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ABSTRACT

This research focuses on dynamic modeling and ascent flight control of large flexible launch

vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-

freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance

and control, and structural flexibility, is developed. NASA’s Ares-I reference model and the

SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and lin-

earization tool for an independent validation of the performance and stability of the ascent

flight control system of large flexible launch vehicles. A linearized state-space model as well

as a non-minimum-phase transfer function model (which is typical for flexible vehicles with

non-collocated actuators and sensors) are validated for ascent flight control design and analysis.

This research also investigates fundamental principles of flight control analysis and design

for launch vehicles, in particular the classical “drift-minimum” and “load-minimum” control

principles. It is shown that an additional feedback of angle-of-attack can significantly improve

overall performance and stability, especially in the presence of unexpected large wind distur-

bances. For a typical “non-collocated actuator and sensor” control problem for large flexible

launch vehicles, non-minimum-phase filtering of “unstably interacting” bending modes is also

shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The

robust stability of an ascent flight control system design, which directly controls the inertial

attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the

framework of structured singular value (µ) analysis. Furthermore, nonlinear coupled dynamic

simulation results are presented for a reference model of the Ares-I CLV as another validation

of the feasibility of the ascent flight control system design.

Another important issue for a single main engine launch vehicle is stability under mal-
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function of the roll control system. The roll motion of the Ares-I Crew Launch Vehicle under

nominal flight conditions is actively stabilized by its roll control system employing thrusters.

This dissertation describes the ascent flight control design problem of Ares-I in the event of

disabled or failed roll control. A simple pitch/yaw control logic is developed for such a techni-

cally challenging problem by exploiting the inherent versatility of a quaternion-based attitude

control system. The proposed scheme requires only the desired inertial attitude quaternion

to be re-computed using the actual uncontrolled roll angle information to achieve an ascent

flight trajectory identical to the nominal flight case with active roll control. Another approach

that utilizes a simple adjustment of the proportional-derivative gains of the quaternion-based

flight control system without active roll control is also presented. This approach doesn’t re-

quire the re-computation of desired inertial attitude quaternion. A linear stability criterion

is developed for proper adjustments of attitude and rate gains. The linear stability analysis

results are validated by nonlinear simulations of the ascent flight phase. However, the first

approach, requiring a simple modification of the desired attitude quaternion, is recommended

for the Ares-I as well as other launch vehicles in the event of no active roll control.

Finally, the method derived to stabilize a large flexible launch vehicle in the event of

uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used

to stabilize an axisymmetric rigid body by two independent control torques.
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NOMENCLATURE

a speed of sound = 1117 ft/s at sea level in the standard atmosphere

Ae nozzle exit area = 122.137 ft2

b reference body length = 12.16 ft

(cx, cy, cz) components of the center of mass location in the structural

reference frame with its origin at the top of vehicle

= (−220.31, 0.02, 0.01) ft at t = 0

CA axial force coefficient

CY β side force curve slope with respect to β

CN0 normal force coefficient at zero angle of attack

CNα normal force curve slope with respect to α

CMrβ rolling moment curve slope

CMp0 pitching moment coefficient at zero angle of attack

CMpα pitching moment curve slope

CMyβ yawing moment curve slope

CB/I direction cosine matrix of the frame B with respect to the frame I

C lateral (side) force

D drag (axial) force

Fbase base force

(Faero.xb, Faero.yb, Faero.zb) body-axis components of aerodynamic force

(Frkt.xb, Frkt.yb, Frkt.zb) body-axis components of solid rocket booster force

(Frcs.xb, Frcs.yb, Frcs.zb) body-axis components of RCS force

(Ftotal.xb, Ftotal.yb, Ftotal.zb) body-axis components of total force
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(Ftotal.xi, Ftotal.yi, Ftotal.zi) inertial components of total force

(gx, gy, gz) inertial components of the gravitational acceleration

(~i,~j,~k) basis vectors of the body-fixed reference frame B

(~is,~js,~ks) basis vectors of the structural reference frame S

(~I, ~J, ~K) basis vectors of the Earth-centered inertial reference frame I

(~Ie, ~Je, ~Ke) basis vectors of the Earth-fixed equatorial rotating reference frame E

J2 Earth’s second-order zonal coefficient = 1.082631× 10−3

J3 Earth’s third-order zonal coefficient = −2.55× 10−6

J4 Earth’s fourth-order zonal coefficient = −1.61× 10−6

Kp proportional gain

Kd derivative gain

m vehicle’s mass

M Mach number

N normal force

p0 local atmospheric pressure

pe nozzle exit pressure

(p, q, r) body-axis components of ~ω

(q1, q2, q3, q4) attitude quaternion of the vehicle with respect to an inertial

reference frame

(q1c, q2c, q3c, q4c) desired attitude quaternion command from ascent guidance system

(q1e, q2e, q3e, q4e) attitude-error quaternion

(q̂1c, q̂2c, q̂3c, q̂4c) a modified set of desired attitude quaternion associated

with (θ1, θ2c, θ3c)

Q dynamic pressure

Re Earth’s equatorial radius = 20,925,646 ft

Rp Earth’s polar radius = 20,855,486 ft

~r vehicle’s position vector

r magnitude of ~r
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S reference area = 116.2 ft2

T total thrust

T0 total vacuum thrust

T∞ thrust at any lower level in the atomosphere

(Taero.xb, Taero.yb, Taero.zb) body-axis components of aerodynamic torque

(Trkt.xb, Trkt.yb, Trkt.zb) body-axis components of solid rocket torque

(Trcs.xb, Trcs.yb, Trcs.zb) body-axis components of RCS torque

U Earth’s gravitational potential

(u, v, w) body-axis components of ~V

~V vehicle’s inertial velocity vector

Ve exit velocity of the solid rocket booster

~Vrel vehicle’s velocity vector relative to the Earth-fixed reference frame

~Vw velocity vector of the wind

~Vm air stream velocity vector

Vm magnitude of the air stream velocity

(Vm.xb, Vm.yb, Vm.zb) body-axis components of vehicle’s air stream velocity vector

(x, y, z) inertial components of vehicle’s position vector ~r

Xa aerodynamic reference point location in the structural frame = −275.6 ft

Xg gimbal attach point location in the structural frame = −296 ft

α angle of attack

β angle of sideslip

δy pitch gimbal angle (rotation about the body y-axis)

δz yaw gimbal angle (rotation about the body z-axis)

µ Earth’s gravitational parameter = 1.407644176× 1016 ft3/s2

φ Earth’s geocentric latitude

(θ1, θ2, θ3) Euler angles associated with (q1, q2, q3, q4) for

C1(θ1)← C2(θ2)← C3(θ3)

(θ1c, θ2c, θ3c) Euler angles associated with (q1c, q2c, q3c, q4c)
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(θ1, θ2c, θ3c) a modified set of Euler angles

ρ density of the air

η flexible-mode state vector

ζ damping ratio of the flexible modes = 0.005

Ω = diag(ωi) undamped natural frequency matrix of the flexible modes

~ω angular velocity vector of the vehicle

~ωe = ωe
~K angular velocity vector of the Earth where ωe = 7.29× 10−5 rad/s
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CHAPTER 1. INTRODUCTION

1.1 Overview

Figure 1.1 Comparison of Space Shuttle, Ares-I, Ares-V, and Saturn V
launch vehicles [1].

The Ares-I Crew Launch Vehicle (CLV), being developed by the National Aeronautics and

Space Administration (NASA) [1], is a large, slender, and aerodynamically unstable vehicle.

It will be used to launch astronauts to Low Earth Orbit and rendezvous with the International

Space Station (ISS) or NASA Exploration System Mission Directorate’s earth departure stage

for lunar or other future missions beyond Low Earth Orbit. In Figure 1.1, its overall con-

figuration is compared to other launch vehicles, including the Ares-V Cargo Launch Vehicle

and Saturn V. The Ares-I CLV is a two-stage rocket with a solid-propellant first stage derived

from the Shuttle Reusable Solid Rocket Motor/Booster and an upper stage employing a J-2X
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engine derived from the Saturn J-2 engines.

1.2 Ares-I Configuration

Figure 1.2 Ares-I CLV configuration [2].

Ares-I CLV has an “in-line” configuration as illustrated in Figure 1.2, as opposed to the

Shuttle, which has the orbiter and crew placed beside the External Tank. In the event of an

emergency, the Orion Crew Module can be blasted away from the launch vehicle using the

Launch Abort System (LAS), which will fly directly upward, out of the way of the launch

vehicle.

The first stage is a new 5-segment solid rocket booster (SRB), derived from a 4-segment

space shuttle reusable solid rocket motor (RSRM). It will also include separation and recovery

systems, and SRB nozzle gimbal capability for thrust vector control (TVC). The second stage

or upper stage is powered by a liquid oxygen/liquid hydrogen constant-thrust J-2X engine. It

also contains avionics and other subsystems. The upper stage and first stage are connected by

the interstage, which also contains roll control system (RCS) [3] to prevent the vehicle from

spinning as it accelerates upward from the thrust of the SRB.

In addition to the LAS, upper stage, and first stage, the stack includes a forward skirt
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and instrument unit, which connects the Orion to the Ares-I and contains the flight computer

for controlling the launch vehicle. The Ares-I navigation hardware will be located within an

instrumentation ring near the top of the second stage and just behind crew exploration vehicle

(CEV). An Inertial Measurement Unit (IMU) located in the instrument unit (at the top of

upper stage) will provide inertial position and velocity information to the navigation system

[4], and attitude quaternion and angular velocity to the Flight Control System (FCS). Pitch

and yaw body rates are obtained from two Rate Gyro Assemblies (RGAs) located near the

interstage and the first stage aft skirt (Figure 1.3).

Figure 1.3 Flexible mode shapes and sensor locations of the Ares-I Crew
Launch Vehicle [1]. Currently, rate-gyro blending is not consid-
ered for the Ares-I.

1.3 Ares-I Mission Profile

As seen in Figure 1.4, ascent flight trajectory begins at lift-off and lasts until first stage

separation. It takes approximately 120 seconds. This dissertation will focus on flight simulation

and ascent flight control system analysis and design during the ascent flight phase. During this

phase, Ares-I will experience velocities up to Mach 4.5 at an altitude of about 130, 000 feet,
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Figure 1.4 Ares-I CLV mission profile [2].

and a maximum dynamic pressure (Max Q) of approximately 800 pounds per square foot.

The ascent flight trajectory can be separated into three phases: vertical flight, transition

turn and gravity turn. After SRB ignition, the launch vehicle flies vertically until it has

cleared the launch tower. The vertical, stationary attitude flight of the launch vehicle lasts

approximately 6 seconds, and then it commences a combined pitch/roll maneuver in order

to head the crew window to the launch azimuth, which is defined as the angle between the

vertical ascent trajectory plane (or the so-called pitch plane) and a vector pointing from the

launch pad toward the North Pole. As a result, the required heads-down orientation of the

crew can be maintained during the ascent flight phase [5]. This maneuver is also known as the

transition turn [6]. The vehicle transitions from vertical rise to the gravity turn condition. It

will fly a gravity turn trajectory until burn out of the SRB and separation [7]. The gravity turn

maneuver is used to achieve an ascent trajectory with zero angle of attack and zero sideslip

angle (e.g. flying into the relative wind) by minimizing structural bending loads.

Since a detailed discussion of the launch vehicle guidance and trajectory optimization of

Ares-I CLV is beyond the scope of this dissertation, the reader is referred to the literature for
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a more complete treatment [7, 8, 9].

1.4 Interaction Between Structures and Flight Control System

Figure 1.5 Interaction between the ascent flight control and the structural
bending mode.

A launch vehicle is essentially a long slender beam,thus it is structurally very flexible. IMUs

are placed along the vehicle body to sense angular displacement or rate for feedback control.

The IMU measures local elastic distortions as well as rigid body motion. As a result, one

significant risk for a large flexible launch vehicle ascent flight control system is the potential

for interaction between the ascent flight control and the structural bending mode. Because the

first bending mode frequency is usually close to the crossover regime of the rigid body control

system, the control system has the potential to excite the bending mode and destabilize the

vehicle dynamics [11].

This structural feedback problem can be illustrated by Figure 1.5. TVC actuators and
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attitude sensors of launch vehicles are not collocated. The sensors pick up both rigid-body

motion of the vehicle and motion caused by structural deformations at the location of the

sensors. These deformations affect the command to the actuator (usually gimbaled rocket

engines). Since engines apply forces to the launch vehicle’s structure, energy can be fed into

the structure at various frequencies. This will reinforce elastic oscillations, leading ultimately

to structural failure of the vehicle.

Conventional roll-off filters and/or notch filters were often used in practice for the stabiliza-

tion of such unstably interacting bending modes of large flexible launch vehicles [10, 12, 13, 14,

15]. However, in [16, 20, 21], use of non-minimum-phase (NMP) structural filters was shown

to be very effective and robust in controlling flexible structures with non-collocated actuators

and sensors. In Chapter 3 it will be shown that the NMP filters can stabilize, effectively and

robustly, the bending modes of the Ares-I CLV.

1.5 Underactuated Control Problem

The active RCS of Ares-I CLV provides rotational azimuth control to perform a roll orien-

tation maneuver after lift-off and to mitigate against adverse roll torques [22]. It was harvested

from the Peacekeeper missile’s fourth stage axial thruster system. The challenge for the roll

control system is to be able to control large rolling moments, with continuously decreasing

principal moment of inertia during flight. RCS failure is a potential threat to the safety of

astronauts and launch vehicles. In Chapter 4, the problem of ascent flight control in the event

of uncontrolled roll drift will be discussed. Furthermore, it could be generalized as a typical

underactuated control problem [23, 24, 25, 26, 27]. In Chapter 5, methods developed to stabi-

lize Ares-I will be generalized as a method to stabilize an axisymmetric rigid body using two

control inputs.
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CHAPTER 2. 6-DEGREE-OF-FEEDOM DYNAMIC MODELING

2.1 Introduction

A complete set of coupled dynamic models of the Ares-I CLV, incorporating its propulsion,

aerodynamics, guidance and control, and structural flexibility will be described in this chapter.

The Ares-I CLV is a large, slender, and aerodynamically unstable vehicle. NASA’s reference

model and SAVANT Simulink-based program [11, 28, 29], as well as various dynamic models

of launch vehicles developed previously in the literature [10, 16, 30, 31, 32], were utilized to

develop a Matlab-based simulation and linearization tool for an independent validation of the

performance and stability of the ascent flight control system of the Ares-I CLV. The block

diagram of the Matlab-based simulation program is shown in Figure 2.1.

Figure 2.1 Ares-I CLV 6-DOF simulation block diagram.
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2.2 Reference Frames and Rotational Kinematics

Various reference frames, which are essential for describing the six-degrees-of-freedom dy-

namic model of launch vehicles, are discussed in this section.

2.2.1 Earth-Centered Inertial Reference Frame

I J 

K

i
k

j
r

Vernal
Equinox
Direction

Greenwich
longitude = 0
latitude = 0

V

cg

Equator

Body Frame (x, y, z)
   or (1, 2, 3)  

Inertial Frame

Earth Frame

js

is
ks

Structure Frame  

I e

Ke

J e

ω = (p, q, r)

Figure 2.2 Illustration of Earth-centered inertial reference frame {~I, ~J, ~K},
Earth-fixed reference frame {~Ie, ~Je, ~Ke}, structural reference
frame {~is,~js,~ks}, and body-fixed reference frame {~i,~j,~k}.

The Earth-centered inertial frame with a set of basis vectors {~I, ~J, ~K} has its origin at the

Earth center as illustrated in Figure 2.2. The z-axis is normal to the equatorial plane and the

x- and y-axes are in the equatorial plane. The x-axis is along the vernal equinox direction.

Because the Earth’s orbital motion around the sun is negligible in the trajectory analysis of

launch vehicles, this frame is often considered as an inertial reference frame.

The position vector ~r of a launch vehicle is then described as

~r = x~I + y ~J + z ~K (2.1)

The inertial velocity and the inertial acceleration of a launch vehicle become, respectively,

~V = ẋ~I + ẏ ~J + ż ~K (2.2)
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~̇V = ẍ~I + ÿ ~J + z̈ ~K (2.3)

Figure 2.3 Launch Complex 39B at Kennedy Space Center

For example, if the inertial position vector of the Ares-I at liftoff from Launch Complex

39B (Figure 2.3) at Kennedy Space Center (with longitude 80.6208 deg west and latitude

28.6272 deg north) is given by

~r(0) = x(0)~I + y(0) ~J + z(0) ~K = −8.7899E4~I − 1.8385E7 ~J + 9.9605E6 ~K (ft) (2.4)

then, the inertial velocity vector of the vehicle at liftoff is obtained as

~V (0) = ẋ(0)~I + ẏ(0) ~J + ż(0) ~K = ~ωe × ~r(0) = 1340.65~I − 6.41 ~J (ft/sec) (2.5)

where ~ωe = ωe
~K is the angular velocity vector of the Earth and ωe = 7.2921 × 10−5 rad/s,

which corresponds to 360 deg per sidereal day of 23 h 56 min 4 s.

2.2.2 Earth-Fixed Equatorial Reference Frame

The geocentric equatorial rotating frame with a set of basis vectors {~Ie, ~Je, ~Ke}, with its

origin at the Earth center, is fixed to the Earth (Figure 2.2). Its Z-axis is normal to the
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equatorial plane and its x- and y-axes are in the equatorial plane. However, its x-axis is along

the Greenwich meridian. This Earth frame has an angular velocity ~Ωe which is the rotational

velocity of the Earth.

2.2.3 Body-Fixed Reference Frame

The body-fixed frame with basis vectors {~i,~j,~k} is fixed to the vehicle’s body as illustrated

in Figure 2.2. Its origin is the center of mass. The~i-axis is along the vehicle’s longitudinal axis.

The ~k-axis perpendicular to the ~i-axis points downward while the ~j-axis points rightward.

The inertial velocity vector ~V is then expressed as

~V = u~i+ v~j + w~k (2.6)

The angular velocity vector ~ω of the launch vehicle is also expressed as

~ω = p~i+ q~j + r~k (2.7)

The inertial acceleration vector is then described as

~̇V = (u̇~i+ v̇~j + ẇ~k) + ~ω × ~V (2.8)

2.2.4 Structural Reference Frame

A structural reference frame with basis vectors {~is,~js,~ks} and with its origin at the top of

vehicle is also employed in the SAVANT program. The locations of center of gravity, gimbal

attach point, aerodynamic reference point, and other mass properties, are defined using this

structural frame. However, Euler’s rotational equations of motion will be written in terms of

the body-fixed frame with its origin at the center of gravity. Because ~is = −~i, ~js = ~j, and

~ks = −~k, we have

CB/S =


−1 0 0

0 1 0

0 0 −1

 (2.9)

where CB/S is the direction cosine matrix of frame B with respect to frame S.
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2.2.5 Earth-Fixed Launch Pad Reference Frame

Figure 2.4 Earth-fixed launch pad reference frame with a local tangent
plan at Launch Complex 39B at Kennedy Space Center.

In order to visualize the ascent flight trajectory in an intuitive way, another reference

frame, called the Earth-fixed launch pad (up, east, north) reference frame is introduced here.

Its origin is at the Launch Complex 39B at NASA’s Kennedy Space Center with the latitude

28.6272 deg and longitude −80.6208 deg as illustrated in Figures 2.4.

2.2.6 Euler Angles and Quaternions

The coordinate transformation to the body frame B from the inertial frame I is described

by three Euler angles (θ1, θ2, θ3). For a rotational sequence of C1(θ1)← C2(θ2)← C3(θ3), we

have

CB/I =


cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ2 sin θ3 + cosφ cos θ3 sin θ1 cos θ

cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 cos θ1 sin θ2 sin θ3 − sinφ cos θ3 cos θ1 cos θ


(2.10)
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which is the direction cosine matrix of the body frame B relative to the inertial frame I.

However, the three Euler angles (θ1, θ2, θ3) do not actually represent the vehicle’s roll, pitch,

and yaw attitude angles to be used for attitude feedback control.

The rotational kinematic equation for three Euler angles (θ1, θ2, θ3) is given by
θ̇1

θ̇2

θ̇3

 =
1

cos θ2


cos θ2 sin θ1 sin θ2 cos θ1 sin θ2

0 cos θ1 cos θ2 − sin θ1 cos θ2

0 sin θ1 cos θ1




p

q

r

 (2.11)

The inherent singularity problem of Euler angles can be avoided by using quaternions [33].

The rotational kinematic equation in terms of quaternion (q1, q2, q3, q4) is given by

q̇1

q̇2

q̇3

q̇4


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1

q2

q3

q4


(2.12)

where the quaterions are related to the three Euler angles as follows:

q1 = sin(θ1/2) cos(θ2/2) cos(θ3/2)− cos(θ1/2) sin(θ2/2) sin(θ3/2)

q2 = cos(θ1/2) sin(θ2/2) cos(θ3/2) + sin(θ1/2) cos(θ2/2) sin(θ3/2)

q3 = cos(θ1/2) cos(θ2/2) sin(θ3/2)− sin(θ1/2) sin(θ2/2) cos(θ3/2)

q4 = cos(θ1/2) cos(θ2/2) cos(θ3/2) + sin(θ1/2) sin(θ2/2) sin(θ3/2)

(2.13)

The coordinate transformation matrix to the body frame from the inertial frame in terms

of quaternions is

CB/I =


1− 2(q22 + q23) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1− 2(q21 + q23) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q21 + q22)

 (2.14)

We also have

CI/B = [CB/I ]−1 = [CB/I ]T =


1− 2(q22 + q23) 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) 1− 2(q21 + q23) 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) 1− 2(q21 + q22)

 (2.15)
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Figure 2.5 Illustration of the Earth-centered inertial reference frame with
{~I, ~J, ~K}, the Earth-fixed launch pad (up, east, north) refer-
ence frame, and the Ares-I orientation with {~i,~j,~k} on Launch
Complex 39B.

2.2.7 Initial Position of Ares-I CLV on the Launch Pad

In NASA’s SAVANT program [28, 29], the inertial attitude quaternion of the Ares-I are

computed with respect to the ECI frame. For the Ares-I orientation on the launch pad,

the x-axis of body-fixed reference frame points up to the sky, the y-axis points northward,

and the z-axis points westward, as illustrated in Figure 2.5. Consequently, the initial Euler

angles (θ1, θ2, θ3) at t = 0 are (89.9881,−28.6090,−90.2739) deg for the rotational sequence

of C1(θ1) ← C2(θ2) ← C3(θ3) [16]. It is emphasized that these Euler angles are not the

traditional (roll, pitch, yaw) attitude angles which describe the orientation of a launch vehicle

with respect to the boost trajectory plane or the so-called pitch plane.
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2.3 The 6-DOF Equations of Motion

The six-degrees-of-freedom (6-DOF) equations of motion of a launch vehicle consist of the

translational and rotational equations. The translational equation of motion of the center of

gravity of a launch vehicle is simply given by

m~̇V = ~F (2.16)

where ~F is the total force acting on the vehicle. Using Equation. (2.3) and Equation. (2.8), we

obtain the translational equation of motion of the form

ẍ~I + ÿ ~J + z̈ ~K =
~F

m
(2.17)

or

u̇~i+ v̇~j + ẇ~k + ~ω × ~V =
~F

m
(2.18)

The Euler’s rotational equation of motion of a rigid vehicle is

~̇H = ~T (2.19)

where ~H is the angular momentum vector and ~T is the total external torque about the center

of gravity. The angular momentum vector is often expressed as

~H = Î · ~ω (2.20)

where ~ω = p~i + q~j + r~k is the angular velocity vector and Î is the vehicle’s inertia dyadic

about the center of gravity of the form [16]

Î =
(
~i ~j ~k

) 
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz



~i

~j

~k

 (2.21)

The rotational equation of motion is then given by

Î · ~̇ω + ~ω × Î · ~ω = ~T (2.22)

where ~̇ω = ṗ~i+ q̇~j + ṙ~k is the angular acceleration vector.
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2.3.1 Aerodynamic Forces and Moments

Aerodynamic forces and moments depend on the vehicle’s velocity relative to the surround-

ing air mass, called the air speed. It is assumed that the air mass is static relative to the Earth.

That is, the entire air mass rotates with the Earth without slippage and shearing. A hybrid

approach of CFD and wind tunnel data have been developed for Ares-I [34]. The air stream

velocity vector ~Vm is then described by

~Vm = ~Vrel − ~Vw = ~V − ~ωe × ~r − ~Vw (2.23)

where ~Vrel is the vehicle’s velocity vector relative to the Earth-fixed reference frame, ~Vw is

the local disturbance wind velocity, ~V is the inertial velocity of the vehicle, ~ωe is the Earth’s

rotational angular velocity vector, and ~r is the vehicle’s position vector from the Earth center.

The matrix form of Eq. (2.23) in the body frame is
Vm.xb

Vm.yb

Vm.zb

 =


u

v

w

−CB/I


0 −ωe 0

ωe 0 0

0 0 0




x

y

z

−


Vw.xb

Vw.yb

Vw.zb

 (2.24)

where (Vm.xb, Vm.yb, Vm.zb) are the body-axis components of the vehicle’s air stream velocity

vector. Note that ~r = x~I + y ~J + z ~K and ~ωe = ωe
~K.

The aerodynamic forces are expressed in the body-axis frame as

D = CAQS − Fbase (2.25a)

C = CY ββQS (2.25b)

N = (CN0 + CNαα)QS (2.25c)

where the base force Fbase is a function of the altitude, the aerodynamic force coefficients are

functions of Mach number, and

M =
Vm

a
= Mach number (2.26)

Q =
1
2
ρV 2

m = dynamic pressure (2.27)
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α = arctan
{
Vm.zb

Vm.xb

}
= angle of attack (2.28)

β = arcsin
{
Vm.yb

Vm

}
= sideslip angle (2.29)

The speed of sound a and the air density ρ are functions of the altitude h.

Furthermore, we have

Faero.xb = −D (2.30a)

Faero.yb = C (2.30b)

Faero.zb = −N (2.30c)

The aerodynamic moments about the center of gravity are also expressed in the body-axis

frame as
Taero.xb

Taero.yb

Taero.zb

 =


0 cz −cy

−cz 0 −Xa + cx

cy Xa − cx 0




Faero.xb

Faero.yb

Faero.zb

 +


CMrβQSb

(CMp0 + CMpαα)QSb

CMyββQSb


(2.31)

where Xa = 275.6 ft is the aerodynamic reference point in the structure frame, (cx, cy, cz)

is the center of gravity location in the structure reference frame with its origin at the top of

vehicle. At t = 0, we have (cx, cy, cz) = (220.31, 0.02, 0.01) ft. The aerodynamic moment

coefficients are functions of Mach number.

2.3.2 Gravity Model

The J4 gravity model used in the SAVANT program is given as

C1 = −1 +
R2

e

r2

[
3J2

(
3
2

sin2 φ− 1
2

)
+ 4J3

Re

r

(
5
2

sin3 φ− 3
2

sinφ
)

+5J4
R2

e

r2

(
35
8

sin4 φ− 15
4

sin2 φ+
3
8

)]
(2.32)

where φ is the Earth’s geocentric latitude.

C2 = J2(3 sinφ) +
Re

r
J3

(
15
2

sin2 φ− 3
2

)
+
R2

e

r2
J4

(
35
2

sin3 φ− 15
2

sinφ
)

(2.33)
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The inertial components of the gravitational acceleration are
gx

gy

gz

 =
µ

r2

C1


x/r

y/r

z/r

− C2


0 −z/r y/r

z/r 0 −x/r

−y/r x/r 0



−y/r

x/r

0


 (2.34)

The mathematical models used in the SAVANT program for computing the vehicle’s alti-

tude h are summarized as

f =
Re −Rp

Re
=

1
298.257

(2.35)

tanΦ =
tanφ

(1− f)2
(2.36)

A =
(

cos Φ
Re

)2

+
(

sinΦ
Rp

)2

(2.37)

B = −
√
x2 + y2 cos Φ

R2
e

− z sinΦ
R2

p

(2.38)

C =
(
z

Rp

)2

+
x2 + y2

R2
p

− 1 (2.39)

h = −B
A
−

√(
B

A

)2

− C

A
(2.40)

where f is the Earth’s flatness parameter, φ is the geocentric latitude, and Φ is the geodetic

latitude (which is commonly employed on geographical maps).

2.3.3 Rocket Propulsion Model

The rocket thrust is simply modeled as

T = T0 + (pe − p0)Ae (2.41)

where T is the total thrust force, T0 = |ṁ|Ve the jet thrust, pe the nozzle exit pressure, p0 the

local atmospheric pressure (a function of the altitude), ṁ the propellant mass flow rate, Ve the

exit velocity, and Ae the nozzle exit area (= 122.137 ft2).
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If the thrust in the vacuum of space above the atmosphere is called T∞, then the thrust at

any lower level in the atmosphere is [8]

T = T∞ − p0Ae (2.42)

where T∞ = T0 + peAe.

The body-axis components of the thrust force are
Frkt.xb

Frkt.yb

Frkt.zb

 =


T

−Tδz

Tδy

 (2.43)

where δy and δz are the pitch and yaw gimbal deflection angles, respectively. Gimbal deflection

angles are assumed to be small (with δmax = ±10 deg).

The body-axis components of the rocket thrust-generated torque are
Trkt.xb

Trkt.yb

Trkt.zb

 =


0 cz −cy

−cz 0 −Xg + cx

cy Xg − cz 0




Frkt.xb

Frkt.yb

Frkt.zb

 (2.44)

where Xg = 296ft is the gimbal attach point location in the structural frame.

The body-axis components of the roll control torque from the RCS are
Trcs.xb

Trcs.yb

Trcs.zb

 =


Trcs

0

0

 (2.45)

2.3.4 Guidance and Control

The commanded quaternion (q1c, q2c, q3c, q4c) computed by the guidance system are used

to generate the attitude-error quaternion (q1e, q2e, q3e, q4e) as follows [16]:

q1e

q2e

q3e

q4e


=



q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c





q1

q2

q3

q4


(2.46)
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where the attitude quaternion (q1, q2, q3, q4) are computed by numerically integrating the

kinematic differential equation, Equation. (2.12).

The guidance command used in the simulation is for the ISS mission at an orbital inclination

of 51.6 deg [7].

The simplified control laws of the ascent flight control system are then described as

Trcs = −Kpx(2q1e)−Kdxp (2.47a)

δy = −Kpy(2q2e)−Kiy

∫
(2q2e)dt−Kdyq (2.47b)

δz = −Kpz(2q3e)−Kdzr (2.47c)

An integral control is added to the pitch control channel. The terms (2q1e, 2q2e, 2q3e) are the

roll, pitch, and yaw attitude errors, respectively. This quaternion-error feedback control is in

general applicable for arbitrarily large angular motion of vehicles [16, 17, 18, 19]. Feedback

of Euler-angle errors (θ1 − θ1c, θ2 − θ2c, θ3 − θ3c) is not applicable here because the Euler

angles employed in this paper (also used in the SAVANT program) are defined with respect to

the Earth-centered inertial reference frame, not with respect to the so-called pitch plane or a

navigation reference frame of launch vehicles [10, 16, 30, 31, 32, 35].

2.3.5 Flexible-Body Modes

For the purposes of ascent flight control system stability analysis, the lateral vibration

modes are important, since this motion is sensed by the IMU [10]. Usually, a forced vibration

of a free-free beam model can be expressed mathematically by Euler-Bernoulli beam model,

neglecting shear distortion and rotational inertia, as follows:

m(l)
∂2ξ(l, t)
∂t2

+
∂2

∂l2
[EI(l)

∂2ξ(l, t)
∂l2

] = T (t)δ (2.48)

where m is mass per unit length, EI is bending stiffness and ξ is beam deflection. Note that

for the case of free vibration, the term on the right side of the equal sign in Equation. (2.48)

is zero.
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For the free-free case where the shear ∂2ξ
∂l2

and bending moment ∂3ξ
∂l3

at the ends of the beam

are zero, the boundary conditions are given by

∂2ξ(0, t)
∂l2

=
∂2ξ(L, t)
∂l2

= 0 (2.49)

∂3ξ(0, t)
∂l3

=
∂3ξ(L, t)
∂l3

= 0 (2.50)

Assuming that there is one solution of the free vibration, it can be written in the form

ξ(l, t) = φ(l)η(t) (2.51)

where φ(l) presents the shape of a natural vibration mode and η(t) is the modal coordinate of

this mode.

Substituting Equation. (2.51) in Equation. (2.48) leads to

− 1
η(t)

d2η(t)
dt2

=
d2

dl2
[EI(l)

d2φ(l)
dl2

] (2.52)

The left side is a function of time t only, and the right side is a function of l. This equation

is valid only if the function on either side is equal to some constant, say ω2. Thus the partial

differential equation Equation. (2.48) becomes two ordinary differential equations as follows:

d2η(t)
dt2

+ ω2η(t) = 0 (2.53)

d2

dl2
[EI(l)

d2φ(l)
dl2

]− ω2m(l)φ(l) = 0 (2.54)

where ω is the vibration frequency corresponding to the mode φ(l). Here, for Equation. (2.54),

numerical methods must be used to calculate the natural frequencies and mode shapes corre-

sponding to specific boundary conditions. Once these are known, the complete solution in the

case of free vibrations may be written as

ξ(l, t) =
∞∑
i=1

φi(x)ηi(t) (2.55)

where φi(t) is the ith normal mode shape, ηi(t) is the ith modal coordinate. It is very straight-

forward to express the forced motion in these terms and to take account of structural damping.
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Detailed derivations for the Euler-Bernoulli model and forced vibrations of nonuniform

beam can be found in text books [10, 16, 36]. Structural dynamics of Ares-I were modeled

as linear second order systems with a damping ratio of 0.5%. The value 0.5% used for flight

control analysis is considered conservative. A Finite Element Model (NASTRAN/PATRAN)

was used to obtain bending mode frequencies and shapes [34].

A flexible-body model of Ares-I is expressed as

η̈ + 2ζΩη̇ + Ω2η = ΦT F rkt (2.56)

where F rkt = (Frkt.xb, Frkt.yb, Frkt.zb)T and Φ is the flexible mode influence matrix at the

gimbal attach point.

Sensor measurements including the effects of the flexible bending modes are modeled as

eattitude =


2q1e

2q2e

2q3e

 + Ψη (2.57)

erate =


p

q

r

 + Ψη̇ (2.58)

where Ψ is the flex-mode influence matrix at the instrument unit location (Figure 1.3).

A summary of the 6-DOF equations of motion can be found in Appendix A.

2.4 Simulation Results of the Rigid Body Ares-I Crew Launch Vehicle

A set of initial conditions for the Ares-I is provided in Table 2.1. The corresponding the

initial Euler angles (θ1, θ2, θ3) at t = 0 are (89.9881,−28.6090,−90.2739) deg. The inertia

matrix about the body frame with its origin at the center of gravity at t = 0 is
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 =


1.2634E6 −1.5925E3 5.5250E4

−1.5925E3 2.8797E8 −1.5263E3

5.5250E4 −1.5263E3 2.8798E8

 slug-ft2 (2.59)
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Table 2.1 Initial conditions at liftoff

State variables Initial values Units
ẋ 1340.65 ft/s
ẏ −6.41 ft/s
ż 0 ft/s
x −8.7899× 104 ft
y −1.8385× 107 ft
z 9.9605×106 ft
p 3.4916×10−5 rad/s
q 6.4018×10−5 rad/s
r 0 rad/s
q1 0.3594
q2 −0.6089
q3 −0.3625
q4 0.6072

Flexible-body mode shape matrices (with 6 flexible modes) are

Φ =


0.000000272367963 0.000000174392026 −0.000000347086527

−0.000364943105155 0.006281028219530 0.000491932740239

0.006281175443849 0.000364891432306 −0.006260333099131

−0.000000266173427 0.000000329288262 −0.000000369058169

−0.006259406451949 −0.000542750533582 −0.007673360355205

−0.000491798506301 0.007676195145027 −0.000542218216634


(2.60)

Ψ =


0.002287263504447 −0.003936428406260 −0.002315093057592

−0.193164818571118 −0.011222878633268 −0.253963647069578

−0.011222390194941 0.193169876159476 −0.019955470041040

0.003866041325542 0.002898204936058 0.005033045198158

−0.019956097043432 −0.130518411476224 0.009224310239736

0.253971718426341 −0.009226496087855 −0.130493158175449

× 10−3

(2.61)

The first three bending mode frequencies are: 6 rad/s, 14 rad/s, and 27 rad/s. The damping

ratio is assumed as ζ = 0.005.
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The simulation results of a test case for a Matlab-based simulation program are shown in

Figures 2.9- 2.23. These results are identical to those obtained using the SAVANT program for

the same test case. However, these simulation results were for a preliminary reference model

of the Ares-I available to the public, not for the most recent model of the Ares-I with properly

updated, ascent flight guidance and control algorithms. The purpose of this chapter was to

develop a Matlab-based simulation tool for an independent validation of the performance and

stability of NASA’s ascent flight control system baseline design for the Ares-I rigid body model.

The center of pressure (cp) location shown in Figure 2.10 was computed as

Xcp = Xa −
(CMp0 + CMpαα)b
CN0 + CNαα

(2.62)

where Xcp is the distance to the cp location from the top of vehicle and Xa is the distance

to the aerodynamic reference point from the top of vehicle (i.e., the origin of the structure

reference frame).

A nominal ascent flight trajectory of the Ares-I obtained using the Matlab-based program

is shown in Figure 2.6. The nominal ascent trajectory on the pitch plane is shown in Figure 2.7.

The launch azimuth can be seen to be about 42 deg. The launch azimuth is defined as the

angle between the vertical trajectory plane (or pitch plane) and a vector pointing from the

launch pad toward the North Pole. Time histories of a different set of Euler angles of the

Ares-I CLV, often called (roll, pitch, yaw) attitude angles, with respect to the vertical pitch

plane, are shown in Figure 2.8. A 48 deg roll maneuver, prior to the start of the gravity turn

pitch maneuver, can be seen in this figure. Because the crew are oriented with their heads

pointing east on the launch pad, the 48 deg roll maneuver is designed to maintain the required

heads-down orientation of the crew [5]. Because the International Space Station mission has a

higher inclination (51.6 deg) than the lunar mission (28.5 deg), the larger roll angle maneuver

has been the primary focus in the roll control system design for Ares-I CLV [7].

Additional figures from the simulation of the Ares-I can be found in Appendix B.
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CHAPTER 3. ANALYSIS AND DESIGN OF ASCENT FLIGHT

CONTROL SYSTEMS

3.1 Introduction

In analyzing and designing the attitude control system, the short period dynamics of the

launch vehicle is used for expressing the rigid-body and flexible-body motion. It is assumed

that the motion of the launch vehicle consists of small deviations from a reference trajectory.

Another important assumption is that time varying mass, inertial, and other physical properties

are changing slowly during the flight. As a result, all parameters of the launch vehicle can be

“frozen” over a short period of time. In this way, analysis and design techniques for Linear

Time-Invariant (LTI) systems can be exploited most fully.

In this section, a Matlab-based program is used to generate the reference trajectory of the

Ares-I CLV. In this program, the Ares-I is considered to achieve attitude quaternion command

perfectly and data for the reference trajectory is calculated in the ECI frame. Another Matlab-

based program is developed to compute an LTI model at any operation point as shown in

Figure 3.1. Linearization results in the ECI and linear state-space equations of both rigid-

body and flex-body model can be found in Appendix C.
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Figure 3.1 Reference trajectory and an operation point of Ares-I CLV in
the pitch plane.

3.2 Pitch Control Analysis of Rigid Launch Vehicles

For the preliminary analysis and design of a pitch-axis flight control system of a launch

vehicle as illustrated in Figure 3.2, an inertial reference frame (X, Y, Z) with its origin at

the vehicle’s center of gravity is assumed with its X-axis along the vertical axis and its Z-axis

along the horizontal direction. Body-fixed (x, y, z) axes with origin at the center of gravity

are also shown in Figure 3.2.

A set of simplified pitch-axis dynamical models with small angular motions can be found

as [10]

mV̇ = (F −D)−mg (3.1)

mZ̈ = −(F −D)θ −Nαα+ Tcδ (3.2)

θ̈ = Mαα+Mδδ (3.3)

α = θ + γ + αw = effective angle of attack (3.4)

γ = Ż/V = flight-path (drift) angle (3.5)

F = T0 + Tc = total thrust force (3.6)
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Figure 3.2 A simplified dynamic model of a launch vehicle for preliminary
pitch control design. All angles are assumed to be small.

where m is the vehicle mass, V is the vehicle velocity, g is the local gravitational acceleration,

T0 is the ungimballed sustainer thrust, Tc is the gimbaled control thrust, D is the aerodynamic

axial (drag) force, Z is the inertial Z-axis drift position of the center-of-mass, Ż is the inertial

drift velocity, N = Nαα is the aerodynamic normal (lift) force acting on the center-of-pressure,

δ is the gimbal deflection angle, θ is the small pitch attitude from a vertical inertial reference

axis X, αw = Vw/V is the wind-induced angle of attack, Vw is the wind disturbance velocity.

We also have

Mα = xcpNα/Iy (3.7)

Mδ = xcgTc/Iy (3.8)
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Nα =
1
2
ρV 2SCNα (3.9)

where Iy is the pitch moment of inertia. For effective thrust vector control of a launch vehicle,

we need

Mδδmax > Mααmax (3.10)

where δmax is the gimbal angle constraint and αmax is the maximum wind-induced angle of

attack.

Combining Equations. (3.2), (3.3), and (3.4), we obtain a state-space model of the form

d

dt


θ

θ̇

Ż

 =


0 1 0

Mα 0 Mα/V

−(F −D +Nα)/m 0 −Nα/(mV )




θ

θ̇

Ż

+


0

Mδ

Tc/m

 δ+


0

Mα

−Nα/m

αw

(3.11)

and α = θ+ Ż/V +αw. Assuming all constant coefficients in the state-space model, we obtain

the open-loop transfer functions from the control input δ(s) as

θ(s)
δ(s)

=
1

∆(s)

(
Mδ

(
s+

Nα

mV

)
+
MαTc

mV

)
(3.12)

Ż(s)
δ(s)

=
1

∆(s)

(
Tc

m
(s2 −Mα)− Mδ(F −D +Nα)

m

)
(3.13)

α(s)
δ(s)

=
1

∆(s)

(
Tc

mV
s2 +Mδs−

Mδ(F −D)
mV

)
(3.14)

where

∆(s) = s3 +
Nα

mV
s2 −Mαs+

Mα(F −D)
mV

(3.15)

In 1959, Hoelkner [37] introduced the “drift-minimum” and “load-minimum” control con-

cepts as applied to a launch vehicle flight control system. The concepts have been further

investigated in [10, 12, 13, 31, 38, 39, 40, 41, 42]. Basically, Hoelkner’s controller utilizes a

full-state feedback control of the form

δ = −K1θ −K2θ̇ −K3α where α = θ + Ż/V + αw (3.16)
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The feedback gains are to be properly selected to minimize either lateral drift velocity Ż

or the bending moment caused by the angle of attack.

Substituting Equation. (3.16) into Equations. (3.2)-(3.3), we obtain the closed-loop transfer

function from the wind disturbance αw(s) to the drift velocity Ż(s) as

Ż(s)
V αw(s)

= − A2s
2 +A1s+Ao

s3 +B2s2 +B1s+Bo
(3.17)

where

B2 = MδK2 +
Tc

mV

(
K3 +

Nα

Tc

)
(3.18)

B1 = Mδ(K1 +K3)−Mα +
K2Tc

mV

(
Mα +

MδNα

Tc

)
(3.19)

Bo =
TcK1

mV

(
Mα +

MδNα

Tc

)
− F −D

mV
(MδK3 −Mα) (3.20)

A2 =
Tc

mV

(
K3 +

Nα

Tc

)
(3.21)

A1 =
K2Tc

mV

(
Mα +

MδNα

Tc

)
(3.22)

Ao = Bo (3.23)

For a step wind disturbance with a magnitude of Vw, the steady-state value of Ż can be

found as
Żss

Vw
= lim

s→0

−(A2s
2 +A1s+Ao)

s3 +B2s2 +B1s+Bo
=
−Ao

Bo
= −1 (3.24)

The launch vehicle drifts along the wind direction with Żss = −Vw and with θ = θ̇ = α =

δ = 0 as t → ∞. It is interesting to notice that the steady-state drift velocity (or the flight

path angle) is independent of feedback gains for an asymptotically stable closed-loop system

with Bo 6= 0.
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If we choose the control gains such that Bo = 0 (i.e., one of the closed-loop system roots is

placed at s = 0), the steady-state value of Ż becomes

Żss

Vw
= lim

s→0

−(A2s+A1)
s2 +B2s+B1

=
−A1

B1
=
−1

1 + C
(3.25)

where

C =
mV [Mδ(K1 +K3)−Mα]
MαK2Tc +MδNα/Tc

(3.26)

For a stable closed-loop system with Mδ(K1 +K3)−Mα > 0, we have C > 1 and

|Żss| < Vw (3.27)

when Bo = 0. The drift-minimum condition, Bo = 0, can be rewritten as

MδK3 −Mα

MδK1
=

Nα

F −D

(
1 +

xcp

xcg

)
(3.28)

Consider the following closed-loop transfer functions:

α(s)
αw(s)

= −s(s
2 +MδK2s+MδK1)

s3 +B2s2 +B1s+Bo
(3.29)

δ

αw
= −s(K3s

2 +MαK2s+MαK1)
s3 +B2s2 +B1s+Bo

(3.30)

For a unit-step wind disturbance of αw(s) = 1/s, we have α = δ = 0 as t→∞. However,

for a unit-ramp wind disturbance of αw(s) = 1/s2, we have

lim
t→∞

α(t) = MδK1 (3.31)

lim
t→∞

δ(t) = MαK1 (3.32)

Consequently, the bending moment induced by α and δ can be minimized by choosing

K1 = 0, which is the “load-minimum” condition introduced by Hoelkner [37]. The closed-loop

system with K1 = 0 is unstable because

Bo = −F −D
mV

(MδK3 −Mα) < 0 (3.33)

However, the load-minimum control for short durations has been known to be acceptable

provided a deviation from the nominal flight trajectory is permissible.
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A set of full-state feedback control gains, (K1, K2, K3), can be found by using a pole-

placement approach or the linear-quadratic-regulator (LQR) control method, as follows:

min
δ

∫ ∞

0
(xTQx+ δ2)dt (3.34)

subject to ẋ = Ax + Bδ and δ = −Kx where x = [θ θ̇ α]T and K = [K1 K2 K3]. Some

simulation results and comparisons of those designs can be found in [43].

3.3 Pitch Control of a Rigid-Body Model of the Ares-I CLV

Table 3.1 Ares-I reference parameters at t = 60 sec

Parameters Values Unit
Iy 2.186× 108 slug-ft2

m 38, 901 slug
Tc 2.361× 106 lb
V 1347 ft/s
CNα 0.1465
g 26.10 ft/s2

Nα 686, 819 lb/rad
Mα 0.3807 s−2

Mδ 0.5726 s−2

xcg 53.19 ft
xcp 121.2 ft

θ(s)
δ(s)

=
0.5726(s+ 0.04309)

(s+ 0.6330)(s− 0.01942)(s− 0.6005)
(3.35)



40

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 3.3 Poles and zeros of Ares-I CLV rigid-body model transfer func-
tion.
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Figure 3.4 Root locus vs overall loop gain K of the pitch control system
of a rigid Ares-I model.
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3.4 Flexible-Body Control of an Ares-I Reference Model

Now we consider the flexible-body control of the Ares-I CLV. Its flexible mode shapes and

sensor locations are shown in Figure 1.3. For the Ares-I having a high degree of axial symmetry,

there is negligible coupling between the pitch and yaw lateral modes. This statement can be

verified by inspecting Equation. (2.60) and Equation. (2.61). After neglecting relatively small

values in Φ and Ψ, we obtain

Φ =


0 0 0 0 0 0

0 0.006281 0 0.006259 0 −0.007673

0.006281 0 −0.006260 0 0.007676 0

 (3.36)

Ψ =


0 0 0 0 0 0

−0.1932 0 −0.2540 0 −0.1305 0

0 0.1932 0 0.2540 0 −0.1305

× 10−3 (3.37)

The pitch and yaw lateral modes are decoupled in Equation. (2.56). The first three bending

modes data of the pitch and yaw lateral modes are given in Table 3.2 and Table 3.3 respectively.

Table 3.2 Ares-I structural bending modes for the pitch axis

Mode number ωi, rad/sec Φi Ψi

1 6.0469 0.006281 −0.1932× 10−3

2 14.2206 -0.006260 −0.2540× 10−3

3 27.1667 0.007676 −0.1305× 10−3

Table 3.3 Ares-I structural bending modes for the yaw axis

Mode number ωi, rad/sec Φi Ψi

1 6.0470 0.006281 0.1932× 10−3

2 14.2213 0.006259 0.2540× 10−3

3 27.1712 -0.007673 0.1305× 10−3

Thus the over all Ares-I reference model can be divided into two parts (Figure 3.5), the
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rigid-body part and the flexible-body part,

θ(s)
δ(s)

= Grigid(s) +Gflex(s) (3.38)

where Grigid(s) is expressed in Equation. (3.35).

Figure 3.5 Block diagram of attitude control loop with flexible-body dy-
namics.

The flexible-body part of the pitch transfer function model as shown in Figure 3.7 is

Gflex(s) =
θb(s)
δ(s)

=
3∑

i=1

Gi(s) =
3∑

i=1

ΨiΦiT

s2 + 2ζωi + ω2
i

(3.39)

where θb is the additional angle due to the bending vibration measured by the IMU (Figure 3.6).

For the ith bending mode

Gi(s) =
ΨiΦiT

s2 + 2ζωi + ω2
i

(3.40)

The pitch transfer function model of the Ares-I CLV can be written as

θ(s)
δ(s)

=
−0.9036(s+ 0.041)(s+ 3.68)(s− 3.75)(s2 − 35s+ 510)(s2 + 35s+ 512)

(s+ 0.63)(s− 0.019)(s− 0.60)(s2 + 0.06s+ 36.56)(s2 + 0.14s+ 202.2)(s2 + 0.27s+ 738)
(3.41)

where θ is the pitch attitude error measured by the instrument unit (Figure 1.3) and δ is the

pitch gimbal angle.



43

Figure 3.6 Flexible structure in the pitch plane.

The poles and zeros of this pitch transfer function are illustrated in Figure 3.8. Such a

pole-zero pattern is typical for flexible vehicles with non-collocated actuator and sensor.

The root locus vs overall loop gain K of a simple PD control system is shown in Figure 3.9.

The instability of the first and third bending modes, caused by unstable interactions with the

rigid-body control, is evident from the root locus.
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Figure 3.7 Block diagram of the flexible-body part of the pitch transfer
function.

−20 −15 −10 −5 0 5 10 15 20
−30

−20

−10

0

10

20

30

Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 3.8 Pitch transfer function model of a reference model of the Ares-I
CLV.
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Figure 3.9 Root locus of the pitch control system without structural filters.
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3.5 NMP Structural Filter Design

The root locus, shown in Figure 3.9, clearly indicates that those two unstably interacting

bending modes can be effectively stabilized by using two NMP filters. Detailed discussions of

the classical gain-phase stabilization approach using NMP filters can be found in [16, 20, 21]. It

is important to notice that nowadays, one can easily perform an inherently iterative, classical

control design using the interactive root locus tool of the SISO Design Toolbox of Matlab.

After several design iterations, the structural filter for the first bending mode is found as

F1(s) =
1.0036(s2 − 4.295s+ 48.76)

s2 + 11.9s+ 48.94
(3.42)

and the structural filter for the third bending mode is

F3(s) =
0.91123(s2 − 19.48s+ 708.7)

s2 + 17.93s+ 645.8
(3.43)

The impulse responses provided in Figures 3.11 and 3.12 also indicate that the bending

modes are more actively controlled by using such NMP filters although standard roll-off and

notch filters [12, 13, 14] can also be employed to stabilize such unstably interacting bending

modes. This design has met the standard rigid-body stability margin requirements (±6 dB

gain margin and 30 deg phase margin). Nonlinear coupled dynamic simulation results of

validating the stability of the NMP filters as well as the baseline attitude-error quaternion

feedback control scheme for the Ares-I are the similar to Figures 2.19-2.23.
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Figure 3.10 Root locus of the pitch control system with two NMP struc-
tural filters.
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3.6 Robust Analysis for Structural Filters Design

In this section, the robustness of the ascent flight control system will be analyzed based on

the structured singular value µ. A general configuration which includes all the different systems

resulting from variations in the form and location of the controller and the system uncertainty

is illustrated in Figure 3.13. P is called the generalized plant and includes the nominal plant

together with dynamics associated with the weighting transfer functions used to model system

uncertainty. K is the generalized controller. In this dissertation, it is a PD-type baseline

controller with NMP structural filters designed in the last section. ∆ is an unknown but

norm-bounded uncertainty. The signal w is called the exogenous input. Typically, it includes

external disturbances, measurement noise and command signals. The signal z is exogenous

output. Usually, it is the “error” signal to be minimized. The signal u is called the actuator

input to P . For a launch vehicle, u could be gimbal angle command. The signal y is controller

input and is composed of all the measured plant output which are available for feedback.

For the problem of analyzing the robustness of a given controller K, we can rearrange the

system into the M-∆ structure of Figure 3.14 where M is the transfer function from the output

to the input of the perturbations. We need to determine whether the system remains stable for

all the uncertainty set. The basic conceptions and framework of linear robust control theory,

especially the µ-condition for robust stability, can be found in [44, 45, 46]. MATLAB Robust

Control Toolbox (µ-Analysis) is used in this section.

3.6.1 Uncertainty Description of Rigid-Body Model

Typical rigid-body parametric uncertainties for a launch vehicle can be found in Table 3.4.

The parametric uncertainties are quantified by a ratio. Although the sources of uncertainties

are known, it is hard to represent perturbed plants by a structured set with a finite number

of scalar parameters. For this case, dynamic (frequency-dependent) uncertainty is particularly

well-suited. This leads to a normalized complex perturbations ‖∆‖∞ ≤ 1.

Let the set of possible plants be

Gp(s) = Grigid(s)(1 +WI(s)∆I(s)); |∆I(jω)| ≤ 1∀ω (3.44)
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Figure 3.13 General control configuration.

Table 3.4 Ares-I rigid-body parametric uncertainty

Parameters Nominal values (Unit) Relative uncertainties
Iy 2.186× 108 (slug-ft2) ±5%
Tc 2.361× 106 (lb) ±5%
CNα 0.1465 ±6%
xcg 53.19 (ft) ±10%
xcp 121.2 (ft) ±10%

where Gp(s) is a perturbed plant model, which may be represented by the block diagram in

Figure 3.15. ∆I(s) is any stable transfer function which at each frequency is less than or equal

in magnitude to 1. The subscript I denotes “input”, but for SISO systems it is not important

that whether the perturbation is considered at the input or output of the plant.

The multiplicative weight are calculated by the Robust Toolbox for 50 samples of the

rigid-body model with parametric uncertainty,

WI(s) =
0.11745(s+ 9.741)(s+ 0.5113)(s+ 0.01471)(s2 + 2.52s+ 3.645)

(s+ 9.463)(s+ 0.2936)(s+ 0.04434)(s2 + 2.837s+ 3.447)
(3.45)

As seen from the blue solid line and red dashed line in Figure 3.16, the perturbed plant

model Gp(s) can cover a range of 50 samples of the nominal plant Grigid(s) with parametric
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Figure 3.14 M-∆ structure for robust stability analysis.

Figure 3.15 Plant with multiplcative uncertainty.

uncertainties in Table 3.4. Furthermore, Figure 3.17 shows that the upper and lower bounds

of Gp(s) cover the gain uncertainty of those samples.

3.6.2 Uncertainty Description of Flexible-Body Model

Another significant uncertainty source is the structural flexibility of the launch vehicle.

Based on [47], vibration frequencies should be accurate to within ±5% for the first bending

mode and ±10% for the second through the fourth or fifth bending modes. One important

requirement of the Ares-I ascent FCS is that the resulting control system is stable with ±10%
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natural frequency uncertainty of first three bending modes throughout the first stage flight.

Uncertainty modeling of the flexible structure is critical to evaluate robustness of a con-

troller design. Usually, norm-bounded additive or multiplicative perturbations of a nominal

model in the frequency domain are used to account for uncertainty in the model frequencies,

damping ratios and mode shape matrix of the model [48, 49, 50]. Such approaches to uncer-

tainty modeling in large flexible launch vehicles do not handle natural frequencies shift very

well. Slight variation in the mode frequencies usually causes the associated dynamic perturba-

tions to be large in the ∞-norm sense. This will make the uncertainty model too conservative

for robust stability analysis. In this section, structured uncertainty is adopted to model real

parameter uncertainty.

The nominal values of flex frequency are given in Table 3.2. The uncertainty model of flex

frequency can be rewritten as

ωi = ωi(1 + rω∆i) (3.46)

where ωi is the nominal value of ith bending mode natural frequency, rω = 10% is the relative
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Figure 3.17 Bode plot magnitude.

uncertainty in the parameter, and ∆i is any real scalar satisfying |∆i| ≤ 1.

For the ith bending mode, the perturbed transfer function can be written as

Gpi(s) =
ΨiΦiT

s2 + 2ζωi + ω2
i

=
ΨiΦiT

s2 + 2ζωi(1 + rω∆i) + ω2
i (1 + rω∆i)2

(3.47)

where |∆i| ≤ 1 and thus |∆2
i | ≤ |∆i|. We could use a larger uncertainty ∆i to replace |∆2

i |.

After replacing ∆2
i by ∆i in the denominator of Gpi(s), we get

Gpi =
ΨiΦiT

s2 + 2ζωi + ω2
i + ∆i[2ζωirωs+ ωi(2rω + r2ω)]

(3.48)

Define the weight function for the ith bending mode as

Wi(s) =
2ζωirω
ΨiΦiT

s+
ωi(2rω + r2ω)

ΨiΦiT
(3.49)

then we obtain

Gpi(s) =
Gi(s)

1 +Gi(s)Wi(s)∆i
; |∆i| ≤ 1 (3.50)

This may be represented by the block diagram in Figure 3.18.
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Figure 3.18 Block diagram of perturbed transfer function Gpi(s).

The weight functions can be found as

W1(s) = −0.002111s− 2.681 (3.51a)

W2(s) = 0.003789s+ 11.31 (3.51b)

W3(s) = −0.01149s− 65.53 (3.51c)

As seen in Figure 3.19, perturbed models could represent frequency uncertainty of Gflex(s)

very well. It covers the whole range of the frequency shift.

3.6.3 Robust Stability Analysis

The overall structure of the uncertainty model of Ares-I is shown in Figure 3.20.

The structure of uncertainty perturbation is written as a block-diagonal matrix.

∆ = diag{∆I ,∆1,∆2,∆3} =



∆I 0 0 0

0 ∆1 0 0

0 0 ∆2 0

0 0 0 ∆3


(3.52)

The M-∆ system in Figure 3.14 is stable for all allowed perturbations with σ(∆) ≤ 1,∀ω,

if and only if

µ∆(M(jω)) ≤ 1, ∀ω (3.53)
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the boundary of perturbed models

∑3
i=1Gpi(s).

µ∆(M) can be calculated by the MATLAB Robust Control Toolbox. Figure 3.21 clearly

shows that the upper bound of µ∆(M) is smaller than 1. The maximum value of µ∆(M)

is 0.8858. It means that the flight control system is stable with respect to the rigid-body

parameter uncertainties in Table 3.4 and ±10% bending mode frequency uncertainties of all

three modes.
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Figure 3.20 Block diagram of perturbed attitude control system.



57

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency (rad/sec)

 

 
upper bound
lower bound

Figure 3.21 µ-plot for RS of structural filters design.
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CHAPTER 4. UNCONTROLLED ROLL DRIFT

4.1 Introduction

The roll motion of Ares-I CLV under nominal flight conditions is actively stabilized by

its RCS equipped with thrusters. However, in this chapter, we examine the feasibility of

maintaining the pitch/yaw attitude stability as well as the ascent flight performance of Ares-I

CLV during its ascent phase but in the event of disabled or failed roll control. This situation

can occur when the roll-axis disturbance torque unexpectedly exceeds the control authority of

the RCS of a slender launch vehicle.

A simple pitch/yaw control logic will be proposed for such a technically challenging prob-

lem by exploiting the inherent versatility of a quaternion-based attitude control system. The

proposed pitch/yaw control logic only requires the desired inertial attitude quaternion to be re-

computed using the actual uncontrolled roll angle information. This simple approach achieves

an ascent flight trajectory identical to the nominal flight case with active roll control. An-

other approach that utilizes a simple adjustment of the proportional-derivative gains of the

quaternion-based flight control system without active roll control is also presented in this chap-

ter. This approach doesn’t require the re-computation of desired inertial attitude quaternion.

Linear stability criterion is developed for proper adjustments of attitude and rate gains. The

linear stability analysis results are validated by nonlinear simulations of the ascent flight phase.

However, the first approach, requiring a simple modification of the desired attitude quaternion,

is recommended for the Ares-I as well as other launch vehicles in the event of no active roll

control.
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4.2 Pitch/Yaw Closed-Loop Instability Caused by Uncontrolled Roll Drift

Simulation results of a reference Ares-I CLV with a baseline ascent flight control system

but in the event of uncontrolled roll drift are provided in Figures 4.1, 4.2, and 4.3. An M-file

based nonlinear 6-DOF simulation program is used for simulation of this nominal case. As can

be seen from these figures, the pitch/yaw flight control system becomes unstable slightly after

t = 60 sec although it maintains closed-loop stability during the early ascent phase.
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Figure 4.1 Attitude quaternion for an unstable closed-loop system caused
by uncontrolled roll drift.
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Figure 4.2 Euler angles for an unstable closed-loop system caused by un-
controlled roll drift.
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Figure 4.3 Gimbal angles for an unstable closed-loop system caused by
uncontrolled roll drift.
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4.3 Stability Analysis

In this section we briefly describe the rotational equations of motion of the Ares-I CLV

for its ascent flight control analysis and design. Details of the six-degrees-of-freedom (6-DOF)

equations of motion of the Ares-I CLV can be found in Chapter 2. Also, detailed discussions

of ascent flight control analysis and design for the Ares-I under nominal flight conditions can

be found Chapter 2 and Chapter 3.

The angular velocity vector ~ω of the vehicle is expressed as

~ω = p~i+ q~k + r~k (4.1)

Rotational equations of motion of a reference Ares-I CLV are described by
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




ṗ

q̇

ṙ

 = −


0 −r q

r 0 −p

−q p 0




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




p

q

r



+


Taero.x

Taero.y

Taero.z

 +


Trkt.x

Trkt.y

Trkt.z

 +


Trcs

0

0


(4.2)

The rocket thrust is simply modeled as Equation. (2.41) and Equation. (2.42). The body-

axis components of the rocket thrust-generated torque are expressed by Equation. (2.44). The

commanded quaternion (q1c, q2c, q3c, q4c) from an ascent guidance system, are used to generate

the attitude-error quaternion, are expressed by Equation. (2.46)

The classical proportional and derivative (PD) control laws of the ascent flight control

system utilizing the quaternion-error feedback concept are described by

Trcs = −2Kpxq1e −Kdxp (4.3a)

δy = −2Kpyq2e −Kdyq (4.3b)

δz = −2Kpzq3e −Kdzr (4.3c)

A simplified block diagram representation of the quaternion-based ascent flight control sys-

tem of Ares-I CLV is provided in Figure 4.4. Detailed discussions of the advantages of the
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Table 4.1 Reference Ares-I CLV parameters at t = 60 sec.

Parameters Initial values Units
Ixx 9.2356×105 slug-ft2

Iyy 2.1860×108 slug-ft2

Izz 2.1860×108 slug-ft2

T 2.3608×106 lb
` 53 ft
Kpy 1.3484 rad
Kpz 1.3484 rad
Kdy 1.5023 rad-sec
Kdz 1.5023 rad-sec

quaternion-feedback control system, especially with its large-angle control capability, can be

found in [16].

Figure 4.4 A simplified block diagram representation of the quaternion
based ascent flight control system of Ares-I CLV.

A summary of the basic parameters of a reference Ares-I CLV is provided in Table 4.1.

4.3.1 Simplified Nonlinear Closed-Loop Pitch/Yaw Dynamics

Assuming uncontrolled, but slow, roll motion and controlled, fast pitch/yaw attitude dy-

namics of the Ares-I CLV, we consider the pitch/yaw attitude dynamics simply described by



63

q̇ ≈ T`

Iyy
δy =

T`

Iyy
(−2Kpyq2e −Kdyq) (4.4a)

ṙ ≈ T`

Izz
δz =

T`

Izz
(−2Kpzq3e −Kdzr) (4.4b)

where T is the total thrust force and ` = −Xg + cx is the thrust force arm. Furthermore, we

also consider the quaternion-error differential equations given by

q̇1e

q̇2e

q̇3e

q̇4e


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1e

q2e

q3e

q4e


(4.5)

Derivation of Equation. (4.5) is provided in Appendix D.

4.3.2 Linear Stability Analysis

For the Ares-I with Iyy = Izz = I, Kdy = Kdz = Kd, Kpy = Kpz = Kp (see Table 4.1), and

with controlled pitch/yaw motions, we have

q̇

ṙ

q̇2e

q̇3e


=



−T`
I Kd 0 −2T`

I Kp 0

0 −T`
I Kd 0 −2T`

I Kp

q4e/2 −q1e/2 0 0

q1e/2 q4e/2 0 0





q

r

q2e

q3e


(4.6)

Note that for controlled pitch/yaw motions, q2e and q3e are small. Furthermore, q1e and q4e

can be assumed to be slowly time varying if p is small. Also note that q21e + q24e ≈ 1 for small

q2e and q3e.

The characteristic equation of the linear system described by Equation. (4.6), which is

assumed to have constant coefficients, can be found as

s4 + (2KKd)s3 + (2q4eKKp +K2K2
d)s2 + (2q4eK

2KpKd)s+K2K2
p = 0 (4.7)

where K = T`/I.
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Table 4.2 Routh arrays.

s4 1 2q4eKKp +K2K2
d K2K2

p

s3 2KKd 2q4eK
2KpKd 0

s2 q4eKKp +K2K2
d K2K2

p

s1
−2K3KdK2

p+2q4eK3KdK2
p+2q4eK4K3

dKp

q4eKKp+K2K2
d

0

s0 K2K2
p

According to the Routh stability criterion [51] as illustrated in Table 4.2, if q4eKKp +

K2K2
d > 0 and also if

−2K3KdK
2
p + 2q4eK

3KdK
2
p + 2q4eK

4K3
dKp

q4eKKp +K2K2
d

> 0 (4.8)

then we have a stable closed-loop system. Equation. (4.8) can be rewritten as

2K3KdKp

q4eKKp +K2K2
d

(−Kp + q24eKp + q4eKK
2
d) > 0 (4.9)

By defining B = KK2
d/Kp, we obtain the linear stability criterion as

q24e +Bq4e − 1 > 0 (4.10)

which becomes

q4e >
−B
2

+
√
B2 + 4

2
(4.11)

or

q4e <
−B
2
−
√
B2 + 4

2
(4.12)

This result confirms that the pitch/yaw closed-loop system can become unstable for small

q4e (i.e., for large error q1e), which can occur without active roll control. Equation. (4.10)

shows that the critical parameter is B, which is determined by physical parameters of the

Ares-I CLV and its control gains. Assuming that q4e is positive, therefore the linear stability

criterion becomes

B >
1− q24e

q4e
(4.13)

The plot of function B = 1−q2
4e

q4e
is provided in blue line (Figure 4.5). When the data point

(q4e, B) in the region above the blue line, the attitude control system is stable, otherwise it
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is unstable. For example, at t = 60 sec, B = 0.9595, the corresponding value of q4e is 0.6294,

illustrated by the red dash line in Figure 4.5. In terms of Euler angle it is about 102 deg. It

means that when the roll error is smaller than 102 deg (q4e > 0.6294), the attitude control

system is stable. If the roll error is larger than 102 deg (q4e < 0.6294), the attitude control

system becomes unstable.
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Figure 4.5 Plot of the function B = 1−q2
4e

q4e
.

In order to illustrate how the specific values of q1e and q4e affect closed-loop system stability,

we consider three cases as described in Table 4.3. Figures 4.6 and 4.7 clearly show that closed-

loop stability is affected by a large value of q1e. As can be seen in Figure 4.8, the aerodynamic

disturbance makes the case worse. The linear model of uncontrolled roll drift with aerodynamic

disturbance can be found in Appendix E.

Table 4.3 Three cases for root locus stability analysis.

Case numbers (θ1e, θ2e, θ3e) deg q1e q4e Aerodynamic disturbance
1 (30, 0, 0) 0.2588 0.9659 No
2 (80, 0, 0) 0.6428 0.7660 No
3 (80, 0, 0) 0.6428 0.7660 Yes
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Figure 4.6 Root locus plot for Case 1.
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Figure 4.7 Root locus plot for Case 2.
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Figure 4.8 Root locus plot for Case 3, showing closed-loop instability with
a nominal loop gain.
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4.3.3 Nonlinear Stability Analysis

In general, when RCS fails, it becomes an underactuated control problem of an axisymmet-

ric rigid body. Equation. (4.5) can help us to simplify the analysis of this problem by checking

the dynamics of the attitude-error quaternion, which can be described as
ṗ

q̇

ṙ

 =


Iy−Iz

Ix
qr

Iz−Ix
Iy

rp

Ix−Iy

Iz
pq

 +


0

T`
Iy
δy

T`
Iz
δz

 +


Trcs
Ix

0

0

 (4.14)



q̇1e

q̇2e

q̇3e

q̇4e


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1e

q2e

q3e

q4e


(4.15)

Trcs = 0 (4.16a)

δy = −2Kpyq2e −Kdyq (4.16b)

δz = −2Kpzq3e −Kdzr (4.16c)

The attitude-error quaternion feedback control law always tries to drive the attitude-

error quaternion from any initial values to (0, 0, 0, 1). In order to simplify the notation,

(q1, q2, q3, q4) will be used to replace (q1e, q2e, q3e, q4e) in Equation.(4.15).

Since the body is axisymmetric, it is assumed Iy = Iz, and p = 0. The whole dynamical

system becomes an autonomous system, ẋ = f(x), where x = (q, r, q1, q2, q3, q4)T



q̇

ṙ

q̇1

q̇2

q̇3

q̇4


=



−K̂pq2 − K̂dq

−K̂pq3 − K̂dr

r
2q2 −

q
2q3

− r
2q1 + q

2q4

q
2q1 + r

2q4

− q
2q2 −

r
2q3


(4.17)
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where K̂p = T`
Iy
Kp and K̂d = T`

Iy
Kd. Note that the notation of attitude-error quaternion is

changed from (q1e, q2e, q3e, q4e) to (q1, q2, q3, q4), in order to keep expressions simple.

A Lyapunov function candidate can be taken as the energy-like function

V (x) =
1

2K̂p

q2 +
1

2K̂p

r2 + q21 + q22 + q23 + (1− q4)2 (4.18)

and V (x) = 0 when x = (0, 0, 0, 0, 0, 1)T , otherwise V (x) > 0.

Its derivative V̇ (x) along any trajectory is

V̇ (x) = −K̂d

K̂p

(q2 + r2) ≤ 0 (4.19)

which is negative semidefinite.

Define a set M ,

M = {(q, r, q1, q2, q3, q4) : q = r = 0, q2 = q3 = 0} (4.20)

The set M is a positive invariant set, since

x(0) ∈M ⇒ x(t) ∈M,∀t ≥ 0 (4.21)

By LaSalle’s theorem (Invariance Principle) [52], all trajectories approach M as t→∞.

In order to visualize the attitude quaternion a new variable z is defined as z2 = q22 + q23 =

1−q21−q24 and z is a nonnegative real number. Therefore the time history of attitude quaternion

is a trajectory on the spherical surface q21 + q24 + z2 = 1 (Figure 4.9) or on the surface of the

cone z =
√
q22 + q23. The set M is the circle in the q1 − q4 plane (Figure 4.10).

Simulation results are given below to verify both the linear and nonlinear stability analysis.

The initial value of the simulation case can be found in Table 4.4. Note that by linear stability

analysis, if q4 < 0.6294 (q1 > 0.7771), the linear system is unstable. The stable and unstable

regions are shown in Figure 4.11.

For an axisymmetric rigid-body, if the uncontrolled principal axis is an axis of symmetry

and the other two axes are controlled by an attitude quaternion feedback law, the dynamical

system, Equation. (4.17), will converge to an invariant set or a subsystem, Equations. (4.20),

globally. On the other hand, by the Hartman-Grobman theorem [53], the local behavior near
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Figure 4.9 Trajectory on the spherical surface q21 + q24 + z2 = 1.

Table 4.4 Three simulation cases for nonlinear stability analysis.

Case numbers Initial values of quaternion (q1, q2, q3, q4)
1 (0, 0.01, 0.01, 0.9999)
2 (0.5, 0.01, 0.01, 0.8659)
3 (0.85, 0.01, 0.01, 0.5266)

the invariant set M is governed by the linear system Equation. (4.6). This is the reason why an

oscillation phenomenon can be observed when q1e is very large from Figure 4.20 to Figure 4.24.
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Figure 4.12 Angular velocity for Case 1.
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Figure 4.16 Angular velocity for Case 2.
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Figure 4.19 Control inputs for Case 2.
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4.4 New Pitch/Yaw Control Logic with Modified Commanded

Quaternions

In this section, we present an approach for maintaining the pitch/yaw closed-loop stability

even in the event of uncontrolled roll drift. This approach utilizes the inherent versatility

of the quaternion-based attitude control system [16]. This approach simply requires an on-

board computation of the desired attitude quaternion using the actual uncontrolled roll angle

information as illustrated in Figure 4.26.

Figure 4.26 A block diagram representation of a proposed method for com-
puting a new set of commanded attitude quaternion.

The attitude quaternion (q1, q2, q3, q4) are computed by numerically integrating the

kinematic differential equations Equation. (2.12).

The attitude quaternion (q1, q2, q3, q4) for a rotational sequence of C1(θ1) ← C2(θ2) ←

C3(θ3) are related to Euler angles as follows [16]:

q1 = sin(θ1/2) cos(θ2/2) cos(θ3/2)− cos(θ1/2) sin(θ2/2) sin(θ3/2)

q2 = cos(θ1/2) sin(θ2/2) cos(θ3/2) + sin(θ1/2) cos(θ2/2) sin(θ3/2)

q3 = cos(θ1/2) cos(θ2/2) sin(θ3/2)− sin(θ1/2) sin(θ2/2) cos(θ3/2)

q4 = cos(θ1/2) cos(θ2/2) cos(θ3/2) + sin(θ1/2) sin(θ2/2) sin(θ3/2)

(4.22)
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Also, we have the following direction cosine matrix relationship for the rotational sequence

of C1(θ1)← C2(θ2)← C3(θ3)
cos θ2 cos θ3 cos θ2 sin θ3 − sin θ2

sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ2 sin θ3 + cosφ cos θ3 sin θ1 cos θ

cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 cos θ1 sin θ2 sin θ3 − sinφ cos θ3 cos θ1 cos θ



=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 =


1− 2(q22 + q23) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1− 2(q21 + q23) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q21 + q22)


(4.23)

For this particular rotational sequence of Euler angles, the Euler angles (θ2, θ3) describe

the inertial orientation of the longitudinal axis of the Ares-I CLV.

The actual Euler angle θ1 of the Ares-I CLV can then be determined from the attitude

quaternion (q1, q2, q3, q4) as follows:

θ1 = sgn{C23} cos−1

{
C33

cos θ2

}
= sgn{2(q2q3 + q1q4)} cos−1

{
1− 2(q21 + q22)√

1− 4(q1q3 − q2q4)2

}
(4.24)

when |θ2| 6= π/2.

Similarly, the commanded angles (θ2c, θ3c) of the Ares-I CLV can be determined from the

desired attitude quaternion (q1c, q2c, q3c, q4c) commanded from an ascent guidance system as

follows:

θ2c = sin−1{−2(q1cq3c − q2cq4c)} (4.25)

θ3c = sgn{2(q1cq2c + q3cq4c)} cos−1

{
1− 2(q22c + q23c)√

1− 4(q1cq3c − q2cq4c)2

}
(4.26)

By using the actual Euler angle θ1 and the commanded angles (θ2c, θ3c), we can obtain a

modified set of desired attitude quaternion as follows:

q̂1c = sin(θ1/2) cos(θ2c/2) cos(θ3c/2)− cos(θ1/2) sin(θ2c/2) sin(θ3c/2)

q̂2c = cos(θ1/2) sin(θ2c/2) cos(θ3c/2) + sin(θ1/2) cos(θ2c/2) sin(θ3c/2)

q̂3c = cos(θ1/2) cos(θ2c/2) sin(θ3c/2)− sin(θ1/2) sin(θ2c/2) cos(θ3c/2)

q̂4c = cos(θ1/2) cos(θ2c/2) cos(θ3c/2) + sin(θ1/2) sin(θ2c/2) sin(θ3c/2)

(4.27)
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Figure 4.27 Comparison of new and original attitude Euler angles com-
mand.

These new commanded quaternion (q̂1c, q̂2c, q̂3c, q̂4c) are then used to determine the

attitude-error quaternion (q1e, q2e, q3e, q4e) as follows:

q1e

q2e

q3e

q4e


=



q̂4c q̂3c −q̂2c −q̂1c

−q̂3c q̂4c q̂1c −q̂2c

q̂2c −q̂1c q̂4c −q̂3c

q̂1c q̂2c q̂3c q̂4c





q1

q2

q3

q4


(4.28)

The pitch and yaw gimbal control laws are simply the same as the original ascent flight control

laws described by

δy = −2Kpyq2e −Kdyq (4.29a)

δz = −2Kpzq3e −Kdzr (4.29b)

No adjustment of the control gains of the original ascent flight control system is required for

controlling the pitch and yaw motions without active roll control.
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Figure 4.28 Comparison of new and original attitude quaternion command.

Stable closed-loop responses of the proposed approach with a modified set of desired quater-

nion can be seen from Figure 4.29 to Figure 4.32 in the event of uncontrolled roll drift. Fur-

thermore, as can be seen in Figure 4.32, the proposed control approach achieves an identical

ascent flight trajectory as the nominal ascent flight control system with active roll control.
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Figure 4.29 Quaternion for a closed-loop system stabilized by the proposed
control logic employing modified commanded quaternion.
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Figure 4.30 Euler angles for a closed-loop system stabilized by the pro-
posed control logic employing modified commanded quater-
nion.
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Figure 4.31 Gimbal angles for a closed-loop system stabilized by the pro-
posed control logic employing modified commanded quater-
nion.
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4.5 Simple Adjustment of Control Gains

The approach presented in the preceding section provides the desired ascent flight per-

formance despite the uncontrolled roll drift. However, it requires on-board computation of

(θ1, θ2c, θ3c) to generate modified command quaternion (q̂1c, q̂2c, q̂3c, q̂4c).

In this section, we examine the feasibility of achieving pitch/yaw closed-loop stability by

simply adjusting the PD control gains without such on-board computation of (θ1, θ2c, θ3c).

We introduce a new derivative gain as

K̂d = γKd (4.30)

where γ is a scale factor to be properly chosen and Kd is the original derivative gain selected

for the nominal flight conditions. And a simple PD control laws in the event of uncontrolled

roll drift are proposed as

δy = −2Kpsgn(q4e)q2e − K̂dq (4.31a)

δz = −2Kpsgn(q4e)q3e − K̂dr (4.31b)

As discussed in [16], the term sgn(q4e) is necessary for a quaternion-based feedback control logic

for accommodating a short angular path. In particular, such a sign change term is necessary

to avoid an undesirable 360 deg flip-over of the CLV. Some detailed analysis of this approach

is presented in this section.

From Equation. (4.11), we notice that a larger value of B = KK2
d/Kp is necessary for

stability when q4e is small. The parameter K = T`/I is determined by the physical parameters

of the rocket. If Kp is decreased, then the overall loop gain of the control system is decreased,

which is not desirable. A simple way to increase the parameter B is to increase the derivative

gain Kd.

From Equation. (4.10), we have

B >
1− q24e

q4e
(4.32)

Kγ2K2
d

Kp
>

1− q24e

q4e
(4.33)
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or

γ >
1
Kd

√
(1− q24e)Kp

q4eK
(4.34)

A root locus plot of case 3 with a new derivative gain K̂d = 4Kd only in the pitch channel is

shown in Figure 4.33.
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Figure 4.33 Root locus plot for Case 3 but with a new derivative gain with
γ = 4 in the pitch channel.

4.5.1 Rigid Body 6-DOF Nonlinear Simulation Results

The Matlab-based program, employing a complete set of 6-DOF nonlinear models of Ares-I

was used to validate the linear stability analysis result. The simulation results are shown in

Figure 4.34-Figure 4.37. A dispersed, but stable, ascent trajectory can be seen in Figure 4.37

for the case with a simple gain adjustment but without active roll control.

Note that after changing the control gain, structural filters also need to be adjusted. The de-

sign methodology and design tool are mentioned in Chapter 3. A design example is given here.

Flexible-body 6-DOF Nonlinear Simulation Results are similar to Figure 4.34- Figure 4.37.
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Figure 4.34 Attitude quaternion of 6-DOF nonlinear simulation with
K̂d = 4Kd.
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Figure 4.35 Euler angles of 6-DOF nonlinear simulation with K̂d = 4Kd.
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Figure 4.36 Gimbal angles of 6-DOF nonlinear simulation with K̂d = 4Kd.
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CHAPTER 5. UNDERACTUATED CONTROL PROBLEM OF AN

AXISYMMETRIC RIGID BODY

5.1 Introduction

The problem of ascent flight control in the event of uncontrolled roll drift can be generalized

as an underactuated control problem. Specifically, it is the problem of attitude stabilization

with less than three independent control torques. System equations for a rigid body rotation

can be written as follows:


ṗ

q̇

ṙ

 =


Iy−Iz

Ix
qr

Iz−Ix
Iy

rp

Ix−Iy

Iz
pq

 +


u1
Ix

u2
Iy

u3
Iz

 (5.1)



q̇1

q̇2

q̇3

q̇4


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1

q2

q3

q4


(5.2)

Note that the attitude kinematic differential equation can also be written in terms of Euler

angles as follows:


θ̇1

θ̇2

θ̇3

 =
1

cos θ2


cos θ2 sin θ1 sin θ2 cos θ1 sin θ2

0 cos θ1 cos θ2 − sin θ1 cos θ2

0 sin θ1 cos θ1




p

q

r

 (5.3)
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We have the following relationship for the rotational sequence of C1(θ1) ← C2(θ2) ←

C3(θ3)

θ1 = sgn{2(q2q3 + q1q4)} cos−1

{
1− 2(q21 + q22)√

1− 4(q1q3 − q2q4)2

}
(5.4a)

θ2 = sin−1{−2(q1q3 − q2q4)} (5.4b)

θ3 = sgn{2(q1q2 + q3q4)} cos−1

{
1− 2(q22 + q23)√

1− 4(q1q3 − q2q4)2

}
(5.4c)

The underactuated control problem has been dealt with [23, 24, 25, 26, 27]. Necessary and

sufficient conditions for controllability of the systems (Equation. (5.1) and Equation. (5.2) ) in

the case that the gas jet actuators yield one, two, or three independent torques are given in

[23]. Particularly, the problem of attitude stabilization of an axisymmetric (Iy = Iz) spacecraft

using two pairs of gas jet actuators is considered in [25, 26]. A new kinematic formulation is

used to derive the feedback control law.

Without loss of generality, we consider the commanded quaternion to be (0, 0, 0, 1). Then

the attitude quaternion (q1, q2, q3, q4) becomes the attitude error quaternion (q1e, q2e, q3e, q4e).

Therefore

u2 = −Kpyq2 −Kdyq (5.5a)

u3 = −Kpzq3 −Kdzr (5.5b)

Since the rigid body is assumed to be axisymmetric (Iy = Iz), we have Kpy = Kpz = Kp and

Kdy = Kdz = Kd.

Based on the analysis of Ares-I ascent flight control system in chapters 3 and 4, a modified

attitude quaternion feedback control law is derived in the next section. It can stabilize an

axisymmetric rigid body to the subsystem M (Equation. (4.20)). Moreover, a new kinematic

formulation is not needed.
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5.2 Steady-State Oscillations

The equations of motion of an axisymmetric rigid body with a PD-type attitude quaternion

feedback control law can be expressed as

q̇

ṙ

q̇1

q̇2

q̇3

q̇4


=



arp− K̂pq2 − K̂dq

−apq − K̂pq3 − K̂dr

r
2q2 −

q
2q3 + p

2q4

− r
2q1 + p

2q3 + q
2q4

q
2q1 −

p
2q2 + r

2q4

−p
2q1 −

q
2q2 −

r
2q3


(5.6)

where a = I−Ix
I , I = Iy = Iz, K̂p = Kp/I and K̂d = Kd/I.

For this autonomous system ẋ = f(x), where x = (q, r, q1, q2, q3, q4)T , there is one

steady-state oscillation which has the form

M1 = {(q, r, q1, q2, q3 q4) : q = r = 0, q2 = q3 = 0} (5.7) q̇1

q̇4

 =

 p
2q4

−p
2q1

 (5.8)

In this oscillation, the rigid body is rotating around its symmetry axis with the angular ve-

locity p. At the same time, the symmetry axis has the orientation by quaternion (q1, 0, 0, q4),

or by Euler angles (θ1, 0, 0). Note that it presents the orientation we want to achieve by a

feedback control law when there are only two independent control inputs u2 and u3.

The autonomous system Equation. (5.6) may have another steady-state oscillation, when

p is not zero. It has the form

M2 = {(q, r, q1, q2, q3 q4) : q1 = c1, q4 = c4} (5.9) q̇

ṙ

 =

 0 ω

−ω 0


 q

r

 (5.10)

 q̇2

q̇3

 =

 0 ω

−ω 0


 q2

q3

 (5.11)
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 q

r

 = τ

 cos θ sin θ

− sin θ cos θ


 q2

q3

 (5.12)

where c1, c4, ω, τ and θ are constants as follows:

c1 =
K̂d(q2 + r2)

K̂pp
(5.13a)

c4 =
[(2a− 1)p2 − q2 − r2](q2 + r2)

2K̂pp2
(5.13b)

ω =
p2 + q2 + r2

2p
(5.13c)

τ =
−K̂p√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

(5.13d)

θ = tan−1 (2a− 1)p2 − q2 − r2

2pK̂d

(5.13e)

The magnitude of vectors (q2, q3)T and (q, r)T are
√
q22 + q23 = R and

√
q2 + r2 = R̂,

respectively, where R̂ = |τ |R. Note that R̂ is a positive real zero of a 4th-order polynomial

f(x) = x4+(3−4a)p2x3+[(2a−1)(2a−3)p2+4K̂2
d ]p2x2+[(2a−1)2p2+4K̂2

d ]p4x−4p4K̂2
p (5.14)

Since f(0) = −4p4K̂2
p , f(x) → ∞ as x → ∞ and f(x) is continuous in x, f(x) has at

least one positive real zero. Thus M2 always exists when p is not zero. The derivation of the

steady-state oscillation M2 can be found in Appendix F.

A numerical example of those oscillations is provided below, using data for Ares-I CLV

at t = 60 sec (see Table 5.1). The constants in Equation. (5.13) are listed in Table 5.2 with

p = 0.005 rad/sec ≈ 0.2865 deg/sec.

Table 5.1 Ares-I reference parameters at t = 60 sec

Parameters Values Unit
a 0.9958
p 0.005 rad/s
K̂p 1.5441 s−2

K̂d 0.8607 s−1

The steady-state oscillations M1 and M2 can be visualized in Figures 5.1 and 5.2. M2 is

illustrated from Figure 5.1 to 5.9.
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Table 5.2 Parameters of steady-state oscillation M2

Parameters Values Unit
c1 0.7768 rad
c4 0.6242 rad
ω 0.6994 rad/s
τ −1.3963 s−1

θ −36.90 deg
R 0.05979 rad
R̂ 0.08348 rad/s
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Figure 5.1 Steady-state oscillations M1 and M2 on the spherical surface
q21 + q24 + z2 = 1.
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Figure 5.3 Angular velocity of steady-state oscillation M2.
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Figure 5.4 Attitude quaternion of steady-state oscillation M2.
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Figure 5.5 Euler angles of steady-state oscillation M2.
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Figure 5.9 Gimbal angles of steady-state oscillation M2.
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5.3 Modified Attitude Quaternion Feedback Control Law

In the last section, it was shown that there are at least two steady-state oscillations of the

autonomous system Equation. (5.6). Thus the original attitude quaternion feedback law can

not always drive Equations. (5.1) and (5.2) to M1. A new feedback control law is needed.

Define a new state variable λ, such that λ̇ = p. A modified attitude quaternion feedback

control law has the form

u2 = −Kp[cos(λ/2)q2 + sin(λ/2)q3]−Kdq (5.15a)

u3 = −Kp[− sin(λ/2)q2 + cos(λ/2)q3]−Kdr (5.15b)

where Kp and Kd are control gains designed to stabilize a rigid body by attitude quaternion

feedback law [16]. λ is used to catch the angular velocity p.

We may obtain a new autonomous system, ẋ = f(x) as follows:

q̇

ṙ

q̇1

q̇2

q̇3

q̇4

λ̇



=



arp− K̂p[cos(λ/2)q2 + sin(λ/2)q3]− K̂dq

−apq − K̂p[− sin(λ/2)q2 + cos(λ/2)q3]− K̂dr

r
2q2 −

q
2q3 + p

2q4

− r
2q1 + p

2q3 + q
2q4

q
2q1 −

p
2q2 + r

2q4

−p
2q1 −

q
2q2 −

r
2q3

p



(5.16)

where I = Iy = Iz, a = I−Ix
I , λ(0) = θ1, K̂p = Kp/I and K̂d = Kd/I.

5.4 Nonlinear Stability Analysis

A Lyapunov function candidate can be taken as the energy-like function

V (x) =
1

2K̂p

q2 +
1

2K̂p

r2 + [q1 − sin(λ/2)]2 + q22 + q23 + [q4 − cos(λ/2)]2 (5.17)

and V (x) = 0 when x = (0, 0, sin(λ/2), 0, 0, cos(λ/2))T , otherwise V (x) > 0.

The derivative of V (x) can be found as

V̇ (x) = −K̂d

K̂p

(q2 + r2) + [q1 cos(λ/2)− q4 sin(λ/2)](p− λ̇) (5.18)
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Since λ̇ = p, we have

V̇ (x) = −Kd

Kp
(q2 + r2) ≤ 0 (5.19)

which is negative semidefinite. Detailed derivation can be found in Appendix G.

The set M1 is a positive invariant set, since

x(0) ∈M1 ⇒ x(t) ∈M1,∀t ≥ 0 (5.20)

By LaSalle’s theorem (Invariance Principle) [52], all trajectories approach M1 as t → ∞.

In addition, we have

V (x)→∞ as ‖x‖ → ∞ (5.21)

The Lyapunov function V (x) is radially unbounded. Thus the modified quaternion feedback

control law Equation. (5.15) can reorient the symmetry axis to the desired direction from an

arbitrary initial orientation. Moreover, the new control law has no restriction on the spinning

rate p, which could be an arbitrary value. Even if p keeps changing due to some disturbance

torque, the new control law still works.

5.5 Simulation Results

Two simulation cases are performed to compare the effect of original and modified quater-

nion feedback laws. Assuming that the initial spinning rate is p = 0.005 rad/sec.

Table 5.3 Simulation cases with p = 0.005 rad/sec

Case numbers Initial values (q, r, q1, q2, q3, q4) Control law
1 (0, 0, 0.7769, 0.0598, 0, 0.6268, ) Original attitude quaternion feedback
2 (0, 0, 0.7769, 0.0598, 0, 0.6268, ) Modified attitude quaternion feedback

The effect of M2 can be seen from Figure. 5.10 to Figure. 5.18. The trajectory converges to

M2 in a oscillation behavior. Furthermore, the modified quaternion feedback control law elim-

inates this effect. The trajectory is driven to M1, which represents the commanded orientation

of the axis of symmetry.
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Figure 5.12 Angular velocity components q and r for Case 1.
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Figure 5.15 Gimbal angles for Case 1.
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5.6 A Special Case

When p = 0, λ = θ1(0) is a constant. The modified attitude quaternion feedback control

law is equivalent to a quaternion command adjustment.

For a typical attitude quaternion feedback law, we have

q1e

q2e

q3e

q4e


=



q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c





q1

q2

q3

q4


(5.22)

The command Euler angles are (θ1c, θ2c, θ3c) = (θ1, 0, 0), where

q1c = sin(θ1c/2) cos(θ2c/2) cos(θ3c/2)− cos(θ1c/2) sin(θ2c/2) sin(θ3c/2)

q2c = cos(θ1c/2) sin(θ2c/2) cos(θ3c/2) + sin(θ1c/2) cos(θ2c/2) sin(θ3c/2)

q3c = cos(θ1c/2) cos(θ2c/2) sin(θ3c/2)− sin(θ1c/2) sin(θ2c/2) cos(θ3c/2)

q4c = cos(θ1c/2) cos(θ2c/2) cos(θ3c/2) + sin(θ1c/2) sin(θ2c/2) sin(θ3c/2)

(5.23)

The new command quaternion is

q1c = sin(θ1/2)

q2c = 0

q3c = 0

q4c = cos(θ1/2)

(5.24)

The attitude-error quaternion becomes

q1e

q2e

q3e

q4e


=



cos(θ1/2) 0 0 − sin(θ1/2)

0 cos(θ1/2) sin(θ1/2) 0

0 − sin(θ1/2) cos(θ1/2) 0

sin(θ1/2) 0 0 cos(θ1/2)





q1

q2

q3

q4


(5.25)

By the attitude quaternion feedback law, we have

u2 = −Kpq2e −Kdq = −Kp[cos(θ1/2)q2 + sin(θ1/2)q3]−Kdq (5.26a)

u3 = −Kpq3e −Kdr = −Kp[− sin(θ1/2)q2 + cos(θ1/2)q3]−Kdr (5.26b)
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The quaternion command adjustment is a special case of the modified attitude quaternion

feedback control law, when p = 0.

q1e = − sin(θ2/2) sin(θ3/2)

q2e = cos(θ1) sin(θ2/2) cos(θ3/2) + sin(θ1) cos(θ2/2) sin(θ3/2)

q3e = cos(θ1) cos(θ2/2) sin(θ3/2)− sin(θ1) sin(θ2/2) cos(θ3/2)

q4e = cos(θ2/2) cos(θ3/2)

(5.27)

When θ2 ≈ 0, θ3 ≈ 0, we have

q1e ≈ 0

q2e ≈ cos(θ1)θ2/2 + sin(θ1)θ3/2

q3e ≈ − sin(θ1)θ2/2 + cos(θ1)θ3/2

q4e ≈ 1

(5.28)
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CHAPTER 6. CONCLUSIONS

A set of dynamic models of the Ares-I Crew Launch Vehicle, incorporating its propulsion,

aerodynamics, guidance and control, and structural flexibility, has been described in this dis-

sertation. The results of developing a Matlab-based simulation and linearization program by

utilizing NASA’s SAVANT Simulink-based program have been discussed. The purpose of the

study was to develop an independent validation tool for the performance and stability analysis

of the ascent flight control system of the Ares-I. A linearized model of the Ares-I was obtained

as a test case of an independent validation of the ascent flight control design and analysis of

the Ares-I.

The fundamental principles of flight control analysis and design for flexible launch vehicles

have also been examined. In particular, the classical “drift-minimum” and “load-minimum”

control principles were re-examined, and the performance and stability of launch vehicle ascent

flight control with an additional feedback of angle-of-attack was demonstrated. For a typical

“non-collocated actuator and sensor” control problem of large flexible launch vehicles, non-

minimum-phase filtering of “unstably interacting” bending modes was shown to be effective

and robust.

Two distinct approaches to the ascent flight control of Ares-I in the event of uncontrolled roll

drift have been investigated. The first approach exploits the inherent versatility of a quaternion-

based attitude control system, and it only requires the desired inertial attitude quaternion to

be re-computed using the actual uncontrolled roll angle information. This approach achieved

an ascent flight trajectory identical as the nominal flight case with active roll control. The

second approach only requires a simple adjustment of the proportional-derivative gains of the

quaternion-based flight control system. The first approach is recommended for the Ares-I as
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well as other launch vehicles in the event of no active roll control.

Finally, an undesired steady-state oscillation is found when the spinning rate is a constant.

Inspired by the method derived to stabilize a large flexible launch vehicle in the event of uncon-

trolled roll drift, a modified attitude quaternion feedback law is presented in this dissertation.

It is used to stabilize an axisymmetric rigid body by two independent control torques. By

Lyapunov’s stability analysis, it is proved that the new control law can achieve an arbitrary

orientation of the symmetry axis with arbitrary spinning rate.
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APPENDIX A. A SUMMARY OF THE 6-DOF EQUATIONS OF

MOTION

Total force expressed in the body frame:
Ftotal.xb

Ftotal.yb

Ftotal.zb

 =


Faero.xb

Faero.yb

Faero.zb

 +


Frkt.xb

Frkt.yb

Frkt.zb

 +


Frcs.xb

Frcs.yb

Frcs.zb

 (A.1)

Total force expressed in the inertial frame:
Ftotal.xi

Ftotal.yi

Ftotal.zi

 = CI/B


Ftotal.xb

Ftotal.yb

Ftotal.zb

 (A.2)

Translational equation in the inertial frame:
ẍ

ÿ

z̈

 =
1
m


Ftotal.xi

Ftotal.yi

Ftotal.zi

 +


gx

gy

gz

 (A.3)

Rotational equation in the body frame:
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




ṗ

q̇

ṙ

 = −


0 −r q

r 0 −p

−q p 0




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




p

q

r



+


Taero.xb

Taero.yb

Taero.zb

 +


Trkt.xb

Trkt.yb

Trkt.zb

 +


Trcs.xb

0

0


(A.4)
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q̇1

q̇2

q̇3

q̇4


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1

q2

q3

q4


(A.5)
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APPENDIX B. ADDITIONAL FIGURES FROM 6-DOF SIMULATION

B.1 Atmospheric Model
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Figure B.1 Speed of sound
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B.2 Aerodynamic Coefficient
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Rocket Parameters
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APPENDIX C. LINEARIZATION RESULTS

C.1 Nonlinear 6-DOF Equations

Translational equations in the body frame:
u̇

v̇

ẇ

 = −


0 −r q

r 0 −p

−q p 0




u

v

w

 + CB/I


gx

gy

gz

 +
1
m


Faero.xb

Faero.yb

Faero.zb

 +
1
m


T

−Tδz

Tδy


(C.1)

where

CB/I =


1− 2(q22 + q23) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1− 2(q21 + q23) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q21 + q22)

 (C.2)

Rotational equation in the body frame:
Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




ṗ

q̇

ṙ

 = −


0 −r q

r 0 −p

−q p 0




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




p

q

r



+


Taero.xb

Taero.yb

Taero.zb

 +


Trkt.xb

Trkt.yb

Trkt.zb

 +


Trcs.xb

0

0


(C.3)
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C.2 Linear Rigid-Body Model

∆u̇ = r0∆v − q0∆w − w0∆q + v0∆r + (2gyq2c + 2gzq3c)∆q1 + (−4gxq2c + 2gyq1c − 2gzq4c)∆q2

+ (−4gxq3c + 2gyq4c + 2gzq1c)∆q3 + (2gyq3c − 2gzq2c)∆q4 +
1
m

∆Faero.xb

(C.4)

∆v̇ = −r0∆u+ p0∆w + w0∆p− u0∆r + (2gxq2c − 4gyq1c + 2gzq4c)∆q1

+ (2gxq1c + 2gzq3c)∆q2 + (−2gxq4c − 4gyq3c + 2gzq2c)∆q3 + (−2gxq3c + 2gzq1c)∆q4

+
1
m

∆Faero.yb + (− T
m

)∆δz

(C.5)

∆ẇ = q0∆u− p0∆v − v0∆p+ u0∆q + (2gxq3c − 2gyq4c − 4gzq1c)∆q1

+ (2gxq4c + 2gyq3c − 4gzq2c)∆q2 + (2gxq1c + 2gyq2c)∆q3 + (2gxq2c − 2gyq1c)∆q4

+
1
m

∆Faero.zb + (
T

m
)∆δy

(C.6)


Ixx 0 0

0 Iyy 0

0 0 Izz




∆ṗ

∆q̇

∆ṙ

 =


b1

b2

b3

 (C.7)

where the relatively small products of inertia are ignored, and

b1 = (r0Iyy − Izzr0)∆q + (Iyyq0 − q0Izz)∆r + ∆Taero.xb

+ (−cyT )∆δy + (−czT )∆δz + ∆Trcs

(C.8a)

b2 = (−r0Iyy + Izzr0))∆p+ (−(Ixxp0 + p0Izz)∆r + ∆Taero.yb + (cx −Xg)T∆δy (C.8b)

b3 = (q0Ixx − Iyyq0)∆p+ (Ixxp0 − p0Iyy)∆q + ∆Taero.zb + (Xg − cx)(−T )∆δz (C.8c)
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∆q̇1 =
1
2
(q4c∆p− q3c∆q + q2c∆r + r0∆q2 − q0∆q3 + p0∆q4) (C.9a)

∆q̇2 =
1
2
(q3c∆p+ q4c∆q − q1c∆r − r0∆q1 + p0∆q3 + q0∆q4) (C.9b)

∆q̇3 =
1
2
(−q2c∆p+ q1c∆q + q4c∆r + q0∆q1 − p0∆q2 + r0∆q4) (C.9c)

∆q̇4 =
1
2
(−q1c∆p− q2c∆q − q3c∆r − p0∆q1 − q0∆q2 − r0∆q3) (C.9d)

Linearization of the aerodynamic forces and moments:
∆Faero.xb

∆Faero.yb

∆Faero.zb

 =


0 0 0

0 CY βQS/Vm 0

0 0 −CNαQS/Vm.xb




∆u

∆v

∆w

 (C.10)


∆Taero.xb

∆Taero.yb

∆Taero.zb

 =


0 cz −cy

−cz 0 −Xa + cx

cy Xa − cx 0




∆Faero.xb

∆Faero.yb

∆Faero.zb



+


0 0 0

0 0 CMpαQSb/Vm.xb

0 CMyβQSb/Vm 0




∆u

∆v

∆w


(C.11)

Linearization of α and β:

∆α =
1

Vm.xb
∆w (C.12)

∆β =
1
Vm

∆v (C.13)

Linearization of the thrust force and moment:
∆Frkt.xb

∆Frkt.yb

∆Frkt.zb

 =


0

−T∆δz

T∆δy

 (C.14)


∆Trkt.xb

∆Trkt.yb

∆Trkt.zb

 =


0 cz −cy

−cz 0 −Xg + cx

cy Xg − cx 0




∆Frkt.xb

∆Frkt.yb

∆Frkt.zb

 (C.15)
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Quaternion errors:

q1e

q2e

q3e

q4e


=



q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c





∆q1

∆q2

∆q3

∆q4


(C.16)

C.3 Linear State-Space Equations

A linearized state-space model of a rigid vehicle is described by

ẋ = Ax + Bu

y = Cx
(C.17)

where x = (∆u, ∆v, ∆w, ∆p, ∆q, ∆r, ∆q1, ∆q2, ∆q3, ∆q4)T , u = (∆Trcs, ∆δy, ∆δz)T ,

y = (2q1e, 2q2e, 2q3e, p, q, r)T ,

A =


A11 A12 A13

A21 A22 0

0 A32 A33

 (C.18)

A11 =


0 r0 −q0

−r0 CY βQS/(mVm) p0

q0 −p0 −CNαQS/(mVm.xb)

 (C.19)

A12 =


0 −w0 v0

w0 0 −u0

−v0 u0 0

 (C.20)

A13 =


(2gyq2c + 2gzq3c) (−4gxq2c + 2gyq1c − 2gzq4c)

(2gxq2c − 4gyq1c + 2gzq4c) (2gxq1c + 2gzq3c)

(2gxq3c − 2gyq4c − 4gzq1c) (2gxq4c + 2gyq3c − 4gzq2c)

(−4gxq3c + 2gyq4c + 2gzq1c) (2gyq3c − 2gzq2c)

(−2gxq4c − 4gyq3c + 2gzq2c) (−2gxq3c + 2gzq1c)

(2gxq1c + 2gyq2c) (2gxq2c − 2gyq1c)


(C.21)
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A21 =


Ixx 0 0

0 Iyy 0

0 0 Izz


−1



0 0 0

0 0

[
− (−Xa+cx)CNαQS

Vm.xb

+CMpαQSb
Vm.xb

]
0

[
− (Xa+cx)CY βQS

Vm

+CMyβQSb
Vm

] 0


(C.22)

A22 =


Ixx 0 0

0 Iyy 0

0 0 Izz


−1 

0 r0Iyy + Izzr0 Iyyq0 − q0Izz

−r0Iyy + Izzr0 0 −Ixxp0 + p0Izz

q0Ixx − Iyyq0 Ixxp0 − p0Iyy 0

 (C.23)

A32 =
1
2



q4c −q3c q2c

q3c q4c −q1c

−q2c q1c q4c

−q1c −q2c −q3c


(C.24)

A33 =
1
2



0 r0 −q0 p0

−r0 0 p0 q0

q0 −p0 0 r0

−p0 −q0 −r0 0


(C.25)

B =


B1

B2

0

 (C.26)

B1 =


0 0 0

0 0 −T/m

0 T/m 0

 (C.27)

B2 =


Ixx 0 0

0 Iyy 0

0 0 Izz


−1 

1 −cyT −czT + cyT

0 (cx −Xg)T 0

0 0 (cx −Xg)T

 (C.28)
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C =



0 0 0 0 0 0 2q4c 2q3c −2q2c −2q1c

0 0 0 0 0 0 −2q3c 2q4c 2q1c −2q2c

0 0 0 0 0 0 2q2c −2q1c 2q4c −2q3c

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0


(C.29)

Assuming that p0 = q0 = r0 = 0, v0 = w0 = 0, θ ≈ 2q2e and Vm is a constant, then we get

the rigid-body dynamic model of Ares-I CLV in the pitch plane as follows:

α̇ = θ̇ +
gx

Vm
θ +
−CNαQS

mVm
α+

T

mu0
δy (C.30a)

θ̇ =
−(−Xa + cx)CNαQS + CMpαQSb

Iyy
α+

(cx −Xg)T
Iyy

δy (C.30b)

where α = ∆w
Vm

.

C.4 Linear Flexible-Body Model

The linear state-space equation of the Ares-I including the flexible-body modes is described

by

ẋ = Âx + B̂u

y = Ĉx
(C.31)

where

x = (∆u, ∆v, ∆w, ∆p, ∆q, ∆r, ∆q1, ∆q2, ∆q3, ∆q4, η1, η2, η3, η4, η5, η6, η̇1, η̇2, η̇3, η̇4, η̇5, η̇6)T

(C.32)

and

Â =


A 0

0
0 I

−Ω2 −2ζΩ

 (C.33)

B̂ =


B

0

ΦTmB1

 (C.34)
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Ĉ =



0 0 0 0 0 0 2q4c 2q3c −2q2c −2q1c

0 0 0 0 0 0 −2q3c 2q4c 2q1c −2q2c

0 0 0 0 0 0 2q2c −2q1c 2q4c −2q3c

Ψ 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 Ψ


(C.35)
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APPENDIX D. ATTITUDE ERROR QUATERNION KINEMATIC

DIFFERENTIAL EQUATIONS

Equations. (2.12) and (2.46) can be written as

q̇ =
1
2
Ωq (D.1)

qe = Qcq (D.2)

where q = (q1, q2, q3, q4)T , qe = (q1e, q2e, q3e, q4e)T , and

Ω =



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0


(D.3)

Qc =



q4c q3c −q2c −q1c

−q3c q4c q1c −q2c

q2c −q1c q4c −q3c

q1c q2c q3c q4c


(D.4)

Note that Qc is an orthonormal matrix; that is, QcQT
c = I and Q−1

c = QT
c . Differentiating

Equation. (D.2) with constant commanded quaternions, we obtain

q̇e = Qcq̇ (D.5)

Substituting Equation. (D.1) into Equation. (D.5), we obtain

q̇e =
1
2
QcΩQ−1

c qe (D.6)
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By substituting Equations. (D.3) and (D.4) into QcΩQ−1
c , we can show that QcΩQ−1

c = Ω.

An indirect approach to obtaining this relationship is provided as follows.

Let

Qc = q4cI + Q (D.7)

where

Q =



0 q3c −q2c −q1c

−q3c 0 q1c −q2c

q2c −q1c 0 −q3c

q1c q2c q3c 0


(D.8)

Note that Q and Ω are skew-symmetric matrices; that is, Q = −QT and Ω = −ΩT.

Consequently, QΩ is a symmetric matrix; that is, QΩ = (QΩ)T . Then we have

QΩ = (QΩ)T = ΩTQT = −ΩQT = ΩQ (D.9)

By using these properties, we can rewrite QcΩQ−1
c as

QcΩQ−1
c = QcΩQ−1

c = (q4cI + Q)ΩQ−1
c (D.10)

which becomes

(q4cI + Q)ΩQ−1
c = (q4cIΩ + QΩ)Q−1

c = Ω(q4cI + Q)Q−1
c = ΩQcQ−1

c (D.11)

Finally, we have

QcΩQ−1
c = Ω (D.12)

and 

q̇1e

q̇2e

q̇3e

q̇4e


=

1
2



0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0





q1e

q2e

q3e

q4e


(D.13)

Note that the constant commanded quaternions are assumed here.
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APPENDIX E. LINEAR MODEL OF UNCONTROLLED ROLL DRIFT

WITH AERODYNAMIC DISTURBANCE

v̇ = −u0r − gxψ +
CY βQS

m
β − T

m
δz (E.1)

ẇ = u0q − gxθ −
CNαQS

m
α+

T

m
δy (E.2)

q̇ = Mαα+Mδδy (E.3)

ṙ = Mββ +Mδδz (E.4)

q̇2e =
q4e

2
q − q1e

2
r (E.5)

q̇3e =
q1e

2
q +

q4e

2
r (E.6)

where α = w
u0

, β = v
u0

.

When attitude error quaternion are small, we have θ ≈ 2q2e and ψ ≈ 2q3e.
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v̇

ẇ

q̇

ṙ

q̇2e

q̇3e


=



CY βQS
mu0

0 0 −u0 0 −2gx

0 −CNαQS
mu0

u0 0 2gx 0

0 Mα/u0 0 0 0 0

Mβ/u0 0 0 0 0 0

0 0 q4e/2 −q1e/2 0 0

0 0 q1e/2 q4e/2 0 0





v

w

q

r

q2e

q3e


+



0 −T/m

T/m 0

Mδ 0

0 Mδ

0 0

0 0



 δy

δz



(E.7)
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APPENDIX F. DERIVATION OF A STEADY-STATE OSCILLATION

F.1 A Steady-State Oscillation of the Autonomous System

For this autonomous system ẋ = f(x), we have

q̇

ṙ

q̇1

q̇2

q̇3

q̇4


=



arp− K̂pq2 − K̂dq

−apq − K̂pq3 − K̂dr

r
2q2 −

q
2q3 + p

2q4

− r
2q1 + p

2q3 + q
2q4

q
2q1 −

p
2q2 + r

2q4

−p
2q1 −

q
2q2 −

r
2q3


(F.1)

Assume that there is a steady-state oscillation. q1 and q4 are constants and it has the

following relation between two vectors (q, r)T and (q2, q3)T is q

r

 = X

 q2

q3

 (F.2)

X = τ

 cos θ sin θ

− sin θ cos θ

 (F.3)

where |τ | is the magnitude ratio and θ is the phase shift between those two vectors. Note that

the matrix X is invertible. Therefore q2

q3

 = X−1

 q

r

 =
1
τ

 cos θ − sin θ

sin θ cos θ


 q

r

 (F.4)

Since τ and θ are constants, the relation between (q̇, ṙ)T and (q̇2, q̇3)T is q̇

ṙ

 = X

 q̇2

q̇3

 (F.5)
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Equation. (F.1) can be expressed in terms of (q, r)T , (q2, q3)T and (q1, q4)T as q̇

ṙ

 =

 −K̂d ap

−ap −K̂d


 q

r

 + (−K̂p)

 q2

q3

 (F.6a)

 q̇2

q̇3

 =
1
2

 q4 −q1

q1 q4


 q

r

 +
1
2

 0 p

−p 0


 q2

q3

 (F.6b)

 q̇1

q̇4

 =
1
2

 0 p

−p 0


 q1

q4

 +
1
2

 r −q

−q −r


 q2

q3

 (F.6c)

Substituting Equation. (F.4) into Equation. (F.6a), we get q̇

ṙ

 =


 −K̂d ap

−ap −K̂d

 + (−K̂p)X−1


 q

r

 = M

 q

r

 (F.7)

Similarly, substituting Equation. (F.2) into Equation. (F.6b), we get q̇2

q̇3

 =

1
2

 q4 −q1

q1 q4

X +
1
2

 0 p

−p 0




 q2

q3

 = N

 q2

q3

 (F.8)

According to Equations. (F.5), (F.7) and (F.8), we obtain q̇

ṙ

 = X

 q̇2

q̇3

 = XN

 q2

q3

 = M

 q

r

 = MX

 q2

q3

 (F.9)

Therefore, the relation between M , N and X must be

MX = XN (F.10)

In the matrix form, we have
 −K̂d ap

−ap −K̂d

 + (−K̂p)X−1

X = X

1
2

 q4 −q1

q1 q4

X +
1
2

 0 p

−p 0


 (F.11)

Note that the preceding equation is a quadratic matrix equation as follows:

XAX +BX +XC = D (F.12)
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In the matrix form, the preceding equation can be written as

1
2
X

 q4 −q1

q1 q4

X +
1
2
X

 0 p

−p 0

 +

 K̂d −ap

ap K̂d

X = (−K̂p)I (F.13)

We are going to find out expressions of q1 and q4. According to the assumption that q1

and q4 are constant, we have q̇1

q̇4

 =
1
2

 0 p

−p 0


 q1

q4

 +
1
2

 r −q

−q −r


 q2

q3

 =

 0

0

 (F.14)

therefore,

1
2

 0 p

−p 0


 q1

q4

 = −1
2

 r −q

−q −r


 q2

q3

 (F.15)

Substituting Equation. (F.4) into the preceding equation, we obtain

1
2

 0 p

−p 0


 q1

q4

 = −1
2

 r −q

−q −r

 1
τ

 cos θ − sin θ

sin θ cos θ


 q

r

 (F.16)

The right side of the preceding equation can be simplified

1
2τ

 r cos θ − q sin θ −r sin θ − q cos θ

−q cos θ − r sin θ q sin θ − r cos θ


 q

r

 =
1
2τ

 qr cos θ − q2 sin θ − r2 sin θ − qr cos θ

−q2 cos θ − rq sin θ + qr sin θ − r2 cos θ


= −q

2 + r2

2τ

 sin θ

cos θ


(F.17)

Hence,  q1

q4

 =
q2 + r2

τp

 − cos θ

sin θ

 = Ω

 − cos θ

sin θ

 (F.18)

where Ω = q2+r2

τp

F.2 Solution of the Quadratic Matrix Equation

The matrix X is the solution of the Equation. (F.13)

1
2
X

 q4 −q1

q1 q4

X +
1
2
X

 0 p

−p 0

 +

 K̂d −ap

ap K̂d

X = (−K̂p)I (F.19)
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where  q1

q4

 = Ω

 − cos θ

sin θ

 (F.20)

The first term on the left side of Equation. (F.13) can be written as

1
2
X

 q4 −q1

q1 q4

X =
τ2Ω
2

 cos θ sin θ

− sin θ cos θ


 sin θ cos θ

− cos θ sin θ


 cos θ sin θ

− sin θ cos θ


=
τ2Ω
2

 0 1

−1 0


 cos θ sin θ

− sin θ cos θ


=
τ2Ω
2

 − sin θ cos θ

− cos θ − sin θ


(F.21)

The second term on the left side of Equation. (F.13) can be written as

1
2
X

 0 p

−p 0

 =
τ

2

 cos θ sin θ

− sin θ cos θ


 0 p

−p 0

 =
τp

2

 − sin θ cos θ

− cos θ − sin θ

 (F.22)

The third term on the left side of Equation. (F.13) can be written as K̂d −ap

ap K̂d

X =

 K̂d −ap

ap K̂d

 τ

 cos θ sin θ

− sin θ cos θ


= τK̂d

 cos θ sin θ

− sin θ cos θ

 + τap

 sin θ − cos θ

cos θ sin θ


(F.23)

Substituting Equations. (F.21), (F.22) and (F.23) into Equation. (F.13), the quadratic

matrix equation becomes

(
τ2Ω
2

+
τp

2
)

 − sin θ cos θ

− cos θ − sin θ

+τap

 sin θ − cos θ

cos θ sin θ

+τK̂d

 cos θ sin θ

− sin θ cos θ

 = (−K̂p)I

(F.24)

or

(
τ(2a− 1)p

2
− τ2Ω

2
)

 sin θ − cos θ

cos θ sin θ

 + τK̂d

 cos θ sin θ

− sin θ cos θ

 = (−K̂p)I (F.25)
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Therefore, τ and θ must satisfy the following equation τ(2a−1)p−τ2Ω
2 sin θ + τK̂d cos θ − τ(2a−1)p−τ2Ω

2 cos θ + τK̂d sin θ

τ(2a−1)p−τ2Ω
2 cos θ − τK̂d sin θ τ(2a−1)p−τ2Ω

2 sin θ + τK̂d cos θ

 = (−K̂p)I (F.26)

Note that the preceding equation can be reduced to only two equations

τ(2a− 1)p− τ2Ω
2

sin θ + τK̂d cos θ = −K̂p (F.27)

and
τ(2a− 1)p− τ2Ω

2
cos θ − τK̂d sin θ = 0 (F.28)

In the matrix form, we get τ(2a−1)p−τ2Ω
2 τK̂d

−τK̂d
τ(2a−1)p−τ2Ω

2


 sin θ

cos θ

 =

 −K̂p

0

 (F.29)

Since Ω = q2+r2

τp , we find

τ

 (2a−1)p2−(q2+r2)
2p K̂d

−K̂d
(2a−1)p2−(q2+r2)

2p


 sin θ

cos θ

 =

 −K̂p

0

 (F.30)

or

τ

 sin θ

cos θ

 =
−K̂p

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

 (2a−1)p2−(q2+r2)
2p

K̂d

 (F.31)

If τ is chosen as

τ =
−K̂p√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

(F.32)

Finally, solving Equation. (F.13) yields sin θ

cos θ

 =
1√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

 (2a−1)p2−(q2+r2)
2p

K̂d

 (F.33)

F.3 State Equations of the Steady-State Oscillation

Substituting Equations. (F.18) and (F.33) into Equation. (F.8) yields q̇2

q̇3

 = N

 q2

q3

 =
p2 + q2 + r2

2p

 0 1

−1 0


 q2

q3

 (F.34)
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From Equation. (F.7) we have

M =

 −K̂d ap

−ap −K̂d

 + (−K̂p)X−1 (F.35)

According to Equations. (F.18) and (F.32), we have

M =

 −K̂d ap

−ap −K̂d

 +

√
(
(2a− 1)p2 − (q2 + r2)

2p
)2 + (K̂d)2

 cos θ − sin θ

sin θ cos θ


=

 −K̂d +
√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2 cos θ ap−

√
( (2a−1)p2−(q2+r2)

2p )2 + (K̂d)2 sin θ

−ap+
√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2 sin θ −K̂d +

√
( (2a−1)p2−(q2+r2)

2p )2 + (K̂d)2 cos θ


(F.36)

Substituting Equation. (F.33) into the preceding equation yields

M =

 0 ap− (2a−1)p2−(q2+r2)
2p

−ap+ (2a−1)p2−(q2+r2)
2p 0

 =
(p2 + q2 + r2)

2p

 0 1

−1 0


(F.37)

Finally, state equations of the steady-state oscillation are listed here q̇2

q̇3

 =
p2 + q2 + r2

2p

 0 1

−1 0


 q2

q3

 (F.38)

 q̇

ṙ

 =
p2 + q2 + r2

2p

 0 1

−1 0


 q

r

 (F.39)

and  q

r

 = τ

 cos θ sin θ

− sin θ cos θ


 q2

q3

 (F.40)

where

τ =
−K̂p√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

(F.41)

 q1

q4

 =
q2 + r2

τp

 − cos θ

sin θ

 (F.42)
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 sin θ

cos θ

 =
1√

( (2a−1)p2−(q2+r2)
2p )2 + (K̂d)2

 (2a−1)p2−(q2+r2)
2p

K̂d

 (F.43)

θ = tan−1 (2a− 1)p2 − q2 − r2

2pK̂d

(F.44)

Since there is another constraint

q21 + q22 + q23 + q24 = 1 (F.45)

From Equation. (F.18) we have

q21 + q24 = (
q2 + r2

τp
)2 (F.46)

From Equation. (F.2) we get

q2 + r2 = τ2(q22 + q23) (F.47)

Define the magnitude square of the vector (q, r)T as x

q2 + r2 = x (F.48)

and

q22 + q23 =
x

τ2
(F.49)

Therefore, x must satisfy the constraint

q21 + q22 + q23 + q24 = (
x

τp
)2 +

x

τ2
= 1 (F.50)

Substituting Equation. (F.32) into the preceding equation yields

x4 +(3−4a)p2x3 +[(2a−1)(2a−3)p2 +4K̂2
d ]p2x2 +[(2a−1)2p2 +4K̂2

d ]p4x−4p4K̂2
p = 0 (F.51)

Define a function f(x) as the left side of equal sign of the preceding equation

f(x) = x4+(3−4a)p2x3+[(2a−1)(2a−3)p2+4K̂2
d ]p2x2+[(2a−1)2p2+4K̂2

d ]p4x−4p4K̂2
p (F.52)

Since x is the magnitude square of the vector (q, r)T , all real positive zeros of the function

f(x) could be x.
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APPENDIX G. DERIVATION OF THE DERIVATIVE OF A

LYAPUNOV FUNCTION CANDIDATE

A Lyapunov function candidate is given in Equation. (5.17),

V (x) =
1

2K̂p

q2 +
1

2K̂p

r2 + [q1 − sin(λ/2)]2 + q22 + q23 + [q4 − cos(λ/2)]2 (G.1)

Expanding the square terms of quaternion, we get

V (x) =
1

2K̂p

q2 +
1

2K̂p

r2 + q21 − 2q1 sin(λ/2) + sin2(λ/2)

+ q22 + q23 + q24 − 2q4 cos(λ/2) + cos2(λ/2) (G.2)

Therefore, the Lyapunov function can be rewritten as

V (x) =
1

2K̂p

(q2 + r2) + 2− 2q1 sin(λ/2)− 2q4 cos(λ/2) (G.3)

The derivative of V (x) is

V̇ (x) =
1
K̂p

(qq̇ + rṙ)− 2q̇1 sin(λ/2)− q1 cos(λ/2)λ̇− 2q̇4 cos(λ/2) + q4 sin(λ/2)λ̇ (G.4)

Substituting Equation. (5.16) into the preceding equation yields the derivative of V (x)

along the trajectories of the system, then

V̇ (x) =
q

K̂p

{arp− K̂p[cos(λ/2)q2 + sin(λ/2)q3]− K̂dq}

+
r

K̂p

{−apq − K̂p[− sin(λ/2)q2 + cos(λ/2)q3]− K̂dr}

− (rq2 − qq3 + pq4) sin(λ/2)− (−pq1 − qq2 − rq3) cos(λ/2)

− q1 cos(λ/2)λ̇+ q4 sin(λ/2)λ̇

(G.5)



141

Expanding the preceding equation yields

V̇ (x) =
apqr

K̂p

− qq2 cos(λ/2)− qq3 sin(λ/2)− K̂d

K̂p

q2 − apqr

K̂p

+ rq2 sin(λ/2)− rq3 cos(λ/2)− K̂d

K̂p

r2

− rq2 sin(λ/2) + qq3 sin(λ/2)− pq4 sin(λ/2) + pq1 cos(λ/2) + qq2 cos(λ/2) + rq3 cos(λ/2)

− [q1 cos(λ/2)− q4 sin(λ/2)]λ̇

(G.6)

Hence,

V̇ (x) = −K̂d

K̂p

q2 − K̂d

K̂p

r2 + [q1 cos(λ/2)− q4 sin(λ/2)]p− [q1 cos(λ/2)− q4 sin(λ/2)]λ̇ (G.7)

Finally, we obtain a compact form the the derivative of V (x)

V̇ (x) = −K̂d

K̂p

(q2 + r2) + [q1 cos(λ/2)− q4 sin(λ/2)](p− λ̇) (G.8)

Since λ̇ = p, we have

V̇ (x) = −K̂d

K̂p

(q2 + r2) (G.9)
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