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ABSTRACT 

The spectral volume (SV) and the spectral difference (SD) methods were developed by 

Wang and Liu and their collaborators for conservation laws on unstructured grids. They were 

introduced to achieve high-order accuracy in an efficient manner.  Recently, these methods 

were extended to three-dimensional systems and to the Navier Stokes equations. The 

simplicity and robustness of these methods have made them competitive against other higher 

order methods such as the discontinuous Galerkin and residual distribution methods. 

Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to 

implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) 

condition. When the polynomial order is high or when the grid is stretched due to complex 

geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. 

Solution strategies to remedy this problem include implicit methods and multigrid methods. 

A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is 

employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta 

smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for 

different p-levels is also studied. The multigrid method considered is nonlinear and uses Full 

Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a 

three-level p-multigrid LU-SGS approach in comparison with the single level explicit 

method for the Euler equations for the 3
rd

 order SD method. 

A study of viscous flux formulations was carried out for the SV method. Three 

formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), 

a penalty method and the 2
nd

 method of Bassi and Rebay. Fourier analysis revealed some 



  

 

xxi

interesting advantages for the penalty method. These were implemented in the Navier Stokes 

solver. An implicit and p-multigrid method was also implemented for the above. An overall 

speed-up factor of up to 1500 is obtained using a three-level p-multigrid LU-SGS approach 

in comparison with the single level explicit method for the Navier-Stokes equations. The SV 

method was also extended to turbulent flows. The RANS based SA model was used to close 

the Reynolds stresses. The numerical results are very promising and indicate that the 

approaches have great potentials for 3D flow problems. 
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CHAPTER 1. INTRODUCTION 

Computational fluid dynamics (CFD) has been used to simulate practical flow problems 

for three decades. The performance of numerical methods in CFD tools with respect to both 

reliability and accuracy has been the main area of concern. Extensive research efforts have 

led to the development of more accurate and reliable methods. Various research projects have 

been carried out in the last decade to develop and improve high order accurate algorithms for 

conservation laws. These endeavors have led to the development of many methods including 

the k-exact finite volume [7,23] methods, the essentially non-oscillatory (ENO) [29,1] 

methods, weighted ENO [33,85] methods, discontinuous Galerkin method [18-21], residual 

distribution method [25] and the spectral volume (SV) [77-81] and spectral difference (SD) 

[42,82,83] methods. In spite of the above developments, most of the current calculations in 

computational aerodynamics, aero-acoustics and CFD are performed using methods that are 

at most 2
nd

 order accurate. Not only are high order methods more accurate, they also have the 

potential to reduce the CPU time required to obtain the solutions. The above serves as the 

most important motivational argument for conducting the present research. The goal of this 

thesis is to take part in the development of higher order methods for conservation laws on 

unstructured grids. In particular, the thesis deals with the SV and SD methods of 

discretization of the wave, the Euler and the Navier Stokes equations, development of an 

implicit and p-multigrid for them, obtaining stable, accurate and robust viscous flux 

formulations, a stability analysis for the above and finally extending it to turbulent flows. 
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1.1 Motivation 

CFD has undergone an explosive growth in the last two to three decades. This growth was 

facilitated by increases in computational resources, progresses in geometric modeling and 

grid generation and adaptation, improvements in physical and turbulence models and better 

and faster numerical methods. Most of the current commercial CFD packages are now 

capable of simulating complex large scale problems. These packages use the standard finite 

volume approach for discretizing the Euler and the Navier-Stokes equations. Upwinding [71, 

56,72,57,74] was integrated into these algorithms in the 1980’s. Improved techniques for 

viscous flows gave the solvers enough robustness to handle complex ”real world” 

applications. Major advances in the applications of finite volume methods to RANS 

(Reynolds –Averaged Navier-Stokes) based simulations happened in the 1990’s. The 

difficulty in generating smooth structured grids for complex geometries has prompted the 

research and development of unstructured grid algorithms for the last 2 decades [5,53,45,48]. 

In spite of all these advances, most of the algorithms used are at best second order accurate. 

In other words, the error decreases as O (h
2
), with h being the mesh size 

Even though second order methods have achieved successes, there exist several areas 

where their performance is unsatisfactory, e.g., for vortex-dominated flows including 

helicopter blade vortex interactions and flow over high lift configurations. Higher order 

methods are more successful in handling these flows. For example, high order compact 

methods have demonstrated much better results than their lower order counterparts [76].  

The advantage of higher order methods is evident. By definition, the error of a numerical 

scheme is said to be of order k+1 if the solution error e decreases with the mesh size h 

according to the following law: 
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1+= k
che                                                                 (1.1) 

where c is the constant of proportionality. Thus for a third order scheme, if the grid size 

halves, the error should be 1/8 of that on the coarse mesh. In general, a higher order method 

could reduce the degrees of freedom (DOFs) required to obtain a desired accuracy level. This 

corresponds to potentially obtaining the desired result in a shorter time span. Figure 1.1 

shows the 2
nd

 order finite volume and 4
th

 order spectral volume meshes around an airfoil 

[76]. The 2
nd

 order simulation has more DOFs than the 4
th

 order solution.  Figure 1.2 shows 

the entropy error associated with the above methods. The 4
th

 order simulation yielded errors 

much lower than the 2
nd

 order simulation.  

 

                            (a)                                                                                        (b) 

Figure 1.1.  2
nd

 order finite volume mesh (a): (192x64x2) and 4
th

 order SV mesh (b) :( 

48x16x2).  Case (a) has 24576 DOF and Case (b) has 15360 DOF.  Taken from Wang et 

al [76]. 
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Figure 1.2.  Entropy errors obtained using the 2
nd

 order finite volume and the 4
th

 

order SV methods on meshes from Figure 1.1(a) and 1.1(b) respectively. 

 

 

Figure 1.3.  Error levels attained by different grids for the Couette flow problem 

 

In many cases, higher order methods also consume lesser CPU time (for a given error) 

than their lower order counterparts. Figure 1.3 shows the error associated with successively 
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refined grids and their corresponding time using the 2
nd

 order FV and the 4
th

 order SV 

method for the Couette flow problem. It can be seen that the 4
th

 order SV method can attain a 

much lower error level than the 2
nd

 order FV if both of them take nearly the same time to 

converge. 

In theory, the traditional finite volume methods can be used to obtain high-order accuracy. 

This can be done by using an extended stencil. However it is difficult to obtain a stable 

scheme using the above approach. In addition, it requires enormous memory to store the 

reconstruction coefficients, especially in three dimensions. In a recent implementation of a 

third order finite volume method with a quadratic reconstruction by Delanaye and Liu [23], 

the average size of the reconstruction stencils was around 50-70. The average stencil size for 

a fourth order finite volume scheme is estimated to be around 120. Moreover it is tough to 

implement the above approach on unstructured grids. An alternative approach namely the 

discontinuous Galerkin (DG) method [18, 19 and 22] has been in use for the last decade and 

a half. It has had success in handling complex flows. Nevertheless, its implementation on 

unstructured grids is quite complex, involving both volume and surface integrals. 

Wang and Liu came up with the spectral volume [77,78,79,80,81] and spectral difference 

[42,82,49] methods during the early 2000’s. They share many similar properties with the DG 

method, such as discontinuous solution space and compactness. They mainly differ on how 

the DOFs are updated. The DG being a derivative of the finite element method has unknown 

the elemental nodal values as DOF. The spectral volume being a derivative of the finite 

volume has subcell averages as its DOF while the spectral difference has point wise values as 

DOF. In terms of complexity, DG requires both volume and surface integrations. In contrast, 

SV requires only surface integrations and the SD requires differentiations. They extended 
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these methods to three –dimensional hyperbolic systems on unstructured tetrahedral meshes. 

Recently Sun et al. [68] implemented the method for the laminar Navier-Stokes equations. 

This thesis deals exclusively with these two methods. 

1.2 Objectives of the present study 

1.2.1 Primary objective 

The recent efforts in the development of the spectral volume and difference methods are 

primarily focused on the spatial discretization. The temporal discretization methods have 

lagged behind. Usually, explicit temporal discretizations such as multi-stage SSP (Strong 

Stability Preserving) Runge–Kutta schemes are used to advance the solution in time. In 

general, explicit schemes and their boundary conditions are easy to implement, vectorize and 

parallelize, and require only limited memory storage. However, for large-scale simulations 

and especially for high-order solutions, the rate of convergence slows down dramatically, 

resulting in inefficient solution techniques to steady state solution. In order to speed up 

convergence and to improve the robustness, a multigrid strategy and/or an implicit temporal 

discretization is required. 

The primary objective of this thesis is to develop a fast, low storage p-multigrid method 

for the spectral volume and spectral difference methods to solve the compressible Euler 

(spectral difference) and Navier Stokes (spectral volume) equations on unstructured grids. 

Explicit SSP multi-stage Runge–Kutta method and implicit lower–upper symmetric Gauss–

Seidel (LU-SGS) method are implemented, used, and discussed as iterative smoothers. 

Unlike the traditional p-multigrid methods where the same time integration scheme is used 

on all approximation levels, we sometimes implement the multi-stage Runge–Kutta scheme 
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as the iterative smoother on the higher level approximations, and the LU- SGS method as the 

iterative smoother on the lowest level approximation in an attempt to significantly reduce the 

storage requirements 

1.2.2 Secondary objective 

While the spectral volume method has been well studied for the discretization of first 

order hyperbolic problems, their extension to elliptic problems is less obvious. The 

implementation of the local discontinuous Galerkin (LDG) method by Sun et al [68] has been 

the only significant work in this area. More recent numerical tests indicated that the 

computational results using LDG are somewhat dependent on how the faces are oriented, 

especially for unstructured and non uniform grids.  

       The secondary objective of this thesis is to test another technique to discretize the 

viscous fluxes. The new procedure is a penalty-like method based on the algorithm 

developed by Bassi and Rebay. This procedure is more symmetrical than LDG and hence is 

better suited for unstructured and non uniform grids. Fourier analysis revealed better 

accuracy, higher time step limit (for explicit simulations) and faster convergence for the 

penalty approach when compared to LDG. These techniques are also compared with the 2
nd

 

approach of Bassy and Rebay [11]. 

1.3 Outline of the thesis 

 This thesis is organized as follows: Chapter 2 gives a basic introduction to the spectral 

difference and spectral volume methods. This includes some historical developments prior to 

the SD and SV methods, their formulation and presentation of the governing equations. 
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Temporal relaxation schemes are discussed in chapter 3. In chapter 4, we focus on the 

nonlinear FAS p-Multigrid method. The various viscous flux formulations are presented in 

chapter 5. This includes detailed linear analysis for the stability, accuracy, convergence and 

multigrid convergence properties. Chapter 6 has results for the SD and SV formulations. This 

includes validation test cases using 1D wave propagations and diffusion equations and 

solutions to Euler (SD) and Navier-Stokes (SV) equations. Chapter 7 summarizes the entire 

work done during the doctoral stage and suggests possible work for the future. 
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CHAPTER 2.  INTRODUCTION TO THE SPECTRAL 

DIFFERENCE AND SPECTRAL VOLUME METHODS 

2.1 Introduction 

Wang and Liu et al [77-81,42,82,49] came up with the concept of spectral difference and 

spectral volume methods in the early 2000’s. They were developed to solve conservation 

laws with the following properties:  

A. Conservative 

B. High-order accurate 

C. Geometrically flexible 

D. Computationally efficient 

E. Simply formulated. 

The earliest, easiest and most widely used numerical method for conservation laws is the 

finite-difference (FD) method employing a body-fitted curvilinear coordinate system. The 

spatial differences are essentially one dimensional and the spatial differencing is carried out 

along coordinate directions. It is imperative that the stencil be modified with uni-sided 

formulas near boundaries. The unknowns are the solution values at the grid nodes. The 

differencing can degrade the accuracy if the grid is not sufficiently smooth. In addition, the 

integral conservation laws are only satisfied to second order accuracy. 

Finite volume methods were developed to satisfy the integral conservation laws. The 

unknowns (or DOFs) are the cell averaged quantities. The cell averages of the neighboring 

cells are used to compute the gradients. This process is called reconstruction. The flux 
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integral over each control volume boundary is computed using Riemann solvers. The flux 

and the volume integrals are computed by a single point quadrature and hence are 2
nd

 order 

accurate. In addition, the reconstructions done are along coordinate directions. In general, the 

finite volume and finite difference methods suffer loss of accuracy for curved and non 

smooth grids. 

Unstructured grids comprising of triangles in 2D and tetrahedral in 3D are used to achieve 

geometric flexibility. Most commercial packages use the unstructured finite volume method 

for solving conservation laws.  Theoretically, a polynomial reconstruction of any desired 

accuracy can be obtained using the neighboring cell averages. However, it is possible to 

obtain a singular stencil. In addition, the unstructured nature of the grid may warrant a least 

squares type approach. Since each cell employs a different stencil, storage becomes a costly 

issue, especially in three dimensions. As a result, most unstructured finite volume solvers are 

at most 2
nd

 order accurate. 

One could use the finite difference method on unstructured grids, with the conservative 

values at grid nodes acting as the unknowns. The reconstruction is local in terms of the 

neighboring values determined by the unknowns. However this method suffers from the 

disadvantages listed in the above paragraphs. 

The spectral difference (SD) method combines the salient features of structured and 

unstructured grid methods to achieve high computational efficiency and geometric flexibility. 

It utilizes the concept of discontinuous and high-order local representations to achieve 

conservation and high accuracy. Universal reconstructions are obtained by distributing 

unknown and flux points in a geometrically similar manner for all unstructured cells. In this 

thesis, we consider first order (p0), second order (p1) and third order (p2) schemes. The 
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unknowns are updated using the differential form of the conservation law equations by 

approximating the flux derivatives at these unknown points. In order to obtain the flux 

derivatives, we use a polynomial reconstruction of the fluxes from their values at available 

flux points to the unknown points. As a result, the method is defined as a difference method.  

The SD method is similar to the multi-domain spectral method developed by Kopriva [37, 

38] and can be viewed as an extension of the multi-domain spectral method to a simplex 

unstructured grid.  Details of the SD discretization procedure are given in the next section. 

Spectral volume is a numerical method for conservation laws.  It has all the desired 

properties of a higher order scheme. The spectral volume (SV) method can be interpreted as a 

derivative of the finite volume method where each cell (called spectral volume) is sub 

divided into a structured set of smaller subcells(called control volume). This scheme exhibits 

many of the desirable properties of the Discontinuous Galerkin (DG) method. It achieves 

high-order accuracy on unstructured grids and has a compact stencil (as each SV only 

communicates only with its nearest neighbors), thus making it suitable for parallel 

applications. As the DOFs are the control volume averages, the limiting phenomenon can be 

applied at a control volume level. Thus the SV scheme can attain a higher resolution for 

discontinuities than the DG method. In this thesis, we consider 2
nd

, 3
rd

 and 4
th

 order SV 

schemes. Details of the SV discretization procedure are given in the subsequent sections. 

2.2 The SD formulation 

We could write most linear or nonlinear equations in 2D conservative form 
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If the unsteady 2D Euler equations are considered, Q
~

is a vector of conservative variables, 

the viscous fluxes are zero vectors and F
~

 and G
~

 are the inviscid fluxes and are given by 
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where ρ  is the density, u and v are the velocity components in x and y directions, p is the 

pressure, and E is the total energy. The pressure is related to the total energy by 

)(
2

1

1

22 vu
p

E ++
−

= ρ
γ

 with constant ratio of specific heats 4.1=γ  for air. 

 The current cell residual term )
~

(QRc  can be evaluated once the neighboring three cells are 

known. We can denote the unknown and flux points for cell i  as ijr ,  and ikr ,  respectively. 

The solutions of Q
~

 at flux points can be conveniently constructed using a Lagrange-type 

polynomial basis function )(, rL ij  as 

                                           ∑
=

=
pN

j

ijikijik QrLrQ
1

,,,,

~
)()(

~
,                                            (2.3) 

where 
2

)2)(1( ++
=

pp
N p

 is the number of unknown points required to support a degree p 

polynomial construction as already illustrated in figure 2.1. As a result, )(
~

krQ is continuous 
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inside individual cell element, while across the element interfaces, it is discontinuous and the 

inviscid fluxes )(
~

krf  and )(~
krg  are not uniquely determined.   

 

 
         (a)                                               (b)                                               (c) 

Figure 2.1: Placement of unknown ( ) and flux ( ) points for a triangular element. 

Case (a): First order; Case (b):  Second order; Case (c): Third order. 

 

 We employ one-dimensional Riemann solvers, namely, the Rusanov [59] or Roe [56] flux 

to obtain a unique normal component of the flux )(~)(
~

)( kkk rgrfrF +=  at the element 

boundary interface for an edge point. The local cell values are used for the tangential 

components as shown in figure 2.2, i.e. ),)(( nL FlQF •  and ),)(( nR FlQF •  for the left cell 

and right cell respectively. However, for the corner flux points, multiple values are allowed 

for different cells using the procedure as shown in [82]. In other words, two faces are 

associated with a particular corner point of a cell and we can use either the Rusanov or Roe 

flux to compute unique normal components of the two fluxes, i.e. 1nF  and 2nF .  

where 1nF  and nRF  are the normal component of the flux obtained from the left and right cells 

respectively. 



  

 

14

 A flux vector )( ,ikrF  at this corner point for this particular cell can be constructed using 

1nF  and 2nF  i.e. two Riemann fluxes are computed (as there are two faces). The actual flux is 

obtained by the vectorial sum of the above. 

 
Figure 2.2: Flux computation for a corner ( ) and an edge point ( ) using one-

dimensional Riemann solvers. 

 

 Once all the flux vectors are determined, they are used to form a degree p+1 polynomial, 

i.e., one order higher than the polynomial used in (2.3).  The flux at any location can be 

expressed as follows,                        

∑
+

=

=
1

1

,, )()(
pN

k

ikiki FrMrF ,                                                   (2.4) 

where )(, rM ik are the set of shape functions defined uniquely by the flux point locations.  We 

are now ready to compute the divergence of the flux at any locations inside the particular cell 

and for the unknown point locations; they can easily computed according to  

  ∑
+

=

•∇=•∇
1

1

,,,, )()(
pN

k

ikijikiji FrMrF .                                   (2.5) 
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The residual term )
~

(QRc  used in (2.1) is simply the negative value of the divergence. Once 

the SD spatial discretization is completed, temporal relaxation schemes are used to update the 

solution vector.  

2.2.1 Location of flux and solution points  

It is the location of the solution and the flux points is an important aspect of SD. If these 

points are distributed in a geometrically similar fashion, the formulas for the flux derivatives 

become universal and can be obtained as a weighted combination of the geometric variables 

and the fluxes. Here initial concepts and conditions are explained and several hypotheses are 

mentioned in brief. The locations of these points are determined by symmetry restrictions, 

order of the method and by stability limitations. In addition, to reduce the number of 

computations, one can relocate the solution points on the boundary to coincide with the Flux 

points. Moreover, it would be wise to reduce the number of flux points located on the 

boundary (as these require more Riemann computations). These suggestions should be 

implemented only after making sure that the resulting reconstruction matrix is non singular, 

well conditioned and the entire system is stable. 

2.3 The SV formulation 

2.3.1 Basic formulation 

 Equation (2.1) is considered in domain Ω with the appropriate initial and boundary 

conditions. Domain Ω is discretized into I non-overlapping triangular (2D) cells. In the SV 

method, the simplex grid cells are called SVs, denoted Si, which are further partitioned into 
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CVs, denoted Cij, which depend on the degree of the polynomial reconstruction. Figure 2.3 

shows linear, quadratic and cubic partitions in 2D.  

   
                             

(a)                                                 (b)                                                   (c) 

Figure 2.3 Partitions of a triangular SV . Linear, quadratic and cubic 

reconstructions are shown in Case (a), Case(b) and Case(c) respectively. 

 

We need N unknown control volume solution averages (or DOFs). Np is calculated using the 

below formula 

                    
2

)2)(1( ++
=

mm
N p                                                     (2.6) 

where m is the degrees of the polynomial, constructed using the CV solution averages. The 

CV averaged conserved variable for Cij is defined as 

                    ∫=
jiCji

ji
QdV

V
Q

,
,

,

1
, j=1…Np, i=1…I,                                 (2.7) 

where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a m
th

 degree 

polynomial can be constructed such that it is (m+1)
th

 order approximation to Q
~

.  In other 

words, we can write the polynomial as 

                    
ji

N

j

ji QyxLyxp
p

,

1

),(),( ∑
=

= ,                                           (2.8) 

where the shape functions Lj(x,y) satisfy 
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Equation 2.1 is integrated over the Cij. This results in the below equation 

0).(
1

1,

=+
∂

∂
∑ ∫

=

K

r Arji

dAnF
Vt

Q rr
,                                     (2.10) 

 

where  F
r

= )~~,
~~

( vv ggff −−  where Ar  represents the r
th

  face of Cij,  n
r
 is the outward unit 

normal vector of Ar  and K is the number of faces in Cij. The surface integration on each face 

is done using a (m+1)
th

  order accurate Gauss quadrature formula. The fluxes are 

discontinuous across the SV interfaces. The inviscid fluxes are handled using a numerical 

Riemann flux like the Rusanov flux [59], the Roe flux [56] or AUSM flux [41].  The 

handling of the viscous fluxes is discussed in the next section. 

2.3.2 Discretization of viscous fluxes 

 The following 2D diffusion equation is considered first in domain Ω with the appropriate 

initial and boundary conditions 

                                                              0)( =∇⋅∇−
∂

∂
u

t

u
µ ,                                             (2.11) 

where µ is a positive diffusion coefficient. We define an auxiliary variable  

uq ∇=
r

.                                                            (2.12) 

Equation 2.11 then becomes 

0)( =⋅∇−
∂

∂
q

t

u r
µ .                                               (2.13) 

Using the Gauss-divergence theorem, we obtain 
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ud rr
µ .                                        (2.15) 

where  ijq
r

 and iju  are the CV averaged gradient and solution in Cij, K is the number of faces 

in Cij, Ar represents the r
th

 face of  Cij and n
r

 is the unit surface normal vector. As the 

solution u is cell-wise continuous, u and q at SV boundaries are replaced by numerical fluxes 

q
r

and u . The above equations thus become 

∫∑ ⋅=
= Ar

K

r

ijij dAnuVq
rr

1

,                                            (2.16) 

∑∫
=

=⋅−
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ud

1

0
rr

µ .                                       (2.17) 

Chapter 5 discusses the various viscous formulations available for q
r

and u . 

2.3.3 Curved boundary implementation 

As mentioned in the earlier chapter, it is possible to achieve high-order with fewer DOF 

than with lower order methods. In all the traditional second order simulations, all the curved 

boundaries are represented with line-segments or planar facets (in 3D). This is compatible 

with the linear data interpolations used in second-order solvers. Thus in order to minimize 

the solution errors produced by this ‘‘crude’’ approximation of curved boundaries, many 

elements may be required to just preserve the geometry with a reasonable precision. If the 

above concept is used in high-order simulations, unnecessarily fine grids may be required 

near curved boundaries to represent the boundary with high fidelity. Obviously this practice 
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can waste significant computational resources. In addition, the whole approach goes against 

the basic principle of high order methods i.e. to achieving high-order with fewer DOF A 

much more desirable approach is to represent curved boundaries with higher order 

polynomials compatible with the order of the data reconstruction. 

We use quadratic or cubic polynomials to approximate boundaries in third and fourth-

order SV schemes respectively, which employ quadratic and cubic polynomials 

(respectively) to represent the solution variables. Following the usual practice in high-order 

finite element method [78], isoparametric SVs can be used to map SVs with curved 

boundaries into the standard SV. The basic assumption is that a one-to-one transformation 

exists between a general SV in the physical space (x, y) and the standard triangle in the 

computational domain (ξ,η) as shown in Fig. 2.4 (taken from Wang et al [76]). In other 

words,  

 ξ=ξ(x,y),                                                                (2.18) 

η=η(x,y).                                                                (2.19) 

 
Figure 2.4 Transformation of a general SV in the physical domain to the standard 

triangle in the computational. Taken from Wang et al [76] 

 



  

 

20

The partition is now performed in the standard triangle (D). An inverse transformation is 

used to obtain the corresponding partition in the physical domain as shown in Fig. 2.5 (taken 

from Wang et al [76]). In other words,  

x=x(ξ,η),                                                           (2.20) 

y=y(ξ,η).                                                           (2.21) 

 
Figure 2.5 The partition in the standard triangle is transformed to the physical domain 

using an inverse transformation. Taken from Wang et al [76] 

 

By definition, the DOFs are the CV averaged solution variables i.e.  
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So if J is the Jacobian matrix of the transformation,  

∫
∫

=
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ddJ
Q ηξηξ
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||

1
,

.                                        (2.23) 

The above can be rewritten as follows: 

∫∫ =
DD

ji ddJQddJQ ηξηξηξ ||),(||, .                                     (2.24) 

Equation 2.24 is basically a reconstruction problem. It can be solved given the 

reconstruction coefficients. However, the reconstruction coefficients are strictly dependent 

on the geometry. Therefore it is necessary to physically store these coefficients for SVs with 
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curved boundaries. The number of curved SVs is expected to be small compared with the 

total number of SVs in any simulation. 

2.3.4 Simplified curved boundary formulation 

 The basics of the general curved boundary formulation were given in 2.3.3. The general 

formulation assumes all the faces (in the physical domain) to be curved faces. This scenario 

seldom occurs in practice. Most CFD simulations require only one boundary of the SV as a 

curved boundary as shown in Fig 2.6. As a result, simplified curved boundary formulations 

can be used.  

 
Figure 2.6 Simplified quadratic and cubic SVs with only one curved face. Taken from 

Wang et al [76] 

 

For instance, the simplified quadratic SV has the following transformation 

∑
=

=
4

1j

jj rMr
rr

,                                                           (2.25) 

where =r
r

(x,y) and the above shape functions are 

                                                             ηηξξξηξ −++−= )(231),(1M , 

                                                             )(2),(2 ηξξξηξ ++−=M , 
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    )1(4),(4 ηξξηξ −−=M .                                       (2.26) 
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CHAPTER 3. TIME INTEGRATION ALGORITHMS 

3.1 Introduction  

In general, the high-order spatial operators are much stiffer than lower-order ones. In 

addition, for time accurate problems, the maximum allowable CFL number decreases with 

increasing the order of accuracy for explicit schemes. This problem becomes even more 

severe for viscous flow problems with highly clustered meshes: explicit high-order methods 

are adversely limited by time step size. Hence the development of efficient time integration 

schemes for high-orders is essential. Some of the existing methods are reviewed in the next 

two paragraphs. 

Explicit Runge Kutta schemes have been one of the most widely used methods of time 

integration. One particular class of the above is the strong-stability-preserving (SSP) Runge 

Kutta schemes. This class of time integration method was originally developed by Shu [64], 

and Shu and Osher [63] and named TVD Runge–Kutta schemes. It was also the topic of 

research for many other researchers e.g.  [65,28]. This class of Runge Kutta schemes 

preserves the stability properties of forward Euler in any norm or semi-norm. They have been 

popular for high-order spatial operators because of its TVD or SSP property. The coefficients 

of these schemes are not unique. However, optimal versions with maximum CFL numbers 

have been derived in [64] for the second and third order schemes, and by Spiteri and Ruuth 

[65] for the fourth-order counterpart. More details can be found in a recent review article by 

Gottlieb [27].  

The limitations of the explicit methods were mentioned in the first paragraph of this 

chapter. It is obvious that implicit algorithms are necessary to overcome the time step limit 
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suffered by explicit algorithms especially for highly clustered viscous meshes. Many types of 

implicit algorithms have been successfully developed for unstructured grid-based solvers in 

the last two decades, e.g., the element Jacobi, Gauss–Seidel, precondition GMRES [8,60,75], 

matrix-free Krylov [55], lower–upper symmetry Gauss–Seidel [2,62], and line-implicit 

algorithms [45]. In addition, these implicit algorithms can serve as ‘‘smoothers’’ for 

geometric or p-multigrid approaches. Many of these algorithms have been successfully 

applied to high-order spatial discretizations (e.g. [43], [55] for DG). In almost all implicit 

approaches, the non-linear system of equations is linearized and then solved with an iterative 

solution algorithm. Even though these implicit methods offer extremely high speedup, they 

need huge memory to store the associated matrices.  This is greatly felt for higher order 

methods. One intelligent way to mitigate the above problem is to use the traditional multi 

stage Runge-Kutta method as the higher level smoother and the implicit scheme for the lower 

levels [43]. 

  The following unsteady equation is considered in the current thesis and the time 

integration schemes (either explicit or implicit schemes) can be used as a smoother.  

)
~

(

~

QR
t

Q c

i=
∂
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,                                                         (3.1) 

where )
~

(QR
c

i denotes the residual vector of the current cell and Q
~

 is the solution vector. 

The remainder of the chapter gives the formulations for the three stage SSP Runge kutta 

schemes and the implicit LU-SGS method.   
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3.2 The explicit method 

 We mainly concentrate on the three stage SSP SSP Runge kutta scheme. The three-stage 

explicit SSP Runge Kutta [64] can be written as follows: 
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                              (3.2) 

The main advantage of the Runge Kutta scheme is that it requires little memory for 

storage. In addition, this method is inherently simple and so is easy to program. These are the 

main reasons for it being one of the most preferred methods of time integration. 

 

The main bottleneck associated with the Runge Kutta scheme is the limit imposed on the 

time step.  Euler (and Navier Stokes) equations for realistic geometries entail a rather strict 

limit on the time step.  Even though the above can be circumvented by using a very higher 

order (several RK steps) scheme, it is seldom used as it required lots of storage and thus 

adversely affects its simplistic nature. This prompts us to switch over to implicit schemes. 

3.3 The implicit method 

It is well known that the explicit scheme is limited by the Courant-Friedrichs-Lewy (CFL) 

condition. When the polynomial order of the SD/SV method is high or the grid is stretched 

due to complex geometries, the convergence rate of the explicit scheme slows down rapidly. 



  

 

26

The implicit methods are normally formulated by the linearization of a given set of 

equations.  

At each current cell c, the backward Euler difference can be written as 
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where n refers to the current time level and n+1 the next time level 
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where nb indicates all the neighboring cells contributing to the residual of cell c. Therefore, 

the fully linearized equations for (3.3) can be written as 
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However, it costs too much memory to store the entire LHS implicit Jacobian matrices. For 

instance, a 3
rd

 order Euler system of equations in 2D would result in a [96x96] matrix per 

cell. In addition, the cost of performing a Gaussian Elimination of that matrix is O(96
3
) i.e. 

O(900000) units. Therefore, we employ a LU-SGS scheme to solve (3.5), i.e., we use the 

most recent solution for the neighboring cells,  
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The matrix 

                 










∂

∂
−

∆
=

c

c

Q

R

t

I
D ~ ,                                                  (3.7) 



  

 

27

 

is the element (or cell) matrix, which is not quite small for 2
nd

 to 3
rd

 order SD schemes. For 

instance, D is [24x24] for the 3
rd

 order SD Euler system of equations. The cost of performing 

a Gaussian Elimination for a matrix of this size is O(24
3
) i.e. O(14000) units. These matrices 

also consume much lesser storage space. 

Since we do not want to store the matrices
nb

c

Q

R

∂

∂
, (3.6) is further manipulated as follows 
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c QQQ ∆−∆=∆ ++ . We can combine (3.6) and (3.8) together to obtain 
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    Equation (3.9) is then solved with a direct LU decomposition solver and sweeping 

symmetrically forward and backward through the computational grid. Note that once (3.9) is 

solved to machine zero, the unsteady residual is zero at each time step.  For steady flow 

problem, we found that the term   
t

Qc

∆

∆ *

    in the right-hand-side of (3.9) can be neglected and 

leading to quicker convergence. Note that *

cQ∆  is the difference between the current solution 

*

cQ  and the solution at the previous time level n

cQ . In reality, the entire system is swept 

several times in order to proceed to the next time level. As a result, *

cQ∆  is influenced by the 

solution occurred several sweeps ago. This introduces an under-relaxation effect. Hence 
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neglecting the 
t

Qc

∆

∆ *

 term accelerates the convergence. We define the solver obtained using 

(3.9) as implicit normal approach.  If  
t

Qc

∆

∆ *

 term is dropped, the iterative solver is defined as 

implicit simplified approach. 
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CHAPTER 4. THE P-MULTIGRID METHOD 

4.1 Introduction 

Multigrid methods were originally developed to efficiently solve linear systems that arise 

from the diffusion operators. These methods rely on the fact that there exist iterative 

methods, called smoothers, which rapidly damp out highly oscillatory components of the 

solution error.  

The commonly used multigrid is the geometric multigrid (also referred to as the h-

multigrid or sometimes as multigrid).  The standard multigrid algorithm (geometric 

multigrid, or h-multigrid) has been used very effectively in CFD to accelerate the rate of 

convergence to steady state. Jameson popularized multigrid in CFD with his original 

combination of Runge Kutta time stepping and multigrid approaches [34]. This triggered 

numerous in the field, e.g., [43,45,35,3,4,32,46,50]. The standard multigrid techniques 

consist of projecting the solution error into a coarser grid and solve the coarser grid version 

of the original problem to obtain an error correction term. This constitutes a 2-grid method. 

By applying the 2-grid method recursively on a sequence of grids, one obtains a general 

multigrid method. In general, a coarser mesh is obtained by doubling the mesh size of the 

finer mesh in all directions. The effectiveness of a multigrid approach is determined by 

several factors viz 

1. All smoothers are more efficient in damping high frequency errors than low 

frequency ones. However the errors on a fine mesh are represented on a coarser 

mesh at higher frequency, which can be damped more effectively. 
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2. Larger time steps can be used on the coarser mesh (in the case of explicit time 

stepping schemes) and errors can be driven out of the computational domain at a 

faster rate. 

Novel work was also done to reduce the stiffness associated with the grid anisotropy and 

due to the low flow speed: by line implicit solvers [45] and semi-coarsening [50] for grid 

coarsening and including low speed preconditioning [69,17,73] for low speed flows. It is 

worth to mention the results of Jameson and Caughley [35] who demonstrated convergence 

to truncation error level using just a few multigrid cycles with a preconditioned non-linear 

LU-SGS smoother. 

4.1.1 An example of geometric multigrid 

Consider a Laplace equation in 1D. The solution in the interior is driven to steady state 

solely due to the values imposed on the boundaries (Dirichlet boundary conditions).  Let us 

consider the case wherein the values at the two boundaries are set to zero. Let the initial 

guess be in the form of a sinusoidal wave which satisfies the boundary conditions. Fine and 

coarse grids are considered as shown in figure 4.1. 

                                                                

          Low frequency errors (fine grid)                           High frequency errors (coarse grid)                     

Figure 4.1: Error distribution on the fine and coarse grids for the 1D Laplace problem. 
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 The imposed errors behave as low frequency errors in the fine grid and as high frequency 

errors in the coarse grid. As expected the correction equation in the coarse grid can be solved 

rapidly as the errors “appear to be of high frequency” in that grid. A speedup of 3 was 

attained for this simulation. 

4.2 The p-multigrid method 

Geometric multigrid is simple, easy to implement and can coded in a recursive fashion. It 

has been implemented in many 2
nd

 order commercial packages. Nevertheless, there exist 

some practical issues with h-multigrid. These include 

A. Geometric multigrids in an unstructured setting is a nightmare. Grid 

coarsening and grid agglomerations can be a nightmare due to the 

bookkeeping involved with the various data structures. 

B. Attaining multiple levels of coarsening is even tougher for unstructured grids. 

C. Implementing multigrid for viscous flows is always problematic. Preferential 

coarsening is needed near boundary layers. This becomes more problematic if 

the grid is unstructured. 

These issues can be overcome by shifting to the p-multigrid method. 

4.2.1 P-Multigrid for higher order methods 

The p-multigrid method is a smoothing operator which hastens the convergence by using 

the coarse levels constructed by reducing the level of the interpolation polynomial p. This 

method was initially proposed by Ronquist and Patera [58] and extended by Maday and 

Munoz [44]. The acceleration of the convergence by the p-multigrid algorithm on Euler 
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equations was demonstrated by Bassi and Rebay [12], Nastase and Mavriplis [51] and Hong 

et al. [43].  Helenbrook [31] examined the performance of the Laplace equation and the 

convection equations in two dimensions. Fidkowski et al. [26] developed a p-multigrid 

approach using an effective line-implicit smoother for their high-order DG Navier–Stokes 

solver. Luo et al [43] demonstrated a low storage p-multigrid approach for a 3D DG Euler 

solver, in which an explicit Runge–Kutta scheme is used for the highest order discretization, 

while implicit SGS smoothers are employed for the lower-order operators. Recently, Nastase 

and Mavriplis [51] developed an hp-multigrid approach for their high-order inviscid DG 

solver, and demonstrated h-independent and p-independent convergence rates.  

 The Gauss-Seidel or Jacobi iterations produce smooth errors when applied on the above 

mentioned nonlinear equations. The error vector has its high frequencies nearly removed in a 

few iterations using a higher order polynomial; but low frequencies are removed very slowly.  

The key idea of the p-Multigrid method is to solve the nonlinear equations using a lower 

order polynomial such that “smooth becomes rough” and low frequencies act like high 

frequencies. Such a p-Multigrid method has been used for high-order discontinuous Galerkin 

method; see [51, 31, 26]. The p-Multigrid method operates on a sequence of solution 

approximations of different polynomial orders. Therefore it offers the flexibility of switching 

between higher and lower polynomial levels without changing the actual geometrical nodal 

grid points.  

Furthermore, p-multigrid is a natural fit to the high-order SV/SD unstructured grid 

framework. Unlike h-multigrid, spatially coarser meshes are not required. Thus, no element 

agglomeration or re-meshing procedures are necessary. Only prolongation and restriction 
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between orders are required. These are calculated during the pre-processor stage using 

mathematical kits like Matlab/Mathematica or Maple and are hardcoded into the system. 

 To accomplish the communication between different levels, restriction (
1−p

pI ,
2

1

−
−

p

pI ) and 

prolongation (
p

pI 1− ,
1

2

−
−

p

pI ) operators are required in addition to the aforementioned relaxation 

scheme as a smoother. Restriction consists of moving solutions and their residuals at the 

unknown points from a space of higher polynomial order to a lower polynomial order. 

Prolongation refers to a reverse procedure in which lower order polynomial solution 

correction is redistributed as corrections to the solutions of the unknown points at a higher 

polynomial order.  

 
1−p

pI  is an operator which restrict from a degree p polynomial space to a degree p-1 

polynomial space. This operator is essentially a matrix. For instance, 1

2I  is a [3x6] matrix and 

0

1I  is a [1x3] matrix in 2D. Thus if [up] is a vector in degree p polynomial space, its restricted 

component in the p-1 degree polynomial space is given by 

                                               [up-1]  = 
1−p

pI  . [up].                                                    (4.1) 

 Conversely, 
p

pI 1−  is an operator which is used to prolongate from a degree p-1 polynomial 

space to a degree p polynomial space. As expected, 2

1I  is a [6x3] matrix and 
1

0I  is a [3x1] 

matrix in 2D. Thus if [up-1] is a vector in degree p-1 polynomial space, its prolongated 

component in the p degree polynomial space is given by 

                                               [up]  = 
p

pI 1−  . [up-1].                                                    (4.2) 
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For instance, 1

2I  for a standard SV partition is given by: 

2.75e-01 -1.18e-01 -1.18e-01 4.71e-01 1.92e-02 4.71e-01 

-1.18e-01 2.75e-01 -1.18e-01 4.71e-01 4.71e-01 1.92e-02 

-1.18e-01 -1.18e-01 2.75e-01 1.92e-02 4.71e-01 4.71e-01 

 

and 2

1I  for a standard SV partition is given by: 

1.46e+00 -2.33e-01 -2.33e-01 

-2.33e-01 1.46e+00 -2.33e-01 

1.46e+00 -2.33e-01 -2.33e-01 

5.77e-01 5.77e-01   -1.55e-01 

5.77e-01  5.77e-01   -1.55e-01  

 5.77e-01 -1.55e-01   5.77e-01  

 

4.2.2 Implementation of the p-multigrid algorithm 

 Classical multigrid method begins with a two-level process. First, iterative relaxation is 

applied using the higher order polynomial, thus basically reducing high-frequency errors. 

Then, a “coarse-grid” correction is applied, in which the smooth error is determined at the 

lower polynomial level. This error is interpolated to the higher polynomial level and used to 

correct the existing higher order solutions. Applying this method recursively to solve the 

lower polynomial level problems leads to multigrid.  

 The p-Multigrid procedure is summarized below: 
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Defining three polynomial levels from the highest to the lowest as p, p-1 and p-2, we want 

to solve: 

                         ppp rQR =)( .                                                             (4.3) 

The rhs pr  is zero for the highest level polynomial.  

     111 )( −−− = ppp rQR ,                                                       (4.4) 

222 )( −−− = ppp rQR .                                                       (4.5) 

 

We employ the implicit LU-SGS schemes as the smoothers for all three levels.  The 

following steps are used to update the solutions on the highest p level in one big V cycle. 

 

• Improve pQ  by application of a few times the smoother similar as equation (3.9)   
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• Restrict the latest solution pQ  to the coarser level for an approximate solution 1−pQ  

                                                                ( )p

p

pp QIQ
10

1

−
− = .                                                    (4.7)  

• Compute the defect on the finest level 

         ( ) ( )
pppppp QRQRrd −=−= .                                        (4.8) 

• Compute the right hand side of equation (4.4) as  

                                 ( ) p

p

pppp dIQRr
10

111

−
−−− += .                                             (4.9) 

• Improve 1−pQ  by application of a few times the smoother   
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o Restrict the latest solution 1−pQ  obtained by 
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o Define the defect on the intermediate level as 

                           ( )1111 −−−− −= pppp QRrd .                                                  (4.12) 

o Compute the right hand side of equation (4.3) as 
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o Improve 2−pQ  by application of a few times the smoother   
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o Correct the current solution on the intermediate level by 

)
~

(
~

22

1

211

s
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p

ppp QQIQQ −−
−
−−− −+= .                                                 (4.15) 

o Improve 1

~
−pQ  by application of a few times the smoother (the same as 

equation 4.10) to get 1−pQ  

 

• Correct the current solution on the finest level by 

)(
~ 0

111 −−− −+= pp

p

ppp QQIQQ                                                  (4.16) 
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• Improve pQ
~

 by application of a few times the iterative smoother (the same as 

equation 4.6) to get pQ  

                                        

 Note that only the implicit LU-SGS smoother is described in the above procedure for 

simplicity.  In practice, we can replace any of the implicit smoothers (4.6, 4.10 or 4.14) with 

a three-stage or five-stage TVD Runge-Kutta scheme. If extension to 3D solver is 

considered, we intend to use the p2 level with an explicit scheme since its storage is small 

and implicit LU-SGS for the p1 and p0 levels. We define this as a mixed-smoother 3-level 

scheme.  In this paper, we also consider using explicit schemes as smoothers for all three 

levels. It is defined as an R-K smoother 3-level scheme.    

 If we iterate the steps marked with hollow circle bullets (○) for one more time, a big W 

cycle is formed.  If these steps are removed, it will be a classical two-level scheme as 

aforementioned.  

 Note that to numerically compute the D matrix at different p levels, we adopted a 

rediscretization approach based on the distribution of unknown and flux points at different 

levels as shown in figure 2.1. The procedure produces very stable results. However, 

Helenbrook and Atkins [30] used an algebraic approach to get a subset matrix from a higher 

order polynomial level, i.e.,
1

11

−
−− = p

pp

p

pp IAIA  for the DG method. They found that it works 

better than the rediscretization approach for the Poisson equation.  In the SD method, we 

need to take into account the effect of neighboring cells (at local polynomial level) during the 

calculations of fluxes. The rediscretization approach utilizes the most recently reconstructed 

solutions at the flux points. In contrast, the algebraic approach is very local and only takes 
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information from the current cell. This phenomenon also occurs in SV. Therefore, the more 

accurate rediscretization approach is used for all the calculations in this thesis unless 

otherwise stated.  

4.2.3 V cycles and the full multigrid(FMG) 

To make multigrid more practical, the basic two level correction scheme is extended to a 

Vcycle and also to full multigrid (FMG). In a V-cycle, a sequence of one or more coarse 

levels is used to correct the solution on the fine level. Proceeding from the finest level to the 

coarsest, a certain number of pre-smoothing steps is performed on each level before the 

problem is restricted to the next coarser level. The problem is solved using the conventional 

methods in the coarsest level. Now while proceeding the other way around (coarsest to 

finest), post smoothing steps are performed on each level after prolongation. Each such V-

cycle constitutes a multigrid iteration. 

We need to start at the finest level to start using the V-cycle idea. The finest level contains 

the largest number of DOF. So smoothing operations in this level are most expensive. In 

addition, the system is also at a very highly ill conditioned state as the initial guess is way 

different from the actual solution. For instance, the free stream conditions serve as the initial 

guess for the solution in Euler/ Navier Stokes simulations. Clearly, this results in a severely 

ill conditioned system for the cells near the wall. The situation is even worse at high orders: 

resulting in a severe limitation for the time steps/CFL number. 

An alternative is to first obtain an approximation to the solution using the coarser levels 

before smoothing on the finest level. This is the premise behind FMG in which V-cycles on 

successively finer levels are used to approximate the solution on the finest level. By the time 
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the solution is prolongated to the finest level, it is usually a close approximation to the final 

solution with the exception of certain high frequency errors that can be smoothed efficiently 

on that level. This way, the system becomes relatively well conditioned and the user can start 

to use relatively high time steps. In practice, FMG should require only a few V-cycles on 

each level before prolongating to the next finer level.  
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CHAPTER 5 VISCOUS FLUX FORMULATIONS FOR THE SV 

METHOD 

5.1 Introduction 

 The ultimate goal of this research study is to extend the SV method to the Navier-Stokes 

equations to perform DNS and large eddy simulations of turbulence flow for problems with 

complex geometries. Finding a way to properly discretize the second-order viscous terms can 

be regarded as the first step toward achieving the above goal. In the classical second-order 

finite volume method, the solution gradients at an interface are computed by averaging the 

gradients of the neighboring cells sharing the face in consideration. However, for higher 

order elements, special care has to be taken in computing the solution gradients 

 In the late 1970s and early 1980s, Arnold [6] and Wheeler [84] introduced the 

discontinuous finite element methods known as penalty methods for elliptic operators. More 

recently, many researchers [13,11,9,20,21,15] have applied DG methods to diffusive 

operators. One procedure was the famous local discontinuous Galerkin method, developed by 

Cockburn and Shu [20,21]. This method dealt with rewriting a second-order equation as a 

first-order system and then discretize the first-order system using the DG formulation. Their 

simplicity and effectiveness have made them the main choice for discretizing the viscous 

fluxes. Baumann and Oden [13] came up with different DG methods for the second order 

viscous terms. Recently, Zhang and Shu [86] conducted some Fourier analysis for the 

different formulations. 
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In this thesis, we extend three of the above formulations to the SV method setting.  The 

first is the LDG method, the second is the penalty method and the third is the 2
nd

 method of 

Bassi and Rebay(also referred to as BR2). Fourier analysis were performed on the above 

methods and yielded some interesting new results.  

5.2 The three viscous flux formulations for the SV method 

 Equations (2.17) and (2.18) can be solved if the numerical fluxes q and  u      

(discussed in section 2.3.2) can be determined. These three formulations are some of the 

ways to obtain the above mentioned numerical fluxes. 

5.2.1 The LDG formulation 

 This is the easiest formulation. In this approach, the numerical fluxes are defined by 

alternating the direction in the following manner [68] 

Luu = ,                                                     (5.1) 

Rqq
rr

= .                                                          (5.2) 

where Lu and Ru are the left and right state solutions of the CV face in consideration and  

Lq
r

and Rq
r

are the left and right state solutions gradients of the face (of the CV) in 

consideration. Thus if the CV face lies on the SV boundary, Lu ≠ Ru and Lq
r
≠ Rq

r
. 

 It must be noted that the above style of discretization is valid only if the face in 

consideration is a non-boundary face. Using the above style of discretization for a boundary 

face can result in an inconsistent system of equations. This can be explained using a 

numerical example. Consider a 2
nd

 order simulation in 1D. The entire computational domain 

consists of only one SV i.e. 2 CVs. A schematic of this can be seen in figure 5.1. 
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Figure 5.1 1D SV with 2 CVs 

 

 The CVs in the SV have a length (i.e. volume) of unity. The normals on the domain 

boundaries point outward (as shown in the figure). Now consider an analytical function, 

u=Ax+B.                                                                  (5.3) 

The above function is used to set values on the boundaries i.e. 

Au ryleftboundaR =_ ,                                                           (5.4) 

BAu aryrightboundR += 2_ .                                                    (5.5) 

 Let 1u and 2u be the CV averages of the solution for the 1
st
 and 2

nd
 CVs respectively. After 

some algebra, we arrive at the following time evolution differential equations for 1u and 2u : 

21
1 22 uuBA

dt

ud
−−+=                                                     (5.6) 

21
2 22 uuBA

dt

ud
−−+=                                                    (5.7) 

 Equations (5.6) and (5.7) have a non-unique set of solutions. This means that the 2
nd

 order 

SV is incapable of capturing a linear function with the LDG style of discretization. So some 

special treatment is needed at the boundaries to circumvent this. One way is to use a different 

formulation like the penalty formulation for the boundary faces. 
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5.2.2 The penalty approach 

 It can be seen (from equations 5.1 and 5.2) that LDG is inherently unsymmetric. A 

symmetric approach was given by Bassi and Rebay [9], in which the numerical fluxes are 

defined by  

                                                             )(*5.0 LR uuu += ,                                            (5.8) 

                                         )(*5.0 LR qqq
rrr

+= .                                              (5.9) 

 Analysis by Brezzi et al [15] showed that the approach might be unstable in some 

situations. In this paper, we suggest the following the penalty approach to obtain the 

numerical fluxes: 

)(*5.0 LR uuu += ,                                                 (5.10) 

ij

r

LRLR
V

A
nuuqqq
rrrr

)()(*5.0 −++= ,                        (5.11) 

where Lq
r

and Rq
r

are the left and right state solutions gradients of the face (of the CV) in 

consideration, rA is the area of the face (of the CV) in consideration, ijV  is the CV volume 

and n
r

is the unit normal of the face. 

 One can see a similarity between equation 5.11 and an approximate Riemann (like Roe, 

Rusanov or AUSM) flux. The approximate Riemann flux is obtained by averaging the left 

and right state fluxes and then adding a dissipation term. This dissipation term is  

1. Proportional to the jump in the solution between the right and left states.  
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2. Proportional to the Jacobian term/matrix or its eigen values (The Jacobian term in 1D 

is
Q

f
~

~

∂

∂
). For instance, in Rusanov flux, it is the maximum eigen value of the Jacobian 

matrix.  

 Equation 5.11 is obtained by averaging the left and right states and then penalizing it with 

the penalty term. This is similar to the structure of the approximate Riemann flux. The 

Jacobian term in this case has a dimension of 1/length. So we picked 
ij

r

V

A
as an approximation 

to the eigen value. The penalty term has a sign, which is opposite to the dissipation term. 

This is because the dissipation terms come on the RHS. 

 It can be seen that the current formulation is still non compact. By definition, a non 

compact system is one wherein the residual of a cell is dependent on the solution of cells 

which are neither the current cell nor its adjacent neighbors. Compactness is generally a 

desired attribute as it has serious desirable properties: 

1. Very desirable when the cells are clustered. This is because the reconstructions are 

done from information obtained from a restricted region and hence is more accurate. 

2. Efficient for parallel applications: lesser information is needed w.r.t storage and 

message transfers  

Figures 5.2 and 5.3 show compact and non compact stencils in 1D.  The red and blue colors 

indicate the domain of dependence. 

 

 
Figure 5.2 Compact stencil in 1D 
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Figure 5.3 Non Compact stencil in 1D 

  

5.2.3 The second approach of Bassi and Rebay (BR2) 

 The penalty approach is definitely more symmetrical than LDG. However, the 

implementation results in a non-compact stencil. We now give the formulation of BR2 [10], 

which is compact. The BR2 formulation is slightly different from the above two methods. 

Two different gradients are evaluated for residual computation:  

I. The first gradient is referred to as the self gradient. It is computed using the solution 

from the cell in consideration. In other words, there is no contribution from the 

neighboring cells. This gradient is utilized for computing the viscous fluxes through 

the CV faces, which lie on the SV boundary. 

II.  The second gradient is referred to as the averaged gradient. It is computed by using the 

averaged solution obtained from the left and the right sides of the CV face. This 

gradient is used for computing the viscous fluxes through the CV faces, which do not 

lie on the SV boundary. 

     BR2 uses the concept of lifting functions. These lifting functions, +
r
r

and −
r
r

(which are 

actually polynomials) can be viewed as corrections to the self gradient. Every SV face has 

the above lifting functions, +
r
r

and −
r
r

associated with it. CV averaged lifting functions are 

first computed for the SV face in consideration. The actual procedure can be explained using 

an example. Consider the two 2
nd

 order SVs, shown in figure 5.4. The SV boundary face in 
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consideration is f and is using in red. This comprises of two CV faces, f1 and f2. The CVs of 

the SV in consideration are also marked in the figure. The CV averaged lifting functions 
+

1r
r

 

and 
−

1r
r

for CV1 can be obtained using equations 5.12 and 5.13. 

   dAn
uu

rV
f

+
+−

++

∫
−

=
rr

1

1
2

)(
,                                              (5.12) 

dAn
uu

rV
f

−
−+

−−

∫
−

=
rr

1

1
2

)(
.                                              (5.13) 

where + and – refer to the current CV(in this case CV1) and the neighboring CV 

respectively, +
V  and −

V are the volumes of the current and neighboring CVs respectively, 

+
n
r

 and −
n
r

are the outward normal w.r.t SVs ( +
V  and −

V respectively) for the face in 

consideration. Note: +
n
r

 = - −
n
r

. 

 
 Figure 5.4 Two SVs having a common SV face f. 

 

 Similarly, one could obtain the CV averaged lifting functions 
+

2r
r

 and 
−

2r
r

for CV2. The 

CV averaged lifting functions for the CV3 is zero.  Given the CV averaged lifting functions, 

+

1r
r

, 
+

2r
r

 and 
+

3r
r

(which is zero!), a m
th

 degree polynomials can be constructed such that they 



  

 

47

are (m+1)
th

 order approximation to the above described CV averaged lifting functions. This 

is the actual lifting functions +
r
r

 corresponding to the faces f1 and f2.  

 The above procedure is repeated for the other SV faces so as to obtain the lifting functions 

corresponding the CV faces located in the other two SV faces. The other lifting function −r
r

 

can be obtained in a similar way. The gradients used for the CV faces located on the SV 

boundary are given by 

)(
2

1 −+ +++= rqrqq LR

rrrrr
.                                                 (5.14) 

 It must be noted that BR2 requires nearly twice the number of CV averaged gradient 

computations and their reconstructions. In addition, the computations involved in evaluating 

the lifting function have more Floating Point Operations (FLOPs) than the penalty or the 

LDG scheme. As expected, there exist additional storage requirements for the BR2 scheme 

(additional set of gradients and lifting functions) 

5.3 Analysis for uniform grids 

5.3.1 One dimensional analysis 

In this analysis, we follow a technique described by Zhang and Shu [86] and focus on 

linear, quadratic and cubic reconstructions. The SV is partitioned into two equal CVs for the 

second order, three CVs for the third order and four CVs for the fourth order. For the sake of 

simplicity, let us first consider a linear partition (shown in figure 5.5). In this case, the 

formulations can be cast in the following form: 

dt

d
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,        (5.15) 
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where A,B,C,D and E are constant matrices. We now seek general solution of the following 

form 

  
ikx

k etutxu )(ˆ),( = ,                                                  (5.16) 

where k is the index of modes (k=1,2..) representing the wave number. Obviously, the 

analytical solution for equation 2.12 is
tkikx

etxu
2

),( −= . The solution we are looking for can be 

expressed as 













2,

1,

j

j

u

u
= 









2,

1,

ˆ

ˆ

k

k

u

u
2/3,jikx

e .                                          (5.17) 

Substituting 5.17 into 5.15, we obtain the advancement equation: 










′

′

2,

1,

ˆ

ˆ

k

k

u

u
=G(k,h) 









2,

1,

ˆ

ˆ

k

k

u

u
,                                         (5.18) 

where the amplification matrix is given by  

                      G = ikh
e

2− A + ikh
e

− B + C + ikh
e D + ikh

e
2 E .                         (5.19) 

 The above method can be easily extended to 3
rd

 and 4
th

 orders. In general, all but one of 

the eigen values of G is made up of spurious modes and is damped rapidly. The error 

associated with the scheme, convergence properties can be determined by analyzing the non 

spurious mode 

                                                                        1,jx                              2,jx         

                                                        .  

                                                      2/1,jx                         2/3,jx                           2/5,jx  

Figure 5.5 Linear spectral volume in 1D 
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5.3.1.1 Spatial analysis 

 Figure 5.6 shows the variation of the principal eigen value with respect to the non 

dimensional frequency χ (=kh) for the 2
nd

 order case.  This is also referred to as the Fourier 

footprint.  Figure 5.7 shows the error at lower wave numbers. It is clear that the errors 

associated with the penalty formulation are lower than that of LDG.  Moreover, the error 

associated with the penalty scheme is lower than the LDG error.  This means that the system 

is damped faster in the penalty case and hence converges faster. The situation is similar for 

the 3
rd

 order as is seen from figures 5.8 and 5.9.   Thus in general, we expect the penalty 

scheme to converge faster than the LDG for the 2
nd

 and 3
rd

 orders.  

 
Figure 5.6 Fourier footprint for 2

nd
 order scheme 
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Figure 5.7 Error associated at low wavenumbers for the 2

nd
 order scheme 

 

 
Figure 5.8 Fourier footprint for 3

rd
 order scheme 

 

 



  

 

51

 
Figure 5.9 Error associated at low wavenumbers for the 3

rd
 order scheme 

 

 
Figure 5.10 Fourier footprint for 4

th
 order scheme 
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Figure 5.11 Error associated at low wavenumbers for the 4

th
 order scheme 

 

 The principal eigen value lies on top of the y=--x
2
 parabola for the fourth order (figure 

5.10). The fourth order errors are too negligible (figure 5.11) to comment on convergence 

phenomena. It must be noted that the matrices A and E are zero matrices for the LDG and 

BR2 formulations.  

5.3.1.2 Temporal analysis 

In this section, we compute the time step requirements of the 3-stage Runge Kutta 

scheme. The 3-stage Runge Kutta can be simplified and can be written (for a 2
nd

 order SV) as 

follows: 










′

′

2,

1,

ˆ

ˆ

k

k

u

u
= 









2,

1,

ˆ

ˆ

k

k

u

u
. (I + G dt  + G

2

2

2
dt

 +G
3

6

3
dt

 ).                              (5.20) 

The above method can be easily extended to 3
rd

 and 4
th

 orders. 
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Table I lists the maximum non-dimensional time step (
2

dx

dt
µτ = ) required for obtaining 

a stable solution. It can be seen that the penalty and BR2 methods permit a higher time-step 

limit than the LDG method. In fact, the time step permitted by the BR2 method is more than 

double of that of the penalty method.  Numerical experiments verified the above conclusion.  

Table I. Maximum non-dimensional time step for obtaining stable solutions for 

the LDG, penalty and BR2 methods. 

Case  2
nd

 order 

(stability) 

3
rd

 order 

(stability) 

4
th

 order 

(stability) 

LDG 0.157 0.0266 0.0109 

Penalty 0.182 0.0322 0.0133 

BR2 0.314 0.0784 0.0321 

5.3.2 Two dimensional analysis 

 In this analysis, we follow a technique described by Abeele et al [70] and focus on the 

linear reconstruction. The SV is partitioned into 3 CVs. We had to use a basic unit, for 

imposing periodicity. In a one-dimensional case, the basic unit was the spectral volume itself. 

It comprises of 2 SVs in 2D. The basic unit (only SVs are shown) is shown in figure 5.12.  

This solution process would result in solving a [6*6] set of equations.  The rate of change of 

the solution (in the basic unit) can be written as a linear combination of solutions from the 

left (L), right(R), top (T), bottom (B) and central(C) units. The formulations can be cast in 

the following form: 

dt

d [ ]jiu ,  = L [ ]jiu ,1−  + R [ ]jiu ,1+  + C [ ]jiu ,  + B [ ]1, −jiu  + T [ ]1, +jiu ,                  (5.21) 
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where L,R,C,B and T are constant matrices and  [ ]jiu ,  is the solution vector of the basic 

building unit.  

 
Figure 5.12 Basic Building block colored in red; the neighbors are used in analysis 

 

We now seek general solution of the following form 

))sin()cos(()(ˆ),( θθ yxik

k etutxu
+= ,                                        (5.22) 

where k is the index of modes (k=1,2..) representing the wave number and θ is the direction 

of wave propagation. Obviously, the analytical solution for equation 2.12 is tkikx
etxu

2

),( −= .  

We follow the method described in the 1D analysis section and obtain the following result:  

[ ]ku′ˆ =G(k,h) [ ]kû ,                                                  (5.23) 

where the amplification matrix is given by  

      G = )cos(θikh
e

− L + )cos(θikh
e R + C + )sin(θikh

e
− B + )sin(θikh

e T               (5.24) 
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5.3.2.1 Spatial analysis 

    There is an extra degree of freedom, θ. Due to symmetry of the system and of the building 

unit, we need to focus on θ varying from 0 to π/4 radians. In this thesis, we focus on these 

extreme cases.  

 
Figure 5.13 Fourier footprint for the 2D 2

nd
 order scheme for θ = 0 radians 

 
Figure 5.14 Fourier footprint for the 2D 2

nd
 order scheme for θ = π/4 radians 
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 Figures 5.13 and 5.14 show the variation of the principal eigen value with respect to the 

non dimensional frequency χ (=kh) for θ = 0 and π/4 radians respectively.  Figures 5.15 and 

5.16 show the errors at low frequencies.  

 
Figure 5.15 Error associated at low wavenumbers for the 2D 2

nd
 order scheme for θ = 0 

radians 

 
Figure 5.16 Error associated at low wavenumbers for the 2D 2

nd
 order scheme for θ  = 

π/4 radians 
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 In general, the trends are qualitatively similar to those obtained using 1D analysis. In 

addition, it can be seen that the errors are much lower when θ = π/4 radians. This is probably 

due to the way our SVs are defined (right triangles). 

5.3.2.2 Temporal analysis 

    As in the 1D analysis, we stick to the 3-stage SSP Runge Kutta scheme. Table II lists the 

maximum non dimensional time step required for obtaining a stable solution. Once again, the 

penalty and BR2 methods permit a higher time-step limit than the LDG method. In addition, 

the time step permitted by the BR2 method is more than that of the penalty method. 

 

Table II. Maximum non-dimensional time step for obtaining stable solutions for 

the 2
nd

 order, 2D LDG, penalty and BR2 methods 

 

 

 

5.4 Analysis for non uniform grids 

 Analysis was also done for non uniform grids in 1D. We used the building block concept 

to do the analysis. Each building block consists of 2 SVs. The ratio of the lengths of the 2 

SVs is the clustering factor. This can be seen from figure 5.17.  The first SV has a length of 

one unit and the length of the second SV is varied. Table III shows the maximum non 

dimensional time step which can be used for the different formulations and for different 

Case θ = 0 θ = π/4 

LDG 0.0267   0.0267 

Penalty  0.0465 0.0465 

BR2 0.0635 0.0635 
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clustering factors. The trend is similar to the uniform grids scenario. The main conclusions 

are 

1. Stable even for very high clustering ratios 

2. Maximum possible non dimensional time step increases with increasing clustering 

3. The maximum allowable time step follows a pattern similar to the structured grids i.e. 

LDGτ < penaltyτ < 2BRτ  

 
Figure 5.17 Basic Building block for non uniform grids in 1D: consists of 2 SVs 

 

Table III. Maximum non-dimensional time step for obtaining stable solutions for the 

LDG, penalty and BR2 methods for different clustering factors 

Order  Clustering 

factor  

LDG  Penalty  BR2  

2  0.5  0.246  0.332  0.508  

2  0.1  0.352  0.545  0.752  

3  0.5  0.0464  0.034  0.093  

3  0.1  0.082  0.11  0.17  

4  0.5  0.018  0.027  0.040  

4  0.1  0.031  0.049  0.069  

 

5.5 Discussion on stability and spurious modes 

    In the previous sections, we analyzed the stability requirements of the 3 stage SSP Runge 

Kutta smoother. It has been a common practice in CFD to use the maximum possible time 

step to drive a system to convergence. This time step is limited by the stability requirements 

(as determined in the earlier sections). A different trend was observed during the course of 
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this study. Consider the 2nd order LDG case: the amplification matrix G has the eigen values 

-16/h
2
 (spurious mode) and -2(1-cos (χ))/h

2
 (physical mode).  Thus if  
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n
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n

u

u
.                                             (5.25) 

 Obviously for stability, the eigen values of the growth matrix H(χ,dt) need to lie between -

1 and 1. Figure 5.18(a) shows the eigen values for this system for a non dimensional time 

step of 0.157. The system satisfies the requirement for stability.  However, the spurious mode 

was never damped. The numerical solution overshoots the analytical solution and one can 

expect some oscillations. Therefore steady-state problems may never converge. The time step 

needs to be lowered to reduce the magnitude of the eigen value of the spurious mode. Figure 

5.18(b) shows the eigen values for this system for a non dimensional time step of 0.138. In 

other words, there exists a range, wherein the system converges to a wrong solution. In 

general, this phenomenon can be seen in higher orders for LDG, Penalty and BR2 schemes.  

      
                                     (a)                                                                         (b) 

Figure 5.18 Eigen values of a 2
nd

 order LDG growth matrix for RK 3stage scheme. Case 

(a): non dimensional time step=0.157; Case (b): non dimensional time step =0.138 
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The above conclusion was tested using a numerical simulation. Figure 5.19 shows the 

variation of magnitude (L1 norm) of the solution as a function of time for a 2
nd

 order LDG. 

The simulation with CFL=0.157 is stable but has no damping. This is the case wherein the 

spurious mode dominates over the physical mode. The simulation with CFL=0.138 is both 

stable and consistent. 

 
Figure 5.19 Damping occurring in a 2

nd
 order LDG simulation using two different time 

steps 

 

Table IV lists the non dimensional time steps required for obtaining a stable solution as 

well as a physically relevant solution. Thus in an explicit simulation, it is generally necessary 

to run the case with a time step lower than the cut-off stability limit. 

Table IV. Non dimensional time step criteria for obtaining stable and physically 

relevant solutions for the LDG, penalty and BR2 schemes. 

Case  2
nd

 order 

(Stability) 

2
nd

 order 

(Relevant) 

3
rd

 order 

(Stability) 

3
rd

 order 

(Relevant) 

4
th

 order 

(Stability) 

4
th

 order 

(Relevant) 

LDG 0.157 0.138 0.0266 0.0266 0.0109 0.0106 

Penalty 0.182 0.175 0.0322 0.0322 0.0133 0.0129 

BR2 0.314 0.224 0.0784 0.0784 0.0321 0.0300 
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The above pattern was also observed while using the Crank-Nicolson scheme.  There were 

no stability issues as it is an implicit scheme. However, the spurious modes start to dominate 

after a critical value. Figures 5.20(a) and 5.20(b) show the eigen values of the H matrix using 

a non dimensional time step of 0.5 and 0.25 respectively. It is clear that the former has 

inadequate damping in most parts of the spectrum, while the latter is sufficiently damped. 

                
                                     (a)                                                                         (b) 

Figure 5.20 Eigen values of a 2
nd

 order LDG growth matrix for Crank-Nicolson scheme. 

Case (a): non dimensional time step=0.5, case(b): non dimensional time step =0.25 

 

5.6 Dissipative properties using multigrid techniques 

 The effect of dissipative properties of the three methods is compared using multigrid 

method.  We consider the 3-2 and 4-3 order two level schemes in 1D.  We use ideas similar 

to the ones listed in section 5.3.1.1. We use the multigrid idea to solve equation 2.17, 2.18. 

We analyze the effect of a single V cycle. This V cycle consists of 0 pre-sweeps in the higher 

polynomial level. By definition, the pre-sweeps are the sweeps performed before restricting 

the solution to the lower polynomial level. The solution and the defect are restricted to the 
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lower polynomial level and the correction equation is constructed. We make use of the linear 

property of the system and solve the correction equation exactly. This is akin to solving the 

correction equation to steady state (using lots of iterations). The correction to the solution is 

prolongated to the higher polynomial level and is added to the existing value of the solution. 

A finite number of post-sweeps (0-3) are performed. By definition, the post-sweeps are the 

sweeps performed after correcting the solution using the lower polynomial level corrections.  

 Figures 5.21 and 5.22 show the L2 and Linf damping factors for the 3-2 system. It can be 

seen that there exists some wave numbers where the solution experiences growth (rather than 

damping). A (small) non dimensional time step of 0.01 was used for the current simulations.  

In addition, the solution at high wave numbers is damped faster in the BR2 and the penalty 

simulations. Hence, we expect the LDG to have the most inefficient damping property for a 

3-2 system. 

 Figures 5.23 and 5.24 show the L2 and Linf damping factors for the 4-3 system. It can be 

seen that the 4-3 system has instabilities at a much larger range of wave numbers, Numerical 

tests were performed and their results were in accord with the above. A non dimensional time 

step of 0.005 was used for the current simulations. The figures indicate that the LDG has the 

least amount of instability and might be the best choice for a 4-3 system! However, LDG has 

a very strict stability constraint and this is strong enough to offset the above advantage. BR2 

has better dissipation at higher wave numbers than the penalty scheme and is expected to 

converge faster. 
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                             (a)                                            (b)                                           (c) 

Figure 5.21 Damping factor for a 3-2 mg using the L2 norm. Case (a) Zero post-sweeps; 

Case (b): One post-sweep; Case (c): Two post-sweeps 
 

 

 

 

 
                             (a)                                            (b)                                           (c) 

Figure 5.22 Damping factor for a 3-2 mg using the Linf norm. Case (a) Zero post-

sweeps; Case (b): One post-sweep; Case (c): Two post-sweeps 
 

 

 

 
Figure 5.23 Damping factor for a 4-3 mg using the L2 norm. Case (a) Zero post-sweeps; 

Case (b): One post-sweep; Case (c): Two post-sweeps 
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Figure 5.24 Damping factor for a 4-3 mg using the Linf norm. Case (a) Zero post-

sweeps; Case (b): One post-sweep; Case (c): Two post-sweeps 
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CHAPTER 6 RESULTS AND DISCUSSIONS 

6.1 SD results 

6.1.1 Validation using 2D scalar conservation laws 

6.1.1.1 Linear straight wave 

 We consider the linear straight wave over a square domain. The equation can be described 

as  

0=
∂

∂
+

∂

∂
+

∂

∂

y

q

x

q

t

q
, 2]1,0[),( ∈yx  and 0>t  .                     (6.1) 

The computational unstructured grid with 40x40x2 elements is used as shown in figure 

6.1(a). Figure 6.1(b) shows the converged solution obtained using the normal implicit 

scheme on the same grid 

    
(a)                                                                               (b) 

Figure 6.1: Linear wave equation case. Case (a): Grid 40x40x2; Case (b): Contour Plot 
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 Subsequently, we compared the convergence histories obtained by the explicit scheme and 

implicit schemes. Note that the computational grid is relatively coarse and the equation is 

very simple.  Figure 6.2 demonstrates that the simplified implicit scheme without the 
t

Qc

∆

∆ *

 

term in equation (3.9) converging speed is about 7 times as fast as the one of the explicit 

scheme, while the normal implicit scheme converging speed is only twice as fast as the 

explicit scheme.  
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Figure 6.2: Comparison of convergence history with respect to time using explicit R-K 

and implicit LU-SGS schemes for the 2D linear wave case 

 

6.1.1.2 Rotational wave 

The second case we worked on is the linear scalar circular advection of a Gaussian 

profile over a square domain.  This initial boundary value problem is conveniently expressed 

as   
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                        , 2]1,0[),( ∈yx  and 0>t .                      (6.2) 

                          
2)5.0(50),0,( −−= x

etxq , ]1,0[∈x  and 0≥t . 

                           0),1,( =txq , ]1,0[∈x  and 0≥t . 

                           0),,0( =tyq , ]1,0[∈y  and 0≥t . 

 The above has exact steady solution 
])))1(1(5.0(50[ 222

),(
yx

exact eyxq
+−−−−= , 2]1,0[),( ∈yx . It 

facilitates the accuracy study as shown in Table V.  The third order accuracy of the SD 

method with implicit LU-SGS relaxation scheme for a steady flow problem is clearly 

demonstrated. 

Table V. 1L  and ∞L  errors and orders of accuracy of the scalar circular 

advection case using the third order SD method. 

Grid 
1L  error 1L   order ∞L  error ∞L  order 

10x10 0.00166705 -- 0.0245699 -- 

20x20 0.000272822 2.61 0.00357253 2.78 

40x40 3.97545e-05 2.78 0.000516237 2.79 

80x80 5.29239e-06 2.91 6.43088e-05 3.00 

 

 This example can conveniently assess the speed-up of the implicit LU-SGS simplified 

relaxation scheme on the same unstructured grid shown in figure 6.1(a). The simplified 

implicit scheme without 
t

Qc

∆

∆ *

in equation (3.9) is about 1.5 times as fast as the normal 

implicit scheme (3.9) from figure 6.3.  Figure 6.4 shows the converged smooth solution 

obtained using the simplified implicit scheme. Although the left-hand-side Jacobian matrix is 

pretty small, for the third order scheme it is only 6x6, the advantage of the simplified implicit 

over the three-stage Runge-Kutta explicit method is clear, and for this particular case, the 
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speedup is around 10.  The p-Multigrid method is also applied to the linear wave case. The 

acceleration by the p-Multigrid method is small, possibly due to the simple form of the 

governing equation and the nonlinear nature of the FAS. 
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Figure 6.3: Comparison of convergence history with respect to time using explicit R-K 

and implicit LU-SGS schemes for the 2D circular convection case 

 
Figure 6.4: Contour plot obtained for 2D scalar circular convection case 
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6.1.1.3 Nonlinear wave 

 Application of the p-Multigrid method to nonlinear wave equations can improve the above 

situation. This case was formulated with the sole purpose of testing our implicit full 

Multigrid ideology. Unlike the linear wave test cases, the initial time step is limited even for 

the implicit simulations.  The full Multigrid approach starts by solving the problem using 

lower order polynomials, and using these solutions as initial approximations for the next 

higher level. This process continues until it reaches the finest level where the solution of the 

problem is required. It results in a smooth, good initial guess. Hence a much higher time step 

can be used for the initial V or W cycles. 

We consider a nonlinear 2D scalar initial boundary value problem        

0
~~~

=
∂

∂
+

∂

∂
+
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∂

y

g

x

f

t

Q
 and 3~

3

1~~
Qgf == .                                   (6.3) 

 Equation (6.3) has an analytical solution ))(sin(),(
~

yxyxQ −= π  and 2]1,1[),( −∈yx . As 

shown in figure 6.5, the speedup factor obtained by the three-level full p-Multigrid scheme is 

about 5 when compared to the single level implicit scheme. As expected, the computational 

CPU time of the single level explicit scheme is more than one and a half orders magnitude 

higher than the three-level implicit p-Multigrid.  
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Figure 6.5: Comparison of convergence history with respect to time using 

explicit R-K and implicit LU-SGS schemes for the non linear wave case. 

 

It is easy to extend the above p-Multigrid method with V cycles to include W cycles if p0 

and p1 levels are used once again before proceeding to the p2 level. The problem requires 

lesser W cycles than V cycles to attain convergence. This is shown is figure 6.6(a).  However 

W cycles consumed slightly more time than the V cycles. This is shown is figure 6.6(b).   
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(a)                                                                     (b) 

Figure 6.6: Non Linear wave case using a LU-SGS implicit smoother. Case (a): 

Convergence history as a function of Multigrid cycles. Case (b): Convergence History 

as a function of time. 

 

Both three-stage and five-stage TVD Runge-Kutta schemes are tested for this problem. 

Five-stage one is proven more effective when it is applied to all three p-levels. Therefore, in 

the subsequent part of the paper, we only discuss the results obtained using the five-stage 

Runge-Kutta scheme for explicit smoothers.  

The problem was also tackled by combining the explicit and implicit smoothers. Since the 

implicit smoother is more effective than the explicit smoother, we use 20-30 iterations of 

explicit smoother at the p2 level to attenuate the prolongation errors generated by 6 LU-SGS 

iterations at p0 level and a single LU-SGS iteration at p1 level.  The speedup factor is still 

more than 20 compared to a single level explicit scheme for the normalized residual reducing 

to 
5

10
−

(fig 6.7).  
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Figure 6.7: Comparison of convergence history with respect to time using combinations 

of explicit R-K and implicit LU-SGS schemes for the non linear wave case 

 

The second approach is to use explicit smoothers for all the three levels. The speed is 

about 4 times that of a single level to reach residual level of
5

10
−

. The last approach is 

maintaining explicit smoothers for p2 and p1 levels, but using implicit smoother for the p0 

level. As expected, the speed of residual convergence to 
5

10
−

lies in between the above two 

approaches and is about 8 times as fast as that of single level. Note that the convergence 

history curve using implicit LU-SGS 3 level full multigrid is also plotted. This has a 

convergence rate, which is faster than any of the above schemes 

6.1.2 Results for the Euler equations 

The Jacobian D matrix for the Euler equations is bigger than the scalar equations, since 

we have four conservative variables at each unknown point.  For example, D is a 24x24 

matrix for a third order SD formulation of the 2D Euler equation.  The D matrix is frozen 

every 4 Multigrid cycles. The D matrix is frozen for around 20 Multigrid cycles when the 

steady residual drops to below
4

105
−× . The Rusanov flux is used for the flux vector 

computation at the element boundary interfaces. A quadratic curved boundary condition is 

adopted [78] for non-straight wall boundary surfaces. The above was originally published in 

[39,40].  

6.1.2.1 2D supersonic vortex flow 

      This test case is used to assess the order of accuracy of the p-Multigrid method for the SD 

scheme. An inviscid, isentropic, supersonic flow between concentric circular arcs presents a 
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situation where the velocity and Mach number vary inversely with radius and the entropy is 

constant. This is a shock-free compressible flow and hence the measured order of accuracy is 

not contaminated by limiter action near shocks. The behavior will correspond to what one 

may expect of smooth regions of inviscid subsonic compressible flow.  This particular type 

of flow was used in [43,2] to verify the order of accuracy of their unstructured grid methods.  

The expression for density ρ  as a function of radius r  is given by 
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where iM  and ir  are the Mach number and radius at the inner arc.  In the present 

calculations, the inner and outer radii are 1 and 1.384 respectively. A typical computational 

grid is shown in figure 6.8(a). The Mach number, density and pressure are specified as 

constants 2.25, 1, and γ/1  respectively for the inner arc boundary. The outer arc and bottom 

inlet boundaries are fixed with analytical solutions. The zero-gradient extrapolation boundary 

is employed for the exit.  Figure 6.8(b) shows the solution of pressure obtained using the 

single level implicit simplified method. 



  

 

74

 
        (a) Grid with 528 elements                                               (b) pressure contours 

Figure 6.8: Supersonic vortex flow case. Case (a): Computational grid. Case (b): 

Computed pressure contours. 

 

Four different grids are used for the calculations. There is no difference in terms of 1L  and 

2L  errors for the implicit LU-SGS and the explicit R-K methods. The results are summarized 

in Tables VI and VII. Nearly third order is demonstrated using p2 polynomials of unknown 

points for the SD method and second order is achieved using p1 polynomials.  Most 

importantly, implicit scheme and p-Multigrid method are not found to corrupt the measured 

order of accuracy.  

Table VI. 1L  and 2L  errors and orders of accuracy of the supersonic vortex flow 

case using the third order SD method. 

Cell no. 
1L  error 1L   order 2L  error 2L  order 

131 3.42e-4 -- 5.09e-4 -- 

528 4.97e-5 2.77 7.83e-5 2.68 

1892 8.93e-6 2.79 1.67e-5 2.52 

7590 1.32e-6 2.77 2.74e-6 2.61 
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Table VII. 1L  and 2L  errors and orders of accuracy of the supersonic vortex 

flow case using the second order SD method. 

Cell no. 
1L  error 1L   order 2L  error 2L  order 

131 3.90e-3 -- 4.98e-3 -- 

528 1.00e-3 1.95 1.34e-3 1.88 

1892 3.25e-4 1.83 4.52e-4 1.76 

7590 7.68e-5 2.08 1.03e-4 2.13 

6.1.2.2 2D subsonic flow over a bump 

We chose a testing case of the subsonic flow over a bump at Mach=0.5.  This case has 

been used by p-Multigrid method for DG formulations of Euler equations in [43,51].  A 10% 

thick circular bump is mounted on the center of the channel bottom. The length of the 

channel is 3, its height 1, and its width 0.5. The computational grid with 3140 elements is 

shown in figure 6.9(a).  The circular surface of the bump needs a higher-order boundary 

treatment and a quadratic boundary as described in [78] is adopted.  Figure 6.9(b) shows the 

pressure contour obtained by the three-level p-Multigrid method. It is approximately identical 

to the pressure contour shown in [51].  

 
                                                                      (a) 
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(b) 

Figure 6.9: Subsonic flow over a bump confined in a channel. Case (a): 

Computational grid. Case (b): Computed pressure contours. 

 

The maximum CFL number used for all the implicit computations is around 8.  Figure 

6.10 shows the residual convergence history of the implicit schemes. The speedup obtained 

by the two-level p-Multigrid method is around 1.6 compared to the single level implicit 

scheme. The three-level p-Multigrid method accelerates the convergence further and the 

speed is 3.5 times as fast as the single level implicit method. The overall speedup i.e. the 

speedup attained by the three-level p-Multigrid is about 25 compared to the single level 

explicit scheme. Note that all the Multigrid methods mentioned so far is based V cycles for 

this particular case.  
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Figure 6.10: Comparison of convergence history with respect to time for the 

bump testing case using explicit R-K and implicit LU-SGS schemes. 

 

As far as the implicit smoothers are considered for all three p-levels, we also examined the 

difference between V cycles and W cycles for the three-level p-Multigrid method. As 

expected, the current case requires lesser W cycles than V cycles to converge to machine 

zero as shown in figure 6.11(a).  However the total time consumed is lesser when the V 

cycles were employed. This is shown in fig 5.11(b). Note that, the number of iterative 

smoothers performed for V cycles is 1-1-20-1-1 for third, second, first, second and third 

order levels respectively.  More coarse level iterative smoothers are used in the W cycles, 

i.e., one, one and 16 iterations for p2, p1 and p0 levels respectively.    



  

 

78

0 100 200 300 400

Time (s)

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

R
e

s
id

u
a

l

V Cycles

W Cycles

0 20 40 60 80 100 120

Number of Multigrid Cycles

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

R
e

s
id

u
a

l

V cycles

W cycles

 
(a)                                                                               (b)     

Figure 6.11: 2D subsonic flow over a bump case using implicit LU-SGS smoother. Case 

(a): Convergence history as a function of Multigrid cycles. Case (b): Convergence 

History as a function of time. 

 

All the above Multigrid calculations for the bump case are using implicit smoothers. If the 

explicit smoothers are used for all three p-levels (fig 5.12), a speedup of 8 was attained over 

the explicit single level case. As expected, the 3 level explicit scheme is slower than the 

mixed scheme (1 R-K + 2 LU-SGS). Note that, we use one-one-six-one-one-iteration explicit 

smoothers at the p2-p1-p0-p1-p2 levels to form a standard V cycle. The curve with the 

second fastest convergence rate in figure 6.12 is obtained using a calculation employing 

explicit smoothers only for the p2 levels and implicit smoothers for both p1 and p0 levels. 

The 3 level FMG LU-SGS is also plotted and is much faster than any of the above discussed 

methods. 
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Figure 6.12: Comparison of convergence history with respect to time using 

combinations of explicit R-K and implicit LU-SGS schemes for the bump testing case 

6.1.2.3 2D subsonic flow over an airfoil 

The final testing case of the Euler equations is the subsonic flow over a NACA0012 airfoil 

at Mach=0.4 and angle of attack of zero degree. The computational grid is shown in figure 

6.13. The outer boundary is 20 chords away from the airfoil centre. Figure 6.14 shows 

pressure contours obtained using two-level p-Multigrid scheme, i.e. using the p2 and p1 

polynomials.  The maximum CFL number used for the implicit computations is around 6.5. 

The explicit scheme limits the maximum CFL number to 0.06.  
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Figure 6.13: Grid(72*24*2) used for the subsonic flow over the NACA 0012 

 

 
Figure 6.14: Pressure Contours obtained for the subsonic flow over the NACA 

0012 airfoil 

 

From figure 6.15, we can see that the highest speedup factor obtained using the three-level 

p-Multigrid is around 100 compared with the single level explicit scheme. The three-level p-

Multigrid method is about 4 times as fast as the single level implicit method. The two-level 
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scheme using the implicit smoothers for p2 and p1 levels shows a fast convergence too. The 

speedup factor of the two-level scheme is around 70 compared to the single level explicit 

scheme.   
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Figure 6.15: Comparison of convergence history with respect to time for the 

airfoil testing case using explicit R-K and implicit LU-SGS schemes 

 

The effect of the explicit smoothers is also studied and is shown in figure 6.16. Full 

Multigrid approach is used for the three level calculations.  The first calculation (3 level R-K) 

uses explicit smoothers for all p-levels. One-one-six-one-one-iteration explicit smoothers are 

employed for p2-p1-p0-p1-p2 levels to form a three-level V cycle. The second calculation is 

defined as mixed three-level approach. It employs explicit smoothers only for the p2 level. 

For stability reason, we use around 30 iterations of explicit smoother at the p2 level to 

smooth out the prolongation noises generated by the implicit smoothers of 6 iterations on the 

p0 level and a single iteration on the p1 level. The mixed approach is about 1.4 times as fast 
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as the approach of R-K on 3 levels. The R-K 3-level approach is around 8 times as fast as the 

single level explicit method to reach residual level of
6

10
−

. As expected, the 3 level implicit 

smoother is much faster than any of the above discussed schemes. 
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Figure 6.16: Comparison of convergence history with respect to time using 

combinations of explicit R-K and implicit LU-SGS schemes for the airfoil testing case 
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(a)                                                                (b) 
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Figure 6.17: Flow over an airfoil case. Case (a): Convergence history as a 

function of Multigrid cycles for two and three levels of FMG; Case (b): Convergence 

History as a function of time using two and three levels of FMG. 

 

Note that for three-level p-Multigrid method, two iterations are sufficient for the p2 and 

p1 levels and 20 iterations are performed on the p0 level during every V cycle. For the two-

level p-Multigrid method, a smaller V-cycle is constructed using one relaxation iteration at 

the p2 level, 2 relaxation iterations at the p1 level and two more smoothing iterations at the 

p2 level to remove the prolongation noise.  The three level scheme requires lesser cycles than 

the two level scheme. In addition, it also converges faster than the two level scheme. These 

are evident from figures 6.17(a) and 6.17(b) respectively. 

6.2 SV results 

6.2.1 2D diffusion equation 

6.2.1.1 Accuracy study 

 We test the accuracy of the different schemes using the 2D diffusion equation. The 

equation can be described as  

0
2
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∂
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 ,       2]1,0[),( ∈yx .                          (6.4) 

y

analytical exu )sin(= .                                               (6.5) 

 The steady state analytical solutions are specified at all the boundaries. In tables VIII, IX 

and X, we present the SV averaged L1 and Linf errors for the 2
nd

, 3
rd

 and 4
th

 orders 

respectively using the LDG, penalty and BR2 formulations. It can be seen that the 2
nd

 and the 
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4
th

 order schemes reach their respective orders asymptotically for all the schemes. We do 

experience a drop in order for the 3
rd

 order (odd ordered) scheme. This is under investigation.  

It can be observed that the LDG method produces the maximum errors in general.  Regular 

grids were used for the study (figure 6.18). The solution obtained using a 4
th

 order stencil on 

a 40x40x2 grid is shown in figure 6.19. 

Table VIII. Accuracy of 2
nd

 order 2D diffusion equation on regular grids 

Grid L1 error 

(Penalty) 

 L1 order 

(Penalty) 

Linf error 

(Penalty) 

Linf order 

(Penalty) 

10x10x2 1.72e-03 - 5.99e-03  - 

20x20x2 4.40e-04 1.97  1.52e-03  1.98  

40x40x2 1.12e-04 1.97 3.85e-04 1.98 

80x80x2 2.83e-05 1.99 9.71e-05 1.99 

Grid L1 error 

(LDG) 

L1 order 

(LDG) 

Linf error 

(LDG) 

Linf order 

(LDG) 

10x10x2 4.95e-03 - 1.41e-02 - 

20x20x2 1.26e-03 1.98 3.72e-03 1.95 

40x40x2 3.48e-04 1.90 9.78e-04 1.95 

80x80x2 1.28e-04 1.65 2.63e-04 1.93 

Grid L1 error 

(BR2) 

L1 order 

(BR2) 

Linf error 

(BR2) 

Linf order 

(BR2) 

10x10x2 2.28e-03  1.20e-02  

20x20x2 4.90e-04 2.22 3.19e-03 1.91 

40x40x2 1.12e-04 2.13 8.19e-04 1.96 

80x80x2 2.65e-05 2.07 2.07e-04 1.98 

 

Table IX. Accuracy of 3
rd

 order 2D diffusion equation on regular grids 

Grid L1 error 

(Penalty) 

 L1 order 

(Penalty) 

Linf error 

(Penalty) 

Linf order 

(Penalty) 

10x10x2 8.67e-05  - 3.19e-04  - 

20x20x2 1.43e-05  2.6  4.66e-05  2.78  
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40x40x2 2.66e-06  2.43  6.39e-06  2.86  

80x80x2 5.53e-07   2.27 1.23e-06  2.38  

Grid L1 error 

(LDG) 

L1 order 

(LDG) 

Linf error 

(LDG) 

Linf order 

(LDG) 

10x10x2 1.27e-04 - 2.81e-04 - 

20x20x2 2.43e-05 2.38 5.41e-05 2.37 

40x40x2 5.44e-06 2.16 1.27e-05 2.09 

80x80x2 1.23e-06 2.10 2.96e-06 2.07 

Grid L1 error 

(BR2) 

L1 order 

(BR2) 

Linf error 

(BR2) 

Linf order 

(BR2) 

10x10x2 9.49e-05 - 2.68e-04 - 

20x20x2 1.31e-05 2.85 3.80e-05 2.82 

40x40x2 2.14e-06 2.61 5.21e-06 2.88 

80x80x2  3.90e-07 2.46 9.71e-07 2.42 

 

Table X. Accuracy of 4
th

 order 2D diffusion equation on regular grids 

Grid L1 error 

(Penalty) 

 L1 order 

(Penalty) 

Linf error 

(Penalty) 

Linf order 

(Penalty) 

10x10x2 3.69e-06  - 9.56e-06  - 

20x20x2 2.35e-07  3.97  6.01e-07  3.99  

40x40x2 1.49e-08   3.98 3.74e-08   4.00 

Grid L1 error 

(LDG) 

L1 order 

(LDG) 

Linf error 

(LDG) 

Linf order 

(LDG) 

10x10x2 4.30e-06 - 9.74e-06 - 

20x20x2 2.97e-07 3.8 6.74e-07 3.8 

40x40x2 2.06e-08 3.9 4.43e-08 3.9 

Grid L1 error 

(BR2) 

L1 order 

(BR2) 

Linf error 

(BR2) 

Linf order 

(BR2) 

10x10x2 4.17e-06 - 9.99e-06 - 

20x20x2 2.76e-07 3.91 6.68e-07 3.90 

40x40x2 1.78e-08 3.95 4.28e-08 3.95 
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6.2.1.2 Convergence study 1. 

 In this section, we perform numerical experiments to study the effect of the implicit LU-

SGS smoother and the p-multigrid algorithm. The comparison of the convergence speeds 

between the implicit and the explicit Runge Kutta schemes using the penalty method is 

shown in Figure 6.20.  

      
            (a)                                          (b)                                              (c) 

Figure 6.18. regular grid(10x10x2) 

used for validation study 

Figure 6.19. 4
th

 order solution contours of 

the equation 5.1 using a 40x40x2 grid 
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Figure 6.20. Convergence history using explicit R-K and implicit LU-SGS schemes for 

the 2D diffusion equation using the penalty scheme. Case a: 2
nd

 order; Case b: 3
rd

 

order; Case c: 4
th

 order 

 

 It can be seen that the speedup increases with increasing the order of the interpolation 

polynomial. We attain a speedup of nearly 20 for 4th order simulations. Thus it is more 

practical to use implicit algorithms for higher order methods. Figures 6.21(A) and 6.21(B) 

show the effect of the p-multigrid on the 3rd and 4th orders respectively. It can be seen that 

the multigrid results in a speed-up of 3 for the 3rd order and nearly 7 for the 4th order. Thus a 

combination of implicit LU-SGS and p-multigrid results in a speedup, which is more than 2 

orders in magnitude! 

                               

                                    
                                               (a)                                                                (b) 

Figure 6.21. Convergence history using single level and multilevel FMG LU-SGS 

schemes for the 2D diffusion equation using the penalty scheme. Case a: 3
rd

 order; Case 

b: 4
th

 order 
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6.1.2.3 Convergence study 2. 

In this section, we perform numerical experiments to study the convergence properties of 

the different flux formulations. Figure 6.22 shows the convergence history obtained using the 

three formulations for a 2
nd

 order scheme. It can be seen that the LDG converges slower than 

the other 2 formulations. This phenomenon can be explained using the information provided 

by figure 5.3. It can be seen that LDG has a positive and higher error than the other schemes. 

This means that the numerical eigen value (physical mode) is higher than the other schemes. 

So it takes more time to decay and attain steady state and hence the slow convergence. 

 
Figure 6.22 Convergence history using the three formulations for the 2D 

diffusion equation using a 2
nd

 order scheme 

6.2.2 2D Navier Stokes equations 

6.2.2.1 The Couette flow problem 

The Couette flow is an analytical solution of the Navier-Stokes equations, and was 

selected to study the accuracy for the 2D Navier-Stokes solver. This problem models the 
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viscous flow between a stationary, fixed temperature, (at T0) bottom plate, and a moving, 

fixed temperature (at T1) top plate at speed of U. The distance between the two plates is H. A 

schematic of the above can be seen in figure 6.23.  

 
Figure 6.23. Computaional domain for the Couette Flow problem. 

 

It has an exact solution under the simplification that the viscosity coefficient µ is a 

constant and the speed is low enough to ensure nearly incompressible effects. The steady 

analytic solution is 

y
H

U
u = , v=0,                                                              (6.6) 
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,                                  (6.7) 

p=constant,      
RT

p
=ρ ,                                                  (6.8) 

where k is the thermal conductivity and R is the gas constant.  

The accuracy of the three viscous flux formulations was tested. The L1 and Linf 

temperature errors are presented in tables XI and XII for 3
rd

 and 4
th

 orders respectively. It can 

be seen that the obtained orders are very close to the ones expected. 
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Table XI. Temperature error for the Couette flow problem (3
rd

 order) 

Grid Linf error 

(Penalty) 

Linf order 

(Penalty) 

L1 error 

(Penalty) 

L1 order 

(Penalty) 

10x10x2 3.5465e-07  - 1.0437e-07  - 

20x20x2 3.7694e-08   3.23 1.2785e-08  3.03 

40x40x2 4.8249e-09   2.97 1.5994e-09   3.00 

Grid Linf error 

(LDG) 

Linf order 

(LDG) 

L1 error 

(LDG) 

L1 order 

(LDG) 

10x10x2 6.3494e-07  - 1.3324e-07  - 

20x20x2 4.5975e-08  3.79  1.4709e-08   3.18 

40x40x2 6.7767e-09  2.76  1.9260e-09   2.93 

Grid Linf error 

(BR2) 

Linf order 

(BR2) 

L1 error 

(BR2) 

L1 order 

(BR2) 

10x10x2 5.3522e-07  - 1.2798e-07  - 

20x20x2 6.3011e-08   3.08 1.1615e-08  3.46  

40x40x2 6.7305e-09   3.22  1.2038e-09 3.27  

 

Table XII. Temperature error for the Couette flow problem (4
th

 order) 

Grid Linf error 

(Penalty) 

Linf order 

(Penalty) 

L1 error 

(Penalty) 

L1 order 

(Penalty) 

10x10x2 2.7280e-08 - 1.2473e-08 - 

20x20x2 1.7749e-09 3.94 7.6483e-10 4.03 

Grid Linf error 

(LDG) 

Linf order 

(LDG) 

L1 error 

(LDG) 

L1 order 

(LDG) 

10x10x2 2.6458e-08 - 7.7845e-09  - 

20x20x2 1.8884e-09 3.81 4.4427e-10  4.13 

Grid Linf error 

(BR2) 

Linf order 

(BR2) 

L1 error 

(BR2) 

L1 order 

(BR2) 

10x10x2 2.2279e-08 - 1.2047e-08 - 

20x20x2 1.5136e-09  3.88 7.9952e-10 3.92 
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We now compare the convergence (using implicit LU-SGS method) properties using the 

three viscous flux formulations for 3
rd

 and 4
th

 order simulations.  The residual history as a 

function of time is shown in figure 6.24 for the 3
rd

 and 4
th

 order simulations. The 20x20x2 

grid was used for this purpose.  

             
                      (a)                                                                              (b) 

Figure 6.24 Convergence history as a function of time for the Couette flow 

problem. Case (a): 3
rd

 order; Case (b): 4
th

 order 
 

The residual history as a function of outer iterations is shown in figure 6.25. It can be seen 

that the BR2 scheme converges in lesser number of iterations. However, BR2 involves more 

computations per iteration (explained in section 5.2.3). Hence, the total time consumed by 

BR2 is nearly the same as the other two schemes. 
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                        (a)                                                                                  (b) 

Figure 6.25 Convergence history as a function of iterations for the Couette flow 

problem. A: 3
rd

 order; B: 4
th

 order 

6.2.2.2 Flow over an airfoil 

 In this section, we simulate flow over a naca0012 airfoil. The flow was subsonic at Mach 

0.5, at Reynolds number of 5000 and had zero angle of attack. This has been a widely used 

validation case for viscous flow solvers and was used in [47,54,67]. The computational grid 

for this case is the one used for the SD simulation (figure 6.13). An important trait of this test 

case is the formation of a small recirculation bubble that extends in the near wake region of 

the airfoil. This is caused due to the separation of the flow near the trailing edge. 

 The current simulations were performed using the three viscous formulations for 2
nd

, 3
rd

 

and 4
th

 orders. These are compared with the ones performed in [54 and 67]. These 

comparisons are summarized in table XIII. It is reasonable to assume that the 5
th

 order SD 

results of Sun et al [67] are the most accurate of all the ones listed in table XIII. This table 
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compares the separation point, drag coefficient due to pressure (CDp) and the drag coefficient 

due to viscous stresses (CDf). It can be seen that the 2
nd

 order second order simulations over 

predict the separation point. The 3
rd

 and 4
th

 order results are very close the 5
th

 order results of 

Sun et al [67].  

 It is also clear that the penalty and the BR2 schemes display higher fidelity than the LDG 

scheme: for instance, it can be seen that penalty and the BR2 schemes yields CDp readings 

which are closer to the actual value (than the under predicting LDG readings). The under-

prediction for LDG’s CDp is observed for 2
nd

, 3
rd

 and 4
th

 orders. 

 

Table XIII. Comparison of pressure and viscous drag coefficients and location of 

separation point between current simulations and other existing simulations in the 

literature 

Method NDOFs Separation 

Point 

CDp CDf 

  

2
nd

 order SV(Pen) 10368 94.3% 2.0498e-2 3.5309e-2 

2
nd

 order SV(BR2) 10368 94.5% 2.0578e-2 3.4994e-2 

2
nd

 order SV(LDG) 10368 94.2% 2.0192e-2 3.5664e-02 

3
rd

 order SV(Pen) 20736 81.6% 2.2081e-2 3.2117e-2 

3
rd

 order SV(BR2) 20736 81.4% 2.2043e-2 3.2035e-2 

3
rd

 order SV(LDG) 20736 81.7% 2.2016e-2 3.2193e-02 

4
th

 order SV(Pen) 34560 81.3% 2.2270e-2 3.2345e-2 

4
th

 order SV(BR2) 34560 81.3% 2.2234e-2 3.2325e-2 

4
th

 order SV(LDG) 34560 81.2% 2.2219e-2 3.2354e-2 

Cell Centered FV[54] 16384 80.9% 2.2560e-2 3.3010e-2 

Cell Centered FV [54] 65536 81.4% 2.2350e-2 3.2990e-2 



  

 

94

5
th

 order SD [67] 43200 81.4% 2.2250e-2 3.2510e-2 

 Figure 6.26 shows the convergence histories for 2
nd

, 3
rd

 and 4
th

 orders using the penalty 

approach. It can be seen that the speedup at higher orders is massive (more than 2 orders), 

especially for 4
th

 order.  The 3
rd

 and 4
th

 order explicit schemes limit the CFL to a few 

hundredths. In contrast, the implicit schemes have a CFL limit of more than a hundred. This 

is the main reason for obtaining the above-mentioned speedups.  

       
            (a)                                             (b)                                              (c)    

Figure 6.26 Convergence history using explicit R-K and implicit LU-SGS schemes for 

the flow over naca0012 airfoil using the penalty scheme. Case A: 2ndorder; Case B: 3
rd

 

order; Case C: 4
th

 order 

 

 Figure 6.27 shows the convergence history as a function of highest order iterations for the 

single level and the multigrid simulations. It can be seen that the multigrid reduces the total 

number of required sweeps.  
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       (a)                                                                                   (b) 

Figure 6.27 Convergence history as a function of finest order iterations (LU-SGS 

scheme) using single level and FMG schemes for the flow over naca0012 airfoil (penalty 

method). Case (a): 3
rd

 order; Case (b): 4th order 

 

 Figure 6.28 shows the effect of p-multigrid for the 3
rd

 and 4
th

 order simulations. The lower 

level operations were carried out using a larger time step. This was done to eliminate the low 

frequency errors at a faster rate. Fig. 6.29 shows the Mach contours computed with linear and 

quadratic SVs. The solution gets smoother and smoother with the increasing of the order of 

the polynomial reconstruction. The wake region looks more refined and continuous for the 

3
rd

 order case. The difference between the 3
rd

 and the 4
th

 order plots were negligible. 
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                                 (a)                                                                              (b) 

Figure 6.28. Convergence history using single level and FMG schemes for the 

flow over naca0012 airfoil. Case (a): 3
rd

 order; Case (b): 4th order 

 

      
                         (a)                                                                         (b) 

Figure 6.29. Mach contours around the NACA0012 airfoil at zero degree of 

attack, Re=5000, M=0.5. Case (a): 2ndorder; Case (b): 3rd order 
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6.2.2.3 Laminar flow over a flatplate 

    In this section, we simulate laminar flow over a flat plate.  The flow was transonic at Mach 

0.5. Figure 6.30 shows the convergence histories for 2
nd

, 3
rd

 and 4
th

 orders using the penalty 

scheme.        

      
           (a)                                               (b)                                            (c) 

Figure 6.30 Convergence history using explicit R-K and implicit LU-SGS schemes for 

the laminar flow over a flat plate using the penalty scheme. Case (a): 2ndorder; Case 

(b): 3
rd

 order; Case (c): 4
th

 order 

 

             
                       (a)                                                                          (b) 
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Figure 6.31. Convergence history using single level and FMG schemes for the laminar 

flow over a flat plate using the penalty scheme. Case (a): 3
rd

 order; Case (b): 4th order 

 

 Figure 6.31 shows the effect of p-multigrid for the 3
rd

 and 4
th

 order simulations. These 

convergence plots look qualitatively similar to those obtained for the flow over naca0012 

airfoil. It must be noted that the speedups obtained for this simulation are slightly lower than 

those obtained for the airfoil case. This is because of the surface grid: airfoil utilizes a curved 

boundary for the 3
rd

 and 4
th

 orders. This makes the system stiffer and the effect of 

implicit/multigrid schemes result in enormous speedups. All of the above was published in 

[36]. 

 We also compared the multigrid performance for the three viscous discretizations. Figure 

6.32(A) shows the convergence histories as a function of time for a 3
rd

 order multigrid 

system. As expected, the LDG method performs badly. Due to the extra computations (i.e. 

computing the lifting functions), BR2 is slightly slower than the penalty scheme. Figure 

6.32(B) shows the convergence history as a function of highest order iterations. As expected, 

the BR2 scheme converges in the least number of iterations. 
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                        (a)                                                                             (b) 

Figure 6.32. Convergence history for the 3
rd

 order multigrid system FMG schemes for 

the laminar flow over a flat plate. Case (a): Convergence as a function of time; Case (b): 

Convergence as a function of highest order iterations 

 

 Figure 6.33(A) shows the convergence history as a function of time for the 2 level 4
th

 

order multigrid system. The LDG method was found to be extremely unstable and we had to 

use a much smaller time step to ensure stability. In addition, we also had to update the values 

of the gradients on the faces (CV faces in the SV boundary) while obtaining the residuals for 

every SV. In other words, the face gradients coming from the neighboring SVs have to be 

updated continuously. This makes the system more implicit and hence more stable. The BR2 

method takes the least time to attain convergence. Figure 6.33(B) shows the convergence 

history as a function of highest order iterations. As expected, once again BR2 takes the least 

amount of iterations and LDG the most. Thus in spite of the additional computing cost 

(lifting function computation), BR2 outperforms the penalty and the LDG scheme. 



  

 

100

             
                      (a)                                                                             (b) 

Figure 6.33. Convergence history for the 4
th

 order multigrid system FMG schemes for 

the laminar flow over a flat plate. Case (a): Convergence as a function of time; Case (b): 

Convergence as a function of highest order iterations 

 

6.2.2.4 Turbulent flow over a flatplate 

    To simulate flow turbulence, a RANS Spalart-Allmaras (S-A) model approach was 

employed. The S-A one-equation model [66] solves a single partial differential equation for a 

variable ν~

 

which is related to the turbulent viscosity. The differential equation is derived by 

using empiricism and arguments of dimensional analysis, Galilean invariance and selected 

dependence on the molecular viscosity. The model includes a wall destruction term that 

reduces the turbulent viscosity in the log layer and laminar sublayer. The equation can be 

written in the following form 
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where ν  is the molecular viscosity. Using S to denote the magnitude of the vorticity, the 

modified vorticity is defined as 
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where d is the distance to the closest wall. The wall destruction function is defined as 

.~

~
),(,

1
22

6

2

6/1

6

3

6

6

3

dS
rrrcrg

cg

c
gf w

w

w

w
κ

ν
≡−+=









+

+
=              (6.12) 

The closure coefficients are given by: 
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 The following flux formulations were used 
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1. The inviscid fluxes were handled using upwinding. This term is generally not stiff and 

one could also use an approximate Riemann flux. 

2.   One of the most important terms in equation 5.26 is the diffusion 

term [ ])~)~((
1

ννν
σ

∇+•∇ . A penalty formulation was used to obtain the above at the 

SV boundaries 

 The equation for ν~ also involves the computation of a source term. The production at the 

cell center of each control volume was obtained. The actual production was obtained by 

reconstructing the cell center valued production terms obtained from the CVs in each SV. 

  In this section, we simulate turbulent flow over a flat plate. The flow was transonic at 

Mach 0.5. The Reynolds number was 5 million. The Spalart Allmaras (SA) model was used 

to close the Reynolds stresses. 

 Simulating the turbulent flow over a flat plate can be regarded as the first step toward 

simulating turbulent flows. In other words, it is a starting location for computing complicated 

flows like rotor craft flows, aeroacoustics signal propagations etc. Figure 6.34 shows the 

variation of the non dimensional distance to the wall versus the non dimensional velocity 

uplus. This has been a classical problem and the well known log-law behavior is well 

documented [61]. The indirect turbulence model assumes an infinite Reynolds number and 

hence the log-law behavior continues till infinity. However the case in consideration has a 

finite Reynolds number and hence flattens out after some distance. It can be seen that the 3
rd

 

and the 4
th

 order simulations display much higher fidelity than the 2
nd

 order simulations. This 

may indicate that higher order methods might be the best alternative to experiments (w.r.t 

obtaining very accurate results). 
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Figure 6.34. Variation of yplus versus uplus for turbulent flow over a flat plate. 

The simulations are compared with the indirect turbulence model. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

We have developed a p-Multigrid spectral difference solver for 2D Euler equations. The 

SD method is relaxed with an implicit lower-upper symmetric Gauss-Seidel approach. It was 

found that the simplified implicit scheme is very stable and produces a speedup of one or two 

orders magnitude compared to its explicit counterparts for the scalar wave equations as well 

as the Euler equations. The computational speed is further accelerated by a nonlinear p-

multigrid approach in the context of Full Approximation Scheme. The combination of the 

implicit LU-SGS relaxation scheme with three-level p-Multigrid method achieved very good 

stability and speedup for both 2D wave cases and 2D Euler equation cases. In addition, the p-

Multigrid scheme preserved the expected third order accuracy for the supersonic vortex flow. 

The p-multigrid method with implicit smoothers on all three p-levels achieves a speedup of 

around 4 over the single level implicit scheme. Explicit Runge-Kutta smoothers are also 

studied for the p-Multigrid method. They are not as effective as the implicit LU-SGS method. 

However, they can be used at the highest p-level for 3D problems to circumvent the problems 

associated with memory. Our calculations in two dimensions show that the approaches using 

explicit smoother at the high p-levels and implicit smoother at the low p-levels are stable and 

achieve considerable speedup.  A speedup factor around 8 can be achieved using explicit 

smoothers for all three p-levels. In addition, the simulations using the V cycles were always 

faster than the simulations using the W cycles. Extending the SD p-Multigrid method with 

implicit LU-SGS smoothers to 2D compressible Navier-Stokes equations is one of the areas 

for future research.  
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 In the present study, we suggested a new penalty approach and implemented the BR2 

method for computing viscous fluxes for the SV method. Fourier analysis was done for both 

the new formulations and the previously used LDG scheme. Based on the Fourier analysis, 

the following conclusions were obtained 

1. LDG has a severe time step limitation (based on stability). BR2 can handle a very 

high time step and the penalty scheme is in between the above two methods. 

2. BR2 can converge in less iteration (compared to penalty and LDG). However, the 

time consumed by BR2 scheme is comparable to the penalty scheme as additional 

computations are required. 

3. There exists some range of wave numbers where the multigrid is unstable. This 

range is very large for the 4
th

 order multigrid system. 

4. The BR2 and the penalty scheme are best suited for a 3
rd

 order multigrid. Even 

though the LDG has the least instability for a 4
th

 order multigrid system, it requires 

a very small time step and is very inefficient. 

 The accuracy of the three methods was tested by performing an accuracy study using the 

2D Laplace equation. We also incorporated the implicit LU-SGS scheme into the SV 

method. This resulted in extraordinary speedups. A p-multigrid was also implemented for the 

diffusion and the NS equations. The implicit solver and the p-multigrid were successfully 

coupled in order to enable efficient simulation. A combination of the above gave speedups of 

nearly 3 orders of magnitude. Future research includes one or more of the following areas 

1. A complete study of stability analysis for the SD method is needed. Currently SD 

has a mild instability for hyperbolic conservation laws. No analysis has been done 

for the diffusion problem for the SD method. It would be interesting to check 
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whether the three viscous flux formulations show the traits they displayed for the 

SV scheme.  

2. Investigate the possibility of “All curved faces” approach i.e. all the faces in the 

computational domain are curved faces. This might be the only way to tackle the 

extremely skewed triangles in simulations, which have non-straight walls (which 

exist in most real world applications). 

3. Implement h-p multigrid. 
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