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ABSTRACT 

Credit risk models widely used in the financial market nowadays assume that 

losses are normally distributed and have linear dependence. Nevertheless it is 

well known that asset returns (loans included) are not normally distributed and 

present tail dependence. Therefore the traditional approaches are not able to 

capture possible stronger association among higher losses and tend to 

underestimate the probability of joint extreme losses. 

Copula functions are an alternative to overcome this drawback since they yield 

accurate dependence measures regardless of the distribution of the variables 

analysed.  This technique was first applied to credit risk in 2000 but the studies 

in this field have been concentrated on corporate debt and derivatives. We filled 

this gap in the literature by employing copulas to estimate the dependence 

among consumer loans. In an empirical study based on a credit card portfolio of 

a large UK bank, we found evidence that standard models are misspecified as 

the dependence across default rates in the dataset is seldom expressed by the 

(Gaussian) copula implicit in those models. The comparison between 

estimations of joint high default rates from the conventional approach and from 

the best-fit copulas confirmed the superiority of the latter method. 

The initial investigation concerning pairs of credit segments was extended to 

groups of three segments with the purpose of accounting for potential 

heterogeneous dependence within the portfolio. To do so, we introduced vine 

copulas (combinations of bivariate copulas to form high-dimension copulas) to 

credit risk and the empirical estimations of simultaneous excessive defaults 

based on this technique were better than both the estimations from the pairwise 

copulas and from the conventional models. Another contribution of this work 

concerns the application of copulas to a method derived from the limited credit 

models: the calculation of the capital required to cover unexpected losses in 

financial institutions. Two models were proposed and, according to simulations, 

outperformed the current method (Basel) in most of the scenarios considered. 
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CHAPTER 1 
INTRODUCTION 

 

“Everyone believes in the normal law; 
 the experimenters because they imagine that it is a mathematical theorem,  

and the mathematicians because they think it is an experimental fact.”  
(Gabriel Lippmann –  

quoted by Jules Henri Poincaré in “Calcul des probabilités”, 1896) 

 

1.1  PREAMBLE 

Credit models widely used in the financial market assume that losses are 

normally distributed and normally dependent. Due to certain properties of the 

normal distribution (univariate and multivariate), this presumption makes the 

calculations easier and accessible to more users (academics and practitioners). 

Nonetheless the relative simplicity comes at the expense of accuracy and 

potential extreme losses may be underestimated which can negatively affect 

research conclusions and the liquidity of financial institutions.  

Two aspects are questionable in these models. First, the assumption of normal 

losses does not seem to be the most adequate. As Bernstein (1996) points out, 

normally distributed events are typical for natural phenomena but do not 

represent well facts derived from decisions made by people, such as in the field 

of economics and finance. Since Mandelbrot (1963), many empirical studies 

have confirmed this idea and have shown that, in general, financial assets are 

not normally distributed. 

Second, and likely the most important in the context of portfolio evaluations, 

normal dependence (which is implicit in the multivariate normal distribution and 

can be satisfactorily measured by the linear correlation coefficient) is not able to 

represent oscillations of returns (or losses) in financial markets where extreme 

values tend to cluster. Bouyé et al. (2000) emphasise that, even though it is well 

known that asset returns are fat-tailed, people generally use normal processes 

to model asset returns because they have more tractable properties for 

computation. Andrade et al. (2000) show the implications from not considering 
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the dependence of variables that are dependent. Dependence does not affect 

the mean of the variables but it can very badly affect the variance, which will 

affect the extreme values of the total distribution. So, in the independence case, 

it is sufficient to know the two marginal distributions to construct the joint 

distribution. When the variables are dependent, we also need to know the type 

and extent of the dependence.  

The difficulties mentioned above (namely, assumption of normality and joint 

distribution modelling) can be solved by using copula functions (explained in 

Chapter 2, Section 2.3) which can be employed to find the dependence 

between variables irrespective of their individual distributions. This approach 

was introduced in finance by Frees and Valdez (1998) and popularised by 

Embrechts et al. (2002)1 who explained in detail the benefits of measuring 

dependence by means of copulas instead of using the linear correlation that is 

accurate only for some specific distributions (which includes the normal). Chai 

et al. (2008) present a survey of studies dealing with the application of copulas 

to finance. 

Copulas were first employed in the credit risk field by Li (2000) who 

corroborated their advantages to model tail relationships. Many posterior 

investigations have reached the same conclusion (see Chapter 3). Kiesel et al. 

(2006), for example, state that symmetric return distributions are seldom found 

empirically and high losses (negative returns) are more likely to occur together 

than high gains. Asymmetry, which is measured by the distribution’s skewness, 

is especially common for credit risk and the probability of great losses is higher 

than the Value at Risk (VaR) implied by the normality assumption. The authors 

show that a positively skewed distribution of losses (negatively skewed returns) 

results in a skewness-adjusted estimated 99% VaR that is higher than the 

“expected loss plus 2.33 standard deviations” rule calculated under the 

assumption of normally-distributed losses. 

                                                           
1
 This study appeared first in 1999 as a working paper. 
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1.2 MOTIVATION AND AIMS  

Like the traditional credit models related to dependence modelling, copulas 

have not been specifically applied to retail credit. Although consumer loans 

represent a considerable proportion of banks’ assets and have increased 

significantly in the past decades (Thomas et al., 2005 and Crook et al., 2007), 

the models typically applied to estimate the dependence in these portfolios 

were created for corporate debt (Thomas, 2009) and are not compatible with 

retail credit due to specific characteristics of consumers (Andrade and Thomas, 

2007). Furthermore, it is interesting to note that models for individual 

assessments of consumer debtors (“credit scoring”) have existed for over 50 

years but there is not a specific method established for portfolios of consumer 

debts (Thomas, 2009). Therefore there is a clear necessity of additional 

research on retail credit at the portfolio level. 

One practical consequence of the shortcomings present in conventional credit 

models is the determination of the capital to be held by financial institutions to 

face unexpected credit losses (Basel Accords II and III) since the formula used 

to estimate such capital is derived from methods that presume normally-

distributed losses associated through a normal structure (i.e. the dependence is 

supposed to be adequately measured by the linear correlation coefficient; see 

Chapter 5 for more details). Given that the formula established in Basel II to 

estimate the capital to cover extreme credit losses was kept in Basel III, we 

refer to Basel II as the current Basel Accord in terms of the calculation of the 

capital needed to cover unexpected credit losses. 

Given these gaps in the literature, this thesis aims to: (i) check whether 

consumer loans also present asymmetric dependence as has been shown for 

corporate debt and other assets classes, (ii) compare estimations of joint high 

defaults assuming normality with estimations by means of copulas, (iii) extend 

the two prior investigations that consider pairs of credit segments to analyses 

focused on groups of three segments such that we can incorporate possibly 
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different dependence structures (copulas) into one single calculation, and (iv) 

use Copula Theory to develop more efficient models for Basel Accords with 

respect to the estimation of tail dependence (which means more precise 

inferences about coexistent unexpected losses in downturns).  

 

1.3 CONTRIBUTIONS 

This thesis makes both empirical and theoretical contributions. The former is 

associated to the application of Copula Theory to estimate dependence 

structures across defaults of consumer loans (Chapters 3 and 4) and the latter 

refers to the suggestion of models to assess unexpected credit losses 

(Chapters 5 and 6).  

The empirical contributions which this thesis makes are as follows. First, we 

estimate the best-fit copulas for a portfolio of consumer loans while the existent 

studies in the credit area are limited to corporate debt and derivatives. Second, 

we include five families of copulas that have been rarely or never considered in 

empirical estimations of dependence in loan portfolios. This is important 

because the greater number of options increases the possibility of finding 

copulas that better represent the portfolio studied. Third, we perform goodness-

of-fit (GoF) tests limited to the right-tail distribution of the default rates along 

with the usual tests that consider the whole distributions. This innovation is 

explained by the fact that the best-fit copulas found by means of the GoF tests 

will be used to estimate losses in the right tail of the joint distributions (i.e. high 

default rates). Fourth, we use vine copulas to estimate the dependence across 

three credit segments together (instead of pairs of segments). This technique 

has not been applied to model dependence in any class of loans or credit 

derivatives before. 

The theoretical contribution of this thesis is to propose the use of copula-based 

functions in the Basel formulas for capital adequacy. The approaches 

suggested here are not conditional on the assumption of normality and 

therefore overcome the limitation of Basel Accords in terms of capturing tail 
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dependence across credit losses. The methods presented in Chapters 5 and 6 

can be very attractive for regulators because these formulas can be easily 

implemented in financial institutions (irrespective of their size) around the world. 

The most important contribution in this sense is however to open new avenues 

to the development of approaches able to identify potential stronger connection 

among defaults in downturns. Even if the models are not employed as they are 

presented here, they can be improved in order to generate more accurate 

estimations that do not have the same deficiencies present in the methods used 

nowadays. 

Each model has specific strengths. The procedure introduced in Chapter 5 is 

more flexible and can be adjusted to any copula that represents the 

dependence among credit losses. It can, for example, be differently set for 

distinct credit classes according to the copula found to be the most 

representative for the particular type of loan (corporate, mortgage, revolving, 

etc.). 

On the other hand, the principal contributions of the formula derived in Chapter 

6 are its compatibility with some negative values of correlation (which is not 

supported by Basel method) and the relaxation of the assumption of normally-

distributed variables.  

 

1.4 IMPORTANCE  

The results of this study will benefit many agents involved in the activities of the 

financial market, such as academics, policy makers (financial regulators, in 

special), and financial institutions around the world.  

The academic community can extend the innovations in the empirical analyses 

(namely the goodness-of-fit tests based on the upper-tail of default rates’ 

distributions and the inclusion of more families of copulas) to other credit 

categories or credit card portfolios spanning longer periods. This is a pioneering 

study in terms of the application of vine copulas to credit risk so there is 

considerable space for future investigations in this area, especially to cope with 
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different dependence structures in a same portfolio. Researchers can, for 

instance, empirically estimate best-fit vine copulas for credit classes other than 

credit cards or look for the vine composition that yields the closest 

approximation of the likelihood of simultaneous tail losses. Pertaining to the 

theoretical models suggested as options for Basel II, they can help the 

improvement of many current credit models that presume multivariate normality.  

In terms of policy makers, this work can support future versions of Basel 

Accords able to identify stronger dependence across defaults in downturns so 

that the regulatory organisations can reduce the risk of underestimation of the 

capital demanded to cover unexpected credit losses.  

The routines for estimating the best-fit copulas and the probability of concurrent 

extreme defaults can be internally used by financial institutions. The successful 

performance of the copula-based estimations over the conventional models will 

assist lenders with effective evaluations of potential losses at the portfolio level. 

The findings showing that consumer (credit card) loans present asymmetric 

dependence structures can be used by financial institutions as a guide to 

allocate capital across debtors that do not tend to cluster in downturns2. So, 

banks will know which combinations of segments are riskier (particularly in 

severe economic conditions when the financial institutions may suffer higher 

losses) and will be able to evaluate whether the respective return is consistent 

with the risk faced. The employment of the vine-copula approach will improve 

even more the assessment of potential joint losses given that, in practice, 

portfolios have heterogeneous dependence. 

 

1.5 MAIN FINDINGS 

The empirical analysis showed that, like corporate debt and other financial 

assets, credit card loans present tail dependence. In most of the cases, this 

relationship is asymmetric and stronger in the right tail which means that the 

                                                           
2
 This allocation could be based, for instance, on segments that express the debtors’ 

characteristics, such as employment status, housing status, income, etc. 
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Bank studied is exposed to losses higher than those estimated in accordance 

with traditional credit models that presume normal dependence (equivalent to 

the Gaussian Copula that denotes symmetric dependence without tail 

association). The dependence between the distributions of the default rates of 

two segments was not normal even when the individual distributions were 

(virtually) normal3. Amongst the ten pairs of segments considered, only one had 

the dependence structure represented by the Gaussian Copula and neither of 

the segments was normally distributed. This demonstrates that the assumption 

of multivariate normality (which implies the Gaussian Copula) is not adequate 

for expressing dependence in credit portfolios and thus can lead to the 

underestimation of joint extreme losses. To test this hypothesis, we calculated 

the likelihood of simultaneous high default rates following two approaches: 

multinormality and the best-fit copulas. The results were then compared to the 

joint default rates observed in the credit card dataset. The estimations from 

copulas were more accurate and the better performance was more significant 

when the copulas were inferred from goodness-of-fit (GoF) tests based on the 

right tail of the losses’ distributions (rather than their complete distributions). 

Notwithstanding this approach focused on the right tail of the distributions 

presented higher underestimation indices and are therefore less attractive from 

a prudential standpoint (compared to calculations that used the entire 

distributions of the default rates). This finding points to a trade off between 

better approximations to the default rates and a tendency to underestimate the 

probability of high losses. 

Ten copulas were tested as potential candidates to characterise the link 

between the pairs of segments in the credit card portfolio studied and seven 

families were found to be the best representation (three of them have been 

seldom included in credit risk research). This difference among the dependence 

within several pairs implies that the definition of an overall dependence 

structure must combine multiple copulas.  
                                                           
3
 According to the Jarque-Bera test. 
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We employed vine copulas (cascades of bivariate copulas that forms high-

dimension copulas – see Chapter 4, Section 4.2) to express such 

heterogeneous relationships and illustrate their application by estimating the 

dependence among three credit card segments together (differently from 

Chapter 3 where the segments were organised in pairs). This investigation 

identified relationships not captured by separate pairwise copulas. Particularly 

interesting were the cases where vine copulas showed stronger association 

across high levels of default rates while bivariate copulas were not able to find 

this type of relationship that denotes the possibility of proportionally higher 

losses in downturns. Furthermore, the vine-copula approach improved the 

performance of estimations of concurrent extreme losses based on bivariate 

copulas (besides outperforming the evaluations that assumed multivariate 

normality). Another benefit of the vine copulas was the lower level of 

underestimation of simultaneous high losses when compared with the 

underestimation from bivariate copulas. This is evidence that the use of vine 

copulas not only improves estimations of the likelihood of concurrent extreme 

losses but also reduces the chance of underestimation. The main explanation of 

this finding is that the credit card portfolio has heterogeneous dependence 

(different copulas for different pairs) and vine copulas can model such structure 

more efficiently.  

The mathematical expression used to calculate capital needed to avoid failure 

of financial institutions owing to unexpected credit losses (Basel Accord) comes 

from traditional credit models and therefore is not able to detect potential 

stronger dependence among elevated losses (which increases the default rates 

even more in downturns). As a consequence, the capital required by regulators 

may be insufficient to compensate the losses in unfavourable periods. The first 

model suggested (Chapter 5) is suitable for any copula family and thus can be 

set up according to the relationship empirically found in credit portfolios. The 

second alternative model (Chapter 6) is grounded in one specific copula and 

apart from relaxing the assumption of normality it has the advantage of being 
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extendable to some levels of negative correlation (whereas Basel Accord is 

limited to positive correlation). Simulations revealed that both proposed 

methods outperformed the Basel approach in most of the scenarios tested. 

 

1.6 THESIS OUTLINE 

After this introduction, the thesis is made up of four essays preceded by one 

review of literature and followed by some conclusions and possible extensions. 

Chapter 2 presents a review of literature on topics commonly pertinent to the 

four essays. It discusses some basic measures of dependence, Copula Theory, 

dependence modelling via factor credit models, and application of copulas to 

credit risk studies. Subjects (such as concepts, models and theories) with 

specific application to one of the essays are in the second section of the 

respective chapters. 

Chapter 3 uses data on a credit card portfolio of a large UK bank to achieve 

aims (i) and (ii) pointed out in Section 1.2. It first describes some procedures 

regarding the search for the best-fit copulas. Then the credit card dataset, the 

criteria for its segmentation and the families of candidate copulas are 

presented. Next, the best-fit copula for each pair of credit segments is 

estimated in order to check if the default dependence is asymmetric. Two 

goodness-of-fit approaches are used: one based on the complete distributions 

of losses4 and other based only on their right tail. In the subsequent section, the 

probability of simultaneous high defaults for each pair of segments is evaluated 

according to two methods: multivariate normal (equivalent to the traditional 

models) and the best-fit copulas. The results are compared to the extreme 

default rates observed in the credit card dataset so that we can decide which 

approach is more efficient to forecast the likelihood of coincident high losses. 

                                                           
4
 Note that, throughout the thesis, the terms “losses” and “default rates” are used 

interchangeably. Albeit the data used to estimate the copulas refer to default rates, both 
expressions are intimately linked since, here, high (low) default rates imply necessarily high 
(low) losses. 
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Chapter 4 refers to aim (iii) mentioned in Section 1.2 and deals with the 

evaluation of dependence among default rates of three credit segments 

together in the aforementioned credit card portfolio (instead of two segments as 

done in Chapter 3). The connection across the segments is assessed by means 

of vine copulas (combinations of bivariate copulas to form higher-dimensional 

copulas) which are explained in the second section of the chapter. Then this 

essay basically repeats the steps carried out in the previous chapter with the 

major objectives of evaluating the dependence structure concerning asymmetry 

for triplets of segments and verify whether estimations from vine copulas 

outperform results from bivariate copulas and/or evaluations based on the 

multivariate normality. 

Chapters 5 and 6 focus on aim (iv) cited in Section 1.2 by applying copula 

functions in two different ways to develop alternative formulas to calculate the 

capital necessary to cover unexpected credit losses. Chapter 5 introduces 

Basel Accords and shows how the calculation of the capital required to protect 

financial institutions against extreme losses in downturns is derived from 

traditional credit models. Then a model based on copulas is set up with the 

objective of identifying possible tail dependence that generates losses higher 

than those inferred from conventional approaches that adopts the multivariate 

normal distribution as a cornerstone. Simulations are employed to compare the 

estimations obtained from the copula-based formula with the results of Basel 

approach. 

In Chapter 6, defaults are assumed to be caused by “shocks”. This 

interpretation leads to the use of copulas related to Poisson processes to derive 

a model to estimate the probability of conjunct extreme losses. The suggested 

model is presented and tested with respect to the adequacy of its evaluations of 

the likelihood of coexistent extreme losses. The model is applied to the Basel 

context and results in a formula to estimate credit losses in downturns. 

Simulations are run to check if the alternative formula is able to outperform 

Basel method. 
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Chapter 7 summarises the main conclusions of the four essays and proposes 

further studies that can overcome the limitations of this thesis, fill remaining 

gaps in this research area or explore new questions raised here.  

 

1.7 NOTATION 

Mathematical expressions and variables are presented in italic and in a different 

type of font compared to the text. As usual, vectors are in boldface. Uppercase 

and lowercase letters refer to random variables and their realisations, 

respectively. Only the formulas that are mentioned in posterior parts of the text 

are numbered (between square brackets). The extensiveness of the software 

codes (written in Matlab®) made their presentation in the thesis unfeasible but 

they are available if needed. 

 

1.8 SUMMARY 

This chapter introduced the limitations of traditional credit risk models in terms 

of the calculation of joint losses and gave an overview of this study by 

presenting its motivation, aims, contributions, importance and main findings. In 

the next chapter, we will see some concepts related to dependence and credit 

risk that form the base of the discussions in the subsequent chapters.  
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CHAPTER 2 
DEPENDENCE, COPULAS AND CREDIT RISK 

 
 “Things derive their being and nature by mutual dependence 

and are nothing in themselves” (Nagarjuna) 

 

2.1 INTRODUCTION 

The level of losses in a credit portfolio is intimately related to the joint behaviour 

of the loans that form the portfolio. There are many ways of measuring the 

relationship among variables (credit losses, in this study) and some measures 

present limitations that may lead to wrong predictions of simultaneous 

occurrences at specific levels. This chapter presents some measures of 

dependence and clarifies that the standard measure used in risk management 

(the linear correlation coefficient) is just one of many concepts of dependence. 

It also describes how classical credit models deal with dependence to estimate 

joint losses and how alternative methods have been applied to overcome 

potential biases in traditional calculations. 

In Section 2.2, we present the conventional dependence measure adopted by 

leading credit risk models along with two other measures (Kendall’s tau and 

Spearman’s rho) that are relevant in the context of this study. Next, we 

introduce copula functions and some families that will be used later in the 

thesis. In Section 2.4, we (i) explain how some popular credit models (factor 

models) estimate default dependence and (ii) highlight some drawbacks of 

these methods. Section 2.5 shows how copulas have been applied to credit risk 

and some existing gaps in the literature that will be addressed throughout the 

thesis. The last section concludes. 

 

2.2 CORRELATION AND DEPENDENCE 

The way assets are associated determines the performance of a pool of 

investments. Assets with distinct movements reduce potential losses (and 

profits) in specific periods given that losses from some of them are offset by 
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gains, or smaller losses, from others. There exist many methods to calculate 

the association between variables (assets’ returns, in this case) but, since the 

publication of Markowitz (1952), most of the financial literature has adopted the 

concept of (linear) correlation as a proxy for that association5. Therefore one 

specific definition of a relationship between variables, linear correlation, has 

replaced the broad idea of dependence and the correlation coefficient 

(Pearson’s correlation), typically denoted by  , has become the most 

traditional measure of dependence. For two random variables 1X  and 2X , it is 

calculated as: 

 

][][

],[
),(

2

2

1

2

21
21

XX

XXCov
XX


   

 

where ][][][],[ 212121 XEXEXXEXXCov   is the covariance between 1X  and 

2X . ][ 1

2 X  and ][ 2

2 X  are the variances of 1X  and 2X , respectively. 

 

Despite the diffuse application of  , its accuracy as a dependence measure is 

compromised when the variables are not normally distributed; see Lehmann 

(1966), Joe (1997), Frees and Valdez (1998), and Li (2000). Moreover 

Embrechts et al. (2002) point out several drawbacks of this measure. First, it is 

restricted to linear dependence, so it does not capture other forms of 

associations. Second, related to the first flaw, a correlation of zero does not 

imply independence. Third, some correlation levels in the range [-1,1] may not 

be attainable in the joint distribution. Finally,   is not invariant under strictly 

increasing transformations which means that the correlation between two 

                                                           
5
 Several concepts and properties of dependence measures are detailed in Joe (1997, Chapter 

2), Bouyé et al. (2000), McNeil et al. (2005, Chapter 5), Nelsen (2006, Chapter 5), and Genest 
and Favre (2007).  
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variables ( 1X  and 2X , for example) is different from the correlation of 

transformations of those same variables, e.g. the logarithmic expressions 

)ln( 1X  and )ln( 2X . 

On the other hand, rank association measures do not suffer from these 

problems and, therefore, are more useful in the copula approach (to be 

explained in the next section) that demands association measures independent 

of marginal (individual) distributions. Two of those measures are presented 

below: Kendall’s tau ( ) and Spearman’s rho )( S . 

Kendall’s tau is based on the number of concordant and discordant pairs of 

variables. Assuming ( 11,YX ) and ( 22 ,YX ) are two independent pairs from a joint 

distribution, they will be concordant if 0))(( 1212  YYXX , i.e., if the two 

variables move in the same direction. They will be discordant when 

0))(( 1212  YYXX . 

Defining c  as the number of concordant pairs and d  as the number of 

discordant ones, Kendall’s tau is given by: 

 

dc

dc




  

 

or, equivalently,   = Pr[concordance] – Pr[discordance], which is 

 

]0))(Pr[(]0))(Pr[( 12121212  YYXXYYXX   

 

As for the Spearman’s rho, if 1X  and 2X  are two random variables with 

marginal cumulative distribution functions 1F  and 2F , respectively, S  will be 

the correlation between )( 11 XF  and )( 22 XF . In the multivariate case: 

 

))(),...,(()( 11 ddS XFXFCorrX  
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where Corr  refers to the correlation matrix. That is, this measure is a linear 

correlation among the distribution functions of the variables studied. 

 

2.3 COPULAS 

2.3.1 Basic concepts and properties of copulas 

Copulas are multivariate distribution functions with uniformly distributed margins 

in (0,1) that link marginal (individual) distributions of variables to their joint 

distributions: 

 

))(),...,((),...,( 111...1 dddd xFxFCxxF   

 

where (.)F  denotes a cumulative distribution function and C  stands for a 

copula. Thus, C  is an expression (function) with d inputs and, when evaluated 

at )(),...,( 11 dd xFxF , returns the joint cumulative distribution of the d variables 

evaluated at dxx ,...,1 , i.e., the probability that all variables dXX ,...,1  are 

concurrently below the respective values dxx ,...,1 . 

The name “copula” comes for the Latin word “copulare” which means “to 

couple”, “to join” or “to connect” and was chosen to emphasise the manner a 

copula “couples” a joint distribution function to the variables’ univariate margins. 

A detailed view on copulas is given in Joe (1997) and Nelsen (2006)6. 

Fermanian and Scaillet (2005) and Schmidt (2007) explain that all marginal 

distributions are transformed into uniform ones so that all variables get the 

same type of distribution. Hence the intuition behind the copula idea is that the 

equally-distributed marginals (after the transformation) are used as the 

                                                           
6
 Apart from these classical textbooks, some papers also provide an introduction to copulas, 

e.g. Frees and Valdez (1998), Quesada-Molina (2003), Trivedi and Zimmer (2005), and Genest 
and Favre (2007). 
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reference case and the copulas express the dependence structure according to 

this reference.  

For di 1 , )( ii xF , the univariate function of a variable iX , transforms the 

value ix  into its correspondent percentile (rank, commonly represented by ""u  

or ""v  in the literature), i.e. iX  becomes uniformly distributed in the interval 

(0,1). Such transformation is explained by the “Probability Integral 

Transformation” (PIT). Consider a random variable iX , with continuous 

cumulative distribution function iF . The application of iF  to a specific value of 

iX , ix , generates a uniform variable between 0 and 1. That is7, )( ii xF  )1,0(U . 

However such transformations are done by the sake of simplicity. Frees and 

Valdez (1998) state that the marginal distributions can be of any type. As a 

matter of fact, although the concept of a copula was formally published in 1959, 

some earlier studies had already divulged very similar ideas with distributions 

standardised in different intervals (see Nelsen, 2006, Chapter 1). 

Rosenberg and Schuermann (2006) clarify that the shape of the dependence 

between the variables (e.g. lower/upper tail association, symmetry/asymmetry) 

is determined by the copula, while the scale and the shape of each variable’s 

distribution (i.e. parameters such as mean and standard deviation in the case of 

the normal distribution) are completely determined by the marginals.  

For the case of two variables, Rockinger and Joundeau (2001) present an 

intuitive view of a bivariate copula as a function ]1,0[]1,0[: 2 C  with three 

properties8: 

1. ),( vuC  is increasing in u  and v ; 

2. 0)0,(),0(  uCvC , vvC ),1(  and uuC )1,( ; 

                                                           
7
 The proof of PIT is given, for example, in Casella and Berger (2002, pp. 54-55). 

8
 These properties are also valid for n-dimensional copulas ]1,0[]1,0[: nC ; see, for instance, 

Nelsen (2006). 
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3. For all 1u , 2u , 1v , 2v  in [0,1], such that 21 uu   and 21 vv   we have 

0),(),(),(),( 11211222  vuCvuCvuCvuC . 

where  u  and v  represent the percentiles of the variables. 

Property 1 means that when one marginal distribution is constant, the joint 

probability will increase if the other marginal distribution increases. 

Property 2 reveals expected conditions for joint distributions: if one margin has 

zero probability the joint occurrence also has zero probability to occur. 

Consequently, if on the contrary one margin is certain to occur, then the 

probability of a joint distribution is determined by the remaining margin 

probability. 

Property 3 states that if the percentiles u  and v  increase, then their joint 

probability function also increases. This property is therefore a multivariate 

extension of the condition that a cumulative distribution function must be 

increasing. 

An informal definition of copula is given in Kolev et al. (2006): let dXX ,...,1  be 

continuous random variables with distribution function ]1,0[),...,( 1...1 dd xxF  and 

marginal distributions )(),...,( 11 dd xFxF , each ]1,0[(.) F . The associated d-

dimensional copula that links all margins )(),...,( 11 dd xFxF  to the joint distribution 

),...,( 1...1 dd xxF is the mapping from 
d]1,0[  to ]1,0[ . 

A central idea in the copula approach is Sklar’s Theorem (due to Sklar, 1959) 

which provides the foundation of many applications of Copula Theory to 

practical problems.  

 

Sklar’s Theorem:  Let 
12F  be a joint distribution function with margins 

1F  and 

2F . Then there exists a copula C  such that for all 1x  and 2x   in  ,  

))(),((),( 22112112 xFxFCxxF 
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If 
1F   and 

2F  are continuous, C  is unique. Conversely, if C  is a copula and 
1F   

and 
2F  are distribution functions, then the function 

12F  is a joint distribution 

function with margins 
1F   and 

2F . This is extendable to higher dimensions. 

This finding is essential for the empirical analyses in Chapters 3 and 4 where 

we will estimate the best-fit copulas concerning a dataset of default rates. 

Sklar’s Theorem implies that, in a portfolio of loans, each group (pair or triplet) 

of credit segments9 has only one underlying (“true”) copula and, consequently, 

we know that we are searching for a unique solution.  

Whilst the linear correlation coefficient   is accurate only for spherically or 

elliptically distributed data10 (see Embrechts et al., 2002), copulas are suitable 

for any type of distribution since they are based on ranks (percentiles). 

Nelsen (2006) points out other advantages of using copulas. They are a flexible 

tool to model dependence (various copulas represent different dependence 

structures between variables and they allow us to separately model the 

marginal behaviour and the dependence structure), they indicate not only the 

degree of the dependence but also the structure of the dependence (they can, 

for instance, directly model the tail dependence), and copula functions are 

invariant to transformations of the underlying variables while the correlation is 

not (i.e. the same copula function can be used, e.g., for both the returns of 

assets and their logarithm). Moreover copulas do not require normality of the 

variables studied, which is useful when dealing with dependence between asset 

returns (especially with high frequency data). 

Being multivariate cumulative distribution functions, copulas give the probability 

of variables being simultaneously below particular values. ))(),(( 2211 xFxFC , for 

                                                           
9
 The credit card portfolio was segmented according to the loans’ credit quality. The criteria for 

the segmentation will be presented in Chapters 3 and 4. 
10

 For a technical concept of spherical and elliptical distributions, see item 3.3 of Embrechts et 

al. (2002). Intuitively, in the trivariate case, we can identify such distributions through their 
contour diagrams (graphs of level curves) which have spherical and elliptical shapes 
respectively. The normal distribution is an example of this class. 
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example, is equivalent to the probability that 1X  is smaller than 1x  at the same 

time that 2X  is smaller than 2x . 

It is also possible to use copulas in order to calculate the probability that 

variables will be jointly above specific points. These are the so-called Survival 

Copulas and have the form (see Nelsen, 2006): 

 

))(),...,((ˆ),...,( 111...1 dddd xFxFCxxF   

 

where ),...,( 1...1 dd xxF is the joint probability ),...,Pr( 11 dd xXxX   and, for 

di 1 , each )( ii xF  is a survival (or reliability) function 

)(1)Pr( iii xFxX  . Survival Copulas turn out to be very useful in the context 

of this study given that the estimation of joint high default rates (credit losses) is 

a common objective in the following four chapters. 

The strength of the dependence (copula) is expressed by a parameter   which 

is closely related to the rank correlations Kendall’s tau ( ) and Spearman’s rho 

( S  ) defined in Section 2.211. Let 1u  and 2u  represent )( 11 xF
 
and )( 22 xF  

respectively, the univariate cumulative distribution functions (cdfs) of the 

random variables 1X  and 2X  evaluated at 1x  and 2x . The intensity   of their 

representative copula can then be inferred from12: 

 

 
2]1,0[

2121 1),(),(4 uudCuuC  

and 

3),(12 2121
]1,0[ 2

  duduuuCS  

 

                                                           
11

 This refers to one-parameter copulas. There are also copulas with more parameters but, for 
the sake of simplicity, these families are not considered in this thesis. 
12

 The proofs are given in Nelsen (2006, Chapter 5). 

[ 2.1 ] 

[ 2.2 ] 
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Some relationships between rank correlations and the parameters of specific 

copulas are given, for example, in Frees and Valdez (1998) and Nelsen (2006). 

When the closed form exists, this is a faster and relatively easy way (when 

compared to the maximum likelihood methods presented in Chapter 3) of 

calculating the parameter of a copula based on the rank correlation between 

variables. 

 

2.3.2 Families of copulas 

There are “families” of copulas in the same way that there are types of 

distributions. Many families of copulas are described in Joe (1997, Chapter 5) 

and Nelsen (2006, Chapter 4). We will focus here on the copulas that will be 

used in the empirical analyses (Chapters 3 and 4). They will be split into three 

groups according to the classes which they belong to: Elliptical Copulas, 

Archimedean Copulas and other classes. 

These copulas were selected among the bivariate one-parameter families 

presented in Joe (1997, Chapter 5). The Student t Copula was added to the list 

since this family has been applied in many financial studies and indicates 

stronger dependence in the tails of the distributions than the dependence 

represented by the Gaussian Copula (which is interesting in this context). Two 

other families (Marshall-Olkin and Cuadras-Augé) have a specific application in 

Chapter 6 and will be introduced there. 

For convenience, in the following formulas, exponential terms with base 

71828.2e  (Euler’s number) and exponent a  are written as ae  if a  has no 

more than two elements and }exp{a  otherwise. 

 

2.3.2.1 – Elliptical copulas 

These copulas express symmetric dependence and the contour plots have 

elliptical shape. Amongst the copulas considered in this study, two belong to 
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this class: the Gaussian (Normal) Copula and the Student t Copula (see 

Nelsen, 2006, for instance). 

 

- Gaussian Copula (symmetric without tail dependence)  

This family has been of great interest for credit risk analyses, particularly when 

the margins are normally distributed (see Section 2.5). In these conditions, it 

has the expression: 

 

))(),...,((),...,( 1

1

1

1 ddGa uuuuC 

   

 

where   is the standard multivariate cumulative normal distribution with linear 

correlation matrix Σ and 1  is the inverse of the standard univariate normal 

distribution. In the bivariate case, the copula has the following form: 
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where ]1,1[  and in the case of the Gaussian Copula with normal margins is 

the linear correlation coefficient between the two random variables 1X  and 2X ; 

)(),( 2

1

1

1 usur   .  

 

-  Student t Copula (symmetric with tail dependence) 

In the usual case of t-distributed marginals, this family is represented by: 

 

))(),...,((),...,( 1

1

1

1 d

d

dt ututtuuC    

 

[2.3]  
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where   represents the degree of freedom of the distribution, dt  
denotes the 

standardised multivariate Student t distribution function with d  variables and  1

vt  

is the inverse of the marginal Student t distribution. For 2d , this copula 

becomes: 

 

 ),;,(),Pr( 212211 vuuCxXxX t 
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where x is a vector composed by the cut-off values ),( 21 xx  and x
T
 is its 

transpose. denotes the Gamma distribution and ]1,1[  is the copula 

parameter, in this case, equivalent to the linear correlation between the 

variables (see Cherubini et al., 2004). 

 

2.3.2.2 Archimedean Copulas 

One class of copulas with great application is the Archimedean class. These 

copulas have the general form13: 

 

)](...)([),...,( 1

1

1 dd uuuuC  
 

 

where 1,...,0 1  duu and  is a function called generator that satisfies the 

properties: 

(i) 0)1(  ; 

(ii) for all )1,0(g , 0)('  g , i.e.  is decreasing; and 

(iii) for all )1,0(g , 0)(''  g , i.e.  is convex. 

 

                                                           
13

 Archimedean copulas are detailed in Nelsen (2006, Chapter 4). 
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Four bivariate Archimedean copulas will be considered in this study: 

- Clayton Copula (lower-tail dependence)  

Generator 1)(  gg  and 

  


 /1

21212211 )1();,(),Pr( 
 uuuuCxXxX C  

where }0{\),1[  .  

 

- Frank Copula (symmetric without tail dependence) 

Generator  
1

1
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F
1

)1)(1()1(
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21

1
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where }0{\),(  .  

 

- Gumbel Copula (upper-tail dependence) 

Generator 
)ln()( gg   and 

 

}]))ln()ln([(exp{);,(),Pr( /1

21212211

 uuuuCxXxX Gu   

where ),1[  .  

 

-  Joe Copula (upper-tail dependence) 

Generator ])1(1ln[)( gg   and 

 

 /1

2211 ])1()1()1()1[(1);,(),Pr( vuvuvuCxXxX J   

where ),1[  .  
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2.3.2.3 Copulas of other classes 

The other copulas employed in the empirical investigation are neither Elliptical 

nor Archimedean (see Joe, 1996, for more details). 

 

- Farlie-Gumbel-Morgenstern Copula (symmetric without tail dependence) 

))1)(1(1();,(),Pr( 2121212211 uuuuuuCxXxX FGM    

where ]1,1[ .  

 

-    Galambos Copula (upper-tail dependence) 

}))ln()ln(exp{();,(),Pr( /1

2121212211

   uuuuuuCxXxX Gb  

where ),0(  .  

 

- Hüsler-Reiss Copula (upper-tail dependence) 

 );,(),Pr( 212211 uuCxXxX HR  
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where ),0[  .

  
 

- Plackett Copula (symmetric without tail dependence) 

 );,(),Pr( 212211 uuCxXxX P  

)1(2

)1(4)])(1(1[

)1(2

))(1(1 21

2

2121
















 uuuuuu
 

where ),0[  .  
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2.4 MODELLING DEFAULT DEPENDENCE (CORRELATION) VIA FACTOR 
MODELS  

Some leading industry credit risk models, such as CreditMetrics and KMV, 

rely on the presumptions of structural models (initially proposed by Merton, 

1974) according to which an obligor defaults when a latent variable associated 

to it (typically interpreted as the log-returns of its assets) falls below a threshold 

(the amount needed to pay the outstanding debt). 

The dependence across defaults of different obligors is estimated in line with 

factor models which assume that the correlation among defaults is driven by the 

debtors’ latent variables (see, for instance, Crouhy et al., 2000 and Bluhm et al., 

2002). Such underlying variables are impacted by common (systematic) factors 

that affect all obligors and specific (idiosyncratic) factors that have effect only on 

the respective borrowers.  

The idiosyncratic factors are assumed to be independent from one another and 

therefore do not contribute to asset return correlations which are exclusively 

determined by the systematic factors.  

To illustrate this idea, consider a case based on an example given by Bluhm et 

al. (2002). If two automotive companies A and B operating in country C are 

debtors, the ability of those firms to pay their obligations is likely affected in the 

same direction by the underlying factor automotive industry. That is, if the 

activity in that sector falls, the default probability of A and B increases 

simultaneously. Another aspect that influences the performance of those 

companies is the country C’s economic level. So this is another systematic 

factor that may change the default probability of A and B in the same way. In 

contrast, if the firm A’s CEO steps down or one of its factories is flooded, this 

event will, in principle, impact only the default likelihood of A (not B’s). Hence, 

this would be an idiosyncratic risk of A.  

Naturally, there are many common factors that act together and influence 

debtors’ situations. However this model may be simplified if we consider that 

the asset returns of all borrowers are driven by only one common factor (the 
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“economic status”).  The latent variable (Y ), the single systematic factor ( E ), 

and the specific factor ( ) are assumed to be standardized normally distributed. 

Also, each idiosyncratic risk is uncorrelated with the systematic risk and the 

specific risks of all other obligors. For simplicity, all pairs of asset returns are 

considered to present the same correlation (  ).  

Owen and Steck (1962) show that equally correlated and jointly standard 

normal variables may be expressed as a function of their correlation coefficient 

and two other standard normal variables. Thus, considering all assumptions of 

factor models, in the case of a single common risk, the latent variable Y  for a 

debtor i  may be expressed as a function of E ,  , and  , namely: 

   

  1ii Ey  

 

where   and 1  indicate how much of the variability of iy  is explained by 

E  and i , respectively.  

Apart from the doubtful presumption of normal behaviour for some of these 

variables, the use of the linear correlation coefficient is a limitation given that it 

does not capture asymmetric dependence which could indicate more or less 

intense association across some variables in certain scenarios (see Embrechts 

et al., 2002). Furthermore, note that the correlation between the latent 

variables,  , is not permitted to take negative values and thus we cannot 

express such variables when they are negatively related (which implies 

negative correlation between defaults). 

As we will show in Chapter 5, [2.4] is used to derive the formula applied to 

estimate the capital to be required from financial institutions to cover 

unexpected credit losses. Thus all limitations cited above are reflected in the 

calculation of capital banks should set aside to guarantee their operations over 

downturns. Therefore, since the shortcomings of [2.4] may result in an 

[ 2.4 ] 



27 
 

underestimation of the likelihood of joint high defaults, the capital determination 

is subject to the same drawback that may cause insufficiency of reserves.  

 

2.5 APPLICATION OF COPULAS TO CREDIT RISK 

To the best of our knowledge, the first application of copulas to credit risk 

analyses is due to Li (2000) who showed that although factor credit models14 do 

not employ the concept of copulas explicitly, the estimation of joint default 

probability following those methods corresponds to the use of a bivariate 

Gaussian Copula whose parameter is expressed by the linear correlation 

between default probabilities within pairs of loans. 

Let Y , a standard normal random variable, be a latent variable that guides 

loans’ default. Considering two debts A and B, the default of A and B will 

happen in a particular period (one year, for example) if the latent variable falls 

below the cutoffs Ay  and By  respectively in that time horizon. Thus, the 

probability of default for A, pdA, and B, pdB, in the analysed period is:  

 

]Pr[ AA yYpd   and ]Pr[ BB yYpd   

 

Denote the asset returns’ correlation that is used as proxy for the correlation 

between the latent variables as  . In factor models, the conjunct default 

probability of A and B is obtained from: 

 

 
 


A By y

BABABABA yydxdxxxyYyY );,();,(],Pr[   

 

                                                           
14

 The author mentions CreditMetrics
®
 but his reasoning may be extended to other factor credit 

models such as KMV
®
. 

[2.5] 

[2.6] 
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where );,(  BA xx  is the standard bivariate normal density function of asset 

returns Ax  and Bx   with correlation  , and   stands for the bivariate normal 

cumulative distribution function. 

Assume now that we want to estimate the probability of default within one year. 

Let  AT  and BT  represent the survival times of debts A and B. Hence, the joint 

probability of default in that period is given by ]1,1Pr[  BA TT  and the 

individual probability of default over the same period is: 

 

)1(]1Pr[ iii FTpd   

 

for any debt i  and distribution function (.)iF of the survival times evaluated at 

one year. 

From [2.5] and recalling that the latent variable Y  follows a standard normal 

distribution, we know that, for any debt i : 

 

)(1

ii pdY   

 

Combining [2.7] and [2.8], we get: 

 

))1((1

ii FY   

 

Assuming that AT  and BT  have correlation parameter   and using [2.9], 

another way of calculating [2.6] is:  

 

 );,(],Pr[ BABA yyyYyY  

)));1(()),1(((]1,1Pr[ 11 BABA FFTT    

 

[2.7] 

[2.8] 

[2.9] 

[2.10] 



29 
 

 

If we set    (i.e. the correlation between the latent variables is equal to the 

correlation between the survival times), we can see that the last term in [2.10], 

)));1(()),1((( 11   

BA FF , corresponds to a Gaussian Copula (with 

parameter  ) mentioned in Section 2.3.2.1 (see expression [2.3] where each u  

represents a variable uniformly distributed in [0,1], the same feature of (.)F  in 

[2.10]). The distribution functions of the survival times are evaluated at one year 

in this example but, obviously, any time horizon could be inserted in the 

expression and (.)iF  would be bounded at [0,1]. 

After Li (2000), a number of papers have shown the benefits of using joint 

probability of default without the assumptions of factor credit models concerning 

the normality of variables and the Gaussian dependence.  

Frey et al. (2001), Frey and McNeil (2001, 2003), Bluhm et al. (2002, Chapter 

2), and Kostadinov (2005) conducted simulation studies and found that the 

assumption of normality of the latent variables can have an impact on the 

distribution of credit losses such that joint defaults may be incorrectly estimated. 

In particular, they found that the use of the Gaussian Copula (as implicit in well 

known credit models) resulted in the underestimation of credit exposure while 

the Student t Copula yielded better evaluations (which is consistent with the 

evidence from the financial literature where asset portfolios have been found to 

have more mass in the tails than presumed by the normal distribution). Bo-Chih 

(2004) used data on corporate obligors of Taiwanese banks to compare those 

two copulas with respect to the identification of potential extreme losses and 

confirmed the superiority of the Student t Copula. Schmidt (2003) showed that 

elliptical copulas (the Gaussian excluded) have properties related to tail 

association and therefore can incorporate the dependence structure of extreme 

default occurrences. The outperformance of these copulas was limited to 

predictions concerning defaults driven by a unique risk factor (systematic risk). 

Kang and Shahabuddin (2005) suggested some procedures to incorporate 
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multiple t-distributed factors in estimations of conjunct extreme defaults. A more 

flexible way of using the multivariate Student t Copula was proposed by Daul et 

al. (2003) in order to identify more precisely the association among different 

types of risk factors. The resultant structure, called Grouped t Copula, has 

margins with different shapes and is useful for capturing the dependence 

among variables with unlike tail dependence. This copula was found by Di 

Clemente and Romano (2004) to be the best option (compared to the 

Gaussian, the Clayton, and the Student t) to model the tail dependence in a 

loan portfolio composed of ten Italian (corporate) obligors.  

The only exception for these conclusions against the suitability of the Gaussian 

Copula is Hamerle and Rösch (2005) who analysed the performance of credit 

loss forecasts by using the Gaussian Copula when the (true) underlying 

dependence comes from the Student t Copula. The authors used corporate 

debt data from Standard & Poors and found that, although the asset 

correlations are biased, the losses (Value-at-Risk) forecasted via the Gaussian 

Copula are alike to the “true” losses. 

Apart from the elliptical copulas, other families have been tested in credit 

studies. Hamilton et al. (2001), for instance, adopted the Ait-Mikhail-Haq Copula 

to express dependence between default rates of different classes of bonds. The 

authors did not test other families but showed that their choice was better than 

the multivariate normal distribution to represent that dependence. Schönbucher 

and Schubert (2001) suggested a model based on copulas to associate 

continuously updated probabilities of default. The approach was illustrated with 

three families (Gaussian, Clayton and Gumbel) and was found to yield realistic 

distributions of default times. Melchiori (2003) used Archimedean copulas 

(Clayton, Frank and Gumbel) to price first-to-default contracts. He concluded 

that Gumbel was the best choice to deal with the dependence in his example. 

Das and Geng (2006) simulated the dependence of US corporate credit by first 

estimating the margins and then estimating the copula. Their best results were 
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obtained from the combination of skewed double exponential marginals with the 

Clayton Copula. Cherubini et al. (2004) and Hull and White (2004, 2006) 

presented examples of the application of copulas (Student t, Clayton and Frank) 

to model default correlation in credit derivatives such as CDOs (Collateralized 

Debt Obligations) and swaps. All three studies confirmed that the Gaussian 

Copula was not the best representation for most of the empirical data analysed. 

 

2.6 CONCLUSIONS 

The linear correlation coefficient does not yield good representation of the 

relationship between non-normal variables. In contrast, some dependence 

measures, such as Kendall’s tau and Spearman’s rho, do not have this 

limitation and are compatible with the use of copulas to estimate joint 

occurrences of variables regardless of their individual distributions.    

Different families of copulas capture distinct dependence structures and 

traditional credit models (that use the linear correlation) implicitly adopt a 

dependence shape given by the Gaussian (Normal)  Copula which, in turn, 

means that these models are subject to the misspecification of joint 

occurrences (especially the extreme ones) when losses are not normally 

distributed. As we mention in the next chapter, there is evidence that credit 

losses do not follow the normal distribution. Thus we can infer that estimates of 

joint losses based on copulas must be more precise. 

The use of copulas in credit risk studies has been concentrated on corporate 

debt and credit derivatives and the most frequently considered classes have 

been the elliptical  (mainly Gaussian and Student t) and the Archimedean 

(specially Clayton, Frank, and Gumbel). This thesis will extend the use of 

copulas in credit risk management by applying them to consumer loans and by 

testing some families seldom considered in this research field, namely: Farlie-

Gumbel-Morgenstern (FGM), Galambos, Hüsler-Reiss, Joe, and Plackett. 
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CHAPTER 3 
CHECKING FOR ASYMMETRIC DEFAULT DEPENDENCE IN 

A CREDIT CARD PORTFOLIO:  A COPULA APPROACH 
 

“I can’t understand why people are frightened of new ideas. 
 I’m frightened of the old ones.” (John Cage) 

 

3.1 INTRODUCTION 

Since the 1960’s there is abundant evidence in the literature showing that asset 

returns in general are not normally distributed (see Mandelbrot,1963 and 

Fama,1965) and many empirical studies have confirmed this behaviour for 

several classes of investments, including loan portfolios (Rosenberg and 

Schuermann, 2006). 

Moreover, it has also been found that returns are more correlated in the left tail 

(i.e. when investments result in losses or lower returns) than in the right tail. 

See, for instance, Ning (2010), who cites many other studies that reach the 

same conclusion, Ang and Bekaert (2002), and Patton (2006). According to Di 

Clemente and Romano (2004) and Das and Geng (2006), returns of credit 

assets also present asymmetric (tail) dependence.  

Factor credit risk models assume that returns of obligors’ assets are normally 

distributed, not only individually (univariate normal distribution for each debtor’s 

asset returns) but also at the portfolio level (joint distribution of asset returns 

represented by the multivariate normal). This implies relatively fewer 

occurrences of simultaneous extreme values than if appropriate distributions 

were used and therefore may lead to biased estimations if asset returns do not 

follow that particular distribution.  

The first contribution of this chapter is the empirical estimation of best-fit 

copulas for consumer loans by using a credit card dataset provided by a large 

UK bank. We estimate joint extreme default rates based on copulas and 

compare them to estimations conditional on the assumption of normality. No 

previous studies have performed such estimates for a credit card portfolio. 
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The second contribution is to test five copulas that are not usually included in 

research pertaining to credit risk. As a consequence, we will be able to infer the 

applicability to credit card portfolios of different copulas. For practitioners, this 

will also help to improve the estimation of joint credit losses inasmuch as the 

choice of copulas in financial institutions is usually arbitrary or justified by 

convenience and tractability (Student t Copula, for instance, is often easy to 

simulate by using Monte Carlo method); see Jouanin et al. (2004). 

A third innovation is the use of goodness-of-fit tests (GoF) based only on the 

right tail of the variables’ distribution (as opposed to usual procedures that 

consider whole distributions). This strategy was implemented because the 

principal objective of finding the best-fit copulas here is to employ them to 

estimate the probability of joint high defaults. 

A sample of credit card loans was split into five segments according to a score 

provided by the Bank. Then the association between each of the ten pairs of 

segments was modelled by the best-fit copula. Most of the pairs of segments 

present right-tail dependence which suggests the existence of flaws in 

estimations of joint high defaults derived from traditional (factor) models (which 

do not detect stronger connections across extreme values of the variables). In 

other words, such structure means that higher default rates are more 

associated and the Bank is subject to larger losses in downturns than would be 

calculated with traditional techniques. We also find that some of the pairs have 

dependence represented by three of the five less popular copulas inserted in 

this study.  

After finding the best representation for the dependence across the credit card 

loans, we compare estimations of conjunct “high” default rates following 

conventional assumptions of normality and Copula Theory. In most cases, the 

latter method generates values closer to the observed default rates in the 

dataset. Considering each pair of segments separately and six risk levels (loss 

percentiles), the copula approach gave overall better results for all pairs. 
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The remainder of this chapter is organised as follows. Section 3.2 contains a 

brief review of techniques to estimate copula parameters and of goodness-of-fit 

tests (GoF) to decide which copula is the best one among many candidates. 

Next, we describe the data used in the empirical analysis. The ten copula 

families taken as candidates to represent the dependence structure among 

credit card loans are introduced in Section 3.4. Then, we estimate the 

dependence structure (copulas) between pairs of segments in a credit card 

portfolio of a large UK bank. Section 3.6 compares estimates of joint high 

defaults in the portfolio studied according to two approaches: by assuming 

normality and by using the best-fit copula. Conclusions are in the last section. 

 

3.2 FINDING THE BEST-FIT COPULA 

3.2.1 Parameter estimation techniques 

Basically, there are three parametric approaches to estimate copulas from data: 

the Exact Maximum Likelihood (ML) method15, the Inference Functions for 

Margins (IFM), and the Canonical Maximum Likelihood (CML) – see, for 

instance, Cherubini et al. (2004) and McNeil et al. (2005).  

 

3.2.1.1 The Exact Maximum Likelihood (ML) method 

The density (pdf) of the joint distribution F , denoted by f , is given by: 
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where if  is the univariate density of the marginal distribution iF  and c is the 

density of the copula given by: 
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15

 Also known as Full Maximum Likelihood (FML). 
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Assume we have a set of d  variables in T  time periods represented by 

 dtt xx ,...,1
, Tt ,...,1 . Let ),,...,( 1  dΩ  be the parameter vector to be 

estimated, where iα , di ,...,1 , is the vector of parameters of each marginal 

distribution iF  and θ  is the copula parameter. The log-likelihood function will be: 
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The ML estimator  Ω̂  of the parameter Ω  is found by maximizing the prior 

function, that is: 

 

)(maxargˆ ΩΩ l  

 

See, for example, Cherubini et al. (2004), McNeil et al. (2005), Charpentier et 

al. (2007), Genest and Favre (2007), and Trivedi and Zimmer (2005). 

 

3.2.1.2 The method of Inference Functions for Margins (IFM) 

In the Exact Maximum Likelihood (ML) approach introduced above, the 

parameters of the marginals and the copula are estimated together. Joe and Xu 

(1996) suggested splitting that process into two steps: 

(i) estimate parameters iα , di ,...,1 , of the marginal distributions iF  by 

using the ML method: 


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where il  is the log-likelihood function of the marginal distribution iF ; 
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(ii) estimate a copula parameter   (or parameter vector θ ) by using the 

results from step (i): 





T

t

ddtdt

c xFxFcl
1

111 ));ˆ;(),...,ˆ;((lnmaxarg)(maxargˆ   

 

where cl  is the log-likelihood function of the copula. 

For more details, see Cherubini et al. (2004) and Trivedi and Zimmer (2005). 

 

3.2.1.3 The Canonical Maximum Likelihood (CML) method 

Like the IFM, this method performs the estimation in two steps. However, it 

does not make any assumption about the parametric form of the marginal 

distributions. Following Cherubini et al. (2004), McNeil et al. (2005) and Genest 

and Favre (2007), the calculations in CML involve the procedures:  

(i) transform the dataset ),,...,( 1 dtt xx  t = 1,…,T  into uniform variates 

),ˆ...,ˆ( 1 dtt uu  using the empirical distributions )(ˆ
itiit xFu   so that we do not need 

to care about the margins’ parameters; 

(ii) estimate the copula parameter   (or parameter vector θ ) by maximizing 

a log-likelihood function that includes the vector tu  and   (or θ ): 





T

t

dtt uuc
1

1 );ˆ,...ˆ(lnmaxargˆ   

 

3.2.1.4  Comparison among parameter estimation techniques 

In short, ML (Exact Maximum Likelihood) involves maximizing a function that 

includes parameters for both the marginal distributions and the copula. The IFM 

(Inference Functions for Margins) method maximizes two log-likelihood 

functions. First, the parameters of the margins are found and then these values 

are used to find the copula parameters. The CML (Canonical Maximum 

Likelihood) also has two stages but the dataset (default rates in this case) is 

converted into uniform variables, so that it is not necessary to estimate the 
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margins’ parameters. Then, in a second step, the copula parameters are 

estimated by maximizing a log-likelihood function that includes the uniform 

variables and the copula parameters.  

Although Kole et al. (2007) state that there is no consensus on the best way to 

fit copulas to data, Durrleman et al. (2000) found the CML to be the best 

method to model both simulated and real financial data whilst ML and IFM 

estimations were biased. Genest et al. (2009) state that the IFM approach is 

less efficient because it is subject to flawed estimations of the univariate 

distributions (margins) which compromises the second step, namely the search 

for the copula parameter. Furthermore Cherubini et al. (2004) point out that the 

ML method tends to be very computationally intensive given that several 

parameters (for individual distributions and the copula) must be estimated at 

once.  

Therefore this study will employ the CML to estimate the parameters of the 

copulas candidate to represent the dependence across credit card default rates.  

 

3.2.2 Goodness-of-fit methods 

After finding the parameter of each copula, it is necessary to decide which 

family is the best representation for the data dependence. According to 

simulations run by Genest et al. (2009) and Berg (2009), the three goodness-of-

fit (GoF) methods that presented the highest performances were based on: 

Empirical Copula (the best performance), Kendall’s Transform and Rosenblatt’s 

Transform. These three approaches have become the most popular in copula 

GoF tests and have been used in other studies (see, for example, Weiss, 

2009). All of them check “how far” the data distribution is from the candidate 

copula distributions and the smaller this “distance” is the more representative 

the copula is. 
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3.2.2.1 Test based on the Empirical Copula 

Nelsen (2006) explains the empirical copula as a function given by the number 

of pairs of a dataset that are smaller than or equal to the respective order 

statistics from the dataset divided by the size of the sample. In his notation: 
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where n

kkk 1)},{( yx  denote a sample of size n  from a continuous bivariate 

distribution and )(ix  and )( jy , nji  ,1 , represent the order statistics from the 

sample.  

Let iR  be the ith rank of a specific variable with n  observations ( ni 1 ). By 

computing )1/(  nii RU , iU  will be a pseudo-observation equivalent to that 

rank normalised to (0,1) where the scaling factor (denominator 1n ) is 

employed to guarantee iU  in (0,1). Following these definitions, the empirical 

copula is given by: 

 








n

i

didi uUuU
n

C
1

11 ),...,(
1

1
)(ˆ 1u  

 

where ),...( 1 duuu   [0,1]d is a 1x d  row vector  that represents the order 

statistics of the variables, d refers to dimensions (the number of variables 

studied), iU  is defined as before, 1  is an indicator function that returns 1 if all 

conditions in parenthesis are satisfied and 0 otherwise, and  n  is the number of 

observations. 

This goodness-of-fit procedure aims to test the null hypothesis that the 

underlying copula C belongs to the family of a candidate copula C0, i.e., 



39 
 

00 : CCH E   where the superscript E is used to indicate that the null hypothesis 

refers to the Empirical Copula GoF method. The procedure for a copula family 

̂
C  with estimated parameter ̂  involves the calculation of the empirical process 

)ˆ(
̂

CCnE   for n observations. Applying the Cramér-von Mises statistic 

(Genest et al., 2009 and Berg, 2009), the test becomes: 
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where Ĉ  is the empirical copula defined above and 
̂

C  is the candidate copula. 

Since this test evaluates the “distance” between the dataset distribution (here 

using the empirical copula as a proxy) and the estimated copula, larger values 

of Ê  entail higher chances of rejection of the tested copula.  

Genest and Rémillard (2008) demonstrate that goodness-of-fit procedures 

based on this approach are asymptotically consistent. Then when 0CC , the 

probability of 0H  being rejected goes to 1 when n  . 

Genest et al. (2009) explain that the limiting distribution of Ê  depends on the 

unknown copula and on its parameter  . Hence the asymptotic distribution of 

Ê  cannot be calculated and p-values must be inferred by means of bootstrap 

methods.  

 

3.2.2.2 Test based on Kendall’s Transform 

This approach uses a transformation of Kendall’s multivariate coefficient of 

concordance. The formulae presented below are based on Genest et al. (2009) 

and Berg (2009). The first step is to calculate Kendall’s dependence function: 
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where )1/(  niw , ]1,0[w , and the other notations follow the definitions 

above.  

By replacing the copula in the function above with the empirical copula (defined 

before) we get an empirical version of Kendall’s function: 
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The null hypothesis in this test is different from the one in the previous method. 

Here, the null hypothesis is that Kendall’s Transform of the unobserved copula 

(K) belongs to a set of Kendall’s Transforms (K0) related to the candidate 

copula, that is, 00 : KKH K   where the superscript K denotes the Kendall’s 

Transform GoF method. Under this supposition, TT KK ˆ . 

The test follows the empirical process )ˆ( TT KKnK  that refers to the 

difference between Kendall’s Transform of the candidate copula and the 

empirical copula, TK  and  TK̂  respectively. 

Applying the previous notation, the Cramér-von Mises statistic for this approach 

is: 
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It is important to note that Genest et al. (2009) compare the null hypotheses of 

the empirical copula and the Kendall’s Transform and highlight that 
KE HH 00  . 

That is, the nonrejection of 
KH 0  may not imply the nonrejection of 

EH 0 . As a 

result, in general, tests based on this Kendall approach are not (asymptotically) 

consistent. 
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Those authors also point out that the asymptotic distribution of K̂  depends on 

the underlying copula and on its parameter; therefore p-values related to that 

statistic are found through simulations.  

 

3.2.2.3 Test based on Rosenblatt’s Transform 

The Rosenblatt’s Transform of a copula maps a vector ),...( 1 duuu  (0,1)d to 

a function (u ) = ( ie , …, de )  (0,1)d  where 11 ue  . For each dimension 

},...,2{ di  , ie  is defined as (see Genest et al., 2009): 
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The test derived from this transformation comes from the property that a vector 

U  is distributed as a copula C (i.e. U   C) if and only if the distribution of ( U ) 

is an independent copula C = ( ie , …, de ) = ie * … * de ,  with  ie , …, de   [0,1].  

So the null hypothesis 00 ~: CCH R U  corresponds to  CH R ~)(:0 U  

according to a parameter   estimated for the candidate copula16. 

To test this hypothesis, we use the fact that 
RH0  entails the interpretation of the 

pseudo-observations dE = θ( dU ) as a sample from C, the independent 

copula. 

An empirical distribution function related to this process is: 

 





n

i

in uE
n

D
1

),(1
1

)(u    
du ]1,0[  

 

                                                           
16

 The superscript R is used to indicate that this null hypothesis pertains to the test based on 

Rosenblatt’s Transform. 
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which, under RH0 , is expected to be “close” to C. 

The test is based on one of the Cramér-von Mises statistics17 of the process 

)(  CDnR n : 
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where ),max( jkikjkik EEEE  . 

 

As in the two approaches described above, the asymptotic distribution of this 

statistic is conditional on the latent copula and its parameter. Consequently, p-

values for the test are generated from bootstrap techniques. 

 

3.2.2.4 Test procedures  

The statistic for each test, Ê , K̂ , and R̂  will be calculated and the smallest 

value will indicate the best-fit according to the respective method. Thus, for 

each pair of segments from the credit card portfolio analysed, three copulas will 

be designated as potential best-fit representations of its dependence structure. 

It is possible (and expected) that the three approaches yield conflicting results 

in some cases (i.e. two or three distinct copulas for the same pair). In these 

circumstances, the Empirical-based test must be considered more reliable 

since, according to Genest et al. (2009), it is the method that presents the least 

data transformation and its superiority was confirmed by Berg (2009). 

In order to verify the significance of the GoF tests, Genest et al. (2009) and 

Berg (2009) present some routines to calculate p-values concerning the null 

hypothesis that the dataset dependence (underlying copula) is equal to the 

tested copula. 

                                                           
17

 Genest et al. (2009) present two Cramér-von Mises statistics for the Rosenblatt’s approach. 
The statistic used in this thesis is the one that had higher performance in the tests run by those 
authors. 
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The procedure to find the p-values consists of simulating the candidate copulas 

many times with their respective parameters found (via CML – as explained in 

Section 3.2.1) and checking which proportion of them is “farther” from the 

empirical data than the candidate copula with the exact parameter found via 

maximisation. Thus high p-values suggest that the considered copula cannot be 

rejected because it is closer to the observed dataset than most of the other 

simulated copulas. 

 

3.3 DATA DESCRIPTION 

This empirical study is based on a random sample from the credit card portfolio 

of a large UK bank comprising the monthly payment status of 177,234 accounts 

over the period April/2007 – March/2009. The dataset initially was composed of 

350,066 credit card loans but the credit scores for 77,780 accounts were not 

available and another 95,052 accounts were open after the first month covered 

by the dataset. This means that the default rates over the two years studied 

were calculated based only on the loans existing in April/2007 with an available 

credit score.  

The dataset was split into five segments according to the loans’ credit quality 

(credit score provided by the Bank) in the first month (April/2007). Each 

segment corresponds to a quintile of the score distribution such that the least 

risky segment (named “A”) presents the highest scores and the risk level 

increases with the reduction of the scores up to the riskiest segment (called 

“E”).  

Some of the accounts were dormant (310 in segment A, 269 in segment B, 39 

in segment C, and 0 in segments D and E) but they represented only 0.35% of 

the credit card loans effectively analysed and therefore these dormant accounts 

did not compromise the calculations of the default rates and our subsequent 

conclusions. 

Default was defined as the non-payment of three monthly instalments 

(consecutively or not) conditional on no prior default. Thus the default rate for 
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each segment in a particular month was calculated as the amount of loans that 

reached their third month in arrears for the first time (i.e. conditional on no prior 

default) divided by the number of active accounts in that month. Once a loan 

defaulted it was excluded from the dataset (i.e. default is considered an 

absorbing state).  

This procedure generated a time series of default rates with 24 observations for 

each segment and these values were used to estimate the dependence 

between the segments. 

The summary statistics of the data is shown in Table 3.1. For confidentiality 

reasons, the monthly default rates of each segment and the number of 

accounts defaulted in each month are not reported. 

 

Table 3.1: Summary statistics of default rates for the five segments of 
the credit card portfolio  

SEGMENT MEAN STANDARD 
DEVIATION 

SKEWNESS KURTOSIS 

A 0.00015 0.00009 -0.22504 2.55931 

B 0.00056 0.00035 -0.04654 2.17929 

C 0.00295 0.00141 -0.57593 2.75557 

D 0.01117 0.00270 -2.78037 12.64415 

E 0.03226 0.01873 2.12537 8.45527 

Data refers to April/2007 – March/2009. 

 

As expected, the mean default rates increase with decreases in the credit 

quality (from segment A to E). The data dispersion (measured by the standard 

deviation) has similar behaviour. 

According to the two rightmost columns, the three first segments are closer to 

the normal distribution than the two riskiest ones (A, B and C have skewness 

and kurtosis relatively closer to zero and three, respectively, when compared to 

segments D and E). This is confirmed by the Jarque-Bera test which tests the 

null hypothesis that a sample comes from a normal distribution (see Table 3.2 

where higher values of the Jarque-Bera statistics lead to the rejection of the null 

hypothesis). 
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Table 3.2: Jarque-Bera* test for the default rates’ segments  

SEGMENT CAN VALUES BE 
APPROXIMATED TO NORMAL? 

JARQUE-BERA 
STATISTICS 

A Yes        0.39678 

B Yes        0.68222 

C Yes        1.38653 

D No        123.93139** 

E No          47.82875** 

* This test checks if the normal distribution is a good approximation for the data 
analysed. 
** These results are significant at the 1% level (p-value < 0.001 in both cases). 

 

The fact that three of the segments (A, B and C) may be satisfactorily 

represented by the normal distribution (albeit this result is not significant) does 

not imply that the dependence between pairs involving two of those segments 

will be better expressed by the Gaussian (Normal) Copula than by another 

copula. As it will be shown ahead, even normal data may have a diverse 

dependence structure.  

As said before, 95,052 accounts open after the first month (April/2007) were 

eliminated from the dataset. This was done because the inclusion of those 

accounts would distort our definition of segments (namely, equally-sized 

cohorts of loans concerning the percentiles of the credit score). If the accounts 

open after the first month were inserted into the analysis and the credit score 

bounds for each segment were kept constant, the number of distinct scores 

would be likely different in the five segments. So, the concept of segments 

would be changed inasmuch as each of them would cover an unbalanced 

number of percentiles of the data. Moreover the number of new accounts in a 

specific segment could be much lower (higher) than the number of new loans in 

the other groups such that its default rates would be artificially modified. This 

would not be due to the increase (reduction) of the payment failures but instead 

be a consequence of the size of the segment (specially in the first two months 
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after the new accounts were added to the portfolio because, according to our 

criterion, they would not default before their third month).  

On the other hand, if the new accounts were incorporated into the dataset and 

the segments were kept in the consecutive ranges of 20 percentiles, the limiting 

values of the credit scores for each segment would possibly change and some 

loans with a stable score (i.e. consumers with invariable characteristics 

assessed by the Bank18) would move across segments. In this fashion, the risk 

(score level) of the segments would not be constant and the dependence 

structures estimated would represent connections between different consumers 

in each month. Thus we would not know whether the oscillations in the 

dependence strength were due to the association between pairs of segments or 

were an effect of the distinct composition of the segments every month. 

Considering that the default rates are given by the number of defaulted 

accounts in the respective month divided by the total of active accounts in that 

month, it is clear that the non-inclusion of new accounts leads to a bias (as time 

goes on) in the calculation of default rates. For a particular group, the same 

number of defaults in two different months will result in a higher default rate in 

the later month (since it will have fewer active accounts). The worst effect of this 

drawback on the empirical analysis could happen if few occurrences of default 

in a final month with reduced accounts resulted in higher default rates than 

many occurrences in an initial month with more loans in the portfolio. This 

would affect the ranks (percentiles) of the default rates and, consequently, 

would influence the best-fit copula estimated from the data. However, as 

implied by the mean default rates in Table 3.1, the number of defaults is 

considerably smaller than the number of active accounts. Therefore the 

reduction of the denominator (total of active accounts) in the ratio that 

                                                           
18

 The variables considered by the Bank were not informed but may include, for example, 

income, outstanding debt, employment condition and housing status. 
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represents the default rates is minimal over time19 and this guarantees that the 

order of the default rates is almost surely not changed which implies that the 

copulas estimated are not influenced and the bias is negligible in this case. 

 

3.4 FAMILIES OF CANDIDATE COPULAS  

Ten copula families are tested to represent the dependence across default 

rates. They were selected from the bivariate one-parameter families described 

in Joe (1996, Chapter 5)20 along with the Student t Copula. 

Table 3.3 lists them and their main features in terms of structure. The 

cumulative distribution functions (cdfs) of the candidate copulas were presented 

in Chapter 2, Section 2.3.2. 

 

Table 3.3: Candidate copulas and their respective features 

COPULA DEPENDENCE STRUCTURE 

Gaussian Symmetric dependence without tail dependence 

Frank Symmetric dependence without tail dependence 

FGM(*) Symmetric dependence without tail dependence 

Placket Symmetric dependence without tail dependence 

Student t Symmetric dependence with tail dependence 

Clayton Left (lower) tail dependence 

Gumbel Right (upper) tail dependence 

Galambos Right (upper) tail dependence 

Hüsler-Reiss Right (upper) tail dependence 

Joe Right (upper) tail dependence 
(*) FGM stands for Farlie-Gumbel-Morgenstern. 

 

In sum, the first four copulas in Table 3.3 indicate that the variables (default 

rates, in this study) have the same level of dependence below and above their 

mean and there is no higher association (when compared to the multivariate 

                                                           
19

 That is, the active accounts minus the defaults in the preceding month are relatively close to 
the initial number of accounts. Since the default rates tend to follow the number of defaults in 
each month, the ranks (percentiles) of both will be the same. 
20

 Only the absolutely continuous families were chosen (nine families). This property is desirable 
in order to simulate such copulas (used in the goodness-of-fit tests; see, for example, Joe, 
1996, p. 146) and estimate their parameters. Both procedures demand derivations of the 
copulas’ cdfs.  
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normal distribution) among extreme values. The Student t is also symmetric but 

points out a more intense relationship among extreme events (compared to the 

first four families). The Clayton copula indicates that smaller values are more 

linked and the other four copulas express the opposite: higher values are more 

associated. This last case is the one that brings more concern with respect to 

losses in credit portfolios since it means that higher default rates tend to happen 

together more often, i.e. higher losses in each segment occur at the same time 

and the lender is more subject to financial deficits.    

 

3.5 DEPENDENCE STRUCTURE IN THE CREDIT CARD PORTFOLIO 

3.5.1 Estimation based on the complete default rate distributions 

To find the best-fit copulas for the ten pairs of segments, the parameters of the 

candidate copulas were estimated for each pair according to the Canonical 

Maximum Likelihood method which, according to the literature, outperforms the 

other approaches mentioned in Section 3.2.1. Then the three goodness-of-fit 

(GoF) approaches presented in Section 3.2.2 were used to define which copula 

better represents the dependence in each pair.  

Table 3.4 displays the best copulas (in the upper-right triangle) along with the 

linear correlations (in the lower-left triangle). The copulas displayed for each 

pair were estimated according to the Empirical Method (first family shown), 

Kendall’s Transform (in parenthesis), and Rosenblatt’s Transform (in square 

brackets).  The parameters of the best-fit copulas are reported in Appendix A. 

The rejection level of the estimates is indicated by ** and * which represent the 

levels 5% and 10%, respectively (for instance, although the hypothesis of 

Clayton Copula for the pair AB based on the Empirical GoF approach is the 

best among the ten alternatives, it can be rejected at the 5% level, i.e. with 95% 

of confidence). Appendix B contains tables with the outcome of all three GoF 

approaches for estimations that used the whole default distributions and 

includes their respective p-values. 
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Table 3.4: Best-fit copulas based on the complete distributions 

SEGMENTS A B C D E 

A 1 
Clayton 

(Plackett) 
[Frank] 

Clayton 
(Plackett) 
[Clayton] 

Galambos 
(Galambos) 
[Gumbel**] 

Student t 
(Frank) 

[Plackett] 

B 0.7375 1 
Clayton 

(Clayton) 
[Plackett] 

Hüsler-
Reiss 

(Galambos) 
[Joe*] 

Student t 
(Plackett*) 
[Plackett] 

C 0.7888 0.9536 1 

Hüsler-
Reiss 
(Joe) 
[Joe*] 

Gaussian 
(Frank**) 
[Plackett] 

D 0.3730 0.4598 0.5653 1 
Plackett 
(FGM*) 

[Plackett] 

E -0.4966 -0.4916 -0.5217 0.1241 1 

Best-fit copulas (upper-right triangle) and linear correlation (lower-left triangle) for 
default rates of pairs of segments (estimation based on the best fit to complete 
distributions). The copulas displayed for each pair of segments are respectively based 
on Empirical Copula, Kendall’s Transform (in parenthesis), and Rosenblatt’s Transform 
(in square brackets). 
* and ** indicate copulas with the highest probability of nonrejection, i.e. results with the 
highest significance (p-values between 0.90 and 0.95 and p-values greater than 0.95, 
respectively).  

 

The analysis of the results will be based on the copulas estimated following the 

Empirical Copula method given that it was found in the literature to be the most 

robust amongst the three models considered in this study (see, as mentioned in 

Section 3.2.2, Berg, 2009 and Genest et al., 2009). 

Eight pairs have tail dependence albeit in two cases the estimations can be 

rejected at the 5% and 10% levels (pairs AB and AC, respectively; see p-values 

in Tables B.1 and B.2, Appendix B). Thus, in most of the cases, the link across 

extreme default rates (lower and/or higher) is stronger than assumed by the 

Gaussian Copula (which is implicit in traditional credit risk models). 

Three of the pairs (AD, BD, and CD) exhibit right-tail dependence, meaning that 

higher default rates are more associated than the other levels which may 
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strengthen the Bank’s losses in downturns. Three other pairs (AB, AC, and BC) 

have more intense relationships among low default rates, expressing the most 

profitable scenario for the Bank inasmuch as most of its debtors tend to keep 

their repayments simultaneously in upturns whilst delinquencies are not very 

related in downturns.  

Pairs AE and BE may present those two effects on the Bank’s results. The 

symmetric tail association represented by the Student t Copula implies that both 

lower and higher ranks of defaults are more associated than intermediate rates.  

The two riskiest segments (CE and DE) are not tail dependent. This condition is 

beneficial for the lender because the highest default levels do not get more 

linked in downturns. 

In contrast to all other pairs, the pairs involving segment E have symmetric 

dependence structures. This suggests that the association of that riskiest 

segment with the other loans has similar intensity in opposite economic 

scenarios (booms or crashes). Thus the same level of connections among the 

riskiest debtors and the other loans in downturns (that raise the losses) may be 

expected in upturns (so that losses are reduced in those periods and profits are 

potentially amplified). 

It is interesting to note that even when the individual distributions (the default 

distribution for each segment in this study) are satisfactorily approximated by 

the normal distribution (see Table 3.2), their joint distribution may not be 

expressed by the Gaussian Copula. This is the case of the pairs AB, AC, and 

BC (although the best-fit copula of the first two pairs can be rejected). 

The p-values for the goodness-of-fit tests displayed in Appendix B entail the 

non-rejection of many copula families which is possibly a consequence of the 

short dataset used (24 observations) that is not enough to form unambiguous 

patterns that match unique joint distributions for each pair of segments. Thus 

the main inference from this empirical analysis is not the rejection of the 

Gaussian dependence but the identification of other families that may represent 

the dependence among credit card loans more accurately and improve the 
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estimation of joint extreme defaults. The dependence in nine of the pairs is 

better expressed by other copulas; only the pair CE has the Gaussian as the 

best-fit copula. 

 

3.5.2 Estimation based on the upper tails of default rate distributions 

Since the main purpose of estimating the dependence structure is to calculate 

joint “high” defaults, it is possible that a better performance of the copula 

approach may be achieved if the best-fit copulas are found considering only the 

right tail of the default rate distributions. In this section, we estimate the copula 

whose right tail (here, defined as above the 75th percentile of each marginal 

variable u1 and u2 – following the notation in Section 3.2.2.1) gives the best fit to 

the right tail of the empirical distribution. In this bivariate case, the Empirical 

Copula RĈ  limited to “high” percentiles (above 0.75 in our example) is 

calculated from the dataset as: 
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where the term u  0.75  indicates that both marginals u1 and u2  must be equal 

to or greater than 0.75. We recognise that this percentile is too low for typical 

definitions of “high” events but it was chosen because we needed to specify a 

certain number of extreme occurrences in each segment that allowed us to 

observe joint events across high defaults and even though we defined only the 

six highest values of each default distribution as its extreme occurrences, this 

number represents 25% of each segment’s distribution. 
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Each candidate copula, 
̂R

C ,  pertaining to this test applied to the rightmost 

region of the default distributions will be evaluated for the same percentiles 

considered in the Empirical Copula RĈ  and will be given by21: 

 

)75.0|(ˆˆ  uu


CC
R  

 

where 
̂

C   is a candidate copula with a parameter ̂  estimated according to the 

procedures described in Section 3.2.1 and limited, in this example, to 

percentiles equal to or higher than 0.75.  

Then we use 
RC  and 

̂R
C   to calculate the Cramér-von Mises statistic, RÊ  (as in 

Section 3.2.2.1): 
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where u  0.75. As a consequence, this test will point out the copula family that 

has the area in the right tail (when the percentiles u1 and/or u2  are greater than 

or equal to 0.75) closest to the area in the right tail of the joint distribution of the 

observed data. The other tests (Kendall’s Transform and Rosenblatt’s 

Transform) followed the same idea as described for 
RC , 

̂R
C   and RÊ .  

Keep in mind that that the area not considered in these goodness-of-fit tests 

(75% of the data in the left side of the distributions) has no impact on the 

dependence estimated for the right tails and therefore this right-tail dependence 

may have any shape irrespective of the dependence of the lowest 75% 

percentiles. 

                                                           
21

 Note that the “tail” of the distributions we are modeling is formed not only by the concurrent 

events  u1  0.75 and u2  0.75 but also by u1  0.75 and u2 < 0.75 (and vice versa).  
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The best-fit copulas selected in accordance with GoF tests based on complete 

default distributions (as in Section 3.5.1) are supposed to be the best 

representation of joint distributions in general (i.e. for all values of u1 and u2) 

and may not be the best approximation of the upper tail specifically (which can 

be given by another copula family). On the other hand, copulas chosen 

according to RÊ  are the best approximation of “high” values of default rates and 

might not be the best representation of default rates smaller than the respective 

75th percentiles. This approach seems to be an original way to estimate copulas 

to express joint high events since such strategy has not been found in the 

literature. 

The best-fit copulas based on this alternative method are displayed in Table 3.5 

and their respective parameters are in Appendix C. 

 

Table 3.5: Best-fit copulas based on the best fit to the right-hand tails 

SEGMENTS A B C D E 

A 1 
Galambos 

(Galambos) 
[Frank] 

Joe* 
(Galambos) 

[Clayton] 

Galambos 
(Gumbel) 
[Gumbel*] 

Frank 
(Clayton) 
[Plackett] 

B 0.7375 1 
Clayton 

(Student t) 
[Plackett] 

Gumbel 
(Clayton) 

[Joe*] 

Frank 
(Clayton) 
[Plackett] 

C 0.7888 0.9536 1 
Joe 

(Clayton) 
[Joe] 

Plackett** 
(Clayton) 
[Plackett] 

D 0.3730 0.4598 0.5653 1 
Joe** 
(Joe) 

[Plackett] 

E -0.4966 -0.4916 -0.5217 0.1241 1 

Best-fit copulas (upper-right triangle) and linear correlation (lower-left triangle for 
default rates of pairs of segments (correlation for complete default distributions and 
copula estimation based on the best fit to right tails. The copulas displayed for each 
pair of segments are respectively based on Empirical Copula, Kendall’s Transform (in 
parenthesis), and Rosenblatt’s Transform (in square brackets). 
* and ** indicate copulas with the highest probability of nonrejection, i.e. results with the 
highest significance (p-values between 0.90 and 0.95 and p-values greater than 0.95, 
respectively). 
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Similar to the previous table, the copulas for each pair of segments are 

assessed from the Empirical Method (first family displayed for each pair), 

Kendall’s Transform (in parenthesis), and Rosenblatt’s Transform (in square 

brackets). The results for the three GoF approaches are detailed in Appendix D 

which also reports the p-values calculated. 

The results based on the Empirical Copula Method22 reveal that seven out of 

the ten pairs present tail dependence (AB, AC, AD, BC, BD, CD, DE), i.e. the 

association between default rates in extreme cases is more intense than 

assumed by the Gaussian Copula. Six of the pairs have right-tail dependence 

(AB, AC, AD, BD, CD, DE) and only one pair, CD, has low default rates more 

related. Therefore these estimations indicate that most of the associations 

among credit card loans lead to accentuated losses in adverse scenarios. 

The pairs that did not present tail dependence were exactly the ones with 

negative dependence (all of them involving the riskiest segment, E, which is 

advantageous for the Bank since its highest expected losses are mitigated by 

better performance of other segments). Note that even in these three instances 

the best-fit copula was not the Gaussian one. This has some implications only 

in the central region of the default distribution and does not impact 

investigations concentrated in extreme events (which is the case of this study). 

Compared to the estimations in the prior section (founded on the complete 

default distributions), the results derived from the fit to the right tail allowed a 

greater rejection of the Gaussian copula (especially with reference to the 

Kendall’s Transform GoF approach according to which that copula can be 

rejected in two pairs when using the complete default distributions and in six 

pairs when only the right tails of those distributions are considered). 

 

                                                           
22

 As before, the estimations are interpreted with respect to this approach due to its superior 
robustness according to the pertinent literature (Genest et al., 2009 and Berg, 2009). 
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3.6 ESTIMATION OF JOINT EXTREME DEFAULTS: COMPARISON 
BETWEEN TRADITIONAL METHODS AND COPULAS 

In this section, estimations of joint losses (default rates) following the 

assumption of normality (both univariate and multivariate) are compared to 

evaluations based on Copula Theory. It is expected that, in general, 

approaches based on copulas give more accurate assessment of joint 

extremely high losses. To test this hypothesis, we calculated the probability of 

default rates, 
IX  and JX  in segments I  and J  respectively, being 

simultaneously above specific levels (values) 
Ix  and Jx  as follows: 

- Assuming normality:  

 

),()()(1),Pr( JIJIJJII xxxxxXxX   

 

where    indicates the cdf  of a normal distribution; and 

-   Using the best-fit survival copula: 

 

)](1),(1[ˆ),Pr( JJIIJJII xFxFCxXxX   

 

where Ĉ  is a survival copula, i.e. links “survival ranks”: (.)1 F ; IF  and JF  

are the cdfs of the (unknown) distributions of default rates IX  and JX , 

respectively. 

Given that the dataset has 24 observations, the following proportions of 

“extremely high” levels (percentiles) of default rates were selected: 4.17% 

(1/24), 8.33% (2/24), 12.50% (3/24), 16.67% (4/24), 20.83% (5/24), and 25% 

(6/24). Thus, for each pair of segments we compare estimations of potential 

joint losses in those highest levels. For instance, the likelihood that the 4.17% 

highest default rates in segment I  happen at the same time that the 4.17% 

highest default rates in segment J , and so on.  
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As the best-fit copulas were estimated according to two approaches (based on 

the complete default distributions and on their right tails), the survival copulas 

used to evaluate the joint occurrences were also determined following both 

strategies. 

 

3.6.1 Survival copulas estimated considering the complete distributions of 
default rates 

The results pertaining to the survival copulas estimated from the whole default 

distributions are presented in Table 3.6 where the first column shows the 

proportion of the highest defaults (not the default rates themselves). The 

columns labelled “Dataset” give the proportion of joint default rates observed in 

the credit card portfolio at the respective levels.  

According to Table 3.6, in 63.33% of the scenarios, the approximations derived 

from copulas were closer to the likelihood of simultaneous high default rates 

observed in the credit card portfolio than the predictions from the normal 

distribution. That is, in 38 out of the 60 situations represented in Table 3.6, the 

absolute difference between columns “Dataset” and “Copula” was smaller than 

the absolute difference between columns “Dataset” and “Normal”. 

Notwithstanding, this approach resulted in higher underestimation rate (16.67%) 

than calculations assuming normality (11.67%). Hence this empirical analysis 

does not support the hypothesis that evaluations based on normality 

assumptions are prone to underestimate joint “extreme” defaults since their 

underestimation ratio was relatively low (11.67%) compared to the alternative 

method (16.67%). This is likely due to the short period covered by the dataset 

which virtually ruled out the probability of joint “extreme” occurrences (if we 

defined “extreme” in this dataset as, for example, above the 95th percentile, 

such “extreme” events would take place only if the highest default rate of each 

segment happened in the same month).  
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Table 3.6: Comparison of predicted joint extreme default using entire 
samples 

 
Panel A: pair AB (Joe) 

Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00996 0.00579 0.00996 0.00579 

8.33% 0.00000 0.03390 0.02110 0.03390 0.02110 

12.50% 0.04167 0.05466 0.04363 0.01299 0.00196 

16.67% 0.04167 0.08998 0.07180 0.04831 0.03013 

20.83% 0.04167 0.09485 0.10445 0.05318 0.06278 

25.00% 0.12500 0.11761 0.14070 0.00739 0.01570 

Total difference for this pair 0.16573 0.13747 

 

Panel B: pair AC (Gumbel) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.01429 0.01219 0.01429 0.01219 

8.33% 0.00000 0.04202 0.03188 0.04202 0.03188 

12.50% 0.04167 0.06583 0.05593 0.02416 0.01427 

16.67% 0.04167 0.10950 0.08335 0.06783 0.04169 

20.83% 0.08333 0.12797 0.11358 0.04464 0.03025 

25.00% 0.12500 0.15524 0.14625 0.03024 0.02125 

Total difference for this pair 0.22320 0.15152 

 

Panel C: pair AD (Galambos) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - 
Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00513 0.00174 0.00513 0.00174 

8.33% 0.00000 0.03551 0.00694 0.03551 0.00694 

12.50% 0.00000 0.04552 0.01563 0.04552 0.01563 

16.67% 0.00000 0.09269 0.02778 0.09269 0.02778 

20.83% 0.04167 0.10413 0.04340 0.06247 0.00174 

25.00% 0.04167 0.14683 0.06250 0.10516 0.02083 

Total difference for this pair 0.34647 0.07465 
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Panel D: pair AE (Student t) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00074 0.00000 0.00074 

8.33% 0.00000 0.00006 0.00247 0.00006 0.00247 

12.50% 0.00000 0.00307 0.00547 0.00307 0.00547 

16.67% 0.00000 0.01481 0.01017 0.01481 0.01017 

20.83% 0.00000 0.02134 0.01706 0.02134 0.01706 

25.00% 0.00000 0.05369 0.02672 0.05369 0.02672 

Total difference for this pair 0.09297 0.06263 

 

Panel E: pair BC (Joe) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.04167 0.02615 0.01446 0.01552 0.02720 

8.33% 0.08333 0.05749 0.04447 0.02584 0.03887 

12.50% 0.08333 0.10913 0.08128 0.02580 0.00206 

16.67% 0.08333 0.11965 0.12152 0.03632 0.03818 

20.83% 0.16667 0.12932 0.16359 0.03734 0.00308 

25.00% 0.16667 0.14136 0.20665 0.02531 0.03998 

Total difference for this pair 0.16612 0.14937 

 

Panel F: pair BD (Student t) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00783 0.00720 0.00783 0.00720 

8.33% 0.04167 0.03707 0.01838 0.00460 0.02328 

12.50% 0.04167 0.06548 0.03276 0.02382 0.00891 

16.67% 0.04167 0.07776 0.05012 0.03609 0.00845 

20.83% 0.04167 0.08322 0.07039 0.04155 0.02872 

25.00% 0.04167 0.09841 0.09352 0.05674 0.05186 

Total difference for this pair 0.17062 0.12842 
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Panel G: pair BE (Student t) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00113 0.00000 0.00113 

8.33% 0.00000 0.00005 0.00307 0.00005 0.00307 

12.50% 0.00000 0.00503 0.00601 0.00503 0.00601 

16.67% 0.00000 0.00873 0.01026 0.00873 0.01026 

20.83% 0.00000 0.01177 0.01627 0.01177 0.01627 

25.00% 0.00000 0.02265 0.02459 0.02265 0.02459 

Total difference for this pair 0.04822 0.06133 

 

Panel H: pair CD (Clayton) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.01400 0.00599 0.01400 0.00599 

8.33% 0.04167 0.05045 0.01583 0.00878 0.02584 

12.50% 0.04167 0.08756 0.02871 0.04590 0.01296 

16.67% 0.04167 0.10206 0.04444 0.06039 0.00278 

20.83% 0.04167 0.12320 0.06296 0.08153 0.02129 

25.00% 0.08333 0.13932 0.08423 0.05598 0.00090 

Total difference for this pair 0.26658 0.06975 

 
 

Panel I: pair CE (Gaussian) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00006 0.00000 0.00006 

8.33% 0.00000 0.00005 0.00060 0.00005 0.00060 

12.50% 0.00000 0.00577 0.00231 0.00577 0.00231 

16.67% 0.00000 0.01001 0.00590 0.01001 0.00590 

20.83% 0.00000 0.01761 0.01209 0.01761 0.01209 

25.00% 0.04167 0.03167 0.02155 0.00999 0.02011 

Total difference for this pair 0.04342 0.04107 
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Panel J: pair DE (Plackett) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00002 0.00517 0.00002 0.00517 

8.33% 0.00000 0.00923 0.01797 0.00923 0.01797 

12.50% 0.00000 0.06704 0.03605 0.06704 0.03605 

16.67% 0.00000 0.09455 0.05816 0.09455 0.05816 

20.83% 0.04167 0.11596 0.08357 0.07429 0.04190 

25.00% 0.12500 0.16891 0.11179 0.04391 0.01321 

Total difference for this pair 0.28904 0.17246 

Comparison between estimations of likelihood of joint extremely high default rates 
(normality vs. copulas). The survival copulas are informed in parenthesis after the 
names of the pairs and were estimated based on entire distributions of default rates. 

 
 

However, if we take into account the average magnitude of the differences 

between estimations and observed default rates in each pair of segments, the 

copula method was better for nine of the ten pairs (the sum of the fifth column is 

greater than the sum of the last column for all pairs apart from BE). In other 

words, “on average” (considering the six risk levels tested), the copula model 

yielded better results.  

 

3.6.2 Survival copulas estimated considering the right tail of default rate 
distributions  

The comparison between copula and traditional methods was repeated by 

using survival copulas estimations based only on the upper tail (above the 75th 

percentile) of the default rate distributions (method similar to the one presented 

in Section 3.5.2). The results are displayed in Table 3.7. 

The copula estimations were closer to the real default rates (observed in the 

dataset) in 70% of the cases but presented a higher underestimation rate 

(26.67%) than the normality-based estimations (11.67%). As in the analysis of 

the previous item (for survival copulas estimated from the whole default 

distributions), this finding does not corroborate the idea that evaluations from 

normality assumptions tend to underestimate the odds of extreme events. 

Again, this failure in confirming that hypothesis is likely due to the short range 
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covered by the dataset which excludes the possibility of checking simultaneous 

occurrences in the very tail of the distributions (for instance, the 1% highest 

default rates). 

Nevertheless, taking into consideration each pair separately, the average of the 

difference between estimations and observed default rates was smaller for the 

copula approach in all ten pairs (for each pair, the sum of the last column is less 

than the sum of the fifth column in Table 3.7).  

 

Table 3.7: Comparison of predicted joint extreme default rates  
using tail distributions 

 
Panel A: pair AB (Clayton) 

Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00996 0.01015 0.00996 0.01015 

8.33% 0.00000 0.03390 0.02350 0.03390 0.02350 

12.50% 0.04167 0.05466 0.03934 0.01299 0.00232 

16.67% 0.04167 0.08998 0.05753 0.04831 0.01586 

20.83% 0.04167 0.09485 0.07800 0.05318 0.03633 

25.00% 0.12500 0.11761 0.10076 0.00739 0.02424 

Total difference for this pair 0.28904 0.13988 

 

Panel B: pair AC (Clayton) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.01429 0.01101 0.01429 0.01101 

8.33% 0.00000 0.04202 0.02504 0.04202 0.02504 

12.50% 0.04167 0.06583 0.04145 0.02416 0.00021 

16.67% 0.04167 0.10950 0.06010 0.06783 0.01844 

20.83% 0.08333 0.12797 0.08095 0.04464 0.00239 

25.00% 0.12500 0.15524 0.10399 0.03024 0.02101 

Total difference for this pair 0.22320 0.07809 
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Panel C: pair AD (Galambos) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00513 0.00174 0.00513 0.00174 

8.33% 0.00000 0.03551 0.00694 0.03551 0.00694 

12.50% 0.00000 0.04552 0.01563 0.04552 0.01563 

16.67% 0.00000 0.09269 0.02778 0.09269 0.02778 

20.83% 0.04167 0.10413 0.04340 0.06247 0.00174 

25.00% 0.04167 0.14683 0.06250 0.10516 0.02083 

Total difference for this pair 0.34647 0.07465 

 

Panel D: pair AE (Frank) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00024 0.00000 0.00024 

8.33% 0.00000 0.00006 0.00112 0.00006 0.00112 

12.50% 0.00000 0.00307 0.00292 0.00307 0.00292 

16.67% 0.00000 0.01481 0.00600 0.01481 0.00600 

20.83% 0.00000 0.02134 0.01085 0.02134 0.01085 

25.00% 0.00000 0.05369 0.01806 0.05369 0.01806 

Total difference for this pair 0.09297 0.03919 

 

Panel E: pair BC (Joe) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.04167 0.02615 0.01446 0.01552 0.02720 

8.33% 0.08333 0.05749 0.04447 0.02584 0.03887 

12.50% 0.08333 0.10913 0.08128 0.02580 0.00206 

16.67% 0.08333 0.11965 0.12152 0.03632 0.03818 

20.83% 0.16667 0.12932 0.16359 0.03734 0.00308 

25.00% 0.16667 0.14136 0.20665 0.02531 0.03998 

Total difference for this pair 0.16612 0.14937 
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Panel F: pair BD (Galambos) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00783 0.00174 0.00783 0.00174 

8.33% 0.04167 0.03707 0.00694 0.00460 0.03472 

12.50% 0.04167 0.06548 0.01563 0.02382 0.02604 

16.67% 0.04167 0.07776 0.02778 0.03609 0.01389 

20.83% 0.04167 0.08322 0.04340 0.04155 0.00174 

25.00% 0.04167 0.09841 0.06250 0.05674 0.02083 

Total difference for this pair 0.17062 0.09896 

 

Panel G: pair BE (Frank) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00015 0.00000 0.00015 

8.33% 0.00000 0.00005 0.00073 0.00005 0.00073 

12.50% 0.00000 0.00503 0.00197 0.00503 0.00197 

16.67% 0.00000 0.00873 0.00418 0.00873 0.00418 

20.83% 0.00000 0.01177 0.00781 0.01177 0.00781 

25.00% 0.00000 0.02265 0.01347 0.02265 0.01347 

Total difference for this pair 0.04822 0.02832 

 

Panel H: pair CD (Clayton) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.01400 0.00599 0.01400 0.00599 

8.33% 0.04167 0.05045 0.01583 0.00878 0.02584 

12.50% 0.04167 0.08756 0.02871 0.04590 0.01296 

16.67% 0.04167 0.10206 0.04444 0.06039 0.00278 

20.83% 0.04167 0.12320 0.06296 0.08153 0.02129 

25.00% 0.08333 0.13932 0.08423 0.05598 0.00090 

Total difference for this pair 0.26658 0.06975 
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Panel I: pair CE (Gaussian) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00006 0.00000 0.00006 

8.33% 0.00000 0.00005 0.00060 0.00005 0.00060 

12.50% 0.00000 0.00577 0.00231 0.00577 0.00231 

16.67% 0.00000 0.01001 0.00590 0.01001 0.00590 

20.83% 0.00000 0.01761 0.01209 0.01761 0.01209 

25.00% 0.04167 0.03167 0.02155 0.00999 0.02011 

Total difference for this pair 0.04342 0.04107 

 

Panel J: pair DE (Joe) 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00002 0.00297 0.00002 0.00297 

8.33% 0.00000 0.00923 0.01153 0.00923 0.01153 

12.50% 0.00000 0.06704 0.02521 0.06704 0.02521 

16.67% 0.00000 0.09455 0.04361 0.09455 0.04361 

20.83% 0.04167 0.11596 0.06636 0.07429 0.02470 

25.00% 0.12500 0.16891 0.09314 0.04391 0.03186 

Total difference for this pair 0.28904 0.13988 

Comparison between estimations of likelihood of joint extremely high default rates 
(normality vs. copulas). The survival copulas are informed in parenthesis after the 
names of the pairs and were estimated based on the right tails (above the 75th 
percentile) of the distributions of default rates. 

 

3.7   CONCLUSIONS 

Copula Theory has been employed in credit risk analyses but, to the best of our 

knowledge, this is the first investigation to present an empirical study of copulas 

for consumer loans. Moreover we test five copulas that are not typically 

considered in the literature and three of them (Galambos, Hüsler-Reiss, and 

Plackett)23 were found to be representative of the dependence between some 

segments. Given that the main objective here is to find dependence structures 

(copulas) that yield more precise estimation of simultaneous high losses, 

another innovation was the inclusion of goodness-of-fit (GoF) tests based 

                                                           
23

 These three families were found when the GoF tests were based on the complete 
distributions of the default rates. Four “atypical” copulas resulted from estimations supported by 
the right tail of the default distributions: Galambos, Hüsler-Reiss, Joe, and Plackett.  
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exclusively on the right tails of the default distributions (along with the complete 

distributions, which is often done). 

As for the usual strategy (considering the whole default distributions), among 

the ten segments investigated, eight present tail dependence24 (i.e. higher 

association across extreme occurrences), from which five have upper-tail 

dependence, indicating that higher losses are more correlated. This suggests 

that, especially in downturns, the Financial Institution is subject to higher losses 

in the credit card portfolio than those assumed by traditional models. Only in 

one pair of segments the dependence is expressed by the Gaussian Copula 

(implicit in many models currently in use). 

With regard to the alternative strategy (GoF based on the right tail of default 

distributions), seven pairs have tail dependence; six of them are right-tail 

dependent. This confirms the conclusion that most of the pairs tend to be more 

associated when default rates are higher (i.e. in unfavourable economic 

scenarios). None of the pairs is represented by the Gaussian Copula. 

Although the Gaussian Copula (the basis of some traditional credit risk models) 

cannot be rejected for most of the pairs (since they cannot be statistically 

rejected due to the high p-values in the GoF tests), an important conclusion of 

this study is that the dependence across credit card loans can be better 

expressed by other copula families. This multiple representation for the 

dependence is likely due to the small amount of observations evaluated which 

is insufficient to generate a clear distinction among the copulas tested. However 

when the copulas are estimated considering only the right tail of the default 

distributions, the Gaussian Copula can be rejected in more pairs (particularly in 

analyses based on the Kendall’s Transform GoF). 

The limitations of traditional credit models in terms of estimation of joint extreme 

losses refer not only to the assumption of univariate losses’ distributions but 

also to the treatment of the joint behaviour across defaults. In the credit card 

portfolio analysed here, we show some examples of segments (A, B, and C) 
                                                           
24

 Although the results for two of those pairs are not statistically significant. 
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with distributions statistically close to normality25 whose dependence is far from 

the Gaussian Copula implicit in traditional credit risk models. 

The comparison between joint extreme losses estimations derived from 

normality assumptions and copulas followed those two GoF strategies 

mentioned above. Evaluation using copulas yielded better results for 63% 

(70%) of the scenarios tested when the complete (right tails of) default 

distributions were used to estimate the copulas. When considering the average 

performance for each pair of segments, copula functions were more 

representative than bivariate normal distributions for nine pairs (ten pairs for the 

right-tail GoF approach). However, contrary to what is theoretically expected, 

the copula technique presented higher underestimation ratio of high losses 

(17% and 27% for the complete and right-tail distributions, respectively) than 

the Gaussian model (12%). 

In sum, it seems that there is a trade-off between the two GoF approaches: the 

one based on the right-tail of default distributions selects copulas more 

representative of extreme defaults (which improves copula estimations of joint 

high defaults) at the expense of higher underestimation indices (which we want 

to avoid).  

Nonetheless our conclusions are limited due to the short period covered by the 

dataset (24 months). Even though it includes some months with intense losses 

at the end of 2008 (the so-called “credit crunch”), which could result in a higher 

proportion of conjunct high default rates, it does not have enough observations 

to generate potential joint losses in the extremely upper tail of the distributions 

(98% or 99%, for example) where the biggest deficiency of traditional models 

seems to be26. Therefore a natural extension of this work is to apply the same 

procedure in a dataset covering a longer time horizon to verify the estimations 

                                                           
25

 Albeit the results of the test (Jarque-Bera) used were not significant (see Table 3.2). 
26

 On the other hand, the number of observations used in this study is analogous to the length 
of datasets commonly available in many financial institutions. So, the limitations of this empirical 
analysis are likely the same to be found in practical applications of Copula Theory to banks’ 
loan portfolios. 
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of joint events at extreme levels. In order to consolidate the use of copulas in 

consumer loans, the dependence structure and the probability of severe losses 

in other types of portfolios, e.g. mortgages and fixed term loans, should be 

assessed and compared to estimations from traditional models.  

It is worth bearing in mind that the method used to estimate the copula 

parameters in this analysis assumes that the variables (default rates) do not 

present temporal dependence. In future studies, techniques that take serial 

correlation into account should be employed.  

Also, due to the diversity of copulas found to represent the association between 

pairs of segments, it is interesting to search for a combination of copulas that 

represents the heterogeneous dependence across more than two segments 

together. This topic will be addressed in the next chapter.  
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CHAPTER 4 
ESTIMATION OF JOINT DEFAULTS IN PORTFOLIOS  

WITH HETEROGENEOUS DEPENDENCE 
 

“Most people are more comfortable with old problems  
than with new solutions.”  

(Anonymous) 
 
4.1  INTRODUCTION 

As shown in the previous chapter, pairs of credit segments present distinct 

dependence structures. This can be seen as evidence that the assumption of 

equal dependence for all pairs of loans or segments in a portfolio does not 

express the reality in financial institutions and therefore may lead to biased 

assessment of potential joint extreme losses27. 

To capture different relationships among loans and to still keep the advantage 

of Copula Theory concerning the identification of tail association, we use vine 

copulas, the basic idea of which is to decompose multivariate copulas into a 

cascade of bivariate copulas so that the estimation of higher-dimension 

dependence can be performed through the combination of relatively simple 

steps28. 

This approach was tested for the credit card portfolio data studied in Chapter 3. 

The credit segments were pooled into triplets and the dependence of each trio 

was estimated. The results showed a wide variety of structures that altered the 

conclusions from the pairwise analysis in some cases. The main drawback of 

bivariate examinations in the context of this thesis became evident in situations 

where none of the three bivariate copulas estimated separately for segments in 

a triplet pinpointed the right-tail dependence identified in the vine approach. 

                                                           
27

 Recall that the evaluation of joint losses in credit portfolios according to factor models 
presumes that the latent variables of all pairs of loans (and therefore their defaults) have the 
same correlation (represented by   in expression [2.4], Chapter 2). 
28

 Puzanova et al. (2009) suggest three different techniques to estimate the risk in 
heterogeneous portfolios but the heterogeneity in that paper is related to the loans’ size (i.e. the 
assumption of a portfolio composed of a large number of small loans is relaxed). There is no 
concern in terms of asymmetric dependence and the losses simulated to test the models are 
assumed to come from a multivariate normal distribution. 
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Once the best-fit copulas for each triplet were found, we estimated the 

likelihood of simultaneous high default rates following the vine construction and 

compared such estimates to calculations conditional on the assumption of 

normally-distributed losses. The evaluations based on vine copulas 

outperformed the normal method in 80% (65%) of the scenarios considered 

when the best-fit copulas were inferred from the right tail of (complete) default 

rates’ distributions.  

Unlike the use of bivariate copulas whose applications have spread into many 

financial fields, there are few applications of vine copulas in finance. Exceptions 

are Heinen and Valdesogo (2009), Aas et al. (2009), Aas and Berg (2009), and 

Maugis and Guegan (2010) who studied stocks’ returns29. Therefore vine 

copulas have not been employed to model dependence across default rates in 

credit portfolios and this chapter aims to contribute to fill this gap in the 

literature. 

Vine copulas are explained in the next section. Then the criteria to group the 

loans into triplets are described. In Section 4.4, the dependence for each triplet 

is estimated. Next, estimates of joint high losses derived from the best-fit vine 

copulas are compared to estimates based on the assumption of normally-

distributed default rates. Section 4.6 concludes. 

 

4.2  VINE COPULAS 

4.2.1 Decomposition of conditional and multivariate distributions 

Let (.)f  represent the density of a cumulative distribution function (.)F . From 

basic statistics (see, for instance, Casella and Berger, 2002), we know that 

 

)(

),(
)|(

2

21
21

xf

xxf
xxf   

                                                           
29

 Aas et al. (2009) analysed bond indexes’ returns as well. More general applications of vine 
copulas to dependence modelling are compiled in Kurowicka and Joe (2010). 

[4.1] 
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for 0)( 2 xf  and where )|( 21 xxf  is the density of a variable 1X  evaluated at 

1x   conditional on a variable 2X  evaluated at 2x .  Therefore, 

 

)|().(),( 21221 xxfxfxxf   

 

For d random variables represented by a vector ),...,( 1 dXXX , the joint 

density function ),...,( 1 dxxf  can be decomposed into (see, e.g., Aas et al., 

2009): 

 

),...,|()...,|().|().(),...,( 211211 ddddddddd xxxfxxxfxxfxfxxf   

 

From the definition of copulas given in Chapter 2, we know that a joint 

distribution (.)F  may be expressed by means of a copula C : 

 

))(),...,((),...,( 111 ddd xFxFCxxF   

 

Assuming that the joint distribution (.)F  is absolutely continuous and the d   

univariate distributions )(),...,( 11 dd xFxF  are strictly increasing and continuous, 

we can apply the chain rule to derive (.)F  and get its density (see Aas et al., 

2009): 

 

)()...()).(),...,((),...,( 1111...11 dddddd xfxfxFxFcxxf   

 

[4.2] 
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where dc ...1  is the d-variate copula density. Note that the copula captures the 

dependence amongst the variables and the marginals (.)f  express the shapes 

of the distributions. The bivariate case, for example, is: 

  

))(),(().().(),( 221112221121 xFxFcxfxfxxf   

 

The combination of [4.1] and [4.3] yields the conditional density expressed in 

terms of the copula density: 

))(),(().()|( 2211121121 xFxFcxfxxf   

 

In general, each term involving conditional densities results in: 

 

)|()).|(),|(()|( | jjjjxv xfvFxFcxf
j 

 vvvv v
 

 

where x  is the conditioned variable, v  is a vector of conditioning variables, jv  

is the vector v  without the variable jv  and 
jxvc

v|  is the density of the copula 

that links the conditional distribution functions )|( jxF v  and )|( jjvF v . Such 

functions are calculated as in Joe (1996)30: 

 

)|(

))|(),|((
)|(

|

jj

jjjxv

vF

vFxFC
xF

jj












v

vv
v

v

 

                                                           
30

 A detailed proof of this formula is given in Czado (2010). 

[4.3] 
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where 
jjxvC

v| is a copula distribution function, jv  is a component of vector v   

and jv  is the vector v  excluding this component. When v  is univariate, the 

conditional distribution becomes: 

)(

))(),((
))(|)(()|( |

vF

vFxFC
vFxFCvxF xv

vx



  

 

Since this chapter will associate default rates of three credit segments the 

trivariate version of [4.2] is of great interest here: 

),,( 321| 321
xxxf xxx  

))|(),|(()).(),(()).(),(().().().( 32313|12332223331113332211 xxFxxFcxFxFcxFxFcxfxfxf  

 

However it is important to bear in mind that [4.5] is only one of the three 

possible representations of ),,( 321 xxxf  given that permutations of 1x , 
2x  and 

3x  are likely to result in different copulas and conditional distributions .)|(.F . In 

this example, 3x  was randomly chosen as the conditioning variable (i.e. after 

the symbol “|” in the conditional distributions). The other two variables, 1x  and 

2x , could also be selected and this would probably yield different values for the 

joint density ),,( 321 xxxf . This essay does not have the objective of finding the 

arrangement of variables that leads to the best approximation to the 

dependence of an observed multivariate dataset. This topic is treated in Maugis 

and Guegan (2010) who suggested a method to identify the closest vine to the 

multivariate copula of a dataset. 

Our derivation of [4.5] , following the concepts above, is shown in Apendix E. 

Decompositions of joint densities with up to five variables are presented in 

Bedford and Cooke (2001) and Aas et al. (2009).  

[4.5] 

[4.4] 
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4.2.2 Vines (a graphical introduction) 

Formulas, such as [4.5], that combine several bivariate copulas to express the 

dependence among more than two variables may be defined with the help of 

acyclic graphs named vines that can be organised in the form of a nested set of 

trees (see Joe, 1996)31. Figure 4.1 displays one possible representation of the 

dependence among three variables 
1X , 

2X  and 3X . Each variable or 

combination of variables is named a node. Each tree is a diagram that 

expresses the links among nodes. The links between variables or pools of 

variables are called edges and each edge corresponds to a bivariate copula 

that will be a node in the subsequent tree. 

  

 

 

 

 

 

 

 

FIGURE 4.1: A dependence structure among three variables represented by two trees. 

 

Tree 1 represents the connections across the variables (nodes) 1X , 2X  and 3X . 

The edges 21XX  and 32 XX  in that tree indicate the dependence (copula) for 

                                                           
31

 We adopt here the term vine following Bedford and Cooke (2001, 2002) albeit it was not 
employed in the original study of Joe (1996). This method is also called Pair-Copula 
Construction (PCC) as in Aas et al. (2009) and Aas and Berg (2009). 

X1 X2 X3 Tree 1 
X1X2 X2X3 

X1X2 X2X3 

X1X3|X2 

Tree 2 

edges nodes 
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each pair: ))(),(( 21 XFXFC  for the link between 
1X  and 

2X  and 

))(),(( 32 XFXFC  for the link between
2X  and 3X .  

Those two edges ( 21XX  and 32 XX ) in Tree 1 are the nodes of Tree 2. Given 

that 2X  is the common term in both nodes, it becomes the conditioning variable 

(placed after the symbol “|”) in the edge 231 | XXX  which, in turn, symbolises 

the copula ))|(),|(()|)(),(( 2321231 XXFXXFCXXFXFC   referent to the 

dependence between 
1X  and 3X  conditional on 2X . For the sake of simplicity, 

in the following figures, the edges will be written as combinations of variables 

(for instance, 21XX  or 231 | XXX ) although, in fact, they represent their 

dependence (copulas).  

If the composition of the trees is modified, the resultant nodes (and therefore 

the copulas) will change. In Figure 4.2, the positions of 2X  and 3X  are 

swapped when compared to Figure 4.1 and 3X  becomes the conditioning 

variable. Consequently, the final node is 321 | XXX  (instead of 231 | XXX  in 

Figure 4.1) and the related copula is ))|(),|(( 3231 XXFXXFC . 

 

 

 

 

 

 

 

FIGURE 4.2: An alternative structure of dependence among three variables 
represented by two trees. 

X1 X3 X2 Tree 1 
X1X3 X3X2 

X1X3 X3X2 

X1X2|X3 

Tree 2 
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There are many ways to construct vines but we will focus only on regular vines 

suggested by Bedford and Cooke (2001, 2002). A vine is called regular if the 

number of its variables (d) is equal to the number of trees (T ) plus one (i.e.  

1 Td ).  

Among the regular vines, D-vines and canonical vines are the most popular 

(see Kurowicka and Cooke, 2002 and Aas et al., 2009). They differ from each 

other with respect to the way of decomposing the density. Whilst in D-vines no 

node in any tree is connected to more than two edges (see Figure 4.3), in 

canonical vines, each tree has a unique node that is connected to all other 

nodes (see Figure 4.4 where, in tree T1, for example, X1 is linked to all other 

four nodes, X2, X3, X4 and X5). The trivariate analysis is a special case where 

the D-vine and the canonical vine result in the same expression for the density 

(Aas et al., 2009). 

The D-vine depicted in Figure 4.3 consists of four trees qT  ( 4,...,1q ) where 

tree qT  has q6  nodes and q5 edges. Each edge corresponds to a bivariate 

copula that will be part of the decomposition of the multivariate density. In 

general, a whole decomposition is defined by 2/)1( dd  edges and the 

marginal density of each variable. In the example above, there are 10 edges, so 

the density expression will have 10 bivariate copulas (four unconditional and six 

conditional): 

 

234|1534|2523|144|353|243|12453423125432154321 ..............),,,,( ccccccccccfffffxxxxxf   

 

 

[4.6] 
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where ),,,,( 54321 xxxxxf  is the joint density of five variables evaluated at those 

respective values and the remaining notation is simplified for convenience: if  is 

the marginal density of iX  at ix , ijc  is the density copula of )( ixF  and )( jxF , 

and kijc |  
is the conditional density copula of ))|(),|(( kjki xxFxxF . 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.3: D-vine depicting the dependence among five variables. 

 

Figure 4.4 shows a canonical vine with five variables. The multivariate density 

depicted in that diagram will be: 

 

123|4534|2512|341|251|241|23151413125432154321 ..............),,,,( ccccccccccfffffxxxxxf   

 

where the same notation of [4.6] applies. Notice that most of the (bivariate) 

copulas are not the same for the D-vine and the canonical vine in [4.6]. 

X1X2 

X1 X2 X3 X4 X5 

X2X3 X3X4 X4X5 

X1X2 X2X3 X3X4 X4X5 
X1X3|X2 X2X4|X3 X3X5|X4 

X1X3|X2 X2X4|X3 X3X5|X4 

X1X4|X2X3 X2X5|X3X4 

X1X4|X2X3 X2X5|X3X4 

X1X5|X2X3X4 

T2 

T3 

T4 
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FIGURE 4.4: Canonical vine depicting the dependence among five variables. 
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An example of a regular vine that is neither a D-vine nor a canonical vine could 

start with the tree illustrated in Figure 4.5. It is not a D-vine because the node 

3X  is connected to more than one node and it is not a canonical vine because 

none of the nodes is connected to all other nodes. 

 

 

 

 

 

 

 

FIGURE 4.5: A regular vine that is neither a D-vine nor a canonical vine. 

 

4.2.3 Nested (Archimedean) Copulas 

High-dimension dependence can also be expressed by means of nested 

copulas (copulas of the form ),( vuC  in which at least one of the terms u  and v  

is another copula). This technique is restricted to Archimedean copulas32 since 

this class is the only one to present the associative property that allows such a 

combination.  

Figures 4.6 and 4.7 exhibit two possible nested copulas linking three variables 

(each). To ease the comparison between vine and nested copulas, the notation 

used in Section 4.2.2 is kept such that each combination of variables represents 

the related copula (for instance, in Figure 4.6, X1X2 and (X1X2)X3 stand for the 

copulas ))(),(( 2112 XFXFC  and )]()),(),(([ 321123,12 XFXFXFCC , respectively, 

where the subscripts were added to the copula notations in order to distinguish 

the bivariate copula from the nested copula which may belong to the different 

families of Archimedean copulas).  

                                                           
32

 The general form of Archimedean copulas was shown in Chapter 2, Section 2.3.2.2. 

X1 X2 X3 X4 

X5 

X1X2 X2X3 X3X4 

X4X5 
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FIGURE 4.6: A nested copula representing the dependence across three variables. 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.7: An alternative nested copula to represent the dependence across three 
variables. 
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Bear in mind that the aforementioned nested construction is distinct from a 

multivariate Archimedean copula of the form ))(),(),(( 321 XFXFXFC
 
in which 

one Archimedean copula family C  connects all variables (three, in this case) 

through the same structure (see, e.g., Embrechts et al., 2003 and Nelsen, 2006, 

Chapter 5). Consequently, nested representations are more flexible than the 

multivariate versions of copula families given that the former can combine 

diverse relationships in different pairs of variables and therefore capture more 

complex joint dependence. The copula ))(),(),(( 321 XFXFXFC , for example, 

indicates that all the variables studied (X1, X2 and X3) follow the same 

dependence structure while the nested copula )]()),(),(([ 321123,12 XFXFXFCC

may express a more complex and realistic structure if C12,3 and C12 represent 

different Archimedean families (C12 = Clayton and C12,3 = Frank, for instance, 

which means that X1 and X2 are left-tail dependent and that the relationship 

between this pair and the other variable, X3, is symmetric without tail 

dependence). 

Even though the initial structure of the three variables in Figures 4.1, 4.6 and 

4.7 is the same, neither the nested copula in Figure 4.6, 

)]()),(),(([ 321123,12 XFXFXFCC , nor the nested copula in Figure 4.7, 

))](),((),([ 3223123,1 XFXFCXFC , is equivalent to the vine copula of Figure 4.1, 

))|(),|(( 2321 XXFXXFC .  

Aas and Berg (2009) found out that vine copulas (pair-copula constructions) 

outperformed nested copulas in relation to the best fit to two multivariate 

datasets checked (one of which was pertaining to equity returns). Furthermore, 

the authors highlighted that, although both methods rely on the same principle 

(decomposition of multivariate dependencies into cascades of bivariate 

copulas), vine copulas are not restricted to the Archimedean class and can 

generate more potential structures; for d variables, 2/)1( dd  vines can be 
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formed whilst nested Archimedean copulas originate only 1d  combinations. 

This latter aspect is important given that the greater number of constructions 

from the vine approach gives more options to find the best-fit dependence for 

high-dimension data. In the trivariate case ( 3d ), vines and Archimedeans 

have three and two potential combinations respectively and as the number of 

variables goes up, the advantage of vines becomes evident: for 4d , vines 

result in six combinations and nested Archimedean copulas in three; for 5d , 

vines give 10 different structures against four from nested associations. 

Due to the advantages of vine constructions over nested Archimedean copulas, 

our analysis will use the former method. Readers interested in more details 

about nested copulas should refer to, e.g., Whelan (2004), Morillas (2005), and 

Savu and Trede (2006). 

 

4.2.4 Estimation of joint cumulative distribution functions 

The literature on vine copulas usually analyses the decomposition of joint 

dependence in terms of densities. In this study, we are particularly interested in 

joint cumulative distributions which can be found through the integration of the 

respective densities. Cumulative versions of joint densities are given in Joe 

(1996, 1997). For three variables 1X , 2X  and 3X  evaluated at 1x , 2x  and 3x  

respectively, the joint cumulative distribution is: 

 

 


3

)()).|(),|((),,( 3332313|12321

x

dXFXxFXxFCxxxF  

 

where (.)F  is a distribution function and 3|12C  is the copula that links the two 

distributions .)|(.F  conditional on 3X . An alternative way to estimate [4.7] is 

presented in Joe et al. (2010): 

  

[4.7] 
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 
)(

0
3323|2313|13|12321

3

)())](|)(()),(|)(([))(),(),((
xF

XdFXFxFCXFxFCCxFxFxFC

 

))](),(()),(),(([ 322331133|12 xFxFCxFxFCC  

 

where the trivariate copula ))(),(),(( 321 xFxFxFC  that returns the joint probability 

),,(],,Pr[ 321332211 xxxFxXxXxX 
 

is factorised into a vine structure 

composed of three  copulas: 3|1C  and 3|2C  (copulas of )( 1xF  and  )( 2xF  

respectively, conditional on )( 3XF
 
such that 330 xX  ) and 3|12C  (a copula 

that links those conditional associations and indicates the dependence between 

1X  and 2X  given 3X ). Note that, when integrated with respect to the 

conditioning variable 3X , 3|1C  and 3|2C  become the unconditional copulas 13C  

and 23C  that associate the pairs ))(),(( 31 xFxF  and ))(),(( 32 xFxF , 

respectively. So, the trivariate cumulative distribution function represented in 

[4.8] is given by one copula ( 3|12C ) that connects two other copulas 13(C  and 

)23C  that have a common term ( )( 3xF ) while the trivariate densities shown in 

Figures 4.1 and 4.2 are related to copulas that link conditional distributions. 

The likelihood of simultaneous occurrences above specific values ),,( 321 xxxF  

],,Pr[ 332211 xXxXxX   may be found through the trivariate survival copula 

inferred from [4.8]: 

 

 
1

)(
3323|2313|13|12321

3

)())](|)((ˆ)),(|)((ˆ[ˆ))(),(),((ˆ
xF

XFdXFxFCXFxFCCxFxFxFC

))](),((ˆ)),(),((ˆ[ˆ
322331133|12 xFxFCxFxFCC  

 

where (.)1(.) FF   and Ĉ  stands for a survival copula (explained in Chapter 

2). The remaining notation follows [4.8]. 

[4.8] 

[4.9] 
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4.3  SEGMENTATION CRITERIA 

This trivariate analysis uses the same dataset employed in the bivariate 

analysis (Chapter 3). The credit segments are as defined in the previous 

chapter such that “A” is the least risky and “E” is the riskiest. In this chapter, 

they were grouped into triplets and, since there are five segments, ten trios 

were formed. 

As said before, a joint density with three variables (like [4.5]) can be factorised 

in three different ways and each of them has a different conditioning variable. 

Consequently, the same applies to [4.7], [4.8] and [4.9]. In this empirical 

analysis, the conditioning variable was always represented by the default rates 

of the riskiest segment in the triplet. For example, the estimation of potential 

joint extreme default rates in trio BCD, Bx , Cx  and Dx , based on [4.9], used 

survival copulas of survival distributions of default rates in segments B and C 

conditional on default rates of the riskiest segment D, ))(|)((ˆ
| DBDB XFxFC  and 

))(|)((ˆ
| DCDC XFxFC , respectively, where Ĉ  indicates a survival copula, (.)F  is 

a survival distribution and DX  is the default rate of segment D to be evaluated 

from Dx  to 1. 

Obviously, the triplets could be arranged in different ways: either conditional on 

the least risky segment or on the mid-risky one. We opted for setting up the 

dependence conditional on the riskiest segment because this corresponds to 

the most conservative scenario33.  

 

  

                                                           
33

 This is due to the fact that, compared to other segments, the riskiest segment has higher 
idiosyncratic risk (see Das and Geng, 2006) and is more prone to reach its highest levels of 
default even when the economy is not in the worst state. Thus, studying the trivariate 
dependence when the riskiest segment presents its highest losses increases the chance of 
identifying possible conjunct extreme losses in economic situations that do not characterise 
downturns. 
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4.4 ESTIMATION OF DEPENDENCE STRUCTURE AMONG THREE 
SEGMENTS IN A CREDIT CARD PORTFOLIO 

4.4.1 Approach to estimate best-fit copulas and their respective 
parameters 

The type of dependence structure investigated here is compatible with D-vines 

structures (defined in Section 4.2). However since we associate three credit 

segments, and a D-vine and a canonical vine for the same three variables are 

identical to each other, the resultant vine copulas in this empirical research are 

equivalent to both types of vines.  

Canonical vines for dimensions equal to or greater than four are interesting, for 

example, to study dependence among default rates in several credit segments 

conditional on a (macroeconomic) factor. This problem follows the structure 

presented in Figure 4.4 where the node labelled as 1X  would stand for the 

factor that impacts all credit segments (variables 2X , 3X , 4X
 and 5X  in that 

case). 

The estimation of the dependence structure within each triplet defined in 

Section 4.3 was based on [4.8]. In order to find the values necessary to 

calculate that expression, the following steps were adopted: 

(i) Denote the default rate of a segment i  as ix . The conditional distributions 

))(|)(()|( | jijiji xFxFCxxF   were calculated according to [4.4] and the 

bivariate copulas estimated in Chapter 3 were used to express the 

relationship between the credit segments. For example, the level of default 

rates of segment A conditional on default rates of segment E, 

))(|)(()|( | EAEAEA xFxFCxxF  , was estimated as the first derivative of the 

copula that represents their dependence (Student t, found in Chapter 3 

based on the Empirical Copula goodness-of-fit test, taking into account the 

whole default rate distributions) with respect to )( ExF , where (.)F  is the 

distribution of default rates;  
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(ii) The copula kijC |  that links the dependence between default rates of 

segments i  and j  given the default rates of segment k  was estimated 

according to Empirical Copula goodness-of-fit test which was found in the 

literature to be the most robust (see Chapter 3). That is, the copulas kiC |  

and kjC |  calculated in step (i) were used as margins to estimate the copula 

kijC | . The candidate copulas were the same ten families considered in 

Chapter 3 (see Table 3.3). The joint dependence within trio ADE, for 

instance, is represented by a vine structure in which the Clayton Copula     

)( |EADC  connects the dependence of A conditional on E ( EAC | , a Student t 

Copula found in Chapter 3), to the dependence of D conditional on E ( EDC | , 

Plackett Copula estimated in Chapter 3). The results for all triplets will be 

presented ahead; 

(iii) After finding the best-fit copula kijC |  that links the conditional distributions, 

the parameters of the three copulas involved ( kiC | , kjC |  and kijC | ) were 

simultaneously calculated by means of the maximum pseudo-likelihood 

method proposed by Aas et al. (2009). For D-vines in general, with d  

variables, N  observations, density copulas c  and distribution functions 

(.)F , the log-likelihood function is: 
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for 11  dr  , rds 1  (where r and s are subscripts used to 

indicate the variables), and observations Nn 1 , meaning that the 

conditioning terms of each density copula .))|(.),|(( ,,.|, nrsnsrss xFxFc   

are all nqx ,  such that rsqs  . When 3d , the joint log-likelihood 
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function of default rates ix , jx  and kx , maximised with respect to the 

three parameters ),,( |kijjkik θ , is: 

 




)]);(),(([log)]);(),(({log[ ,,

1

,, jknknjjk

N

n

iknkniik xFxFcxFxFc   

)]});(|)(),(|)((log[ |,,,,| kijnknjnknikij xFxFxFxFc   

 

See Aas et al. (2009, Appendix B) for a didactic example. 

 

The procedures from (i) to (iii) were conducted twice. In the first case, the 

copulas were estimated based on the complete distributions of default rates and 

then the right tails of those distributions (above their 75th percentile)  were used.  

 

4.4.2 Estimation based on the complete default rate distributions 

Table 4.1 shows the best-fit copulas for the ten triplets and their related 

parameters estimated in accordance with [4.10]. Table 4.2 reports the shape of 

the dependence structure implied by those copulas.  

 

Table 4.1: Best-fit copulas* for trios of credit segments according to the 
complete distributions of default rates 

Trio  Dependence ( kjki |,| ) Dependence ( ki | ) Dependence ( kj | ) 

ijk  Copula Parameter Copula Parameter Copula Parameter 

ABC Plackett 0.8874 Clayton 3.0355 Clayton 11.3341 

ABD Frank -0.3062 Galambos 0.0100 Hüsler 0.6412 

ABE Student t 0.7667 Student t -0.4430 Student t -0.5059 

ACD Frank -0.4420 Galambos 0.0113 Hüsler 0.6700 

ACE Frank 0.1696 Student t -0.4430 Gaussian -0.4323 

ADE Clayton 0.0551 Student t -0.4430 Plackett 3.5806 

BCD Gaussian 1.0000 Hüsler 0.6736 Hüsler 0.6598 

BCE Gaussian 0.4012 Student t -0.5059 Gaussian -0.4323 

BDE Student t 0.0515 Student t -0.5059 Plackett 3.5806 

CDE Frank 4.0991 Gaussian -0.4323 Plackett 3.5806 

* Estimation based on the Empirical Copula goodness-of-fit test and whole distributions 
of default rates. 

[4.10] 
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Table 4.2: Dependence characteristics of the best-fit copulas estimated  
from the complete distributions of default rates 

Trio  Dependence ( kjki |,| ) Dependence ( ki | ) Dependence ( kj | ) 

ijk  Symmetry 
Tail  

dependence 
Symmetry 

Tail  
dependence 

Symmetry 
Tail  

dependence 

ABC Yes No No Yes, left No Yes, left 

ABD Yes No No Yes, right No Yes, right 

ABE Yes Yes Yes Yes Yes Yes 

ACD Yes No No Yes, right No Yes, right 

ACE Yes No Yes Yes Yes No 

ADE No Yes, left Yes Yes Yes No 

BCD Yes No No Yes, right No Yes, right 

BCE Yes No Yes Yes Yes No 

BDE Yes Yes Yes yes Yes No 

CDE Yes No Yes no Yes No 

 

Both tables corroborate the conclusion in Chapter 3 pertaining to the portfolio’s 

heterogeneity vis-à-vis the dependence structure. It becomes clear that the vine 

approach is flexible and able to capture many potential combinations of 

dependence between pairs of segments when the analysis focuses on larger 

groups (trios in this study). 

There is no general pattern of association between the conditional distributions 

– represented by ( ki | ) and ( kj | ) in Tables 4.1 and 4.2 – and the copula that 

links them – expressed as ( kjki |,| ) in those tables. For example, the joint 

copulas kijC |   in triplets ABC, BCD, BCE and CDE have the same feature 

(symmetric dependence without strong tail relationship) but their conditional 

distributions present four distinct combinations. Also, the existence of two 

symmetric conditional distributions (see triplets ABE, ACE, ADE, BCE, BDE and 

CDE) does not guarantee the symmetry of the joint copula. 

Most (nine out of ten) of the triplets present symmetric joint copulas (Plackett, 

Frank, Student t or Gaussian) and seven of them do not have tail dependence. 

This suggests that the borrower’s risk will not be excessively high in downturns. 

Two cases (ABD and ACD) confirm this: they have two right-tail dependent 
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conditional distributions (meaning that higher default rates are more associated) 

linked by a symmetric copula without tail dependence and negative parameter 

which offsets the potential increase of losses in scenarios of high default 

levels34. 

Another favourable characteristic of this credit card portfolio is the fact that the 

riskiest triplet (CDE) is represented by three symmetric copulas without tail 

dependence (Frank, Gaussian and Plackett). This avoids disproportionate 

increments of losses in downturns since the loans with the highest propensity to 

default do not have stronger association in those adverse circumstances. 

 

4.4.3 Estimation based on the upper tails of default rate distributions 

The best-fit copulas were also estimated by restricting the goodness-of-fit test 

to the right tail (above the 75th percentile) of the default’s distributions (as 

explained in Chapter 3, Section 3.5.2). The copulas and their parameters 

calculated according to [4.10] are reported in Table 4.3. To help with the 

interpretation of the dependence structures, Table 4.4 details the features of the 

copulas found.  

Most of the cases (six triplets) have a joint copula kijC |  with right-tail association 

although four of them (ABD, ABE, ACD and ACE) have parameters very close 

to zero, which means that such conditional distributions are virtually 

independent. This is beneficial to the Bank given that it reduces the possibility 

of simultaneous high losses. Another four triplets (ABC, ADE, BDE and CDE) 

are represented by symmetric copulas without tail dependence. Thus, this 

evaluation based on vine copulas estimated according to the right tail of the 

distributions reveals the benefits from the heterogeneous dependence in the 

portfolio. 

 

                                                           
34

 BCD also has this property but its joint copula (Gaussian) has parameter equal to 1 which 
indicates complete dependence and therefore does not contribute to diversify the risk of the two 
default’s distributions associated. 
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Table 4.3: Best-fit copulas* for trios of credit segments according to 
right-hand tails of default rates’ distributions 

Trio  Dependence ( kjki |,| ) Dependence ( ki | ) Dependence ( kj | ) 

ijk  Copula Parameter Copula Parameter Copula Parameter 

ABC FGM** -0.3349 Joe 1.2685 Clayton 11.3341 

ABD Galambos 0.0000 Galambos 0.0726 Gumbel 171.5563 

ABE Galambos 0.0128 Frank -3.3525 Frank -3.9902 

ACD Galambos 0.0120 Galambos 0.0131 Joe 1.1269 

ACE Galambos 0.0127 Frank -3.3525 Plackett 0.0832 

ADE Gaussian 0.0494 Frank -3.3525 Husler 0.1259 

BCD Joe 3.1704 Gumbel 1.1175 Joe 1.1269 

BCE Joe 42.8336 Frank -3.9902 Plackett 0.0832 

BDE Gaussian 0.0884 Frank -3.9902 Husler 0.1261 

CDE Gaussian 0.2074 Plackett 0.0832 Husler 0.0058 

* Estimation based on the Empirical Copula goodness-of-fit test and right-hand tails of 
default rates’ distributions. 
** FGM stands for Farlie-Gumbel-Morgenstern. 

 

Table 4.4: Dependence characteristics of best-fit copulas estimated from  
the right-hand tails of default rates’ distributions 

Trio  Dependence ( kjki |,| ) Dependence ( ki | ) Dependence ( kj | ) 

ijk  Symmetry 
Tail  

dependence 
Symmetry 

Tail  
dependence 

Symmetry 
Tail  

dependence 

ABC Yes No No Yes, right No Yes, left 

ABD No Yes, right No Yes, right No Yes, right 

ABE No Yes, right Yes No Yes No 

ACD No Yes, right No Yes, right No Yes, right 

ACE No Yes, right Yes No Yes No 

ADE Yes No Yes No No Yes, right 

BCD No Yes, right No Yes, right No Yes, right 

BCE No Yes, right Yes No Yes No 

BDE Yes No Yes No No Yes, right 

CDE Yes No Yes No No Yes, right 

 

On the other hand, this study also shows three instances (ABE, ACE and BCE) 

in which the pairs of conditional distributions have weak dependence at extreme 

points but the copulas that connect those distributions have upper-tail 

association. Thus the broader view of the portfolio indicates that it is riskier than 

supposed when we are restricted to the pairwise analysis. BCE illustrates this 
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difference. According to the isolated use of bivariate copulas (see Table 3.5 in 

Chapter 3), pairs BE and CE are negatively associated (with no tail 

dependence) and the pair BC has left tail dependence (i.e. lower default rates 

more correlated). So there is not any evidence of a stronger connection among 

high default rates of B, C and E. However when those three segments are 

evaluated together, it is found that the default rates of B and C tend to be more 

associated once the defaults of the riskiest segment E reaches their highest 

levels. That is, the relationship between the distributions of B and C given E has 

upper-tail dependence whilst the unconditional distributions of B and C are 

lower-tail dependent35.  

Three groups (ABD, ACD and BCD) present the most alarming combination for 

the Bank: three right-tail dependent copulas indicating that defaults have 

tendency to become more associated in downturns. Nonetheless only the 

parameter for the joint copula of the last trio (BCD) is considerably above the 

(minimum) value that indicates independence. 

ADE, BDE and CDE are intermediary combinations from the risk standpoint 

inasmuch as they present mixtures of right-tail dependent copulas and copulas 

without tail dependence. 

 

4.5 ESTIMATION OF JOINT HIGH DEFAULTS IN THREE SEGMENTS: 
COMPARISON BETWEEN TRADITIONAL METHODS AND VINE COPULAS 

A practical effect of the diversified dependence structure found in the previous 

section is the possible misevaluation of joint defaults in three segments when 

normal distributions (univariate and trivariate) are assumed. The use of vine 

copulas is expected to yield better approximations to estimations of 

simultaneous credit losses since such a technique is more flexible and can 

capture different combinations of dependence between pairs of segments that 

form loan portfolios. 

                                                           
35

 Trios ABE and ACE also have this property but, as said before, the parameters of the copulas 
that link the conditional distributions are very close to the respective values that indicate 
independence. 
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For a triplet involving segments I , J  and K , the estimation of joint default 

rates, 
IX , JX  and 

KX , above particular values, 
Ix , Jx  and 

Kx  respectively, 

based on the assumption of normality is given by: 

 

 ),,Pr( KKJJII xXxXxX  

),,(),(),(),()()()(1 KJIKJKIJIKJI xxxxxxxxxxxx   

 

where    denotes the cdf  of a normal distribution. 

 

As in Chapter 3, estimations following Copula Theory will use survival copulas 

of the default rates, such that: 

 

)](1),(1),(1[ˆ),,Pr( KKJJIIKKJJII xFxFxFCxXxXxX   

 

where Ĉ  is a survival copula, i.e. links “survival ranks”: (.)1 F ; 
IF  , JF  and 

KF  are the cdfs of the (unknown) distributions of default rates 
IX , JX  and 

KX  

in that order. 

The survival copulas applied in this calculation were estimated according to the 

procedures described in Section 4.4.1, the only difference being the 

replacement of (.)F  with (.)1 F . 

The proportions of default levels are the same defined in the pairwise analysis 

(Chapter 3): 4.17%, 8.33%, 12.50%, 16.67%, 20.83% and 25% (which we 

define as high losses). Given that the survival copulas were estimated with 

respect to whole default’s distributions and their right tails, results based on 

both cases are presented below. 
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4.5.1 Survival copulas estimated considering the complete distributions of 
default rates 

Table 4.5 displays the comparison between estimates derived from normality 

assumptions and from vine copulas when the survival copulas were found as 

the best fit to the complete default’s distributions. The first column refers to the 

proportion of the extreme defaults (not the default rates). The second column is 

related to the credit card portfolio analysed and displays the ratio of concurrent 

default rates above the mentioned levels. Columns “Normal” and “Copula” show 

the estimations from normality and vine copula approaches. The two last 

columns give the absolute difference between both estimations and the joint 

occurrences observed in the dataset. The values in these two columns are 

added in order to check the overall performance of both techniques for each 

trio. 

Estimations based on vine copulas outperformed the results from the traditional 

method in 65% of the scenarios36 presented in Table 4.5. Considering each 

panel separately, we can see that eight trios had better results for the copula 

approach, i.e. the sum of the last column was smaller than the sum of the fifth 

column (the exceptions were ABE and BCD). Nevertheless, like in the bivariate 

comparison (Chapter 3), the vine copula method resulted in higher ratio of 

underestimation (16.67% against 3.33% from the traditional approach)37.  

We could not find any pattern concerning the performance of the approaches at 

the different loss levels (from the 4.17% to the 25% highest losses). In some 

trios (ACE, ADE, BCE, BDE and CDE), the joint losses at the two most extreme 

levels (4.17% and 8.33%) were better approximated by the trivariate normal 

method than by the vine copula approach while the other levels presented the 

opposite results. In other trios (ABC, ABD, and ACD), the predictions from the 

vine copulas were better for most of the levels (including the two highest ones).  

 

                                                           
36

 This proportion is very close to the outperformance rate of the copula strategy in the pairwise 
investigation (63.33%). 
37

 The bivariate-copula case had the same underestimation percentage: 16.67%. 
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Table 4.5 Comparison between estimations of likelihood of joint high 
default rates (normality vs. copulas estimated according  

to the entire default’s distributions)   
 

Panel A: trio ABC 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00966 0.00027 0.00966 0.00027 

8.33% 0.00000 0.03179 0.00197 0.03179 0.00197 

12.50% 0.04167 0.05274 0.00595 0.01107 0.03572 

16.67% 0.04167 0.08479 0.01273 0.04312 0.02893 

20.83% 0.04167 0.09196 0.02266 0.05029 0.01901 

25.00% 0.08333 0.11270 0.03597 0.02936 0.04737 

Total difference for this trio 0.17529 0.13326 

 

Panel B: trio ABD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00304 0.00002 0.00304 0.00002 

8.33% 0.00000 0.01963 0.00022 0.01963 0.00022 

12.50% 0.00000 0.03142 0.00082 0.03142 0.00082 

16.67% 0.00000 0.05384 0.00211 0.05384 0.00211 

20.83% 0.00000 0.05911 0.00442 0.05911 0.00442 

25.00% 0.00000 0.07760 0.00812 0.07760 0.00812 

Total difference for this trio 0.24464 0.01572 

 

Panel C: trio ABE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00044 0.00000 0.00044 

8.33% 0.00000 0.00001 0.00148 0.00001 0.00148 

12.50% 0.00000 0.00106 0.00335 0.00106 0.00335 

16.67% 0.00000 0.00385 0.00633 0.00385 0.00633 

20.83% 0.00000 0.00564 0.01080 0.00564 0.01080 

25.00% 0.00000 0.01391 0.01718 0.01391 0.01718 

Total difference for this trio 0.02447 0.03958 

 

  



94 
 

Panel D: trio ACD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00432 0.00015 0.00432 0.00015 

8.33% 0.00000 0.02550 0.00145 0.02550 0.00145 

12.50% 0.00000 0.03849 0.00524 0.03849 0.00524 

16.67% 0.00000 0.06819 0.01256 0.06819 0.01256 

20.83% 0.00000 0.08062 0.02407 0.08062 0.02407 

25.00% 0.00000 0.10495 0.04004 0.10495 0.04004 

Total difference for this trio 0.32206 0.08351 

 

Panel E: trio ACE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00003 0.00000 0.00003 

8.33% 0.00000 0.00001 0.00021 0.00001 0.00021 

12.50% 0.00000 0.00138 0.00067 0.00138 0.00067 

16.67% 0.00000 0.00489 0.00149 0.00489 0.00149 

20.83% 0.00000 0.00849 0.00279 0.00849 0.00279 

25.00% 0.00000 0.01987 0.00470 0.01987 0.00470 

Total difference for this trio 0.03464 0.00990 

 

Panel F: trio ADE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00005 0.00005 0.00005 0.00005 

12.50% 0.00000 0.00240 0.00022 0.00240 0.00022 

16.67% 0.00000 0.01079 0.00064 0.01079 0.00064 

20.83% 0.00000 0.01559 0.00153 0.01559 0.00153 

25.00% 0.00000 0.03809 0.00318 0.03809 0.00318 

Total difference for this trio 0.06692 0.00563 
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Panel G: trio BCD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00760 0.00003 0.00760 0.00003 

8.33% 0.04167 0.03426 0.00023 0.00741 0.04144 

12.50% 0.04167 0.06217 0.00076 0.02050 0.04091 

16.67% 0.04167 0.07356 0.00184 0.03189 0.03983 

20.83% 0.04167 0.08089 0.00373 0.03923 0.03794 

25.00% 0.04167 0.09499 0.00674 0.05332 0.03492 

Total difference for this trio 0.15996 0.19507 

 

Panel H: trio BCE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00003 0.00005 0.00003 0.00005 

12.50% 0.00000 0.00366 0.00040 0.00366 0.00040 

16.67% 0.00000 0.00651 0.00165 0.00651 0.00165 

20.83% 0.00000 0.00992 0.00468 0.00992 0.00468 

25.00% 0.00000 0.01917 0.01056 0.01917 0.01056 

Total difference for this trio 0.03929 0.01734 

 

Panel I: trio BDE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00030 0.00000 0.00030 

8.33% 0.00000 0.00005 0.00090 0.00005 0.00090 

12.50% 0.00000 0.00423 0.00182 0.00423 0.00182 

16.67% 0.00000 0.00741 0.00319 0.00741 0.00319 

20.83% 0.00000 0.01004 0.00514 0.01004 0.00514 

25.00% 0.00000 0.01930 0.00790 0.01930 0.00790 

Total difference for this trio 0.04104 0.01925 
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Panel J: trio CDE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00001 0.00000 0.00001 

8.33% 0.00000 0.00005 0.00012 0.00005 0.00012 

12.50% 0.00000 0.00541 0.00071 0.00541 0.00071 

16.67% 0.00000 0.00940 0.00236 0.00940 0.00236 

20.83% 0.00000 0.01626 0.00582 0.01626 0.00582 

25.00% 0.04167 0.02912 0.01182 0.01254 0.02984 

Total difference for this trio 0.04366 0.03885 

 

 

4.5.2 Survival copulas estimated considering the right tails of the default 
rate distributions 

When the survival copulas were estimated with focus on the tails of the default 

distributions, the superior performance of the vine copula approach increased to 

80% of the scenarios (compared to 65% reported in Section 4.5.1)38. Apart from 

the case of BCD, the aggregate absolute difference between the copula 

estimation and the joint defaults observed in the credit card portfolio for each 

triplet (last row of the last column in each panel of Table 4.6) was smaller than 

the absolute difference between the calculations based on the assumption of 

normality and the ratio of real joint extreme defaults (last row of the fifth column 

in each panel of Table 4.6). This means that if we need estimations for many 

risk levels in a particular trio, we are typically better off using the vine copula 

method as it gives, on average, results closer to the real joint events (see Table 

4.6). 

 
  

                                                           
38

 This performance was also better than the results from estimations that used right-tail 
distributions of default rates in the bivariate analysis (70%).  



97 
 

Table 4.6 Comparison between estimations of likelihood of joint high 
default rates (normality vs. copulas estimated  

according to tail distributions) 
 

Panel A: trio ABC 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00966 0.00012 0.00966 0.00012 

8.33% 0.00000 0.03179 0.00091 0.03179 0.00091 

12.50% 0.04167 0.05274 0.00287 0.01107 0.03879 

16.67% 0.04167 0.08479 0.00640 0.04312 0.03527 

20.83% 0.04167 0.09196 0.01184 0.05029 0.02983 

25.00% 0.08333 0.11270 0.01952 0.02936 0.06381 

Total difference for this trio 0.17529 0.16873 

 

Panel B: trio ABD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00304 0.00000 0.00304 0.00000 

8.33% 0.00000 0.01963 0.00005 0.01963 0.00005 

12.50% 0.00000 0.03142 0.00024 0.03142 0.00024 

16.67% 0.00000 0.05384 0.00077 0.05384 0.00077 

20.83% 0.00000 0.05911 0.00188 0.05911 0.00188 

25.00% 0.00000 0.07760 0.00391 0.07760 0.00391 

Total difference for this trio 0.24464 0.00686 

 

Panel C: trio ABE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00001 0.00000 0.00001 0.00000 

12.50% 0.00000 0.00106 0.00001 0.00106 0.00001 

16.67% 0.00000 0.00385 0.00003 0.00385 0.00003 

20.83% 0.00000 0.00564 0.00008 0.00564 0.00008 

25.00% 0.00000 0.01391 0.00024 0.01391 0.00024 

Total difference for this trio 0.02447 0.00036 
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Panel D: trio ACD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00432 0.00001 0.00432 0.00001 

8.33% 0.00000 0.02550 0.00011 0.02550 0.00011 

12.50% 0.00000 0.03849 0.00045 0.03849 0.00045 

16.67% 0.00000 0.06819 0.00123 0.06819 0.00123 

20.83% 0.00000 0.08062 0.00273 0.08062 0.00273 

25.00% 0.00000 0.10495 0.00526 0.10495 0.00526 

Total difference for this trio 0.32206 0.00980 

 

Panel E: trio ACE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00001 0.00000 0.00001 0.00000 

12.50% 0.00000 0.00138 0.00001 0.00138 0.00001 

16.67% 0.00000 0.00489 0.00004 0.00489 0.00004 

20.83% 0.00000 0.00849 0.00014 0.00849 0.00014 

25.00% 0.00000 0.01987 0.00042 0.01987 0.00042 

Total difference for this trio 0.03464 0.00061 

 

Panel F: trio ADE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00005 0.00001 0.00005 0.00001 

12.50% 0.00000 0.00240 0.00007 0.00240 0.00007 

16.67% 0.00000 0.01079 0.00026 0.01079 0.00026 

20.83% 0.00000 0.01559 0.00072 0.01559 0.00072 

25.00% 0.00000 0.03809 0.00168 0.03809 0.00168 

Total difference for this trio 0.06692 0.00275 
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Panel G: trio BCD 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00760 0.00001 0.00760 0.00001 

8.33% 0.04167 0.03426 0.00011 0.00741 0.04156 

12.50% 0.04167 0.06217 0.00045 0.02050 0.04122 

16.67% 0.04167 0.07356 0.00123 0.03189 0.04043 

20.83% 0.04167 0.08089 0.00273 0.03923 0.03893 

25.00% 0.04167 0.09499 0.00526 0.05332 0.03640 

Total difference for this trio 0.15996 0.19855 

 

Panel H: trio BCE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00003 0.00000 0.00003 0.00000 

12.50% 0.00000 0.00366 0.00001 0.00366 0.00001 

16.67% 0.00000 0.00651 0.00003 0.00651 0.00003 

20.83% 0.00000 0.00992 0.00010 0.00992 0.00010 

25.00% 0.00000 0.01917 0.00031 0.01917 0.00031 

Total difference for this trio 0.03929 0.00045 

 

Panel I: trio BDE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00005 0.00001 0.00005 0.00001 

12.50% 0.00000 0.00423 0.00005 0.00423 0.00005 

16.67% 0.00000 0.00741 0.00018 0.00741 0.00018 

20.83% 0.00000 0.01004 0.00052 0.01004 0.00052 

25.00% 0.00000 0.01930 0.00125 0.01930 0.00125 

Total difference for this trio 0.04104 0.00201 
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Panel J: trio CDE 
Proportion 
of highest 

losses 
Dataset Normal Copula 

Difference 
Normal - Dataset 

Difference 
Copula - Dataset 

4.17% 0.00000 0.00000 0.00000 0.00000 0.00000 

8.33% 0.00000 0.00005 0.00001 0.00005 0.00001 

12.50% 0.00000 0.00541 0.00007 0.00541 0.00007 

16.67% 0.00000 0.00940 0.00029 0.00940 0.00029 

20.83% 0.00000 0.01626 0.00088 0.01626 0.00088 

25.00% 0.04167 0.02912 0.00216 0.01254 0.03950 

Total difference for this trio 0.04366 0.04075 

 

Therefore estimations using vine copulas outperform evaluations from 

traditional models simplified by the assumption of normality and, as shown in 

the pairwise study (Chapter 3), when the copulas are chosen based exclusively 

on the upper tail of distributions, the superior performance is even better. 

The levels of underestimation were the same found in the previous section: 

16.67% and 3.33% for copula-based and normality-based calculations 

respectively. Note that the underestimation percentage in the trivariate case for 

the vine model (16.67%) is lower than the underestimation ratio in the bivariate 

case (26.67%) reported in Chapter 3.  This may be evidence that, for datasets 

spanning “short” periods, copula estimations are less subject to underestimation 

in higher dimensions (i.e. when vines are employed).  

As in Section 4.5.1, we did not identify any specific pattern of the methods’ 

performances across the different levels of losses. 

 

4.6 CONCLUSIONS 

Chapter 3 showed that the credit card portfolio analysed in this thesis has a 

heterogeneous dependence structure (i.e. different best-fit copulas for some 

pairs of segments). This is likely the case in most loan portfolios given that 

financial institutions deal with a high number of debtors with distinct 

characteristics (which tend to generate several types of association). Thus the 

estimation of joint default rates will be more accurate if the different 

relationships are incorporated into the calculations.  
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Vine copulas were employed to investigate the diverse dependence within the 

credit portfolio because their flexible construction allows the combination of 

different families of copulas that can give more realistic evaluations of joint 

default rates. 

We consider the case of three segments assessed together and this appears to 

be the first application of vine structures to credit risk. The dependence of each 

triplet is characterised by a copula that links the distributions of two segments 

conditional on a third segment. The linking copula for each triplet was estimated 

following the two strategies used in Chapter 3: goodness-of-fit tests based on 

the complete distributions of defaults and only on their upper tail.   

The results in both cases revealed several compositions of dependence for 

triplets of segments that decreased, increased or did not change the probability 

of simultaneous high losses expressed by each bivariate copula independently. 

Thus higher-dimension analyses in heterogeneous portfolios may identify 

potential risk of conjunct extreme default rates not captured in two-dimension 

studies. The greatest divergence happens when conditional distributions of 

variables without right-tail dependence are connected by a copula with right-tail 

association (trio BCE39 was the best example in this sense).  

The same credit card portfolio presented in Chapter 3 was used to compare 

estimations of joint high default rates in three segments based on assumptions 

of normality with estimations based on vine copulas. The latter outperformed 

the former in 65% (80%) of the scenarios tested when the best-fit copulas were 

inferred according to the default’s whole (right tail of) distributions. As in the 

pairwise analysis, copulas with best fit to upper tails yielded better evaluations 

than copulas deduced from complete distributions but the vine’s 

outperformance level was higher than the copula’s successful rate reported in 

Chapter 3: 63% and 70% for bivariate copulas derived from the complete 

distributions of default rates and from their right tails, respectively. 

                                                           
39

 When the copulas were estimated according to the right tail of the default distributions. 
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The proportion of joint extreme losses underestimated in the vine copula 

approach was higher than the underestimation from the method assuming 

normality. However the vine copulas’ underestimation level was lower than the 

underestimation resulted from bivariate copulas. This may indicate that, when 

short datasets are used, higher-dimension analyses tend to reduce the 

underestimation of joint losses in copula approaches. 

The superiority of the vine approach over calculations based on bivariate 

copulas (assuming homogeneous dependence in the portfolio) or on the 

trivariate normal distribution implies that financial institutions may estimate 

inaccurate probability of joint extreme credit losses (default rates) when using 

the two last methods. As a consequence, the capital reserved to cover losses 

according to less precise estimations has higher likelihood of being excessive 

(which makes banks miss opportunities of investing part of their resources) or 

insufficient (which menaces the lenders’ solvency).  

In addition, more accurate evaluations about the risk of simultaneous high 

losses help the allocation of funds across segments in a more efficient manner 

such that banks can avoid concentration of loans in segments that tend to be 

more associated in downturns and do not yield satisfactory return in relation to 

the risk they represent. 

Some further research may expand this pioneering application of vine copulas 

to credit risk. Longer datasets and other categories of loans apart from credit 

cards should be used in empirical tests to check the accuracy of vine structures 

and to confirm whether this approach is better than methods based on normality 

or bivariate copulas to estimate the likelihood of joint extreme default rates. 

Canonical vines (as depicted in Figure 4.4) are an alternative to estimate 

dependence across default rates of many credit segments conditional on a 

factor that represents the economic scenario. 

The literature on credit risk has presented some evidence that the copula 

approach leads to better evaluation of joint high default rates than methods that 
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presume normality (which is the case of factor credit models). Chapters 3 and 4 

have extended such evidence to consumer loans. 

In the next two chapters, we use Copula Theory to suggest some improvements 

to a method derived from factor credit models: the formula used to estimate the 

capital to be held by financial institutions to cover extreme credit losses (the so-

called Basel Accords). Being derived from factor models, Basel method 

presents the same limitations (as traditional credit risk models) concerning the 

assumption of normality and the use of linear correlation; copulas are therefore 

an alternative to reach better results. 
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CHAPTER 5 
COPULA-BASED FORMULAS TO ESTIMATE UNEXPECTED 
CREDIT LOSSES (THE FUTURE OF BASEL ACCORDS?)40 

 

“Discovering consists of looking at the same thing as everyone else does  
and thinking something different.”  

(Albert Szent-Györgyi, 1937 Nobel Prize in Physiology and Medicine) 
 

5.1  INTRODUCTION 

The current rule to calculate the capital necessary to cover unexpected credit 

losses (Basel Accords II and III) is based on (single) factor models which define 

that joint defaults are driven by a latent variable which, in turn, is driven by an 

unobserved (economic) factor.  

The economic factor, the latent variable, and the specific (idiosyncratic) risk for 

each obligor are assumed to follow the standard normal distribution but there is 

vast evidence in the literature that those variables are not normally distributed. 

The dependence across pairs of latent variables and between each latent 

variable and the economic factor is measured by the correlation coefficient 

which is accurate only for normal data and does not detect tail dependence. So, 

the current model used to calculate the regulatory capital is deficient because it 

may not identify conjunct extreme occurrences. 

To overcome this problem, this chapter proposes the application of copulas to 

link distributions of latent variables and evaluate unexpected credit losses in 

financial institutions. 

Our contribution is to relax the assumption of normality in the context of capital 

adequacy in financial institutions and to allow more accurate identification of tail 

dependence across loan losses (which is particularly important in adverse 

economic scenarios when credit losses tend to be more associated)41.  

                                                           
40

 This chapter is a slightly modified version of Moreira (2010). 
41

 See references in Chapter 3, Section 3.1. 
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The latent variables are considered to be survival functions of the probabilities 

of default ( PDs ), i.e., high PDs  indicate low values of latent variables and vice 

versa.  

While traditional credit risk models use percent values (as cardinal numbers), 

the copula approach is based on percentiles (ranks) of the variables. 

Considering that portfolios/segments are taken for homogenous, the expected 

levels (percentiles) of the latent variables that imply default are equal for all 

loans. Then, for each pair of debtors, the copula will associate two equal 

variables (percentiles of latent variables) in extreme conditions and will return 

the likelihood of both percentiles being simultaneously below a specific level 

(percentile of the latent variable’s historical average in this case). This is 

equivalent to the probability of potential losses being above the rank of the 

average (expected) PD .  

The implementation of this alternative method is relatively simple and, alike 

models derived from Merton’s approach (Merton, 1974), the model suggested 

here is based on the interpretation that default happens when the latent variable 

falls below a cutoff value. The copula method focuses on joint defaults which 

occur when the latent variables of loans become smaller than their limit 

percentile at the same time. Losses are unexpected (above the average) when 

such underlying variables drop even more and reach percentiles smaller than 

their average’s percentile among the values that indicate default. Thus, for a 

particular level of confidence, “high” unexpected losses will be estimated by a 

copula that gives the joint probability of the historical latent variable’s average 

being below an extreme percentile.  

In principle, a general approach is presented to derive formulas based on any 

copula found to be representative of loan portfolios. If large datasets on PDs  

(or default rates) are available, precise models may be built according to the 

steps proposed in this study. 

An example is given for the case where PDs  are assumed to be right-tail 

associated and, consequently, the latent variables present left-tail dependence. 
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For convenience, the relationship between the latent variables is represented 

by the Clayton Copula. 

Simulations reveal that, in most of the cases, when compared to Basel method, 

the alternative model yields better estimations of the effective losses in 

portfolios with tail-dependent probabilities of default (which is expected to be a 

property of most credit portfolios in the financial market – see some references 

in Section 5.4).  

In around 73% of the scenarios, the copula-based approach outperformed 

Basel method for at least one of the three credit classes analysed (revolving 

consumer, mortgage, and “other retail”). On average, the new method was 

better for all three categories in 52% of the cases. The results were sensitive to 

the confidence specified and the shape of the loss distribution. Normally-

distributed losses generated the worst estimations for the suggested model at 

the confidence level used while the other three distributions tested (Exponential, 

Beta, and Gamma) resulted in an outperformance ratio of 75%. 

This chapter is organised as follows. Basel Accords are addressed in the next 

section. Then Copula Theory is discussed. Section 5.4 summarises a general 

approach to derive formulas based on assumed or empirically found 

dependence between probabilities of default. In Section 5.5, PDs  are 

presumed to be right-tail dependent (i.e. high losses are more associated) and 

a formula based on the Clayton Copula is derived to estimate unexpected 

losses. Next, the results from the formula presented in the prior section are 

compared to the capital calculated by the Basel formula. Section 5.6 concludes. 

 

5.2   BASEL ACCORDS 

The Basel Accord from 1988 stipulated that the capital charge on assets was 

8% of the risk weighted assets. But due to many drawbacks in this Accord (see 

De Servigny and Renault, 2004), new rules were issued in June 2004 (Basel II). 

The Basel II Accord was based on three “pillars”: minimum capital 

requirements, Supervisory Review, and market discipline. Banks were allowed 
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to use Internal Ratings Based approaches (IRB) to calculate the capital required 

and to do so, institutions should group their assets into homogenous “buckets” 

(segments, classes) with respect to their credit quality (see BCBS, 2006).  

A new reform was proposed at the end of 2009 (Basel III) but it did not alter the 

formulas presented in Basel II for calculating extreme credit losses42. Since this 

calculation is the main purpose here, we will refer to Basel II as the current 

method to estimate the capital necessary to cover unexpected credit losses. 

Although the method adopted in Basel II (and kept in Basel III) improved the 

calculations established in the first Basel Accord, the new approach also has 

some limitations. It assumes normally-distributed loans’ performance and uses 

the correlation coefficient that does not capture oscillations in dependence 

when the level of variables changes. Thus, this may lead to excessive capital 

required in good economic scenarios or scarce requirements in downturns. 

For each segment, the capital required to cover unexpected losses in credit 

portfolios is calculated as the unexpected losses adjusted by the portfolio 

maturity. In mathematical terms: 

 

MaturityPDKLGDMaturityPDLGDKLGD VV *)](*[*]**[   

 

where LGD is the “loss given default”, i.e. the percentage of exposure the 

lender will lose if borrowers default and PD  stands for probability of default. 

Maturity  corresponds to the maturity of corporate loans (i.e., not applied to 

consumer debt) and is added to the calculation in order to give higher weight to 

long-term credits which are known to be riskier. It is calculated as: 

 

)(*5.11

)(*)5.2(1

PDb

PDbM
maturity




  

 

                                                           
42

 Information retrieved at http://www.bis.org/bcbs/basel3.htm on November 16
th
, 2010.  

[ 5.1 ] 

http://www.bis.org/bcbs/basel3.htm
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where 
2))log(*5478.011852.0()( PDPDb   and M  is the average maturity of 

the credit portfolio.  

The other term in [5.1], VK , is the expected default rate at the 99.9% percentile 

of the PD  distribution (“Vasicek Formula”) - see Vasicek (1991, 2002). In 

general, VK
 
follows the main presumptions of factor models (see, e.g., Gordy, 

2003) where each latent variable ( iy ) is a linear function of an unobserved 

single factor (systematic risk, E ) and specific characteristics of the respective 

obligor (idiosyncratic risk, i ). The latent variable, the single factor and the 

idiosyncratic risk terms are assumed to be standard normally distributed. The 

economic factor impacts all obligors equally (same correlation  ) and the 

latent variables are considered equicorrelated (same   for all pairs). This leads 

to expression [2.4] presented in Chapter 2, Section 2.4, and restated below for 

convenience:  

 

  1ii Ey  

 

For each loan i, the probability of default is the likelihood that the latent variable 

yi  becomes smaller than the cutoff cy , that is, ]Pr[ ci yyPD  . Extreme credit 

losses happen when the economy E  reaches an extremely unfavourable level 

*e . In other words, these high losses are the probability of default conditional 

on poor economic status. Representing this probability as *PD , we have 

*]|Pr[* eEyyPD ci   and using [5.2]: 

 

*]|1Pr[* eEyEPD ci    

 

Solving for i  and replacing E  with *e : 

 

[5.2] 
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As mentioned in Chapter 2, Section 2.4, i  is presumed to be normally 

distributed with mean 0 and variance 1. Thus, the previous equation turns into: 

 
























1

*
*
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PD c  

 

where   indicates the cdf of the standard normal distribution. 

Since iy  is also normally distributed, )( cyPD   which implies that 

)(1 PDyc

 , i.e. the cutoff of the latent variable below which default occurs is 

the inverse of the normal distribution, 1 , evaluated at PD . Basel II demands 

confidence of 99.9% which means that the capital is supposed to be sufficient 

to cover the losses whenever the economy is above (better than) the 1st 

percentile of its distribution (also assumed to be normal). Hence the extreme 

adverse scenario *e  is given by )001.0(1 . Due to two properties of the 

standard normal distribution (symmetry and mean 0), )999.0()001.0( 11   . 

Using this fact and replacing *e  with  )999.0(1  and  cy  with )(1 PD  in 

the prior equation, we get the formula presented in Basel II (here the extreme 

loss, *PD , is denoted as VK ):  

 


























1

)999.0()( 11 PD
KV

 

where: 

  and 1  represent the standard normal cumulative distribution and its 

inverse, respectively; 

[ 5.3 ] 
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PD , as before, is the probability of default of the loan portfolio (average); 

)(1 PD  is used to derive the default threshold (i.e. the cutoff level of obligors’ 

assets below which default occurs); 

)999.0(1 , which is equal to )001.0(1 , is the level of the economy chosen 

to represent an extreme scenario in which unexpected losses may occur. 

Therefore, the systematic factor is assumed to be normally distributed. 

Intuitively, this is the confidence level (99.9%) for the default rate; and 

Rho (  ) is the correlation between returns of obligors’ assets.   is the linear 

correlation between the unobserved systematic factor and those asset returns. 

In Basel II, the correlation between asset returns is calculated as a function of 

PD  and (in the case of corporate debt) the size of debtors (measured in terms 

of annual sales). For the sake of brevity, the formula and parameters used to 

estimate   will not be presented here. See BCBS (2005, 2006) for more 

details.  

Readers interested in more details about the derivation of the Vasicek Formula 

( VK ) should consult, for instance, Schönbucher (2000), Perli and Nayda (2004), 

and Crook and Bellotti (2010). For more information about the main risk 

parameters used in Basel II (including PD  and LGD), see Engelmann and 

Rauhmeier (2006). 

In summary, VKLGD*  in expression [5.1] gives the total potential loss and 

PDLGD*  represents the expected losses. The difference between them is 

therefore the unexpected losses. The proposed formulas in this study are 

limited to replace the term )( PDKV  , which expresses the unexpected default 

rate, and do not consider possible shortcomings in the computation of LGD 

and the maturity adjustment. 

Some models have been proposed to transform [5.3] into another expression 

that does not have the limitation regarding the assumption of normality. 

Departing from [5.2], Hull and White (2004) relax the distributions of iy , E  and 
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i
43, such that they can, for example, present heavy tails (which tends to 

increase the joint occurrences of extreme realisations of the latent variables). 

Representing the distributions of those three variables respectively by F, G and 

H and following the same steps that derived [5.3] from [5.2], the expression to 

estimate the probability of default conditional on an unfavourable economic 

status (the worst 0.1% scenario, i.e. with confidence of 99.9%) turns into: 
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where e* indicates an extreme adverse economic scenario and can be 

calculated as the inverse distribution of E  evaluated at 0.001 (since the critical 

level was set at 0.1%). PD  is the historical probability of default and   is the 

linear correlation between returns of obligors’ assets. Obviously, the expression 

above cannot be solved unless the shapes of the three distributions F, G and H  

are known.  

Some studies, such as Bluhm et al. (2002), Kostadinov (2005) and Kang 

(2005), have suggested the Student t distribution for E  and i  to characterise 

the existence of more events (than the normal distribution) in the tails. In this 

case, it is not possible to define the distribution of the latent variable in [5.2] and 

the probability of default in downturns (at the 0.1% worst scenario) is: 
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where Tv is the Student t distribution with v degrees of freedom. Given that the 

latent variable’s distribution F remains unknown, the preceding likelihood 

                                                           
43

 Provided that they are scaled with mean zero and variance one. 
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cannot be calculated. In view of the impossibility of the estimation of the 

probability of default in adverse economic scenarios when one (or more) of the 

variables in [5.2] are not normally distributed, we propose a different setup to 

incorporate Copula Theory into this analysis and capture potential tail 

dependence even if we do not know any of the distributions of the latent 

variable, the economic factor and the idiosyncratic factors (which is the reality in 

financial institutions).  

 

5.3 USING COPULAS TO ESTIMATE UNEXPECTED CREDIT LOSSES: A 
GENERAL APPROACH  

5.3.1 Characterisation of default in the copula approach 

Traditional approaches employed in the financial industry, such as 

CreditMetrics® and KMV®, incorporate the basic idea of structural models and 

assume that default happens when a latent variable (for example, the log-return 

of debtors’ assets) falls below a cutoff point (the outstanding debt). The latent 

variable (Y) follows a stochastic process44 and, at any time, the possible values 

of Y  are lognormally distributed. Figure 5.1 shows that, at time t for example, 

the mean of this distribution is the expected value of Y  and the asset return 

(latent variable) is equal to yt. The probability of default ( PD ) is given by the 

area below the cutoff (denoted yc in Figure 5.1) under the curve of the Y’s 

distribution. In other words, PD  is the probability of the latent variable (Y) being 

smaller than that particular value (the threshold cy  which is a theoretical value 

that represents the outstanding debt) at time t. In practice, this characterises 

situations where the obligors’ assets become smaller than the value borrowed.     

 

                                                           
44

 See Merton (1974) for details on this stochastic process. 
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FIGURE 5.1 (based on Crouhy et al., p. 74)   
Diagram representing default in structural models as the probability of a latent variable 

being below a cutoff value (area below cy  at time t).  

 

In this copula-based method, PD  is viewed in a portfolio perspective and is 

defined as the area below a cutoff in the joint distribution of latent variables 

relative to the loans that compose the portfolio. Here, such latent variables are 

supposed to have a symmetrically inverse relationship with the probability of 

default. This means that when the latent variable decreases (increases), PD  

increases (decreases) at the same “degree”. The identical magnitude (“degree”) 

of the variables’ opposite movements will be expressed by their percentiles in 

their respective distributions. Hence high (low) levels of PDs  are associated 

with low (high) levels of the latent variables and when PD  moves p percentiles 

in its distribution, Y  moves p percentiles in its respective distribution in the 

opposite direction. 

This symmetric inverse behaviour may be captured by representing each latent 

variable (Y ) as a survival function45 of PD , which implies that the cumulative 

                                                           
45

 The use of the subscribed “t” to indicate the time dependence in survival functions was 
relaxed. 

yc 

Time 

Probability of default = PD = Prob[Y<yc] 
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distribution of the latent variable is equal to one minus the cumulative 

distribution of the associated PD : 

 

)(1)()( pdFpdFyF PDPDY   

 

Note that the cumulative distributions of Y  and PD , )(yFY
 and )( pdFPD

 

respectively, give the percentiles represented by the points y  and pd . For 

instance, 20.0)( yFY
 indicates that y  is the 20th percentile of YF . Thus, if a 

specific value of the latent variable y is the pth percentile in YF , the PD related to 

that value of y will be the thp1  percentile in PDF . 

According to [5.4], Y  may be interpreted as the probability of non-default and 

expresses the “quality” of debtors. This idea resembles the survival function 

used by Li (2000) to define the likelihood that a security will reach a specific 

age. The higher this probability, the higher the asset quality. 

Since we are using cumulative distributions of the variables Y  and PD , )(yFY
 

and )( pdFPD  respectively, Copula Theory may be applied and the resultant 

calculations are suitable for any kind of loss distribution.  

As in the Basel approach, the capital needed to cover unexpected losses will be 

separately determined for each segment considered homogeneous in terms of 

credit quality. This means that PD  is presumed identical for all loans in each 

segment and )( pdFPD  values are also equal. Therefore, the average (expected) 

Y  is the same for every debtor within the segment and so is )(yFY . This is true 

regardless of the number of debtors. 

The estimation of unexpected losses depends on an average point considering 

only the occurrences below the latent variable’s cutoff. Figure 5.2 – Panel A 

shows contours of the joint cumulative distribution of the latent variables and 

represents the distinction between expected and unexpected losses in this 

context.  

[ 5.4 ] 
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FIGURE 5.2 – Contour plots of cumulative distributions representing expected losses 
(EL), unexpected losses (UL), and non-default (ND) in a copula context (for 

homogenous portfolios, where the relationship between any two loans represent all the 
associations in the pool). In Panel A, default at the portfolio level happens if the 

cumulative distributions (cdfs) of the latent variable, FY(y), of both loans fall below a 
specific point, FY(yc); when each FY(y) is smaller than FY(yc) but greater than FY(yA), the 

losses are expected; and when those cdfs drop below the point that indicates average 
default, FY(yA), the losses are unexpected. Panel B shows ND, EL, and UL under the 

perspective of the probability of default which are equal to the equivalent areas in 
Panel A. FPD(pdc) =1-FY(yc) and FPD(pdA)  =1- FY(yA) are, respectively, the cdfs of PD 

above which default and unexpected losses happen. Since the focus is on cumulative 

distributions, both panels are valid regardless of the PD  distribution’s family. The 
shapes will depend on the copulas used. 

 

The shapes of the level curves are illustrative and will vary according to the 

copula used. Along each axis we represent values of YF  for each of the two 

loans considered. When the cumulative distribution (cdf) of each latent variable 

Y , )(yFY
, in a homogeneous portfolio falls below the cumulative distribution of 

the cutoff )( cY yF , all obligors default at the same time. The losses are 

considered expected (area EL in Figure 5.2 – Panel A) while each )(yFY
 keeps 

falling from )( cY yF  until )( AY yF , the latter representing the cumulative 

(Panel A) (Panel B) 
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distribution of the latent variable Y  evaluated at the average of its historical 

values in scenarios of default. On the other hand, if the latent variable becomes 

smaller than that average (area UL in Figure 5.2 – Panel A), the losses are 

unexpected (meaning that the obligors’ conditions – whose proxy is the latent 

variable – got worse than usual).  

Panel B of Figure 5.2 displays the contours referent to the “default status” of a 

pair of loans (which includes non-default and default statuses). The axes 

represent the cumulative distributions of the default statuses, 
PDF  (one for each 

loan). When the default status for both loans is smaller than a specific point 

(denoted  pdc), these distributions are simultaneously below )( cPD pdF  and there 

is no joint default (area ND). When both 
PDF  are greater than the threshold 

)( cPD pdF  but smaller than the point )( APD pdF , the probability of default is at the 

expected level (area EL). When the default statuses of both loans go beyond 

pdA the concurrent losses become higher than the historical average (expected 

losses) and are therefore unexpected (area UL).  

We can relate the 
YF  distributions (shown in Panel A) to 

PDF  distributions 

(shown in Panel B). Given that the latent variables and the losses for each loan 

have inversely symmetric cdfs, )(1)( pdFyF PDY  , the joint function 

),( AA yyH  is equivalent to the area above the cdfs of the average probability of 

default in a complete PD  distribution ( )( APD pdF  in Figure 5.2 – panel B), i.e. a 

distribution that includes non-default status. Thus, both areas UL in Panels A 

and B of Figure 5.2 are equal to each other and indicate unexpected losses46. 

What we should estimate is the likelihood of the joint probability of default for 

two obligors being above its average, i.e. the probability that both FPD(pd)  are 

greater than the average FPD(pdA). Recalling the concept of Survival Copulas in 

Chapter 2, Section 2.3.1, and that each debtor has the same PD , we have: 

                                                           
46

 ND and EL are also equal in both panels but they do not affect the calculations here (which 
pertain to the unexpected losses). 
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))(1),(1(ˆ))(),((ˆ),( APDAPDAPDAPDAA pdFpdFCpdFpdFCpdpdH   

 

In the prior formula, 
Apd  stands for the average of the historical probability of 

default and the notation H  refers to a joint survival function. The expression 

gives the probability of both PDs  being above the historical average 
Apd  at the 

same time. The Survival Copula Ĉ  links the two univariate survival functions of 

)( APD pdF  )(1 APD pdF   to the bivariate function.   

Now, applying the definition introduced in [5.4] to the average PD , we have 

)(1)( APDAY pdFyF   and [5.5] becomes:  

 

),())(),((ˆ),( AAAYAYAA yyHyFyFCpdpdH   

 

where Apd  and Ay  are the historical average of PD  and of the latent variable, 

respectively; for homogenous pools of borrowers i  and j , such that 

PDPDPD ji   and YYY ji  , Ĉ  is a copula that returns 

),Pr( AA pdPDpdPD   = ),Pr( AA yYyY   the probability of both PDs  (latent 

variables) being above (below) their observed average up to the moment or, in 

other words, the probability of unexpected losses.  

 

5.3.2 Finding the ranks of the latent variable 

To apply this copula model we need the whole distribution of the latent variable 

so that we can calculate the cumulative distribution function (cdf) of Y  

associated with the point of historical average loss, )( AY yF . Given a group of 

obligors in default, the cdf of the cutoff )( cY yF  would be obviously 1 and any 

area calculated under this circumstance, would return the likelihood of PD  

being below or above a point and not the PD  itself. 

[ 5.5 ] 

[ 5.6 ] 
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Based on Figure 5.2 – Panel A, we see that to find the unexpected losses (UL) 

we need to know the cdf )( AY yF  in the complete distribution of Y  (i.e. including 

non-default status, ND). However, in principle, we do not have enough 

information to find that value. Otherwise, we could use )( cY yF  to calculate the 

total losses (EL + UL) and subtract EL, which is known (the average PD  of the 

portfolio). But, again, we cannot find )( cY yF  using solely the information 

available so far.  

One way to start solving this problem is considering a relationship between 

)( AY yF  and )( cY yF . Figure 5.3 – Panel A illustrates the density 

)|(.(.) cdefault yYff   of a latent variable Y  that includes only default cases 

(i.e. all observations have values below the cutoff that indicates default). defaultF , 

defined as )|(.(.) cYdefault yYFF  , is the correspondent cumulative 

distribution and )|()( cAYAdefault yYyFyF   is the cdf of Y evaluated at the 

average latent variable in that distribution limited to default cases. The latter can 

be estimated from datasets of PDs  taken over several periods by finding the 

cdf of PD  evaluated at the average PD  and applying [5.4]: 

)(1)( AdefaultAdefault pdFyF  . The cutoff cy  is the largest value in that density 

function, so 1)( cdefault yF . 

The distribution of the latent variable becomes complete if we add the non-

default cases (when the latent variable is higher than the cutoff value) as in 

Figure 5.3 – Panel B.  The complete distribution YF  is not observable and may 

have any shape. 

As an example, consider that the latent variables represent borrowers’ asset 

returns. For the sake of simplicity, the debt of all obligors will be assumed equal 

but this presumption can be easily relaxed if we work with the percentage of 

asset returns over the (different) liability of each obligor. If all debts are equal to 

100 monetary units, cy  100 and default happens when Y  100. So, debtors 
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Ay  
cy  

Ay  

Ay  

Ay  

cy  

Ay  

Y 

may default with different values of asset returns below the theoretical cutoff  yc. 

Assume, for example, that a portfolio has five defaulters with y = {35, 75, 80, 90, 

95}. In this case, the average asset return (
Ay ) among the debtors who failed 

their repayments is 75 monetary units. In Panel B, the obligors that compose 

the areas UL (unexpected losses), EL (expected losses) and ND (non-default) 

have Y  < 75, 75  Y < 100, and Y   100, respectively. 

 

 

 

 

 

 

 

 

 

FIGURE 5.3 – Density function of the latent variable (Y ). The shapes are merely 
illustrative. Panel A displays only the cases where losses happened whilst Panel B 

includes levels of Y  that did not result in default (above the cutoff cy ). The cdf of Y  at 

Ay  , )( Adefault yF , is equal to one minus the cdf of PD  assessed at the average PD , 

which can be inferred from datasets. 1)( cdefault yF . UL, EL, and ND represent 

unexpected losses, expected losses, and non-default, in that order. )( AY yF
 
and 

)( cY yF  are, respectively, the cdfs of the latent variable related to the historical 

average losses and to the cutoff value below which defaults happen.  
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We cannot observe Y  or its distribution but we know that its cdf is equal to one 

minus the cdf of the associated PD  in the PD  distribution. So, if expected 

losses (average PD  = 
Apd ) are, for instance, 5% and this value is the 60th 

percentile in its distribution restricted to default cases, according to [5.4], the cdf 

of 
Ay  in the latent variable’s distribution, )( Adefault yF , will be  )(1 Adefault pdF . 

40.060.01  . This reasoning also works for the complete (unobservable) 

distribution 
YF . 

Regardless of the size of the non-default area (ND) in Figure 5.3 – Panel B, Ay  

and cy  are the same in both distributions ( YF  and defaultF ) and their cdfs indicate 

the proportion of data occurrences below those specific points. )( Adefault yF , for 

instance, gives the number of Y  observations in distribution defaultF   below Ay , 

default

An , divided by the total observations, 
defaultn . Thus: 

 
default

c

default

defaultdefault

c

defaultdefault

cdefault

Adefault

n

n

nn

nn

yF

yF
AA 

/

/

)(

)(
. 

Regarding the distribution YF , let An , cn , and n  denote, respectively, the 

number of observations below Ay , below cy , and in the complete distribution. 

Following the reasoning in the prior paragraph: 
c

A

c

A

cY

AY

n

n

nn

nn

yF

yF


/

/

)(

)(
.  

Since no data is included below cy  when the non-default area (ND) is added to 

defaultF  in order to generate the entire distribution YF , A

default

A nn   and c

default

c nn  .  

Therefore, 
)(

)(

)(

)(

cY

AY

cdefault

Adefault

yF

yF

yF

yF
 . As stated before, 1)( cdefault yF , thus

 
)( cY yF  is 

always equal to )(/)( AdefaultAY yFyF .   

From Figure 5.2 – Panel A that represents homogenous segments/portfolios 

(same PD  for all loans), it is easy to see that the joint area below cy  minus the 
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joint area below 
Ay  is equal to the expected probability of default (EL). In 

copula terms, 

 

 ))(),((ˆ))(),((ˆ AYAYcYcY yFyFCyFyFC  

PDyFyFCyFyFyFyFC AYAYAdefaultAYAdefaultAY  ))(),((ˆ))(/)(),(/)((ˆ  

 

where )( AY yF , the cdf of the latent variable evaluated at its historical average, 

is the only unknown variable, )(/)()( AdefaultAYcY yFyFyF  , )( Adefault yF  is the cdf 

of Y  at its historical average in the distribution restricted to cyY  , and PD  

expresses the expected (average) probability of default (EL). The notation Ĉ  

(from [5.6] and based on Nelsen, 2006) was kept to indicate that we are dealing 

with a survival copula from a PD  standpoint47. The existence of a closed-form 

solution to calculate )( AY yF  will depend on the copula chosen or empirically 

found to represent the association between the latent variables of the loans. 

After )( AY yF  is estimated, the joint distribution ),( AA yyH  may be calculated as 

the copula ))(),((ˆ AYAY yFyFC  and will express the mean unexpected losses in a 

particular period (the sum of percent losses above the average in a period 

divided by the number of unit times considered – months, for instance).  

However, in bank regulation, the major concern is the maximum potential loss. 

In this copula-based method, the risk of severe unexpected losses comes from 

possible variations in the cdf of the latent variable evaluated at its past average 

(= expected latent variable), i.e. changes in )( AY yF  that may reach extreme 

values while Ay  is kept constant (the historical average). The augment of that 

cdf is interpreted as a response to the deterioration of the economic status.  

                                                           
47

 Since (.)(.)1(.) PDPDY FFF  , [5.7] corresponds to: 

PDpdFpdFCpdFpdFC APDAPDcPDcPD  ))(),((ˆ))(),((ˆ . 

[5.7] 



122 
 

This situation can be depicted with the support of Figure 5.3 – Panel B. In 

downturns, latent variables smaller than 
Ay  tend to appear more frequently. In 

these circumstances, the percentage of non-default (ND) drops and, as the 

expected losses (EL) stay unaltered (it is set as the historical average), the 

unexpected losses (UL) rise. Therefore the ratio UL/EL goes up and so does 

)( AY yF . It is worth noting that 
Ay  remains steady and each new 

AyY   makes 

Ay  “move” to the right side at the density representation and get closer to cy . 

The risk is “how far” 
Ay  can go, i.e. how close to )( cY yF  )( AY yF  can get. In the 

example given above (pertaining to the five-defaulter portfolio with y = {35, 75, 

80, 90, 95} and yA = 75 before the downturn), new defaulters in an unfavourable 

economic scenario would likely have Y < 75 (latent variables smaller than the 

historical average) which would make )( AY yF  increase.  

In order to estimate this potential increment of )( AY yF , we should find an 

extreme cdf of the average latent variable in the distribution resultant from the 

inclusion of smaller latent variables, 
cAYAEXT yYyFyF  |()(  and Economic 

Status = downturn), as illustrated in Figure 5.4 that follows the intuition of Figure 

5.3. In Panel A, the area below the extreme percentile of each loan, 

)(_ AEXTdefault yF , is the model confidence, i.e., the probability that AyY    in 

EXTdefaultf _ . The cdf  of Y at the cutoff value of the latent variable below which 

default occurs is equal to one, 1)(_ cEXTdefault yF .  

In Panel B, values of Y  above yc (non-default status) are included in the density 

function. UL, EL, and ND stand for unexpected losses, expected losses, and 

non-default, respectively. UL is given by )( AEXT yF  which is associated with 

)( cEXT yF  as confidenceyFyFyFyF AEXTAEXTdefaultAEXTcEXT /)()(/)()( _  .   
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EL = )( c

EXT yF – )( A

EXT yF  )()( AEXTcEXT yFyFEL 
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FIGURE 5.4 – Density function of the latent variable (Y ) depicting a situation where the 

average of the historical latent variable ( Ay ) becomes an extreme percentile in an 

unfavourable scenario. The shapes are merely illustrative.  
 

The confidence required will express the ratio UL/(UL+EL) and may be 

understood as a measure of the economy’s degradation. )( AEXT yF  will be a 

proportion of )( cEXT yF  such that confidenceyFyF AEXTcEXT *)()(  , with 

confidence between 0 and 1. In this fashion, when confidence equals 100%, all 

losses are unexpected. Conversely, when it approaches zero (upturns), small 

unexpected losses are supposed to happen. So, like in Basel II and factor 

models, the latent variables of loans are driven by the (unobserved) economic 

status. Here, the latter is captured by the variation of the former which, in turn, 

is inferred from available data on probabilities of default. 

Using the example mentioned earlier, in which the latent variable is interpreted 

as obligors’ asset returns, Ay  is still 75 (the historical average) but due to the 

severe economic conditions, asset returns lower than the average (Y < 75) are 

included in the distribution and  yA  represents a higher percentile in the new 
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distribution FEXT that includes latent variables observed in downturns, i.e. 

)()( AYAEXT yFyF  .  

The copula calculated for the extreme percentiles of 
Ay  will give the maximum 

unexpected loss with the confidence demanded which defines the location of 

the average latent variable in the new distribution EXTF . Following the same 

reasoning in [5.7], we can find the extreme cdf for each loan, )( AEXT yF , doing: 

 

PDyFyFCconfidenceyFconfidenceyFC AEXTAEXTAEXTAEXT  ))(),((ˆ)/)(,/)((ˆ  

 

PD  is the average probability of default (EL),
 

confidenceyFyF AEXTcEXT /)()(   

and confidence (0,1] establishes the cdf of the average latent variable for 

each obligor in an adverse economic scenario.  

The final formula is intended to replace the term )( PDKV   in [5.1]. Thus, the 

capital to cover unexpected losses will be: 

 

MaturityyFyFCLGD AEXTAEXT *))](),((ˆ*[  

 

5.3.3 Defining the copula to be used  

If large datasets on probabilities of default are available, the dependence 

across pairs of latent variables may be found through the estimation of the best 

copula for "1" PD . Therefore it is not necessary to estimate the best copula 

that expresses the dependence between PDs . What matters is the copula that 

will represent the dependence across the latent variables (which can be 

interpreted as returns of debtors’ assets or “time until default”, for instance). To 

estimate such dependence it suffices to have a series of PDs  from a 

“homogeneous” credit segment/portfolio. 

Durrleman et al. (2000) and Cherubini et al. (2004, Chapter 5), for example, 

present some methods that can be used to empirically find the parameter, for 

[5.8] 
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each copula family, with the best fit to a dataset (see also Chapter 3, Section 

3.2.1). A practical way to find the copula’s parameter is to estimate it from the 

kendall’s tau of PD1  (by using [2.1] presented in Chapter 2) which is the 

same kendall’s tau for PDs  (which are observable)48. 

Berg (2009) and Genest et al. (2009) describe some goodness-of-fit tests that 

allow us to decide which copula (considering the estimated parameters) gives 

the best expression of the dependence related to the variables analysed (see 

also Chapter 3, Section 3.2.2).  

The use of empirically-found copulas gives more realistic results than the use of 

assumed copulas because the probability of unexpected losses and the 

dependence between the variables come from “real” data ( PDs ).  

The following example shows the application of the model if we assume that 

high PDs  are more linked than low PDs . 

 

5.4  MODEL APPLICATION: AN EXAMPLE FOR RIGHT-TAIL-DEPENDENT 
LOSSES 

5.4.1 Assumptions 

As stated in Chapter 3, Section 3.1, many studies have shown that asset 

returns present stronger association when they (returns) are at lower levels and 

this conclusion has been extended to credit assets. Based on this, it is assumed 

in this section that PDs  (probabilities of default, credit losses) have upper tail 

dependence (which means that high PDs  are more correlated than the other 

levels or, in other words, large losses of different obligors tend to be more 

associated whereas small losses are not very linked). This relationship can be 

represented by copulas such as Gumbel, Joe, Galambos, and Hüsler-Reiss. 

The Gumbel was chosen because, among those copulas cited, it has been 

more studied and its properties are better known.  

                                                           
48

 Alternatively, [2.2] can be used to estimate the copula parameter as a function of Spearman’s 

rho )( S . In the simulations run for this study, the results based on   and 
S  usually matched 

up to the second decimal place. 
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The scatter plot of a Gumbel-dependent random variable X ( )10  X  looks 

like Figure 5.5. Consequently, the plot of the symmetrically inverse variable 

X1  will be like Figure 5.6.  

Those figures are suitable for representing the dependence between PDs  of 

loans and between their latent variable Y  respectively, such that 

)(1)( pdFyF PDY   as defined in [5.4]. The Clayton Copula is a good 

representation for the second type of dependence (between latent variables) 

that indicates lower tail association. This relationship could be expressed by 

other copulas that express lower-tail dependence (Raftery, for instance) but the 

Clayton Copula was chosen because it has been more studied and its formula 

is more tractable than the other alternatives.  

 

 

FIGURE 5.5 – Two random variables with Gumbel dependence (upper-tail 
dependence). 
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FIGURE 5.6 – Two random variables with lower-tail dependence. 

 

5.4.2 The formula  

We are interested in calculating the joint probability of the latent variable’s 

historical average being below the percentile of an extreme point that indicates 

joint unexpected losses in adverse scenarios. To do so, we should estimate the 

copula ))(),((ˆ AEXTAEXT yFyFC  where )( AEXT yF  is the percentile of the historical 

average latent variable of individual loans at an extreme location and refers to 

the confidence demanded.  

Recall that both variables Ay , one for each loan, used to calculate the 

probability are equal to each other because the segment/portfolio is assumed to 

be homogenous, so the percentile of the average Y  in the extreme distribution 

(= )( AEXT yF ) is the same for all loans. Consequently, the extreme percentile of 

PD   (= )(1 AEXT yF ) is also the same for all loans. 
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Ĉ  is assumed to be a Clayton Copula to detect the supposed lower-tail 

dependence of the latent variables: they are more related in downturns when 

their levels are lower. For this particular case, the Clayton Copula with 

parameter   is: 

 

 /1/1 ]1)(*2[]1)()([))(),((ˆ   AEXTAEXTAEXTAEXTAEXT yFyFyFyFyFC

 

 

This formula gives the probability of the latent variable being jointly smaller than 

its historical average when the latter reaches an unusually high percentile, 

)( AEXT yF , in the respective distribution. This corresponds to the likelihood of 

losses being simultaneously above an extreme point and the expression above 

substitutes )( PDKV   in [5.1]. Therefore the capital to cover unexpected losses 

is:  

MaturityyFLGD AEXT *)]]1)(*2[(* /1     

 

where LGD and Maturity  are defined as in [5.1], )( AEXT yF  is the extreme 

percentile of the average latent variable calculated in [5.8] according to the 

confidence required, and   is the parameter of the Clayton Copula, estimated 

from the rank correlation (Kendall’s tau or Spearman’s rho) of PD  (following, 

respectively, [2.1] and [2.2] from Chapter 2). 

 

5.4.3 Additional comments on this alternative model 

A prior use of copulas in order to suggest some improvements to Basel II was 

reported in Benvegnù et al. (2006). The main purpose was to capture 

diversification effects, since the Basel II determines the simple addition of all 

capital requirements for segments without taking correlations into account. 

Their analysis was focused on corporate loans and concluded that the copula 

approach reduces the capital required by 10 to 30%.  

[ 5.9 ] 
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However, “to be in line with the model used in the Basel II credit framework and 

the major industry models” (p. 497), the authors assumed that the loans have 

Vasicek distributions, the underlying factors that drive credit losses were jointly 

normally distributed, and the dependence between them was also Normal 

(Gaussian Copula). Such assumptions restricted the identification of 

simultaneous extreme occurrences. 

Here, the relation between the latent variables is assumed to be satisfactorily 

represented by the Clayton Copula in order to find their lower-tail dependence 

(i.e. lower levels of latent variables, which lead to defaults, are more correlated 

in lower economic levels).  

In short, although copulas enable us to capture the diversification effects among 

different segments (which tend to reduce the capital necessary to cover 

unexpected losses, as in Benvegnù et al., 2006) some of their families identify 

higher level of dependence at the extremes (which may increase the capital 

needed). Thus, due to the assumption of tail dependence, the proposed formula 

in this section is more conservative and it is aligned with regulators’ point of 

view (and practitioners who want to guarantee adequate capital to cover losses 

in severe scenarios). 

It could be said that if “real” data do not present intense tail dependence, the 

capital calculated by [5.9] will be excessive. But if there are chances of 

overestimation, regulators and institutions that adopt this approach may reduce 

the confidence of the extreme average latent variable used as an input in the 

formula. Even in this case, the alternative method seems to be more 

appropriate than the current Basel Accord given that the latter assumes an 

unrealistic distribution for the variables involved and measures the dependence 

between them by using the linear correlation coefficient which does not capture 

tail dependence.  

Furthermore, the copula-based approach has other advantages: it may be used 

for negatively correlated losses (provided that the rank correlation is positive) 

while Basel II’s model does not admit negative correlation; and it does not 
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assume any specific type of distribution for credit losses, the latent variable, and 

the unobserved economic factor. 

 

5.5  SIMULATIONS AND RESULTS FOR REQUIRED CAPITAL 

Simulations were used to test the efficiency of the alternative model. The capital 

required according to the Basel method was computed for three types of 

consumer loans (to which the maturity adjustment is not applied)49: revolving 

credit, mortgage, and “other retail”. For simplicity, LGD was assumed equal to 

100% (i.e. the Recovery Rate is 0%). 

The simulations were controlled for three variables, PD  (15 rates between 1% 

and 15%, inclusive), PD  dependence expressed by the Gumbel Copula’s 

parameter50 (11 values from 1.05 to 2), and the shape of 'PDs distributions 

(normal/gaussian, exponential, beta, and gamma) which represented 660 

scenarios. Apart from the case of normal PDs , the other three distributions 

were simulated in such ways that their parameters resulted in the mean ( PD ) 

chosen and in distributions skewed to the right indicating asymmetric high 

losses (following Kalyvas et al., 2006 who stated that credit losses present 

distributions skewed to the right). 

Note that the selection of the Gumbel Copula implies the existence of upper-tail 

dependence for losses. The higher the parameter, the higher that dependence. 

The confidence51 of the proposed model was set at 0.90. Each scenario 

contained 1,000 observations (equivalent to 1,000 periods) and was run 1,000 

times to minimise possible randomness effects on results52. 

                                                           
49

 These simulations can be run for corporate debt as well but some scenarios for the maturity 
adjustment should also be defined.  
50

 The smallest value allowed for the Gumbel parameter is 1 (which represents independence). 
51

 Other confidence levels were tested (not displayed here) but yielded lower ratios of 

outperformance over Basel II, mainly due to overestimations of the copula-based method. 
52

 The results presented in Table 5.2 are the averages of each variable simulated. Furthermore, 
the codes for data generation include some commands to guarantee that the loss dependence’s 
parameters are close enough to the stated values (divergence no greater than 0.01). 
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To calculate the “true” joint unexpected losses, two “correlated” variables 

(probabilities of default = PDs ) were simulated with the same features (mean, 

distribution’s family, and its parameters) since the segment or portfolio in terms 

of calculation of capital is assumed to be homogenous. This pair of variables 

represents all pairs of dependent loans (all pairs have the same dependence) in 

the simulation criteria. Then we computed the maximum loss when the 

variables were simultaneously above the mean (average PD ). 

The performance of the models was measured according to the magnitude of 

the ratio between the “true” maximum unexpected losses and the capital 

estimated (without taking into account if the capital was excessive or insufficient 

to cover the losses). Thus, for instance, if the real maximum unexpected losses 

were 20%, one particular method resulted in 25% and other method estimated 

16%, the latter was considered better because the magnitude of its divergence 

(= 1 - (0.16/0.20) = 0.20 deficient) was less than the difference generated by the 

former model (= (0.25/0.20) - 1 = 0.25 in excess). 

Considering all 660 scenarios, Basel estimations for the three categories of 

consumer loans were concurrently better than the alternative model’s results in 

26.52% of the cases. On the other hand, the copula approach was more 

efficient than traditional calculations for the three (at least one of the) consumer 

credit classes in 33.79% (73.48%) of the cases. However these ratios rise to 

45.05% (92.32%) if the normally distributed losses are excluded. Therefore the 

performance of the copula-based method was directly related to the shape of 

the marginal loss distributions. 

Table 5.1 – Panel A presents, for each of the loss distributions studied, the 

proportion of scenarios in which the alternative method gave better 

performance than the Basel approach did. The forecasts pertaining to 

exponential (normal) losses presented the best (worst) results. However, it was 

noticed in other simulations (not displayed here) that the results for normal 

PDs  could be improved if lower levels of confidence were employed.  
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Table 5.1 – Proportion of successful estimations of the alternative method 
compared to Basel II estimations for consumer loans 

Loss 
distribution 

Revolving 
credit 

Mortgage “Other 
retail” 

Three 
classes 

At least 
one class 

Panel A: All scenarios simulated 

Normal 0.00% 16.97% 3.64% 0.00% 16.97% 
Exponential 100.00% 84.85% 90.91% 78.79% 100.00% 
Beta 96.36% 38.79% 95.15% 38.79% 98.79% 
Gamma 73.94% 17.58% 74.55% 17.58% 78.18% 

Average 67.58% 39.55% 66.06% 33.79% 73.48% 

Panel B: Scenarios with correlation lower than or equal to 0.16 

Normal 0.00% 43.33% 10.00% 0.00% 43.33% 
Exponential 100.00% 93.33% 100.00% 93.33% 100.00% 
Beta 86.67% 33.33% 73.33% 33.33% 86.67% 
Gamma 66.67% 33.33% 53.33% 26.67% 66.67% 

Average 50.67% 49.33% 49.33% 30.67% 68.00% 

 

As for the classes of loans, revolving credit and “other retail” had superior 

performance: they were better than Basel II in around 68% and 66% of the 

scenarios, respectively (these figures go up to 90% and 87% if normal losses 

are not taken into account). The Basel formula for mortgage was more accurate 

because the correlation for this group is, in general, higher and this avoided 

excessive underestimation in some circumstances. 

So, if the assumptions followed to generate the scenarios are valid for “real” 

portfolios, the alternative approach is liable to outperform Basel II especially for 

revolving credit and “other retail” whose losses are not normally distributed.  

A special warning about Basel results is the high percentage of underestimated 

maximum potential losses: 85% with respect to revolving credit and “other 

retail” and 61% in mortgage portfolios. Typically, this drawback happened for 

non-normal losses. 

As an additional analysis to get results closer to what financial institutions might 

experience in practice, the comparison was limited to levels of dependence of 

PDs  that are likely to be more representative of empirical credit portfolios. The 

proxy for the dependence of “real” consumer loans is based on the values 
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inferred in Basel II (from 0.03 to 0.16) for the (linear) correlation across assets 

of retail debtors53. The outperformance proportion of the alternative model with 

regard to portfolios correlated in that restricted range is displayed in Table 5.1 – 

Panel B. 

On average, the alternative approach yielded worse results for portfolios less 

correlated (Panel B compared to Panel A). This result is explained by the fact 

that the main benefit of using the Clayton Copula method is the identification of 

left tail dependence and the consequent higher number of joint occurrences in 

the extreme left side of the latent variable’s distribution (or, equivalently, in the 

right tail of the loss distribution). Since loans presenting lower correlation (as 

those in Panel B of Table 5.1) tend to have reduced degree of tail dependence, 

the poorer performance of the suggested model in these cases was expected. 

Table 5.2 shows some examples54 of capital estimated using the copula 

technique and Basel II for consumer portfolios with correlation compatible with 

the values adopted by the Basel Committee on Banking Supervision (BCBS) – 

see the fourth column55. The maximum unexpected losses observed in the 

simulated portfolios and the best approximations are highlighted in boldface. 

If regulators and/or practitioners wish to set particular dependence values for 

each type of loan instead of calculating them directly from every single portfolio, 

the copula model can still be used successfully through the definition of a 

copula parameter for each credit category (which can be inferred from rank 

correlations between losses – that reflect the rank dependence across debtors’ 

assets – by utilising [2.1] or [2.2] presented in Chapter 2). 

 

  

                                                           
53

 The correlations adopted by Basel II model are: 0.04 for revolving credit, 0.15 for mortgages 
and from 0.03 to 0.16 (as a decreasing function of PD ) for “other retail credit”.  
54

 Among the 15 PDs  simulated, seven were selected: 0.01, 0.03, 0.05, 0.07, 0.10, 0.12, and 

0.15. 
55

 The correlations specified in Basel II refer to obligors’ asset returns (latent variables) and are 

assumed to drive the correlations across PDs. Thus, we use the latter (observable in the 

simulations) as a proxy for the former (unobservable). 
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Table 5.2 – Comparison between capital calculated by Basel Model and the alternative formula for some 
of the simulated credit portfolios (with linear correlation between 0.03 and 0.16, inclusive)* 

PD PD 
dependence 

(Gumbel ) 

Latent 
variable 

dependence 

(Clayton ) 

Linear 
correlation 

“True” 
maximum 

unexpected 
losses 

Alternative 
required 
capital 

Capital 
required 
Basel II 

(revolving) 

Capital 
required 
Basel II 

(mortgage) 

Capital 
required  
Basel II 
(“other 
retail”) 

Panel A : Normal distribution 

0.01 1.05 0.0997 0.0770 0.0132 0.0494 0.0306 0.1003 0.0814 
0.01 1.10 0.1999 0.1472 0.0141 0.0555 0.0306 0.1003 0.0814 
0.03 1.05 0.1010 0.0787 0.0396 0.1411 0.0687 0.1991 0.1116 
0.03 1.10 0.2005 0.1475 0.0425 0.1529 0.0687 0.1991 0.1116 
0.05 1.05 0.1003 0.0783 0.0670 0.2293 0.0973 0.2635 0.1181 
0.05 1.10 0.2003 0.1475 0.0701 0.2440 0.0973 0.2635 0.1181 
0.07 1.05 0.1029 0.0798 0.0927 0.3162 0.1207 0.3111 0.1231 
0.07 1.10 0.2011 0.1473 0.0993 0.3317 0.1207 0.3111 0.1231 
0.10 1.05 0.1037 0.0805 0.1320 0.4436 0.1491 0.3634 0.1343 
0.10 1.10 0.2024 0.1488 0.1406 0.4586 0.1491 0.3634 0.1343 
0.12 1.05 0.1038 0.0803 0.1589 0.5273 0.1649 0.3895 0.1434 
0.12 1.10 0.2013 0.1479 0.1693 0.5407 0.1649 0.3895 0.1434 
0.15 1.05 0.1023 0.0795 0.1996 0.6512 0.1847 0.4191 0.1575 
0.15 1.10 0.1998 0.1469 0.2115 0.6614 0.1847 0.4191 0.1575 

Panel B: Exponential distribution 

0.01 1.05 0.1033 0.1012 0.0469 0.0496 0.0306 0.1003 0.0814 
0.03 1.05 0.1017 0.1001 0.1446 0.1412 0.0687 0.1991 0.1116 
0.05 1.05 0.1006 0.0971 0.2366 0.2293 0.0973 0.2635 0.1181 
0.07 1.05 0.1012 0.1014 0.3346 0.3158 0.1206 0.3111 0.1231 
0.10 1.05 0.1039 0.1010 0.4808 0.4438 0.1492 0.3634 0.1343 
0.12 1.05 0.0984 0.0973 0.5706 0.5264 0.1649 0.3895 0.1434 
0.15 1.05 0.1046 0.0991 0.7012 0.6513 0.1847 0.4191 0.1575 

(continued on the next page) 
(*) The maximum unexpected losses observed and the best estimation for each scenario are highlighted.  
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Table 5.2 (continued) – Comparison between capital calculated by Basel Model and the alternative 
formula for some of the simulated credit portfolios (with linear correlation between 0.03 and 0.16, 

inclusive)* 

PD PD 
dependence 

(Gumbel ) 

Latent 
variable 

dependence 

(Clayton ) 

Linear 
correlation 

“True” 
unexpected 

losses 

Alternative 
required 
capital 

Capital 
required 
Basel II 

(revolving) 

Capital 
required 
Basel II 

(mortgage) 

Capital 
required  
Basel II 
(“other 
retail”) 

Panel C: Beta distribution 

0.01 1.05 0.1024 0.1040 0.2136 0.0496 0.0306 0.1003 0.0814 
0.03 1.05 0.1043 0.1029 0.2813 0.1416 0.0688 0.1991 0.1116 
0.05 1.05 0.1040 0.1003 0.3149 0.2298 0.0973 0.2635 0.1181 
0.07 1.05 0.1029 0.0972 0.3344 0.3163 0.1207 0.3111 0.1231 
0.10 1.05 0.1010 0.0947 0.3574 0.4432 0.1491 0.3634 0.1343 
0.12 1.05 0.1040 0.0940 0.3717 0.5272 0.1649 0.3895 0.1434 
0.15 1.05 0.1024 0.0917 0.3817 0.6511 0.1847 0.4191 0.1575 

Panel D: Gamma distribution 

0.01 1.05 0.1015 0.1056 0.1494 0.0495 0.0306 0.1003 0.0814 
0.03 1.05 0.1026 0.1034 0.2027 0.1413 0.0688 0.1991 0.1116 
0.05 1.05 0.1025 0.0983 0.2336 0.2296 0.0973 0.2635 0.1181 
0.07 1.05 0.1050 0.0993 0.2654 0.3164 0.1206 0.3111 0.1231 
0.10 1.05 0.1012 0.0957 0.2980 0.4433 0.1492 0.3634 0.1343 
0.12 1.05 0.1041 0.0955 0.3126 0.5274 0.1649 0.3895 0.1434 
0.15 1.05 0.0985 0.0907 0.3383 0.6508 0.1847 0.4191 0.1575 

(*) The maximum unexpected losses observed and the best estimation for each scenario are highlighted.  
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5.6  CONCLUSIONS 

Due to the assumptions of normally-distributed variables and the use of a linear 

measure of dependence (correlation coefficient), Basel method is not able to 

identify joint extreme events accurately. Therefore, the capital demanded to 

cover unexpected losses may be misestimated. 

The main contribution of this study is to consider potential tail dependence 

between associated (latent) variables to calculate the probability of credit losses 

in adverse situations. By capturing joint extreme events more precisely by 

means of diverse dependence structures (copulas), the alternative model 

improves the accuracy of estimates related to simultaneous large losses which 

usually happen in downturns. 

Differently from the studies that estimate losses at the portfolio level based on 

the assumption of normality, such as Vasicek (1991 and 2002), Gordy (2003) 

and BCBS (2005), the method introduced in this chapter does not assume any 

specific distribution for the variables considered. Our approach is more flexible 

than the method adopted in Benvegnù et al. (2006) who were limited to the 

Gaussian Copula whilst we set a framework compatible with any copula family.  

The formulas proposed here can be easily implemented and are intended to 

replace the term in Basel II referent to the subtraction of the extreme default 

rate )( VK  by PD  (see [5.1]). Nevertheless, some basic assumptions of the 

Basel II approach are kept, namely: the homogeneity of segments/portfolios 

and the fact that defaults are driven by latent variables which are impacted by 

an unobserved (economic) factor. Also, possible pitfalls related to the 

calculation of the loss given default ( LGD) and the maturity adjustment are not 

investigated.  

Simulations of right-tail-dependent losses that controlled for several levels of 

PDs , their dependencies and marginal distributions confirmed the superiority of 

the suggested method when losses are not normally distributed. Hence, given 

that the literature has presented some evidence that credit losses do not follow 
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the normal distribution and have tail dependence, the copula-based model is 

likely to outperform the current method in many (or most) of the loan portfolios 

held by financial institutions. 

Even if the dependence structure adopted in the exemplary model (Clayton 

Copula) is considered too rigorous, it still can be used without major concerns if 

the confidence is reduced. 

Naturally, the good performance of the alternative model shown for some 

scenarios in Section 5.5 is valid only if losses have upper-tail dependence. The 

next step to consolidate the application of this approach is the empirical search 

for the copula family and respective parameter(s) that best represent the 

relationship between latent variables (which may result in different families and 

parameters for distinct classes of credit, such as corporate, mortgage, 

revolving, and so on).  

Another promising extension of this study is the use of Copula Theory to 

evaluate another component in the Basel formula: the loss given default ( LGD). 

The setup introduced in this chapter to estimate extreme (unexpected) credit 

losses is not the only way of using copulas in the Basel Accords’ context. 

Another model that employs copula families related to Poisson Processes will 

be presented in the next chapter. The second alternative approach (Poisson) is 

applicable to a wider range of negative correlations while the copula-based 

method presented in this chapter is suitable for negative correlation only when 

the rank dependence (e.g. Kendall’s tau or Spearman’s rho) is positive56 (see 

Section 5.4.3). This exclusive advantage of the Poisson model may be 

interesting to calculate the capital to cover unexpected losses in financial 

institutions given that the empirical analysis in Chapter 3 showed the existence 

of some negatively-related credit segments. 

 

  

                                                           
56

 Which comprises few cases given that, in these circumstances, the rank correlation is positive only if 
the negative linear correlation has small magnitude (i.e. is close to zero). 
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CHAPTER 6 
ESTIMATION OF JOINT CREDIT LOSSES BASED ON POISSON 

PROCESSES AND A SUGGESTION FOR BASEL ACCORDS 
 

“Do not go where the path may lead, go instead where 
there is no path and leave a trail.” (Ralph Emerson) 

 

6.1  INTRODUCTION 

Credit risk factor models assume that assets are impacted by systematic and 

specific risks and that the correlation across asset returns results from the 

association between latent variables (log-returns of debtors’ assets) driven by 

the systematic portion of the risk. The formula used to represent the latent 

variables in these models is an application of a property of equicorrelated jointly 

normal variables and therefore its results are conditional on the assumption that 

all variables involved in the calculation are normally distributed. However there 

are many studies in the literature showing that asset returns do not follow the 

normal distribution.  

The aim of this chapter is to apply Poisson processes along with copulas to 

estimate joint credit losses. It uses the idea that the dependence between asset 

performances is driven by latent variables which are interpreted as asset 

“lifetimes” or “time until default”. By considering systematic and idiosyncratic 

risks as independent “fatal shocks”, we can use Poisson processes to represent 

the arrival time of these shocks which, in turn, is equivalent to the assets’ 

lifetimes. It should be noted that negative shocks in this context correspond to 

“impulses” that lengthen asset lifetimes. 

The contributions of this study are twofold. First, we propose a model to 

estimate conjunct credit losses based on Poisson processes and related 

copulas. This approach has the advantages of relaxing the assumption of 

normality (for losses) present in traditional credit models (such as 

CreditMetrics® and KMV®) and of incorporating some levels of negative 

correlations across losses of different debtors. Second, we use the Poisson 
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model to derive a formula to calculate the capital to be held by financial 

institutions to cover unexpected credit losses. In doing so, we extend the 

benefits of the Poisson method (non-normality and compatibility with negative 

correlation) to the banking regulation context.  

The remainder of this chapter is split into four sections. Some concepts 

necessary to the development of the proposed model are presented in Section 

6.2. Next, the Poisson-based model is derived and some simulations confirm its 

efficiency. In Section 6.4, the model is adjusted to calculate unexpected credit 

losses and simulations show that it outperforms Basel formula in some 

scenarios that may represent real credit portfolios. Section 6.5 contains some 

conclusions and possible extensions.   

 

6.2  POISSON PROCESSES AND RELATED COPULAS  

Poisson processes are widely used to represent the “arrival time” of 

independent shocks that affect components of a system. Such shocks may be 

non-fatal or fatal depending on whether the components survive or fail, 

respectively. The “waiting time” until the next shock is assumed to be 

exponentially distributed and the processes are characterised by an intensity 

parameter  that indicates the expected number of events (shocks) per period. 

Considering the case of fatal shocks, it is clear that the time of the shock 

represents the lifetime of the component affected. So, if the shocks are 

independent we can use Poisson processes to estimate components’ lifetimes. 

Consider a system with two components as an example (a two-dimensional 

Poisson process). They are subject to “shocks” that may be fatal to one or both 

components. This could be the case of a small factory with two machines: one 

of them may fail owing to a problem in that specific machine or both may stop 

working if the factory has a general problem. 
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Let T1 be the lifetime of component 1 and T2 the lifetime of component 2. If we 

are interested in estimating the probability of both components (machines, e.g.) 

“surviving” beyond a particular time t we need to calculate Pr[T1 > t, T2 > t]. 

More specifically, consider two components with lifetimes T1 and T2 that may 

“suffer” three independent shocks whose times S1, S2, and S12 are exponential 

random variables with positive parameters (occurrence rates) 1, 2, and 12 

that affect, respectively, only component 1, only component 2, and both of 

them. 

The calculation of Pr[T1 > t1, T2 > t2] leads to the Marshall-Olkin Copula 

defined as (see Marshall and Olkin, 1967 and Nelsen, 2006, Chapter 3): 
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is used to highlight the fact that this family is a Survival Copula (defined in 

Chapter 2, Section 2.3.1). 

This copula gives the probability of T1 > t1  at the same time that T2 > t2  and 

when α = β (i.e. 1 = 2), the dependence corresponds to the Cuadras-Augé 

Copula (Cuadras and Augé, 1984): 
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where the same notation of [6.1] applies. 

 

  

[ 6.1 ] 

[ 6.2 ] 
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6.3  A GENERAL MODEL TO ESTIMATE JOINT PROBABILITIES OF 
DEFAULT BASED ON POISSON PROCESSES 

6.3.1  The model 

Consider that joint defaults result from the dependence between latent variables 

represented by the “time until default” (lifetimes) of assets, T. The probability of 

default, PD, is the likelihood that a “fatal” shock will happen in a specific time 

(“unit time”, u, to use Poisson’s terminology): 

T

u
PD   

 

For example, let u = 1 year and T = 20 years.  In this case, PD = 0.05 indicating 

the probability that the default will occur in the next year. In fact, T is a latent 

variable and must be inferred from PD (which is observable57).  

Note that PD and T are expected values and thus PD may oscillate as a 

function of T. Whenever T increases (decreases), PD decreases (increases) for 

a fixed unit time. Therefore the probability of PD being greater than a specific 

level, pd, is equal to the probability of asset lifetimes being smaller than the 

lifetime, t, correspondent to that loss level.  

Figure 6.1 shows this equality. The shaded areas are equal to each other so 

that Pr[PD>pd] = Pr[T < t] and therefore high values of pd are associated with 

low asset lifetimes (and vice versa). Bear in mind that both distributions are 

merely illustrative since the lifetime distribution will be defined ahead according 

to Poisson model specifications and the loss distribution will be kept unknown. 

Also, note that if the cumulative area until pd is p, pd is the p th percentile of the 

PD distribution, the area below t is 1 – p and t is the (1 – p)th percentile of the 

asset lifetime distribution. 

                                                           
57

 As a frequency of defaulted assets in a portfolio (in a specific period) or deduced from ratings 
for individual assets (debt issuers). 

[ 6.3 ] 
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FIGURE 6.1 – Illustration on the equivalence between areas above a specific 
probability of default and below the associated latent variable’s level (asset lifetime). 

 

This means that the likelihood of PD being above (below) a specific percentile p 

of the loss distribution is equal to the probability of the asset lifetime being 

below (above) the percentile 1 – p  of the latent variable distribution.  

Knowing the shape of the cumulative distribution )( pdFPD  is irrelevant; we just 

need to define the level of unfavourable scenarios (high PDs) we will test, 

which is represent by the area above pd in Figure 6.1.  

Like in factor models, we assume that each asset faces systematic and 

independent idiosyncratic risks (shocks). Defaults will occur when these shocks 

are “fatal”58. For an asset i, Ti will be its lifetime, Ii will be the time in which the 

                                                           
58

 Since the focus is on defaults, non-fatal shocks (causes of downgrade of the loans, i.e. 
reduction of credit quality) are out of the scope of this study.  

Loss distribution Asset lifetime distribution 

equal areas: 
Pr[PD > pd] = 

Pr[T < t] 

pd t 
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fatal idiosyncratic shock happens and Si  the time of the systematic shock. So, 

Ti = min(Ii, Si). 

The joint probability of lifetimes of two assets i and j being shorter than a 

particular period t is expressed as Pr[Ti < t, Tj < t]. This will occur only if the 

idiosyncratic shocks of both assets are shorter than t or if the systematic shock 

happens before that time. Since the specific shocks are independent, we can 

infer that the probability of joint defaults caused by conjunct idiosyncratic 

reasons is negligible for large portfolios in short intervals of time. It is not 

plausible that many companies will be affected by, e.g., “bad management” at 

the same time (in the case of corporate debt) or people will have personal 

problems at once (in the case of retail loans). Therefore, the analysis of joint 

default in portfolios should concentrate on the systematic portion of the risk. 

We are concerned about situations in which several assets present “high” PDs 

simultaneously but we are not able to calculate these joint occurrences since 

we do not know the loss distribution. Based on all prior assumptions, it is 

reasonable to assume that shock times (and therefore assets’ lifetimes) follow 

Poisson processes implying that those variables are exponentially distributed. 

Thus, we can find the joint probability of “low” potential asset lifetimes and use it 

as a proxy for the joint probability of “high” PDs. In the case of two assets, for 

example, we should calculate Pr[Ti < t, Tj < t], i.e. the probability that the 

lifetimes of assets i and j will be smaller than t. 

For assets i and j, the Marshall-Olkin copula, 
jiTC

,

ˆ , gives Pr[Ti > ti, Tj > tj] but 

we are interested in Pr[Ti < ti, Tj < tj]. As the bivariate survival copula 

))(),((ˆ jTiT tFtFC
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 ],Pr[ jjii tTtT   can be written as  )()(1 jTiT tFtF
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where 
jiTF

,
 is the joint distribution of Ti and Tj evaluated at ti and tj. 

TF , which represents the respective marginal (exponential) distributions of 

lifetimes of assets i and j, is given by 
tsystidioe

)(
1

 
  where idio and syst  are the 

intensity (“expected” occurrences) of idiosyncratic and systematic fatal shocks, 

respectively. 

So, the complete expression, derived from [6.4] using [6.1], is: 
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t (which is exponentially distributed) is the time to be specified according to the 

confidence demanded (area below point t in the lifetime distribution). It may be 

found by F
-1

(confidence, 1/), where  F
-1

(.) stands for the inverse exponential 

distribution and confidence is a value in [0,1]. 

In this model, we consider only cases where T  u, i.e. the asset lifetime is not 

allowed to be smaller than the period analysed. So, for example, if we are 

studying the probability of default in the next two years (u = 2), the shortest 

expected asset lifetime T  is 2. Based on [6.3], this constraint implies that   

(0,1] for u > 0. For instance, in the example given just after [6.3], when u = 1 

year and T = 20 years, we expect a “0.05 shock” in year 1 (i.e.  = 0.05). 

Therefore  is usually non-integer (the only exception is  = 1 when T = u) and 

corresponds to the probability of default (PD) of an asset in the period 

[ 6.5 ] 
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specified. This fractional  does not affect the use of the Poisson model given 

that there is no requirement concerning integer intensity parameters. Note that 

the default for each asset may be caused by a specific shock (represented by 

idio) and/or a general shock (syst). As    (0,1], this means that both idio and 

syst  must also be in the range (0,1]. 

We do not need to distinguish idio and syst  because we are interested in the 

PD itself (which is equal to  = idio + syst) regardless of its cause but knowing 

(or assuming) the ratio syst /(idio + syst) is essential to calculate the joint default 

probability. This term indicates the proportion of conjunct defaults caused by 

systematic shocks and corresponds to the copula parameters presented in [6.1] 

and [6.2].  

As said before, virtually all joint defaults in “large” portfolios in a short period are 

triggered by systematic factors. Thus all simultaneous credit losses will reflect a 

certain association among assets (the copula parameter, in this case). Since 

both copulas are not continuous, we cannot apply the maximum likelihood 

techniques described in Chapter 3, Section 3.2.1 (because those techniques 

use density functions and therefore demand the derivation of the copulas). 

Thus, the ratio between syst and (idio + syst) will be approximated here by 

measures of dependence across assets’ losses that are in the same range of 

the possible values of the copula parameters. In the simulations ahead, two of 

these measures will be tested: the linear correlation coefficient and the 

Kendall’s tau (rank correlation). We do not intend to say that these measures 

are mathematically equal to the copula parameters; they are just used as 

approximations due to the difficult in estimating the copula parameters. 

In principle, both dependence measures used as proxies for the parameters of 

the Marshall-Olkin and the Cuadras-Augé copulas should be restricted to 

nonnegative values, i.e. in [0,1]. However the Poisson-based model can be 

extended to “negative systematic shocks” (negative syst) and therefore has the 

advantage of being compatible with some values of negative correlations in 
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view of the fact that when the ratio syst /(idio + syst) is negative the shocks act 

as impulses to assets’ lifetimes. However, since we use dependence measures 

such as the linear correlation and the rank correlation as proxies for the ratio 

syst /(idio + syst)  and these dependence measures are in the range [-1,1], the 

model is valid for negative syst  only when idio  2 * |syst| where |.| represents 

an absolute value and, due to this constraint, the lowest negative value allowed 

for syst  is -0.50 (given that 0 < idio  1). This entails the extension of the copula 

parameters in [6.1] and [6.2] (which are usually taken as positive in practical 

applications) to some possible negative values. This change is compatible with 

Copula Theory given that the three basic properties of copulas mentioned in 

Chapter 2, Section 2.3.1, are also satisfied for the range of negative parameters 

(represented by the correlation coefficient or the rank correlation) mentioned 

above (i.e. when idio  2 * |syst|). 

In this fashion, when syst < 0 and the condition idio  2 * |syst|  is satisfied, 

opposite shocks may offset one another provided that  PD (=   = idio + syst) is 

kept in the interval [0,1], i.e the total shocks (= idio + syst) are still positive and 

comply with the Poisson process condition related to the parameter being 

positive. This is the case when economic conditions (systematic shocks) are so 

favourable that they reduce the effects of individual shocks59. Thus the best 

economic scenarios in terms of risk happen when assets are negatively 

correlated (although this is seldom observed in reality). Note that, in this 

interpretation of Poisson processes at the portfolio level, idio and syst  are not 

individually seen as Poisson parameters. They are part of the effective 

parameter  which must be positive (implying that PD will be also positive). 

Hence one of those two parts can be negative while the other part is positive 

with a greater magnitude such that idio + syst > 0.  

                                                           
59

 Since PD = syst + idio, if syst < 0, PD < idio  meaning that not all individual shocks result in 

default in these favourable scenarios. 
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After these replacements and using the correlation coefficient (ρ) as an example 

of a proxy for the ratio between systematic and total shocks, [6.5] becomes 

more intelligible: 
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Moreover, note that tpde )(  is uniformly distributed in (0,1) since t is 

exponentially distributed with parameter pd. Such a uniform distribution gives 

the area above the selected quantile of t in the exponential distribution. 

Denoting this cutoff quantile as FT(t), we can find t by employing the formula of 

the inverse exponential distribution ))(1ln(
1
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t T  and therefore we 

conclude that )(1)( tFe T
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Recall that FT(ti) = 1 – FPD(pdi) and thus Pr[T < ti] = Pr[PD > pdi]. In other 

words, this means that the area below ti  in the lifetime distribution is equal to 

the area above the associate pdi in the PD distribution. 

So, if FPD(pdi) and FPD(pdj)  give the default cutoffs (quantiles) for assets i and 

j, )()(1
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transforms [6.6] into: 
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This formula gives the likelihood that defaults of two assets, i and j, will be 

simultaneously above their respective quantiles, FPD(pdi) and FPD(pdj), which is 

equivalent to the joint probability of their latent variables (asset lifetimes) being 

[ 6.6 ] 

[ 6.7 ] 
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below 1 – FPD(pdi) = )( iT tF  and 1 – FPD(pdj) = )( jT tF , respectively. For 

instance, it can give the likelihood that i’s and j’s PDs will be above their 

respective 90th historical percentiles at the same time (FPD(pdi)  = FPD(pdj)  = 

0.90). In this case, their lifetimes will be below their respective 10% worst 

(smallest) historical values (1 – FPD(pdi) = 1 – FPD(pdj) = 0.10). 

The correlation is allowed to be negative in the cases where 

 1)()( jPDiPD pdFpdF ))().(),(.)(min(
]1[]1[ ijij

jPDiPDjPDiPD pdFpdFpdFpdF
 

, 

for  0 < FPD(pd) < 1. In practical terms, stronger negative correlations are 

compatible only with smaller PD quantiles. If we are, for instance, estimating 

the likelihood of joint losses over the same level when negative dependence 

reaches its highest intensity,  = -1, consistent results will be possible just for 

quantiles FPD(pd) no greater than 0.6180.  

Although Poisson processes have been used to model credit risk, to the best of 

our knowledge, the approach suggested in this paper to estimate joint losses is 

novel.  

The CreditRisk+ model, for example, assumes that the probability of default 

follows the Poisson distribution but the method adopted to derive losses at the 

portfolio level is different from the technique proposed here and does not 

employ the concept of copula (see CSFBI, 1997 and Crouhy et al., 2000). 

Lindskog and McNeil (2001) suggest the application of Poisson processes to 

model credit risk but they focus on different questions, especially the impact of 

the ratio of idiosyncratic and systematic shocks on the tail of the total loss 

distribution. 

 

6.3.2  Simulations 

In order to test the performance of the suggested approach, we simulated 

normal variables with three dependence structures represented by three 

copulas: Gaussian (symmetric without tail dependence), Student t (symmetric 
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with fat tails), and Gumbel (asymmetric with right-tail dependence) and 

calculated the probability of extreme joint occurrences. The purpose is to check 

whether this alternative model yields results at least as good as estimations that 

assume normal margins and dependence (Gaussian Copula) even when the 

losses are normally distributed. 

Two assets, i and j, were simulated with probabilities of default equal to 0.05 

and 0.10.  

For each dependence structure, five strength levels were tested60: 0.1, 0.2, 0.3, 

0.4, and 0.5 for Gaussian and Student t Copulas and 1.1, 1.3, 1.5, 2.0, and 2.5 

for Gumbel Copula61 .  

Then we calculated the proportion of joint occurrences of PDs above specific 

loss percentiles: 75th for both assets, 90th for i and 80th for j, and 99th for both 

assets. In other words, we calculated the ratio of simultaneous losses above the 

mentioned percentiles of each asset loss distribution. So, for example, in the 

second case, we estimated the probability of i’s loss being higher than 90% of 

its historical losses at the same time that  j presents losses higher than 80% of 

its historical level. 

Next, the joint probabilities for the same cutoffs were estimated by using two 

methods: (i) assuming Normal loss distributions and Gaussian dependence and 

(ii) the model based on Poisson Processes and using the linear correlation as 

proxy for the intensity of systematic shocks. Each simulation was run 10,000 

times. The results are shown in Table 6.1.  

We also calculated the absolute difference between each method and the real 

joint occurrences observed (see two last columns of Table 6.1). Such 

differences were used to check if, when the losses are normally distributed, the 

suggested Poisson method yields results as satisfactory as the estimation that 

                                                           
60

 These levels correspond to the copulas’ parameters. The Student t Copula was simulated 
with degree of freedom = 1 in order to present a considerable difference from the Gaussian 
dependence. 
61

 The parameters for Gumbel Copula are different because the minimum parameter admitted 
for this copula is 1 (which indicates independence). 
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assumes normal distributions and dependence. Based on the absolute 

difference, the alternative approach outperformed the traditional estimation in 

21 (out of 45) scenarios (46.67%).  

Naturally, this performance was conditional on the dependence structure. For 

the Gaussian Copula (which is the assumption of traditional estimations), the 

Poisson-based method was the best only in one scenario (out of 15). For the 

Student t and Gumbel Copulas, the suggested model gave results closer to the 

real observed occurrences: 13 (86.67%) and 7 (46.67%) cases out of 15, 

respectively. 

 

Table 6.1 – Joint losses estimated by traditional models (assuming Normal 
distributions and dependence) and alternative (Poisson-based) model. 
Probability of losses above the specified cutoffs for two assets i and j with 
PDs = 0.05 and 0.10  

Dependence 
strength 

Cutoff 
i 

Cutoff 
j 

Real 
joint 

losses 

Estimation 
assuming 
normality 

Alternative 
estimation 

Absolute 
difference: 

Real - 
normal 

Absolute 
difference: 

Real - 
alternative 

Panel A : Gaussian dependence (symmetric, no tail dependence) 

0.1 0.75 0.75 0.0729 0.0740 0.0790 0.0011 0.0061 

0.2 0.75 0.75 0.0837 0.0847 0.0958 0.0010 0.0122 

0.3 0.75 0.75 0.0950 0.0962 0.1132 0.0012 0.0181 

0.4 0.75 0.75 0.1072 0.1083 0.1311 0.0011 0.0239 

0.5 0.75 0.75 0.1203 0.1213 0.1495 0.0010 0.0291 

0.1 0.9 0.8 0.0252 0.0263 0.0276 0.0011 0.0024 

0.2 0.9 0.8 0.0308 0.0320 0.0353 0.0012 0.0045 

0.3 0.9 0.8 0.0372 0.0383 0.0432 0.0012 0.0060 

0.4 0.9 0.8 0.0439 0.0453 0.0510 0.0013 0.0071 

0.5 0.9 0.8 0.0514 0.0528 0.0589 0.0014 0.0075 

0.1 0.99 0.99 0.0002 0.0020 0.0011 0.0018 0.0009 

0.2 0.99 0.99 0.0003 0.0021 0.0021 0.0017 0.0017 

0.3 0.99 0.99 0.0005 0.0023 0.0031 0.0018 0.0025 

0.4 0.99 0.99 0.0008 0.0026 0.0040 0.0018 0.0032 

0.5 0.99 0.99 0.0013 0.0030 0.0050 0.0017 0.0038 
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Table 6.1 (continued) Joint losses estimated by traditional models 
(assuming Normal distributions and dependence) and alternative 
(Poisson-based) model. Probability of losses above the specified cutoffs 

for two assets i and j with PDs = 0.05 and 0.10  

Dependence 
strength 

Cutoff 
i 

Cutoff 
j 

Real 
joint 

losses 

Estimation 
assuming 
normality 

Alternative 
estimation 

Absolute 
difference: 

Real - 
normal 

Absolute 
difference: 

Real - 
alternative 

Panel B : Student t dependence (symmetric tail dependence) 

0.1 0.75 0.75 0.0927 0.0728 0.0768 0.0199 0.0158 

0.2 0.75 0.75 0.1023 0.0822 0.0916 0.0201 0.0107 

0.3 0.75 0.75 0.1124 0.0922 0.1068 0.0202 0.0055 

0.4 0.75 0.75 0.1234 0.1028 0.1229 0.0206 0.0005 

0.5 0.75 0.75 0.1349 0.1143 0.1394 0.0205 0.0046 

0.1 0.9 0.8 0.0443 0.0259 0.0266 0.0183 0.0176 

0.2 0.9 0.8 0.0490 0.0307 0.0334 0.0183 0.0155 

0.3 0.9 0.8 0.0541 0.0360 0.0403 0.0181 0.0138 

0.4 0.9 0.8 0.0592 0.0418 0.0473 0.0174 0.0119 

0.5 0.9 0.8 0.0648 0.0485 0.0546 0.0163 0.0102 

0.1 0.99 0.99 0.0032 0.0019 0.0010 0.0013 0.0022 

0.2 0.99 0.99 0.0035 0.0021 0.0018 0.0015 0.0017 

0.3 0.99 0.99 0.0039 0.0021 0.0027 0.0018 0.0012 

0.4 0.99 0.99 0.0044 0.0024 0.0036 0.0020 0.0008 

0.5 0.99 0.99 0.0048 0.0027 0.0045 0.0021 0.0003 

Panel C: Gumbel dependence (asymmetric tail dependence) 

1.1 0.75 0.75 0.0825 0.0791 0.0869 0.0034 0.0044 

1.3 0.75 0.75 0.1123 0.1033 0.1238 0.0090 0.0115 

1.5 0.75 0.75 0.1333 0.1215 0.1497 0.0117 0.0164 

2.0 0.75 0.75 0.1656 0.1517 0.1881 0.0139 0.0225 

2.5 0.75 0.75 0.1840 0.1703 0.2082 0.0137 0.0242 

1.1 0.9 0.8 0.0331 0.0290 0.0314 0.0041 0.0018 

1.3 0.9 0.8 0.0516 0.0424 0.0478 0.0093 0.0038 

1.5 0.9 0.8 0.0639 0.0528 0.0590 0.0111 0.0049 

2.0 0.9 0.8 0.0812 0.0702 0.0752 0.0111 0.0061 

2.5 0.9 0.8 0.0895 0.0807 0.0833 0.0088 0.0061 

1.1 0.99 0.99 0.0013 0.0020 0.0016 0.0007 0.0003 

1.3 0.99 0.99 0.0030 0.0025 0.0037 0.0005 0.0007 

1.5 0.99 0.99 0.0040 0.0030 0.0050 0.0010 0.0010 

2.0 0.99 0.99 0.0057 0.0045 0.0070 0.0013 0.0013 

2.5 0.99 0.99 0.0067 0.0056 0.0080 0.0011 0.0013 
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More interesting is that the difference between the joint losses estimated by the 

traditional and the suggested model is not significant (pvalue = 0.4554)62. 

Hence, we can infer that, even when loss distributions are normal, the method 

based on Poisson processes gives results as “good” as calculations based on 

assumptions of normality (dependence and loss distributions). Naturally, this 

implies that we could use the normality assumption with the same accuracy as 

the suggested method and therefore there would be no significant benefit in 

using the latter rather than using the former.  

However recall that these simulations pertain to normally-distributed losses and 

they represent the scenarios in which the traditional models (based on the 

assumption of normality) have their best performance. So, the Poisson model 

was not expected to outperform traditional models in these cases.  

The purpose of the simulations was to show that, even when credit losses have 

the (normal) distribution assumed in traditional models, the Poisson method 

results in an equivalent performance.  

The simulations were repeated by using Kendall’s tau as a measure of 

systematic risk intensity. The results (not displayed here) in terms of 

performance and significance were similar to those mentioned above. However 

the level of outperformance of the Poisson approach according to the 

dependence between losses was considerably distinct: 66.67% for Gaussian, 

60% for Student t, and 26.67% for Gumbel.  

An additional question is whether the Poisson model outperforms traditional 

models when credit losses are not normally-distributed. We address this 

question in the next section where we apply the suggested method to estimate 

extreme losses in the context of capital adequacy in financial institutions and 

check its performance for three other loss distributions (exponential, beta and 

gamma). 

 

                                                           
62

 The difference between results of traditional and alternative methods for each dependence 
structure (copula) is not significant either. 
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6.4 A MODEL APPLICATION: CAPITAL REQUIRED TO COVER 
UNEXPECTED CREDIT LOSSES 

6.4.1  The model 

The capital calculated according to Basel II (see [5.1] in Chapter 5) is the 

difference between an “extreme” probability of default (PD) with a specific level 

of confidence (99.9%), KV, and the average PD. An alternative formula to 

estimate such extreme PD may be derived from the approach presented in 

Section 6.3.  

In [6.7], we calculated the probability of joint losses above a chosen level, 

),(
, jiPD pdpdF
ji

. For two loans i and j, ),(
, jiPD pdpdF

ji
 returns the likelihood of 

simultaneous PDs up to pdi and pdj: 
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where Ĉ  is the survival copula of lifetimes ti and tj, FT(ti) and FT(tj) are their 

respective quantiles (equal to one minus the quantiles of the associate PDs, i.e. 

1 – FPD(pdi) and 1 – FPD(pdj)), and ρij is the correlation between default 

probability of loans i and j. 

If the capital is stipulated for segments considered homogeneous, loans in each 

segment are supposed to have equal PD (and, consequently, same expected 

lifetime) such that the dependence between t  becomes a Cuadras-Augé 

Copula (given in [6.2]). Thus, since  pdi = pdj = pd, ti = tj = t and substituting into 

[6.8], we have: 
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[ 6.8 ] 
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where ρ is the correlation for each pair of loans in the portfolio which are 

considered equicorrelated63 and 1 – FT(t), one minus the quantile of the loans’ 

lifetimes, is equal to the quantile FPD(pd) of the associated probability of default 

(see Section 6.3).  

In this alternative approach, portfolios’ losses result from joint occurrences. So, 

the confidence of the probability of joint defaults (“confidencePD”) is the area 

under the multivariate density function up to the PD level chosen. Such area is 

equivalent to the copula ))(1),(1(ˆ tFtFC TT   whose range is (0,1). However, as 

shown ahead, the maximum consistent value for individual loss percentiles 

FPD(pd) = 1 – FT(t) may be smaller than 1. 

In principle, the PD distribution is unknown but the value of the portfolio’s 

lifetime T may be estimated through the inverse distribution of individual 

lifetimes (Exponential) with confidence (area)64 ))(1),(1(ˆ1 tFtFC TT   that 

corresponds to the area below the lifetime t: 

 

))(ln(
1

)/1)),(1),(1(ˆ1(),( 211   pdF
pd

pdtFtFCFmeanTTconfidenceFT PD
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where pdA is the average probability of default (expected loss), FT(t)  is the 

quantile of T which is equal to one minus the quantile of the PD distribution 

(FT(t) = 1 - FPD(pd)) . From [6.9], ))(1),(1(ˆ tFtFC TT   is the confidence of joint 

                                                           
63

 Kendall’s tau is an alternative to replace ρ in [6.9]. 
64

 The confidenceT is in fact given by ))(),(( tFtFC TT but, based on the prior paragraph, is 

approximated by 1 – confidencePD = ))(1),(1(ˆ1 tFtFC TT  . This may be considered valid 

because loans’ lifetimes in homogeneous segments/portfolios are supposed to have similar 
behaviour. 

[ 6.10 ] 
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PD (area below specific values of PD) and FPD(pd) is the confidence of 

individual PDs. Therefore, from [6.3], when unit time = 1: 

))(ln( 2 


pdF

pd
PD

PD

A
 

 

Since PD must be in the range [0,1], the PD quantile FPD(pd) must be in the 

interval (0, 
)2/(  Apd

e ] where pdA and ρ are defined as before. So, due to this 

restriction in terms of individual losses’ quantiles, the loss confidence65 in this 

Poisson-based model will be defined as a proportion of the maximum individual 

PD quantile accepted for each specific case (i.e. a proportion of )2/(  Apd
e ). 

The total joint losses in an extreme scenario according to a particular 

confidence level (= confidence * )2/(  Apd
e  = proportion of the maximum 

individual quantile for the PD distribution) will be estimated from the value of an 

extreme joint lifetime which can be found by applying [6.10], the inverse 

distribution (Exponential) of t: 
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Then, by using [6.3], we can calculate the extreme joint PD as: 
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extreme
t

u
pd   

 

                                                           
65

 This model confidence is based on individual losses and their dependence in order to give the 
likelihood that each of these losses will reach a specific threshold and impact the portfolio’s 
loss. It should not be confused with confidenceT and confidencePD, mentioned before, which refer 
to the probability of portfolios’ lifetimes and PDs, respectively, being below a particular point. If 
one of these two measures was used as the model confidence, the alternative method would 
not capture the dependence between PDs.  

[ 6.11 ] 

[ 6.12 ] 
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where the unit time u will be set equal to 1 in order to maintain the Basel II’s 

time horizon. So, by combining [6.11] and [6.12]: 
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with the linear correlation ρ  [-1,1], confidence  (0,1],  and pdA representing 

the average PD. As expected, extremepd  is increasing in confidence and ρ.  

[6.13] gives the total probability of default in adverse scenarios with respect to 

the confidence required and therefore should replace the term KV in [5.1]: 

 

MaturitypdpdLGD Aextreme *)](*[   

 

Although there are different reasons for consumer defaults (Dubois and 

Anderson, 2010, p. 3), it is possible that this Poisson approach yields better 

results for consumer loans since it uses the idea of “shocks” and there is 

evidence that some households are more subject to shocks (such as loss of job 

and divorce) whilst the degradation of corporate debts is typically continuous 

(see Avery et. al., 2004 and Sabato, 2006). 

 

6.4.2 Simulations 

Simulations66 of credit PD distributions were used to compare the formula 

based on Poisson processes to the formula determined in Basel II for three 

classes of retail credit (revolving, mortgage, and “other retail”)67. 320 scenarios 

were created. For simplicity, LGD was assumed equal to 100%.  

                                                           
66

 The simulations were repeated 1000 times. 
67

 Corporate credit could also be analysed but the maturity term in [5.1] should be simulated as 
well. 

[ 6.13 ] 
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Four dependence structures (copulas) were applied to capture distinct types of 

association: Gaussian (symmetric without tail dependence), Student t 

(symmetric tail dependence), Clayton (left-tail dependence), and Gumbel (right-

tail dependence). 

Five levels of dependence were considered for each copula (represented by 

their parameters : 0.1, 0.2, 0.3, 0.4, and 0.5 for Gaussian, Student t, and 

Clayton copulas and 1.1, 1.3, 1.5, 2.0, and 2.5 for Gumbel Copula – see second 

footnote in Section 6.3.2). Then, we simulated four PD distributions (normal, 

exponential, beta, and gamma68) for each copula level and used four PDs in 

each distribution (0.01, 0.05, 0.10, and 0.15). Figure 6.2 illustrates the definition 

of the scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.2 – Scenarios used in the simulation to compare capital to cover 
unexpected losses calculated according to Basel method and Poisson-based model. 

                                                           
68

 The parameters of the distributions were defined in such way that the mean loss was equal to 
the probabilities of default considered (0.01, 0.05, 0.10, and 0.15 for each distribution) and, 
apart from the normal case, the distributions presented “long” right tail (indicating the existence 
of extreme high losses).  
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The capital calculated according to each approach (Poisson method and Basel) 

was compared to the maximum unexpected losses (maximum total losses 

minus average PD) in all scenarios. We chose the confidence level of 95% for 

the alternative model69. 

The simulations revealed the superiority of the alternative formula for some 

scenarios. Table 6.2 shows the percentage of cases in which the alternative 

model gave estimations closer to the maximum unexpected losses observed in 

the simulated data (based on the absolute difference, i.e. without considering 

under or overestimations). 

The performance of the suggested formula was clearly sensitive to the PD 

distribution. Based on the parameters used in the simulations, the Poisson 

model basically did not yield better results than Basel for normally distributed 

losses (mortgage loans represented exceptions in few cases). For the other 

three distributions, on average, the alternative method outperformed Basel in 

more than half of the scenarios (reaching 100% in some cases). The best 

estimations were for Gamma distributions followed by Beta and Exponential. 

Changes in the confidence level improved the performance of the alternative 

method for some loss distributions but worsened its results in other cases. For 

example, if a confidence level around 0.80 is used, the Poisson method 

outperforms Basel II for normally distributed losses but does not yield good 

estimates for the other three distributions (this confidence level was tested but 

the results are not displayed here). However it is important to note that these 

results are valid only for the specific parameters used to simulate the losses. 

The dependence structure does not seem to have any impact in the success of 

Poisson estimations since, on average, the percentage of outperformance of 

this suggested model was quite similar for all copulas tested. 

                                                           
69

 Among other random confidence levels tested, this value resulted in the best performance of 
the Poisson-based model. Recall that Basel uses the confidence of 99.9%. 
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From the last column of Table 6.2, we calculated that the alternative approach 

was simultaneously better than all three classes of retail credit in 43% of the 

scenarios simulated. 

 

Table 6.2 - Percentage of Poisson-based method’s estimations better than 
Basel II results (retail credit) using correlation coefficient calculated from 
the simulated data* 

Loss 
Distribution 

Revolving 
Credit 

Mortgage Other retail Three 
classes 

Panel A: Gaussian dependence 

Normal 0% 20% 0% 0% 

Exponential 75% 70% 75% 50% 

Beta 100% 20% 95% 20% 

Gamma 100% 75% 95% 75% 

Panel B: Student t dependence 

Normal 0% 20% 0% 0% 

Exponential 75% 55% 75% 50% 

Beta 100% 75% 100% 75% 

Gamma 100% 95% 100% 95% 

Panel C: Clayton dependence 

Normal 0% 25% 0% 0% 

Exponential 75% 75% 55% 50% 

Beta 100% 0% 75% 0% 

Gamma 100% 75% 75% 75% 

Panel D: Gumbel dependence 

Normal 0% 15% 0% 0% 

Exponential 75% 60% 75% 50% 

Beta 100% 60% 100% 60% 

Gamma 100% 90% 100% 90% 

(*) All the percentages in this table are divisible by 5 because there are 20 scenarios 

(four PD levels times five copula parameters) for each combination of loss distributions 

and copula families. Thus, any possible number of occurrences (from 0 to 20) in each 
combination will result in a percent value divisible by 5. 

 

Table 6.3 demonstrates some examples of the difference in the capital 

estimated according to Basel II formula and the alternative approach.  
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Table 6.3 – Selected examples of capital estimated according to Basel II 
and suggested model 

Loss 
distribution 

Observed 
maximum 

losses 

Poisson-
based 
capital 

Revolving 
credit 

 (Basel II) 

Mortgage 
(Basel II) 

Other 
retail 

(Basel II) 

Panel A: Gaussian dependence 

Normal 0.0656 0.3143 0.0973 0.2635 0.1181 

Exponential 0.2338 0.3089 0.0973 0.2635 0.1181 

Beta 0.3081 0.3071 0.0973 0.2635 0.1181 

Gamma 0.3812 0.3059 0.0973 0.2635 0.1181 

Panel B: Student t dependence 

Normal 0.0764 0.3099 0.0973 0.2635 0.1181 

Exponential 0.2941 0.3469 0.0973 0.2635 0.1181 

Beta 0.3891 0.3257 0.0973 0.2635 0.1181 

Gamma 0.4984 0.3292 0.0973 0.2635 0.1181 

Panel C: Clayton dependence 

Normal 0.0583 0.3027 0.0973 0.2635 0.1181 

Exponential 0.2014 0.2904 0.0973 0.2635 0.1181 

Beta 0.2646 0.2880 0.0973 0.2635 0.1181 

Gamma 0.3297 0.2865 0.0973 0.2635 0.1181 

Panel D: Gumbel dependence 

Normal 0.0770 0.3229 0.0973 0.2635 0.1181 

Exponential 0.2967 0.3331 0.0973 0.2635 0.1181 

Beta 0.3875 0.3329 0.0973 0.2635 0.1181 

Gamma 0.4893 0.3342 0.0973 0.2635 0.1181 

 

Among the simulations that generated the results in Table 6.2, a PD (0.5) and 

the intermediary dependence level (0.3 for Gaussian, Student t, and Clayton, 

and 1.3 for Gumbel) were selected. Considering normally distributed defaults, 

the Poisson model presented the highest overestimations. For the other 

distributions, in most of the cases, Basel approach underestimated the 

maximum losses while the Poisson formula returned more accurate 

estimations.  

It could be thought that the superiority of the suggested method in some 

scenarios is due to the fact that it uses correlations calculated directly from the 

losses (PDs) while Basel employs correlations defined a priori (0.04 for 
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revolving credit, 0.15 for mortgage and between 0.03 and 0.16 as a function of 

PD for other retail70). In order to test this hypothesis, we checked the 

performance of the Poisson-based formula using the values for  ρ stipulated in 

Basel II Accord (with confidence level of 95%, as before).  

The results are in Table 6.4 and the alternative model’s performance was 

similar to the case where correlations calculated from the data were used (the 

average of the absolute difference among values in Tables 6.2 and 6.4 is 

5.5%). 

As in the prior simulation (Table 6.2), the worst and the best results from the 

suggested model were related to normally (the smallest percentage of better 

performance of the Poisson model) and gamma-distributed losses (the highest 

percentage of better performance of the Poisson model), respectively. 

The formula used in Basel Accords was also tested by applying the correlation 

coefficient calculated from the PD series instead of using the values stipulated 

in the Accord. This strategy did not yield good results (not displayed here) when 

compared to the Poisson model as the latter outperformed the former in 67.5% 

of the cases.  

 

6.5  CONCLUSIONS 

The assumption of normality and the constraint of non-negative correlations are 

limitations of factor models. These models are derived from the structure 

proposed, for example, in Vasicek (2002) where the latent variables (obligors’ 

asset returns) that drive defaults are impacted by two types of risk (systematic 

and idiosyncratic). The relationship among all these variables is conveniently 

set by means of a formula that describes equicorrelated normal distributions – 

see formula [2.4] in Chapter 2. 

  

                                                           
70

 See formula in BCBS (2005, 2006). 
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Table 6.4 - Percentage of Poisson-based method’s estimations better than 
Basel II’s results (retail credit) using correlation coefficient determined in 
Basel II* 

Loss 
Distribution 

Revolving 
Credit 

Mortgage Other retail Three 
classes 

Panel A: Gaussian dependence 

Normal 0% 25% 0% 0% 

Exponential 75% 75% 75% 50% 

Beta 100% 20% 100% 20% 

Gamma 100% 75% 100% 75% 

Panel B: Student t dependence 

Normal 0% 25% 0% 0% 

Exponential 100% 100% 75% 75% 

Beta 100% 75% 100% 75% 

Gamma 100% 75% 100% 75% 

Panel C: Clayton dependence 

Normal 0% 25% 0% 0% 

Exponential 75% 75% 70% 50% 

Beta 100% 0% 100% 0% 

Gamma 100% 75% 100% 75% 

Panel D: Gumbel dependence 

Normal 0% 25% 0% 0% 

Exponential 95% 95% 75% 70% 

Beta 100% 65% 100% 65% 

Gamma 100% 75% 100% 75% 

(*) All the percentages in this table are divisible by 5 because there are 20 scenarios 

(four PD levels times five copula parameters) for each combination of loss distributions 

and copula families. Thus, any possible number of occurrences (from 0 to 20) in each 
combination will result in a percent value divisible by 5. 

 

On the other hand, the latent variables in the method suggested in this chapter 

are assumed to be loans’ lifetimes. This interpretation implies that those 

variables can be adequately modelled by Poisson processes and are therefore 

exponentially distributed. Although other papers have already used Poisson 

processes to study credit losses (CSFBI, 1997, and Lindskog and McNeil, 

2001), the model presented here introduces the use of copulas (related to 

lifetimes) to measure the dependence across the latent variables. Given these 
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properties, our model allows for some values of negative dependence and 

tends to result in better estimations of joint losses that are not normally 

distributed. Even for assets with normal credit losses, the alternative Poisson 

model was shown to be as good as traditional estimations that assume Normal 

dependence and distributions. 

With regard to the suggestion for capital estimation, the alternative model 

estimates extreme losses by using the expected loss (average PD) and the 

dependence among defaults (the linear correlation, for example) as inputs. 

Considering the parameters and the confidence level used in the simulations 

(Section 6.4.2), the Poisson approach did not result in good estimations for 

normally distributed defaults. On the other hand, this method outperformed 

Basel formula in credit portfolios represented by other three distributions at the 

95% confidence level (whilst Basel is calculated with confidence of 99.9%). 

Different results in terms of loss distributions may be reached if the confidence 

level is changed.  

Although the proposed model has the limitation of assuming independent 

“shocks” for each obligor, it may be of interest to regulators and practitioners 

since its implementation is relatively easy and, according to the simulations, it is 

typically more efficient than the current formula adopted which tends to 

underestimate maximum potential losses when they are not normally 

distributed.  

One possible extension of this research is the empirical analysis of the Poisson-

based model using banks’ datasets to check its adequacy to model credit risk at 

the portfolio level. Also, other types of dependence measures should be tested 

to represent the ratio of systematic shocks out of the total shocks inasmuch as 

the use of the linear correlation coefficient is problematic because it does not 

capture tail dependence.  

As the quality of Poisson-method estimations for specific loss distributions is 

sensitive to the confidence level chosen, it should be searched a way to 

determine the “best” confidence level for a PD dataset even if we do not know 
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its distribution. Such a level would indirectly take the default distribution into 

account so that the extreme PDs estimated will be very close to the real ones. 

Moreover, further research should be conducted to investigate whether the 

suggested Poisson model is more suitable for modelling a specific type of credit 

(retail or corporate). 
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CHAPTER 7 
CONCLUSIONS AND EXTENSIONS 

  
 It is remarkable how much we learn about how not to 

do things when we are doing research. 

 

7.1 SUMMARY 

The assumption of normally-distributed losses71 and the use of linear correlation 

in leading credit risk models may result in inaccurate estimations of joint 

extreme losses. Copula Theory is an option to overcome this drawback 

inasmuch as copula functions use individual distributions, regardless of their 

shape, to return the respective joint distribution. 

Copula Theory has been applied to credit risk since 2000 but there are still 

many gaps in the literature. One of these gaps is the lack of application of 

copulas to study consumer loans which represent a high proportion of banks’ 

portfolios nowadays. Chapter 3 employs copulas to estimate the dependence 

across credit card loans of a UK bank. The portfolio was split into five segments 

according to the credit quality of borrowers and the dependence (best-fit 

copula) was evaluated for each pair of segments following three goodness-of-fit 

(GoF) tests (each of them based on two different approaches: the whole default 

rate distribution and the right-tail of that distribution72). Then, the ratio of joint 

high default rates observed in the Bank’s portfolio at specific levels was 

compared to the probability of concurrent high losses estimated following the 

assumptions of traditional credit models (normality and the use of linear 

correlation) and according to the best-fit copulas. 

In Chapter 4, vine copulas (combinations of bivariate copulas to give higher-

dimension copulas) were employed to estimate the dependence in the credit 

                                                           
71

 The assumption of normality for the latent variables that drive defaults implies that the 
losses/returns are also presumed to be normally distributed.  
72

 The goodness-of-fit tests considering exclusively the right tail of the default rate distributions 
(above the 75

th
 percentile) were adopted because the main objective of this study is to estimate 

joint high losses. Hence, in these cases, the copulas found were the best-fit only to the right tail 
of the distributions. 
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card portfolio for trios of segments. The copula estimations used the GoF test 

found to be the most robust in the literature (“Empirical Copula”) and, as in 

Chapter 3, based on two approaches concerning the default rate distributions 

(complete distributions and their right tail). Next, the occurrences of 

simultaneous losses in trios of segments observed in the portfolio analysed 

were compared to estimations derived from the multivariate normality and from 

vine copulas.   

After checking whether the dependence in the credit card portfolio studied is 

divergent from the assumption of traditional models (i.e. normality), we propose, 

in Chapters 5 and 6, two methods to determine the capital necessary to cover 

unexpected credit losses in financial institutions. The current approach adopted 

by regulators (Basel II) comes from conventional (factor) credit models and 

therefore has the same limitations concerning the assumption of normality and 

the linear correlation. So, the use of copulas in this context enables the 

estimation of joint extreme losses without assuming any particular distribution 

and may capture potential upper-tail dependence among default rates (i.e. 

stronger association of high probabilities of default) that result in losses higher 

than estimates based on presumptions of normality. 

 

7.2 CONCLUSIONS 

Our empirical analysis based on a credit card portfolio of a large UK bank 

revealed that default rates present tail dependence which implies that distinct 

levels of losses have different levels of association. In most of the cases, the tail 

dependence was stronger in the right side of the default distributions indicating 

that, particularly in recessions, the portfolio considered is exposed to losses 

more severe than those estimated from traditional credit models that assume 

normally-distributed default rates. This result confirms quite a few studies 

related to other assets’ dependence (corporate debts included)73. Another 

                                                           
73

 See, for example, Ang and Bekaert (2002), Di Clemente and Romano (2004), Das and Geng 
(2006), Patton (2006) and Ning (2010). 
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aspect that shows the potential inaccuracy of traditional credit models is the fact 

that their implicit copula (Gaussian) was the best-fit dependence for only one of 

the ten pairs of credit card segments analysed74. Even in some examples where 

the default rates for each of two segments were normally distributed75 the joint 

distribution of the pair was not normal (i.e. the dependence was not Gaussian). 

From this, we infer that non-normal copula families express the dependence 

across credit card losses more accurately than the Gaussian does. Thus, 

evaluations of simultaneous high credit losses based on copulas yield better 

results in comparison with assessments that presume multivariate normality. 

The performance of the former approach is improved even more when the 

copulas are estimated from the right tail of the default distributions (rather than 

from the whole distributions, as it is usually done). However this superiority is 

achieved at the expense of higher levels of underestimation.  

Vine copulas contribute to the prediction of conjunct high default rates in 

portfolios with heterogeneous dependence. The empirical investigation 

conducted for trios of credit card segments corroborated this conclusion given 

that the estimates founded on vines were closer to the observed joint extreme 

defaults than the approximations related to bivariate copulas and to the 

trivariate normal distribution76. In some situations, vine copulas captured right-

tail dependence (high default rates more linked which represents higher 

potential losses at the portfolio level) not identified by pairwise copulas. This is 

evidence that the use of vine copulas improve evaluations of possible joint high 

losses and their use can help financial institutions to avoid the undervaluation of 

potential losses and the allocation of resources to segments that are more 

prone to default together (mainly in unfavourable economic circumstances). 

                                                           
74

 According to goodness-of-fit tests based on the complete default distributions. None of the 
pairs was represented by the Gaussian Copula when the GoF tests used only the right tail of 
the default distributions. 
75

 Although the adequacy of the normal distribution to represent the individual distributions of 
default rates was based on nonstatistically-significant results of the Jarque-Bera test. 
76

 When compared to the pairwise-copula analysis, the vine method also had the advantage of 
presenting lower levels of underestimation. 
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The calculation of the capital to be set aside in financial institutions to cover 

unexpected credit losses replicates the same assumptions of factor models 

(normality and linear dependence) and, consequently, is subject to the 

underestimation of extreme defaults. The methods suggested in this thesis are 

able to capture stronger dependence typical in adverse scenarios and therefore 

can improve the quality of these estimations when losses are not normally 

distributed (which, according to the literature77, represents the reality in banks).  

 

7.3 CONTRIBUTIONS AND IMPLICATIONS 

The empirical contributions of this study are related to the novel application of 

Copula Theory to analyses of dependence in consumer loan portfolios and the 

theoretical contributions concern the proposal of alternative models to estimate 

the capital necessary to cover extreme credit losses in financial institutions. 

The empirical innovations are fourfold. First, we apply copulas to retail credit 

whilst the literature in credit risk, such as Melchiori (2003), Bo-Chih (2004), 

Cherubini et. al (2004), Di Clement and Romano (2004), Hull and White (2004 

and 2006), Hamerle and Rösch (2005), and Das and Geng (2006), has applied 

this approach only to corporate debt and derivatives. Second, apart from 

considering five copula families (Gaussian, Student t, Clayton, Frank, and 

Gumbel) that are typically checked in credit studies, such as Frey et. al (2001), 

Frey and McNeil (2001, 2003), Schönbucher and Schubert (2001), Bluhm et 

al.(2002), Daul et al. (2003), Schmidt (2003), Kang and Shahabuddin (2005), 

and Kostadinov (2005), we include another five families (Farlie-Gumbel-

Morgenstern, Galambos, Hüsler-Reiss, Joe, and Plackett) in our tests. Third, 

we estimate best-fit copulas according to goodness-of-fit tests based on the 

right tail of the defaults' distributions while this is traditionally done with focus on 

the complete distributions (see, for example, Cherubini et al., 2004, Di Clement 

and Romano, 2004, and Das and Geng, 2006). Fourth, we use vine copulas (to 

express higher-dimension dependence) in credit risk analyses whilst the use of 
                                                           
77

 For instance, Kalyvas et al. (2006) and Rosenberg and Schuermann (2006).  
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this technique in finance has been basically limited to stock markets, as in Aas 

and Berg (2009), Aas et. al. (2009), Heinen and Valdesogo (2009) and Maugis 

and Guegan (2010). 

All the four innovations mentioned above contributed to improvements in the 

estimation of joint high losses. First, in general, the comparison between the 

probability of simultaneous high losses calculated from the multivariate normal 

distribution and bivariate copulas revealed that the result from the latter 

technique was closer to the joint occurrences observed in the credit card 

portfolio studied. Second, three out of the five less-tested copulas were found to 

be the best representation of the dependence between credit segments in some 

pairs. Third, estimations of joint losses according to copulas inferred from the 

right tail of the defaults’ distributions were closer to the observed losses than 

the estimations based on copulas deduced from the whole distributions. Fourth, 

when compared with the pairwise-copula approach, vine copulas yielded better 

evaluations of conjunct high losses78 and lower level of underestimation. 

As for the theoretical contributions, we suggest alternative setups to evaluate 

simultaneous credit losses by considering some assumptions different from 

those used in the traditional literature, such as Vasicek (2002) and Hull and 

White (2004). These traditional methods are founded on the use of a 

relationship among equally-correlated normal variables to represent the 

variables studied. We look at this problem under a different perspective and 

assume that the dependence across the underlying variables (regardless of 

their distributions) can be characterised by any copula family and is closely 

associated to the dependence across losses (irrespective of their distributions).  

The copula model presented in Chapter 5 allows the identification of potential 

tail dependence among credit losses (especially the upper-tail dependence 

found out in the literature) while, due to the assumption of normality, the current 

                                                           
78

 Since the bivariate-copula method outperformed the evaluations conditional on the 
assumption of multivariate normality, this implies that the results from vine copulas were also 
better than those related to the multivariate normal distribution.  
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method is not able to capture stronger association when losses reach extreme 

levels (i.e. in downturns).  Moreover the alternative model is flexible and can be 

used with any copula family empirically found or assumed. 

Apart from relaxing the assumption of normality, the Poisson model introduced 

in Chapter 6 is, in some cases, compatible with negatively-correlated losses 

whereas the current formula adopted by regulators around the world does not 

admit negative correlation. Although such negative relationships are not 

commonly found in the financial market, this improvement seems to have 

practical applications given that some segments of the dataset analysed in 

Chapters 3 and 4 are negatively associated. 

Given the aforementioned benefits, the application of copulas to estimate joint 

extreme losses in credit portfolios can be of interest to several sectors. 

Academics, for example, can revise many credit models and theories founded 

on the linear correlation and on the assumption of normally-distributed 

variables. Other studies can adopt goodness-of-fit tests based only on the tails 

of the distributions or consider copulas rarely employed in credit studies 

(including those five families contemplated in Chapters 3 and 4) in other 

empirical investigations. Furthermore, the original use of vine copulas in this 

work can motivate other analyses in the credit risk field, particularly to deal with 

heterogeneous dependence. 

The superiority of copulas over prevalent credit methods with respect to the 

estimation of joint extreme losses points out that financial institutions are better 

off employing copulas instead of relying on approaches that presume 

multivariate normality and linear correlation. The adoption of copulas tends to 

lead to more trustworthy estimates of extreme losses and this will help banks to 

be prepared for potential losses, notably in adverse scenarios, and to refrain 

from lending excessive resources to obligors and/or segments that result in 

higher indices of default when the economy crashes.  

The main implication of this study for policy makers is the possible improvement 

of the calculation of the regulatory capital to be held by financial institutions to 
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cover unexpected credit losses. The formulas derived in Chapters 5 and 6 are 

more efficient than Basel model at identifying tail dependence across losses. 

Hence the alternative approaches can detect stronger association between 

losses in unfavourable conditions and help to avoid the underestimation of 

capital needed to offset unusual shortfalls.  

Although both alternative models can be easily implemented in financial 

institutions, it is important to note that the main contribution of these 

suggestions is to open new directions in the search for methods that guarantee 

more efficient estimations of joint extreme (unexpected) credit losses. Even if 

regulators and banks do not adopt the formulas in the exact way they were 

suggested here, the setups introduced in Chapters 5 and 6 can inspire the 

development of models that have practical applications and result in better 

evaluations when compared to traditional models. 

 

7.4 LIMITATIONS AND FURTHER RESEARCH 

In this thesis, the estimations of joint high losses relate to the highest quantiles 

of the losses. That is, we are concerned about situations where the highest 

default rates in a specific credit segment happen at the same time as the 

highest default rates in other groups. It is not meant to calculate the likelihood of 

joint losses above specific values (e.g. simultaneous default rates greater than 

3% or 5%). This is left as a future exercise regarding consumer loans and will 

require the estimation of the marginal distribution of each segment’s losses (as 

done by Das and Geng, 2006 for corporate debt). 

The dataset used in the empirical analyses was relatively short and therefore 

did not have abundant information on joint extreme losses so we could not 

compare estimates from multivariate normality with estimates from copulas in 

the very tail of the distributions (where the copula models are expected to be 

more advantageous). Although the size of the dataset employed in Chapters 3 

and 4 represents the range of data typically available in banks, one possible 

extension of this study is to run tests for longer periods when more observations 
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can be obtained. Moreover other retail credit classes (e.g. mortgage and fixed 

term) should be considered and the results can be compared with the findings 

presented here for credit cards. 

With respect to the study of heterogeneous portfolios, the riskiest segment in 

each triplet was chosen to represent the conditioning variable in the vine 

construction. This was done to express the most conservative scenario (the 

highest likelihood of joint extreme default among the combinations for each trio) 

and there is no guarantee that this composition gives the best approximation to 

the dependence across the segments. Supplementary investigations, following 

for example Maugis and Guegan (2010), may identify the best arrangement of 

variables in the cascade structure of default rates and improve even more the 

estimates of simultaneous losses based on vines.   

The analysis in Chapter 4 was limited to D-vines (in which none of the nodes – 

variables – is connected to more than two other nodes). In this case, the 

objective is to characterise the association between segments (taken in pairs) 

but it is possible to apply other vines to different problems in credit risk. 

Canonical vines (in which one of the nodes is linked to all other nodes), for 

instance, are an option to study many variables conditioned to one particular 

variable (e.g. some proxy for the economy). Also distinct formats of vines (apart 

from D-vines and Canonical vines) can be employed to express more complex 

dependence among credit losses. Due to the absence of work that deals with 

this technique in credit risk, the multiple opportunities related to vines indicate a 

promising topic to be explored in this field (including empirical tests for other 

consumer classes, corporate debt and credit derivatives). 

The empirical analyses were restricted to ten (one-parameter) copulas and 

more families can be tested in future work so that more accurate dependence 

structures can be found. If there is interest in the possibly differing behaviour of 

the credit returns (or losses) in both tails (i.e. whether “low” and  “high” credit 

returns are more associated than assumed by the multivariate normal 
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distribution but in unlike intensity), copulas with two parameters should be taken 

into account since they can capture distinct tail dependencies.  

The copulas used here do not capture time dependence which, according to the 

literature, is present in asset returns; see, for instance, Conrad and Kaul (1988), 

Lo and MacKinlay (1988), and Bekaert (1995). This was pointed out by 

Fermanian and Scaillet (2005) as a drawback of empirical studies in financial 

markets. According to Fermanian and Wegkamp (2004), “the research on 

relevant specifications for copulas and on their time dependence is still in its 

infancy” (p.1).  

Nonetheless the concept of conditional copulas can help to overcome this 

weakness; see, for example, Patton (2002, 2006), Fermanian and Wegkamp 

(2004), Mendes (2005), and Palaro and Hotta (2006). This approach assumes 

that the parameter of the copula oscillates over time, generally following an 

autoregressive model. Thus the strength of the dependence varies and prior 

realisations affect the subsequent occurrences.  

Note that, in these cases, although the parameter value fluctuates, the copula 

family is kept constant. Another possibility should be to consider that the 

dependence structure may also vary over time, i.e., the copulas estimated in 

different periods according to goodness-of-fit tests may be different. A complete 

investigation in this sense would repeat all the steps in Chapter 3 and identify a 

best-fit copula for each time window selected. If diverse families are found to 

represent the same variable (e.g. credit losses) over time, this would show that 

the time-varying behaviour of dependence in financial markets is more volatile 

than supposed by academics and practitioners.  

Regarding the theoretical models suggested to improve Basel approach, their 

successful performance compared to the estimates from the official formula was 

based on simulations. To check the efficiency of these alternative methods, 

they should be used to estimate unexpected losses in real credit portfolios and 

then, after some time, the results should be compared with the losses observed 

in those portfolios.   
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Furthermore those models refer to only one term of the expression that 

determines the capital necessary to face unexpected losses. In order to get 

values more representative of all aspects involving the potential higher 

dependence among losses in adverse scenarios, Copula Theory should be also 

tested to estimate the loss given default, which is another important variable 

that impacts the calculation. 

Pertaining to the Poisson method suggested for Basel, the utilisation of the 

linear correlation is a shortcoming inasmuch as it does not detect tail 

association. So, it is interesting to search for other options of dependence 

measures to denote the proportion of systematic shocks.  

There is empirical evidence that the suitability of the Poisson model for each 

loss distribution is conditional to the confidence demanded. Hence, the next 

step to improve this formula is to figure out the relationship (or an approximation 

for it) between the confidence and the loss distribution so that we can set the 

confidence level as a function of a variable that represents the unknown loss 

distribution. 
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APPENDIX A 

Best-fit copulas’ parameters  
(copulas estimated according to the complete default distributions) 

 

TABLE A.1 Copula parameters estimated for pairs AB, AC, AD and AE 
(best-fit based on complete default distributions)  

GoF APPROACH AB AC AD AE 

Copula Parameter Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Clayton 2.9580448 Clayton 3.0354896 Galambos 0.0125000 Student t -0.4430353 

Kendall’s Transform Plackett 7.6454102 Plackett 8.2162109 Galambos 0.0125000 Frank -3.3524919 

Rosenblatt’s Transform Frank 4.7446299 Clayton 3.0354896 Gumbel 1.0000014 Plackett  0.2063477 

 

TABLE A.2 Copula parameters estimated for pairs BC, BD and BE 
(best-fit based on complete default distributions)  

GoF APPROACH BC BD BE 

Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Clayton  11.3340991 Hüsler-Reiss 0.6412109 Student t -0.5058982 

Kendall’s Transform Clayton  11.3340991 Galambos 0.0125000 Plackett  0.1311523 

Rosenblatt’s Transform Plackett 161.3443359 Joe 1.1007813 Plackett  0.1311523 

 

TABLE A.3 Copula parameters estimated for pairs CD, CE and DE 
(best-fit based on complete default distributions)  

GoF APPROACH CD CE DE 

Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Hüsler-Reiss 0.6699219 Gaussian -0.4534993 Plackett 3.5805664 

Kendall’s Transform Joe 1.1268555 Frank -4.5301524 FGM 0.7535625 

Rosenblatt’s Transform Joe 1.1268555 Plackett  0.0832031 Plackett 3.5805664 
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APPENDIX B  

 Detailed results of goodness-of-fit tests based on  
the complete default rate distributions 

 
In the following tables, “distance” is the measure of the difference between the 

(whole) empirical distribution of default rates and the candidate copulas. The p-

values are related to the null hypothesis that the underlying copula C belongs to 

the family of candidate copula C0 or some transformation of the copula C 

belongs to the family of  transformations of that copula, that is, H0: C  C0 or H0: 

CT  CT
0. So, in order to confirm the significance of the candidate copula high 

p-values are expected. 

 
TABLE B.1: Detailed results of copula estimation considering three GoF 

approaches (pair AB) and complete default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.0762 0.0050 0.0809 0.0330 0.0709 0.0340 

t 0.0763 0.0040 0.0895 0.0150 0.0710 0.0200 

Clayton 0.0599 0.0230 0.0930 0.0130 0.0953 0.0190 

Frank 0.0824 0.0030 0.0809 0.0080 0.0509 0.5900 

Gumbel 0.1197 0.0010 0.1205 0.0020 0.1960 0.0710 

FGM - 0.0000 - 0.0000 - 0.0000 

Galambos 0.2224 0.0000 0.2393 0.0010 0.1001 0.0220 

Hüsler-Reiss 0.1256 0.0050 0.1291 0.0050 0.0680 0.0150 

Joe 0.1774 0.0150 0.1911 0.0040 0.0802 0.0420 

Plackett 0.0789 0.0050 0.0740 0.0190 0.0609 0.0800 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 
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TABLE B.2: Detailed results of copula estimation considering three GoF 
approaches (pair AC) and complete default rate distributions 

METHOD 
 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.05578 0.04196 0.06370 0.08392 0.06555 0.05200 

t 0.05584 0.02797 0.06370 0.04895 0.06577 0.05100 

Clayton 0.04815 0.05495 0.08609 0.01698 0.04467 0.45200 

Frank 0.06348 0.00899 0.09297 0.00200 0.04981 0.57600 

Gumbel 0.09237 0.00999 0.09986 0.01399 0.22183 0.06400 

FGM - 0.00000 - 0.00000 - 0.00000 

Galambos 0.20935 0.00000 0.21694 0.00200 0.11115 0.01600 

Hüsler-Reiss 0.10218 0.00999 0.11019 0.00500 0.07504 0.00400 

Joe 0.15125 0.02697 0.16529 0.00599 0.08337 0.02900 

Plackett 0.05900 0.01499 0.05682 0.05395 0.05141 0.17800 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 
 

 
TABLE B.3: Detailed results of copula estimation considering three GoF 

approaches (pair AD) and complete default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.02191 0.46254 0.04304 0.20879 0.02038 0.99500 

t 0.02206 0.40859 0.04477 0.18681 0.02065 0.99900 

Clayton 0.04053 0.14585 0.09986 0.03696 0.03080 0.77300 

Frank 0.02198 0.34166 0.04304 0.15185 0.02403 0.93700 

Gumbel 0.02173 0.56843 0.03788 0.47353 0.01989 0.96200 

FGM 0.02197 0.70829 0.04304 0.43656 0.02048 0.95900 

Galambos 0.02173 0.64635 0.03788 0.47852 0.01989 0.92100 

Hüsler-Reiss 0.02173 0.61439 0.03788 0.47253 0.01989 0.91100 

Joe 0.14484 0.05395 0.11708 0.03097 0.11614 0.00600 

Plackett 0.02199 0.32567 0.04304 0.15185 0.02052 1.00000 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 
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TABLE B.4: Detailed results of copula estimation considering three GoF 
approaches (pair AE) and complete default rate distributions 

METHOD 
 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.0164 0.4056 0.0155 0.7173 0.0563 0.3140 

t 0.0160 0.3856 0.0155 0.6923 0.0571 0.3680 

Clayton 0.0643 0.0599 0.1085 0.0779 0.0728 0.1000 

Frank 0.0195 0.1788 0.0121 0.6753 2.2273 0.6560 

Gumbel 0.0643 0.0669 0.1085 0.0579 0.0728 0.1190 

FGM 0.0193 0.6643 0.0258 0.7113 0.0550 0.4640 

Galambos 0.0643 0.1219 0.1085 0.0639 0.0728 0.0870 

Hüsler-Reiss 0.0643 0.0929 0.1085 0.0519 0.0728 0.0770 

Joe 0.0632 0.7303 0.0224 0.9840 0.0987 0.0200 

Plackett 0.0189 0.2707 0.0155 0.6513 0.0502 0.4880 

Note: the smallest distance for each method is highlighted in boldface.  

 

 
TABLE B.5: Detailed results of copula estimation considering three GoF 

approaches (pair BC) and complete default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.01302 0.71329 0.02755 0.36963 0.08392 0.12000 

t 0.01330 0.47952 0.02927 0.29171 0.04170 0.80100 

Clayton 0.01016 0.77522 0.01894 0.68631 0.04057 0.90600 

Frank 0.01398 0.58042 0.03443 0.36364 0.04400 0.62600 

Gumbel 0.01744 0.48551 0.02583 0.47752 0.81997 0.00000 

FGM - 0.00000 - 0.00000 - 0.00000 

Galambos 0.02533 0.99600 0.03443 0.98901 0.17828 0.78700 

Hüsler-Reiss 0.02244 0.97003 0.02066 0.98002 0.14082 0.00100 

Joe 0.04370 0.73227 0.02927 0.75724 0.10734 0.11000 

Plackett 0.01283 0.60939 0.03443 0.16184 0.03795 0.80400 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 
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TABLE B.6: Detailed results of copula estimation considering three GoF 
approaches (pair BD) and complete default rate distributions 

METHOD 
 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.02506 0.38462 0.04821 0.16484 0.02645 0.84900 

t 0.02267 0.44256 0.04304 0.24276 0.02676 0.85100 

Clayton 0.03863 0.19680 0.08092 0.10989 0.04355 0.36500 

Frank 0.02418 0.32368 0.04477 0.15485 0.04646 0.78200 

Gumbel 0.02184 0.60939 0.03443 0.41758 0.03566 0.49700 

FGM 0.02474 0.67532 0.04649 0.37263 0.02568 0.81100 

Galambos 0.02781 0.50350 0.02583 0.68032 0.02311 0.82300 

Hüsler-Reiss 0.02172 0.60440 0.03271 0.47552 0.02064 0.93500 

Joe 0.02346 0.68931 0.02583 0.66833 0.02012 0.91600 

Plackett 0.02509 0.29071 0.04649 0.14885 0.02666 0.84600 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 

 

 
TABLE B.7: Detailed results of copula estimation considering three GoF 

approaches (pair BE) and complete default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.01394 0.53946 0.02755 0.31269 0.06638 0.17500 

t 0.01027 0.64935 0.02066 0.42358 0.06159 0.42700 

Clayton 0.08073 0.02697 0.15496 0.01499 0.08460 0.05500 

Frank 0.01257 0.35664 0.00689 0.88911 2.36373 0.78900 

Gumbel 0.08073 0.03097 0.15496 0.01099 0.08460 0.06500 

FGM 0.02157 0.63836 0.04477 0.44555 0.06740 0.30700 

Galambos 0.08073 0.06693 0.15496 0.02098 0.08460 0.04700 

Hüsler-Reiss 0.08073 0.06394 0.15496 0.01698 0.08460 0.03500 

Joe 0.07339 0.52448 0.04477 0.52947 0.11346 0.01000 

Plackett 0.01370 0.41558 0.00689 0.92507 0.04615 0.70100 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 
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TABLE B.8: Detailed results of copula estimation considering three GoF 
approaches (pair CD) and complete default rate distributions 

METHOD 
 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.02511 0.41558 0.04993 0.18382 0.02618 0.85100 

t 0.02319 0.41758 0.05165 0.14386 0.02742 0.81800 

Clayton 0.04103 0.16184 0.08436 0.08691 0.05330 0.16900 

Frank 0.02568 0.29471 0.04821 0.12388 0.04041 0.87900 

Gumbel 0.02069 0.65934 0.03443 0.41958 0.04667 0.35500 

FGM 0.02585 0.64935 0.04821 0.34066 0.02634 0.77700 

Galambos 0.02847 0.46853 0.03099 0.59540 0.02462 0.77100 

Hüsler-Reiss 0.02036 0.63337 0.02755 0.61439 0.02017 0.94900 

Joe 0.02204 0.71728 0.02755 0.64036 0.01979 0.94600 

Plackett 0.02711 0.26573 0.04993 0.09590 0.02857 0.79700 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 

 

 
TABLE B.9: Detailed results of copula estimation considering three GoF 

approaches (pair CE) and complete default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00982 0.73127 0.01205 0.82517 0.07110 0.14300 

t 0.01125 0.57942 0.00861 0.87712 0.06520 0.51400 

Clayton 0.05679 0.08292 0.12052 0.04695 0.08913 0.04300 

Frank 0.02296 0.06194 0.00344 0.98002 2.48079 0.81400 

Gumbel 0.05679 0.07792 0.12052 0.02697 0.08913 0.03200 

FGM 0.01260 0.86414 0.02755 0.70230 0.07359 0.30400 

Galambos 0.05679 0.16184 0.12052 0.04595 0.08913 0.04300 

Hüsler-Reiss 0.05679 0.14186 0.12052 0.03896 0.08913 0.05000 

Joe 0.08408 0.36563 0.04132 0.60939 0.11932 0.00600 

Plackett 0.03286 0.03497 0.01033 0.80919 0.05388 0.62700 

Note: the smallest distance for each method is highlighted in boldface.  
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TABLE B.10: Detailed results of copula estimation considering three GoF 
approaches (pair DE) and complete default rate distributions 

METHOD 
 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.04082 0.13487 0.03788 0.37063 0.03982 0.28300 

t 0.02298 0.44855 0.02066 0.82717 0.03488 0.50800 

Clayton 0.01626 0.78322 0.03443 0.70330 0.04008 0.50800 

Frank 0.01750 0.60639 0.02066 0.82517 0.15382 0.00800 

Gumbel 0.05927 0.06494 0.03788 0.38861 0.07205 0.12900 

FGM 0.03094 0.60040 0.01722 0.92507 0.03651 0.48500 

Galambos 0.09137 0.03896 0.06543 0.21479 0.05012 0.23000 

Hüsler-Reiss 0.09137 0.04096 0.06543 0.18482 0.05012 0.21300 

Joe 0.11223 0.19880 0.08609 0.14985 0.06134 0.26900 

Plackett 0.01622 0.69131 0.02066 0.85514 0.03190 0.63800 

Note: the smallest distance for each method is highlighted in boldface. 
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APPENDIX C  

Best-fit copulas’ parameters  
(copulas estimated according to the right tails of the default distributions) 

 

TABLE C.1 Copula parameters estimated for pairs AB, AC, AD and AE 
(best-fit based on the right tails of default distributions)  

GoF APPROACH AB AC AD AE 

Copula Parameter Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Galambos 0.0125000 Joe 1.2684570 Galambos 0.0125000 Frank -3.3524919 

Kendall’s Transform Galambos 0.0125000 Galambos 0.0125000 Gumbel 1.0000014 Clayton  0.0000015 

Rosenblatt’s Transform Frank 4.7446299 Clayton 3.0354896 Gumbel 1.0000014 Plackett  0.2063477 

 

TABLE C.2 Copula parameters estimated for pairs BC, BD and BE 
(best-fit based on the right tails of default distributions)  

GoF APPROACH BC BD BE 

Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Clayton 11.3340991 Gumbel 1.1175104 Frank -3.9901586 

Kendall’s Transform Student t   0.9622511 Clayton 0.7649150 Clayton  0.0000015 

Rosenblatt’s Transform Plackett 161.3443359 Joe 1.1007813 Plackett  0.1311523 

 

TABLE C.3 Copula parameters estimated for pairs CD, CE and DE 
(best-fit based on the right tails of default distributions)  

GoF APPROACH CD CE DE 

Copula Parameter Copula Parameter Copula Parameter 

Empirical Copula Joe 1.1268555 Plackett 0.0832031 Hüsler-Reiss 0.0999999 

Kendall’s Transform Clayton 0.8203320 Clayton 0.0000015 Hüsler-Reiss 0.0999999 

Rosenblatt’s Transform Joe 1.1268555 Plackett 0.0832031 Plackett 3.5805664 
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APPENDIX D  

 Detailed results of goodness-of-fit tests based on  
the best-fit to the right tails 

 

In the following tables, “distance” is the measure of the difference between the 

empirical distribution of default rates and the candidate copulas. The p-values 

are related to the null hypothesis that the underlying copula C belongs to the 

family of candidate copula C0 or some transformation of the copula C belongs to 

the family of  transformations of that copula, that is, H0: C  C0 or H0: C
T  CT

0. 

So, in order to confirm the significance of the candidate copula high p-values 

are expected. 

 

TABLE D.1: Detailed results of copula estimation considering three GoF  
methods (pair AB) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00622 0.11988 0.08333 0.00400 0.07094 0.02800 

t 0.00615 0.10789 0.00344 0.01399 0.07099 0.02400 

Clayton 0.00551 0.28671 0.02778 0.57343 0.09533 0.02100 

Frank 0.00564 0.19980 0.08333 0.00599 0.05091 0.58600 

Gumbel 0.00416 0.23776 0.08333 0.00400 0.19605 0.05600 

FGM - 0.00000 - 0.00000 - 0.00000 

Galambos 0.00116 0.61139 0.00000 0.17882 0.10009 0.02500 

Hüsler-Reiss 0.00339 0.22078 0.05556 0.06693 0.06803 0.01600 

Joe 0.00129 0.85015 0.05556 0.07493 0.08017 0.02900 

Plackett 0.00637 0.14685 0.08333 0.00599 0.06090 0.09600 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 
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TABLE D.2: Detailed results of copula estimation considering three GoF  
methods (pair AC) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00328 0.41558 0.08333 0.00400 0.06555 0.05000 

t 0.00323 0.41459 0.00344 0.00999 0.06577 0.04400 

Clayton 0.00202 0.69231 0.02778 0.57143 0.04467 0.43000 

Frank 0.00257 0.58042 0.08333 0.01099 0.04981 0.58100 

Gumbel 0.00242 0.51948 0.08333 0.00300 0.22183 0.06600 

FGM - 0.00000 - 0.00000 - 0.00000 

Galambos 0.00295 0.18082 0.00000 0.18182 0.11115 0.00800 

Hüsler-Reiss 0.00159 0.61638 0.08333 0.00100 0.07504 0.01200 

Joe 0.00086 0.94006 0.05556 0.08991 0.08337 0.03200 

Plackett 0.00299 0.49051 0.08333 0.00300 0.05141 0.20400 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 

 
 

TABLE D.3: Detailed results of copula estimation considering three GoF  
methods (pair AD) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00100 0.65435 0.02778 0.09291 0.02038 0.98900 

t 0.00105 0.66134 0.00344 0.00000 0.02065 0.99700 

Clayton 0.00193 0.61638 0.02778 0.10789 0.03080 0.79000 

Frank 0.00094 0.70030 0.02778 0.06993 0.02403 0.92300 

Gumbel 0.00080 0.71828 0.00000 0.27073 0.01989 0.93400 

FGM 0.00093 0.74426 0.02778 0.06893 0.02048 0.96500 

Galambos 0.00080 0.73127 0.00000 0.17782 0.01989 0.93700 

Hüsler-Reiss 0.00080 0.68531 0.00000 0.14985 0.01989 0.90600 

Joe 0.03836 0.65834 0.05556 0.00699 0.11614 0.00600 

Plackett 0.00094 0.71828 0.02778 0.07493 0.02052 1.00000 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 
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TABLE D.4: Detailed results of copula estimation considering three GoF  
methods (pair AE) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.0002 0.6154 0.0000 0.0430 0.0563 0.3030 

t 0.0003 0.5405 0.0017 0.0819 0.0571 0.3630 

Clayton 0.0025 0.3077 0.0000 0.4685 0.0728 0.0970 

Frank 0.0001 0.5694 0.0000 0.0350 2.2273 0.6870 

Gumbel 0.0025 0.1668 0.0000 0.2458 0.0728 0.1150 

FGM 0.0004 0.8871 0.0000 0.1728 0.0550 0.4520 

Galambos 0.0025 0.2857 0.0000 0.1838 0.0728 0.0840 

Hüsler-Reiss 0.0025 0.2777 0.0000 0.1538 0.0728 0.0840 

Joe 0.0424 0.3157 0.0556 0.0040 0.0987 0.0110 

Plackett 0.0001 0.6354 0.0000 0.0370 0.0502 0.5110 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 

 

 

TABLE D.5: Detailed results of copula estimation considering three GoF  
methods (pair BC) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00388 0.19281 0.05556 0.35365 0.08392 0.11200 

t 0.00460 0.07193 0.00172 0.02198 0.04170 0.81800 

Clayton 0.00383 0.40859 0.02778 0.86014 0.04057 0.87600 

Frank 0.00428 0.21578 0.05556 0.54446 0.04400 0.65600 

Gumbel 0.00482 0.08591 0.05556 0.25175 0.81997 0.00000 

FGM - 0.00000 - 0.00000 - 0.00000 

Galambos 0.03232 0.00000 0.11111 0.00000 0.23423 0.00000 

Hüsler-Reiss 0.00389 0.09491 0.05556 0.04396 0.14082 0.00200 

Joe 0.00476 0.56543 0.05556 0.68332 0.10734 0.10600 

Plackett 0.00421 0.16084 0.05556 0.47552 0.03795 0.77400 

Note: the smallest distance for each method is highlighted in boldface. The symbol “ - ” means 
that the estimations did not yield values compatible with the parameter domain for the 
respective copula. In such cases, the p-value was set equal to zero (which implies the rejection 
of the candidate copula). 
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TABLE D.6: Detailed results of copula estimation considering three GoF  
methods (pair BD) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00171 0.60839 0.00000 0.76623 0.02645 0.86400 

t 0.00158 0.61938 0.00000 0.70729 0.02676 0.85800 

Clayton 0.00197 0.58641 0.00000 0.85614 0.04355 0.35800 

Frank 0.00187 0.55345 0.00000 0.75225 0.04646 0.78100 

Gumbel 0.00139 0.67133 0.02778 0.15884 0.03566 0.48400 

FGM 0.00192 0.63037 0.00000 0.74326 0.02568 0.81500 

Galambos 0.00260 0.23576 0.02778 0.07193 0.02311 0.82900 

Hüsler-Reiss 0.00143 0.61439 0.00000 0.51848 0.02064 0.93300 

Joe 0.00144 0.79321 0.00000 0.57343 0.02012 0.91600 

Plackett 0.00185 0.56743 0.00000 0.74625 0.02666 0.88100 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 

 

 

TABLE D.7: Detailed results of copula estimation considering three GoF  
methods (pair BE) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00015 0.59740 0.00000 0.04096 0.06638 0.19600 

t 0.00023 0.47752 0.00172 0.06993 0.06159 0.40500 

Clayton 0.00245 0.32867 0.00000 0.48052 0.08460 0.05200 

Frank 0.00006 0.75025 0.00000 0.01998 2.36373 0.77300 

Gumbel 0.00245 0.19381 0.00000 0.25774 0.08460 0.06600 

FGM 0.00039 0.91209 0.00000 0.19281 0.06740 0.35500 

Galambos 0.00245 0.26873 0.00000 0.16084 0.08460 0.05700 

Hüsler-Reiss 0.00245 0.28172 0.00000 0.16783 0.08460 0.04600 

Joe 0.04251 0.30070 0.05556 0.00300 0.11346 0.00400 

Plackett 0.00007 0.72228 0.00000 0.03497 0.04615 0.68800 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 
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TABLE D.8: Detailed results of copula estimation considering three GoF  
methods (pair CD) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00178 0.61439 0.00000 0.78022 0.02618 0.88300 

t 0.00172 0.62338 0.00000 0.70729 0.02742 0.82500 

Clayton 0.00199 0.62537 0.00000 0.83816 0.05330 0.16000 

Frank 0.00189 0.53546 0.00000 0.77023 0.04041 0.87000 

Gumbel 0.00143 0.66434 0.02778 0.20180 0.04667 0.33300 

FGM 0.00193 0.63137 0.00000 0.76923 0.02634 0.76900 

Galambos 0.00260 0.21778 0.02778 0.06394 0.02462 0.79800 

Hüsler-Reiss 0.00139 0.62138 0.00000 0.53147 0.02017 0.94400 

Joe 0.00133 0.83417 0.02778 0.27373 0.01979 0.93500 

Plackett 0.00190 0.55145 0.00000 0.77722 0.02857 0.77300 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 

 

 

TABLE D.9: Detailed results of copula estimation considering three GoF  
methods (pair CE) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00013 0.60939 0.00000 0.02897 0.07110 0.15400 

t 0.00024 0.41059 0.00172 0.08392 0.06520 0.52600 

Clayton 0.00245 0.34765 0.00000 0.51548 0.08913 0.04500 

Frank 0.00006 0.98102 0.00000 0.01598 2.48079 0.83300 

Gumbel 0.00245 0.19880 0.00000 0.28571 0.08913 0.06100 

FGM 0.00040 0.92507 0.00000 0.17782 0.07359 0.26800 

Galambos 0.00245 0.31868 0.00000 0.19780 0.08913 0.03400 

Hüsler-Reiss 0.00245 0.28472 0.00000 0.16384 0.08913 0.03300 

Joe 0.04302 0.25075 0.05556 0.00500 0.11932 0.00400 

Plackett 0.00005 0.97902 0.00000 0.02398 0.05388 0.63400 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. 
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TABLE D.10: Detailed results of copula estimation considering three GoF 
methods (pair DE) and the right tail of the default rate distributions 
METHOD 

 
COPULA 

Empirical-copula Kendall’s Transform Rosenblatt’s 
Transform 

“Distance” p-value “Distance” p-value “Distance” p-value 

Gaussian 0.00265 0.37163 0.02778 0.22977 0.03982 0.29200 

t 0.00691 0.07992 0.00344 0.00400 0.03488 0.48300 

Clayton 0.00314 0.42358 0.02778 0.15485 0.04008 0.49400 

Frank 0.00469 0.21778 0.02778 0.22677 0.03728 0.93400 

Gumbel 0.00263 0.27473 0.02778 0.26074 0.07205 0.11800 

FGM 0.00255 0.47652 0.02778 0.11489 0.03651 0.48100 

Galambos 0.00080 0.72128 0.00000 0.17682 0.05012 0.22400 

Hüsler-Reiss 0.00080 0.74625 0.00000 0.17682 0.05012 0.23100 

Joe 0.00045 0.99700 0.00000 0.64535 0.06134 0.27100 

Plackett 0.00613 0.11189 0.02778 0.33067 0.03190 0.65600 

Note: the smallest distance for each method is highlighted in boldface. In cases of tie, the 
distance presenting the highest p-value (lowest probability of rejecting the candidate copula) 
was selected. Although the Joe copula is the best-fit according to the Empirical-copula and the 
Kendall’s Transform approaches, its parameter estimated via Canonical Maximum Likelihood 
(0.9216797) is smaller than the minimum (1) allowed for that family. So the second best copula, 
Hüsler-Reiss, is considered the most representative family for this pair based on those two 
approaches.  
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APPENDIX E 

Derivation of a trivariate density function – expression [4.5]  
(based on Aas et al., 2009) 

 

In the derivation below, (.)f  is the density function, d  is the number of 

variables, and (.)c  is the density copula for the associate pair. 

From ),...,|()...,|().|().(),...,( 211211 ddddddddd xxxfxxxfxxfxfxxf   

presented in Section 4.2.1. Selecting 3d  we have: 

 

),|().|().(),,( 3213233321 xxxfxxfxfxxxf   

 

Now decomposing the two last terms above: 

(i) )()).(),(()|( 2233222332 xfxFxFcxxf   

(ii.1)    )|(/)|,(),|( 32321321 xxfxxxfxxxf  ; then decomposing again: 

(ii.2)    )|().|()).|(),|(()|,( 323132313|12321 xxfxxfxxFxxFcxxxf   

Plugging (ii.2) into (ii.1): 

(ii.3)    )|()).|(),|((),|( 3132313|12321 xxfxxFxxFcxxxf   

Decomposing the last conditional density in (ii.3): 

(ii.4)    )()).(),(()|( 1133111331 xfxFxFcxxf   

An extended expression for (ii.3) is: 

(ii.5)    )()).(),(()).|(),|((),|( 1133111332313|12321 xfxFxFcxxFxxFcxxxf   

 

Finally, plugging (i) and (ii.5) into [E.1], we get: 

),,( 321 xxxf  

)()).(),(()).|(),|(().()).(),(().( 1133111332313|122233222333 xfxFxFcxxFxxFcxfxFxFcxf  

))|(),|(()).(),(()).(),(().().().( 32313|12332223331113332211 xxFxxFcxFxFcxFxFcxfxfxf  

which is formula [4.5] in the text. 

[E.1] 
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