokes (1845),(Eq.2.1, Eq.2.2, Eq.2.3).

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) = −∂p

∂x
+ µ(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) + ρgx (2.1)

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
) = −∂p

∂y
+ µ(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
) + ρgy (2.2)

ρ(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
) = −∂p

∂z
+ µ(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
) + ρgz (2.3)

The Navier-Stokes equations are non-linear partial differential equations. Exact so-

lutions are only obtainable for specific cases, such as an incompressible fluid with unidi-

rectional or circular steady streamlines. The physical characteristics of this type of flow

allow the Navier-Stokes equations to be simplified into linear equations. Some examples

of this type of flow are plane couette flow and plane poiseuille flow through two parallel

plates (Figure 2.2).

As a viscous fluid flows past a body, two types of drag are possible: form drag due

to separation of the flow from the body, and skin friction caused by the contact of the

fluid with the body. A bluff body is primarily governed by form drag. Form drag is

the integration of the pressure forces over the body surface along the direction of the

flow. Skin friction acts tangentially to the surface where the flow remains attached

and therefore is neglected because the flow over the majority of the surface is typically

separated (20).

The difference between inviscid and viscous fluids is the boundary conditions: the

no-slip condition, and the dominance of the viscous boundary layer in the flow. The
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Figure 2.2 Plane couette flow between two parallel plates

no-slip condition states that the velocity of the fluid at the wall is zero. For an inviscid

solution the velocity component normal to the surface is zero, but for a viscous fluid the

total velocity is zero (11).

A boundary layer is a region next to the body surface boundary, which viscous

effects govern the fluid. If the boundary layer remains thin and attached to the body,

the flow outside the thin boundary layer will closely reflect the inviscid solution, and

the solution will follow potential theory. This type of flow has very little form drag

and skin friction is the predominant component of drag. As viscous drag increases, it

dissipates energy from the flow. Eventually there will be an insufficient amount of energy

to traverse a blunt body. If separation occurs, a wake is created, therefore changing the

pressure distribution on the body from the potential solution and increasing the form

drag. Typically for a bluff body separation occurs on the roof, side walls, and leeward

wall. Boundary layer theory states that separation occurs when the convection terms in

the x-momentum equation at the body surface (Eq. 2.4) approach zero. At this point

the stream-wise pressure gradient is positive or adverse, ( ∂p
∂x

> 0). From Eq. 2.4, the

pressure gradient ( ∂p
∂x

) and (∂2u
∂y2 ) must have the same sign at the surface boundary (11).
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1

µ
(
∂p

∂x
) = (

∂2u

∂y2
)y=0 (2.4)

A pressure gradient is positive when the pressure force is in the direction to decelerate

the flow. A positive pressure gradient exists when the static pressure increases in the

direction of the flow. The increase in pressure causes an increase in potential energy of

the fluid and a decrease in kinetic energy, retarding the flow. At the separation point,

the slope of the velocity component normal to the surface (∂u
∂y

) is zero at the wall and at

the boundary layer thickness. Downstream of this point, ∂u
∂y

< 0, at the wall, and flow

reversal can be seen close to the surface. In this region, flow is considered separated

and the body surface will encounter negative pressures or suctions. The velocity inside

the boundary layer increases from zero at the surface, as stated in the no-slip condition,

to a positive value outside the boundary layer. Since ∂u
∂y

< 0 at the wall and ∂u
∂y

= 0

at the boundary layer thickness ∂u
∂y

will increase along the y-axis in the boundary layer.

Therefore, ∂u
∂y

must attain a maximum at some point before it begins to decrease again.

At this point ∂2u
∂y2 = 0 , the velocity profile contains an inflection point (Figure 2.3).

Figure 2.3 Boundary layer separation over a solid surface
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A inflection point is a location on the curve at which the curvature changes sign.

Upstream of the separation point, ∂u
∂y

> 0 at the wall, and ∂p
∂x

< 0 which will accelerate

the fluid along the surface, thinning out the boundary layer. At this point, outside the

separation bubble ∂u
∂y

is decreasing as we move along the y-axis until it approaches zero

and no inflection point will exist (11). To make a gable roofed building withstand higher

winds, separation needs to be delayed or minimized to reduce form drag. Boundary layer

control methods can be used to accomplish this task and create more wind resistant

homes.

2.3 Past Aerodynamic Roof Mitigation Research

Past and current research in bluff body wind mitigation has focused primarily on

reducing the surface pressure on flat roofed buildings or rectangular prisms. Wu and

Sarkar (2000) pioneered the research in a specific parapet (Figure 2.4) called a Conical

Vortex Disrupter.

Figure 2.4 Parapet roof attachment along leading-edge of building

They showed through a full-scale test that the device significantly reduced both

local and area-averaged wind loads near the roof corners on a flat roofed building. The

research done by Kopp, Mans, and Surry (2005) also studied the wind effects of parapets



10

on low-rise flat roofed buildings. They performed a parametric study of different types of

parapets and found that perimetric spoilers and porous parapets effectively reduced the

roof loads as much as 50%. They also showed that isolated parapets (only on one wall)

tend to increase the corner delta vortices causing more suction on the roof. The research

done by Pindado and Meseguer (2003) also studied the effects of different parapets

on reducing roof pressures on low-rise flat roofed building. This research validated

the conclusions of Kopp, Mans, and Surry (2005). Pindado and Meseguer research

demonstrated that spoiler parapets are only effective at relatively low parapet height,

as compared to the building height. Cheng and Melbourne (1988) researched the effects

of a porous roof on reducing the roof pressures. The study showed significant reduction

in the peak and mean roof pressures. The reduction increased as porosity increased

and as the internal volume decreased. The study produced a maximum decrease in roof

pressure of 20% near the leading-edge, and 30% in the downstream region. The study

by Munshi, Modi, and Yokomizo (1999) demonstrated the effectiveness of a rotating

circular cylinder as a form of boundary layer control. They looked at drag reduction on

a bluff body, a rectangular prism. The results showed peak reductions between 60% and

85% in drag and significant suppression of vortex shedding.

Mitigation research has been done on other roof shapes such as a hip roof by Meecham

(1992) and curved roofs by Meseguer et al. (2005). Meecham researched the benefits

of hip roof construction. Meecham’s results demonstrated peak roof pressure reductions

up to 50% (compared to a gable roof) and showed that a hip roof can without failure

handle winds speeds 30% larger than a comparable gable roof. Pindado and Meseguer

used their previous results in corroboration with Franchini and Sanz-Andres (2005). A

leading-edge perimetric spoiler parapet was used to reduce the conical vortices on a

curved roof. The results showed a reduction in the corner vortices and a significantly

lower peak and mean pressure on the curved roof. A study done by Modi, Fernando,

and Yokomizo (1991) applied the concept of a rotating cylinder to a semi-truck and
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trailer. The results showed drag reduction up to 23%, and found surface roughness of

the rotating cylinder increases the reduction. They also found the effectiveness of the

concept is reduced if the cylinder is located in the wake.

All past research has focused on pressure and flow measurement. This type of re-

search is vital to understanding the mechanics of the flow, but little work has been done

to determine how this flow translates into forces around the body. For this reason this

research will focus on load measurement. Specifically, experimental investigation of how

much load reduction is possible on a one-story gable roof residential building.
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CHAPTER 3 MITIGATION BUILDING MODELS

3.1 Base Building Models

3.1.1 Gable Roof Model

The gable roof is one of the most commonly built roofs in residential construction.

This model will be used as a base model for comparison. This model was designed to

mimic the modern residential building architecture. A rapid prototyping method was

used to create all models. This method uses solid works to model the buildings and a

rapid prototyping machine to construct the 3D model out of ABS plastic. A solid works

image of the finished gable roofed model can be seen in Figure 3.1.

Figure 3.1 Solidworks drawing of the gable roof base model

Loads were measured on a 1:100 scaled model of a one-story gable roof building. The
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model had a 3.6 in. by 3.6 in. plan length and width, respectively. The building ridge

height was 1.6375 in. and the eave height was 1.2 in. The pitch of the roof was 3
12

or

13.66◦. This roof slope was chosen because past research (1) has shown the worst case

of roof uplift occurs at a shallow roof slope. The full-scale building would have a 30 ft.

by 30 ft. plan length and width, respectively, and eave height of 10 ft. The length scale

limited the amount of details in the models. The finer details of the full-scale building

were ignored in the model because of the simplification used in the modeling. Building

roof overhang, roof shingles, and exterior siding were all ignored in the model. The roof

of the model was sanded smooth and the leading-edge of the roof was flushed with the

building walls as can be seen in Figure 3.1.

3.1.2 Hip Roof Model

The hip roof is another roof shape used in residential building construction. Hip

roof design performs better than traditional gable roofs. As stated in Section 2.3, hip

roofs reduce the magnitude of the mean negative pressures on the roof. The total uplift

between the two roof shapes were not significantly different, but the geometry of the

hip roof reduces the mean negative peak pressures areas on the leading-edge of the roof

and increases the amplitude of the mean negative pressures further downstream on the

trailing-edge of the roof. Redistribution of pressure has little effect on the total uplift

but reduces the mean peak pressures. The mean peak pressure reduction allows the

hip roof to remain intact, whereas a similarly constructed gable roof would have failed

because of high negative pressures near the leading-edge as stated by Meecham (1992).

The basic hip roof model will be used here to compare the effectiveness of the new roof

designs. New roof designs whose aerodynamic performance is worse than the hip roof

are not very effective solutions because the hip roof is used in modern construction, and

currently the most cost effective. The hip roofed base model can be seen in Figure 3.2,

which has the same plan length, plan width, ridge height, and eave height as the gable
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roofed base model. The hip roof has a 3
12

slope perpendicular to the ridge and a 6
12

slope

parallel to the ridge which are 13.66◦, and 27.32◦ angles, respectively. The projected

area, Ay, used in one of the non-dimensional force coefficients for this shape is different

from the gable roof base model, as defined in Figure 4.11, all other areas remained the

same.

Figure 3.2 Solidworks drawing of the hip roof model

3.2 Aerodynamically Modified Building Models

The next set of models were tested to check their performance for wind-induced

load mitigation through aerodynamically modified roof shapes. The primary objective

of these modified roof designs is to provide adequate load mitigation while maintaining

a commercially marketable roofs. These roofs must be specifically designed to accom-

modate a truss structure underneath. An aerodynamically modified roof shape would

provide a passive mitigation method which could be incorporated into future residential

buildings. These models are described below. The current study on mitigation is done

by modifying the gable roof base model. The same concept could be applied to a hip
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roof building.

3.2.1 Variable Sloped Roof Model

As the name implies, a variable sloped roof is an aerodynamically modified roof shape

with discretely variable roof slope. The gable roof was split into three sections, as seen

in Figure 3.3. A course division was chosen because it would allow easier fabrication of

the truss that supports it when implemented in construction.

Figure 3.3 Gable roof truss section division

The sections were modified in two ways: one model had increasing roof slope, and

the other had a decreasing roof slope. The variable increasing sloped roof (VISR) can

be seen in Figure 3.4, which starts with an 8◦ slope and ends with a 30◦ slope while the

middle section has the smallest slope of 3◦.

The variable decreasing sloped roof (VDSR) can be seen in Figure 3.5. Section one

has a 26◦ slope, section two has a 10◦ slope, and section three has a 4◦ slope. The

aerodynamic concept behind the VISR shape is that as the roof surface is lowered, it

creates a valley so that separated flow near the leading-edge of the roof is lowered. This

brings the shear layer closer to the roof surface, which reduces the suction on the roof

and the associated form drag. The assumed aerodynamic concept behind the VDSR

shape is that the roof surface tries to take the form of the contour of the streamlines of

the flow. This could allow the flow to remain attached on the windward side although

the flow would still separate on the leeward side of the roof. This shape should also

reduce the separation on the leeward side by bringing the roof surface closer to the
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Figure 3.4 Solidworks drawing of the variable increasing sloped roof model

shear layer. This allows the flow to remain attached longer because the curvature is

more streamlined which delays the onset of an adverse pressure gradient.

Figure 3.5 Solidworks drawing of the variable decreasing sloped roof model

Both the VISR and the VDSR models have the same plan length, plan width, ridge

height, and eave height as the gable roof base model. These shapes are symmetric about

the ridge. The projected area, Ax, used in one of the non-dimensional force coefficients

for these shapes is different from the gable base model, as defined in Figure 4.11, all
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other areas remaining the same.

3.2.2 Curved Corner Model

In bluff body aerodynamics, the flow always separates around a 90◦ corner or a sharp

edged corner. A building with curved corners allows for delayed separation to occur

further downstream reducing the separation bubble and the form drag. This concept of

streamlining the wall corners of the building was studied as a passive means to reduce

the drag either to compensate for increased drag (if any) from modified roof shapes or

reduce the drag of the gable roofed base model. The latter was studied here. This shape

would have little or no effect on the uplift. A solid works drawing of the streamlined

rapid prototyped model can be seen in Figure 3.6.

Figure 3.6 Solidworks drawing of the streamlined wall model

The curved corner model has the same plan length, plan width, ridge height, eave

height, and roof slope as the gable roof base model. The projected areas used to define

the non-dimensional force coefficients are the same as the gable base model as defined

in Figure 4.11 except the projected area in the z-direction (Az) which now includes the

curved corners.
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3.3 Aerodynamically Adapted Building Models

The next set of models provide aerodynamic mitigation by adding an attachment to

the existing gable roof structure. The primary objective of these aerodynamic attach-

ments is to provide adequate wind load mitigation that can be economically implemented

in existing residential buildings while maintaining an aesthetically pleasing architecture.

Most of the concepts in this section can be classified as passive methods although a few

can be classified as active methods of mitigation. Active methods require use of energy

and in today’s market energy efficiency is important. However, aerodynamic mitigation

will be required only when extreme wind occurs so the energy requirement is minimal.

Since passive methods are simpler and require no energy to control the performance,

these are preferable to the active methods and will be the focus of this study. All mod-

els in this section use the rapid prototyped gable roof base model that is modified with

different attachments to create the mitigation model. All dimensions and projected ar-

eas used in the calculation of the non-dimensional force coefficients for these cases are

the same as the gable roof base model. All models were designed for force measurement

and fitted with an internal structure to accommodate the force transducer.

3.3.1 Edge Spoiler Models

The edge spoiler attachment is a method to reduce the high suction caused by the

conical delta vortices. The edge spoiler is placed along the roof edge and along the

ridgeline as seen in Figure 3.7. The edge spoiler provides mitigation by separating the

flow into two parts; one underneath the spoiler, and one above that forms the vortex.

A high pressure region forms in front of the spoiler and a low pressure region forms

behind it. This pressure gradient injects a stream of flow underneath the spoiler into

the roof vortex in the opposite direction of the vortex rotation, alleviating the vortex

strength, and thereby reducing the roof loads. The method will require a minimal
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amount of material and should also be relatively easy to incorporate into an already

existing structure. The architectural design of the building is conserved because the

spoiler is effective at relatively low heights. This concept has been successfully tested

on a flat roofed building by Wu and Sarkar (2000).

Figure 3.7 Flush edge spoiler model

The edge spoiler is made out of a flat strip of aluminum that is fixed slightly above

the roof of the gable base model as shown in Figure 3.7. The spoiler has a thickness of

0.042 in., a width of 0.25 in., and a spacing above the roof surface of 0.042 in. Two types

of attachments were tested; one that was flush with the side of the building, and the

other had a 0.125 in. overhang beyond the side wall. The spacing underneath the spoiler

remained the same for both attachments. In Figure 3.7, the attachments were installed

along the outside edge of the roof and along the ridge. Each of the two attachments was

made as a single piece which was mounted to the roof at the four corners.
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3.3.2 Porous Canopy Roof Models

The porous canopy roof attachment is a method which uses a porous cover to conceal

the existing roof (Figure 3.8).

Figure 3.8 Porous canopy roof model (10% porosity)

This method was expected to reduce the mean and peak pressures on the roof. The

practicality of this method is that the canopy provides a false cover, while maintaining

the waterproof roof structure underneath it. Several issues would exist if this method

is implemented into current construction because snow or environmental debris such

as, dirt, insects, plants, and twigs could possibly block the pores of the canopy. Some

method would be needed to maintain the porosity of the canopy if this method was

to have practical use. The porous canopy roof attachment provides mean and peak

roof pressure reduction by allowing the air to flow through the pores on the false roof

surface into the internal space between the canopy and waterproof roof. This will create

a thin layer of air in between the two surfaces creating a positive mean pressure under

the top surface that partially balances the fluctuating negative peak pressures on the
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canopy surface. The porous canopy is made of a 0.042 in. thick aluminum plate. Two

types of canopies were tested; one was 1% porous, and the other was 10% porous. The

10% porous canopy can be seen in Figure 3.8. The 1% canopy top had 64 (0.0625 in.

diameter) holes, and the 10% canopy top had 484 (0.0625 in. diameter) holes evenly

spaced across the surface. The attachment was spaced 0.042 in. above the roof surface

and mounted at the four corners of the roof. This spacing is similar to the edge spoiler.

3.3.3 Passive Pressure Equalization Models

The passive roof pressure equalization method uses pressure tubing to connect open-

ings on the windward side to openings on the leeward side of the roof. This model can

be seen in Figure 3.9.

Figure 3.9 Passive roof pressure equalization model

This passive method can potentially reduce the large suction on the leeward side of

the roof by equalizing with the smaller suction on the windward side. This method,

like the porous canopy roof, also has practical issues associated with construction and
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implementation. For practical use, a method needs to be developed to prevent blockage

of the roof openings from environmental debris. A method also needs to be developed

to prevent moisture build-up inside the tubing. The method studied in this research is a

passive method, but an active method using a powered vacuum reservoir could reduce the

wind loading on the windward side, leeward side, and the side walls. This active method

would prevent or reduce separation by removing flow that has low momentum. Another

issue which limits the usefulness of this method is the complexity of implementation of

this technique. Pressure tubes have to be run through the internal volume of the roof.

This would be a tedious process which would require time and money. A passive method

to reduce the drag on the building was also developed that utilizes the same principles.

Pressure tubes were used to connect openings on the windward wall to the leeward wall.

This model can be seen in Figure 3.10.

Figure 3.10 Passive wall pressure equalization model

The wind tunnel models used to test the passive pressure equalization method have

the same dimensions as the gable base model. For the passive roof pressure equalization

model, 77 holes were drilled into the windward side of the plastic roof surface and

connected to 77 holes drilled into the leeward side of the plastic roof surface. The holes

were connected with pressure tubing with a 0.0625 in. inside diameter. The holes were
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evenly spaced across the roof surface and the holes on the windward side were connected

to a similar location on the leeward side. The passive wall pressure equalization model

used 15 holes that were connected between the walls perpendicular to the ridge and 12

holes that were connected between the walls parallel to the ridge, (Figure 3.10). The

walls were connected using the same pressure tubing as with the previous model. The

holes were evenly spaced across the walls and each hole on the wall was connected to a

hole in a similar location on the opposite wall.

3.3.4 Momentum Injection Model

The momentum injection method to control boundary layer separation, consists of

a rotating cylinder mounted along the ridge of the model as seen in Figure 3.11. The

rotating cylinder delays or eliminates boundary layer separation in two ways; by reducing

the relative motion, and by injecting momentum into the boundary layer. The difference

in the motion of the flow and the body surface creates the boundary layer. A moving

surface, which moves in the same direction as the flow, helps reduce the relative velocity

between the body surface and the free stream flow. This reduction in the relative velocity

helps control the boundary layer separation. The cylinder also injects momentum into

the low momentum boundary layer by rotating the fluid around the cylinder into the

separated flow on the leeward side of the roof. The effects of these two events are

delay in separation, acceleration of the flow immediately outside the boundary layer,

and reduction of the wake. This method can be controlled by two means; passive and

active. Although wind tunnel testing was not completed for either of these methods, the

momentum injection model was develop and prepared for wind tunnel testing in future

experiments. The active control will use a small DC motor (Figure 3.12) mounted inside

the model that will drive the cylinder rotation. The Passive method will use two small

wind turbines mounted axially to the cylinder, located on each side of the building. The

model consists of a 0.625 in. diameter circular cylinder with a 3.3125 in. length (Figure
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3.11). The cylinder will spin on high speed ball bearings (Figure 3.11) mounted at the

ends of the ridge. The cylinder will be rotated using a drive chain connecting the cylinder

and the motor. The DC motor has a nominal voltage range of 1.5 volts to 3.1 volts, and

will be controlled with a DC power supply (Figure 3.12). The model will allow the height

of the cylinder to vary as well as the cylinder rotational speed. Initial testing needs to be

performed to determine which configuration provides the most aerodynamic mitigation.

Due to the complexity of this model, the wind tunnel testing was not performed in this

study. The model is fully developed and ready to begin wind tunnel testing.

Figure 3.11 Rotating cylinder momentum injection model

Figure 3.12 DC power supply and electric motor assembly
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CHAPTER 4 EXPERIMENTAL PROCEDURE

4.1 Wind Tunnel and Boundary Layer Setup

All the wind tunnel tests were performed in the AABL wind and gust tunnel that

is located in the ISU WiST Lab at Iowa State University. The AABL wind and gust

tunnel is a closed circuit wind tunnel with a capacity to generate wind speeds exceeding

90 mph in the test section that is 8 ft. wide and 7.5 ft. high. There is a rotating

turntable where the models in the test section can be mounted to test for different wind

directions. A suburban boundary layer was used for this study. The roughness elements

used to generate the suburban boundary layer can be seen in Figure 4.1. The elements for

generating the suburban boundary layer consisted of spires, blocks, and chains. Spires

are triangle-shaped protrusions in the flow which cause more perturbation at the bottom

than the top. There were 4 spires located at 50 ft. upstream of the model center. The

spires are 0.75 ft. wide at the bottom and 4.5 ft. high, and the tips of each spire are

spaced 1.67 ft. apart from the wall and each other. The blocks are 0.208 ft. tall and

there is a 1.125 ft. space between blocks in all directions. The blocks were arranged in

30 rows starting at 42.3 ft. from the center of the model and ending at 4.8 ft. from the

center of the model. The odd rows of blocks started at 0.208 ft. from the side of the

tunnel. The even rows of blocks started at 0.833 ft. from the side of the tunnel. The

chains were used to maintain the turbulence in the flow in the region between the model

and the last row of blocks. The chain was 0.5 in. thick, and was laid in rows starting at

3.5 ft. from the center of the model and ending at 0.79 ft. from the center of the model.
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The chain was arranged in three rows spaced 1.375 ft. apart.

Figure 4.1 AABL wind and gust tunnel

The velocity profile and the turbulence intensity profile for the boundary layer were

measured using a hot-wire anemometer in (10)(Figures 4.2 and 4.3). The profiles were

verified in this study with a Cobra probe as described in the next section. The wind

speed increases in an atmospheric boundary layer with height above the ground. The

streamwise wind profile follows a power law (Equation 4.1) as given below.

U(z1)

U(z2)
= (

z1

z2

)α (4.1)

The power law exponent (α) for a suburban boundary layer can range from approx-

imately 0.2 to 0.3. The power law exponent calculated for the suburban boundary layer

used in all the experiments in this study was 0.22. The roughness length (zo) of the sub-

urban boundary layer used in the experiment was 0.00215 ft. above the ground plane.

The turbulence intensity was 23% at 33 ft. (full-scale) equivalent height.
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Figure 4.2 Streamwise velocity profile as reported in (10)

4.2 Experimental Instrumentation Setup

The boundary layer profiles were taken using a multi-hole pressure probe called Cobra

probe (Figure 4.4). The Cobra probe provides three component velocity (magnitude and

direction) and local static pressure measurements in real time. The Cobra probe has a

frequency response of up to 2000 Hz which makes the probe specifically suited to measure

turbulent flow. The probe measures the flow field within a range of ±45 degrees from its

axis. The Cobra probe has an accuracy of ±1.6ft
s

(±0.5m
s
) and ±1 degree for pitch and

yaw angles, this accuracy is effective up to 30% turbulence intensity. For turbulent flow

with turbulence intensity greater than 30%, the probe is still relatively accurate. The

computer setup (Figure 4.4) inputs the raw voltage from the probe to a data acquisition

interface unit (Figure 4.4), which is connected to the computer using a data acquisition

card. TFI Device Control software is used to control the probe and analyze the raw

output. The voltage output from the probe is converted to velocity data by the TFI
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Figure 4.3 Streamwise turbulence intensity profile as reported in (10)

Device Control software. The device was calibrated in the factory, therefore no initial

calibration was required.

Figure 4.4 Data acquisition system setup

The velocity during the experiment was checked periodically to maintain an accurate

comparison. The velocity profiles and turbulence intensity profiles were taken using the

cobra probe. The velocity measurements at a wind tunnel motor frequency setting of
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15 Hz were taken with a 500 Hz sampling rate over a period of 60 seconds. The Cobra-

probe velocity profile and turbulence intensity profile can be seen in Figures 4.5 and 4.6.

These profiles agree well with the profiles in Figures 4.2 and 4.3.

Figure 4.5 Streamwise velocity profiles

The load measurements were taken using a multi-axis force sensor system called

JR3 (Figure 4.7). The JR3 can measure three components of force and moment along

the three orthogonal axes in real time. The data acquisition system setup (Figure 4.8)

consists of a computer, power supply, and a data junction box. The system takes the

voltage output from the JR3 and sends it to the data acquisition software, a Labview

program (national instruments), which converts the raw voltage to force and moment.

The JR3 was calibrated in the factory, therefore no initial calibration was required.

The JR3 was mounted on the bottom of the turntable while an aluminum rod fixed

to the building model at one end and threaded through the center of JR3 at the other

end, transfers the forces and moments from the model to the JR3 (Figure 4.7). A small
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Figure 4.6 Streamwise turbulence intensity profiles

gap (1 − 2 mm) was maintained between the floor of the wind tunnel and the building

models and all around the aluminum rod in the floor. All the force data were obtained

using this type of setup.

4.3 Data Acquisition and Analysis

A sampling time had to be determined over which data were averaged for steady

state results before testing could begin. Turbulent flow requires longer sampling times

to maintain stationary statistics. An initial test was performed to determine an adequate

sampling time. The results of this study can be seen in Figure 4.9. From the figure,

the averaged value was steady beyond 100 seconds. Therefore, a sampling time of 120

seconds was used for all load measurements.

The Reynolds number is an important parameter in the study of fluid dynamics. The

Reynolds number (Equation 4.2) is the ratio of inertial forces to viscous forces.
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Figure 4.7 The JR3 multi-axis force sensor and cantilever model setup

Figure 4.8 JR3 data acquisition system setup and components

Re =
ρνL

µ
(4.2)

It is a non-dimensional parameter to determine dynamic similitude between two

flows of similar flow pattern. The Reynolds number can be used to determine the

appropriate flow pattern around a body. For example, for Reynolds number equal to

one, the flow around a circular cylinder remains attached and follows potential theory.

As the Reynolds number increases the flow separates, and a wake is formed behind
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Figure 4.9 Graphical results of JR3 steady data test

the cylinder. This changes the pressure distribution around the cylinder and increases

the form drag. Bluff bodies with sharp corners, however, are independent of Reynolds

number effects. A sharp corner will always cause separation regardless of the wind speed.

For the present study, Reynolds number dependency was investigated to determine if

testing should be performed at multiple velocities. The results of this test are presented

in Figure 4.10.

From the plots, it can be seen that the force coefficients remained almost the same

at three different velocities, 27.2ft
s
, 42.0ft

s
, and 54.8ft

s
. The Reynolds number had a

very little effect in the range of Reynolds numbers tested (2.1 × 104 - 4.3 × 104) on

the characteristics of the flow. Therefore, this study was carried out only at one wind

speed, and all load values were converted into non-dimensional force coefficients. All

load measurements in this study were taken at a wind tunnel motor frequency of 15 Hz

corresponding to a wind speed of 42 ft
s

at a height of 3.96 in. from the test section floor

in the boundary layer measured at the center of the model. This height corresponds to a
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Figure 4.10 Reynolds number effects on the 15◦ gable roof base model

full-scale reference height (33 ft.) that is commonly used in atmospheric boundary layer

wind. This wind speed (V∞) was used in calculating the non-dimensional mean force

coefficients (Equation 4.3) and the peak force coefficients (Equation 4.4).

CFx =
Fx

q∞Ax

, CFy =
Fy

q∞Ay

, CFz =
Fz

q∞Az

, q∞ =
1

2
ρ∞V 2

∞ (4.3)

In Equation 4.4, CF max
x

, CF max
y

, and CF max
z

are the peak force coefficients correspond-

ing to peak forces(Fmax
x , Fmax

y ,Fmax
z ) that occurred during the 120 second time series.

CF max
x

=
Fmax

x

q∞Ax

, CF max
y

=
Fmax

y

q∞Ay

, CF max
z

=
Fmax

z

q∞Az

, q∞ =
1

2
ρ∞V 2

∞ (4.4)

The reference areas (Ax, Ay, Az) used in the coefficients can be seen in Figure 4.11.

The air density (ρ∞) used in Equations 4.3 and 4.4, was calculated for moist air as

given by Bolton (1980). Water vapor reduces the density of air, because the molecular
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Figure 4.11 Model projected areas and model axis used during experiments

mass of water is less than the molecular mass of air. The total number of molecules

in a volume is constant for any gas (ideal gas law) at a constant value of temperature

and pressure. Therefore, a volume of moist air has the same number of molecules as

a volume of dry air, but the water molecules weigh less reducing the overall mass per

volume (density). The following equations were used to calculate the density of air

inside the wind tunnel during the experiment. The variables used in the equations

are the barometric pressure (B(torr)) in torr, vapor pressure (e) in torr, density (ρ∞,

ρdryair) of the moist air and dry air, and temperature (T (◦F ), T (◦C), T (K)) in degrees

Fahrenheit, degrees Celsius, and Kelvin.

T (◦C) =
5

9
(T (◦F )− 32), e =

RH%

100%
[6.112 exp(

17.67(T (◦C))

T (◦C) + 243.5
)] (4.5)
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T (K) = T (◦C) + 273.15, ρ∞ = (
273.13

T (K)
)[

B(torr)− 0.3783e

760
]ρdryair (4.6)

1.333mb = 1torr, 1
Kg

m
= 0.60243

lb

ft3
, ρdryair = 1.25

kg

m3
(4.7)

The data was taken with 500 Hz sampling rate. The mean and peak force coefficients

were calculated for each model at all building orientations using Equations 4.3 and 4.4.

The buildings were tested for seven orientations with respect to the wind, 0, 15, 30, 45,

60, 75, and 90 degrees (θ defined in Figure 4.12).

Figure 4.12 Building orientation (θ) used during experiment

Initial testing was conducted to provide statistical verification of the accuracy and

consistency of the force sensor output because the expected force values were less than

1% of the capacity of the force sensor. The objective of this testing was to determine

the standard deviation of the peak and mean force coefficients for a set of 20 data runs.

Two buildings at two different orientations were used during testing. The gable base

model was tested at 0 and 60 degrees and the flush edge spoiler model was tested at 60

and 90 degrees. These angles correspond to the occurrence of the largest mean and peak

force coefficients. The test conditions for this set of tests were the same as described in

this section. Let σm be the standard deviation of the mean force coefficients of all 20
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Erm Erp

CFx 6% 16%
CFy 4% 15%
CFz 6% 14%

Table 4.1 Error due to random deviation of data

data runs and σp be the standard deviation of the peak force coefficients of all 20 data

runs. From this testing, it was determined with a 95% confidence level that the mean

force coefficients for all three orthogonal axes were within ±2σm (Equation 4.8) and the

peak force coefficients for all three orthogonal axes were within ±1.5σp (Equation 4.9).

CF − 2σm ≤ CF ≤ CF + 2σm (4.8)

CF max − 1.5σp ≤ CF max ≤ CF max + 1.5σp (4.9)

CF and CF max are the individual values of mean and peak force coefficients for each

data run, and CF and CF max are the averaged values of CF and CF max for all data

runs. The maximum percent errors in the mean force coefficient (Erm) and peak force

coefficient (Erp) associated with the random deviation of the values from the mean can

be calculated using Equations 4.10 and 4.11. The largest values of Erm and Erp of all

tests for the three force coefficients are tabulated in Table 4.1.

Erm =
2σm

CF

× 100 (4.10)

Erp =
1.5σp

CF max

× 100 (4.11)

The comparison tests began once the initial testing and calibration of the data ac-

quisition equipment was complete. The tunnel was run at a constant speed and data
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were collected for 120 seconds for each record and each force value was averaged over

a set of three runs to reduce sampling error in the data. The gable base model was

tested first followed by 10 different mitigation models. Labview was used to record the

data for all three components of force. Labview displayed and recorded the following

information; mean force, rms force, and the force time series. The mean force and force

time series data were exported into Excel. Excel was used to evaluate the data and

develop the graphs for the mitigation model comparison. The gable base model and

the tunnel velocity at 3.96 in height in the boundary layer were checked periodically

to insure consistency in the data. This check ensured that an accurate comparison was

maintained.
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CHAPTER 5 RESULTS AND DISSCUSION

All the wind tunnel test results are summarized in this chapter. The large amount

of wind tunnel data that were collected required a specific method to organize a direct

comparison between all the models. A simple parameter is proposed here for comparison

that will be referred as the performance index. The performance index is calculated

for each building orientation and then averaged over all building orientations. The

purpose of the performance index is that it eliminates the need to compare individual

building orientations and all three components of force. Before the performance index

is defined, the three component force coefficient results can be to be simplified into two

components, a lift force coefficient (CFL
) and a shear force coefficient (CFS

). Equations

5.1 and 5.2 define the lift and shear force coefficients in terms of the previously defined

force coefficients in the orthogonal coordinate system (Figure 4.11).

CFL
= −CFz (5.1)

CFS
=

√
C2

Fx + C2
Fy (5.2)

IpSL (Equation 5.3) is the overall average performance index of all building orienta-

tions for both lift and shear force coefficient (CFL
and CFS

). The performance index is

used for comparison with the gable base model. Ipmax
SL (Equation 5.4) provide a similar

averaged performance index but for the peak lift and peak shear force coefficients (CF max
L

and CF max
S

) instead of the mean force coefficients.
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IpSL =
1

2
(
CGable

FS

CModel
FS

+
CGable

FL

CModel
FL

) (5.3)

Ipmax
SL =

1

2
(
CGable

F max
S

CModel
F max

S

+
CGable

F max
L

CModel
F max

L

) (5.4)

The performance index mathematically represents how many times larger the load on

the gable roof is than the modified model. They cannot be used as a exact representation

of how many times smaller the modified model loads are than the gable base model. They

are used only to provide a comparison of performance not exact load reduction. The

percent reduction of force coefficient (Equation 5.5) will be used in the discussion to show

the percent difference in the shear and lift force coefficients. A positive value means a

reduction in force coefficient and a negative value means an increased force coefficient

compared to the gable base model. The percent difference will be displayed using bar

graphs (Appendix A D) and the performance index will be displayed using bar graphs

in Chapter 5.

% difference =
CF Gable − CF Model

CF Gable

× 100 (5.5)

5.1 Effect of Aerodynamic Modification

The mean force coefficient plots can be seen in Figures A.1 and A.2. The aerodynam-

ically modified models tend to improve the loads compared to the gable base model; all

average performance indices are greater than 1 (Figure 5.1). The variable sloped roofs

(VISR and VDSR) decreased the shear force coefficients, but not as effectively as the

hip and curved corners model. The largest average performance index of the lift force

coefficient was accomplished by the VISR model which had a 14.3% reduction (Figure

A.4). The VDSR model did not provide useful mitigation of lift force coefficient but did

provide a 10.7% reduction in shear force coefficient (Figure A.3). The average perfor-

mance index of the variable sloped roofs were about the same (Figure 5.1). The curved
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corner model could not outperform the hip base model. It provided 20.6% reduction

in the shear force coefficient compared to 23.9% for the hip base model. The curved

corner model and the hip base model had little effect on lift. The hip base model had

the largest average performance index of 1.181, mostly due to a 23.9% reduction of the

shear force coefficients.

Figure 5.1 IpSL comparison of aerodynamic modification models

The peak force coefficient plots can be seen in figures A.5 and A.6. The aerody-

namically modified models, which focus on peak lift load mitigation, tend to increase

the peak shear loads, but the models such as hip base and curved corner models, which

focus on peak shear load mitigation tend to increase the peak uplift. The VISR model

was the only model that provided peak lift mitigation (7.4% reduction as in Figure A.8).

The hip and curved corner models were the only models that provided peak shear load

reduction, 12.8% and 3.1%, respectively (Figure A.7). The hip roof had the largest

average performance index of 1.058 (Figure 5.2).
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Figure 5.2 Ipmax
SL comparison of aerodynamic modification models

5.2 Effect of Aerodynamic Adaptation

5.2.1 Aerodynamic Roof Attachment

The mean force coefficient plots can be seen in figures B.1 and B.2. The aerodynamic

attachments tend to improve the overall loading compared to the gable base model.

From Figure B.4, the edge spoiler model that is flushed with the building provides more

uplift mitigation than the attachment that overhangs. The porous canopy roof model

(PCR) with 10% porosity provides more uplift mitigation than the PCR model with 1%

porosity. From Figure B.3, the flush edge spoiler provides more shear load reduction

than the overhang edge spoiler model. The 1% PCR model provides more reduction in

the shear loads than the 10% PCR. The flush edge spoiler model has the largest uplift

mitigation of 32.3% reduction. The 10% PCR model had the second largest reduction

of 31.1%. The 1% PCR model and the flush edge spoiler model had the most shear
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load reduction of 7.9% and 6.9% respectively. From Figure 5.3, the flush edge spoiler

model has the best overall averaged performance index of 1.276, followed by the 10%

PCR model with 1.233.

Figure 5.3 IpSL comparison of aerodynamic adaptation models

The peak force coefficient plots can be seen in B.5 and B.6. The aerodynamic at-

tachments tend to reduce the peak uplift at the cost of increasing the peak shear loads.

From figure B.8, the flush edge spoiler model has the largest reduction of 26.7% in peak

lift coefficient, followed by the 10% PCR model with a reduction of 22.3%. From Figure

B.7, the flush edge spoiler model increases the peak shear loads by 6.9%. The 1% PCR

and 10% PCR models increase the peak shear loads by 6.6% and 11%, respectively.

From Figure 5.4, the flush edge spoiler model had the best averaged performance index

of 1.150.
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Figure 5.4 Ipmax
SL comparison of aerodynamic adaptation models

5.2.2 Passive Pressure Equalization

The mean force coefficient plots can be seen in Figures C.1 and C.2. The passive

pressure equalization method does not have a great effect on the shear force, but offers

significant lift force coefficient reduction. From Figure C.4, the roof passive pressure

equalization (PPE) method reduced the lift force coefficient by 31.4%, while the wall

PPE reduced the lift force coefficient by 6.5%. From Figure C.3, the roof PPE (8.8%

reduction) outperformed the wall PPE (6.8% reduction). It seems the wall PPE is not

an efficient method to reduce the shear loads, which is inefficient because at a building

orientation of 0◦ the separation around the building causes the transverse loads (Fy) on

each side of the building to oppose each other causing a cancellation effect. At a building
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orientation of 90◦ the longitudinal loads (Fx) have the same effect. This cancelation

reduces the effectiveness of the method at these orientations rendering half of the suction

useless. At other building orientations the suction on the windward side is not strong

enough to reduce suction on the leeward side. The shape of the separation bubble

is unchanged and the form drag is not reduced. The roof PPE produced significant

reductions in the uplift and sufficient reductions in the shear load. From Figure 5.5, the

averaged performance index of the roof PPE was 1.277. The reduction in the separation

over the roof resulted in a reshaping of the separation bubble, therefore reducing the

drag slightly. The roof PPE model provides an effective method to reduce the mean

force coefficients.

Figure 5.5 IpSL comparison of passive pressure equalization models

The peak force coefficient plots can be seen in Figures C.5 and C.6. The passive

pressure equalization method provided no significant peak shear load reduction. From

Figure C.8, the roof PPE method had a 16% reduction in the peak lift force coefficient,

whereas the wall PPE provided no significant change in the peak lift force coefficient.
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From Figure C.7, the roof PPE had a 10.2% increase in the peak shear loads, and the

wall PPE provided a 1.5% reduction. From Figure 5.6, the average performance index

of the roof PPE and the wall PPE was 1.049 and 1.002 respectively. The roof PPE is

only efficient at reducing the peak uplift loads.

Figure 5.6 Ipmax
SL comparison of passive pressure equalization models

5.3 Comparison of Mitigation Methods

The mean force coefficient plots for all models tested can be seen in Figures D.1 and

D.2. The trends of the plots show that the largest uplift occurred for most models at

building orientation of 60◦. Figure D.2 shows that when the wind is oriented parallel

to the ridge of the roof (θ = 0◦), the uplift is smaller than when the wind is oriented

perpendicular to the ridge (θ = 90◦). From Figure D.1, the shear force has the opposite

effect. When the wind is parallel to the ridge the shear force is larger than when the

wind is perpendicular to the ridge. The reason for this is the projected area in the flow

is larger for wind parallel to the ridge than when the wind is perpendicular to the ridge.
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This increase in projected area increases the drag of the model, therefore increasing the

shear force on the building. The largest mean shear forces occur between 30◦ and 60◦.

To determine the worst wind loads on a building through load measurements, a building

orientation of around 60◦ would provide the largest values compared to testing at every

15◦ increments used in this study.

The primary goal of this study was to determine a useful method to reduce the wind

loads on a roof. From Figure D.4, the models which showed significant uplift mitigation

were the flush edge spoiler, roof PPE, and the 10% PCR with 32.3%, 31.4%, and 31.1%

reduction, respectively. From Figure D.3, the models which showed significant shear load

mitigation were the hip base model and the curved corner model with 23.9% and 20.6%

respectively. From Figure 5.7, the best overall averaged performance was accomplished

by the flush edge spoiler, roof PPE, and the 10% PCR models with 1.276, 1.277, and

1.233, respectively.

Figure 5.7 IpSL comparison of all mitigation models
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Model Type θCmax
Fmax

L

Cmax
F max

L
θCmax

FL
Cmax

FL
Factor

15◦ Gable 60 1.433 60 0.392 3.659
VDSR 60 1.491 60 0.385 3.871
VISR 60 1.353 45 0.359 3.771
Hip 15 1.553 60 0.372 4.172

PPE - Roof 60 1.193 60 0.276 4.331
Edge Spoiler - Flush 90 1.196 60 0.270 4.429

Edge Spoiler - Overhang 90 1.573 60 0.309 5.089
PCR - 10% 90 1.414 45 0.300 4.712
PCR - 1% 90 1.190 60 0.273 4.363

Curved Corner 60 1.600 60 0.390 4.104
PPE - Wall 60 1.586 60 0.373 4.254

Table 5.1 Maximum mean and peak uplift loads

The peak force coefficient plots for all models tested can be seen in Figures D.5

and D.6. The values of the longitudinal peak force coefficient (CF max
x

) at 90◦ and the

transverse peak force coefficient (CF max
y

) at 0◦ do not go to zero. The peak values are

taken at an instance in time, therefore the opposing forces are not of the same magnitude.

The reason for this mismatch is because of the random turbulence in the boundary layer

wind. The peak lift force coefficient for most models still had a maximum at 60◦ building

orientation. The roof attachment models seem to have skewed the maximum peak force

coefficient to occur at 90◦.

Table 5.1 shows the building orientation at which the maximum peak lift force co-

efficient occurred, the maximum peak lift force coefficient (CF max
L

), the maximum mean

lift force coefficient (CFL
), and the factor by which the peak force coefficient is larger

than the mean force coefficient for each model. The table shows that the peak values are

3.6 times larger than the mean values for the gable base model. The table also shows

that the multiplication factor between the peak and the mean values is greater for all

mitigation models. This shows that the mitigation methods reduce the mean loads more

efficiently than the peak loads.
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Figure D.8 shows that the flush edge spoiler, 10% PCR, and roof PPE methods offer

the most uplift reduction with values of 26.7%, 22.3%, and 16%, respectively. From

Figure D.7, the hip roof is the only model to provide any significant peak shear force

coefficient reduction (12.8%). The averaged peak force performance (Figure 5.8) is less

than the averaged mean load performance for all models. The largest values were for the

flushed edge spoiler and the 10% PCR models with values of 1.15 and 1.094, respectively.

Once again this reiterates the fact that the mitigation methods are less efficient in peak

load mitigation.

Figure 5.8 Ipmax
SL comparison of all mitigation models
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CHAPTER 6 SUMMARY, CONCLUSIONS, AND FUTURE

WORK

6.1 Summary and Conclusions

The research in this thesis is purely a comparative study; no attempt has been made

to relate load results to pressure measurement or to field test. The traditional gable

roof was compared to ten new designs which focused on aerodynamically modified roof

shapes or externally added device to the existing roof. The results showed that the

edge spoiler, the porous canopy roof, the variable sloped roofs, and passive pressure

equalization provided wind-induced uplift load mitigation. The models with curved

corners and hip roof provided shear load mitigation in high winds. Mean uplift load

reductions of over 30% and shear load reduction of over 20% are possible with some of

these methods. The largest mean lift force coefficients occurred at 60◦ and the largest

mean shear force coefficients occurred between 30◦ and 60◦. The largest peak uplift

force coefficient occurred at 60◦, except the roof attachment models and the hip roof.

The roof attachment models saw the largest peak uplift force coefficient at a building

orientation of 90◦. The hip roof model saw the largest peak uplift force coefficient at a

building orientation of 15◦. Overall the methods had a tendency to reduce the mean lift

force coefficient more effectively than the peak lift force coefficients. The edge spoiler

proved to outperform the other methods in uplift load mitigation. This method should

have relatively low material and implementation cost because of its simplistic design

compared to some of the other methods considered for residential buildings. The porous
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canopy roof and passive pressure equalization methods also would provide adequate

load mitigation, but create many design and implementation issues which need to be

resolved before they can become a commercial product. These would require more

construction material to build increasing the cost of implementation. The problems

associated with these methods, coupled with the fact that their performance was less

than the edge spoiler method, lowers the benefits that these methods could offer for

residential buildings.

6.2 Future Work

This study was a preliminary investigation to explore possible techniques that could

provide wind load mitigation for residential one-story gable roof buildings with the

goal that similar techniques can be generally used across all low-rise buildings. The

continuation of this study could include the following suggestions.

• The effect of momentum injection − A model utilizing a rotating cylinder along

the ridge of the gable roof was built in the current study and ready for the wind

tunnel testing.

• The effect of tangential boundary layer blowing− This method re-energizes the low

momentum boundary layer by passively taking air from one location and injecting

it into the separation bubble tangentially to the surface.

• The effect of combining methods − Most of the methods saw significant uplift

mitigation at the cost of increased shear load. The edge spoiler, porous canopy

roof, and variable increasing sloped roof methods can be combined with the hip

or curved corner models to improve the performance.

• The effect of complex terrain − The influence of various sized hills, valleys, and
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gentle slopes on the suburban boundary layer flow and its effects on the effective-

ness of these methods should be studied.

• The effect of surrounding buildings − A residential community is comprised of

many surrounding structures. The proximity of other building in relation to the

test building will affect the flow around the building. This should be studied in

relation to the suggested techniques.

• Particle Image Velocimetry − A PIV study can be used to visually understand

the flow pattern and the vortex structure around the modified buildings. This will

provide a better understanding of the mechanics of each method and also provide

insight to any improvements which can be made.
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APPENDIX A RESULTS OF AERODYNAMICALLY

MODIFIED MODELS

Figure A.1 Mean shear force coefficient plot

Figure A.2 Mean lift force coefficient plot
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Figure A.3 Percent difference of mean shear force coefficient

Figure A.4 Percent difference of mean lift force coefficient
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Figure A.5 Peak shear force coefficient plot

Figure A.6 Peak lift force coefficient plot
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Figure A.7 Percent difference of peak shear force coefficient

Figure A.8 Percent difference of peak lift force coefficient
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APPENDIX B RESULTS OF AERODYNAMICALLY

ADAPTED MODELS

Figure B.1 Mean shear force coefficient plot

Figure B.2 Mean lift force coefficient plot
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Figure B.3 Percent difference of mean shear force coefficient

Figure B.4 Percent difference of mean lift force coefficient
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Figure B.5 Peak shear force coefficient plot

Figure B.6 Peak lift force coefficient plot
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Figure B.7 Percent difference of peak shear force coefficient

Figure B.8 Percent difference of peak lift force coefficient
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APPENDIX C RESULTS OF PASSIVE PRESSURE

EQUALIZATION MODELS

Figure C.1 Mean shear force coefficient plot

Figure C.2 Mean lift force coefficient plot
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Figure C.3 Percent difference of mean shear force coefficient

Figure C.4 Percent difference of mean lift force coefficient
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Figure C.5 Peak shear force coefficient plot

Figure C.6 Peak lift force coefficient plot
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Figure C.7 Percent difference of peak shear force coefficient

Figure C.8 Percent difference of peak lift force coefficient
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APPENDIX D RESULTS OF ALL MITIGATION MODELS

Figure D.1 Mean shear force coefficient plot

Figure D.2 Mean lift force coefficient plot
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Figure D.3 Percent difference of mean shear force coefficient

Figure D.4 Percent difference of mean lift force coefficient
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Figure D.5 Peak shear force coefficient plot

Figure D.6 Peak lift force coefficient plot
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Figure D.7 Percent difference of peak shear force coefficient

Figure D.8 Percent difference of peak lift force coefficient
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