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ABSTRACT

Ducted fans have found renewed interest particularly in the field of micro aerial vehicles.

The complex flow interactions between the rotor, shroud and nacelle hinder the design of

optimal lifting duct shapes. Further, the optimum duct shape changes with freestream

velocity and rotor configuration. Analytic equations are insufficient to model and predict

the performance of ducted fans, yet general CFD solvers are too slow to be used for

optimization. For this research, a genetic algorithm is coupled with a simplified CFD

solver based on a momentum source rotor model, creating an efficient shape optimization

technique for ducted fan systems. The performance gains of the genetic algorithm are

documented and the optimum duct shape for several configurations are presented as

proof of concept.
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CHAPTER 1. Background

In the past, Computational Fluid Dynamics (CFD) has been a research and analysis

tool used by highly trained specialists on state-of-the-art machines. As processor speed

and RAM increase in desktop PCs, it is becoming more realistic to expect CFD to be

used as a design tool available to engineers. While some geometric configurations push

the bounds of even the largest cluster of CPUs and require specialized knowledge to

simulate, many geometries of interest to industry can easily be solved on the average

desktop workstation. Ducted fans are one such configuration that is too complex for

analytical solutions, but solvable with current desktop CFD technology. This research

is done in pursuit of developing a GA based shape optimization technique for ducted

fan configurations.

1.1 Ducted Fan History

Ducted fans have been modeled and studied extensively and have been used in marine

applications [1], rotorcraft / VSTOL applications [2, 3, 4] and HVAC. Much of this work

has been done with simplified assumptions [5, 6] or analytical models [7]. A more recent

and mainstream application of ducted fans is the anti-torque device of the RAH-66. The

FANTAIL of the RAH-66 is a notable configuration that has benefited from extensive

computational analysis [8, 9]
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In the 1940s and 50s Hiller pioneered a flying platform using a fan situated within annular

wings. It was found that the airfoil duct accelerated airflow into the rotors. Additionally,

Hiller found that the duct could generate 40% more thrust than a propeller of the same

diameter. Hiller’s aircraft, the Model 1031 used coaxially mounted rotors within a single

fiberglass duct.

The fan in wing design has been around since the 1960s with the Ryan XV-5 and

the Lockheed XV-4 were explored as aircraft with short take-off and landing (STOL)

capabilities. This application of ducted fans stagnated because the fan system was heavy,

took a lot of internal volume and produced less lift than was expected.

Recently, ducted fans have found favor with micro-aerial vehicles, providing amongst

other things, protection to delicate fan blades, allowing MAVs to operate in tight spaces.

Ducts can provide an increase in total thrust as compared to a free rotor. Composite

materials allow ducts to be stiff and strong, yet also lightweight. Given the advances

in materials, it is relatively simple to design and construct a basic duct that yields a

moderate increase in overall thrust.

It is important when studying ducted fans, or rotorcraft in general, that a model which

accurately predicts the flow induced by the rotor is used. Accurate tools are available

to designers and engineers in industry, yet often a uniform disc approach is employed.

While an actuator disc, or variant thereof, is generally sufficient for the axial component

of the rotor wake, rotor performance data must be known a priori. However, for a ducted

fan configuration, the duct influences the rotor in-flow and out-flow and thus, the rotor

performance. The actuator disc model is not sufficient as a propulsive model because

the duct and rotor are coupled. CFD is an obvious choice for evaluating ducted fan

performance and is used as the function call by the optimization technique developed in

this research.
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1.2 Genetic Algorithm Optimization

Genetic algorithms have been used to solve a number of Industry problems. Related

to this research, GAs have been used to optimize rotor design [10], industrial duct

design [11], and used in conjunction with CFD [12]. Customizing a genetic algorithm

to fit the problem of concern is essential to the performance and results obtained. A

GA scheme which performs well in deceptive multi-modal design spaces will likely not

converge quickly in less deceptive spaces. Genetic algorithms require a balance between

the capability of global search and the requirement for a solution within a reasonable

time frame.

The design space for the ducted fan presents hurdles for more traditional optimiza-

tion methods such as gradient based routines. The design space may or may not be

multi-modal depending on the rotor configuration, and the constraints placed on the op-

timization control parameters. For multi-modal design spaces, an optimization routine

must search globally or risk getting trapped by a local maximum. In addition, using

CFD as the method to evaluate the ducted fan performance is computationally intensive.

Genetic algorithms generate many potential solutions during the optimization process

and therefore, require many calls to the performance evaluation routine. The search

through the design space must be efficient in order to obtain results in a reasonable

amount of time.

The Darwinian class of optimization routines, of which GAs are a member, are rooted in

the notion of survival of the fittest. The optimization parameters are generated for each

design, called an individual, and a solution based on the parameters is calculated by a

performance evaluation routine. The value of the solution returned by the performance

evaluation routine is the fitness of an individual. Individuals with higher fitness values
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are encouraged to merge with other fit individuals to form the next generation of a

population. Merging the fittest individuals in a population creates strong offspring for

the next generation. That is the basis of genetic optimization.

1.3 Goal of Research

The goal of this research is to create a procedure for ducted fan optimization. A key

step for success is coupling a commercial CFD solver with an efficient GA routine.

The resulting tool will ultimately be used to find a duct shape which maximizes the

thrust of a ducted fan configuration. This research is not concerned with the merits

or shortcomings of a ducted fan configuration with respect to a free propeller design.

Instead it is assumed that a ducted fan configuration is required as a design constraint.

The following list of tools is required to find a duct shape that produces maximum

system thrust:

• An optimization routine

• A method to modify duct geometry

• A CFD solver

• A routine for duct thrust calculations

The optimization routine, duct geometry algorithm, and duct thrust calculations are

developed as a part of this research. The commercial CFD solver, Rot3DC, is provided

courtesy of Sukra Helitek, Inc., and is chosen because of the ease with which ducted fans

can be analyzed.
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CHAPTER 2. Formulation

The tools required to complete the proposed duct optimization are developed in this

chapter. The building blocks of the simple Genetic Algorithm scheme are presented

as well as enhancements for coupling with an axis-symmetric CFD solver, part of the

commercial tool-kit, Rot3DC [13]. The equations used by the commercial CFD software

are detailed and explained. Additional tools required to reduce the CFD data are then

presented. An algorithm to create smooth geometric shapes for use as input to the CFD

is discussed, followed by a method to determine the minimum allowable spatial and

temporal mesh fidelity for acceptable results from the CFD solver.

2.1 Genetic Algorithm Primer

The simple Genetic Algorithm (sGA) scheme was first outlined by Goldberg [14]. This

most basic scheme for GA optimization contains some building block steps that all

methodologies of the same genre follow. The sGA is presented here to illustrate the

basics of GA methodology and also to contrast with the enhancements made as part of

this research. The outline of the sGA process is as follows:

• Randomly create individuals to form a population.

• Evaluate and rank the individuals in the population.
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• Select individuals to mate.

• Combine the characteristics of the individuals chosen to mate.

• Mutate newly created individuals at some specified rate.

Arranging these basic steps into an iterative loop creates a powerful tool for searching

a multi-modal design space.

A flow chart of the genetic algorithm routine used for this research is shown in Figure 2.1.

This is the basic structure for genetic algorithms. How each step in the process is handled

is what differentiates one GA routine from another. Each step in the process along with

some terminology is explained next.

2.1.1 Basic GA Terminology

Genetic algorithms emulate the theory of evolution to find the maximum solution to a

set of equations. As a result, much of the terminology used to describe the process is

borrowed from biology and genetics.

2.1.1.1 Chromosome

A chromosome is the binary string which represents the input parameters of a particular

solution. The input parameters for the ducted fan optimization are the spatial locations

of control points which define the control polygon. The duct shape is the spline that is

drawn inside of the control polygon. The genetic algorithm is required to convert the

binary string values into real value locations of the control points. With respect to the

ducted fan optimization, a duct shape encoded in a form that the GA can interpret is a

chromosome.
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Figure 2.1 Basic genetic algorithm process flow.

2.1.1.2 Allele

An allele is the value of a particular bit of the chromosome. For a simple binary encoding,

as is used for this research, the value of each allele can be a 0 or a 1.

2.1.1.3 Fitness

The fitness is the value returned when a chromosome is decoded and evaluated by the set

of equations that govern the optimization. For example, the fitness used for the ducted

fan optimization is the thrust produced by the duct added to the thrust produced by
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the rotor. The fitness evaluation for the ducted fan requires a function call to a CFD

ducted fan model.

2.1.1.4 Individual

An individual consists of a chromosome and the resulting fitness. Each individual is

potentially the optimized solution to the set of governing equations. For the current

research, each individual consists of an encoded duct shape (chromosome) and the com-

bined rotor and duct thrust (fitness) of the resulting ducted fan system.

2.1.1.5 Population

A population is a group of individuals. In the case of the ducted fan optimization, the

population is a set of candidate duct shapes and their corresponding thrusts. The fitness

of a population is simply the summation of the fitnesses of each individual that exists

in the population.

2.1.1.6 Generation

A generation is a subset of the population where all individuals are created at a particular

optimization iteration. There may be times during the optimization process where parent

individuals and their offspring coexist. Every existing member is part of the population,

but the parent individuals are in a different generation than the offspring.
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2.1.1.7 Convergence

Convergence occurs when every individual in the population has an identical chromo-

some. Applied to the ducted fan optimization, this means that every duct shape in

the current optimization step is identical. This may occur because each individual is at

the global maximum fitness value, or because of a local maximum fitness value. If it is

the latter, then the state is referred to as premature convergence. In general, genetic

algorithms are expected to maintain genetic diversity and not converge. Exceptions are

made when the solution space of the set of equations to optimize is not complex, such

as uni-modal space or simple multi-modal space.

2.1.2 Schemata

The first concept to be discussed is schemata. Unlike the following genetic algorithm

topics, schemata are not a step in the GA process. They are the binary strings within a

chromosome that specify a trait or traits of an individual, much like building blocks fit

together to form a structure. They can be thought of as templates where a particular

combination of 0’s and 1’s control specific characteristics of an individual. For the ducted

fan optimization, an example of a schema is the the combination of 1’s and 0’s that cause

the leading edge of the duct to be a semi-circle with a radius of 0.1 ft.

Assume, for example, that the chromosome of an individual is three bits long. If there are

K values available for each bit then there are K l possible unique values for chromosomes,

where l is the number of bits. For a binary alphabet, K = 2 so there are eight unique

chromosome combinations for the three bit assumption: {100, 110, 101, 111, 010, 011,

001, 000}.

Now to specify a schemata, add a third character, *, to the possible values of each bit.
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The * character means ”don’t care” as in the value can be either 0 or 1. With the addition

of *, K = 3 and there are sixteen possible combinations of schemata. The schema 1*1

represents two chromosome combinations from the example set of eight: {101, 111}.

Likewise, the schema 1** represents four chromosome combinations: {100, 110, 101,

111}. Although this increases the number of meaningful character combinations, it also

increases the available information about patterns within the chromosome.

Schemata tend to lengthen as the optimization moves forward, making individuals robust

and specialized. Protecting the good schemata is an important consideration when

choosing the best way to implement the following routines.

2.1.3 Selection

Selection is the process of choosing individuals to combine. In the sGA approach, indi-

viduals are selected via a weighted roulette wheel. Essentially, each individual is alloted

slots on a computational roulette wheel according to their level of fitness. The most

fit individuals get the most slots and are most likely to be selected to mate. However,

even the least fit individual has a chance to be selected. The roulette wheel, idealized

in Figure 2.2, is implemented in practice as follows:

1. Randomly select a percentage of the population fitness, called the wheel value.

2. Parse the population adding the fitness of each individual to a temporary fitness

value.

3. Stop the search when the temporary fitness value exceeds the wheel value.

The individual that raises the temporary fitness value past the wheel value is selected as

a mating candidate. With this formulation, an individual whose fitness is a significant
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percentage of the total population fitness will likely have multiple opportunities to mate.

Figure 2.2 Schematic of roulette wheel for selection.

2.1.4 Crossover

The process of combining the chromosomes of two individuals that have been selected

to mate is called crossover. The most effective form of crossover for the present study

is to choose one common location on the chromosome of both individuals and cross the

chromosomes there. This method is considered most effective because of the relative

protection of schemata compared to other methods where important traits, such as

the inlet shape of a duct, can be lost solely due to an aggressive crossover technique.

Figure 2.3 shows the crossover event for two individuals, the first has all alleles set to

zero, while the other has all alleles set to 1.
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Figure 2.3 Schematic of the crossover scheme.

The first step in the crossover process is to determine if crossover should even occur.

The crossover probability dictates the likelihood of crossover occurring through a biased

coin toss. Next, the loci at which to cut both chromosomes is determined. The location

at which to cut the chromosome, ic, is chosen randomly and is bound by 2 ≤ ic ≤ n− 1,

where n is the number of alleles in an individuals chromosome. The two individuals then

swap the chunks of chromosomes that have been cut. The result is two new individuals

that have characteristics of both parents.

2.1.5 Mutation

For evolutionary optimization, mutation allows alternate schemata to appear. Mutation

can be very effective if a particular schemata or chromosome begins the optimization

with a significant fitness advantage. In this scenario the dominant schemata will likely

choke any alternate gene sequences out. Mutation randomly selects individual alleles
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to mutate, for binary chromosomes this is as simple as changing a single 0 to 1 or vice

versa.

The rate of mutation can be a variable, determined by population and crossover condi-

tions or as in the case of this research, fixed at the beginning of the optimization cycle.

The effect of mutation is to add randomness in the population to achieve a near global

search area. However, a mutation rate set to 1 is equivalent to a Monte Carlo scheme

where no traits are passed on from generation to generation. Therefore, some care must

be taken to leverage global search without degenerating into random search.

2.2 Genetic Algorithm Enhancements

An evolutionary search routine, such as a genetic algorithm, is an efficient way to search

an unknown design space. However, for optimizations where a lengthy fitness evaluation

is employed, it is prudent to seek ways to limit the total number of evaluations and to

maximize the effect of each chromosomal recombination event that occurs.

For the present research, the simple Genetic Algorithm described by Goldberg [14] has

been modified to provide usable solutions with fewer fitness evaluations by taking full

advantage of each crossover event. The modified algorithm is referred to as the GenII-

GA, for second generation Genetic Algorithm. The process flow of the GenII-GA, shown

in Figure 2.4, is similar to the simple Genetic Algorithm flow. However, now prior to

the selection process, the population is filtered and placed in a gene pool from which

individuals are selected. Additionally, if the gene pool is not sufficiently unique, then the

population is stagnant and must be regenerated. The new routines, which include the

selection process, population regeneration, a new elitist strategy, and population scaling

are detailed next.
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Figure 2.4 GenII-GA process flow chart.

2.2.1 Selection and Gene Pool

The selection process used by the sGA scheme can be improved by adding a subset

of the population, dubbed the gene pool. Gene pool rules dictate that all individuals

admitted into the pool are candidates that will have the greatest chance of improving

the next generation’s fitness level. To be admitted to the gene pool, an individual must

be sufficiently different from all other individuals currently in the pool. Provided that
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requirement is met, individuals are added based on a rank until the gene pool is full.

First, all the individuals of a population are copied into a temporary container. Then

the temporary population is ordered from highest to lowest fitness. The algorithm

then starts adding individuals to the breeding population from highest to lowest. Each

candidate individual must pass a bit-matching filter to be placed in the gene pool.

Figure 2.5 shows the bit-matching requirement for admittance into the gene pool. If

the percentage of matching alleles of a chromosome exceeds the threshold set at the

beginning of the optimization then the individual is excluded from the gene pool. Al-

though not utilized in this duct optimization research, the GA tool allows for a variable

bit-matching threshold.

Figure 2.5 Bit-matching logic.

In essence, the gene pool adds a selection process to the sGA. First, the individual must

prove to be genetically diverse enough. Then, the roulette wheel selection takes place

as in the sGA. This process postpones premature convergence by favoring population

diversity in the selection process.
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2.2.2 Modified Elitist Strategy

A common pitfall associated with the sGA scheme is the possibility that the optimum

solution will be found and then lost in subsequent generations. It is likely that the

current fittest individual will be crossed with many other candidate individuals, diluting

or completely destroying the schemata of the current best individual. A common solution

to this problem is to employ an elitist strategy. Often, the fittest individual or individuals

of a particular generation will be stored and passed on to the next generation unaltered,

thereby ensuring that good schema are not destroyed until superior schema exist.

While this notion of preserving the elite individuals remedies the problem as stated, a

new issue, namely premature convergence of the solution, may emerge. The role that

chance plays in genetic algorithms cannot be overstated. Using a typical elitist strategy

gives preference to individuals which may only be very slightly fitter than the rest of

the population. As the optimization matures and convergence is being approached, such

preference is vital to finding the optimal solution.

During the early stages of the optimization when many different schemata exist, it can

be detrimental to allow rather weak schemata, globally speaking, the influence afforded

to an elite schema. Doing so encourages weak schemata, which are likely local fitness

maximums, to preemptively eradicate other schemata by dominating the selection wheel

before other schema can grow and develop. Once the balance has been tipped in favor

of a globally weak schema it becomes difficult for the force of chance, via mutation, to

correct the situation.

In order to prevent this scenario, common in the basic elitist strategy, an Elite Factor

is introduced. The Elite Factor is a real number greater than or equal to 1, and is

determined at the beginning of the optimization routine. If, for example, the Elite
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Factor is set to 1.3 and the current best individual has a fitness value that is 30% (or

more) better than the previous generation’s fittest individual, then the Elite Factor

requirement is satisfied and the current best individual qualifies for elite status. This

way, the elitist strategy can be can be tuned to find the balance between convergence

and global search by ensuring that individuals chosen for elite status are deserving.

If significant improvements in the fitness of the best individual are not realized from

one generation to the next, then an elite individual is not selected and no individual’s

chromosome is guaranteed to exist in the next generation. Note that the Elite Factor

set to a value of 1 becomes equivalent to the basic elitist strategy.

2.2.3 Population Regeneration

Despite the attempts of the bit-matching filter to keep the population genetically diverse,

it is still likely that the selection pressure will drive the population to genetic convergence.

This trend is more evident with smaller populations when an elitist strategy is used. The

goal of the optimization is to drive the population to the best fitness which eventually

will cause all individuals to exist in a very small region of the solution space. Ideally,

this is the global optimum, but for problems with an unknown optimal value, it is nearly

impossible to make that judgment.

As a remedy, population regeneration occurs when the genetic diversity of a population

dips below a specified threshold. Once a need for regeneration has been detected, the

top individuals, with significant genetic diversity, are stored in a container. The chro-

mosomes for the remaining individuals are regenerated using the random initialization

process. After regeneration the optimization scheme continues on as before.



18

2.2.4 Population Scaling

After regeneration, most of the new population has been randomly created. New and

unique schemata stand ready for competition. However, the fittest individuals from the

old generation are also present in the population and have the advantage of mature

schemata. By this point in the schemata evolution, the mature solutions are likely to

be significantly superior to all the fledgling new schemata. It is unlikely that this new

schemata will have a chance to grow and replace the old solution.

To give the new schema a chance to grow, the population fitness is scaled. The maximum

fitness value of all individuals is capped so that the new, weaker individuals get a spot

on the roulette wheel. As the optimization run progresses, the scaling is relaxed and the

new schema must compete to survive.

2.3 Fitness Evaluation

Up to this point, the formulation has focused on the processes used by the genetic

algorithm. The fitness evaluation was treated as a black box where information about

an individual is passed in, and the fitness is returned. The focus of the following sections

shifts to the steps required to convert the information given by the optimization routine

into a fitness value. The process flow of the fitness evaluation used for the ducted fan

optimization is shown in Figure 2.6. The steps in this process are presented next.
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Figure 2.6 Fitness evaluation process flow.

2.4 Duct Parameterization

The GenII-GA is equipped to handle chromosomes that are simple binary strings. The

process used to store and convert a string to a point in two dimensional space is explained

here. For this research, only uni-directional movement of the control points is considered.

The position of the control points in the chordwise direction of the duct is assumed

fixed, allowing the points to move only in the direction of the duct thickness. This

assumption reduces the size of each individual’s chromosome by a factor of two and

simplifies the constraints placed on the control points. Increasing the number or density

of control points in the chordwise direction compensates for the loss of control fidelity

that otherwise results from uni-directional movement.

The airfoil parameterized for the airfoil optimization via panel method in Section 3.3

and the ducts parameterized for the ducted fan optimization in Sections 4.3 through 4.5
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share a common strategy to represent a point as a binary string. The 2-D point is already

fixed in the chordwise direction, but also must be bounded in the thickness direction to

prevent the lower surface from intersecting the upper surface, and to focus the search

to a realistic space. Each control point is assigned a minimum value and range. The

minimum value of an inner duct surface control point is set by the rotor radius, ensuring

there is some clearance between the rotor tip and duct wall. The minimum value of an

outer duct surface control point is set to prevent the outer surface intersecting the inner

surface when the inner surface is at its maximum.

Each control point is allotted 10 bits on the chromosome. The largest integer that can

be represented by a 10 bit binary number is 1024. Therefore, the range of each control

point can be divided into 1024 increments. If a control point increment is represented

as a percentage of the maximum possible integer value for a 10 bit binary string, 1024,

then the deviation from the minimum value is determined by multiplying the range and

the incremental percentage. The location of a control point is now determined by adding

the deviation to the minimum value. The GenII-GA formulation requires binary strings

to be converted into real values for the control points, but does not require a conversion

from the real values to the binary string.

When the 10 bit genes representing each control point are placed in the chromosome,

the control point storage location is not obvious. Figure 2.7 shows where the control

points are stored in the chromosome. Each chromosome segment shown in the figure

represents the 10 bit sequence used to determine the location of the control point. The

segment G1 is the gene of the first control point. Likewise, Gn is the gene of the nth

control point.

With this storage scheme, the real value location of a control point is determined by the

following sequence:
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Figure 2.7 Gene locations within the chromosome.

1. Divide the chromosome into individual genes

2. Determine the integer value of a binary gene sequence

3. Convert the integer value into a percentage of the maximum integer value (1024

for the 10 bit sequence)

4. Multiply range by percentage and add to minimum value for the gene

5. Repeat steps 2-4 until all genes have been converted

This method of storage is simple and flexible. The size of the number of genes and

number of bits per gene can be given as inputs to the GenII-GA at the start of an

optimization run.

2.5 Non-Uniform Rational B-Splines

The method of parameterization chosen to define the duct can directly influence the

success of an optimization routine. Automating the process of geometry modification is

often a difficult task for computational projects. For this research, the duct is parame-

terized by a set of control points, upon which a spline is fitted. The shape of the duct is

controlled by the location of these discrete points, which form a control polygon. Since

a spline is a continuous curve, the duct discretization can be non-uniform, allowing for

a high fidelity geometric representation, despite having only a few control points. The

procedure adopted here is from reference [15].
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Non-Uniform Rational B-Splines, NURBS, have become the standard for representing

complex computational geometry. The NURBS control points are the parameters of the

optimization and thus, as these points change the shape of the duct changes. Fitting a

spline to a set of control points allows for a thorough search of the design space with

a minimum number of control points. NURBS enable a higher degree of shape control

than other spline methodologies and enable a robust method of geometric control.

The formulation of NURBS begins with Bezier curves. An nth-degree Bezier curve is

defined by:

C (u) =
n∑

i=0

Bi,n (u) Pi (2.1)

where 0 ≤ u ≤ 1, the position of the control points are the geometric coefficients Pi, and

the basis functions, Bi,n are the nth-degree Bernstein polynomials:

Bi,n (u) =
n!

i! (n− i)!
ui (1− u)n−i (2.2)

The useful properties of the Bernstein polynomials include: they are positive for 0 ≤

u ≤ 1,
∑n

i=0 Bi,n (u) = 1, and they have a single local maximum for all i 6= 0. The Bezier

curve as written cannot represent conic sections exactly.

To represent conic sections, the rational Bezier curve is defined as:

C (u) =

n∑
i=0

Bi,n (u) wiPi

n∑
i=0

Bi,n (u) wi

(2.3)

where n is the order, Bi,n and Pi are as before, and wi are the weights attracting or

repelling the curve to the control points. This curve passes through the end points

{P0, Pn}, and is tangent to the line segments P1 − P0 and Pn − Pn−1. Bezier curves

are numerically unstable for a large numbers of control points and changing one control

point changes the shape of the curve.
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B-splines are Bezier curves in a generalized form with a knot vector. A knot vector, U ,

is defined as U = {u0, u1, ..., um}, where U is a nondecreasing sequence with ui ∈ [0, 1].

The degree of the B-spline is defined as p = m− n− 1. The basis functions of B-splines

are written as:

Ni,0 (u) =


1 if ui ≤ u < ui+1

0 otherwise
(2.4)

Ni,p (u) =
u− ui

ui+p − ui

Ni,p−1 (u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1 (u) (2.5)

The equation for a B-spline curve is then:

C (u) =
n∑

i=0

PiNi,p (u) (2.6)

To make the B-spline nonuniform, the knots, ui, are not uniformly spaced. A B-spline

is made rational much the same way as the Bezier curve in Equation 2.3. The equation

for a pth-degree NURBS curve is:

C (u) =

n∑
i=0

Ni,p (u) wiPi

n∑
i=0

Ni,p (u) wi

(2.7)

where 0 ≤ u ≤ 1, Pi are the control points, wi are the weights, and Ni,p (u) are the

pth-degree B-spline basis functions. Ni,p (u) are defined on the knot vector:

U = a, ..., a, up+1, ..., um−p−1, b, ..., b (2.8)

where there are p + 1 of both the a and b coefficients.

The weight of each point is the strength which the point pulls the spline towards it.

If the weight of a point is set high enough, the spline will pass through that point.

Figure 2.8 shows a spline fitted to a control polygon where the weight of all points is set
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to 1.0. This weight ensures the spline will pass through the end points of the control

polygon, yet retain a level of aerodynamic smoothness. In the case of the airfoil and

duct optimizations presented later, the control polygon end points are at the trailing

edge.

Figure 2.8 NURBS curve with control polygon.

2.6 Axis-Symmetric Flow Solver

The axis-symmetric CFD solver from the Rot3DC tool-kit [13], was chosen to evaluate

the performance of the ducted fan systems during the optimization loops. This software

was chosen because of the simplicity with which it handles the rotor in computational

space. The rotor is the driving force of fluid through this system, and the rotor modeling

is fully integrated into the software package. This rotor modeling technique employed by
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this software has demonstrated accuracy of the rotor flow with minimal computational

cost [16], making it the ideal candidate for determining the fitness of a given ducted fan

system.

2.6.1 Derivation and Discretization of the Flow Governing Equations

The fluid flow in the present research is modeled by the unsteady, laminar, incom-

pressible Navier-Stokes equations. For incompressible flow, the conservation of mass

and momentum are sufficient conditions for solving the flow field. The conservation of

mass applied to a fluid passing through an infinitesimal fixed control volume yields the

following equation of continuity:

∂ρ

∂t
+∇ •

(
ρ~V
)

= 0 (2.9)

Newton’s second law applied to a fluid passing through an infinitesimal, fixed control

volume yields the following momentum equation:

∂

∂t

(
ρ~V
)

+∇ • ρ~V ~V = ρ~f +∇ • Πij + S ′ (2.10)

For an axis-symmetric system, the equations in scalar form are as follows:

continuity equation:

1

r

[
∂

∂r
(r ρVr) +

∂

∂z
(r ρVz)

]
= 0 (2.11)

r momentum equation:

∂

∂t
(ρVr) +

1

r

[
∂

∂r

(
r ρVr

2 − µr
∂Vr

∂r

)
+

∂

∂z

(
r ρVzVr − µr

∂Vr

∂z

)]
=

−∂p

∂r
+

ρVθ
2

r
− µVr

r2
+ S ′

r (2.12)
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θ momentum equation:

∂

∂t
(ρVθ) +

1

r

[
∂

∂r

(
r ρVrVθ − µr

∂Vθ

∂r

)
+

∂

∂z

(
r ρVzVθ − µr

∂Vθ

∂z

)]
=

−ρVrVθ

r
− µVθ

r2
+ S ′

θ (2.13)

z momentum equation:

∂

∂t
(ρVz) +

1

r

[
∂

∂r

(
r ρVrVz − µr

∂Vz

∂r

)
+

∂

∂z

(
r ρVz

2 − µr
∂Vz

∂z

)]
=

−∂p

∂z
+ S ′

z (2.14)

where S ′
r, S ′

θ and S ′
z are the rotor source terms through which the rotor’s influence is

introduced into the surrounding flow field.

2.6.2 Discretization of the Generic Governing Equation

Consider the following generic governing equation in an axis-symmetric coordinate sys-

tem:

∂

∂t
(ρΦ) +

1

r

[
∂

∂r

(
r ρVr Φ− µr

∂Φ

∂r

)
+

∂

∂z

(
r ρVz Φ− µr

∂Φ

∂z

)]
= s (2.15)

where s represents the terms on the right hand side of the momentum equations, ex-

cluding the rotor sources.

The radial and axial fluxes can be written as:

Jr =

(
r ρVr Φ− µr

∂Φ

∂r

)

Jz =

(
r ρVz Φ− µr

∂Φ

∂z

)
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Substituting these flux terms into Equation 2.15 yields:

∂

∂t
(ρΦ) +

1

r

[
∂

∂r
(Jr) +

∂

∂z
(Jz)

]
= s (2.16)

The integration over the time interval can be generalized by the following assumptions:

t1∫
to

Φ dt =
[
fΦ1 + (1− f)Φo

]
∆t (2.17)

where f is a weighting factor between 0 and 1, superscript 1 indicates the new values of

the corresponding variables at t=t1 seconds, and superscript o refers to old values of the

variables at to.

In addition, taking advantage of axis-symmetric system, only one control volume in the

θ direction is used. For convenience, the term ∆θ is taken to be 1 radian.

2.6.3 Numerical Algorithm

The numerical procedure to solve the fluid equations is based on Patankar’s SIMPLER

algorithm [17]. This numerical scheme seeks an iterative solution by solving the dis-

cretized conservation equations in a sequential line-by-line procedure. In this procedure,

the primitive variables (static pressure and the components of velocity) are obtained

directly by solving the mass and momentum equations. For a general variable Φ, repre-

senting any of u, v, w and p, the discretized equation at a grid point (i,j,k) is found to

be:

ai,j,kΦi,j,k = ai+1,j,kΦi+1,j,k + ai−1,j,kΦi−1,j,k

+ai,j+1,kΦi,j+1,k + ai,j−1,kΦi,j−1,k

+ai,j,k+1Φi,j,k+1 + ai,j,k−1Φi,j,k−1

+di,j,k (2.18)
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where i, j, k are the grid indices, a’s are the coefficients that link the neighboring Φ’s to

Φi,j,k and di,j,k is the discretized form of the source term that consists of contributions

from the specific governing differential equation being discretized.

The sequence of steps for the SIMPLER algorithm can be summarized as follows:

1. Start with a given initial flow field.

2. Calculate unsteady portion of the center coefficients.

3. Calculate the unsteady portion of the source terms.

4. Calculate the coefficients of the momentum equations and the pseudo-velocities.

5. Using the pseudo-velocities, calculate the source term for the pressure equation.

6. Calculate the coefficients for the pressure equation and solve to obtain the pressure

field.

7. Using the calculated pressure field, solve the momentum equations to obtain the

velocity field.

8. Calculate the source terms of the pressure correction equation and solve for the

pressure corrections.

9. Correct the velocities using the velocity correction equations.

10. Return to step 4 and repeat until convergence.

11. Go to step 2 and start with the next time level.
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2.6.4 Rotor Modeling

The rotor modeling is based on the momentum source concept developed by Rajagopalan [18,

19, 20]. In order to obtain the wake of the rotor, not known a priori, the action of the

rotating blades has to be implicitly introduced into the governing equations. In other

words, the effect of the spinning blades is in the form of the force F(x,y,z,t) imparted by

the blade to the fluid particles in the path of the rotor. Realizing that the momentum

equation governs the balance of the rate of change of momentum (velocity) and the

external forces experienced by the fluid element, the effects of the spinning blade on its

path at a given time can be modeled by including the force F (imparted by the rotor

blades at that particular time) to the momentum source at the cells occupied by the

rotor at that particular time. The force F(x,y,z,t) can be described by its components

in each of the coordinate directions. These components of F(x,y,z,t) are introduced in

the scalar momentum equations as implicit sources.

The force -F exerted by the fluid on the blade varies along the span of the blade and in

general, may vary as a function of time as well. These variations are largely due to the

local flow conditions, variations in the blade’s chord, aerodynamic twist, and geometric

twist along the span. As a result, the different segments of the blade will also experience

different strengths and directions of the relative wind, and the flow field around the rotor

itself may be inherently unsteady due to the presence of other bodies in the flow.

For a time-accurate calculation, the source terms in functional notation can be written

as:

Si = Si(Cl, Cd, α, α̇, vabs, ω,R, t, c, ρ, µeff , Re, M) (2.19)

where Cl and Cd are airfoil characteristics of the rotor blade, α is the angle of attack

made by the rotor blade to the relative velocity vector, α̇ is the time rate of change of
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α as the blade moves through a revolution, vabs is the absolute velocity of the fluid at

the instantaneous blade location (R, t), ω is the angular velocity of the rotor, and c is

the chord of the blade. Even though the complete Navier-Stokes equations are solved

everywhere in the flow field, the dependence of Si on µ and Re are considered only

implicitly through the airfoil sectional characteristics Cl and Cd in this analysis.

2.6.5 Boundary Conditions

The boundary conditions at the edge of the global computational domain are easy to

specify. At the inlet, freestream conditions are imposed. The axis of symmetry is

assumed to be an inviscid wall. All solid bodies are treated as blocked cells with no flow

through them. The outlet boundary, a plane parallel to the inlet boundary, is left for

the numerical scheme to compute with mass conservation strictly enforced.

2.7 Duct Thrust

The thrust produced by the duct is calculated from the pressure field determined by

the CFD solver. The duct body is computationally represented by n discrete panels

determined from the shape spline. Figure 2.9 shows a discretized two dimensional airfoil

with normals extending from each panel. The pressure acting on each panel is the

pressure in the first CFD grid cell intersected by the panel normal. This is based on the

assumption that the variation of pressure normal to the surface within the boundary

layer is negligible, Equation 2.20.

∂P

∂n
= 0 (2.20)

Assume that coordinates of the panel end points shown in Figure 2.9 are known. The
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Figure 2.9 Duct normal vectors.

ith panel is bound by the end points {xi, yi} and {xi+1, yi+1}, where x and y are the

components in the Cartesian coordinate system shown in the figure. The length of the

panel can be written as:

dSi =
√

(xi+1 − xi)
2 + (yi+1 − yi)

2 (2.21)

For convenience, the angle of the panel, θ, is measured clockwise from the X axis and is

written for the ith panel as the following.

tan θi =
yi+1 − yi

xi+1 − xi

(2.22)

The 2-D force vector acting on the ith panel can now be written as:

~Fi = Pi
~NidSi (2.23)

where ~Ni is the normal vector for the panel.

The sum of all the panels yields the force vector on the 2-D airfoil:

~F2D =
n∑

i=1

Pi
~NidSi (2.24)

where Pi is the pressure at the ith panel, dSi is the length of the ith panel, and ~Ni is the
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normal vector of the ith panel. Using the coordinate system shown in Figure 2.9, the

components of the ith normal vector are:

Nx,i = sin θi

Ny,i = cos θi (2.25)

so the components of the force in Equation 2.24 can be are written as follows.

Fx =
n∑

i=1

PidSi sin θi

Fy =
n∑

i=1

PidSi cos θi (2.26)

The two dimensional duct is extended to 3-D by revolving around the centerline, which

in this case is the X-axis of Figure 2.9. Revolving each panel will yield an area which

is the panel length, dSi times the circumference of the revolution, 2πri, where ri is the

distance from the axis of symmetry to the ith panel center.

For the three dimensional duct force vector formulation, equation 2.24 is rewritten as:

~F = 2π
n∑

i=1

Pi
~NidSiri (2.27)

Since the X-axis in Figure 2.9 is the center of rotation, every panel will be mirrored

across it. A positive Y-direction force on a panel will be a negative Y-direction force on

the mirror image panel. Therefore, after revolving the duct about the axis of symmetry,

the Y forces on the duct cancel out in three dimensions. The X-component of the 3-D

forces is:

Fx = 2π
n∑

i=1

PidSiri sin θi (2.28)

Equation 2.28 is formulated for pressure and radius values at the center of the panel.

These values are known at the panel nodes, but can be linearly interpolated to the center

of the panel. Through substitution and interpolation Equation 2.28 can be written as:
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Fx = 2π
n∑

i=1

(
Pi+1 + Pi

2

)
(yi − yi+1)

(
yi+1 + yi

2

)
(2.29)

where the index i represents the nodes at the ends of the panels. This equation assumes

that the airfoil is traversed counter clockwise, as shown in Figure 2.9.

The term yi − yi+1 in Equation 2.29 is written this way to account for the direction θ is

measured. Figure 2.10 shows the four possible panel orientations with the end points 1

and 2 representing i and i + 1, respectively. As can be seen from this figure, y1− y2 will

always give the correct sign for the X-force produced by the pressure.

Figure 2.10 Duct panel orientation possibilities.

2.8 Solution Mapping

Flow field differencing, subtracting the velocity field of one simulation from another, is a

good way to determine the how similar two solutions are when run with different mesh
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fidelities. This is important in determining when grid independence is reached or how

much fidelity can be reduced while still producing flow fields of acceptable accuracy. If,

for instance, two simulations are run on an identical mesh, then the velocity components

in one grid cell can be subtracted from its counterpart in the other simulation. The flow

field resulting from equation 2.30 will show the velocity differential between the two

solutions.

∆V (i, j) = V1 (i, j)− V2 (i, j) (2.30)

This equation is valid so long as:

x1 (i, j) = x2 (i, j)

y1 (i, j) = y2 (i, j) (2.31)

When the size and density of the grid cells are changed for one solution, it is necessary to

map the two solutions intended to be differenced to an identical mesh. Assume that the

value P, shown as the intersection of the solid lines in Figure 2.11, and the dimensions

of the cell, Xw and Yw are known for all points on a given mesh. The P value can be

determined at every point of a different mesh, the intersection of the dashed lines in

Figure 2.11, so long as it exists in the domain of the original mesh.

To determine the value of P on the new mesh, Pξ,η, first look at the influence of the

points Pi and Pi+1. The distance from Pi to Pi+1 is noted in Figure 2.11 as Xw and the

distance from Pi to Pξ is X. Notice the η component of P has been dropped for now,

so there is only influence from points in the X-direction. The equation for Pξ is:

Pξ =
(
1− X

Xw

)
Pi +

(
X

Xw

)
Pi+1 (2.32)

This equation shows a one dimensional average with two points influencing the value of

Pξ. The influence of the j and j + 1 points in one dimension can be written similarly:
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Figure 2.11 Grid mapping formulation.

Pη =
(
1− Y

Yw

)
Pj +

(
Y

Yw

)
Pj+1 (2.33)

where Y is the distance of Pη from Pj and Yw is the distance from Pj to Pj+1. Here

the ξ component of P has been dropped indicating only the Y-directional influence is

considered.

Combining Equations 2.32 and 2.33 extends the weighted average formulation to two

dimensions. An equation for Pξ,η can now be written as the following:

Pξ,η =
(
1− X

Xw

)(
1− Y

Yw

)
Pi,j +

(
X

Xw

)(
1− Y

Yw

)
Pi+1,j +(

1− X

Xw

)(
Y

Yw

)
Pi,j+1 +

(
X

Xw

)(
Y

Yw

)
Pi+1,j+1 (2.34)

where i ≤ ξ ≤ i + 1 and j ≤ η ≤ j + 1. Using this equation as a stencil, it is possible to

map areas smaller than the original mesh, however, the original mesh is the limit of the

mesh fidelity that can be achieved.
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CHAPTER 3. Methodology

This chapter documents the validation of the tools developed for this research. First, the

limits of the axis-symmetric solver are explored in an effort to reduce the time required to

complete a CFD simulation. Two variable, multi-modal test functions are presented and

used to compare the performance of the second generation Genetic Algorithm with the

performance of the sGA. A more complex exercise that demonstrates the effectiveness

of the duct shape parameterization and the duct thrust calculations is also completed.

3.1 Flow Field Similarity

Optimization techniques that rely on CFD calculations to evaluate the performance of

a solution generally require significant computing resources. Small increases in conver-

gence performance can drastically reduce the time required to obtain an optimal value.

A 3-D, unsteady CFD solution on a complex geometry, such as a duct, is computation-

ally intensive and may take on the order of weeks to complete. As mentioned previously,

the current research constrains the duct optimization to the specific case of axial flight

and additionally uses a suitable axis-symmetric solver to reduce the time requirements.

Yet, even with this significant reduction in time, more can be done to quickly obtain the

optimized results.

The clock time required to perform each CFD evaluation can be further reduced by
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decreasing the fidelity of the mesh and increasing the solver time step. Both of these

techniques need to be carefully considered and tuned so the that CFD solution remains

within acceptable bounds of the high fidelity solution. If it can be shown that a low

fidelity mesh and time grid configuration still yields results similar to the high fidelity

solution, the configuration will be considered acceptable for use by the optimization

routine to evaluate the duct fitness.

A matrix of cases, using an initial geometry, was run to determine the limits of the

axis-symmetric solver. The matrix consisted of configurations which changed the mesh

and time grid resolution independently, and also in tandem. The solution mapping

routine, discussed in Section 2.8, is used to map each CFD solution in the matrix to a

uniform grid. The original, high fidelity solution is also mapped to the same uniform

grid. Then each matrix solution can be subtracted from the original solution, as shown

in Equation 2.30. Flow field differencing shows the changes, if any, that result from

changing the grid configuration parameters. The duct is operating in the incompressible

flow regime, without heat transfer, so if the velocity field is unchanged, the force on the

duct will be unchanged.

Figure 3.1 shows the flow field of the high fidelity solution. The solutions from the

test matrix are subtracted from this high fidelity solution. Four solutions from the test

matrix are presented. The first matrix solution holds the mesh the same as the baseline

case, but increases the time step to 20 times that of the baseline. This is plotted in

Figure 3.2a. The second matrix solution, Figure 3.2b uses a non-uniform mesh with

65% of the grid points as the baseline. The time step is 20 times the baseline time step.

The third matrix solution uses the baseline time step. The size of the grid cells in the

axial direction are 2 times those of the baseline mesh. The third solution is plotted in

Figure 3.2c. The final solution is shown in Figure 3.2d. The time step is increased to 50
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times that of the baseline and the axial cell widths are 1.25 times the baseline widths.

Figure 3.1 Original baseline solution.

The solutions presented in Figure 3.2 show the solution is more sensitive to changes

in spatial resolution than to changes in temporal resolution. The region of velocity

discrepancy near the rotor tip found in the two cases with a scalar change in the axial

cell width size is evidence of this conclusion. When the time step is changed and the

mesh remains constant, the flow field is nearly identical to the baseline solution. A

non-uniform mesh is ideal for reducing the computational time with little change in the

flow field.

The test matrix of cases has established the limits of the mesh and time steps to be used

for the fitness calculation required by the optimizer. The time step limit is approximately

0.05 seconds. The limit on the mesh cell size near the body is slightly over 0.01 radii.

These values balance the speed and accuracy of the CFD solution. While a non-uniform
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grid could reduce the time required to obtain a solution, the method of evaluating body

pressure is better suited to a uniform mesh. Thus, a uniform grid is used around the

duct body.

(a) Differenced solution for 20 dt.

(b) Differenced solution for 20 dt and a non-
uniform dx.

(c) Differenced solution for 2 dx.

(d) Differenced solution for 50 dt and 1.25 dx.

Figure 3.2 Differenced flow fields.

3.2 Multi-Modal Test Functions

Two well known multi-modal test functions were chosen to validate the GenII-GA. Ack-

ley’s Function [21] and Schwefel’s Function [22] are commonly used to validate evolu-
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tionary search algorithms because they force the search algorithm to exhibit both local

and global search characteristics. Since the function maximums and the control inputs

required to obtain these maximums are known, it is possible to evaluate the performance

of the search algorithm and to set termination criteria.

3.2.1 Ackley’s Function

Ackley’s test function, defined in Equation 3.1, is a very common test for global search

methods [23].

f (xn) = 20 + e− 20e−0.2
√

1
n

∑n

i=1
x2

i − e
1
n

∑n

i=1
(cos(2πxi)) (3.1)

The function minimum, fmin = 0, occurs when x1 = x2 = 0. The function is continuous

in the range, xi ∈ (−32.7, 32.7). The fitness of the solution is defined as:

Fit =
1

f (xn) + 1
(3.2)

which inverts the problem to one of maximization and confines the solution space to

between 0 and 1. Figure 3.3 shows the solution to Ackley’s function with two parameters.

3.2.2 Schwefel’s Function

Schwefel’s Function, Equation 3.3 tests the same qualities of search robustness as Ack-

ley’s function.

f (xn) = 418.9829n−
n∑

i=1

(
xisin

(√
|xi|

))
(3.3)

The function minimum is again, fmin = 0 and occurs when x1 = x2 = 420.9687. The

solution is continuous if x ∈ (−500, 500). As before the fitness is obtained from:
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Figure 3.3 Solution space for Ackley’s function.

Fit =
1

f (xn) + 1
(3.4)

which turns the problem into one of maximization. The solution space, plotted in

Figure 3.4 is also scaled to exist between 0 and 1.

3.2.3 Genetic Algorithm Comparisons

The performance of the sGA is compared with the performance of the GenII-GA to

show the benefit of the enhancements documented in Section 2.2. Since chance plays a

significant role in the success of genetic algorithms, a single run is not a fair evaluation

of the performance of a particular GA scheme. Five optimization runs were completed

by both the sGA and GenII-GA routines for Ackley’s function and Schwefel’s function.

The GenII-GA results for Ackley’s function are shown in the top plot of Figure 3.5,



42

Figure 3.4 Solution space for Schwefel’s function.

while the sGA results are shown on the bottom. Both graphs show the maximum fitness

plotted as a function of the generation. It is clear from Figure 3.5 that the enhancements

in the GenII-GA reduce the number of generations required to find the optimum solu-

tion. Fewer generations required to find the optimal solution means that fewer fitness

evaluations need to be completed and the optimization efficiency is increased.

Figure 3.6 shows the results for the two GA routines finding the optimal solution to

Schwefel’s function. This proved to be more difficult for both GA routines, but the

performance of the GenII-GA is clearly superior to the sGA. The sGA was not able to

find the optimum value for this function. The second generation GA also had difficulty

finding the optimum, but faired far better than the sGA.
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Figure 3.5 Comparison of simple GA and GenII-GA for Ackley’s function.

3.3 Panel Method Evaluation

To test integration of the optimization algorithm with the subsystems required for the

ducted fan optimization, a simpler problem was chosen to optimize. The goal was to find

the shape of an airfoil which produces the maximum lift. The panel method, detailed

by Anderson [24], was chosen to evaluate the lift of the airfoil. Since the panel method

is derived from potential flow, a drag force due to friction is not calculated. Instead,

a penalty function based on the relative angle of two adjacent panels is introduced to

maintain an aerodynamic shape. The equation for the penalty function, PF , can be

expressed as:

PF = 1 + (2)m
n−1∑
j=1

dθj (3.5)
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Figure 3.6 Comparison of simple GA and GenII-GA for Schwefel’s function.

where dθj is written as:

dθj =


|θi+1 − θi| if θi+1 − θi > 8o

0 otherwise
(3.6)

and m is the number of times dθj is not 0. With this formulation the penalty function

is bound by PF ≥ 1.

Additional constraints force the airfoil to be a closed body, meaning at the trailing edge

P1 = Pn. The angle between the first and last airfoil panel is not included in the penalty

function equation. A direct result of specifying P1 = Pn is that the penalty function

now limits the thickness that can be achieved by the airfoil in addition to the previously

mentioned aerodynamic smoothness.
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This exercise tests the optimization algorithm, the shape routine, the pressure calcula-

tion, and the integration of these components into a single technique. Although lift can

be determined directly from the panel method, the lift was determined from a pressure

field mapped onto a uniform mesh. The pressure field was found by assuming some

far-field pressure, P∞, for every grid cell. Then the dynamic pressure at each grid point,

found from the velocity induced by the unit sources and unit vortices of the airfoil pan-

els, was subtracted from P∞. The lift obtained by mapping the pressure back to the

airfoil panels, as outlined in Section 2.7, is within floating point error of the lift obtained

using the direct panel method equation.

Five optimization runs were completed with 200 generations set as termination criteria.

For the optimization runs, the fitness of an individual is FIT = lift/PF , where PF

is the penalty function given in Equation 3.5. The maximum and minimum bounds for

the NURBS control polygon is plotted in Figure 3.7. The total binary string size was

100 elements representing the 10 control points. Thus, each control point is modeled by

10 elements.

Figure 3.8 is the fitness history for the panel method evaluations. All runs seem to

converge very near a maximum fitness of about 0.25. There is a definite and repeatable

upward trend in the maximum fitness with respect to generation.

Figure 3.9 shows the shapes of the airfoils that were found to be the fittest at the end

of the five optimization runs. The five airfoil shapes are very similar to one another.

By comparing the shapes plotted in this figure with the maximum fitness data plotted

in Figure 3.8 it is clear that the thicker airfoil shapes of runs 1, 4 and 5 perform better

than the thinner shapes found in runs 2 and 3.

For incompressible flow, a higher velocity translates to larger dynamic pressure. As
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Figure 3.7 Control polygon for the panel method airfoil optimization.

stated previously, the dynamic pressure is subtracted from P∞ when the pressure field

is created. The optimization then, should seek an airfoil with an upper surface that is

as far as allowable from the zero line. At the same time, the lower surface should be

as close to the zero line as allowable. This is indeed what is happening, as shown in

Figure 3.9.

In an effort to show the penalty function is not so confining that only airfoils with a

high fitness are produced, the least fit shapes are plotted in Figure 3.10. Contrary to

the maximum fitness airfoil plot, the least fit shapes vary widely. This is an indication

of the genetic diversity present in the population.

Given the complexity, even of this simplified solution, the results of the optimization rou-
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Figure 3.8 Fitness history for panel method evaluation.

tine are taken as a success. The maximum fitness shapes found during the optimization

runs are similar in shape. The slight differences that do exist amongst the fittest airfoils

affect the fitness in a way that makes sense. Of the fittest shapes, the ones with an upper

surface that is farther from the zero line yield a higher fitness. Further, the integration

of the optimization code with the systems created to support is demonstrated. With the

validation and testing of the optimization tool complete, the ducted fan optimization

can begin.
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Figure 3.9 Strongest performing airfoils for panel method evaluation.

Figure 3.10 Weakest performing airfoils for panel method evaluation.
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CHAPTER 4. Results

The optimization method has been proven effective for searching the global space of

multi-modal problems in Sections 3.2.2 and 3.2.1. The auxiliary routines for creating

duct geometry and evaluating duct thrust were demonstrated in Section 3.3. The run

time required by the CFD solver has been reduced without sacrificing accuracy. The

stage is now set to find the optimum duct shapes for a fixed rotor configuration and

boundary condition.

Optimum duct shapes for three combinations of rotor configurations and boundary con-

ditions are presented in this chapter as a proof of concept. The optimum duct shapes

for each boundary condition/rotor configuration is compared with a baseline duct. The

baseline ducts are good initial shapes from a design perspective.

The baseline duct for the first rotor/freestream configuration follows some basic guide-

lines of duct design. The duct inlet is kept smooth to prevent the flow from separating.

The tip gap is small to limit the recirculation of flow from the high pressure rotor outlet

back up to the low pressure rotor inlet. The rotor is placed in the minimum radius

region of the duct, called the throat.

The baseline duct shape for the second rotor/freestream combination was designed by

the 2006 senior class of Aerospace Engineering at Iowa State University. The duct shape

was designed for one of the Aero 462 class projects [25]. This duct shape would be found
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by a design engineer doing an initial search for available existing shapes.

The third and final baseline duct shape is the optimum duct recycled from the first

rotor/freestream combination. Despite changing the boundary conditions, reusing a

proven design is common practice for designers. Without information to the contrary,

it is reasonable to assume that the optimum shape found for one condition will have

acceptable performance in other conditions.

4.1 Computational Domain

The simulations of the following work all use the same computational mesh strategy,

shown by schematic in Figure 4.1. A high fidelity grid is created in the region marked

Body Mesh. The grid cells in this region are uniform in the axial direction, but are

slightly biased in the radially direction from the axis of symmetry to the tip of the rotor.

From the rotor gap to the outer radius of the duct the mesh size is radially uniform.

The far field mesh is stretched rather aggressively to keep the boundaries far from the

zone of interest without paying a hefty computational price. The performance of the

optimizer is also presented for each simulation run to demonstrate the effectiveness of

this method.

4.2 Duct Shape Control

The duct parameterization can greatly affect the outcome of the optimization routine.

The bounds of the parameterization must be wide enough to include the optimum shape,

but also must be strict enough to keep the duct shape realistic and solvable. One thing
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Figure 4.1 Grid generation schematic.

to avoid is self intersection of the duct spline resulting in unrealistic shapes. The danger

lies in the fact that values are obtained from the CFD for these shapes. If the bounds

are set wide enough, special error checking needs to be in place to identify when the

duct shape is self intersecting.

The general control polygon for the single rotor ducts is shown in Figure 4.2. The closed

loop shown in the figure is a plot of the minimum values for the control points. The

shape for the control polygon shown in the figure is achieved by setting all allele values

of a chromosome to zero. The duct spline is a convex hull contained within the control

polygon. The error bars show the range available to each point from the minimum value.

There are 13 control points used for the single rotor duct cases, but only twelve are

independent inputs. The thirteenth point is set equal to the first point to force shape

continuity at the trailing edge of the duct. Notice in Figure 4.2, the clustering of control

points on the inner surface of the duct to achieve better shape resolution on this crit-

ical area. Also, note the minimum allowable rotor tip gap, necessary to prevent rotor
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interference.

Figure 4.2 Single rotor generalized control polygon.

Figure 4.3 shows the general control polygon for the coaxial rotor duct optimization

case. There are sixteen control points shown and two locations where the minimum

tip gap is controlled. Similar to the previous control polygon, fifteen control points are

independent with the sixteenth set equal to the first.

As stated in Section 2.4, each control point is allotted 10 bits in the chromosome. The

chromosomes for the first and third duct optimizations are 120 bits long to allow control

of the twelve control points. The chromosomes for the second duct optimization are 150

bits long for fifteen control points.
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Figure 4.3 Coaxial rotor generalized control polygon.

4.3 Single Rotor Hover

4.3.1 Set-Up

The duct optimization of a single rotor ducted fan system is presented in this section.

For this optimization the ducted fan system is set to a hover condition. The freestream

pressure and temperature are set to 2116.2 psf and 518.69 R, respectively.

The computational grid for this optimization run has 192 grid cells in the axial direction

and 237 in the radial direction. The Body Mesh grid cells are kept uniform in both the

axial and radial directions. The size of the grid cells within the uniform region are about

0.01 radii in the axial direction and 0.006 radii in the radial direction. Moving away
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from the duct the grid is smooth and never exceeds cell ratios of 1.5. The solver used

sixty 0.05 second time steps with 5 sub-iterations per time step.

The rotor used for this optimization runs has two blades and a radius of 0.49 ft. The tip

speed of the rotor is 384.85 ft/s, which is equivalent to 7500 RPM. The airfoil sections

of the blades are NACA 0012 and the collective pitch of the rotor is 10 degrees. The

rotor is assumed to have no cone angle and no out of plane deflection.

The termination criteria for the optimizer was set as 200 generation with 50 individuals

per generation, for a total of 10,000 fitness evaluations. On a 2.0 GHz, Intel machine

a fitness evaluation can be completed in about 1 minute. The total clock time for this

optimization run was about 167 hours or nearly one week.

4.3.2 Optimizer Metrics

Some metrics of this optimization run are presented in Figure 4.4. This figure shows

the maximum fitness for a given generation, the solid line, and the average fitness for a

given generation, the dashed line. The large drops in the average fitness curve indicate

where population regeneration takes place. It can be seen from Figure 4.4 that three

regeneration events take place and are generally preceded by an increase in the popula-

tion maximum fitness. From this plot it is also clear that the maximum fitness, the best

performer, occurs around the 175th generation. The pressure and flow fields of the best

performer are discussed next, with the baseline duct presented for comparison.

4.3.3 Optimum and Baseline Flowfield Comparisons

Velocity contours of the baseline duct flow field are shown in Figure 4.5. Near the tip

of the rotor the velocity is high. The velocity contours for the optimized duct shape are
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Figure 4.4 The maximum and average population fitness as a function of
generation.

shown in Figure 4.6. The optimized duct creates an inlet flow profile that is smoother

than the inlet flow of the baseline shape.

Air is recirculating through the tip gap of the baseline duct, shown in the vector plot

of velocity in Figure 4.7. Flow near the surface of the baseline duct inlet is separated.

The velocity vectors near the rotor tip of the optimized duct are plotted in Figure 4.8.

The vectors in this figure show no sign of recirculation and the flow is attached along

the entire inlet surface of the duct.

Another difference between the flow through the original baseline duct shape and the

optimized shape is the flow behavior near the nacelle. Comparing Figures 4.5 and 4.6 it

is clear that duct shape has an impact on flow behavior throughout the duct. For the
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baseline duct shape, there is a large recirculation bubble aft of the nacelle. However, for

the optimized shape this reversed flow is significantly reduced. The rotor wash through

the optimized duct is not only smoother than the wash of the baseline duct shape, but

is also faster from about 0.25 radius to the inner duct wall.

Figures 4.9 and 4.10 show three dimensional views of the baseline and optimized duct

flow field, respectively. Flow structure upstream of the duct inlet is similar for both

shapes. On the upper surface of both ducts, low velocity is expected given the hover

condition. This lack of flow indicates that the outside surface of the duct has little to

do with the overall thrust for this condition.

The flow field pressure is plotted for the baseline duct shape in Figure 4.11 and for the

optimized duct shape in Figure 4.12. The simulation assumes incompressible flow, so

the pressure field should be analogous to the velocity field. For the baseline duct shape

there is a large and relatively low pressure region near the tip of the rotor in the same

location of the reversed tip gap flow. The optimized duct also has a low pressure region

near the tip of the rotor, but not as extreme as the baseline duct pressure. Yet, the

optimized duct manages to produce more thrust in the axial direction because nearly

the entire inside surface of the duct is oriented such that a component of a normal to

the surface points in the axial thrust direction.

Despite having relatively higher pressure on the inner surface of the duct (still less than

freestream), the optimized duct is able to convert the low pressure to usable thrust. The

baseline duct, by contrast, is flat along much of the inside surface of the duct. Therefore,

even though it can produce lower pressure on this surface, the result is a force toward

the centerline of the duct, which is canceled out when integrated around a revolved duct.

This is illustrated in the three dimensional body pressure plots shown in Figures 4.13

and 4.14 for the baseline and optimized duct, respectively.
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Figure 4.5 Axis-symmetric view of the velocity field for the baseline shape.

Figure 4.6 Axis-symmetric view of the velocity field for the optimized
shape.
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Figure 4.7 Axis-symmetric view of the velocity field near the tip gap on the
baseline shape.

Figure 4.8 Axis-symmetric view of the velocity field near the tip gap on the
optimized shape.
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Figure 4.9 3-D view of the velocity field for the baseline shape.

Figure 4.10 3-D view of the velocity field for the optimized shape.
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Figure 4.11 Axis-symmetric view of pressure field near the baseline duct.

Figure 4.12 Axis-symmetric view of pressure field near the optimized duct.
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Figure 4.13 3-D view of the body pressure on the baseline duct.

Figure 4.14 3-D view of the body pressure on the optimized duct.
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4.3.4 Verification of Optimum Conditions

It is impossible to be certain that a particular design is optimal in an unknown design

space. To prove that the duct design, presented here as the optimum, is at least a

local best solution for a single design parameter, a set of solutions is explored. The tip

gap width is increased and decreased from the optimum value by ε. ε is set to 2.5%

of the rotor radius, or 0.01225 feet for this ducted fan configuration. The optimized

duct shape moves either toward (-) or away (+) from the rotor by the value ε. For this

ducted fan configuration, the duct is limited to a movement of away from the rotor (+) to

prevent duct-rotor interference. The performance of each perturbed duct configuration

is presented in Tables 4.1 and 4.2.

The case where the tip gap is reduced, −1ε, shows an increase in rotor and duct thrust.

Combined, the thrust is increased 1.8% over the optimum thrust. It should be noted that

the optimum duct is very near the minimum tip gap allowed by the duct parameterization

algorithm. This new location of −1ε is outside the bounds of the design space for the

duct, and was not available to the optimization routine. It is included in this variational

study to help identify the flowfield characteristics associated with duct performance.

Moving the duct away from the rotor (1ε,2ε) decreases the thrust of the system and the

components. At 1ε, the duct thrust is very nearly the same as the optimum duct thrust.

The rotor thrust is slightly lower than the optimum. The result is a 0.6% loss from the

optimum system thrust. At 2ε, 1.7% of the system thrust is lost.

These results show the duct is at least a local optimum shape. Moving away from

the rotor decreases system thrust and the bounds of the optimization prevent moving

towards the rotor. Further, the design is robust with respect to the tip gap parameter.

Small manufacturing defects on the duct would minimally affect the performance of this
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system.

Table 4.1 Effect of tip gap size for hovering duct and rotor thrust.

Case Duct Thrust (lbs) Rotor Thrust (lbs)
−2ε N/A N/A
−1ε 0.62 1.03

Optimum 0.61 1.01
1ε 0.61 1.0
2ε 0.563 1.03

Table 4.2 Effect of tip gap size for hovering system thrust.

Case System Thrust (lbs) Percent Change
−2ε N/A N/A
−1ε 1.65 1.8%

Optimum 1.62 0.0%
1ε 1.61 -0.6%
2ε 1.593 -1.7%

The flowfields of the four cases presented in the tables are shown in Figures 4.15

through 4.18. Figure 4.15 shows the duct at the −1ε position. Notice the smooth,

attached flow along the entire inlet surface. The rotor outflow is uniform in velocity.

The flow into the duct is noticeably accelerated near the duct inlet lip.

Figure 4.16 shows the flowfield for the optimum duct. The flow structure at this po-

sition is similar to the −1ε duct position, but some key characteristics are beginning

to manifest. First the flow is still attached for nearly the entire length of the inner

duct surface. The exception lies aft of the rotor were a small region of recirculation has

formed. Although the flow is still attached, the magnitude of velocity very near the duct

surface has decreased. Next, the rotor wash is not uniform. A high velocity region exists

near the tip of the rotor blades. For this optimum position it is still small, extending
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the distance of the recirculation region at the surface of the duct. Finally, the velocity

on the inlet region has decreased.

The flowfield of the duct at position 1ε is shown in Figure 4.17. The key characteristics

identified in the optimum duct position have degraded for this duct position. Most

noticeably, the recirculation region aft of the rotor has grown considerably. The flow

does not appear to be crossing the tip gap threshold, instead the vortex center has

moved downstream from its location in the optimum duct flowfield. The high velocity

region from the rotor tip has grown in strength and correlates well with the length of

the recirculation region. The magnitude of the inlet flow has decreased further, but still

maintains a velocity higher than the rest of the duct inflow.

Lastly, the ducted fan flowfield at 2ε is shown in Figure 4.18. The key characteristics

continue to change from the optimum condition. The center of the recirculation vortex

has moved further downstream. The vortex has increased in size along with the high

velocity rotor tip flow. The recirculation is now large enough to entrain air from outside

the duct exit. The high velocity flow along the duct inlet surface has been severely

reduced from the optimum condition. It is now difficult to identify this region.
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Figure 4.15 Flowfield of the optimized duct moved 1ε closer to the rotor.

Figure 4.16 Flowfield of the optimized duct.
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Figure 4.17 Flowfield of the optimized duct moved 1ε away from the rotor.

Figure 4.18 Flowfield of the optimized duct moved 2ε away from the rotor.
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4.4 Coaxial Rotor Hover

4.4.1 Set-Up

The duct optimization of a coaxial rotor ducted fan system is presented next. The

baseline ISU duct was designed for good hover performance. As a result, only the inner

duct wall shape was assumed important for duct thrust. The outer surface of the duct

is an extrusion of the inner thrust producing surface. The engine nacelle is divided into

two halves with the coaxial rotors in the middle. The radius of the rotors is larger than

the rotor radius used previously to take advantage of efficiency inherent in lightly loaded

rotor blades. Again, a freestream pressure and temperature of 2116.2 psf and 518.69 R,

respectively are used.

The computational grid for this optimization run has 200 grid cells in the axial direction

and 235 in the radial direction. The size of the grid cells within the uniform region are

about 0.0077 radii in the axial direction and 0.0034 radii in the radial direction. Moving

away from the duct the grid is smooth and never exceeds cell ratios of 1.5. The solver

used sixty 0.05 second time steps with 5 sub-iterations per time step.

The rotors are assumed to have two blades and both have a radius of 0.991667 ft. The

tip speed of the rotor is 155.77 ft/s, equivalent to 1500 RPM. The airfoil sections of the

blades are NACA 0012 and the collective pitch of both rotors is 10 degrees. The rotors

are assumed to have no cone angle and no out-of-plane deflection.

The termination criteria for the optimizer was again set at 200 generations with 50

individuals per generation, for a total of 10,000 fitness evaluations. The small increase

in number of mesh cells leads to a small increase in the time required for a fitness

evaluation. The total clock time required to complete this optimization run was about
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7.5 days on a 2.0 GHz Intel processor.

4.4.2 Optimizer Metrics

The optimizer metrics are shown in Figure 4.19. The solid line in the figure is the

maximum fitness for a given generation. The average fitness is shown as a dashed line.

It can be seen from Figure 4.19 that three regeneration events take place at nearly the

same intervals as found in the previous optimization run, Figure 4.4. The best performer

here occurs just after the 50th generation, after which the Elitist Factor formulation of

the GenII-GA permits the population to degrade without recovery.

Figure 4.19 The maximum and average population fitness for the coaxial
rotor optimization.
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4.4.3 Optimum and Baseline Flowfield Comparisons

The velocity contours on the ISU coaxial duct are shown in Figure 4.20 while the velocity

vectors are shown in Figure 4.22. There is some flow separation along the duct inlet,

but in general, the flow looks smooth. The tip gap for both rotors is small, so despite

an adverse pressure gradient only a small amount of air is allowed to recirculate through

this region. Flow through the first rotor is relatively low speed which results in efficient

rotors, but does not take advantage of the potential to create thrust on the duct.

The velocity contours for the optimized coaxial duct are shown in Figure 4.21. For this

duct shape the velocity of the flow is significantly increased near the inlet of the duct as

well as at the outlet. The flow structure around the nacelle is generally similar to the

ISU duct design, but slightly less severe. The optimal design presented here resembles

a traditional airfoil cross section because of the NURBS algorithm used to create the

geometry. The outer duct surface provides little benefit to the overall thrust of a duct

in hover.

Figure 4.23 shows the velocity vectors on the optimized duct shape for the coaxial rotor

configuration. There is little tip gap recirculation through the forward rotor. The vortex

seen upstream of the forward rotor entrains fluid from the inlet side of the rotor. Only

a small amount of the rotor wake flow passes through the tip gap. The duct flow is

attached to the inlet wall. Figures 4.24 and 4.25 show three dimensional views of the

velocity contours for the ISU duct shape and optimized duct shape, respectively.

The pressure field for the ISU duct shape is shown in Figure 4.26, while the optimized

shape pressure field is shown in Figure 4.27. Both shapes develop lower than freestream

pressure on the inlet of the duct up to the first rotor. However, the optimized duct

obtains a pressure lower than what is found for the ISU duct shape. The low pressure
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region of the optimized duct shape also extends further down the radius of the rotor.

The shape used for the ISU duct stretches the low pressure region along more of the duct

chord length, but only takes advantage of this low pressure for a portion of this length.

Much of the force that would be created by the pressure differential for the ISU duct

is canceled when the body is revolved to three dimensions. The pressure discontinuity

across the forward rotor, seen in Figures 4.26 and 4.27, is particularly strong because

of the small tip gap of these two duct configurations. The high pressure fluid in the

forward rotor wake is prevented from flowing around the rotor blade tips back into the

rotor inflow. This is verified by the vector plots shown in Figures 4.22 and 4.23.

The pressure mapped onto three dimensional bodies is shown for the ISU duct in Fig-

ure 4.28 and for the optimized duct in Figure 4.29. These two figures confirm what

was apparent in the pressure field plots. The optimized duct shape achieves its supe-

rior results by creating lower pressure where the duct normals have the largest axial

component, on the duct inlet.
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Figure 4.20 Axis-symmetric view of the velocity field for the ISU baseline
coaxial duct.

Figure 4.21 Axis-symmetric view of the velocity field for the optimized
coaxial shape.
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Figure 4.22 Axis-symmetric view of the velocity field near the tip gap on
the ISU baseline coaxial duct.

Figure 4.23 Axis-symmetric view of the velocity field near the tip gap on
the optimized coaxial shape.
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Figure 4.24 3-D view of the velocity field for the ISU baseline coaxial duct.

Figure 4.25 3-D view of the velocity field for the optimized coaxial shape.
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Figure 4.26 Axis-symmetric view of pressure field near the ISU baseline
coaxial duct.

Figure 4.27 Axis-symmetric view of pressure field near the optimized coax-
ial duct.
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Figure 4.28 3-D view of the body pressure on the ISU baseline coaxial duct.

Figure 4.29 3-D view of the body pressure on the optimized coaxial duct.
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4.4.4 Verification of Optimum Conditions

For the coaxial rotor configuration the ε value is again set to 2.5% of the rotor radius,

equating to 0.025 ft for these rotors. For this configuration, the duct cannot move in

toward the rotors because the optimum tip gap value is less than ε. Moving the duct

away from the rotors decreases the total thrust produced by the system. Tables 4.3

and 4.4 show the component thrusts, the system thrust, and the percent change in

thrust.

At 1ε from the optimum placement, the combined rotor and duct thrust have decreased.

The result is a loss of 8.9% of the optimum thrust value. At 2ε, the duct thrust has

decreased more, but the combined thrust of the two coaxial rotors has increased from

the optimum value. The system still loses a net of 8.3% of the optimum system thrust.

The rather large thrust degradation indicates that this design is sensitive to the tip gap.

Small defects in the manufacturing may cause measurable decreases in performance.

However, this duct does appear to at least be a local maximum with respect to the tip

gap parameter. Velocity vector plots of the three duct position are shown next.

Table 4.3 Effect of tip gap size for coaxial duct and rotor thrust.

Case Duct Thrust (lbs) Rotor Thrust (lbs)
−2ε N/A N/A
−1ε N/A N/A

Optimum 0.42 1.15
1ε 0.33 1.1
2ε 0.276 1.16

Figure 4.30 shows the optimum placement for the coaxial duct design. The forward rotor

is very near the inner duct wall, preventing the duct from moving toward the rotors.
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Table 4.4 Effect of tip gap size for coaxial system thrust.

Case System Thrust (lbs) Percent Change
−2ε N/A N/A
−1ε N/A N/A

Optimum 1.57 0.0%
1ε 1.43 -8.9%
2ε 1.44 -8.3%

A high velocity region extends from the leading edge of the duct to the forward rotor.

The flow is attached to the inner duct surface from the forward rotor to the aft rotor.

The tip gap of the aft rotor is larger than for the forward rotor and as a result, some

separation occurs downstream of the aft rotor.

Figure 4.31 shows the flowfield of the duct moved 1ε away from the rotors. The high ve-

locity region that was on the duct inlet for the optimum placement duct has disappeared.

Slightly upstream of the forward rotor, a vortex has manifested. The recirculation zone

extends downstream of the forward rotor and reversed flow is allowed to pass through

the tip gap. Below this vortex is the familiar increased velocity region passing through

the rotor. Flow velocity along the duct wall from the forward rotor to the aft rotor has

slowed considerably. The flow separation bubble near the aft rotor has grown.

The flowfield for the duct at 2ε is shown in Figure 4.32. The flow structure has changed

considerably from the previous two plots. There is no increase in flow velocity along

the inlet of the duct. The vortex upstream of the forward rotor has moved between the

forward and aft rotors and dominates the flow near the duct surface in this region. The

signature increase in velocity magnitude is seen below the large vortex and extends the

length of the visible recirculation zone. The flow on the duct surface is separated from

the forward rotor to the trailing edge. The aft rotor recirculation bubble has increased
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in width, but is considerably weaker than its upstream counterpart.

Figure 4.30 Flowfield of the optimized coaxial duct.
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Figure 4.31 Flowfield of the optimized coaxial duct moved 1ε away from
the rotor.

Figure 4.32 Flowfield of the optimized coaxial duct moved 2ε away from
the rotor.
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4.5 Single Rotor Axial Flight

4.5.1 Set-Up

The final optimization run attempts to improve upon the single rotor duct found for the

hover condition (V∞ = 0 ft/s), Section 4.3, when there is an axial freestream velocity of

25 ft/s. The rotor geometry and parameters are identical to the previous optimization

exercise for hover. The optimal duct design for this condition is remarkably different

than the design for optimum hover thrust. The new duct design is much thinner and

the gap between the rotor tip and inside duct wall is considerable.

Although the computational grid and rotor parameters are identical to the hover opti-

mization run in Section 4.3, the length of simulation time needs to be extended because

of the freestream conditions. The time step for this run is still 0.05 seconds, but there are

now 80 time steps. The termination criteria for the optimizer is again 200 generations

with 50 individuals per generation, but the fitness evaluation now takes 1.25 minutes.

The clock time required to complete this run was just over 8.5 days on a 2.0 GHz Intel

processor.

4.5.2 Optimizer Metrics

The optimizer metrics are shown in Figure 4.33. The solid line in the figure is the

maximum fitness for a given generation. The average fitness is shown as a dashed

line. During this optimization run there are four regeneration events. The maximum

population fitness increases with generation, finding the fittest individual near the last

iteration. The range of variation for this case is much larger than was seen with the

previous optimization runs.
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Figure 4.33 The maximum and average population fitness for axial flight
optimization.

4.5.3 Optimum and Baseline Flowfield Comparisons

Figure 4.34 shows the velocity contours for the baseline duct. The flow appears to be

attached to the inner surface of the duct except for a small region aft of the rotor. The

flow on the outer surface is definitely separated and shows signs of recirculation near

the surface. The velocity contours for the duct optimized for this axial flight condition

are shown in Figure 4.35. The flow near the inner duct surface appears to be low speed

relative to freestream. The velocity of the rotor outflow is higher for this duct shape

than for the baseline shape, but the outflow is far from the inner duct surface. Flow is

also detached from the outer surface of this duct.
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The velocity vectors near the rotor tip are plotted in Figures 4.36 and 4.37 for the

baseline and the optimum ducts, respectively. Despite a large gap between the rotor

tip and duct wall for the optimum shape, flow is not reversed. Also, since the optimum

shape is much thinner than the baseline shape, the stagnation region on the leading edge

is much smaller.

The velocity contour field is shown on the three dimensional ducts in Figures 4.38

and 4.39. Upstream and downstream of the rotor, both ducted fan configurations main-

tain similar flow velocity. It is worth noting that a strong rotor inflow is present from

the nacelle to the inner duct surface for the baseline shape. The optimum shape, by

contrast, has a much smaller area of strong inflow.

The pressure field plot for the baseline duct is shown in Figure 4.40. The stagnation

point of the flow is on the inlet of this duct and the high pressure that results from

bringing flow to rest is present over the most effective portion. Continuing down the

inner surface of this duct towards the inlet, low pressure is achieved on portions of the

duct that have a normal component in the axial direction, but not like the optimum

duct shown in Figure 4.41. The axial flight optimum duct also has a stagnation point

on the most effective area of the inlet. However, unlike the optimum case for hover,

low pressure exists down the entire inner surface of the duct. This optimum shape is

designed to take advantage of the pressure because there is a thrust component to the

surface normal vector along the entire inner surface.

The body pressure of the baseline duct is shown in Figure 4.42. This figure shows the

large area of high pressure on the inlet. The smaller area of high pressure on the inlet of

the optimum duct can be seen in Figure 4.43. Like the baseline duct, the inner and outer

surfaces near the inlet produce below freestream pressure. However, the low pressure on

the inlet surface of the optimum continues past the rotor to the duct exit.
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Figure 4.34 Axis-symmetric view of the velocity field for the baseline duct.

Figure 4.35 Axis-symmetric view of the velocity field for the optimized duct
in climb.
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Figure 4.36 Axis-symmetric view of the velocity field near the tip gap on
the baseline duct in climb.

Figure 4.37 Axis-symmetric view of the velocity field near the tip gap on
the optimized duct in climb.
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Figure 4.38 3-D view of the velocity field for the baseline duct in climb.

Figure 4.39 3-D view of the velocity field for the optimized duct in climb.
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Figure 4.40 Axis-symmetric view of pressure field near the baseline duct in
climb.

Figure 4.41 Axis-symmetric view of pressure field near the optimized duct
in climb.
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Figure 4.42 3-D view of the body pressure on the baseline duct in climb.

Figure 4.43 3-D view of the body pressure on the optimized duct in climb.
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4.5.4 Verification of Optimum Conditions

For the axial flight condition, the optimum duct placement is unusually far from the

rotor. For this case, ε is 0.01225 ft, or 2.5% of the rotor radius. The large tip gap allows

the duct to move to −2ε without duct-rotor interference. The system thrust, component

thrusts, and percent change from optimum for each of the duct placements are shown

in Tables 4.5 and 4.6.

When the duct is moved toward the rotor to −1ε, the duct thrust is reduced from the

optimum value, but still produces a positive force. The rotor thrust increases for this

placement slightly, but overall the ducted fan system nets a loss of 23% of the optimum

system thrust. Moving the duct to −2ε degrades the system performance further. At

this position, the duct is creating drag on the system. The loss of thrust amounts to

71.3% of the optimum thrust. At this location the rotor thrust increases, but not enough

to compensate for the duct drag.

Moving the duct further from the rotor than the optimum placement is worse for per-

formance than moving the duct closer. At 1ε, the duct is a drag on the system. The

rotor thrust is virtually unchanged from the thrust produced for the optimum position.

The loss of thrust at this position totals 44% of the optimum thrust value. At 2ε from

the optimum position, the drag on the duct nearly equals the thrust produced by the

rotor. The ducted fan system nets a loss of 90% from the optimum thrust.

The axial flight configuration is by far the most sensitive to tip gap. Small changes in

geometry produce huge losses in performance. This duct shape is however, at least a

local optimum. The flowfields of the duct placement investigation are shown next.

The flowfield for the −2ε duct placement is shown in Figure 4.44. The flow along the
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Table 4.5 Effect of tip gap size for axial flight duct and rotor thrust.

Case Duct Thrust (lbs) Rotor Thrust (lbs)
−2ε -0.71 1.12
−1ε 0.07 1.03

Optimum 0.41 1.02
1ε -0.21 1.01
2ε -0.87 1.02

Table 4.6 Effect of tip gap size for axial flight system thrust.

Case System Thrust (lbs) Percent Change
−2ε 0.41 -71.3%
−1ε 1.1 -23.1%

Optimum 1.43 0.0%
1ε 0.8 -44.1%
2ε 0.147 -90.0%

outer duct surface is low speed, with two vortices inside a separation bubble. Along the

inner surface of the duct, the flow is generally smooth. A small vortex exists aft of the

rotor tip, but the flow quickly reattaches and continues to the trailing edge. The rotor

tip extends out beyond the trailing edge of the duct, forcing some of the rotor flow to

be turned by the duct.

Figure 4.45 shows the flowfield for the duct at −1ε. The flow over the outside duct

surface appears unchanged. A large separation bubble has developed on the inner duct

surface between the rotor and the trailing edge. Multiple vortices are present within

this bubble. The high velocity region identified in previous plots can be seen below the

separation bubble. The flow reattaches to the inner duct surface prior to reaching the

trailing edge. The rotor tip is above the trailing edge, so the duct is still forced to turn

some portion of the rotor flow. However, flow from the rotor dips down and around the
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separation bubble and then impinges on the duct. Freestream flow is not allowed to pass

through the duct without mixing with the rotor wake.

The optimum duct placement flowfield is plotted in Figure 4.46. The flow on the upper

surface is unchanged from the previous figures. The structure of the separation bubble

on the inner duct surface has fundamentally changed. Low speed flow still occupies a

region with roughly the same size and shape as the bubble in the 1ε placement case,

but now the vortices have disappeared. Flow on the inner surface is low speed but not

reversed. The rotor wash can travel downstream and out the duct exit without turning

because the rotor tip is nearly level with the trailing edge. The high speed rotor wake

caps the duct exit, preventing flow from being sucked into the duct through the outlet.

The duct is moved to 1ε in Figure 4.47. The outer surface duct flow remains unchanged.

The rotor tip is now below the duct trailing edge. The rotor wash does not form a seal

at the duct exit. As a result, freestream flow is allowed to pass through the duct without

mixing with the rotor wake. The remnants of the low speed region on the inner duct

surface still exist but are small. The rotor wake is exhausted from the duct well below

the trailing edge.

At a position of 2ε above the optimum duct placement, the flowfield is similar to the 1ε

case. Figure 4.48 shows that the flow on the outer surface of the duct has continued to

remain unchanged. The boundary of the rotor wash is further below the trailing edge

of the duct, allowing freestream flow to pass through the duct unaltered.
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Figure 4.44 Flowfield of the optimized axial flight duct moved 2ε closer to
the rotor.

Figure 4.45 Flowfield of the optimized axial flight duct moved 1ε closer to
the rotor.



92

Figure 4.46 Flowfield of the optimized coaxial duct.

Figure 4.47 Flowfield of the optimized axial flight duct moved 1ε away from
the rotor.
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Figure 4.48 Flowfield of the optimized axial flight duct moved 2ε away from
the rotor.
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CHAPTER 5. Conclusions

The goal of this project was to develop a procedure for shape optimization of a ducted

fan system. The technique combines a powerful global search routine, GenII-GA, with

a commercial CFD code to optimize duct shapes. Many routines were developed to

facilitate the needs of the CFD tool and to automate the tasks for optimization. Included

in the auxiliary routines are the NURBS curve automation for parameterizing ducts, the

method to evaluate duct thrust, and a flow differencing tool to quantify the flow field

differences of non-similar computational domains. Although the work presented in this

research employs a particular solver for the fitness evaluation, the technique is robust

enough to work with any CFD solver.

The routines and algorithms presented in this work add to the value and enhance the

performance of the simple Genetic Algorithm described by Goldberg. The number of

fitness evaluations required to achieve an optimum was shown to be less than the sGA

methodology. The results of the duct optimization exercises show that the method that

has been developed for this research is successful in finding duct shapes that are superior

to a baseline shape.
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5.1 Optimizer Performance

The performance of the optimizer was generally good for the three duct optimization

runs. For all three cases, the average population fitness increased as the simulation

progressed. In two of the cases, the duct performance continued to improve as the sim-

ulation progressed. The case where the maximum fitness was not constantly increasing

still showed the tendency towards improvement during the first 50 generations. The

population regeneration routine proved successful in preempting premature convergence

of the solution, yielding the greatest chance for the optimum solution to be found.

The two single rotor optimization runs, plotted in Figures 4.4 and 4.33, exemplify how

the results from an optimization run should look. The fitness of the solution starts

low and increases as the run continues. Further, the tendency of the average fitness to

follow the same trend, but on a much shorter frequency due to population regeneration,

is encouraging. The results from the coaxial optimization run, Figure 4.19, are not as

exemplary. Here the run begins low and reaches its peak early in the optimization. From

there, the maximum fitness is allowed to fall because of a lenient elitist strategy, set to

search more design space at the expense of propagating strong schemata. Unfortunately,

as in most engineering applications, the maximum possible fitness is not known a priori,

and therefore, the entire duration of the simulation must be completed to be reasonably

confident that the best solution is found.

5.2 Ducted Fan Optimization

It is virtually impossible to prove that an optimization strategy has found the global

optimum of an unknown design space. Success can be measured by the increase in the

performance of a design thought to be optimum versus an existing design. The duct
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Table 5.1 Comparison of ducted fan lift.

Case Duct Thrust (lbs) Rotor Thrust (lbs) Rotor Torque (ft-lbs)
Hover Baseline 0.49 0.98 0.0467
Hover Optimum 0.61 1.01 0.0486

Axial Flight Baseline -0.05 0.69 0.0409
Axial Flight Optimum 0.41 1.02 0.049

Coaxial Baseline 0.29 0.94 0.10385
Coaxial Optimum 0.42 1.15 0.132

thrust, rotor thrust, and rotor torque for the three optimum duct designs and their

corresponding baseline ducts are shown in Table 5.1. The three optimum shapes have

superior thrust values for the duct and rotor. Also apparent in this table is the increase

in torque required for the higher thrusting optimum designs compared to the baselines.

The total system thrust for the six ducts analyzed, along with the duct and rotor con-

tributions to the system thrust, are documented in Table 5.2. From this table, the duct

and rotor contributions to system thrust are shown to be similar for the baseline and

optimum shapes. For the hovering duct case, the increase in system thrust of 0.15 lbs

can be obviously tied to the duct thrust which increased by 0.12 lbs. The rotor thrust

for this configuration, seen in Table 5.1, shows little increase from baseline to optimum.

For the axial flight configuration, the gain in system thrust due to duct optimization

has more balanced component contributions, from the standpoint of thrust values. The

optimum design for this condition produces a thrust increase of 0.46 lbs for the duct and

0.33 lbs for the rotor. The baseline duct was counter-productive to the system thrust

because it was creating a drag on the system.

The gains found by optimizing the coaxial rotor duct were more modest than the ax-

ial flight optimization. Similar to the hover condition optimum, the duct and rotor
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Table 5.2 Total system thrust and contributions.

Case System Thrust (lbs) Duct Contribution Rotor Contribution
Hover Baseline 1.47 33.3% 66.7%
Hover Optimum 1.62 37.7% 62.3%

Axial Flight Baseline 0.64 -7.8% 107.8%
Axial Flight Optimum 1.43 28.7% 71.3%

Coaxial Baseline 1.23 23.6% 76.4%
Coaxial Optimum 1.57 26.8% 73.2%

Table 5.3 Performance increase of optimized ducts and rotors.

Case Duct Thrust Increase Rotor Thrust Increase
Hover Optimum 24.5% 3.1%

Axial Flight Optimum 920% 47.8%
Coaxial Optimum 44.8% 22.3%

thrust increases were balanced. The duct thrust increased by 0.13 lbs while both rotors

combined had a 0.21 lbs thrust increase.

The increases in rotor and duct thrust for the optimum duct shape are shown as per-

centages in Table 5.3. The system thrust and required rotor torque increases are given

in Table 5.4. For the three configurations, the duct thrust percentage increases were

larger than the rotor thrust increases. This is expected since the rotor thrust increases

are a secondary effect of the optimization control inputs used in this research. The in-

creases in rotor thrust shown in Table 5.3 are noteworthy considering they result only

from changes in the duct geometry. This phenomenon establishes credibility for the ar-

gument that ducted fans are complex, interconnected systems that are difficult to model

with analytical tools.

An interesting point can be inferred from the modest increase in both the system thrust
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Table 5.4 Performance of optimized ducted fan systems.

Case System Thrust Increase Rotor Torque Increase
Hover Optimum 10.2% 4.1%

Axial Flight Optimum 123% 19.8%
Coaxial Optimum 27.6% 27.1%

and required rotor torque for the hover condition case shown in Table 5.4. Recall that this

duct was created by following some basic guidelines for duct design. The comparatively

small increase in these values verifies that previous findings [26] about the inlet shape

and rotor placement are applicable to a single rotor hovering duct.

The increase in torque required by the optimum ducts is disappointing, but can be

reasoned. All the optimum ducted fan designs benefited from an increase in rotor thrust.

In essence, this means the rotors had to process more mass in the form of air. It would

be interesting to see the rotor torque included in the fitness evaluation of the optimizer

as part of future work on ducted fan design.

5.3 Future Research Opportunities

Future opportunities to expand upon this research are numerous. First, much more can

be done with the optimization routine to further improve the speed and efficiency at

which an optimum is found. One potential technique to increase the efficacy of the GA

is to add a local search algorithm. A good candidate is a hill climbing algorithm such

as a gradient based routine. Adding local search would allow the GA to quickly climb

local peaks which are discovered. The drawback to such a combination is the increased

pressure for premature convergence, explained next.
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With the current routines, the GenII-GA will see the peak found by local search algo-

rithm as a promising opportunity for enhancing the population fitness. Globally, the

local maximum may be weak, but relative to the current solution will appear strong.

After a few generations, the number of solutions with schemata nearly identical to the

local maximum will exponentially increase, eliminating population diversity. The fitness

history plots, Figures 4.4, 4.19 and 4.33, show that the population already converges and

is regenerated at least three times in 200 generations without a local search capability

implemented. With local search, the number of required regenerations would increase

significantly. Some research is needed to effectively exploit this type of algorithm.

Another area of research is on the solver that performs the fitness evaluations. The

solver used for this research employs a structured Cartesian grid and is limited to axial

flight. A body fitted grid would undoubtedly increase the accuracy of the body force cal-

culations. A 3-D solver would allow for non-axial flight simulations which are more likely

to be of interest to industry. Using currently available technology, both enhancements

significantly increase the time required to get a solution.

Finally, a multi-conditional fitness evaluation could be employed. The difference in the

optimal duct shape, particularly for the hover and axial flight conditions, is considerable.

The optimum hover condition adheres to established duct guidelines with respect to what

is a high thrust producing shape. The thrust is produced in a localized area on the duct

inlet and maintains a small tip gap to limit reversed flow. The axial flight condition is

quite different, leveraging the freestream velocity and a large tip gap to produce thrust

down the entire inner surface of the duct. Real world ducts will be required to hover,

climb, descend and fly non-axially. Using a multi-conditional fitness evaluation may take

on the order of months to get optimized results, but would provide a duct of broader

appeal to Industry.
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APPENDIX. Gradient Based Routine

Hill climbing optimization techniques, of which gradient based routines are a member,

are very efficient when dealing with uni-modal design space. They find the peak of the

hill quickly and generally with little wasted computational effort. The computational

aggressiveness that enables gradient based routines to be so effective are the very thing

that prevent them from being useful on multi-modal problems. gradient based routines

suffer from localized blinders. They cannot see the big picture of the design space and

because of that climb the first peak they see and finish the optimization loop.

A common way to apply gradient based algorithms is to randomize the starting position.

This allows the optimization to eventually find the global optimum, but with significant

computational cost. This method of globalizing gradient based algorithms also drasti-

cally reduces the computational efficiency because the same peak will likely be climbed

repeatedly. At the limit, to ensure the entire design space is searched, gradient based

methods become a brute force, randomized guess method.

The last hurdle for a gradient based search algorithm is the formulation and assumptions

of the algorithm. By definition, a gradient based search must calculate the gradient of

the solution with respect to the optimization parameters. The gradient calculation is

simple when the solution is smooth and continuous, but the design space a ducted fan

configuration is likely not. For instance, as the duct surface becomes steeper, the flow
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will suddenly separate. Finding the gradient when the parameters are in this region of

the design space becomes difficult.

The general gradient method optimization routine is now presented. Start with a control

vector ~X containing the variables to be optimized. For the ducted fan:

X1 = location of control point 1 (A.1)

X2 = location of control point 2

...

Xn = location of control point n

The initial control vector must produce a valid performance index (PI). The PI is anal-

ogous to a fitness value from GA notation and is written as ~f (X). Now perturb each

component of the control vector and reevaluate the PI. The result is the gradient vector

written as:

∇~f (X) =

(
∂f

∂X1

,
∂f

∂X2

, ...,
∂f

∂Xn

)
(A.2)

The direction to move along the virtual hill the algorithm intends to climb is written as

û = ∇f
|∇f | . This is the maximum directional derivative. Now define the size of step, y, to

be taken along the directional derivative. The movement in computational space can be

written as:

~Xc = y ~Xnû (A.3)

where ~Xn is the current location, ~Xc is the candidate location, and y is the step size

vector. Prior to making the move to ~Xc, check that ~Xc > ~Xn. If this is not true reduce

the step size. Termination criteria is achieved when y reaches a predetermined value.
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