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Electronic and biological systems both have the ability to sense, respond to, 

and communicate relevant data. This dissertation aims to facilitate communication 

between the two and create bio-hybrid devices that can process the breadths of both 

electronic and biological information. We describe the development of novel methods 

that bridge this bi-directional communication gap through the use of electronically 

and biologically relevant redox molecules for controlled and quantitative information 

transfer. Additionally, we demonstrate that the incorporation of biological 

components onto microelectronic systems can open doors for improved capabilities in 

a variety of fields. 

First, we describe the original use of redox molecules to electronically control 

the activity of an enzyme on a chip. Using biofabrication techniques, we assembled 

HLPT, a fusion protein which generates the quorum sensing molecule autoinducer-2, 



  

on an electrodeposited chitosan film on top of an electrode. This allows the electrode 

to controllably oxidize the enzyme in situ through a redox mediator, acetosyringone. 

We successfully showed that activity decrease and bacterial quorum sensing response 

are proportional to the input charge.  

To engineer bio-electronic communication with cells, we first aimed for better 

characterizing an electronic method for measuring cell response. We engineered 

Escherichia coli (E.coli) cells to respond to autoinducer-2 by producing the β-

galactosidase enzyme. We then investigated an existing electrochemical method for 

detecting β-galactosidase activity by measuring a redox-active product of the 

cleavage of the added substrate molecule PAPG. In our novel findings, the product, 

PAP, was found to be produced at a rate that correlated with the standard 

spectrophotometric method for measuring β-galactosidase, the Miller assay, in both 

whole live and lysed cells. Conversely, to translate electronic signals to something 

cells can understand, we used pyocyanin, a redox drug which oxidizes the E.coli 

SoxR protein and allows transcription from the soxS promoter. We utilized electronic 

control of ferricyanide, an electron acceptor, to amplify the production of a reporter 

from soxS. With this novel method, we show that production of reporter depends on 

the frequency and amplitude of electronic signals, and investigate the method’s 

metabolic effects. Overall, the work in this dissertation makes strides towards the 

greater goal of creating multi-functional bio-hybrid devices.  
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Chapter 1: Motivation and Introduction 

This chapter provides a brief introduction to the fields and concepts that span 

the whole dissertation, and the motivation and research context for the work.  

Chapters 2-4 can each stand alone and provides their own abstracts, relevant 

background, methodology sections, results and discussion, and conclusions. Overall 

summary, contributions, and future work are detailed in Chapter 5.  

Motivation 

Efficient, programmable, and meaningful communication and information 

transfer between biology and electronics is a highly sought-after functionality with 

many applications in clinical and research settings. These applications range from 

biosensors for detection of biomolecules in blood samples, implantable devices, 

devices for study of cellular signaling cascades and function, to autonomous cell-on-

chip devices with remote sensing and control.  If we are to make the best predictions 

and analyses of diseases as well as study and manipulate the biological environment, 

it is necessary to explore and improve upon both aspects of this bi-directional bio-

electronic communication path.  

While there are a variety of examples and goals of the biology-to-electronics 

communication route, one of the overarching objectives is to be able to gather as 

much biological information as possible and to best interpret it using electronics. 

Biology is expert at detecting biomolecules (be it through enzymes or cells) that are 

undetectable otherwise, and translation of this information to electronic form allows 

for fast measurement, interpretation, representation, and manipulation of data, along 



 

 

2 
 

with easy storage. Better translation of biological to electronic information would 

allow for more efficient and relevant diagnoses and studies, as would better 

understanding and interpretation of the phenomena. The additional possibility of real-

time in situ measurements that electronic sensing presents greatly increases the 

technology’s benefits and desirability.   

Conversely, granting cells the ability to readily interpret signals originating 

from electronics into pre-programmed functions would allow us to manipulate and 

study cellular behavior with an unprecedented degree of precision. For this, we would 

need direct control of cell behavior that can elicit a desired amplitude of response at a 

desired time and at a pre-programmed location. On top of their programmability, 

electronic devices can sense electric, magnetic, thermal, and acoustic changes with 

speed and precision that biological entities cannot. Translating this information to 

cells would allow for a much wider range of studies and behaviors. In addition to 

cells, wiring functional proteins to respond to electronic signals in meaningful ways 

would further biochemical studies where precise control cannot otherwise be easily 

achieved. 

Thus, it can be seen why a bridging of the communication gap between 

biology and electronics would benefit advancement in a variety of applications and 

fields. This gap derives from the fact that biological entities communicate with 

proteins, small molecules, and ions, whereas electronics does so with electrons. 

Redox molecules seem to fit the bill as a candidate for intermediate translators 

because they are electron carriers that can interact with an electrode and can also be 

biologically relevant1. In this dissertation, we show that our ability to manipulate 
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redox molecules’ interactions with both cells and electronics and our knowledge of 

what governs those interactions allows us to use them for electrically-driven enzyme-

activity attenuation, electrochemical cell-based gene reporter analysis, and as live-cell 

gene activators.  

Research goals 

The overarching aim of this work is to facilitate meaningful information transfer and 

communication between biology (cells and proteins) and electronics (electrodes). In 

order to accomplish this, we aimed to work on three different developments:  

1. A method to use electronic signals to attenuate enzyme activity, described in 

Chapter 2 

2. An analysis to enhance use of a method for electronic measurement of 

reporter protein expression from live cells, described in Chapter 3 

3. A method to allow electronic signals to modulate gene expression, described 

in Chapter 4 

All the above aims use various redox molecules to translate either the electronic 

signals to biological or vice versa. 

 

Research background 

Redox molecules and electrochemistry 

 In this work, it is our ambition to utilize redox molecules as the intermediaries 

between biology and electronics, as they can interact in meaningful ways with cells 

and proteins as well as with electrodes. Redox stands for reduction and oxidation – 
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which are processes of gain or loss of electrons, respectively - as shown in Figure 1.1 

a. This loss or gain of electrons depends on the standard potential of the molecules 

interacting and on the states of the molecules. The standard electric potential (E0) of a 

molecule is a number that can be used to determine whether it will draw electrons 

from or donate electrons to another molecule with a known E0. When two molecules 

interact, typically the one with a more positive E0 will draw electrons from a 

molecule with a more negative one – as demonstrated in Figure 1.1 b. For this to 

work, the molecules have to also be in the correct form (i.e. have the electrons to 

donate in the first place or have “space” to accept electrons) – in the reduced form to 

donate electrons, and in the oxidized form to accept them. The molecules also have to 

interact with each other closely enough in space for the transfer to take place.  
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Figure 1.1: Redox principles. a, The participants and interactions in a typical redox 

reaction (image taken from 

http://academic.pgcc.edu/~kroberts/Lecture/Chapter%205/redox.html). b, A potential profile 

based on E0 vs. an Ag/AgCl electrode of several biologically-relevant molecules. In an 

interaction, electron donors possess a more negative E0 and acceptors a more positive.  

 

An electrode can be biased at a potential such that it interacts with the redox 

molecule in a similar manner – donating or drawing electrons. The amount of 

electrons that are exchanged at the electrode is measured as the current at the device 

(an electrochemical analyzer), which is connected to a computer. This current is 

http://academic.pgcc.edu/%7Ekroberts/Lecture/Chapter%205/redox.html
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measured at a working electrode, is balanced for the solution as a whole at the counter 

electrode, and is compared to the current at the reference electrode where the 

electrochemical reactions are well-characterized - example of a setup can be seen in 

Figure 1.2 a 2. In this way, a three electrode system can be used to not only precisely 

measure the amount of a redox molecule, but can give information as to the relative 

amounts of the forms (oxidized or reduced) and, importantly, can be used to change a 

molecule’s form by applying the relevant potential.  

 

Figure 1.2: Electrochemical setup and CV analysis. a, Schematic of the general 

electrochemical setup that is used in the experiments in this work, with the solution of interest 

containing mediator and/or cells. b, A cyclic voltammogram of 40μM pyocyanin, with an 

apparent E0 around -0.22V. The upper peak indicates the reduction and the lower peak the 
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oxidation. At an electrode biased at -0.4V, the pyocyanin will be reduced and the current will 

measure the amount of oxidized pyocyanin (which will tend to the negative as oxidized 

pyocyanin is depleted). At an electrode biased at +0.05V the pyocyanin will be oxidized and 

the current will measure the amount of reduced pyocyanin (which will tend to the positive as 

reduced pyocyanin is depleted). 

 

Electrochemistry techniques that are relevant to this dissertation include cyclic 

voltammetry, chronoamperometry, and bulk electrolysis. Cyclic voltammetry (CV) 

involves the cycling of the voltage at the working electrode between two limits at a 

specified speed and measuring the resulting current. CV is useful for investigating the 

solution of interest for redox-active components, where peaks or increases in current 

can be measured and compared to controls. CV’s allow for the finding of the E0 as 

well as the reduction and oxidation currents of redox molecules in the given system. 

Additionally, the calculated current or charge can allow one to measure the 

concentration of the redox analyte. In this dissertation, we used CV’s to both 

determine the oxidation and reduction currents for bulk electrolysis and to construct a 

charge vs. analyte concentration graph for further measurement. Determining charge, 

which is current over time, from a CV and correlating that to analyte concentrations 

allows more robust measurements when the solution conditions may change slightly 

and result in a change in the potential of the peak current.  

Chronoamperometry (CA) involves the selection of one or more potentials, 

and their application to the solution for set amounts of time. The readout of a CA is 

again the current. CA’s applied for short amounts of time can be used to measure the 

concentration of an analyte which is either oxidized or reduced at the set potential. 
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CAs applied for longer periods of time, such as in bulk electrolysis, can be used to 

change the redox state of a molecule in solution. For bulk electrolysis, the counter and 

working electrodes must be separated by a salt bridge (this allows only charge to pass 

through between the two compartments). Additionally, stirring and a large electrode 

surface area speed up the process. In this dissertation, we use bulk electrolysis to 

change back and forth the redox state of redox molecules. 

As an example, the redox molecule pyocyanin has an E0 around -0.34 vs. an 

Ag/AgCl electrode, with the exact value depending on the conditions of the system3. 

In order to determine the E0 for a setup, CV can be used. If the E0 of a redox molecule 

of interest lies within that potential range, one will see reduction and/or oxidation 

peaks as the molecule changes forms (this of course depends on the reversibility of 

the reactions). For pyocyanin we can see in Figure 1.2 b that the E0 of a 40μM 

solution was around -0.22V in the given conditions. When the potential was more 

negative than this number, reduction of pyocyanin takes place (upper right inset), and 

when the potential was more positive oxidation takes place (lower left inset).  

 

Electrochemical effects on cells 

An important concern when designing a system where electricity is going to 

be used in the vicinity of cells is the negative effect that this current may have on the 

cells or proteins. To our knowledge, the potential range in which we worked has not 

been shown to cause significant cellular damage, by itself or through the generation 

of byproducts, ions, or reactive oxygen species in significant quantities – especially 

for the time scales that we intend on using (minutes-hours). Our CV measurements 
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were run in the 0.6 to -0.5V range. In either LB, defined minimal media, or phosphate 

buffer of pH ~7, we have not observed the formation of significant amounts of the 

above-mentioned species.  

Hydrogen peroxide formation (O2 + 2H+ + 2e- ↔ H2O2) occurs in the 

presence of oxygen around -0.2V. This could have potentially affected our system 

when we performed bulk electrolysis at -0.3V, but because we were working in an 

anaerobic system there was minimal oxygen for the hydrogen peroxide to form from. 

Around +0.6V the reverse reaction occurs (H2O2 ↔ O2 + 2H+ + 2e-), but we did not 

stay at the +0.6V potential for more than a few seconds when performing cyclic 

voltammetry and therefore saw no problems2,4. It is certainly hard to say what exactly 

happens in the system because, for example, the precise content of LB media is 

unknown and there could be possible unforeseen cellular byproducts- but thorough 

testing gave us an idea of what phenomena were taking place. More relevant in-depth 

information on redox molecules in biological context is presented in the Introductions 

of the following chapters.  

 

Biochips and bio-hybrid devices 

 Part of the larger aim of this work is to build novel bio-hybrid devices and to 

advance their overall functionality. This is also the aim of the Maryland Biochip 

Collaborative, whose insights and work inspired much of what we accomplished here. 

Bio-hybrid devices, as described here, are a class of devices that contain living and 

non-living components and usually involve an intimate interaction between the two 

that allows for or increases their functionality. The goal is to harness the advantages 
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of each to accomplish or enhance either a bio-measurement or bio-actuation goal. For 

example, bio-hybrid devices involving proteins immobilized on surfaces can allow 

for less bio-component use, faster process, and more precise measurements whereas 

immobilized cells allow for more fine-tuned environmental control and easier cell 

tracking5-9.  

 

Synthetic biology  

Synthetic biology is a discipline that aims to modulate cells by engineering novel 

functionality through the rewiring of existing or the engineering of novel genetic circuits. 

It focuses on rational design of constructs from standardized parts (which would ideally 

work similarly in a variety of cellular environments) and provides a different perspective 

than traditional genetic engineering. Substantial progress has been achieved in many 

areas of research, including biomaterials, chemicals, energy production, bio-computation, 

and biosensors10-17. Additionally, studies have demonstrated the potential use of synthetic 

biology in biomedical applications such as drug development, tissue engineering, and 

cancer therapeutics18-23. Synthetic biology constructs have even been proposed for 

recycling and generation of valuable materials for space travel24.  

This work focuses on utilizing the tools of synthetic biology and on improving 

the capabilities of engineered constructs by allowing easier genetic response 

measurement and easing the load of engineered factors in the cells. Specifically – in 

Chapter 3 we show that the reporter protein β-galactosidase can be quantitatively 

measured in live cells by electrochemical means in a manner comparable to the standard 

Miller Assay. The enzyme is a commonly-used reporter in the synthetic biology 

community and its electrochemical measurement from live cells is an advancement that 
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goes well with the trend towards real-time miniaturized measurements in the community. 

In Chapter 4, we introduce a novel method for using electrochemical signals to turn on 

specific gene expression in a programmable manner. This also is an advancement that 

allows for the tuning production of a desired gene without the need for extra “clock” or 

“oscillator” genetic elements so often found in systems engineered for these purposes. 

We thus lessen the genetic burden of the control elements inside the engineered cells 

without sacrificing response capabilities. This development also works well with the 

trend towards miniaturization and may greatly enhance capabilities of engineered cell-

based biohybrid devices.  
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Chapter 2: Electronic modulation of biochemical signal generation 

 

The majority of this section is adapted from the following publication: 

Gordonov, T et al. “Electronic modulation of biochemical signal generation”. Nat 

Nanotechnol. 2014 Aug;9(8):605-10 with permission25. 

Chapter abstract 

The goal of this work is to use electrical signals to assemble and “tune” an 

enzymatic pathway on a gold electrode chip, thereby creating a “programmable” 

biohybrid device containing both biological and electronic components. Our 

hypothesis is that the electric signals control both the amount of assembled enzymes 

and their activity, the latter by oxidation through a diffusible redox mediator. Our 

desire is that this process be stable, predictable, and that a generalized method for 

controlling biological activity is obtained. 

Introduction 

 
Microelectronic devices embedded with biological components often facilitate 

the interrogation of biology26,27 as opposed to controlling biological function.  

Patterned protein and cell assemblies, for example, offer the potential for “in vitro” 

metabolic engineering28-31, wherein coordinated biochemical pathways enable on-chip 

characterization of cell metabolism and possibly control of cell-based systems32. 

Considered among the animal- or human-on-a-chip technologies33, such devices are 

envisioned to revolutionize drug development34,35.  These ambitious goals will require 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Electronic+modulation+of+biochemical+signal+generation
http://www.ncbi.nlm.nih.gov/pubmed/?term=Electronic+modulation+of+biochemical+signal+generation
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new biofabrication methodologies that expand bio-device interconnectivity36 – 

enabling new modes of device assembly and of communication. Here we demonstrate 

electrically-mediated assembly, interrogation, and control of a multi-domain fusion 

protein that produces a bacterial signaling molecule. The biological system is 

electrically “tuned” using a natural redox molecule and its biochemical response is 

shown to provide the signaling cues to drive bacterial population behavior. We show 

that the biochemical output correlates with the electric input charge – suggesting the 

potential for employing electrical inputs to control complex on-chip biological 

processes.  

 As pictured in Fig. 2.1 a, the biohybrid device assembly process is 

electrically guided via electrodeposition37,38. As our model enzyme, the multi-domain 

fusion protein HLPT32 (Fig. 2.1 b) is covalently grafted onto the chitosan scaffold 

electrodeposited on a gold electrode chip (Fig. 2.1 c). In this way the chitosan film 

serves as a template for protein incorporation onto the device surface. HLPT consists 

of an N-terminal pentahistidine tag and the bacterial enzymes LuxS and Pfs, which 

are the two terminal synthases of bacterial autoinducer-2 (AI-2). This quorum sensing 

(QS) signal molecule is normally secreted from cells to mediate a transition from 

individual cell to collective behavior within bacterial populations, and promotes the 

establishment of biofilms39-41, among other phenotypes. In our work, we use electric 

signals to thus mediate bacterial responses. HLPT also contains a C-terminal 

pentatyrosine tag that allows covalent attachment to chitosan’s primary amines via 

the enzyme tyrosinase42. These biofabrication assembly methods have proven reliable 

in retaining enzymatic activity on-chip and in providing an even protein coating 29,43. 
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Figure 2.1: Schematic of biohybrid device controlled by electronic signals. a, 

Schematic diagram representing the biohybrid device receiving both chemical (enzyme 

reaction precursor) and electronic inputs, and through biochemical intermediates, translating 

them to both electrochemical signals and biological cells response. b,  A representation of the 

components of the multi-domain fusion protein (HLPT) used in this study. c, The concept of 

the experiments is that by varying the electronic inputs through the electrodes on which 

HLPT is attached, we can vary the attenuation of HLPT activity and thus affect the 

electrochemical and biological responses in proportion to the input. Purple rectangles 

represent the silicon wafer, gold rectangles are patterned gold electrodes, semi-transparent 

turquoise rectangles are the biocompatible chitosan scaffold. Hcy is homocysteine, AI-2 is 

autoinducer-2. His stands for histidine and Tyr for tyrosine. LuxS and Pfs are enzymes 

making up HLPT.  
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Materials and methods 

Chemicals and Reagents 

DL-homocysteine, potassium hexachloroiridate(IV) (K2IrCl6), potassium 

hexachloroiridate(III) (K3IrCl6), 3′,5′-dimethoxy-4′-hydroxyacetophenone 

(acetosyringone, AS), S-(5′-adenosyl)-L-homocysteine (SAH), CBZ-Gln-Gly, 

glutathione (reduced form), phosphate buffered saline (PBS) tablets at pH 7.4, Trizma 

hydrochloride, chitosan of medium molecular weight, parafolmaldehyde powder, β-

galactosidase enzyme from E.coli grade VIII, and tyrosinase enzyme from mushroom 

were purchased from Sigma Aldrich. Ellman’s reagent (also known as DTNB or 5-(3-

Carboxy-4-nitrophenyl) disulfanyl-2-nitrobenzoic acid) is from Uptima, Interchim. 

Tris-HCl pH 8.0 was from Quality Biological Inc. Sodium acetate, ampicillin sodium 

salt (Ap), monobasic and dibasic sodium phosphates, trichloroacetic acid, and LB 

Broth (Miller) were from Fischer Scientific. Kanamycin (Km) was from Genlantis. 

Calcium Chloride was from J.T.Baker. FeCl3 was from Arcos Organics. DyLight 

antibody labeling kit, 405 (Thermo Fischer Scientific Inc.) was used for labeling the 

HLPT protein. Red fluorescent chitosan was labeled with 5-(and-6)-

carboxyrhodamine 6G succinimidyl ester (Invitrogen) as per Wu et al. 44 Chelex-100 

resin was from Bio-Rad. Microbial transglutaminase (mTG) was from Ajinomoto 

(Chicago, IL). 

 

Biohybrid Device Assembly 

A thin layer of chitosan was deposited on a gold-coated silicon chip (electrode 

fabricated as indicated in Methods) (cathode) by immersing it with a platinum counter 
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electrode (anode) into a 0.8 % chitosan solution (prepared as described45) and 

applying a current for 2.5 minutes at 4 A/m2. After rinsing the chitosan film with 

distilled water, tyrosinase at 300U/µL was mixed with tyrosine-tagged HLPT (10 µM 

in PBS) and incubated at RT for 1 hour with the chitosan-coated electrodes. 

Afterwards, each electrode was briefly rinsed with PBS and kept in PBS until use. 

After appropriate treatments (see below) two similarly-treated electrodes, facing away 

from each other, were diagonally immersed in a 300 µl solution of 1 mM SAH in 0.1 

M pH 7 Phosphate Buffer in a standard semi-micro cuvette (Cole Parmer). The 

cuvette was stoppered and incubated at 37 °C with 100rpm shaking for the indicated 

amount of time to let the enzymatic reaction take place (3-3.5 hours). See Figure 2.2 

for setup.  

 

On-Chip Biohybrid Device Electrical Attenuation 

For in situ attenuation with acetosyringone, the gold chip with HLPT 

(assembled as above) was used as the working electrode in a 3 electrode system with 

a 0.5 mm diameter, 4 cm-long platinum counter electrode (Alfa Aesar), and Ag/AgCl 

reference electrode (BASi). These were put in a 250 µM AS solution and the working 

electrode biased at +0.55 V using a CH Instruments workstation (CHI 6273c) for the 

designated amount of time (10-1000 sec). The chip was then rinsed gently with PBS, 

and allowed to react with SAH as indicated above.  
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Electrochemical Homocysteine Detection 

For measuring the homocysteine generated from an on-chip HLPT, the 

reaction solution is removed at the end of the incubation with SAH, allowing Hcy 

measurement. Cyclic voltammetry was used to detect homocysteine. A three 

electrode setup was used, with a 2 mm diameter gold working electrode (CH 

Instruments) and counter and reference electrodes same as in the attenuation method 

above. The potential was swept from 0 V to +0.7 V and back at 50 mV/sec 

(approximately 28 sec). Electrodes were cleaned briefly with Piranha solution (70 % 

H2SO4 and 30 % H2O2) before start of experiment. Between every measurement the 

working electrode was polished for 1 min with 0.05 micron alumina powder on a felt 

polishing pad (CH Instruments) and rinsed with distilled water, except during real-

time measurement experiments. Integration of the output current yields the output 

charge in Coulombs (Q=∫idt). In our experiments, the total accumulated charge at 

+0.7V is recorded and used as a measure of homocysteine.  

 

Electrode Fabrication 

A 4 inch silicon wafer (100 P/Doped, 1-100 ohm/cm resistivity with thermally 

grown oxide, from University Wafers) was coated by thermal evaporation with 20 nm 

of chromium (Cr) and 120 nm of gold (Au). Standard photolithography and 

subsequent etching of Cr and Au were performed to define electrodes of 7 mm 

diameter (Fig. 2.2). Each circular electrode is connected to a contact pad via a thin 

contact lead (0.2 mm in width). Electrodes were physically separated using a 
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microdicing saw. Fabrication steps were performed at the University of Maryland 

Nanocenter.  

 

Setup for in situ Oxidation and Biohybrid Device Attenuation 

Once the biohybrid device is assembled (see below), in situ attenuation using 

AS was achieved using the setup seen in Fig. 2.2 c. A 10 mL beaker filled with the 

mediator solution was positioned so that the electrodes were all immersed in the 

solution.  

 

Setup for Biohybrid Device Enzymatic Reaction 

For incubation of the assembled biohybrid device with the SAH substrate for 

subsequent Hcy and AI-2 generation, two chips, facing outward, were inserted 

diagonally and incubated in standard polystyrene semi-micro cuvettes (Cole Parmer) 

(Fig. 2.2 d). The chip was immersed so that the liquid (300 µl) reached to the top of 

the HLPT-immobilized portion (circular pattern) of the chip and not further.  
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Figure 2.2: Chip and test system setup. a, The AutoCAD drawing and dimensions of 

one electrode for the mask used for fabrication of electrodes used in the biohybrid device 

assembly. b,  A photo of the electrode chip on which HLPT was immobilized. c, A diagram 

of the setup used for in situ attenuation of the biohybrid device, in this case with 250 µM 

AS(R).  d, A photo taken of the setup in which two electrodes, inserted diagonally and facing 

out, were incubated in 300µl of the substrate to allow enzymatic reaction (electrodes in photo 

do NOT have chitosan or HLPT on surface). AS(R) is the reduced acetosyringone redox 

mediator. 
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Electrodeposition of Chitosan Film and Enzymatic Assembly of HLPT  

The thin film of the pH-responsive polysaccharide chitosan was 

electrodeposited onto the chip (Fig. 2.3 a,b)45, 46. Mushroom-derived tyrosinase was 

then used to oxidize HLPT’s pentatyrosine tag, creating an active quinone, which 

grafts onto chitosan’s primary amines via a Michael’s adduct (Fig. 2.3 c). These 

methods have proven reliable in retaining enzymatic activity and in providing an even 

protein coating 29,47, 43.   

 

Figure 2.3: Biofabrication: Chitosan electrodeposition and tyrosinase-based 

enzyme conjugation. Middle schematic represents the biofabrication processes used in this 

paper, with the electrochemical attenuation being introduced in this work. a, The structure of 
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chitosan and its’ amine groups below and above its pKa of 6.3. b, Immersion of a negatively-

biased electrode into a solution of chitosan results in a pH gradient (higher pH at the surface) 

that promotes the electrodeposition of a chitosan film on the surface as well as the exposure 

of amine groups. c, Tyrosinase-mediated conversion of tyrosine residues to o-quinones results 

in the covalent attachment of HLPT protein to chitosan’s amines.  

 

Ellman’s method: Homocysteine Measurement 

The “Ellman’s Test” was done according to manufacturer’s instruction 

(Uptima, Interchim). Briefly, a DTNB stock solution is made with 50 mM sodium 

acetate and 2 mM DTNB in water. The Tris buffer is 1 M Tris at pH 8.0. Per each 1 

mL total volume, 50 µL of the DTNB stock, 100 µL of the Tris solution, and 850 µL 

total distilled water and sample solution are added. In some experiments, these were 

scaled down by a factor of 10. DL- homocysteine standard solution was prepared in 

0.1 M phosphate buffer pH 7.0.  The contents are mixed and incubated at room 

temperature for 5 minutes. Optical absorbance is then read at 412 nm and the SH 

content is calculated by dividing the OD at 412 nm by 13600 M-1cm-1 to get the 

molarity in the assay, and multiplied by the total volume/sample volume ratio for the 

estimated original concentration.  

 

AI-2 Reporter Cells and Cell Culture 

Cells used for detection of AI-2 from HLPT were CT104 Escherichia coli (E. 

coli) (W3110-derived luxS lsrFG double mutant strain from lab stock) with the 

plasmids  pCT6 (pFZY1 derivative, containing lsrR and lsrR promoter region fused 
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with T7RPol, Apr) 48 and pET200-EBFP2 (pET200 derivative, containing EBFP2, 

Kmr, from lab stocks). Cells were inoculated at 2 % from an LB overnight culture and 

Ampicillin and Kanamycin were added at 50 µg/mL. After an OD600 of about 0.4 

was reached, cells were spun down in 300 µL volumes at 8000 rpm for 3 minutes, 

and re-suspended in PBS, 10 % LB and HLPT reaction mixture with homocysteine 

and AI-2. Reaction mixture, when incubated with the cells, was therefore at 90 % of 

original concentration or, in the cases where the concentration was higher than 50 

µM, at 10%. All compared samples were similarly diluted. The cells were incubated 

for 4 hours at 37 °C at 250 rpm with aeration. After this, the cells were fixed with 2% 

paraformaldehyde in PBS for 30 minutes at room temperature and stored in 4 °C until 

measurement. Blue DAPI fluorescence was recorded by FACS (FACSARIA, BD 

Biosciences). To ensure sample consistency, 50,000 cells were collected for each 

sample and consistently gated by forward scatter (FSC) and side scatter (SSC). The 

mean blue DAPI fluorescence levels are based on the means from one or two 

different samples. 

 

Enzymatic Activity Calculations 

Enzyme activity was calculated in either nmol HCY/(min*mg protein) or as 

nmol HCY/(min*cm2 of electrode). For both cases, the concentration of 

homocysteine measured in µM was calculated from the equations from the standard 

graph in Fig. 2.4 d.  This concentration was then used to calculate the nanomolar 

amount of homocysteine present. The minutes for the formula were taken from the 
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recorded time of the reaction. The amount of protein was known in the solution-based 

experiments, as was the surface area of the electrodes in cm2. 

 

Oxidation with Strong Oxidant Ir(IV): Solution-Based Attenuation 

Enzymes (Pfs, LuxS, or HLPT) were diluted in phosphate buffer pH 7.0 to the 

indicated concentration. Mediators were added and the samples incubated at room 

temperature for the indicated times. Solutions were then filtered using a 0.5 mL 

centrifugal filter (MWCO: 10 k, Millipore) and washed three times (5 minutes at 

14,000 g) with 0.5 mL of phosphate buffer to wash out the mediator. The substrate 

used for HLPT or Pfs was 1 mM SAH. For LuxS the substrate, SRH, was produced 

by boiling 1 mM SAH in HCl39. The enzyme and substrate were reacted in the 

conditions indicated. For Pfs activity, the solution was incubated with both the 

attenuated Pfs and un-attenuated LuxS in equimolar concentrations, after which 

homocysteine was measured. The amount of generated homocysteine was detected 

using Ellman’s reagent and/or via electrochemical method (see above). Absorbance 

measurements were performed with the addition of one of the enzymes to Ir(III) or 

Ir(IV) solutions.  

 

Ellman’s Method for Protein Sulfhydryl Measurement 

The Ellman’s Test was used for measuring accessible sulfhydryls present on 

proteins. The test was done according to manufacturer’s instruction (Uptima, 

Interchim). The solutions were prepared the same as in the “Ellman’s method” 

paragraph in Section 4 of this Supplementary material. Instead of a total of 1mL of 
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testing solution, all components were scaled down by a factor of 10 so that a total of 

100 µl was tested in a 96-well clear plate. First, the proteins were treated with AS(O) 

or AS(R) for 500 sec at a ratio of 0.1 µM protein: 1 µM AS in PBS. These were then 

filtered as described in “solution-based attenuation” in above. Treated proteins were 

added at the indicated concentrations to PBS, 5 µl DTNB and 10 µl Tris. The 

contents were mixed and incubated at room temperature for 5 minutes. Optical 

absorbance was read at 412 nm and the SH content is calculated by dividing the OD 

at 412 nm by 13600 M-1cm-1 to get the molarity in the assay, and multiplied by the 

total volume/sample volume ratio for the estimated original concentration.  

 

Protein Preparation for Electron Paramagnetic Resonance (EPR) 

The protein HLPT was used at a final concentration of 20 µM. Samples were 

treated with Ir(IV) at 300 µM or AS at 200 µM as described above in “solution-based 

attenuation”. For filtering and washing out the Ir and AS, Chelex 100 resin-treated 

deionized water was used. The Chelex treatment of water or PBS (which removes 

copper, iron, and other heavy metals) was done according to manufacturer’s 

instructions – 2.5 grams of the resin was mixed with 50mL of either MilliQ-filtered 

di-H2O or PBS for 1 hour. After a brief centrifugation, the liquid was decanted for use 

in EPR. 

 

EPR Specifications/Measurements 

CPH hydrochloride (known as 1-Hydroxy-3-carboxy-2,2,5,5-

tetramethylpyrrolidine – HCl and abbreviated as CPH, from Enzo Life Sciences) at a 
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final concentration of 1 mM was used for all samples, for a 50 µL total sample. 

Measurements were taken at 2 minutes and 5 minutes after CPH addition. Also, a 16-

run average was done for each sample. The intensities were normalized and averaged. 

All EPR measurements were carried out using a Bruker EMX ESR spectrometer 

(Billerica, MA) at ambient temperature. The settings were as follows: 1 G field 

modulation, 100 G scan range, and 20 mW microwave power, 80 s/scan for single 

scans, 40s/scan for 16-scan runs.  

 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-EOS) 

ICP EOS experiments were run on a Perkin Elmer Optima 4300DV. Samples 

were 200 µg/ml of HLPT diluted into diH20 from 2.5 mg/ml in PBS (5 mL total). 

Samples of 2.33 mg/ml HLPT were incubated with 1.33 mM Ir(IV) or AS(O) for 1 

hour and filtered as indicated above.  

 

Bulk Acetosyringone Electrical Oxidation 

Acetosyringone was dissolved in pH 7.0 phosphate buffer. The solution, in the 

indicated concentration, was put in a 10 mL beaker. Nitrogen was continuously 

bubbled through the solution to prevent oxygen interference. A three electrode system 

was set up and immersed in the solution - gold-coated silicon working electrode (area 

about 2 cm2), platinum foil counter electrode with a glass salt bridge, and silver/silver 

chloride reference electrode.  The working electrode was biased at +0.55 V and the 

output current was measured over time until it was <5 % of the starting current (about 
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1-2 hours). HLPT was then treated with the AS as in “solution-based attenuation” 

above. 

 

On-chip HLPT attenuation: Control Reactions 

Control reactions with non-oxidizing voltage (+0.22 V) in AS solution, as 

well as the oxidizing voltage (+0.55 V) in a solution of phosphate buffer alone were 

run and showed significantly lower currents than the experimental samples 

(Supplementary Fig. S2.4 a). Enzymatic activities (as calculated in Supplementary 

Information and seen in Supplementary Fig. S2.4 b) were correspondingly unaffected.  

 

Real Time HLPT Activity Measurement On-Chip 

For real time in situ measurements, the same general procedure for device 

assembly, in situ attenuation, and homocysteine electrochemical measurement as 

previously were followed. In these experiments though, CV’s were taken using a CHI 

Multiplexer from 8 samples one after the other, 3 minutes apart. A bare chlorinated 

Ag wire was used as the reference electrode, and electrodes remained in the test 

solution throughout, which was kept at room temperature.  

 

Statistical Analysis 

Statistical analysis with calculation of p-values was performed by using two-

tailed, unequal variance Student t-tests. * indicates p < 0.05, ** p < 0.01, *** p < 

0.001, ****p < 0.0001.   

 



 

 

27 
 

Results and discussion 

After assembly, the desired biohybrid device will modulate the activity of 

HLPT for the guided synthesis of AI-2 and a byproduct, homocysteine (Hcy) (made 

in a 1:1 stoichiometric ratio). On-chip enzyme activity is assayed via three modalities 

- optically, electrochemically and biologically. Our experiments are carried out at 

physiologically relevant concentrations and importantly, our methods are linear in 

these ranges including a near real-time electrochemical method for Hcy. Applications 

that require real-time assessment and with no sampling (direct in situ measurement) 

may thus be feasible (Supplementary Fig. S2.5). 

Homocysteine (Hcy) can be measured optically (Ellman’s assay based on SH 

groups49) or electrochemically by sulfhydryl oxidation at a gold electrode (as 

discussed in Methods). A linear relationship between these methods (Fig. 2.4 a) 

yields quantification of biochemical flux through HLPT (Fig. 2.4 b) and allows 

measurement of HLPT activity over time without sample consumption (Fig. 2.7 c). 

AI-2 produced in a 1:1 ratio to Hcy assayed with a cell-based method is linearly 

correlated with Hcy in the same solution (Fig. 2.4 d).  
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Figure 2.4: Detection of Hcy and AI-2. a, Comparison of the electrochemical detection 

method used in this chapter to the standard Ellman’s assay. The Pearson correlation 

coefficient for linearity was calculated between the charge transferred and the Ellman’s 

absorbance value, yielding an R2 value of 0.98. Seven measurements were taken for each 

averaged data point. b, Graph of the same values as in a of the electrochemical data with the 

axes reversed. The fitted line was used throughout the chapter to convert charge to 

homocysteine concentration, and the R2 value shown is the Pearson correlation coefficient for 

linearity. c, Different concentrations of HLPT were reacted with 1 mM SAH over the course 

of 4 hours at 37 °C. Electrochemical measurements were taken throughout. The fitted 

polynomial curves are used to convey trends.  d, The products from the reactions in c, after 

the final time-point, were added to AI-2 reporter cells at a 1:10 dilution, whose average blue 

fluorescence response (FACS) can be seen. The Pearson correlation coefficient for linearity 
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between the homocysteine measured and the cell fluorescence response was calculated and 

gave an R2 value of 0.95 (it is not for the HCy vs HLPT relationship). HLPT is the fusion 

enzyme under study. 

 

HLPT oxidation can be mediated in several ways. Our initial studies 

employed chemical oxidation via powerful protein oxidant K2IrCl6 (iridium, denoted 

Ir(IV))50. Our results indicate that oxidized iridium and not its reduced form 

(controls) decreased HLPT activity in a predictable concentration- and time-

dependent manner (Fig. 2.5, Supplementary Fig. S2.1).  

 

Figure 2.5: HLPT activity attenuation by strong oxidant Ir(IV) in solution. a, Proposed 

reaction of Ir(IV) with HLPT in solution, resulting in oxidation of HLPT and attenuation of 

enzymatic activity. b, Pictures showing the color change when Ir(IV) reacts with HLPT and 
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becomes reduced to Ir(III), losing its brownish color. c, Spectrophotometric measurements of 

Ir(IV) or Ir(III) after reacting with HLPT, Pfs, or LuxS for 40 minutes. All three proteins turn 

Ir(IV) to Ir(III) color. d, Activity of HLPT remaining after treatment of HLPT with different 

Ir(IV) amounts. All measurements done in triplicate and error bars indicate s.d. P values for 

samples were calculated using student’s t-test (two tailed, unequal variance), compared to the 

active HLPT positive control. ** indicates p < 0.01, *** p < 0.001, **** p < 0.0001. Ir(III) 

and Ir(IV) are the reduced and oxidized forms of the redox mediator IrCl6. HLPT is the fusion 

protein under study, and Pfs and LuxS are the two enzymes making up HLPT. 

 

We predicted the reaction in Fig. 2.5 a to take place as the Ir(IV) oxidized 

HLPT, turning to Ir(III) in the process. Ir(IV) has a characteristic brownish color 

which diminishes as it is reduced to Ir(III) (Fig. 2.5 b). Incubating HLPT (as well as 

its constituents Pfs and LuxS, separately) with a solution of Ir(IV) shows a fall in 

absorbance, measured over the course of an hour (Fig. 2.5 c). In Fig. 2.5 d 1.5 µM 

HLPT was incubated for 1 hour with different Ir(IV) amounts. Hcy measurements 

were taken after filtering and further incubation with 1 mM SAH substrate for 3 hours 

at 37 °C. 

Next, in order to test for electric actuation, we selected the natural plant-based 

redox mediator acetosyringone (AS) (E0 of +0.5 V vs. Ag/AgCl). AS is generated 

during the innate plant immune response to pathogens, and then consumed in an 

oxidative burst 51. It normally exists biologically in a reduced state (AS(R)). As can 

be seen in Fig. 2.6 b, we observed electric oxidation of AS by the simple evolution of 

a brownish-orange color change that is a characteristic of the oxidized form52.  
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We next investigated whether electrically-oxidized AS could oxidize HLPT 

(Fig. 2.6 a), and the nature of that oxidation. LuxS has a divalent cation (Zn2+, Fe2+) at 

its active site, which could be a target for oxidation and attenuation of activity. 

Alternatively, sulfhydryl residues are more suitable targets for a generalized 

approach. AS(O) was added to HLPT, as well as LuxS and Pfs, after which the 

oxidation status of the protein was measured. Our results indicating ~4-fold reduction 

in –SH groups (Fig. 2.6 d) showed that AS(O) oxidized vulnerable sulfhydryl 

residues on all three proteins.  These results are supported by electron paramagnetic 

resonance (EPR) spectroscopy, which yields a protein’s more general oxidation state. 

That is, to detect general oxidation, we employed EPR probe, CPH (1-Hydroxy-3-

carboxy-2,2,5,5-tetramethylpyrrolidine - HCl), which is oxidized by an oxidized 

HLPT so that its radical is revealed and detected. We measured a 2.5 fold increase in 

CPH radical from solutions where HLPT was treated with AS(O) (Fig. 2.6 c). 

Additionally, using inductively coupled plasma optical emission spectroscopy (ICP-

EOS), we found Zn2+ was unaffected (Supplementary Fig. S2.2 b).  In sum, our 

results demonstrate that HLPT activity is attenuated by oxidation of its sulfhydryl 

residues and not by oxidation of the active-site cation. Moreover, these results support 

the notion that on-chip reaction activity could be controlled by exposure to oxidized 

acetosyringone (AS(O)) and, further that the methodology might be predictable.  
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Figure 2.6: Electronically-driven HLPT attenuation by natural mediator AS.  

a, Schematic of the electrochemical oxidation of AS(R) in solution is followed by its addition 

to HLPT, where it oxidizes and attenuates HLPT activity and is reduced back to AS(R) in the 

process. b,  Spectrophotometric measurements of AS(R) and AS(O) – as AS is oxidized, it 

turns a brownish-orange color, detectable at 490nm. c, Oxidation of HLPT by AS(O) can be 

detected with the EPR probe CPH, which is oxidized by the AS(O)-oxidized protein. A 

higher EPR intensity is seen when the protein is treated with AS(O). The EPR spectra show 

samples measured after 2 minutes of CPH reaction with protein. The bar graph represents an 

average of several normalized measurements (see Supplementary Section 8). d, The 
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sulfhydryl groups detected through Ellman’s assay after treatment of the proteins with AS(O) 

or AS(R). e, HLPT activity calculated from electrochemical measurements after incubation 

with AS(O) or AS(R). Inset shows the reaction of HCY as it is oxidized at the electrode. 

Measurements in c were done in duplicate. Measurements in d and e were done in triplicate.  

All error bars indicate s.d. Two-tailed, unequal variance student t-tests were run on c,d,e. * 

indicates  p<0.05, ** p<0.01, *** p<.001, ****p<0.0001.  AS(R) and AS(O) are reduced or 

oxidized acetosyringone, respectively. CPH is the electron paramagnetic resonance (EPR) 

spin probe 1-Hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine – HCl. HLPT is fusion 

protein. LuxS and Pfs are the catalytic enzymes within HLPT.  

 

To test if AS(O)’s oxidation of HLPT affected activity, 1.5 µM HLPT was 

treated with AS(O) as above, then incubated with enzyme pathway precursor, S-

adenosyl-homocysteine (SAH) (1 mM, 37 °C). At the end of the incubation (3-3.5 

hours) the amount of Hcy produced was measured and HLPT activity was calculated. 

Our results show that HLPT activity decreased linearly with exposure time and 

proportionally to the AS(O)/HLPT ratio (Fig. 2.6 d and Supplementary Fig. S2.3). 

These demonstrate that HLPT activity is attenuated by AS(O) oxidation - an 

electronically-controlled process.  

 

We next tested our main hypothesis – electric assembly of HLPT on a chip 

and in situ activity attenuation. For these on-chip experiments, the biohybrid device 

(assembled as described in Methods) was immersed in a solution of AS(R), where it 

served as the working electrode. In a one step process, the electrode was biased at 

+0.55 V, and the AS oxidized at the surface could react with the surface-bound HLPT 
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(Fig. 2.7 b). An amplified current output similar to that of solution-based oxidation 

was observed (Supplementary Fig. S2.4 a). To test our hypothesis that input charge 

correlates with decreased on-chip activity, both end-of-reaction and real-time 

measurements were performed. Enzyme-laden chips were biased at +0.55V for 

different times (10-1000 sec – resulting in different levels of accumulated input 

charge and oxidation of AS), after which they were incubated with the SAH substrate 

as before to allow Hcy and AI-2 generation. We calculated enzyme activity and found 

a linear decrease followed by a plateau at long exposure times (Fig. 2.7 c). Control 

reactions showed that both the oxidizing voltage (+0.55V) and the presence of AS 

were needed for attenuation (Supplementary Fig. S2.4 b). The observed linear 

decrease supports a conclusion that as more AS is oxidized at the surface, it reacts 

with and oxidizes more HLPT on the electrode – reducing its activity proportionally. 

Correspondingly, this was dependent on the amount of active HLPT present- as can 

be seen from the three different series of chips, each with different initial activities. 

Also, Hcy increased nearly linearly over time as indicated by our real time 

measurement. Finally, these measurements correlated with our “end-of-reaction” 

samples (Supplementary Fig. S2.5).  
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Figure 2.7: On-chip enzyme activity is linear with input charge.  a, Immobilization 

of enzyme onto a silicon chip involves chitosan electrodeposition as a thin film followed by 

enzymatic assembly of HLPT. Fluorescent pictures of red-labeled chitosan and blue-labeled 

HLPT show film and enzyme co-localization onto the gold patterned electrode. b, Schematic 

depicting in situ enzyme attenuation. The same electrode on which the HLPT is attached is 
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used to oxidize the AS (grey to brown hexagons) in the vicinity of the protein and leads to 

activity attenuation. Activity is then measured by electrochemical detection of Hcy (green 

hexagon) as described in the text. c, Correlation between the input charge applied for in situ 

AS oxidation as in b and the Hcy measured from HLPT thusly attenuated at the end of 3.5 

hours of incubation. Three series are depicted, with different initial enzymatic activities. 

There are two activity and four input charge measurements per data point. Error bars indicate 

s.d. R2 values indicate Pearson correlation coefficients for linearity for the displayed averaged 

data. Values for Pearson and Spearman rank coefficients for monotonic correlation for all 

non-averaged data are, respectively- 0.81 and -0.91 for activity level 1, 0.92 and -0.93 for 

activity level 2, and 0.92 and -0.96 for series 3. Au is gold, Si is silicon. Hcy is homocysteine. 

mC is milliCoulombs. HLPT is fusion protein.  

We then estimated the apparent numbers of electrons needed to deactivate one 

HLPT molecule for each on-chip reaction (see Supplementary Information for 

calculations and discussion). We found this number (30-90) to be of the same order of 

magnitude as the predicted number of target sulfhydryl residues that could be 

oxidized on the protein complex (based on crystal structures 53,54).   

We then asked whether we could predictably “tune” the activity of an 

assembled enzyme complex to a specific “setpoint”. For these experiments, which are 

outlined and discussed in Supplementary Information, we utilized electronic signals 

to both load more than a sufficient amount of enzyme onto the chip and then “tune” 

the activity by calculating the needed charge and biasing the electrode for the 

estimated duration. In one envisioned application, this method might enable design 

and real-time feedback control of flux through a surface-assembled biochemical 

pathway. 
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Finally, the principal motivation of our concept was the ability of the 

biohybrid device to translate electrical signals to modulate complex biological 

behavior – including cell phenotype. We sought to demonstrate that on-chip 

modulation of HLPT affected generation of both Hcy and AI-2 and then, that AI-2 

would affect the bacterial phenotype. In our case, this was the generation of a blue 

fluorescent protein among engineered Escherichia coli bacteria (Fig. 2.8 a). We 

prepared HLPT-immobilized electrode chips as before, and applied varied amounts of 

charge to attenuate enzymatic activity to various desired setpoints. As before, we let 

the enzymatic reaction take place, and electrochemically measured the amount of Hcy 

generated. Then, after exposing the cells to the solution containing AI-2, we used 

fluorescence-assisted cell sorting (FACS) to detect the blue fluorescent response. 

Figure 2.8 b shows FACS histogram plots of different fluorescence intensities 

resulting from HLPT-immobilized chips modulated using the indicated amounts of 

charge. Our results confirmed electrically-controlled generation of bacterial 

communication molecules (in the same proportion as Hcy) and similarly modulated 

biological signaling as indicated by cell fluorescence (Fig. 2.8 c) - meaning that we 

could predict and feedforward control biological behavior from our electrochemical 

Hcy measurements. Moreover, this first-ever finding shows that population-wide 

biological behavior was modulated electrically.  
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Figure 2.8: In situ enzyme attenuation mediates biological signaling. a, Schematic 

of experiment: HLPT is attenuated in situ as in Figure 2.7. The generated solution with AI-2 

is added to reporter cells, which fluoresce blue. A bright field image of the cells is overlaid 

with the blue fluorescent image, showing co-localization of cells and fluorescence. b, 

Histograms from FACS (measuring blue DAPI fluorescence) run on AI-2 reporter cells to 

which the products of differentially-attenuated HLPT-immobilized electrodes were added. c, 

Comparison of the Hcy measured electrochemically and the average blue fluorescence of AI-

2 reporter cells from HLPT immobilized on an electrode and attenuated with the indicated 

input charges. Cell fluorescence averages correspond to those in the histograms in b. Three 

measurements were taken for the activity in c, and error bars indicate s.d. The Pearson 

correlation coefficient for linearity calculated for cell fluorescence vs. enzyme activity 
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averages in c yielded an R2 value of 0.98 (indicated). AI-2 is autoinducer-2. HCY is 

homocysteine. HLPT is the electrically-attenuated fusion enzyme. mC is milliCoulombs.  

 

These combined results suggest that AS(O)-driven on-chip electronic 

attenuation may be a predictable process for our biohybrid device, and support our 

hypothesis that input charge correlates with both enzyme activity and the generation 

of two different biochemical products. Importantly, the assembly methods are 

biologically benign and device operation is enabled without the need for multiple 

liquid samples. This was envisioned for in vitro metabolic or pathway 

engineering29,30. We anticipate that our system and methods can easily be applied in 

microfluidic devices with embedded micro-scale electrodes. Indeed, our group has 

already demonstrated functional enzyme assembly on a chitosan layer, as well as 

electrochemical small-molecule measurement inside of microfluidic channels29,55.  

In the Supporting Information, we show generalized application of our 

method. We characterized chip actuated assembly and attenuation of two additional 

enzymes: (i) a common reporter, β-galactosidase and (ii) a microbial transglutaminase 

used in tissue engineering and other applications56. We found that AS(O) acted 

similarly in oxidizing these proteins and attenuating their activities (Supplementary 

Figures S2.7, S2.8, S2.9). We also used in situ electric oxidation of the alternative 

diffusible redox mediator IrCl6
3- to show attenuation of HLPT, β-galactosidase and 

microbial transglutaminase, with results similar to those obtained with AS 

(Supplementary Figures S2.7, S2.8, S2.9).  These results demonstrate the wider 

applicability of our method, with possibility for further expansion. 
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Conclusions 

This study provides the first evidence that direct electrical control of a 

diffusible redox mediator, at the surface of a gold electrode in the vicinity of an 

immobilized enzymatic pathway results in predictable protein oxidation, attenuation 

of activity, and biochemical signal generation. We envision that the novel suite of 

methodologies demonstrated here form the basis for targeting and controlling 

biochemical fluxes of other biohybrid devices. We therefore propose this 

methodology as a powerful addition to the biofabrication toolbox57 that furthers the 

utilization of biologically inspired nano-scale processes by bridging the 

communications and fabrication gaps that exist between microelectronics and 

biological systems.  
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Supplementary Information 

 

Supplementary Figure S2.1: Ir(IV) attenuation of HLPT, Pfs, and LuxS. a, 

Spectrum of  Ir(IV) reacting with HLPT. b, Activity as measured electrochemically of 

samples taken from a over the course of an hour. c, LuxS activity remaining after treatment 

with the indicated mediators. d, Pfs activity after treatment similar to LuxS in c. Activity for c 

and d was measured using Ellman’s assay and electrochemically (which was used to calculate 

the enzyme activity shown). Three samples were measured and averaged for each bar. Error 

bars represent s.d. Ir(III) and Ir(IV) are the reduced and oxidized forms of the redox mediator 

IrCl6. HLPT is the fusion protein under study, and Pfs and Luxs are the two enzymes making 

up HLPT. 
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The absorbance falls more than 50 % in the first 5 minutes of the reaction and 

continues to decline steadily until it reaches values similar to those of Ir(III) 

(Supplementary Fig. S2.1 a, Figure 2.4 c). HLPT activity is completely reduced when 

1.5 µM of HLPT is treated with 200 µM of Ir(IV) for one hour, and incubation of 

different HLPT to Ir(IV) ratios results in a predictable trend of activity decrease (Fig 

2.5). Interestingly, the amount of fall in absorbance of Ir(IV) does not directly 

correlate with the same fall in activity, hinting that Ir(IV) may also oxidize residues 

on the protein that are not related to its activity (Supplementary Fig. S2.1 b).  

Incubation of the enzymatic constituents of HLPT – LuxS and Pfs – separately 

with Ir(IV) for an hour also shows a significant decrease in activity, similarly to that 

of HLPT. 1.5 µM LuxS was incubated with SRH and 1.5 µM Pfs with both 1 mM 

SAH and then an active 4 µM LuxS for 3.5 hours. Interesting to note is the negligible 

effect on activity of Pfs from a hydrogen peroxide treatment – known to oxidize 

sulfhydryl groups on proteins58. This may be due to a lack of an SH group in the 

known reaction center of Pfs, as opposed to its presence in LuxS.  

We wanted to investigate whether electrically-oxidized AS or Ir(IV) could 

oxidize HLPT residues, and the nature of that oxidation. AS(O), AS(R), Ir(IV) or 

Ir(III) were added to HLPT, after which the oxidation status of the protein was 

measured. As stated in the main sections, to detect general oxidation we employed 

EPR probe, CPH. When CPH is oxidized (by an oxidized HLPT, for example) its 

radical is revealed and detected. We measured a 5.5 fold increase in CPH radical from 

solutions where HLPT was treated with Ir(IV) (Supplementary Fig. S2.2 a), pointing 

to general oxidation of HLPT by Ir(IV) but not Ir(III). 
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Supplementary Figure S2.2: Characterization of HLPT oxidation by Ir(IV) and 

AS. a, The bar graph of the average of several normalized measurements of EPR intensity of 

HLPT treated with Ir(IV). b,  ICP EOS results  before and after treatment of HLPT with 

either Ir(IV) or AS(O). Both Zn and Fe were recorded. One sample, with error bars indicating 

the s.d of three reads in b. CPH is the spin probe 1-Hydroxy-3-carboxy-2,2,5,5-

tetramethylpyrrolidine – HCl. Ir(IV) is the oxidized form of the redox mediator IrCl6. HLPT 

is the fusion protein under study. AS(O) is the oxidized form of the redox mediator 

acetosyringone. 

 

We then explored whether AS(O) and Ir(IV) would oxidize amino acid residues 

or the divalent cation present in the active site. The cation, a Zn2+ or Fe2+ (depending 

on preparation methods) is necessary for LuxS function and has been said to leach out 

of the protein upon oxidation59. Since sulfhydryl residues can be easily oxidized by a 

variety of oxidants60, and there are several present in HLPT, it was logical to test for 

this phenomenon. We found from 2 to 5-fold decreases in sulfhydryl levels of LuxS, 
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Pfs, and HLPT after treatment with AS(O) (Fig. 2.6 d).  ICP-EOS determined there 

was no Zn loss from the LuxS active site (Supplementary Fig. S2.2 b). It also showed 

negligible quantities of iron (Fe). Thus, we were able to conclude that AS(O) 

oxidized sulfhydryl residues on Luxs, Pfs, and HLPT, as well as other likely targets, 

but did not seem to affect the presence of the divalent cation in the active site. 

Therefore, HLPT activity decrease due to oxidation by AS(O) may be due to amino 

acid residue oxidation and possible loss of active protein configuration rather than 

oxidation of the active-site Zn. This opens the doors for using AS(O) to potentially 

oxidize and attenuate the activities of other various enzymes, including those with 

sulfhydryl groups vulnerable to oxidation.  

 

Supplementary Figure S2.3: Solution-based AS attenuation of HLPT activity.  

AS(R) or AS(O) at the indicated concentration was reacted with 1.5 µM HLPT for different 

amounts of time. 250µM AS(R) and AS(O) were reacted for 1 hour. Activity decrease shows 

a time-dependent response in the case of AS(O). Three samples were measured and averaged. 

Error bars represent s.d. P values were calculated using student’s t-test (two tailed, unequal 

variance), compared to the active HLPT positive control. ** indicates p < 0.01, *** p < 
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0.001, **** p < 0.0001. AS(R) and AS(O) are the reduced and oxidized form of the redox 

mediator acetosyringone. HLPT is the fusion protein under study. HCY is homocysteine. 

 

Supplementary Figure S2.4:  In situ attenuation negative controls. a, Observed 

current of oxidizing (+0.55 V) or non-oxidizing (+0.22 V) voltages are applied to 250 µM AS 

and PB solutions with on-chip HLPT. b, Input charges and enzyme activity (homocysteine as 

measured electrochemically) after either 10 or 100 second treatments with the indicated 

mediator/voltage combinations. Three replicates were measured and error bars indicate s.d. 

AS indicates the redox mediator acetosyringone starting out in the reduced form. PB stands 

for phosphate buffer.  HCY is homocysteine. HLPT is the fusion protein under study. 
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Supplementary Figure S2.5: Real-time activity measurement. a, In situ monitoring 

of Hcy evolution by HLPT immobilized and differentially-attenuated on-chip. Concentrations 

on the right side correspond to final measurements after 2 hours. b, Correlation between 

slopes of lines in a and final concentrations. R2 value indicates the Pearson correlation 

coefficient for linearity in both a and b. HCY is homocysteine. 

 

“Setpoint” Calculations and Procedure 

The goal of these experiments was to test whether we could predictably “tune” 

the activity of an assembled enzyme complex to a specific “setpoint”. These 

experiments would demonstrate that if we know the initial activity of the assembled 

biohybrid device, we may be able to calculate the charge that needs to be applied in 

order to reach a desired lower activity. In practical applications of our method, this 

would be the way to use feedback control for setting flux through the pathway and 

tuning the enzyme activity in real time. 

First we used electronic signals to load a sufficient amount of the enzyme onto 

the chip using the biofabrication methodologies previously described. This was done 
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to a series of chips, all of which would have the same initial activity. This initial 

activity (tested by reacting only ONE set of chips in the series for 3 hours with SAH 

and measuring Hcy generation) (Step 1 in Supplementary Fig. S2.6) was then placed 

at point (0,y) with y being the calculated enzymatic activity. This point (0,y), was 

placed on the graph in Figure 2.7. 

Our next step was to calculate the exposure line (similar to the trendlines in 

Fig. 2.7 c), which would allow us to predict the needed input charge to achieve a 

decrease in activity. We assumed that the slope of this line would be the average of 

the slopes of the two lines and that it would fall between on Fig. 2.7 c. The slope of 

our new line along with the point (0,y) allowed us to calculate the x-intercept and 

place the line on the graph (the equation of the line is given in Supplementary Fig. 

S2.6). We then decided on the decreased activity that we wanted to tune down to – in 

our example it was 0.15 nmol Hcy/(min*cm2) (Step 2 in Supplementary Fig. S2.6).  

We used the equation of this line to determine the needed exposure 

charge/time (-2.25 mC, about 81 sec) at +0.55 V to hit our desired activity level. We 

then biased several of the chips from the series at or near the calculated time (Step 3 

in Supplementary Fig. S2.6). These additional chips were used for application of +/- 

1mC of charge so that we could have additional values to test linearity and 

robustness. All attenuated chips were then incubated with SAH as before and their 

activity measured. Presumably, if the chips behaved as predicted, then their activities 

would fall on the line.  Specifically, we expected the activity of the chips biased with 

-2.25mC to be 0.15 nmol Hcy/(min*cm2). The error bars on both axes of the line in 

Supplementary Fig. S2.6 were calculated as the averages of those from the points on 
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the two adjacent lines on Fig. 2.7 c (the same lines as those used for the average slope 

calculation). 

In Supplementary Figure S2.6 we can see that our results (red dot) after 

attenuation with the calculated charge are within the error range of the predicted 

values (lighter red dotted circle).  The additional electrode chips (yellow dots) also 

followed the predicted trajectory. Overall, we conclude that electronic attenuation of 

HLPT using AS is predictable and a desired activity can be reached by performing the 

calculations above. 

 

Supplementary Figure S2.6: Predictability of input charge and homocysteine 

generation. Three replicates were measured and error bars show s.d. The equation of the 

line was generated as described in the discussion. HCY is homocysteine. 

 

Estimation of Electrons Used to Attenuate a Single Protein Molecule On-Chip 

Our hypothesis is that the amount of input charge correlates to activity 

decrease through oxidation of a predictable amount of proteins – and more 
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specifically predictable amount of protein residues. These numbers were estimated 

for electrode-immobilized proteins.  

First, the average specific activity in nmol HCY/(min*mg) was calculated 

from electrochemical measurements of known concentrations (and therefore amounts 

in mg) of the protein (1.5,2,4,8 µM). This average activity was then used to determine 

approximate amounts of protein that were immobilized on an electrode - assuming 

activity was similar to the average calculated for the solution-based protein.  

The mg of protein present that were active on the chip were then converted to 

moles of protein based on molar mass (approximately 50 kDa), and finally to 

molecules of the protein. We thus had the number of active protein molecules on each 

attenuated and non-attenuated electrode. Again, this was calculated from the amount 

of Hcy generated from the chips. 

To calculate the number of electrons that each molecule of protein was 

attenuated by, we first calculated the number of electrons that were used for each 

input current by dividing the total input charge by the charge of an electron. Then, we 

subtracted the molecules of protein for a specific sample from that of the positive 

control (which was not attenuated) to find the apparent decrease in the number of 

active protein molecules due to the input of current.  

The number of electrons used to attenuate a particular sample was then 

divided by this decrease in number of active protein molecules. This yielded the 

average number of electrons that were needed in order to attenuate one molecule of 

protein for a particular data point. This number (30-90) was on the same order of 

magnitude at the number of easily-oxidized amino acid residues on HLPT. These 
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include primarily cysteine, but also methionine, lysine, arginine, proline, threonine, 

histidine, and tyrosine, which can be oxidized by a variety of oxidants, though of 

course not all of these residues would be accessible 61.  Additionally, electrons were 

probably used to alter the pH, the chitosan scaffold, and other environmental 

conditions. We believe that these numbers show that we do indeed have a quantifiable 

and predictable number of electrons that are used to attenuate each protein molecule. 

Furthermore, such a number would differ for different proteins and mediator 

combination and could be useful for determining the amount of current needed to 

attenuate a specific protein down to a desired activity level.  

 

Electronic Attenuation with Additional Mediators and Proteins 

The circular electrode chip described in Methods was used for all on-chip 

attenuation experiments in this section.  

 

Attenuation of HLPT with the Mediator Ir on a Chip 

HLPT was assembled on a chip using the same methods as previously 

described. Ir(III) was used as the mediator, at a concentration of 500 µM in phosphate 

buffer pH 7. A method identical to the one described in the methods section for on-

chip attenuation was used to oxidize Ir(III) to Ir(IV) in situ, which would then oxidize 

the assembled HLPT and attenuate its activity. Above, we show that Ir(IV) is able to 

oxidize HLPT in a time and concentration-dependent manner in solution. Here we 

wanted to illustrate that on-chip attenuation of HLPT can also be done with in situ 

oxidation of Ir(III) to Ir(IV). Chips were incubated in the same manner as indicated in 
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the Methods section, and activity was measured and calculated again in the same way 

as before. The results below in Supplementary Figure S2.7 show that we saw a 

similar trend in activity attenuation by electronically-controlled oxidation of Ir(III) as 

we did with AS(R). When plotted on the same graph as in Figure 2.7 c, the leveling-

off of activity decrease due to input charge is at a similar value to the other series, but 

the slope does seem to differ significantly.  

 

Supplementary Figure S2.7: On-chip attenuation of HLPT with Ir. a, The enzyme 

activity of HLPT is calculated from measured homocysteine product generated resulting from 
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attenuation of HLPT on-chip with the indicated input charges in a solution of 500 µM Ir(III).  

Three replicates for each data point were measured and error bars show s.d. The R2 value was 

calculated from the Pearson coefficient for linearity. b, The same data as in a, only plotted on 

the same axes/graphs (lightened here) as in Figure 3c to show for comparison. Ir is the 

iridium redox mediator. HCY is homocysteine. 

 

Attenuation of the Enzyme β-galactosidase On-Chip with Both AS and Ir 

β-galactosidase is a commonly-used genetic reporter protein and an enzyme 

that hydrolyzes β -galactosides to monosaccharides. It is a well-studied sulfhydryl-

containing enzyme with 19 cysteine residues per subunit 62. These SH groups are 

believed to be important for maintaining the active conformation of the enzyme. 

We first tested whether Ir(IV) and AS(O) can be used in solution to attenuate 

its activity. β -galactosidase was first diluted in 40 mM Tris HCl pH 7.5 to a 

concentration of 0.2 U/µl. Then, 5 µl (for Ir) or 1 µl of a 0.04 U/ µl stock (for AS) of 

this enzyme was incubated in 100 µl total with the indicated concentrations of Ir(III), 

Ir(IV), AS(R), and AS(O) in 40 mM Tris for 30 minutes (for Ir) or 2 hours (for AS). 

To measure the remaining activity, 10 µl of o-nitrophenyl β-D-galactopyranoside 

(ONPG) at 4 mg/ml was added. Another 30 minutes (for Ir) or 2 hours (for AS) were 

given for the reaction to take place at room temperature, during which the ONPG 

substrate is hydrolyzed by the enzyme to form o-nitrophenol (which is yellow) and 

galactose. The yellow product can be detected at 420 nm in a clear-bottomed 96-well 

plate in a standard plate reader. The results below in Supplementary Figure S2.8 

indicate that Ir(IV) and AS(O) were able to attenuate β-galactosidase activity, 

whereas Ir(III) and AS(R) were not. 
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Supplementary Figure S2.8: Attenuation of β-galactosidase activity. a, Enzyme 

activity as indicated by the OD 420 measurement of the substrate evolution after treatment 

with either reduced (III) or oxidized (IV) Ir as indicated in the method. b,  Enzyme activity as 

indicated by the OD420 measurement of the substrate evolution after treatment with either 

AS(R) at 1000 µM or the indicated concentration of AS(O). c, On-chip attenuation of β-

galactosidase with either 500 µM Ir or 500 µM  AS, as described in the method in this 

section. Enzyme activity is measured by the OD 420 of the substrate evolved. Error bars 

indicate s.d from three measurements for a and b, and three for the Ir series in c and four for 

AS series in c. The R2 values were calculated from the Pearson correlation coefficient for 
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linearity for the linear portion indicated by the trendlines in c. For a and b two-tailed, unequal 

variance student’s t-tests were performed for comparing against the 0 - concentration - treated 

positive control. ** indicates p < 0.01, *** p<0.001, and **** p < 0.0001. Ir(III) is the 

reduced form of the redox mediator IrCl6, and Ir(IV) is the oxidized form. AS(R) and AS(O) 

are the reduced and oxidized forms of the redox mediator acetosyringone. 

 

In order to apply our on-chip attenuation method for β-galactosidase we had to 

modify the steps required for assembling the protein onto the chitosan surface. Since 

we purchased the enzyme and it did not contain an engineered tyrosine tag for us to 

use for tyrosinase-mediated assembly, we used an alternative method developed by 

our group for use with such proteins. This method involves the mixing of the protein 

and the chitosan and the co-deposition of the protein within the chitosan film. It has 

been successfully applied to several enzymes 63-65. Here we were able to successfully 

use this for β-galactosidase deposition, and retained activity of the enzyme within the 

chitosan scaffold on the electrode chips. We diluted the enzyme to 1 U/µl in 0.8% 

chitosan and co-deposited for 2 minutes at 4 A/m2, after which the chip with the 

chitosan/enzyme film was gently washed and stored in 40 mM Tris HCl pH 7.5.  

For on-chip attenuation, we again used the procedure outlined in the Methods 

and used either 250 µM AS(R) or 500µM Ir(III) in phosphate buffer, and biased the 

chips for various times and with a variety of input charges. After attenuation, each 

chip was incubated with 100 µl of 0.4 mg/ml ONPG at room temperature for 2 hours. 

These samples were collected and read in a plate reader at 420nm. We can see from 

the figure above that we were able to attenuate β-galactosidase activity with both Ir 
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and AS in situ, and the activity attenuation seems to correlate with the amount of 

charge that was used. 

 

Attenuation of Microbial Transglutaminase with Ir and As 

Microbial transglutaminase (mTG) is another commonly-used enzyme, and 

catalyzes the formation of a covalent bond between a free amine group (e.g., protein- 

or peptide-bound lysine) and the acyl group at the end of the side chain of protein- 

or peptide-bound glutamine.  

To measure mTG activity, a reaction solution of 31 mM CBZ-Gln-Gly, 174 

mM Tris pH 6, 87 mM hydroxylamine, 8.7 mM glutathione (reduced form) and 4mM 

calcium chloride was made. This reaction solution would then be added to the mTG 

in the indicated volume and incubated at 37 °C. Then a stop solution consisting of 5 

% w/v FeCl3 and 12 % v/v Trichloroacetic acid in deionized water was added at the 

indicated volume. This results in a brown color change, which can be measured at 

525 nm in a plate reader. For measuring on-chip activity, the Tris pH was at 7 to 

prevent the dissolution of the chitosan membrane. 

We first tested mTG for activity attenuation by exposure to Ir(IV) and AS(O) 

as with β-galactosidase above. mTG was from Ajinomoto (Chicago, IL), and was 

used at a stock concentration of 30 U/mg. To test attenuation of mTG in solution, Ir 

(III), Ir(IV), AS(R), and AS(O) at 1 mM stock concentrations in PBS were used. 1 µl 

of the mTG enzyme (at about 5 mg/ml) was incubated with the indicated 

concentrations in a total of 10 µl in PBS for 2 hours. For attenuation testing with 

AS(R) and AS(O), 50 µl of the reaction solution was then added for a half hour, with 

http://en.wikipedia.org/wiki/Catalyze
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Acyl
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Peptide
http://en.wikipedia.org/wiki/Glutamine
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37 °C incubation for 30 minutes. 50 µl of the stop solution was then added to the 

reaction, after which the OD at 525 nm was read on a plate reader. For Ir(III) and 

Ir(IV) attenuation, 1 µl was incubated with the indicated concentrations  in a total of 

10 µl in PBS for 30 minutes, after which the samples were washed with PBS as 

HLPT was previously, to dilute out the Ir. The same volumes of the reaction and stop 

solutions were added. The results below in Supplementary Figure S2.9 show that as 

with HLPT and β-galactosidase, mTG was attenuated with Ir(IV) and AS(O) but not 

Ir(III) or AS(R) in solution.  
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Supplementary Figure S2.9: Attenuation of mTG activity. a, Enzyme activity as 

indicated by the OD 525 measurement of the substrate reaction with the stop solution after 

treatment with either AS(R) at 900 µM or the indicated concentration of AS(O) as indicated 

in the method. b,  Enzyme activity as indicated by the OD 525 measurement of the substrate 

reaction with the stop solution after treatment with either Ir(III) at 900 µM or the indicated 

concentration of Ir(IV). c, Sulfhydryl (SH) groups remaining non-oxidized after treatment of 
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mTG with either Ir(III) or Ir(IV), or untreated. d, On-chip attenuation of mTG with either 500 

µM Ir or 250 µM AS, as described in the method in this section. Enzyme activity as in a and 

b. Error bars indicate s.d from three measurements for a, b, and c, and two to three for both 

series in c. The R2 values were calculated from the Pearson correlation coefficient for 

linearity for the linear portion indicated by the trendlines. For a and b two-tailed, unequal 

variance student’s t-tests were performed for comparing against the untreated positive 

control. * indicates p < 0.05, ** p < 0.01, and *** p<0.001. Ir(III) is the reduced form of the 

redox mediator IrCl6, and Ir(IV) is the oxidized form. AS(R) and AS(O) are the reduced and 

oxidized forms of the redox mediator acetosyringone. 

 

For on-chip attenuation, we again used the procedure outlined above for β-

galactosidase to entrap mTG within the chitosan. A 3 U/mg mTG in 0.8% chitosan 

solution was used, after which the chips were stored in PBS. For in situ attenuation, 

250 µM AS(R) or 500 µM Ir(III) in phosphate buffer were used, and the chips were 

again attenuated for various times and with a variety of input charges in the same 

manner as before. Each chip was then incubated with 75 µl of the reaction cocktail as 

above at pH 7, at 37 °C for 3 hours. These samples were collected, 50 µl of stop 

solution was added, and read in a plate reader at 525 nm. We can see from the figure 

above that we were able to attenuate mTG activity with both Ir and AS in situ, and the 

activity attenuation seems to correlate with the amount of charge that was used, as in 

our results in Figure 2.7, as well as above in Supplementary Figures S2.7 and S2.8. 

We believe that the results in the above figures demonstrate that our method 

can be expanded beyond our model protein HLPT and the mediator acetosyringone. 

There are likely additional mediators and proteins to which this method could be 
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applied – and this might need to be determined on a case-by-case basis. We did not 

optimize the concentrations of the mediators nor the times of exposure or reaction in 

this section, but we do believe that further optimization could show more interesting 

trends. On the other hand, without optimization we found consistent results, 

demonstrating robustness. Additionally, perhaps proteins that are resistant to 

oxidation would be harder to oxidize using this method.  
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Chapter 3: Electrochemical measurement of the β-galactosidase 

reporter from live cells: a comparison to the Miller Assay 

 

The majority of this section is adapted from a manuscript currently in review at ACS 

Synthetic Biology with the same title as the chapter. 

Chapter abstract 

With our ever-expanding abilities to construct complex synthetic biology 

systems, facile, real-time monitoring techniques to assess the performance and 

dynamics of these systems must be concomitantly developed and understood. 

Electrochemical monitoring offers the above advantages largely because signal 

transduction stems from direct electron transfer – allowing for potentially quicker and 

more integrated measurements. One of the most common genetic reporters, β-

galactosidase, can be measured both spectrophotometrically (Miller assay) and 

electrochemically. However, since the relationship between the two is not well 

understood, the electrochemical method has not yet garnered the attention of 

biologists. With the aim of demonstrating the utility of the method to the synthetic 

biology community, we created a genetic construct that interprets and reports (with β-

galactosidase) on the concentration of the bacterial quorum sensing molecule 

autoinducer-2. In this work, we provide for the first time a correlation between 

electrochemical measurements and Miller Units – enabling the meaningful 

interpretation of electrochemical signals by synthetic biologists. We show that the 

electrochemical assay works with both lysed and whole cells, allowing for the 
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prediction of one from the other, and for continuous monitoring of cell response. We 

further present a conceptually simple and generalized mathematical model for cell-

based β-galactosidase reporter systems that could aid in building and predicting a 

variety of synthetic biology constructs. This first-ever in-depth comparison and 

analysis aims to shed light on and facilitate the use of electrochemical real-time 

monitoring in the synthetic biology field as well as open doors towards creating 

constructs that can more easily communicate information to electronic systems. 

 

Introduction 

Synthetic biology motivates the rewiring of biological systems for a myriad of 

applications, including sensing, directed feedback response to various inputs and the 

production of valuable products 66. One of the aims of the field is to uncover the 

underlying design principles of biological systems through the rational design of gene 

and protein circuits67,68. Engineered biological systems have already contributed 

significantly to our understanding of how natural systems function and interact 69-71. 

Complex genetic circuits and feedback loops have given us quantitative 

understanding of gene expression and signal transduction 72,73, insights into the 

diversity of behaviors that result from various control loops 74, and the ability to 

rationally control spatial organization and interactions between cells 75-77. 

For ease of analysis and for developing designs, genetically engineered cells 

generally use a set of well-characterized reporters, typically fluorescent proteins such 

as green fluorescent protein (GFP) or enzymes such as β-galactosidase (β-gal)78. 

Fluorescent reporters, when engineered for short half-lives, allow nearly continuous 
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tracking of protein expression in live cells over time under varying conditions with 

intracellular resolution. In contrast, enzymatic reporters offer high sensitivity through 

signal amplification. Because the enzyme continually generates more detectable 

product over time, very small amounts of the enzyme can be measured. Requiring 

lower copy numbers of reporter in order to achieve a desired sensitivity eases the 

transcriptional/translational burden on the cell79 so that the process of detection does 

not independently influence the system’s biology. 

The β-gal reporter enzyme is one of the most common genetic reporters, and 

its standard analysis using the Miller assay80 is a textbook example of a well-

quantified method for measuring protein expression and enzyme activity. Typically, 

cell samples are collected and lysed at specified time points, and the freed enzyme is 

allowed to react with the substrate, ortho-nitrophenyl- β –galactoside (ONPG). The 

yellow-colored product o-nitrophenyl (ONP) is produced by enzymatic cleavage and 

is quantified by measuring absorbance. The amount of product, the extent of the 

enzymatic reaction and the amount of cells in the sample are used to calculate Miller 

Units, which can be used to compare gene expression across samples taken under 

various conditions. Although reliable, the Miller assay has critical limitations.  The 

assay requires cell lysis, which prevents continuous measurement or localization of 

the signal within a cell population.  Diffusion and reaction of a different β-gal 

substrate, X-gal, provides an optical measure of LacZ localization but makes 

quantification more difficult. These constraints become more problematic as 

researchers move from traditional flask and well-plate formats towards microfluidic 

and lab-on-a-chip formats that better support rapid, highly sensitive and selective 
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measurements. As a result, recent influential papers in synthetic biology have mainly 

relied on fluorescent reporters13,81,82. 

Since one of the aims of synthetic biology is to progress towards analysis and 

control over natural circuits as well as the design and manipulation of synthetic parts, 

we must have measurement techniques that track closely with the dynamics of the 

synthetic system. Such techniques would further the construction of more predictive 

models of metabolic and cellular networks for both understanding existing and 

engineering novel circuits. This paper is largely motivated by the great work of the 

biosensor and biochip community, where researchers have used the redox molecule p-

aminophenyl β-D-galactopyranoside (PAPG) as a substrate for electrochemically 

measuring β–gal activity both inside and outside of cells83-91. Many of these systems 

focus on the development of sensitive electrode and biochip systems that can provide 

real-time measurements on the microscale, are cost-efficient, and allow easy 

integration with electronic systems.   

Electrochemical sensing uses electron exchanges between redox-active 

molecules and electrodes to generate measurable electrochemical signals. The fast 

kinetics of electrochemical methods make them promising for dynamically 

monitoring constructs of synthetic biology.  Additionally, the electronic output 

provides quantitative data that can be easily analyzed and used in modeling the 

system.  However, many such electrochemical devices for β-gal measurement are 

manufactured in-house, precluding their proliferation among synthetic biology 

laboratories. Moreover, there remains no direct comparison to a standard that is well 

understood by synthetic biologists - the Miller Unit. This disconnect motivated us to 
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investigate the relationship between the electrochemical (using PAPG) and 

spectrophotometric (using ONPG) methods of measurement of β–gal to better help 

those familiar with the Miller Unit understand how to take advantage of 

electrochemical sensing.  

Here, we show for the first time that the electrochemical substrate PAPG can 

be used to detect β–gal in a manner comparable to when ONPG is used as a 

spectrophotometric substrate. We demonstrate the electrochemical method by 

quantifying the responses of both whole cells expressing β–gal and lysed cells, and 

correlate both responses to the Miller assay. We created a whole-cell biosensor that 

detects the quorum-sensing molecule autoinducer-2 (AI-2) and responds by 

producing β–gal in a concentration-dependent manner. The genetic circuitry is 

generalizable to any stimuli or molecular cue that evokes a cell response, contingent 

on a genetic link to a natural or synthetic promoter. We specifically chose to detect 

AI-2 because it is a molecule secreted by over 55 bacterial species and facilitates 

quorum sensing (QS)92. QS represents population dependent bacterial communication 

and response and mediates bacterial virulence and biofilm formation93. QS is 

particularly relevant as the problem of antibiotic resistance escalates94. Thus, in our 

example, we utilize synthetic biology constructs to transduce molecular signals that 

mediate biomolecular cell-to-cell communication into electrical output signals that 

can be further quantified, analyzed, and modeled. 

We use both our electrochemical and spectrophotometric data to create a 

computational model of the biosensor under both lysed and whole cell conditions, and 

correlate the electrochemical sensor measurements to the genetic response through 
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the Miller assay. With this framework, researchers can measure whole cell response 

with all the advantages of electrochemical detection, without sacrificing 

understanding of the underlying genetic response. Overall, our in-depth analysis of 

the whole-cell electrochemical AI-2 biosensor and corresponding computational 

model furthers the use of electrochemical monitoring for synthetic biology.  

 

Materials and Methods 

Chemical Reagents and Biocomponents  

4-aminophenyl β-D-galactopyranoside (PAPG), 4-aminophenol (PAP), β-

galactosidase (β-gal) and ortho-Nitrophenyl-β-galactoside (ONPG) were from Sigma-

Aldrich. PAPG was dissolved in diH2O and β-gal was dissolved in 40 mM Tris-HCl. 

PAP and ONPG were dissolved in 0.1 M phosphate buffer (PB). “In vitro” 

autoinducer-2 (AI-2) was produced through previously described biological 

nanofactories95. Briefly, the nanofactory fusion protein HGLPT (His6-protein G-

LuxS-Pfs-Tyr5) was purified from E. coli BL21 luxS- and incubated with 1 mM of the 

substrate S-(f’-deoxyadenosin-5’)-L-homocysteine (SAH) at 37° C with shaking at 

250 rpm, resulting in AI-2 synthesis. The enzymatic reaction product was twice 

extracted by an equal volume of chloroform. 

 

Electrochemical PAP Detection 

 PAP was detected electrochemically through cyclic voltammetry (CV). CVs 

were performed with a CHI Instruments 600-series electrochemical analyzer (CH 
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instruments, Inc.) using an Au working electrode (2 mm diameter, CH Instruments, 

Inc.), a 4 cm-long platinum counter electrode (Alfa Aesar), and Ag/AgCl reference 

electrode (BASi). CVs were run from -0.15 to 0.3 V at a scan rate of 50 mV/s. The 

current at the reduction peak was used to measure PAP concentration. 

 

Bacterial Strains, Plasmids and Culture Conditions 

 In order to enhance the AI-2 responsiveness of E. coli ZK12696, a double 

chromosomal knockout of lsrFG and luxS strain, CT108, was created using one-step 

inactivation method97. Briefly, pKD4 was PCR amplified using primers lsrFGHP1, 

ATGGCAGATTTAGACGATATTAAAGATGGTAAAGATTTTCGTGTAGGCTG

GAGCTGCTTC, and lsrHP298. The PCR product was electrically transformed into 

ZK126 pKD46 (to express the Red recombinase). lsrFG:Kanr recombinants were 

screened with kanamycin and pKD46 plasmid was cured by growing at 37oC.   After 

confirming the gene replacement by PCR, the kanamycin resistant gene, Kanr, was 

removed by transforming a helper plasmid, pFLPe-Tet (Gene Bridges), to express the 

FLP recombinase. Then luxS was knocked-out from ZK126 ΔlsrFG following the 

similar procedure published before98. CT108 was created after the removal of the 

kanamycin resistance gene similarly descripted as above. Plasmids pCT699 and then 

the commercially-available pET200/D/LacZ (Life Technologies) were introduced via 

standard heat-shock protocols of chemically-competent cells.  
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Miller Assay (Colorimetric β-gal Activity Detection) 

 Miller assay was performed according to standard protocols80. Briefly, cells 

were lysed with chloroform and sodium dodecyl sulfate (SDS) to release β-gal. The 

substrate ONPG was added and cleaved by β-gal into a yellow molecule, o-

nitrophenol. Absorbance at 600 nm, 550nm, and 420 nm was quantified by a 

Molecular Systems plate reader.  The OD at 600nm was measured from 250 µl of 

cells and the ODs at 420 nm and 550 nm were measured from 200 µl of cells.  

 

AI-2 Detection with Bacterial Biosensor 

 E. coli CT108 pCT6/pETLacZ was grown in LB Broth, Miller (Fischer 

Scientific) at 37°C with aeration by shaking at 250 rpm, then reinoculated at 2% and 

grown to early log phase (OD600 0.2). Cells were incubated with AI-2 at 37 °C with 

shaking at 250 rpm, then spun down and resuspended in phosphate-buffered saline 

(PBS) at an OD600 of 2. 0.5 mg/mL PAPG was added and CVs were performed as 

described above. To validate the electrochemical results, the commonly used Miller 

assay was performed on lysed cells to quantify β-galactosidase activity. 

 

Cell Lysis 

 10 % chloroform and 0.005 % SDS were added to cells resuspended in PBS. 

The reaction was vortexed and incubated at room temperature for 5 min. For 

absorbance measurements, the reaction was spun down for 4 minutes at 8000 rpm and 

the supernatant was removed for measurement. For electrochemical measurements, 
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the reaction was spun down for 1 minute at 14,000 rpm and the supernatant was 

removed for measurement. 

Results and Discussion 

Electrochemical characterization of LacZ expression 

A generalized scheme of the electrochemical detection of PAP to characterize 

cellular LacZ expression is presented in Figure 3.1 a.  Molecular cues signal 

intracellular synthetic biology controllers (represented in abstract form) to drive LacZ 

gene expression, which produces the β-gal enzyme as a surrogate for phenotypic 

output. To perform electrochemical enzyme activity measurements, PAPG is added, 

enters the cell, and is cleaved by β-gal into PAP (Figure 3.1 b), in an analogous 

manner as ONPG is cleaved into ONP for optical measurements. PAP can then exit 

the cell and be detected electrochemically by oxidation to p-iminoquinone using a 

three electrode system (Figure 3.1 b and c)64. The current readout, as can be seen in 

Figures 3.1 d (cyclic voltammetry scan) and e (peak current of the cyclic 

voltammograms), is linearly proportional to PAP concentration over a fairly wide 

range. See Supplementary Figure S3.4 for additional information on the oxidation vs. 

reduction current of PAP. This method allows the characterization of the amount of β-

gal, whether in lysed cells or within an intact cellular environment. Since we foresee 

this measurement method being especially useful in miniaturized lab-on-a-chip 

systems, it is important to note that the sensitivity of smaller electrodes towards PAP 

should not decrease because sensitivity is measured as current/electrode area. 

Additionally, microelectrode edge effects resulting in enhanced diffusion of PAP to 

the electrode may actually increase sensitivity on the microscale. 
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Figure 3.1: Overall goal schematic and PAP electrochemical characterization. a, 

A general electrochemical biosensing scheme for a cell producing β-galactosidase as a 

reporter (phenotypic output) from a promoter of choice or a combination of genetic elements 

(synthetic biology controller) in response to various molecular cues (AI-2 in this paper). Once 

β-galactosidase is produced, 4-aminophenyl β-D-galactopyranoside (PAPG) is added. PAPG 

enters the cell and is cleaved by β-gal into the redox active molecule p-aminophenol (PAP). 

PAP exits the cell and is quantified through cyclic voltammetry at the electrode. b, Molecular 

structures of the cleavage of ONPG to ONP and D-galactose and PAPG to PAP and D-

galactose by β-gal. c, The counter (C), working (W), and reference (R) electrodes used in this 

work and a schematic of the electrochemical system setup. d, Sample cyclic voltammograms 
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of different concentrations of PAP using the setup in c. Inset showing reversible PAP 

oxidation to p-iminoquinone at the electrode. R and O indicate reduction and oxidation peaks, 

respectively. e, PAP standard curve shows correlation between PAP concentration and the 

reduction peak current, taken from d. 

 

Characterization of β-gal produced by biosensor cells 

To study the utility of electrochemical β-gal detection in cells, we constructed 

an E. coli sensor cell strain (luxS-, lsrFG-, Δ(argF-lac)169) that relies on native 

import and phosphorylation of AI-2 to de-repress expression of the lsr promoter 

(Figs. 3.2 a,b). Using a two-plasmid system we amplify the native signal strength (lsr 

promoter) by driving expression of T7 RNA polymerase (from pCT6). This, in turn, 

amplifies gene expression from a generic pET vector, engineered to produce β-gal. 

This two-plasmid expression system provides biological amplification that greatly 

increases the sensitivity of the strain to AI-2, as discussed by Tsao et al. (2010). As 

seen in Figure 3.2 c, the cells respond in a predictable, dose-dependent manner; that 

is, the β-gal response as measured by the Miller assay correlates with the 

concentration of added AI-2. These response trends correspond with our previous 

results for systems involving AI-2 uptake by cells99. Because the stoichiometry of the 

reaction using the electrochemical substrate (PAPG) is the same as that using the 

colorimetric Miller substrate (ONPG), we expect a direct correlation between the 

Miller and electrochemical assays. We selected cells at 3 hours post-AI-2 induction 

for further experiments since the responses were robust and the Miller response 

correlated most closely to the AI-2 concentration (Supplementary Figure S3.1).  
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Figure 3.2: AI-2 biosensor characterization. a, The biosensing scheme for a cell 

producing β-gal as a response to added AI-2. b, The synthetic construct, in which the Lsr 

promoter activation induces β-gal production through a two-plasmid system. Plasmid pCT6 

responds to AI-2 by producing T7 polymerase and activating the T7 promoter on pETLacZ, 

which results in β-gal overexpression.  c, A time-course response to different added AI-2 

concentrations of the above construct, CT108 cells with pCT6 and pETLacZ plasmids. 

Averages are from 3 samples and error bars indicate S.D. 
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Real-time electrochemical vs. spectrophotometric measurement of β-gal activity 

To establish the electrochemical measurement using our electrodes, we first 

used purchased β-gal as a reference material. In Figure 3.3, we characterized β-gal 

activity using both spectrophotometric and electrochemical methods, re-suspending 

the enzyme in either the Miller assay’s Z-buffer or 40 mM Tris-HCl, respectively.  

These experiments provided a basis for quantifying enzyme (g/L) relative to its 

activity using both methods and for estimating β-gal concentration within biosensor 

cells.  

The spectrophotometric technique (Fig. 3.3 b) allows measurements that are 

rapid, sensitive, and linear at low β-gal concentrations. However, we can also see that 

it takes less than a minute for the highest β-gal concentration - 0.005 U/µl - to 

generate an amount of ONP that is no longer in the linear range on the 

spectrophotometer (>1 AU).  Higher concentrations would need to be diluted for 

analysis in the linear range. The electrochemical technique, while also sensitive and 

linear, better differentiates between higher concentrations of β-gal (Fig. 3.3 c); after 

20 minutes of reaction, 0.005 U/µl of β-gal yields a signal still in the linear range. In 

both cases, rates of product generation were higher with increasing enzyme 

concentration (as expected), and the two measurements showed a linear correlation 

with each other (Fig. 3.3 d). Also in Fig. 3.3 d, we can see that the rate of PAP 

detection is ~5 fold slower than the rate of ONP detection. 
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Figure 3.3: β-galactosidase activity detection. a, Scheme of real-time electrochemical 

and spectrophotometric detection of PAP or ONP produced by β-gal cleavage of PAPG or 

ONPG. b, Spectrophotometric ONP measurement from reactions of various concentrations of 

β-gal with ONPG over time. c, The same β-gal concentrations and conditions as in b, where 

the activity was instead measured by electrochemical detection of PAPG cleavage to PAP. d, 

Correlation between electrochemical measurement rate of PAP detection to 

spectrophotometric measurement rate of ONP detection from data in b and c, as well as the 

same data converted to the same units of µM/min of measured PAP or ONP. All lines in B-D 
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indicate linear trendlines except for 0.005 U/µl in b, which indicates a best fit 2nd order 

polynomial trendline. 

 

Electrochemical response of AI-2 biosensor cells 

We then moved on to electrochemically characterizing the response of our 

biosensor cells, in which we used cell samples after a 3 hour AI-2 induction. Since 

the Miller assay requires cell lysis, we first investigated the electrochemical response 

of lysed cells. The schematic in Figure 3.4 a depicts the relationships between all of 

the system components. PAP current was measured at 0, 5, 10, and 15 minutes after 

the addition of PAPG. As can be seen from Figure 3.4 b, the current rose as a function 

of both time and initial AI-2 concentration. The Miller assay was also performed on 

the same cells at the 0 time point, and in Figure 3.4 c, we found a linear correlation 

between the Miller Units and the rate of PAP detection from the same cells.  

This allows us to correlate the electrochemical measurement to the Miller 

Units. To our knowledge this correlation has never been reported for β-gal expressed 

in any cell type. These data provide direct correlation for the two measurements and 

demonstrate, at least for this synthetic biology application with E. coli, that the assays 

are easily employed for typical experimental ranges. Finally, these data can be used to 

approximate the amount of intracellular β-gal in the host cells (Supplementary Figure 

S3.2). 
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Figure 3.4: Lysed cell electrochemical PAP measurement. a, Scheme of detection of 

AI-2 by electrochemical measurement of PAP production by lysed biosensor cells. b, 

Detection of PAP from cells induced with the indicated AI-2 concentrations for 3 hours and 

lysed prior to PAPG incubation for the indicated time. c, Comparison of the rate of PAP 
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detection from the samples in b to the Miller units measured from the same samples, 

indicating a linear relationship and low background. Dotted lines indicate linear trendlines. 

 

In Figure 3.5, we continued our studies with whole live cells. PAP current was 

measured at the 0, 1, and 2 hour time points after addition of PAPG. Recall that 

whole cell measurements are not possible via the Miller protocol, which lyses cells. 

In order to perform measurements in live cells, PAPG and PAP diffusion through the 

cell membrane is required, which can be quantified using electrochemical techniques. 

As seen in Figure 3.5 b, the current response correlates with the initial amount of AI-

2 added, as was the case with the lysed cells. Multiple experiments are shown which 

were performed on different days. A more informative representation of our results is 

shown in Figure 3.5 c, where each point represents both the rate of PAP detection at 2 

hours (as in Figure 3.5 b) and the corresponding Miller results of the same cell 

samples. It is important to note that during those two hours following PAPG addition, 

the quantity of β-gal within the cells did not vary significantly. Figure 3.5 c shows 

correlation (R2 = 0.97, with R2 = 0.92 for all points between the Miller Units and the 

electrochemical response up to about 2000 Miller units. The limit tested for the lysed 

cells was also in this range, and although above 2000 Miller units we noted larger 

deviation linearity was still preserved. We also note that the current-generation rate 

was much lower in whole cells than in lysed cells (Fig. 3.4). The current obtained in 

the 40 µM case for the whole cells reached 1.5 µA after 2 hours, but the same output 

was obtained within ~7 min for the lysed cells. Clearly, the intact cells represent a 
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barrier to PAPG and/or PAP transport, in addition to unknown factors that affect the 

molecule’s concentrations or reactions.  

 

Figure 3.5: PAP measurement from live cells. a, Scheme of detection of AI-2 by 

electrochemical measurement of PAP production by whole biosensor cells. b, PAP detection 

from whole cells after incubation with the given AI-2 concentrations for 3 hours and then 

PAPG for the indicated time. Averages are from 3-4 replicates on separate days and error 

bars show S.D. c, The calculated rates of PAP detection over the two hour period versus the 
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Miller Units of the same cell samples shows a linear relationship. Dotted lines indicate 

trendlines. 

 

In Figure 3.6 a, we show a comparison between the lysed and whole cell 

electrochemical response rates, dependent on the corresponding Miller Unit 

measurements. This allows a prediction of the current for either lysed or whole cells 

based on Miller assay results. Again, while the whole cell assay was slower, in both 

cases, linearity was demonstrated. The linear relationships from Figures 3.4 c & 3.5 c 

were used to construct a line in Figure 3.6 b (see Methods for further information and 

calculations), which relates the lysed cell assay to the intact cell assay, both measured 

via electrochemical means. It is evident from the graphs that lysed cell measurements 

are more than an order of magnitude faster than whole cell measurements for 

conditions with similar Miller Unit results. Nonetheless, the fact that the detection 

rates are linear at even low levels of β-gal suggests that relatively rapid analysis of 

gene expression is possible using this method, especially if more sensitive electrodes 

are used. Potentially, a normalized unit comparable to the Miller Unit could be 

calculated from the electrochemical measurements (we present our calculations in the 

Supplementary Information and Supplementary Figure S3.8). Additionally, we 

performed similar preliminary experiments using constructs with single plasmids and 

different promoters and were able to confirm similar trends.  

One aspect that is not obvious from the plot is that the amount of background 

signal for whole cells (~0.005 µA/min, Fig. 3.6 b) was similar to that for lysed cells 

(~0.004 µA/min, Fig. 3.6 a).  This background could be due to a combination of 
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factors: physical PAPG degradation to PAP or other uncharacterized cell processes 

resulting in PAPG cleavage, rather than due to reaction by β-gal.  We note, however, 

that experiments without the addition of PAPG resulted in near zero background 

(Supplementary Figure S3.3), indicating that the cells are not producing additional 

electrochemical species that overlap with the signal of PAP.  

 

Figure 3.6: Lysed vs. whole cell response. a, Comparison of the rates of PAP detection 

from whole versus lysed CT108 pCT6/pETLacZ sensor cells based on measured Miller Units 

in response to different AI-2 concentrations. b, The line indicating the 

relationship/conversion of PAP detection rate from lysed cells directly to whole cells. The 
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points on the line indicate calculated whole-cell rates for lysed cells with specific Miller 

Units. Dotted lines indicate trendlines. 

 

The two-compartment mathematical model 

We constructed a simple computational model that generates β-gal levels and 

PAP concentrations in response to PAPG and AI-2 addition to cells with respect to 

time. In order to build this model, compartments (ie. sub-models) were constructed 

separately (Figure 3.7 a). The first compartment modeled cell behavior (LacZ 

expression) in response to AI-2. The second compartment modeled the production of 

PAP via the substrate PAPG and its response to the enzyme, β-gal. The two sub-

models (Figure 3.7 a, 3.7 b) were combined into one final model that was then 

compared to the lysed cell data. Figure 3.7 c shows that there exists a good 

correlation between the model predictions and the PAP measurements (see also 

Supplementary Figures S3.5-3.7). That is, we have divided the model into two 

compartments so that the latter compartment could be an electrochemical “plug in” to 

the first compartment, which in turn, would be constructed for any generic construct 

wherein the first principles reactions could be conceptualized. In our case, the first 

compartment models the AI-2 – mediated expression of β-gal. 
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Figure 3.7: Model comparison with experimental results. a, Model results of cell 

production of β-gal depending on AI-2 induction, converted to Miller Units and overlaid with 

experimental data. Insert indicates modeled processes. b, Model results of β-gal conversion 

rate of PAPG to PAP overlaid with experimental results. Inserted scheme indicates modeled 

processes. c, Model results of lysed-cell production of β-gal and PAP production converted to 

current (combination of two modeled compartments in a and b) and overlaid with 

experimental results. 
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Conclusions 

In this work, we report the first in-depth comparison of the electrochemical 

method for measuring β-gal activity in both lysed and intact cells to the gold-standard 

Miller assay. Our results indicate that the electrochemical method is a feasible 

alternative that enables added versatility for analysis of synthetic biology constructs, 

especially in applications exploiting lab-on-a-chip devices or real-time measurements. 

We demonstrated this by developing a biosensor bacterium that converts the signaling 

function of quorum sensing molecule AI-2 to electronic signals through a genetic (β-

gal) and chemical (PAPG) transducer system. Our results showed that the electronic 

current measured was proportional to Miller Units from the same samples, and can be 

used to approximate gene expression in a multi-component synthetic circuit. Such 

electrochemical measurements would allow for in situ analyte detection as they 

integrate seamlessly into electronic systems, and could therefore provide for 

programmable measurements of synthetic biology constructs. Additionally, we 

created a two-compartment model that can be used to predict PAP (and thus 

electrochemical) output from our construct, and can be modified to accommodate 

other systems driving LacZ expression. We believe this work connects, for the first 

time, the work of the biosensor community in enzymatic reporter detection, with the 

standard optical measurement techniques biologists use for the same purpose. A 

better link between synthetic biologists and biochip / microelectronics designers 

enables parallel use of each other’s’ tools and advances the potential for synergistic 

outcomes. 
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Supplementary Figure S3.1: Biosensor cell response over time. Correlation between 

the concentration of AI-2 used to induce the biosensor cells and the Miller Units, based on the 

time after induction (incubation).  
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Supplementary Figure S3.2: Spectrophotometric and electrochemical 

measurement comparisons. a, The linear correlation between the enzyme units calculated 

from absorbance or electrochemical measurements for lysed cells. b, Similar results as in a 

but with electrochemical measurements coming from whole cells.  

 

Calculations: In order to convert absorbance (Abs/min) or electrochemical 

(µA/min) measurements to   β -gal (U/µl), the following equations were used, 

respectively:  x = (y -0.0016)/134 and x = (y + 0.035)/94.8 (x is the U/µl and y the 

measurement in either Abs/min or µA/min). Both equations were calculated from the 

data in Figure 3.3, where for each β-gal amount a calculated rate (Abs/min or 

µA/min) was found using Excel’s LINEST function. For the absorbance data, the 

highest enzyme concentration’s data was omitted as it was not in the linear range.  

 We can see that in Supplementary Figure S3.2 a, the rates correlate in almost 

a 1-to-1 ratio since in both cases the cells are lysed. In Supplementary Figure S3.2 b, 

however, the electrochemical measurements show a much lower apparent enzyme 

amount compared to the absorbance measurements. This is because although the 

absorbance measurements (as part of the Miller assay) were done on lysed cells, the 
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electrochemical measurements were done on whole cells. The relationship allows us 

to calculate the underestimation of the electrochemical whole-cell measurement.  

 

Supplementary Figure S3.3: Control experiments. Performed with biosensor cells 

different than ones used in the main paper, but which behaved similarly. PAPG 

concentrations were 0.5 mg/ml and AI-2 was 40 µM. Procedure was similar to that in the 

paper, and charge measurements were recorded instead of current, but represent similar data.  



 

 

86 
 

 

Supplementary Figure S3.4: PAP measurement. a, Oxidation currents of PAP 

generated by various β-gal concentrations, same as in Figure 3.3 c. b, Oxidation current of 

PAP generated by lysed cells induced with the indicated concentrations of AI-2, same as in 

Figure 3.4 b. c, Oxidation current of PAP generated by whole cells induced with the indicated 

concentrations of AI-2, same as in Figure 3.5 b. 

 

Calculations for line in Figure 3.6 b  

The line was-calculated by equating the x’s of the two equations of the lines  

in 3.4 c and 3.5 c, representative of the Miller Units, and rearranging the combined 

equation so that the current for whole cells (y1) depended on the current  for lysed 
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cells (y2). This allowed for direct conversion of lysed-cell rate to whole-cell rate for 

samples with the same Miller Units. The points on the graph indicate lysed-cell points  

[(x,y) being Miller, current] whose Miller Units were taken and plugged into the 

whole-cell equation to calculate what the whole-cell current would be for cells with 

the same Miller Units (x’s). The results were used as the y’s for the points on the 

graphs, with the x’s being the experimentally-measured lysed cell currents.  

 

The Two-Compartment model 

The model for tracking β-gal activity is a two-compartment model. That is, the 

main model is a construction of two sub-models. The first sub-model is a system of 3 

differential equations that model β-gal activity expressed in cells exposed to different 

levels of AI-2. The known parameter values are taken from literature and the rest are 

fitted to the data. The second sub-model uses the two Michaelis-Menten differential 

equations to model PAP production at various concentrations of β-gal. The Michaelis 

constant (Km1) is taken from the literature. The turnover rate (kcat1) is fitted to the 

data. The two sub-models are combined to create a model that predicts PAP 

concentrations at various levels of AI-2 added. To observe the quality of our 

predictions, the model output is compared to data collected from the lysed cells. 

 

The First Compartment  

Data Conversion 

          In order to fit the sub-model, data was converted from Miller units to µM of β-

gal. Using Beers Law, with extinction coefficient e = 4800 and length = 1 cm, we 
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converted the absorbance at 420nm into µM concentration of ONP. In order to 

convert µM ONP into µM β-gal, we use the following Michaelis-Menten equations: 

 

with known turnover rate kcat1 = 620/s and Michaelis constant Km1 = 120 µM100,101. 

Eo1 denotes the β-gal concentration (µM). Assuming that Km1 << ONPG, the ONP 

differential equation simplifies to: 

 

The slope is estimated by least squares regression, so Eo1 can be solved at each time 

point to extract the β-gal concentration (µM). 

Model Fitting 

 

For this model, we assume a first order reaction for the influx of AI-2 from the 

outside. We have simplified the intracellular dynamics and provide equations 8-10 

(below) which describe the β-gal enzyme concentration, the LsrR repressor 

concentration, and the amount of LsrR bound to DNA102. These equations base β-gal 

expression on the interplay between LsrR bound as a repressor and its freely 

dissociated form. LsrR repression is known to result from the formation of an LsrR 
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tetramer bound between two distal looped strands of DNA comprising the intergenic 

region of the lsr regulon103. While a significant simplification of the known 

biochemistry, the topology of the expression kinetics agrees well with our 

experimental observations. For example, we do not include the phosphorylation of 

AI-2 by LsrK. We generalize the transcriptions on the pCT6 and pETLacZ into one 

equation that codes for LacZ and LsrR. Hence, we call k2 a generalized rate as it takes 

into account these factors. The law of mass action is used to translate these reactions 

into differential equations. The constraint CR + DNA = Dtotal, in which Dtotal is a 

constant, simplifies the system of differential equations into: 

 

Table 1: Variable/Parameter Descriptions 
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The application of this constraint is explained in Alon104. However, in our 

equations we did not apply the assumption that 𝑑𝑑𝐶𝐶𝑅𝑅
𝑑𝑑𝑑𝑑

= 0 (steady state amount of 

bound repressor). 

We induced the synthesis of LacZ by the addition of AI-2; typically aiming 

for an initial OD of 0.2. To facilitate errors in dynamic lag associated with altered 

OD’s for induction and to account for variability in initial growth kinetics, we have 

set the initial condition so that the initial appearance of β-gal in the zero AI-2 control 

culture matched with the simulation at that point. This meant that the simulations 

commenced at t =1 .5 hrs, or about a half hour before the initial β-gal measurement. 

The rest of the initial conditions are CR(1.5) = Dtotal – 1.175 × 10-6 µM and R(1.5) = 

1.692 × 10-5 µM. The differential equations were solved using MATLAB. 

Table 2: Parameter values and source 

 

Table 2 shows the parameter values used in the model. Note that for k4 (the 

transcription rate of LsrR and LacZ), we take into account the rate at which the 

endogenous RNA polymerase transcribes the T7RNA polymerase (2.65 kbp at 39 

nt/s)105,106 as well as the rate at which the T7RNA polymerase transcribes LacZ 

(3.075 kbp at 200 nt/s)107-109. Supplementary Figure S3.5 shows the resulting first 

sub-model. 
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Supplementary Figure S3.5. Cell model and data overlay of experimental data. 

 

Converting µM ONP/min data from model to Miller Units for Figure 3.7 a 

In order to convert the data outputted by the model, in µM ONP/min, Miller 

Units were calculated as follows: 

 

To convert the model’s output to an absorbance value at 420 nm (OD420) we 

used Beer’s Law as described above. Since the model data was not actual data from 

cells, we used values for OD550, volume, reaction time, and OD600 that were similar to 

those from the experimental data. 

For the OD550, since the experimental values were all almost identical, we 

used the overall mean for all conversions. The volume and time stayed the same as in 

the experimental data. The OD600, indicative of the amount of cells present, was 

averaged for all samples treated with the same AI-2 concentration. These values were 
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then used to calculate the corresponding Miller Units for the model data and plotted 

along with the experimental data in Figure 3.7 a.  

 

The Second Compartment 

Data Conversion 

First, the data were converted into µM. The data describe concentrations of 

PAP in response to different levels of β-gal. We generated a standard curve that 

converts current (µA) to µM of PAP. Then, we convert to units of β-gal. To convert 

units of purchased and powdered β-gal into µM of β-gal, we introduced a factor of ¼ 

(ie ¼ gram of β-gal for every 1 gram of powdered β-gal). This factor can also 

compensate for the differences between cell-generated β-gal activity and store-bought 

β-gal activity. After fitting the model (explained below), the resulting turnover rate, 

kcat, is closer (103.26/s) to the value stated in literature, (90/s)110.  

 

Model Fitting 

Michaelis-Menten equations were again used for the PAPG substrate and β-

gal enzyme. However, the parameter values (turnover rate kcat and Michaelis constant 

Km) were not documented as well as the ONPG substrate. Viratelle and Yon110 

provided values of kcat = 90/s and Km = 330 µM. Since these values, nor any 

combination of kcat and Km, do not produce a reasonable fit that encompasses all our 

data, we fixed Km and searched for the kcat that minimized the distance between the 

model and the data points.  Overall, the values we found were within expected 

variances based on our experience, kcat = 103.26/s and Km = 330 µM. 
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Similar to above in which µM of ONPG was converted into µM of β-gal, we invoked 

a similar assumption that Km << PAPG (excess PAPG). The PAP differential 

equation of Michaelis-Menten then simplified to: 

 

Since we had PAP (µM) at 5 time points for 4 nonzero levels of β-gal, the 

slopes were estimated by resolving a linear fit of each of the four datasets. The slopes 

were applied to the above equation for each level of enzyme to obtain 4 kcat values. 

This provided a range of kcat values that was used to find the best fit kcat by 

calculating the least squares fit of the first four time points (as the fifth time point of 

one of the datasets seemed noisy). The resulting turnover rate was kcat = 103.26/s. 

In this way, we used the average kcat = 103.26/s and the literature value of Km (330 

µM) for our Michaelis-Menten model, shown below. We used this model to describe 

PAP activity after the addition of PAPG to β-gal (Eo). 

 

The model output is shown in Supplementary Figure S3.6 and there is 

reasonable agreement, particularly at both limits. 
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Supplementary Figure S3.6. PAP model and overlay of experimental data. 

 

The Combined Model 

The above models (equations 8-10 and 12-13) were then combined into one 

system of differential equations. The output of the combined model was compared to 

the data collected from the lysed cells in which AI-2 was added to the cells and the 

levels of PAP were measured. (Note that cell lysate was used so our results would not 

include any time lag associated with transport of small molecules (AI-2) or proteins 

(β-gal) passing through the membrane.) 

The data collected represents the PAPG that was added to the cell extracts 

after hour 3, with the PAP levels measured in the subsequent 15 minutes, at 5 minute 

intervals. The model was run accordingly and the predictions are shown in Figure 

S3.3 along with the data points. The data support well, the Michaelis-Menten 

assumptions and constants evaluated here and reported by others105-108,111,112. 

Again, there is reasonable agreement between the models and the 

corresponding data, suggesting the mechanisms underpinning the system of ODEs 

represents a reasonable representation of the actual system. We do not, however, 
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claim that because the model simulations and the data match, the mechanistic bases 

are validated. Instead, we suggest that the mechanistic basis for the in vitro 

electrochemical reactions can be faithfully represented by Michaelis-Menten kinetics, 

largely supported by constants obtained by previous researchers, and that the 

simplified cell based model describing the kinetics of β-gal expression is sufficiently 

accurate so that any future cell-based model describing LacZ kinetics could be added 

to sub-model 2 described here. While this is conjecture at this time, it is the primary 

motivation for partitioning the model as described and for including here. 

 

Supplementary Figure S3.7. Final model predictions and lysed cell overlay of 

experimental data. 

 

Determination of a unit for electrochemical measurements analogous to the 

Miller Unit: 

A unit analogous to the Miller Unit would ideally be developed for 

normalizing electrochemical PAP measurements. Below we use our data to 

demonstrate the concept. Here lysed cells will be used since those measurements are 
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most similar to the way the spectrophotometric measurements are done to get the 

Miller Units.  

 

In the Miller Unit the OD420 indicates the resulting ONP generated in a volume of 

cells (of OD600) after the indicated reaction time. The OD550 indicates the scatter from 

cell debris, and when multiplied by 1.75 approximates the scatter at 420nm.  

 

Our analogous unit would take into account the current (in µA) measured after the 

indicated time (min) of a specific volume (mL) of cells of a certain OD600.  

In order to further develop and standardize the electrochemically-measured unit, 

measurements would need to be performed with various cell amounts and volumes 

and using different electrode materials, sizes, and setups (the units would likely be 

different based on the electrodes used). Additionally, any background interference 

between the cell lysate and the electrode surface would need to be studied and taken 

into account, especially for smaller electrodes.  Below are our sample calculations for 

lysed cell measurements from Figure 3.4:  
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Table 3: Calculation of Electrochemical units 

AI-2 
concentration 

(µM) 
Peak current 
(at end)(µA) 

Time 
(min) 

Volume 
(mL) Cell OD600 

Electrochemical 
Units 

0 0.093 15 1 2 0.003 
5 0.631 15 1 2 0.021 

10 1.220 15 1 2 0.041 
20 2.490 15 1 2 0.083 
40 2.710 15 1 2 0.090 

 

When plotted against the Miller Units from Figure 3.4 c, there is a very good 

correlation (Supplementary Figure S3.8 below), though again, to standardize this unit 

much more data would have to be analyzed.  

 

 

Supplementary Figure S3.8. Normalized Electrochemical Unit vs. Miller Units of 

lysed cells. a, Linear relationship between the Miller Units measure from the lysed 

cells in Figure 3.4 c and the electrochemical units calculated as described above from 

the same cells. b, Linear relationship is also maintained with the 5, and 10 minute 

measurements. 
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Chapter 4: Electronic control of bacterial gene expression through 

redox-driven transcriptional activation 

 This chapter will be turned into a manuscript after some additional work is 

done and submitted by the end of 2015. 

Chapter abstract 

The engineering of directional, efficient, and programmable communication 

between living and nonliving systems has immense potential to harness the distinctive 

features of each for a variety of applications in both clinical and research settings. 

However, living cells use small molecules, ions, and protein assemblies to send 

signals, while electronics utilizes electrons.  Here we present the novel use of redox 

molecules to shuttle information from electronics to Escherichia coli (E. coli) cells. In 

our original method, electronic control of the state of the redox molecules pyocyanin 

and ferricyanide, to which the cells have been engineered to respond with the use of a 

single promoter, allows for electronic gene control. We show that the signal output 

(cell response) is dependent on the amplitude and frequency of signal input 

(electronic charge), allowing for a tunable response. The biological and metabolic 

underpinnings and effects of the method are also characterized. This work shows for 

the first time the use of redox mediators to control genetic expression in a reversible 

and programmable manner, and furthers technologies that aim to combine living and 

nonliving systems.  
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Introduction 

Communication and information transfer between biology and electronics is a 

highly sought-after functionality with many applications in both clinical and research 

settings. If we are to make the best predictions and analyses of diseases as well as 

study and manipulate the biological environment, we need to grant cells the ability to 

interpret electric signals into specific pre-programmed functions, which would allow 

us to manipulate and study cellular behavior with an unprecedented degree of 

precision. Moreover, gaining electronic control of cell functions would advance bio-

hybrid device development, which could lead to a variety of technologies – including 

implantable bio-hybrid organs and devices as well as remote bio-hybrid robots. 

Despite this potential, electro-genetic control has not garnered popular attention, with 

previous such work relying mainly on non-specific effects on the entire E. coli 

transcriptome 113 and a mammalian electro-genetic control circuit (which will be 

described below) 114.  

 

Existing “bio-electronic communication”  

There is, of course, a significant body of literature that concerns itself with 

electron transport in cells. This includes transport of electrons between cells and 

between cells and external electrodes or other electro-active species. The articles 

sometimes have titles or descriptions of the advancements use the words “bio-

electronic communication”115,116.  Below we make the distinction between previous 

such research and ours. 
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Electron transport between living (cells) and non-living sources is a topic that 

can fall under various areas of study. One such area that is also relevant to our 

research is that of microbial fuel cells (MFCs)117, where external electrodes are used 

to accept electrons from cells, thus driving an electric circuit and accomplishing some 

other goal. The goal is typically either the consumption of waste, the generation of 

useful chemicals or electricity by the cells, or the measurement of some metabolic or 

redox status of the cell that can be deduced from the current118-123. The electrons 

reach the electrodes through diffusible mediators (such as in our case), nanowires, or 

surface bound proteins124,125. Although wildtype bacteria are typically used, some 

have been engineered to enhance the process or to give more-easily-engineered E.coli 

additional functionality116,126. The main concerns in these technologies are the ability 

of the cells to store, transfer, and donate electrons (usually the species of bacteria 

used and its’ electron transfer mechanisms), the method of this interaction, power 

generation, and the stability of the electrodes and system over time, among others. 

Typically, genetic responses of the cells to the current or the various redox 

interactions are not investigated. 

In our work, since we utilize ferricyanide as an electron shuttle that interacts 

with the electron transport chain, we use some of the research principles, setups, and 

have some similar concerns as those of MFC studies, especially when investigating 

the metabolic effects of our system. An additional similarity with some of the above 

research lies in that essentially what we are doing is also drawing out electrons from 

the cells using the electrode, even though our goal is to put “information” into the 

cells. However, the big difference between this previously-mentioned research and 
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ours is that we are not concerned with power, product, or current generation. We are 

concerned with using electronic control of redox molecules to activate a specific 

promoter sequence and elicit specific gene expression. In this, our method has more 

in common with research developing novel methods for precise spatio-temporal gene 

control such as discussed below. 

 

State of the art of externally-mediated biological gene control 

Typical cellular genetic control by an external inducer involves the addition of 

the inducing chemical to the cell culture media. Varying concentration and time of 

exposure can result in different cellular responses. Washing the cells, i.e. pelleting 

and re-suspending in inducer-free media, is one way to determine behavior related to 

a “burst” of induction. Another avenue that has been pursued for quickly varying and 

pulsing the concentration of inducer molecules is through the use of microfluidics. A 

variety of geometries has been implemented in order to allow alternating fluid flows 

with different inducer concentrations127-130. This, however, requires a lot of setup 

planning and equipment for pumping and controlling the fluid flow and making the 

channels and devices. Below, we summarize some additional methods that explore 

the use of stimuli that can be more easily regulated. 

 The past decade or so has seen a great push towards getting cells to recognize 

non-biological or non-native signals which can then be used to functionally or 

genetically control the cells. There are several benefits to this, including faster and 

more precise (both in terms of location and in terms of genetic elements) control, low 

background response, and less unintended side-effects. Both application-driven and 
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basic research have been the end goals. Figure 4.1 shows some examples of using 

stimuli of non-native origin to control gene transcription. Light waves have been used 

in a variety of setups- one example being that which is described in Figure 4.1 a, 

where a light-controlled photo-caging group is released upon light illumination from 

a molecule, which can then bind to and de-repress a repressor, resulting in gene 

transcription 131. More commonly, light-responsive proteins expressed inside cells 

have been shown by many to induce gene expression or cellular behaviors in 

programmable temporal patterns and in a variety formats, including in live mice 132-

137. Protein engineering has been also used and has yielded cells that respond to light 

and produce NO to communicate to electrodes138. Light-driven genetic and behavioral 

control has grown into the field of optogenetics, and has even been used to wirelessly 

translate human thoughts to gene expression in mice139. 

In addition to light-mediated communication, in Figure 4.1 b is an example of 

an electrically-driven mammalian genetic circuit where the electrochemical oxidation 

of ethanol to acetaldehyde drives the production of the enzyme SEAP, whose product 

p-nitrophenolate can be optically detected 114. In Figure 4.1 c, we can see an example 

of a remote radio-controlled heating of nanoparticles resulting in calcium influx into 

the cell, which then results in the gene expression of insulin 140. Electronic control has 

also resulted in  the influx of calcium in neurons141. These are just some example of 

such innovative genetic control systems.  
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Figure 4.1: Novel modalities of gene control. a, Control over gene expression with 

photocaged small molecule inducers of transcription. The photocaging group is represented 

by a blue sphere and the small molecule inducer is represented by a red sphere. When the 

small molecule is caged, the repressor protein will bind the promoter PR. After UV irradiation 

the caging group is removed and the small molecule will bind the repressor, which releases 

PR, and allows for transcription to occur 131. b, Diagram of the mammalian electro-genetic 

device. DC applied to the input device results in the electrochemical conversion of ethanol 

into acetaldehyde, which enables the acetaldehyde-dependent activator AlcR to bind and 

induce transcription from the promoter PAIR, which triggers transcription of SEAP. SEAP 

subsequently catalyzes the production of colored p-nitrophenolate, which is quantified 

photometrically at 405 nm by a photodiode and converted into an electric output 

signal114.  c, Schematic of nanoparticle-induced cell activation and gene expression. 

Antibody-coated ferrous oxide nanoparticles bind to an epitope, His × 6, in the extracellular 

loop of the temperature-sensitive TRPV1 channel. Exposure to an RF field induces local 

nanoparticle heating, which opens the TRPV1 channels. Calcium entry triggers downstream 

pathways, such as activation of calcineurin, leading to de-phosphorylation of NFAT and its 
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translocation to the nucleus. There NFAT binds to upstream response elements to initiate 

gene expression of a bioengineered human insulin gene140.  

 

All of the above-mentioned stimuli originate from electronic devices whose 

signals we are able to easily control. The hope is to have more precise, localized, and 

remotely-activated stimulus control. These ingenious methods have either repurposed 

naturally-responsive proteins and wired them to behave in a novel way or 

implemented a combination of nanotechnology and genetic engineering to 

accomplish their goals. All methods are interesting and have roles in a variety of 

applications. As can be seem from the above, there has been some interest in using a 

more direct electronic stimulus, but finding the best method or intermediaries to use 

has proved challenging. Below we describe how redox molecules could be used to 

accomplish this goal.  

 

Redox reactions in the cellular context 

Cells are continually bombarded by a variety of redox-active molecules both 

from the external environment and those endogenously produced. There are many 

biologically-relevant molecules that have redox properties. Some, such as those that 

are part of the electron transport chain in cells, have very specific locations in the cell 

and standard potentials tailored to accomplish their tasks. They are well localized and 

their interactions are thusly contained. Other molecules are diffusible and more 

promiscuous in their interactions– superoxide, hydrogen peroxide and secreted redox 

mediators such as pyocyanin are good examples. 
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There is a biologically-relevant class of redox molecules known as reactive 

oxygen species, or ROS. These molecules are often generated as byproducts of 

normal cellular metabolism or as a sign of a diseased state, and can be highly 

reactive. Because these molecules are often strong oxidants, they can wreak havoc on 

the cell by “stealing” electrons from a variety of components – damaging proteins, 

lipids, and DNA142. Since these molecules can result in oxidative stress, cells have 

evolved intricate mechanisms to combat it and bring the conditions back to normal. 

The OxyR and SoxR proteins, for example, are both part of E.coli’s natural oxidative 

stress response network143. They react with damaging redox molecules, such as H2O2 

and redox cycling drugs, and act to modulate cell genetic responses to mediate the 

damage and return to homeostatis. Our aim is to hijack one of these redox-responsive 

proteins to activate engineered genes and control desired cellular behavior. 

 

Pyocyanin and its genetic effects 

One redox molecule we propose to use for electrically-driven genetic control 

is pyocyanin (sometimes indicated as Pyo in figures in this chapter), whose structure 

can be seen in Figure 4.2 a below. Pyocyanin is a well-studied redox-cycling 

molecule that is secreted by P. aeruginosa and has a number of effects on the 

metabolism, community organization, and behavior of a number of bacteria144,145. 

Another important effect that pyocyanin has on many prokaryotic and eukaryotic 

cells is that of oxidative stress generation146. Although a complete model of the 

actions of pyocyanin still has to be elucidated, there is evidence that it enters non-

pyocyanin-producing cells in the oxidized form and acts as an oxidant on a variety of 
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reduced flavins or metal centers of proteins147,148. If re-oxidized, it can generate 

superoxide radicals and hydrogen peroxide and continue its cycling behavior to 

increase oxidative stress inside the cell147.   

Although high concentrations of pyocyanin are toxic due to the oxidative 

stress they create, the molecule has also been shown to act as an extracellular electron 

shuttle in cases of oxygen limitation and in microbial fuel cells149. Additionally, our 

work with pyocyanin has shown that it is reduced by E.coli cells in growth media and 

in anaerobic conditions extracellular pyocyanin remains in the reduced form until re-

oxidized either by oxygen or an electrode150.  

To use pyocyanin as a gene activator, we used the specific regulon system that 

responds to it, the SoxRS regulon144,151,152. It is one of the best characterized redox-

responsive systems in bacteria, and its workings and effects can be seen in Figure 4.2 

b. In E.coli, it consists of the SoxR and SoxS proteins. SoxR is an iron-sulfur cluster 

protein that is usually maintained in an inactive form while its clusters are in the 

reduced state. Upon the oxidation of the clusters through the actions of redox-cycling 

drugs, SoxR changes its conformation. This results in the transcription of the SoxS 

protein from the soxS promoter151.  

 

 

Figure 4.2: Pyocyanin and SoxRS operon. a, The chemical structure of pyocyanin. b, 

The SoxRS regulon in E. coli. When the inactive iron-sulfur cluster of SoxR is activated by 
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oxidation, the SoxS gene is transcribed from the soxS promoter. SoxS then starts the 

transcription of a variety of genes involved in DNA repair, metabolism, and detoxification. 

 

The SoxS protein then activates the transcription of a few dozen genes, 

including those involved in DNA repair, detoxification, central metabolism, and 

maintaining cellular reducing power153. It has previously been hypothesized that 

redox-cycling drugs, such as pyocyanin, activate SoxR indirectly by first reacting 

with oxygen and producing the superoxide radicals that then activated SoxR154. 

Recently, Gu and Imlay have shown convincingly that it is not superoxide but rather 

the redox cycling drugs themselves that directly cause the activating conformational 

change of SoxR. Menadione, phenazine methosulfate, methyl vialogen (paraquat) and 

pyocyanin are examples of drugs that were shown to have this effect on the SoxRS 

system155. The role of oxygen in the activation is that of recycling the drugs to the 

oxidized state either directly or through the electron transport machinery. Once the 

drug is cleared, the SoxRS system returns to its inactive state through the action of 

NADPH-dependent reductases which reduce SoxR156. Thus the SoxRS regulon, 

activated by pyocyanin, presented us with a genetic element to implement in our 

system. 

Initially, our thought was to use only pyocyanin as a redox mediator and to 

control its oxidative form with an external electrode and thus control expression from 

the soxS promoter. Since it has been shown in literature 157 as well as in our work150 

that oxidized pyocyanin can be electrochemically reduced and re-oxidized, the 

process theoretically allows us to control the specific amounts and timing of oxidized 

pyocyanin at an electrode. The electrically-oxidized pyocyanin would interact with 
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SoxR and activate reporter genes under the soxS promoter. Using pyocyanin to shuttle 

electrons from the electrode to the cell and to the SoxR protein to activate 

transcription in this way would allow us to explore this strategy as a possible spatio-

temporally precise way for controlling genetic switches. Many of our initial 

experiments showed, however, that the pyocyanin-only induction from the soxS 

promoter was not consistently and significantly high enough at low-enough 

concentrations anaerobically. The reasons for this and the additional components we 

introduced to the system are described below. 

 

Anaerobic respiration in E. coli 

One of the most important processes where electron transfer plays a major 

role inside the cell is during metabolism in the electron transport chain158. In both 

aerobic and anaerobic conditions, E.coli cells express proteins and enzymes 

depending to the electron donors (fuel) and acceptors present159. Although we do not 

present an exhaustive review of E.coli metabolism here, this section will explain 

briefly the processes that are relevant to our studies. 

E.coli are facultative anaerobes – meaning they prefer to grow with oxygen 

but can do so without it by expressing different proteins to take advantage of 

available alternative electron acceptors. The substrate-dependencies, machineries and 

pathways are well-documented for E.coli, a representation of which can be seen in 

Figure 4.3 below.   

In most studies that describe the use of E. coli for applied processes, sugars 

are used as a carbon and therefore an electron source. They are imported and 
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phosphorylated using different mechanisms, depending on the sugar. Here we will 

use glucose as an example. The glycolysis pathway, located in the cytosol, processes 

the phosphorylated glucose into two molecules of pyruvate, which is accompanied by 

the release of a net of two ATP and two NADH molecules.  

Under aerobic conditions, pyruvate is then converted to acetyl-CoA and 

carbon dioxide. Acetyl-CoA is further processed within the TCA cycle, which 

produces more ATP and NADH. The NADH is then used in the respiratory 

machinery to create a proton gradient, which drives the production of more ATP 

through ATP synthase. Aerobic electron transport chains contain a dehydrogenase 

enzyme, which oxidizes an electron donor such as NADH, and a cytochrome oxidase 

that reduces O2 to H2O with the electrons from the donor. Ubiquinone acts as the 

electron carrier between the enzymes. Cytochrome oxidases can be made with 

different affinities for O2, ability to pump protons, cytochrome content, and gene 

expression profiles. Each of the cytochrome oxidases can receive electrons from 

various alternative electron-donating dehydrogenases. This allows E. coli to grow 

under aerobic and microaerophilic conditions. It is important to note that both aerobic 

and anaerobic respiratory chains are modular, with different enzymes produced 

depending on the conditions or donors/acceptors present.  

When oxygen is not present, cells switch into anaerobic respiration or 

fermentation mode depending on whether and which electron acceptor molecule is 

present. Electron acceptors include nitrate, nitrite, DMSO, TMAO, and fumarate, 

among others160,161 (we discuss below that ferricyanide has been shown to act as an 

electron acceptor in E.coli). Additionally, the enzymes of the TCA cycle are down-
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regulated, which leads to an incomplete oxidation of the sugars. Different 

dehydrogenase and reductase enzymes (used here instead of the oxidase enzymes) are 

expressed to allow electrons from the available donors to reach the available 

acceptors (see inset table in Fig. 4.3 below). Here menaquinone is typically used 

instead of ubiquinone to transport electrons. Depending on available acceptors the 

number of electrons transferred differs and the cell is able to gain a specific number 

of ATP molecules through the respiratory processes resulting from the proton 

gradient or substrate level phosphorylation/fermentation. 

When suitable electron acceptors are unavailable in anaerobic conditions, 

E.coli uses fermentation to produce the ATP it needs to function. It is known that 

acetate accumulates during anaerobic respiration162 but under fermentative 

conditions, a mixture of various metabolites such as succinate, formate, acetate, 

lactate, carbon dioxide, hydrogen, and ethanol are produced to maintain redox 

balance163. After glucose is broken down to pyruvate via glycolysis and ATP and 

NADH are released, the NADH must be re-oxidized to NAD+ to support further 

glucose metabolism by the cell. These oxidation steps are accomplished by reducing 

several of the intermediates (such as pyruvate or a derivative product), which results 

in the formation of the “mixed acid” fermentation products.  

In our experiments, we grew cells in mostly anaerobic conditions, though 

some aerobic experiments were also performed. The availability and type of fuel, of 

course, also determines the rates of growth of the bacteria, the movement of electrons, 

and the production of proteins, including reporter proteins. Additionally, it is 

important to note that the phenomenon of metabolic burden – the reduction of growth 
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of cells producing significant amounts of recombinant protein – affected the growth 

of our cells79. 

 

Figure 4.3: Schematic overview of metabolism and respiration in E.coli. 

Schematic showing the metabolic reactions involving glucose – glycolysis, TCA cycle, and 

mixed acid fermentation (dark blue dashed arrows). If the appropriate electron donors and 

acceptors are available (insert table) then either aerobic or anaerobic respiration can take 

place (purple dashed boxes).  Some of the ATP synthesis through substrate-level 

phosphorylation is indicated in green text, along with NADH and other products. ATP 

synthesis through ATP synthase occurs when hydrogen is pumped back into the cell.  
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Ferricyanide as an electron acceptor 

 Ferricyanide and ferrocyanide, oxidized and reduced forms of the same 

molecule (sometimes indicated as FCN3 and FCN2 in figures in this chapter), are 

used as a common reference redox couple in electrochemical experiments. The 

standard potential of the couple is about +0.25 V in the buffered system that we 

employed164. The molecule has been commonly used in biochemical oxygen demand 

(BOD) and toxicity165 testing of microbial cultures, as ferricyanide can act as an 

electron acceptor by interacting with the electron transport chain (Figure 4.4 ) 166-169. 

Upon accepting electrons, the reduced ferrocyanide exits the cell and can be 

quantified, either spectrophotometrically or electrochemically. The rate of 

ferricyanide reduction is then used to calculate the metabolic activity of the culture or 

toxicity of any chemicals tested. The molecule is said to not enter the cytosol of the 

bacteria or interact with any genetic or cytosolic elements. It has also been used as an 

electron shuttle in microbial fuel cells170 and as an indicator for internal redox 

activity121, as it “samples” the electron transport chain without being toxic. 

 Although there has been use of ferricyanide as a microbial electron acceptor, 

there is still not a great amount of evidence as to which elements of the electron 

transport chain it interacts with. Some studies indicated that ferricyanide interacts 

with members of the nitrate respiratory system171 while others suggest that thiol 

groups in general play a role172. Studies have also shown that ferricyanide promotes 

ATP generation in E.coli through substrate level phosphorylation173 instead of 

through the electron transport chain since it may interact with NADH directly instead 
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of electron carriers in the chain. In Figure 4.4 c we show the standard potentials of 

various dehydrogenases, reductases, oxidases, and the quinones of the E.coli electron 

transport system. Pyocyanin and ferri/ferrocyanide are also included to demonstrate 

which components they are most likely to interact with.  

 
 
Figure 4.4: Standard potentials of electron transport machinery. a, Chemical 

structure of ferricyanide. b, A schematic representation of the interactions between oxidized 
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ferricyanide and the respiratory chain of microorganisms. The reduced ferricyanide can then 

be recycled back to the oxidized form at an electrode.  c, The standard potential of the 

majority of E.coli dehydrogenases, reductases, oxidases, and quinones. Pyocyanin and 

ferri/ferrocyanide are also included to demonstrate the potential for redox interactions with 

the enzymes. Data is mostly from Unden and Bongaerts.  

 

 Ferricyanide addition to anaerobic cultures has been shown to increase growth rate, 

which is proportional to the amount of reduced ferricyanide174,175.  The more recent 

application-driven research utilizing ferricyanide as an electron acceptor do not 

postulate on or present specific sites where it may be reduced. Although locating the 

site of ferricyanide interaction was not part of our research goals, we did investigate 

the metabolic and growth effects of both ferricyanide and pyocyanin on our cells in 

order to shed more light on the functioning of the system. 

 

Ferricyanide effect on redox cycling drugs and SoxR  

Gu and Imlay144 showed that adding ferricyanide to an anaerobic culture of 

bacteria sensitizes them to the effect of redox cycling drugs, of which pyocyanin is an 

example. Specifically, they saw that SoxR-driven β-galactosidase production was 

greatly increased in the presence of ferricyanide and phenazine methosulfate (PMS) 

than with PMS only. They hypothesized that the ferricyanide acted as an electron 

acceptor and drew electrons through the electron transport chain. The PMS interacted 

with SoxR, oxidizing it and becoming reduced itself, and then donated electrons into 

the electron transport chain, becoming re-oxidized, and continuing to oxidize SoxR 

and drive expression of the β-galactosidase. In this way, ferricyanide increased this 
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PMS-electron-transport-chain cycling and amplified gene expression. In this paper, 

Gu and Imlay put forth that oxygen’s role in amplifying the response to redox cycling 

drugs is to cause re-oxidation of the drug internally and that ferricyanide was acting 

in a similar manner. Based on this data, and after performing our own preliminary 

studies, we decided to utilize this mechanism to use electrochemical control of 

ferricyanide form to drive pyocyanin-induced gene expression in anaerobic 

conditions.  

 

phiLOV- an anaerobic fluorescent protein 

Anaerobically-respiring E.coli grow slower than when oxygen is present, and 

produce any oxygen-dependent proteins much slower or not at all. This unfortunately 

includes many of the commonly-used fluorescent reporter proteins such as GFP, for 

which oxygen is needed for the fluorophore to mature176. Thus for our experiments, 

without oxygen, an anaerobic reporter was needed to track the response of the cells. 

We use an engineered anaerobic fluorescent protein with an FMN cofactor that does 

not require oxygen to produce fluorescence. The protein is called phiLOV 177, and is a 

genetically-enhanced iLOV fluorescent protein taken from Arabidopsis 

thaliana phototropin 2. Additional benefits of phiLOV include its pH stability (4-

9)178, and small size (112 bp). A degradation tag was put on the protein to allow it to 

degrade in the absence of the inducing signal (or in the absence of enough inducing 

signal). This allowed us to use time-variable induction and measure the correlated 

responses. Additionally, this would allow us to balance inducing with non-inducing 

forces in order to hone in on a desired protein production rate and total amount. 
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Dynamic reporter engineering 

 In order to achieve quick protein degradation and subsequent oscillations a 

small amino-acid tag, called an ssRA tag, is often used to mark the protein for 

degradation. Naturally, ssRA tagging occurs when a ribosome encounters and gets 

stuck on a broken mRNA. Without the normal termination codon, the ribosome then 

cannot separate from the malfunctioning mRNA. A special type of RNA known as 

ssRA (small stable RNA A) saves the ribosome by the addition of an eleven-codon 

degradation tag followed by the stop codon. This allows the ribosome to break free 

and continue its normal job. The tagged, incomplete protein then gets degraded by the 

proteases ClpXP or ClpAP. The original ssRA tag had the 

sequence AANDENYALAA179, but additional tags have been engineered which 

result in different half-lives of the proteins180. Several recent studies have used this 

degradation tag on fluorescent or regulatory proteins and have achieved numerous 

complete oscillations of the fluorescent proteins with one to two-hour cycles 13,181,182. 

Here we utilize the ssRA tag AANDENYADAS for fast degradation of a number of 

proteins, as stated in the text, to achieve dynamic response.  

Materials and Methods 

Chemicals and Biocomponents 

Potassium ferricyanide (III), potassium hexacyanoferrate (II) trihydrate, 

parafolmaldehyde powder, propidium iodide, pyocyanin ready-made solution from 

Pseudomonas aeruginosa, D-(+)-glucose, sodium nitrite, sodium nitrate, MOPS, and 
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phosphate buffered saline tablets were from Sigma Aldrich. LB broth, Miller, Agar, 

KCl, and casamino acids were from Fischer scientific. M9 medium consisted of 1 x 

M9 salts, 0.4 % glucose, 0.2 % casamino acids, 2 mM MgSO4, and 0.1 mM CaCl2. 

For in situ electrochemical control 100 mM MOPS was also added.  M9 salts were 

made according to common recipes from components purchased from Fischer 

scientific.  

 

Electrodes and Electrochemical Setup 

For bulk electrolysis we used 50 cm-long gold electrodes from Alfa Aesar 

(0.5 mm diameter, 99.95 % metal basis) wound to increase surface area. Ag/AgCl 

reference electrode was from BASi. For measurement purposes, an Au working 

electrode with 2 mm diameter, CH Instruments, Inc. was used. A CHI 600-series 

potentiostat was used for all electrochemical experiments.  

Agar salt bridges were made by bending a 6 inch –long 1.2 mm OD, 0.9 mm 

ID glass capillary tube (from World Precision Instruments, Inc.) using a Bunsen 

burner. A 3 % agar solution with 1M KCl was heated and added into the u-shaped 

capillary tube. This was then cooled by immediately immersing in a 3 M KCl 

solution. The bridges were stored in 3 M KCl in 4 °C. 

For bulk electrolysis, oxidation in this chapter indicates a constant application 

of +0.5 to +0.51 V and reduction -0.3 to -0.29 V. Typical electrochemical setup for 

bulk electrolysis and in situ experiments was as following: Working electrode and 

reference electrode in one vial with 3mL of solution and/or cells (about 1/3-way 
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filled). In a separate similar vial was the counter electrode with another 3mL of 

solution. Two salt bridges linked the two chambers. A mini magnetic stirrer from 

Fischer Scientific with a 7 mm stir bar was used to facilitate mixing and accelerate 

electrochemical conversion in both vials.  

 

Establishment of Anaerobic Conditions  

A Coy anaerobic chamber was used in order to maintain anaerobic conditions. 

It was set up as per manufacturer’s instructions and Nitrogen + CO2/H2/N2 mix was 

used to maintain anaerobic conditions. 

 

Cell Strains  

The majority of the experiments used the E.coli cell line DJ901 (Δ lacU169 

rpsL ΔsoxRS90) 183 or GC4468 (Δ lacU169 rpsL) 184. For cloning the cell lines 

NEB5α (New England Biosciences) and Top10 Chemically Competent 

(ThermoFisher Scientific) were used. 

 

 

Cell Culture 

Before beginning of experiments, cells were grown in LB media in 37C in 

aerobic conditions with 250 rpm shaking until early or mid-log phase (OD600 0.25 – 

0.5). For anaerobic experiments the cells were spun down and re-suspended in M9 

glucose casamino acids media, unless otherwise stated, and then taken into and grown 

in a 37 °C mini-incubator inside the Coy chamber.  
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Bacterial Cloning 

E.coli cloning was done according to standard molecular techniques 185.  

The SoxR-soxS DNA region was amplified from the E.coli MG1665 genome using 

the primers indicated in Table S4.Z and ligated into the TOPO plasmid. The SoxR-

soxS fragment was then digested out with the BamHI and HindIII enzymes and 

ligated into a similarly-digested pBR322 vector. The phiLOV protein was produced 

as a gBlock by IDT (sequence in Table S4.1). The pBR322-SoxR-soxS-phiLOVand 

phiLOV-LAA plasmids were assembled using the Gibson Assembly method 186 by 

PCR-ing both the phiLOV protein (with or without the tag) and the pBR322-SoxR-

soxS constructs with the appropriate overlaps using the primers in Table S4.1. The 

DAS tag was added to the phiLOV protein in the assembled plasmid by PCR-ing the 

whole plasmid with the LAA tag with the primers in Table S4.1, treating the PCR 

with T4 polynucleotide kinase and ligating with T4 ligase. The relevant genetic 

element sequences can be found in Table S4.2. 

In all cases DNA was extracted from cells using either a Qiagen or a Zymo 

Research Miniprep kit according to manufacturer’s instructions. Polymerase chain 

reaction (PCR) was used to amplify genes or DNA of interest using Q5 DNA 

Polymerase (New England Biolabs, NEB). Primers were ordered from Integrated 

DNA Technologies (IDT). NEB restriction enzymes such as BamHI and HindIII were 

used to generate restriction digests of desired PCR products or plasmids. Agarose gel 

electrophoresis was used to separate  DNA fragments based on size and the gel bands 

(as visualized with SYBR Safe, Invitrogen) as well as DNA sequencing at the IBBR 
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DNA Sequencing Facility was used to verify the constructs. Digested fragments were 

ligated using either NEB Quick Ligase or NEB T4 Ligase. Gibson Assembly was 

performed with NEB’s Gibson Master Mix according to manufacturer’s instructions. 

Electro- or chemically-competent cells (either from NEB, Invitrogen or made 

competent with Zymo Research’s Z-Competent E.coli Transformation Kit) were used 

for transformation.  

 

Cell Fixing 

Cells were washed and re-suspended in 0.1M Phosphate Buffered Saline 

(PBS) of pH 7.1 (from tablets). The cells were then fixed with an equal volume of 

chilled 4% parafolmaldehyde in PBS (pH 7.1) for 30 min at room temperature. 

 

Spectrophotometric Reading 

An M2 spectrophotometer was used. To detect absorbance of ferricyanide a 

420 nm wavelength was used. To detect cell OD, a 600 nm wavelength was used. In a 

96-well plate, volumes varied between 100 – 200 µl, but all compared samples were 

of the same volume. The OD600 was then converted to a cuvette-equivalent using the 

spectrophotometer manufacturer’s suggested conversion and measured standards.  

 

Flow Cytometry 

Flow cytometry was performed by a BD Biosciences FACS Canto with the 

BD FACSDiva software. Fixed cells were added to 5mL polystyrene tubes, and 
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measured with the flow cytometer. To ensure sample consistency, 50,000 cells were 

collected for each sample and consistently gated by forward scatter (FSC) and side 

scatter (SSC). The mean green fluorescence levels (set to measure FITC fluorescence) 

are based on the means from the number of indicated samples, and analysis of the cell 

population was done in FACSDiva and Excel.  

 

Propidium Iodide Staining 

Propidium Iodide was used to stain dead bacteria. After the treatment, cells 

were washed in 10mM MgSO4 (pH 6.5), then PBS, and finally re-suspended in PBS 

with 5 µg/ml of PI added. The cells were incubated at RT while covered with foil. 

Afterwards, they were resuspended in PBS and measured with FACS as above, 

except the excitation and emission were set for DsRed measurement. 

 

Glucose Measurement  

Glucose measurements in the media were done using a YSI 2700 bioanalyzer. 

A standard dextrose membrane and a 2.5g/L standard solution were used. 

Measurements were done according to manufacturer’s instruction.  
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Results and Discussion 

Pyocyanin and ferricyanide-dependent gene induction from the soxS promoter 

 We first investigated the induction of the phiLOV fluorescent protein from the 

soxS promoter in response to the addition of pyocyanin and ferricyanide. Our 

hypothesis is that pyocyanin interacts with the SoxR protein and oxidizes it, which 

results in phiLOV protein production (Box 2 in Figure 4.5). Ferricyanide interacts 

with the cell by acting as an electron acceptor for one or more parts of the electron 

transport machinery (Box 1 in Figure 4.5). Ferricyanide can be re-oxidized from 

ferrocyanide by an extracellular electrode. Together, pyocyanin and ferricyanide 

added to cells amplify the response from the soxS promoter through the interaction of 

pyocyanin with the electron transport chain as it donates electrons into the chain. 

Ferricyanide allows this process to amplify as it provides an electron sink. These 

processes work anaerobically since oxygen interacts both with the electron transport 

chain and with pyocyanin (by oxidizing it). 

 

Figure 4.5: Schematic of ferricyanide-driven amplification of pyocyanin-

mediated production of philov protein from the SoxS promoter. Box 1 represents 
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the components that allow ferricyanide to interact with the electron transport machinery 

(general representation by colored rounded squares) of E.coli as an electron acceptor. 

Electronic recycling of the oxidized FCN3 form allows this process to be controlled. Box 2 

represents the oxidation of the SoxR protein by pyocyanin and the subsequent protein 

production. The functioning respiratory chain (with the electronically-controlled ferricyanide 

as the acceptor) works to re-oxidize the pyocyanin and amplify the response from the soxS 

promoter.  

 

 We began testing our hypothesis by growing DJ901 cell containing the 

pBR322 SoxR-soxS-phiLOV plasmid anaerobically in M9 glucose media in the Coy 

Chamber. Increasing concentrations of pyocyanin added to the culture resulted in 

higher phiLOV production as measured by FACS (Fig. 4.6 a insert). The addition of 5 

mM of ferricyanide amplified protein production to a much higher degree than just 

increasing pyocyanin concentration (up to 17-fold in the case of 5 µM of pyocyanin) 

(Fig. 4.6 a). Varying the concentration of ferricyanide also changed the amount of 

protein produced (Figure 4.6 b), and when the degradation tag –DAS was put onto 

phiLOV and protein production was measured over time, increasing ferricyanide 

resulted in a higher protein amount over a longer period of time (Figure 4.6 c and d, 

pyocyanin was 5 µM of pyocyanin). Negative controls of ferrocyanide or ferricyanide 

only were also tested, and as can be seen from Figure 4.6 b, did not result in an 

increase of protein. Therefore, we concluded that pyocyanin and ferricyanide are both 

necessary for the increased protein production from the soxS promoter, with 

pyocyanin initiating the protein production, and ferricyanide amplifying it. 
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Figure 4.6: Pyocyanin and ferricyanide effect on fluorescent protein production 

from soxS promoter. a, Fluorescent protein production due to pyocyanin and  

amplification with the addition of 5 mM ferricyanide. b, Cell fluorescent response is 

concentration-dependent on ferricyanide that is added to 5 µM  pyocyanin and is not affected 

by ferrocyanide or ferricyanide alone. c, Fluorescent protein time profile with the same 

pyocanin (5 µM)  but different ferriycanide additions. Ferricyanide oxidation by cells results 

in fluorescence drop. d, Data from c averaged over time for each ferricyanide concentration. 

This takes the amount of protein produced and degraded over the experiment.  

 

We are able to measure ferricyanide reduction by cells to ferrocyanide 

spectrophotometrically at 420 nm (420 nm absorbance correlates with ferricyanide 

concentration, Supplementary Figure S4.1). A higher concentration of ferricyanide 

results in faster reduction rates (Supplementary Fig. S4.2 a, b), as does a higher cell 
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OD when used with the same ferricyanide concentration (Supplementary Fig. S4.2 d). 

Additionally, higher cell OD’s resulted in lower cell fluorescence (phiLOV 

production) than lower cell OD’s induced with the same pyocyanin and ferricyanide 

concentration (Supplementary Fig. S4.2 c), indicating that perhaps the diffusion and 

partitioning of the molecules is dependent on cell amount. For our further 

experiments we induced cells with starting OD’s between 0.2 and 0.4.  

In order to test the dynamics of the system we induced the same cells 

periodically with pyocyanin and ferricyanide for 1 hour and then with pyocyanin and 

ferrocyanide. We did this by spinning the cells down and re-suspending them in fresh 

media + inducers. As can be seen in Figure 4.7, when ferricyanide was present, 

protein production increased, and when ferrocyanide was present it decreased, 

presumably from the –DAS-driven degradation of the protein. This showed us that 

the switch of ferricyanide to ferrocyanide and back is enough to turn protein balance 

in the positive (ON) or negative (OFF).  Additionally, cells exposed to the cyclical 

treatment over time were still able to respond by producing protein.  

We further tested the timing of the system by varying the ON and OFF times 

from 15 to 90 minutes each. Figure 4.7 b shows that a variety of ON/OFF times can 

be used. The minimum to see a complete ON/OFF cycle seems to lie somewhere 

between 15 and 30 minutes, as that is how long is needed to switch the cells from 

mostly protein production to mostly protein degradation states. This can be seen from 

the fact that the 15 minutes of OFF does not seem to decrease the protein amount, 

though it does slow down production, whereas 30 minutes results in significant 
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protein degradation.  Additionally, this showed us that a 15 minute lag-time in 

response is expected in this in situ system.  

 

Figure 4.7: Ferricyanide/ferrocyanide cycling effect on cell response. a, Cycling of 

ferricyanide and ferrocyanide alone results in either increase or decrease of fluorescence, 

respectively. b. Cycling of ferricyanide and ferrocyanide for different lengths of time allows 

tuning of amplitude of response. After the  ½ cycle measurement, cells were re-suspended in 

the “OFF’ solution of ferrocyanide and pyocyanin for the rest of the cycle. 

 

Growth and metabolic effects of ferricyanide and pyocyanin 

 Since ferricyanide acts as an electron acceptor in anaerobic conditions, and 

pyocyanin can be toxic to cells, we wanted to check the metabolic and toxicity effects 

of our treatments. This included the measurement of cell growth, the reduction of 

ferricyanide (which indicates cell respiratory health), glucose consumption and 

propidium iodide staining of treated cells. To tease apart metabolic effects of our 

treatments vs. those due to protein production, we used both the DJ901 cells with our 

plasmid, and those without any plasmid. Additionally, the GC6648 cells, which are 

the parent cells of DJ901 (ie. without the SoxR mutation), were also used. 
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As can be seen in Figures 4.8 and 4.9 below, we first grew cells with various 

treatments over 8 hours in a 96 well plate and took both OD600 (cell growth) and 

OD420 (ferricyanide) measurements. Cells without plasmid show a slight decrease in 

growth rate with added ferricyanide, but a higher growth when both pyocyanin and 

ferricyanide are added. The same can be seen with the GC4468 cells.  

Cells with the plasmid show a slight growth decrease with ferricyanide as 

well, but due to high protein production with both pyocyanin and ferricyanide, show a 

marked decrease in growth rate when both are added – with the DJ901 cells showing 

a much more pronounced decrease than GC4468. The GC4468 cells do not have the 

genomic SoxR mutation that DJ901 do, and therefore have a higher native/starting 

defense against pyocyanin, showing a lower anaerobic fluorescent protein production 

than DJ901 (Supplementary Figure S4.4 b).  

The most interesting effects were that cells both with and without the plasmid 

show a higher ferricyanide reduction rate when pyocyanin is present than when it is 

not, even though the cells with the reporter grew slower. This is evident for both the 

DJ901 and GC4468 cells (Figures 4.8 b and 4.9 b). This is a consistent trend we saw 

throughout our experiments.  

The above could be due to the enhanced cycling of pyocyanin inside the cell 

due to ferricyanide, which further increases ferricyanide reduction. The recycled 

pyocyanin inside the cell oxidizes SoxR and drives further phiLOV production, or, in 

the case of cells without the plasmid, oxidation of other cellular components. The 

GC4468 have a slower rate of ferricyanide reduction, presumably because of their 

already-active SoxRS regulon and higher defenses against pyocyanin (including 
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higher rate of its export from the cell). This is a phenomenon which we intend to 

investigate further prior to publishing the data.  

 

Figure 4.8: DJ901 cell growth and ferricyanide reduction.  a, Growth of DJ901 

cells, with or without the pyocyanin-induced phiLOV fluorescent protein, is affected by the 

addition of ferricyanide and pyocyanin. b,. The reduction of added 5 mM ferricyanide or 5 

mM ferriycanide and 5 µM pyocyanin by DJ901 cells with or without the pyocyanin-induced 

phiLOV protein, as measured by decrease in 420 nm absorbance. 
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Figure 4.9: GC4468 cell growth and ferricyanide reduction.  a, Growth of GC4468 

cells, with or without the pyocyanin-induced phiLOV fluorescent protein, is affected by the 

addition of ferricyanide and pyocyanin. b,. The reduction of added 5 mM ferricyanide or 5 

mM ferriycanide and 5 µM pyocyanin by GC4468 cells with or without the pyocyanin-

induced phiLOV protein, as measured by decrease in 420 nm absorbance. 
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Figure 4.10: Effect of ferricyanide and pyocyanin on glucose consumption. a, 

Glucose measurements from DJ901 cells with the pBR322-SoxR-soxS-phiLOV plasmid 

grown with the indicated treatments starting at OD600 = 0.25. b, Glucose measurements from 

DJ901 cells without plasmid grown with the indicated treatments starting at OD600 = 0.25. 

 

We measured the anaerobic consumption of glucose due to various treatments 

of both DJ901 cells with and without the plasmid. M9 media supplemented with 0.4% 

glucose and 0.2% casamino acids was used. As can be seen from preliminary data in 

Figure 4.10 a above, when the plasmid for phiLOV-DAS production is present, 

glucose consumption is slowed with the addition of both pyocyanin and ferricyanide, 

but not in the presence of one or the other alone. This could be due to the slowed 

growth of the cells as protein production is greatly increased (higher metabolic 

burden). This is corroborated by the fact that when the plasmid isn’t present, glucose 

consumption does not seem to depend on the added mediators.  

DJ910 cells with the philov-DAS plasmid were grown and induced with 

ferricyanide and pyocyanin in media with different glucose percentages, and not 

surprisingly, higher glucose percentage resulted in a higher fluorescence 
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(Supplementary Figure S4.3 a). Additionally, cells grown in the same media 

aneaerobically were induced with pyocyanin and ferricyanide for an hour at various 

points of growth (and therefore after higher amounts of glucose were consumed) 

(Figure S4.3 b). Again, cells that were grown for shorter amounts of time in the same 

media responded with higher fluorescence, presumably due to cell amount, glucose 

left, pH, and other metabolites present. Finally, re-suspending the same pyocyanin 

and ferricyanide-induced cells with fresh media + mediators resulted in a linear 

increase of response, whereas keeping cells in the same media resulted in eventual 

protein degradation.  

 An interesting trend can be seen when looking at both glucose consumption in 

Figure 4.10 above and cell growth in Figure 4.8 above. The cells start out growing 

relatively at a steady rate, then slow down around the 2 hour mark, and pick up 

growth again at a steady rate around 3 hours mark. Although the experiments in 

Figures 4.10 and 4.8 were done with different starting cell OD’s (those in 4.8 were 

lower at the start than those in 4.10) and slightly differing conditions (plate format vs 

tubes, and microaerobic vs anaerobic), we hypothesize that it is due to the 

consumption of most of the glucose present around 2 hours that the cells’ growth 

slows down. Before this, the cells would secrete various other more reduced 

compounds such as acetate or other mixed acid fermentation by-products. The end of 

the glucose supply would signal to the cells to switch their metabolism and utilize 

these more reduced compounds.  

 As stated in the introduction, previous studies have suggested that growth of 

E.coli anaerobically with ferricyanide as the electron acceptor results in a higher 
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production of acetate, which is a reduced compound and a result of fermentation. In 

these cases, it is among other products which signify higher energy production 

through substrate level phosphorylation rather than by respiration.  

 We have recently started the above experiments and plan on further 

investigating cellular production of acetate and other metabolic intermediates and 

products such as ATP in cells treated like those above. We hope to shed more light on 

the metabolic effect of the pyocyanin + ferricyanide combination and included the 

preliminary results above to demonstrate its importance. This would allow us to better 

tailor the experimental conditions (specifically, media composition) to achieve our 

desired result and responses from the cells.  

 Next, to further verify that it is because ferricyanide is acting as an electron 

acceptor that it amplifies the production of pyocyanin-induced protein, we used an 

alternative electron acceptor in a similar experiment with pyocyanin. As can be seen 

in Figure 4.11 below, nitrate, a common anaerobic electron acceptor, also results in 

an increase in phiLOV production when pyocynin is added. Nitrite, however, does 

not result in as high an increase in protein production, as it is the reduced form of 

nitrate.   
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Figure 4.11: Effect of nitrate and nitrite, electron acceptors, on cell response to 

pyocyanin treatment. Fluorescence of cells producing the phiLOV protein in response to 

5 µM added pyocyanin and the indicated concentrations of either nitrate or nitrite. 5 µM Na 

Myolobdate was added to all samples. 

 

 Our system is concentration-dependent on both pyocyanin and ferricyanide 

anaerobically, but when oxygen is present, as can be seen in Supplementary Figure 

S4.4, it is not. When any pyocyanin is present, oxygen amplifies the response in both 

GC4468 and DJ901 cells, and the concentration of ferricyanide (or even its presence 

as opposed to that of ferrocyanide) does not influence the amount of phiLOV. This is 

not to say that ferricyanide is not reduced by cells even when oxygen is present or 

doesn’t act in part as an electron acceptor, but it is probably that the protein 

production machinery is maxed-out in this state and/or oxygen is favored as the 

electron acceptor. In Supplementary Figure S4.4 b we can see that GC4468 cells 

respond with a lower amount of fluorescence when in anaerobic but not aerobic 

conditions. This response also corroborates with the explanations given above. 
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Electrochemical control of ferricyanide and pyocyanin redox state 

 To introduce electronic control of gene expression we needed to be able to 

have good control of the electrochemical state of the ferricyanide/ferrocyanide 

couple, as this would result in either an ON or OFF state of protein production. Using 

a three-electrode setup and a potentiostat we were able to easily perform cyclic 

voltammetry and chronoamperometry measurements to both determine the 

concentration and the redox state of the molecules (Supplementary Figure S4.5). 

Using bulk electrolysis and a salt bridge, as described in the Methods section, we 

were able to start with ferrocyanide in the working-electrode-compartment and 

ferricyanide in the counter and switch the redox state of both back and forth over 

several cycles without degrading the molecules or generating any interfering species 

(Figure 4.12). This confirmed to us that we would be able to oxidize and reduce the 

molecules back and forth successfully in media and that they may retain their effects 

on the cells and phiLOV production.  

 

 

Figure 4.12: Continuous oxidation and reduction of ferro/ferricyanide. a, 

Absorbance increase and decrease as ferrocyanide is oxidized to ferricyanide and vice versa, 
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in the working and counter chambers. Higher charge indicates a longer time of oxidation or 

reduction. b, cycling of the reduced/oxidized form of the ferro/ferricyanide couple in the 

same chamber shows no destruction of the electrochemical or absorption properties.  

  

To test this, we repeatedly oxidized and then reduced the same solution of 

media + mediators and saved these in aliquots on ice. At the end of the cycling, we 

added the saved media + either oxidized or reduced mediators to spun down DJ901 

pBR322 SoxR soxS phiLOV-DAS cells for 1.5 hours before fixing and measuring 

fluorescence with FACS. Figure 4.13 below shows that the cells responded in a 

predictable way, generating higher amount of protein when ferricyanide was present 

and less when ferrocyanide was present, even after the molecules were redox-cycled 

several times. These results allowed us to be confident that in further experiments, 

which would involve in situ ferricyanide reduction and oxidation, the redox cycling 

would have the desired effect on the cells.  

 

Figure 4.13: Cell response to electrochemically-oxidized or reduced mediators. 

Fluorescence of phiLOV produced by cells treated with media and supplements, 5 µM 
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pyocyanin, and 5 mM ferrocyanide that was either fully oxidized or reduced the indicated 

number of times.  

  

It’s important to note that we did not observe any chemical or electrochemical 

interactions between pyocyanin and ferricyanide, in either redox form. Though it is 

possible that one may oxidize or reduce the other, these interactions did not have any 

effect on our experimental results. When a ferricyanide + pyocyanin solution is 

reduced, we presume that the pyocyanin is reduced as well. However, reduced 

pyocyanin inside the cell can be re-oxidized somewhat even without ferricyanide, as 

we showed earlier. Therefore, we concluded that reduction of ferricyanide + 

pyocyanin solution and its effect in reducing protein production is largely due to the 

reduction of ferricyanide rather than pyocyanin.  

 

Electronic In situ control of protein amount  

After confirming that the electrochemically-cycled ferricyanide/ferrocyanide 

result in different rates of protein production, we decided to test an in situ system, 

with the cells already in the media with the redox molecules (5 µM pyocyanin and 5 

mM ferrocyanide) . Our first experiments involved turning the system “ON” with 

various potentials, to confirm that a specific oxidizing voltage is required. We applied 

the indicated potentials all for 15 minutes. As can be seen below in Figure 4.14, 

potentials between -0.3 and +0.6 were used. The grey CV in the background of Figure 

4.14 a is that of ferricyanide, with the reduction and oxidation peaks labeled at R and 

O, respectively. The reducing peak current was at -0.14 V and the oxidizing peak 
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current was at +0.22 V. We can see from Figure 4.14 a and b that applying voltages 

between -0.3 and 0 did not result in significant charge due to ferricyanide generation, 

and therefore cells did not fluoresce. Between 0 and +0.2V we see a steady increase 

in charge, absorbance of ferricyanide, and fluorescence of cells. This indicates that 

even though the potentials are not strictly oxidizing (not more positive than the 

oxidation peak), there is still some conversion of ferro to ferricyanide, and therefore 

an increased response from the cells. Potentials more positive than the E0 resulted in 

similar conversions of ferro to ferricyanide and therefore similarly high/maximum  

average fluorescence. These results confirmed to us that indeed there is a particular 

voltage that fully turns the cells “ON” (+0.22 V and higher), and another voltage that 

turns them partially “ON” (+0.05 V and higher).  
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Figure 4.14: Potential step-up and control of gene expression. a. Various potentials 

(x-axis) were applied for 15 minutes to cells with 5 µM pyocyanin and 5 mM ferrocyanide. 

The indicated charge was measured/observed. Cells were then incubated for 3 hours, over 

which the indicated average fluorescence was measured at one hour intervals. The grey CV in 

the background indicates the reduction(R) and oxidation (O) peaks of ferricyanide. b. The 

resulting charge (also from a) as compared to the absorbance of the resulting ferricyanide 

generated (420nm). Insert shows the linear correlation between the two.   
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We picked a potential (+0.5 V) that was much more positive than the 

oxidation peak, since it is possible that the peaks may drift over the course of the 

experiment (we’ve observed this before, and it is based on the pH of the media), and 

applied various charges, ie. by electrochemically oxidizing 5 mM ferrocyanide and 5 

µM pyocyanin for various lengths of time, and therefore turning only portions of it to 

the ferricyanide form. As can be seen in Figure 4.15 a, the resulting average 

fluorescence is proportional to the charge of the oxidation reaction. The fluorescence 

is an average of several measurements taken over time, all of which can be seen in 

Figure 4.15 b. These results corresponded well with the trends seen when different 

concentrations of ferricyanide were added previously in Figure 4.6.  
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Figure 4.15: Fluorescent response to various charges. a, Average cell fluorescence, 

phiLOV-DAS produced in response to the indicated charge, which turned part of the 5mM 

ferrocyanide + pyocyanin from reduced to oxidized form. b, A subset of the actual 

fluorescence FACS measurements from cells activated with the indicated charge, over time. 

Lower charges resulted in less conversion of ferro to ferricyanide and therefore lower 

response over time and quicker degradation. 5 µM pyocyanin is used for all samples. 

 

Additionally, we performed negative controls where the oxidizing and 

reducing currents themselves, without mediators, were applied, and the oxidizing 
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current was run with the oxidized molecules and the reducing current with the 

reduced molecules. This was done to rule out any genetic response to the current 

itself or other electrochemically-related unknown factors. Supplementary Figure S4.6 

shows that there was no response unless ferricyanide and pyocyanin were present in 

the oxidized form, and no unanticipated response from the currents themselves 

occurred.  

 

In situ response to ON/OFF cycling 

Next, we investigated whether ON/OFF cycling can also be accomplished in 

situ. Our first experiments involved a similar idea to Figure 4.6 above, with the 

application of one ON and one OFF voltage for various amounts of time. As can be 

seen in Figure 4.16, we saw a similar response to when the ferri/ferrocyanide was 

changed in the media in Fig. 4.6. However, we do see a longer delay in the OFF part 

of the cycle, due to the fact that it takes about 15 minutes for the ferricyanide to 

completely turn into ferrocyanide, during which time the protein is still presumably 

made, at a higher rate than it would be if the media was just exchanged and the 

concentration of ferricyanide gone to zero almost immediately.  

 



 

 

142 
 

  

Figure 4.16: In situ electrochemical cycling effect on response. a, Electrochemical 

actuation – 1/2 cycle of ON and then OFF. Cells were initially in the OFF state, and turned 

ON at time zero. After the ½ cycle measuremnt, the voltage was turned from ON back to 

OFF, electrochemically. Each half of the cycle was of the indicated time length. b,  The 90-

minute series shown here with the charge traces. The green and red curves represent 

accumulated charge. Green is during the ON phase (oxidizing +0.5 V applied) and red is 

during the OFF phase (reducing -0.3 V applied).  

 

In order to apply multiple cycles to the same cells, we chose 1 hour for each 

part of the cycle (ON 1 hour, OFF 1 hour), which would allow for sufficient protein 

production and degradation. Complete oxidation and reduction of the 5 mM 

ferrocyanide was accomplished within about 15-30 minutes. As can be seen in Figure 

4.17, we were indeed able to see increases and decreases in overall protein based on 

whether the ferrocyanide was oxidized or reduced previously. The actual charge 

traces can be seem above the graph in Figure 4.17 as green (ON) or red (OFF) lines. 

These show that the first 15 minutes have a linear oxidation/reduction and much 

higher slope than the remainder, as in Figure 4.16 b.   
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Figure 4.17. Electrochemical ON/OFF cycling. Cell fluorescence as measured by 

FACS in response to cyclic ON/OFF electrochemical signals. The applied potential was 

either 0.5V (high, oxidizing, ON) or -0.3 (low, reducing, OFF). The green and red traces 

above indicate the resulting charge from the applied potential. Charge axes are 0 to -2 for ON 

(green) and 0 to 2 for OFF, similarly to Figure 4.16 above. Error bars represent standard 

deviation.  

 

In situ reactions over periods of time longer than about 6 hours, however, 

resulted in general fluorescence decrease and the inability of the cells to produce as 

much of a response as in the earlier timepoints. This is because over time, the growth 

of the cells, the metabolic products, the change in pH, and consumption of substrate 
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all affected the ability of the cells to respond. Starting with a lower cell OD, and 

adding LB media with MOPS buffer instead of M9 media alleviated the problem of 

seeing consistent responses up to 6 hours, but for longer periods of time media 

exchange or some limitation on growth would need to be implemented (cell dilution 

perhaps). This can be achieved with the immobilization of cells on electrodes within 

microfluidic devices, and is described further in the Future Work section in the next 

chapter. We are currently pursuing these alternatives. 

 

Conclusions 

In this chapter, we have shown for the first time the use of a reversible redox 

molecule to control gene expression in bacteria with temporal accuracy. Although we 

are currently continuing the work and foresee a lot of improvements to the system, 

the investigations outlined above show that it is a viable method for providing bio-

electronic communication in the short term. The great benefits of our method are the 

direct translation of electronic to genetic signals (with a 15-30 minute lag time), the 

minimal additional genetic elements that need to be introduced to cells (SoxR protein 

and soxS promoter), the promising usefulness of the system in microelectronic-based 

lab-on-chip devices (location-specific response), and the low cost of the equipment 

needed to achieve electronic control. Overall this is a promising novel methodology 

that we envision has many applications mentioned in the introduction and motivation 

sections.  
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Supplementary Information 

   

Supplementary Figure S4.1: Absorbance measurement of ferricyanide. 

Absorbance at 420nm can be used to measure ferricyanide concentration in the ranges used in 

this chapter.  

 

Supplementary Figure S4.2: Effect of cell OD and ferricyanide concentration on 

ferricyanide reduction and cell response. a, Ferricyanide reduction to ferrocyanide by 

cells results in absorbance decrease (measured at 420 nm, same starting cell OD) over time. 
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b, Ferricyanide reduction by cells (the slopes from a) is concentration-dependent. c, Different 

cell ODs are reacted with the same pyocyanin and ferricyanide concentrations. d, Increasing 

cell OD results in higher rate of reduction of the same ferricyanide concentration.   

 

 

 

Supplementary Figure S4.3: Fluorescent protein production with different 

glucose amounts. a, DJ901 cells producing the phiLOV-DAS protein in response to 5 µM 

pyocyanin and 5 mM Ferricyanide in media with different glucose concentrations. 100% 

signifies M9 media with 0.4% glucose (w/v). b, Cells were grown anaerobically starting at 

OD600=0.25 in M9 glucose CA media. After the indicated amounts of time, 5 µM pyocyanin 

and 5 mM Ferricyanide were added, and after an hour cells were collected for fluorescence 

measurement. c, Production of fluorescent protein continues when used media + mediators 

are refreshed with new media + mediators.  
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Supplementary Figure S4.4: Effect of aerobic conditions on ferricyanide and 

pyocyanin treatments. a, Fluorescence of cells producing phiLOV protein in response to 

the indicated treatments, aerobically. b,  Fluorescence of DJ901 or GF4468 cell producing the 

phiLOV protein in response to different pyocyanin concentrations in either aerobic or 

anaerobic conditions. 
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Supplementary Figure S4.5: Electrochemical ferri/ferrocyanide measurements 

and bulk electrolysis. a, Chronoamperometry of bulk oxidation of ferrocyanide to 

ferricyanide. b, Chronoamperometry of bulk reduction of ferricyanide to ferrocyanide. c, 

Maximum oxidation current measurements of various ferricyanide concentrations. d, 

Correlation between the 420nm absorbance and the maximum oxidation currents of various 

ferricyanide concentrations.  
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Supplementary Figure S4.6: Electrochemical negative controls. Cell fluorescence 

after 1 hour as measured by FACS (phiLOV-DAS) based on the indicated treatments. These 

are the electrochemical negative controls. 

 

Supplementary Figure S4.7: Propidium iodide staining of cells. Cells were grown 

with the various treatments for the indicated amounts of time and stained with propidium 

iodide as stated in the Methods section.  
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Supplementary Figure S4.8: Pyocyanin-only electrochemical oxidation. 

Continuous oxidation of 5 µM pyocyanin in a slight but not significant increase in 

fluorescence.  

Gene/construct Primers 

SoxR-soxS 
region from 
genome 

F: GGA TTT GGA TCC TTA GTT TTG TTC ATC TTC 
CAG CAA G 
R: GAA CAC TGA AAA GAG GCA GAT TTA AGC 
TTA ATC 

phiLOV for 
Gibson 

F: GAC AGC TTA TCA TCG ATT TAT TAT TAC ACA 
TGA TCG CTG CC 
R: GAG GCA GAT TTA AGC TTA TGA TTG AAA 
AAA GCT TTG TGA TTA C 

pBR322-SoxR-I 
for Gibson 

F: AAG CTT AAA TCT GCC TCT TTT 
R: ATC GAT GAT AAG CTG TCA AA 

phiLOV-LAA 
for Gibson 

F: GAC AGC TTA TCA TCG ATT TAT TAT TAA GCA 
GCC AGA GC 
R: CCA GTG CAG GAG CTC TTA TTA TTA AGC 
AGC CAG AGC 

DAS tag 
addition 

F: TAG TTT TCG TCG TTA GCA GCC AC 
R: CGC TGA CGC TTC TTA ATA ATA ATA TCG 
ATG ATA AGC TGT CAA ACA TGA 

 
Table S4.1: Primers used for creating pBR322-SoxR-soxS-phiLOV and –

phiLOV-LAA and –phiLOV-DAS constructs.  
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Genetic element Sequence 

LAA degradation tag GCT GCT AAC GAC GAA AAC TAC GCT CTG GCT GCT 
 

DAS degradation tag GCT GCT AAC GAC GAA AAC TAC GCT GAC 
GCT TCT 

phiLOV2.1 anaerobic 
fluorescent protein 
(adapted from Christie 
et al.177) 

ATG ATT GAA AAA AGC TTT GTG ATT ACC GAT CCG 
CGC CTG CCG GAT TAT CCG ATT ATT TTT GCG AGC 
GAT GGC TTT CTG GAA CTG ACC GAA TAT AGC CGC 
GAA GAA ATT ATG GGC CGC AAC GCG CGC TTT CTG 
CAG GGC CCG GAA ACC GAT CAG GCG ACC GTG CAG 
AAA ATT CGC GAT GCG ATT CGC GAT CAG CGC GAA 
ACC ACC GTG CAG CTG ATT AAC TAT ACC AAA AGC 
GGC AAA AAA TTT TGG AAC CTG CTG CAT CTG CAG 
CCG GTG CGC GAT CGC AAA GGC GGC CTG CAG TAT 
TTT ATT GGC GTG CAG CTG GTG GGC AGC GAT CAT 
GTG TAA 

 
Table S4.2. Relevant genetic element sequences. 
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Chapter 5:  Summary, innovations, and future work 

Summary 

 The dissertation presented here describes our work to facilitate bio-electronic 

communication. In Chapter 2 we showed that electronic signals can modulate the 

activity of the protein HLPT assembled on an electrode through the controlled 

oxidation of acetosyringone and the oxidation of residues on HLPT. To facilitate and 

explore electronic measurement of gene expression, we utilized the β-galactosidase 

reporter protein, whose reaction with the PAPG substrate yields the redox-active PAP 

molecule. In Chapter 3, we explored in-depth the relationship between this 

electrochemical method and the standard Miller assay – a first-time correlation which 

we hope will facilitate the use of the electrochemical measurement by synthetic 

biologists. Finally, in Chapter 4, we detailed the development of an electronic gene-

control system with the use of pyocyanin-induced soxS promoter and the 

electrochemical control of the electron acceptor ferricyanide. Overall, our 

developments make great strides towards promoting meaningful and facile bi-

directional communication between biology and electronics. 

 Our work has resulted in one published article, one article currently under 

review, and one in preparation. Additionally, the work has been presented at 5 

international conferences.  
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Electronic modulation of biochemical signal generation 

Innovation and contributions 

The study described in Chapter 2 provides the first evidence that direct 

electronic control of a diffusible redox mediator at the surface of a gold electrode in 

the vicinity of an immobilized enzymatic pathway results in predictable protein 

oxidation, attenuation of activity, and biochemical signal generation. In addition to 

HLPT, we demonstrated similar electronic activity control of two other enzymes’ 

activities (microbial transglutaminase and β-galactosidase). We also were able to use 

the redox couple Ir(III)/Ir(IV) with all three enzymes – further extending the utility of 

the technique. We envision that the novel suite of methodologies demonstrated here 

form the basis for targeting and controlling biochemical fluxes of other biohybrid 

devices.  

 
Future work 

In the work described, the electrode used, attenuation setup, and incubation 

system were all macroscale systems. We believe that all of our techniques and steps 

could be translated easily into a microfluidic system with integrated electrodes. 

Several such systems from our group could be adapted for the task. We have 

previously shown the deposition of a chitosan film and enzymatic assembly of 

functional enzymes on that film in a microfluidic channel29,47. A third electrode could 

be integrated for the use as a reference electrode for attenuation reactions as well as 

real-time measurement of Hcy generation55. In fact, a fluidic application with flow 

might be optimal. Options for which materials/metals to use include (but are not 
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limited to) (i) all gold or (ii) gold working and counter, with a silver reference. A 

variety of electrode geometries could also be used. 

 

Electrochemical detection of synthetic biology constructs – in situ β-

galactosidase detection in real time from whole cells 

Innovation and contributions 

Our results indicate for the first time that electrochemical measurement of β-

gal activity (cleavage of PAPG to PAP) in both lysed and intact cells is feasible as an 

alternative method to the gold-standard Miller assay. It enables added versatility for 

analysis of synthetic biology constructs, such as those exploiting lab-on-a-chip and 

other methodologies that benefit from real-time measurement. We demonstrated this 

by developing a biosensor bacterium that converts the signaling function of quorum 

sensing molecule AI-2 to electronic signals through a genetic (β-gal) and chemical 

(PAPG) transducer system. Our results showed that the electronic current measured 

was proportional to Miller Units from the same samples, and can be used to 

approximate gene expression in a multi-component synthetic circuit. Such 

electrochemical measurements allow for in situ analyte detection as they integrate 

seamlessly into electronic systems, and could therefore allow for programmable 

measurements of synthetic biology constructs. Additionally, we created a two-

compartment model that can be used to predict PAP (and thus electrochemical) output 

from our construct, and can be modified to accommodate other systems driving LacZ 

expression. We believe this work connects, for the first time, the work of the 

biosensor community in enzymatic reporter detection, with the standard optical 
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measurement techniques biologists use for the same purpose. A better link between 

synthetic biologists and biochip / microelectronics designers enables parallel use of 

each other’s’ tools and advances the potential for synergistic outcomes. 

 
Future work 

 We believe that the work presented in Chapter 3 in general can be used by 

synthetic biologists to analyze genetic circuits by electrochemical means. 

Additionally, the electrochemical measurement of gene expression presented here can 

be combined with the electrochemical gene actuation in Chapter 4 to create an bio-

hybrid system with both electronic inputs and outputs.  

 

 

Electronic control of bacterial gene expression through redox-driven 

transcriptional activation  

Innovation and contributions 

The method described in Chapter 4 is the first to use a reversible redox 

molecule to control gene expression in bacteria with temporal accuracy. It adds to the 

suite of novel genetic control methods that aim to provide precise spatio-temporal 

control. We have shown that our method (with the mediators used) does not 

significantly damage the cells. Our results showed that by manipulating factors such 

as mediator concentrations, cell amount, and culture conditions, different responses 

can also be elicited – adding a degree of customizability. Additionally, our metabolic 

and growth studies shed some light on the effects and functioning of our design. 
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The great benefits of our method are the almost-direct translation of electronic 

to genetic signals, the minimal additional genetic elements that need to be introduced 

to cells, the promising usefulness of the system in microelectronic-based lab-on-chip 

devices (location-specific response), and  the low cost of the equipment needed to 

achieve electronic control. Overall this is a promising novel methodology to translate 

electronic signals to genetic response that we intend to further develop and study. 

 
Future work 

In Chapter 4 is the first time our method has been described, and much work 

was put (and continues to be put) into validating the hypotheses of how the method 

works and what factors are important to elicit an optimal response. Some additional 

experiments will need to be performed in order to validate and strengthen our 

hypotheses and claims in the chapter, though we believe the data we presented is 

robust and convincing. We talk about those experiments throughout the results and 

discussion in Chapter 4. Here we present additional ideas that would expand on our 

method and utilize it in novel ways. We hope that much more can be done and 

demonstrated with our method, and some of this we have started working on.  

The true potential of our method, we believe, can be realized with cells that 

are immobilized in the vicinity in the signaling electrodes in such a manner that 

allows easy media flow and exchange and faster diffusion of mediators between cells 

and electrodes. As one of our limitations in terms of eliciting a strong response was 

the growth and secretions of the cells in situ, we believe cell immobilization would 

allow us to not only regulate the communication quicker, but also allow us to perform 

longer experiments and retain cell responsiveness over time by limiting growth and 
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exchanging media easily. Depending on the reporters used, real-time responses could 

be measured, which would allow for a development of a closed-loop feedback-control 

system. We are currently working on developing a microfluidic platform that allows 

real-time detection of the fluorescent phiLOV response with a microscope from cells 

immobilized on gold electrodes within channels.  

Showing a phenotypic change due to genes being turned on and off using our 

method is another avenue we are pursuing. Already, we started experiments that aim 

to turn on both bacterial motility (with the CheZ protein187) and bacterial cell-to-cell 

communication (using the LuxI and LuxR system of quorum sensing [QS]188). The 

cell-to-cell communication will be especially beneficial as the “bio-electronics relay” 

cells, those producing LuxI and secreting the communication molecule in response to 

the electronic signals, will be the only ones that need to be in an anaerobic 

environment. Once the QS molecule is secreted, it can communicate the electronic 

signals to downstream sensor cells (those expressing LuxR) that can be in an aerobic 

environment. Additionally, an electrochemically-measured reporter, such as β-

galactosidase from the previous chapter, can also be used to link electronic control to 

electronic reporting. 
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Figure 5.1: Schematic of bio-electronic cells. Cells are producing luxI and AHL in 

response to electronic signals. The AHL diffuses to biosensor cells, which respond by 

producing a reporter, such as phiLOV, from the LuxI promoter. 

 

Additionally, in order to lessen the redox stress on the cells even further, the 

following can be implemented: To reduce the amount of pyocyanin and ferricyanide 

used, we can employ a genetic amplification mechanism (such as in Chapter 3) or an 

enzymatic reporter protein (including the above-mentioned LuxI and β-

galactosidase). We can up-regulate redox-scavenging enzymes during the times when 

the protein of interest is not being produced. Additionally, we can employ a different 

redox mediator (other than pyocyanin) that perhaps has less of an impact on redox 

stress in the cells but still activates SoxR.  
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