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Abstract

Cellular processes have traditionally been investigated by techniques of imaging and

biochemical analysis of the molecules involved. The recent rapid progress in our abil-

ity to manipulate and read nucleic acid sequences gives us direct access to the genetic

information that directs and constrains biological processes. While sequence data

is being used widely to investigate genotype-phenotype relationships and population

structure, here we use sequencing to understand biophysical mechanisms. We present

work on two different systems. First in chapter 2, we characterize the stochastic ge-

netic editing mechanism that produces diverse T-cell receptors in the human immune

system. We do this by inferring statistical distributions of the underlying biochem-

ical events that generate T-cell receptor coding sequences from the statistics of the

observed sequences. This inferred model quantitatively describes the potential reper-

toire of T-cell receptors that can be produced by an individual, providing insight into

its potential diversity and the probability of generation of any specific T-cell receptor.

Then in chapter 3, we present work on understanding the functioning of regula-

tory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments

that measure the transcriptional activity of large libraries of mutagenized promoters

and enhancers and infer models of the sequence-function relationship from this data.

For the bacterial promoter, we infer a physically motivated ‘thermodynamic’ model

of the interaction of DNA-binding proteins and RNA polymerase determining the

transcription rate of the downstream gene. For the eukaryotic enhancers, we infer

heuristic models of the sequence-function relationship and use these models to find

synthetic enhancer sequences that optimize inducibility of expression. Both projects

demonstrate the utility of sequence information in conjunction with sophisticated

statistical inference techniques for dissecting underlying biophysical mechanisms.

i



Acknowledgments

I want to start by thanking my adviser Curt Callan for five years of unconditional

support in my research activities. I greatly appreciate the freedom and independence

I was given while he guided me toward the completion of interesting projects. While

my productivity waxed and waned over the years, I credit him for letting me find my

footing naturally, in a new field.

None of the work presented in this thesis would exist if not for the great set of

colleagues and collaborators that I have been lucky to work with. Justin Kinney

was instrumental in the genesis and execution of my first project in biophysics and

I thank him for giving me the opportunity. I would also like to thank Aleksandra

Walczak, Thierry Mora and Tarjei Mikkelsen for the fruitful collaborations we have

had. I learned a lot from all of them.

I’m grateful for the general biophysics community that surrounded me at the

Lewis-Sigler Institute. In particular, I thank Prof. Bialek for providing advice and

support whenever needed and for broadening my understanding of what biophysics

might be. The students and postdocs I saw everyday over the last few years were

also crucial in my education. I thank Yi Deng, XinXin Du, Tiberiu Tesileanu, Dima

Krotov, Julien Dubuis, Audrey Sederberg, Gordon Berman, Thibaud Taillefumier,

Miriam Osterfield and everyone else who often answered my technical questions, lis-

tened to me vent and generally provided great social support and conversation at tea

time.

While I have met a large number of exceptional people in my time at Princeton,

I am lucky to have befriended a subset that are also nice. I thank Arijeet, Tibi,

XinXin, Richard, Pablo, Alvaro, Lucas, Alex, John and Guillaume for being great

friends; Hans and Miroslav for being such interesting characters; Rodolfo for putting

up with my ‘ideas’, prejudices and monologues; and Ruggero, Greg, Ida and Krystal

for being awesome housemates. I will miss all of them.

ii



One of the hardest things about these five years has been being 3000 miles from

friends that I value greatly. I thank Alysia and Stephen for being such awesome

friends and Mario for being Mario. While I didn’t see enough of you, remembering

that you guys exist was always comforting.

I have to acknowledge Ravishankar, my high school physics teacher and friend,

who showed me the joy of thinking for myself. It’s hard to exaggerate how much our

discussions about physics, inquiry and understanding meant to me.

Finally, and most importantly, I thank my family for making any of this possible.

Arvind and Ingrid, thanks for all your help (and the dinners). Amma and Appa,

thank you for your love and support. I don’t know how you figured it out but you

are brilliant parents.

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1

2 Generation of T-cell receptor diversity 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Adaptive immune system in humans . . . . . . . . . . . . . . . . . . 5

2.2.1 Lymphocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 T-cell receptor architecture and formation . . . . . . . . . . . 6

2.2.3 Clonal and thymic selection . . . . . . . . . . . . . . . . . . . 8

2.2.4 Biochemistry of V(D)J recombination . . . . . . . . . . . . . . 8

2.3 Analysis strategy and sequence data . . . . . . . . . . . . . . . . . . 9

2.3.1 Sequence data from immune cell receptor repertoires . . . . . 9

2.3.2 Isolating molecular constraints from selection . . . . . . . . . 10

2.3.3 Recombination events from nucleotide sequences . . . . . . . . 11

2.3.4 Structure of recombination event distributions . . . . . . . . . 12

2.3.5 Generation probability and likelihood of observed sequences . 14

2.3.6 The expectation maximization algorithm . . . . . . . . . . . . 15

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Correlations between event variables . . . . . . . . . . . . . . 19

iv



2.4.2 Gene usage distributions . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Nucleotide insertions . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Palindromic nucleotides co-occur only with zero nucleotide dele-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.5 Nucleotide deletions . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.6 Consistency of distributions across individuals . . . . . . . . . 26

2.4.7 Potential diversity of repertoire . . . . . . . . . . . . . . . . . 26

2.4.8 Overlap of repertoires between individuals . . . . . . . . . . . 28

2.4.9 Memory T-cell non-productive repertoire . . . . . . . . . . . . 29

2.4.10 Convergent recombination and generation probability . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Sequences of V, D, and J-genes and their alleles . . . . . . . . 35

2.6.2 CDR3 sequence data files and formats . . . . . . . . . . . . . 36

2.6.3 Initial parsing of sequence reads by alignment . . . . . . . . . 36

2.6.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.5 Sequencing error rate . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.6 Spurious shared sequences between repertoires . . . . . . . . . 40

2.6.7 Sequence dependence of nucleotide deletion probabilities . . . 41

3 Regulatory Sequences 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Prokaryotic regulatory sequences . . . . . . . . . . . . . . . . . . . . 50

3.2.1 The lac promoter . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Thermodynamic models of promoter action . . . . . . . . . . . 50

3.2.3 Sort-Seq Experimental design . . . . . . . . . . . . . . . . . . 52

3.2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.5 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . 56

v



3.2.6 Estimating I(σ;µ) . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Eukaryotic regulatory sequences . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Conclusions 84

vi



Chapter 1

Introduction

Nucleic acids are the most fundamental of biomolecules. They contain the instruc-

tions for assembly of all the molecular components necessary for the functions of

life (including their own replication); themselves serve crucial roles in the assembly

process; and additionally contain instructions for and play active roles in the highly

complex regulation of the production of various biological molecules.

The ongoing revolution in our ability to read nucleic acids [1] has allowed the inves-

tigation of many biological questions that were previously inaccessible. In particular,

great progress has been made in cataloguing genes and non-coding functional elements

within and across species; revealing evolutionary history and population structure of

species; and in associating genetic variation with medically relevant phenotypes [2].

Sequence data can also provide insight into fundamental processes of molecular

biology. Examples include the discovery of RNA interference [3], transcriptional reg-

ulation by distant DNA sequences [4, 5], recombination hotspots [6], and numerous

insights into biochemical pathways [7]. However, sequence data also provides the

opportunity for quantitative characterization of biological systems.

In this thesis, we present work on two different biological processes where we use

high-throughput sequence data to quantitatively understand the molecular processes
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that underly the design of functional DNA sequences. First, in chapter 2, we focus on

the remarkable process of VDJ recombination that stochastically edits germline DNA

in precursor T-cells to produce diverse T-cell receptors in the human immune system.

We infer statistical distributions of the underlying biochemical events that generate

T-cell receptor coding sequences from the statistics of the observed sequences.

These distributions characterize the potential repertoire of T-cell receptors that

can be produced by an individual. Since the observed repertoire of T-cell receptors

is a product of selective forces from exposure to antigen as well as the molecular

constraints of VDJ recombination, our model of the latter serves as a baseline for

analysis of the effect of selection on the repertoire. Additionally, we are also able to

calculate the generation probability of any specific T-cell receptor, including as yet

unobserved ones.

Then, in chapter 3, we present work on modeling the function of regulatory DNA

sequences in both prokaryotes and eukaryotes. We use measurements of the tran-

scriptional activity of large libraries of mutagenized promoters and enhancers to in-

fer models of the sequence-function relationship. For the well-studied lac promoter,

we infer the parameters of a physically motivated ‘thermodynamic’ model of the

transcription rate of the regulated gene. This model accounts for the interaction of

DNA-binding proteins and RNA polymerase with each other and with the sequence.

Eukaryotic enhancers are more complex in mechanism, with larger number of proteins

that interact at overlapping binding sites. For these, we infer heuristic models of the

sequence-function relationship and use these models to synthesize enhancer sequences

that optimize the function of the enhancer in desired ways.
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Chapter 2

Generation of T-cell receptor

diversity

2.1 Introduction

This chapter is an expanded and edited version of a manuscript submitted for pub-

lication. The work described was done in collaboration with Aleksandra Walczak,

Thierry Mora and Curtis Callan. The data analyzed was contributed by Harlan

Robins.

All organisms are threatened by pathogens and hence have defense mechanisms

to protect against them. The fundamental problem to be solved by these mecha-

nisms is to distinguish between self and non-self biological material and destroy the

latter. There are two classes of such mechanisms: those that act generally against all

pathogens (innate) and those that are specifically adapted to an invading pathogen

(adaptive).

The innate immune system is the more ancient of the two and such defenses are

found in all species. Bacteria use restriction enzymes to cleave foreign DNA; plants

and animals all produce antimicrobial peptides and use Toll-like receptors to induce
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their production upon (non-specific) recognition of foreign pathogens [8]; colonies of

unicellular eukaryotes show phagocytosis where some individual cells sacrifice them-

selves by ingesting bacteria [9]; and all vertebrates and many invertebrates have

‘complement systems’ that make phagocytosis more efficient [10].

An adaptive response to pathogens requires a mechanism for variation in the

design of receptors that recognize pathogens. Adaptive immune systems were un-

til recently believed to exist only among jawed vertebrates, but have recently been

discovered in jawless vertebrates as well [11] – likely a case of convergent evolution

since the implementations are very different in the two. Thus all vertebrates have

specialized cells carrying antigen receptors that undergo somatic diversification.

The generation of diverse antigen receptors requires stochastic editing of genetic

information that codes for these receptors. This is implemented as a remarkable

process called V(D)J recombination [8, 12], where specific (V,D and J) genes are

chosen randomly from the germline DNA and joined together to produce a new surface

receptor protein each time a new immune system cell is generated. In the beta chain

of human T-cell receptors (the focus of this work) the germline has 48 different V-

genes, 2 D-genes and 13 J-genes (each having a few alleles), so that the number of

possible VDJ combinations is only a few thousand, far too small to account for the

full diversity of the immune system. The bulk of this diversity comes instead from

a process in which, during separate DJ and VD joining events, a random number of

bases are deleted from the ends of the two genes being joined and a variable length of

random sequence is inserted between them. The end product is the so-called CDR3

region of the receptor gene: a short, highly variable region that plays an essential role

in determining the antigen specificity of the cell.

In this chapter, we focus on characterizing the statistics of V(D)J recombination

in humans using sequencing of entire TCR repertoires. The next sections provide

a basic overview of the human adaptive immune system and the biochemistry of
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receptor generation. The subsequent sections describe the sequence data we use to

study this system and the analysis of this data.

2.2 Adaptive immune system in humans

2.2.1 Lymphocytes

The adaptive immune system in humans consists of T-cells and B-cells, both derived

from the same pluripotent hematopoietic stem cells. While T-cells are formed from

the stem cells in the thymus, B-cell differentiation occurs in the bone marrow. Both

types of lymphocytes carry receptors on their surface that recognize foreign antigen.

B-cell receptors (BCRs) are membrane bound forms of antibodies which are secreted

by the cells upon activation. BCRs recognize antigen found in the exterior of cells. T-

cell receptors (TCRs), on the other hand, are designed to recognize peptide fragments

from foreign pathogens within cells, displayed on the cell surface by the host cells.

The peptides are presented by a membrane glycoprotein complex called the major

histocompatibility complex (MHC).

T-cells and MHCs each come in two varieties. Cytotoxic (CD8+) T-cells recognize

peptides bound to MHC class I molecules which display peptides from proteins in the

cytosol, thus potentially signalling viral infections. Helper (CD4+) T-cells recognize

peptides bound to MHC class II molecules which are found only on antigen presenting

cells (APCs) – macrophages, dendritic cells and B-cells – that have internalized bac-

teria and display peptides from proteins in their vesicles. While cytotoxic T-cells kill

the infected cells upon recognition, helper T-cells activate the APCs causing them to

proliferate. The CD8 and CD4 co-receptors aid each TCR in the process of antigen

recognition. The TCRs in cytotoxic and helper T-cells are generated identically. Upon

recognition of an MHC bound peptide, T-cells themselves are activated becoming a

‘memory’ T-cell (as opposed to their initial ‘naive’ state) and also proliferate.
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2.2.2 T-cell receptor architecture and formation

Each T-cell has about 30,000 identical receptors on its surface [8], coded for in the

genome of that cell by a DNA sequence that has been stochastically edited during

differentiation from the stem cell. The structure of an α : β T-cell receptor and the

genes that are combined to produce it are shown schematically in Fig. 2.1. A minority

(1−10%) of peripheral T-cells carry a different kind of TCR, called the γ : δ receptor,

whose function is not yet clear. We will focus purely on α : β T-cells.

Two polypeptide chains, α and β, each containing a constant domain (lower; blue)

and a variable domain (upper; red, green and yellow) make up the receptor. The genes

that code for all of these domains are spread on chromosome 7 over 1000 kilobases and

620 kilobases for the α and β chains respectively [13]. The antigen binding site on the

TCR is composed of six hypervariable loops (see crystal structure in Fig. 2.1), three

each from the α and β chains, that are brought together spatially in the TCR, to form

three distinct complementarity determining regions (CDR1, CDR2 and CDR3). The

corresponding CDR nucleotide sequences in the α and β chains are highly variable.

Of these, CDR3 shows the highest variability on both chains because it is the

junctional site of the remarkable process of V(D)J recombination [14] which occurs

in precursor T-cells in the thymus. In this process genes that are far apart on the

genome are cut, brought together and joined, accompanied by random deletion and

insertion of nucleotides. The CDR3 of the α chain is formed by the joining of one

Vα gene (of 70 choices) and one Jα gene (of 61 choices). The variable domain of the

β chain is formed by the joining of one Vβ gene (of 48 choices), one Dβ gene (of 2

choices) and one Jβ gene (of 13 choices). The CDR1 and CDR2 loops are completely

contained within the Vα and Vβ genes and their diversity comes from the different

choices of these genes. The focus of the analysis in this chapter is the statistics of

V(D)J recombination events in the β chain.
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CDR3
CDR3

CDR2

CDR2

CDR1

CDR1

Figure 2.1: T-cell receptor architecture. The α chain is composed by the joining of
one Vα gene and one Jα gene while the β chain is composed by two joining events,
one Dβ gene with one Jβ gene and one Vβ gene with the Dβ − Jβ combination. The
‘constant’ domains Cα and Cβ form the base of the TCR at the cell surface. The
antigen binding site has the hypervariable CDR3 region which is the junctional site
of these recombination events. The crystal structure of the TCR is shown (figure
adapted from [8]).
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2.2.3 Clonal and thymic selection

The clonal expansion of lymphocytes when activated by high-affinity binding of anti-

gen serves to preferentially increase the number of lymphocytes that are of utility

in the immune response to the identified threat. Crucially, this selective mechanism

can only work if each lymphocyte has a single type of receptor on its surface, thus

allowing the clonal selection to act on specific receptor shapes [15]. The history of

exposure to various antigen thus exerts a strong influence on the repertoire of TCRs

found in an individual.

There are also strong selective forces that act on newly differentiated T-cells. Since

TCRs that bind self protein peptides are highly undesirable, new T-cells are subject

to a battery of tests in the thymus. T-cells with receptors showing high affinity to

self peptides are eliminated by apoptosis. Additionally, TCRs that show very weak

affinity to the tested peptides are also unlikely to be of use to the immune system, and

hence these are eliminated as well. Thus there is both positive and negative selection

for the antigen recognition potential of new TCRs. In fact, ∼ 98% of thymocytes die

in the thymus [8].

2.2.4 Biochemistry of V(D)J recombination

VDJ recombination is implemented by a set of DNA processing enzymes that act in a

complex series of steps and proceeds by first recombining D with J, then V with DJ.

In the first step, the recombination activating gene (RAG) protein complex, directed

by recognition signal sequences (RSS) flanking the genes, brings two randomly chosen

D- and J-genes together, cuts out the intervening chromosomal DNA, and forms a

hairpin loop at the end of each gene [16, 17]. In further steps [18, 19] the hairpin

loops are opened, creating overhangs at the end of both genes that may eventually

survive as P-nucleotides (short inverted repeats of gene terminal sequence) [20]. This

is followed by nucleotide deletions and insertions that can be template-dependent or
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Figure 2.2: A 60bp CDR3 read (grey box) can be aligned to different genes (nomen-
clature follows IMGT conventions [22]) with different deletions (white), insertions
(yellow), and P-nucleotides (red). (A) Alignment to specific V-, D-, and J-genes
with insVD=13, insDJ=6, delV=5, delJ=6, del5’D=6, del3’D=−2 (in other words,
pal3’D=2). (B) Alignment of the same read to different V- and D-genes, and with
insVD=15, insDJ=9,delV=7, del5’D=9, del3’D=3 (no P-nucleotides). Note that the
alignment to the V-gene is not maximal in this case. A few heavily penalized mis-
matches are allowed (in the V-gene in this example) in order to accommodate a small
sequencing error rate. The location of the sequencing primer is indicated: it is chosen
to uniquely identify the start of the CDR3 read within each J-gene.

simply random. After ligation, the end result is a variable coding joint between the

chosen D- and J-genes [21], and the whole process is repeated to make another coding

joint between a randomly chosen V-gene and the outcome of the D-J joining process.

2.3 Analysis strategy and sequence data

2.3.1 Sequence data from immune cell receptor repertoires

We work with sequence data on CD4+ T-cell beta chain CDR3 regions obtained

from nine human subjects as described in [23]. In these experiments, T-cells are

collected from a blood sample, and sorted into ‘näıve’ (CD45RO-; cells that have

not been activated by recognition of antigen) and ‘memory’ (CD45RO+; cells that

have been activated by recognition of antigen) compartments, DNA is extracted, and

sequence reads long enough to capture a 5 ′ piece of the J gene, a 3 ′ piece of the V

gene and the variable sequence lying in between, are obtained. Each sequence is read

9



multiple times, and a clustering algorithm is used to correct for sequencing error [23]

(see section 2.6.5 for more information on errors). This process produces a data set

consisting of an average of 232,000 (140,000) unique CDR3 sequences from the näıve

(memory) compartments for each individual subject1. Each unique sequence comes

with a multiplicity (ranging over three orders of magnitude) reflecting the prevalence

of that particular cell type in the blood sample.

2.3.2 Isolating molecular constraints from selection

As described, the repertoire of TCRs in the blood is shaped by the molecular con-

straints from V(D)J recombination as well as clonal and thymic selection. Since

we are here interested in characterizing the outcomes of the recombination process

pre-selection, we focus on a special subset of rearranged CDR3 nucleotide sequences.

A majority of recombination events do not result in a productive TCR. The ran-

dom insertion and deletion of nucleotides can shift the genes out of the correct reading

frame, or result in a premature stop codon. When such a non-productive rearrange-

ment occurs, a second rearrangement attempt can be made on the other chromosome

in the cell. If this attempt is successful and the cell survives thymic selection, we now

have a cell with two rearranged CDR3s, one of which is non-productive. This subset

of non-productive CDR3 sequences has not been subject to selection, either thymic or

clonal. Therefore their statistics purely represents the molecular constraints of V(D)J

recombination.

Roughly 14% of the unique CDR3 sequences are non-productive. We focus our

analysis on these non-productive CDR3 sequences, of which there are an average of

35,000 (22,000) in the näıve (memory) compartments for each individual subject. We

analyze the näıve and memory data sets separately.

1We are grateful to H. Robins and collaborators for making the data sets on which this work is
based available to us.
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2.3.3 Recombination events from nucleotide sequences

Each recombined sequence can be thought of as the outcome of a generative event

described by several random variables (Fig. 2.2): V-, D-, and J-gene choices, dele-

tions of variable numbers of nucleotides from the selected genes, insertions of random

nucleotides between them, and the possible creation of P-nucleotides (short palin-

dromic nucleotides at the end of the gene segments as in Fig. 2.2A at the 3 ′ end of

the D-gene). The statistical distribution of these event variables in a population of

newly-created receptors is an important quantity: it contains information about the

in vivo functioning of the biochemical editing mechanism and provides the baseline

for a quantitative assessment of the downstream workings of selection in the adaptive

immune system.

We wish to infer this distribution from the large T-cell sequence repertoires that

are becoming available via high-throughput sequencing technology [24–26]. To date,

this inference has been done via a deterministic alignment procedure which assigns

a unique event to each sequence [24, 25]. However, since individual CDR3 sequences

can arise in multiple ways (see Fig. 2.2), this assignment really should be done on a

probabilistic basis; this is particularly true since, as we will show, deterministic align-

ment introduces spurious correlations in the statistics of generative events (Fig. 2). In

short, a formal statistical inference procedure is needed to accurately infer the under-

lying event probability distribution from the data. We present such a method, based

on likelihood maximization via an iterative expectation-maximization algorithm [27],

and apply it to recent data on human T-cell receptor sequences.
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2.3.4 Structure of recombination event distributions

Each CDR3 generating recombination event can be fully characterized by a set E of

discrete variables:

ECDR3 :



V, D, J

delV, delJ, delD5, delD3

palV, palJ, palD5, palD3

insV D, insDJ

(x1, . . . , xinsV D), (y1, . . . , yinsDJ)

(2.1)

These variables comprise the identities of the V-, D- and J-genes selected for recom-

bination2 (V,D,J); the numbers of bases deleted from the 3’ end of the V-gene (delV ),

the 5’ end of the J-gene (delJ), and both ends of the D-gene (del5 ′D and del3 ′D for

the 5’ and 3’ ends, respectively); the number of palindromic nucleotides at each of

the gene ends (palV, palJ, pal5 ′D, pal3 ′D); the specific sequence (x1, . . . , xinsV D) of

length insV D inserted at the VD junction, and the specific sequence, (y1, . . . , yinsDJ)

of length insDJ inserted at the DJ junction (see Fig. 2.2). We choose a convention

in which both sequences are read in the 5’ to 3’ direction, but the VD (DJ) inserted

sequence is read from the sense (antisense) strand.

We seek a joint distribution over all of these variables containing the minimal

set of dependences between the variables that is required to self-consistently capture

the observed correlations in the data. We find that the following factorized form

for the probability of a recombination event E (defined by specific values for all the

event variables) successfully captures all the significant correlations between sequence

features that are present in the data (see Fig. 2.5):

2Here we distinguish only the genes, not their various alleles. The gene list includes germline
pseudo-genes: they cannot produce functioning receptor proteins but, since we work with non-coding
VDJ rearrangements, pseudogene sequences can appear in the data.
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Precomb(E) = P (V )P (D, J)×

P (delV |V )P (delJ |J)P (del5 ′D, del3 ′D|D)×

P (insV D)
insV D∏
i=1

p
(2)
V D(xi|xi−1)P (insDJ)

insDJ∏
i=1

p
(2)
DJ(yi|yi−1).

(2.2)

The various factors are normalized joint or conditional distributions on their respec-

tive arguments. P (V ) and P (D, J) account for the fact that the various genes have

different usage probabilities (and that D- and J-gene usage is correlated). The factors

P (delV |V ), etc., are distributions on the number of nucleotide deletions, conditioned

on the gene being deleted (deletion profiles turn out to be very gene-dependent).

P (insV D) and P (insDJ) give the probabilities of different numbers of nucleotide

insertions at each junction. The parameters p
(2)
V D and p

(2)
DJ account for possible nu-

cleotide bias in the insertions: they give the conditional probabilities of inserting a

specific nucleotide given the identity of the immediately 5’ nucleotide, with x0 refer-

ring to the last nucleotide at the 3’ end of the truncated V-gene on the sense strand

for a VD insertion, or at the end of the truncated J-gene on the antisense strand for

a DJ insertion.

P-nucleotides do not appear explicitly in Eqn. 2.2: we treat them as ‘negative’

deletions (i.e. a palindrome of half-length 2, as in Fig. 2.2A, is counted as a deletion

of value −2). This is possible because we find that when the number of nucleotide

deletions is greater than zero, occurrences of palindromic nucleotides at the end of

the gene segment are completely explained by chance insertions of the corresponding

nucleotides (see section 2.4.4). Thus, true P-nucleotides, not attributable to chance

insertions, only occur in association with zero nucleotide deletions and it is consistent

to label them as ‘negative’ deletions.
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2.3.5 Generation probability and likelihood of observed se-

quences

The probability Pgen(σ) of generating a specific CDR3 sequence σ is the sum of the

probabilities of all recombination events Eσ that produce σ:

Pgen(σ) =
∑
E∈Eσ

Precomb(E). (2.3)

The likelihood L(σ) of observing a specific CDR3 sequence read σ, however, must

take into account residual sequencing error as well as allelic variation, and is given

by a sum over a larger set of recombination events Ẽσ that generate sequences close

to σ:

L(σ) =
∑
E∈Ẽσ

P (E, σ) where (2.4)

P (E, σ) = Precomb(E)× 1

(1 +R)L

×
∑

alleles a

P (Va|VE)P (Ja|JE)P (Da|DE)

(
R

3

)nerr(σa
E ,σ)

. (2.5)

In the latter equation, nerr is the number of mismatches between the observed read

σ and the CDR3 sequence σa
E that would be produced by the recombination event

E with allele choices a. L is the length of the sequence read. The mismatch rate

R is determined in the inference with the rest of the distribution parameters and

reflects both sequencing error as well as unknown allelic variation. In practice, we

only consider recombination events Ẽσ that lead to CDR3 sequences with at most a

few mismatches from σ. The sum over alleles3 arises because we do not know a priori

which alleles are present and reads may not go deep enough into the gene sequence

to clearly distinguish alleles from each other [28]. The probabilities of the different

3We use the known alleles for each gene listed in the IMGT data base [22] augmented by a few
additional variants observed in the data (see Appendix section 2.6.1 for details).
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alleles, given a gene, are also inferred and are expected to differ from individual to

individual.

The likelihood of the whole data set D is then the product over the individual

sequence likelihoods: L(D) =
∏

σ∈D L(σ). This expression depends implicitly on

the parameters defining the generative probability distribution (along with the allele

distributions and the sequencing error parameter), and we infer their correct values by

maximizing L(D). In order to identify universal features of the diversity generation

machinery, we perform this inference separately for each individual subject.

2.3.6 The expectation maximization algorithm

. . .

. . .

. . .

S 1

S 2

S 3

. . .

E S 1

E S 2

E S 3

w1,1
w1,2
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P (D , J ) w

P (delV |V ) w
. . .

calculate
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soiranecs noitanibmocersecneuqes

. . .

. . .

. . .

Figure 2.3: Flow chart of the analysis pipeline.

There are two major steps in the analysis pipeline that leads from a list of CDR3

sequences to a final estimate of the probability distribution Precomb(E) of generative

recombination events. The first is an ‘alignment’ step in which, for each read σ, we

create a comprehensive list of recombination ‘scenarios’ {Eσ} that could plausibly

have produced that read. A ‘scenario’ is a particular set of values for the event

variables (gene identities, VD insertions, etc.) that generates a recombined sequence

nearly identical to the read in question (with possibly a small number of mismatches).
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This step is described in greater detail in section 2.6.3. The second major step is an

expectation maximization algorithm (summarized in the flow chart of Fig. 2.3) for

finding the generative distribution that maximizes the likelihood of the observed data

given the functional form of the generative distribution (as expressed in Eqn. 2.2).

We wish to find model parameters that maximize the likelihood of the data. We

use an iterative Expectation-Maximization algorithm [27,29] to do this. Given a cur-

rent guess for the model parameters that describe Precomb(E), we update it by calcu-

lating the probability-weighted counts of events over the data set and then using those

counts to re-estimate the marginal distributions (P (V ), P (D, J), P (insV D), and so

on) that appear as factors in the general functional form of Precomb(E) (Eqn. 2.2).

As indicated in Eqns. 2.3-2.5, the joint likelihood of a recombination event E and

sequence σ is the product of two factors: the probability of the generative event

(given by Precomb(E)), and the sum over allele choices a of the probability of those

allele choices multiplied by the probability of the number of mismatches between

σ and the sequence σa
E implied by E and a. In other words, in addition to the

recombination event probability Precomb(E), likelihood involves the sequencing error

rate R and the allele probabilities P (Va|V ), etc. We emphasize that we carry out

this exercise independently for the data sets derived from different individuals. While

we expect (and find) that Precomb(E) is consistent between individuals, we of course

expect different individuals to have different allele probabilities.

In the expectation maximization procedure, we start from a prior in which each

factor in Eqn. 2.2 for Precomb(E) is uniform in its variables, the sequencing error rate

R is set to a small value (typically 10−4), and the allele probabilities are uniform

over all the alleles of each gene. Using Eqn. 2.5, for each CDR3 sequence read σ, we

exhaustively compute the likelihoods of all recombination events E given σ, starting

from maximal alignments for each sequence identified in the initial parsing of the

read (previous section), and looping over the other scenarios, involving extra deletions
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compensated by chance re-insertions of identical nucleotides, that could also ‘explain’

the read. We also loop over the number of true P-nucleotides in the cases where they

are present.

Normalizing these likelihoods yields the relative weights that observing the se-

quence σ assigns to different recombination events E, given the current model pa-

rameters. Summing these weighted occurrences over all the sequences in the data

set gives a new, data-conditioned, estimate of the various factors that enter into the

assumed general form of Precomb(E) (as well as a new estimate of the sequencing error

probability and allele occurrence frequencies). The formal statement of the update

rule is as follows; for each parameter in the model that describes the probability of

a specific recombination event feature X (say a particular V-gene choice) we update

it to the probability weighted counts over the whole data set of that event. In other

words, the (k + 1)-th iteration of the model parameters are given by

P (k+1)(X) =
∑
σ∈D

∑
E

δXE ,X P (k)(E|σ)

=
∑
σ∈D

∑
E

δXE ,X
P (k)(E, σ)

L(k)(σ)
(2.6)

where δXE ,X is one if X is true in the recombination event E and zero otherwise. This

procedure is used to update all the factors entering into the likelihood calculation

and the process is repeated until convergence to a stable end point is achieved. Since

all sequences in the data set are looped over in the calculation, we can record ‘on

the fly’ the likelihood L(σ), the generation probability Pgen(σ) of that sequence (a

conceptually different quantity), as well as the conditional entropy of events S(E|σ)

for each sequence quantifying the multiplicity of recombination events that could have

produced the given CDR3 sequence). The product of L(σ) over all sequences is the

current overall likelihood of the data set, a measure of convergence of the procedure.

The generation probabilities Pgen(σ) have a direct physical significance, reflecting the
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probability of generation of the sequence by the molecular machinery.
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Figure 2.4: Convergence of the total likelihood of all data sets with iterations of the
EM algorithm.

Iterating this process is guaranteed, by general expectation maximization argu-

ments, to maximize the overall likelihood of the data set locally. We have found that

rapid and direct convergence to a likelihood maximum is the norm for the data sets

we work with (see Fig. 2.4). The models for the probability distribution of generative

events inferred in this way from the different data sets are available online4.

2.4 Results

The factors in our equation for Precomb(E) (Eqn. 2.2) are probability distributions on

event variables that take on a finite number of values. The joint distribution has a

total of 2865 parameters (more than 90% of which are needed to specify the deletion

profiles of the individual V-, D- and J-genes). Despite the large number of parameters,

we are able to determine them accurately and without overfitting. We emphasize that

our goal is to obtain an accurate description of recombination event statistics, and not

4www.princeton.edu/~ccallan/TCRPaper/Models
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(yet) to explain those statistics mechanistically. In what follows, we present results of

our analysis of näıve, non-productive, CDR3 sequence repertoires of nine individuals

(see section 2.4.9 for the results of analysis of memory sequence repertoires).

2.4.1 Correlations between event variables

It is important to verify that correlations not present in the assumed structure of the

probability distribution (Eqn. 2.2) are in fact not present in the data. To perform

this self-consistency check, we use the inferred generative distribution to compute the

probability-weighted counts distribution of recombination event variables in the data,

and then use this distribution to calculate the mutual information of all pairs of event

variables. The matrix of mutual information values is shown in the upper-triangular

part of Fig. 2.5A, where the entries outlined in red are dependences accounted for

by individual factors in our assumed form of Precomb(E) (Eqn. 2.2), entries outlined

in green are indirect dependences that can be induced by these factors, and the

rest would vanish if the data were perfectly described by the assumed structure of

Precomb(E). There are a few detectable correlations that are not consistent with the

assumed structure: (insV D, delV ), (insDJ, delJ) and (V,D). They are, however, all

so weak (mutual information < 0.02 bits) that we do not model them explicitly

(indeed, they might arise from subtle biases in our inference procedure).

For comparison, in the lower-triangular part of Fig. 2.5A we show the mutual in-

formation values of all pairs of variables, but now calculated from a deterministic

assignment of events to sequences based on maximal alignments. The resulting dis-

tributions exhibit spurious correlations that are absent from the corrected, maximum

likelihood estimate (MLE) of the distributions. For instance, the number of insertions

at the two junctions are found to be independent in our analysis while the uncorrected

estimate shows a dependence (Fig. 2.5B,C).
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Figure 2.5: (A) Data-derived correlations between sequence features: each entry is
the mutual information I(X, Y ) of a feature pair over the näıve non-productive reper-
toire. The outlined elements are correlations expected from the form of Precomb(E):
red identifies a direct effect of a factor in Eqn. 2.2 (e.g. D ↔ J) and green indirect
effects (e.g. D ↔ J ↔ delJ). The top-left half of the matrix shows results from the
maximum likelihood estimate (MLE), while the bottom-right half corresponds to a
deterministic maximum-alignment based identification of recombination events. (B)
Probability distribution of the number of VD insertions conditioned on the number of
DJ insertions for MLE (top) and deterministic (bottom) analysis. Each curve corre-
sponds to a different value of insDJ, ranging from 0 (blue) to 10. The curves collapse
for MLE indicating independence.
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2.4.2 Gene usage distributions

Figure 2.6: Statistical aspects of gene usage. (A) Usage frequencies of V-genes, or-
dered by position on the chromosome, with the exception of pseudogenes (red legend).
(B) Usage frequencies of the two D-genes. (C) Same for the 13 J-genes. (D) D-gene
usage frequencies, conditioned on J-gene choice. As expected from the mechanistic
constraint, TRBD2 has essentially zero probability ( < 0.1%) of recombining with
any TRBJ1 gene. Error bars indicate variation across the nine individuals.

In Fig. 2.6, we show the inferred gene usage frequencies. The frequencies of V- and

J-genes vary significantly from gene to gene, a phenomenon for which no mechanistic

explanation has yet been given. In particular, linear location on the chromosome

does not explain the pattern of either V- or J-gene usage (the genes in Fig. 2.6A,C

are ordered by position). The usage frequencies are consistent between individuals,

though of all the inferred parameters in Precomb, these usage patterns show the most

relative variation between individuals.

The pattern of D-gene use conditioned on J-gene choice (Fig. 2.6D) reveals the

known mechanistic constraint prohibiting utilization of D-genes that lie 3 ′ of the cho-

sen J-gene [8]. The inferred distribution assigns a total probability of less than 0.1%

for joining events using TRBD2 and any TRBJ1 gene. We note that such a determina-
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tion is impossible without probabilistic analysis due to the uncertainty in identifying

genes in specific sequences. The dependence between V gene choice and D or J gene

choice is very weak to non-existent (with mutual information less than 0.01 bits).

Thus, we believe that previously reported correlations in the use of these genes [30]

reflect the effects of selection rather than VDJ recombination.

Finally, we note the presence of pseudo V-genes which occur in almost 10% of

the non-productive CDR3s. These pseudogenes cannot produce a functional receptor

but they can participate in the recombination process and produce a non-productive

rearranged CDR3 sequence which can be transmitted into the näıve or memory com-

partments just like any other non-productive rearrangement. The set of V gene

sequencing primers used by Robins et. al. [26, 31] either exactly or approximately

match 11 pseudogenes. Of these, TRBV23-1, TRBV5-3, TRBV12-2 and TRBV6-7

show significant usage.

2.4.3 Nucleotide insertions

In Fig. 2.7 we show the factors related to insertions in the inferred distribution

Precomb(E). The VD and DJ insertions are uncorrelated (Fig. 2.5) and their length

distributions are nearly identical, with exponential tails (Fig. 2.7A). The nucleotide

frequencies in the inserted segments are not uniform and are well explained by a di-

nucleotide Markov model where the probability of inserting A, C, G, or T depends

on the immediately 5’ nucleotide (see Fig. 2.7B). The VD inserted segment, on the

sense strand, and the DJ inserted segment, on the antisense strand, show a prefer-

ence for Cs. The frequencies of tri-nucleotides are almost perfectly accounted for by

the di-nucleotide preferences (Fig. 2.7C), giving evidence that the sequence statistics

are fully captured by our inferred dinucleotide statistics. Additionally, the VD inser-

tion di-nucleotide bias, taken on the sense strand in the 5’-3’ direction, is virtually

identical to the DJ insertion di-nucleotide bias, taken on the antisense strand in the
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5’-3’ direction. This suggests that the mechanism of junctional nucleotide insertions

is strand specific and occurs on opposite strands for the VD and DJ junctions. The

molecular mechanistic basis of these features is not evident.

2.4.4 Palindromic nucleotides co-occur only with zero nu-

cleotide deletions

Mechanistically, it is thought that short palindromic nucleotides at the edges of the

inserted segments result from the opening of the hairpin ends of the cleaved genes.

Thus we expect such true P-nucleotides to co-occur only with zero nucleotide deletions

since if nucleotides are actually deleted from the end of the gene, the palindromic

nucleotides would also be lost. However, we do expect accidental palindromes from

the chance insertion of appropriate nucleotides.

To show that the occurrence of palindromic nucleotides with non-zero nucleotide

deletions from the ends of the genes is consistent with chance insertions, we keep track

of the (model probability weighted) joint frequencies of lengths of observed palin-

dromes conditioned on the number of deletions and on gene choice. Keeping track

of this detail is necessary because of the strong dependence of deletion probabilities

on gene choice. After we obtain our converged model, we calculate the frequencies of

chance palindromic nucleotides of different lengths co-occurring with non-zero dele-

tions (taking into account all the structure of Precomb(E), including the nucleotide bias

in insertions). The plot in Fig. 2.8 shows that the observed frequencies of palindromic

nucleotides co-occurring with non-zero deletions are completely consistent with those

expected by chance insertions. Thus, P-nucleotides can be consistently counted as

‘negative’ deletions as they occur only in association with zero nucleotide deletions.
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2.4.5 Nucleotide deletions

Since there is a strong correlation between number of deletions and gene identity

(see the entries for I(delV, V ) and I(delJ, J) in Fig. 2.5), we allow for gene-dependent

deletion profiles in Precomb(E) (Eqn. 2.2). The results for a few genes are shown

in Fig. 2.9A (see Appendix Figs. 2.16-2.20 in section 2.6.7 for all the profiles). The

profiles have substantial variation from gene to gene, suggestive of a nuclease activity

that depends on sequence context, but they are highly consistent between individuals.

We have modeled this context dependence using a position weight matrix summing

independent contributions from the bases in a 6 nucleotide window (four 3 ′ and two

5 ′ ) around the cutting point to the log probability of deletion (see Fig. 2.9B and

Appendix section 2.6.7 for details). We find that only bases 3 ′ of the deletion site

have a strong effect on the probability, with T and A nucleotides having the greatest

contribution, consistent with previous observations [32]. This simple model, which

ignores both the P-nucleotides as well as the effects of distance from the end of

the gene, does reasonably well in explaining the variation in deletion probabilities
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(r2 = 0.7). We believe more sophisticated but parsimonious mechanistic models

could reproduce our inferred distributions.

2.4.6 Consistency of distributions across individuals

The distributions of insertions and deletions are highly consistent between individ-

uals (Figs. 2.7,2.9), including the dozens of very different gene-dependent deletion

profiles (Fig. 2.9A,C). This suggests that the statistics of the repertoire of unique

non-productive, sequences reflect a universal molecular mechanism of rearrangement.

In addition, the consistency of the distributions inferred from completely indepen-

dent data sets is convincing evidence against overfitting. We note, however, that for

certain specific inferred probabilities of insertions, deletions and gene choice, the un-

certainty from our very large but finite sample size accounts for less than 50% of the

observed inter-individual variance (indicated by the error bars in all figures), possibly

reflecting biological variation.

2.4.7 Potential diversity of repertoire

Our inferred distribution of recombination events (Eqn. 2.2) implies a probability

distribution Pgen(σ) on the space of all CDR3 sequences (Eqn. 2.3) whose entropy

Sseq = −
∑

σ Pgen(σ) logPgen(σ) (roughly speaking, the logarithm of the effective num-

ber of unique sequences that can be generated) is a measure of the potential sequence

diversity of VDJ recombination. Since multiple recombination events can lead to the

same sequence, we cannot calculate Sseq directly. We do, however, have an explicit

description of Precomb, the entropy of which we can calculate: Srecomb = 52 bits; in

addition, we can show that sequence entropy and recombination event entropy are

related by

Sseq = Srecomb − ⟨S(E|σ)⟩σ ≃ 47 bits , (2.7)
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where the correction term, ⟨S(E|σ)⟩σ ≃ 5 bits, is the entropy of recombination events

that give the same sequence, averaged over sequences. This means that CDR3 se-

quences can be generated in ∼ 32 different ways, on average, by VDJ recombination;

this is the fundamental reason why we cannot assign a unique generative event to

each individual CDR3 sequence and therefore must resort to probabilistic inference

methods. The total sequence diversity of 47 bits corresponds to a potential CDR3

repertoire size of ∼ 1014 sequences5. This is to be compared with the estimated

4 × 106 unique CDR3 sequences in an individual [26] , the ∼ 1011 T-cells in the

blood of an individual [33] and the ∼ 1013 potential peptide-MHC complexes [34].

While convergent recombination means that the sequence entropy cannot be neatly

partitioned into contributions from gene choice, deletions and insertions, the entropy

of recombination events Srecomb can be so partitioned (Fig. 2.10A). We note that the

bulk (60%) of the recombination entropy comes from the nucleotide insertions, and

little from gene choice (5 bits from V and 4 bits from D and J) consistent with pre-

vious estimates [35]. For comparison, uniform usage of the genes would result in an

entropy of 5.9 bits for V and 4.7 bits for D and J gene choices.

2.4.8 Overlap of repertoires between individuals

A striking feature of the data is that there are sequences that appear in the reper-

toires of more than one individual, and it is interesting to assess whether the shared

sequences (both their number and their specific identities) are consistent with chance

on the basis of our generative distribution Pgen(σ). We see evidence of inter-sample

contamination in some of our data leading to a large number of shared sequences

between specific individuals. Eliminating such questionable cases (see Appendix sec-

tion 2.6.6 for details), we are left with 21 sequences that occur in the non-productive

repertoires of two individuals and none that occur in more than two.

5Recall that this estimate is for the β-chain only. The α-chain will yet add more diversity to this
estimate.
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The number of shared sequences between the repertoire samples of any pair of

individuals with sample sizes N1 and N2 is expected to be Poisson distributed with

mean n̄ = N1N2⟨Pgen⟩σ where ⟨Pgen⟩σ =
∑

σ P
2
gen(σ) ≃ 3.4±0.1×10−10 is the average

value of the probability of producing a CDR3 sequence σ, estimated by taking the

mean of Pgen over the obserbed repertoire. In Fig. 2.10B, we compare the expected

number of pairs of individuals with a certain number of shared sequences (calculated

as a sum of Poisson distributions over the pairs) to the observed number of such pairs,

showing excellent agreement. The specific shared sequences have particularly high

generation probabilities according to our distribution, with a median value of ∼ 10−8

compared to the repertoire median of ∼ 10−14 (Fig. 2.10C). Since the generative

distribution is trained on individual repertoires, and is highly consistent between

individuals, its success in accounting for recurring sequences between individuals is a

non-trivial test of its validity. We find similar results for the shared sequences among

the memory repertoires (see Fig. 2.12).

2.4.9 Memory T-cell non-productive repertoire

Inference of Precomb(E) from the non-productive memory repertoires of the same

nine individuals leads to results identical with those reported above for the näıve

non-productive repertoires. The non-productive CDR3 sequences in both of these

compartments should not be subject to selection. The consistency of the inferred

generative distribution between these repertoires as well as between the nine individ-

uals is strong evidence that the non-productive CDR3 sequence statistics, memory or

näıve, reflect only the basic recombination process and not selection.

While the näıve non-productive compartments contain an average of 35,000 unique

sequences per individual, the memory non-productive compartments are smaller, con-

taining an average of 22,000 unique sequences per individual. In Fig. 2.11, we compare

the naive and memory insertions and deletions distributions. In Fig. 2.12 we show that
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Figure 2.10: (A) Entropy decomposition. Top bars: sequence entropy is smaller
than recombination entropy by 5 bits because of convergent recombination; Bottom
bars: recombination event entropy decomposed into contributions from gene choice,
insertions, and deletions. (B) Statistics of the 21 CDR3 sequences shared between
pairs of individuals: actual (red) vs. expected on the basis of the inferred Pgen(σ)
(blue). (C) Histogram of Pgen(σ) for all sequences (blue) and for the 21 shared
sequences (red); ⟨Pgen⟩ for the full repertoire is indicated by the vertical green line.
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Figure 2.11: Comparison of insertions (A) and deletions (B) distributions for the
naive and memory T-cell repertoires. We find that the inferred models from the two
compartments are statistically identical in all respects. Error bars indicate variation
across the nine individuals.

the occurence of shared sequences between the individual memory non-productive

repertoires is consistent with our generative model for the memory compartments as

well. The plots show that the models inferred from the näıve and memory T-cells

are identical in all respects, in confirmation of the expectation that non-productive

sequences are not subject to selection effects.

While it is tempting to apply our approach to the in-frame sequence repertoires,

it would be inconsistent to do so: these sequences have passed selection filters, either

thymic or adaptive (or both), and we have no analog of Eqn. 2.2 to parametrize the

probability that a sequence σ, once produced in a recombination event, will subse-

quently pass selection filters. This is an important subject for future investigation.

2.4.10 Convergent recombination and generation probability

Convergent recombination, i.e. multiple ways of producing the same TCR, has

been proposed as an explanation for the occurrence of ‘public’ TCRs [36–38]. How-

ever, the recombination entropy S(E|σ) is only weakly correlated with the generation

probability Pgen(σ) (correlation coefficient 0.13, see Fig. 2.13), and we find that the
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Figure 2.12: Shared sequences in memory T-cell non-productive CDR3 sequence
repertoires. A) Distribution of number of shared sequences between the 9 individu-
als. B) Distribution of Pgen(σ) for the entire repertoire (blue) and for the recurring
sequences (red). ⟨Pgen⟩ is indicated by the green vertical line.

shared non-productive sequences in our data (red dots) do not have notably higher

recombination entropies than other sequences.

2.5 Discussion

We have presented a method for inferring the statistics of VDJ recombination events

from the large T-cell receptor sequence repertoires that are being made available

by high-throughput sequencing. We emphasize the crucial importance of using a

probabilistic approach: the typical CDR3 sequence can be produced by about 32

different recombination events, and using a deterministic assignment of events to

each sequence results in systematic biases and spurious correlations. Our general

approach allows us to cope with not-yet-indexed alleles [28] and, most importantly,

with sequencing errors, an essential task given the rapid growth of high-throughput

but error-prone sequencing technologies.

Since we focus on non-productive sequences, our results describe the probability

distribution over CDR3 sequences produced by the recombination machinery before

any functional selection has occurred. Its remarkable reproducibility across individ-
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Figure 2.13: A 2D histogram of conditional entropy of recombination events given the
sequence and Pgen(σ). Convergent recombination (as measureed by the recombination
event entropy) is a contributing factor to Pgen(σ), with correlation coefficient 0.13.
The shared sequences in the naive non-productive repertoires are shown in red.

uals and repertoires (näıve and memory) provides compelling evidence for the con-

sistency and accuracy of our method. The obtained distribution is a central feature

of the adaptive immune system and serves as a baseline (or, in evolutionary terms,

a neutral model) for analyzing the subsequent processes of the immune system. By

calculating the entropy of the generative distribution, we can estimate the potential

diversity of the CDR3 sequences (∼ 1014 sequences) and the contributions of inser-

tions, deletions and gene choices to this entropy. We find that insertions contribute

most (60%) of the diversity.

We are able to evaluate the probability of generating any specific CDR3 sequence

(including as yet unobserved ones). This probability could be used to estimate the

strength of selection on a sequence or group of sequences, or the likelihood that

a sequence is shared between individuals or repertoires. Thus, it could help better
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characterize the significance of shared or ‘public’ TCR sequences [38]. We have verified

that the sequences that are shared between the non-productive repertoires of different

individuals in our data are consistent with the predictions of the inferred probability

distribution (Fig. 2.10B,C), a very stringent test of its accuracy.

The recombination event distributions also provide insight into the molecular

mechanism of recombination, and should serve as a starting point for detailed mech-

anistic models of recombination. We find that the recombination processes at the

two junctions are essentially independent of each other, and that insertion events are

independent of gene choice and deletions. The inferred distribution confirms that a

D-gene can only recombine with downstream J-genes. We derive a precise model for

the composition of inserted nucleotides, based solely on frequencies of di-nucleotides.

We also show that a relatively crude model of sequence-specific nuclease activity

can account for the deletion probabilities reasonably well. Our general distribution

has a very large number of parameters. Parsimonious, but sufficiently sophisticated,

mechanistic models are needed to reproduce the inferred distributions.

We have focused on characterizing the molecular generation of nucleotide se-

quences that code for T-cell receptors. While the underlying biochemistry conve-

niently served to parametrize our sequence distributions, finding an analogous func-

tionally relevant parametrization of amino-acid sequences to model the effects of se-

lection is much more challenging [39]. Statistical analysis of the productive receptor

repertoires, with our precise characterization of the unselected repertoire in hand,

will hopefully aid in this effort.
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2.6 Appendix

2.6.1 Sequences of V, D, and J-genes and their alleles

Accurate knowledge of the sequences of germ line V-, D-, and J-genes and their allelic

variants is essential to minimize errors and bias in our analysis. There are 2 D-genes,

13 J-genes, and 48 V-genes, not counting alleles. There are in addition 19 ‘pseudo’

V-genes on the same germline chromosome: they participate in the recombination

process and, though they cannot lead to a functioning receptor, they can appear

in the non-productive sequence data sets, provided that a sequencing primer (or an

approximate one) is present, which in our case is true for 11 pseudo V-genes.

We curated a list of known and discovered allelic variants of the V-genes by com-

bining those found in the public IMGT database [22] with variants that we discovered

with high confidence during our analysis. Not all the sequence reads listed in IMGT

are true variants since many of them are from rearranged DNA with variation at the

junctional end. Such ‘variants’ were removed from our list, unless the variation was

deeper in the sequence, far from the edited end. In addition, we have found three

instances of allelic variants in our data that are not listed in IMGT. The discovered

variants of genes TRBV7-7 and TRBV10-1 can actually be found by BLAST in the

NCBI database of human sequences; the variant of gene TRBV7-2 is not found by

BLAST and appears to be completely novel. Undiscovered variants have rather small

impact on overall recombination event statistics, but they can cause systematic errors

in the inference of gene-specific deletion profiles.

Complete lists of the genes and alleles used in our analysis are available online6.

For completeness, we also list the primers used by Robins et. al. [26,31] in acquiring

the data we analyze.

6www.princeton.edu/~ccallan/TCRPaper/GenData
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2.6.2 CDR3 sequence data files and formats

The CDR3 sequences used in our analysis come from näıve or memory CD4+ T-cells of

9 human individuals, and are further segregated into ‘in-frame’ and ‘non-productive’

sequences. The sequences are 60bp in length for 6 of the subjects, and 101bp in

length for the remaining three. The reads of different length differ only in how far

the sequencing window goes into the V gene: both types are anchored on the same

conserved phenylalanine in the J-gene and have the same read depth into the J-gene.

Processed sequence data was made available to us by H. Robins. As described

in [26, 31] each sequence is read multiple times and the multiple reads are used to

estimate the multiplicity of each specific TCR receptor in its respective compartment.

In addition, multiple reads are used to correct for sequencing errors by clustering

reads that differ at a small number of positions [31]. In our data files, the effective

sequence multiplicity is recorded along with the error-corrected sequence (although

we do not use multiplicity in our current analysis). The data files used in our analysis

are available online7. The file names in the repository clearly indicate the category

to which the included data belongs.

2.6.3 Initial parsing of sequence reads by alignment

The first step in our inference procedure is to align each CDR3 read with specific

alleles of V, D, and J genes by sequence matching. The goal is to generate a set

of plausible recombination events that could produce the read to serve as a starting

point for subsequent probabilistic refinement. This preliminary alignment procedure

produces, for each read, a finite number of V, D, and J alleles, the maximal length

alignments of these alleles to the read, the corresponding minimum nucleotide dele-

tions from the genomic sequences, with possible P-nucleotides identified, and with the

unmatched parts of the read identified as VD or DJ insertions. Mismatch information

7www.princeton.edu/~ccallan/TCRPaper/SeqData
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is also stored.

Certain thresholds are imposed on the alignments – gene alignment lengths must

be sufficiently long; gene deletions must not be too large; errors are allowed in the

alignments (no gaps), but the number of errors must be small. The alignment score

(using an appropriate mismatch penalty) is used to rank order alignments, and a

threshold on the score relative to the score of the best alignment is also imposed.

Specific values for these various parameters are chosen in the light of computational

experience to achieve fast and accurate convergence of the overall model-fitting algo-

rithm.

The procedure for finding J matches is simplest. The CDR3 reads all begin at

the 3 ′ end (sense strand) from a primer in a known position in each J gene. Thus for

each candidate J gene, we simply look for exect matches of the end of the sequence

read with the portion of the gene just 5 ′ of the primer. Proceeding in this way, and

imposing the various thresholds mentioned, we find an average of 2-3 J alignments

per read.

For the V-gene, the position of alignment to the read is not fixed. So for a given

V-gene, we align the 5 ′ end of the read to the m-th base from the 3 ′ end of the V-

gene, and note the best-scoring match at this positioning (this time allowing some

mismatches, and penalizing them in the score). We step through the values of m and

record the best-scoring match over all positionings. Repeating this process for all the

V-genes, and imposing the earlier mentioned thresholds, we are left with a limited

set of possible V-gene identifications, together with their specific alignments to the

read. Proceeding in this way, we find an average of ∼ 15 V alignments per read.

After identifying the plausible alignments to V- and J- genes, we turn to the

problem of identifying D-gene matches. This is a more difficult problem because

the D-genes are short, and deletions (occurring on both ends) often leave residual

sequences which are hard to identify as a D-gene fragment. We therefore put very
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loose constraints on the D-gene alignments, relying on the probabilistic refinement to

narrow them down. Specifically, we consider the read sequence segment lying between

the end of the highest-scoring V-gene and the end of the highest-scoring J-gene, and

include 10 nucleotides of flanking sequence on either side, to allow for ambiguous

origin of these bases. We identify as a possible D-gene match every maximal non-

overlapping alignment to this segment of the three D-gene alleles. These D-gene

matches are scored by their length and the top 200 are selected as possible D-gene

alignments.

Alignment files are available online8: the files are in Matlab format and record

the outcome of the above alignment strategy for a subset of our data. Inspection of

the alignment data for individual sequences should provide instructive illustrations of

the above-described procedure. The various thresholds and parameters used in the

procedure are found in the files as well. The full set of alignment files used in our

analysis can be generated using routines provided in our online software repository.

We note that one could generate a unique assignment of sequence features to a

given read by selecting from the alignment ensembles just described the V, D, and J

assignments with the highest score (i.e. having the longest effective alignment with

the read). We will call the occurrence distribution of gene assignments, insertions,

and deletions produced in this way as the ‘deterministic ’ estimate of the sequence

feature probability distribution. It corresponds to standard practice in the literature

for inferring feature statistics from sequence data, and will be used as a benchmark

for comparison and contrast with our more accurate probabilistically inferred distri-

bution.

8www.princeton.edu/~ccallan/TCRPaper/Alignments
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2.6.4 Software

The algorithms we have developed to execute these two steps are described in greater

detail in the following two subsections. Software to implement these procedures was

written in Matlab using the Parallel Computing toolbox and run on a Linux cluster.

Compiling key routines into C++ using Matlab Coder greatly improved processing

speed, allowing model inference on an individual data set to be completed in about 20

hours running on 8 processors. Our Matlab code, along with summary instructions

on how to run it, is available online9.

2.6.5 Sequencing error rate

The sequence mismatch rate in our model reflects both uncorrected sequencing error

as well as unknown allelic variation. Our model assumes that this mismatch rate

R is independent of position along the sequence read. As is well-known, accuracy

of the sequencing procedure becomes worse at the end of the sequence read (the

5 ′ , or V-gene, end of our CDR3 sequence) so, in assaying error rates, we ignore

the last 15 nucleotides (at the 5 ′ end) for the 101 bp reads, where we can afford

to do this. Our alignment procedure also disallows mismatches in the J- and D-

gene alignment because of the shortness of these segments and the expected low

error rate at this end (more accurately, the beginning) of the sequence read. In

assessing position dependence of sequence error rates, therefore, we only need concern

ourselves with mismatches to V gene assignments. Summing all such mismatches for

the three individuals for which we have 101 bp reads, and plotting them against read

position, we obtain the results plotted in Fig. 2.14. We find that R converges in the

mean to a value of order 3 × 10−4 per base pair, two orders of magnitude smaller

than the raw instrumental sequencing error rate. There are, however, a few sharp

peaks at specific positions along the read; since they appear at the same position

9www.princeton.edu/~ccallan/TCRPaper/Software
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for different individuals, they presumably reflect some anomaly in the functioning of

the sequencing machine. This shortcoming of the error rate model does not greatly

influence the results of the inference because the overall error rate is rather low.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

−3

Position along read

M
is

m
at

ch
 r

at
e

 

 
indiv 2
indiv 3
indiv 7

Figure 2.14: Position-dependent error profile for the three individuals with read length
101 base pairs. The sequencing read proceeds from the right (101 to 1) where the J
gene sequencing primer binds. The spikes in the error rate at specific positions (67, 43
and 27) are true sequencing error spikes and not the result of unknown allelic variants.
Positions 1-15 show the characteristic increase in error rate with read length. The
overall decreased error rate in positions 10-20 reflect our requirement of a minimum
alignment length of 20 nucleotides to a V gene with an upper bound on the allowed
errors in the alignment. Since we do not allow any errors in the J and D genes, the
error rate is zero in this region.

2.6.6 Spurious shared sequences between repertoires

Of the 9 individuals, we find three specific pairs of individuals – (2,3), (2,7) and (5,6)

– who have an unusually large number of sequences in common, in both the naive and

memory compartments. While all other pairs of individuals have between 0 and 4

sequences in common, these three pairs have 15 to 90 shared sequences. Additionally,

many of these shared sequences occur in both the naive and memory compartments

of the individuals. We suspect that these anomalies are the result of inter-sample
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contamination.

Hence, for our analysis of the distribution of shared sequences between individuals,

we discard from consideration the four pairs of individuals (2,3), (2,7), (3,7) and

(5,6). This leaves 32 pairs of individuals for our analysis. We also discard three

specific additional sequences that occur in the naive and memory compartments of

one individual and also in another individual.

2.6.7 Sequence dependence of nucleotide deletion probabili-

ties

Since the sequence at the 3 ′ end of the V gene varies between genes, we fit a sim-

ple model to the gene dependent deletions profiles to explain the variation in these

distributions. The precise mechanism of the generation of P-nucleotides and their

relationship to deletions is unclear. Hence, we take only the probabilities of deletions

greater than or equal to two nucleotides and consider the nucleotide sequence context

(four bases 3 ′ and two bases 5 ′ of the deletion position) as a predictor of the deletion

probability. We use a function of the form

P (n deletions|σ&n ≥ 2) =
exp

(∑6
k=1 ϵ(k, σ(n− 4 + k)

)
Z(σ)

(2.8)

Z(σ) =
12∑
n=2

exp

(
6∑

k=1

ϵ(k, σ(n− 4 + k)

)
(2.9)

where ϵ is a 6 × 4 matrix containing the contribution of each possible nucleotide at

each of the positions, analogous to a (log) Position Weight Matrix (PWM). We do a

least squares fit to determine the elements of ϵ. In Fig. 2.15, we show ϵ fit to the V

deletions. There is a strong preference for T and A, especially in the 2 nucleotides just

5 ′ of the position of deletion. Since there are only 13 J-genes, there is less sequence

variation among them that we can utilize.
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Figure 2.15: Position weight matrix for sequence dependence of nucleotide deletion
position. The figure shows ϵ/ log(10) (see Appendix section 2.6.7) fit to the V gene
specific deletions profiles, using four nucleotides 3 ′ and two nucleotides 5 ′ of the dele-
tion position (black vertical line). The 3 ′ nucleotides are the most informative about
deletion probability and show a preference for T and A. The sequence logo corre-
sponding to this position weight matrix is shown in the Fig. 2.9B.
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Figure 2.16: Deletion profiles for all the V-genes (1 of 3). The title for each panel lists
the gene name and total number of counts, across all the individuals studied, of the
particular gene in question. Individuals with fewer than 100 counts for a specific gene
are plotted in gray dashed lines. The blue lines show the predictions of the position
weight matrix based model fit to these curves.
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Figure 2.17: Deletion profiles for all the V-genes (2 of 3). The title for each panel lists
the gene name and total number of counts, across all the individuals studied, of the
particular gene in question. Individuals with fewer than 100 counts for a specific gene
are plotted in gray dashed lines. The blue lines show the predictions of the position
weight matrix based model fit to these curves.
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Figure 2.18: Deletion profiles for all the V-genes (3 of 3). The title for each panel lists
the gene name and total number of counts, across all the individuals studied, of the
particular gene in question. Individuals with fewer than 100 counts for a specific gene
are plotted in gray dashed lines. The blue lines show the predictions of the position
weight matrix based model fit to these curves.
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Figure 2.19: Deletion profiles for all the J-genes. The title for each panel lists the
gene name and total number of counts, across all the individuals studied, of the
particular gene in question. Individuals with fewer than 100 counts for a specific gene
are plotted in gray dashed lines. The blue lines show the predictions of the position
weight matrix based model fit to the V deletions curves, but evaluated on the J gene
sequences.
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Figure 2.20: Marginal deletion probability distributions for the two D-genes. Dele-
tions at the 5 ′ end (3 ′ end) of the D gene are shown in green (blue). The x-axis
displays the gene sequence from the 5 ′ end to the 3 ′ end.
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Chapter 3

Regulatory Sequences

3.1 Introduction

This chapter is an edited version of two publications [41,42]. The work described was

done in collaboration with Justin Kinney, Curtis Callan and the co-authors listed

in [42].

Across organisms and within organisms, large segments of DNA are homologous

to each other. The biochemical variation in the proteins coded for by these genes con-

tributes to the observed differences between species but cannot possibly fully account

for the observed phenotypic diversity. Rather, the primary differences between species

are in the relative expression levels of the various genes and the precise dynamics of

these levels over time. This is demonstrated by the highly conserved proteins involved

in embryonic development where the differences in morphology result from mutations

that alter the schedule, location and quantity of their expression [40].

The regulation of gene expression must also necessarily be coded in the genome to

be inherited. Multiple regulatory mechanisms have been discovered and act at various

levels of the molecular process of gene expression. At the translational level, ribosome

recruitment and elongation rates are influenced by RNA secondary structure which
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is in turn specified by the sequence of the RNA itself. Additionally, noncoding RNAs

can target transcripts from other genes (or other noncoding RNA molecules), greatly

decreasing their expression levels.

At the transcriptional level, the recruitment of RNA polymerase to the transcrip-

tion start site is highly influenced by the specific DNA sequences near the start site.

Various proteins, called transcription factors (TFs), bind to DNA and interact with

each other as well as with RNA polymerase, thus determining the rate of initiation of

transcription. In eukaryotes, epigenetic information is another crucial determinant of

transcription rates. Positioning of nucleosomes affects the accesibility of DNA to the

transcriptional machinery. Regulatory sequences, called enhancers, can also be quite

distant from their target genes in eukaryotes.

In this chapter, we focus on characterizing the molecular mechanisms of specific

regulatory DNA sequences. Using data on the transcriptional activity of large li-

braries of mutant regulatory sequences, we infer models of their sequence-function

relationships. In our work (section 3.2) on the lac promoter [41], we demonstrate a

general experimental design and analysis strategy that can be applied to infer the

functional binding sites on a regulatory sequence and quantitative models of their

interactions. The experiments for this work were performed by Justin Kinney.

We then use a similar strategy to investigate two mammalian enhancers (section

3.3), which show greater complexity than the bacterial promoter and we use our

model to engineer sequences of these enhancers to optimize their function [42]. These

experiments were performed by collaborators at the Broad Institute.
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3.2 Prokaryotic regulatory sequences

In prokaryotes, transcriptional regulation is implemented primarily by the DNA se-

quences that are near the 5 ′ end of the target gene. Immediately upstream of the

gene is a ‘promoter’ that contains a binding site for RNA polymerase and potentially

other DNA binding proteins. These proteins are generally called transcription fac-

tors (TFs) and influence the transcription rate through their interactions with RNA

polymerase and with each other [43]. A TF that has a favorable interaction with

RNA polymerase increases the local concentration of the polymerase by binding to

DNA near the promoter. TFs can also bind to DNA and sterically exclude RNA

polymerase or other recruiters of the polymerase, thus repressing transcription.

3.2.1 The lac promoter

A classic example of transcriptional regulation in prokaryotes is that of the lac operon

in E. coli, involved in lactose metabolism [44]. Figure 3.1 shows a cartoon of the lac

operon. The operon contains three structural genes responsible for lactose trans-

port and digestion. Expression of these genes is controlled by upstream regulatory

sequences. The promoter region contains binding sites for σ70-dependent RNA Poly-

merase (RNAP) and the transcription factor cAMP Receptor Protein (CRP). CRP

acts as a recruiter of RNAP through its interaction with the α-subunit of RNAP,

thus increasing the transcriptional activity. The active form of CRP has one or two

molecules of cyclic AMP (cAMP) bound to it, which then enables the binding of CRP

to DNA.

3.2.2 Thermodynamic models of promoter action

A widely used model of promoter mechanism is the so-called thermodynamic model

[45–47] . The basic assumption of this model is that the rates of binding and unbinding
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Figure 3.1: The lac operon in E. coli. The transcription of the genes lacA, lacY and
lacZ is regulated by the promoter region which contains binding sites for CRP and
RNAP. CRP interacts with the α-subunit of RNAP.

of the DNA binding proteins and RNA polymerase (typically > 1 sec−1) are much

higher than the rate of initiation of transcription by the DNA-bound transcriptional

machinery (typically ∼ 1 min−1) [48]. This separation of time scales implies that the

rate of transcript initiation must be proportional to the mean occupancy of RNA

polymerase at the promoter.

The occupancy of DNA bound proteins (including the polymerase) are determined

by their sequence dependent DNA-binding energies as well as the interactions between

the proteins. Using this framework, for the lac promoter in Figure 3.1, we can model

the transcription rate τ using the thermodynamic occupancy of RNAP at its binding

site (see Eqn. 3.13).

Such thermodynamic models have been used to explain the dependence of tran-

scriptional activity on the concentrations of transcription factors. In Kuhlman et

al., [49], the up-regulation of transcription by the protein CRP was quantitatively

explained by the model. To do this, Kuhlman et al. measured transcriptional activ-

ity resulting from different in vivo concentrations of active CRP and showed that the

resulting functional form of this activity was consistent with such a model. In gen-

eral, we do not have control over the in vivo concentrations of various transcription

factors and often do not even know the identities of the TFs involved at a specific lo-
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cus. Our work demonstrates a strategy, that we call ‘Sort-Seq’ to infer the biophysical

mechanism of a specific regulatory sequence from measurements of the transcriptional

activity of large libraries of mutant sequences.

3.2.3 Sort-Seq Experimental design

We start with the wild type promoter sequence and synthesize mutants that differ at

each nucleotide position from the wild type nucleotide at a set mutation rate. Figure

3.2 illustrates the basic experimental protocol. Each mutant sequence is cloned into

a reporter construct where the expression of a fluorescent reporter gene is driven by

the regulatory sequence. These constructs consist of very low copy number plasmids

that contain the lac promoter and a green fluorescent protein gene. This large library

of plasmids is introduced into cells and expression of the reporter is induced.

The cells then display different levels of fluorescence due to differing transcriptional

activities. They are then sorted by a fluorescence-activated cell sorting machine into

‘batches’ based on the intensity of fluorescence. A sample of cells from each batch

are then taken and the mutant sequences in them are sequenced using ultra-high-

throughput DNA sequencing. The final data set thus consists of a list of mutant

sequences along with their batch numbers reflecting the level of transcriptional activ-

ity.

3.2.4 Data

Six Sort-Seq experiments were done. Table 3.1 lists the data sets that were gener-

ated. Figure 3.3 shows the mutation rates for three of the libraries. The data sets

named full-wt, full-500, full-150 and full-0 have an average mutation rate of 12% per

nucleotide over the whole 75 base pair sequence. Data sets crp-wt and rnap-wt have

mutations only within the binding regions of CRP and RNAP respectively. Figure

3.4 shows the fluorescence distributions for the libraries before sorting along with the
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Figure 3.2: Sort-Seq Experimental design. A) The reporter construct with the mutant
regulatory sequence inserted upstream of a fluorescent reporter gene. B) The reporter
constructs are introduced into cells and their expression is induced. The fluorescent
cells are then sorted into batches based on the intensity of fluorescence. Samples
of cells from each batch are taken and the sequence in the reporter construct is
determined by high-throughput sequencing. The final data set consists of a library
of mutant promoter sequences with associated batch numbers. Figure from [41].
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boundaries of the batches.
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Figure 3.3: Mutation profiles of three Sort-Seq libraries. The average substitution
rates are 12% for full-wt, 24% for crp-wt and 15% for rnap-wt. Only the CRP binding
region [-74:-49] and the RNAP binding region [-39:-4] were subject to mutation in crp-
wt and rnap-wt libraries respectively.

The wild-type strain (MG1655) of E. coli was used for the data sets full-wt, crp-

wt and rnap-wt while a mutant strain (TK310) [49] that cannot produce or degrade

cAMP was used for full-500, full-150 and full-0. The internal concentration of cAMP

in this strain is determined by the cAMP concentration in the growth medium. This

concentration was varied among the three data sets, allowing us to probe its effect on

promoter activity.
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Figure 3.4: Fluorescence distributions before sorting. The ‘pos’ libraries (black lines)
and the ‘neg’ libraries (grey lines) are controls. The promoter sequence is the wild-
type sequence without mutations for ‘pos’ while the ‘neg’ libraries have the promoter
sequence completely deleted. The boundaries of the batches are shown. For full-wt,
crp-wt and rnap-wt experiments, the last batch (B10) was sampled from the entire
distribution. (Figure from [41])
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Data Set Mut. Region Mut. Rate Strain [cAMP] Batches Sequences
full-wt [-75:-1] 12% MG1655 500 µM 10 51,835
crp-wt [-74:-49] 24% MG1655 500 µM 10 46,986
rnap-wt [-39:-4] 15% MG1655 500 µM 10 45,461
full-500 [-75:-1] 12% TK310 500 µM 5 23,431
full-150 [-75:-1] 12% TK310 150 µM 5 24,334
full-0 [-75:-1] 12% TK310 0 µM 5 28,544

Table 3.1: Sort-Seq data sets. The full-wt, crp-wt and rnap-wt libraries used the wild-
type strain of E. coli while the other three used a mutant strain that cannot regulate
cAMP concentration. The full libraries have the entire promoter region subject to
substitution while crp-wt and rnap-wt have only the CRP binding region and RNAP
binding region mutated. The concentration of cAMP in the growth medium of the
full-500, full-150 and full-0 libraries was varied. The last column lists the number of
sequences in the final data set after quality filters.

3.2.5 Statistical inference

Predictive information

Given a data set {µi, σi}Ni=1 of measured activity µi for each sequence σi, we build a

model, with parameters θ, for an underlying biological quantity x that is informative

about the measurements. To guide the model construction and fitting process, we

define the mutual information [50], [51] between the measurements µ and the model

predictions x as the ‘predictive information’, I(x;µ), of the model. Explicitly,

I(x;µ) =
∑
x,µ

f(x, µ) log
f(x, µ)

f(x)f(µ)
(3.1)

where f(x, µ) is the joint probability distribution of x and µ. This information is a

measure of correlation that is insensitive to the actual functional relationship between

the variables involved. Models that account better for the data will have a higher

predictive information. Additionally, we can also set an absolute upper bound for the

value of the predictive information, as explained below.

We can view the processes that result in a transcription rate for each sequence as

steps in a signal compression chain. When a transcription factor binds to DNA, it
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compresses all of the information in the sequence of nucleotides into a single quantity

- the physical binding energy. Further, the binding energies of the transcription

factors and the RNA Polymerase involved are then combined to produce a single

thermodynamic transcription rate. Each of these steps passes on the information

contained in the DNA sequence about the final measurement.

If the biological quantity being probed - in our case the transcription rate - is

x∗, a model of the noise in the experiment is provided by the conditional probability

distribution E(µ|x∗) of making the measurement µ while the underlying quantity has

value x∗. For each sequence σ, we have the following Markov chain.

x
x(σ,θ)←−−−
model

σ
x∗(σ)−−−−−−→

actual value
x∗ E(µ|x∗)−−−−→

noise
µ (3.2)

Since mutual information obeys the data processing inequality [51], it follows that

I(x;µ) ≤ I(σ;µ). (3.3)

Estimating I(σ;µ) provides an upper bound for the predictive information. We there-

fore try to find models that maximize predictive information.

Sampling distribution

To infer the model parameters with uncertainties, one might sample parameter val-

ues from a likelihood distribution. Assuming a specific model of the noise in the

experiment, E(µ|x), we can write the likelihood of model θ as

p(θ|{µi}) ∼ p({µi}|θ) =
∏
µ,x

E(µ|x)Nf(x,µ) (3.4)

= eN [I(x;µ)−H(µ)−D(f ||E)] (3.5)
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where Nf(x, µ) is the number of sequences with measured activity µ and predicted

activity x, H(µ) is the entropy of µ and D(f ||E) is the Kullback-Leibler divergence

between the experimental distribution f(µ|x) and the assumed error model E(µ|x)

D(f ||E) =
∑
µ,x

f(x, µ) log
f(µ|x)
E(µ|x)

. (3.6)

The first two terms in the exponent of Equation (3.5) do not depend on the error

model E(µ|x) and the second does not depend on the physical model θ. Since we

wish to avoid modeling the noise in the experiment, the approach we take here is to

drop the third term and simply sample according to the distribution

p(θ|{µi}) ∼ eNI(x;µ). (3.7)

Another approach one might take (see [52]) is to average the likelihood in Equation

(3.5) over all possible error models E(µ|x) to obtain an Error-Model-Averaged (EMA)

likelihood. It can be shown that for large N and for a large class of prior distributions

on the space of error models, EMA likelihood and the mutual information based

distribution in Equation (3.7) become identical [52].

In the case of fitting a single model to multiple data sets, the natural generalization

of the distribution in Equation (3.7) is to use the product distribution

p(θ|{µi}) ∼ eNαIα(x;µ). (3.8)

where α indexes the data sets.

MCMC algorithm

We use a Markov Chain Monte Carlo (MCMC) algorithm to sample model parameters

from the desired distribution. The basic algorithm is as follows:
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• Pick initial model parameters θ and evaluate the predictive information I(xθ;µ).

• Iterate the following steps:

Perturb parameters θ → θ′

Evaluate I(xθ′ ;µ)

Replace θ by θ′ with probability min
(
1, eN [I(xθ′ ;µ)−I(xθ;µ)]

)
Record θ

• When the sampling is stationary with respect to time, the resulting ensemble

is from the distribution p(θ) ∼ eNI(xθ;µ)

To make the MCMC sampling more efficient, we also incorporated a parallel tem-

pering (or replica exchange) algorithm [53]. In this method, multiple random walks

in model space are performed simultaneously with each particle having a certain in-

verse temperature βi, sampling from the distribution eβiNI(xθ;µ). Periodically, pairs of

particles, say (i, j), are allowed to exchange positions in model space (or equivalently,

exchange temperatures) with a probability

P (i↔ j) = min
(
1, e(βi−βj)N [Ii(x;µ)−Ij(x;µ)]

)
. (3.9)

This exchange process favors the presence of low temperature particles at better

models. Only samples from the lowest temperature particles, with β = 1, are allowed

in our final ensembles. The other higher temperature particles with β < 1 serve to

explore the parameter space with greater latitude and help the β = 1 particles escape

from local maxima through the exchanges. The inverse temperatures {βi} were chosen

heuristically to increase the flow of particles between the extreme temperatures.
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Calculating I(x;µ)

In computing the predictive information I(x;µ), we first bin the continuous vari-

able x into nx = 100 bins, to get the binned variable x̄. This binning introduces

ruggedness in the information landscape - numerous local maxima are present and

make the MCMC sampling more difficult. To make the sampling easier, we convolve

the distribution f(x̄, µ) with a gaussian of width σx = 4 bins (4% of nx) to get the

smoothed distribution f̂(x̄, µ). This new joint distribution is then used to compute

the predictive information as

I(x;µ) =
∑
µ

∫
dx f(x, µ) log

f(x, µ)

f(x)f(µ)
(3.10)

=
∑
µ

f̂(µ)
∑
x̄

f̂(x̄|µ) log f̂(x̄|µ)∑
µ′ f̂(µ′)f̂(x̄|µ′)

(3.11)

The results obtained for the parameters did not vary significantly with the choice of

σx or nx.

3.2.6 Estimating I(σ;µ)

To estimate the intrinsic information in the data I(σ;µ), we need to estimate the

probability distribution p(µ|σ). We can then calculate

I(σ;µ) =

⟨∑
µ

p(µ|σ) log p(µ|σ
p(µ)

⟩
σ

. (3.12)

If our data set contains enough independent measurements of µ for the same σ, we can

get the conditional distribution p(µ|σ) from the data set directly. In our case, there

are very few repeated sequences. Therefore auxiliary measurements were needed.

A small sample of sequences, about 10, from each batch was taken and the flu-

orescence distributions of a clonal population of each sequence was obtained. From
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these distributions, the conditional distributions can be estimated after accounting

for some selection biases. For instance, in the final data set there are roughly equal

number of sequences in each batch even though before sorting, some batches have

much larger fractions of the library. Thus the probability that a given sequence fluo-

rescing within the boundaries of batch µ gets picked to be in the final data set varies

from batch to batch. Additionally, the number of sequences in each batch of the final

data set are only roughly equal. Both of these factors must be corrected for in going

from the fluorescence distributions of the clonal populations of our small sample of

sequences to an estimate of p(µ|σ).

3.2.7 Results

Information footprints

To reveal which specific sites in the promoter sequence are functionally important we

can calculate an information footprint from the data. This is the mutual information

between the nucleotide at a specific position and the measurement µ, i.e. I(bi;µ).

We find this for each position i to get a functional footprint. Figure 3.5 shows the

information footprints for all six data sets with error bars.

The information values range over two orders of magnitude. Looking at the foot-

prints of the full-500, full-150 and full-0 data sets, the effect of decreasing the cAMP

concentration is immediately apparent. The footprint in the CRP binding region gets

weaker and, for full-0, essentially goes to zero within error bars, with the exception

of a few base pairs (-64, -57 and -52). It is also clear from the full-wt footprint that

most positions in the sequence are informative about the activity of the promoter.

Only 10 positions are consistent with no effect on expression. For less well-studied

regulatory sequences, such footprints can be used to determine the exact locations of

functional importance where transcription factors might bind.
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Figure 3.5: Information footprints for the six data sets. Error bars are shown in blue.
The lower plot of each footprint is a 20X magnification of the upper plot. D, E and F
reveal the effect of lowering the cAMP concentration. The CRP binding site becomes
less functionally important and the footprint in this region goes to zero at all but
three positions for full-0.
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Thermodynamic model structure

As described in section 3.2.2, the transcription rate τ is assumed to be proportional

to the thermodynamic occupancy of RNAP at its binding site given by

τ = τmax
Cre

−ϵr/kT + CrCce
−(ϵr+ϵc+ϵi)/kT

1 + Cce−ϵc/kT + Cre−ϵr/kT + CrCce−(ϵr+ϵc+ϵi)/kT
. (3.13)

Here ϵr and ϵc are the DNA binding energies of RNAP and CRP respectively, while

ϵi is the (sequence independent) interaction energy between the two. Cc and Cr are

the concentrations of CRP and RNAP respectively. The sequence dependent DNA

binding energy of proteins can be modeled using ‘energy matrices’. Each base pair

contributes independently to the total binding energy, an amount that depends on

the nucleotide present. This simple model ignores non-linear contributions like the

DNA bending energy, but is quite successful for many transcription factors and widely

used [54,55].

The concentration of RNAP cannot be determined since τ is a sequence-independently

monotonic function of Cr and the predictive information is invariant under changes of

such parameters. However Cc, the binding energy matrices and the interaction energy

can be pinned down. Note also that the DNA binding energies can only be deter-

mined relative to the chemical potential, i.e. upto an overall sequence independent

shift. This is because we can only probe the actual occupancy of the binding sites,

not the concentration and the energy independently. If we set the binding energy of

the wild-type sequence to zero, we can express the CRP concentration relative to the

wild-type dissociation constant Kwt
d .

Thus the full thermodynamic model has two energy matrices, a CRP-RNAP in-

teraction energy and the CRP concentration as parameters. To fit all the parameters

in the thermodynamic model, we use the transcription rate τ as the model prediction

x. However, it is also possible to fit just an energy matrix to either CRP or RNAP
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by using the binding energy ϵc or ϵr as the model prediction x.

Final model parameters

For our final model, we combined the six data sets and used the model for the tran-

scription rate τ with a single CRP-RNAP interaction energy ϵi but a different CRP

concentration Cc for each data set. Single energy matrices were used across the data

sets for CRP and RNAP. Figure 3.6 shows the results of this inference.

Heat maps of the two binding energy matrices in units of kcal/mol are shown along

with the distributions of other parameters. The CRP-RNAP interaction energy was

found to be ϵi = −2.8 ± 0.1 kcal/mol. This differs from the value of −3.37 ± 0.03

kcal/mol measured by Kuhlman, et al. in [49] by about 20%.

The ratios of the concentrations of CRP in the full-500, full-150 and full-0 data

sets agree with the ratios of cAMP in the growth medium. This makes sense since

CRP is activated by a single cAMP molecule, making the concentration of active CRP

proportional to that of cAMP, and the internal cAMP concentration is proportional

to the exogenous concentration [49]. The ratio of the inferred Cc for full-150 and full-

500 was 10−5.6±0.2 while the ratio of cAMP concentrations was 150µM
500µM

= 10−0.52. The

full-0 experiment had a trace amount of cAMP (∼ 50nM) and this also agrees with

the inferred ratio of Cc of full-0 to full-500 of 10−3.7±0.6, compared to the expected

10−3.

Binding energy matrices

For each individual dataset, energy matrices were also obtained by maximizing I(ϵc;µ)

for CRP and I(ϵr;µ) for RNAP where ϵc and ϵr are their respective DNA binding

energies, with the exception of the full-0 dataset where the CRP concentration was

very low. Since I(ϵc;µ) and I(ϵr;µ) are invariant under scaling of the binding energies

by arbitrary factors, the matrices inferred this way can not be determined in physical
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Figure 3.6: The final model inferred on the joint data set by maximizing I(τ ;µ). A)
Energy matrices in units of kcal/mol for CRP (on the left) and RNAP (on the right).
B) Distribution of the CRP-RNAP interaction energy ϵi. C) Distributions of the six
CRP concentrations Cc relative to Kwt

d , the dissociation constant of the wild-type
sequence. D) Distributions of sample energy matrix elements. E) Scatter plot of the
standard deviation of energy matrix elements versus their mean values. Higher valued
(unfavorable) elements have higher uncertainties as expected, since they matter less
in determining specificity.
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units. The overall scale is unknown. Figure 3.7B shows all of these results, normalized

by the maximum element of each matrix. All the matrices from different data sets

are seen to be extremely similar and are mostly consistent to within error bars.

Model completeness

Data set full-wt
I(σ;µ) 1.21± 0.07 bits
I(ϵc, ϵr;µ) 0.732± 0.006 bits
I(τ ;µ) 0.732± 0.007 bits
I(ϵc + ϵr;µ)

† 0.647± 0.005 bits
Data set crp-wt

I(σ;µ) 0.88± 0.09 bits
I(ϵc;µ) 0.727± 0.005 bits

Data set rnap-wt
I(σ;µ) 1.09± 0.08 bits
I(ϵr;µ) 0.795± 0.005 bits

Table 3.2: Intrinsic information I(σ;µ) and maximum predictive information I(x;µ)
for data sets full-wt, crp-wt and rnap-wt.
†This is the maximum value obtained by scaling ϵr with respect to ϵc.

Table 3.2 shows the maximum values of the predictive information obtained along

with the intrinsic information for three data sets. Our model accounts for about

60% of the intrinsic information in the full-wt data set. However, the information

contained in the pair of binding energies (ϵc, ϵr) is almost completely captured by the

transcription rate. The information is substantially lowered if you replace the tran-

scription rate by a linear sum of the energies. Thus this is a non-trivial confirmation

of the validity of the thermodynamic model.

The remaining intrinsic information that is not accounted for could be due to

several reasons. RNAP is known to have an alternative binding site [56] within

the same promoter region. The α-subunit of RNAP also interacts with the DNA

directly [57], increasing transcription. There could also be non-linearities in the DNA

binding energies of CRP and RNAP from DNA bending, etc.
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Figure 3.7: A) Energy matrices in units of kcal/mol for CRP (on the left) and RNAP
(on the right), inferred by maximizing total I(τ ;µ) on the joint data set (first row)
and just the full-wt dataset (second row). B) Energy matrices inferred by maximizing
I(ϵc;µ) for CRP and I(ϵr;µ) for RNAP on each individual data set. These matrices
are not in physical units and are determined only up to an unknown scale factor. Here
they are all normalized so the highest element of each matrix is one. In both A and
B, the lowest element of every column is constrained to be zero, since these elements
contribute only to an overall shift in the energies. The rnap-wt energy matrix for
RNAP is shorter because the mutagenized region for this dataset is [-39:-4].
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3.2.8 Summary

The experimental method used in our work can be applied in a stereotyped manner

to a wide variety of transcriptional regulatory sequences in a number of different

organisms. No prior knowledge of how a sequence of interest functions is needed.

All that is required is that the regulatory sequence of interest function on a reporter

construct, and a large library of reporter constructs be introduced into cells so that

each cell receives a single construct. The analysis techniques we describe here can

then be used to identify all functional binding sites within the probed sequence region,

characterize the sequence-dependent binding energy of the proteins that bind those

sites, and then use this information to build biophysical models for how these proteins

physically regulate transcription.

Using mutual information in model fitting provides great latitude in the design

of such experiments: any experimental method that partitions mutant sequences

according to function no matter how noisy the partitioning can be used in place of

flow cytometry. For instance, sequencing the bands from a single gel shift experiment

performed on a library of mutant binding sites should allow one to characterize the

sequence-specificity of a DNA-binding protein with very high resolution. If multiple

binding sites are included in each shifted oligo, such an experiment could also reveal

the interaction energy between the proteins that bind these sites. Its likely that other

commonly used low precision assays, such as SELEX, DNase I footprinting, and yeast

2 hybrid, can also be replaced with high-precision deep-sequencing-based alternatives.

Indeed, some such methods have already been proposed [58,59]. The sequence analysis

methods described here, however, allow quantitative models of arbitrary form to be

inferred from such data with minimal assumptions about experimental details. As

sequencing costs continue to fall and read lengths continue to increase, Sort-Seq and

Sort-Seq-like assays should soon become feasible as standard laboratory techniques.
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3.3 Eukaryotic regulatory sequences

In eukaryotes, transcriptional regulation is more complex. First, eukaryotic DNA is

packaged by histones. The positioning and modifications of these nucleosomes greatly

affects the accessibility of DNA for transcription [60–62]. Second, eukaryotic regula-

tory sequences can be tens of thousands of base pairs away from their target genes.

These elements are called enhancers or silencers and typically strongly influence the

expression of their target genes, presumably by looping and interacting with the pro-

moter [4]. Additionally, so-called insulators are boundary elements that block the

influence of enhancers on genes downstream of the insulator, limiting the domain of

action of enhancers. Eukaryotic transcription factors are also typically have smaller

DNA-binding footprints, between 4 and 12 base pairs, compared to the larger bacte-

rial binding sites of 15-40 base pairs. In turn, typical eukaryotic regulatory sequences

have many more protein binding sites, that often overlap with each other.

In this section we discuss the results of experiments and analysis similar to the

previous section on two mammalian enhancers [42] : a synthetic cAMP-regulated

enhancer (CRE), which is widely used as a cAMP sensor in cell signaling research

and drug discovery [63], and the virus-inducible enhancer of the human interferon beta

(IFNB) gene, which is one of the most comprehensively studied mammalian regulatory

elements [64]. While the synthetic CRE is a ‘billboard’ enhancer composed of multiple

nonoverlapping binding sites for the cAMP-responsive transcription factor CREB, the

IFNB enhancer contains six different overlapping transcription factor binding sites.

Thus their architectures and presumably the biophysical mechanisms of regulation

are rather different.
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3.3.1 Experimental design

Unlike the experiments in the previous section on bacterial promoters, here the

transcriptional activity of mutant enhancers was measured by sequencing of mRNA

transcripts. Briefly, our collaborators first synthesized tens of thousands of oligonu-

cleotides that contain a library of regulatory elements, each coupled to a short tag.

The oligonucleotides were used to generate a pool of plasmids, where each plasmid

contains one of the regulatory elements, an optional invariant promoter, an arbitrary

open reading frame (ORF) and an identifying sequence tag. The plasmids were co-

transfected into cells, where active elements drive transcription of mRNAs containing

the tags in their 3 ′ untranslated regions. To estimate their relative activities, we se-

quenced and counted the tags in the reporter mRNAs and the plasmids pools, and

then took the ratios of these counts.

3.3.2 Data

Our collaborators synthesized 142-mer oligonucleotide pools containing 87-nt CRE

and IFNB enhancer variants, as well as 10-nt tags and various invariant sequences

required for cloning. Two different mutagenesis strategies were tested. The first was

‘single- hit’ scanning where we assayed ∼ 1000 specific enhancer variants, including

all possible single substitutions, multiple series of consecutive substitutions and small

insertions at all positions. Each scanning variant was linked to 13 tags for a total of

13,000 distinct enhancer-tag combinations. This redundancy provides parallel mea-

surements for each variant, which can be used to both quantify and reduce the impact

of experimental noise, including tag-dependent bias.

The second was ‘multi-hit’ sampling where about 27,000 distinct enhancer vari-

ants were assayed, each linked to a single tag. These variants were constructed by

introducing random nucleotide substitutions into the enhancers at a rate of 10% per

position. Because the variants were designed in silico and then synthesized, they
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provided a uniform mutational spectrum.

3.3.3 Results

Information footprints

As we did for the lac promoter in section 3.2, we calculate the information footprint

from the multi-hit data for CRE and IFNB by estimating the mutual information

between the nucleotides at each position and the corresponding tag ratios across the

∼ 27, 000 variants. These are shown in Figs. 3.8A and 3.9A.

We find that the 27 most informative positions in the induced CRE footprint are

all located in or immediately flanking the four CREB sites (Fig. 3.8a). This clearly

shows the primary importance of the CREB sites to the activity of the induced

enhancer. The more symmetric footprint of dimeric CREB site 4 compared to site 1

is likely due to the extended palindromic flanks of the former (ATTGACGTCAAT vs.

AGTGACGTCAGC). The information contents of CREB sites 2-4 were substantially

lower in the uninduced state, which is consistent with cAMP- dependence. In contrast,

the information contents of CREB site 1 and the cryptic binding sites near CREB

sites 1 and 4 were higher in the uninduced footprint. This is again consistent with

the most promoter-distal CREB site being less cAMP-dependent 14 and suggests that

these sites may be particularly relevant for controlling the basal activity of the CRE.

The IFNB enhancer footprint from virus-infected cells shows, as expected, that

its functionally relevant nucleotides are concentrated in the 44 nt core (Fig. 3.9A).

Indeed, 35 of 46 positions that had significant information content are located in

the core. Strikingly, the IFNB footprint from the uninduced state revealed only 8

informative positions, compared to 73 in the uninduced CRE footprint. This com-

paratively low information content likely reflects the near absence of transcription

factor binding, which results in a very low basal activity (at least 5-fold lower than

the uninduced CRE in luciferase assays).
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Figure 3.8: Multi-hit sampling mutagenesis of the cAMP-responsive enhancer. (a) In-
formation footprints of the CRE in its induced (top) and uninduced (bottom) states.
Red indicates significant information content at the corresponding position (permu-
tation test, 5% FDR). Error bars show uncertainties inferred from subsampling. (b)
Visual representations of linear models of the CRE in its induced (top) and uninduced
(bottom) states. The color in each entry represents the estimated additive contribu-
tion of the corresponding nucleotide to the log-transformed activity of the enhancer.
The matrices are rescaled such that the lowest entry in each column is zero and the
highest entry anywhere is one. Both matrices are shown on the same scale. Figure
from [42].
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Figure 3.9: Multi-hit sampling mutagenesis of the virus-inducible IFNB enhancer.
(a) Information footprints of the IFNB enhancer in its induced (top) and uninduced
(bottom) states. Red indicates significant information content at the corresponding
position (permutation test, 5% FDR). Error bars show uncertainties inferred from
subsampling. (b) Visual representations of linear models of the IFNB enhancer in
its induced (top) and uninduced (bottom) states. The color in each entry repre-
sents the estimated additive contribution of the corresponding nucleotide to the log-
transformed activity of the enhancer. The matrices are rescaled such that the lowest
entry in each column is zero and the highest entry anywhere is one. Both matrices
are shown on the same scale. Figure from [42].
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Models of sequence-dependent activity from multi-hit data

We attempted to develop quantitative models of the sequence dependent activity of

the two enhancers, with the goal of predicting the activity of variants that were not

assayed in our initial experiments. Unlike the physically motivated models that were

successful in section 3.2, we were unable to find models that significantly outpeformed

heuristic models of the sequence-activity relationship.

Specifically, we used linear regression to estimate the contribution of each possible

nucleotide at each position to the log-transformed activity of each enhancer in their

induced and uninduced states. The linear model is defined by parameters Mbi repre-

senting additive contributions of the different bases b at each enhancer position i to

log transcriptional activity:

log A(σ) =
∑
b,i

Mbiσbi (3.14)

where A(σ) is the activity of sequence σ and σbi is 1 if σ has the nucleotide b at

position i.

The model has 4 x 87 = 348 parameters, but because one of the four bases must

be present at every position there are only 1+3 x 87=262 independent degrees of

freedom. The primary virtue of these linear models is their simplicity, but it is not

a priori obvious that such models can capture the complex response of multisite

enhancers. Nonetheless, for induced CRE and IFNB, they performed nearly as well

or better than the more complex models we fit. Linear models trained on the multi-

hit data are shown in Figs. 3.8B and 3.9B. Inspection revealed good qualitative

correspondence with the sequence features described above. For example, the two

CRE models show that an intact CREB site 1 is critical for maximizing the induced

activity, while site 4 has the largest influence on the basal activity.

To quantify how well the linear models describe our experimental data, we com-
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puted the correlation between their predictions and the observed activities for both

the 261 single substitution variants in the independent single-hit data and the 27,000

variants in the multi-hit training sets. For the CRE, we found that the linear model

for the induced state generates predictions that are highly correlated with the ob-

served activities of both single- and multi-hit variants (r2 = 0.79, p ¡ 10-89 and r2

= 0.63, p ¡ 10-100, respectively). Remarkably, this model explains 90% of the bio-

logical variance in both data sets (compare to r2 = 0.89 and 0.67 between replicates,

see above). The large number of multi-hit measurements ensures that this is not the

result of over-fitting (r2 0.62 on five-fold cross-validation). In contrast, the induced

IFNB model has a substantially poorer fit to the data (r2 = 0.61, p ¡ 10-54 and r2 =

0.071, p ¡ 10- 100, respectively). The difference in the fit of linear models appears to

reflect the different architectures of the two enhancers. Most CRE multi-hit variants

disrupt one or more of the non-overlapping consensus CREB sites, which caused large

(median = 4.7-fold) and roughly additive reductions in its induced activity, until an

apparent minimum is reached. Multiple substitutions were generally less detrimental

to the induced IFNB enhancer (median decrease = 1.8-fold), which may reflect its

initially weaker non-consensus binding sites or more complex interactions between its

bound transcription factors.

Interactions between different positions in the enhancers can be modeled by in-

cluding additional terms in the linear models. In initial efforts to model interactions,

we trained models with terms that represented simple pair-wise interactions within

and between the known binding sites. These terms captured statistical interactions

between most binding sites and led to incremental improvements in the fit of the mod-

els ( 7% and 18% increases in r2 for the induced CRE and IFNB enhancer models,

respectively). It is evident, however, that more complex models would be required to

fully explain the observed activities.

Because both enhancers showed evidence of nonlinear responses, we next at-
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tempted to refine our models by incorporating functional nonlinearities. We fit a

variety of models to the data, including ones describing either dinucleotide interac-

tions or biophysical interactions between DNA-bound proteins. The best performing

model was a simple ‘linear-nonlinear’ model. In this model, a sigmoidal transforma-

tion specified by parameters B and C is applied to the prediction of a linear model

having parameters Mbi as defined above:

log A(σ) = log

(
B + C

1

1 + exp(
∑

b,i Mbiσbi)

)
(3.15)

This type of model is widely used to describe systems where multiple inputs are

combined to generate a response that interpolates monotonically, but not linearly,

between minimum and maximum values. For the induced CRE data, this twopa-

rameter nonlinearity increased r2 by 16% as compared to the linear model. Because

monotonic transformations have no effect on mutual information, this quantity was

not meaningfully affected. Nevertheless, this linearnonlinear model has the virtue of

being able to predict an upper limit to the expression level that can be achieved by

reengineering the enhancer sequence.

Model parameters were optimized using regression. The optimal parameters for

the linear part of this model are virtually identical (r2 = 0.98) to the strictly linear

model, but the two additional parameters that describe the sigmoidal nonlinearity

allow the model to describe both minimum and maximum activation levels. Notably,

this nonlinearity appears to capture much of the remaining nontechnical variance

in the induced CRE data (r2 = 0.72, P < 10100, compared to r2 = 0.67 between

the two replicates). For the IFNB enhancer, the best performing models were those

that incorporated dinucleotide interactions, which is consistent with its more complex

architecture, although no model provided more than a modest improvement over the

linear model (up to r2 = 0.10, P < 10100). Thus, although linear models are imperfect
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representations of the underlying biological systems, in these cases they appear to

provide a reasonable trade-off between complexity and predictive power.

Single-hit data

The single-hit scanning mutagenesis probes the effects of individual positions on the

enchancers. We estimated the relative activity of each variant by comparing the

median of its 13 mRNA/plasmid tag ratios to the median ratio for tags linked to the

corresponding wild-type enhancer. We first focused on the CRE, which contains two

consensus CREB dimer binding sites (denoted as sites 1 and 4 in Fig. 3.8A) separated

by two monomer sites (sites 2 and 3). We found that 154 of the 261 possible single

substitutions significantly altered its activity (5% FDR), with the majority (79%)

resulting in decreased activity (Fig. 3.8B). The substitutions that resulted in the

largest decreases were in or immediately flanking the CREB sites. Substitutions in

the promoter-proximal CREB site 4 had the largest effects, which is consistent with

reports of the cAMP responsiveness of CREB sites being inversely correlated with

their distance from a TATA-box14. Within the two dimer sites, substitutions in the

central CGs were the most deleterious. This is consistent with biochemical data that

show that this dinucleotide is critical for high-affinity CREB-DNA interactions [65].

Substitutions at 47 of 61 positions outside of the CREB sites also caused significant

(5% FDR), although generally more subtle, changes in activity. This may reflect the

effects of cryptic non-CREB binding sites. In particular, two substitutions upstream

of CREB site 1, as well as almost every substitu- tion in a C-rich motif flanking

CREB site 4, resulted in increased CRE activity. These substitutions may therefore

cause either increased recruitment of activating factors or decreased recruitment of

repressors.

We next focused on the IFNB enhancer, which is a 44-nt sequence containing

overlapping, nonconsensus binding sites for an ATF-2/c-Jun heterodimer, two IRF-3
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Figure 3.10: Single-hit scanning mutagenesis of the cAMP-responsive enhancer. (a)
The CRE sequence with known and putative transcription factor binding sites indi-
cated. (b) Changes in induced activity owing to single-nucleotide substitutions. Each
bar shows the log-ratio of the median variant and wild-type activity estimates. Figure
from [42].

and two IRF-7 proteins, and a p50/RELA (NF-B) heterodimer (Fig. 3.9A) [64]. We

included a small amount of flanking genomic sequence, for a total length of 87 nt. We

found that 83 of the 261 possible single substitutions altered the enhancers activity

in virus-infected cells (5% FDR), and that almost all (92%) of these were within the

44-nt core (Fig. 3.9b).
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Figure 3.11: Single-hit scanning mutagenesis of the virus-inducible IFNB enhancer.
(a) The IFNB enhancer with known transcription factor binding sites indicated. (b)
Changes in induced activity owing to single-nucleotide substitutions. Each bar shows
the log-ratio of the median variant and wild-type activity estimates. Figure from [42].
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Optimization of enhancer sequences

To explore the potential for model-based optimization of synthetic regulatory ele-

ments in mammals, we next attempted to design enhancers with modified activities.

We first attempted a greedy approach to maximize the induced enhancer activities.

We selected, for each position, the nucleotide predicted to make the largest activity

contribution according to the corresponding linear model. This resulted in changing

the CRE at 36 of 87 positions (CRE-A1 in Fig. 3.12A). These changes left the consen-

sus CREB sites intact, but introduced predicted activating mutations into the flanks

of CREB sites 13 and into the two cryptic binding sites. For the IFNB enhancer,

we limited modifications to the 44-nt core. This resulted in changes at 15 positions

(IFNB- A1 in Fig. 3.13A), including conversion of every nonconsensus IRF half-site

to the GAAA consensus and strengthening of the p50 half- site. We individually

synthesized these two variants and then com- pared them to their wild types using a

luciferase assay. We found that both new variants had significantly higher induced ac-

tivities (2.1-fold for CRE-A1, P ¡ 0.0001, and 2.6-fold for IFNB-A1, P ¡ 0.0001; Figs.

3.12B,3.13B). Notably, the increase for CRE-A1 (2.1-fold) was substantially lower

than predicted by the simple linear model (32-fold), but close to the value predicted

by the linear-nonlinear model (1.7-fold). In contrast, the increase for IFNB-A1 (2.6-

fold) was close to the value predicted by its linear model (2.1-fold). This difference

likely reflects that the wild-type CRE is composed of consensus activator sites and

therefore operates much closer to saturation than the IFNB enhancer. We also found,

however, that both new variants had disproportionately higher uninduced activities

(19-fold for CRE-A1 and 17-fold for IFNB-A1). This suggests that mutations that

increase the induced activity of an enhancer may often decrease its inducibility, which

would likely be detrimental in most biological and engineering contexts.
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Figure 3.12: Model-based optimization of CRE. (a) CRE variants predicted to max-
imize induced activity (A1) or inducibility (I1-I3) based on linear models trained
on multi-hit data. Differences from wild type are indicated by red shading. Darker
shading indicates a higher predicted contribution to the change in activity. (b) Lu-
ciferase activity of the wild-type (WT) and optimized CRE variants in untreated and
forskolin-treated cells. RLU, relative light unit. (c) Inducibility of the CRE variants
in response to cAMP elevation caused by forskolin treatment. Blue bars show mean
activity across 12 replicates in the induced or uninduced states. Error bars show
s.e.m. (SE). All statistical comparisons are relative to WT in the same state; n.s.,
not significant; ***, P ≤ 0.0001; two-tailed t-test. Orange bars show the ratio of
the corresponding induced and uninduced mean activities. Error bars show the range
from (induced mean induced SE)/(uninduced mean + uninduced SE) to (induced
mean + induced SE)/(uninduced mean uninduced SE).Figure from [42].
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Figure 3.13: Model-based optimization of IFNB. (a) IFNB enhancer variants pre-
dicted to maximize induced activity (A1) or inducibility (I1) based on linear models
trained on multi-hit data. (b) Luciferase activity of the WT and optimized IFNB
enhancer variants in uninfected and virus-treated cells. (c) Inducibility of the IFNB
enhancer variants in response to virus infection. Blue bars show mean activity across
12 replicates in the induced or uninduced states. Error bars show s.e.m. (SE). All
statistical comparisons are relative to WT in the same state; n.s., not significant;
***, P ≤ 0.0001; two-tailed t-test. Orange bars show the ratio of the corresponding
induced and uninduced mean activities. Error bars show the range from (induced
mean induced SE)/(uninduced mean + uninduced SE) to (induced mean + induced
SE)/(uninduced mean uninduced SE). Figure from [42].
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3.3.4 Summary

Massively parallel reporter assays of the kind we have used in our work enable func-

tional analysis of transcriptional regulatory elements in cultured cells at significantly

higher throughput than traditional bioluminescence- and fluorescence-based assays.

The resulting data was used to map functional transcription factor binding sites at

single-nucleotide resolution and to train quantitative sequence-activity models. This

approach may help elucidate the biophysical basis of inducible and cell type-specific

enhancer activity.

Beyond studying variants of naturally-occurring DNA sequences, the flexibility

and decreasing cost of DNA synthesis is enabling construction and optimization of

novel regulatory elements. Strong synthetic promoters have previously been selected

from combinatorial libraries using FACS [66, 67]. It may be challenging, however, to

design direct selection strategies for regulatory elements with more complex charac-

teristics, such as optimal inducibility, dynamic range or cell type-specificity. Model-

based optimization represents an alternative to direct selection. In this approach,

all synthesized elements are first profiled in multiple cells states, with the resulting

data being integrated to identify sequences that optimize complex objectives. This

approach can be applied iteratively, which would be conceptually similar to genetic

algorithm-based optimization [68]. With the development of more sophisticated muta-

genesis and modeling strategies, we expect that this approach will provide a powerful

tool for synthetic biology.
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Chapter 4

Conclusions

In this thesis, we have described work on two different biological processes that rely

directly on the information content of nucleic acid sequences. These functional se-

quences raise questions about both the mechanisms by which they exercise their

influence, as well as the processes by which they are generated. In our work on reg-

ulatory sequences, we have investigated the first, while in our work on the immune

system, we have investigated the second.

The adaptive immune system in vertebrates presents a remarkable internal im-

plementation of the principles of natural selection. The dynamics of the immune cell

repertoire in response to selective forces from pathogens might provide an ideal labo-

ratory for understanding the working of evolution in general. Here, we have focused

on inferring the ‘neutral’ model for this system by characterizing the diversity of im-

mune cell receptors that can be generated by the molecular generation process. This

is an essential first step for the analysis of the effects of selection on the repertoire.

With our ‘neutral’ model in hand, we now plan to analyze the functional receptor

repertoires to look for deviations from the same. While it may be easy to identify

statistical signatures of selection, it is much harder to interpret them in terms of

function. We do not yet know how to parametrize receptor function and the selective
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forces from pathogens to describe their dynamics. This is a challenging subject for

future investigation.

The regulation of gene expression is implemented by a large diversity of complex

mechanisms. These mechanisms need to be dissected for a full understanding of the

relationship between genetic information and phenotypes. Here, we have investigated

relatively simple instances of transcriptional regulation by modeling the sequence-

function relationship for promoters and enhancers.

The general approach we have used, of perturbing the functional sequences and

measuring their activities in large numbers, can be generalized to other systems where

the precise sequence is critical for biological function. Future work could focus on

building physically motivated models of the mechanisms of complex enhancers. Such

models can also aid in the synthetic design of regulatory sequences, as we have demon-

strated.

Besides the use of high-throughput sequencing to obtain large amounts of data,

the two projects share the application of sophisticated statistical inference techniques

to extract interpretable models from the data. The typical size of data sets from

biological experiments is constantly increasing due to advances in multiple techolo-

gies. However, data by itself does not make biological research quantitative. It is

essential to use model-based inference techniques to build quantitative understanding

of biological systems.
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