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CHAPTER 1: INTRODUCTION 
 

1.1.   Mixing Enhancement in Y-shaped Microchannels 

Microfluidics is one of the most rapidly growing fields in micro-electro-mechanical systems 

technology due to its applications in medical science, biology, and analytical chemistry [1-4]. 

Microchannels or capillaries are basic components of all microfluidic devices, and they have 

the potential of reducing the fabrication costs and consumption of chemicals as well as 

shortening the time of biochemical analysis. Over the last ten years, capillaries have been 

mainly used for capillary electrophoretic (CE) methods due to the high separation 

efficiencies and peak resolution. Microchannels have recently attracted the researchers’ 

attention because they are less expensive, simpler and faster to fabricate complicated 

networks for “lab-on-a-chip” devices than capillaries. 

 

Two-fluid mixing is an essential process for many microfluidic or “lab-on-a-chip” devices. 

Various biomedicial and biochemical processes, such as DNA purification, polymerase chain 

reaction (PCR), enzyme reaction, and protein folding, involve the mixing of two fluids. The 

performance of such processes depends heavily on the mixing effectiveness and rapidness of 

the samples and reagents. However, effective mixing of two fluids inside microchannels 

could be very challenging since turbulence is usually absent due to the nature of low 

Reynolds numbers of the microflows. Therefore, studies aimed to develop novel techniques 

and methodologies to enhance diffusion-dominated fluid mixing processes and to increase 

the interfacial contact surface area between adjacent streams inside microchannels are very 



 

 

2

 

important and necessary to improve the performance of microfluidic or “lab-on-a-chip” 

devices. 

 

In recent years, extensive studies have been conducted to develop novel techniques and 

methodologies to enhance fluid mixing inside microchannels. Several innovative concepts of 

“micro-mixers” have been proposed through those studies. In general, the proposed “micro-

mixers” can be categorized into two groups: passive mixers and active mixers [5]. Passive 

mixers do not require external energy; the enhanced mixing process relies entirely on the 

augmentation of diffusion or chaotic advection through special geometrical design of 

microchannels. In contrast, active mixers usually rely on adding external energy to introduce 

disturbances to enhance fluid mixing; generating external disturbances in terms of 

temperature [6], pressure [7,8], electrohydrodynamics [9], dielectrophoretics [10], acoustics 

[11] as well as magnetohydrodynamics [12], several kinds of active micro-mixers have 

already been proposed to effectively enhance fluid mixing in microchannels.  In this thesis, a 

parametric study was conducted to quantify the effectiveness of achieving fluid mixing 

control/enhancement inside Y-shaped microchannels using an active control method, 

electrokinetic instability (EKI). 

 

EKI occurs when two streams with different electric conductivities meet in a microchannel 

under an applied static electric field as shown schematically in Fig. 1.1.  If the strength of the 

applied static electric field exceeds a certain threshold value, the flow instability of adjacent 

streams could be observed in a sinuous form along the interface of the mixing streams [13, 

14]. The conductivity gradient subject to an external electric field has been suggested as a 
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source of electrical charges and the Coulombic force acts to generate additional body force 

[15]. Relevant to the mechanism of electrokinetic instability, Hoberg & Melcher [15] showed 

that the interface of miscible fluids with conductivity gradient becomes unstable under a 

normal electric field in an unbounded domain. Baygents & Baldessari [16] suggested that the 

flow generated in isoelectric focusing devices is a consequence of the free charges generated 

by the electric field applied normally to the conductivity gradient.  

 

 

 

 

 

 

 

                                          

Figure 1.1. The schematic of the EKI 
 

Oddy et al. [17] is the first to use EKI to manipulate fluid mixing process in a microchannel.  

Chen et al. [14] conducted a pioneer study to elucidate the underlying fundamental physics of 

EKI and associated flow phenomena in a T-shaped microchannel.  They reported that EKI 

can be observed as convective waves propagating downstream as the strength of the applied 

static electric field exceeds a threshold value (i.e, the critic strength of the applied electric 

field called in the present study), which corresponds to the convectively unstable mode of the 

EKI. When the strength of the applied electric field becomes relatively high, upstream 
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propagating waves were observed, indicating the mode of absolute instability. Chen et al. [14] 

also suggested a physical model to capture the coupling between electric and flow fields. 

More recently, Posner & Santigao [18] studied the behavior of EKI waves in a cross-shaped 

microchannel under a wide range of the applied static electric fields and conductivity ratios 

of the center-to-sheath streams. They found that the required critical strength of the applied 

static electric field depends on both the centre-to-sheath conductivity ratio and the ratio of the 

static voltages applied to different branches of the cross-shaped microchannel.  Shin et al. [19] 

demonstrated for the first time that adding an alternative perturbation to the applied static 

electric field could manipulate EKI waves to either enhance or suppress the fluid mixing 

process in a cross-shaped microchannel depending on the frequency of the alternative 

perturbation. 

 

Park et al. [20] studied four microchannels which were straight channel, channel with square 

cavities on one sides, channel with square cavities on both sides and channel with 

herringbone shape cavities on both sides. They compared the mixing efficiency of these four 

channels under different static electric fields. Their results show that the mixing efficiency is 

increase by about 15% for the channel with herringbone-shape cavities as compared with the 

straight channel. Huang et al. [21] proposed a cross-shaped micromixer featuring a pair 

barrier within the mixing channel which resulted in higher mixing efficiency than the one 

without barrier. In addition, Tai et al. [22] studied the mixing enhancement of the T-shaped 

microchannel with 45º parallelogram barriers (PBs) inside. They found that the microchannel 

with the PBs of a higher value has better mixing performance. 
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So far, only Posner & Santigao [18] conducted a parameter study to quantify the critical 

strength of the applied static electric field as a function of the conductivity ratio of the mixing 

streams in a cross-shaped microchannel. With consideration of the wide spread applications 

of two-stream mixing in Y-shaped microchannels, the effects of the differences in the mixing 

flow arrangement (two-stream mixing vs. three-stream mixing, Y-shaped micro-mixers vs. 

cross-shaped micro-mixers) on the critic strength of the applied static electric field and the 

resultant fluid mixing process were explored in chapter 4 of this thesis. The effects of the 

conductivity ratio of the two mixing streams, the strength of the applied static electric fields, 

and the frequency and amplitude of the applied alternating perturbations, on the evolution of 

the EKI waves and resultant fluid mixing process were investigated systematically.  

 

Although Shin et al. [19] demonstrated that adding an alternative perturbation to the applied 

static electric field could manipulate EKI waves to either enhance or suppress the fluid 

mixing process in a cross-shaped microchannel depending on the frequency of the alternative 

perturbation, their conclusions were limited to that particular type of microchannel. In 

addition, although previous studies [20-22] investigated the effect of geometry of T-shaped or 

cross-shaped microchannels on the mixing enhancement by using EKI, the EKI waves were 

generated by using static electric fields only. To the author’ best knowledge, no one has ever 

combined alternative electric and static electric fields to generate EKI waves in different Y-

shaped microchannels. Considering that the mixing process could be enhanced by adding 

alternative perturbations which was concluded during this study, it would be necessary to 

investigate the effect of geometry of microchannels on the mixing enhancement by adding 

alternative perturbations.  In chapter 5 of this thesis, the effect of geometry of microchannels 
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on the mixing enhancement was investigated on three microchannels which are termed as 

channel with cavities, channel with steps, and straight channel. The mixing efficiencies in 

different depths of the channel with steps were also measured.  

 

1.2.   Velocity and Temperature Measurement within Surface Droplets 

The second component of present study is to investigate the unsteady flow and heat transfer 

phenomena inside small surface droplets over a solid substrate at different temperature levels.  

Droplets have many interesting applications associated with microfluidic problems, e.g., 

DNA molecule imaging [23, 24], micro-pumps, and ink-jet printing. The details of droplet 

related phenomena in micro- and nanoscales such as evaporation process, Marangoni effects, 

contact angles with solid substrates, and electrowetting are not well known. There is a 

consensus of opinion that the fluid flow inside a droplet may play an important role in the 

overall transport phenomena. Some of the interesting issues concerning the fluid flow inside 

a droplet are described below.  

 

Uno et al [25] investigated the adsorption characteristics of colloidal suspensions during the 

evaporation of a droplet on hydrophobic and hydrophilic surfaces. As they pointed out, the 

particle accumulation phenomena will be closely related to the flow pattern inside a droplet. 

Together with this, the mechanism of DNA stretching in an evaporating droplet [23, 24] is 

not completely known.  

 

Another concern is about the contact angle of evaporating sessile droplets placed on a solid 

substrate. According to Erbil et al [26, 27], the behavior of an evaporating sessile droplet is 
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significantly dependent on the initial contact angle. That is, if the initial contact angle is 

smaller than 90°, the contact area is almost constant during the overall evaporation stage. On 

the other hand, if the initial contact angle is greater than 90°, the contact area shrinks, while 

the contact angle remains almost invariant. As suggested by Rowan et al [28] and McHale et 

al [29], this intriguing phenomenon can be closely related to the Marangoni force and 

Marangoni convection (generated by surface-tension gradient) near the three-phase contact 

line of air, liquid, and solid.  

 

One effective method for characterizing the electrochemical characteristics of redox active 

solid is to deposit a small droplet and then obtain the voltammetric curve from measuring the 

ionic transport. It is reported that convective motion exists inside droplets, which may be 

generated by the Marangoni effect, the EHD effect, or the evaporation of species [30]. The 

redox process at the interface is significantly dependent on the convective transport of ionic 

species [31]. For an accurate assessment of the electrochemical characteristics of surfaces, 

the flow characteristics and the correlation with the ionic transport should be revealed.  

 

Considering its importance to fluid flows, only a few systematic investigations have been 

performed in the past towards the understanding of overall transport phenomena inside a 

droplet. Among the few who have investigated the flow structure inside droplets, Chung and 

Trinh [32] visualized the flow behavior inside an ultrasonic–electrostatic hybrid levitation 

system. Zhang and Yang [33] visualized the unstable flow due to Marangoni instability of an 

evaporating droplet of fluid mixture. Savino and Monti [34] investigated the flow inside 

sessile and pendant droplets numerically. Kang et al [35, 36] developed a velocity correction 
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method on the basis of the ray tracing method to overcome image distortion due to the 

refraction of light at the droplet surface and conducted the velocity measurement inside a 

droplet by using Particle Image Velocimetry (PIV) technique. 

 

Although Kang et al [35, 36] studied the effect of different concentration of ethanol on the 

evaporation process of surface droplets, the temperatures of droplets and solid plate were 

kept at room temperature. Considering that the heat transfer process from a cooling test plate 

might change the flow fields inside droplets, the effect of plate temperature on velocity 

distribution inside surface droplets was investigated in chapter 6 of this thesis. In addition, 

related parameters, such as contact angle and normalized droplet volume were also 

investigated.   

 

In chapter 7 of this thesis, Molecular Tagging Thermometry (MTT) technology was used to 

study the transient temperature distribution inside surface droplets during the cooling 

process. The temperature inside a surface droplet was first measured when the temperatures 

of test plate and droplet were the same as the room temperature.  Then, after the surface 

temperature of the test plate was cooled down to 2.0 °C, a small water droplet with initial 

temperature of 20.5°C was placed on the test plate and the transient temperature distributions 

inside the surface droplet were measured. Due to the relatively high temperature sensitivity 

of the present lifetime-based MTT technique, the small temperature difference within the 

small water droplet can be revealed clearly from the measured instantaneous temperature 

distributions.  
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CHAPTER 2: ELECTROOSMOTIC FLOW AND MARANGONI FLOW 
 

During the present study on the mixing enhancement in different Y-shaped microchannels 

and on the velocity measurement inside surface droplets, two kinds of flows were formed 

which were electroosmotic flow (EOF) and Marangoni flow. EOF is the motion of liquid 

induced by an applied potential across a capillary tube or microchannel and it is an essential 

component in chemical separation techniques, notably capillary electrophoresis. Marangoni 

flow is induced by Marangoni effect which is the mass transfer on, or in, a liquid layer due to 

surface tension differences. In this chapter, detailed knowledge about these two kinds of 

flows is presented. 

2.1.    Electroosmotic Flow (EOF) 
 

The electrokinetic phenomena in porous medium are based on the relative motion between a 

charged surface and the bulk solution at its interface. The formation of electric double layer 

at the charged surface of microchannel explains these electrokinetic phenomena of interest: 

electrophoresis and electrroosmosis. Electrophoresis is the movement of a charged surface 

plus attached material relative to stationary liquid by an applied electric field. On the other 

hand, electroosmosis is the movement of liquid relative to a stationary charged surface by an 

applied electric field. The pressure necessary to counterbalance electroosmotic flow is termed 

the electroosmotic pressure [37]. 

 

Generally, most substances will acquire a surface electric charge when brought into contact 

with an aqueous medium. Some of the charging mechanisms include ionization, ion 
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absorption, and ion dissolution. We can find it whenever we apply a voltage to a liquid 

system that is in close contact with a charged surface. The magnitude and the direction of the 

resulting electroosmotic flow depend on the composition of the microchannel and the nature 

of the solution within the microchannel. Empirically, it is found that the phase with the 

higher dielectric constant is positively polarized versus the other. Because of its high 

dielectric constant, water is usually positively polarized in comparison to the surface of fused 

silica microchannel. Hence, if an electric field is applied across the microchannel, the mobile 

ions of the solution migrate with their hydrate water towards the cathode resulting in a flow 

of the whole solution. Figure 2.1 demonstrates structure of electric double layer with inner 

stern layer in the electroosmosis phenomenon. 

     

Figure 2.1. Structure of electric double layer with inner stern layer 
 

 

 

Dissociation of functional surface groups and/or adsorption of ions in the electrolyte solution 

are the most important processes in electroosmosis. The zeta potential, which is defined as 
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the potential at the shear surface between the charge surface and the electrolyte solution, is a 

consequence of the existence of surface charge, and can give information on electrical 

interaction forces between the dispersed particles. The zeta potential is given by 

                                                      ε
πδς e4

=                                       (2.1) 

where δ is the thickness of the electric double layer, e is the charge per unit surface area, and 

ε is the dielectric constant of the buffer. The thickness of the electric double layer, which is 

approximately 1nm ~ 100nm thick in the aqueous solution, is inversely proportional to the 

concentration of the buffer. 

                                       

Figure 2.2. Schematic of the zeta potential (ς ) 
 

Electroosmotic flow has a relatively flat profile, as shown in Figure 2.3, compared to the 

pressure driven flow that frictional forces at the liquid-solid boundaries cause a strong 

pressure drop across the microchannel. This uniform velocity profile is ideal for transporting 

immersed or solvated substances with minimal hydrodynamic dispersion [38]. 
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Figure 2.3. Velocity profile of the electroosmotic flow 
 

The velocity of the EOF is proportional to the applied electric field as given in the following 

equation: 

                                                  EU eoeo μ=                                                (2.2) 

where eoμ  is electroosmotic mobility and E is electric field. The electroosmotic mobility 

depends on the zeta potential (ς), the dielectric constant (ε) of the medium and the viscosity 

(η) of the solution as follows: 

                                                    
πη
ςεμ

4
=eo                                                (2.3) 

There are two benefits of electroosmotic flow in the micro-fluidic devices. First, since all 

solutes must be carried though the microchannel, the electroosmotic flow, which has a flat 

flow profile, can make all of the solute molecules experience the same velocity component 

caused by electroosmotic forces regardless of their cross-sectional position in the 

micrchannel. The second benefit is that electroosmotic flow does not need moving parts like 

a check valve to control micro-fluidic flow which enables microfluidic systems to have a 

much simpler design. 
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2. 2.   Marangoni Flow  
 

To explain Marangoni flow, basic knowledge about surface tension is presented here first. 

Surface tension is an effect within the surface layer of a liquid that causes that layer to 

behave as an elastic sheet. It allows insects, such as the water strider, to walk on water. It 

allows small metal objects such as needles, razor blades, or foil fragments to float on the 

surface of water.  

 

Figure 2.4. Diagram of the forces on a molecule of liquid 
 

Surface tension is caused by the attraction between the molecules of the liquid by various 

intermolecular forces. In the bulk of the liquid each molecule is pulled equally in all 

directions by neighboring liquid molecules, resulting in a net force of zero (as seen in Figure 

2.4). At the surface of the liquid, the molecules are pulled inwards by other molecules deeper 

inside the liquid and are not attracted as intensely by the molecules in the neighboring 

medium (be it vacuum, air or another liquid). Therefore, all of the molecules at the surface 

are subject to an inward force of molecular attraction which can be balanced only by the 

resistance of the liquid to compression. This inward pull tends to diminish the surface area, 
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and in this respect a liquid surface resembles a stretched elastic membrane. Thus the liquid 

squeezes itself together until it has the locally lowest surface area possible. 

         

Figure 2.5. A simple apparatus to measure the surface tension of a liquid 
 

The surface tension σ is the magnitude F of the force exerted parallel to the surface of a 

liquid divided by the length L of the line over which the force acts. For the specific case 

illustrated in Figure 2.5, there is an upper surface and a lower surface, as the blow-up 

drawing indicates. Thus, the force F acts along a total length of L = 2l, where l is the length 

of the slider.  

                                                            
l

F
L
F

2
==σ                                         (2.4) 

 

The Marangoni flow is induced by Marangoni effect which is the mass transfer on, or in, a 

liquid layer due to surface tension differences. Since a liquid with a high surface tension pulls 

more strongly on the surrounding liquid than one with a low surface tension, the presence of 

a gradient in surface tension will naturally cause the liquid to flow away from regions of low 
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surface tension. The surface tension gradient can in turn be caused by concentration gradient 

[35, 36, 39] or by a temperature gradient [40, 41].  

 

Stowell and Korgel [39] conducted surface tension measurement of chloroform solvent in 

which 3.5 and 5nm gold nanocrystals were dispersed. The surface tension of the solvent was 

found to increase with increasing particle concentration for both particle sizes. The increase 

in surface tension with increased concentration was presumably resulted from the much 

lower volatility of the nanocrystals relative to the solvent.  

 

Figure 2.6. Experimental observations and numerical calculations of the circulation direction inside 

evaporating drops. (By Ristenpart et al [41]) 

Ristenpart et al [41] established quantitative criteria for the magnitude and direction of 

thermal Marangoni flow inside evaporating sessile drops. The circulation direction was found 
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to depend on both the contact angle ( Cθ ) and the ratio of substrate and liquid thermal 

conductivities ( Rk ). The definition of Rk  is given by: 

                                                               
L

S
R k

k
k =                                            (3.5) 

where Sk  is the substrate conductivity and Lk  is the liquid conductivity. Their analysis 

indicates that the drop is warmest at the contact line only if the substrate conductivity ratio Rk  

is greater than 2. In this situation, the consequent Marangoni flow is directed radially 

outward along the substrate (as seen in Figure 2.6). For 1.45< Rk  < 2, the direction of the 

temperature gradient (and the resulting flow) depends on the contact angle Cθ , while for Rk  

< 1.45 the drop is coldest near the contact line and the circulation direction is reversed, i.e., 

radially inward along the substrate.  

 

To illustrate the conclusions of Ristenpart et al [41] on a whole droplet scale, a schematic is 

shown in Figure 2.7. When Rk  is greater than 2, the thermal Marangoni flow in the middle of 

the droplet moves downward. To the contrary, when Rk is less than 1.45, the thermal 

Marangoni flow in the middle of the droplet moves upward.  
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a. Rk <1.45 

 

b. Rk  >2 

Figure 2.7. Schematic of thermal Marangoni flow patterns for different Rk   
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CHAPTER 3: MICROCHANNEL FABRICATION 

In recent years, the research of fluid character in the micro-fluidic systems has been 

attracting attention of scientists [42-44]. Microfluidic devices have many advantages over 

conventional bench-top systems. The list of these advantages includes-but is not limited to – 

reduced size of operating systems, flexibility in design, reduced use of regents, reduced 

production of wastes, decreased requirements for power, increased speed of analyses, and 

portability. The design and development of a functional microfluidic device must take into 

account the type of material used to fabricate the device. Early developments were mostly 

based on conventional semiconductor materials and technologies. There are many limitations 

on fabrication, packaging and testing of micro-fluidic devices, such as the geometrical limit 

of wet-etching, wafer-to-wafer misalignment [45], and the difficulty of measurement due to 

the opacity of wafer. More recently, various microchannels made of glass and 

polydimethylsiloxane (PDMS) have been fabricated depending on their applications. Glass 

possesses favorable biocompatible properties and is inert toward most of the chemicals used 

in conventional biochemical analyses [46]. In the meanwhile, PDMS is receiving increasing 

amount of attention because of its attractive physical and chemical properties: elasticity, 

optical transparency, flexible surface chemistry and low permeability to water [47]. In this 

thesis, two microchannel fabrication methods are interpreted; one is using both PDMS and 

glass while the other is utilizing glass only. The discussion of the difference between these 

two methods is also presented.   
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3.1.    PDMS-Glass Hybrid Microchannels Fabrication Process 

The summary of the Y-shaped PDMS-Glass Hybrid microchannel fabrication process is 

shown in Figure 3.1 and the detailed process is described as follows: 

 

 

Figure 3.1. Summary of PDMS-Glass Hybrid Microchannel Fabrication 
 

3.1.1.    Photoresist coating and photopatterning 

The photomask was designed with the software named Adobe Illustrator and printed on a 

high-resolution transparency film of 10000 dpi (CAD/Art Services, Inc). The mold was made 

from patterned negative photoresist (SU-2100, Microchem) on a 5-in silicon wafer 

(University Wafer) which was put in a spinner. A puddle of photoresist was dispensed first 
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onto the substrate carefully to avoid introducing air bubbles.  Then the spinner ramped up to 

500 rpm in 25 seconds and stays there for 5 sec.  After that, by accelerating at 300 rpm/s, the 

spinner reached its highest speed, 2500 rpm, and held for 35 sec. The substrate was then 

baked in for 35 min at C065  and photopatterned with UV light for 18s (365nm; 500W). It 

was again baked for 10 min at C095  before immersion into the developer (Microchem) for 7 

min. Finally, the developed substrate was quickly rinsed with isopropyl alcohol (Fisher) and 

dried with high purity nitrogen.  

3.1.2.    Casting PDMS 

Polydimethylsiloxane (PDMS) elastomer (Sylgard (R) 184 Silicone Elastomer Kit, Dow 

Corning) was used to make the upper part of the channel. The PDMS polymer was mixed 

with the curing agent in a 10:1 ratio and exposed to low pressure in a desiccator (EW-06514-

20, Cole-Parmer) to remove bubbles formed during mixing. The prepolymer mixture was 

poured over the mold and again placed in the desiccator to remove bubbles. The PDMS 

casting was then cured in a convection oven at C065  for 1 hr.  

3.1.3.    Microchannel Assembly 

The PDMS slab was removed from the mold and three wells, each with a diameter of 3mm, 

were formed in it with a sharp hand-punch. The PDMS slab was then placed in an ethanol 

bath in an ultrasonic cleaner for 15 min to clean the surface and subsequently dehydrated in a 

convection oven at C065  for 10 min. A micro slide (75 х 50 х 1mm, Corning) was used as 

the lower portion the microchannel and was treated under a 350mTorr stream of air in a RF-

plasma cleaner (Yes-R1, Yield Engineering Systems) for 5 minutes. To seal the two pieces 

together, both the PDMS slab and the glass substrate were subjected to RF-plasma treatment 
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under a 1-Torr stream of oxygen for 1 min. The PDMS slab was then bonded to the glass 

plate by bringing the two components into conformal contact immediately after plasma 

treatment. The plasma oxidation also changed the surface of the PDMS microchannel from 

hydrophobic to hydrophilic. To let the surface remain hydrophilic, the microchannel was kept 

filled with DI water. All the above procedures were performed in a class 10/100 clean room.  

3.1.4.    Gluing Reservoirs 

After assembling the microchannel, four reservoirs were glued to its top by using Dow 

Corning 732 KTV Sealant. The smallest one was a NanoPort from Upchurch Scientific 

which can be connected to a syringe with a pipe of 360μm inside diameter. By drawing the 

syringe, the fluids were driven though the Y-shaped microchannel.   

 

Figure 3.2. Y-shaped PDMS-Glass Hybrid Microchannel 
 

Figure 3.2 shows the Y-shaped PDMS-Glass hybrid microchannel (top view) made by using 

the process listed above.  
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3.2.    Glass Microchannels Fabrication Process 

The summary of the Y-shaped PDMS-Glass Hybrid microchannel fabrication process is 

shown in Figure 3.3 and the detailed process is described as follows: 

 

Figure 3.3. Summary of Glass Microchannel fabrication 
 

3.2.1.    Photoresist coating and photopatterning 

The present study used commercially available microscope glass slides of dimension 75 х 50 

х 1 mm, supplied by Corning. Prior to fabrication, the slide was cleaned with a boiling 

solution ( 1(%)/(%) 22 =OHHcl ) for 15 min. It was then rinsed in DI water and blown dry 

with nitrogen gas. To ensure the complete removal of residual water molecules, a 



 

 

23

 

dehydration process was carried out by baking the slides in a convection oven for 5 minutes 

at a temperature of C0100 . 

 

Following the dehydration process, the slide was coated with positive photoresist (AZ5214, 

Microchem) using a spin coater (KW-4A, Chema Tech.) operating at 4000 rpm for 40 sec, 

and then baked at C090  for 30 min. Using a photomask that was fabricated in-house, the 

substrate was then exposed to UV light (500W at 365nm; ABM Inc.) for 90 sec. Finally, it 

was immersed in resist developer (Microchem) for 1 min, rinsed with DI water, dried in a 

stream of high purity nitrogen, and post-baked at C0120  for 15 min. 

 

3.2.2.    Etching and Bonding 

After setting in BOE (Buffered Oxide Etch) tube for 100 min, the substrate was then rinsed 

with acetone, methyl alcohol, and DI water. Then it was dried with high purity nitrogen. Two 

holes with a diameter of 2mm were drilled for sample inlets and outlets on another cover 

plate. The two plates were cleaned with a boiling solution ( 1(%)/(%) 22 =OHHcl ) for 15 

min. It was then rinsed in DI water and blown dry with nitrogen gas. To ensure the complete 

removal of residual water molecules, a dehydration process was carried out by baking the 

slides in a convection oven for 5 minutes at a temperature of C0100 . The etching depth was 

60 mμ . Finally, the base and cover plates were set on an alumina plate and fusion-bonded in 

a furnace at C0600  for 6 hours.  
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3.2.3.   Gluing Reservoirs 

After assembling the microchannel, three reservoirs were glued to its top using a Dow 

Corning 732 KTV Sealant. The smallest one was a NanoPort from Upchurch Scientific 

which can be connected to a syringe with a pipe of 360μm inside diameter. By drawing the 

syringe, the fluids were driven through the Y-shaped microchannel.     

 

Figure 3.4 shows the Glass microchannel (top view) made by using the process listed above.  

 

Figure 3.4. Straight Glass Microchannel 
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   Glass-PDMS Hybrid 

         microchannel 

                   Glass   

             microchannel 

Photoresist  

(Positive mask) 
Negative Positive 

Channel Formation PDMS cast BOE etching 

Hole Drilling Punched Drilled 

Surface Cleaning Ultrasonic bath (PDMS) 1:3(%)/(%) 2242 =OHSOH  

Bonding Plasma treat Conventional thermal bonding

Time (hours) 5 24 

 
Table 3.1. Differences of the fabrication process between PDMS-Glass Hybrid Microchannels and 

Glass Microchannels 

 
Table 3.1 shows the main differences of the fabrication process between the PDMS-Glass 

Hybrid and Glass microchannels. As seen in Table 3.1, the fabrication process of a Glass 

microchannel takes a much longer time than that of a Glass-PDMS hybrid microchannel.  
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CHAPTER 4: MIXING ENHANCEMENT IN A STRAIGHT Y- 

SHAPED MICROCHANNEL BY UTILIZING 

ELECTROKINETIC INSTABILITY 

In this chapter, a parametric study was carried out to elucidate underlying physics and to 

quantify the effectiveness of manipulating EKI waves to actively control/enhance fluid 

mixing inside a Y-shaped microchannel. Epifluorescence microscopy technique was used to 

conduct qualitative flow visualization and quantitative scalar concentration field 

measurements to quantify the fluid mixing process inside the Y-shaped microchannel in 

terms of scalar concentration distribution, shedding frequency of the EKI waves, and scalar 

mixing efficiency. The effects of the relevant parameters, such as the conductivity ratio of the 

two mixing streams, the strength of the applied static electric fields, and the frequency and 

amplitude of the applied alternating perturbations, on the evolution of the EKI waves and 

resultant fluid mixing process were investigated systematically.   

4.1.    Epifluorescence Microscopy 
 

Epifluorescence microscopy is a method of fluorescence microscopy that is widely used in 

life sciences [48]. The excitatory light is passed from above (or, for inverted microscopes, 

from below), through the objective and then onto the specimen instead of passing it first 

through the specimen (as shown in figure 4.1). (In the latter case the transmitted excitatory 

light reaches the objective together with light emitted from the specimen). The fluorescence 

in the specimen gives rise to emitted light which is focused to the detector by the same 
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objective that is used for the excitation. A filter between the objective and the detector filters 

out the excitation light from fluorescent light. Since most of the excitatory light is transmitted 

through the specimen, only reflected excitatory light reaches the objective together with the 

emitted light and this method therefore gives an improved signal to noise ratio. A common 

use in biology is to apply fluorescent or fluorochrome stains to the specimen in order to 

image a protein or other molecule of interest. 

 

Figure 4.1. Schematic of a fluorescence microscope 
 

The reason why fluorescence dyes can be used in present study as the indicator of mixing 

process in Y-shaped microchannels is explained as follows:  
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When a photon of given energy is absorbed by a fluorophore, the energy state of the 

molecule transits from the ground state to higher electronic states. Energy is subsequently 

dissipated at these excited states until the molecule reaches the lowest level of the first 

excited singlet state. Thereafter, the molecule at the first singlet state can return to the ground 

state in multiple ways. One such path of return is via fluorescence, defined as a radioactive 

decay process wherein no further energy is dissipated by collisions and the return of the 

excited molecule to the ground state occurs purely by the emission of energy. In such a 

scenario, a portion of the remaining energy is lost by the molecule before the emission and 

consequently, the emitted energy is of longer wavelength than the energy it initially 

absorbed. This shift in the wavelength of the fluorescence light relative to the absorption 

wavelength is referred to as the Stokes shift.  

                                    

Figure 4.2. Schematic of the generation of Fluorescence 
 

For a dye of concentration C ( 3−kgm ) illuminated with an incident light flux of intensity 0I  

( 3−Wm ), the fluorescence energy emitted per unit volume, I ( 3−Wm ), is 
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                                                    φεCII 0=                                         (4.1)      

where ε is the absorption coefficient of the dye and Φ is its quantum efficiency. For most 

organic dyes, variations in I with temperature are predominantly attributable to the 

temperature dependence of the quantum efficiency. Therefore, in principle, if one can 

maintain 0I  and T constant, the concentration of a fluorescent dye solution can be measured 

through variations of fluorescence intensity associated with the concentration dependence of 

C. The measured concentration fields can be used to quantify the mixing process in 

microchannels of the present study.   

4.2.     Experimental Details  
 

The Y-shaped microchannel used in the present study is made of poly-di-methyl-siloxane 

(PDMS) by using a rapid-prototyping “photolithography” technique [49]. The dimensions of 

the microchannel are given in Fig. 4.3. The cross section of the channel is rectangular with 

320 µm in width and 130 µm in height. The length of both inlet branches is 15.0mm and the 

angle between the two inlet branches is 900. The length of the mixing channel is 40.0mm. 

Relatively large reservoirs at the inlets and outlet of the Y-shaped microchannel are designed 

in order to minimize the effect of the induced pressure head difference between the inlets and 

outlet during the experiments.  

 

 

 

 



 

 

30

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.3. The schematic of the Y-shaped microchannel 
 

Deionized water was used as the working fluid in the present study. The DI water was 

filtered by using a syringe filter unit (Millipore millex-FG, Bedford, 0.2µm) before 

experiments. Borate buffers (Science Stuff Inc) were used to adjust the molecular 

conductivity of the two fluid streams.  Rhodamine B, which is reported to be neutral for pH 

values ranging 6.0 to 10.8 [50], was used as the fluorescent dye for qualitative flow 

visualization and quantitative scalar concentration measurements.  Since the molar 

concentrations of the borate buffers (<10mM ) and Rhodamine B (< 0.16 mM) are low, the 

changes in water physical properties such as the permittivity and viscosity are negligible.  

 DI water was used to flush the microchannel several times prior to use for experiments.  
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Figure 4.4. Experimental setup 
 

Figure 4.4 shows the schematic of the experimental setup used in the present study. The 

microchip with the Y-shaped microchannel was placed on the test bed of an inverted 

fluorescent microscope (Leica DM-IL). A high-voltage DC power supply (Keithley, Model 

247) was used to provide a static electric field between the reservoirs R-B and R-C. A 

function generator (Instek, Model GFG-8250A) and a high-voltage amplifier (Trek, Model 

609-E) were used to apply a static electric field or a static electric field along with an 
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alternating perturbation between the reservoirs R-A and R-C. The electrodes installed in the 

reservoirs were made of platinum.  

 

A mercury lamp was used as the illumination source in the present study. Passing through an 

epi-fluorescent prism (Excitation Filter of 532nm with 10nm BP, Dichroic 532nm RDC, 

Emitter of 610nm with 75 nm BP), the bright light from the mercury lamp was used to excite 

the Rhodmamine B molecules seeded in the stream R-A. Upon excitation, the seeded 

fluorescent tracer, Rhodmine B molecules, would emit fluorescence with its emission peak at 

about 580nm. A 10X objective lens (NA=0.4) was used for the fluorescence imaging. The 

fluorescence light was captured by a high-resolution CCD camera (SensiCam-QE, Cooke 

Corp). The CCD camera was connected to a workstation (host computer) via a digital delay 

generator (Berkeley Nucleonics, Model 565) for the image acquisition timing control, data 

storage and imaging processing. For the present study, the exposure time of the CCD camera 

was set at 7ms. Five-hundred fluorescence images were recorded at a frame rate of 10 Hz for 

each case. 

 

It should be noted that the depth averaging along the optical axis is an artifact of epi-

fluorescence imaging to study microflows. All the fluorescent molecules across the imaging 

depth of the 10X objective would contribute to the measured fluorescence intensity. Based on 

the formula suggested by Inoue & Spring [51], the depth of focus for the 10X (NA=0.4) 

objective used in the present study is estimated to be about 5.0 μm.  For all the experimental 
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results reported here, the focus plane of the 10X objective was set in the middle plane of the 

130 μm depth microchannel. 

 

It is well known that the collected fluorescence intensity is proportional to the amount of the 

fluorescent molecules in the flow for diluted solution and unsaturated excitation. Quantitative 

scalar concentration distributions can be derived from the acquired fluorescence images. The 

effects of the non-uniformity of the illumination intensity, background noise, and the dark 

current of the CCD camera were corrected in the present study in order to minimize the 

measurement errors in the determination of scalar concentration distributions to quantify the 

scalar mixing process [18]. 

4.3.    Quantification of Fluid Mixing Effectiveness 

In order to correct the effects of the non-uniformity of the illumination intensity, background 

noise and the dark current of the CCD camera, we use the method by Posner and Santiago 

[18] to obtain the concentration for each pixel:  
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The instantaneous image index is i and the subscripts raw, flat and dark denote the raw, flat-

field, and dark-field images, respectively. The flat-field images are recorded with the 



 

 

34

 

channels filled with a uniform concentration of dye and correct for illumination non-

uniformity and detector response. The dark-field images are recorded with the channels filled 

with buffer. The dark-field images correct for external light scattered off channel walls and 

not for chromatically filtered fluorescence of wall adsorbed dye, and sensor dark-noise. Two 

hundred dark and flat-field images are recorded before each experiment. 

 

Following the work of Johnson et al. [52], a statistical approach was used in the present study 

to quantify the fluid mixing process in the Y-shaped microchannel. 

                                     

∑

∑

=

=

−

−
−=

n

i ipi

n

i ipi

CC
n

CC
n

1
2

0

1
2

)(1

)(1

1η                                       (4.4) 

where n is the total number of pixels, iC  the concentration at the ith pixel, 0iC  the 

concentration at the ith pixel with no mixing or diffusion, and ipC  the concentration at the ith 

pixel for a homogeneous mixture. The concentration values for 0iC  was determined by 

doubling the concentration profile, ipC , at half the channel width, and then setting the 

concentration of the opposite half of the channel to zero. The high value of η means that the 

fluorescent dye is well stirred.  
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4.4.     Experimental Results and Discussions 

4.4.1.  The effect of conductivity ratio of the two mixing streams in the Y-shaped  

microchannel on the critical strength of the applied static electric field. 

In the present work, a parametric study was conducted to quantify the effect of the 

conductivity ratio of the two mixing streams on the critic strength of the applied static 

electric field to trigger EKI waves in a Y-shaped microchannel.  During the experiments, the 

concentration of borate buffer solution in inlet reservoir R-B was kept constant at 10mM and 

the concentration of the borate buffer in inlet reservoir R-A was changed from 0.1mM to 

5mM. It makes the conductivity ratio of the two mixing streams, γ =σB / σA, being 2:1, 5:1, 

10:1, 50:1 and 100:1.  Rhodamine B molecules were seeded in the stream R-A to visualize 

the evolution of the interface of the two mixing streams.   

 

In order to determine the critical strength of the applied static electric field to trigger the 

periodic shedding of convective EKI waves at a selected conductivity ratio, a small static 

voltage was applied between the inlets and outlet of the Y-shaped microchannel at first. Then, 

the applied voltage was increased in the step of every 25 volts until noticeable fluctuations of 

the interface of the two adjacent streams could be observed. During the experiments, the 

same static voltage was applied to both inlet reservoirs R-A and R-B at all times, i.e., BA VV = .  

The required minimum voltage to induce observable fluctuations at the interface of the two 

adjacent streams is defined as the critical voltage of the applied electric field at that selected 

conductivity ratio. 
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Figure 4.5. Critical strength of the applied electric field vs. conductivity ratio 
 
Figure 4.5 shows the measured critical strength of the applied static electric field as a 

function of the conductivity ratio of the two mixing streams inside the Y-shaped 

microchannel. A curve of a power function is also given in this figure to fit the measurement 

data.  It can be seen clearly that the critic strength of the applied static electric field decreases 

rapidly (the power index of the power function is -0.246) with the increasing conductivity 

ratio.  The critical strength was found to be about Ecritic≈160 Vcm-1   as the conductivity ratio 

being 2.  It drops to about Ecritic≈ 60 Vcm-1   as the conductivity ratio increases to 100. This 

can be explained by stating that a larger conductivity ratio would induce a higher free charge 

density,ρe, as suggested by Hoberge & Melcher [11] with a relationship of Ee •∇−= σ
σ
ερ , 

where σ the electrical conductivity of the fluid, ε the electrical permittivity of the fluid, and E 

the external electric field.  The greater induced electric charges coupled with the applied 
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electric field would generate a stronger Coulombic force at the interface of the two adjacent 

streams to overcome the dissipative effects of the molecular diffusion to promote EKI.  

Therefore, the critical strength of the applied static electric field would decrease rapidly with 

the increasing conductivity ratio of the two mixing streams in the Y-shaped microchannel.  

 

It should be noted that, although Posner & Santigao [18] reported a similar trend about the 

dependence of the critic strength of the applied static electric field on the conductivity ratio 

of the mixing streams, the present study is the first to reveal that the relationship can be 

represented well by a power function. It should also be noted that the absolute values of the 

critical strength for the present study (i.e., for two-streams mixing in the Y-shaped tunnel) 

were found to be much smaller than those reported by Posner & Santigao [18] (for three-

stream mixing in a cross-shaped microchannel).  For example, for the same conductive ratio 

of 10=γ , the critical strength of the applied electric field to trig EKI waves in the Y-shaped 

microchannel is Ecritic≈110 Vcm-1  for the present study. Posner & Santigao [18] reported that 

the critical strength would be as high as Ecritic≈ 420 Vcm-1 in order to trigger EKI waves for 

the three-stream mixing in the cross-shaped mcirochannel.  This indicates that the required 

strength of the applied static electric field would be affected by many other factors as well, in 

addition to the conductivity ratio of the mixing streams.  It highlights the necessity of much 

more systematic studies to establish a compressive database to document EKI and associated 

flow phenomena in order to further our understanding about EKI and to explore/optimize 

design paradigms for the development of robust EKI micro-mixers for various microfluidics 

or “lab-on-a-chip” applications.  
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Figure 4.6. The effect of the conductivity ratio on the fluid mixing process 
 
Figure 4.6 shows typical instantaneous fluorescence images of the fluid mixing inside the Y-

shaped channel under the same applied static electric fields of E≈180Vcm-1, however, with 

different conductivity ratio of the two mixing streams. Even though the strength of the 

applied electric field was kept constant, the fluid mixing process was found to become 

increasingly turbulent and intensive as the conductivity ratio increases, i.e., the fluid mixing 

process was found to be enhanced significantly as the conductivity ratio of the two mixing 

streams increases.  

 

4.4.2. The effect of the applied electric field strength on the evolution of EKI waves 

A systematic study was also conducted to investigate the effect of the strength of the applied 

electric field on the evolution of the EKI waves and the fluid mixing process inside the Y-
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shaped microchannel.  During the experiment, the conductivity ratio of the two mixing 

streams is kept constant, i.e., γ = 10. The same static voltages were applied to both the inlet 

reservoirs R-A and R-B, i.e., BA VV = , with the applied voltage varied from 100V to 2000V 

(i.e., E≈18~365Vcm-1).  

 

Figure 4.7 shows typical fluorescence images under different strengths of the applied static 

electric field.  As visualized clearly in the images, the interface of the two adjacent streams 

was found to be straight and “clean” as the applied static voltage is relatively low (i.e., < 

550V).  No noticeable fluctuations of the interface of the two mixing streams can be 

observed.  The fluid mixing was found to concentrate in a very thin layer along the straight 

interface of the two streams, and the fluid mixing process was found to be diffusion 

dominated.  As the applied voltage becomes greater than 550V (i. e., E>110 Vcm-1), the 

interface was found to fluctuate and generate observable convective EKI waves, which were 

found to propagate downstream. 
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Figure 4.7. The effect of the applied electric field strength on the fluid mixing (γ =10) 
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The generation of the convective waves was found to be periodic.  The shedding frequency 

of the EKI waves can be identified from the scalar temporal power spectra based on the time 

sequence of the captured fluorescence images, and the results are given in Fig. 4.8.   

 

 

 

 

 

 

   

          

 

 

Figure 4.8. The effect of the applied electric field strength on shedding frequency of EKI waves 
 

The amplitude of the interface fluctuation, i.e., the size of the convective EKI waves, was 

found to increase rapidly as the applied static voltage increased. When the applied static 

voltage is less than 1000V (i.e., E<180 Vcm-1), the interface of the two mixing streams was 

found to be “clean” and “laminar” while it was curved due to the periodic shedding of the 

EKI waves.  The shedding frequency of the EKI waves was found to decrease with the 

increasing voltage of the applied static electric field when the applied static voltage is 

relatively low (i.e., E<180 Vcm-1). 
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As the applied static voltage becomes higher than 1000V (i.e., E>180 Vcm-1), additional 

smaller EKI waves were found to be generated in the braid regions of the large convective 

EKI waves. The smaller EKI waves were found to propagate upstream instead of 

downstream.  Due to the generation of the additional smaller EKI waves, the shedding 

frequency of the convective EKI waves was found to increase slightly with the increase of 

the applied static voltage.  The generation of the convective EKI waves became much more 

random and the interface of the adjacent streams became much “dirtier” and fussier when the 

applied static voltage is higher than 1200V (i.e., E>218 Vcm-1,).  As the applied static voltage 

becomes higher than 1400V (i.e., E>255Vcm-1), the fluid mixing process in the microchannel 

was found to become much more turbulent and chaotic.  The scalar temporal power spectra 

based on the time sequence of the fluorescence images were found to become continuous 

energy spectra and no obvious peak can be identified when the applied static voltage become 

larger than 1600V (i.e., E>290 Vcm-1).   
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        a. DC=500V              b. DC=600V            c. DC=700V            d. DC=800V              e. DC=1000V 

            

       f. DC=1200V           g. DC=1400V          h. DC=1600V            i. DC=1800V             j. DC=2000V 

Figure 4.9. Ensemble averaged concentration fields by applying static electric fields with different 

amplitudes 

Figure 4.9 shows the ensemble averaged concentration fields by applying static electric fields 

with different magnitudes. The interfacial contact surface area of the two adjacent streams 

increases as the increase of the amplitude of the alternative perturbations. It should be noted 

that when the strength of the static electric fields is relatively low (DC<1400V), the 

interfacial contact surface area in the conjunction part does not change much. However, as 
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the strength of the static electric fields keeps increasing (DC>1400V), the interfacial contact 

surface area in the conjunction part begins to change.  

 

In order to quantify the effect of the strength of the applied static electric fields on the fluid 

mixing process inside the microchannel more clearly, fluid mixing efficiency under different 

strengths of the applied electric field were calculated. The interrogation area used for the 

fluid mixing efficiency calculation is shown in Figure 4.7a, and the calculated fluid mixing 

efficiency data are given in Figure 4.10.  It can be seen clearly that the fluid mixing 

efficiency increase monotonically with the increasing strength of the applied static electric 

field.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. The Mixing efficiency vs. the strength of the applied static electric field 
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4.4.3.  Manipulating the EKI waves and fluid mixing process by adding alternative 

perturbation to the applied static electric field.  

Although Shin et al.[19] demonstrated the feasibility of adding alternative perturbations to 

applied static electric fields to manipulate EKI waves for fluid mixing control, the effects of 

relevant parameters such as the frequency and amplitude of the alternative perturbation on 

the evolution of EKI waves and the resultant fluid mixing have not been fully investigated.  

In the present study, a systematic investigation was conducted to quantify the effectiveness of 

adding alternative perturbations to the applied static electric field to manipulate EKI waves 

for further enhancement of fluid mixing in the Y-shaped microchannel.  During the 

experiments, while the same static voltage of 1000V was applied to the inlet reservoirs R-A 

and R-B, an alternative perturbation was added to the inlet reservoir R-A. Therefore, the 

voltages applied to the inlets of the Y-shaped microchannel were:   

  
VVV

fVfAVVVV
DCB

ACACACDCACDCA

1000
)2sin(1000)2sin(~

==
+=+=+= ππ              (4.5)   

By changing the frequency, fAC, and amplitude, AAC, of the alternative perturbation, the 

effects of the applied alternative perturbation on the evolution of the EKI waves and the 

resultant fluid mixing efficiency in the Y-shaped microchannel were assessed. 

 

A mixing augmentation factor is introduced in the present study to quantify the augmentation 

in fluid mixing due to the addition of the alternative perturbation to the applied static electric 

field. The mixing augmentation factor, MAF, is defined as:  

                              
onlystatic

onperturbatistaticMAF
η

η += ,                                           (4.6) 
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where ηstatic only is the fluid mixing efficiency for the case without the alternative perturbation. 

ηstatic+ perturbation represents the fluid mixing efficiency when the alternative perturbation was 

added to the applied static electric field.  MAF>1.0 indicates that the fluid mixing process is 

enhanced by adding an alternative perturbation to the applied static electric field, while 

MAF<1.0 represents that the fluid mixing process is suppressed by the addition of the 

alternative perturbation.  

4.4.3a. The effect of the frequency of the alternative perturbation  

During the experiment, the amplitude of the alternative perturbation was kept constant, i.e., 

AAC =250V.  The frequency of the applied alternative electric perturbation was changed from 

0.1 Hz to 100 Hz.   

 

According to the experimental data given in Figure 4.8, the shedding frequency of the EKI 

waves under a static voltage of 1000V (E≈ 182 Vcm-1) between the inlets and the outlet of the 

Y-shaped microchannel was 0.60 Hz (i.e., fDC=0.60Hz).  Figure 4.11 shows the mixing 

augmentation factor as a function of the frequency of the alternative perturbation. While Shin 

et al. [19] suggested that adding alternative perturbation to applied static electric field can 

both enhance and suppress fluid mixing of three fluid streams in a cross-shaped 

microchannel, depending on the frequency of the added alternative perturbation.  The 

measurement results of the present study given in Figure 4.11 indicate clearly that the fluid 

mixing of the two fluid streams in the Y-shaped microchannel can always be enhanced by 

adding the alternative perturbation to the applied static electric field.  
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The mixing augmentation factor was found to reach its peak value as the frequency of the 

alternative perturbation was about 0.6Hz, which is close to the natural shedding frequency of 

the EKI waves under the applied static electric field of 1000V (E≈ 182 Vcm-1).  When the 

frequency of the applied alternative electric perturbation is too high (fAC >10 Hz) or too low 

(fAC < 0.1 Hz) compared with the natural shedding frequency of the EKI waves, the applied 

alternative perturbations were found to be able to barely affect the evolution of the 

convective EKI waves, therefore, the mixing augmentation factor was found to be slight 

bigger than 1.0.  

 

 

 

 

 

 

 

      

 

Figure 4.11. Mixing augmentation factor vs. the frequency of the alternative perturbation 
 

The measurement results of the present study indicate clearly that the fluid mixing process 

inside the Y-shaped microchannel could be most enhanced when the frequency of the applied 

alternative perturbation equals to the natural shedding frequency of the EKI waves.  This fact 
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may be explained by the concept of hydrodynamic resonance, which has been widely 

employed in many active flow control studies [52, 53]. The existence of the optimal 

perturbation frequency is expected to provide a valuable guideline for the design of an EKI 

micro-mixers for efficient fluid mixing inside microchannels.  

 

It should be noted that Shin et al. [19] suggested that the optimum frequency for the applied 

alternative perturbation should be twice of the natural shedding frequency of the convective 

EKI waves when they studied the fluid mixing of three streams in a cross-shaped channel.  

The inconsistency about the optimum frequency of the alternative perturbation between the 

present study and Shin et al.[19] is believed to be closely related to the differences in mixing 

flow arrangement (two-stream mixing vs. three-stream mixing) and number of interfaces 

(one high-conductivity-gradient layer vs. two high-conductivity-gradient layers) involved in 

the two studies.  
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Figure 4.12. Time sequence of the fluorescence images within one cycle of the alternative 

perturbation (fAC=0.60Hz) 

Figure 4.12 shows the time sequence of the fluorescence images within one excitation cycle 

of the applied alternative perturbation with the frequency of the perturbation being 0.60Hz. 

The evolution of the EKI waves and the dynamics of the EKI mixing process under the 
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excitation of the alternative perturbation were revealed clearly from the time sequence of the 

fluorescence images. 

4.4.3b. The effect of the amplitude of the alternative perturbation 

Since the fluid mixing process was found to be most enhanced when the frequency of the 

applied alternative perturbation is close to the natural shedding frequency of the EKI waves, 

the frequency of the alternative perturbation was set to be the natural shedding frequency of 

the EKI waves (0.60 Hz) when studying the effect of the amplitude of the alternative 

perturbation on the evolution of the EKI waves and the resultant fluid mixing process.  

During the experiment, the parameters of VDC=1000V, fAC=0.60Hz were chosen. The 

amplitude of the alternative perturbation was changed from 50V to 500V.  

 

 

 

 

 

 

          a. AC=50V             b. AC=100V        c. AC=200V       d. AC=300V         e. AC=400V        f. AC=500 

Figure 4.13. Ensemble averaged concentration fields by applying alternative perturbations with 

different amplitudes  

Figure 4.13 shows the ensemble averaged concentration fields by applying alternative 

perturbations with different amplitudes. The interfacial contact surface area of the two 
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adjacent streams becomes larger and wider as the increase of the amplitude of the alternative 

perturbations.  

 

 

 

 

 

 

 

  

 

 

Figure 4.14. MAF versus the amplitude of the alternative perturbation 
 

Figure 4.14 shows the profile of the measured mixing augmentation factor versus the 

amplitude of the alternative perturbation. It can be seen clearly that the fluid mixing 

efficiency is quite sensitive to the amplitude of the alternative perturbation. The mixing 

argumentation factor was found to increase almost linearly with the amplitude of the applied 

alternative perturbation when the perturbation amplitude is relatively small (<200V). The 

fluid mixing efficiency was found to increase much more rapidly as the perturbation 

amplitude became relatively large (> 200V).   
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CHAPTER 5: THE EFFECT OF GEOMETRY OF Y-SHAPED 

MICROCHANNELS ON MIXING ENHANCEMENT  

BY UTILIZING EKI 

 
In this chapter, the effect of the geometry of different microchannels on the mixing 

enhancement was investigated by utilizing the EKI. Three Y-shaped microchannels were 

used, which are termed as channel with cavities, channel with steps, and straight channel. 

The mixing efficiencies in different depths of the channel with steps were first measured. 

Then, the evolution of the convective eletrokinetic waves and the fluid mixing process were 

compared among these microchannels that were applied with static electric fields. After that, 

by adding alternative electric perturbations to the static electric fields, the mixing 

enhancement was also investigated.  

5.1.    Channel and Reagents 
 

By using the rapid-prototyping “photolithography” technique, the Y-shaped microchannels 

used in present study are made of poly-di-methyl-siloxane (PDMS) and glass, the dimension 

of which is shown in Figure 5.1. The channels are 320 µm in width and 130 µm in height. 

The two upper branches are 15.0mm in length, which form an angle of 90.0 0 , while the 

length of the main channel part is 40.0mm. The specific structures of the conjunction part of 

the three microchannels are enlarged and shown in figure 5.1 as well. Three plastic cylinders 

are glued to the top of the channel acting as reservoirs. The diameters of the reservoirs for 

two inlets, R-A and R-B, are 12mm and the one for the outlet, R-C, is 32mm. The purpose of 
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using large reservoirs here is to eliminate the pressure driven flows induced by height 

differences when doing experiments. The electrodes put into the reservoirs are made of 

platinum.  

                                                  

                 Straight channel                                Channel with cavities                         Channel with steps 

       

Figure 5.1. Schematic of the Y-shaped microchannels 
 

For all the tests, Rhodamine B was dissolved in 10mM Sodium borate solution to a final 

concentration of 0.16mM and the mixture was put into reservoir R-A while reservoir R-B 

contains Sodium borate solution (1mM) only. Thus, the conductivity ratio of the two adjacent 
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streams in the microchannels was 10. All solutions were made using deionized water and 

filterd by syringe filter unit (Millipore millex-FG, Bedford, 0.2µm) before usage. As for the 

channels, they were cleaned with deionized water and sodium borate solution successively 

prior to use. And then, to eliminate the height difference of the solutions in reservoirs, the 

channel was set still for one and a half hours before any image was recorded.  

 

5.2.    Experimental setup 

The same setup was used as explained in 4.2. 

 

5.3.    Results and Discussions  

In order to quantify the mixing processes inside the microchannels, a small interrogation area 

is selected right after the structures in the conjunction part of the microchannels. Figure 5.2 

shows the fluorescence images of the microchanels with interrogation areas on them. The 

areas are located 4.4W to the conjunction part of the microchannels and they occupy 25 х 

240 pixels.       
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Figure 5.2. The fluorescence images of the microchannels 
 

5.3.1.   The mixing process in different depths of the channel with steps 

Since the microchannels have a depth of 130µm and the depth of focus for the objective used 

in the present study is estimated to be about 5.0 μm, it is necessary to investigate the effect of 

the depth of the microchannels on mixing processes. The channel with steps was used to 

conduct this study and measured the mixing efficiencies at several depths of the 

microchannel under different static electric fields. As shown in Figure 5.3, the mixing 

efficiency does not change much at different depths. For the following study, the mixing 

processes in the middle depth of the microchannels were measured.  
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Figure 5.3. The mixing efficiency Vs the depth of the channel of steps 
 

5.3.2.   The effect of static electric field on the evolution of convective EKI waves 

A systematic investigation was conducted to study the effect of the strength of the applied 

static electric field on the evolution of the convective EKI waves and the fluid mixing 

process inside the Y-shaped microchannels. During the experiments, the same static electric 

field was applied to both the inlet reservoirs, which varied from 100V to 2000V. 

 

Figure 5.4 shows the instantaneous concentration fields of the Y-shaped microchannels under 

different strengths of the applied static electric fields. The bright side in the microchannels is 

the mixture of Rhodamine B and borate buffer of 10mM, while the dark side is the borate 

buffer of 1mM.  
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                 600V                        800V                      1000V                     1400V                     2000V    

     

            600V                        800V                        1000V                          1400V                       2000V    

                

            600V                        800V                       1000V                      1400V                       2000V    

Figure 5.4. The instantaneous fluorescence images of the Y-shaped microchannels under different 

static electric fields 
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               600V                         800V                      1000V                     1400V                      2000V    

 

             600V                         800V                         1000V                        1400V                      2000V    

           

            600V                           800V                       1000V                       1400V                       2000V    

Figure 5.5. The instantaneous concentration fields of the Y-shaped microchannels under different 

static electric fields 
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Figure 5.5 shows the instantaneous concentration fields of the Y-shaped microchannels under 

different strengths of the applied static electric field. When the applied static voltage is 

relatively weak (i.e., =600V), the noticeable fluctuations can only be found in the straight 

channel. Once the strength is increased to 800V, an obvious interfacial wave is generated and 

propagated downstream of the channel with cavities. The apparent perturbations are found in 

the channel with steps as the strength of the applied static electric field keeps increasing. The 

EKI waves of the channel with steps have much smaller amplitudes as compared with those 

of the other channels. Since all these convective EKI waves are periodic, the shedding 

frequency can be identified from the scalar temporal power spectra and the results are given 

in Figure 5.6. The straight channel and the channel with cavities have the same trend while 

the values for the channel with cavities are a little bit smaller than those of straight channel 

for most cases. The frequency for the channel with steps is much higher than the other two.  

 



 

 

60

 

0

1

2

3

4

5

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Channel with cavities
Channel with steps
Straight channel

Applied Static Voltage (V)

S
he

dd
in

g 
Fr

eq
ue

nc
y 

of
 th

e 
E

K
I W

av
es

 (H
z)

 

Figure 5.6. The frequency of electrokinetic instability Vs the static electric field 
 

By increasing the strength of the applied static voltage, additional smaller EKI waves are 

found to be generated in the braid regions of the large convective EKI waves. The smaller 

EKI waves seem to propagate upstream instead of downstream. As the applied static voltage 

becomes higher than 1600V, the fluid mixing process in the microchannels was found to 

become much more turbulent and chaotic. The scalar temporal power spectra based on the 

time sequence of the fluorescence images were found to become continuous energy spectra, 

and no obvious peak can be identified.  
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             600V                         800V                       1000V                       1400V                      2000V     

 

                600V                       800V                        1000V                       1400V                        2000V    

             

             600V                          800V                         1000V                        1400V                       2000V    

 

Figure 5.7. The ensemble averaged concentration fields of the Y-shaped microchannels under 

different strengths of the applied static electric field.  
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The ensemble averaged concentration fields of the Y-shaped microchannels under different 

static electric fields are shown in Figure 5.7. As the strength of the applied electric field 

increases, the influence area of the perturbations widens across the channels and also moves 

upstream till the conjunction part of the channels.  

  

The effect of the strength of applied static electric field on the mixing process of the 

microchannels can be quantified by calculating the mixing efficiency in the region of interest 

and the results are shown in Figure 5.8. The mixing efficiency curves follow the same trend. 

As the strength of the static electric field becomes higher, the mixing efficiency curves keep 

increasing because of the more input of the electric energy. The channel with steps has 

relatively smaller values. According to the study of Kang et al [53], a stronger and highly 

nonuniform electric field is created near the edge of the blocks inside the microchannel with 

a step. The dieletrophoretic force generated by this nonuniform electric field repels small 

dielectric particles away from the surface of the blocks. For our present study, highly 

nonuniform electric field is inevitable due to the step structure. So even though the 

Rodanmine B molecules are small in size, such force might still exit and cause the flows 

propagate downstream without mixing efficiently. As the strength of the static electric field is 

low, the mixing efficiency of the straight channel is higher than that of the channel with 

cavities, which is due to that channel with cavities needs higher strength of the static electric 

field to induce the EKI waves than the straight channel. However, when the applied static 

electric field is higher than 1250V, the mixing efficiency of the channel with cavities 

becomes higher than the straight one. There might be two reasons for such better mixing. 
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One is the vortices generated near the corners of the concave structures. And the other is that 

the concave structures give the two adjacent streams larger area to diffuse.  

           

Figure 5.8. The mixed efficiency Vs the static electric field 
 

5.3.3.  The effect of alternative electric perturbations on the mixing enhancement 

A parametric study was conducted to explore the effectiveness of using alternative electric 

fields to manipulate the convective EKI waves to further enhance fluid mixing in the Y-

shaped microchannels. During the experiments, 1000V static voltage is applied to reservoir 

R-B while the sum of a static electric field and an alternative electric field is applied to inlet 

reservoir R-A which is defined by: 

                                           )2sin(1000 ftVVV AC π+=                                   (5.1) 
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where ACV  is the magnitude of the alternating electric field imposed on the static electric 

potential and f is the frequency of the external electric field. By changing the magnitude and 

frequency of the alternative electric field, the effects of the applied alterative electric field on 

the evolution of the convective EKI waves and fluid mixing enhancement in the 

microchannels are assessed.  

5.3.3a.  The effect of the frequency of alternative electric perturbations 
 

To study the effect of the frequency of alternative electric perturbation on the mixing 

enhancement in the Y-shaped microchannels, the magnitude of the AC is chosen to be 250V 

while the frequency is changed from 0.1 to 100. The interrogation region for calculating the 

mixing efficiency is the same as that mentioned before. 

 

The relationship between the mixing augmentation factor and the frequency of the alternative 

electric field is shown in Figure 5.9. The natural frequency for the straight channel, channel 

with cavities and channel with steps under static electric 1000V only can be obtained from 

Figure 5.6, which is 0.6, 0.43 and 1.9, respectively. As increasing the frequency, for the 

channel with cavities and straight channel, mixing efficiency reaches its highest point when 

the imposed frequency of external force is the same as the natural frequency of the system.  
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Figure 5.9. The frequency of the alternative electric perturbation Vs mixing augmentation factor 
 

For both straight channel and channel with cavities, the mixing efficiency does not vary 

much when the frequency is larger than 10. However, for the channel with steps, this 

optimum frequency phenomenon is difficult to identify. The mixing frequency has relatively 

high values when frequency is near 1 and 10. It also should be noted that the channel with 

cavities has higher mixing augmentation factors than the other two channels.  Since for all 

the microchannels, the mixing augmentation factors are greater than 1, which means that the 

alternative perturbations do enhance the mixing processes in the microchannels.  
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5.3.3b.  The effect of the amplitude of the alternative electric perturbation  
 

As described above, the fluid mixing process was found to be most enhanced when the 

frequency of the applied alternative electric perturbation is close to the shedding frequency of 

the convective EKI waves for the straight channel and channel with cavities. Therefore, the 

frequency of the applied alternative electric perturbation was set to be 0.6 and 0.43 for the 

straight channel and channel with cavities. Although the channel with steps does not have 

that phenomenon, its natural frequency was still chosen as 5.9. During the experiment, the 

amplitude of the applied alternative electric perturbation was changed from 50V to 500V. 

 

The ensemble averaged concentration fields of the Y-shaped microchannels by applying 

alternative perturbations with different frequencies are shown in Figure 5.10. The interfacial 

contact surface area of the two adjacent streams becomes larger and wider as we increase the 

amplitude of the alternative perturbations.  
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                      50V                     100V                  200V                  300V                 400V                  500V 

                   

            50V                    100V                    200V                    300V                    400V                   500V  

      

          50V                      100V                    200V                     300V                    400V                    500V 

 

Figure 5.10. The ensemble averaged concentration fields of the Y-shaped microchannels by applying 

alternative perturbations with different amplitudes. 
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As shown in Figure 5.11, for all the microchannels, the mixing augmentation factors are 

greater than one which means that the alternative perturbations do enhance the mixing 

processes. Moreover, the mixing augmentation factors keep increasing with the increase of 

the magnitude of the alternative electric perturbation, which is resulted from the higher 

disturbance energy input. For the straight channel and channel with steps, their mixing 

augmentation factors are almost the same when the magnitude of the perturbation is 

relatively low (<300V). Meanwhile, the mixing augmentation factors of the channel with 

cavities increase at a higher rate than those of the other two channels.     

                 

Figure 5.11. The magnitude of the alternative electric perturbation Vs mixing augmentation factor 
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CHAPTER 6: FLOW VELOCITY MEASUREMENT WITHIN 

SURFACE WATER DROPLETS 

 

In this chapter, detailed information is provided on the flow field inside surface droplets on a 

test plate of different temperatures by using Particle Image Velocimetry (PIV) technique. To 

overcome the image distortion due to the refraction of light at the droplet surface, an image 

mapping method developed by Kang et al [33] was used (the details of which are shown in 

Appendix A). In addition, related parameters, such as contact angle and normalized droplet 

volume were also investigated.  

  

6.1.    Particle Image Velocimetry (PIV)  

Particle Image Velocimetry (PIV) is an optical method used to measure velocities and related 

properties in fluids [55, 56]. The fluid is seeded with particles which, for the purposes of PIV, 

are generally assumed to faithfully follow the flow dynamics. It is the motion of these 

seeding particles that is used to calculate velocity information.  

 

Typical PIV apparatus consists of a camera (normally a digital camera in modern systems), a 

high power laser, for example a double-pulsed Nd:YAG laser or a copper vapor laser, an 

optical arrangement to convert the laser output light to a light sheet (normally using a 

cylindrical lens), and the fluid/gas under investigation (see Figure6.1). The laser acts as a 

photographic flash for the digital camera, and the particles in the fluid scatter the light. It is 

this scattered light that is detected by the camera. 



 

 

70

 

 

Figure 6.1. Schematics of a typical PIV setup. 
 

In order to measure the fluid's velocity, at least two separate exposures must be recorded. 

This typically involves producing a pair of laser pulses which are recorded onto a pair of 

camera frames. The frames are next split in a large number of interrogation areas. It is then 

possible to calculate a displacement vector for each interrogation area with help of signal 

processing. This is converted to a velocity using the time between image exposures. 

 

6.2.    Experimental Setup  

A droplet of 5.6μl (the diameter of which is about 2.9mm) was placed on a test plate by 

squeezing a syringe which was fastened on a holder (see Figure 6.2). The liquid tested in this 

investigation was DI water with fluorescent seeding particles inside (diameter 6μm, Duke 

Scientific Coop.). The number density of the particles in the solution was about 14105.1 −× lμ . 

The test plate was placed on the top of a circulator (Neslab, Rte-211 w/c), which had a 

mixture of antifreeze and coolant (PEAK Global Life Time) as the running fluid. In order to 
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prevent disturbance from air flows in the room on the evaporation process of the droplet, a 

plexiglass chamber was designed and placed outside the test plate.  

 

A 532nm laser beam from a Nd:YAG laser (New Wave) passed through an optical slit and 

generated an approximately 600μm wide laser sheet. The laser sheet illuminated the middle 

plane of the droplet. A cooled CCD camera (SensiCam, Cooke) was used to capture the 

particle images (The laser and camera synchronization setup for PIV is shown in Appendix 

B). The depth of focus of the lens (AF MICRO NIKKRR 105mm, Nikon) attached to the 

camera was about 1 mm.  

 

Figure 6.2. The experimental setup 
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6.3.    Results and Discussions  

6.3.1.  Images of surface droplets  

Figure 6.3 - 6.7 show the average images of the surface droplets on a test plate under 

different temperatures.  Since these images are the averages of 10 actual PIV images, particle 

trajectories are formed in some of them. When the test plate temperature is at room 

temperature, 21.9°C, the droplet evaporates with a constant contact radius and a reducing 

contact angle. Vortices begin to from right after the droplet arrives on the plate and then 

becomes more apparent as time went by.  However, 20 minutes later such vortices can no 

longer be noticed and flow moves at a slow speed while the florescence particles begin 

falling down to the bottom of the droplet. Eventually, the evaporation results in a droplet 

with very small contact angle. Only a few particles are left in the middle region of the droplet 

and they are moving very slowly. The curvature change of the droplet causes a signification 

distortion which forms a very bright region on the droplet image.  

 

When the test plate temperature is 0.0°C, the droplet contact angle does not decrease. The 

vortices inside the droplet still become less and less recognizable with time and in the end 

only irrational flow movements are found inside droplet. The erratic movements of the fluid 

might be explained by the fact of water condensation on the test plate. The thin water film 

formed by such condensation merges with the droplet and causes the change of the shape of 

the droplet (see Figure 6.6), which makes it not a sphere cap anymore. This irregular shape 

produces complicated surface tension which might result in complex flow movement inside 
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the droplet. As for the cases of 15.0°C, 10.0°C, and 5.0°C, the flow pattern change happens 

in some way between these two cases.  

  
 

                                    0min                                                                        10min 

  

                                   20min                                                                       30min 

  

                                   40min                                                                       50min 

 
Figure 6.3. Images of droplet with time when test plate temperature is 21.9°C 
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                                   20min                                                                    30min 

  

                                 40min                                                                      50min 

Figure 6.4. Images of droplet with time when test plate temperature is 15.0°C 
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Figure 6.5. Images of droplet with time when test plate temperature is 10.0°C 
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Figure 6.6. Images of droplet with time when test plate temperature is 5.0°C 
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Figure 6.7. Images of droplet with time when test plate temperature is 0.0°C 
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6.3.2.   The change of evaporation and contact angle  

Figure 6.8 shows drawings and equations for the calculations of contact angleθ , contact area 

gS  and volume V using the size of droplets (x and y in the drawing). It is assumed here that 

the concave outline of the droplet is a part of a sphere [57].  

  

Figure 6.8. Measurement and calculation of droplet size 
 

                               )(tan*2 1

x
y−=θ                                                       (6.1) 

                               2xS g π=                                                                  (6.2) 
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Since the droplets were squeezed onto the test plates, their sizes were not necessarily the 

same for each case. In order to eliminate the effect of such differences on current evaporation 

study, a factor named normalized droplet volume, NV , is introduced. It is decided by the 
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actual volume of droplets with time and their initial volume. Thus, evaporation processes 

between them can be compared by this normalized number: 

                              
0V

VVN =                                                                  (6.4)     

The relationship between normalized droplet volume and time is shown below in Figure 6.9.  

When the plate temperature is 21.9°C, the fast evaporation of the droplet causes it to decrease 

lineally to about 62% of its initial size after 20 minutes. However, once the plate temperature 

drops to 15°C, the evaporation process happens at a much lower rate which results in a 

droplet 90% of its initial size at 20 minutes later. When the plate temperature is 10°C, there is 

little evaporation and the droplet size keeps constant. This phenomenon can be explained by 

the fact that the cool test plate condenses the water vapor in the air and the new water added 

to the droplet just balances off the part that is evaporated. As the temperature of test plate 

decreases to 5°C, the condensation process becomes even more prominent and it actually 

enlarges the size of the droplet gradually. When the plate temperature is 0°C, the size of the 

droplet increases more rapidly and reaches a point of a 5% increase over its initial value at 20 

minutes later.   
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Figure 6.9. Normalized droplet volume vs time.  
 

Figure 6.10 shows the change of contact angle of droplets with time. When the plate 

temperature is 21.9°C, the contact angle reduces rapidly from 99° to 81°, which is due to the 

fast evaporation process. As the plate temperature reduces to 15°C, the contact angle 

decreases almost linearly at a much lower rate. When the plate temperature is 10°C, the 

contact angle keeps constant during the first 14 minutes and then decreases lineally at a slight 

rate. As the temperature of test plate decreases to 5°C and 0°C, the condensation process 

becomes even more prominent and it enlarges its contact angle gradually.  
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Figure 6.10. Contact angle vs time.  

6.3.3.   The velocity measurement  

The two-frame cross-correlation PIV method was employed to obtain the velocity vectors in 

the middle plane of the droplets [55, 56]. The interrogation window had a size of 32 × 32 

pixels and overlapped 50%. The instantaneous velocity fields of the droplets (4 minutes after 

they were placed on the plate) are shown in Figures 6.11-6.15.  

 

When conducting PIV measurements on surface droplets, the refraction of light at the droplet 

surface caused a significant image distortion problem. For instance, Figures 6.11a shows a 

strong upward flow in the centre region and a relatively weak downward flow at the 

boundary region of the droplet. With the velocity vectors alone, the continuity requirement 
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appears to be violated. This results form the distortion of particle images due to the lens 

effect of the droplet itself. Thus, it becomes obvious why the flow field should be corrected.  

 

In Figures 6.11-6.15, the red arc represents the edge of the surface droplets for each case. 

Due to the limitation of the image mapping restoration method, the centre region of the 

droplet is well restored, while the accuracy of image restoration is not so good in the outer 

region. Only about 75% of the original region can be seen in the restored ones.  In the 

meanwhile, the vortices are placed more towards the middle of the droplets in the restored 

velocity fields.  

 

 

 

 

 

 

 

 



 

 

83

 

 

a. without distortion correction 

 

b. with distortion correction 

Figure 6.11. Instantaneous velocity distribution when the plate temperature is 21.9°C.   
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a. without distortion correction 

 

b. with distortion correction 

Figure 6.12. Instantaneous velocity distribution 4 minutes later when the plate temperature is 15.0°C.   
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a. without distortion correction 

 

b. with distortion correction 

Figure 6.13. Instantaneous velocity distribution 4 minutes later when the plate temperature is 10.0°C.   
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a. without distortion correction 

 

b. with distortion correction 

Figure 6.14. Instantaneous velocity distribution 4 minutes later when the plate temperature is 5.0°C.   
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a. without distortion correction 

 

b. without distortion correction 

Figure 6.15. Instantaneous velocity distribution 4 minutes later when the plate temperature is 0.0°C. 
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To illustrate the effect of the plate temperature on the velocity distribution inside the droplets, 

a point (x=0mm, y=0.5mm) was selected and the instantaneous upward velocity (after image 

restoration) at that location is shown Figure 6.16. The results were actually starting from 4 

minutes after the droplets arrived on the test plate. The velocity for the case of room 

temperature remains the highest which is about 0.018mm/s. As the temperature of the plate 

drops, velocity also decreases which is due to the cooling down process from the cold plate. 

However, for the cases of 5.0°C and 0.0°C, the velocity curves are almost the same.   
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Figure 6.16. The instantaneous upward velocity at the point (x=0mm, y=0.5mm), starting from 4 

minutes after the droplets’ arrival on the test plate. 
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According to the study by Ristenpart et al [41], if the substrate and liquid conductivity 

ratio Rk  is greater than 2, the consequent Marangoni flow is directed radially outward along 

the substrate (as seen in Figure 6.17b). Since the test plate used in present study was made of 

brass, the thermal conductivity of brass is 109 W/mK, while the thermal conductivity of 

water is 0.58 W/mK. By assuming the change of thermal conductivity of water due to the 

addition of florescence particles was negligible, the ratio was estimated to be about 187, 

which meant the flow pattern should follow Figure 6.17b if it was induced by the thermal 

Marangoni effect. However, the actual flow pattern was contrary to that, as shown in Figure 

6.17a.  

 

Stowell and Korgel [39] conducted surface tension measurement of chloroform solvent in 

which 3.5 and 5nm gold nanocrystals were dispersed. The surface tension of the solvent was 

found to increase with increasing particle concentration for both particle sizes. The increase 

in surface tension with increased concentration was presumably resulted from the much 

lower volatility of the nanocrystals relative to the solvent. Their discovery might help explain 

the possible reason for the present flow pattern. Even though the particles were premixed 

well with water before the experiments, they tended to sink toward the test plate due to 

gravity (the density of the particles is 1.05 g/cm3), which caused the particle concentration in 

the lower part higher than that of the upper part. Because the surface tension of the solvent 

increased with increasing particle concentration, the high surface tension pulled more 

strongly on the surrounding liquid than one with a low surface tension. The presence of a 

gradient in surface tension caused the liquid to flow away from regions of low surface 

tension and formed a flow pattern as shown in Figure 6.17a.  
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a. The present flow pattern 

 

b. The theoretical thermal Marangoni flow pattern 

Figure 6.17. Comparison of present flow pattern and theoretical thermal Marangoni flow pattern 
 

The above explanation about the cause of the present flow pattern inside surface droplets is 

only a tentative assumption. To figure out the exact reason for this phenomenon, more 

research work is suggested to be done in the future.   
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CHAPTER 7: TRANSIENT TEMPERATURE MEASUREMENTS OF 

SURFACE WATER DROPLETS 

In this chapter, the feasibility and implementation of the lifetime-based Molecular Tagging 

Thermometry (MTT) technique are demonstrated by conducting measurement of spatially-

and-temporally-resolved temperature distribution within a convectively-cooled, micro-sized, 

water droplet over an aluminum test plate.   

 

7.1 .    Fluorescence and phosphorescence for temperature measurements  

It is well known that both fluorescence and phosphorescence are molecular 

photoluminescence phenomena [58]. Compared with fluorescence, which typically has a 

lifetime on the order of nanoseconds, phosphorescence can last as long as microseconds, or 

even minutes. Since emission intensity of photoluminescence is a function of the temperature 

for some substances, both fluorescence and phosphorescence of tracer molecules may be 

used for temperature measurements.  

 

According to Beer’s Law for low concentration of the tracer molecules and unsaturated laser 

excitation [58], photoluminescence intensity, Ip, (both fluorescence and phosphorescence) 

can be expressed by following equation;  

           Φ= εCIAI ip ,          (7.1) 

where Ii is the local incident laser intensity, C the concentration of tracer molecules, ε  the 

absorption coefficient, and Φ the quantum efficiency.  A is the fraction of the 

photoluminescence emission collected by a CCD detector.  
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7.1.1. LIF-based techniques for droplet temperature measurements  

Laser-induced fluorescence (LIF) techniques have been widely used for temperature 

measurements of liquid droplets for combustion applications [59-60]. For some fluorescent 

molecules, such as Rhodamine B, the absorption coefficient and quantum efficiency are 

temperature dependent. Therefore, in principle, fluorescence intensity may be considered to 

depend only on temperature as long as the incident laser excitation is uniform and the 

concentration of the tracer molecules remains constant in the measurement region. In practice, 

however, it is very difficult, if not impossible, to ensure a temporally-and-spatially non-

varying incident laser excitation or/and uniform molecular tracer concentration in the 

measurement region for heat transfer studies due to the temperature dependence of the index 

of refraction for the work fluid.  The issue could become much more serious for the transient 

temperature measurements within small water droplets over solid surfaces since the curved 

droplet surfaces would cause tremendous variation of laser illumination (i.e., refraction, 

reflection and scattering) in the measurement domain. Photobleaching effect may also 

become significant due to the small size of the water droplets. Such issues may cause 

significant errors in the droplet temperature measurement.  

 

In order to decouple the effects of the non-uniformity of incident laser illumination and the 

molecular tracer concentration (due to photo bleaching) on fluid temperature measurement, 

several ratiometric LIF techniques have been developed recently [59-64]. The ratiometric 

LIF techniques developed for the temperature measurement of liquid droplets are usually 

called two-color LIF technique [59-60, 64].  The two-color LIF technique achieves 

temperature measurements by taking advantage of the differences in temperature sensitivity 
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of fluorescence emission at two different bands of the same fluorescent dye.  After taking the 

ratio of the fluorescence emission intensity simultaneously collected at two different 

emission bands (i.e., two colors), the effects of the non-uniformity of incident laser 

illumination and concentration of the fluorescent tracer molecules on the droplet temperature 

measurements can be eliminated.   

 

It should be noted that it usually requires two cameras with various mirrors, optical filters 

and lens in order to capture two fluorescence images at the same time to implement the two-

color LIF method.  It also requires a careful image registration or coordinate mapping 

procedure in order to establish a spatial correlation between the two acquired fluorescence 

images acquired by two difference cameras for the LIF intersity ratio calculation. The optical 

distortions due to the different mirrors, filters and lenses mounted in the fronts of different 

cameras can cause ambiguities to locate corresponding fluorescent molecules in the two 

acquired fluorescence images for the LIF intensity ratio calculation. This would result in 

uncertainties for the droplet temperature measurements.  

 

By using LIF-based thermometry techniques, the total fluorescence intensity (integration of 

all of the fluorescence emission along time axis) is usually collected for the temperature 

measurement due to the short emission lifetime of fluorescence (on the order of 

nanoseconds).  Based on the calibration curves of the collected fluorescence intensity (or 

intensity ratio) vs. temperature, the collected flourescence intensity (or intensity ratio) 

distributions are converted to fluid temperture distributions. Therefore, LIF-based techniques 

are actually intensity-based techniques for temperature measurement.  
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7.1.2. Lifetime-based techniques for droplet temperature measurements  

Laser-induced phosphorescence (LIP) techniques have also been suggested recently to 

conduct temperature measurements of “in-flight” or levitated liquid droplets [65-66]. 

Compared with LIF techniques, the relatively long lifetime of phosphorescence could be 

used to prevent interference from scattered/reflected light and any fluorescence from other 

substances (such as from solid surfaces) that are present in the measurement area, by simply 

putting a small time delay between the laser excitation pulse and the starting time for 

phosphorescence image acquisitions. Furthermore, LIP was found to be three to four times 

more sensitive to temperature variation compared with LIF [65-66], which is favorable for 

the accurate measurements of small temperature differences within small liquid droplets.  

 

The MTT technique described here is a LIP-based technique, which can be considered as an 

extension of the Molecular Tagging Velocimetry and Thermometry (MTV&T) technique 

developed by Hu & Koochesfahani [67]. Unlike most commonly-used LIF-based techniques 

that rely on information obtained from the “intensity axis” of the fluorescence emission 

process, the lifetime-based MTT technique described in the present study rely on the 

information contained in the “time axis” of the phosphorescence emission process, as 

temperature change would cause significant variation in the phosphorescence lifetime for 

some phosphorescent dyes. For MTT measurement, a pulsed laser is used to “tag” 

phosphorescent tracer molecules (e.g. phosphorescent dye) premixed in the working fluid.  

The long-lived LIP emission is imaged at two successive times after the same laser excitation 

pulse. The LIP emission lifetime distribution can be estimated from the intensity ratio of the 

acquired phosphorescence image pair. While the size of a small droplet can be determined 
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from the acquired phosphorescence images, the temperature distribution within the small 

water droplet can be derived by taking advantage of the temperature dependence of 

phosphorescence lifetime.   It should be noted that both the present MTT measurement and 

the work of Omrame et al. [65-66] are based on a similar idea of achieving temperature 

measurement by taking advantage of temperature dependence of phosphorescence lifetime. 

The work of Omrame et al. [65-66] is only a single-point feasibility study using 

photomultiplier-based instrumetation.  However, the present work is the planar temperature 

field measurement to achieve simultaneous measurements of droplet size and temporally-

and-spatially resolved temperature distribution within a small water droplet based on direct 

imaging of phosphorescence lifetime with a conventional image detecting CCD camera. 

 

The technical basis of the lifetime-based MTT measurements is given briefly at here. 

According to quantum theory, the intensity of phosphorescence emission decays 

exponentially [58]. As described in Hu et al. [67],  for a dilute solution and unsaturated laser 

excitation, the collected phosphorescence signal (S) by using a gated imaging detector with 

integration starting at a delay time to after the laser pulse and a gate period of δt can be given 

by: 

( ) ττδε //1 o
pi

tt eeCAIS −−−Φ=                             (7.2) 

where A is a parameter representing the detection collection efficiency, Ii is the local incident 

laser intensity, C is the concentration of the phosphorescent dye (the tagged molecular tracer), 

ε is the absorption coefficient, and Φp is the phosphorescence quantum efficiency. The 
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emission lifetime τ  refers to the time at which the intensity drops to 37% (i.e. 1/e) of the 

initial intensity. 

 

In general, the absorption coefficient ε, quantum yield Φp, and the emission lifetime τ are 

temperature dependent, resulting in a temperature-dependent phosphorescence signal (S).  

Thus, in principle, the collected phosphorescence signal (S) may be used to measure fluid 

temperature if the incident laser intensity and the concentration of the phosphorescent dye 

remain constant (or are known) in the region of interest.  It should be noted that the collected 

phosphorescence signal (S) is also the function of incident laser intensity (Ii) and the 

concentration of the phosphorescent dye (C).  Therefore, the spatial and temporal variations 

of the incident laser intensity and the non-uniformity of the phosphorescent dye in the region 

of interest would have to be corrected separately in order to derive quantitative temperature 

data from the acquired phosphorescence images.  To overcome this problem, Hu & 

Koochesfahani [67] developed a lifetime-based thermometry to eliminate the effects of 

incident laser intensity and concentration of phosphorescent dye on temperature 

measurements.  

 

The lifetime-based thermometry works as follows: As illustrated in Figure 7.1, 

phosphorescence emission of the tagged tracer molecules is interrogated at two successive 

times after the same laser excitation pulse. The first image is detected at the time t=t0 after 

laser excitation for a gate period tδ  to accumulate the phosphorescence intensity S1, while 

the second image is detected at the time t= t0+Δt for the same gate period to accumulate the 
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phosphorescence intensity S2.  It is easily shown, using Equation (7.2), that the ratio of the 

two phosphorescence signals (R) is given by: 

                                                 
τ/

1

2 te
S
SR Δ−==                              (7.3)  

 
 

Figure 7.1. Timing chart for lifetime-based thermometry technique. 

In other words, the intensity ratio of the two successive phosphorescence images is only a 

function of the phosphorescence lifetime τ, and the time delay Δt between the images, which 

is a controllable parameter.  This ratiometric approach eliminates the variations in the initial 

intensity and, along with it, any temporal and spatial variations in the incident laser intensity 

(e.g. reflecting and/or scattering) and non-uniformity of the dye concentration (e.g. due to 

bleaching).  The phosphorescence lifetime can be calculated according to  

)/ln( 21 SS
tΔ

=τ         (7.4) 
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For a given molecular tracer and fixed Δt value, Equation (7.3) defines a unique relation 

between phosphorescence intensity ratio (R) and fluid temperature T, which can be used for 

thermometry as long as the temperature dependence of phosphorescence lifetime is known. 

 

7.2.    Phosphorescent molecular tracers and experimental setup  

7.2.1. Phosphorescent molecular tracers used in the present study 

The phosphorescent molecular tracer used in the present study is phosphorescent triplex (1-

BrNp⋅Mβ-CD⋅ROH). The phosphorescent triplex (1-BrNp⋅Mβ-CD⋅ROH) is actually the 

mixture compound of three different chemicals, which are lumophore (indicated collectively 

by 1-BrNp), maltosyl-β-cyclodextrin (indicated collectively by Mβ-CD) and alcohols 

(indicated collectively by ROH). Further information about the chemical and 

photoluminescence properties of the phosphorescent triplex is available at [68-71]. In the 

present study, we used a concentration of 2×10−4 M for Mβ-CD, a saturated (approximately 

1×10−5 M) solution of 1-BrNp and a concentration of 0.06 M for the alcohol (ROH), as 

suggested by Gendrich et al. [70].     

 

For a given molecular tracer, such as phosphorescent triplex 1-BrNp⋅Mβ-CD⋅ROH used in 

the present, and fixed Δt value, Equation (7.4) can be used to calculate the phosphorescence 

lifetime of the tagged molecules on a pixel-by-pixel basis, which would  resulting in a 

distribution of the phosphorescence lifetime over a two-dimensional domain. Therefore, with 

a calibration profile of phosphorescence lifetime vs. temperature as the one shown in Fig. 7.2, 

a two-dimensional temperature distribution can be derived from a phosphorescence image 
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pair acquired after the same excitation laser pulse (The detailed procedures of MTT 

calibration test can be found in Appendix C).  
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Figure 7.2. Variation of phosphorescence lifetime vs temperature 

 

7.2.2. Experimental setup 

Figure 7.3 shows the schematic of the experimental setup used for the demonstration 

experiments.  A micro-sized water droplet was placed on an aluminum test plate. 

Phosphorescent triplex 1-BrNp⋅Gβ-CD⋅ROH was premixed within the water droplet.  A laser 

sheet (~ 200 μm in thickness) from a pulsed Nd:YAG at quadrupled wavelength of 266nm 

was used to tag the premixed 1-BrNp⋅Gβ-CD⋅ROH molecules along the middle plane of the 

small water droplet, as shown in Fig. 7.3.  A 12-bit gated intensified CCD camera (PCO 

DiCam-Pro) with a fast decay phosphor (P46) was used to capture the phosphorescence 

emission (The detailed PCO DiCam-Pro camera performance tests can be found in Appendix 
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D). A 10X objective (Mitsutoyo infinity-corrected) was mounted in the front of the camera. 

The camera was operated in the dual-frame mode, where two full-frame images of 

phosphorescence were acquired in a quick succession after the same laser excitation pulse. 

The camera and the pulsed Nd:YAG lasers were connected to a workstation via a digital 

delay generator (BNC 555 Digital Delay-Pulse Generator), which controlled the timing of the 

laser illumination and the image acquisition. 

 

 

Figure 7.3. Experimental setup 

 

7.3.    Results and discussions  

Figure 7.4 shows a typical phosphorescence image pair of the small water droplet placed on 

the aluminum test plate.  The first image was acquired at 0.5 ms after the laser pulse and the 
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second image at 3.5 ms after the same laser pulse with the same exposure time of 1.5 ms for 

the two image acquisitions.  As described above, since the time delays between the laser 

excitation pulse and the phosphorescence image acquisitions can eliminate scattered/reflected 

light and any fluorescence from other substances (such as from solid surface) in the 

measurement region effectively, the phosphorescence images of the water droplet are quite 

“clean”. With the calibration profile of phosphorescence lifetime vs. temperature shown in 

Figure 7.2, a two-dimensional, instantaneous temperature distribution within the water 

droplet can be derived from the phosphorescence image pair. 

 

 
Figure 7.4. A typical phosphorescence image pair acquired for MTT measurement 

 

For the first demonstration experiment, no coolant was placed underneath the aluminum test 

plate. A micro-sized water droplet with its temperature of 20.5oC (room temperature) was 

placed on the aluminum test plate, and the surface temperature of the test plate was as the 

same as the room temperature of 20.5oC, measured by using a thermocouple.  Figure 7.5(a) 

shows the profiles of the acquired phosphorescence intensity, within a small region of 10 

pixel  10 pixels (about 14μm  14μm in physical plane) near the center of the water 

a). The first phosphorescence image 
acquired at 0.5ms after laser pulse 

b). The second phosphorescence image 
acquired at 3.5ms after the same laser 
pulse 

AAlluummiinnuumm tteesstt ppllaattee  AAlluummiinnuumm  tteesstt  ppllaattee

a b

~600μ
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droplet, for the first and second phosphorescence images as a function of the numbers of the 

excitation laser pulse. The acquired phosphorescence intensities were found to decay 

monotonically with the increasing numbers of excitation laser pulse due to the 

photobleaching effect. However, the calculated phosphorescence lifetime, shown in Figure 

7.5(b), remains constant, as expected, at a level corresponding to the room temperature of 

20.5oC. The Root-Mean-Square (RMS) value of the measured temperature was found be 

about 0.35 oC. 

 

 
a. Acquired phosphorescence intensities vs. number of laser pulse  

 

0

20

40

60

80

100

120

140

160

0 40 80 120 160 200 240 280 320 360

Intensity of second image
Intensity of first image 

Laser Pulse

Ph
os

ph
or

es
ce

nc
e 

In
te

ns
ity

 (a
cc

ou
nt

s)



 

 

103

 

 
b. Derived phosphorescence lifetime and temperature vs. numbers of laser pulse 

Figure 7.5. Compensation of photobleaching effect 

 

Then, the surface temperature of the aluminum test plate was maintained at 2.0 oC (measured 

by using a thermocouple) by placing coolant underneath the aluminum test plate to 

demonstrate the feasibility and implementation of the lifetime-based MTT technique for 

measurements of transient temperature distribution within a convectively-cooled, micro-sizes 

water droplet on the test plate.  A small water droplet (~ 0.6μ liter in volume) with initial 

temperature of 20.5oC (room temperature) was placed on the aluminum test plate. The water 

droplet would be convectively cooled after it was placed on the cold test plate. 
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   a). at t=60s       b). at t=80s 

   

   c). at t=100s       d). at t=120s 

   

e). at t=140s       f). at t=160s 
 

Figure 7.6. Instantaneous temperature distributions within the convectively-cooled water droplet 
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Figure 7.6 shows the measured instantaneous temperature distributions within the 

convectively-cooled water droplet as a function of the time after the droplet was placed on 

the test plate.  Due to the relatively high temperature sensitivity of the present lifetime-based 

MTT technique, the small temperature difference within the small water droplet can be 

revealed clearly from the measured instantaneous temperature distributions. As it is expected, 

the regions with lower temperature values were found to concentrate mainly near the bottom 

the water droplet.  As the time goes by, more and more dark regions, i.e., lower temperature 

regions, were found in the measured instantaneous temperature distributions, which indicates 

the temperature of the water droplets became lower and lower due to the convective cooling. 

 

Figure 7.7 shows the profile of the spatially-averaged temperature of the water droplet as a 

function of the time, which was calculated based on the time sequence of the measured 

instantaneous temperature distributions. The characteristics of the unsteady heat transfer 

process within the convectively cooled water droplets were revealed quantitatively from the 

evolution of the spatially-averaged temperature of the water droplet. Since initial temperature 

of the water droplet (20.5 oC) was significantly higher than that of the cold aluminum test 

plate (2.0 oC), the spatially-averaged temperature of the water droplet was found to decrease 

rapidly and monotonically after it was placed on the cold aluminum test plate. The 

temperature measurement results given in Figure 7.7 also revealed that a thermal equilibrium 

state would be reached at about 150 seconds later after the water droplet was placed on the 

cold test plate. The spatially-averaged temperature of the water droplet would not decrease 

anymore when the thermal equilibrium state was reached. The spatially-averaged 
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temperature of the water droplet was found to be about 6.0 oC after the thermal equilibrium 

state was reached. 

 
Figure 7.7. Spatially-averaged temperature of the small water droplet vs. time 

 

As demonstrated by the measurement results shown above, the lifetime-based MTT 

technique described in the present study is capable of providing detailed measurements to 

quantify the unsteady mass and heat transfer processes within convectively-cooled, small 

water droplets on solid surfaces. Such information is highly desirable to elucidate underlying 

physics to improve our understanding about micro-physical phenomena for various 

microfluidics studies.  
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

In this chapter, the major objectives met in this dissertation are summarized and discussed, 

and future work with regard to mixing enhancement in microchannels and heat and mass 

transfer in surface droplets is also suggested.  

 

8.1. Two-stream mixing enhancement study in a Y-shaped microchannel 

          by utilizing electrokinetic instabilities (EKI)  

Epifluorescence microscopy technique was used to conduct qualitative flow visualization and 

quantitative scalar concentration field measurements to quantify the fluid mixing process 

inside a Y-shaped microchannel in terms of scalar concentration distribution, shedding 

frequency of the EKI waves and scalar mixing efficiency.  

 

The critical strength of the applied static electric field decreases rapidly with the increasing 

conductivity ratio. The amplitude of the interface fluctuation, i.e., the size of the convective 

EKI waves, was found to increase rapidly as the applied static voltage increased, which 

results in that the fluid mixing efficiency increases monotonically with the increasing 

strength of the applied static electric field.  

 

The fluid mixing process inside the Y-shaped microchannel can be most enhanced when the 

frequency of the applied alternative perturbation equals to the natural shedding frequency of 

the EKI waves.  This fact may be explained by the concept of hydrodynamic resonance, 

which has been widely employed in many active flow control studies. The fluid mixing 
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efficiency is also quite sensitive to the amplitude of the alternative perturbation. The mixing 

argumentation factor was found to increase almost linearly with the amplitude of the applied 

alternative perturbation when the perturbation amplitude is relatively small (<200V). The 

fluid mixing efficiency was found to increase much more rapidly as the perturbation 

amplitude becomes relatively large (> 200V).   

 

To the author’s best knowledge, this work represents the first two-stream mixing 

enhancement study in Y-shaped microchannels by utilizing electrokinetic instabilities (EKI).  

 

8.2.  The study of the effect of the geometry of different Y-shaped 

microchannels on mixing enhancement by utilizing EKI 

Three Y-shaped microchannels were used which are termed as channel with cavities, channel 

with steps and straight channel. Since the mixing efficiencies in different depths of the 

channel with steps do not change much, the middle depth of the microchannels was selected 

to study mixing process. As the strength of the static electric field is low, the mixing 

efficiency of the straight channel is higher than that of the channel with cavities, which is due 

to the fact that channel with cavities needs higher strength of the static electric field to induce 

the EKI waves than the straight channel. However, when the applied static electric field is 

higher than 1250V, the mixing efficiency of the channel with cavities becomes higher than 

the straight one. The channel with steps has relatively smaller values when compared to the 

other two microchannels.  
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For both straight channel and channel with cavities, mixing efficiency reaches its highest 

point when the imposed frequency of external force is the same as the natural frequency of 

the system. However, for the channel with steps, this optimum frequency phenomenon is 

difficult to identify. The mixing frequency has relatively high values when frequency is near 

1 and 10. It also should be noted that the channel with cavities has higher mixing 

augmentation factors than the other two channels.  

 

For all the microchannels, the mixing augmentation factors keep increasing with the increase 

of the magnitude of the alternative electric perturbation. For straight channel and channel 

with steps, their mixing augmentation factors are almost the same when the magnitude of the 

perturbation is relatively low (<300V). Meanwhile, the mixing augmentation factors of the 

channel with cavities increase at a higher rate than those of the other two channels.    

  

For all the microchannels, the mixing augmentation factors are greater than 1 which means 

that the alternative perturbations do enhance the mixing processes in the microchannels. 

 

This work represents the first experimental study on the effect of the geometry of different 

Y-shaped microchannels on mixing enhancement by combining alternative perturbations and 

static electric field together as EKI waves’ generation sources. All the previous studies either 

focus on using AC and DC together to one particular microchannel or applying static electric 

field only to several microchannels. To the author’s best knowledge, no one has ever 
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combined both AC and DC together as the EKI waves generation sources to study different 

types of Y-shaped microchannels at the same time.  

 

8.3.  Velocity measurement in surface droplets on a test plate of different 

temperatures   

The velocity distributions inside surface droplets on a plate of different temperatures (from 

21.9°C to 0°C) were measured by using the Particle Image Velocimetry (PIV) technique. The 

significant image distortion problem caused by the refraction of light at the droplet surface 

was corrected by an image mapping method. The flow pattern found in present study was 

contrary to the theoretical thermal Marangoni flow pattern. The possible reason for this might 

be that surface tension gradient was formed on the droplet because of particle concentration 

gradient. Even though the particles were premixed well with water before the experiments, 

they tended to sink toward the test plate due to gravity, which caused the particle 

concentration in the lower part is higher than that of the upper part. Because the surface 

tension of the solvent increases with increasing particle concentration, the high surface 

tension pulls more strongly on the surrounding liquid than one with a low surface tension. 

The presence of a gradient in surface tension caused the liquid to flow away from regions of 

low surface tension and formed a flow pattern as shown in Figure 6.2a. 

 

Contact angle and normalized droplet volume were also investigated in present study. As the 

decrease of plate temperature, droplets became less likely to evaporate. At the same time, the 
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condensation process became more prominent, which turned water vapor into liquid water 

and enlarged both volume and contact angle of droplets.  

 

To compare the effect of plate temperature on the velocity magnitude, a point was selected in 

the middle of the droplet. For all the cases, the magnitude of the velocity decreased with time 

while the velocity for the case of room temperature remained the highest. As the temperature 

of the plate dropped, velocity also decreased which was due to the cooling down process 

from the cold plate. However, for the cases of 5.0°C and 0.0°C, the velocity curves were 

almost the same.   

 

To the author’s best knowledge, this work represents the first experimental investigation of 

the effect of plate temperature on velocity distributions inside surface droplets.  

 

8.4.  Transient temperature measurement inside surface droplets by using 

Molecular Tagging Thermometry (MTT)  

For MTT technique, only one laser pulse and one dual-frame CCD camera is required which 

is much simpler compared to LIF technique. The small time delay between the illumination 

laser pulse and the phosphorescence image acquisition can effectively eliminate all the 

effects of scattered/reflected light and any fluorescence from other substances that are present 

in the measurement region. Furthermore, the high temperature sensitivity of the present 

lifetime-based MTT technique is highly favorable for the accurate measurements of small 

temperature differences within small water droplets.  
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For the first demonstration experiment, no coolant was placed underneath the test plate. A 

micro-sized water droplet was placed on the aluminum test plate, and both the droplet 

temperature and the surface temperature of the test plate were the same as the room 

temperature of 20.5oC.  The acquired phosphorescence intensities were found to decay 

monotonically with the increasing numbers of excitation laser pulse due to the 

photobleaching effect. However, the calculated phosphorescence lifetime remains constant, 

at a level corresponding to the room temperature of 20.5oC. The Root-Mean-Square (RMS) 

value of the measured temperature was found be about 0.35 oC. For the second demonstration 

experiment, the surface temperature of the aluminum test plate was maintained at 2.0 oC and 

a small water droplet with initial temperature of 20.5oC was placed on the aluminum test 

plate. Due to the relatively high temperature sensitivity of the present lifetime-based MTT 

technique, the small temperature difference within the small water droplet can be revealed 

clearly from the measured instantaneous temperature distributions. As it is expected, the 

regions with lower temperature values were found to concentrate mainly near the bottom the 

water droplet.  As the time goes by, more and more dark regions, i.e., lower temperature 

regions, were found in the measured instantaneous temperature distributions, which indicates 

the temperature of the water droplets became lower and lower due to the convective cooling. 

 

This work represents the first transient temperature measurement in surface droplets by using 

Molecular Tagging Thermometry (MTT) technique.  
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8.5. Future work  

As for the microchannels, some research work is suggested to be done in the future. 

Although three different Y-shaped microchannels were designed in the present study, the 

main channel part is still straight to some degree. In order to further enhance the mixing 

efficiency in Y-shaped microchannels, a zigzag shape can be designed at the conjunction part 

of two inlet channels.  

 

As for the surface droplets, more work is needed to elucidate the exact cause for the present 

flow pattern.  Also, the study of surface droplets’ phase change process from liquid to solid 

has an important application directly related to aircraft icing. Lifetime-based molecular 

tagging thermometry (MTT) technique can be used to quantify important ice growth physical 

processes such as unsteady heat transfer process within water droplets or ice crystals and 

phase change process of super-cooled water droplets over solid surfaces. In addition, since 

present study only focuses on droplets on a cooling plate, considering that there are lots of 

droplet applications on heating plates, more temperature and velocity measurements need to 

be conducted with droplets on a heating plate. At the same time, since the evaporation 

process of surface droplets also depends on humidity, the velocity and temperature 

distributions inside surface droplets under different humilities can be quantified in the future.  

Besides, since the temperature of the plate affects the velocity distributions inside the 

droplets, it might affect deposition pattern as well, which would also be an interesting topic 

to study.  
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APPENDIX A: DROPLET DISTORTION CORRECTION 
 

When conducting PIV measurements on surface droplets, the refraction of flight at the 

droplet surface causes a significant image distortion problem. Figure A-1(a) shows a typical 

image of seed particles in a cross-sectional plane of an evaporating droplet and the velocity 

vectors obtained with the PIV method. Figure A-1(b) shows a strong upward flow in the 

centre region and a relatively weak downward flow at the boundary region of the droplet. 

With the velocity vectors alone, the continuity requirement appears to be violated. This 

results form the distortion of particle images due to the lens effect of the droplet itself. Thus, 

it becomes obvious why the flow field should be corrected.  

 

 

(a) 
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(b) 

Figure A-1. PIV image and velocity result of surface droplet without distortion correction 
 

Several researchers have worked out a ray tracing method to solve the problem [35, 36], the 

detailed derivation process of which is explained in the following contents.  

 

Figure A-2. Tracing of a ray normally incident to the object plane. 
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As shown in Figure A-2, the rays are refracted as they pass through the droplet surface. The 

incident and the transmitting angles of a ray passing through the droplet surface are related 

by the following Snell’s law of refraction 

                      aadd nn ψψ sinsin =                                                      (1) 

where dn  and an  are the refractive indices of air and the fluid inside the droplet, respectively, 

and aψ  and dψ  are the respective incident and transmitting angles of the rays.  

 

The geometrical relationship between the point Pi on the image plane and the point Po on the 

object plane (see Figure A-3) for an axisymmetric droplet is derived. We introduce the(x, y, z) 

Cartesian coordinate system and the(r, θ, φ) spherical coordinate system which have the 

origin at the centre of the base circle of the droplet. The unit vectors in the x, y and z 

directions are denoted by î , ĵ and k̂ , and those in the r, θ and φ directions are denoted by re  , 

θe  and φe , respectively.  
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Figure A-3. Coordinate system and the vector relationship at the surface of the droplet 
 

 

The shape of an axisymmetric droplet can be represented by the function F(r, θ) defined as 
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                       0)(),( =−= θςθ rrF                                                     (2) 

The shape function )(θς is represented by a sum of the cosine series as shown below 

                       ∑
=

+≅+=
N

k
k bRkbR

1
coscos)( θθθς                            (3) 

The droplet surface is usually well represented by θcosbR + , and all the higher order terms 

of the cosine series are neglected for simplicity of analysis. The unknown constants R and b 

are determined using a digitized image of the droplet. 

 

A point '
iP is defined as the projected point of iP  onto the object plane. The vectors '

iOP , 

'
sOP , '

oOP  are written as: 

                     jyixOP iii
ˆˆ' +=                                                             (4) 

                     kzjyixOP ssss
ˆˆˆ' ++=                                                  (5) 

                      jyixOP ooo
ˆˆ' +=                                                            (6) 

Since is xx =  and is yy = and sP  is on the droplet surface, we can obtain unknown sz  for 

given ix  and iy  by using equation (2) and (3)  

                       
s

s
ss r

by
RbRr +=+= θcos  

Where 2/1222 )( ssss zyxr ++= . From the above equation, it becomes 

                      
2

42
s
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byRR
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=                                                      (7)          

And  
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                      222
ssss yxrz −−=                                                         (8) 

Let si PPA ≡
r

 and os PPB ≡
r

, then the vector A
r

 is represented, in both the Cartesian and the 

spherical coordinate systems, as  

                     φθ φφθφθ eeekA sssrss ˆsinˆcoscosˆcossinˆ −−−=−=
r

      (9) 

where 

                    
s
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s r
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=θcos                                                                        (10)      
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22

cos
ss

s
s

zx

z

+
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22

sin
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The vectors A
r

, B
r

 and N
r

exist on the same plane S, in with N
r

 denotes the outward unit 

normal vector on the droplet surface. From the shape function for the droplet shown in 

equation (3), N
r

 becomes  

                     F
FN

∇
∇

=
r

                                                                        (14) 

where     

                    θθ
θ

θ
e

r
beeF

r
e

r
FF rr ˆsinˆˆ1ˆ +=

∂
∂

+
∂
∂

=∇                       (15) 

and   
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r

brF θ222 sin+
=∇                                                   (16) 

Thus  
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θ
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br
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r
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A unit vector normal to the plane S becomes AND
rrr

×= . If we define a vector C
r

 which is 

parallel to the plane S and normal to the vector A
r

, it becomes ( see figure 4) 
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The common factor between the î  and ĵ  terms of equation (18), after substitution of iN , 

jN  and kN  and some simplification, will be defined as  

               
222222 )sincos()cos(sinsin

1
θθθφθ brbr

f M
−++

=      (19) 

Thus we have  
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The line passing through the points sP  and oP  having the direction vector B
r

is written as 

                        
z

s

y

s

x

s

B
zz

B
yy

B
xx −

=
−

=
−

                                                 (21) 

where xB , yB  and kB  are the vector components of B
r

in the Cartesian coordinate system. 

The coordinate of the intersecting point between the line and the plane z=0 (i.e., oP  becomes  
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APPENDIX B: LASER AND CAMERA SYCHRONIZATION SETUP 

FOR PIV 

                             

 
Figure B-1. The synchronization setup for laser and camera 

 

 

 

 

 

 

 

 

     BNC Delay Generator 

  Fire Lamp   Fire Lamp Q-Switch Q-Switch 

Nd:Yag 
Laser #1 

Nd:Yag 
Laser #2    SensiCam 
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   A    B    E    C    D 

Note: A, B, C, D and E are output channels of the Delay Generator 
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     The following timing settings are default values used for general PIV measurements: 

Pulse Output Channel Time Delay Pulse Width 

Channel A (to flash lamp #1) 0 100 μs 

Channel B (to Q-switch #1) 200 μs 2 ms 

Channel C (to flash lamp #2) tΔ for PIV measurement 100 μs  

Channel D (to Q-switch #2) tΔ +200 μs 2 ms 

Channel E* (to Sensicam 

Camera) 
103 μs ( edt ) 100μs ( ewt ) 

 
Table B-1. The timing setting for PIV measurement 

       

 * Note:  following requirement should be met for the timing setting of the Channel E (time 

delay, edt  and pulse width, ewt ) in order to make sure that the two laser pulses can be imaged 

at two PIV image frames: 

200 sμ + 130 ns < (<1 sμ  delay of camera) + edt + ewt  < tΔ + 200 sμ - 70ns 
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APPENDIX C: CALIBRATION FOR MTT SOLUTION 

Figure C-1 shows the schematic setup of the calibration procedure employed to quantify the 

relative phosphorescence signal R, defined in Eq. 7.3, for 1-BrNp•Mb-CD•ROH. A Nd-Yag 

laser (wavelength k=266nm) with appropriate optics was used to generate a laser sheet 

(thickness about 1 mm) to illuminate a cube-shaped test cell (about 2 l in volume) containing 

an aqueous solution of 1-BrNp•Mb-CD•ROH complex. The apparatus was placed on a 

heating plate and a stirring rod was used to achieve thermal equilibrium in the test cell. An 

RTD probe (Hart Scientific Model 1502A, temperature accuracy±0.01°C) was placed in one 

corner of the apparatus to measure the actual temperature in the test cell. During the 

experiment, the temperature uniformity inside the test cell was checked and was found to be 

within 0.1°C.   

 

Figure C-1. The setup for MTT solution calibration 
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A 12-bit, 1,280×1,024 pixels, an intensified CCD camera (PCO DiCam-Pro) was used to 

capture the phosphorescence emission. The laser and the camera were synchronized using a 

digital delay generator (BNC Model565), which controlled the delay time to between the 

laser pulse and the start of image capture, and the integration period Δt. The phosphorescence 

images were subsequently transferred to a host computer for analysis. In the present study, 

the exposure time was set to a fixed value of Δt = 1.5 ms. To acquire the calibration data, the 

aqueous solution of 1-BrNp•Mb-CD•ROH was first heated to a predetermined temperature 

level. After thermal equilibrium was established, the phosphorescence images were acquired 

as a function of time delay to. The process was repeated for different solution temperatures.  
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Figure C-2. Variation of phosphorescence lifetime vs temperature 

 
Figure C-2 depicts the measured phosphorescence life time curves at several temperature 

levels. It can be seen that the life time of the 1-BrNp•Mb-CD•ROH complex increases as the 

drop of the solution temperature.  
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APPENDIX D: PERFORMANCE OF DICAM PRO INTENSIFIED 

CAMERA 

An intensified camera has an added intensifier to the CCD and typically exhibits a non-linear 

gain response. This is especially a concern for the MTT technique where the intensity decay 

of the image is used to infer temperature information. Thus, characterization of the intensifier 

is important.  

 

In the present work, to fully understand Dicam Pro intensified camera performances, both 

single shot mode and double shot mode were studied. During the experiments, an electric 

bubble was used to do illumination. A paper sheet with different grey level was used as 

object for image recording (see figure D-1). 128 images were averaged for each case in order 

to reduce the noisy level.  

 
 

Figure D-1. The image of paper sheet with different grey level 
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D.1.  Single Shot Mode 

D.1a. exposure effect 
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Figure D-2. The intensity ratio curves (exposure time effect) 
 

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000

y=x
Exposure time 600μs
Exposure time 500μs
Exposure time 400μs
Exposure time 300μs
Exposure time 200μs

Input Intensity

O
ut

pu
t I

nt
en

si
ty

Gain 90%, Aperture 2.8

 

Figure D-3. Response of  Dicam-Pro Camera (exposure time effect) 
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Figure D-4. The intensity ratio curves (exposure time effect) 
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Figure D-5. Response of the Dicam-Pro Camera (exposure time effect) 
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D.1b. Gain level effect 

During the experiment, the exposure time (400us) and aperture (f=2.8) were fixed. The Gain 

level changes from 60% us to 100%.The intensity ratio along the X-axisfor each case and 

response curves are given in Fig. D-6 and Figure D-7. 
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Figure D-6. The intensity ratio curves (Gain level effect) 
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Figure D-7. Response of the Dicam-Pro Camera (Gain level effect) 
 

D.1c. Aperture effect 

During the experiment, the exposure time (500us) and Gain level (gain level =90%) were 

fixed. The aperture changes from 16 us to 4.The intensity ratio along the X-axisfor each case 

and response curves are given in Fig. D-8 and Figure D-9. 
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Figure D-8. The intensity ratio curves (aperture effect) 
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Figure D-9. Response of the Dicam-Pro Camera (aperture effect) 
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Figure D-10. Response of the Dicam-Pro Camera  
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Figure D-11. Response of the Dicam-Pro Camera  
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D.2.    Double shot mode 

When the Dicam Pro camera works in double shot mode, there two kind of things need to be 

considered: one is the “afterglow” (Ghost image) and the other is fast gain charge capacity. 

Since the Dicam Pro used p46 phosphor, the “ghost image” intensity will be less than 1% 

when the time delay between the two shot is bigger than 2us. In the present test, the time 

delay between the two shot is or the order of ms, therefore, the effect of “ghost image” 

intensity is negligible.  
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Figure D-12. Performance Dicam-Pro Camera at double shot mode. 
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