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ABSTRACT 

 
Staphylococcus aureus is a highly problematic human pathogen due to its ability to 

cause devastating infections, paired with a capacity to withstand the action of a large 

fraction of available antibiotics. Both pathogenicity and antibiotic resistance are encoded 

by numerous genomic elements, though the expression of these factors is energetically 

costly and not always beneficial for cellular survival. Therefore, S. aureus has 

developed sophisticated regulatory networks to integrate a multitude of signals, 

enabling it to navigate the delicate balance between its pathogenic lifestyle and baseline 

needs for cellular energy homeostasis. It is thus imperative to study S. aureus behavior 

and its underlying regulatory circuits not as isolated entities, but rather holistically as 

part of an optimized, highly interconnected system. To do so, we must seek to achieve 

a comprehensive understanding of all encoded regulators, that is, not only historically 

well defined elements like transcription factors, two-component systems and σ factors, 

but also the lesser studied ’non-classical’ regulators like small regulatory RNAs and 

regulatory subunits of RNA-dependent RNA polymerase (RNAP). To this end, we 

describe here the identification of numerous, previously unidentified sRNAs and their 

incorporation into a new standardized cataloging and annotation system. The 

identification and annotation procedures are based on a number of RNAseq 

experiments performed in three different S. aureus backgrounds (MRSA252, NCTC 

8325, and USA300). We then apply RNAseq to evaluate the expression patterns of 
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these elements when grown in human serum, thus probing for possible connections 

between sRNAs and S. aureus pathogenicity. In addition, we characterize the role of 

two small RNAP subunits, δ and ω, for S. aureus RNAP function. δ is of particular 

interest, as it is unique to Gram-positive bacteria; deletion of the subunit results in a loss 

of transcriptional stringency and decreased expression of numerous virulence 

determinants. These alterations are accompanied by impaired survival of the δ mutant 

in whole human blood, increased phagocytosis by human leukocytes, and decreased 

survival in a murine model septicemia when compared to its parental strain. In contrast, 

there is no indication of direct and gene-specific transcriptional functions for ω. Rather, 

we describe a role for ω in the structural integrity of the RNAP complex, where its loss 

leads to a structural disturbance in the RNAP complex that causes altered affinities for 

(alternative) σ factors and the δ subunit. Overall, the findings presented here contribute 

to a better understanding of the intricate regulatory systems that guide the lifestyle of an 

organism that presents an immense burden to patients and our health care system 

alike. 

  



	 1	

 
 

CHAPTER 1: INTRODUCTION 

 

A CASE FOR THE COMPLEXITY OF THE STAPHYLOCOCCUS AUREUS 

LIFESTYLE AND THE NEED FOR CONSTANT ADAPTATION 

“Life is not always a matter of holding good cards, but sometimes, playing a poor hand 
well.”  
- Jack London 
 

Staphylococcus aureus is a Gram-positive, facultative anaerobe. Phylogenetically, this 

coccal bacterium belongs to the phylum Firmicutes, whose members are characterized 

by a low G-C content. This bacterium can be found as a commensal asymptomatically 

colonizing the human body, but can alternatively present itself as a formidable 

pathogen. It is thus characterized as an opportunistic pathogen. Since its first isolation 

in 1880 [1], the bacterium has garnered widespread attention driven by several key 

events, the most notable of which being the development of resistance to a number of 

widely used antibiotics [2-5] and large-scale outbreaks in nosocomial settings, as well 

as in healthy communities in Northern America, Europe, and the Asia-Pacific region. A 

recent study reported ~500,000 S. aureus-related hospitalizations in the USA in 2005, 

associated with annual costs of an estimated $830 million to $9.6 billion [6], highlighting 

the immense socio-economic burden this organism presents. 
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From the hospital to the community: The adaptation of S. aureus to the healthy 

population 

 
Historically, S. aureus infections have occurred in high rates within the nosocomial 

setting. These trends have escalated due to the appearance of numerous resistance 

mechanisms against most available antibiotics [7, 8]. These “waves of resistance’ [8] 

have been the result of the acquisition of genetic elements that render the bacterium, 

which is ‘naturally susceptible to virtually every antibiotic that has ever been developed’ 

[8], resistant to precisely these antimicrobial agents. Soon after the introduction of the 

very first antibiotic, penicillin, in 1941 the first resistant strains were reported in 1942 [2] 

and soon spread through the hospital system. As of 1959, it was possible to combat 

these strains for a limited time through the use of methicillin. Nevertheless, the 

appearance of methicillin-resistant S. aureus (MRSA) [3], which acquired the mecA 

locus in the early 1960’s, caused a second large wave of infections (reviewed by [9]). 

These infections were largely nosocomial, so the causative strains were referred to as 

hospital acquired-MRSA (HA-MRSA). Subsequently, a third large wave occurred in the 

late 70’s and mid 80’s [8] and led to high usage of vancomycin, a last resort antibiotic 

against MRSA infection. The bacterium quickly adapted, and intermediate (vancomycin 

intermediate S. aureus, VISA) [4] and full vancomycin resistance (vancomycin 

resistance S. aureus, VRSA) [5] appeared. This development seriously endangered the 

treatment of complicated infections, but the concerning strains were still largely refined 

to hospitals. However, novel strains appeared concurrently and were able to infect the 

otherwise healthy population (community acquired MRSA, CA-MRSA) in Western 

Australia [10] as well as in the US [11]. Research into the unique features and 
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differences between HA-MRSA and CA-MRSA is an active field of research and has 

been reviewed in detail on several occasions [12-15]. In order to delineate between S. 

aureus subgroups in context of the health care setting, the Center for Disease Control 

and Prevention (CDC) has defined a case as CA-MRSA-related when MRSA isolates 

from outpatients were obtained within 48 h after admission to the hospital and 

underlying risk factors like a history of hospitalizations, surgery, dialysis, or residence in 

a long-term care facility within one year prior to hospitalization are absent. Disqualifying 

criteria for CA-MRSA also include the presence of an indwelling catheter or 

percutaneous device and previous isolation of MRSA from the patient [16]. 

 

From an epidemiological standpoint, CA-MRSA strains in the US belong to the USA300 

and USA400 pulsed-field gel electrophoresis (PFGE) pulsotypes, while HA-MRSA are 

commonly USA100 and USA200 [17]. As mentioned before, outbreaks with CA-MRSA 

strains usually affect parts of the population that did not have any previous 

hospitalization or underlying risk factors. Nevertheless, certain groups with elevated 

risks for infection are present in the population, and David and Daum [12] have 

produced a comprehensive overview of outbreaks in a variety of community settings. 

Briefly, parts of the population that are proposed to be at particular risk for CA-MRSA 

infections are, amongst others, children of different ages, athletes of various sports 

(usually those involving skin to skin contact), underserved urban communities, 

indigenous populations, inmates in correctional facilities, military members, and 

individuals that are in close contact with animals (e.g. livestock handlers, pet owners, 

veterinarians) [12]. The newly acquired ability to infect young and otherwise healthy 
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individuals has attracted a lot of attention from the scientific community, and we have 

consequently developed a clearer understanding of the genomic changes that allow 

transition from the hospital to the community. Several hallmarks of CA-MRSA strains, 

when compared to their nosocomial counterparts, were identified [14]:  

 

i) A major finding was that there are obvious differences in the genomic content 

concerning the presence of distinct mobile genetic elements in HA- and CA-MRSA 

strains. As mentioned above, MRSA strains carry the mecA gene, which encodes for 

penicillin binding protein 2a, conferring resistance to methicillin [18]. Together with two 

regulators of mecA, mecI and mecR, this locus is encoded on the staphylococcal 

cassette chromosome mec (SCCmec) [19]. At least 11 different SCCmec types with 

varying structural organization and content have been found ([20]; an updated list is 

available under http://www.sccmec.org/). While HA-MRSA strains carry the larger 

SCCmec types I-III, the smaller types IV or V are found in CA-MRSA. Though the size 

of the latter two is connected to a lower fitness cost [21] and a higher mobility of the 

elements themselves [22], types I-III carry additional antibiotic resistance genes [23], 

explaining the multi-drug resistance (MDR) phenotypes of HA-MRSA. In contrast, CA-

MRSA strains are, with exceptions [24], sensitive to non-β lactam antibiotics. Combined, 

these findings concerning the distribution of SCCmec elements aided our understanding 

of the differences between HA- and CA-MRSA strains, ultimately leading Lee and 

colleagues [21] to propose that the presence of type IV and V elements in CA-MRSA is 

driven by ‘the selection for factors that contribute to ecological fitness [and] may 

outweigh the need for multiple resistance determinants’. 
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ii) As CA-MRSA strains are able to infect otherwise healthy individuals, it was long

suspected that community and hospital strains differ in the expression of virulence 

determinants (S. aureus encodes for a large number of proteins that allow for 

colonization and survival in or on the host, termed virulence factors, and collectively 

referred to as the ‘virulome’ [25]). Such a notion has now been confirmed for several 

proteins that directly contribute to S. aureus pathogenicity. These factors include the 

Panton-Valentine Leukocidin (PVL), several Phenol Soluble Modulins (PSMs), and α-

toxin, all of which are cytolytic (though acting against different cell types). The two-

component leukocidin PVL was first described and connected to infection in 1894 [26] 

and 1932 [27], respectively. The factor was the first to be thoroughly researched for a 

connection to the appearance of CA-MRSA strains, as it was observed early that the 

encoding genes (lukS-PV and lukF-PV) are found in nearly all CA-MRSA isolates [28-

31] and are often absent in HA-MRSA strains [28]. Although this β-pore-forming toxin is

well known to lyse human neutrophils [32] and is therefore considered a bona fide 

virulence factor, there is debate as to how much the factor actually contributes to the 

CA-MRSA specific pathophysiology (discussed by [12, 14, 33]). This doubt is derived 

mainly from the finding, amongst others, that PVL action is model-dependent [32] (e.g. 

mouse [34] vs. rabbit [35]) and therefore studies have produced partially contradicting 

results. 

Two additional (groups of) toxins that have been connected to the appearance of CA-

MRSA strains are PSMs [36] and the α-toxin [37], both of which are effective cytolysins 

(reviewed by [38] and [39, 40], respectively). The seven PSMs (PSMα1-PSMα4, 
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PSMβ1, PSMβ2 and δ-toxin) encoded by S. aureus are small amphipathic α-helical 

peptides that have been linked to S. aureus pathogenicity [36, 41], largely due to their 

ability to lyse neutrophils [36], erythrocytes [42] and osteoblasts [43]. Alpha-toxin, also 

known as α-hemolysin, due to its ability to lyse erythrocytes (amongst a variety of other 

cell types [40]), has also been shown to contribute to the ability of S. aureus to cause 

disease [41, 44]. In contrast to PVL, there is no obvious difference in the presence of α-

toxin and PSM genes between HA- and CA-MRSA isolates. Nevertheless, differences in 

their corresponding expression patterns (and subsequently protein abundance) when 

comparing HA- and CA-MRSA have been described [36, 45]. Since both PSM [46] and 

α-toxin [47] loci are controlled by the major regulatory system Agr (discussed in more 

detail below), the discovery of increased Agr activity in CA-MRSA [48] ultimately 

explained the higher abundance of such toxins in these strains.  

 

iii) Another factor that was connected to the success of S. aureus as a pathogen within 

the healthy community was the acquisition of an additional mobile genetic element, 

ACME (arginine catabolic mobile element). This element, acquired originally from 

Staphylococcus epidermidis [49], is omnipresent in the USA300 pulsotype and has 

been linked to its ability to cause disease in a rabbit model [49]. At least two avenues for 

how the ACME-encoded genes aid colonization and infection by S. aureus have been 

reported. First, the gene cluster encodes for an arginine deiminase system (Arc), which 

enables S. aureus to persist in acidic environments [50], such as that found on human 

skin [51]. A second gene, speG, encodes for a spermine/spermidine-acetyltransferase, 

which confers resistance to polyamines (e.g. spermine and spermidine) [52]. 
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Polyamines are naturally produced by the human body as important factors in wound 

healing [50, 53]. Interestingly, it was previously thought that all forms of life were able to 

synthesize and therefore resist possible inhibitory effects of polyamines. Contrary to this 

assumption, it was recently shown that S. aureus inherently is incapable of producing 

polyamines and is highly sensitive to their presence [52]. By the acquisition of ACME, 

and in particular speG, CA-MRSA strains are able to overcome these effects. Thus, the 

presence of ACME allows S. aureus to effectively colonize and infect the skin, which 

explains the high incident rate of skin infections with CA-MRSA strains (as discussed in 

the following section). These findings extend our epidemiological understanding of S. 

aureus in other contexts, too: since ACME was described to be solely present in the 

USA300 lineage [54], it has been suggested that the element aided in the replacement 

of other CA-MRSA lineages, e.g. USA400 [50]. 

 

Overall, the differences between HA- and CA-MRSA are multifactorial, but can be 

summarized as a fine balance between virulence and fitness. While certain virulence 

genes are upregulated (PSMs and α-toxin) or omnipresent (PVL) in CA-MRSA strains, 

these lineages sacrificed larger SCCmec elements that carry higher number of 

resistance genes for smaller and more mobile elements with a smaller fitness burden on 

the cell. Simultaneously, the acquisition of novel elements, such as ACME, presents a 

fitness advantage on the skin, therefore making parts of the human body more 

accessible to CA-MRSA strains. These alterations have been the result of both 

horizontal gene transfer (e.g. in case of PVL or ACME) as well as modifications of 

existing genomic content (e.g. increased activity of Agr and a concomitant increase in 
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expression of virulence determinants). Ultimately, the findings summarized in this 

section highlight the extraordinary ability of this pathogen to adjust to novel conditions 

and challenges, e.g. the increased usage of antibiotics, and explain our difficulties in 

overcoming the negative impact of HA- as well as CA-MRSA strains; despite all of the 

advancements made in our health care system. 

 

Not a one-trick pony: The broad spectrum of diseases caused by S. aureus 

 
The increasing attention cast towards S. aureus can be explained by its versatility as a 

pathogen, allowing the bacterium to infect almost every site within the human body 

(comprehensively reviewed by [55]). Amongst the different disease manifestations, 

perhaps the most concerning is the occurrence of invasive infections, and the 

development of acute Staphylococcus aureus bacteremia (SAB) [56-60]. In this regard, 

several studies found S. aureus to be the leading cause of bacteremia in Europe [61] 

and the Americas [62, 63]. Although advances in health care and in particular the 

introduction of antibiotics (i.e. penicillin [64]), have rapidly decreased mortality rates 

from untreated S. aureus infections (75%-82%) [65, 66], mortality within 30 days of the 

onset of infection at the end of the 20th and beginning of the 21st century is still ~20% 

[67-69]. These numbers represent the immense progress modern medicine has made 

to date, but also highlight existing limitations for treatment of SAB and the threat that an 

impending postantibiotic era due to increasing (multi-) drug resistance amongst 

bacterial pathogens presents [70]. In addition to general and systemic implications of 

SAB, infection of the endocardium (invasive endocarditis, IE) is especially problematic 

and commonly seen during invasive infection with S. aureus. At this point, S. aureus is 
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still a leading cause of IE and was found to be the most prevalent pathogen when 

investigating ~1800 cases of IE in 16 countries [71]. Even more concerning, the number 

of patients in the US affected by IE as well as overall mortality rates have been 

increasing during the first decade of the 21st century [72]. Beyond these directly life-

threatening invasive infections, S. aureus is the leading cause of osteoarticular 

infections, including osteomyelitis, septic arthritis, and prosthetic joint infection [55]. In 

particular, the latter presents a large burden in a steadily aging population, where 

arthroplasty is and will continue to be a common procedure [73]; with ~2% of patients 

affected by S. aureus [74, 75].  

 

Although invasive infections present a major concern, not all diseases caused by S. 

aureus require deep penetration of the bacterium into the human body: the clinical 

picture of S. aureus also commonly comprises skin and soft tissue infections (SSTIs), 

including cutaneous abscesses as well as purulent and non-purulent cellulitis, impetigo, 

and necrotizing fasciitis [12]. Although these infections have been prevalent and 

historically connected to S. aureus, the number of such diseases has drastically 

increased since the appearance of CA-MRSA strains, and is particularly driven by the 

USA300 lineage [76-78]. Severity of these infections can vary widely, but increasing 

numbers of hospitalizations have been observed [78], adding to the challenges that S. 

aureus presents for society and the healthcare system. Lastly, along with the disease 

manifestations above, S. aureus is a common cause for a variety of pleuropulmonary-, 

gastrointestinal-, and urinary tract infections, as well as for bacterial meningitis, which 

won’t be discussed in detail here, but have been reviewed elsewhere [55]. 
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These high numbers of infections within the hospital and in the community ultimately 

raise the question of the natural reservoir and/or path of infection. In a nosocomial 

environment, transmissions have been well tracked and it is widely acknowledged that 

improved hygienic standards can effectively prevent S. aureus outbreaks and cross-

contamination between patients [79-83]. In contrast, the mode of transmission within the 

community is more complex, though we now have a better understanding of the survival 

of the bacterium on different fomites [84], as well as its transmission dynamics 

(reviewed by [12]). Such findings ultimately let the CDC to release a list of risk factors 

for MRSA transmission (‘5 C’s’): i) Crowding ii) frequent skin-to-skin Contact iii) 

Compromised skin iv) Contaminated items and surfaces and v) lack of Cleanliness 

(http://www.cdc.gov/niosh/topics/mrsa/). Furthermore, nose picking was related to 

higher chances of S. aureus nasal colonization and therefore should be avoided where 

possible [85].  

 

Despite these hygiene and safety measures, we now appreciate that large numbers of 

individuals are asymptomatically colonized with S. aureus at a variety of sites of the 

human body [86]. Most notably, S. aureus has a natural reservoir in vestibulum nasi 

within the squamous epithelium [86]. Additionally, extra-nasal colonization sites include 

skin, throat, perineum, vagina, and gastrointestinal tract [86-89]. 

 

Adjustment to highly variable environments: From nasal colonization to invasive 

infection 

 
As discussed in the previous sections, S. aureus strains have evolved to interact with 
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healthy and predisposed individuals alike, causing a variety of clinical manifestations. 

Nevertheless, S. aureus can also reside on the human host without causing any 

symptoms. This asymptomatic colonization with a highly virulent pathogen raises the 

question: how does the bacterium employ its genetic content to foster a balance that 

allows for niche survival without triggering a strong immune response, such that it can 

survive in close proximity to its host? Therefore, this section will consider the adaptation 

of S. aureus to various host environments, with a focus on the nose as the primary 

reservoir for S. aureus colonization.  

 

Colonization with S. aureus 

Numerous studies have investigated the extent of colonization with S. aureus within the 

healthy population, i.e. asymptomatic colonization. This is of particular interest, as nasal 

colonization is associated with risk of infection by the pathogen [86, 90, 91]. Historically, 

three colonization patterns have been identified to describe S. aureus carrier 

subpopulations. These include i) persistent carriers who always carry the bacterium in 

their nose (~20% of the population), ii) intermittent carriers who carry the bacterium for 

short times (~30%), and iii) non-carriers who are never colonized (~50%) (reviewed by 

[86]). These categories, however, have been brought into question recently, and it has 

been recommended to distinguish only between carriers and ‘others’ [92], as 

intermittent and non-carriers show similarly contrasting features from persistent carriers 

when comparing i) immune response to colonization [92], ii) bacterial loads during 

colonization [92], iii) survival rates of the bacterium in the nose [92], and iv) risk of 

infection [93]. This latter point is additionally supported by evidence that the 
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endogenous strain is usually that found during invasive infection [91]. Nevertheless, 

persistent colonization has been associated with lower mortality rates in the event of an 

invasive infection [94].  

 

Microbial interaction during nose colonization 

Once S. aureus is transferred and begins to colonize the nose, the bacterium 

encounters a number of unfavorable factors, from nutrient limitation, to mechanical 

forces, to the action of the immune system. Moreover, due to its constant stream of 

airflow, the nose is an organ that is heavily colonized with a number of other 

microorganisms [95], and we are only starting to understand the complex interplay of S. 

aureus with other members of the nasal microbiome [96]. Antagonistic interactions have 

been reported for many of these co-colonizers, including Lactobacillus [90, 97], 

Corynebacterium sp. [98, 99], Streptococcus pneumoniae [100, 101], Streptococcus 

mitis [90] and S. epidermidis [99, 102, 103]. Particular focus has been given to 

competition with Staphylococcus ludgenensis, as this bacterium produces a 

thiazolidine-containing cyclic peptide antibiotic, Lugdunin, which inhibits S. aureus 

growth and could be used as a novel therapeutic [104]. Although information concerning 

the interaction of S. aureus with the nasal microbiota is steadily growing, it is noteworthy 

that some studies reported partially conflicting results [105] (here in the case of S. 

epidermidis and Corynebacterium sp.), which may be attributable to strain- and species-

specific differences and highlight the need to further investigate polybacterial 

interactions in this niche. 
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Adaptation to the nasal environment 

Adhesion to (biotic or abiotic) surfaces is the first and most important step for 

colonization, and ultimate success, of a pathogen (with the exception of toxin-mediated 

diseases). Although the colonization and formation of biofilms on abiotic medical 

devices, e.g. catheters or artificial heart valves, is an immense problem in the hospital 

setting [55], this section will primarily focus on the attachment to biotic surfaces. 

Attachment is typically differentiated into i) primary attachment through binding to a 

(host) surface, and ii) the formation of a biofilm, which necessitates proliferation and 

establishment of contact between dividing bacteria (intercellular adherence) [106]. 

During initial attachment to surfaces, bacterial proteins interact with host extracellular 

matrix components via both proteinaceous and non-proteinaceous factors. Components 

that are attached to the cell wall, usually by action of the protein sortase [107], are 

termed microbial surface components recognizing adhesive matrix molecules 

(MSCRAMMs) [108]. In addition, secreted proteins that are not anchored to the cell wall 

but still affect adhesion (and in some cases immune response) are referred to as 

secretable expanded repertoire adhesive molecules (SERAMs) [109]. Lastly, non-

specific interactions have also been suggested to play a role, e.g. in the form of 

hydrophobic interactions [110]. Numerous host factors are bound by MSCRAMMs and 

SERAMs, including fibronectin, fibrinogen, fibrin, collagen, elastin, vitronectin, 

thrombospondin, bone sialoprotein, elastin, collagen, prothrombin, and von Willebrand 

factor (reviewed by [111]). 
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Although there are numerous MSCRAMMs and SERAMs, only a few have been shown 

to significantly affect colonization of the nose [112, 113]. Two MSCRAMMs, clumping 

factor B (ClfB) [114-117] and iron-regulated surface determinant A (IsdA) [118-120], as 

well as wall teichoic acids (WTA) [121, 122], have been identified as the main 

contributors to nasal attachment. Additionally, the MSCRAMMs S. aureus surface 

protein G (SasG) [123] and serine-aspartic acid repeat proteins C and D (SdrC/D) [124] 

allow binding to human desquamated nasal epithelial cells, while fibronectin binding 

proteins (FnBPs) can mediate internalization into a number of (non-phagocytic) cell 

types [125]. Some other factors (summarized by [126]) have also been linked to nose 

colonization, although to a lesser extent than those listed above. 

 

Several of these adhesion factors are seemingly redundant as they are able to bind to 

the same cell types. Burian et al. [127] shed light on this apparent redundancy with their 

investigation into temporal expression patterns over 10 days of nose colonization using 

a cotton rat model. The study revealed that WTA biosynthesis genes are highly 

expressed during early stages of attachment, while later phase attachment is driven 

primarily by high expression of clfB and isdA. This finding is consistent with a study 

investigating the effects of loss of adhesion factors on the adhesion process [128], in 

which, as expected, a WTA-deficient strain had a severely impaired ability to colonize 

rat noses. Inversely, a sortase mutant deficient in MSCRAMM display on the cell 

surface (ClfB and IsdA, amongst others) was able to undergo early colonization, but 

was prematurely cleared some time between 6 and 14 days post infection, indicating a 
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role in colonization persistence, which is also in line with other group’s findings [116, 

117].  

 

In addition to investigating the expression patterns of adhesion factors, numerous 

studies (including those referred to above) have sought to understand how cellular 

physiology is shaped by exposure to the environmental conditions found in the nose, 

using in vitro (employing artificial nasal medium) [129] and in vivo transcriptomics [127, 

130-132], as well as proteomic [133] approaches. All of these studies have consistently 

shown that the environment in the nose not only strongly favors attachment but also 

induces the expression of immune evasion proteins [130, 131] and simultaneous 

decreases virulence factor and toxin production [129, 130], pointing towards a 

commensal state for the bacterium. Correspondingly, known regulators of virulence, 

including agr and sae, sigB, sarR, graR, have each been reported by one or more 

studies to be lowly expressed [127, 129-131]. Interestingly, gene expression patterns 

can differ from host to host, indicating that a host-specific response is present, further 

complicating the host-pathogen interaction [130, 131]. This notion is made evident by a 

recent study using a mouse model, which showed that the transcriptional profiles of 

invading S. aureus are strongly dependent on (the level of) the immune response of the 

host [132]. Such a notion was furthermore supported by the finding that persistent 

carriers decontaminated for S. aureus tend be re-colonized with their previously 

endogenous strain when exposed to a mixture of strains, ultimately pointing towards the 

existence of optimal host-pathogen pairings [92]. 
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All of these adaptation processes are guided by complex regulatory networks that 

determine the balance between commensalism and invasive disease. In this regard, 

Edwards et al. [112] postulate that an absence of evolutionary pressure for virulence 

expression in the nose is consistent with low expression of the agr system, and the 

presence of agr- genotypes in nasal and blood isolates [134-136]. Nevertheless, 

virulence factor expression is determinative for S. aureus infection, and cues must 

therefore be present that switch the balance towards virulence, and thus favor invasive 

behavior, rather than adhesion and asymptomatic colonization.  

 

After entering the body 

Although the human skin is a formidable physical barrier with various additional defense 

mechanisms [137, 138], S. aureus is still able to penetrate and cause invasive infection. 

For a long time, it was believed that a breach in the skin is required for infection, e.g. 

due to contact in sports (such as football or wrestling) [139, 140], intravenous drug use 

[141], or shaving and subsequent skin-to-skin contact during sex [142]. Nevertheless, 

recent studies investigating the invasion of healthy skin showed that S. aureus is able to 

provoke programmed cell death (pyroptosis) and thereby penetrate through the 

keratinocyte barrier without necessitating previous structural damage [143, 144]. 

 
Once inside the body, information about site-specific in vivo interactions with the host is 

less complete, due to the complexity of the system, and the inaccessibility of sites 

compared to the nose. We (chapter 4 of this dissertation) and others have attempted to 

perform transcriptomics either under conditions that are thought to mimic the conditions 
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found within the host [145] or from specimens collected directly from infection sites 

[146]. Nevertheless, this picture is far from complete, as a multitude of factors influence 

the behavior of the pathogen when entering the human body. This section thus provides 

only a brief overview of this complex field of investigation. 

 

A comprehensive review of the adjustment of S. aureus to various sites and conditions 

was recently published by Balasubramanian and colleagues [147]. The authors describe 

in great detail the response of S. aureus to different environments and conditions within 

the host as well as the bacterial regulatory response, with a focus on the expression of 

virulence determinants. In general, four main categories of stimuli are delineated, all of 

which can differ significantly between different organs and organ systems: i) oxygen 

content, ii) nutrient (e.g. carbohydrates or amino acids) availability, iii) iron availability, 

and iv) organ-specific immune responses: 

 

i) The human body varies widely in local oxygen levels, ranging from high oxygen levels 

in the blood to nearly anaerobic conditions in the intestines. Since bacteria as well as 

recruited immune cells consume oxygen, levels have been shown to further decrease at 

sites of infection ([148, 149] and reviewed by [150]). In the context of hypoxia (a state of 

oxygen deprivation), osteomyelitis has been studied intensively. Osseous tissue is 

considered hypoxic [151], particularly during infection [152]. This environment triggers a 

complex response in S. aureus involving multiple regulatory systems (e.g. SrrAB), 

leading to an increased cytotoxicity towards both murine and human cell types [152]. 

NreBC [153, 154] and AirSR/YhcSR [155, 156] regulatory networks, too, have been 
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connected to adaptation to hypoxic conditions, underscoring the complex response of 

the bacterium to oxygen levels as an environmental stimulus. 

 

ii) Similar to oxygen sensitivity, cells are able to react to fluctuating nutrient availability, 

including carbon sources and amino acids, which can vary greatly between distinct sites 

in the human body. Furthermore, the amount of available compounds depends on the 

individual and any comorbid conditions, e.g. increased glucose in patients suffering from 

diabetes mellitus triggers an alternative reaction by the pathogen. In line with these 

findings, high glucose levels following surgery were connected to increased occurrence 

of infection (not limited to S. aureus) in diabetic patients [157]. These patients have a 

increased risk for pneumonia caused by S. aureus and are often affected by infections 

of foot ulcers [158], leading to further complications and increased mortality [159]. 

Similarly, poorer outcomes after infection have been reported during animal studies 

using a diabetic mouse model compared to healthy counterparts [160]. 

 

The effects of high glucose levels on S. aureus were investigated to elucidate how 

comorbid conditions affect the pathogen. A connection between glucose availability and 

disease manifestation was established when mutants deficient in glucose uptake were 

shown to display attenuated virulence in a murine SSTI model [161]. Likewise, high 

glucose levels are connected to elevated expression of virulence factors dependent on 

the regulator CcpA [162]. CcpA is known to be involved in carbon catabolite repression, 

a common theme in Gram-positive bacteria [163, 164]. Other regulators that connect 

the physiological state of the cell with the expression of virulence determinants are the 
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regulators RpiRc [165, 166] and CodY [167, 168]. While RpiRc repression of virulence 

is induced during metabolic shifts, CodY repression of virulence genes is induced during 

shortage of branched chain amino acids. These examples serve to highlight the 

response of S. aureus to changing environments, linking metabolism and virulence by 

connecting nutritional status to the invasive and pathogenic behavior of S. aureus.  

 

iii) Another response by the human host to infection is driven by the iron requirement 

(as well as other transition metals) for all forms of life. Due to its vital importance, host 

and invading pathogen constantly compete for this valuable resource. This interplay has 

been extensively researched and reviewed on several occasions [169-171]. Briefly, the 

host is able to efficiently bind and store iron, creating an extremely iron-deprived 

environment with extracellular concentrations of free iron at attomolar (10-18 M) levels 

[172]. These levels are actively decreased further in response to infection, leaving 

bacteria extremely iron-starved, effectively supporting the activity of the immune system 

in a process described as ‘nutritional immunity’ [173]. In response to these low iron 

levels, S. aureus has developed sophisticated mechanisms to free iron from the host, 

including scavenging iron from host glycoproteins (siderophore-mediated), or 

internalization of host heme and recovery of bound iron. The important survival function 

of these mechanisms is demonstrated by studies showing that depletion of involved 

proteins leaves the bacterium significantly impaired in its ability to cause disease in a 

mouse model [174-176]. As would be expected for an important and limited resource, 

several regulatory circuits within the bacterium are in place to ensure sufficient iron 

pools. These are directed by the main regulator Fur, which represses iron-
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transport/import in the presence of iron [177] to prevent toxic effects caused by excess 

iron accumulation. Thus, this regulator, just like CodY, RpiRc and CcpA, connects 

nutritional status to virulence by repressing virulence determinants in response to iron 

starvation [178].  

 

iv) Although our understanding of the human immune system has dramatically 

improved over the last few decades, only limited information is available about organ-

specific (innate) immune responses to S. aureus. Nonetheless, this is currently a highly 

active area of investigation whose work will be indispensable to our understanding of S. 

aureus infection (discussed in detail elsewhere [179, 180]). For now, a model has been 

posited to guide efforts in this direction with emphasis on the influence of the unique 

interaction that each organ maintains with the environment (i.e. varying exposure to 

microorganisms). In this model, each organ has a colonization threshold depending on 

its proximal environment and function (among other factors) ranging from ‘sterile’ to 

heavily colonized organs [180]. Therefore, S. aureus likely has to exploit various 

mechanisms to avoid eradication by the immune system with location-dependent 

specificity, and a consideration for macro- and micronutrient levels. 

 

Regulatory circuits guiding S. aureus 

S. aureus encodes an exceptionally large arsenal of virulence determinants that aid in 

its ability to infect various sites in the human body [181-183]. As the expression of these 

virulence determinants requires precise spatio-temporal control at each colonization 

site, complex regulatory networks must be in place to secure a precise orchestration of 
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these factors [184]. These ‘classical’ regulatory proteins include 115 transcriptional 

regulators [185] and 16 two-component systems (TCSs) [185, 186]. Furthermore, S. 

aureus encodes four σ factors, including σA [187], the house keeping factor; σB [188], 

the primary alternative σ factor; and two additional alternative factors, σH [189] and σS 

[190] with more elusive roles.  

 

Due to their importance for S. aureus pathogenicity, regulatory proteins have been 

identified as possible targets for the development of antimicrobials against S. aureus 

[191-194]. Accordingly, these regulatory networks have long been the focus of S. 

aureus research. Initial investigation into these systems was vastly advanced with the 

discovery of the Agr (accessory gene regulator) system, still widely regarded as the 

most important regulatory system of the bacterium ([195-197] and reviewed by [198]). 

The agr locus (agrBDCA) was found to encode a quorum sensing system [199] that 

allows the activation of virulence once the population reaches a critical mass [200]. In 

this system, agrD encodes for a propeptide that is processed and secreted by the 

membrane protein AgrB in concert with the peptidase SpsB [201]. Processing of the 

propeptide results in the mature autoinducing peptide (AIP), which, once a threshold 

extracellular concentration is reached, is bound by the receptor AgrC. This sensory 

protein coordinates with the response regulator AgrA in a TCS. Upon AIP-dependent 

activation of the system, AgrA induces expression of the agrBDCA promoter (P2), 

initiating a positive feedback loop. In addition, AgrA induces expression from the 

promoter P3 (downstream and divergent to P2) as well as other target promoters (e.g. 

controlling PSM genes) [46]. It is thought that AgrA’s primary contribution to S. aureus 
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pathogenicity is mediated via the effector transcript RNAIII, which is under control of 

promoter P3 [47, 202]. RNAIII itself is a ‘pleiotropic effector’ [203] that not only encodes 

for δ-hemolysin [204] but also acts as a regulatory RNA either directly, or indirectly 

through its action on the regulator Rot. For its direct regulatory roles, RNAIII binds its 

target mRNAs - virulence factors like protein A [205], coagulase [206], SA1000 and 

SA2353 [207] - to prevent translation and induce degradation of the transcripts 

(reviewed by [208]). Perhaps the most thoroughly studied RNAIII interaction is with the 

rot transcript, which was first identified by McNamara and colleagues [209] during a 

transposon screen for compensatory mutations in an agr-null strain. The mechanistic 

significance of this interaction is that RNAIII-mediated translational repression of the rot 

transcript, via binding and degradation, prevents Rot-dependent repression of virulence 

factors (Rot: repressor of toxins) [207, 210]. This clarified why i) an agr null strain is 

severely impaired in virulence factor expression [47] and ii) an agr rot double mutant 

displays increased production of these factors when compared to an agr single mutant 

[209, 211]. However, it is also noteworthy that Rot can also act as a positive regulator. 

Its overall regulon includes 146 genes, of which 60 are negatively and 86 positively 

regulated [212]. Therefore, the name Rot, though historically justified, is partially 

misleading in the context of its overall function. 

 

In addition to this well-characterized system, there are myriad other systems involved in 

the regulation of S. aureus virulence. The Rot protein, for example, belongs to the family 

of SarA proteins, which encompasses at least eleven members in S. aureus and was 

defined based on homology of the proteins to the S. aureus staphylococcal accessory 
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regulator A (SarA) regulator [213, 214]. The SarA protein was first described by Cheung 

and colleagues [215] in connection to agr [216]. Since these early investigations, this 

regulator has been the topic of extensive research (reviewed by [203]) describing both, 

the direct and indirect, effects of the protein. SarA has been shown to i) induce 

expression of genes controlled by promoters P2 and P3, thereby feeding into the action 

of the Agr system [217-219]; ii) facilitate the binding of AgrA to P2 and P3 [220]; and iii) 

directly bind to sites upstream of its target genes to induce their expression [219, 221, 

222]. Each of these actions directly affects the expression of virulence determinants, 

establishing SarA as one of the master regulators of S. aureus pathogenicity [213]. The 

control of sarA itself is multifactorial (reviewed by [203]), but peak expression has been 

reported during later growth phases [223] and thus approximately coincides with Agr-

dependent activation of virulence determinants. Additional post-translational regulatory 

mechanisms have also been proposed [224, 225], adding further nuance to this already 

complex system.  

 

Another protein with homology to SarA is MgrA (formerly referred to as Rat, [226]), 

which has a tripartite effect on virulence factor expression, by either i) direct interaction 

with Agr, ii) interaction with the transcription factor SarS or iii) direct induction of its 

target transcripts [227]. In these ways, the regulator positively and negatively controls a 

large regulon, which, amongst others, includes numerous virulence factors and surface 

proteins [228]. Other systems in turn control MgrA, e.g. the TCS ArlRS [229] as well as 

the small regulatory RNA RsaA [230]. RsaA is of particular interest, as (translational) 

regulation by RNA-RNA interaction has been found to be a ubiquitous mechanism of 
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gene regulation (reviewed by [208, 231]), as discussed in chapter 4 of this dissertation. 

RsaA thus interacts with the mgrA transcript and represses translation of the transcript 

[230]. Notably, RsaA itself is controlled by the alternative σ factor σB [230, 232], which 

has been previously shown to modulate virulence of S. aureus [233-237]. This creates a 

rather interesting situation where an alternative σ factor (σB) controls a regulatory RNA 

(RsaA), which in turn controls a transcription factor (MgrA), that interacts with the major 

regulatory system (AgrBDCA), that activates another regulatory transcript (RNAIII), 

which suppresses the (negative) regulator (Rot), allowing the expression of proteins that 

promote invasive behavior and pathogenicity of S. aureus. Furthermore, even this 

presentation belies the true complexity of these systems: at each junction, secondary 

(direct or indirect) effects on other genes or regulators are also present, producing an 

even more involved regulatory network. Several other transcription factors (e.g. other 

members of the Sar family [203]), two-component systems (e.g. SaeRS [238-240]) and 

regulatory RNAs (e.g. SSR42 [241], SprD [242] and SprC [243]) have been found to 

influence pathogenic behavior, but will be not discussed in further detail here. 

 

The intricacy, redundancy, and interconnectivity of these regulatory networks are no 

mere coincidence but nothing less than an absolute requisite for survival. The delicate 

modulation of energy-consuming virulence factor production under different micro- and 

macronutrient conditions is exemplary of the economic allocation of energy resources in 

this bacterium. Therefore, all indications support the case that no encoded regulatory 

factor presents an unnecessary burden, but that every convergence and divergence, 

every layer of regulation, and every additional regulator integrated in the network that 
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guides S. aureus lifestyle serves an integral purpose for fine-tuning the conditions that 

allow the bacterium to successfully colonize or invade its host.  

 

S. aureus plays its hand 

 
The environments where S. aureus must survive differ significantly on every possible 

level, from an undisturbed colony in the human nose to the peril of engulfment by a 

macrophage. Moreover, the organism must account for host-dependent, large-scale 

variations (e.g. the immune response of carriers vs. non-carriers) as well as specific 

interactions with other microorganisms in the polymicrobial communities where it 

resides. In simpler terms, the living conditions of S. aureus are exceedingly complex; 

the bacterium’s ability to quickly adjust to new conditions is thus the cornerstone of its 

success as a pathogen. These changes are governed by elaborate regulatory networks 

that dictate whether to hide or attack, to lie dormant or proliferate, to save or expend 

energy. This complexity may well be the explanation for the failure of research across 

several decades to find ‘the holy grail’ of S. aureus research, the single master regulator 

that controls virulence; it is likely there is no such regulator, as the intricacy of 

environmental cues and stimuli cannot be accommodated by one major switch, but 

rather a finely adjusted system of interconnected relays. The shortcomings of this 

pursuit are perhaps best exemplified in the fact that the most significant regulator of 

virulence, the Agr quorum sensing system in concert with RNAIII, is inactive in 

numerous clinical isolates, not only during invasive infection, but also prior to colonizing 

the nose [134-136]. Therefore, it is imperative to consider the regulatory networks in 

their entirety - every switch and gear that they encompass - for minor changes in these 
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systems can propagate to major alterations in the final outcome (i.e. severe bacterial 

infection). To do so, we must take into account not only ‘classical’ transcription factors 

(TFs), two-component systems (TCSs) and σ factors, but other proteins and molecules 

that have historically been underappreciated in terms of their regulatory capabilities. 

These would include, for example, both regulatory small RNAs (sRNAs) and active 

components of the transcription machinery, and will be referred to as ‘non-classical’ 

regulators. Both groups of alternative regulators will be discussed in this dissertation. 

Specifically, the research described here aims to i) understand how under-investigated 

components of the transcription machinery can have both global as well as gene-

specific effects on the transcription process (chapter 2 and 3), and ii) identify and 

catalogue undiscovered regulatory elements (sRNAs) in S. aureus (chapter 4). This 

latter approach is of particular interest, as horizontal gene transfer and strain-specific 

differences have been shown to play an integral role in the evolution of this bacterium.  

 

It is imperative to understand the precise role of these regulatory systems in the 

adjustment of S. aureus to ever-changing environments, be it in a battle with the 

immune system or other bacteria in its natural niche, in a quest for nutrients during 

infection, or during exposure to antibiotics in the hospital. When performed in 

meaningful backgrounds (e.g. the USA300), research directed to fill in the blanks of our 

existing regulatory maps will produce invaluable information about the adaptive 

mechanisms of S. aureus, an organism that must be constantly ‘running to stand still’ 

[112] in order to secure its success as a pathogen. 
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SMALL THINGS CONSIDERED: THE SMALL ACCESSORY SUBUNITS OF RNA 

POLYMERASE IN GRAM-POSITIVE BACTERIA 

 

Note to reader  

This chapter was previously published as a manuscript [244], and has been included 

with permission from the publisher (Appendix I). 
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CHAPTER 2: THE δ SUBUNIT OF RNA POLYMERASE GUIDES PROMOTER 

SELECTIVITY AND VIRULENCE IN STAPHYLOCOCCUS AUREUS 

 

NOTE TO READER  

This chapter was previously published as a manuscript [245], and has been included 

with permission from the publisher (Appendix II). 
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CHAPTER 3: THE ω SUBUNIT GOVERNS RNA POLYMERASE STABILITY AND 

TRANSCRIPTIONAL SPECIFICITY IN STAPHYLOCOCCUS AUREUS 

NOTE TO READER  

This chapter was previously published as a manuscript [246], and has been included 

with permission from the publisher (Appendix III). 
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CHAPTER 4: GENOME-WIDE ANNOTATION, IDENTIFICATION, AND GLOBAL 

TRANSCRIPTOMIC ANALYSIS OF REGULATORY OR SMALL RNA GENE 

EXPRESSION IN STAPHYLOCOCCUS AUREUS 

 

NOTE TO READER  

This chapter was previously published as a manuscript [247], and has been included 

with permission from the publisher (Appendix IV). 
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CHAPTER 5: CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

CHECKS… 

 
The variation and hostility of the environments where S. aureus resides have demanded 

an unparalleled versatility to secure bacterial survival. This adaptation involves the 

ability to quickly adjust physiological processes via differential expression of regulatory 

components governing these pathways. As discussed in this dissertation, a multitude of 

individual regulatory elements (including the ones identified in chapters 2-4) guide 

alterations in gene expression patterns. Nevertheless, our knowledge of regulators 

individually must be complemented by an understanding of these factors in their native 

context within global regulatory networks. Only this will allow us to ultimately develop an 

understanding of how S. aureus (and bacteria in general) makes complex decisions in 

an ever-changing environment [248]. 

 

Evidence suggests that at least some aspects of S. aureus gene expression follow 

temporal patterns, perhaps driven by proliferation and subsequent increase in bacterial 

culture density over time. The importance of these factors is reinforced by the central 

role of the Agr quorum sensing system in the lifestyle of S. aureus (as discussed in 

chapter 1). With regards to temporally resolved expression patterns, it has been 

repeatedly demonstrated that different adhesins are expressed during the consecutive 
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stages of nasal colonization [116, 117, 128]. Similarly, temporal patterns have long 

been known to be present during the ‘normal’ bacterial growth curve under laboratory 

conditions, wherein gene expression is regulated depending on culture density, 

amongst other factors (as discussed by us recently [249]). Nevertheless, growth in a 

laboratory setting presents a rather crude representation of the situation in vivo, since 

(external) stimuli like nutrient alterations/limitations, sudden exposure to antibacterial 

host molecules, and/or onset of an immune response, are entirely absent (although 

nutrient and/or oxygen deprivation are present at later phases of growth). Furthermore, 

bacteria in the nose fail to reach densities found in laboratory culture (though permanent 

carriers have been connected to higher bacterial loads [92]), therefore limiting the 

potential influence of quorum sensing signals under these conditions. In line with these 

findings, Burian and colleagues [127, 130] showed that the agr locus (as well as saeRS) 

is transcriptionally inactive during nasal colonization, while the essential walKR TCS is 

highly transcribed, supporting the conclusion that the latter controls nasal adhesion. 

Nevertheless, the precise stimulus for activation of the WalKR system is not known, and 

it is therefore unresolved which signals guide temporal expression patterns during nasal 

colonization. Such a shortcoming in understanding the adaptation to an important and, 

at the same time, easily accessible, niche highlights the need to further investigate the 

decision making process in S. aureus.  

 

Regardless of these obvious limitations, the scientific community has made significant 

advancements in unraveling the function as well as the signals governing numerous 

regulators in S. aureus. Despite this progress, most studies that aim to understand a 
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particular regulatory factor are restricted to only characterizing specific in- and outputs, 

e.g. CodY (indirectly) senses the absence of branched chain amino acids and in turn 

reduces expression of genes involved in central metabolism as well as virulence factor 

production [167, 168, 250]. However, as indicated previously, no circumstance exists in 

which only one input determines the cell’s fate. Rather, multiple signals are sensed at 

any given time and the receiving factors/pathways intersect and interact synergistically 

or antagonistically in turn. Therefore, bacterial gene regulation cannot be framed as a 

linear series of events but rather as a three-dimensional network with a multitude of 

nodes and switches that integrate these inputs to fine-tune major processes of the cell, 

e.g. the Agr system’s role as a ‘nexus’ [25] for virulence.  

 

Seshasayee and colleagues eloquently discuss these regulatory networks on the basis 

of results from the model organism Escherichia coli [248], though their conclusions are 

nonetheless valid for other bacteria, including S. aureus. In order to model how various 

signals influence cellular behavior, three primary classes of transcription factors are 

outlined: i) Exogenous regulators are often TCSs, which consist of two distinct 

functional units: a membrane-bound sensor (histidine kinase) that responds to an 

external stimulus by transmitting a signal to an intracellular TF, which then affects the 

transcription of the system’s target genes [251]. External stimuli can also be sensed 

when extracellular molecules are imported and bound by regulatory enzymes within the 

cell. A primary example of this type of TF is the Fur regulator, which reacts to cellular 

levels of the essential transition metal iron in S. aureus and other (pathogenic) bacteria 

[252]. Another system able to sense external signals is the TCS SaeRS (described 
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above) that adjusts virulence factor expression in response to salt stress, low pH, 

subinhibitory clindamycin concentrations and exposure to proteins/peptides produced 

by human neutrophils [253-255]. In contrast to exogenous TFs that connect cellular 

physiology to the environment, ii) Endogenous TFs only bind molecules within the cell. 

These are commonly key molecules of major metabolic pathways that indicate the 

general energy and physiological state of the cell. iii) The last category, hybrid 

regulators, can sense signals (e.g. amino acids) that can be of exo- or endogenous in 

origin. This bifunctionality of such regulators prevents a definitive assignment to one of 

the two previous groups.  

 

Information about the abundance of each class of regulators can give general 

information about the extent of interaction of a bacterium with its environment. In E. coli, 

it was shown that ~24% of the 120 regulators with known targets are endogenous, 

48.5% exogenous and 27.5% hybrid, meaning that ~76 % have the ability to respond to 

external stimuli [256]. Although only speculative at this point, a similar relationship could 

also be described for S. aureus, supported by the comparable numbers of TCSs and 

TFs between S. aureus and E. coli (TCSs: 16 vs. 28, TFs: 115 vs. 120) [185, 186, 248, 

257]. These findings corroborate the extensive interplay observed between S. aureus 

and its immediate surroundings. Here, the bacterium must be able to integrate external 

and internal signals that provide information about the activity (e.g. antibacterial) of the 

host and the cell’s own physiological status, respectively. These inputs have to be 

simultaneously processed so that the subsequent cellular responses can be 
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orchestrated in a coordinated and logical fashion, securing survival of the single cell as 

well as the population.  

 

Although significant advances have been made in our understanding of regulatory 

networks in general (with E. coli as the primary model) and TFs in S. aureus specifically, 

our knowledge of the minutiae involved in global regulation is still rudimentary. This is 

due to a variety of shortcomings, though a defining bottleneck is the identification and 

characterization of large numbers of yet undescribed or uncharacterized regulators. As 

discussed, regulatory active components of RNAP as well as regulatory RNAs are 

prime examples of this shortcoming, which we attempted to resolve in this dissertation.  

 
 
 

…AND BALANCES 

 
In our effort to understand how and when a bacterium infects its host, we are inevitably 

confronted with the questions ‘What defines virulence?’ and ‘Which bacterial properties 

unlock its pathogenicity?’. Historically, we have characterized a bacterium’s pathogenic 

capability as the sum of its encoded proteins that injure the host or avoid its immune 

responses. Only recently has the scientific community started to appreciate that 

virulence is not solely defined by encoded virulence determinants, but that virulence is 

largely dependent on the susceptibility of the host and the nature of general host-

pathogen interactions [258]. Opportunistic pathogens like Acinetobacter baumannii or S. 

epidermidis exemplify the advantage of this perspective. While A. baumannii is 

responsible for devastating infections [259, 260], it is only sparsely equipped with 
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pathogenic factors, and it has even been proposed that the bacterium does not encode 

a single bona fide virulence factor [261]. Similarly, S. epidermidis has been referred to 

as an ‘accidental’ pathogen [262], as it is ubiquitously found as a commensal on the 

human skin and lacks the vast majority of virulence factors found in related pathogens 

(e.g. S. aureus) [263, 264]. Nevertheless, this commensalism can quickly escalate to 

life-threatening invasive infections (e.g. blood stream infections in ICUs), particularly in 

connection to indwelling implants [265, 266]. These examples highlight how largely 

benign bacteria can, under certain conditions, cause disease and emphasize that a 

bacteria-centric view, focusing only on encoded virulence markers, is indeed too 

simplistic. Instead, the complex interplay at the host-pathogen interface must be 

considered to understand a bacterium’s pathogenic potential.  

 

For S. aureus, several lines of research have shown that the interaction of host and 

bacterium is particularly host-specific. A prime example is the process of nasal 

colonization, where a large number of studies identified, amongst other aspects, genetic 

predisposition and gender to be risk factors for S. aureus colonization (comprehensively 

reviewed in [267]). We now appreciate that the intricate relationship of S. aureus with its 

human host is a result of co-evolution [268-270]. Both the host immune system and 

bacterial virulence have evolved to survive at their interface in what has been described 

as an ‘arms race’ by Dawkins and Krebs in 1979 [271]. Although a plethora of 

battlegrounds for pathogen and host have been described, perhaps the best 

characterized is the fight for iron (chapter 1). Here, the host has adapted to sequester 

most available iron and even reduce iron levels upon recognition of an infection [172, 
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173]. In response, S. aureus has developed sophisticated means to recover these 

hidden treasures by ‘cheating, thievery, and piracy’ [170, 272]. Another important 

example is the fine balance between commensalism and infection at the skin barrier, 

where the (innate) immune system and bacterial factors (e.g. ACME-encoded SpeG 

[52]) are engaged in a constant, counteractive effort [273]. Although this balance has 

developed over millions of years, the equilibrium is frequently disturbed. An example of 

this relationship is the start of the antibiotic era when the host prevailed and, for a very 

brief window in the 60’s/70’s, we had the hubris to believe that we would be able to 

eradicate bacterial infections altogether [274]. In response to the ‘many millions of 

metric tons of antibiotic compounds… [that] have been released into the biosphere’ 

[275] since the beginning of the antibiotic era, bacteria have rapidly developed 

resistance mechanisms to circumvent their negative actions [275]. Through these 

antibiotic resistance patterns, in combination with the spread of newly emerging CA-

MRSA strains in the healthy population, the bacterium has once again gained significant 

momentum. As these examples show, the host-pathogen balance is fragile, and small 

changes, e.g. host-specific differences or evolutionary adaptation of the pathogen, can 

have a strong influence on the overall outcome of any given interaction.  

 

The delicacy of this interplay is now appreciated, and antimicrobial strategies, rather 

than attempting to eradicate the pathogen, aim to disarm the organism or boost host 

defense to increase the immune system’s chances of gaining the upper hand [276]. 

Historically, bacteriostatic antibiotics have followed this model, in which bacteria are 

hindered in their plan of action and the eradication itself is driven by the immune system 
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(reviewed by [277]). In this vein, interference with the host-pathogen balance can be far 

subtler than our current approaches and still move the needle in favor of the host, in 

turn promoting clearance of the infection. To date, significant process has been made in 

this area, and numerous immunomodulatory candidate molecules have been identified 

[278-285]. 

 

During the ‘arms race’ between bacteria and host, S. aureus strongly relies on virulence 

factors that it utilizes in hiding from the immune system (e.g. various surface factors of 

S. aureus [286]) and/or interference with the bodies defense mechanisms (e.g. cytolytic 

toxins [287]). However, virulence factors expression is thought to be energetically costly 

[288]; similar to antibiotic resistance expression (e.g. from larger SCCmec elements in 

HA-MRSA strains [21]), this expression program is considered a fitness burden that 

forces the bacterium to balance toxicity and energy homeostasis [289]. Ultimately, the 

cell spends only i) as much as it can afford and ii) as much as is necessary [132]. In 

terms of pathogenic organisms, this temporal thriftiness is closely related to the idea 

that a given (virulence) gene can be beneficial under certain conditions, e.g. during 

invasive disease, while being disadvantageous during others, e.g. colonization of the 

host (a concept referred to as ‘antagonistic pleiotropy’ [290]). Bliven and Maurelli [269] 

have thus speculated that pathogens circumvent this dilemma by ‘evolv[ing] 

mechanisms to neutralize the deleterious effects arising from antagonistic pleiotropy, 

while at the same time conserving the beneficial ones’. One way, for example, to 

prevent the deleterious effects while maintaining the advantages is to use regulatory 

systems that only use genes under certain conditions.  
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In order to understand the interplay between host and pathogen and, more importantly, 

to intervene with infection in a targeted manner, we must investigate those factors that 

guide bacterial (virulence factor) gene expression. Bacteria not only gain new weapons 

during their ‘arms race’ with the body, but also learn how to use them in the most 

efficient way without disturbing the (energy) homeostasis of the cell. In the context of S. 

aureus, it is necessary to elucidate how and why virulence is induced and how certain 

genes (not only regulators, but effectors as well) influence the host-pathogen balance. 

Once we have a better understanding of the regulatory processes and the signals that 

influence the interaction between host and bacterium, we can utilize this information to 

revise and extend treatment therapies.  

 

THE IMPORTANCE OF NON-CLASSICAL REGULATORS 

 
As discussed, it is of utmost importance to characterize regulatory circuits in their 

entirety in order to understand and, in turn, predict bacterial pathophysiology. Although 

significant progress has been made in the field of S. aureus gene regulation, our picture 

is far from complete. These shortcomings are particularly salient in our current 

understanding of ‘non-classical’ gene regulators.  

 

For ‘classical’ proteinaceous regulatory molecules, including TFs, TCSs and σ factors, 

an abundance of information is available, facilitating the identification [185] and 

prediction of their function based on protein domain conservation [291] and homology to 

proteins in other bacteria, e.g. ones deposited to the Protein Data Bank [292]. Similarly, 

putative targets of TFs, TCSs or σ factors can be identified based on the known 
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consensus sequences for their binding sites on promoter regions (e.g. Fur box [293] or 

the consensus sequence for the alternative σ factor σB [294]). For other regulatory 

molecules, like small regulatory RNAs or proteins that exert their regulatory behavior via 

alternative mechanisms (e.g. small accessory RNAP subunits), such endeavors are 

significantly more challenging. Ultimately, the current limitations in the integration of 

‘non-classical’ regulators into existing networks can be attributed to: i) not yet having 

identified all such elements, ii) a lack of information about the signals that trigger a 

specific response in these regulators, and iii) an unavailability of experimental data 

identifying possible transcriptional targets of these regulators. In the following, we will 

further discuss each of these challenges and the contribution of this dissertation in 

overcoming them:  

 

i) RNAP is one of the best-studied enzyme complexes due to its central role in 

organismal function. Consequently, it has long been known that RNAP contains several 

small subunits in addition to its four main subunits α2ββ’, and closely associated σ 

factors [295-298] (though the presence of these subunits can differ between Gram-

positives and Gram-negatives [244]). Within the complex, several proteins have already 

been assigned regulatory roles. It is generally appreciated that the α subunits are able 

to make contact to DNA-sequences upstream of a promoter or bind additional 

regulatory factors, while σ factors guide transcription machinery by recognizing specific 

promoter sequences. In contrast, other subunits, i.e. δ, have been less appreciated for 

their regulatory properties: while δ was initially studied in the context of phage-infection 

[296], it was not until several decades later that the protein was established as a 
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permanent RNAP component [299], which plays a role in the maintenance of stringency 

in the transcriptional process (demonstrated in a number of studies and summarized by 

us [244]). Although this general regulatory role was known, no gene-specific effects had 

been assigned until recently, leading to its exclusion from ‘classical’ regulatory 

networks. Through the research described in this dissertation, we have extended the 

existing knowledge base and suggested potential selective effects for δ. Our data show 

that abrogation of the subunit’s activity results in broadly altered virulence factor 

expression. As we detected no large-scale alterations in expression of known S. aureus 

virulence regulators, it is likely that δ interacts directly with its targets. Though precise 

mechanisms for this phenomenon will need to be elucidated, these findings, together 

with various observations from others ([300-303] and discussed by us [244]), imply a 

potentially important role for this subunit within the regulatory circuits of S. aureus and 

other bacteria. This is particular intriguing as δ resides ‘at the core’ of the transcriptional 

process, pointing towards a very basic role in regulating intrinsically important 

processes, e.g. as described for σ factors.  

 

With respect to sRNAs, these molecules have been known to function as global 

regulators of bacterial physiology [304], and have already been demonstrated to play 

central roles in controlling virulence [305-308], stress response [309] and metabolism 

[310]. They exert their roles by acting as important sensors, connectors or effectors 

(transcriptional, post-transcriptional and at the protein level) in the regulatory network of 

the cell, and it is thus crucial to include these elements in our future regulatory 

roadmaps [311]. Unfortunately, the available information about encoded sRNAs was 
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rudimentary for a long time, mainly due to technical limitations (to be discussed further). 

Nevertheless, driven by the establishment of next generation sequencing (NGS) as a 

standard lab technology, this picture is changing quickly [312, 313]. As a result of this 

extensive use of NGS, the number of sequenced genomes in publicly available 

databases steadily increases: at the time of this dissertation, >13k complete bacterial 

genome sequences were available in the NCBI Microbial Genomes database 

(https://www.ncbi.nlm.nih.gov/genome/). In order to transfer these raw sequences into a 

usable format, adequate tools for reliable data processing and genome annotation must 

be developed alongside these advances. Although automated annotation has 

significantly improved [314], the sheer amount of available data still 'makes 

bioinformatics the bottleneck' [315]. While prediction software can not only identify the 

presence of protein-coding sequences but also certain conserved noncoding RNA 

(ncRNA) species (i.e. tRNA and rRNA), the identification of genes (e.g. sRNAs) that are 

not widely conserved, missing ribosomal binding sites, and/or with unclear open reading 

frames commonly presents itself as a hurdle. Despite these challenges, automated 

sRNA prediction is now a valuable tool to supplement proteinaceous as well as tRNA 

and rRNA annotations [316-318]. As with all computational approaches, these 

predictions must be complemented by experimental data to prevent erroneous 

identification and allow for the confident integration of sRNAs into existing genome files 

(and subsequently into regulatory networks). Likewise, a unified nomenclature system 

for identified transcripts should be implemented, as discrepancies can lead to the 

redundant identification of sRNAs.  

 



	 43	

In the study described in chapter 4, we addressed each of these problems. For the first 

time, we introduced an annotation system for S. aureus that supports the classification 

and organization of all previously identified sRNAs. This was used as a platform for the 

identification of 39 as yet undescribed transcripts, increasing the combined number of 

currently known sRNAs in the USA300 background to 303 transcripts (~10% of all 

encoded genes). This large number highlights the importance of this relatively 

unexplored group of regulatory factors in S. aureus: while the bacterium encodes for 

135 known proteinaceous regulatory factors (TFs, TCSs and σ factors combined), there 

are at least twice as many sRNAs transcribed. Our optimized RNAseq [319] and sRNA 

identification/annotation procedure can now be used as a blueprint for future studies in 

other organisms. Consequently, we performed similar studies for three additional 

organisms, S. epidermidis, S. carnosus [320] and A. baumannii [321]. The latter 

bacterium was investigated due to its ability to cause devastating infections, including 

ventilator-associated pneumonia, blood stream infections or SSTIs [322]. In our study of 

this organism, we identified 78 uncharacterized sRNA transcripts [321], including a 

group of conserved and highly expressed phage-derived sRNAs, as well as 

conservation patterns amongst these sRNAs that suggest a modular arrangement 

similar to protein domain architecture.  

 

In order to further demonstrate the utility of our sRNA identification and annotation 

approach, we employed our genome annotation files, now including currently known 

sRNAs, to study the evolutionary implications of these transcripts [320]. Here, we cross-

compared the sRNA content between a pathogenic bacterium (e.g. S. aureus), 
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opportunistic pathogen (e.g. S. epidermidis) and non-pathogenic organism (e.g. S. 

carnosus) [320]. In so doing, we were able to gain insight into orthologous elements that 

pointed to both a set of core sRNAs, which are found in a wide number of strains, as 

well as elements only present in virulent lineages, i.e. those that possibly contribute to 

pathogenicity. 

 

Though the identification and classification of these sRNAs is an important first step 

toward a more complete understanding of bacterial gene regulation, the role of these 

data is first and foremost the production of a solid foundation upon which further 

experimental efforts can investigate the precise roles of these transcripts in the cell. 

Indeed, these experiments have only further expanded the horizon of this field of 

research, providing us with a greater appreciation for the magnitude of the task ahead. 

 

ii) After initial identification and cataloguing, the next logical next step is exploration of 

the precise conditions and signals that trigger a response by these elements. 

Unfortunately, these factors are not yet known for many (if not most) sRNAs; largely as 

a result of their absence in genome annotation files, and their consequent omission 

from many high throughput transcriptomic analyses. Our unfamiliarity with such signals 

is not only a problem for ‘non-classical’ regulators but also for known proteinaceous 

elements, as discussed earlier in this dissertation. Only when we understand which 

inputs govern and alter specific cellular processes can we create maps of networks and 

predict the outcomes of host-pathogen interplay, which in turn will lead to more 

successful attempts to interfere with the pathogen’s plan of action. As our ultimate goal 
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is to identify the contribution of these S. aureus transcripts to its regulatory network (and 

ultimately to its ability to cause disease), we need to decipher which of the transcripts 

are active (or inactive) under conditions that mirror those found in the host. Herein we 

extend current knowledge by performing RNAseq in human serum (chapter 4), as well 

as during adaptation to stationary phase growth [249]. Serum was chosen for 

examination because blood stream infections present an increasing problem [56-60], 

and serum contains (natural) antibodies [323], antimicrobial peptides [324, 325], and 

low iron levels [326], presenting an appropriate model for conditions and challenges that 

the bacterium might encounter during host invasion. After initial examination, we 

recorded decreased expression of RNAIII in line with previous studies [327, 328], 

therefore validating our approach. In addition to RNAIII, 83 other sRNAs (~27% of the 

total sRNA content) displayed differential expression in serum vs. TSB, with the two 

most strongly affected transcripts showing a ~600-fold and ~1200-fold increase and 

decrease in abundance, respectively. The decrease of agr/RNAIII expression itself 

could be a result of AIP sequestration by the serum component apolipoprotein B [325], 

or via a more active mechanism, as high virulence factor expression could be a 

disadvantage during growth in serum [288]. Independent of the ultimate cause of altered 

RNAIII expression, it is interesting to speculate as to whether the other differentially 

expressed sRNAs are controlled in an agr-dependent manner, influenced by other 

serum factors or react to the cell’s overall physiological state. Regardless of the nature 

of the stimulus, these transcripts are certainly highly responsive to the environments 

they encounter in the human body. Further work should aim to deconvolute which 
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stimuli in human serum (i.e. as a system radically different from TSB) trigger the 

activation of these transcripts and which other regulators mediate this response. 

 

For any given sRNAs, the change observed in its expression pattern under certain 

environmental conditions/stimuli is a good indicator for its role within the cell’s regulatory 

networks. The role of proteinaceous factors, too, can often be evaluated for activity and 

specificity of their response in this way (e.g. Agr system, σB). However, expression-

activity relationships are not always so straightforward; TCSs, for example, are often 

constitutively expressed (although additional autoinduction can be present) [329]. 

Contrary to sRNAs and in line with TCS expression, we were able to show a relative, 

stable and robust expression of small RNA polymerase subunits δ and ω throughout the 

growth of S. aureus (chapter 2 and 3, as well as [249]). This finding is surprising given 

the gene-specific regulatory roles of the δ subunit, and the likely non-constitutive 

expression of most of its target genes (e.g. virulence determinants). We thus expect 

alternative mechanisms to mediate activation/deactivation similarly to TCSs. Our 

studies into the ω subunit of RNA polymerase (chapter 3) offered the first glimpse of 

such an alternative control system for the δ subunit. The function of ω was found to be 

mainly of a structural nature and deletion of the subunit induced structural stress within 

the RNAP complex accompanied by release of δ. Since δ can only perform its function 

when bound to the core RNAP subunits, this release would be an effective way to 

regulate activity of δ itself. Although this hypothesis is rather novel and will require 

further evaluation, this would indicate an additional layer of transcriptional regulation, 

comparable to a previously described change in the affinity of alternative σ factors to ω-
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less RNAP in E. coli [330] and cyanobacteria [331]. In this type of regulatory setup, no 

specific biochemical signals would be required; rather, it would allow the cell to respond 

to structural damage of the RNAP complex, e.g. due to heat stress of other physical 

signals (in the context of chapter 3, due to depletion of ω). This mode of activation 

would conceptually resemble that of RNA thermometers, in which temperature-sensitive 

RNA structures, e.g. in the 5’ untranslated region, control mRNA translation [332]. For 

both RNAP subunits as well as RNA thermometers, the ‘signal’ would therefore cause 

structural changes, which in turn alter regulator activity and transcriptional outcomes.  

 

In summary, our studies have identified conditions of high/low activity of alternative 

regulators of interest, and therefore present an important first step towards the 

integration of sRNAs and small RNAP subunits into ‘classical’ regulatory networks.  

 

iii) The last of the initial steps towards the incorporation of newly identified regulatory 

elements into established networks is the characterization of their physiological effects. 

 

In the context of small RNA polymerase subunits, in particular δ, our transcriptomics 

approaches showed not only a general loss of stringency in the transcriptional process, 

but also a decreased expression of various virulence determinants, which was 

additionally confirmed by extensive phenotyping. This strong shift in expression of one 

particular set of genes in the absence of any notable changes in expression of typical 

regulators of S. aureus virulence implies that δ may in fact act as a gene-specific 

regulator itself. If so, the subunit must be able to distinguish between genes while bound 
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to RNAP via either specific DNA-sequences and/or DNA-modifications. Each of these 

has been previously shown to be recognized by proteins carrying a specific (HARE) 

helix-turn-helix (hth) domain [300] that we found to be highly conserved amongst δ 

proteins across various Firmicutes [244]. During our investigation of possible δ-specific 

promoter features, we were able to identify differences in abundance of the presence of 

a consensus [HAATTWD] motif in promoter regions of putative δ-regulated genes 

(unpublished observation). This sequence was found in the upstream regions of 76.5% 

of genes that showed decreased expression in the δ-less strain, while only 24.5% of the 

upregulated genes in this strain carried the motif in their extended promoter region. 

These data are further supported by Prajapati et al, [303], who described that 

replacement of certain AA repeats (as modeled in the consensus) by CC in AT-rich 

regions diminished the positive transcriptional effects of δ on a model promoter. 

Although somewhat preliminary at this point, these data combined suggest that the 

selectivity of δ for its target genes is driven by the recognition of specific AT-rich 

promoter features by a conserved hth domain of the subunit. 

 

In contrast to target identification for RNAP subunits, where the search is limited to 

particular DNA-sequences or modification, the pinpointing of sRNA targets is decidedly 

more challenging. Accordingly, of the 303 sRNAs in S. aureus USA300, less than 10% 

have been functionally characterized (often lacking the exact mechanism of action). 

Although reverse genetic screens have been useful in the past in the identification of the 

precise function of genes in S. aureus [333], this strategy proves to be recalcitrant for 

sRNA study. The non-coding RNA SSR42, a strong effector of virulence in S. aureus 
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[241], exemplifies these difficulties. This sRNA has been shown to be required for 

cytolytic activity, immune evasion and pathogenesis during infection of a murine SSTI 

model. Though the cell’s transcriptome is dramatically altered in a ΔSSR42 strain, no 

specific cellular targets could be identified [241]. This case is particularly notable, as 

loss of the sRNA results in clear phenotype, affecting one of the best-studied aspects 

(virulence factor production) of S. aureus. This author, too, has spent significant energy 

on identifying a target for SSR42 interaction (data not shown) to no avail. These 

examples are not meant to belittle such efforts, but rather indicate how easy it can be to 

miss even the biggest target when the system is as challenging as for sRNAs.  

 

Overall, our studies serve as a model for the three steps required toward integration of 

‘non-classical’ regulators into the ‘classical’ regulatory landscape of S. aureus: i) We 

were able to describe the potentially gene-specific activity of a resident component (δ) 

of RNAP. In addition, we identified 39 unknown sRNAs in the S. aureus USA300 

background and made information about previously known sRNAs more accessible for 

further investigations by creating the first publicly available genome files to contain 

sRNA annotations. ii) These files were used to catalogue differential sRNA expression 

under pathophysiologically relevant conditions (human serum), thereby establishing 

relevance of these transcripts to the infection process. Furthermore, we reported the 

release of δ from the structurally disturbed transcription machinery, explaining how this 

regulatory active component of the RNAP complex could be controlled itself. iii) With 

regard to target identification, evaluation of the diminished virulence factor production in 
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δ-depleted strains led to the identification of putative targets and DNA features that may 

mediate target recognition by this subunit. 

 

In the future, each of these elements will need to be fully integrated into our existing 

regulatory maps of the cell. Before then, there is significant amount of work ahead of us. 

However, with the first steps behind us, further studies can evaluate the cross-talk of 

these ‘non-classical’ regulators with known (and yet to be identified) elements and sub-

networks. Such an endeavor will be a herculean task for the coming decades, but is 

nonetheless paramount in the construction of a holistic view of the cell’s complex 

machinery that will pave the way for more effective development of antimicrobial 

treatments. 

 

FUTURE DIRECTIONS 

 
The experiments in this dissertation have advanced our knowledge about regulation in 

S. aureus, and we hope that our contributions will bolster future efforts to combat this 

pathogen that has for too long plagued patients across the globe. Nevertheless, our 

studies have to be seen as just a starting point, and follow-up experiments are required 

to fully elucidate the role of the investigated regulatory elements in S. aureus disease 

causation. Experiments that could supplement this knowledge base are described in the 

following two sections, with regard to either i) small RNAP subunits or ii) sRNA-related 

projects.  
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i) In the studies described in this dissertation, we were able to identify a role of δ in 

gene-specific regulation of S. aureus and its effect on the production of numerous 

virulence determinants. As this activity implies regulatory control by δ itself, we propose 

that the physical state of the RNAP complex and δ release upon structural disturbance 

may govern the activity of this subunit. Further characterization of promoter features 

that result in δ subunit dependency will be required to adequately describe its effect on 

target virulence factors. In order to characterize these features, DNA-sequences or 

modifications of directly δ-dependent promoters need to be identified. In such 

circumstances, where limited information is available about specific targets, chromatin 

immunoprecipitation sequencing (ChIPseq) is often the method of choice. The method 

was first introduced in 2007 [334] and is widely used today [335-337] in both prokaryotic 

and eukaryotic studies. Briefly, ChIPseq is based on the use of tagged DNA-binding 

proteins, which, after cross-linking, are enriched upon precipitation along with their 

bound DNA-fragments. Sequencing of these fragments then provides information on the 

target sequences of the regulator in question. Such an approach has previously been 

successfully employed to study genomic RNAP distribution in E. coli [338]. In the 

context of δ, a similar study could be conducted in the presence and absence of the 

subunit, with precipitated promoters then correlated with existing RNAseq data to 

generate a list of elements that are specific δ targets.  

 

Ultimately, target identification for regulatory elements must be accompanied by 

information concerning the conditions that prompt this regulation. Our experiments 

suggested that, under certain conditions, i.e. due to loss of ω, δ can be released from 
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the RNAP, abolishing its influence on transcription. Nevertheless, it is unclear as to 

whether this “stress-model” is an artifact of the depletion of ω or if the release of ω (and 

subsequently δ) actually occurs in vivo. This uncertainty highlights the future need to 

study RNAP complex composition under different stressors to establish an improved 

structure-function relationship. In the end, only this information can contextualize our 

data to relevancy in the sophisticated regulatory machinery of S. aureus. 

 

ii) As discussed earlier, expression and activity of sRNAs, as with bacterial regulators in 

general, has to be investigated under meaningful conditions, preferably during infection. 

Three studies which are prime examples of such in vivo systems include RNAseq 

experiments with RNA isolated from immunodeficient versus healthy mice during 

systemic infection [132], from a murine model of osteomyelitis [339] as well as from 

human nasal S. aureus carriers [131]. Studies like these have the potential to greatly 

advance the field and the publicly available datasets should be thoroughly investigated 

for sRNA activity. Although all three studies are pushing the boundaries of our field, they 

are limited to either easily accessible niches (e.g. nose) or cohorts of high S. aureus 

abundance during infection (e.g. kidney). In comparison, one important niche stands out 

as unexplored territory: though heavily guarded by the immune system, blood is the 

medium that allows dissemination to distal sites. Therefore, gaining further insight into 

the host-pathogen interaction at this particular juncture could prove beneficial to future 

efforts to intervene with SAB and infection in general. Unfortunately, technical limitations 

severely complicate this progress. While kidneys commonly bear the highest bacterial 

loads in murine systemic infection models of S. aureus, bacterial loads in the blood are 
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significantly lower, making RNA preparation from these samples challenging. 

Nevertheless, these limitations may soon be overcome by recent advances in 

sequencing technologies, of which a prime example is single cell RNAseq [340]. In this 

technique, problems of low input are circumvented and additionally heterogeneity within 

the sample appreciated. However, in order to reflect a bacterial community in its 

entirety, information from several such experiemnts needs to be combined.  

 

Despite a steadily increasing pool of information about S. aureus encoded sRNAs and 

their expression patterns, identification of direct targets is indispensable and one of the 

rate limiting steps in understanding the precise functions of these transcripts. Pulldown 

procedures to pinpoint the interacting partners of sRNAs have been proposed and 

tested, but reliable methods are still sparse. We are currently in the process of 

examining an approach where an oligo d(A)25 tail is added to a plasmid-encoded version 

of an sRNA in question along with its native promoter. As such long, homogenous 

strings of a particular nucleotide are irregular in bacteria, the tagged sRNA is easily 

distinguished from the remainder of the cell’s RNA content. Using a eukaryotic mRNA 

cleanup kit (based on oligo d(A)25 coupled to magnetic beats), this RNA, as well as the 

corresponding interacting elements (RNAs or proteins), can be identified via 

transcriptomic or proteomic approaches. 

  



	 54	

 

 

LITERATURE 

 
1. Ogston A. Report upon micro-organisms in surgical diseases. The British 

medical journal 1881, 1(1054):369 b362-375. 
2. Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the 

action of Penicillin. Experimental Biology and Medicine 1942, 51(3):386-389. 
3. Jevons MP. “Celbenin”-resistant staphylococci. The British medical journal 

1961, 1(5219):124. 
4. Centers for Disease C, Prevention. Reduced susceptibility of Staphylococcus 

aureus to vancomycin--Japan, 1996. MMWR Morbidity and mortality weekly 
report 1997, 46(27):624-626. 

5. Control CfD, Prevention. Staphylococcus aureus resistant to vancomycin--
United States, 2002. MMWR Morbidity and mortality weekly report 2002, 
51(26):565. 

6. Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by 
methicillin-resistant Staphylococcus aureus, United States, 1999-2005. 
Emerging infectious diseases 2007, 13(12):1840-1846. 

7. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. 
The Journal of clinical investigation 2003, 111(9):1265-1273. 

8. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the 
antibiotic era. Nature reviews Microbiology 2009, 7(9):629-641. 

9. Chambers HF. Methicillin resistance in staphylococci: molecular and 
biochemical basis and clinical implications. Clinical microbiology reviews 
1997, 10(4):781-791. 

10. Udo EE, Pearman JW, Grubb WB. Genetic analysis of community isolates of 
methicillin-resistant Staphylococcus aureus in Western Australia. The 
Journal of hospital infection 1993, 25(2):97-108. 

11. Centers for Disease Control and Prevention (CDC). Four pediatric deaths from 
community-acquired methicillin-resistant Staphylococcus aureus—
Minnesota and North Dakota, 1997-1999. MMWR Morbidity and mortality 
weekly report 1999, 48(32):707. 

12. David MZ, Daum RS. Community-associated methicillin-resistant 
Staphylococcus aureus: epidemiology and clinical consequences of an 
emerging epidemic. Clinical microbiology reviews 2010, 23(3):616-687. 

13. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated 
meticillin-resistant Staphylococcus aureus. Lancet 2010, 375(9725):1557-
1568. 

14. Otto M. Community-associated MRSA: what makes them special? 
International journal of medical microbiology 2013, 303(6-7):324-330. 



	 55	

15. Chambers HF. The changing epidemiology of Staphylococcus aureus? 
Emerging infectious diseases 2001, 7(2):178-182. 

16. Morrison MA, Hageman JC, Klevens RM. Case definition for community-
associated methicillin-resistant Staphylococcus aureus. The Journal of 
hospital infection 2006, 62(2):241. 

17. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover 
FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant 
Staphylococcus aureus isolates from the United States: establishing a 
national database. Journal of clinical microbiology 2003, 41(11):5113-5120. 

18. Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. Expression and inducibility 
in Staphylococcus aureus of the mecA gene, which encodes a methicillin-
resistant S. aureus-specific penicillin-binding protein. Journal of bacteriology 
1989, 171(5):2882-2885. 

19. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, 
staphylococcus cassette chromosome mec, encodes methicillin resistance 
in Staphylococcus aureus. Antimicrobial agents and chemotherapy 2000, 
44(6):1549-1555. 

20. International Working Group on the Classification of Staphylococcal Cassette 
Chromosome E. Classification of staphylococcal cassette chromosome mec 
(SCCmec): guidelines for reporting novel SCCmec elements. Antimicrobial 
agents and chemotherapy 2009, 53(12):4961-4967. 

21. Lee SM, Ender M, Adhikari R, Smith JM, Berger-Bachi B, Cook GM. Fitness 
cost of staphylococcal cassette chromosome mec in methicillin-resistant 
Staphylococcus aureus by way of continuous culture. Antimicrobial agents 
and chemotherapy 2007, 51(4):1497-1499. 

22. Berglund C, Soderquist B. The origin of a methicillin-resistant 
Staphylococcus aureus isolate at a neonatal ward in Sweden-possible 
horizontal transfer of a staphylococcal cassette chromosome mec between 
methicillin-resistant Staphylococcus haemolyticus and Staphylococcus 
aureus. Clinical microbiology and infection 2008, 14(11):1048-1056. 

23. Hiramatsu K, Katayama Y, Yuzawa H, Ito T. Molecular genetics of methicillin-
resistant Staphylococcus aureus. International journal of medical microbiology 
2002, 292(2):67-74. 

24. Diep BA, Chambers HF, Graber CJ, Szumowski JD, Miller LG, Han LL, Chen JH, 
Lin F, Lin J, Phan TH, Carleton HA, McDougal LK, Tenover FC, Cohen DE, 
Mayer KH, Sensabaugh GF, Perdreau-Remington F. Emergence of multidrug-
resistant, community-associated, methicillin-resistant Staphylococcus 
aureus clone USA300 in men who have sex with men. Annals of internal 
medicine 2008, 148(4):249-257. 

25. Thomas MS, Wigneshweraraj S. Regulation of virulence gene expression. 
Virulence 2014, 5(8):832-834. 

26. Van de Velde H. Etude sur le mécanisme de la virulence du Staphylocoque 
pyogene. La Cellule 1894, 10:401-410. 

27. Panton P, Valentine F. Staphylococcal toxin. The Lancet 1932, 219(5662):506-
508. 



	 56	

28. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, 
Johnson SK, Vandenesch F, Fridkin S, O'Boyle C, Danila RN, Lynfield R. 
Comparison of community- and health care-associated methicillin-resistant 
Staphylococcus aureus infection. JAMA 2003, 290(22):2976-2984. 

29. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine 
N, Bes M, Greenland T, Reverdy ME, Etienne J. Community-acquired 
methicillin-resistant Staphylococcus aureus carrying Panton-Valentine 
leukocidin genes: worldwide emergence. Emerging infectious diseases 2003, 
9(8):978-984. 

30. Diep BA, Sensabaugh GF, Somboonna N, Carleton HA, Perdreau-Remington F. 
Widespread skin and soft-tissue infections due to two methicillin-resistant 
Staphylococcus aureus strains harboring the genes for Panton-Valentine 
leucocidin. Journal of clinical microbiology 2004, 42(5):2080-2084. 

31. Dumitrescu O, Tristan A, Meugnier H, Bes M, Gouy M, Etienne J, Lina G, 
Vandenesch F. Polymorphism of the Staphylococcus aureus Panton-
Valentine leukocidin genes and its possible link with the fitness of 
community-associated methicillin-resistant S. aureus. The Journal of 
infectious diseases 2008, 198(5):792-794. 

32. Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, 
Kahl BC, Proctor RA, Peters G. Staphylococcus aureus panton-valentine 
leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS 
pathogens 2010, 6(1):e1000715. 

33. Yoong P, Torres VJ. The effects of Staphylococcus aureus leukotoxins on 
the host: cell lysis and beyond. Current opinion in microbiology 2013, 
16(1):63-69. 

34. Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo 
FR. Panton-Valentine leukocidin is not a virulence determinant in murine 
models of community-associated methicillin-resistant Staphylococcus 
aureus disease. The Journal of infectious diseases 2008, 198(8):1166-1170. 

35. Cremieux AC, Dumitrescu O, Lina G, Vallee C, Cote JF, Muffat-Joly M, Lilin T, 
Etienne J, Vandenesch F, Saleh-Mghir A. Panton-valentine leukocidin 
enhances the severity of community-associated methicillin-resistant 
Staphylococcus aureus rabbit osteomyelitis. PloS one 2009, 4(9):e7204. 

36. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, 
Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M. Identification of 
novel cytolytic peptides as key virulence determinants for community-
associated MRSA. Nature medicine 2007, 13(12):1510-1514. 

37. Glenny AT. A note on the deterioration of diphtheria and tetanus antitoxins. 
Quarterly journal of pharmacy and pharmacology 1945, 18:383. 

38. Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. 
Nature reviews Microbiology 2013, 11(10):667-673. 

39. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. 
Microbiological reviews 1991, 55(4):733-751. 

40. Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a 
century of intrigue. Toxins 2013, 5(6):1140-1166. 



	 57	

41. Kobayashi SD, Malachowa N, Whitney AR, Braughton KR, Gardner DJ, Long D, 
Bubeck Wardenburg J, Schneewind O, Otto M, Deleo FR. Comparative 
analysis of USA300 virulence determinants in a rabbit model of skin and 
soft tissue infection. The Journal of infectious diseases 2011, 204(6):937-941. 

42. Cheung GY, Duong AC, Otto M. Direct and synergistic hemolysis caused by 
Staphylococcus phenol-soluble modulins: implications for diagnosis and 
pathogenesis. Microbes and infection 2012, 14(4):380-386. 

43. Rasigade JP, Trouillet-Assant S, Ferry T, Diep BA, Sapin A, Lhoste Y, Ranfaing 
J, Badiou C, Benito Y, Bes M, Couzon F, Tigaud S, Lina G, Etienne J, 
Vandenesch F, Laurent F. PSMs of hypervirulent Staphylococcus aureus act 
as intracellular toxins that kill infected osteoblasts. PloS one 2013, 
8(5):e63176. 

44. Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. Poring over 
pores: alpha-hemolysin and Panton-Valentine leukocidin in 
Staphylococcus aureus pneumonia. Nature medicine 2007, 13(12):1405-1406. 

45. Li M, Cheung GY, Hu J, Wang D, Joo HS, Deleo FR, Otto M. Comparative 
analysis of virulence and toxin expression of global community-associated 
methicillin-resistant Staphylococcus aureus strains. The Journal of infectious 
diseases 2010, 202(12):1866-1876. 

46. Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, 
Ricklefs SM, Li M, Otto M. RNAIII-independent target gene control by the agr 
quorum-sensing system: insight into the evolution of virulence regulation 
in Staphylococcus aureus. Molecular cell 2008, 32(1):150-158. 

47. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. 
Synthesis of staphylococcal virulence factors is controlled by a regulatory 
RNA molecule. The EMBO journal 1993, 12(10):3967-3975. 

48. Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M. Role of the accessory 
gene regulator agr in community-associated methicillin-resistant 
Staphylococcus aureus pathogenesis. Infection and immunity 2011, 
79(5):1927-1935. 

49. Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages SA, Jones A, 
Palazzolo-Ballance AM, Perdreau-Remington F, Sensabaugh GF, DeLeo FR, 
Chambers HF. The arginine catabolic mobile element and staphylococcal 
chromosomal cassette mec linkage: convergence of virulence and 
resistance in the USA300 clone of methicillin-resistant Staphylococcus 
aureus. The Journal of infectious diseases 2008, 197(11):1523-1530. 

50. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR. 
Functional modularity of the arginine catabolic mobile element contributes 
to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell 
host & microbe 2013, 13(1):100-107. 

51. Di Meglio P, Perera GK, Nestle FO. The multitasking organ: recent insights 
into skin immune function. Immunity 2011, 35(6):857-869. 

52. Joshi GS, Spontak JS, Klapper DG, Richardson AR. Arginine catabolic mobile 
element encoded speG abrogates the unique hypersensitivity of 
Staphylococcus aureus to exogenous polyamines. Molecular microbiology 
2011, 82(1):9-20. 



	 58	

53. Curran JN, Winter DC, Bouchier-Hayes D. Biological fate and clinical 
implications of arginine metabolism in tissue healing. Wound repair and 
regeneration 2006, 14(4):376-386. 

54. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, 
Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. Complete 
genome sequence of USA300, an epidemic clone of community-acquired 
meticillin-resistant Staphylococcus aureus. The Lancet 2006, 367(9512):731-
739. 

55. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr.. 
Staphylococcus aureus infections: epidemiology, pathophysiology, clinical 
manifestations, and management. Clinical microbiology reviews 2015, 
28(3):603-661. 

56. Laupland KB, Ross T, Gregson DB. Staphylococcus aureus bloodstream 
infections: risk factors, outcomes, and the influence of methicillin 
resistance in Calgary, Canada, 2000-2006. The Journal of infectious diseases 
2008, 198(3):336-343. 

57. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, Lessa FC, 
Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J, Fridkin S. National 
burden of invasive methicillin-resistant Staphylococcus aureus infections, 
United States, 2011. JAMA internal medicine 2013, 173(21):1970-1978. 

58. Nguyen DB, Lessa FC, Belflower R, Mu Y, Wise M, Nadle J, Bamberg WM, Petit 
S, Ray SM, Harrison LH, Lynfield R, Dumyati G, Thompson J, Schaffner W, Patel 
PR. Invasive methicillin-resistant Staphylococcus aureus infections among 
patients on chronic dialysis in the United States, 2005-2011. Clinical 
infectious diseases 2013, 57(10):1393-1400. 

59. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, 
Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal 
LK, Carey RB, Fridkin SK. Invasive methicillin-resistant Staphylococcus 
aureus infections in the United States. JAMA 2007, 298(15):1763-1771. 

60. Centers for Disease C, Prevention. Invasive methicillin-resistant 
Staphylococcus aureus infections among dialysis patients--United States, 
2005. MMWR Morbidity and mortality weekly report 2007, 56(9):197-199. 

61. Fluit AC, Jones ME, Schmitz FJ, Acar J, Gupta R, Verhoef J. Antimicrobial 
susceptibility and frequency of occurrence of clinical blood isolates in 
Europe from the SENTRY antimicrobial surveillance program, 1997 and 
1998. Clinical infectious diseases 2000, 30(3):454-460. 

62. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M, 
Group SP. Survey of infections due to Staphylococcus species: frequency 
of occurrence and antimicrobial susceptibility of isolates collected in the 
United States, Canada, Latin America, Europe, and the Western Pacific 
region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. 
Clinical Infectious Diseases 2001, 32 Suppl 2:S114-132. 

63. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 
Nosocomial bloodstream infections in US hospitals: analysis of 24,179 
cases from a prospective nationwide surveillance study. Clinical infectious 
diseases 2004, 39(3):309-317. 



	 59	

64. Spink WW, Hall WH. Penicillin therapy at the University of Minnesota 
Hospitals: 1942-1944. Annals of internal medicine 1945, 22(4):510-525. 

65. Skinner D, Keefer CS. Significance of bacteremia caused by Staphylococcus 
aureus: a study of one hundred and twenty-two cases and a review of the 
literature concerned with experimental infection in animals. Archives of 
internal medicine 1941, 68(5):851-875. 

66. MENDELL TH. Staphylococcic Septicemia: A review of thirty-five cases, 
with six recoveries, twenty-nine deaths and sixteen autopsies. Archives of 
internal medicine 1939, 63(6):1068-1083. 

67. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. 
Predictors of mortality in Staphylococcus aureus bacteremia. Clinical 
microbiology reviews 2012, 25(2):362-386. 

68. Melzer M, Welch C. Thirty-day mortality in UK patients with community-
onset and hospital-acquired meticillin-susceptible Staphylococcus aureus 
bacteraemia. The Journal of hospital infection 2013, 84(2):143-150. 

69. Turnidge JD, Kotsanas D, Munckhof W, Roberts S, Bennett CM, Nimmo GR, 
Coombs GW, Murray RJ, Howden B, Johnson PD, Dowling K. Staphylococcus 
aureus bacteraemia: a major cause of mortality in Australia and New 
Zealand. The Medical journal of Australia 2009, 191(7):368-373. 

70. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? 
Archives of medical research 2005, 36(6):697-705. 

71. Fowler VG, Jr., Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, Corey GR, 
Spelman D, Bradley SF, Barsic B, Pappas PA, Anstrom KJ, Wray D, Fortes CQ, 
Anguera I, Athan E, Jones P, van der Meer JT, Elliott TS, Levine DP, Bayer AS. 
Staphylococcus aureus endocarditis: a consequence of medical progress. 
JAMA 2005, 293(24):3012-3021. 

72. Federspiel JJ, Stearns SC, Peppercorn AF, Chu VH, Fowler VG, Jr.. Increasing 
US rates of endocarditis with Staphylococcus aureus: 1999-2008. Archives 
of internal medicine 2012, 172(4):363-365. 

73. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and 
revision hip and knee arthroplasty in the United States from 2005 to 2030. 
The journal of bone and joint surgery 2007, 89(4):780-785. 

74. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J. Prosthetic joint 
infection risk after TKA in the Medicare population. Clinical orthopaedics and 
related research 2010, 468(1):52-56. 

75. Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic joint 
infection risk after total hip arthroplasty in the Medicare population. The 
journal of arthroplasty 2009, 24(6 Suppl):105-109. 

76. Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA, Jr.. 
Increased US emergency department visits for skin and soft tissue 
infections, and changes in antibiotic choices, during the emergence of 
community-associated methicillin-resistant Staphylococcus aureus. Annals 
of emergency medicine 2008, 51(3):291-298. 

77. Hersh AL, Chambers HF, Maselli JH, Gonzales R. National trends in 
ambulatory visits and antibiotic prescribing for skin and soft-tissue 
infections. Archives of internal medicine 2008, 168(14):1585-1591. 



	 60	

78. Edelsberg J, Taneja C, Zervos M, Haque N, Moore C, Reyes K, Spalding J, 
Jiang J, Oster G. Trends in US hospital admissions for skin and soft tissue 
infections. Emerging infectious diseases 2009, 15(9):1516-1518. 

79. Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA. 
Cleaning hospital room surfaces to prevent health care-associated 
infections: A technical brief. Annals of internal medicine 2015, 163(8):598-607. 

80. Lei H, Jones RM, Li Y. Exploring surface cleaning strategies in hospital to 
prevent contact transmission of methicillin-resistant Staphylococcus 
aureus. BMC infectious iseases 2017, 17(1):85. 

81. Dancer SJ. How do we assess hospital cleaning? A proposal for 
microbiological standards for surface hygiene in hospitals. The Journal of 
hospital infection 2004, 56(1):10-15. 

82. Christensen TE, Jorgensen JS, Kolmos HJ. The importance of hygiene for 
hospital infections. Ugeskrift for laeger 2007, 169(49):4249-4251. 

83. Calfee DP, Salgado CD, Milstone AM, Harris AD, Kuhar DT, Moody J, Aureden 
K, Huang SS, Maragakis LL, Yokoe DS. Strategies to prevent methicillin-
resistant Staphylococcus aureus transmission and infection in acute care 
hospitals: 2014 update. Infection control and hospital epidemiology 2014, 35 
Suppl 2:S108-132. 

84. Desai R, Pannaraj PS, Agopian J, Sugar CA, Liu GY, Miller LG. Survival and 
transmission of community-associated methicillin-resistant 
Staphylococcus aureus from fomites. American journal of infection control 
2011, 39(3):219-225. 

85. Wertheim HF, van Kleef M, Vos MC, Ott A, Verbrugh HA, Fokkens W. Nose 
picking and nasal carriage of Staphylococcus aureus. Infection control and 
hospital epidemiology 2006, 27(8):863-867. 

86. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh 
HA, Nouwen JL. The role of nasal carriage in Staphylococcus aureus 
infections. The Lancet infectious diseases 2005, 5(12):751-762. 

87. Mertz D, Frei R, Jaussi B, Tietz A, Stebler C, Fluckiger U, Widmer AF. Throat 
swabs are necessary to reliably detect carriers of Staphylococcus aureus. 
Clinical infectious diseases 2007, 45(4):475-477. 

88. Acton DS, Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A. Intestinal 
carriage of Staphylococcus aureus: how does its frequency compare with 
that of nasal carriage and what is its clinical impact? European journal of 
clinical microbiology & infectious diseases 2009, 28(2):115-127. 

89. Bourgeois-Nicolaos N, Lucet JC, Daubie C, Benchaba F, Rajguru M, Ruimy R, 
Andremont A, Armand-Lefevre L. Maternal vaginal colonisation by 
Staphylococcus aureus and newborn acquisition at delivery. Paediatric and 
perinatal epidemiology 2010, 24(5):488-491. 

90. Bessesen MT, Kotter CV, Wagner BD, Adams JC, Kingery S, Benoit JB, 
Robertson CE, Janoff EN, Frank DN. MRSA colonization and the nasal 
microbiome in adults at high risk of colonization and infection. Journal of 
infection 2015, 71(6):649-657. 



	 61	

91. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a 
source of Staphylococcus aureus bacteremia. Study Group. The New 
England journal of medicine 2001, 344(1):11-16. 

92. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, 
Verbrugh HA, Wertheim HF. Reclassification of Staphylococcus aureus nasal 
carriage types. The Journal of infectious diseases 2009, 199(12):1820-1826. 

93. Nouwen JL, Fieren MW, Snijders S, Verbrugh HA, van Belkum A. Persistent 
(not intermittent) nasal carriage of Staphylococcus aureus is the 
determinant of CPD-related infections. Kidney international 2005, 67(3):1084-
1092. 

94. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, van Keulen 
PH, Vandenbroucke-Grauls CM, Meester MH, Verbrugh HA. Risk and outcome 
of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus 
non-carriers. The Lancet 2004, 364(9435):703-705. 

95. Bassis CM, Tang AL, Young VB, Pynnonen MA. The nasal cavity microbiota of 
healthy adults. Microbiome 2014, 2:27. 

96. Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, Stegger 
M, Skov R, Andersen PS. Staphylococcus aureus and the ecology of the 
nasal microbiome. Science advances 2015, 1(5):e1400216. 

97. Roos K, Simark-Mattsson C, Grahn Hakansson E, Larsson L, Sandberg T, Ahren 
C. Can probiotic lactobacilli eradicate persistent carriage of meticillin-
resistant Staphylococcus aureus? The Journal of hospital infection 2011, 
78(1):77-78. 

98. Uehara Y, Nakama H, Agematsu K, Uchida M, Kawakami Y, Abdul Fattah AS, 
Maruchi N. Bacterial interference among nasal inhabitants: eradication of 
Staphylococcus aureus from nasal cavities by artificial implantation of 
Corynebacterium sp. The Journal of hospital infection 2000, 44(2):127-133. 

99. Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial 
competition for human nasal cavity colonization: role of Staphylococcal 
agr alleles. Applied and environmental microbiology 2003, 69(1):18-23. 

100. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B, Derazne E, Rahav 
G, Rubinstein E. Association between carriage of Streptococcus 
pneumoniae and Staphylococcus aureus in children. JAMA 2004, 
292(6):716-720. 

101. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rumke HC, 
Verbrugh HA, Hermans PW. Colonisation by Streptococcus pneumoniae and 
Staphylococcus aureus in healthy children. The Lancet 2004, 
363(9424):1871-1872. 

102. Frank DN, Feazel LM, Bessesen MT, Price CS, Janoff EN, Pace NR. The 
human nasal microbiota and Staphylococcus aureus carriage. PloS one 
2010, 5(5):e10598. 

103. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. 
Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm 
formation and nasal colonization. Nature 2010, 465(7296):346-349. 

104. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, Burian 
M, Schilling NA, Slavetinsky C, Marschal M, Willmann M, Kalbacher H, Schittek 



	 62	

B, Brotz-Oesterhelt H, Grond S, Peschel A, Krismer B. Human commensals 
producing a novel antibiotic impair pathogen colonization. Nature 2016, 
535(7613):511-516. 

105. Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, Relman DA. 
Nasal microenvironments and interspecific interactions influence nasal 
microbiota complexity and S. aureus carriage. Cell host & microbe 2013, 
14(6):631-640. 

106. Heilmann C. Adhesion mechanisms of staphylococci. Advances in 
experimental medicine and biology 2011, 715:105-123. 

107. Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus 
sortase, an enzyme that anchors surface proteins to the cell wall. Science 
1999, 285(5428):760-763. 

108. Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of 
microorganisms to host tissues. Annual review of microbiology 1994, 48:585-
617. 

109. Chavakis T, Wiechmann K, Preissner KT, Herrmann M. Staphylococcus 
aureus interactions with the endothelium: the role of bacterial "secretable 
expanded repertoire adhesive molecules" (SERAM) in disturbing host 
defense systems. Thromb Haemost 2005, 94(2):278-285. 

110. Cree RG, Aleljung P, Paulsson M, Witte W, Noble WC, Ljungh A, Wadstrom T. 
Cell surface hydrophobicity and adherence to extra-cellular matrix proteins 
in two collections of methicillin-resistant Staphylococcus aureus. 
Epidemiology and infection 1994, 112(2):307-314. 

111. Hauck CR, Ohlsen K. Sticky connections: extracellular matrix protein 
recognition and integrin-mediated cellular invasion by Staphylococcus 
aureus. Current opinion in microbiology 2006, 9(1):5-11. 

112. Edwards AM, Massey RC, Clarke SR. Molecular mechanisms of 
Staphylococcus aureus nasopharyngeal colonization. Molecular oral 
microbiology 2012, 27(1):1-10. 

113. Weidenmaier C, Goerke C, Wolz C. Staphylococcus aureus determinants for 
nasal colonization. Trends in microbiology 2012, 20(5):243-250. 

114. O'Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ. Staphylococcus 
aureus clumping factor B (ClfB) promotes adherence to human type I 
cytokeratin 10: implications for nasal colonization. Cellular microbiology 
2002, 4(11):759-770. 

115. Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ, 
McLoughlin RM. Nasal colonisation by Staphylococcus aureus depends 
upon clumping factor B binding to the squamous epithelial cell envelope 
protein loricrin. PLoS pathogens 2012, 8(12):e1003092. 

116. Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall 
SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC. Immunization with 
Staphylococcus aureus clumping factor B, a major determinant in nasal 
carriage, reduces nasal colonization in a murine model. Infection and 
immunity 2006, 74(4):2145-2153. 

117. Wertheim HF, Walsh E, Choudhurry R, Melles DC, Boelens HA, Miajlovic H, 
Verbrugh HA, Foster T, van Belkum A. Key role for clumping factor B in 



	 63	

Staphylococcus aureus nasal colonization of humans. PLoS medicine 2008, 
5(1):e17. 

118. Clarke SR, Wiltshire MD, Foster SJ. IsdA of Staphylococcus aureus is a 
broad spectrum, iron-regulated adhesin. Molecular microbiology 2004, 
51(5):1509-1519. 

119. Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton 
MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster 
SJ. Identification of in vivo-expressed antigens of Staphylococcus aureus 
and their use in vaccinations for protection against nasal carriage. The 
Journal of infectious diseases 2006, 193(8):1098-1108. 

120. Clarke SR, Andre G, Walsh EJ, Dufrene YF, Foster TJ, Foster SJ. Iron-
regulated surface determinant protein A mediates adhesion of 
Staphylococcus aureus to human corneocyte envelope proteins. Infection 
and immunity 2009, 77(6):2408-2416. 

121. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, 
Nicholson G, Neumeister B, Mond JJ, Peschel A. Role of teichoic acids in 
Staphylococcus aureus nasal colonization, a major risk factor in 
nosocomial infections. Nature medicine 2004, 10(3):243-245. 

122. Aly R, Shinefield HR, Litz C, Maibach HI. Role of teichoic acid in the binding 
of Staphylococcus aureus to nasal epithelial cells. The Journal of infectious 
diseases 1980, 141(4):463-465. 

123. Roche FM, Meehan M, Foster TJ. The Staphylococcus aureus surface 
protein SasG and its homologues promote bacterial adherence to human 
desquamated nasal epithelial cells. Microbiology 2003, 149(Pt 10):2759-2767. 

124. Corrigan RM, Miajlovic H, Foster TJ. Surface proteins that promote adherence 
of Staphylococcus aureus to human desquamated nasal epithelial cells. 
BMC microbiology 2009, 9:22. 

125. Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew 
DP, Herrmann M, Krause KH. Fibronectin-binding protein acts as 
Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. 
Cellular microbiology 1999, 1(2):101-117. 

126. Verhoeven PO, Gagnaire J, Botelho-Nevers E, Grattard F, Carricajo A, Lucht F, 
Pozzetto B, Berthelot P. Detection and clinical relevance of Staphylococcus 
aureus nasal carriage: an update. Expert review of anti-infective therapy 2014, 
12(1):75-89. 

127. Burian M, Rautenberg M, Kohler T, Fritz M, Krismer B, Unger C, Hoffmann WH, 
Peschel A, Wolz C, Goerke C. Temporal expression of adhesion factors and 
activity of global regulators during establishment of Staphylococcus 
aureus nasal colonization. The Journal of infectious diseases 2010, 
201(9):1414-1421. 

128. Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, Gotz 
F, Peschel A. Differential roles of sortase-anchored surface proteins and 
wall teichoic acid in Staphylococcus aureus nasal colonization. International 
journal of medical microbiology 2008, 298(5-6):505-513. 

129. Krismer B, Liebeke M, Janek D, Nega M, Rautenberg M, Hornig G, Unger C, 
Weidenmaier C, Lalk M, Peschel A. Nutrient limitation governs 



	 64	

Staphylococcus aureus metabolism and niche adaptation in the human 
nose. PLoS pathogens 2014, 10(1):e1003862. 

130. Burian M, Wolz C, Goerke C. Regulatory adaptation of Staphylococcus 
aureus during nasal colonization of humans. PloS one 2010, 5(4):e10040. 

131. Chaves-Moreno D, Wos-Oxley ML, Jauregui R, Medina E, Oxley AP, Pieper DH. 
Exploring the transcriptome of Staphylococcus aureus in its natural niche. 
Scientific reports 2016, 6:33174. 

132. Thanert R, Goldmann O, Beineke A, Medina E. Host-inherent variability 
influences the transcriptional response of Staphylococcus aureus during in 
vivo infection. Nature Communications 2017, 8:14268. 

133. Muthukrishnan G, Quinn GA, Lamers RP, Diaz C, Cole AL, Chen S, Cole AM. 
Exoproteome of Staphylococcus aureus reveals putative determinants of 
nasal carriage. Journal of proteome research 2011, 10(4):2064-2078. 

134. Smyth DS, Kafer JM, Wasserman GA, Velickovic L, Mathema B, Holzman RS, 
Knipe TA, Becker K, von Eiff C, Peters G, Chen L, Kreiswirth BN, Novick RP, 
Shopsin B. Nasal carriage as a source of agr-defective Staphylococcus 
aureus bacteremia. The Journal of infectious diseases 2012, 206(8):1168-1177. 

135. Shopsin B, Drlica-Wagner A, Mathema B, Adhikari RP, Kreiswirth BN, Novick 
RP. Prevalence of agr dysfunction among colonizing Staphylococcus 
aureus strains. The Journal of infectious diseases 2008, 198(8):1171-1174. 

136. Traber KE, Lee E, Benson S, Corrigan R, Cantera M, Shopsin B, Novick RP. agr 
function in clinical Staphylococcus aureus isolates. Microbiology 2008, 
154(Pt 8):2265-2274. 

137. Harder J, Schroder JM. Antimicrobial peptides in human skin. Chemical 
immunology and allergy 2005, 86:22-41. 

138. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, 
Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide 
protects the skin from invasive bacterial infection. Nature 2001, 
414(6862):454-457. 

139. Begier EM, Frenette K, Barrett NL, Mshar P, Petit S, Boxrud DJ, Watkins-Colwell 
K, Wheeler S, Cebelinski EA, Glennen A, Nguyen D, Hadler JL, Connecticut 
Bioterrorism Field Epidemiology Response Team. A high-morbidity outbreak 
of methicillin-resistant Staphylococcus aureus among players on a college 
football team, facilitated by cosmetic body shaving and turf burns. Clinical 
infectious diseases 2004, 39(10):1446-1453. 

140. Braun T, Kahanov L, Dannelly K, Lauber C. CA-MRSA infection incidence and 
care in high school and intercollegiate athletics. Medicine and science in 
sports and exercise 2016, 48(8):1530-1538. 

141. Charlebois ED, Perdreau-Remington F, Kreiswirth B, Bangsberg DR, Ciccarone 
D, Diep BA, Ng VL, Chansky K, Edlin BR, Chambers HF. Origins of community 
strains of methicillin-resistant Staphylococcus aureus. Clinical infectious 
diseases 2004, 39(1):47-54. 

142. Cook HA, Furuya EY, Larson E, Vasquez G, Lowy FD. Heterosexual 
transmission of community-associated methicillin-resistant 
Staphylococcus aureus. Clinical infectious diseases 2007, 44(3):410-413. 



	 65	

143. Soong G, Chun J, Parker D, Prince A. Staphylococcus aureus activation of 
caspase 1/calpain signaling mediates invasion through human 
keratinocytes. The Journal of infectious diseases 2012, 205(10):1571-1579. 

144. Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M, Korting HC, 
Ring J, Abeck D. Invasion of human keratinocytes by Staphylococcus 
aureus and intracellular bacterial persistence represent haemolysin-
independent virulence mechanisms that are followed by features of 
necrotic and apoptotic keratinocyte cell death. British journal of dermatology 
2002, 146(6):943-951. 

145. Mader U, Nicolas P, Depke M, Pane-Farre J, Debarbouille M, van der Kooi-Pol 
MM, Guerin C, Derozier S, Hiron A, Jarmer H, Leduc A, Michalik S, Reilman E, 
Schaffer M, Schmidt F, Bessieres P, Noirot P, Hecker M, Msadek T, Volker U, 
van Dijl JM. Staphylococcus aureus transcriptome architecture: From 
laboratory to infection-mimicking Conditions. PLoS genetics 2016, 
12(4):e1005962. 

146. Xu Y, Maltesen RG, Larsen LH, Schonheyder HC, Le VQ, Nielsen JL, Nielsen 
PH, Thomsen TR, Nielsen KL. In vivo gene expression in a Staphylococcus 
aureus prosthetic joint infection characterized by RNA sequencing and 
metabolomics. a pilot study. BMC microbiology 2016, 16:80. 

147. Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus 
pathogenesis in diverse host environments. Pathogens and disease 2017. 

148. Colgan SP, Taylor CT. Hypoxia: an alarm signal during intestinal 
inflammation. Nature reviews gastroenterology & hepatology 2010, 7(5):281-
287. 

149. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, 
Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L, Ehrentraut SF, Curtis VF, 
Burgess A, Garvey JF, Sorensen A, Nemenoff R, Jedlicka P, Taylor CT, 
Kominsky DJ, Colgan SP. Transmigrating neutrophils shape the mucosal 
microenvironment through localized oxygen depletion to influence 
resolution of inflammation. Immunity 2014, 40(1):66-77. 

150. Zeitouni NE, Chotikatum S, von Kockritz-Blickwede M, Naim HY. The impact of 
hypoxia on intestinal epithelial cell functions: consequences for invasion 
by bacterial pathogens. Molecular and cellular pediatrics 2016, 3(1):14. 

151. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, 
Mortensen LJ, Alt C, Turcotte R, Yusuf R, Cote D, Vinogradov SA, Scadden DT, 
Lin CP. Direct measurement of local oxygen concentration in the bone 
marrow of live animals. Nature 2014, 508(7495):269-273. 

152. Wilde AD, Snyder DJ, Putnam NE, Valentino MD, Hammer ND, Lonergan ZR, 
Hinger SA, Aysanoa EE, Blanchard C, Dunman PM, Wasserman GA, Chen J, 
Shopsin B, Gilmore MS, Skaar EP, Cassat JE . Bacterial hypoxic responses 
revealed as critical determinants of the host-pathogen outcome by TnSeq 
analysis of Staphylococcus aureus invasive infection. PLoS pathogens 
2015, 11(12):e1005341. 

153. Kamps A, Achebach S, Fedtke I, Unden G, Gotz F. Staphylococcal NreB: an 
O2-sensing histidine protein kinase with an O2-labile iron-sulphur cluster of 
the FNR type. Molecular microbiology 2004, 52(3):713-723. 



	 66	

154. Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker 
M, Gotz F. Characterization of the oxygen-responsive NreABC regulon of 
Staphylococcus aureus. Journal of bacteriology 2008, 190(23):7847-7858. 

155. Sun J, Zheng L, Landwehr C, Yang J, Ji Y. Identification of a novel essential 
two-component signal transduction system, YhcSR, in Staphylococcus 
aureus. Journal of bacteriology 2005, 187(22):7876-7880. 

156. Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, 
He C. AirSR, a [2Fe-2S] cluster-containing two-component system, 
mediates global oxygen sensing and redox signaling in Staphylococcus 
aureus. Journal of the American Chemical Society 2012, 134(1):305-314. 

157. Pomposelli JJ, Baxter JK, 3rd, Babineau TJ, Pomfret EA, Driscoll DF, Forse RA, 
Bistrian BR. Early postoperative glucose control predicts nosocomial 
infection rate in diabetic patients. Journal of Parenteral and Enteral Nutrition 
1998, 22(2):77-81. 

158. Dang CN, Prasad YD, Boulton AJ, Jude EB. Methicillin-resistant 
Staphylococcus aureus in the diabetic foot clinic: a worsening problem. 
Diabetic medicine 2003, 20(2):159-161. 

159. Mantey I, Hill RL, Foster AV, Wilson S, Wade JJ, Edmonds ME. Infection of foot 
ulcers with Staphylococcus aureus associated with increased mortality in 
diabetic patients. Communicable disease and public health 2000, 3(4):288-290. 

160. Rich J, Lee JC. The pathogenesis of Staphylococcus aureus infection in the 
diabetic NOD mouse. Diabetes 2005, 54(10):2904-2910. 

161. Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. Expanded glucose 
import capability affords Staphylococcus aureus optimized glycolytic flux 
during infection. mBio 2016, 7(3). 

162. Seidl K, Stucki M, Ruegg M, Goerke C, Wolz C, Harris L, Berger-Bachi B, 
Bischoff M. Staphylococcus aureus CcpA affects virulence determinant 
production and antibiotic resistance. Antimicrobial agents and chemotherapy 
2006, 50(4):1183-1194. 

163. Titgemeyer F, Hillen W. Global control of sugar metabolism: a gram-positive 
solution. Lactic Acid Bacteria: Genetics, Metabolism and Applications 2002, 
82(1-4):59-71. 

164. Jankovic I, Bruckner R. Carbon catabolite repression by the catabolite 
control protein CcpA in Staphylococcus xylosus. Journal of molecular 
microbiology and biotechnology 2002, 4(3):309-314. 

165. Balasubramanian D, Ohneck EA, Chapman J, Weiss A, Kim MK, Reyes-Robles 
T, Zhong J, Shaw LN, Lun DS, Ueberheide B, Shopsin B, Torres VJ. 
Staphylococcus aureus coordinates leukocidin expression and 
pathogenesis by sensing metabolic fluxes via RpiRc. mBio 2016, 7(3). 

166. Gaupp R, Wirf J, Wonnenberg B, Biegel T, Eisenbeis J, Graham J, Herrmann M, 
Lee CY, Beisswenger C, Wolz C, Tschernig T, Bischoff M, Somerville GA. RpiRc 
Is a pleiotropic effector of virulence determinant synthesis and attenuates 
pathogenicity in Staphylococcus aureus. Infection and immunity 2016, 
84(7):2031-2041. 

167. Pohl K, Francois P, Stenz L, Schlink F, Geiger T, Herbert S, Goerke C, 
Schrenzel J, Wolz C. CodY in Staphylococcus aureus: a regulatory link 



	 67	

between metabolism and virulence gene expression. Journal of bacteriology 
2009, 191(9):2953-2963. 

168. Roux A, Todd DA, Velazquez JV, Cech NB, Sonenshein AL. CodY-mediated 
regulation of the Staphylococcus aureus Agr system integrates nutritional 
and population density signals. Journal of bacteriology 2014, 196(6):1184-
1196. 

169. Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for 
manganese and zinc. Current opinion in chemical biology 2010, 14(2):218-224. 

170. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-
host interface. Nature reviews Microbiology 2012, 10(8):525-537. 

171. Cassat JE, Skaar EP. Metal ion acquisition in Staphylococcus aureus: 
overcoming nutritional immunity. Seminars in immunopathology 2012, 
34(2):215-235. 

172. Bullen JJ, Rogers HJ, Griffiths E. Role of iron in bacterial infection. Current 
topics in microbiology and immunology 1978, 80:1-35. 

173. Weinberg ED. Nutritional immunity. Host's attempt to withold iron from 
microbial invaders. JAMA 1975, 231(1):39-41. 

174. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. Iron-source 
preference of Staphylococcus aureus infections. Science 2004, 
305(5690):1626-1628. 

175. Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE. Role of siderophore 
biosynthesis in virulence of Staphylococcus aureus: identification and 
characterization of genes involved in production of a siderophore. Infection 
and immunity 2004, 72(1):29-37. 

176. Torres VJ, Pishchany G, Humayun M, Schneewind O, Skaar EP. 
Staphylococcus aureus IsdB is a hemoglobin receptor required for heme 
iron utilization. Journal of bacteriology 2006, 188(24):8421-8429. 

177. Xiong A, Singh VK, Cabrera G, Jayaswal RK. Molecular characterization of the 
ferric-uptake regulator, fur, from Staphylococcus aureus. Microbiology 2000, 
146 ( Pt 3):659-668. 

178. Torres VJ, Attia AS, Mason WJ, Hood MI, Corbin BD, Beasley FC, Anderson KL, 
Stauff DL, McDonald WH, Zimmerman LJ, Friedman DB, Heinrichs DE, Dunman 
PM, Skaar EP. Staphylococcus aureus fur regulates the expression of 
virulence factors that contribute to the pathogenesis of pneumonia. 
Infection and immunity 2010, 78(4):1618-1628. 

179. Engwerda CR, Kaye PM. Organ-specific immune responses associated with 
infectious disease. Immunology today 2000, 21(2):73-78. 

180. Raz E. Organ-specific regulation of innate immunity. Nature immunology 
2007, 8(1):3-4. 

181. Hogevik H, Soderquist B, Tung HS, Olaison L, Westberg A, Ryden C, Tarkowski 
A, Andersson R. Virulence factors of Staphylococcus aureus strains 
causing infective endocarditis--a comparison with strains from skin 
infections. APMIS : acta pathologica, microbiologica, et immunologica 
Scandinavica 1998, 106(9):901-908. 



	 68	

182. Powers ME, Bubeck Wardenburg J. Igniting the fire: Staphylococcus aureus 
virulence factors in the pathogenesis of sepsis. PLoS pathogens 2014, 
10(2):e1003871. 

183. Lacey KA, Geoghegan JA, McLoughlin RM. The Role of Staphylococcus 
aureus virulence factors in skin infection and their potential as vaccine 
antigens. Pathogens 2016, 5(1). 

184. Geisinger E, Novick RP. Signal integration and virulence gene regulation in 
Staphylococcus aureus. Chemical communication among bacteria 2008:161-
184. 

185. Ibarra JA, Perez-Rueda E, Carroll RK, Shaw LN. Global analysis of 
transcriptional regulators in Staphylococcus aureus. BMC genomics 2013, 
14:126. 

186. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi 
A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, 
Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, 
Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, 
Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, 
Hayashi H, Hiramatsu K. Whole genome sequencing of meticillin-resistant 
Staphylococcus aureus. The Lancet 2001, 357(9264):1225-1240. 

187. Deora R, Misra TK. Characterization of the primary σ factor of 
Staphylococcus aureus. The Journal of biological chemistry 1996, 
271(36):21828-21834. 

188. Kullik II, Giachino P. The alternative sigma factor σB in Staphylococcus 
aureus: regulation of the sigB operon in response to growth phase and 
heat shock. Archives of microbiology 1997, 167(2/3):151-159. 

189. Tao L, Wu X, Sun B. Alternative sigma factor σH modulates prophage 
integration and excision in Staphylococcus aureus. PLoS pathogens 2010, 
6(5):e1000888. 

190. Shaw LN, Lindholm C, Prajsnar TK, Miller HK, Brown MC, Golonka E, Stewart 
GC, Tarkowski A, Potempa J. Identification and characterization of σS, a 
novel component of the Staphylococcus aureus stress and virulence 
responses. PloS one 2008, 3(12):e3844. 

191. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, 
Ulevitch RJ, Janda KD. Infection control by antibody disruption of bacterial 
quorum sensing signaling. Chemistry & biology 2007, 14(10):1119-1127. 

192. Kirchdoerfer RN, Garner AL, Flack CE, Mee JM, Horswill AR, Janda KD, 
Kaufmann GF, Wilson IA. Structural basis for ligand recognition and 
discrimination of a quorum-quenching antibody. The Journal of biological 
chemistry 2011, 286(19):17351-17358. 

193. Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S, Yu G, 
Delaney E, Jankowsky E, Shoham M. Discovery of antivirulence agents 
against methicillin-resistant Staphylococcus aureus. Antimicrobial agents 
and chemotherapy 2013, 57(8):3645-3652. 

194. Hendrix AS, Spoonmore TJ, Wilde AD, Putnam NE, Hammer ND, Snyder DJ, 
Guelcher SA, Skaar EP, Cassat JE. Repurposing the nonsteroidal anti-
inflammatory drug diflunisal as an osteoprotective, antivirulence therapy 



	 69	

for Staphylococcus aureus osteomyelitis. Antimicrobial agents and 
chemotherapy 2016, 60(9):5322-5330. 

195. Recsei P, Kreiswirth B, O'Reilly M, Schlievert P, Gruss A, Novick RP. Regulation 
of exoprotein gene expression in Staphylococcus aureus by agr. Molecular 
and general genetics 1986, 202(1):58-61. 

196. Morfeldt E, Janzon L, Arvidson S, Lofdahl S. Cloning of a chromosomal locus 
(exp) which regulates the expression of several exoprotein genes in 
Staphylococcus aureus. Molecular and general genetics 1988, 211(3):435-440. 

197. Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P. Cloning, 
characterization, and sequencing of an accessory gene regulator (agr) in 
Staphylococcus aureus. Journal of bacteriology 1988, 170(9):4365-4372. 

198. Novick RP. Autoinduction and signal transduction in the regulation of 
staphylococcal virulence. Molecular microbiology 2003, 48(6):1429-1449. 

199. Miller MB, Bassler BL. Quorum sensing in bacteria. Annual review of 
microbiology 2001, 55:165-199. 

200. Ji G, Beavis RC, Novick RP. Cell density control of staphylococcal virulence 
mediated by an octapeptide pheromone. Proceedings of the National 
Academy of Sciences of the United States of America 1995, 92(26):12055-
12059. 

201. Kavanaugh JS, Thoendel M, Horswill AR. A role for type I signal peptidase in 
Staphylococcus aureus quorum sensing. Molecular microbiology 2007, 
65(3):780-798. 

202. Janzon L, Arvidson S. The role of the δ-lysin gene (hld) in the regulation of 
virulence genes by the accessory gene regulator (agr) in Staphylococcus 
aureus. The EMBO journal 1990, 9(5):1391-1399. 

203. Bronner S, Monteil H, Prevost G. Regulation of virulence determinants in 
Staphylococcus aureus: complexity and applications. FEMS microbiology 
reviews 2004, 28(2):183-200. 

204. Janzon L, Lofdahl S, Arvidson S. Identification and nucleotide sequence of 
the δ-lysin gene, hld, adjacent to the accessory gene regulator (agr) of 
Staphylococcus aureus. Molecular and general genetics 1989, 219(3):480-485. 

205. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, 
Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P. 
Staphylococcus aureus RNAIII and the endoribonuclease III coordinately 
regulate spa gene expression. The EMBO journal 2005, 24(4):824-835. 

206. Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, 
Vandenesch F, Romby P. Staphylococcus aureus RNAIII binds to two distant 
regions of coa mRNA to arrest translation and promote mRNA degradation. 
PLoS pathogens 2010, 6(3):e1000809. 

207. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, 
Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby 
P. Staphylococcus aureus RNAIII coordinately represses the synthesis of 
virulence factors and the transcription regulator Rot by an antisense 
mechanism. Genes & development 2007, 21(11):1353-1366. 

208. Fechter P, Caldelari I, Lioliou E, Romby P. Novel aspects of RNA regulation in 
Staphylococcus aureus. FEBS letters 2014, 588(15):2523-2529. 



	 70	

209. McNamara PJ, Milligan-Monroe KC, Khalili S, Proctor RA. Identification, 
cloning, and initial characterization of rot, a locus encoding a regulator of 
virulence factor expression in Staphylococcus aureus. Journal of 
bacteriology 2000, 182(11):3197-3203. 

210. Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP. Inhibition of rot 
translation by RNAIII, a key feature of agr function. Molecular microbiology 
2006, 61(4):1038-1048. 

211. McNamara PJ, Bayer AS. A rot mutation restores parental virulence to an 
agr-null Staphylococcus aureus strain in a rabbit model of endocarditis. 
Infection and immunity 2005, 73(6):3806-3809. 

212. Said-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E, McNamara 
PJ, Arvidson S, Foster TJ, Projan SJ, Kreiswirth BN. Global regulation of 
Staphylococcus aureus genes by Rot. Journal of bacteriology 2003, 
185(2):610-619. 

213. Cheung AL, Zhang G. Global regulation of virulence determinants in 
Staphylococcus aureus by the SarA protein family. Frontiers in Bioscience 
2002, 7:d1825-1842. 

214. Cheung AL, Nishina KA, Trotonda MP, Tamber S. The SarA protein family of 
Staphylococcus aureus. The international journal of biochemistry & cell biology 
2008, 40(3):355-361. 

215. Cheung AL, Koomey JM, Butler CA, Projan SJ, Fischetti VA. Regulation of 
exoprotein expression in Staphylococcus aureus by a locus (sar) distinct 
from agr. Proceedings of the National Academy of Sciences of the United States 
of America 1992, 89(14):6462-6466. 

216. Cheung AL, Projan SJ. Cloning and sequencing of sarA of Staphylococcus 
aureus, a gene required for the expression of agr. Journal of bacteriology 
1994, 176(13):4168-4172. 

217. Morfeldt E, Tegmark K, Arvidson S. Transcriptional control of the agr-
dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. 
Molecular microbiology 1996, 21(6):1227-1237. 

218. Cheung AL, Bayer MG, Heinrichs JH. sar genetic determinants necessary for 
transcription of RNAII and RNAIII in the agr locus of Staphylococcus 
aureus. Journal of bacteriology 1997, 179(12):3963-3971. 

219. Chien Y, Manna AC, Projan SJ, Cheung AL. SarA, a global regulator of 
virulence determinants in Staphylococcus aureus, binds to a conserved 
motif essential for sar-dependent gene regulation. The Journal of biological 
chemistry 1999, 274(52):37169-37176. 

220. Rechtin TM, Gillaspy AF, Schumacher MA, Brennan RG, Smeltzer MS, Hurlburt 
BK. Characterization of the SarA virulence gene regulator of 
Staphylococcus aureus. Molecular microbiology 1999, 33(2):307-316. 

221. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown 
EL, Zagursky RJ, Shlaes D, Projan SJ. Transcription profiling-based 
identification of Staphylococcus aureus genes regulated by the agr and/or 
sarA loci. Journal of bacteriology 2001, 183(24):7341-7353. 



	 71	

222. Sterba KM, Mackintosh SG, Blevins JS, Hurlburt BK, Smeltzer MS. 
Characterization of Staphylococcus aureus SarA binding sites. Journal of 
bacteriology 2003, 185(15):4410-4417. 

223. Manna A, Cheung AL. Characterization of sarR, a modulator of sar 
expression in Staphylococcus aureus. Infection and immunity 2001, 
69(2):885-896. 

224. Blevins JS, Gillaspy AF, Rechtin TM, Hurlburt BK, Smeltzer MS. The 
Staphylococcal accessory regulator (sar) represses transcription of the 
Staphylococcus aureus collagen adhesin gene (cna) in an agr-independent 
manner. Molecular microbiology 1999, 33(2):317-326. 

225. Schumacher MA, Hurlburt BK, Brennan RG. Crystal structures of SarA, a 
pleiotropic regulator of virulence genes in S. aureus. Nature 2001, 
409(6817):215-219. 

226. Ingavale SS, Van Wamel W, Cheung AL. Characterization of RAT, an 
autolysis regulator in Staphylococcus aureus. Molecular microbiology 2003, 
48(6):1451-1466. 

227. Ingavale S, van Wamel W, Luong TT, Lee CY, Cheung AL. Rat/MgrA, a 
regulator of autolysis, is a regulator of virulence genes in Staphylococcus 
aureus. Infection and immunity 2005, 73(3):1423-1431. 

228. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY. Transcription profiling 
of the mgrA regulon in Staphylococcus aureus. Journal of bacteriology 2006, 
188(5):1899-1910. 

229. Luong TT, Lee CY. The arl locus positively regulates Staphylococcus 
aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 2006, 
152(Pt 10):3123-3131. 

230. Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P, Geissmann T, 
Boisset S, Romby P, Vandenesch F. A non-coding RNA promotes bacterial 
persistence and decreases virulence by regulating a regulator in 
Staphylococcus aureus. PLoS pathogens 2014, 10(3):e1003979. 

231. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and 
rapidly evolving variations. Cold Spring Harbor perspectives in biology 2011, 
3(12). 

232. Wu S, de Lencastre H, Tomasz A. Sigma-B, a putative operon encoding 
alternate sigma factor of Staphylococcus aureus RNA polymerase: 
molecular cloning and DNA sequencing. Journal of bacteriology 1996, 
178(20):6036-6042. 

233. Gertz S, Engelmann S, Schmid R, Ziebandt AK, Tischer K, Scharf C, Hacker J, 
Hecker M. Characterization of the σB regulon in Staphylococcus aureus. 
Journal of bacteriology 2000, 182(24):6983-6991. 

234. Jonsson IM, Arvidson S, Foster S, Tarkowski A. Sigma factor B and RsbU are 
required for virulence in Staphylococcus aureus-induced arthritis and 
sepsis. Infection and immunity 2004, 72(10):6106-6111. 

235. Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S. The 
influence of agr and σB in growth phase dependent regulation of virulence 
factors in Staphylococcus aureus. Proteomics 2004, 4(10):3034-3047. 



	 72	

236. Depke M, Burian M, Schafer T, Broker BM, Ohlsen K, Volker U. The alternative 
sigma factor B modulates virulence gene expression in a murine 
Staphylococcus aureus infection model but does not influence kidney gene 
expression pattern of the host. International journal of medical microbiology 
2012, 302(1):33-39. 

237. Mitchell G, Fugere A, Pepin Gaudreau K, Brouillette E, Frost EH, Cantin AM, 
Malouin F. SigB is a dominant regulator of virulence in Staphylococcus 
aureus small-colony variants. PloS one 2013, 8(5):e65018. 

238. Giraudo AT, Raspanti CG, Calzolari A, Nagel R. Characterization of a Tn551-
mutant of Staphylococcus aureus defective in the production of several 
exoproteins. Canadian journal of microbiology 1994, 40(8):677-681. 

239. Giraudo AT, Calzolari A, Cataldi AA, Bogni C, Nagel R. The sae locus of 
Staphylococcus aureus encodes a two-component regulatory system. 
FEMS microbiology letters 1999, 177(1):15-22. 

240. Giraudo AT, Cheung AL, Nagel R. The sae locus of Staphylococcus aureus 
controls exoprotein synthesis at the transcriptional level. Archives of 
Microbiology 1997, 168(1):53-58. 

241. Morrison JM, Miller EW, Benson MA, Alonzo F, 3rd, Yoong P, Torres VJ, 
Hinrichs SH, Dunman PM. Characterization of SSR42, a novel virulence 
factor regulatory RNA that contributes to the pathogenesis of a 
Staphylococcus aureus USA300 representative. Journal of bacteriology 2012, 
194(11):2924-2938. 

242. Chabelskaya S, Gaillot O, Felden B. A Staphylococcus aureus small RNA is 
required for bacterial virulence and regulates the expression of an immune-
evasion molecule. PLoS pathogens 2010, 6(6):e1000927. 

243. Le Pabic H, Germain-Amiot N, Bordeau V, Felden B. A bacterial regulatory 
RNA attenuates virulence, spread and human host cell phagocytosis. 
Nucleic acids research 2015, 43(19):9232-9248. 

244. Weiss A, Shaw LN. Small things considered: the small accessory subunits 
of RNA polymerase in Gram-positive bacteria. FEMS microbiology reviews 
2015, 39(4):541-554. 

245. Weiss A, Ibarra JA, Paoletti J, Carroll RK, Shaw LN. The δ subunit of RNA 
polymerase guides promoter selectivity and virulence in Staphylococcus 
aureus. Infection and immunity 2014, 82(4):1424-1435. 

246. Weiss A, Moore BD, Tremblay MH, Chaput D, Kremer A, Shaw LN. The ω 
subunit governs RNA Polymerase stability and transcriptional specificity in 
Staphylococcus aureus. Journal of bacteriology 2017, 199(2). 

247. Carroll RK, Weiss A, Broach WH, Wiemels RE, Mogen AB, Rice KC, Shaw LN. 
Genome-wide annotation, identification, and global transcriptomic analysis 
of regulatory or small RNA gene expression in Staphylococcus aureus. 
mBio 2016, 7(1):e01990-01915. 

248. Seshasayee AS, Bertone P, Fraser GM, Luscombe NM. Transcriptional 
regulatory networks in bacteria: from input signals to output responses. 
Current opinion in microbiology 2006, 9(5):511-519. 



	 73	

249. Weiss A, Broach WH, Shaw LN. Characterizing the transcriptional adaptation 
of Staphylococcus aureus to stationary phase growth. Pathogens and 
disease 2016, 74(5). 

250. Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, Somerville GA, 
Bodi K, Sonenshein AL. Direct targets of CodY in Staphylococcus aureus. 
Journal of bacteriology 2010, 192(11):2861-2877. 

251. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. 
Annual review of biochemistry 2000, 69:183-215. 

252. Troxell B, Hassan HM. Transcriptional regulation by Ferric Uptake Regulator 
(Fur) in pathogenic bacteria. Frontiers in cellular and infection microbiology 
2013, 3:59. 

253. Novick RP, Jiang D. The staphylococcal saeRS system coordinates 
environmental signals with agr quorum sensing. Microbiology 2003, 149(Pt 
10):2709-2717. 

254. Zurek OW, Nygaard TK, Watkins RL, Pallister KB, Torres VJ, Horswill AR, 
Voyich JM. The role of innate immunity in promoting SaeR/S-mediated 
virulence in Staphylococcus aureus. Journal of innate immunity 2014, 6(1):21-
30. 

255. Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, Chazin WJ, Bae T. 
Calprotectin increases the activity of the SaeRS two component system 
and murine mortality during Staphylococcus aureus infections. PLoS 
pathogens 2015, 11(7):e1005026. 

256. Martinez-Antonio A, Janga SC, Salgado H, Collado-Vides J. Internal-sensing 
machinery directs the activity of the regulatory network in Escherichia coli. 
Trends in microbiology 2006, 14(1):22-27. 

257. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, 
Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: 
new developments in KEGG. Nucleic acids research 2006, 34(Database 
issue):D354-357. 

258. Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of 
virulence. The Journal of infectious diseases 2001, 184(3):337-344. 

259. McConnell MJ, Actis L, Pachon J. Acinetobacter baumannii: human 
infections, factors contributing to pathogenesis and animal models. FEMS 
microbiology reviews 2013, 37(2):130-155. 

260. Davis KA, Moran KA, McAllister CK, Gray PJ. Multidrug-resistant 
Acinetobacter extremity infections in soldiers. Emerging infectious diseases 
2005, 11(8):1218-1224. 

261. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a 
global pathogen. Pathogens and disease 2014, 71(3):292-301. 

262. Otto M. Staphylococcus epidermidis--the 'accidental' pathogen. Nature 
reviews Microbiology 2009, 7(8):555-567. 

263. Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus 
and Micrococcus species and other aerobic bacteria on human skin. 
Applied microbiology 1975, 30(3):381-385. 

264. Schleifer KH, Kloos WE. Isolation and characterization of Staphylococci from 
human skin: I. Amended descriptions of Staphylococcus epidermidis and 



	 74	

Staphylococcus saprophyticus and descriptions of three new species: 
Staphylococcus cohnii, Staphylococcus haemolyticus, and 
Staphylococcus xylosus. International journal of systematic and evolutionary 
microbiology 1975, 25(1):50-61. 

265. Rogers KL, Fey PD, Rupp ME. Coagulase-negative staphylococcal 
infections. Infectious disease clinics of North America 2009, 23(1):73-98. 

266. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clinical 
microbiology reviews 2014, 27(4):870-926. 

267. Sollid JU, Furberg AS, Hanssen AM, Johannessen M. Staphylococcus aureus: 
determinants of human carriage. Infection, genetics and evolution 2014, 
21:531-541. 

268. van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W, Vos MC, 
Wertheim HF, Verbrugh HA. Co-evolutionary aspects of human colonisation 
and infection by Staphylococcus aureus. Infection, genetics and evolution 
2009, 9(1):32-47. 

269. Bliven KA, Maurelli AT. Evolution of Bacterial Pathogens Within the Human 
Host. Microbiology spectrum 2016, 4(1). 

270. Toft C, Andersson SG. Evolutionary microbial genomics: insights into 
bacterial host adaptation. Nature reviews Genetics 2010, 11(7):465-475. 

271. Dawkins R, Krebs JR. Arms races between and within species. Proceedings 
of the royal society of London B: biological sciences 1979, 205(1161):489-511. 

272. Palmer LD, Skaar EP. Transition metals and virulence in bacteria. Annual 
review of genetics 2016, 50:67-91. 

273. Krishna S, Miller LS. Host-pathogen interactions between the skin and 
Staphylococcus aureus. Current opinion in microbiology 2012, 15(1):28-35. 

274. Spellberg B. Dr. William H. Stewart: mistaken or maligned? Clinical infectious 
diseases 2008, 47(2):294. 

275. Davies J, Davies D. Origins and evolution of antibiotic resistance. 
Microbiology and molecular biology reviews : MMBR 2010, 74(3):417-433. 

276. Park B, Liu GY. Targeting the host-pathogen interface for treatment of 
Staphylococcus aureus infection. Seminars in immunopathology 2012, 
34(2):299-315. 

277. Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus 
bactericidal mechanisms of action in the treatment of Gram-positive 
bacterial infections. Clinical infectious diseases 2004, 38(6):864-870. 

278. Mansour SC, de la Fuente-Nunez C, Hancock RE. Peptide IDR-1018: 
modulating the immune system and targeting bacterial biofilms to treat 
antibiotic-resistant bacterial infections. Journal of Peptide Science 2015, 
21(5):323-329. 

279. Napier RJ, Norris BA, Swimm A, Giver CR, Harris WA, Laval J, Napier BA, Patel 
G, Crump R, Peng Z, Bornmann W, Pulendran B, Buller RM, Weiss DS, 
Tirouvanziam R, Waller EK, Kalman D. Low doses of imatinib induce 
myelopoiesis and enhance host anti-microbial immunity. PLoS pathogens 
2015, 11(3):e1004770. 

280. Brouillette E, Hyodo M, Hayakawa Y, Karaolis DK, Malouin F. 3',5'-cyclic 
diguanylic acid reduces the virulence of biofilm-forming Staphylococcus 



	 75	

aureus strains in a mouse model of mastitis infection. Antimicrobial agents 
and chemotherapy 2005, 49(8):3109-3113. 

281. Liappis AP, Kan VL, Rochester CG, Simon GL. The effect of statins on 
mortality in patients with bacteremia. Clinical infectious diseases 2001, 
33(8):1352-1357. 

282. Pruefer D, Makowski J, Schnell M, Buerke U, Dahm M, Oelert H, Sibelius U, 
Grandel U, Grimminger F, Seeger W, Meyer J, Darius H, Buerke M. Simvastatin 
inhibits inflammatory properties of Staphylococcus aureus α-toxin. 
Circulation 2002, 106(16):2104-2110. 

283. Karaolis DK, Means TK, Yang D, Takahashi M, Yoshimura T, Muraille E, Philpott 
D, Schroeder JT, Hyodo M, Hayakawa Y, Talbot BG, Brouillette E, Malouin F. 
Bacterial c-di-GMP is an immunostimulatory molecule. Journal of 
immunology 2007, 178(4):2171-2181. 

284. Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, 
Wang A, Lee K, Doria S, Hamill P, Yu JJ, Li Y, Donini O, Guarna MM, Finlay BB, 
North JR, Hancock RE. An anti-infective peptide that selectively modulates 
the innate immune response. Nature biotechnology 2007, 25(4):465-472. 

285. Zinkernagel AS, Peyssonnaux C, Johnson RS, Nizet V. Pharmacologic 
augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the 
bactericidal capacity of phagocytes. The Journal of infectious diseases 2008, 
197(2):214-217. 

286. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and 
evasion: the many functions of the surface proteins of Staphylococcus 
aureus. Nature reviews Microbiology 2014, 12(1):49-62. 

287. DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-
forming toxins: it's not just about lipids. Trends in microbiology 2014, 
22(1):21-27. 

288. Laabei M, Uhlemann AC, Lowy FD, Austin ED, Yokoyama M, Ouadi K, Feil E, 
Thorpe HA, Williams B, Perkins M, Peacock SJ, Clarke SR, Dordel J, Holden M, 
Votintseva AA, Bowden R, Crook DW, Young BC, Wilson DJ, Recker M, Massey 
RC. Evolutionary trade-offs underlie the multi-faceted virulence of 
Staphylococcus aureus. PLoS Biology 2015, 13(9):e1002229. 

289. Choby JE, Mike LA, Mashruwala AA, Dutter BF, Dunman PM, Sulikowski GA, 
Boyd JM, Skaar EP. A Small-molecule inhibitor of iron-sulfur cluster 
assembly uncovers a link between virulence regulation and metabolism in 
Staphylococcus aureus. Cell chemical biology 2016, 23(11):1351-1361. 

290. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. 
Science's SAGE KE: Science of aging knowledge and environment 2001, 
2001(1):13. 

291. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, 
Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: the 
protein families database. Nucleic acids research 2014, 42(Database 
issue):D222-230. 

292. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov 
IN, Bourne PE. The Protein Data Bank. Nucleic acids research 2000, 28(1):235-
242. 



	 76	

293. Baichoo N, Helmann JD. Recognition of DNA by Fur: a reinterpretation of the 
Fur box consensus sequence. Journal of bacteriology 2002, 184(21):5826-
5832. 

294. Miyazaki E, Chen JM, Ko C, Bishai WR. The Staphylococcus aureus rsbW 
(orf159) gene encodes an anti-sigma factor of SigB. Journal of bacteriology 
1999, 181(9):2846-2851. 

295. Burgess RR. Separation and characterization of the subunits of ribonucleic 
acid polymerase. The Journal of biological chemistry 1969, 244(22):6168-6176. 

296. Pero J, Nelson J, Fox TD. Highly asymmetric transcription by RNA 
polymerase containing phage-SP01-induced polypeptides and a new host 
protein. Proceedings of the National Academy of Sciences of the United States 
of America 1975, 72(4):1589-1593. 

297. Achberger EC, Tahara M, Whiteley HR. Interchangeability of delta subunits of 
RNA polymerase from different species of the genus Bacillus. Journal of 
bacteriology 1982, 150(2):977-980. 

298. Keller AN, Yang X, Wiedermannová J, Delumeau O, Krásný L, Lewis PJ. ε, a 
New Subunit of RNA Polymerase Found in Gram-Positive Bacteria. Journal 
of bacteriology 2014, 196(20):3622-3632. 

299. Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ. Small subunits of RNA 
polymerase: localization, levels and implications for core enzyme 
composition. Microbiology 2010, 156(Pt 12):3532-3543. 

300. Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules 
in the coordination of epigenetic DNA and protein modifications. Cell Cycle 
2012, 11(1):119-131. 

301. Xue X, Li J, Wang W, Sztajer H, Wagner-Dobler I. The global impact of the 
delta subunit RpoE of the RNA polymerase on the proteome of 
Streptococcus mutans. Microbiology 2012, 158(Pt 1):191-206. 

302. Rabatinova A, Sanderova H, Jirat Matejckova J, Korelusova J, Sojka L, Barvik I, 
Papouskova V, Sklenar V, Zidek L, Krasny L. The δ subunit of RNA 
polymerase is required for rapid changes in gene expression and 
competitive fitness of the cell. Journal of bacteriology 2013, 195(11):2603-
2611. 

303. Prajapati RK, Sengupta S, Rudra P, Mukhopadhyay J. Bacillus subtilis δ factor 
functions as a transcriptional regulator by facilitating the open complex 
formation. The Journal of biological chemistry 2016, 291(3):1064-1075. 

304. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009, 136(4):615-628. 
305. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J. 

RNAs: regulators of bacterial virulence. Nature reviews Microbiology 2010, 
8(12):857-866. 

306. Romby P, Vandenesch F, Wagner EG. The role of RNAs in the regulation of 
virulence-gene expression. Current opinion in microbiology 2006, 9(2):229-
236. 

307. Geissmann T, Possedko M, Huntzinger E, Fechter P, Ehresmann C, Romby P. 
Regulatory RNAs as mediators of virulence gene expression in bacteria. 
RNA Towards Medicine, Springer Berlin Heidelberg 2006, 9-43. 



	 77	

308. Harris JF, Micheva-Viteva S, Li N, Hong-Geller E. Small RNA-mediated 
regulation of host-pathogen interactions. Virulence 2013, 4(8):785-795. 

309. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: 
regulation in stress. International journal of medical microbiology 2013, 
303(5):217-229. 

310. Oliva G, Sahr T, Buchrieser C. Small RNAs, 5' UTR elements and RNA-
binding proteins in intracellular bacteria: impact on metabolism and 
virulence. FEMS microbiology reviews 2015, 39(3):331-349. 

311. Beisel CL, Storz G. Base pairing small RNAs and their roles in global 
regulatory networks. FEMS microbiology reviews 2010, 34(5):866-882. 

312. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation 
sequencing on genomics. Journal of genetics and genomics 2011, 38(3):95-
109. 

313. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson 
BT. Application of whole-genome sequencing for bacterial strain typing in 
molecular epidemiology. Journal of clinical microbiology 2015, 53(4):1072-
1079. 

314. Richardson EJ, Watson M. The automatic annotation of bacterial genomes. 
Briefings in bioinformatics 2013, 14(1):1-12. 

315. Dark MJ. Whole-genome sequencing in bacteriology: state of the art. 
Infection and drug resistance 2013, 6:115-123. 

316. Pichon C, Felden B. Small RNA gene identification and mRNA target 
predictions in bacteria. Bioinformatics 2008, 24(24):2807-2813. 

317. Backofen R, Hess WR. Computational prediction of sRNAs and their targets 
in bacteria. RNA biology 2010, 7(1):33-42. 

318. Sridhar J, Gunasekaran P. Computational small RNA prediction in bacteria. 
Bioinform Biol Insights 2013, 7:83-95. 

319. Carroll RK, Weiss A, Shaw LN. RNA-Sequencing of Staphylococcus aureus 
messenger RNA. Methods in molecular biology 2016, 1373:131-141. 

320. Broach WH, Weiss A, Shaw LN. Transcriptomic analysis of Staphylococcal 
sRNAs: Insights into species specific adaption and the evolution of 
pathogenesis. Microbial Genomics 2016. 

321. Weiss A, Broach WH, Lee MC, Shaw LN. Towards the complete small RNome 
of Acinetobacter baumannii. Microbial Genomics 2015. 

322. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a 
successful pathogen. Clinical microbiology reviews 2008, 21(3):538-582. 

323. Skurnik D, Kropec A, Roux D, Theilacker C, Huebner J, Pier GB. Natural 
antibodies in normal human serum inhibit Staphylococcus aureus capsular 
polysaccharide vaccine efficacy. Clinical infectious diseases 2012, 55(9):1188-
1197. 

324. Surewaard BG, Nijland R, Spaan AN, Kruijtzer JA, de Haas CJ, van Strijp JA. 
Inactivation of staphylococcal phenol soluble modulins by serum 
lipoprotein particles. PLoS pathogens 2012, 8(3):e1002606. 

325. Peterson MM, Mack JL, Hall PR, Alsup AA, Alexander SM, Sully EK, Sawires 
YS, Cheung AL, Otto M, Gresham HD. Apolipoprotein B Is an innate barrier 



	 78	

against invasive Staphylococcus aureus infection. Cell host & microbe 2008, 
4(6):555-566. 

326. Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus 
iron acquisition. Annual review of microbiology 2011, 65:129-147. 

327. Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, 
Braughton KR, Shabb DW, Diep BA, Chambers HF, Otto M, DeLeo FR. Global 
changes in Staphylococcus aureus gene expression in human blood. PloS 
one 2011, 6(4):e18617. 

328. Yarwood JM, McCormick JK, Paustian ML, Kapur V, Schlievert PM. Repression 
of the Staphylococcus aureus accessory gene regulator in serum and in 
vivo. Journal of bacteriology 2002, 184(4):1095-1101. 

329. Bijlsma JJ, Groisman EA. Making informed decisions: regulatory interactions 
between two-component systems. Trends in microbiology 2003, 11(8):359-
366. 

330. Geertz M, Travers A, Mehandziska S, Sobetzko P, Chandra-Janga S, 
Shimamoto N, Muskhelishvili G. Structural coupling between RNA 
polymerase composition and DNA supercoiling in coordinating 
transcription: a global role for the omega subunit? mBio 2011, 2(4). 

331. Gunnelius L, Hakkila K, Kurkela J, Wada H, Tyystjarvi E, Tyystjarvi T. The 
omega subunit of the RNA polymerase core directs transcription efficiency 
in cyanobacteria. Nucleic acids research 2014, 42(7):4606-4614. 

332. Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers 
and switches. Nature reviews Microbiology 2012, 10(4):255-265. 

333. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, Bayles KW. A 
genetic resource for rapid and comprehensive phenotype screening of 
nonessential Staphylococcus aureus genes. mBio 2013, 4(1):e00537-00512. 

334. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, 
Zhao K. High-resolution profiling of histone methylations in the human 
genome. Cell 2007, 129(4):823-837. 

335. Collas P. The current state of chromatin immunoprecipitation. Molecular 
biotechnology 2010, 45(1):87-100. 

336. Furey TS. ChIP-seq and beyond: new and improved methodologies to 
detect and characterize protein-DNA interactions. Nature reviews Genetics 
2012, 13(12):840-852. 

337. Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality 
management to whole-genome annotation. Brief Bioinform 2016. 

338. Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ. Studies of the 
distribution of Escherichia coli cAMP-receptor protein and RNA 
polymerase along the E. coli chromosome. Proceedings of the National 
Academy of Sciences of the United States of America 2005, 102(49):17693-
17698. 

339. Szafranska AK, Oxley AP, Chaves-Moreno D, Horst SA, Rosslenbroich S, Peters 
G, Goldmann O, Rohde M, Sinha B, Pieper DH, Loffler B, Jauregui R, Wos-Oxley 
ML, Medina E. High-resolution transcriptomic analysis of the adaptive 
response of Staphylococcus aureus during acute and chronic phases of 
osteomyelitis. mBio 2014, 5(6). 



	 79	

340. Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: 
advances and future challenges. Nucleic acids research 2014, 42(14):8845-
8860. 

 
  



	 80	

 

 

APPENDIX I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



OXFORD UNIVERSITY PRESS LICENSE

TERMS AND CONDITIONS

Apr 05, 2017

This Agreement between Andy Weiss ("You") and Oxford University Press ("Oxford

University Press") consists of your license details and the terms and conditions provided by

Oxford University Press and Copyright Clearance Center.

License Number 4052600493123

License date

Licensed content publisher Oxford University Press

Licensed content publication FEMS Microbiology Reviews

Licensed content title Small things considered: the small accessory subunits of RNA

polymerase in Gram­positive bacteria

Licensed content author Weiss, Andy; Shaw, Lindsey N.

Licensed content date 2015­04­15

Type of Use Thesis/Dissertation

Institution name

Title of your work Non­classical regulators in Staphylococcus aureus

Publisher of your work n/a

Expected publication date May 2017

Permissions cost 0.00 USD

Value added tax 0.00 USD

Total 0.00 USD

Requestor Location Andy Weiss

University of South Florida

CMMB Department

4202 East Fowler Avenue, ISA2015

TAMPA, FL 33620

United States

Attn: Andy Weiss

Publisher Tax ID GB125506730

Billing Type Invoice

Billing Address Andy Weiss

University of South Florida

CMMB Department

4202 East Fowler Avenue, ISA2015

TAMPA, FL 33620

United States

Attn: Andy Weiss

Total 0.00 USD

Terms and Conditions

STANDARD TERMS AND CONDITIONS FOR REPRODUCTION OF MATERIAL

FROM AN OXFORD UNIVERSITY PRESS JOURNAL

1. Use of the material is restricted to the type of use specified in your order details.

2. This permission covers the use of the material in the English language in the following

territory: world. If you have requested additional permission to translate this material, the

terms and conditions of this reuse will be set out in clause 12.

3. This permission is limited to the particular use authorized in (1) above and does not allow

you to sanction its use elsewhere in any other format other than specified above, nor does it



apply to quotations, images, artistic works etc that have been reproduced from other sources

which may be part of the material to be used.

4. No alteration, omission or addition is made to the material without our written consent.

Permission must be re-cleared with Oxford University Press if/when you decide to reprint.

5. The following credit line appears wherever the material is used: author, title, journal, year,

volume, issue number, pagination, by permission of Oxford University Press or the

sponsoring society if the journal is a society journal. Where a journal is being published on

behalf of a learned society, the details of that society must be included in the credit line.

6. For the reproduction of a full article from an Oxford University Press journal for whatever

purpose, the corresponding author of the material concerned should be informed of the

proposed use. Contact details for the corresponding authors of all Oxford University Press

journal contact can be found alongside either the abstract or full text of the article concerned,

accessible from www.oxfordjournals.org Should there be a problem clearing these rights,

please contact journals.permissions@oup.com

7. If the credit line or acknowledgement in our publication indicates that any of the figures,

images or photos was reproduced, drawn or modified from an earlier source it will be

necessary for you to clear this permission with the original publisher as well. If this

permission has not been obtained, please note that this material cannot be included in your

publication/photocopies.

8. While you may exercise the rights licensed immediately upon issuance of the license at

the end of the licensing process for the transaction, provided that you have disclosed

complete and accurate details of your proposed use, no license is finally effective unless and

until full payment is received from you (either by Oxford University Press or by Copyright

Clearance Center (CCC)) as provided in CCC's Billing and Payment terms and conditions. If

full payment is not received on a timely basis, then any license preliminarily granted shall be

deemed automatically revoked and shall be void as if never granted. Further, in the event

that you breach any of these terms and conditions or any of CCC's Billing and Payment

terms and conditions, the license is automatically revoked and shall be void as if never

granted. Use of materials as described in a revoked license, as well as any use of the

materials beyond the scope of an unrevoked license, may constitute copyright infringement

and Oxford University Press reserves the right to take any and all action to protect its

copyright in the materials.

9. This license is personal to you and may not be sublicensed, assigned or transferred by you

to any other person without Oxford University Press’s written permission.

10. Oxford University Press reserves all rights not specifically granted in the combination of

(i) the license details provided by you and accepted in the course of this licensing

transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and

conditions.

11. You hereby indemnify and agree to hold harmless Oxford University Press and CCC, and

their respective officers, directors, employs and agents, from and against any and all claims

arising out of your use of the licensed material other than as specifically authorized pursuant

to this license.

12. Other Terms and Conditions:

v1.4

Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or

+1­978­646­2777.



FEMS Microbiology Reviews, fuv005, 39, 2015, 541–554

doi: 10.1093/femsre/fuv005
Advance Access Publication Date: 15 April 2015
Review Article

REVIEW ARTICLE

Small things considered: the small accessory subunits
of RNA polymerase in Gram-positive bacteria
Andy Weiss and Lindsey N. Shaw∗

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620,
USA
∗Corresponding author: Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA 2015,
Tampa, FL 33620-5150, USA. Tel: 813-974-2087; Fax: 813-974-1614; E-mail: shaw@usf.edu
One sentence summary: This review details over four decades of research on the small, accessory subunits of the Gram-positive transcriptional
machinery.
Editor: Grzegorz Wegrzyn

ABSTRACT

The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of
them (α2ββ ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been
viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these
three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of
Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of
RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The
third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key
role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are
often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each
subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and
outline future challenges in understanding the role of these small subunits in the transcriptional process.

Keywords: RNA polymerase; delta subunit; RpoE; omega subunit; RpoZ; epsilon subunit; RpoY; transcriptional regulation

INTRODUCTION

The ability of bacterial cells to precisely adjust and adapt to
their environment is crucial for survival. Accordingly, the ex-
pression of genes, and their products that facilitate adapta-
tion to changing conditions, is a highly controlled and orga-
nized process. Transcription in all forms of life is performed by
DNA-dependent RNA polymerase (RNAP), with enzymes from
the different branches of life showing a high degree of similar-
ity (Ebright 2000; Sekine, Tagami and Yokoyama 2012). With re-
spect to eubacteria, core RNAP consists of two α subunits, one β

and one β ′ subunit, all of which are essential for a viable cell.
Besides these well-studied and essential components, several

additional, smaller subunits, δ, ε and ω, have been described and
intensively researched over a number of decades (Burgess 1969;
Pero, Nelson and Fox 1975; Keller et al., 2014). Additional to this,
bacteria possess σ factors (housekeeping or alternative) that as-
sist RNAP with promoter recognition, and the initiation of tran-
scription (Helmann and Chamberlin 1988; Feklistov et al., 2014).
While α2ββ ′ RNAP and the σ factor together are able to perform
all of the required steps for transcription, the additional, smaller
subunits support the complex by various means, reaching from
coordinating RNAP folding and assembly to increased transcrip-
tional specificity, influencing RNAP recycling and possibly pro-
tecting the cell against phage infection.
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As ω is found in Gram-positive as well as Gram-negative bac-
teria (Minakhin et al., 2001), it has beenmore heavily investigated
than the other subunits (for a thorough review, see Mathew and
Chatterji 2006). With regard to the δ subunit, it is seemingly con-
fined to the Firmicutes; although proteins with some sequence
homology can be found in certain Tenericutes as well (our un-
published observation). Collectively, despite many years of re-
search on this protein in low G + C Gram-positive bacteria, the
literature documenting it has never been collated in a single
place. As such, it forms a major component of the work detailed
herein. Nevertheless, we also seek to also update the literature
surrounding ω, as well as introduce newly published data on ε.
We believe that of these subunits, δ is particularly interesting,
since we still lack a complete understanding of how this enig-
matic protein mediates its function, despite a history of more
than 40 years of research. Accordingly, we present the progress
of δ research over four decades, summarizing key milestones
in our understanding of this subunit, and highlight future chal-
lenges in dissecting its role in transcription, as well as cellular
fitness and survival.

THE δ SUBUNIT OF RNAP
Structure, abundance and interaction of the δ subunit
with RNAP

The interaction of δ with RNAP
The presence of δ as an integral part of RNAP was first described
in 1975 when Pero, Nelson and Fox (1975) identified and named
a 21.5 kDa protein that co-purified with the RNAP complex from
phage-infected Bacillus subtilis. Here the group reported for the
first time the effects of δ on transcriptional specificity, using
in vitro transcription assays that demonstrated it was required
to maintain the strand-specific transcription of phage genes
characteristically observed during in vivo infection. These ex-
periments provided not only a structural but also a functional
link between RNAP and δ. Subsequently, several groups simul-
taneously described the co-purification of δ with RNAP in B.
subtilis (Halling, Burtis and Doi 1977; Plevan et al., 1977; Tjian
et al., 1977). In a more recent approach, Doherty et al. (2010)
used fluorescent-labeled δ in B. subtilis to observe its interac-
tion with RNAP in vivo, showing the subcellular co-localization
of this subunit with other RNAP proteins (β ′ and ω). Lately, our
group demonstrated the interaction of δ with the β and β ′ sub-
units of RNAP under native conditions in Staphylococcus aureus
(Weiss et al., 2014). This interaction is most likely facilitated by
the N-terminus of the protein, since a C-terminally truncated
version of the enzyme still co-purifies with core RNAP (Lopez de
Saro, Woody and Helmann 1995). Stoichiometrically, it appears
that the subunit binds in an approximate 1:1 ratio with other
subunits of core-RNAP (the α subunit excepted) (Halling, Burtis
and Doi 1977). Interestingly, early studies were unable to purify
RNAP containing a σ factor as well as δ at the same time. This
led to the idea of temporally separated binding of these two sub-
units, and questions about when and how δ interacts with core
RNAP. In order to understand the association of δ with core RNAP
in a time-dependent manner, and in correlation to DNA-binding
and transcriptional initiation, sedimentation experiments were
used, demonstrating that excess amounts of the subunit lead to
release of the σ factor from B. subtilis RNAP (Williamson and Doi
1978). This seemed plausible since δ had been shown in early
studies to decrease activity of core RNAP at certain promoters,
while σ is well known to have stimulatory effects, suggesting
a competitive relationship between these two subunits. These

findings, to a certain extent, were overruled when experiments
showed the need for both subunits in the context of promoter
selection (Achberger and Whiteley 1981), leading to key studies
revealing that δ and σ factors are in fact able to bind to RNAP
at the same time (Hyde, Hilton and Whiteley 1986). This ulti-
mately excluded the hypothesis of a completely competitive δ vs
σ relationship. Instead, the decreased binding ability of σ after δ

subunit associationwith RNAP indicates ‘negative cooperativity’
in which both proteins are able to bind to the RNAP simultane-
ously, but where binding of δ possibly weakens the binding of σ

and leads to increased release of the factor. Such a scenario sug-
gests a model in which both subunits are required for directed
binding to promoter regions, and initiation of transcription.

δ expression and protein levels within the cell
Various studies have explored the conditions that affect δ abun-
dance within bacterial cells, using a variety of different strains
and backgrounds. In general, there is agreement that rpoE (the
δ encoding gene) is highly expressed during exponential phase
(mid and late) and, to varying degrees, during stationary phase,
in standard laboratory conditions. In S. aureus, peak expression
appears to be during exponential phase under standard condi-
tions and when grown in amino acid- or glucose-limiting me-
dia (Watson, Antonio and Foster 1998; Weiss et al., 2014). In B.
subtilis, rpoE is most highly expressed during the transition be-
tween exponential and stationary phase, as well as in extracts
from spores (Lopez de Saro, Yoshikawa and Helmann 1999). For
Streptococcus agalactiae, findings from reporter constructs mirror
that seen in S. aureus and B. subtilis, with rpoE being expressed
during all growth phases, peaking during lag and (late) log, be-
fore dropping slightly when reaching stationary phase (Seeper-
saud et al., 2006). In S. mutans, it was shown that rpoE is expressed
maximally during late exponential phase, and subsequently de-
clines during stationary phase (Xue et al., 2010). One study sug-
gested that δ accounts for 0.3% (± 0.1%) by weight of the total
soluble protein of B. subtilis cells (104 molecules cell−1), repre-
senting a 5:1 molar excess compared to RNAP during exponen-
tial and stationary growth phase (Lopez de Saro, Yoshikawa and
Helmann 1999). In contradiction, Doherty et al. (2010) found a to-
tal abundance of 2.1 × 104 (± 580) molecules per cell for the β ′

subunit and 2.3 × 104 (± 900) molecules for δ in exponentially
growing cells, resulting in an approximate 1:1 ratio of the sub-
unit to RNAP. Although these studies show variation in compar-
ison to each other, it is clear that δ is present in relatively equal
amounts to other components of core RNAP, therefore suggest-
ing a permanent interaction of this subunit with the transcrip-
tionmachinery. In terms of factors that influence its expression,
it has been reported for B. subtilis (Lopez de Saro, Yoshikawa and
Helmann 1999), S. agalactiae (Seepersaud et al., 2006) and S. au-
reus (Weiss et al., 2014) that rpoE transcription is driven froma σA-
dependent promoter. Beyond this, rpoE does not appear to be au-
toregulated in B. subtilis, but is at least partially repressed by acid
and H2O2 stress (Lopez de Saro, Yoshikawa and Helmann 1999).
Collectively, the strong presence of δ during most/all growth
phases, in multiple bacterial species, highlights its potential im-
portance for Gram-positive cells.

Structure, domains and active sites of the δ subunit of RNAP
When studying the primary amino acid (aa) sequence of δ pro-
teins from numerous organisms (Fig. 1), it is apparent that they
all possess two distinct regions, as first described by Lopez de
Saro, Woody and Helmann (1995): an ordered and structured
N-terminus, and a flexible and unstructured C-terminus. The
C-terminus is characterized by highly acidic and repetitive aa
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Figure 1. Structural features of the δsubunit of RNAP. (A) Alignments of 130 representative δ proteins from different Gram-positive species (using CLC MainWorkbench
software). Shown are (from top to bottom) broken black lines next to numbers from 1 to 130 (corresponding to bacterial species and IMG Gene ID numbers (Markowitz

et al., 2014), see Table S1, Supporting Information) represent the alignment of δ proteins. Sequence conservation is highlighted by two graphs: the upper one marks
residues that are at least 95% (black) and 99% (red) conserved. The one below highlights the amount of conservation (0–100%) for each amino acid. The gapped fraction
visualizes the amount of divergence in each region of the protein. At the bottom, an enlargement of the N-terminus is shown and highlights the conservation in
regions that harbor specific protein domains (α-helices or β-sheets). (B) Amino acid sequence of the B. subtilis δ subunit. Black letters mark the N-terminus and red

letters the C-terminus of the protein. (C) Secondary structure prediction of the ordered N-terminus and the disordered C-terminus of the δ protein, showing a bias
towards α and β structures, respectively. This figure is reproduced from Papouskova et al. (2013). (D) Structure of B. subtilis δ from the protein database (PDB ID: 2M4K).
The blue region corresponds to the HARE-HTH domain (residue 14–81); residues in red (≥99%) and orange (≥95%) highlight amino acids that are conserved from the
alignment.

residues; together, the N- and C-termini have a significantly
acidic pI of 3.6. A wealth of additional structural information
for δ was generated by Motackova et al. (2010) using NMR tech-
nology and the B. subtilis protein, specifically focusing on the
N-terminal 100 aa. Four α-helices were identified; each being 5 to
12 aa in length (residue Q8–K12, L16–H27, F33–L44, G52– N63). In
addition, a β-sheet, consisting of three β-strands (residues V31–
P32, F68–A70, T75–L78), was reported. A concern with these ap-
proaches was the inclusion of a His-tag to facilitate purification,
possibly interfering with NMR analysis. To assess this, the same
group later conducted structural analyses on the full-length pro-
tein lacking such a tag, again usingNMR (Papouskova et al., 2013).
This approach proved to be especially challenging because of
the acidic C-terminus; however, these studies confirmed previ-
ous work with the His-tagged N-terminal variant. Relaxation ex-
periments in these works showed that the C-terminal tail tran-
siently contacts the ordered N-terminal domain, leading the au-
thors to suggest that folding of the N-terminus may be influ-
enced by interactions with its C-terminal partner. In addition,

interdomain interactions (between the C- and N-terminus, and
the C-terminus with itself), as well as the formation of possible
β-sheet structures, were predicted for the flexible C-terminal re-
gion.

An attempt to identify functional domains found only weak
homology to DNA/RNA-binding proteins for the N-terminus of δ,
and therefore initially no nucleic acid binding properties of the
subunit were assumed (Motackova et al., 2010). A more recent
study then compared sequence and structural features of a vari-
ety of elements to the human ASXL protein, identifying similar-
ities of the ASXL N-terminus and δ (Aravind and Iyer 2012). The
N-terminus of this protein is characterized by a winged helix-
turn-helix (wHTH) domain that was named after its presence
in the group of HB1, ASXL and restriction endonuclease pro-
teins (HARE-HTH). Other than the δ subunit, HARE-HTHdomains
in prokaryotes are mainly found in restriction endonucleases
that are associated with DNA-modifying methylases. Based on
this study, a role in the recognition of modified DNA sequences
for δ has been suggested, although it is not yet experimentally
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proven. Nevertheless, the presence of a HARE-HTH motif in δ

presents the interesting possibility that not only does it interact
with RNAP but that it also contacts DNA itself, allowing it to dis-
criminate between sequences that differ, for example, in their
degrees of DNA modification. As such, it is tempting to specu-
late that, similar to alternative σ -factors, δ potentially mediates
directed transcriptional effects by recognizing specific promoter
features, rather than solely having global effects on a large num-
ber of genes through modulation of RNAP activity.

To understand the importance and conservation of key δ re-
gions, our group recently published alignments using various
different species that carry a δ subunit protein (Weiss et al.,
2014) (Fig. 1). We demonstrate that HARE-HTH domains show a
higher degree of conservation than other portions of the protein,
emphasizing its likely importance for function. In contrast, the
C-terminus of δ shows a large degree of variation. Further to
this, there is a clear degree of divergence in the context of pro-
tein length for δ from various species (Table S1, Supporting In-
formation), largely resulting from variations in the C-terminal
domain. This suggests that the C-terminus either plays species
specific roles or is at least partially dispensable for full function
of the subunit. In line with this latter idea, we have shown that
a δ variant of S. aureus containing a truncated C-terminus (miss-
ing ∼25% of the protein) is still able to successfully interact with
components of the transcription machinery, and complement,
at least in part, the phenotypes of an rpoE-null strain (Weiss et al.,
2014). This is in line with earlier findings in B. subtilis, also de-
scribing that interaction of δ with RNAP is mediated by the N-
terminus of the subunit (Lopez de Saro, Woody and Helmann
1995).

The δ subunit and its impact on transcriptional
selectivity

Early work highlighting the influence of δ on transcription
The majority of early information regarding δ function was gen-
erated by studies exploring transcriptional patterns of phage
genes in B. subtilis. Upon infection, phages go through a pre-
dictable pattern of early, middle (4–5 min) and late (8–10 min)
gene expression (Gage and Geiduschek 1971). Phage genes tran-
scribed in this temporal pattern are located on different strands
(heavy or light) of the phage genome. Whilst these specific
temporal and strand-specific transcriptional patterns are gov-
erned by phage-encoded proteins (Gage and Geiduschek 1971;
Fox 1976; Giacomoni 1981), it has been shown that δ, as an innate
part of RNAP, is also involved in maintaining their specificity
and order of transcription (Pero, Nelson and Fox 1975; Achberger,
Hilton and Whiteley 1982a; Dobinson and Spiegelman 1987).
These experiments initially demonstrated that δ has a support-
ive role for transcriptional selectivity, acting alongside and in
concert with other transcription factors (e.g. phage-encoded σ

factors and regulatory proteins). This was projected to not only
be true for phage-related genes but for the transcriptional pro-
cess in general.

The δ subunit enhances RNAP fidelity and selectivity
Other early studies on the function of δ centered not only around
phage genes but also on its effects on transcription from syn-
thetic templates (poly(dA-dT)) (Tjian et al., 1977). It was re-
ported that whilst δ had only a limited effect on the expres-
sion of phage genes, it strongly decreased RNAP activity towards
synthetic templates, suggesting a general function in selectiv-
ity. This led to studies focused on a wider spectrum of tran-
scriptional targets, employing a variety of templates, including

different phages, B. subtilis chromosomal DNA, plasmids and
synthetic targets (Dickel, Burtis andDoi 1980). These in vitro tran-
scription experiments revealed varying effects after the addition
of purified δ to reaction mixtures. Specifically, in the case of one
phage tested (�e), δ had no negative effects on RNAP activity,
whilst for B. subtilis chromosomal DNA, the synthesis of RNA
was decreased by up to 87% for some regions in the presence of
this subunit. Moreover, transcription from DNA fragments that
did not contain specific and known promoter sequences was al-
most entirely repressed by the presence of δ. This suggests that
the δ subunit affects different promoters in different ways, thus
supporting promoter specificity of the transcriptional machin-
ery, whilst at the same time suppressing transcription from loci
that do not contain δ-specific promoter elements. Similar effects
for δ on the transcription of non-coding-regions were also de-
scribed by Achberger andWhiteley (1981). Their studies, using in
vitro transcription employing endonucleolytic fragmented DNA
from B. subtilis bacteriophage SP82, revealed that in the absence
of δ, the RNAP holoenzyme binds non-specifically to fragments
that do not have promoters, resulting in transcription from these
sites. The addition of δ to in vitro transcription reactions restored
binding of the complex exclusively to promoter regions and pro-
duced transcription patterns (mid vs late phage genes) that are
characteristic of those seen in vivo. Along the same lines, UV
cross-linking experiments reveal that the addition of δ to core-
RNAP or the RNAP holoenzyme leads to decreased binding at
non-promoter sequences (Hilton and Whiteley 1985).

In a study by Dobinson and Spiegelman (1987), features that
guide the variable effects of different promoters were explored
by assessing the expression of two early �29 promoters in run-
off experiments (initiation complex assays). In these works, it
was shown that the influence of δ on transcription appears
to be dependent on the strength of the promoter in question.
Specifically, varying effects on transcriptional repression were
observed, with the stronger of the two promoters showing no
decrease in expression upon δ addition, whilst the weaker pro-
moter resulted in a 50% decrease in transcription after supple-
mentationwith the subunit. These results gave early insight into
the selective effects of δ, and suggested that promoter strength
may be a driving force of its activity. This model has been sup-
ported by the findings of Juang and Helmann (1994b) in their
workwith the B. subtilis ilv-leu operon. In this study, it was shown
that δ negatively influences open complex formation and has
stronger effects towards the transcription of weaker promoters,
and less of an influence on medium strength promoters. Con-
sequently, it was suggested that δ decreases promoter melting,
which leads to decreased transcription from non-promoter se-
quences, as well as at weaker promoters. In contrast, promoters
that are considered closer to optimal are relatively independent
of the effects of δ. Thus, a model describing three general types
of promoters and their susceptibility to δ was proposed as fol-
lows (Juang and Helmann 1994b): (i) at weak promoters, δ pre-
vents RNAP binding and therefore transcription; (ii) at medium
strength promoters, δ allows the binding of RNAP, but decreases
open complex formation; and (iii) at strong promoters, δ seem-
ingly has little effect on gene expression.

δ interferes with open complex formation
Initial Studies by Spiegelman, Hiatt and Whiteley (1978) and
Achberger, Hilton and Whiteley (1982a) indicated that δ func-
tions in the window between promoter recognition and initi-
ation, rather than being directly involved in initiation itself.
Subsequently, experiments by Chen and Helmann (1997) fur-
thered this notion, showing that δ is important for open complex
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formation. This is in support of Juang and Helmann, who used,
amongst other approaches, footprinting analysis to describe
the inhibitory effects of δ on open complex formation (Juang
and Helmann 1994a, 1994b, 1995). Furthermore, they demon-
strated that loss of δ specifically interfered with promoter melt-
ing, rather than impacting the stability of the open promoter
complex, which is somewhat in contrast to Rabatinova et al.
(2013), who suggested that the longevity of open complexes is di-
minished by δ. Importantly, each of these studies again support
the notion that δ influences transcription prior to initiation.

RNAP recycling
Whilst the majority of δ-related studies describe its negative ef-
fects on transcription of specific promoters, several groups have
demonstrated that δ also has the capacity to increase overall
transcriptional activity (Spiegelman, Hiatt and Whiteley 1978;
Achberger andWhiteley 1981; Juang and Helmann 1994b). These
positive effects are suggested to be a result of a decrease in non-
specific transcription, as well as increased core-RNAP recycling
in the presence of δ. The specific mechanism by which this lat-
ter process occurs is not fully understood; however, a more effi-
cient release of RNAP after termination of transcription has been
suggested (Juang and Helmann 1994b). This effect is thought to
parallel the manner by which δ prevents RNAP from binding to
non-promoter sequences, thereby leading to decreased product
inhibition, and increasing the speed at which the transcription
complex is available to initiate new rounds of gene expression.
Structurally, it has been hypothesized that this process is facil-
itated by the C-terminus of δ (Lopez de Saro, Woody and Hel-
mann 1995), where the negatively charged part of the protein
competes with DNA/RNA for RNAP binding, thereby causing in-
creased release of the transcriptional machinery. In more recent
experiments investigating the function of HelD, another RNAP-
associated protein, it was confirmed that δ is able to increase
transcriptional cycling by faster release of RNAP after termina-
tion; and is also able to release stalled RNAP from DNA, increas-
ing transcriptional activity (Wiedermannova et al., 2014). Both ef-
fects have also been found to be true for HelD, and interestingly,
both proteins together show a strong synergistic effect. Whilst
the precise reason for this synergy is incompletely understood,
the results highlight the complex and multifactorial regulation
of RNAP activity.

The role of the initiating nucleotide on δ-dependent regulation
Although the contention that δ-dependent transcriptional ef-
fects are influenced by individual promoter strength is well es-
tablished, it fails to completely explain all changes in gene ex-
pression mediated by this subunit. Therefore, a more recent
study in B. subtilis has centered on delineating the exact role
of δ in promoter melting and open complex formation, with a
specific focus on the transcription initiating NTP (iNTP) (Rabati-
nova et al., 2013). This idea was shaped by previous works, show-
ing that promoter activity is not only determined by pure bind-
ing efficiency of RNAP to promoter sequences but also by the
ability to initiate transcription. While high levels of iNTPs en-
sure efficient transcription, lower amounts cause collapse of the
open promoter complex, and prevent transcriptional initiation.
In Escherichia coli, transcriptional initiation from rRNA promot-
ers, which have inherently unstable open promoter complexes,
is dependent on the availability of transcript specific iNTPs (ATP
or GTP) (Gaal et al., 1997; Murray, Schneider and Gourse 2003).
A similar scenario was also shown for B. subtilis, where nutri-
tional starvation and onset of the stringent response results
in decreased levels of GTP and therefore negatively influences

transcription of iNTP-sensitive rRNA promoters (Ochi, Kandala
and Freese 1982; Krasny and Gourse 2004). Subsequently, it was
shown that such regulation is not only true of rRNA promot-
ers but other genes as well, thus presenting a general regula-
tory concept (Krasny et al., 2008). Accordingly, Rabatinova et al.
(2013) explored the influence of iNTP on δ-mediated function in
B. subtilis, revealing that the δ subunit influences transcription by
enhancing the effects of iNTP on open complex formation. Pro-
moters that possess relatively unstable open complexes require
higher amounts of iNTP to initiate transcription. δ destabilizes
open complex formation, thus increasing the amount of iNTP re-
quired for successful transcription initiation; supporting the no-
tion of iNTP-dependent transcriptional regulation. This appears
to be particularly true for promoters that are iNTP sensitive (e.g.
rRNA promoters), whilst other promoters, which display stable
open complexes, are less likely to be affected by the influence of
the δ subunit.

The impact of abrogated δ activity on fitness and
virulence

Phenotypic effects of δ deletion
Although the specific effects of δ on transcription have beenwell
documented, uncovering the phenotypic effects of rpoE deletion
was, at least initially, more challenging. A B. subtilismutant lack-
ing the δ subunit of RNAP was shown to be viable, able to form
spores and did not display obvious growth defects under stan-
dard laboratory conditions (Lampe et al., 1988). Although unex-
pected at first, these results are not surprising for an accessory
subunit. They do, however, raise the question about underwhich
conditions the transcriptional effects of δ result in altered be-
havior of the cell, and, thus, under which stimuli the δ subunit is
beneficial for cellular survival. An early indication about possible
δ function came froma study in S. aureus investigating starvation
survival. Watson, Antonio and Foster (1998) identified rpoE dur-
ing a transposon screen targeted towards genes that are impor-
tant for survival and recovery from prolonged stationary phase
starvation. A transposon insertion within the early portion of
rpoE caused impaired survival under amino acid-limiting condi-
tions and acid stress. Similar rpoE-dependent stress phenotypes
were later shown in S. mutans, where a δ subunit mutant is im-
paired in acid and H2O2 stress survival (Xue et al., 2010). Addi-
tionally, the mutant was described as having a clumping pheno-
type, and to reach lower final densities in liquid cultures when
compared to the wild type. Another common phenotype de-
scribed for various bacterial species, including B. subtilis (Lopez
de Saro, Yoshikawa and Helmann 1999), S. aureus (Weiss et al.,
2014) and S. agalactiae (Jones, Needham and Rubens 2003), is
the extended lag phase of rpoE-depleted strains when subcul-
tured into fresh media from stationary phase growth. Thus, it
would appear that δ is required for adaption to, and survival
during, stress and changing environmental conditions, as well
as growth phase transition. It has also been documented that
B. subtilis rpoE mutants are characterized by elongated cell mor-
phology, the propensity to clump during log phase and the ap-
pearance of rough-edged colonies when grown on solid media
(Lopez de Saro, Yoshikawa and Helmann 1999). Interestingly,
and despite earlier studies that described normal sporulation
of B. subtilis 	rpoE strains (Lampe et al., 1988; Lopez de Saro,
Yoshikawa and Helmann 1999), it has also been shown that a
transposon insertion in this gene suppresses the effects caused
by mutations (pdhB or pdhC) that block sporulation (Gao and
Aronson 2004). The exactmechanism bywhich this occurs is un-
clear; however, these findings emphasize the widespread effects
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of δ on transcription, and its importance in maintaining cellu-
lar homeostasis. Considering the widespread defects displayed
by rpoE mutants in a wealth of species, it is perhaps expected
that rpoE mutants of B. subtilis are readily outcompeted by the
wild-type strain when cultured together over prolonged periods
(Rabatinova et al., 2013).

The role of δ in pathogenic organisms
Several groups have examined the effects of rpoE deletion on
more complex processes, such as during the interaction of
pathogenic bacteria with their hosts. Since disease causation
is a process that involves the precise timing of expression for
a variety of different genes, including those required for inter-
action with the immune system, virulence factor expression,
biofilm formation and nutrient acquisition, it is perhaps no sur-
prise that δ has been shown to play and important role in viru-
lence. In S. agalactiae, a study employing signature-tagged trans-
poson mutagenesis in a neonatal rat sepsis model identified an
rpoE mutant as displaying the most impaired virulence from
the entire library (Jones, Knoll and Rubens 2000). In a subse-
quent study by the same group, it was suggested that the vir-
ulence defect was linked to increased killing by phagocytes, ex-
plaining the lower survival rates observed for rpoE mutants in
whole human blood; despite not showing altered survival in hu-
man plasma and chemically defined media (Jones, Needham
and Rubens 2003). An important consideration with these find-
ings is that the rpoE transposonmutant is not a complete knock-
out, but is in fact only a low rpoE expressing strain due to the
location of the insertion. As such, the strain possesses around
a 10-fold decrease in rpoE transcript compared to the wild type,
which is seemingly insufficient tomaintain full δ-function, lead-
ing to the decrease in virulence described. Therefore, it appears
that in S. agalactiae, and perhaps other pathogens (see below),
there is a minimal concentration of δ required in the cell to en-
sure transcriptional specificity and facilitate virulence.

The pathogenic role of δ has also been explored in another
streptococcus, namely S. mutans. Interestingly, and in contrast to
the negative effects of rpoE loss on virulence that were obtained
for S. agalactiae, it was described that deletion of rpoE leads to in-
creased expression of virulence-related traits (Xue et al., 2011).
Specifically, increased co- and self-aggregation, and an altered
extracellularmatrix, have been reported for rpoEmutants, which
may be caused by differentially expressed surface proteins and
polysaccharides. Furthermore, S. mutans 	rpoE strains also dis-
play elevated attachment to human extracellular matrix com-
ponents, such as collagen and fibronectin. Despite these seem-
ingly enhanced aggregative properties, rpoE deletion causes an
inability to attach to human epithelial cells (HEp-2) compared
to the wild-type strain; likely due to increased clumping of the
mutant. Beyond these findings, loss of rpoE in S. mutans results in
the derepression of enzymes that facilitate the metabolism of a
number of sugars, allowing themutant to utilize a larger array of
carbon sources than the parental strain. Additionally, a panel of
antibiotics and compounds that are toxic to the wild type were
ineffective against the mutant in phenotypic microarray stud-
ies. This highlights the remarkably broad impact that δ has on
bacterial physiology and metabolism, each of which influence
cellular fitness, and thus pathogenesis.

In a more recent study by our group, we explored the effects
of δ in the major human pathogen, S. aureus (Weiss et al., 2014).
Deletion of rpoE resulted in decreased expression and abun-
dance of a variety of virulence factors, leading to decreased fit-
ness of the strain and impaired virulence. This latter point is
manifested by a diminished ability to survive in whole human

blood, and resist phagocytosis by human leukocytes. These in
vitro/ex vivo phenotypes were shown to correlate with in vivo
findings, where the mutant strain was found to be significantly
impaired in its ability to cause disease in amurinemodel of sep-
sis and dissemination.

Global transcriptional and translational effects of δ

Exploring the influence of δ on global gene expression has been
aided by cutting edge high-throughput methodologies, includ-
ing transcriptomics and proteomics. These techniques have pro-
vided insight into the role of δ in maintaining transcriptional
specificity, and how this links to the various phenotypes ob-
served. To explore why an rpoE mutant of S. mutans displays
alterations in virulence-related behaviors, as well as impaired
ability to survive during stress (Xue et al., 2010, 2011), gene ex-
pression (Xue et al., 2010) and protein abundance (Xue et al.,
2012) were assessed for the wild type and mutant under sev-
eral conditions. Transcriptomic analyses conducted viamicroar-
ray revealed that, independent of the growth condition, more
than 50% of the upregulated transcripts in an rpoE mutant were
non-coding regions (Xue et al., 2010). In comparison, only 20–30%
of non-coding transcripts displayed increased expression in the
mutant strain. These findings corroborate previous in vitro stud-
ies that demonstrate non-specific transcription of non-promoter
regions when δ is removed from core RNAP (see above).

In addition to its effects on non-coding regions, coding se-
quences were also shown to be influenced by δ in S. mutans,
in a manner partially independent of growth phase or condi-
tion (Xue et al., 2010). Specifically, 24 genes were identified as
being downregulated in the rpoE mutant under all conditions.
These genes were involved in malolactic fermentation, histi-
dine metabolism, biofilm formation, adherence, virulence, and
resistance to antibiotics and other inhibitory compounds. In ad-
dition, during growth under standard laboratory conditions, a
large number of transcripts were differentially expressed when
comparing the mutant and parental strain, including those in-
volved in the transport of a wealth of different compounds,
metabolism and energy production/conversion. Following H2O2

or acid stress, a number of protective genes were not induced in
themutant strain, indicating that an incomplete stress response
exists upon rpoE loss; however, the general stress response still
appeared to be intact in the mutant strain. The authors ulti-
mately concluded from these works that diminished survival of
the mutant strain when exposed to stress results from a gen-
eral deregulation of the S. mutans transcriptome, leading to an
impaired, slower and less directed attempt to adapt to changing
environments and stress conditions.

In follow-up studies, the same group compared previous
transcriptomic data with new proteomic data of the rpoE mu-
tant and wild type, using identical growth conditions (Xue
et al., 2012). It was noted that two proteins, phosphoglucomu-
tase (PGM) and phosphopentomutase (DeoB), were decreased in
abundance either during all (PGM) ormost (DeoB) growth phases
and conditions. Bothwere identified as displaying this same pat-
tern in microarray analysis as well, suggesting distinct and very
gene-specific regulatory effects of δ. In the context of growth
phase, chaperones, stress-related factors and enzymes known
to be involved in protein turnover were altered in the mutant
during exponential phase; whilst multiple sugar transporters
and metabolism (MSM) systems demonstrated fluctuations dur-
ing stationary phase. It was suggested that these changes in
protein abundance could be an indicator of internal cell stress,
rather than direct rpoE-guided effects. When comparing protein
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composition of the rpoE mutant and parental strain after expo-
sure to external stressors, it was noted that both strains were
able to induce protection-specific pathways, which was again
largely consistent with transcriptomic data. However, despite
general adaptation patterns being similar between mutant and
wild type, it was observed that the upregulation of proteins re-
quired to adapt to environmental change was weakened upon
the loss of δ, again indicating a slower or dampened response to
stress.

Using RNAseq technologies, our own group revealed simi-
lar effects of rpoE deletion in S. aureus as compared to S. mu-
tans (Weiss et al., 2014). Specifically, our rpoE mutant displayed
differential expression of 191 genes compared to the wild type
during exponential growth, including a significant decrease in
many known or implicated virulence factors, such as toxins,
hemolysins and secreted proteases. While global regulators
were largely unaffected, the clustered alteration of virulence
gene expression again suggests gene specific effects, such as
those seen for PGM and DeoB in S. mutans (Xue et al., 2012). Be-
yond reduced virulence gene expression, we notably observed
that under standard conditions weakly expressed genes were
generally derepressed upon loss of rpoE. Interestingly, we also
saw a large increase in non-core genome elements, including
prophage-encoded genes. This parallels the effects seen for non-
coding sequences in S. mutans, and further highlights that loss
of the δ subunit results in decreased transcriptional selectivity,
and an overall deregulation of the transcriptional process.

When one considers all of the available transcrip-
tomic/proteomic studies with rpoE mutants, three general
conclusions can be made. (i) Certain genes and gene groups
are changed in expression/protein abundance independent of
growth phase or stress condition. This suggests a gene-specific
mechanism of regulation that involves δ, opening the possibility
that there may be promoter features other than strength (for
example iNTP-sensitivity) at work. (ii) During exponential and

stationary phase growth (as seen for S. aureus and S. mutans),
loss of rpoE leads to a complex deregulation of transcription,
causing differential expression patterns, and the upregulation
of typically lowly expressed genes and non-coding elements.
(iii) Finally, it has been shown that cells lacking rpoE still adapt
to changing environmental conditions, but in a less rapid and
less robust manner than the wild type. This would seem to
account for the decreased survival of rpoE mutants under stress
conditions, and also explain the extended lag phase observed
when mutants are subcultured into fresh media. Accordingly,
the effects of rpoE disruption on survival and adaptation
can be viewed as a fitness defect, resulting from diminished
transcription of specific pathways and traits due to relaxed
transcriptional specificity. With this being said, the specific
and direct regulation of certain genes (e.g. PGM and DeoB in
S. mutans) and traits (virulence determinants in S. aureus) still
occurs. Collectively, each of these facts and findings highlight
the multifactorial influence of δ, ranging from gene-specific to
global effects, leading to a lack of fitness, and alterations in key
cellular processes.

Summary of the δ subunit

Collectively, all of the information contained herein leads to
a model for δ function (Fig. 2): A major feature of the δ sub-
unit is that it decreases the stability of RNAP-DNA interaction
at non-coding regions and weak promoters that possess inher-
ently unstable open promoter complexes. Consequently, δ bi-
ases the transcriptional machinery towards those open-reading
frames that have strong promoters/stable open promoter com-
plexes, thus favoring expression from such sites. In addition
to this, features beyond promoter strength (e.g. iNTP require-
ments) likely result in promoter-specific effects of δ in addition
to its more general role. Furthermore, δ increases RNAP recy-
cling and causes overall enhanced transcriptional activity. In

Figure 2. A model describing the effect of δ on different phases of transcription. The available literature suggests that δ has varying effects on each stage of the
transcriptional process. The subunit prevents non-specific binding and transcription of RNAP from intergenic and non-promoter-containing regions. This influence on

open complex formation and the initiation of transcription vary from promoter to promoter, thereby increasing transcriptional specificity of RNAP. Whilst elongation
and termination are seemingly unaffected, δ does limit the binding of RNAP to DNA at terminators, allowing faster recycling of the enzyme, and increasing overall
transcription. Shown are the stages of transcription and the corresponding gene regions in black letters and δ-dependent effects in red. Note that the ε and ω subunits
are omitted from this figure for reasons of simplicity.
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general, δ weakens the binding of RNAP to DNA and negatively
influence open complex formation and stability; which appears
to be mediated by structural features of the δ protein. Specifi-
cally, its N-terminusmediates interactionwith core RNAP,whilst
the negatively charged and intrinsically disordered C-terminus
is thought to interfere with the RNAP-DNA interaction. Ulti-
mately, δ acts as a guide for RNAP, increasing its transcriptional
specificity. Loss of this factor causes deregulation, and results in
a decreased ability to adjust to changing environments, general
fitness defects and the reduced virulence of pathogenic species.
All of these consequences highlight the central importance of δ

as a regulatory factor directing gene expression in Gram-positive
bacteria.

ADDITIONAL, SMALL ACCESSORY RNAP
SUBUNITS IN GRAM-POSITIVE BACTERIA

In addition to the δ subunit, Gram-positive bacteria possess two
other accessory RNAP subunits, omega, ω (RpoZ) and epsilon, ε

(RpoY). Whilst ε is unique to Gram-positives, ω is found in RNAP
complexes from archea to eukaryotes. Both of these subunits
and their roles within the RNAP complex is discussed in the fol-
lowing sections.

The ω subunit

The ω subunit of RNAP is an intensively studied protein that
has been widely described in the literature. With this being said,
the majority of studies have been performed using the Gram-
negative model organism E. coli, and appear to be only partially
translatable to Gram-positive species, as discussed below. An ex-
tensive and comprehensive review on the history of ω research,
including Gram-positive as well as Gram-negative bacteria, has
been published by Mathew and Chatterji (2006) where the au-
thors summarize structural and functional roles of the subunit.
In the context of this review, we will offer an overview of data
that is available and valid for Gram-positive organisms, as well
as highlight functional differences compared to Gram-negative
bacteria.

The ω protein is widely conserved across all forms of life
With an increasing number of bacterial, archaeal and eukary-
otic genomes available, it has become clear that the ω subunit
is conserved in all branches of life. In eukaryotes, a sequence,
structural and functional homolog of ω (RPB6) exists that is as-
sociated with RNAPI, II and III, whilst archaeal genomes harbor
a sequence homolog termed RpoK (Minakhin et al., 2001). RPB6
has been shown to be essential for RNAP assembly in eukary-
otes (Nouraini, Archambault and Friesen 1996); however, in bac-
teria, deletion of the ω subunit in a variety of different species
does not result in cell lethality (Gentry and Burgess 1989; Ko-
jima et al., 2002; Mathew, Ramakanth and Chatterji 2005; Do-
herty et al., 2010; Jie, JiLiang and DongJie 2010; Santos-Beneit
et al., 2011; Gunnelius et al., 2014). This is particularly intriguing,
since the subunit is conserved in all of the sequenced genomes
of free-living bacteria (Minakhin et al., 2001), suggesting an im-
portant evolutionary role for it in cellular survival

The binding of ω to RNAP
The ω protein, which ranges in size from ∼9 to 11.5 kDa depend-
ing on the bacterial species in question, was first shown to be a
dedicated subunit of E. coli RNAP, rather than just a tightly bound
factor, when cross-linking experiments demonstrated its spe-
cific binding to the β ′ subunit (Gentry and Burgess 1993). Sub-

sequently, it was found to be an integral part of the transcrip-
tion machinery in vivo when the association of ω directly with
RNAP was shown (Dove and Hochschild 1998). In these studies,
ω was translationally fused to a DNA-binding protein (the cI re-
pressor from bacteriophage λ) and was found to activate tran-
scription of promoters adjacent to the corresponding λ opera-
tor, demonstrating interaction of the chimeric λcI-ω fusion pro-
tein with RNAP. Both of these studies have since been supported
by more recent work solving the structure of ω-containing RNAP
from Thermus aquaticus and E. coli (Zhang et al., 1999; Murakami
2013). Although no such crystallization studies for RNAP have
been performed in Gram-positive bacteria, several experiments
in B. subtilis demonstrate co-purification of ω with RNAP, high-
lighting its associationwith other subunits of the transcriptional
machinery (Spiegelman, Hiatt and Whiteley 1978; Achberger,
Tahara and Whiteley 1982b). These results were confirmed and
extended in a recent approach in which Delumeau et al. (2011)
were not only able to co-purify ω with the essential RNAP sub-
units (α, β, β ′) but also determined a 2:1:1:1 ratio for α2ββ ′ω
during exponential and stationary growth. These results clearly
show that, as for Gram-negative bacteria, the ω subunit is an in-
tegral part of the Gram-positive transcriptional machinery.

The role of ω for structural integrity of RNAP
Extensive research has been performed on the involvement of ω

in folding of the β ′ subunit, and RNAP assembly. Its importance
for the assembly process was first considered when RNAP puri-
fied from Rhodobacter capsulatus and E. coli was shown to require
ω, or GroEL and ω, respectively, to remain active in vitro (Mukher-
jee and Chatterji 1997; Richard et al., 2003). This requirement for
the GroEL chaperone was considered puzzling, but this factor
had been shown to co-purify with RNAP, and was thus thought
to be important for the folding of the transcriptional complex
(Mukherjee and Chatterji 1997; Mukherjee et al., 1999). Interest-
ingly, deletion of ω in E. coli results in amassive increase of GroEL
recruitment to RNAP, suggesting that GroEL might be employed
to overcome misfolding due to ω loss (Mukherjee et al., 1999).
This was confirmed when in vivo GroEL substrates in E. coli were
determined (Houry et al., 1999), showing that other than β ′, all
of the essential RNAP subunits, as well as ω, require GroEL for
proper folding. Surprisingly, these results were found to be only
partially true in B. subtilis, where GroEL does not appear to be
associated with RNAP subunits (Endo and Kurusu 2007). With
this being said, the Gram-positive study identified considerably
fewer GroEL substrates than the study performed in E. coli (28
vs ∼300). Therefore, either there are indeed fewer substrates for
this chaperone in B. subtilis or experimentation in the Gram-
positive organism had lower sensitivity in comparison with the
E. coli study.

Interestingly, an earlier study in E. coli described in vitro cross-
linking of ω and β ′ (Gentry and Burgess 1993), whilst at the same
time showing that β ′ was not a substrate of GroEL and that the
ω subunit increases (together with GroEL) the in vitro activity of
RNAP. As such, it was suggested that ω had a specific function
in supporting the folding of β ′. This hypothesis was reinforced
by a structural study that investigated the precise interplay of ω

and β ′, demonstrating interaction of conserved regions for these
two proteins (Minakhin et al., 2001). Consequently, it was pro-
posed that ω acts as amolecular latch, guiding the interaction of
β ′ with the α2β complex. Studies by Ghosh, Ishihama and Chat-
terji (2001) supported this notion by demonstrating that the in-
teraction of ω with β ′ was able to prevent aggregation of the lat-
ter protein during in vitro renaturation. Furthermore, this same
group was able to show that native folding of β ′ requires ω, and
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Figure 3. Model for RNA polymerase assembly in Gram-positive bacteria. After

association of two α subunits, the dimer binds to the β subunit. The β ′ protein
is held by the ω subunit (Minakhin et al., 2001) in order to prevent misfolding
(Ghosh, Ramakrishnan and Chatterji 2003) and aggregation (Ghosh, Ishihama
and Chatterji 2001), before the β ′-ω complex docks with α2β (Mathew and Chat-

terji 2006; Ganguly and Chatterji 2011). Thus far, it is unknown when the ε and
δ subunits bind to the complex; however, it is believed that ε interacts at the re-
gion of the β ′ jaw and secondary channel (Keller et al., 2014), whilst δ is thought
to interact with the β and β ′ subunits (Weiss et al., 2014). Finally, and in order to

enable RNAP to perform promoter-specific transcription, the σ factor docks with
core RNAP resulting in holoenzyme formation.

that folding of the β ′ subunit in the absence of ω results in an in-
termediate state between a denatured and native conformation
(Ghosh, Ramakrishnan and Chatterji 2003). These results were
supported by work in Bacillus cereus, where expression of ω in-
creased by asmuch as 10-fold after heat stress (42◦C), suggesting
a chaperone-like role, where larger amounts of the subunit can
counteract RNAP denaturation (Periago et al., 2002). Other than
a function in β ′-folding, it was also shown that the removal of
ω leads to increased proteolytic cleavage of β ′ during RNAP iso-
lation inMycobacterium smegmatis, suggesting an additional pro-
tective role of the ω subunit (Mathew, Ramakanth and Chatterji
2005). Based on these studies, the involvement of ω in RNAP as-
sembly was described, whereby an α-dimer and the β subunit
assemble before docking to ω-bound β ′ occurs (as visualized in
Mathew and Chatterji 2006 and shown in Fig. 3). Both the se-
quential assembly of the subunits themselves, as well as the im-
portance of ω for the assembly process, was recently confirmed
by studies that investigated active RNAP reconstitution at air–
water interfaces (Ganguly and Chatterji 2011).

Further to this, the comparison of different RNAP crystal
structures revealed that ω seems to have varying interactions
with β ′ and within the RNAP complex in diverse organisms (Mu-
rakami 2013). For example, in T. aquaticus and E. coli, ω displays
only partially overlapping conformations, and thus has varying

interactions with β ′. This is especially interesting, given that
no complete Gram-positive RNAP structure is available so far,
and therefore no definite assumptions about ω − β ′ interaction
can bemade. These differences in conformation and interaction
between the subunits could account for the various functional
properties ofω in different bacterial species, which are discussed
in the following section.

ω and the stringent response: structural and functional variability
in different bacterial species
In E. coli, the ω-encoding rpoZ gene is located in the same
operon as spoT (Gentry and Burgess 1989; Sarubbi et al., 1989).
SpoT is a bifunctional enzyme that facilitates the degradation
and synthesis of guanosine tetraphosphate and pentaphos-
phate (ppGpp and pppGpp), thus regulating the levels of these
alarmones, and onset of the stringent response (reviewed in
Cashel et al., 1996; Chatterji and Ojha 2001). In such a scenario,
ppGpp/pppGpp are produced as a result of nutritional stress
and cause global changes in transcription. Extensive work has
centered on the mechanism of ppGpp/pppGpp recognition by ω,
largely in E. coli (reviewed in Mathew and Chatterji 2006). Such
studies recently led to identification of the ‘magic spot’, the
binding site of ppGpp on RNAP (Kahrstrom 2013). Together three
publications by different groups described that the binding of
ppGpp to RNAP occurs at the interface of the β ′ and ω subunits
(Mechold et al., 2013; Ross et al., 2013; Zuo,Wang and Steitz 2013),
and that deletion of key residues negatively influences growth
under nutrient-limiting conditions via loss of ppGpp binding to
RNAP (Ross et al., 2013). Interestingly, homology analysis shows
that key β ′ and ω residues important for ppGpp binding are not
conserved within the Firmicutes (or the Thermus and Aquificales
genera), therefore suggesting alternative mechanisms of ppGpp
recognition by RNAP exist (Ross et al., 2013). This is in line
with findings from B. subtilis, highlighting that although ppGpp
is used as a signaling molecule to react to changing nutrient
availability, ppGpp does not change transcriptional specificity
by directly binding to ω and RNAP; thus, ω deletion does
not interfere with stringent response induction (Krasny and
Gourse 2004; Doherty et al., 2010; Kriel et al., 2012). Instead, this
alarmone causes changes in intracellular GTP concentrations
by modulating the activity of GTP synthesis proteins, which
subsequently leads to altered activity of GTP (iNTP) sensitive
promoters, such as ribosomal RNA genes (Krasny and Gourse
2004; Kriel et al., 2012). Together these findings show that,
although ω and the utilization of ppGpp to signal and react to
nutrient limitation are conserved, the mechanism for alarmone
recognition is variable. This emphasizes the need to examine
and understand the function of ω in species beyond the standard
model organism, E. coli. Interestingly, these possible functional
differences between genera are also mirrored in the cellular
abundance of the subunit itself. Doherty et al. (2010) were able
to show that in E. coli almost every RNAP polymerase includes a
ω subunit (85%), whilst in B. subtilis the amount is significantly
lower, with only 48% of RNAP complexes containing the subunit.

ω is involved in σ factor recruitment
RNAP purified from E. coli rpoZmutants displays an altered com-
position, with the amount of σ 70 associated diminished, and a
concomitant increase in bound σ 38 (Geertz et al., 2011). These
changes in RNAP composition result in altered gene expression
and DNA relaxation. Interestingly, the wild-type phenotype (in-
creased supercoiling) is restored by overexpressing σ 70 in ω-null
strains. Similar results were obtained in the cyanobacterium
Synechocystis sp. PCC 6803 (Gunnelius et al., 2014a), wherein an
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rpoZ knockout had impaired recruitment of the primary σ fac-
tor, resulting in decreased expression of genes under the con-
trol of this element. Inversely, a large number of typically lowly
expressed genes were upregulated, suggesting activity of one or
more alternative σ factors. These data indicate a role for ω in
transcriptional specificity, and are supported by later publica-
tions describing an altered response to heat stress upon dele-
tion of rpoZ, leading to impaired survival at higher temperatures
(Gunnelius et al., 2014b). Importantly, such findings correlate
with early studies showing that purification of ω-deficient RNAP
in E. coli is depleted for σ 70, leading to the conclusion that ω is
required for correct RNAP folding and σ -factor binding (Mukher-
jee et al., 1999). Overall, this line of research describes how the
structural effects of ω are required for RNAP integrity and func-
tionality, which leads to a role in fine-tuning transcription by
adjusting affinity for central transcriptional regulators such as
σ factors. These results were all obtained in Gram-negative or-
ganisms, thus highlighting the need for further investigation in
Gram-positive species.

The ω subunit of Gram-positive bacteria
As detailed above, in E. coli the ω subunit mediates folding of
the β ′ subunit, influences assembly of RNAP, orchestrates gene
expression during the stringent response and plays a role in or-
dering transcriptional specificity. In Gram-positive bacteria, the
functional role of ω is much less clear. Since ppGpp does not
bind RNAP in B. subtilis, the ω subunit is unlikely to be directly
involved in the stringent response of this organism. This raises
the question of additional functions for the Gram-positiveω sub-
unit outside of ppGpp binding and β ′ folding.Whilst studies have
been conducted for various Gram-negative bacteria beyond E.
coli, including Sinorhizoboium meliloti (Krol and Becker 2011), Xan-
thomonas campestris (Jie, JiLiang and DongJie 2010) and cyanobac-
teria species (Gunnelius et al., 2014a, 2014b), thus far the role of
ω in Gram-positive bacteria has only been extensively examined
in two Streptomyces species and M. smegmatis.

When exploring the role of the ω subunit in Streptomyces ka-
sugaensis, it was found that an rpoZmutant had diminished syn-
thesis of the antibiotic kasugamycin, and that the strain was
also deficient for aerial hyphae generation (Kojima et al., 2002).
A genetic basis for this latter phenotype was not reported; how-
ever, the kasugamycin biosynthetic genes were found to have
decreased expression in the mutant strain. This decrease in
expression appears to be mediated by reduced production of
the KasT regulator, which is known to positively regulate ka-
sugamycin production (Ikeno et al., 2002, 2006). Interestingly,
when kasT was expressed under the control of a different pro-
moter (ermEp), it was transcribed at wild-type levels in the
rpoZ mutant, and resulted in expression of the kasugamycin-
producing operon (Kojima et al., 2002, 2006). Although the under-
lyingmechanism for this regulation is not currently understood,
these results do indicate that ω is capable of having promoter-
specific transcriptional effects.

Subsequent to this, the role of ω was also analyzed in Strep-
tomyces coelicolor. Interestingly, the ω proteins of S. kasugaensis
and S. coelicolor display 98% sequence similarity, with the pro-
tein from the latter being able to complement rpoZ loss in S. ka-
sugaensis (Kojima et al., 2002). Santos-Beneit et al. (2011) have de-
tailed pleiotropic phenotypes for a S. coelicolor rpoZ mutant, in-
cluding slow growth, absent spore-pigmentation and increased
sensitivity to heat, with temperatures above 40◦C leading to
an aerial hyphae-null phenotype. Additionally, the mutant dis-
played altered expression of two antibiotics, actinorhodin (ACT)
and undecylprodigiosin (RED). Whilst ACT was produced earlier

during growth in an rpoZ-depleted strain, the mutant failed to
produce the antibiotic in later growth phases, showing overall
reduced levels after 70 h. For RED, it was reported that produc-
tion was essentially abolished in the mutant strain, akin to ka-
sugamycin synthesis in S. kasugaensis. While there is no clear
explanation for how deletion of rpoZ simulatiously modulates
expression of these structurally unrelated metabolites, or leads
to pleiotropic phenotypic alterations in S. coelicolor, it was shown
that rpoZ has a PhoP-binding site (PHO box) (Sola-Landa et al.,
2005) upstream of its transcriptional starts site (Santos-Beneit
et al., 2011). The repressor PhoP is known to inversely regulate
the expression of secondarymetabolites in response to the avail-
ability of phosphate (Sola-Landa, Moura and Martin 2003). For
rpoZ, it was shown that PhoP does indeed bind to its promoter re-
gion, and that deletion of phoP results in an increased abundance
of the subunit. Whilst these experiments suggest that ω itself
can be regulated in an environment-depenent manner, it is not
completely understood how the subunit exerts its effects on a
plethora of different genes and cellular processes. Furthermore,
the notion that rpoZ expression is controlled by an environment-
responsive regulator is challenged, at least in part, by findings
in B. subtilis. In this organism, Delumeau et al. (2011) described
that during sporulation, or following stress in vegetative cells,
no changes in RNAP subunit stoichiometry are observed. This is
in line with findings from Nicolas et al. (2012), who report that
expression of the subunit is stable under 104 different growth
conditions in B. subtilis, suggesting constant and environment-
independent abundance of ω. These opposing findings may rep-
resent species-specific differences, highlighting not only the
need to investigate how ω mediates its effects on gene expres-
sion but also how its production within the cell is controlled.

In M. smegmatis, it was first shown that rpoZ deletion causes
changes in colony morphology, and a slower growth phenotype
similar to that reported for E. coli (Mukherjee et al., 1999; Mathew,
Ramakanth and Chatterji 2005). Further studies described that
ω-depleted strains present additional pleiotropic alterations, in-
cluding a decrease in sliding motility, and diminished biofilm
formation due to an altered biofilm matrix and cell surface re-
sulting from shorter chain mycolic acids (Mathew et al., 2006).
With regard to this latter point, ω-deficient strains ofM. smegma-
tis are unable to manipulate their mycolic acid and glycopepti-
dolipide profiles to that required for biofilmmaturation; indeed,
even after the onset of biofilm formation, rpoZmutantsmaintain
mycolates only found in the wild type during planktonic growth
(Mathew et al., 2006; Mukherjee and Chatterji 2008). Two possible
explanations for these findings have been suggested: firstly, the
onset and maturation of biofilms requires significant changes
in transcription (Sauer 2003), which are facilitated by various
regulatory mechanisms, including alternative σ factors (Rachid
et al., 2000; Bateman et al., 2001; Knobloch et al., 2001, 2004). Sec-
ondly, such events are governed by stress adaption through the
stringent response and ppGpp (Balzer and McLean 2002; Taylor
et al., 2002; Lemos, Brown and Burne 2004; Gjermansen, Ragas
and Tolker-Nielsen 2006; He et al., 2012). Both of these processes
are controlled by ω in Gram-negative species, although, as sug-
gested above, there appears to be disparate function for this sub-
unit between the two classes of bacteria. Indeed, an alignment
of the ω protein between M. smegmatis and E. coli reveals that
the conserved residues required for ppGpp binding are, as with
B. subtilis (Ross et al., 2013), not conserved (our unpublished ob-
servation). As such, it seems more probable that, as with E. coli
and cyanobacteria, the binding of ω to RNAP in M. smegmatis
results in an altered affinity for different σ factors, and therefore
negatively influences the ability to express genes required for

 by guest on February 3, 2016
http://fem

sre.oxfordjournals.org/
D

ow
nloaded from

 

http://femsre.oxfordjournals.org/


Weiss and Shaw 551

biofilm formation. This highlights the variable nature and, more
importantly, the need to study ω in a wider range of Gram-
positive bacteria, before drawing general conclusions about its
function.

The ε subunit

Besides the α2, β, β ′, δ and ω, an additional seventh RNAP
subunit was recently identified in Firmicutes. Early studies
described a protein that co-purifies with RNAP in different Bacil-
lus species (Spiegelman, Hiatt and Whiteley 1978; Achberger,
Tahara and Whiteley 1982b), but not in E. coli (Achberger, Tahara
and Whiteley 1982b). Since it had a similar size to the 9 kDA
ω subunit (first termed ω2), this additional 11 kDa protein was
originally named ω1. Subsequent studies in B. subtilis showed
that the protein was expressed (Nicolas et al., 2012) and asso-
ciated with RNAP during different growth phases, and during
environmental stress (Delumeau et al., 2011). This protein was
also shown to remain tightly bound when overexpressing the
α2ββ ′ω RNAP complex (Yang and Lewis 2008), suggesting that
it is indeed a real subunit, rather than just an RNAP-associated
factor. This hypothesis was further supported by the finding
that ω1, as well as ω, is present in the cell at equal molecular
amounts to β (Delumeau et al., 2011).

Notably, since its initial description in the literature in 1978,
no significant advances have been made to functionally and
structurally characterize this protein, until recently. Acknowl-
edging this lack of focus, Keller et al. (2014) investigated ω1 in B.
subtilis and confirmed its interaction with RNAP by examining
co-localization of the protein with RNAP, proving that it actu-
ally functions as a true subunit. Furthermore, sequence analy-
sis revealed that it is conserved only in the Firmicutes and shows
no sequence similarity to the ω subunit. Therefore, the protein
was recently renamed the epsilon subunit (ε), and its encod-
ing gene termed rpoY. Interestingly, in Firmicute genomes se-
quenced to date, rpoY is located in a bicistronic operon with the
gene encoding RNase J1 (rnjA). This RNase has been extensively
described as being required for post-transcriptional regulation,
including RNA degradation and maturation (Britton et al., 2007;
Deikus and Bechhofer 2011; Linder, Lemeille and Redder 2014).
Although a connection for these two gene products has yet to
be established, it is tempting to suggest that a functional impor-
tance may exist for both elements in posttranscriptional pro-
cesses and/or transcript maturation.

When analyzing ε structure by X-ray crystallography, a ββαβ

motif that may putatively influence protein–protein interaction
was described (Keller et al., 2014). Interestingly, the structure of
ε shows homology to Gp2 proteins, which are found in bacte-
riophages that infect Gram-negative bacteria (Hesselbach and
Nakada 1977), and have been shown to block RNAP function
by preventing open complex formation (Nechaev and Severinov
1999; Camara et al., 2010; James et al., 2012; Bae et al., 2013). In-
deed, similar to Gp2, it was shown that ε binds to the β ′ jaw
and secondary channel of RNAP, potentially preventing access
of phage proteins to the transcriptional machinery (Keller et al.,
2014). Although Gp2 is known to be present only in phages that
infect Gram-negative bacteria, Keller and colleagues hypothe-
size that the ε subunit could represent a protective factor against
thus far unidentified Gp2-like proteins of Gram-positive bacte-
riophages. This suggestion is in line with the increasing number
of mechanisms that are being documented which protect bacte-
ria against phage infection (Labrie, Samson and Moineau 2010).
Even though the structural data derived by Keller et al. (2014)
support such a hypothesis, no experimental evidence, including

phage infection assays, has yet been established. Additionally,
no phenotypes or effects on transcription in vitro or in vivo were
reported upon ε deletion. This makes the ε subunit of RNAP an
interesting target for future experimentation in B. subtilis and
other Gram-positive bacteria in general.

CONCLUDING REMARKS

With the wealth of information available on small RNAP sub-
units in Gram-positive bacteria, it is clear that these proteins
present an important part of the transcriptional machinery.
Studies describing the role of δ, ε and ω have been conducted
over several decades, and considerable progress has beenmade.
These subunits have been shown by countless groups to possess
vital functions, ranging from guiding the assembly and struc-
tural integrity of RNAP, σ factor selectivity, influencing promoter
specificity and potential roles in protecting cells against phage
infection. Their significance is mirrored by their presence and
conservation within nearly all of the Gram-positive genomes
thus far sequenced. With modern high-throughput transcrip-
tomic and proteomic approaches, as well as structural studies,
information has been brought to light that allows explanation
of the numerous phenotypes observed for null mutants of the
subunits in various bacterial species. Nevertheless, the underly-
ing mechanism by which these proteins mediate their function
is still incompletely understood. It will be fascinating to observe
how new approaches and studies, combined with this existing
body of knowledge, will guide future work to reveal the precise
role of these subunits within bacterial cells.
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Supplemental Table S1: Species names, IMG Gene IDs and protein length for δ 

sequences contained with the Figure 1A alignment. All protein information was obtained 

from the Integrated Microbial Genome (IMG) system (https://img.jgi.doe.gov) (Markowitz et al., 

2014).  

 
 

# in Figure 1A IMG Gene ID Species Protein length (aa) 
1 645482284 Selenomonas flueggei 109 
2 650788107 Carnobacterium sp. 205 
3 2511470775 Pelosinus sp. 122 
4 640209387 Thermosinus carboxydivorans 121 
5 651578560 Acetonema longum 125 
6 2509275160 Desulfosporosinus orientis 136 
7 641688320 Exiguobacterium sibiricum 174 
8 644183400 Catenibacterium mitsuokai 111 
9 642323807 Clostridium spiroforme 114 

10 642191922 Clostridium ramosum 113 
11 646240522 Mollicutes bacterium 110 
12 643184683 Eubacterium biforme 113 
13 650272364 Clostridium sp. 106 
14 2514580865 Eubacterium sp. 107 
15 646852895 Bacillus selenitireducens 174 
16 2523747826 Jeotgalicoccus marinus 170 
17 643658815 Macrococcus caseolyticus 173 
18 2517443193 Staphylococcus massiliensis 176 
19 643727220 Staphylococcus carnosus 184 
20 2520306012 Staphylococcus sp. 179 
21 647470149 Staphylococcus epidermidis 178 
22 646636532 Staphylococcus lugdunensis 173 
23 637888727 Staphylococcus aureus 176 
24 642562690 Staphylococcus haemolyticus 172 
25 2518442252 Allofustis seminis 180 
26 644194367 Listeria grayi 182 
27 639707453 Listeria welshimeri 176 
28 2514158098 Listeria monocytogenes 178 
29 2520299204 Catellicoccus marimammalium 188 
30 2514553789 Dolosigranulum pigrum 172 
31 651443943 Fructobacillus fructosus 180 
32 651429677 Leuconostoc fallax 186 



33 644429341 Leuconostoc mesenteroides 192 
34 641604257 Leuconostoc citreum 193 
35 651010218 Leuconostoc sp. 193 
36 2520072467 Leuconostoc gelidum 193 
37 650764460 Aerococcus urinae 213 
38 644363720 Catonella morbi 225 
39 2514611694 Facklamia languida 221 
40 650258718 Eremococcus coleocola 227 
41 651114493 Lactococcus lactis 187 
42 2511651893 Lactococcus garvieae 186 
43 650788107 Carnobacterium sp. 205 
44 646090746 Granulicatella adiacens 204 
45 2523707725 Bavariicoccus seileri 214 
46 2514413459 Lactobacillus versmoldensis 213 
47 650345384 Streptococcus vestibularis 191 
48 638493971 Streptococcus pneumoniae 197 
49 650333312 Streptococcus infantis 191 
50 2515219321 Streptococcus massiliensis 196 
51 650086157 Streptococcus anginosus 195 
52 2512471342 Streptococcus constellatus 195 
53 2515263509 Streptococcus ovis 196 
54 2519825720 Streptococcus minor 194 
55 2523205322 Streptococus plurextorum 197 
56 650855100 Streptococcus parauberis 187 
57 2523948014 Streptococcus castoreus 197 
58 648821780 Streptococcus pyogenes 202 
59 2515275679 Streptococcus didelphis 188 
60 2515731753 Streptococcus mutans 194 
61 2515297213 Streptococcus caballi 193 
62 648815525 Streptococcus bovis 190 
63 650330852 Streptococcus equinus 190 
64 2512479078 Streptococcus macacae 193 
65 2515262707 Streptococcus ferus 194 
66 2511692614 Tetragenococcus halophilus 203 
67 2515485516 Enterococcus columbae 201 
68 650845241 Melissococcus plutonius 210 
69 2519529468 Enterococcus faecalis 208 
70 2514448739 Enterococcus saccharolyticus 201 
71 2522028557 Enterococcus hirae 203 
72 651430688 Weissella cibaria 197 



73 651432316 Lactobacillus coryniformis 186 
74 643927141 Lactobacillus paracasei 223 
75 2514683090 Lactobacillus zeae 224 
76 2523925542 Lactobacillus harbinensis 228 
77 2524573453 Lactobacillus saerimneri 190 
78 644905590 Lactobacillus plantarum 202 
79 646291449 Lactobacillus coleohominis 190 
80 2514646519 Lactobacillus suebicus 195 
81 641713578 Lactobacillus fermentum 195 
82 650245840 Lactobacillus oris 165 
83 2500070755 Lactobacillus reuteri 185 
84 648250028 Lactobacillus salivarius 208 
85 2514643970 Lactobacillus mali 191 
86 651443154 Lactobacillus animalis 189 
87 2514648593 Lactobacillus malefermentas 206 
88 644307024 Lactobacillus hilgardii 211 
89 637796229 Lactobacillus sakei 202 
90 644358292 Lactobacillus acidophilus 184 
91 639672085 Lactobacillus gasseri 186 
92 2514731674 Lactobacillus sp. 181 
93 637622251 Bacillus clausii 168 
94 637060510 Bacillus halodurans 164 
95 641380263 Bacillus weihenstephanensis 175 
96 2519373257 Bacillus cereus 176 
97 637508443 Bacillus anthracis 175 
98 639751904 Bacillus thuringiensis 176 
99 642460509 Bacillus anthracis 175 

100 637326668 Oceanobacillus 173 
101 2514400189 Ornithinibacillus sp. 187 
102 2514123921 Halobacillus halophilus 178 
103 2520240165 Salimicrobium sp. 183 
104 639313077 Bacillus licheniformis 171 
105 642878827 Bacillus pumilus 179 
106 643431281 Anoxybacillus flavithermus 199 
107 644800105 Geobacillus sp. 186 
108 650287269 Planococcus donghaensis 188 
109 2520841753 Bacillus isronensis 194 
110 641573981 Lysinibacillus sphaericus 184 
111 2520890491 Lysinibacillus fusiformis 183 
112 2514700644 Bacillus smithii 182 



113 642982695 Bacillus coahuilensis 177 
114 2529279564 Sporosarcina sp. 188 

115 2506240325 
Sulfobacillus 
thermosulfidooxidans 105 

116 2506612322 Sulfobacillus acidophilus 97 
117 645028913 Alicyclobacillus acidocaldarius 174 
118 651560222 Caldalkalibacillus thermarum 165 
119 643788320 Brevibacillus brevis 186 
120 646752012 Bacillus tusciae 167 
121 651607961 Desmospora sp. 147 
122 2512925420 Saccharibacillus sacchari 186 
123 2511571733 Paenibacillus terrae 182 
124 2516613897 Paenibacillus sp. 187 
125 650065345 Paenibacillus vortex 188 
126 2507047969 Paenibacillus lactis 185 
127 650134438 Paenibacillus larvae 179 
128 2508845954 Thermobacillus composti 193 
129 2516584637 Cohnella panacarvi 200 
130 646320341 Bacillus subtilis 173 
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The � Subunit of RNA Polymerase Guides Promoter Selectivity and
Virulence in Staphylococcus aureus

Andy Weiss, J. Antonio Ibarra,* Jessica Paoletti, Ronan K. Carroll, Lindsey N. Shaw

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, USA

In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an
additional subunit, termed the � factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various or-
ganisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphy-
lococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demon-
strated binding to core RNAP that is mediated by the � and/or �= subunits. To identify the impact of the � subunit on
transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in
the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence
factors, while several mobile genetic elements (SaPI5 and prophage �SA3usa) were strongly upregulated. Phenotypically, the
rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted
proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole
human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively,
our results demonstrate that the � subunit of RNAP is a critical component of the S. aureus transcription machinery and plays
an important role during infection.

Bacterial gene transcription is a complex, multifactorial process
that involves several key enzymes and regulatory elements. It

is driven by the activity of DNA-dependent RNA polymerase
(RNAP) and its associated proteins, which form a multisubunit
enzyme consisting of one � subunit, one �= subunit, two identical
� subunits, and one � subunit (reviewed in reference 1). Together
these form the RNAP apoenzyme, which is able to perform RNA
elongation and termination; however, initiation requires the in-
volvement of a � factor. Typically, most bacterial species harbor
several different � factors, a primary one (�A or �70) that mediates
housekeeping gene transcription and a variety of alternative sigma
factors, which aid in the response to unfavorable environmental
conditions and stress.

In certain Gram-positive species and particularly the Firmic-
utes (see Fig. S1 in the supplemental material), an additional
RNAP subunit is present, termed the � factor, or RpoE (2). In
Bacillus subtilis, the 173-amino-acid delta subunit has been shown
to reduce nonspecific binding of RNAP to DNA and lead to an
elevated preference for DNA regions that include promoter se-
quences (3, 4). In early experiments, it was shown that RpoE has a
role specifically confined to promoter selection and influences the
ability of RNAP to form open promoter complexes (5, 6). Full-
length RpoE has also been described as displacing nucleic acids
from RNAP-DNA or RNAP-RNA complexes in vitro, which may
explain the decreased affinity of RNAP-RpoE for nonpromoter
regions. This feature of RpoE activity has additionally been attrib-
uted to its ability to stimulate RNAP recycling by enhancing the
release of the complex from terminator sequences (6).

The effects of RpoE are far from arbitrary, since it has been
shown that the � subunit of RNAP not only distinguishes between
promoter and nonpromoter sequences but also is important in the
recognition of individual promoter features. A comparison of two
�29 promoters by transcription runoff revealed selective, pro-
moter-dependent effects of RpoE (7). While the stronger of these
two promoters was largely unaffected by RpoE, the weaker pro-

moter showed significantly decreased expression in the presence
of this factor. In order to explain the effect of RpoE on promoter
selection, Rabatinova et al. (8) investigated the role of initiating
nucleotide triphosphate (iNTP) recognition by RNAP and RNAP-
RpoE complexes. iNTP is required to stabilize open complex for-
mation and therefore to initiate transcription. It is thought that by
destabilizing DNA-RNAP complexes, RpoE increases the amount
of iNTP required to transcribe from certain promoters. Finally, in
an approach aiming to identify functional regions of RpoE, Lopez
de Saro et al. (9) created several truncated variants of the protein.
In doing so, they showed that the N-terminal portion is required
for binding to RNAP and also guides the correct orientation of the
disordered and polyanionic C-terminal region. A limitation of
these studies regarding RpoE function, however, is that they were
performed in vitro, using only single promoters. Therefore, the
true extent of �-subunit influence on genome-wide transcrip-
tional effects is still somewhat restricted at this point.

Phenotypically, rpoE mutants of B. subtilis have an extended
lag phase upon subculturing of stationary-phase cells in fresh me-
dium, as well as a moderately changed cell morphology (10). Fur-
thermore, competition experiments revealed that when cocul-
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tured with the wild type, �-factor-lacking strains show decreased
fitness and are outcompeted during growth over several days (8).
Finally, a role for RpoE in sporulation has been suggested, since
rpoE loss was shown to suppress a mutation (pdhC) that negatively
influences sporulation (11).

The role of RpoE has also been addressed for a small number of
pathogenic organisms, most notably in streptococcal species.
RpoE in Streptococcus mutans is most abundant during exponen-
tial and early stationary phases of growth, and rpoE deletion causes
an extended lag phase. S. mutans rpoE mutants are also more sen-
sitive to environmental stresses (H2O2 stress and acid stress) and
show alterations in biofilm formation and virulence (12). Inter-
estingly, rpoE deletion was also reported to increase self-aggrega-
tion, coaggregation with other oral microorganisms (13), and an
elevated ability to bind human extracellular matrix proteins. For
Streptococcus agalactiae, there have been a limited number of stud-
ies which show greatest rpoE expression during exponential
growth (14) and attenuated virulence of rpoE mutants in a rat
sepsis model (15, 16) and human whole-blood survival assays.

In Staphylococcus aureus, the only information thus far regard-
ing RpoE is that strains lacking this factor display defects in star-
vation-induced stationary-phase survival/recovery and slightly
increased acid sensitivity (17). Notably, however, no investigation
of its role in cellular physiology and virulence has been performed.
Therefore, in this study, we investigated the role of RpoE in pro-
moter selectivity using transcriptome sequencing (RNA-seq)
technology and determined that in S. aureus, the � subunit specif-
ically guides RNAP toward strongly expressed promoters. Dele-
tion of this factor results in a normalizing of transcriptional activ-
ity across genes, guiding RNAP away from key virulence-affecting
loci. Such effects strongly impair the pathogenic potential of S.
aureus, leading to diminished infection using a systemic model of
sepsis and increased phagocytosis by human leukocytes. Collec-
tively, our results suggest that rpoE is involved in orchestrating the
ability of S. aureus to react and adapt to environmental changes
and thus plays a critical role during virulence.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Strains used for experimental
procedures are listed in Table 1. An rpoE transposon mutant in S. aureus
USA300 strain JE2 was acquired from the Nebraska transposon library
(NARSA). This mutation was transferred via �11 transduction to our
USA300 Houston wild-type strain (18). Successful transduction of this
mutation was confirmed by PCR, using gene-specific (OL1709 and
OL1710) and transposon-specific (OL14721 and OL1472) primers. Cul-
tivation of bacteria was performed in tryptic soy broth (TSB) at 37°C.
Where required, erythromycin (5 mg/ml), lincomycin (10 mg/ml), or
chloramphenicol (10 mg/ml) was added to the medium. Synchronous
cultures were obtained as described by us previously (19).

Construction of an rpoE complemented strain. The rpoE gene and its
promoter were amplified via PCR, using primer pair OL1973 and
OL1975, which are located 200 bp upstream from the rpoE translational
start codon and at the 3= end of the rpoE coding region, respectively. In
addition to the native rpoE sequence, a hexahistidine (His6) tag was in-
cluded in the reverse primer (OL1975) to create a fusion protein that
could be used for downstream purification. For the cloning of truncated
rpoE-His6 fragments, primers 2931 (half of the N terminus only, amino
acids 1 to 159), 2932 (the N-terminal half of the protein, amino acids 1 to
264), and 2933 (the N-terminal half of the protein and half of the C
terminus, amino acids 1 to 396) were used instead of 1975. The PCR
products were cloned into shuttle vector pMK4 and transformed into
chemically competent Escherichia coli DH5�. Clones were confirmed via

PCR using the same set of oligonucleotides used for cloning. Additionally,
Sanger sequencing using primers for the pMK4 multiple cloning site
(M13Fw and M13Rv) was performed to confirm fidelity of the construct.
The plasmids were transformed into S. aureus RN4220 by electroporation
and confirmed by PCR. Correct clones were used to generate a �11 lysate
for transduction into the S. aureus USA300 Houston rpoE transposon
mutant, which was again confirmed as described above.

Mapping the rpoE promoter. Rapid amplification of cDNA ends
(RACE) was used to identify the rpoE transcriptional start site. For this
approach, we used the 5=RACE core set (TaKaRa) and primers OL2018,
OL2019, OL2020, OL2021, and OL2022 (Table 1). PCR products were TA
cloned using the StrataClone PCR cloning kit (Agilent). The transcrip-
tional start site was identified by sequencing (MWG operon) 10 plasmids
that originated with the TA cloning using the universal primers M13Fw
and M13Rv.

qPCR. Quantitative real-time PCR (qPCR) analysis was conducted as
described previously (20) using the rpoE gene-specific primers OL1976
and OL1978 and OL2981 and OL2982 and 16S rRNA primers OL1184 and
OL1185. Three independent replicates were used to calculate final values.

Zymograms and Western blot analysis. S. aureus strains were grown
as described above, with samples taken at the time points specified. Zy-
mograms were performed with culture supernatants as described by us
previously (21). Intracellular and secreted protein fractions were har-
vested and subjected to SDS-PAGE and Western blot analysis as described
by us previously (21). Immunoblotting was performed with a mouse
monoclonal anti-His6 (Covance) or anti-LukS (IBT) antibody at a 1:1,000
or 1:20.000 dilution, respectively, overnight at 4°C. Secondary antibodies
were affinity-purified horseradish peroxidase (HRP)-conjugated goat an-
ti-mouse IgG or goat anti-rabbit IgG (Cell Signaling Technology).

RpoE pulldown assay. A coprecipitation was performed to identify
proteins that interact with RpoE. Briefly, rpoE-negative strains carrying
pMK4::rpoE-His6 or pMK4::rpoEtrunc1-His6 were harvested after 3 h of
growth, and intracellular fractions were isolated as described previously
(22). Cellular extracts were mixed with nickel-nitrilotriacetic acid (Ni-
NTA) agarose beads (Qiagen), and samples were incubated with agitation
at 37°C for 1 h. Beads were then washed 5 times (50 mM NaH2PO4, 300
mM NaCl, and 20 mM imidazole, pH 8.0) while rotating for 10 min at
37°C. After each wash step, beads were allowed to settle for 10 min, the
supernatant was removed, and fresh washing buffer was added. RpoE and
any interacting proteins were recovered by the addition of elution buffer
(50 mM NaH2PO4, 300 mM NaCl, and 250 mM imidazole, pH 8.0).
Isolated proteins were then used either to perform SDS-PAGE with sub-
sequent silver staining or for mass-spectrometric analysis, as described by
us previously (23).

Transcriptomic analysis via RNA-seq. For both the wild-type and
mutant strains, three independent cultures were grown as described
above. Synchronized cultures were harvested after 3 h, and RNA was iso-
lated using a Qiagen RNeasy kit (Qiagen). To ensure complete removal of
genomic DNA, RNA was treated with DNase I (Turbo DNA free; Am-
bion). The concentration and purity of RNA were determined using an
Agilent 2100 bioanalyzer. Following quantification, equimolar amounts
of RNA, from each of the three replicate preparations, were pooled, and
rRNA was removed using the MICROBExpress (Invitrogen) and Ribo-
Zero (Epicentre) kits. Removal of rRNA was confirmed, again employing
the Agilent 2100 bioanalyzer. rRNA-depleted samples were then used for
RNA-seq analysis using the IonTorrent Total RNAseq kit v2 according to
the manufacturer’s instructions (Life Technologies). Templated ion
sphere particles were generated using the Ion OneTouch 200 template kit,
v2. Sequencing was performed on an IonTorrent 318 chip using an Ion
PGM 200 sequencing kit. Data generated were exported to the CLC
Genomics Workbench software package for analysis. Reads were aligned
to the USA300 FPR genome, and expression values for each gene were
determined as RPKM (reads per kilobase per million reads) values. An
RPKM threshold of detection value of 10 was imposed as a lower-level
cutoff, and data were normalized using the quantile normalization ap-
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proach (24). Genes demonstrating changes in expression lower than
2-fold were excluded from further analysis.

Assay to detect alpha-hemolysin activity. The activity of alpha-he-
molysin was determined as described by us previously (25) using pooled,
whole human blood (Bioreclamation). Hemolysin activity (Ha) was cal-
culated using the following equation: Ha � (OD543 	 1,000)/(vol. of
sample 	 15 min 	 OD600 	 0.5).

Coinfection of whole human blood. The ability of strains to survive in
human blood was determined by seeding equal amounts of exponentially
growing wild-type and rpoE mutant bacteria into pooled, whole human
blood (Bioreclamation). Pooled blood was used to minimize effects that
result from single-donor samples, such as being preconditioned by S.
aureus infection or variation due to the immune status of the donor.
Samples were incubated with shaking at 37°C, with aliquots withdrawn
hourly to determine the bacterial burden by serial dilution and plating on
TSA and TSA supplemented with erythromycin. Bacteria growing on TSA
reflect the total number of cells in the sample, while TSA containing eryth-
romycin allows only rpoE mutants to grow.

Analysis of differential phagocytosis by human leukocytes using
flow cytometry. Phagocytosis of wild-type and mutant cells was deter-
mined using pooled, whole human blood (Bioreclamation) and flow cy-
tometry, as described by us previously (25). Experiments comparing the
wild type and mutant were conducted using the same batch of blood in
order to exclude variations resulting from different blood samples. These
studies were facilitated by the generation of green fluorescent protein
(GFP)-expressing variants of the USA300 Houston wild type and its rpoE
mutant using plasmid pOS1sGFP-PsarA-sod RBS (26). Cells were analyzed
using forward and side scattering in a fluorescence-activated cell sorting
(FACS) Excalibur cytometer (BD Biosciences). FACSDiva version 6.1.3
software (BD Biosciences) was used to analyze the data. Results represent
the averages for three independent experiments and are presented as the
percentages of GFP-positive cells plus or minus standard errors of the
means (SEM).

Coinfection model of murine sepsis and dissemination. In order to
determine the virulence of strains, a murine coinfection model of sepsis
was employed. These experiments were conducted as described previ-

TABLE 1 Strains, plasmids, and primers used in this study

Strain, plasmid, or primer Genotype and/or description or sequencea Reference or source

E. coli
DH5� Cloning strain 47

S. aureus
RN4220 Restriction-deficient strain Lab stocks
USA300 HOU USA300-HOU MRSA isolate cured of pUSA300-HOU-MRSA 19
NE 646 USA300 JE2 rpoE::Bursa, rpoE mutant NARSA
JAI1287 USA300 HOU rpoE::Bursa, rpoE mutant This study
JAI1607 USA300 HOU rpoE::Bursa, pMK4::rpoE-His6, rpoE
 This study
JAI1569 USA300 HOU rpoE::Bursa, pOS1sGFP-PsarA-sod, rpoE mutant This study
JAI1570 USA300 HOU pOS1sGFP-PsarA-sod This study

Plasmids
pMK4 Gram-positive shuttle vector 48
pJAI101 pMK4::rpoE-His6 This study
pAW102 pMK4::rpoE-His6trunc1, truncated RpoE, N terminus and half-C terminus This study
pAW103 pMK4::rpoE-His6trunc2, truncated RpoE, N terminus This study
pAW104 pMK4::rpoE-His6trunc3, truncated RpoE, half-N terminus This study
pOS1sGFP-PsarA-sod sarA promoter controlling expression of gfp 25

Primers
OL1471 TTTATGGTACCATTTCATTTTCCTGCTTTTTC 49
OL1472 AAACTGATTTTTAGTAAACAGTTGACGATATTC 49
OL1709 ATGAAAATTCAAGATTATACAAAAC This study
OL1710 AATAGTTGGTGCGATTTTCTCTTC This study
OL1184 AGCCGACCTGAGAGGGTGA 50
OL1185 TCTGGACCGTGTCTCAGTTCC 50
OL1973 CGCGGATCCAAGGACCAATTGGCAAAGAACGAC This study
OL1975 ACCGGAGTCGACTTAATGGTGATGGTGATGGTGATCGTTGAAGTCTTCTTCGTCTTC This study
OL1976 GAGCGTTAGGTGATTATGAGTACG This study
OL1978 CACTTCTTCGTCTTCGTCTAGTTC This study
OL2018 TTAATCGTTGAAGTC This study
OL2019 GTTTTGTATAATCTTGAATTTTC This study
OL2020 CAATAAATGATTTTTCATCAACC This study
OL2021 CAATCATTCGGATATAGTCATTG This study
OL2022 GATGAAGATGAACTAGACGAAG This study
OL2931 ATGGTCGACTTAGTGGTGATGGTGATGATGATTTTCAATTTCTTCGTACTC This study
OL2932 ATGGTCGACTTAGTGGTGATGGTGATGATTTCAATATCATCTACCGAATACC This study
OL2933 ATGGTCGACTTAGTGGTGATGGTGATGATGTTGATCATCTGTTTGAGCTGG This study
OL2981 TCGTACTCATAATCACCTAAC This study
OL2982 GGCGAAACAATGAACTTAT This study

a Underline denotes restriction enzyme site.
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ously (27), with the following modifications. Briefly, 6-week-old, female
CD-1 Swiss mice were purchased from Charles River Laboratories and
housed in the vivarium at the College of Medicine, University of South
Florida. Ten mice were inoculated by tail vein injection with 100 �l bac-
terial suspension (1 	 108 CFU/ml), containing the wild type and the rpoE
mutant in a 1:1 ratio. The infection was then allowed to proceed for 7 days
before mice were euthanized and the kidneys were collected. Each organ
was homogenized in 3 ml sterile PBS, and the numbers of CFU/kidneys
for the wild type and its rpoE mutant were determined via serial dilution,
as described above. This study was performed in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health. The protocol was approved by
the Institutional Animal Care and Use Committee of the University of
South Florida (permit number A-4100-01).

RESULTS
S. aureus RpoE shows homology to delta subunit proteins of
other Gram-positive bacteria. The majority of information re-
garding the � subunit of RNAP comes from studies in B. subtilis
and streptococcal species. We therefore compared the primary
structure of the S. aureus counterpart to those of its homologs in
other organisms to determine if differences in sequence were ap-
parent (Fig. 1A). Interestingly, the proteins analyzed show signif-
icant variation across their sequences yet retain homology in the N
terminus, with a conserved region between amino acid residues 14
and 91 (S. aureus amino acid numbering). A sequence search
(pfam.sanger.ac.uk) revealed this region as containing a predicted

helix-turn-helix (HARE-HTH) DNA-binding motif, which is also
found in the B. subtilis version of the protein. Notably, the N-ter-
minal region of the HTH motif (residues 14 to 57) shows de-
creased similarity between proteins from various species, while
the C-terminal portion of the motif (residues 58 to 91) displays a
high degree of homology. The presence of such an �-helix-rich
region has previously been discussed for B. subtilis (28); however,
its biological function is currently unknown. We also analyzed the
similarity of RpoE between various staphylococci (Fig. 1B). As
expected, we observed a much larger degree of similarity for pro-
tein sequences within the genus, although again, the C terminus
displayed less conservation than the N terminus.

rpoE is transcribed from a single �A-dependent promoter
during exponential growth. To investigate the role of rpoE in S.
aureus, we first began by defining its promoter. Using 5=RACE, we
detected a single transcriptional start site 68 bp upstream of the
translation initiation codon, which is preceded by a strong �A-
type promoter, comprised of a �35 sequence of TTGcgA (lower-
case letters represent divergence from the consensus), followed by
a perfect 17-nucleotide (nt) spacer and a consensus �10 se-
quence (TATAAT). Additionally, a strong ribosome binding
site (AGGAaG) 9 nt upstream of the ATG initiation codon was
observed. To track the growth phases and situations in which the
S. aureus cell deploys RpoE, we next analyzed its transcription
using quantitative real-time PCR (Fig. 2). We detected strongest

FIG 1 Protein alignment of the � subunit of RNAP. Alignments of representative RpoE proteins from different species were prepared using CLC Main
Workbench software. (A) Comparison of RpoE sequences between S. aureus and other Gram-positive organisms. Colors represent the degree of similarity, with
red being the most identical and blue/black the most divergent. Broken black lines next to the species names represent alignment of proteins to the consensus
sequence. The green rectangle denotes the region of highest conservation among different species; the red arrow marks the HARE-HTH motif identified by Pfam
search using the S. aureus protein; blue and yellow arrows represent �-helices and �-sheets, respectively, identified previously in the B. subtilis protein (28). (B)
Comparison of RpoE between staphylococci.
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expression of rpoE during exponential growth, with a peak be-
tween 1 and 2 h and a subsequent decline at later time points. To
correlate these findings with protein stability, we assessed the
abundance of RpoE using a His6-tagged variant expressed from its
own promoter on the shuttle vector pMK4. Consistent with our
transcriptional findings, we identified high protein levels during
exponential growth, which again declined over time.

RpoE interacts directly with RNA polymerase. To determine
whether the � subunit binds to core RNAP in S. aureus, we per-
formed a pulldown assay using a plasmid-encoded, His-tagged
variant of the RpoE protein. Intracellular lysates were generated
from exponentially growing rpoE mutants bearing either the
pMK4::rpoE-His6 construct or pMK4 alone (control). RpoE-His6

and its interacting partners were then purified by pulldown assay
and analyzed by SDS-PAGE and mass spectrometry. We identified
3 major protein bands on SDS-PAGE gels compared to control
samples with molecular weights that correlate to those expected
for RNA polymerase subunit � (RpoB), �= (RpoC), and � itself
(Fig. 3). Using mass spectrometry, we confirmed that the identi-
ties of these bands did indeed correspond to the suggested com-
ponents of RNAP. A fourth protein was also identified in test
samples and was found to be elongation factor Tu (Tuf). Collec-
tively, our results demonstrate that RpoE is part of the S. aureus
transcription machinery and most likely interacts directly with the
� and/or �= subunit of RNAP, although we cannot rule out that
weaker interactions with other subunits of this complex also oc-
cur.

To explore which components of RpoE mediate this interac-
tion, we generated 3 His6-tagged, truncated forms of the protein
on the shuttle vector pMK4 in the rpoE mutant background. These

contained the following: (i) the N terminus and half of the C
terminus (amino acids 1 to 369), (ii) only the N terminus (amino
acids 1 to 264), or (iii) half of the N terminus only (amino acids 1
to 159). Abundances of the truncated proteins were first measured
by Western blotting (see Fig. S2A in the supplemental material).
Interestingly, only the longest of the truncated versions was de-
tected in these studies. To identify if this lack of protein resulted
from a lack of truncated protein expression, we performed qPCR
analysis (see Fig. S2B in the supplemental material). Importantly,
we observed robust expression for all variants of rpoE. Since the
proper construction of all plasmids was confirmed by Sanger se-
quencing, we concluded that the shortest variants of RpoE are
likely characterized by protein instability. We next repeated our
pulldown experiments using the longest of the RpoE truncated
proteins to examine RNAP binding. Upon doing so, we observed
results identical to those for the full-length RpoE protein (data not
shown). As such, we were able to show that the C terminus of
RpoE, at least in part, is dispensable for interaction with RNAP,
further supporting the hypothesis that � subunit-RNAP interac-
tions are mediated by the RpoE N terminus. Interestingly, we also
showed that in S. aureus, deleting the entire RpoE C terminus
results in inherent instability for the entire protein and a lack of
functionality for the S. aureus � subunit.

The S. aureus � subunit of RNAP strongly influences expres-
sion of virulence determinants and genes encoded on mobile
genetic elements. Given that RpoE functions as a component of
the transcriptional complex, we next set out to assess its role in
influencing gene expression in S. aureus. This was achieved using
RNA sequencing (RNA-seq) technologies and our rpoE mutant
strain. Samples of the wild type and mutant were taken during
exponential growth (3 h), and the changes in gene expression were
compared. Upon analysis, we observed 191 differentially ex-
pressed genes in the rpoE mutant strain compared to expression in
the parent (Fig. 4), with 83 positively regulated and a further 108
that are repressed (see Table S1 in the supplemental material). To

FIG 2 rpoE expression in S. aureus is maximal during exponential growth. (A)
Quantitative real-time PCR analysis was used to measure rpoE expression from
3 independent cultures. Error bars 
 SEM are shown. (B) Western blot anal-
ysis using an anti-His antibody. Samples were standardized using the Bradford
assay, and an equal amount of protein for each time point was loaded onto gels.
Shown is a representative image of 3 independent experiments.
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FIG 3 RpoE interacts with the S. aureus RNAP complex. A His-tagged version
of RpoE was purified by pulldown assay from S. aureus cell lysates, alongside
empty vector control samples, and run on an SDS-polyacrylamide gel (silver
stained). Samples were subjected to mass-spectrometric analysis for protein
identification. Shown are the identities of bands, alongside their molecular
masses.
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confirm data derived from our RNA-seq experiments, we per-
formed qPCR with a representative subset of genes, which con-
firmed the direction and fold change of expression observed (see
Fig. S3 in the supplemental material).

When genes with decreased expression were reviewed by on-
tology (Fig. 5), one of the most striking observations was that the
transcription of a very large number of known virulence factors is
reduced in the rpoE mutant. These include 9 of the 10 major se-

FIG 4 Genomic map of altered transcription profiles upon rpoE deletion. The outermost circle (yellow) represents a heat map comparing changes in gene
expression for the rpoE mutant compared to results for the wild type. The middle circle (black) depicts RPKM values for the wild type, while the inner circle (red)
represents RPKM values for the rpoE mutant (see Materials and Methods for an explanation). �SA3usa and �SA2usa denote both prophages found in S. aureus
USA300.
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FIG 5 Ontological grouping of genes influenced by RpoE activity in S. aureus. A total of 191 genes showed at least a 2-fold alteration of expression in the rpoE
mutant compared to that in the parental strain. Genes are grouped according to known or predicted ontologies.

RpoE Controls Virulence in Staphylococcus aureus

April 2014 Volume 82 Number 4 iai.asm.org 1429

 on M
arch 20, 2014 by guest

http://iai.asm
.org/

D
ow

nloaded from
 

http://iai.asm.org
http://iai.asm.org/
http://iai.asm.org/


creted proteases, components of 3 of the 4 bipartite toxins, nu-
clease, several phenol-soluble modulins (PSMs), alpha-hemoly-
sin, beta-hemolysin, and a number of known immune evasion
factors. To ensure that changes in gene expression for virulence
factors was not due to unintended mutations in global regulatory
systems, we sequenced the agr operon, RNAIII, and the sae
operon. No alteration in gene sequence was found between the
rpoE mutant and the wild-type strain, indicating that the observed
changes were due to ablation of RpoE activity. Changes in the
expression of key virulence regulation loci were noted (RNAII and
RNAIII, �1.4-fold; saeR, 2.8-fold), although to a significantly
lesser extent than that observed for most virulence factors (4- to
8-fold). This suggests that the changes in expression of agr and sae
do not completely explain the major alterations observed in viru-
lence factor expression upon rpoE deletion.

Analysis of genes with increased expression in the mutant re-
vealed, quite remarkably, that almost the entire �SA3usa pro-
phage is upregulated (39 genes; increases ranging from 2.9- to
29-fold). Additionally, for the SaPI5 pathogenicity island, another
mobile genetic element, expression of 9 genes was increased. Fur-
ther, we observed upregulation of the nar-nir operon, as well as a
variety of membrane and lipoproteins.

rpoE disruption leads to a normalizing of gene expression in
S. aureus. When a heat map of the changes in gene expression is
reviewed (Fig. 4), it is apparent that those genes with altered ex-
pression in the mutants are for the most part evenly distributed
over the entire genome (with the exception of phage �SA3usa,
SaPI5, and the nar-nir operon). Interestingly, however, upon rpoE
disruption, a normalizing of expression appears to occur. Specif-
ically, the majority of genes that had decreased expression in the
mutant are typically highly transcribed in the wild-type strain.
Furthermore, genes that are typically expressed at a low level in the
parent are significantly upregulated in the rpoE-lacking strain
(Fig. 6). Therefore, the difference in expression between strongly
and weakly transcribed genes becomes dampened, and due to the
normalizing effect of rpoE disruption, growth-phase-specific ex-

pression patterns are less pronounced. These data support the
suggestions from other organisms that RpoE influences promoter
selectivity of RNAP based on promoter strength (6), whereby
RpoE enhances the transcription of strong promoters and limits
expression from weaker elements. In S. aureus such a function
appears to have evolved to include the favoring of virulence factor
promoters, which are commonly among the most highly ex-
pressed genes.

RpoE disruption leads to the decreased accumulation and
activity of key virulence factors. Given that virulence factors were
among the most profoundly affected upon rpoE disruption, we
next sought to determine if these changes led to alterations in
protein abundance and activity. As such, we first assessed Panton-
Valentine leukocidin (PVL) protein levels via Western blotting
(Fig. 7A). We determined that, much like the case with RNA-seq
data, a significant decrease in the LukS signal was detected in cul-
ture supernatants from the rpoE mutant compared to results for
the parental and complemented strains. Following this, we next
performed activity profiling for alpha-hemolysin using whole hu-
man blood. Upon analysis of the hemolytic capacity of culture
supernatants, we observed a 3-fold decrease in hemolytic activity
upon rpoE disruption, which was largely restored by supplying
rpoE in trans (Fig. 7B). Finally, given that 9 of the 10 secreted
proteases had diminished expression in the mutant strain, we per-
formed protease activity assays. When the mutant strain was cul-
tured on casein nutrient agar, we observed a decrease in clearing
around the rpoE mutant in comparison to results for the parent
(Fig. 7C). Using zymography with gelatin as a substrate, we ob-
served even more pronounced effects, with a significant reduction
in proteolytic activity and with several key proteolytic bands prov-
ing to be absent in the mutant strain (Fig. 7D). Collectively, these
findings confirm not only the RNA-seq observations that RpoE
preferentially influences RNAP toward highly expressed virulence
factor genes but that rpoE ablation leads to the diminished tran-
scription, protein synthesis, and activity of central pathogenic de-
terminants.

An rpoE-defective strain demonstrates decreased virulence
in both human and murine models of infection. To determine if
these global alterations in virulence factor production led to mea-
surable outcomes for pathogenesis, we next investigated the abil-
ity of an rpoE mutant to survive and compete against the wild type
in whole human blood. Accordingly, exponentially growing wild-
type and rpoE mutant cells were inoculated into whole human
blood in a 1:1 ratio. Aliquots were then withdrawn every hour for
3 h, and the number of CFU/ml of each strain was determined via
plating on TSA alone or TSA containing erythromycin (which
selects for the antibiotic resistance cassette in the mutant strain).
Over the infection period, the percentage of rpoE mutant cells
continually decreased (Fig. 8A), with a 1:0.46 ratio observed at 2 h
(31.6% recovery of the mutant inoculum) and a 1:0.2 ratio ob-
served at 3 h (17% recovery of the mutant inoculum). By compar-
ison, identical studies performed with TSB over a similar 3-h pe-
riod revealed no changes in viability for the rpoE mutant strain
(see Fig. S4 in the supplemental material). This suggests that a
virulence defect, rather than decreased fitness, mediates the im-
paired survival in whole human blood.

In order to explore this survival defect in human blood more
closely, we next assessed interaction of the rpoE mutant and wild-
type strains with human leukocytes. Accordingly, GFP-expressing
variants of each strain were used to separately infect whole human
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FIG 6 RpoE influences RNAP promoter selectivity based on promoter
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blood. Samples were withdrawn at 2 h and 4 h, and the percentage
of each strain present in granulocyte cells was determined using
FACs analysis, as described by us previously (25). We determined
that at both time points, there were significantly more rpoE mu-
tant cells within human granulocytes than cells of the parental
strain (Fig. 8B). These increased rates of phagocytosis are likely
mediated by decreased virulence factor expression seen in the �
subunit mutant and explain the survival defect observed in whole
human blood.

To determine if these ex vivo human findings were recapitu-
lated in vivo, we assessed the infectious capacity of an rpoE mutant
using a murine model of sepsis. Accordingly, we coinfected mice
with 1 	 107 CFU/ml of the wild-type and rpoE mutant strains in
a 1:1 ratio. After 7 days, mice were euthanized, the kidneys were
harvested, and the bacterial burdens of the wild-type and mutant
were determined. Three mice died before the end of the infection
period and were excluded from analysis. When determining bac-
terial loads within the kidneys of surviving mice (Fig. 8C), we
found a 10-fold decrease in rpoE mutant cells from the inoculum,
with only 10% of the total bacterial burden resulting from the �
subunit mutant (Fig. 8D). These findings demonstrate that RpoE-
mediated guidance of RNAP toward highly expressed promoters,
including virulence factors, is required for successful S. aureus
infection.

DISCUSSION

In this study, we sought to explore the role of the delta subunit of
RNAP in the major human pathogen S. aureus. Despite being first
identified as a unique, Gram-positive specific component of the
RNAP apoenzyme more than 30 years ago (2), very little is under-
stood about its role and function. Herein we show that in S. au-

reus, it is highly expressed early in growth and seemingly interacts
with the � and �= subunits of RNAP, suggesting they might be its
binding partners in vivo. Interestingly, other subunits of RNAP
were not copurified, leading to the conclusion that a direct inter-
action with the �, �, and � subunits is perhaps unlikely. Impor-
tantly, these data are the first evidence from any organism that
points to putative interaction partners for RpoE, providing much-
needed understanding of its functional role.

As a component of the RNAP complex, the role of the � sub-
unit is clearly confined to activities concerning gene expression.
Therefore, we sought to understand and analyze its target genes in
S. aureus, using RNA-seq technologies, during exponential
growth (a time when RpoE is highly abundant in the S. aureus
cell). We identified almost 200 genes that were changed in expres-
sion upon rpoE disruption. Interestingly, these genes displayed a
strong pattern in terms of RpoE influence, with typically highly
expressed genes in the wild type being strongly downregulated in
the mutant, while many low-expression genes were upregulated.
As such, loss of the � subunit in S. aureus appears to lead to a
normalization of gene expression, abrogating the more variable,
temporal expression patterns typically observed. Such a finding is
in line with the hypothesis that RpoE weakens binding of RNAP
and DNA and therefore influences weaker promoters more than
stronger ones (7). In support of this, Juang and Helmann (6, 29)
distinguished 3 different kinds of promoters affected by RpoE: (i)
weak promoters that are repressed by RpoE, (ii) moderate-
strength promoters that show decreased open complex formation
in the presence of the delta subunit, and (iii) strong promoters
that are resistant to RpoE inhibition.

Such a role for the delta subunit of RNAP also appears to be
conserved in S. aureus based on our findings, and this opens up an

FIG 7 RpoE ablation leads to decreased accumulation and activity of key virulence factors. (A) LukS (33 kDa) Western blot using supernatant (15 h) from an
rpoE mutant and its parental and complemented strains. The amount of protein loaded was standardized using a Bradford assay. (B) Hemolytic activity assay
using culture supernatants and pooled, whole human blood. Data presented are from at least three independent replicates, with error bars 
 SEM shown; P values
were determined using Student’s t test �, P � 0.05; ��, P � 0.005; ns, not significant). (C and D) Protease activity assay using casein nutrient agar (C) or gelatin
zymography (D). W, wild type; M rpoE mutant; C, complemented rpoE mutant.
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interesting point of evolution. It is believed that the influence of
RpoE in selectively guiding RNAP toward important promoters is
to mediate rapid changes in gene expression, and thus survival,
during stress. Such a notion is supported by observations from
both B. subtilis (8) and S. mutans (30), which demonstrate that
rpoE ablation leads to an impaired ability to recover from stresses.
Specifically, in S. mutans (30), it has been shown that an rpoE
mutant has decreased accumulation of oxidative-stress defense
proteins upon hydrogen peroxide challenge and a concomitant
reduction in survival. These lower levels of protective proteins are
not caused by downregulation in the mutant per se but rather a
stronger, RpoE-influenced stress response in the parent, leading
to increased accumulation of key protective proteins. This dem-
onstrates that in the absence of RpoE, cells are less primed to
respond transcriptionally to unfavorable conditions and mount a
sufficiently protective response.

In S. aureus a lone study that references the � subunit of RNAP,
where an rpoE mutant was identified as having a markedly de-
creased ability to recover following prolonged starvation, exists
(17). Herein we show (see Fig. S5 in the supplemental material)
that such an effect is true even after overnight growth, since we
observe an extended lag phase of our rpoE mutant similar to those
described for other low-G
C Gram-positive organisms. It seems
that such a defect is confined to the initial adaptation to new
environments, since we observed otherwise unimpaired growth
after entrance into log phase, with equal numbers of viable wild-
type and mutant bacteria (data not shown). As such, it appears
that RpoE may have evolved in Gram-positive bacteria, and the
Firmicutes specifically, to facilitate a rapid switching of gene ex-
pression profiles that is geared toward the natural expression level
of genes within a cell. The reason for this could be that by central-

izing such a response within a key protein within the transcription
complex, specific and global alteration in gene expression can be
rapidly achieved upon environmental change, leading to expedi-
ent and efficient adaption and survival. Given that S. aureus is a
highly human-adapted pathogen, much of its gene expression is
dedicated to survival within the human host. Consequently, we
contend that the � subunit of RNAP has evolved in S. aureus along
these virulence-adapted lines, since a large number of the most
highly expressed genes in this organism are virulence specific.
Therefore, RpoE provides S. aureus with a survival advantage
upon entering the human host, which results in a survival defect
upon the abrogation of its activity.

With that said, the manner by which RpoE mediates its func-
tion cannot be explained solely by mere promoter strength, since
there are highly and low-level-expressed loci in S. aureus that are
not influenced by its activity. When one compares RpoE protein
sequences between various Gram-positive bacteria, there does ap-
pear to be a large variation in similarity other than in regions of the
collected N termini. The N-terminal regions are characterized by
the presence of several �-helices and �-sheets that were previously
identified in the B. subtilis protein (28, 31) and are predicted to be
present in the S. aureus counterpart (www.predictprotein.org).
Such conservation is perhaps to be expected, since the N terminus
is thought to be the component that mediates interaction with
core RNA polymerase (9), which is itself a highly conserved pro-
tein complex. Unusually, this conserved region of �-helices and
�-sheets is predicted to form a winged HTH domain (HARE-
HTH). Although they have a wide range of functions in nature,
including transcriptional regulation, DNA degradation, and re-
striction modification (32), all functions studied thus far for
HARE-HTH domains involve some form of DNA binding. Thus,
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FIG 8 The � subunit of RNAP is required for virulence in both human and murine models of infection. (A) Both the WT and mutant strains were inoculated
into pooled (5 donors) whole human blood at a 1:1 ratio and incubated for 3 h at 37°C. Aliquots were withdrawn at the times specified, and the numbers of
CFU/ml were determined by plating on either TSA or TSA containing erythromycin (to select for the mutant strain). Data are generated from three independent
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 SEM are shown. (B) Wild-type and rpoE mutant strains harboring a constitutively expressing GFP gene were separately incubated in
whole human blood. Samples were withdrawn, and the percentage of GFP
 granulocytes was measured by FACs. Data are generated from three independent
replicates; error bars 
 SEM are shown. (C and D) Mice were infected with an equal ratio of rpoE mutant and wild-type cells. After 7 days, mice were euthanized
and bacterial loads in the kidneys were assessed. Box-and-whisker plots represent the minimum and maximum values (whiskers), as well as the 25th to 75th
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even though no direct interaction with nucleic acids has yet been
shown for the � subunit of RNAP, a function in recognizing tran-
scriptionally relevant DNA features would appear to be possible, if
not probable, via this HARE-HTH domain. Such a situation
would thus explain the selectivity of RpoE that extends beyond
mere promoter strength.

By comparison, the C terminus of the protein shows little con-
servation between different species and is in fact the part of the
protein responsible for significant interspecies variation and alter-
ations in protein length. Due to its highly acidic nature and
strongly disordered structure, thus far the function of the C ter-
minus has remained obscure. Herein we show that deletion of this
C terminus in S. aureus seemingly results in decreased stability of
the RpoE protein, suggesting its importance for proper folding
and function. In addition, it has been suggested that the C termi-
nus may mediate interaction with nucleic acids and have a role in
RpoE-dependent displacement of RNA and DNA from the RNAP
complex (9). As such, it too may influence promoter selection in a
manner hitherto not demonstrated.

Another remarkable observation from our RNA-seq analysis
was the simultaneous upregulation of mobile genetic elements
within the rpoE mutant. Specifically, we observed that most genes
on the S. aureus pathogenicity island 5 (SaPI5) and prophage
�SA3usa displayed strong increases in expression. In the context
of the phage element, it is possible that these effects are mediated
by alterations in transcription of a common regulator encoded
within the prophage region (33). The shift between lytic and lyso-
genic pathways is commonly mediated by an altered abundance of
competing regulators, which seek to swing the balance from one
lifestyle to the other (reviewed in references 34 and 35). While the
specific molecular details of the lytic/lysogenic decision are not
known for �SA3usa, we do observe alterations in regulatory ele-
ments on this prophage in the rpoE mutant. Specifically, the phage
transcriptional regulator SAUSA300_1968 is strongly altered in
expression (
12-fold). This finding, together with the upregula-
tion of most of the adjacent phage genes, leads to the postulation
that SAUSA300_1968 may be a positive and global regulator of
�SA3usa gene transcription. In terms of SaPI5, there is limited
understanding of regulatory events that modulate expression of
the genes it encodes. However, it is possible that an event similar to
that suggested for �SA3usa occurs, since these elements are be-
lieved to have evolved from phages themselves. In line with this,
SaPI5 in USA300 contains at least 2 uncharacterized regulatory
elements (33), one of which (SAUSA300_0804) displays elevated
gene expression upon rpoE deletion. As such, it is possible that
upregulation of this element could account for changes in the
expression of the pathogenicity island, as described for �SA3usa.

Alternatively, it is possible that RpoE has a wider role in the S.
aureus cell in providing cellular immunity against phage infection.
Although quite different, immunity systems in bacteria that seek
to abrogate phage infections, such as clustered, regularly inter-
spaced short palindromic repeat (CRISPR) elements, do exist
(36). In such a scenario, RpoE may be involved in silencing foreign
elements and therefore protecting the core genome.

In the context of virulence, the various defects observed for the
rpoE mutant are readily explained. Numerous elements that are
known to play integral roles in S. aureus disease causation, includ-
ing Panton-Valentine leukocidin (PVL) (37–40) (reviewed in ref-
erence 41), alpha-hemolysin (42–44), and different proteases (21,
25), were shown to be decreased in the rpoE mutant. To explore

how these changes are mediated, we first ensured (by Sanger se-
quencing and analysis of mRNA transcript fidelity from the RNA-
seq reads) that unintended mutations were not present in key
global regulators. We next assessed expression of key virulence
regulators and found the agr locus to be unaffected by �rpoE de-
letion. We did observe downregulation of saeR (�2.8-fold) in our
RNA-seq experiment, which may explain some of the effects ob-
served (45). Indeed, Nygaard et al. (46) show that deletion of
saeRS results in a downregulation of various virulence factors,
many of which were also affected in the rpoE mutant. However,
the limited alteration in saeR expression in the rpoE mutant is
unlikely to be the sole reason for the effects observed. Specifically,
the changes observed by Nygaard et al. result from complete loss
of the saeRS locus (�120- and 178-fold downregulation). In our
results, we see similar effects on virulence factor synthesis, with
much smaller changes in sae system expression (e.g., for splE,
�saeRS led to a �1.16-fold change in expression; �rpoE led to
�2.89-fold change). Furthermore, rpoE deletion causes changes
in gene expression that are not seen in the saeRS mutant. For
example, aureolysin and several other virulence factors (e.g., V8
protease and PSMs) are either positively affected or unaffected in
the saeRS mutant, while being negatively affected in the rpoE mu-
tant. Accordingly, the effects observed in the rpoE mutant appear
to be direct and gene specific rather than being caused solely by the
differential expression of major virulence regulators.

In summary, we herein demonstrate the importance of the
RNAP � subunit for gene regulation and virulence in S. aureus. We
reveal that rpoE loss results in an uncoupling of well-ordered reg-
ulatory circuits, resulting in viable yet less-fit S. aureus cells that
are unable to rapidly adapt to stress, such as that encountered
during infection. We describe a new layer of transcriptional
regulation in S. aureus that, as in other bacteria, functions in a
promoter-specific manner to deploy its global effects and, in this
highly human-adapted pathogenic organism, uniquely targets
those regions of the genome that are associated with virulence.
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Supplemental Figure S1: The Distribution of RNAP δ subunits in nature. RpoE is 
found primarily in Gram-positive bacteria, and particularly the Firmicutes. It appears to 
be completely absent in Gram-negative species, although low-level homology hits are 
detected for a small number of uncharacterized eukaryotic proteins.  For comparison, a 
similar analysis is presented for the highly conserved β (RpoB) and β’ (RpoC) subunits. 
Images were generated using http://string-db.org/. 
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Your  Input:

rpoB DNA-­directed  RNA  polymerase  subunit  beta;;  DNA-­dependent  RNA  polymerase  catalyzes  the  transcription
of  DNA  into  RNA  using  the  four  ribonucleoside  triphosphates  as  substrates  (By  similarity)  (1183  aa)

rpoC DNA-­directed  RNA  polymerase  subunit  beta';;  DNA-­dependent  RNA  polymerase  catalyzes  the  transcription
of  DNA  into  RNA  using  the  four  ribonucleoside  triphosphates  as  substrates  (1198  aa)

rpoE DNA-­directed  RNA  polymerase  subunit  delta;;  Participates  in  both  the  initiation  and  recycling  phases  of
transcription.  In  the  presence  of  the  delta  subunit,  RNAP  displays  an  increased  specificity  of  transcription,
a  decreased  affinity  for  nucleic  acids,  and  an  increased  efficiency  of  RNA  synthesis  because  of  enhanced
recycling  (By  similarity)  (176  aa)
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Supplemental Figure S2: Analysis of RpoE truncates. Cultures of the rpoE mutant 
bearing various plasmid based His6 complementation constructs were grown for 3 
hours, before cytoplasmic proteins and RNA were isolated. A – Western blot analysis 
using anti-His tag antibodies and the strains indicated. Detected are full length RpoE 
(21.7 kDa) and an RpoE variant containing the full N-terminus, and half the C-terminus 
(16.4 kDa). The amount of protein loaded was standardized using a Bradford assay. B – 
Quantitative real time PCR analysis was used to measure expression of the different 
rpoE versions. Each value represents data derived from 3 independent cultures. Error 
bars are shown ± SEM.  
 
 

Supplemental Figure S3: Validation of RNAseq derived changes using qPCR 
analysis. A - RNAseq data was confirmed using qPCR analysis for representative 
genes. Error bars are shown ±SEM. B -  qPCR fold-changes between mutant and wild-
type were compared with those generated from RNAseq experiments. 
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Supplemental	 Figure	 S2:	 Analysis	 of	 RpoE	 truncates.	 Cultures	 of	 the	 rpoE	mutant	 bearing	
various	 plasmid	 based	 His6	 complementa3on	 constructs	 were	 grown	 for	 3	 hours,	 before	
cytoplasmic	 proteins	 and	 RNA	 were	 isolated.	 A	 –	Western	 blot	 analysis	 using	 an3-His	 tag	
an3bodies	 and	 the	 strains	 indicated.	 Detected	 are	 full	 length	 RpoE	 (21.7	 kDa)	 and	 an	 RpoE	
variant	 containing	 the	 full	 N-terminus,	 and	 half	 the	 C-terminus	 (16.4	 kDa).	 The	 amount	 of	
protein	 loaded	 was	 standardized	 using	 a	 Bradford	 assay.	 B	 –	 Quan3ta3ve	 real	 3me	 PCR	
analysis	was	used	to	measure	expression	of	the	different	rpoE	versions.	Each	value	represents	
data	derived	from	3	independent	cultures.	Error	bars	are	shown	±	SEM.		
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Supplemental	 Figure	 S3:	 Valida6on	 of	 RNAseq	 derived	 changes	 using	 qPCR	 analysis.	 A	 -	
RNAseq	data	was	confirmed	using	qPCR	analysis	for	representa3ve	genes.	Error	bars	are	shown	
±SEM.	 B	 -	 	 qPCR	 fold-changes	 between	 mutant	 and	 wild-type	 were	 compared	 with	 those	
generated	from	RNAseq	experiments.	
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Supplemental Figure S4: RNAP δ-subunit mutants are not outcompeted by the 
parental strain during growth under standard conditions. Both the WT and mutant 
strain were inoculated into TSB at a 1:1 ratio, and incubated for 3h at 37 °C. Aliquots 
were withdrawn at the times specified, and the CFU/mL determined by plating on either 
TSA, or TSA containing erythromycin (to select for the mutant strain). Data is generated 
from three independent replicates; error bars are shown ± SEM. 
 
 
 

Supplemental Figure S5: rpoE deletion results in delayed growth upon exit from 
stationary phase. Strains were grown in TSB until stationary phase (18h) before being 
seeded into fresh media at an OD600 = 0.05. Strains were allowed to grow over time, 
and their optical density recorded. Data presented is the average from three individual 
experiments, with error bars shown ±SEM. 
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Supplemental	Figure	S4:	RNAP	δ-subunit	mutants	are	not	outcompeted	by	the	parental	strain	
during	growth	under	standard	condi6ons.	Both	the	WT	and	mutant	strain	were	inoculated	into	
TSB	at	a	1:1	ra3o,	and	incubated	for	3h	at	37	°C.	Aliquots	were	withdrawn	at	the	3mes	specified,	
and	the	CFU/mL	determined	by	pla3ng	on	either	TSA,	or	TSA	containing	erythromycin	(to	select	
for	 the	 mutant	 strain).	 Data	 is	 generated	 from	 three	 independent	 replicates;	 error	 bars	 are	
shown	±	SEM.	

Supplemental	 Figure	 S5:	 rpoE	 dele6on	 results	 in	 delayed	 growth	 upon	 exit	 from	 sta6onary	
phase.	Strains	were	grown	 in	TSB	un3l	 sta3onary	phase	 (18h)	before	being	 seeded	 into	 fresh	
media	 at	 an	OD600	 =	 0.05.	 Strains	were	 allowed	 to	 grow	 over	 3me,	 and	 their	 op3cal	 density	
recorded.	 Data	 presented	 is	 the	 average	 from	 three	 individual	 experiments,	 with	 error	 bars	
shown	±SEM.	
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Supplemental Table S1: Changes in gene expression upon rpoE disruption. Listed 
are genes that show differential expression in the rpoE mutant from RNAseq analysis. 
Annotations were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/). For hypothetical 
proteins, bioinformatic analyses were performed and used to complement NCBI 
annotations. 
 

Gene product Accession Number 
Fold 

Change 
(Ma/WTb) 

   
Virulence Factors 

  immunoglobulin G binding protein A precursor, Spa SAUSA300_0113 12.67 
complement inhibitory protein, Ehb  SAUSA300_1052 -2.00 
V8 Protease, SspA SAUSA300_0951 -2.05 
cysteine protease precursor, SspB SAUSA300_0950 -2.05 
zinc metalloproteinase aureolysin, Aur SAUSA300_2572 -2.07 
anti protein, PSMβ2 SAUSA300_1068 -2.15 
alpha-hemolysin, Hla SAUSA300_1058 -2.20 
serine protease, SplC SAUSA300_1756 -2.34 
thermonuclease, Nuc SAUSA300_0776 -2.37 
IgG-binding protein, SBI SAUSA300_2364 -2.41 
serine protease, SplA SAUSA300_1758 -2.44 
anti protein, PSMβ1 SAUSA300_1067 -2.52 
serine protease, SplD SAUSA300_1755 -2.55 
gamma hemolysin, HlgC SAUSA300_2366 -2.57 
serine protease, SplF SAUSA300_1753 -2.87 
delta-hemolysin, Hld SAUSA300_1988 -2.89 
serine protease, SplE SAUSA300_1754 -2.89 
cysteine protease precursor, SspC SAUSA300_0949 -2.95 
serine protease, SplB SAUSA300_1757 -3.22 
leukotoxin, LukD SAUSA300_1768 -3.31 
Scin-b  SAUSA300_1056 -3.42 
MAP/EAP domain protein SAUSA300_2164 -3.60 
Staphylococcal complement inhibitory protein A SAUSA300_1919 -3.68 
leukotoxin, LukE SAUSA300_1769 -4.01 
truncated beta-hemolysin, Hlb SAUSA300_1918 -4.17 
fibrinogen-binding protein, EfbB SAUSA300_1055 -4.64 
secretory antigen precursor, SsaA SAUSA300_2249 -5.37 
Panton-Valentine leukocidin, LukF-PV SAUSA300_1381 -6.55 
Ear Protein SAUSA300_0815 -6.80 
Panton-Valentine leukocidin, LukS-PV SAUSA300_1382 -8.02 
   
Hypothetical Proteins 

  hypothetical protein SAUSA300_2158 3.25 
hypothetical protein SAUSA300_1215 2.98 
hypothetical protein SAUSA300_0793 2.37 



hypothetical protein SAUSA300_1746 2.35 
hypothetical protein SAUSA300_0575 2.30 
hypothetical protein SAUSA300_0668 2.22 
hypothetical protein SAUSA300_1532 2.19 
hypothetical protein SAUSA300_1335 2.10 
hypothetical protein SAUSA300_2543 2.08 
hypothetical protein SAUSA300_0779 2.02 
hypothetical protein SAUSA300_0300 -2.25 
hypothetical protein SAUSA300_2447 -2.46 
hypothetical protein SAUSA300_0471 -2.50 
hypothetical protein SAUSA300_0302 -2.64 
hypothetical protein SAUSA300_2522 -3.05 
hypothetical protein SAUSA300_2524 -3.72 
hypothetical protein SAUSA300_0409 -4.67 
hypothetical protein SAUSA300_2482 -5.05 
hypothetical protein SAUSA300_0048 -5.31 
hypothetical protein SAUSA300_1380 -10.83 

   Transporters 
  Na+/H+ antiporter, MnhA component SAUSA300_0856 2.22 

ABC transporter, ATP-binding protein SAUSA300_2399 2.07 
maltose ABC transporter, permease protein SAUSA300_0211 2.05 
osmoprotectant transporter, BCCT family SAUSA300_2549 2.02 
glycerol uptake facilitator protein, GlpF SAUSA300_1191 -2.03 
ABC transporter, substrate-binding protein SAUSA300_0618 -2.10 
ABC transporter, ATP-binding protein SAUSA300_0271 -2.13 
truncated calmodulin exporting ATPase SAUSA300_0068 -2.34 
peptide ABC transporter, ATP-binding protein SAUSA300_2407 -2.37 
ABC transporter, ATP-binding protein SAUSA300_0620 -2.50 
peptide ABC transporter, permease protein SAUSA300_0202 -2.80 
peptide ABC transporter, permease protein SAUSA300_0201 -2.91 
xanthine permease, PbuX SAUSA300_0387 -3.34 
copper-translocating P-type ATPase, CopA SAUSA300_0078 -3.73 

   Regulators 
  staphylococcal accessory regulator S, SarS SAUSA300_0114 2.03 

sigma factor, SigS SAUSA300_1722 -2.07 
regulatory protein,  GntR family SAUSA300_1914 -2.30 
sensor histidine kinase, SaeS SAUSA300_0690 -2.33 
transcriptional regulator, DeoR family SAUSA300_0683 -2.35 
arsenical resistance operon repressor, ArsR SAUSA300_1717 -2.53 
DNA-binding response regulator, SaeR SAUSA300_0691 -2.82 

   tRNAs 
  tRNA SAUSA300_0447 -2.07 

tRNA SAUSA300_1823 -2.12 



tRNA SAUSA300_1811 -2.12 
tRNA SAUSA300_1772 -2.76 

   Transposases 
  putative transposase SAUSA300_2263 -2.82 

IS431 transposase/integrase SAUSA300_0069 -6.28 
IS431mec, transposase SAUSA300_0028 -24.83 

   Capsule Proteins 
  capsular polysaccharide biosynthesis protein, Cap5G SAUSA300_0158 -2.06 

capsular polysaccharide biosynthesis protein, Cap5F SAUSA300_0157 -2.18 

   Ribosomal Proteins 
  30S ribosomal protein S5, RpsE SAUSA300_2187 2.81 

ribosomal protein L33, RpmG SAUSA300_1511 2.13 
ribosomal protein L33, RpmG SAUSA300_1233 -2.27 

   PTS System Components 
  PTS system, IIABC components, PtsG SAUSA300_0191 4.43 

hypothetical protein SAUSA300_0331 3.87 
PTS system, IIC component SAUSA300_1809 2.01 

   Nitrite/ Nitrate Metabolism 
  respiratory nitrate reductase, beta subunit, NarH SAUSA300_2342 10.18 

anaerobic ribonucleoside-triphosphate reductase 
activating protein, NarJ SAUSA300_2341 8.27 
respiratory nitrate reductase, alpha subunit SAUSA300_2343 6.03 
nitrite reductase [NAD(P)H], small subunit, NirD SAUSA300_2345 5.42 
nitrite extrusion protein, NarK SAUSA300_2333 4.84 
nitrite reductase [NAD(P)H], large subunit, nirB SAUSA300_2346 4.67 
transcriptional regulator, NirR SAUSA300_2347 3.68 
hypothetical protein SAUSA300_0711 2.12 
respiratory nitrate reductase, gamma subunit, NarI SAUSA300_2340 2.12 

   SaPI5 
  Putative DNA primase, pathogenicity island SAUSA300_0809 3.19 

hypothetical protein, pathogenicity island SAUSA300_0811 3.14 
hypothetical protein, pathogenicity island SAUSA300_0810 3.10 
hypothetical protein, pathogenicity island SAUSA300_0808 2.94 
hypothetical protein, pathogenicity island SAUSA300_0812 2.83 
hypothetic XRE type regulator, pathogenicity island SAUSA300_0804 2.72 
hypothetical protein, pathogenicity island SAUSA300_0805 2.64 
hypothetical protein, pathogenicity island SAUSA300_0806 2.46 
hypothetical protein, pathogenicity island SAUSA300_0807 2.44 
   

   



Membrane Proteins/ Lipoproteins 
  membrane protein, putative SAUSA300_0111 2.80 

membrane protein SAUSA300_2056 2.32 
membrane protein SAUSA300_0823 2.31 
membrane protein SAUSA300_0872 2.30 
membrane protein, putative SAUSA300_0393 2.16 
membrane protein, putative SAUSA300_2642 2.10 
membrane spanning protein SAUSA300_2454 2.07 
lipoprotein, putative SAUSA300_0203 -2.28 
lipoprotein, putative SAUSA300_0693 -2.47 
putative lipoprotein SAUSA300_0079 -3.50 
membrane Protein SAUSA300_0692 -3.53 
xanthine phosphoribosyltransferase, Xpt SAUSA300_0386 -3.92 

   Other 
  uroporphyrinogen III methylase SirB, putative SAUSA300_2344 5.35 

transferrin receptor SAUSA300_0721 2.83 
acetyltransferase SAUSA300_1312 2.65 
UDP-N-acetylglucosamine--N-acetylmuramyl-
(pentapeptide) pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase, MurG 

SAUSA300_1311 
 
 

2.56 
 
 

bifunctional acetaldehyde-CoA/alcohol dehydrogenase, 
AdhE SAUSA300_0151 2.48 
anaerobic ribonucleotide reductase, small subunit, NrdG SAUSA300_2550 2.45 
general stress protein 13 SAUSA300_1862 2.29 
S1 RNA Binding Domain Protein SAUSA300_0486 2.29 
lantibiotic epidermin biosynthesis protein, EpiA SAUSA300_1767 2.25 
cytochrome d ubiquinol oxidase, subunit I SAUSA300_0986 2.24 
hypothetical protein SAUSA300_1310 2.21 
acetyltransferase, GNAT family SAUSA300_2468 2.20 
histidine ammonia-lyase, HutH SAUSA300_0008 2.18 
acetyltransferase, GNAT family SAUSA300_0662 2.07 
anaerobic ribonucleoside-triphosphate reductase, NrdD SAUSA300_2551 2.07 
tributyrin esterase, EstA SAUSA300_2564 2.07 
glycerol kinase, GlpK SAUSA300_1192 2.06 
penicillin-binding protein 2, MecA SAUSA300_0032 2.06 
pyrimidine-nucleoside phosphorylase, Pdp SAUSA300_2091 2.05 
threonine dehydratase, IlvA SAUSA300_1330 2.03 
N-acetyl-gamma-glutamyl-phosphate reductase, ArgC SAUSA300_0186 -2.00 
oligoendopeptidase F, PepF SAUSA300_0902 -2.04 
amidophosphoribosyltransferase, PurF SAUSA300_0972 -2.07 
cystathionine gamma-synthase, MetB SAUSA300_0434 -2.08 
riboflavin biosynthesis protein, RibBA SAUSA300_1713 -2.12 
cysteine synthase/cystathionine beta-synthase family 
protein, CysM 

SAUSA300_0433 
 

-2.15 
 

GMP synthase, GuaA SAUSA300_0389 -2.16 



6,7-dimethyl-8-ribityllumazine synthase, RibH SAUSA300_1712 -2.24 
choline dehydrogenase, BetA SAUSA300_2545 -2.48 
glutamate synthase, large subunit, GltB SAUSA300_0445 -2.50 
glutamate synthase, small subunit, GltD SAUSA300_0446 -2.55 
betaine aldehyde dehydrogenase, BetB SAUSA300_2546 -3.08 
methionine aminopeptidase, Map SAUSA300_1869 -3.39 

   Phage Proteins 
  phi083 ORF027-like protein  SAUSA300_1952 29.2 

phiPVL ORF39-like protein SAUSA300_1962 26.58 
phiPVL ORF044-like protein  SAUSA300_1959 19.69 
phi77 ORF031-like protein  SAUSA300_1947 18.42 
phiPVL ORF41-like protein SAUSA300_1961 16.24 
single-strand binding protein  SAUSA300_1958 14.87 
phiPVL ORF046-like protein  SAUSA300_1957 12.92 
dUTP diphosphatase SAUSA300_1949 12.36 
putative phage transcriptional regulator SAUSA300_1968 11.98 
hypothetical phage protein  SAUSA300_1964 11.79 
phi77 ORF014-like protein, phage anti-repressor protein SAUSA300_1966 11.45 
phi77 ORF069-like protein  SAUSA300_1948 10.83 
phi77 ORF040-like protein  SAUSA300_1943 9.87 
hypothetical phage protein  SAUSA300_1942 9.63 
phiSLT ORF53-like protein SAUSA300_1429 9.4 
putative phage-related DNA recombination protein SAUSA300_1960 9.15 
phiPVL ORF051-like protein  SAUSA300_1953 8.37 
phi77 ORF026-like protein, phage transcriptional activator  SAUSA300_1944 8.29 
hypothetical phage protein  SAUSA300_1963 8.07 
phi77 ORF004-like protein, putative phage tail component SAUSA300_1929 7.86 
phi77 ORF100-like protein SAUSA300_1931 7.85 
holin  SAUSA300_1924 7.4 
phiPVL ORF050-like protein SAUSA300_1954 7.36 
phi77 ORF015-like protein, putative protease SAUSA300_1939 7.13 
phi77 ORF003-like protein, phage terminase, large subunit SAUSA300_1941 7.13 
phi77 ORF006-like protein, putative capsid protein SAUSA300_1938 6.19 
phage portal protein SAUSA300_1940 6.09 
phi77 ORF029-like protein SAUSA300_1935 5.74 
Autolysin SAUSA300_1923 5.73 
phi77 ORF001-like protein, phage tail tape measure 
protein SAUSA300_1930 5.59 

hypothetical phage protein  SAUSA300_1967 5.56 
phi77 ORF020-like protein, phage major tail protein SAUSA300_1934 5.45 
phi77 ORF109-like protein SAUSA300_1927 5.38 
phi77 ORF045-like protein SAUSA300_1937 4.55 
hypothetical phage protein  SAUSA300_1932 4.49 
hypothetical phage protein  SAUSA300_1936 4.31 
phi77 ORF002-like protein, phage minor structural protein SAUSA300_1928 4.14 



phi77 ORF044-like protein  SAUSA300_1926 3.26 
hypothetical phage protein  SAUSA300_1933 3.14 
phiPVL ORF17-like protein  SAUSA300_1925 2.92 
Phage, phiSLT ORF151-like protein, major tail protein SAUSA300_1396 2.9 
Phage, phiSLT ORF412-like protein, portal protein SAUSA300_1403 2.8 

 
a USA300 HOU rpoE mutant 
b USA300 HOU wild-type 
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The � Subunit Governs RNA Polymerase
Stability and Transcriptional Specificity
in Staphylococcus aureus

Andy Weiss, Brittney D. Moore, Miguel H. J. Tremblay, Dale Chaput,
Astrid Kremer, Lindsey N. Shaw
University of South Florida, Department of Cell Biology, Microbiology and Molecular Biology, Tampa, Florida,
USA

ABSTRACT Staphylococcus aureus is a major human pathogen that causes infection
in a wide variety of sites within the human body. Its ability to adapt to the human
host and to produce a successful infection requires precise orchestration of gene ex-
pression. While DNA-dependent RNA polymerase (RNAP) is generally well character-
ized, the roles of several small accessory subunits within the complex have yet to be
fully explored. This is particularly true for the omega (� or RpoZ) subunit, which has
been extensively studied in Gram-negative bacteria but largely neglected in Gram-
positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and
thus control of the stringent response, is facilitated by �. Interestingly, key residues
that facilitate ppGpp binding by � are not conserved in S. aureus, and consequently,
survival under starvation conditions is unaffected by rpoZ deletion. Further to this,
�-lacking strains of S. aureus display structural changes in the RNAP complex, which
result from increased degradation and misfolding of the �= subunit, alterations in �

and � factor abundance, and a general dissociation of RNAP in the absence of �.
Through RNA sequencing analysis we detected a variety of transcriptional changes
in the rpoZ-deficient strain, presumably as a response to the negative effects of �

depletion on the transcription machinery. These transcriptional changes translated to
an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm.
Collectively, our data underline, for the first time, the importance of � for RNAP sta-
bility, function, and cellular physiology in S. aureus.

IMPORTANCE In order for bacteria to adjust to changing environments, such as
within the host, the transcriptional process must be tightly controlled. Transcription
is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major
subunits (�2��=) a fifth, smaller subunit, �, is present in all forms of life. Although
this small subunit is well studied in eukaryotes and Gram-negative bacteria, only lim-
ited information is available for Gram-positive and pathogenic species. In this study,
we investigated the structural and functional importance of �, revealing key roles in
subunit folding/stability, complex assembly, and maintenance of transcriptional in-
tegrity. Collectively, our data underline, for the first time, the importance of � for
RNAP function and cellular harmony in S. aureus.

KEYWORDS RNA polymerase subunit omega, RpoZ, Staphylococcus aureus, gene
regulation

Transcription in all forms of life is a tightly controlled process, necessitated by the
essentiality of correct temporal and spatial expression of genes for survival. All

transcriptional activity within a cell is maintained by the DNA-dependent RNA poly-
merase (RNAP). This multiprotein complex is structurally and functionally similar in
distant forms of life, displaying only minor variations in composition, e.g., the presence/
absence of certain subunits (1, 2). In bacteria RNAP consists of four main subunits, i.e.,
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two � (RpoA) subunits and one subunit each of � (RpoB) and �= (RpoC), forming the
�2��= complex. Together they facilitate transcriptional elongation, but they require a �

factor to initiate the process. Interestingly, a large number of bacteria, and particularly
the Firmicutes, possess several other accessory RNAP subunits (3–6). These are consid-
erably smaller than the major subunits, ranging from 8.5 to 21.5 kDa, and include the
� (RpoE), � (RpoY), and � (RpoZ) subunits. Deletion of these subunits does not result in
lethality for the cell, and thus their diminutive size and nonessential nature have
resulted in their being classified as the “small accessory subunits” (reviewed in refer-
ence 6). Nevertheless, for the � factor it has been shown that, in various species,
deletion is accompanied by a deregulation of the transcriptional process, leading to
decreased fitness and impaired virulence in pathogenic organisms (7, 8). While there is
an extensive history of research for �, � has only recently been described as an RNAP
subunit, with only a single study thus far performed in Bacillus subtilis (5), which
suggested a role in phage immunity. While the presence of these two subunits is largely
confined to the Firmicutes, homologs of �, the smallest of the three subunits, can be
found not only in bacteria but also in eukaryotes (RPB6) and archaea (RpoK) (6, 9).
Although this conservation might suggest a vital role and perhaps similar function
across widely different species, there are in fact marked differences in how this subunit
influences cells across the various kingdoms (6, 10). Most strikingly is the observation
that while it is accessory in bacteria, the � subunit is essential in eukaryotic organisms
(11).

The majority of studies on � have been carried out in Gram-negative bacteria, with
a focus on the model organism Escherichia coli (10). In this organism it has been shown
that � influences the transcriptional machinery, and thus the transcriptional process, in
a variety of ways. Most notably, � is known to interact with �= to ensure correct folding
of the subunit, as well as to facilitate docking to the �2� complex (9, 12–14). Accord-
ingly, deletion of � leads to misfolding as well as degradation of �= (13, 15), which is
also observed in Mycobacterium smegmatis (16). The crystal structure of � in complex
with the other RNAP subunits of both E. coli and Thermus aquaticus has been solved
and confirms the binding of � to �= (17, 18). Interestingly, these structures also reveal
species-specific differences in the interaction of these two proteins, again highlighting
the heterogeneous nature of � function in different organisms. In contrast, no such
crystal structure is available for �, or RNAP at large, in Gram-positive organisms.

Quite strikingly, in terms of functional difference, is the finding that in E. coli, the
stringent response, and thus adaption to nutrient-limiting conditions, is dependent on
�. Specifically, the stringent response-inducing molecule ppGpp is recognized by and
binds to the interface of �= and � (19–21), which in turn leads to the adjustment of
transcriptional profiles to promote survival under nutrient-limiting conditions. While
this role is true for E. coli, the � protein in B. subtilis has been suggested to have no such
role in the stringent response, due to an alternative mechanism of ppGpp recognition.
Instead of binding to �, the adaption to limiting conditions in B. subtilis is mediated by
ppGpp-induced alterations of GTP concentrations within the cell (22, 23). Subsequently,
these changes lead to alterations in gene expression, driven by the sensitivity of certain
promoters to GTP availability as an initiating nucleotide. In line with this model, where
onset of the stringent response does not require the interaction of ppGpp with the
RNAP complex, is the observation that the conserved E. coli residues required for
ppGpp binding to RNAP are largely absent in the B. subtilis � and �= subunits (20).

The final major function of � described in the literature is a putative role in
facilitating � factor biding to the RNAP complex. For E. coli and cyanobacteria, it has
been reported that depletion of � can lead to increased binding of alterative � factors
and in turn to increased expression of genes within alternative � factor regulons (24,
25). Again, structural differences within the �-depleted RNAP have been implicated in
this alteration of � factor affinity for the complex. As with many of the other �

phenotypes, no in-depth studies have been performed in Gram-positive bacteria
regarding this role, further underscoring the need to characterize this diverse protein.

Weiss et al. Journal of Bacteriology

January 2017 Volume 199 Issue 2 e00459-16 jb.asm.org 2

 on D
ecem

ber 28, 2016 by guest
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org
http://jb.asm.org/


For Gram-positive organisms, only a limited number of studies exist, detailing a few
phenotypic effects resulting from the abrogation of � activity. Indeed, none of these
studies have unraveled the molecular basis for alterations in mutant strains, meaning
that the role of � in Gram-positive species is still relatively elusive. Those effects that
have been detailed for rpoZ mutants include alterations in cell wall morphology, cell
motility, protein secretion, and biofilm formation (16, 26–29). Importantly, the role of
this subunit in the virulence of pathogenic species has yet to be evaluated. Therefore,
in this study we explored the role of � in Staphylococcus aureus, demonstrating that it
is not involved in the stringent response but instead mediates structural integrity of the
RNAP complex. Deletion of this factor leads to individual RNAP subunit degradation
and an induction of cellular stress responses. The latter effect was characterized by
global transcriptional analyses, revealing that a significant number of the observed
changes were due, at least in part, to altered � factor abundance in the RNAP complex.
Finally, we demonstrate that deletion of rpoZ influences the ability of S. aureus to form
biofilms, a process that mediates persistent infections and the capacity to resist
antibiotic treatment. We suggest that collectively, our data underline the importance of
� for RNAP stability, function, and cellular physiology in S. aureus.

RESULTS
� is cotranscribed with gmk and is highly expressed throughout growth.

Analysis of RNA sequencing data previously generated by our laboratory (31) reveals
that the �-encoding gene, rpoZ, is highly expressed during all phases of growth and is
seemingly cotranscribed with its upstream gene, gmk, encoding a guanylate kinase (see
Fig. S2A in the supplemental material). To validate the latter observation, we performed
Northern blot analysis on RNA extracted from wild-type S. aureus cells grown to
mid-exponential phase using rpoZ-specific probes. In so doing, a band of �1100
nucleotides (nt) was observed, indicating that rpoZ and gmk are indeed organized in a
bicistronic operon (Fig. S2B). In order to study the role of � in S. aureus, we next created
an unmarked deletion mutant, removing the majority of the rpoZ-encoding gene and
leaving gmk intact. Validation of this arrangement and that no deleterious effects were
observed on gmk expression was obtained by RNA sequencing analysis of the mutant
strain and by Northern blotting (Fig. S2A and B). RNA sequencing data for the
�-depleted strain showed the expected deletion of the rpoZ gene but confirmed that
there were no unintended effects on transcript abundance for gmk (see Table S1 in the
supplemental material).

The S. aureus � and �= proteins lack conserved residues required for ppGpp
binding. In E. coli the interaction of ppGpp with RNAP is mediated by conserved
residues within the � and �= subunits, thus controlling the stringent response. Such
residues are absent in B. subtilis, suggesting an alternate mechanism for stringent
response regulation in Gram-positive organisms (20, 32). In corroboration of this,
alignment analysis of � and �= subunits from E. coli, B. subtilis, and S. aureus (Fig. 1A)
reveals that, although there is partial conservation of the �= and � proteins for all three
organisms, the residues for ppGpp binding are almost entirely absent (a single aspartic
acid is conserved in �= region 2) at the primary sequence level and in the biochemical
characteristics of each amino acid. This finding is further validated by the observation
that growth of a ΔrpoZ strain is not impaired under standard, nutrient-limiting, or
stringent response-inducing conditions. Specifically, in addition to growth in complex
medium (tryptic soy broth [TSB]) (Fig. 1B), we investigated growth during amino acid
limitation (Fig. 1C) as well as in amino acid-limiting medium completely depleted of
valine and leucine (Fig. 1D). Importantly, the rpoZ mutant showed growth rates similar
to those of the wild type in both TSB and amino acid-limiting medium and only a minor
growth defect in medium devoid of valine and leucine. This defect, however, suggests
an impaired ability to adapt to changing growth conditions rather than a stringent
response defect, as stringent response-deficient mutants display a characteristic stalling
of growth during the stringent response, rather than delayed growth (33). To further
validate this finding, we assessed sensitivity to mupirocin of the rpoZ mutant alongside
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its parental strain and a codY mutant strain, as it has previously been shown that S.
aureus mutants impaired in the stringent response display decreased resistance to this
stringent response-inducing antibiotic (34). In so doing, we found that the ΔrpoZ strain
has a mupirocin MIC (0.32 �g/ml) similar to that of the wild type, while the codY mutant
has a 2-fold decrease in MIC (�0.16 �g/ml), comparable to that of stringent response-
deficient mutants documented elsewhere (34).

Depletion of rpoZ leads to destabilization of the RNAP complex. We next
assessed whether � has a role in maintaining RNAP complex integrity in S. aureus and,
more precisely, in the folding of its subunits, as described for M. smegmatis and E. coli
(13, 16). We isolated cytoplasmic proteins from exponentially growing cells and deter-
mined the abundances of the intact RNAP complex in the wild-type and mutant strains.
This was achieved by concentrating fractions using a 100-kDa-cutoff filter, ensuring that
the resulting retentate harbored only proteins of �100 kDa in size. As � and �= are the
only RNAP subunits larger than 100 kDa, any subunit found in the concentrated fraction
must originate from protein in complex with other RNAP subunits. Consequently, � and
�= are expected to be present independently and in complex with RNAP and thus
should demonstrate no alteration within the mutant even if complex instability is
observed. As expected, we consistently observed equimolar amounts of � for both the
wild type and the rpoZ mutant in tested samples (Fig. 2A), which was confirmed by
Western blotting using a �-specific antibody (Fig. 2B). Conversely, we found a marked
decrease in �= abundance in the mutant compared to the parent in the same samples.
Given the large size of �=, these results point not only toward a release of the subunit
from the complex but also to its likely degradation in the absence of �, as observed in
other organisms. Similar to �=, but to a lesser extent, the � subunit, the housekeeping
� factor, �A, and the small subunit � were also decreased in abundance in the mutant
strain. In order to investigate the fate of each subunit, we performed additional
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FIG 1 Influence of the S. aureus � subunit on survival during nutrient-limiting conditions. (A) Alignment of select RNAP subunits from E. coli, B. subtilis, and S.
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concentration experiments using a 30-kDa-cutoff filter and again isolated proteins from
the wild-type and rpoZ mutant strains (Fig. 2C). Interestingly, while only trace amounts
of � were detected in these fractions (as expected), we observed significant levels of �=
in the rpoZ mutant strain, again suggesting �= instability upon � deletion. With regard
to �, which should always be found in the �30-kDa fraction, the amount of this protein
was significantly higher in the ΔrpoZ strain than in the wild type. This would tend to
indicate disassembly and release of this subunit from the RNAP complex upon �

depletion.
To exclude the possibility that alterations in subunit abundance were caused by

differential expression patterns for RNAP-encoding genes in the rpoZ-depleted strain,
we analyzed RNA sequencing data sets of the USA300 parent and its corresponding
rpoZ mutant (Fig. 2D). The rpoZ gene was included as an internal control for our data
set, as a portion of the locus is still present in the mutant strain (Fig. S2A), and therefore
an expression value is generated from the RNA sequencing experiment. Of note, all of
the subunits were shown to have a moderate increase in expression in the mutant
strain. Importantly, �=, which displayed the strongest decrease in protein abundance,
showed the strongest upregulation, with a 2.6-fold increase in transcription. This
perhaps suggests a possible attempt by the cell to counteract �= degradation by
enhancing transcriptional activity of the rpoC gene within the rpoZ mutant strain.

The � and � factors of RNAP have distinct and contrasting influences on S.
aureus gene expression. When further exploring the RNA sequencing comparison of
the wild-type and rpoZ mutant strains, we observed 232 genes with altered expression
at 	2-fold and 63 genes at 	3-fold (Fig. 3; Table S1). In order to validate these
alterations, we performed quantitative reverse transcription-PCR (RT-qPCR) for a subset
of differentially expressed genes (Fig. S3A and B), revealing similar changes in this and
the RNA sequencing data sets. Since our RNAP composition studies showed that rpoZ
deletion also results in � depletion from RNAP, we next assessed whether removal of �

from the transcription complex was the driving force behind the observed changes.
This is particularly important, as our previous studies have shown that � is a key factor

FIG 2 Cells lacking the � factor have altered RNAP composition and individual subunit stability. Free or
complex-bound subunits were separated according to their molecular masses via size selection before
analysis using mass spectrometry. (A) In the �100-kDA fraction only large RNAP subunits (� and �=) and
subunits within the RNAP complex should be found. (B) Data were validated by Western blotting using a
� subunit antibody. (C) Protein degradation in the ΔrpoZ strain is highlighted by the presence of larger
subunits within the �30-kDa fraction. (D) Transcriptional changes as a cause of alterations in RNAP
composition were excluded by analyzing expression of RNAP genes from RNA sequencing data sets. Shown
are the fold changes for each RNAP gene in the mutant strain compared to the wild type. Where relevant,
error bars show SEM. Statistical significance was determined using Student’s t test (*, P � 0.05; **, P � 0.01).

The � Subunit of RNAP in Staphylococcus aureus Journal of Bacteriology

January 2017 Volume 199 Issue 2 e00459-16 jb.asm.org 5

 on D
ecem

ber 28, 2016 by guest
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org
http://jb.asm.org/


for maintaining transcriptional specificity within the S. aureus cell (8). Upon comparing
RNA sequencing-derived transcriptional changes of the rpoE and rpoZ mutants, we
found an overlapping regulon of only 24 genes (Fig. 3). Comparing these 24 genes to
the overall number of genes changed in both mutants, only �10.5% (ΔrpoZ) or 12.5%
(ΔrpoE) of each data set is identical. This low level of regulon overlap indicates that the
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FIG 3 The � and � factors of RNAP have distinct and contrasting influences on S. aureus gene expression. (Top) Genomic
map of altered transcription in the rpoZ mutant strain. The outermost circle (gray) represents annotations for the S. aureus
USA300 genome. Blue (upregulation) and red (downregulation) bars show genes with differential expression in the rpoZ
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Comparison of RNA sequencing data sets for ΔrpoE (�) and ΔrpoZ (�) strains. Shown are the number of genes within each
regulon and the overlap between the two data sets (only �10% was detected).
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changes seen in an rpoZ mutant are not the result of an inability of � to exert its
influence on RNAP.

� influences � factor recruitment to the S. aureus RNAP complex. In E. coli and
the cyanobacterium Synechocystis, it is known that depletion of � causes alterations in
� factor abundance within the RNAP complex. Therefore, we next investigated if the
multifaceted transcriptional changes of the rpoZ mutant were influenced by alterations
in � factor binding to the �-less RNAP. Since �B is the major alternative � factor in S.
aureus, we compared transcriptome changes upon rpoZ deletion to those observed in
a sigB mutant. This was facilitated using wild-type and sigB mutant RNA sequencing
data sets previously produced in our lab in the SH1000 background. SH1000 was
chosen for this study as it is known to have a �B overexpression phenotype. Subse-
quent comparison of these data sets detected an inverse relationship between the
regulons of � and �B. Specifically, for the 20 most strongly downregulated genes in the
sigB mutant, the majority (70%) demonstrated increased expression upon rpoZ disrup-
tion (Fig. 4; Tables S2 and S3). Conversely, for the 20 most strongly upregulated genes
in the sigB mutant, most (60%) were found to be decreased in expression in the ΔrpoZ
strain.

It is noted that the comparison of regulons between different strains is not without
drawbacks. Our rationale was that by choosing a sigB-overexpressing strain such as
SH1000, we could obtain better resolution for the identification of �B-dependent genes.
Nevertheless, there remains the possibility that additional genomic differences be-
tween SH1000 and USA300 drive strain-specific expression patterns and thereby influ-
ence their corresponding �B regulons. However, the strongly correlated inverse rela-
tionship observed suggests that there are indeed higher levels of �B within the
�-lacking RNAP complex, which corroborates effects seen in other bacterial species.
Accordingly, it appears that � not only is required to maintain RNAP integrity but also
plays a role in association of the complex with available � factors, thereby influencing
transcriptional stringency in S. aureus.

Depletion of rpoZ leads to decreased transcriptional specificity that influences
multiple cellular processes within the S. aureus cell. We next used functional
clustering to investigate alterations in gene expression upon rpoZ disruption (Fig. 5).
While a variety of cellular processes were shown to be affected by rpoZ deletion, we
noted major changes in genes related to central dogma. Specifically, genes related to
transcription and translation, as well as cellular processes connected to DNA, RNA, or
protein synthesis, were strongly affected by the loss of �. These include changes within
purine and pyrimidine metabolism, enzymes for DNA replication and repair, and amino
acid biosynthesis. Additionally, genes in more general ontological categories, such as
genes for sugar uptake systems (phosphotransferase system [PTS]), the general stress

Repressed genes in sigB::tet

Total=20 Total=20

downregulated in rpoZ
upregulated in rpoZ

Induced genes in sigB::tet

unchanged in rpoZ

BA

FIG 4 � affects � factor recruitment to the S. aureus RNAP complex. A comparison of RNA sequencing
data sets from sigB::tet (�B) and ΔrpoZ strains is depicted. Shown are the most highly repressed (A) or
highly induced (B) genes in the sigB::tet strain and their concomitant change in expression upon rpoZ
deletion. Genes with a change of less than 10% between the rpoZ mutant and its parental strain were
considered unchanged.
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response, regulators, transporters, and metabolism, displayed altered expression. Inter-
estingly, the changes also negatively affect several well-characterized virulence deter-
minants of S. aureus. These include aureolysin (�3.7-fold) and the Panton-Valentine
leukocidin-encoding operon (LukSF, �3.4-fold and �3.1-fold, respectively). Lastly, a
significant number of phage genes were altered in their expression. This point is
particularly interesting as we have previously described this phenomenon to be one of
the hallmarks of rpoE deletion (8); thus, these effects could result from its depletion
from the RNAP complex. Therefore, although overlap of the � and � regulons is limited
(as described above) and unlikely to be causative for the majority of transcriptional
changes observed in the ΔrpoZ strain, it cannot be entirely excluded that a number of
effects seen in the rpoZ mutant are driven, at least in part, by � depletion from RNAP.

Disruption of the � subunit results in an impaired ability to circumvent
multiple forms of environmental stress. To explore the physiological outcome of
these findings, we sought to determine if the mutant was impaired in resisting the
impact of environmental stressors. In so doing, we observed that the mutant shows an
augmented sensitivity toward various antibacterial compounds with unrelated mech-
anisms of action. These include increased sensitivity to triclosan (2-fold; a fatty acid
biosynthesis inhibitor), erythromycin and pyrogallol (both �4-fold; a translation inhib-
itor and a reducing agent, respectively), and diamide (8-fold; creates disulfide stress). As
these compounds all affect different cellular targets, it would appear that depletion of
� leads to widespread fitness defects, highlighting its global importance within the S.
aureus cell.

The � subunit of RNAP is required for biofilm formation in S. aureus. We next
set out to investigate whether the observed changes in gene expression influence
pathophysiologically relevant processes. Thus, we determined whether the formation
of a bacterial biofilm, a key hallmark of S. aureus infection (35), was influenced by rpoZ
depletion in vitro. Importantly, upon analysis we observed that loss of � does indeed
lead to an approximately 3-fold reduction in biofilm formation that could be restored
via complementation in trans (Fig. 6). As biofilm formation is strongly influenced by
extracellular proteins in S. aureus (36), we analyzed the secretomes of the wild-type and
rpoZ mutant strains. Although the vast majority of proteins appeared to be unchanged
in abundance, we noted a marked decrease in a major protein band at around 75 kDa
in the mutant strain (see Fig. S4 in the supplemental material). In order to identify this
protein, we excised the corresponding band from gels and performed mass spectro-
metric (MS) analysis. It was identified as two separate tributyrin lipases (the products of
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SAUSA300_0320 and SAUSA300_2603), with molecular masses of 76 and 77 kDa,
respectively. Interestingly, a recent report on the role of lipase activity in S. aureus
demonstrated that deleting these enzymes results in drastically impaired biofilm
formation (37). This may provide some explanation for these findings, although given
the complex process of biofilm formation in S. aureus, it is likely that other factors are
also involved.

DISCUSSION

The � subunit of RNAP is a widely distributed protein that is found in all branches
of life. While it is well studied in Gram-negative bacteria (10) and eukaryotes (9), a
recent review by our group highlighted the need for � to be examined in a wider range
of species, and particularly Gram-positive bacteria (6). This is especially true since (i) the
subunit has a variety of possible roles that have received only limited attention in
Gram-positive species, including RNAP subunit folding (9, 12, 13, 15) and stability (16),
complex assembly/stabilization (10, 13, 14), maintenance of � factor specificity (24, 25),
and ppGpp binding (19–21), and (ii) Gram-positive species, and particularly the Firmi-
cutes, include several epidemiologically relevant human pathogens. To the latter point,
an understanding of cellular factors that are required for transcription and to maintain
transcriptional stringency is crucial in order to better comprehend the physiology of
pathogens and thus potentially aid in counteracting and preventing the spread of
disease. Here we describe the role of � within S. aureus for the first time. Our study
explores previously documented functions from other bacterial species, assessing its
impact on the global transcriptome as well as its key role in fitness and, most
importantly, virulence, which to our knowledge has not yet been examined.

It has previously been suggested that the stringent response in Firmicutes is
independent of ppGpp recognition by � (32). Here we demonstrate that under amino
acid-limiting conditions, as well as during exposure to stringent response-inducing
compounds, the ΔrpoZ strain does not exhibit typical stringent response deficiency
phenotypes. This is consistent with findings in B. subtilis, where ppGpp, instead of
directly binding to � as in Gram-negative species, exerts its function indirectly. Instead,
the generation of ppGpp from GTP and ATP (38) in B. subtilis leads to diminished GTP
pools within the cell (39, 40), which in turn causes decreased transcription of GTP-
sensitive promoters (i.e., those with GTP at position �1 [22, 41, 42]) and interferes with
the role of GTP as a corepressor for CodY (43). These findings are mirrored in S. aureus,
where CodY- and GTP-regulated genes are similarly influenced by the nutritional status
of the cell in a ppGpp-dependent manner (33, 44). Therefore, we hypothesize that
rather than resulting from a dysfunctional stringent response, the diminished ability of
a ΔrpoZ strain to survive challenging conditions is a consequence of basal stress levels

FIG 6 The � subunit of RNAP is required for biofilm formation in S. aureus. Biofilm formation by the
wild-type, rpoZ mutant, and complemented strains was measured using a 24-well plate biofilm assay.
Error bars show SEM, with statistical significance measured using Student’s t test (**, P � 0.01).
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experienced by the cell upon loss of the subunit. This is supported by our findings that
S. aureus lacking the rpoZ gene displays a reduced-growth phenotype not only when
exposed to nutrient-limiting and stringent response-inducing conditions but also
during growth at elevated temperatures (data not shown).

To investigate how a lack of � affects the transcriptional process and integrity of
RNAP, we performed complex stability analysis and determined that rpoZ deletion
causes decreased levels of intact RNAP, perhaps as a result of reduced �= within the
complex. This is consistent with findings in other organisms, which describe a
chaperone-like function for �, assisting in the folding of �= and its subsequent docking
to RNAP (9, 10, 12–15). Indeed, the likely misfolding of �= leads not only to degradation
of the subunit but also to impaired assembly and/or dissolution of RNAP and the
proteolysis of several other subunits. Importantly, in addition to this apparent failure of
�= to fully associate with RNAP, � deletion leads to a jettisoning of � from the
transcription complex and an increase in alternative � factor binding. Indeed, the
finding that � and �A are preferentially released from �-less, and presumably structur-
ally unstable, RNAP suggests that �-deficient RNAP can provide a unique insight into
the effects of stress on the transcription complex and, more broadly, the role of the
accessory subunits. Based on the current literature, as well as our findings here, we
propose a model whereby stress within the cell leads to RNAP instability, resulting in
an alteration of subunits present within the transcription complex that specifically
facilitates survival during unfavorable conditions (Fig. 7). In support of this, those sigma
factors that have increased binding to RNAP upon � deletion (�S in E. coli [24], �B/�F

in cyanobacteria [25], and �B in S. aureus) are all major components of the general
stress response in their respective organism (45–49). Furthermore, as with � factors, the
release of � from RNAP has the potential for profound alterations in gene expression,
as a recent publication demonstrates the ability of � to selectively affect individual
promoters (7, 8) via binding to specific promoter elements (50). As the disruption of
rpoE results in slower bacterial growth in a variety of organisms (e.g., an extended lag
phase [8, 51, 52]), removal of this subunit from RNAP may actually present a survival
advantage during stress, redirecting resources away from division and toward repair
and cellular maintenance. In agreement with this is a recent study with Streptococcus
pneumoniae biofilms, where there appears to be selective pressure for rpoE mutations
leading to small-colony variant (SCV) phenotypes (53). SCV formation is a common
mechanism used by many different bacteria which would initially appear to present a
defect in viability but in actuality results in enhanced survival (54) and antibiotic
resistance and the development of persister cells (55). Interestingly, our group has
observed similar effects in S. aureus, where �-deficient mutants display variable, and
decreased, colony size after recovery from murine models of infection (unpublished
observation). Thus, it would appear that the significant compositional rearrangement
within �-less RNAP is far from random. Rather, these changes in binding of accessory
factors are seemingly directed to specifically adjust promoter selectivity and preference
to facilitate survival. Furthermore, these findings regarding subunit swapping within
the transcription complex appear to confirm long-made contentions regarding a level
of cooperativity for � and � factor binding within RNAP (56–58).

FIG 7 Model for the role of � in the Gram-positive RNA polymerase.
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In spite of these changes in subunit abundance, which we suggest are utilized by
the cell as a survival strategy, rpoZ deletion itself results in wide-reaching cellular stress
that is associated with an impaired transcriptional process. This contention is supported
by our RNA sequencing data, which demonstrate the upregulation of various genes
coding for transcriptional and translational factors, putatively in an attempt to over-
come diminished or inefficient RNAP function. Furthermore, we identified increased
expression of genes involved in the general stress response, sugar uptake pathways,
and energy metabolism, all of which may be designed to overcome unfavorable
conditions (59). The latter group emphasizes that intracellular stress resulting from �

deletion, and the subsequent countermeasures it elicits (e.g., production of chaperones,
RNAP subunits, and ribosomal subunits), consumes energy and therefore has the
potential to deplete cellular energy pools. This in turn leads to the upregulation of
sugar uptake and energy metabolism, which in our study resulted in a minor increase
in ATP pools (data not shown). In accordance with this, studies investigating S. aureus
heat stress demonstrate that following exposure to elevated temperatures, cellular
energy levels are in fact not depleted, but rather a steady (60) or transient (61) increase
in ATP pools is observed, presumably due to the upregulation of energy-generating
processes. It is perhaps not surprising that the transcriptional and physiological
changes observed from our in vitro experiments also translate into the impairment of
virulence-related processes, as shown by the impaired biofilm formation in the rpoZ
mutant.

We suggest that, collectively, our findings extend the existing knowledge regarding
� and its role within RNAP, provide a unique insight into structural rearrangements
within the transcription complex in response to stress, and demonstrate the necessity
of this important subunit for the cellular homeostasis.

MATERIALS AND METHODS
Bacterial strains and growth conditions. All bacterial strains used in this study are listed in Table

1. Unless otherwise indicated, cultures were grown as described by Shaw et al. (62). Briefly, S. aureus was
grown at 37°C with shaking (250 rpm) in tryptic soy broth (TSB) or chemically defined medium (CDM)
(45), while E. coli was cultivated in lysogeny broth (LB) with agitation (250 rpm) at 37°C. Overnight
cultures of S. aureus were seeded at a 1:100 dilution into fresh medium. After 3 h of growth, cultures were
used to inoculate fresh TSB to an optical density at 600 nm (OD600) of 0.05 and grown to the desired
density in a Synergy2 plate reader (BioTek) in 96-well plates.

Mutant construction. In order to investigate the role of the � subunit, a strain carrying a markerless
deletion of the rpoZ gene was created, using a method based on the plasmid pJB38 as outlined by Bose
and coworkers (63). Briefly, the majority of the rpoZ gene was removed via allelic replacement, as initially
described elsewhere (64). To do this, both the 5= and 3= ends of the rpoZ gene, together with �1 kb of
up- and downstream DNA, were PCR amplified using primers OL2889 to OL2892 and fused together
using MluI sites contained in the amplification primers. This was then cloned into pJB38 using SacI and
KpnI sites in primers OL2889 and OL2892. Following several selection and counterselection steps in S.
aureus as described previously (63), rpoZ deletion was confirmed using internal (OL2991 and OL2992) and
external (OL3008 and OL3009) primer pairs relative to the deleted region within the gene.

Complement construction. In order to exclude that secondary mutations were causative for
phenotypic changes observed in the ΔrpoZ strain, a plasmid was constructed to complement the rpoZ
gene in trans. Here, the complete rpoZ operon, including its native promoter, was PCR amplified using
primers OL3753 and OL3807. After BamHI digestion of the amplicon and the pMK4 shuttle vector, the
PCR fragment and plasmid were ligated together and transformed into chemically competent E. coli
DH5�. The plasmid isolated from ampicillin-resistant clones was confirmed via Sanger sequencing (using
standard M13 primers). Correct plasmids were transformed into electrocompetent S. aureus RN4220 (65)
and finally transduced into the S. aureus USA300 rpoZ mutant using 
11 (66).

RNA isolation and Northern blots. The detection of RNA transcripts was performed using a
Northern blotting protocol outlined by Caswell et al. (67). Briefly, RNA from cultures grown for 3 h was
isolated using an RNeasy kit (Qiagen), with DNA removed using a Turbo DNA-free kit (Ambion). RNA
concentrations were determined using an Agilent 2100 Bioanalyzer and an RNA 6000 Nano kit (Agilent).
RNA (15 �g) was separated by gel electrophoresis (10% polyacrylamide containing 7 M urea and 1�
Tris-borate-EDTA [TBE]) before being transferred to an Amersham Hybond N� membrane (GE Health-
care) by electroblotting. In order to cross-link samples, membranes were exposed to UV radiation.
Following this, membranes were prehybridized (1 h, 43°C) in ULTRAhyb-Oligo buffer (Ambion) and
incubated (16 h, 43°C) with a [�-32]ATP-end-labeled oligonucleotide (OL3377) specific to the rpoZ target
sequence. Labeling was carried out using T4 polynucleotide kinase (Thermo Scientific) according to the
manufacturer’s protocol. After overnight incubation, each membrane was washed (30 min, 43°C) with
decreasing (2�, 1�, and 0.5�) concentrations of SSC buffer (300 mM sodium chloride, 30 mM sodium
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citrate). Finally, membranes were exposed to X-ray film in order to detect the size and abundance of the
rpoZ transcript.

RNA sequencing and data analyses. RNA sequencing was performed for rpoZ and sigB mutants and
their respective parental strains as previously outlined by our group (8, 68–70). Briefly, RNA was isolated
and the quality determined as described for Northern blot experiments. Following this, RNA from three
biological replicates was pooled in equimolar amounts and rRNA removed by consecutive treatment
with the MICROBExpress (Ambion) and RiboZero (Epicentre) kits. Removal of rRNA was confirmed using
an Agilent 2100 Bioanalyzer (RNA 6000 Nano kit; Agilent). The rRNA-depleted RNA samples were
prepared for sequencing with an Ion Personal Genome Machine (PGM) system as described previously
(68). First, cDNA libraries were constructed with an Ion Total RNA-seq kit, v2 (Ion Torrent). The prepared
libraries were then used to generate template-positive ion sphere particles (ISPs) using an Ion PGM
Template OT2 200 kit (Ion Torrent) in combination with an Ion OneTouch 2 system (Ion Torrent). The
template-positive ISPs were loaded onto Ion 318 v2 chips (Ion Torrent) and sequencing runs performed
with an Ion PGM Sequencing 200 kit, v2 (Ion Torrent). Raw data files in fastq format were exported and
analyzed using the CLC Genomics Workbench software (Qiagen) and the USA300_FPR3757 and NCTC
8325 reference genomes (GenBank accession numbers CP000255 and NC_007795, respectively). Expres-
sion values for each gene were calculated as reads per kilobase per million mapped reads (RPKM), and
a quantile normalization approach was applied (71) with a lower limit of 10 RPKM. Genes that displayed
fold changes of 	2 when comparing expression in the mutant to that in the wild-type strain were
included in further analyses.

TABLE 1 Strains, plasmids, and primers

Strain, plasmid, or
primer Description or sequencea

Reference or
source

Species and strains
E. coli DH5� Cloning strain 79

S. aureus
RN4220 Restriction-deficient transformation recipient Lab Stocks
USA300 HOU MRSA isolate cured of pUSA300-HOU-MRSA 72
HKM850 USA300 HOU codY mutant; codY::tet 75
SH1000 8325-4 derivate with functional rsbU; rsbU� 80
MJH502 SH1000 sigB mutant; sigB::tet 80
BM2393 USA300 HOU ΔrpoZ mutant This study
AW2394 USA300 HOU ΔrpoZ/pMK4::rpoZ rpoZ� This study

Plasmids
pMK4 Gram-positive shuttle vector 81
pJB38 Counterselectable plasmid to create silent

mutations in S. aureus
63

Primers
OL2889 ATGGAGCTCGCCATAATTTATCTTCCACCTTC This study
OL2890 ATGACGCGTGCAGTTGTTGCAATTAAATAC This study
OL2891 ATGACGCGTGTTTCGACCATTAAAAATATGTG This study
OL2892 ATGGGTACCCATTTCTTCAGCACTTTGAAC This study
OL2991 GCGTGAAATTGATGAACAAC This study
OL2992 CAGCAATTTCTTCTAACGCTC This study
OL3008 AGAAGATTAGCTTAGAGAGGTC This study
OL3009 GAAATGCTAATGGTGTCACA This study
OL3377 CGTCAGCAATTTCTTCTAACGCTCTACCAAC This study
OL3753 ATGGGATCCATCGCCAATTTCATCTTT This study
OL3807 ATGGGATCCATCTCCCTTAAATATCACTATG This study
OL2393 TCGTATGTTGTGTGGAATTG This study
OL2394 GTGCTGCAAGGCGATTAAG This study
OL1297 GTGGTGGCGTTTGTGC This study
OL1298 CCGACAGCAAACACACCCAT This study
OL2129 TAACATTCTCTGATGAAGTTG This study
OL2130 TTAAGTCTACAGCAGCTTG This study
OL3136 TCAATATTATCGGTGGATTTA This study
OL3137 GCAAATTATGATGTTGAAATAG This study
OL3747 CGTAGATGCAAATTATTACG This study
OL3748 CGTTAATGAAACAATTGGAC This study
OL4099 GGTTCACGTTCCTTTATC This study
OL4100 CAGGTTTACCATCTTTAGG This study
OL4109 GTTAAATGGTTTAATGCAGAA This study
OL4110 GTATCCATCTTCAGCGA This study

aMRSA, methicillin-resistant S. aureus. Underlining denotes restriction sites.
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RT-qPCR. In order to confirm expression values that were generated by RNA sequencing, a subset
of genes were chosen to confirm transcriptional changes via quantitative reverse transcription-PCR
(RT-qPCR), as described by us previously (8, 69, 72, 73). PCR amplification was performed using primers
for each gene (Table 1) (glpF, OL1297/OL1298; asp23, OL2129/OL2130; SAUSA300_0174, OL3136/OL3137;
aur, OL3747/OL3748; rpoC, OL4099/OL4100; and SAUSA300_0777, OL4109/OL4110), alongside 16S rRNA-
specific primers as standard controls (OL1184/OL1185) (74).

Investigation of RNA polymerase composition. In order to determine the effects of � loss on the
stability and composition of RNAP, we adopted an approach first outlined by Gunnelius et al. (an
overview of this procedure can be found in Fig. S1 in the supplemental material) (25). Wild-type and
ΔrpoZ strains were grown to exponential phase, and their cytoplasmic protein fractions were isolated as
outlined previously (75). In order to differentiate between RNAP subunits unbound or within the RNAP
complex, we performed two size selection steps. To do so, we first added 10 ml of phosphate-buffered
saline (PBS) to the isolated protein fraction and loaded the complete mixture onto an Amicon Ultra-15
centrifugal filter unit (EMD Millipore) with a 100-kDa cutoff. After centrifugation (4,000 � g, 45 min), the
approximately 300 �l of remaining protein fraction was washed with 10 ml of PBS and the centrifugation
step repeated. The fraction on top of the filter was then recovered and stored (�80°C) for further analysis.
The complete flowthrough of the first filter step was then applied to a second Amicon Ultra-15
centrifugal filter unit (EMD Millipore) with a 30-kDa cutoff. The flowthrough was collected and trichlo-
roacetic acid (TCA) precipitated (overnight, 4°C). The pelleted proteins were washed three times in
ice-cold absolute ethanol and subsequently resuspended in PBS. The different fractions were then
subjected to either mass spectrometry or Western blot analysis.

Characterization of protein content using mass spectrometry. Protein extracts isolated via the
size selection protocol outlined above were processed by filter-aided sample preparation (FASP), as
described by us previously (73, 75). Proteins were reduced with dithiothreitol (DTT), alkylated with
iodoacetamide (IAA), and digested with trypsin–Lys-C (Promega) overnight at 37°C. Peptides were
collected by centrifugation, desalted using Pierce SPE C18 columns with a Supelco vacuum manifold, and
dried in a vacuum concentrator (Labconco). Peptides were resuspended in H2O– 0.1% formic acid and
separated using a 75-�m by 10-cm C18 reversed-phase high-pressure liquid chromatography (HPLC)
column (New Objective) on a NanoLC Ultra (Eksigent) with a 120-min gradient (4 to 40% acetonitrile
[ACN] with 0.1% formic acid). Fractions were analyzed on a linear ion trap Orbitrap instrument (Orbitrap
XL; Thermo Fisher Scientific), with full MS survey scans acquired at 60,000 resolution. The top 10 most
abundant ions were selected for tandem MS (MS/MS) analysis in the linear ion trap. Raw data files were
processed in MaxQuant (www.maxquant.org) and searched against the UniProtKB S. aureus USA300
protein sequence database. Search parameters included constant modification of cysteine by carbam-
idomethylation and the variable modification methionine oxidation. Proteins were identified using
filtering criteria of 1% protein and peptide false-discovery rates. Protein levels were normalized to the
overall protein content in each of the investigated fractions.

Western blotting. The assessment of � subunit abundance was performed as described by us
previously (66). Size-selected protein fractions containing proteins and protein complexes of �100 kDa
were prepared as for experiments determining RNAP composition. Samples were separated using 12%
SDS-polyacrylamide gel electrophoresis (SDS-PAGE), as described by us previously (76). Separated
proteins were then transferred to a polyvinylidene difluoride (PVDF) membrane and detected using a
monoclonal mouse RNAP � antibody (8RB13; Santa Cruz Biotechnology) and a horseradish peroxidase
(HRP)-conjugated secondary antibody. HRP activity was assessed using the SuperSignal West Pico
substrate (Thermo Fisher Scientific) and visualized on X-ray film.

MIC assessment assay. To determine whether transcriptional changes observed within the mutant
strain resulted in detectable physiological sensitivities, we assessed MICs for various antibacterial agents,
as described by our group previously (77). Briefly, overnight cultures were diluted 1:1,000 into fresh
medium in 96-well plates, and antibiotics at various concentrations were added at amounts no greater
than 2% of the final volume. Plates were incubated for 12 h (static, 37°C), and turbidity, as a sign of
bacterial growth, was manually assessed. MICs were defined as the minimum concentration of a given
agent to result in no detectable turbidity in individual wells.

Secretome analysis. To evaluate alterations in secreted proteins, bacteria were grown for 24 h
before being centrifuged (6,000 � g, 10 min). Supernatants were removed and subjected to 12%
SDS-PAGE as described by us previously (76). Gels were assessed either by silver staining using a Pierce
silver stain kit (Thermo Fisher Scientific) according to the manufacturer’s instructions or by Coomassie
brilliant blue staining, in-gel trypsin digestion, and mass spectrometric analysis, as described by us
previously (76). Briefly, gel pieces were minced and destained before reduction and alkylation with
dithiothreitol (DTT) and iodoacetamide (IAA), respectively. Proteins were digested with trypsin–Lys-C
overnight at 37°C, and peptides were extracted using 50:50 ACN and H2O– 0.1% formic acid and dried in
a vacuum concentrator (Labconco). Peptides were resuspended in H2O– 0.1% formic acid for LC-MS/MS
analysis, which was performed as described above.

Biofilm assay. The ability of strains to form biofilms was assessed as described by us previously (78).
The wells of non-tissue-culture treated 12-well polystyrene plates were incubated for 48 h (static, 4°C)
with 1 ml of human serum in order to facilitate attachment of cells. Concurrently, bacteria were cultured
overnight in biofilm medium (BFM) (TSB supplemented with 0.5% [wt/vol] dextrose and 3% [wt/vol]
NaCl) and used to seed fresh BFM to an OD600 of 0.05. After removal of the human serum from the wells
of plates, 1 ml of these fresh cultures was transferred into each well and incubated for 48 h (static, 37°C).
After incubation, supernatants were gently removed from each well and the biofilm washed twice with
PBS before fixation with absolute ethanol. Biofilms were stained with crystal violet solution (2% [wt/vol])
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for 10 min, followed by two more rounds of washing with PBS. Residual supernatants were aspirated, and
plates were dried overnight. After this time, 300 �l of absolute ethanol was added to the wells and
incubated for 10 min before being removed, and the absorbance was measured at 570 nm using a
Synergy2 plate reader (BioTek).

Accession number(s). All data sets have been deposited to the NCBI Gene Expression Omnibus
(GEO) (accession numbers GSE87033 and GSE87036).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
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Figure S1: Workflow employed to explore RNAP composition.  
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Figure S2: Exploration of the gmk-rpoZ operon architecture in S. aureus. A) RNA-
sequencing analysis, or B) Northern blots, of the wild-type and rpoZ deletion mutant. 
The probe used in B is demarcated on the rpoZ gene in A. Lines denoting the lengths of 
842 bp and ~1100 bp refer to the predicted size of the gmk-rpoZ transcript, and the 
actual length of this transcriptional unit detected by Northern blot, respectively.  

Figure S2: Exploration of the gmk-rpoZ operon architecture in S. aureus. A) RNA-sequencing 
analysis, or B) Northern blots, of the wild-type and rpoZ deletion mutant. The probe used in B is 
demarcated on the rpoZ gene in A. Lines denoting the lengths of 842 bp and ~1100 bp refer to the 
predicted size of the gmk-rpoZ ORF, and the actual length of this transcriptional unit detected by Northern 
blot, respectively. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S3: Validation of transcriptional changes from RNA-sequencing 
experiments using RT-qPCR. A) RNA-sequencing data was confirmed using RT-
qPCR analysis for representative genes. Error bars are shown ±SEM. B) Fold-changes 
for RT-qPCR and RNA-sequencing were subsequently compared.  
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Figure S3: Validation of transcriptional changes from RNA-sequencing experiments using RT-
qPCR. A) RNA-sequencing data was confirmed using RT-qPCR analysis for representative genes. Error 
bars are shown ±SEM. B) Fold-changes for RT-qPCR and RNA-sequencing were subsequently 
compared. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: ω affects the abundance S. aureus lipases. Secretomes of the S. aureus 
wild-type, ΔrpoZ mutant and complemented strains after 24 h of growth were assessed 
via SDS-PAGE. A black arrow denotes the protein band found to have decreased 
abundance, which was identified as two different lipases by mass-spectrometric 
analysis. 
 
 
 
 

Figure S4: ω affects the abundance S. aureus lipases. Secretomes of the S. aureus wild-type, ΔrpoZ 
mutant and complemented strains after 24 h of growth were assessed via SDS-PAGE. A black arrow 
denotes the protein band found to have decreased abundance, which was identified as two different 
lipases by mass-spectrometric analysis.  



Table S1: Differentially expressed genes in the ΔrpoZ mutant strain 
	

Gene	name/designation	
	

Fold	Change	in	ΔrpoZ		
		

	
Function	

	
Hypothetical	proteins	 		 		

SAUSA300_0431 +∞ Hypothetical protein 
SAUSA300_1205 7.54 Hypothetical protein 
SAUSA300_2493 7.32 Hypothetical protein 
SAUSA300_2132 5.81 Hypothetical protein 
SAUSA300_1606 5.42 Hypothetical protein 
SAUSA300_0575 3.88 Hypothetical protein 
SAUSA300_1739 3.83 Hypothetical protein 
SAUSA300_0465 3.29 Hypothetical protein 
SAUSA300_1335 3.22 Hypothetical protein 
SAUSA300_1742 3.11 Hypothetical protein 
SAUSA300_1746 2.92 Hypothetical protein 
SAUSA300_0392 2.88 Hypothetical protein 
SAUSA300_1740 2.84 Hypothetical protein 
SAUSA300_1180 2.73 Hypothetical protein 
SAUSA300_2131 2.58 Hypothetical protein 
SAUSA300_1857 2.41 Hypothetical protein 
SAUSA300_0779 2.4 Hypothetical protein 
SAUSA300_1743 2.34 Hypothetical protein 
SAUSA300_1759 2.31 Hypothetical protein 
SAUSA300_1247 2.23 Hypothetical protein 
SAUSA300_1915 2.21 Hypothetical protein 
SAUSA300_0814 2.2 Hypothetical protein 
SAUSA300_1701 2.12 Hypothetical protein 
SAUSA300_0642 2.08 Hypothetical protein 
SAUSA300_1582 2.07 Hypothetical protein 
SAUSA300_2527 2.06 Hypothetical protein 
SAUSA300_2236 -2.04 Hypothetical protein 
SAUSA300_0824 -2.08 Hypothetical protein 
SAUSA300_0177 -2.09 Hypothetical protein 
SAUSA300_1863 -2.18 Hypothetical protein 
SAUSA300_1748 -2.21 Transposase, frameshift 
SAUSA300_1230 -2.39 Hypothetical protein 
SAUSA300_1380 -2.62 Hypothetical protein 
SAUSA300_0048 -2.9 Hypothetical protein 
SAUSA300_0174 -3.02 Hypothetical protein  
SAUSA300_0192 2.19 Hypothetical protein 
SAUSA300_0805 -2.19 Hypothetical protein 



Transport	 		 		
glpF 8.74 Glycerol uptake facilitator 

SAUSA300_0208 4.17 Putative maltose ABC transporter, ATP-binding protein 
ptsG 3.76 Glucose transporter subunit IIABC 

SAUSA300_2466 3.67 ABC transporter permease protein 
SAUSA300_0209 3.65 Putative maltose ABC transporter, maltose-binding protein 
SAUSA300_2408 3.37 Oligopeptide permease, ATP-binding protein 
SAUSA300_0941 3.07 Putative ferrichrome ABC transporter 
SAUSA300_0210 2.98 Maltose ABC transporter, permease protein 

4.5S RNA 2.74 Signal recognition particle 
SAUSA300_2407 2.6 Peptide ABC transporter, ATP-binding protein 

fhuA 2.4 Ferrichrome transport ATP-binding protein 
opuD 2.39 Glycine betaine transporter 
gntP 2.35 Gluconate permease 

SAUSA300_2409 2.25 Oligopeptide permease 
SAUSA300_0211 2.21 Maltose ABC transporter, permease protein 
SAUSA300_0068 2.02 Cadmium-exporting ATPase, truncation 
SAUSA300_2454 -2.05 ABC Transporter 

tatC -2.07 Sec-independent protein translocase 
SAUSA300_2453 -2.1 ABC Transporter 
SAUSA300_0176 -2.27 ABC transporter, permease protein 
SAUSA300_0173 -2.33 Dipeptide/oligopeptide/nickel ABC transporter permease 
SAUSA300_2557 -2.49 ABC transporter protein 
SAUSA300_0613 -2.57 Putative Na+/H+ antiporter, MnhD component 
SAUSA300_0175 -2.58 Putative lipoprotein/ transporter 
SAUSA300_0614 -2.6 Putative Na+/H+ antiporter, MnhE component 

	 	 	Other	 		 		
SAUSA300_0045 7.99 HNH nucleases 
SAUSA300_0471 4 Veg protein 

sbrB 3.87 Small peptide encoding gene 
comK 3.83 Competence transcription factor 

SAUSA300_0538 3.7 Uncharacterized epimerase/dehydratase 
SAUSA300_0328 2.74 Lipoate-protein ligase 
SAUSA300_1198 2.53 Putative GTP-binding protein 

cap5E 2.29 Capsular polysaccharide biosynthesis protein 
SAUSA300_0821 2.23 SUF system FeS assembly protein 
SAUSA300_2503 2.23 Secretory antigen SsaA 

pknB 2.19 Serine/threonine kinase 
typA 2.19 GTP-binding protein 

SAUSA300_0474 2.1 Putative endoribonuclease, L-PSP 
SAUSA300_0464 2.06 Predicted O-methyltransferase 

scpB 2.04 Chromosome segregation and condensation protein B 



SAUSA300_2512 2.01 Glyoxalase family protein 
SAUSA300_0135 -2.04 Superoxide dismutase 
SAUSA300_0534 -2.04 Putative amidohydrolases 
SAUSA300_0795 -2.25 Thioredoxin like protein 
SAUSA300_0985 -2.26 Hypothetical protein 
SAUSA300_0234 -2.51 Putative flavohemoprotein 

pcp -3.52 CDD-2,6-dichloro-p-hydroquinone 1,2-dioxygenase 
SAUSA300_0043 -9.73 Metallo-beta-lactamase/Zn-dependent hydrolase 

	 	 	Metabolism	general	 		
gap 4.65 Glyceraldehyde-3-phosphate dehydrogenase 2 

SAUSA300_0170 4.56 Aldehyde dehydrogenase 
SAUSA300_0229 3.45 Acyl-CoA transferase 
SAUSA300_0662 2.73 Acetyltransferase, GNAT family 

sdhC 2.67 Succinate dehydrogenase, cytochrome b-558 subunit 
acsA 2.45 Acetyl-coenzyme A synthetase 

SAUSA300_0425 2.44 NADH dehydrogenase I, F subunit 
SAUSA300_2484 2.38 3-hydroxy-3-methylglutaryl CoA synthase  

gltA 2.37 Citrate synthase II 
SAUSA300_0945 2.34 Isochorismate synthase family protein 
SAUSA300_0424 2.32 Putative Cobalamin protein 

sucB 2.21 Dihydrolipoyllysine-residue succinyltransferase  
icd 2.14 Isocitrate dehydrogenase 

sdhB 2.12 Succinate dehydrogenase, iron-sulfur subunit 
SAUSA300_1986 2.05 Nitroreductase family protein 

sucA 2.03 2-oxoglutarate dehydrogenase, E1 component 
SAUSA300_1894 -2 Nicotinate phosphoribosyltransferase 
SAUSA300_2316 -2.15 Acetyltransferase 
SAUSA300_2475 -2.27 Acyl-CoA thioester hydrolase 

budA 2736735..2737440) -2.32 Alpha-acetolactate decarboxylase 
folP -2.53 Dihydropteroate synthase 

panB -2.83 3-methyl-2-oxobutanoate hydroxymethyltransferase 
SAUSA300_0343 -2.84 Acetyltransferase 

	 	 	Regulation	 		 		
gntR 5.78 Transcriptional regulator, GntR family  
malR 4.94 Transcriptional regulator, maltose operon repressor 
scrR 3.3 Sucrose operon repressor 

SAUSA300_0621 2.92 MntR Mn Repressor 
treR 2.78 Trehalose operon Repressor 

SAUSA300_2310 2.77 Putative transcriptional regulator 
nsaS 2.74 NsaS Histidine Kinase 
sarA 2.66 Staphylococcal accessory regulator A 



SAUSA300_0954 2.61 Transcriptional regulator, MarR family 
SAUSA300_0095 2.26 LysR Regulator, LysR family 
SAUSA300_0023 2.2 YycI protein 
SAUSA300_2530 2.08 Transcriptional regulator, TetR family 
SAUSA300_0090 2.05 Hypothetical protein 
SAUSA300_1583 -2 Cystine metabolism regulator 
SAUSA300_2509 -2.07 Transcriptional regulatory, TetR family 

nirR -2.12 Nitrite reductase transcriptional regulator 
argR -2.19 Arginine repressor homolog 

SAUSA300_0110 -2.41 Transcriptional Regulator, GntR family 

	 	 	Translation	 		 		
rpsO 5.08 30S ribosomal protein S15 
rpmB 3.5 50S ribosomal protein L28 
rumA 3.41 RNA methyltransferase 

SAUSA300_2037 3.31 ATP-dependent RNA helicase 
rpsB 2.91 30S ribosomal protein S2 
infC 2.91 Translation initiation factor IF-3 
rplA 2.67 Ribosomal protein L1 
rplM 2.48 50S ribosomal protein L13 
rpsI 2.37 30S ribosomal protein S9 
rluB 2.3 Pseudouridine synthase B 
rplT 2.28 50S ribosomal protein L20 
rpmJ 2.27 50S ribosomal protein L36 
rpsT 2.19 30S ribosomal protein S20 

SAUSA300_0531 2.13 30S ribosomal protein S7 
rpsD 2 30S ribosomal protein S4 

SAUSA300_1823 -2.38 tRNA-Ser 
SAUSA300_1827 -2.42 tRNA-Met 

	 	 	Phage	proteins	 		 		
SAUSA300_1981 4.03 Phage terminase family protein 
SAUSA300_1959 3.48 PhiPVL ORF044-like protein  
SAUSA300_1943 2.94 Phi77 ORF040-like protein  
SAUSA300_1966 2.82 Phi77 ORF014-like protein, phage anti-repressor protein 
SAUSA300_1933 2.67 Hypothetical phage protein 
SAUSA300_1962 2.63 PhiPVL ORF39-like protein 
SAUSA300_1968 2.05 Putative phage transcriptional regulator 
SAUSA300_1926 -2.02 Phi77 ORF044-like protein  
SAUSA300_1954 -2.13 PhiPVL ORF050-like protein 
SAUSA300_1948 -2.21 Phi77 ORF069-like protein  
SAUSA300_1412 -2.49 PhiSLT ORF 50-like protein 
SAUSA300_1953 -2.68 PhiPVL ORF051-like protein  



SAUSA300_1951 -3.06 PhiPVL ORF052-like protein  
SAUSA300_1952 -3.81 Phi083 ORF027-like protein  
SAUSA300_1945 -7.94 Phi77 ORF071-like protein  

	 	 	Virulence	determinats	 		
mecA 2.78 Penicillin-binding protein 2a  

SAUSA300_1059 2.64 Staphylococcal superantigen like protein 12 
hlgA 2.53 Gamma-hemolysin, component A 

SAUSA300_1058 2.42 Alpha-hemolysin  
SAUSA300_0033 2.21 Methicillin resistance regulator protein 

splE -2.02 Serine protease  
sak -2.11 Staphylokinase 
nuc -2.13 Nuclease 
splB -2.44 Serine protease 

SAUSA300_0883 -2.54 Eap/Map protein 
SAUSA300_2087 -2.73 Putative peptidase 

lukF-PV -3.13 Panton-Valentine leukocidin, LukF-PV 
lukS-PV -3.4 Panton-Valentine leukocidin, LukS-PV 

aur -3.74 Zinc metalloproteinase aureolysin 

	 	 	Purine	and	pyrimidne	metabolism	 		
deoD 3.79 Purine nucleoside phosphorylase 
purD 2.76 Phosphoribosylamine--glycine ligase 
purS 2.67 Phosphoribosylformylglycinamidine synthase 
purN 2.55 Phosphoribosylglycinamide formyltransferase 
purH 2.5 Bifunctional purine biosynthesis protein 
xseB 2.44 Exodeoxyribonuclease VII, small subunit 
purM 2.11 Phosphoribosylformylglycinamidine cyclo-ligase 
purB 2.08 Adenylosuccinate lyase 

SAUSA300_2234 -2.32 Purine nucleosidase 

	 	 	Membrane/lipoproteins	 		
SAUSA300_0724 2.49 Putative lipoprotein 
SAUSA300_2448 2.35 Putative membrane protein 
SAUSA300_1685 2.23 Putativ membrane protein 
SAUSA300_0922 2.1 Membrane protein 
SAUSA300_2355 -2.23 Putative lipoprotein 

pfoR -2.47 Perfringolysin O regulator protein 
SAUSA300_0443 -2.49 Putative Membrane protein 
SAUSA300_0233 -2.64 Putative Membrane protein 
SAUSA300_0410 -3.18 Staphylococcal tandem lipoprotein 

	
	

	 	



Sugar	metabolism	
	pfkA -2.79 6-phosphofructokinase 

gpmA -2.04 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase 
sdaAB 2.24 L-serine dehydratase, beta subunit 
gntK 3.14 Gluconate kinase 
murQ 3.4 N-acetylmuramic acid-6-phosphate etherase 

SAUSA300_2455 3.54 Fructose-1,6-bisphosphatase 
treC 3.69 Alpha-phosphotrehalase 
pckA 3.87 Phosphoenolpyruvate carboxykinase 

SAUSA300_1456 5.52 Alpha-amylase 

	 	 	Stress	response/repair	 		
SAUSA300_0777 4.01 Cold shock protein C 
SAUSA300_0816 3.44 CsbD-like protein 

lexA 2.89 LexA repressor 
SAUSA300_2639 2.88 Cold shock protein D 

asp23 2.39 Alkaline shock protein 23 
SAUSA300_1549 2.37 ComE operon protein I 

clpB 2.31 Chaperone 
recA 2.14 Recombinase A 

	 	 	Amino	acid	metabolism	 		
putA 6.78 Proline dehydrogenase 
ald 2.08 Alanine dehydrogenase 

leuD 2.06 3-isopropylmalate dehydratase, small subunit 
SAUSA300_0119 -2.05 Ornithine cyclodeaminase 
SAUSA300_0952 -2.75 Aminotransferase, class I 

	 	 	PTS	system	components		 		
treP 3.89 PTS system, trehalose-specific IIBC component 

SAUSA300_2324 3.72 PTS system, sucrose-specific IIBC component 
SAUSA300_0332 3.45 PTS system, IIA component 
SAUSA300_0331 2.74 PTS IIB - ascorbate, lactose or cellobiose 

ptsG 2.17 PTS system, glucose-specific IIABC component 

	 	 	Cell	wall	 		 		
SAUSA300_1702 4.86 Cell wall surface anchor family protein 
SAUSA300_0703 2.84 Lipoteichoic acid synthase 

lytN 2.31 Cell wall hydrolase 
SAUSA300_2435 2.01 Cell wall surface anchor family protein 

	
	

	 	



Replication	 		 		
SAUSA300_1344 2.95 Putative DNA-replication protein, DnaD 
SAUSA300_1042 2.15 DNA polymerase IV (family X)  

nrdG -3.48 Anaerobic ribonucleotide reductase, small subunit 
nrdD -4.59 Anaerobic ribonucleotide reductase, large subunit 

	 	 	Lipid	Metabolism	 		
lip 3.67 Triacyglycerol lipase 

acpP 3.25 Acyl carrier protein 

plsX 2.11 Phosphate acyltrasferase 
estA -2.33 Tributyrin esterase 

	 	 	Transcription	 		 		
rpoC 2.6 RNAP Beta' subunit 
nusA 2.11 Transcription elongation factor 
rpoZ -10.03 RNAP omega subunit 
	
	 	



Table S2: List comparing the 20 most downregulated genes in a S. aureus 
SH1000 σB mutant strain (which have homologues in USA300) to the alterations 
in transcript abundance of the homologue genes in a USA300 ΔrpoZ strain. 

 
 
 

	
	
	
	 	

Feature	ID	SH1000	
	

Fold-Change		
(sigB::tet)	

Feature	ID	USA300	
	

Gene	name	
	

Fold	Change	
(ΔrpoZ)	

SAOUHSC_00624	 -∞	 SAUSA300_0609	
	

-1.61	
SAOUHSC_02442	 -∞	 SAUSA300_2143	

	
-1.10	

SAOUHSC_02882	 -∞	 SAUSA300_2502	
	

1.41	
SAOUHSC_02443	 -15,213.97	 SAUSA300_2144	

	
1.31	

SAOUHSC_00845	 -4,178.80	 SAUSA300_0816	
	

3.44	
SAOUHSC_02441	 -3,188.61	 SAUSA300_2142	 asp23	 2.39	
SAOUHSC_02444	 -1,540.56	 SAUSA300_2145	

	
-1.16	

SAOUHSC_00356	 -667.21	 SAUSA300_0372	
	

1.11	
SAOUHSC_01729	 -546.86	 SAUSA300_1581	

	
1.45	

SAOUHSC_00358	 -321.83	 SAUSA300_0374	
	

1.86	
SAOUHSC_02466	 -142.55	 SAUSA300_2164	

	
1.52	

SAOUHSC_02387	 -139.11	 SAUSA300_2097	
	

-1.39	
SAOUHSC_03032	 -97.75	 SAUSA300_2629	

	
-1.13	

SAOUHSC_02774	 -95.56	 SAUSA300_2418	
	

-1.08	
SAOUHSC_01730	 -89.95	 SAUSA300_1582	

	
2.07	

SAOUHSC_02772	 -77.38	 SAUSA300_2416	
	

1.13	
SAOUHSC_00831	 -75.12	 SAUSA300_0786	

	
1.19	

SAOUHSC_02880	 -70.09	 SAUSA300_2500	
	

1.64	
SAOUHSC_02881	 -62.08	 SAUSA300_2501	

	
1.44	

SAOUHSC_02812	 -54.8	 SAUSA300_2447	
	

1.90	



Table S3: List comparing the 20 most upregulated genes in a S. aureus SH1000 
σB mutant strain (which have homologues in USA300) to the alterations in 
transcript abundance of the homologue genes in a USA300 ΔrpoZ strain. 

	
 

Feature	ID	SH1000	
	

Fold-Change		
(sigB::tet)	

Feature	ID	USA300	
	

Gene	name	
	

Fold	Change	
(ΔrpoZ)	

SAOUHSC_00260	 ∞	 SAUSA300_0281	
	

-1.45	
SAOUHSC_01315	 ∞	 SAUSA300_1221	

	
1.20	

SAOUHSC_00069	 80.09	 SAUSA300_0113	 spa	 -1.54	
SAOUHSC_02821	 75.93	 SAUSA300_2454	

	
-2.05	

SAOUHSC_00818	 29.22	 SAUSA300_0776	 nuc	 -2.13	
SAOUHSC_03002	 21.68	 SAUSA300_2600	 icaA	 -1.06	
SAOUHSC_02820	 16.26	 SAUSA300_2453	

	
-2.10	

SAOUHSC_00674	 13.42	 SAUSA300_0654	 sarX	 -1.50	
SAOUHSC_00259	 11.98	 SAUSA300_0280	

	
1.01	

SAOUHSC_00913	 11.1	 SAUSA300_0878	
	

-1.68	
SAOUHSC_00072	 10.88	 SAUSA300_0116	 sirB	 1.19	
SAOUHSC_02461	 10.74	 SAUSA300_2160	

	
1.19	

SAOUHSC_00244	 9.97	 SAUSA300_0266	
	

-1.77	
SAOUHSC_03004	 9.64	 SAUSA300_2601	 icaB	 -1.41	
SAOUHSC_00492	 9.19	 SAUSA300_0495	

	
1.01	

SAOUHSC_02639	 7.73	 SAUSA300_2305	
	

-1.21	
SAOUHSC_00250	 7.03	 SAUSA300_0272	

	
1.07	

SAOUHSC_03036	 6.24	 SAUSA300_2633	
	

1.00	
SAOUHSC_01488	 6.23	 SAUSA300_1361	

	
-1.12	

SAOUHSC_01941	 6.02	 SAUSA300_1757	 splB	 -2.44	
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ABSTRACT In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of
molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files,
and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved
detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains
(MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first
to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the
community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sR-
NAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome anno-
tation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly
created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that
the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to
the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first
examination of differential sRNA expression in pathophysiologically relevant conditions.

IMPORTANCE Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus,
their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-
referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times
and bearing multiple names. In this work, we have consolidated and curated known sRNA genes from the literature and mapped
them to their position on the S. aureus genome, creating new genome annotation files. These files can now be used by the scien-
tific community at large in experiments to search for previously undiscovered sRNA genes and to monitor sRNA gene expression
by transcriptome sequencing (RNA-seq). We demonstrate this application, identifying 39 new sRNAs and studying their expres-
sion during S. aureus growth in human serum.
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In recent years, a number of studies have been carried out, em-
ploying both experimental and computational methods to iden-

tify regulatory or small RNAs (sRNAs) in Staphylococcus aureus
(1–12). Hundreds of sRNAs have been identified, and many, in
addition to the agr effector RNAIII, have been shown to play a role
in gene regulation (while these molecules go by a variety of names
such as regulatory RNAs or noncoding RNAs, we will use sRNAs
to refer to them all, as previously recommended [13]). Despite
advancements in sRNA identification, the roles of most of these
molecules remain unknown, because in many cases, limited func-
tional information can be gathered from analysis of their sequence
alone.

One additional factor that has hampered the study of sRNAs in
S. aureus has been the lack of a clear nomenclature and annotation

system. This absence of a systematic identification and annotation
process has led to the repeated discovery of the same sRNAs on
multiple occasions, the reidentification of already known sRNAs
(e.g., RNAIII), and even to important protein-coding genes being
ascribed as sRNAs (e.g., the �-PSM transcript, which is not anno-
tated in most S. aureus genome files). Recent work by Sassi et al.
(14) established an online database for staphylococcal sRNAs;
however, most sRNAs, including the well-studied RNAIII, are still
not included in annotated S. aureus GenBank genome files. This is
a marked oversight, as annotated genome files serve as the refer-
ence for global genomic and transcriptomic studies; thus, the ab-
sence of sRNAs from these files severely impedes their study and
prevents us from gaining an overarching picture of regulatory
circuits.
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In S. aureus, most sRNA identification studies have been per-
formed in a single background, the hospital-acquired methicillin-
resistant S. aureus (MRSA) strain N315. The existence of many of
these sRNAs has been demonstrated experimentally in strain
N315 (1, 3, 4, 6, 7); however, very few of them have been investi-
gated in other S. aureus strains, including the epidemic
community-associated MRSA (CA-MRSA) strain USA300 (15).
As such, their existence, location, and copy number in most S. au-
reus isolates is unknown, preventing us from gaining a sense of
their role in the physiological and pathogenic differences between
strains.

To better understand the sRNA content of multiple S. aureus
strains, we explored the genomes of three well-studied S. aureus
strains (USA300, MRSA252, and NCTC 8325). We identified the
location(s) of previously discovered sRNAs and created new
GenBank genome annotation files for each strain, inserting ~260
sRNAs. These newly annotated files serve as a valuable resource
allowing us to do the following: (i) search the genome of each
strain for as yet unidentified sRNAs without mistakenly reidenti-
fying known species, and (ii) calculate expression values for these
genes using transcriptome sequencing (RNA-seq) data.

To demonstrate the application of these new files, we per-
formed RNA-seq on CA-MRSA strain USA300 growing in labo-
ratory media and human serum and aligned the data to our newly
created sRNA annotated genome files. Examining the data, we
identified 39 novel putative sRNAs that had not been previously
reported. These novel sRNAs were annotated, cross-referenced in
the genomes of strains NCTC 8325 and MRSA252, and added to
the newly created genome files as well. During the cross-
referencing process, we observed numerous examples of inconsis-
tent genome annotation in different S. aureus strains. We high-
light examples clearly demonstrating genome misannotation and
demonstrate how this phenomenon is adversely affecting the
identification and characterization of sRNAs. Finally, we calculate
expression values and examine the global sRNA expression profile
of strain USA300, uncovering a wealth of molecules that display
differential expression in human serum. The latter point is of sig-
nificant importance, as it gives us a unique look into the sRNA
transcriptome, not only during growth of S. aureus but also in a
pathophysiologically relevant growth environment. The new ge-
nome annotation files described in this work have been deposited
in the figshare depository and are freely available for download.
We suggest that these newly reannotated genomes will be a valu-
able resource to the S. aureus research community for sRNA iden-
tification and analysis hereafter, as they can be incrementally
added to as new sRNAs are discovered.

RESULTS
Annotation of sRNAs on the S. aureus genome. Previous studies
in our lab have utilized RNA-seq to determine the global tran-
scriptomic profile of S. aureus in the community-associated
MRSA strain USA300 (16, 17). Analysis of these data sets revealed
a large number of S. aureus transcripts that map to intergenic
regions where no protein-coding genes have been annotated. We
hypothesized that many of these transcripts represent sRNAs be-
cause of the following. (i) Most S. aureus genome annotation files
do not contain annotations for sRNA genes. (ii) Recent studies
carried out in the S. aureus N315 background have demonstrated
that there are several hundred sRNAs encoded in the S. aureus
genome (12, 14). To facilitate improved global transcriptomic

analysis of S. aureus by RNA-seq, we created new GenBank ge-
nome annotation files for three commonly used S. aureus strains,
NCTC 8325, MRSA252, and USA300. To do this, we elected to
expand the sRNA annotation and nomenclature system already
present for 25 sRNAs in strain MRSA252 (see Table S1 in the
supplemental material) and apply a similar annotation/nomen-
clature system to strains USA300 and NCTC 8325 (for details, see
supplemental material). To include annotations for known
sRNAs, we performed a literature search to identify studies in
which sRNAs in S. aureus were reported. A total of 12 papers that
employed a variety of methods to identify sRNAs, including com-
putational approaches, microarray studies, cDNA cloning, and
high-throughput sequencing, were investigated (1–12). Using the
information provided in these publications, a list of 928 potential
sRNAs was assembled (Table S2) (1–12). In order to ensure accu-
rate annotation of each sRNA from this list, RNA-seq experiments
were performed for each of the three strains growing under stan-
dard laboratory conditions. Reads generated from these works
were aligned to the respective genomes and used as a guide to
identify the specific location of each sRNA for each of the three
strains (see Fig. S1 in the supplemental material).

This work condensed the 928 putative sRNAs to a total of 248
annotations for strain MRSA252, 254 annotations for strain
NCTC 8325, and 264 annotations for strain USA300 (for a more-
comprehensive explanation of how sRNAs were identified and
annotated, see Text S1 in the supplemental material). Such a dra-
matic reduction in the number of sRNAs points to the scale of
overlapping identification, reidentification, and duplicate naming
that was extant in the literature for these elements and the poor
state of sRNA curation in S. aureus genomes. Our newly generated
GenBank files for all three strains represent the first comprehen-
sive list of sRNAs annotated directly in the S. aureus genome,
which will serve as a valuable reference point for future sRNA
discovery, and more broadly, global transcriptomic analyses of
S. aureus by RNA-seq.

Detection of novel sRNAs in strain USA300. The creation of
GenBank files containing annotations for previously identified
sRNAs provided us with a unique opportunity to examine RNA-
seq data for novel forms of these elements, without mistakenly
reidentifying those that are already known. Accordingly, we set
out to perform such an exploration using the community-
associated MRSA isolate USA300, an undeniably relevant clinical
strain for which no sRNA identification studies have yet been per-
formed. To maximize the probability of identifying novel sRNAs,
we performed RNA-seq with USA300 grown under both labora-
tory conditions (tryptic soy broth [TSB]), and in media that was
more pathophysiologically relevant to its infectious lifestyle (hu-
man serum) (18).

RNA-seq reads from bacteria grown under these conditions
were mapped to the newly created USA300 GenBank file (contain-
ing 264 sRNA annotations), followed by a thorough examination
for the presence of novel sRNA transcripts. A total of 39 potential
sRNAs were identified from both conditions, which we named tsr1
to tsr39 for Tampa small RNA (Table 1) (for details regarding the
criteria used for our determination of novel sRNAs, see Text S1 in
the supplemental material). Although the majority of the tsr genes
were located in intergenic regions, a number were identified as
being antisense to annotated genes or as partially overlapping an-
notated coding DNA sequence (CDS) genes. The novel sRNAs
were also added to our newly created USA300 genome file, using
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the nomenclature system described in Text S1, resulting in a Gen-
Bank file with a total of 303 sRNAs in the USA300 genome. This
brings the total number of genes annotated on the USA300 ge-
nome from 2,850 to 3,153, representing an approximately 10%
increase in annotated genes.

To investigate the conservation of tsr genes in S. aureus, we
analyzed their corresponding chromosomal loci on the S. aureus
NCTC 8325 and MRSA252 genomes by performing a BLAST
search (Table 1). Of the 39 tsr genes, 29 were found in strain
MRSA252, while 32 were found in strain NCTC 8325. Annota-
tions were again added to the MRSA252 and NCTC 8325 genome
files for each of the tsr genes identified using the nomenclature
outlined (see Text S1 in the supplemental material). Importantly,
five of the tsr genes appear to be unique to USA300 (tsr1, tsr2, tsr3,
tsr5, and tsr30), with no homologues found in either MRSA252 or
NCTC 8325. In addition, five tsr genes were present in USA300
and NCTC 8325 but absent in MRSA252 (tsr7, tsr8, tsr20, tsr24,

and tsr29), while two were present in USA300 and MRSA252 but
absent in NCTC 8325 (tsr26 and tsr27) (see Fig. S2 in the supple-
mental material).

Northern blot analysis of tsr transcripts. To validate our
RNA-seq-based approach for sRNA discovery, five putative tsr
transcripts were examined by Northern blot analysis. The tran-
scripts investigated had different expression patterns in TSB com-
pared to human serum. Three of the transcripts investigated (tsr8,
tsr26, and tsr31) showed no alteration in expression between TSB
and human serum, one (tsr25) demonstrated an increase in ex-
pression, while another (tsr33) showed a decrease (see Table S3 in
the supplemental material). Northern blot analysis confirmed the
predicted size and orientation of tsr25, tsr26, and tsr31 (Fig. 1). In
the case of tsr8 and tsr33, bands were identified; however, they
were considerably larger than those predicted by RNA-seq analy-
sis (Fig. 1). For example, the predicted size of tsr33 was 85 nucle-
otides (nt); however, the size observed by Northern blotting was

TABLE 1 Novel sRNAs identified in strain USA300

sRNA designation sRNA gene Stranda Location Size (nt)

Chromosomal location of tsr gene in strain:

USA300b MRSA252b NCTC 8325b

SAUSA300s265 tsr1 � 52438�53094 656 IG � �
SAUSA300s266 tsr2 � 57712�57804 92 IG � �
SAUSA300s267 tsr3 � 61388�61550 162 IG � �
SAUSA300s268 tsr4 � 73511�74139 628 AS AS AS
SAUSA300s269 tsr5 � 79346�79425 79 AS � �
SAUSA300s270 tsr6 � 120785�120897 112 IG IG IG
SAUSA300s271 tsr7 � 169903�170079 176 IG � IG
SAUSA300s272 tsr8 � 170013�170214 201 IG � IG
SAUSA300s273 tsr9 � 228412�228796 384 IG CDS CDS
SAUSA300s274 tsr10 � 349895�350058 163 IG OL OL
SAUSA300s275 tsr11 � 356689�356782 93 OL OL OL
SAUSA300s276 tsr12 � 457272�457333 61 IG OL AS
SAUSA300s277 tsr13 � 484942�485025 83 OL OL OL
SAUSA300s278 tsr14 � 834340�834885 545 IG IG AS
SAUSA300s279 tsr15 � 896563�897379 816 AS AS AS
SAUSA300s280 tsr16 � 911246�911364 118 AS OL OL
SAUSA300s281 tsr17 � 973559�973971 412 IG CDS CDS
SAUSA300s282 tsr18 � 1074292�1074484 192 IG CDS CDS
SAUSA300s283 tsr19 � 1080302�1080394 92 IG IG IG
SAUSA300s284 tsr20 � 1154300�1154753 453 IG � IG
SAUSA300s285 tsr21 � 1154827�1156001 1174 CDS CDS3 CDS3

SAUSA300s286 tsr22 � 1165484�1165865 381 IG CDS CDS
SAUSA300s287 tsr23 � 1256521�1256545 24 IG IG IG
SAUSA300s288 tsr24 � 1429517�1429754 237 IG � IG
SAUSA300s289 tsr25 � 1442862�1443042 180 IG AS AS
SAUSA300s290 tsr26 � 1641611�1641732 121 IG IG �
SAUSA300s291 tsr27 � 1642820�1642923 103 IG IG �
SAUSA300s292 tsr28 � 1715900�1715975 75 OL OL OL
SAUSA300s293 tsr29 � 1954961�1955091 130 IG � IG
SAUSA300s294 tsr30 � 2126434�2126545 111 IG � �
SAUSA300s295 tsr31 � 2244964�2245035 71 IG IG IG
SAUSA300s296 tsr32 � 2337922�2338072 150 IG IG CDS
SAUSA300s297 tsr33 � 2410564�2410648 84 IG IG IG
SAUSA300s298 tsr34 � 2591032�2591131 99 IG IG IG
SAUSA300s299 tsr35 � 2608047�2608594 547 IG CDS CDS
SAUSA300s300 tsr36 � 2608120�2608645 525 IG AS AS
SAUSA300s301 tsr37 � 2620285�2620621 336 IG CDS CDS
SAUSA300s302 tsr38 � 2664856�2664945 89 IG IG IG
SAUSA300s303 tsr39 � 2811278�2811330 52 IG IG IG
a �, forward strand; �, reverse strand.
b Characteristics of the chromosomal location of the tsr gene. IG, located in the intergenic region; �, absent, deleted, or no homologue; AS, antisense to the annotated gene; CDS,
located within an existing annotated CDS; OL, partially overlaps CDS gene; CDS3, the corresponding locus contains three annotated CDSs.
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approximately 600 nt. When looking at the tsr33 transcript, one
observes that it is located at the 3= end of the sarR gene and is
transcribed in the same orientation. The combined size of sarR
and tsr33 would be around 600 nt, therefore suggesting that tsr33
represents a large 3= untranslated region (UTR) for the sarR gene.
However, RNA-seq alignment from strain USA300 growing in
human serum demonstrates a much greater depth of coverage
(and hence abundance) of tsr33 than of sarR, suggesting that a
tsr33-specific RNA may exist under these conditions (see Fig. S3 in
the supplemental material). On the basis of the above informa-
tion, we predict that tsr33 is cotranscribed as a 3=UTR of sarR, but
under certain conditions (e.g., growth in human serum), it is pos-
sible that a tsr33 RNA may exist independently of sarR.

The second tsr demonstrating a size difference was tsr8, which
was predicted by RNA-seq to be 201 nt; however, two bands were
observed by Northern blotting with approximate sizes between
300 and 400 nucleotides. A possible explanation for this may come
from the fact that tsr8 and tsr7 are convergently transcribed, that
the two transcripts are complementary at the 3= ends, and that
these regions overlap. The density of reads, in both directions,
mapping to this region of complementarity make it difficult to
predict the precise location of each transcript based on RNA-seq
data, resulting in an underestimation of tsr8 size. Given our exper-
imental findings, the size of tsr8 was amended to ~350 nt in the
GenBank files. It is interesting to note that this type of genetic
organization (convergent transcripts overlapping at the 3= end) is
common among toxin-antitoxin (TA) systems in S. aureus (19,
20), hence tsr7 and tsr8 could potentially represent a novel serum-
induced TA system.

For some of the tsr elements expressed at low levels, Northern

blot detection proved unsuccessful (data not shown); therefore,
we employed a reverse transcriptase PCR (RT-PCR)-based ap-
proach, which is inherently more sensitive. Using this methodol-
ogy, we were able to validate the presence of an additional six
transcripts, tsr1, tsr2, tsr18, tsr24, tsr29, and tsr32 (see Fig. S4 in the
supplemental material), suggesting that our RNA-seq-based iden-
tification approach is effective at identifying legitimate sRNA mol-
ecules.

Inconsistent genome annotation in strains USA300, MRSA252,
and NCTC 8325. Twenty-seven tsr genes were found in the ge-
nomes of all three strains (USA300, MRSA252, and NCTC 8325).
For 14 of these genes, the corresponding genomic loci were simi-
larly annotated in all three strains, e.g., tsr6 is located in an inter-
genic region in all three strains, while tsr15 is located antisense to
an annotated CDS. Interestingly, for 13 tsr genes, the genomic loci
in the three strains studied are differentially annotated (Table 1).
In many cases, the NCTC 8325 and MRSA252 genomes contain
annotations for CDS genes, while the USA300 genome specifies
these loci as being intergenic (e.g., tsr9, tsr17, tsr18, etc.). An open
reading frame (ORF) search reveals that 11 tsr genes have the
potential to encode proteins (of 30 amino acids or larger in size).
Seven of these genes are annotated as CDS in strains MRSA252
and NCTC 8325. This raises the possibility that some tsr genes may
in fact be protein-coding genes that were omitted from the
USA300 genome annotation. Conversely, it is also possible that
the NCTC 8325 and MRSA252 genomes may be incorrect and that
these annotated genes do not encode proteins. Upon close exam-
ination, our data clearly demonstrate that incorrect genome an-
notation accounts for at least some of the discrepancies observed.
For example, the tsr12 locus is annotated differently in all three

FIG 1 Northern blot analysis of tsr transcripts. Northern blotting was performed using oligonucleotide probes specific for the tsr transcripts (tsr8, tsr25, tsr26,
tsr31, and tsr33). RNA-seq read alignments for each corresponding chromosomal location are shown, as are CDS genes (black arrows), and sRNAs (red arrows).
The depth of read coverage on the genome is shown by the blue histograms.
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strains (Fig. 2). In strain USA300, tsr12 is located in an intergenic
region (between SAUSA300_0404 and hsdM). In strain
MRSA252, tsr12 incompletely overlaps with a CDS gene anno-
tated in the same orientation, while in strain NCTC 8325, it par-
tially overlaps with a CDS gene annotated in the opposite direc-
tion. Bioinformatic analysis of these CDS genes reveals that they
both specify very small proteins (43 amino acids in MRSA252 and
33 amino acids in NCTC 8325) that possess no known structural
motifs and have no homology to any protein in the database be-
yond counterparts in a handful of other S. aureus strains. Further-
more, in USA300 and NCTC 8325, the tsr12 locus is 100% iden-
tical at the nucleotide level, making large-scale differences in
coding sequences (e.g., inverse open reading frames) unlikely.
Collectively, this demonstrates that there is likely misannotation
in the genomes of MRSA252 and NCTC 8325 and that our sug-
gested annotation of tsr12 as an sRNA is likely the correct one.

tsr12 is an example where incorrect genome annotation is
rather clear and raises important questions regarding how com-
monplace this type of genome misannotation may be. To investi-
gate the issue of inconsistent genome annotation in S. aureus fur-
ther, we selected another sRNA gene for additional study. Teg23
(SAUSA300s148, SARs145, SAOUHSCs144) was originally iden-
tified by Beaume et al. (7) as a potential 5=UTR of the SAS083 gene
in S. aureus strain N315. In strains NCTC 8325 and MRSA252, a
gene is annotated in the position corresponding to SAS083
(SAOUHSC_02572 and SAR2384, respectively), but no gene is
annotated in strain USA300 (Fig. 3A). Upon analysis, SAS083,
SAOUHSC_02572, and SAR2384 once again encode small, hypo-

thetical proteins with no known structural features, functional
domains, or apparent homologues and are therefore likely misan-
notated genes (as noted above for the tsr12 locus).

Northern blot analysis using S. aureus USA300 grown in hu-
man serum (where Teg23 is strongly upregulated) detected a band
of around 310 nt (as predicted by RNA-seq), alongside an addi-
tional band of approximately 215 nt (Fig. 3B). The smaller band
(which we designated Teg23.1) was more abundant than the larger
band (designated Teg23.2) and was repeatedly detected in multi-
ple Northern blots (data not shown), suggesting that two forms of
the transcript may exist within the cell. The CDS annotated in the
NCTC 8325 genome at the Teg23 position (SAOUHSC_02572)
potentially encodes a protein of 80 amino acids (Fig. 3C, red),
while the corresponding locus in strain MRSA252 (SAR2384) po-
tentially encodes a protein of 64 amino acids (Fig. 3C, blue). The
difference is due to a 4-bp insertion in the MRSA252 genome that
results in the creation of a stop codon (Fig. 3C). The nucleotide
sequence of the 432-bp intergenic region from strain USA300 is
almost identical with the corresponding locus in strain NCTC
8325 (431/432 identical), and it does not contain the 4-bp inser-
tion found in MRSA252 (Fig. 3C). Therefore, an 80-amino-acid
protein could potentially be generated from a transcript originat-
ing from this locus in USA300 (Fig. 3C, green), similar to NCTC
8325 (for simplicity, this potential protein will be referred to as
Teg23P for Teg23 protein).

To test whether Teg23P is produced in strain USA300, we
cloned a His6-tagged variant of its putative coding sequence, along
with its native promoter, into an S. aureus shuttle vector. Western

FIG 2 Variation in genome annotation of the tsr12 locus. RNA-seq read alignment data are shown for strains USA300 (A), MRSA252 (B), and NCTC 8325 (C).
Annotations for CDS genes are shown by black arrows, and the depth of coverage is shown by the blue histograms. The location of tsr12 is shown by a red arrow.
(A) There is no CDS annotation at the tsr12 locus in strain USA300. (B) In strain MRSA252, a gene (SAR0432) is annotated in the forward direction at the tsr12
locus. (C) In strain NCTC 8325, a gene (SAOUHSC_00396) is annotated in the reverse direction at the tsr12 locus.
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blots of USA300 strain bearing this construct revealed no detect-
able band using an antihistidine antibody, while the positive con-
trol (histidine-tagged RpoE) was detected (Fig. 3D). Quantitative
RT-PCR (qRT-PCR) to confirm that the construct was being ex-
pressed demonstrated a 2.92-fold-higher expression of Teg23 in

S. aureus containing the Teg23P-his6 plasmid (Fig. 3E). These data
confirm that the plasmid gene-encoded Teg23 is expressed; how-
ever, no protein corresponding to Teg23P-his6 is generated. This
strongly suggests that no protein corresponding to Teg23P is pro-
duced in strain USA300.

FIG 3 Analysis of the Teg23 locus. (A) Teg23 locus in S. aureus strains N315, USA300, NCTC 8325, and MRSA252. Annotated CDS genes are shown in gray.
The previously reported location of Teg23 is shown in white. (B) Northern blot analysis of Teg23. The Teg23 transcript was detected by Northern blot analysis
with a strand-specific oligonucleotide probe. Two bands were detected and were designated Teg23.1 (approximately 215 nt) and Teg23.2 (approximately 310 nt).
(C) Alignment of Teg23 DNA sequence in strains USA300, NCTC 8325, and MRSA252. Sequence corresponding to the SAOUHSC_02572 and SAR2384 CDS
genes is highlighted in red and blue, respectively. Sequence potentially encoding an 80-amino-acid protein (Teg23P) in strain USA300 is highlighted in green. (D)
Western blot to detect histidine-tagged Teg23P. No Teg23P protein was detected in S. aureus expressing the Teg23P-his plasmid (lane 1) or in a wild-type
S. aureus strain without the plasmid (lane 2). Histidine-tagged RpoE was detected as a positive control (lane 3). (E) Quantitative RT-PCR analysis of Teg23
expression. Expression of Teg23 was analyzed in the wild-type S. aureus strain with or without the Teg23P-his plasmid. Approximately 3-fold-higher expression
of Teg23 was detected in the strain expressing the Teg23P-his plasmid. Statistical significance was determined using Student’s t-test. *, P � 0.05. (F) RNA-seq read
alignment at the Teg23 locus in strain NCTC 8325. RNA-seq reads aligned to the NCTC 8325 genome are shown in blue. The locations of annotated genes are
shown in gray. The locations of primers used for RT-PCR are shown in red. The predicted size and location of the Teg23.1 and Teg23.2 transcripts are shown by
red arrows. (G) RT-PCR analysis of Teg23 transcript. PCR was performed using the primer pairs indicated and S. aureus genomic DNA (gDNA) (lane 1), cDNA
from S. aureus containing the Teg23P-his plasmid (lane 2), cDNA from wild-type S. aureus (lane 3), or no DNA (lane 4). No PCR product was detected using
primers 1 and 3 with S. aureus cDNA as the template.
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The RNA-seq read alignment data demonstrate that �99% of
the Teg23 reads in strain NCTC 8325 terminate 88 nucleotides
upstream of the annotated 3= end of the gene (Fig. 3F). Conse-
quently, transcript generated at this locus terminates before the
end of the annotated gene, and therefore, an 80-amino-acid pro-
tein corresponding to the SAOUHSC_02572 gene is unlikely to be
made. A similar pattern of transcript termination is observed in
the S. aureus USA300 RNA-seq data set, further suggesting that the
Teg23P protein could not be produced in this strain (data not
shown). To test this further, we performed PCR using cDNA gen-
erated from total RNA from strain USA300. PCR performed using

primers that bind within the Teg23 sequence (primers 2 and 3
[Fig. 4F]) generated products using template cDNA from USA300
and USA300 containing the Teg23P-his6 plasmid (Fig. 3G). In
contrast, no product was generated in PCRs using one primer
within the Teg23 sequence and a second primer located at the 3=
end of the Teg23P sequence (primers 1 and 3 [Fig. 3F]). These data
show that the Teg23 RNA is being generated but that it terminates
prior to the 3= end of Teg23P, confirming the results from the
Western blot analysis that Teg23 does not encode an 80-amino-
acid protein.

While it is impossible to completely rule out the existence of a
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protein corresponding to Teg23P, these results strongly suggest
that the CDS annotations for Teg23P in strains N315, MRSA252,
and NCTC 8325 (i.e., SAS083, SAR2384, and SAOUHSC_02572,
respectively) are incorrect. Teg23 was originally identified as a 5=
UTR for the SAS083 gene (i.e., the gene encoding Teg23P in N315)
(7); however, the data presented herein demonstrates that this is
incorrect and Teg23 likely represents a nontranslated sRNA. This
comprehensively highlights how overannotation of genomes with
CDS genes may be masking the identification of transcripts that
encode sRNAs.

Global analysis of sRNA gene expression in strain USA300.
The inclusion of 303 sRNA gene annotations in the GenBank file
of strain USA300 allowed us to calculate global gene expression
values for sRNAs using our RNA-seq data sets. To examine vari-
ation in sRNA gene expression, we calculated and compared ex-
pression values for S. aureus USA300 growing in TSB and human

serum, two conditions known to result in widespread changes in
gene expression (18). The location, relative expression, and fold
change for each of the 303 sRNA genes in strain USA300 are
shown in Fig. 4 and Table S3 in the supplemental material. To
identify sRNA genes with meaningful differences in expression,
we applied cutoffs to eliminate genes expressed at low levels and
those displaying fold changes that are less than 3-fold (see
Text S1 in the supplemental material for details). This resulted in
a total of 83 sRNAs displaying alterations in gene expression under
the two conditions tested. Forty-two were upregulated in human
serum (Table 2), while 41 were downregulated (Table 3). Of the
newly identified tsr genes, 19 displayed differential regulation,
with 16 downregulated in serum, while 3 (tsr18, tsr25, and tsr30)
were upregulated. Interestingly, the newly identified tsr25 sRNA
demonstrated the largest upregulation in serum of any sRNA
(583-fold). To validate these findings, we performed Northern

TABLE 2 42 sRNAs that are upregulated in human serum versus TSB

sRNA designation
sRNA gene name
or feature

TSB expression
value (RPKM)b

Serum expression
value (RPKM) Fold change

SAUSA300s289 tsr25 60.67 35,374.06 583.02
SAUSA300s046 rsaOG 90.99 34,267.77 376.61
SAUSA300s053 RsaG 80.85 3,463.09 42.83
SAUSA300s119 ssr24 130.78 3,217.86 24.6
SAUSA300s153 Teg16 71.05 1,174.01 16.52
SAUSA300s066 Sau-63 104.99 1,690.95 16.11
SAUSA300s030 sprC 149.58 2,144.32 14.34
SAUSA300s026 ssrS 2,991.16 37,212.81 12.44
SAUSA300s005 ffs 929.74 11,188.00 12.03
SAUSA300s148 Teg23 256.6 2,950.59 11.5
SAUSA300s050 RsaD 2,737.91 30,473.59 11.13
SAUSA300s226 JKD6008sRNA173 50.05 539.79 10.78
SAUSA300s013 Lysine riboswitch 659.93 6,917.84 10.48
SAUSA300s260 JKD6008sRNA396 16.13 150.26 9.31
SAUSA300s294 tsr30 470.64 4,383.00 9.31
SAUSA300s027 sprA1 1,097.34 9,306.35 8.48
SAUSA300s233 JKD6008sRNA205 96.96 717.53 7.4
SAUSA300s003 T-box riboswitch 158.5 1,156.13 7.29
SAUSA300s094 Teg108 19.39 132.54 6.83
SAUSA300s099 Teg124 37.1 245.19 6.61
SAUSA300s110 sprA3 36.05 233.31 6.47
SAUSA300s282 tsr18 105.4 653.5 6.2
SAUSA300s024 GlmS ribozyme 185.53 1,064.95 5.74
SAUSA300s117 ssr8 12.13 67.9 5.6
SAUSA300s038 sprG3 191.04 1,049.33 5.49
SAUSA300s120 ssr28 188.03 1,012.53 5.39
SAUSA300s028 sprA2 99.08 504.62 5.09
SAUSA300s210 JKD6008sRNA071 136.39 691.13 5.07
SAUSA300s100 Teg124 469.39 2,313.98 4.93
SAUSA300s002 SAMa riboswitch 56.06 268.4 4.79
SAUSA300s031 sprD 804.11 3,810.91 4.74
SAUSA300s021 SAM riboswitch 239.09 941.21 3.94
SAUSA300s075 rsaOL 273.5 1,010.42 3.69
SAUSA300s091 Teg60 95.9 350.09 3.65
SAUSA300s034 sprF3 1,227.97 4,261.30 3.47
SAUSA300s016 T-box riboswitch 316.76 1,059.28 3.34
SAUSA300s084 Teg27 15,788.22 52,571.03 3.33
SAUSA300s042 rsaOC 26.75 88.89 3.32
SAUSA300s135 ssr100 322.65 1,050.22 3.26
SAUSA300s163 Teg28as 46.74 149.53 3.2
SAUSA300s079 rsaOU 0 85.01 �
SAUSA300s151 Teg134 0 204.13 �
a SAM, S-adenosylmethionine.
b RPKM, reads per kilobase of transcript per million mapped reads.
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blot analysis of tsr25 and rsaOG (a previously identified sRNA
which showed the second highest degree of upregulation in serum,
376-fold), confirming the predicted size and upregulation of both
sRNAs in human serum (Fig. 5A). RNAIII was downregulated
13-fold in the RNA-seq data analysis, and we also confirmed this
by Northern blotting (Fig. 5B). These results corroborate previ-
ously published data (18) and provide validation for the experi-
mental techniques described herein.

The data presented above represent the first global transcrip-
tomic analysis of sRNA gene expression in the CA-MRSA strain
USA300 and demonstrate the utility of the sRNA annotation files
constructed in this study. The biological functions of most sRNAs
are unknown, making it difficult to ascertain the impact on the
bacterial cell of their differential regulation. Studying the variation
in sRNA expression in response to changing environmental con-
ditions may provide insight into which sRNAs play a role in the
adaptive nature of S. aureus. tsr25 and rsaOG, for example, are
upregulated �300-fold in human serum, suggesting a role for

these molecules under these conditions. In addition, a number of
conserved, well-studied sRNAs were among those differentially
regulated in human serum. 4.5S RNA (SAUSA300s005) and ssrS
(SAUSA300s026) demonstrated increased expression in human
serum (12-fold increase for both). The increased expression of
these RNA species may reflect physiological changes to the bacte-
rial cell in this environmental niche (see Discussion).

DISCUSSION

In 1995, the release of the first fully sequenced bacterial genome
heralded a new era of bacterial genomic research (21). Over the
past 20 years, the number of sequenced bacterial genomes has
risen exponentially, and new research strategies, techniques, and
applications have emerged to exploit the opportunities that these
resources provide. While raw genomic sequence data are valuable,
the availability of fully annotated genome sequences, outlining the
positions of known genes and genomic features, dramatically in-
creases their utility. Global expression analysis techniques such as

TABLE 3 41 sRNAs that are downregulated in human serum versus TSB

sRNA designation
sRNA gene name
or feature

TSB expression
value (RPKM)a

Serum expression
value (RPKM) Fold change

SAUSA300s277 tsr13 509.65 0.43 �1,187.67
SAUSA300s113 sbrC 1,834.12 6.3 �291.07
SAUSA300s266 tsr2 122.44 0.42 �290.6
SAUSA300s296 tsr32 92.33 0.44 �210.63
SAUSA300s171 Sau-6569 41,077.46 250.83 �163.77
SAUSA300s049 RsaC 8,079.72 77.42 �104.37
SAUSA300s004 Purine riboswitch 2,277.90 45.36 �50.22
SAUSA300s303 tsr39 3,132.51 64.48 �48.58
SAUSA300s162 Teg25as 6,668.30 191.51 �34.82
SAUSA300s125 ssr47 6,272.84 256.03 �24.5
SAUSA300s052 RsaF 35,374.06 1,713.79 �20.64
SAUSA300s275 tsr11 398.93 20.01 �19.94
SAUSA300s301 tsr37 390.39 23.36 �16.72
SAUSA300s292 tsr28 513.06 31.91 �16.08
SAUSA300s297 tsr33 8,987.32 592.2 �15.18
SAUSA300s062 Sau-31 141.32 9.7 �14.57
SAUSA300s022 RNAIII 66,968.70 5,178.15 �12.93
SAUSA300s283 tsr19 162.04 13.93 �11.63
SAUSA300s118 ssr16 478.47 49.19 �9.73
SAUSA300s302 tsr38 251.17 27.55 �9.12
SAUSA300s280 tsr16 254.42 30.88 �8.24
SAUSA300s095 Teg116 1,149.05 155.21 �7.4
SAUSA300s211 JKD6008sRNA073 59.06 8 �7.38
SAUSA300s287 tsr23 970.48 133.71 �7.26
SAUSA300s054 RsaH 4,110.36 629.99 �6.52
SAUSA300s087 Teg41 481.01 74.55 �6.45
SAUSA300s078 rsaOT 17,890.11 2,790.22 �6.41
SAUSA300s127 ssr54 3,245.19 584.15 �5.56
SAUSA300s051 RsaE 2,929.20 534.76 �5.48
SAUSA300s074 rsaOI 721.93 135.52 �5.33
SAUSA300s237 JKD6008sRNA258 100.89 20.87 �4.83
SAUSA300s298 tsr34 200.17 41.54 �4.82
SAUSA300s267 tsr3 85.01 19.21 �4.43
SAUSA300s114 sbrE 424.58 102.21 �4.15
SAUSA300s073 Sau-6072 265.82 64.27 �4.14
SAUSA300s276 tsr12 295.29 73.2 �4.03
SAUSA300s291 tsr27 135.22 34.48 �3.92
SAUSA300s204 RsaX04 265.58 70.09 �3.79
SAUSA300s086 Teg39 50.39 13.67 �3.69
SAUSA300s141 ssr153 74.69 21.06 �3.54
SAUSA300s010 T-box riboswitch 487.82 149.37 �3.27
a RPKM, reads per kilobase of transcript per million mapped reads.
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microarrays and RNA-seq depend heavily on annotated genome
sequences as a reference source for genes in the bacterial cell.
These techniques have proved extremely useful; however, re-
cently, certain limitations to their application are becoming ap-
parent. A major concern in this regard is that they do not provide
expression data for genes that are not included in genome anno-
tation files. Bacterial sRNAs represent a class of genes that are
frequently absent from genome annotation files; consequently,
their expression is rarely studied on a global level. In this work, we
added annotations for 303 sRNA genes to the S. aureus USA300
genome, increasing the number of annotated genes from 2,850 to
3,153 (a 10% increase). Including sRNA gene annotations in S. au-
reus GenBank files facilitates global expression analysis of these
understudied molecules. The 303 newly added annotations un-
doubtedly do not represent an exhaustive list of the complete
S. aureus sRNA repertoire, as it is likely that subsequent studies,
using different techniques and environmental conditions, will
continue to add to this number. It is also likely that among the 303
annotations, there may be false positives as only 92 of the 303

sRNAs reported and annotated here (30%) have been confirmed
by independent experimental methods other than high-
throughput sequencing and microarray hybridization. Therefore,
while the sRNA annotated GenBank files generated herein may
not be definitive, they nonetheless represent a significant step for-
ward and pave the way for future studies that can validate the
existence, elucidate the role, and demonstrate the biological im-
pact of these molecules on S. aureus physiology and virulence.

The 303 sRNA genes annotated in this study (representing 10%
of all known genes on the S. aureus genome) were identified in
S. aureus growing under a limited number of environmental con-
ditions. How many sRNAs remain unidentified is unknown; how-
ever, on the basis of the data presented in this study and by others
(14), it seems likely that sRNA genes may account for �15 to 20%
of all transcripts in the S. aureus cell. Importantly, a benefit of the
nomenclature system used in this study to annotate sRNAs (in
addition to keeping original names intact) is that it can be ex-
panded upon to accommodate new sRNAs as they are identified.

An unexpected observation arising from this study is the lack of
consistency in genome annotation across multiple strains of S. au-
reus. The examples highlighted in this study (specifically tsr12 and
Teg23) demonstrate that this phenomenon occurs even at
genomic loci with a high degree of homology (100% identical in
the case of tsr12 in strains USA300 and NCTC 8325). Genome
annotation is typically performed bioinformatically and is rarely
validated and curated (22); therefore, this variation in annotation
likely arises because different annotation pipelines have been used
to annotate different genomes. This raises the important question
of whether certain genomes have been under- and/or overanno-
tated. It is likely that examples of both situations occur; however,
on the basis of our data, it appears that the overannotation of
genomes (i.e., the inclusion of CDS annotations that are not legit-
imate mRNA transcripts) is common and could have deleterious
consequences for sRNA identification and study. sRNA tran-
scripts that map to genomic regions containing CDS annotations
will mistakenly be assumed to encode proteins. Highlighting this
point is the data presented in Fig. 3, which strongly suggest that
Teg23 is an sRNA and not a protein. Nonetheless, we acknowledge
that this type of data, by its very nature, cannot exclude the possi-
bility that such a gene/protein exists, and hence, once a CDS has
been annotated, it is difficult or impossible to conclusively prove
that it does not exist. Careful attention must be paid to the loca-
tion of transcript start/stop sites, the existence of ribosome bind-
ing sites and the predicted function of annotated genes. We ob-
served many instances of inconsistent genome annotation where a
given gene encoded a protein of unknown function with no ho-
mologues and no functional domains. This lack of homology may
indicate that while sequence analysis alone may suggest that a gene
is possible at this locus, it is not certain to exist. The results pre-
sented herein are a timely reminder that, although genome anno-
tation files are valuable resources that are increasingly relied upon
by next-generation DNA sequencing technology, these annota-
tions should be treated with a reasonable degree of caution and
not seen as an infallible reference. Confirmation of the existence of
a gene/transcript/protein by traditional biochemical methods
(such as 5= and 3= rapid amplification of cDNA ends [RACE],
primer extension, and in vivo translation) remains essential.

Including sRNA annotations in GenBank files allowed us to
perform global sRNA expression analysis by RNA-seq for the first
time in the CA-MRSA isolate USA300. The data generated dem-

FIG 5 Northern blot analysis of serum-regulated sRNAs in strain USA300.
(A) Analysis of sRNAs demonstrating upregulation in human serum. RNA-seq
read alignment data and Northern blot analysis are shown for SAUSA300s289
(tsr25) and SAUSA300s046 (rsaOG) during growth in TSB (T) or human se-
rum (S). (B) Analysis of RNAIII expression in human serum and TSB. RNA-
seq read alignment data are shown for the entire agr locus. Northern blot
analysis was performed using an oligonucleotide probe specific for the RNAIII
transcript. Annotations for CDS genes are shown by black arrows, annotations
for sRNAs are shown by red arrows, and depth of read coverage on the genome
is shown by the blue histograms.
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onstrated that 83 sRNAs are differentially expressed in TSB versus
human serum (Tables 2 and 3). This represents 27% of the known
sRNAs in strain USA300. It is not easy to interpret how their
differential regulation affects the bacterial cell (because the bio-
logical functions of most of them are unknown); however, certain
inferences can be made. The newly identified tsr25 sRNA demon-
strated a 582-fold increase in expression in human serum. It is
tempting to speculate that increased expression of tsr25 in serum
suggests that it plays an important role during S. aureus blood-
stream infections. A small number of conserved, well-studied
sRNAs were also among the differentially regulated sRNAs in se-
rum. 4.5S RNA, a component of the signal recognition particle,
was upregulated 12-fold in human serum, perhaps reflecting al-
tered protein secretion and/or protein composition in the cell
membrane in this environment. Another important cellular RNA
that has been well explored is 6S RNA (ssrS), which we demon-
strate also has a 12-fold increase in expression during growth in
serum. In Escherichia coli, 6S RNA binds to the housekeeping
sigma factor �70 and inhibits transcription from �70-dependent
promoters. It is thought that this diverts RNA polymerase to al-
ternative sigma factors (such as the stress response sigma factor),
resulting in increased expression of adaptive and stress-
circumventing genes (23). The upregulation of ssrS in human se-
rum suggests that a similar situation occurs in S. aureus, whereby
�A-dependent genes are downregulated and �B-dependent genes
are upregulated by the action of 6S RNA.

Examining the global transcriptome can provide valuable in-
sights into bacterial physiology and adaptation to environmental
conditions. In the past, global transcriptomic analysis has focused
on protein-coding genes, but here, we conduct global transcrip-
tomic analysis and include newly annotated sRNA genes. Like
protein-coding genes, sRNA genes display differential regulation
that allow bacteria to adapt to environmental changes. The anno-
tation files presented herein, which facilitate this kind of global
analysis will prove to be a valuable resource for the future study of
sRNAs in S. aureus and will more generally broaden our under-
standing of regulatory circuits.

MATERIALS AND METHODS
Strains, plasmids, and primers. Bacterial strains, plasmids, and primers
used in this study are listed in Table 4. S. aureus and E. coli were grown
routinely at 37°C with shaking in tryptic soy broth (TSB) and lysogeny
broth (LB), respectively. Pooled human serum from anonymous donors,
purchased from MP Biomedicals, was used for growth of S. aureus strain
USA300. When necessary, antibiotics were added at the following concen-
trations: ampicillin, 100 �g ml�1; chloramphenicol, 5 �g ml�1.

RNA-seq. Samples for transcriptome sequencing (RNA-seq) were
prepared as follows for S. aureus USA300 and SH1000. Overnight cultures
were diluted 1:100 in 100 ml of fresh TSB and grown at 37°C with shaking
for 3 h. Exponentially growing cultures were then diluted and synchro-
nized by inoculating fresh 100-ml flasks of TSB at an optical density at 600
nm (OD600) of 0.05, or in the case of strain USA300 growing in serum,
10 ml of human serum in a 50-ml tube. Synchronized cultures were grown
for 3 h at 37°C with shaking, at which time bacteria were pelleted by
centrifugation and stored at �80°C prior to RNA isolation. S. aureus
UAMS-1 (a USA200 strain and close relative of MRSA252) overnight
cultures were diluted to an optical density of 0.05 in 40 ml of TSB con-
taining no dextrose (1:12.5 volume-to-flask volume ratio). Cultures were
grown at 37°C with shaking for 4 h, before cells were harvested and stored
as described above. For each RNA-seq sample, three replicate cultures
were grown, and three biological replicate RNA isolations were performed
(using the procedure outlined in reference 24). For each sample, equimo-

lar amounts of the three biological replicate RNA preparations were
mixed prior to rRNA reduction. The subsequent RNA-seq analysis there-
fore represents the average of three biological replicates. RNA-seq and
data analysis were carried out using the protocol previously published by
our research group (24).

Bioinformatics, sRNA identification, and genome annotation. The
CLC Genomics Workbench software platform (Qiagen) was used for all
RNA-seq data analysis and for construction of new GenBank files. Anno-
tated genome files for S. aureus N315, USA300, MRSA252, and NCTC
8325 (GenBank accession numbers NC_002745, CP000255, NC_002952,
and NC_007795, respectively) were downloaded from NCBI. The loca-
tion, sequence, and orientation of previously described sRNAs on the
N315 genome were calculated based on the information provided in pub-
lished manuscripts and supplemental information files of the relevant
studies (1–12). Using the CLC Genomics Workbench built-in BLAST
feature, the corresponding positions for sRNAs were identified in the
genomes of strains USA300, MRSA252, and NCTC 8325. The location
and orientation of each sRNA was then annotated.

Northern blots. Northern blots to identify the size and abundance of
sRNAs were performed by the method of Caswell et al. (25). Briefly, 10 �g
of total RNA isolated from a 3 h USA300 culture in TSB were loaded on a
10% polyacrylamide gel (7 M urea, 1� Tris-borate-EDTA [TBE]) and
separated by gel electrophoresis. The samples were then transferred via
electroblotting to an Amersham Hybond N� membrane (GE Health-
care). The membrane was exposed to UV light to cross-link samples to the
membrane. Subsequently, membranes were prehybridized (1 h, 45°C) in
ULTRAhyb-Oligo buffer (Ambion) and then incubated (16 h, 45°C) with
sRNA-specific oligonucleotide probes end labeled with [�-32P]ATP and
T4 polynucleotide kinase (Thermo Scientific). After incubation, mem-
branes were washed with 2�, 1�, and 0.5� SSC buffer (1� SSC is 300
mM sodium chloride and 30 mM sodium citrate) at 45°C for 30 min each
to remove unspecific bound probes. Finally, X-ray film was exposed to
membranes for sRNA detection.

Cloning of histidine-tagged Teg23P. The genomic region containing
Teg23P (including its native promoter) was amplified using USA300
genomic DNA and primers OL3222 and OL3223. The reverse primer
OL3223, in addition to the gene-specific region, carries a sequence that
encodes a hexahistidine (His6) tag, which allows the detection of a possi-
ble encoded protein via Western blotting. The amplified 761-bp product
was cloned into shuttle vector pMK4, and the plasmid was transformed
into chemically competent E. coli DH5�. The resulting colonies were
screened for correct constructs employing a colony PCR approach using
identical primers to those used for the amplification of the initial frag-
ment. After identification of positive clones, the plasmid was verified via
Sanger sequencing with the plasmid-specific standard primers M13Fw
(Fw stands for forward) and M13Rv (Rv stands for reverse) (Eurofins
MWG Operon). This construct was then transformed into S. aureus
RN4220 and confirmed via PCR. Finally, the plasmid was transduced into
S. aureus USA300 using a �11 phage lysate, and after final confirmation of
the construct using PCR, the strain was utilized for subsequent analysis.

qRT-PCR. Quantitative reverse transcriptase PCR (qRT-PCR) was
conducted as described by our research group previously (26), employing
the teg23-specific primers OL3281, OL3282, OL3232, and OL3282 and
RNA isolated from S. aureus USA300 cultures grown in TSB as described
above for RNA-seq experiments. As a reference, 16S rRNA was amplified
using primers OL1184 and OL1185 (27). All experiments were performed
in triplicate.

Western blots. The evaluation of Teg23 protein abundance was per-
formed by Western immunoblotting as described previously (28).
USA300 cells harboring the His6-tagged version of Teg23P were grown for
3 h in TSB, before they were pelleted and their cytoplasmic proteins were
isolated. Following SDS-polyacrylamide gel electrophoresis and transfer
of the separated proteins to a polyvinylidene difluoride (PVDF) mem-
brane, detection was performed using anti-His monoclonal mouse anti-
body (Covance) and horseradish peroxidase (HRP)-conjugated anti-
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mouse secondary antibody. Subsequently, HRP activity was detected and
visualized on X-ray film. Histidine-tagged RpoE, a protein previously de-
scribed by our group, was included as a control for successful protein
transfer and immunodetection (16).

Accession numbers. The GenBank files generated have been depos-
ited in figshare (https://dx.doi.org/10.6084/m9.figshare.2061132.v1). The
files are provided in .gkb format and can be viewed using a variety of
genome browser software (examples of freely available genome browsers
include Artemis, Genome Compiler, and CLC Sequence Viewer). The
RNA-seq data files have been deposited in GEO under accession number
GSE74936. Newly identified sRNAs (i.e., the tsr sRNAs) have been depos-
ited in GenBank under accession numbers KU639719-KU639757 for
SAUSA300s265-SAUSA300s303, KU639758-KU639789 for SAOUHSCs255-
SAOUHSCs286, and KU639790-KU639818 for SARs249-SARs277.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01990-15/-/DCSupplemental.

Text S1, DOCX file, 0.2 MB.
Figure S1, TIF file, 2 MB.
Figure S2, TIF file, 0.5 MB.
Figure S3, TIF file, 0.4 MB.

Figure S4, TIF file, 0.5 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, XLSX file, 0.1 MB.
Table S3, XLSX file, 0.1 MB.
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Figure S1. Schematic outlining the procedure used to locate and annotate sRNAs 
in S. aureus. A. Using information provided in previous studies the approximate 
location of reported sRNAs was identified. B. RNAseq was performed and reads were 
aligned to the relevant S. aureus genome. C. Location of aligned reads was used to 
precisely locate and annotate sRNAs (blue arrow).	
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Figure S2. Distribution of tsr genes in USA300, NCTC 8325 and MRSA252. Five tsr 
genes are unique to USA300. An additional five are found in USA300 and NCTC 8325 
(but not MRSA252), while two are found in USA300 and MRSA252 (but not NCTC 
8325). Twenty-seven tsr genes are found in all three species.  
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Figure S3. RNAseq read alignment data for sarR and tsr33 during growth in 
human serum. Annotations for CDS genes are shown by black arrows, annotations for 
sRNA is shown by red arrow. Depth of read coverage on the genome is shown by blue 
histogram. Greater depth of read coverage for tsr33 suggests that a sarR-independent 
tsr33 exists under these conditions. 
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Figure S4. Reverse transcriptase-PCR based detection of newly identified sRNAs 
in S. aureus. PCR reactions were performed with primers specific to newly identified 
sRNA genes. DNA-depleted RNA, DNA and H20 were employed as templates to verify 
the complete removal of DNA from RNA samples, the correct size of the respective 
amplicons and the absence of DNA contaminations. Successful, size-
specific amplification of a target from cDNA suggests the presence of transcript at the 
position where a novel sRNA annotation was added to the genome file.	
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Table S1.  List of 25 miscellaneous RNAs from MRSA252 genome 

MRSA252 

designation 

Gene 

name 

Strand Position Description NCTC 8325 

designation 

USA300 

designation 

SARs001  > 12491..12722 T-box riboswitch SAOUHSCs001 SAUSA300s001 

SARs002  > 15939..16037 SAM riboswitch SAOUHSCs002 SAUSA300s002 

SARs003  < 403755..404014 T-box riboswitch SAOUHSCs003 SAUSA300s003 

SARs004  > 441050..441153 Purine riboswitch SAOUHSCs004 SAUSA300s004 

SARs005 ffs > 509502..509604 Signal recognition particle SAOUHSCs005 SAUSA300s005 

SARs006 ssrA > 883681..884039 tmRNA SAOUHSCs006 SAUSA300s006 

SARs007  > 908405..908508 SAM riboswitch SAOUHSCs007 SAUSA300s007 

SARs008  < 1098190..1098290 TPP riboswitch SAOUHSCs008 SAUSA300s008 

SARs009  > 1156281..1156504 T-box riboswitch SAOUHSCs009 SAUSA300s009 

SARs010  > 1212605..1212799 T-box riboswitch SAOUHSCs010 SAUSA300s010 

SARs011  > 1437490..1437684 T-box riboswitch SAOUHSCs011 SAUSA300s011 

SARs012  > 1437691..1437899 T-box riboswitch SAOUHSCs012 SAUSA300s012 

SARs013  > 1463346..1463521 Lysine riboswitch SAOUHSCs013 SAUSA300s013 

SARs014 rnpB < 1549260..1549607 Ribonuclease P SAOUHSCs014 SAUSA300s014 

SARs015  < 1588874..1589008 FMN riboswitch SAOUHSCs015 SAUSA300s015 

SARs016  < 1759722..1759920 T-box riboswitch SAOUHSCs016 SAUSA300s016 

SARs017  < 1824382..1824557 Lysine riboswitch SAOUHSCs017 SAUSA300s017 

SARs018  < 1826732..1826959 T-box riboswitch SAOUHSCs018 SAUSA300s018 

SARs019  < 1882961..1883179 T-box riboswitch SAOUHSCs019 SAUSA300s019 

SARs020  < 1943687..1943822 FMN riboswitch SAOUHSCs020 SAUSA300s020 

SARs021  < 1958937..1959048 SAM riboswitch SAOUHSCs021 SAUSA300s021 

SARs022 RNAIII < 2183350..2183839 RNAIII SAOUHSCs022 SAUSA300s022 

SARs023  < 2253957..2254059 TPP riboswitch SAOUHSCs023 SAUSA300s023 

SARs024  < 2311657..2311873 GlmS ribozyme SAOUHSCs024 SAUSA300s024 

SARs025  < 2480682..2480777 SAM riboswitch SAOUHSCs025 SAUSA300s025 

 



Supplemental Methods 

sRNA genome annotation 

The annotated Genbank (.gbk) files in the NCBI database for most strains of S. aureus 

do not contain entries for sRNAs, however, the genome file for MRSA252 (USA200) 

includes annotations for 25 RNAs designated as “miscellaneous RNAs” (Table S1).  

The nomenclature used for these miscellaneous RNA species, SARs001 to SARs025, 

distinguishes them from coding DNA sequence genes (which are annotated SAR0001 

to SAR2800).  We used these 25 RNAs as a starting point to annotate sRNAs in the 

genomes of two additional S. aureus strains i.e. NCTC 8325 and USA300.  Using the 

sequences of SARs001 to SARs025 as a reference, the corresponding position of their 

homologues in the NCTC 8325 and USA300 genomes was identified by BLAST search.  

Matches were found for each of the 25 sequences.  Genbank files for NCTC 8325 and 

USA300 were downloaded from NCBI and new gene annotations were added to each 

file for the 25 miscellaneous RNA sequences.  A nomenclature system similar to that for 

MRSA252 was used to annotate these new genes in the NCTC 8325 and USA300 

genomes.  In NCTC 8325 sRNA annotations were added using the prefix SAOUHSCs 

(to distinguish from CDS annotations which begin with the prefix SAOUHSC) and in 

USA300 sRNA annotations were added with the prefix SAUSA300s (CDS annotations 

begin with the prefix SAUSA300).  Using this system the 25 RNAs from MRSA252 

(SARs001 to SARs025) were annotated as SAOUHSCs001 to SAOUHSCs025 in 

NCTC 8325 and SAUSA300s001 to SAUSA300s025 in USA300 (Table S1).  

Having introduced annotations in the NCTC 8325 and USA300 genomes for these 25 

“miscellaneous RNAs”, next we sought to add annotations for other previously identified 



sRNAs in S. aureus.  To do this a literature search was performed to identify studies in 

which sRNAs were described in S. aureus.  A total of 12 studies were selected that 

employed a variety of methods to identify sRNAs, including computational approaches, 

microarray studies, cDNA cloning and high throughput sequencing (1-12).  The majority 

of these studies have been performed in a single S. aureus background (i.e. strain 

N315).  Using the information provided in these publications a list of 928 potential 

sRNAs was assembled (Table S2) (1-12).  To identify the positions of these sRNAs in 

the MRSA252, NCTC 8325 and USA300 genomes we adopted a two-pronged 

approach.  First, we assembled all information regarding sRNA sequence, genome 

position, and orientation in the N315 genome, from each respective publication.  This 

information was used to identify the approximate position of each sRNA in MRSA252, 

NCTC 8325 and USA300.  Second, to facilitate an accurate annotation of each sRNA 

position, RNAseq experiments were performed using UAMS-1 (a USA200 isolate, and 

close relative of MRSA252), SH1000 (a close relative of NCTC 8325) and USA300 

growing under standard laboratory conditions.  The reads generated were aligned to the 

respective genomes and used as a guide to identify the specific location of each sRNA 

on each of the three genomes (Fig. S1).  Using this approach we identified and 

annotated an additional 223 sRNAs on the MRSA252 genome, 229 sRNAs on the 

NCTC 8325 genome and 239 sRNAs on the USA300 genome (Table S1).  When 

combined with the list of 25 RNAs from the MRSA252 genome this brings the total 

number of sRNAs annotated to 248 in MRSA252, 254 in NCTC 8325 and 264 on the 

USA300 genome.  Throughout the annotation process it became apparent, that many of 

the sRNAs reported had been identified multiple times in different studies, as has been 



noted recently (14).  Where multiple copies of sRNAs exist, each copy was individually 

annotated to distinguish them from each other.  In addition, we observed that the α-

phenol soluble modulins (α-PSM) transcript was mistakenly identified as a sRNA (6).  

The most likely reason for this is that the α-PSMs are not annotated in the S. aureus 

genome and therefore any transcript mapping to that location was thought to represent 

a sRNA.  To avoid future confusion we have included annotations for the PSMs in the 

updated MRSA252, NCTC 8325 and USA300 Genbank files. 

 

sRNA gene expression analysis by RNAseq 

Expression values for each annotated gene were calculated as RPKM (reads per 

kilobase material per million reads) values, using the CLC Genomics Workbench 

software platform (Qiagen).  TSB and serum data sets were normalized by quantile 

normalization (16).  To identify sRNA genes differentially expressed in serum Vs TSB, 

eliminate lowly expressed genes, and reduce the impact of non-unique reads, three cut 

off criteria were applied to the data.  

1.  Percent unique reads.  RPKM values are calculated based upon the number of 

reads mapping to a gene.  These reads can be unique or non-unique.  Non-unique 

reads map to multiple locations on the genome and consequently their mapping location 

cannot be precisely determined.  To avoid artificially inflating RPKM values due to the 

incorporation of ambiguous non-unique reads we imposed a cut off whereby >80% of 

the reads mapping to a gene (in both data sets) must be unique. 

2.  Expression values.  Small differences in expression values can translate into large 

fold-differences for lowly expressed genes.  To eliminate lowly expressed genes we 



imposed a cut-off whereby the RPKM expression value of a gene must be greater than 

or equal to 50 in at least one data set. 

3.  Fold-change.  We imposed a cut-off of 3-fold to identify genes showing differentially 

expressed in serum Vs TSB. 

 

sRNA identification in USA300 

RNAseq reads generated for USA300 growing in TSB and human serum were aligned 

to the newly created Genbank file containing annotations for known sRNAs.  These 

read alignment files were subsequently examined for transcripts that did not map to 

annotated genes.  Two types of potential sRNA were identified (i) those mapping to 

intergenic regions and (ii) those that were antisense to, and located within annotated 

genes.  The following criteria were applied during the selection process to avoid 

excessive false positive identifications.  The minimum number of unique reads mapping 

to a potential sRNA, and minimum RPKM expression value generated must exceed 25 

and 40 respectively.  Using these selection criteria 39 potential sRNAs were identified 

which we named tsr1-39. 

 

Reverse transcriptase polymerase chain reaction  

Overnight cultures of wild-type S. aureus USA300 were diluted 1:100 into 5 mL of fresh 

TSB and incubated for 3 hours at 37°C in a rotating incubator at 250 RPM. The cultures 

were diluted to an OD600 of 0.05 in 100 mL of fresh TSB and incubated for 3 hours at 

37°C in a rotating incubator at 250 RPM. Duplicate samples were immediately removed 

into 3 volumes of ice cold PBS and centrifuged for 10 minutes at 4150 RPM.  RNA was 



extracted as previously outlined (16) and contaminating DNA removed using TURBO™ 

DNase (ThermoFisher Scientific) per their protocol.  Finally, 1 µg DNA-free RNA was 

used to create cDNA using the iScript™ Reverse Transcription Supermix Kit (BioRad) 

per their instructions.  

To isolate genomic DNA the pelleted cells were re-suspended in 600 µL of TE buffer in 

screw cap tubes with glass beads. The cells were then beaten for a total of 3 minutes in 

30-second bursts. The cells were then centrifuged at full speed for 2 minutes. Next, 500 

µL of supernatant was transferred to a sterile microfuge tube with 100 µL of 1.6% n-

lauroylsarcosine and 25 µg Proteinase K (US Biologicals) then incubated for 1 hour at 

60°C. After incubation 500 µL of phenol:chloroform (1:1), briefly vortexed, and then 

centrifuged at full speed for 2 minutes. The aqueous layer was removed and the DNA 

was precipitated with 3 M sodium acetate and isopropanol overnight at -80°C. The DNA 

was centrifuged at 4°C at full speed for 20 minutes. DNA pellets were rinsed with ice 

cold 70% ethanol, dried at 45°C, and re-suspended in 500 µL of nuclease free water.  

Green GoTaq (Promega) was used in an amplification reaction containing 1 mM primers 

and 100 ng nucleic acid template (DNase-treated RNA, genomic DNA, or cDNA) or 

water. All PCR reactions were performed in a DNA Engine Peltier Thermal Cycler 

(BioRad) with an annealing temperature of 45°C and an extension time of 1 minute at 

72°C for 35 cycles. PCR products were evaluated for size and specificity by separation 

on a 2% (w/v) agarose gel with a 100 bp DNA Molecular Marker (Promega).  
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