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Abstract

The exotic options that are examined in this thesis have a combination of

non-standard characteristics which can be found in shout, multi-callable, path-

dependent and Bermudan options. These options are called reset options. A

reset option is an option which allows the holder to reset, one or more times,

certain terms of the contract based on pre-specified rules during the life of the

option.

Overall in this thesis, an attempt has been made to tackle the modeling

challenges that arise from the exotic properties of the reset option embedded

in segregated funds. Initially, the relevant literature was reviewed and the lack

of published work, advanced enough to deal with the complexities of the reset

option, was identified. Hence, there appears to be a clear and urgent need to

have more sophisticated approaches which will model the reset option.

The reset option on the maturity guarantee of segregated funds is

formulated as a non-stationary finite horizon Markov Decision Process.

The returns from the underlying asset are modeled using a discrete time

approximation of the lognormal model. An Optimal Exercise Boundary of

the reset option is derived where a threshold value is depicted such that if

the value of the underlying asset price exceeds it then it is optimal for the

policyholder to reset his maturity guarantee. Otherwise, it is optimal for the

policyholder to rollover his maturity guarantee. It is noteworthy that the model

is able to depict the Optimal Exercise Boundary of not just the first but of

all the segregated fund contracts which can be issued throughout the planning

horizon of the policyholder.

The main finding of the model is that as the segregated fund contract

approaches its maturity, the threshold value in the Optimal Exercise Boundary
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increases. However, in the last period before the maturity of the segregated

fund, the threshold value decreases. The reason for this is that if the reset

option is not exercised it will expire worthless.

The model is then extended to reflect on the characteristics of the range of

products which are traded in the market. Firstly, the issuer of the segregated

fund contract is allowed to charge a management fee to the policyholder. The

effect from incorporating this fee is that the policyholder requires a higher

return in order to optimally reset his maturity guarantee while the total value of

the segregated fund is diminished. Secondly, the maturity guarantee becomes

a function of the number of times that the reset option has been exercised.

The effect is that the policyholder requires a higher return in order to choose

to reset his maturity guarantee while the total value of the segregated fund is

diminished. Thirdly, the policyholder is allowed to reset the maturity guarantee

at any point in time within each year from the start of the planning horizon,

but only once. The effect is that the total value of the segregated fund is

increased since the policyholder may lock in higher market gains as he has

more reset decision points.

In response to the well documented deficiencies of the lognormal model to

capture the jumps experienced by stock markets, extensions were built which

incorporate such jumps in the original model. The effect from incorporating

such jumps is that the policyholder requires a higher return in order to choose

to reset his maturity guarantee while the total value of the segregated fund is

diminished due to the adverse effect of the negative jumps on the value of the

underlying asset.
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1 Introduction

Options give the holder the right but not the obligation to buy or sell an

asset by a certain date for a certain price. Options that have standard well-

defined properties and trade actively are called plain vanilla options [Hull,

2006]. Intense competition in the market place has led financial engineers to

create non-standard products which are called exotic options [Clewlow and

Strickland, 1997]. The family of exotic options that are examined in this thesis

has a combination of non-standard characteristics which can be found in shout,

multi-callable, path-dependent and Bermudan options.

The family of exotic options with the aforementioned characteristics are

the so-called reset options. A reset option is an option which allows the

holder to reset (alter), one or more times, certain terms of the contract based

on pre-specified rules during the life of the option (before or at maturity).

Reset options can be traded independently or more commonly are embedded

in complex financial products [Hull, 2006]. Examples of such financial products

are the extendible, retractable and convertible bonds, geared equity investment,

executive stock options, energy commodity derivatives and segregated funds.

Segregated fund insurance contracts allow the holder to periodically reset

the guaranteed amount and the maturity date. In contrast to the other types of

reset options, the one embedded in segregated funds has an extra non-standard

(exotic) characteristic: when the policyholder exercises his reset option, the
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maturity of the contract is extended to its original duration. This maturity

extension feature makes their modeling very challenging.

Chapter 2 expands on and critically analyses the nature of the reset option

embedded in segregated funds and the reasons why it is worth modeling it.

Further, a range of models relative to the valuation of the segregated fund

investment guarantees adopted by regulatory authorities, practitioners and

academics are critically reviewed.

Motivated by the importance of the reset option of segregated funds and

the limitations of the relevant literature, an attempt is made to model the

reset option of segregated funds in Chapter 3. The reset option on the

maturity guarantee of segregated funds is formulated as a non-stationary finite

horizon Markov Decision Process. The aim of this model is to depict the

optimal exercise boundary of the reset option. In particular, given the model

parameters, the aim to depict a threshold value such that if the asset value

exceeds it then it is optimal for the policyholder to reset his maturity guarantee.

Otherwise, it is optimal for the policyholder to rollover his maturity guarantee.

The rest of chapter 3 is organised as follows: section 3.2 formulates the

reset option as a Markov Decision Process and states the assumptions that

underpin the formulation. Then section 3.3, critically analyses ways in which

the state space of the formulation can be reduced in order to make it more

efficient. The revised formulation of the reset option is then provided in section
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3.4. Section 3.5 succinctly analyses the structure of the model of segregated

funds and highlights the main options and the corresponding decisions that

the policyholder faces at each stage and state of the model.

Further, in section 3.6 the mathematical formulation is converted into a

flowchart through pseudo-coding. The intuitive advantage of pseudo-coding

is that its architecture and rationale are not framed by the syntax of any

particular programming language, thus rendering the structure of the model

generalisable. Then, in sections 3.7 and 3.8 the pseudo-coding is “translated”

into Fortran Code, where the commercially available Salford software is used

to compile and run the code. The aim is to extract the values of the underlying

asset for which the policyholder will be optimally exercising his reset option.

Moreover, sections 3.9 and 3.10 highlight the main results of the original

model as well as perform sensitivity analysis in order to examine the robustness

of the model, gain insights into the behaviour of the segregated fund contract

and make recommendations to both the policyholder and the issuer of the

segregated funds.

In an attempt to reflect on the variety of segregated fund contracts which

are traded in the market, an attempt is made to extend the original model. In

particular, in Chapter 4 three of the extensions are examined.

Firstly, in the original model there is no provision for the issuer of the

segregated fund contract to charge a management expense fee. This issue is
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addressed in section 4.2 where the Management Expense Ratio model extends

the original model in that it allows the issuer of the segregated fund to charge a

management fee to the policyholder. In particular, it is assumed that the issuer

charges the policyholder a fixed annual fee. This assumption is in line with

guidance provided by the Canadian Institute of Actuaries (CIA) who suggests

that this is a common approach used in practice. The model is analysed in

section 4.2.1 and the main results as well as the sensitivity analysis are provided

in sections 4.2.2 to 4.2.6.

Secondly, the original model assumes that the level of the maturity

guarantee is fixed throughout the planning horizon regardless of the number of

times that the policyholder has exercised his reset option. However, CIA has

suggested that one way to reduce the risk of offering reset options is to diminish

the level of maturity guarantee every time that the policyholder exercised his

reset option. The idea is that if the policyholder takes advantage of favourable

market conditions and locks in the relevant market gain, he should compensate

the issuer by accepting a lower maturity guarantee. If, on the other hand, a

policyholder does not exercise his reset option, thus, not causing any potential

extra costs to the issuer, he should have the benefit of the full level of the

maturity guarantee, as it was set at the beginning of the contract. Therefore,

the level of the maturity guarantee should be directly related to the extent that

the reset option is exercised by the policyholder, rather than a fixed percentage
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of the original investment, as was originally used in the market.

This issue is addressed in section 4.3, where the Variable Maturity

Guarantee model extends the original model in that the maturity guarantee

becomes a function of the number of times that the reset option has been

exercised since the maturity of the last segregated fund or the start of the

planning horizon (whichever is most recent). In particular, every time the

policyholder exercises his reset option the maturity guarantee is reduced by a

pre-determined discount factor. The model is analysed in section 4.3.2 and the

main results as well as the sensitivity analysis are provided in sections 4.3.3 to

4.3.7.

Thirdly, the original model assumes that the policyholder can exercise his

reset option only at the end of each policy year. A policy year can be defined

as the set of 365 days which start either when the segregated fund is issued or

when the previous policy year ended. However, increased competition in the

market place has led some of the issuers of segregated fund contracts to offer to

policyholders more reset decision dates, but keeping the total number of reset

options constant. In other words, the policyholder still has the standard one

reset per policy year, but can decide whether to reset his maturity guarantee

more often, than at the anniversary of the contract. CIA recommends that

one should examine cases where the policyholder can decide whether to reset

his maturity guarantee at least every quarter of the policy year, assuming one
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reset option every policy year.

This issue is addressed in section 4.4, where the Variable Timing of

Exercising the Reset Option model extends the original model in that it lifts

the restriction that the policyholder can only exercise his reset option at the

end of each policy year. In particular, under the new model the policyholder

is allowed to reset the maturity guarantee at any point in time within each

policy year from the start of the planning horizon, but only once. The model

is analysed in section 4.4.2 and the main results as well as the sensitivity

analysis are provided in sections 4.4.3 to 4.4.6.

For all three extensions to the original model a flowchart analysis is

provided. As the logic and architecture of the various models share some

common ground with the original model, rather than analysing the flowcharts

in full, only the differences with the flowchart of the original model are

highlighted. All other parts can be assumed to be the same.

In the SRM model built in chapter 3 the returns from the investment

in a segregated fund are modeled using a discrete-time approximation of the

lognormal model. While the lognormal model underpins the well known and

widely used Black Scholes model it has been criticised, among other reasons,

because empirical data of stock markets returns do not seem to follow the

lognormal random walk [Bates, 1991, Heston, 1993, Wilmott, 1998]. As a

matter of fact several empirical studies have demonstrated the existence of
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jumps (both negative and positive) in the stock markets [Bates, 1996, Jorion,

1988, Carr et al., 2002]. In order to incorporate shocks in the model but to also

preserve the comparability of the model’s results with the results of previous

chapters it has been decided to sustain the lognormal model but overlay it with

stochastic jumps. This is the theme of Chapter 5.

Section 5.2 extends the original model in that it allows for instantaneous

stochastic crashes to occur within the single regime of the SRM model, namely

through the Stochastic Crash Model. In reality the evolution of the possible

values of the underlying asset price is the same as with the original model.

However, at every time period there is a small probability of a crash occurring.

When a crash occurs, the residual value of the fund after the crash is equal to

a fixed percentage of its original value.

Following that, in section 5.3, the Double Regime Model is built which

provides alternative means to incorporate jumps into the original model. In

contrast to the Stochastic Crash Model, the Double Regime Model is able

to incorporate both negative (crash) and positive (surge) jumps as well as a

combination of the two. In particular, it allows the underlying asset to switch

between two distinct regimes. The market characteristics of the first regime

are defined by the relevant scenario under examination and are equivalent to

the ones used under the original model in order to facilitate comparisons. The

second regime is intended to model periods of high volatility in the markets
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and can be used to incorporate the jumps. Two distinct applications of the

Double Regime Model are presented in sections 5.4 and 5.5 respectively.

In the first application the second regime, models the case where there is a

large probability that the value of the underlying asset will marginally increase

or a very small probability that it will drop by a substantial fixed percentage,

thus essentially allowing only crashes like the Stochastic Crash Model. The

parameters and transitions probabilities have been set so that a crash is as

likely to happen and of the same magnitude, as in the Stochastic Crash Model,

in order to facilitate comparisons. In the second application the second regime

models the case where the stock market can exhibit variable jumps (i.e. both

crashes and surges) with equal probability of occurrence. In particular, there is

an equal probability that the value of the underlying asset will either increase

by a large fixed percentage or it will drop by an equal in magnitude fixed

percentage. Essentially, it is modeling a highly unstable market environment.

Finally, Chapter 6 discusses the main conclusions of the thesis and provides

recommendations for future research.
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2 Exotic Options

2.1 Introduction

Options give the policyholder the right but not the obligation to buy (sell)

an underlying asset by a certain time for a certain price. Two basic types of

options are the call and put options. A call option gives the policyholder the

right to buy an asset by a certain date, the maturity of the option, for a certain

price, the strike price. In contrast, a put option gives the holder the right to sell

an asset [Hull, 2006]. Options can either be American or European. American

options can be exercised at any time up to the maturity date, whereas European

options can only be exercised at the maturity date itself. Options that have

standard characteristics and have a high trade volume are called plain vanilla

options and have their prices or implied volatilities quoted on regular basis by

traders [Hull, 2006].

Intense competition in the market place has led financial engineers to create

non-standard products which are called exotic options [Clewlow and Strickland,

1997]. It is beyond the scope of this thesis to review or categorize exotic options.

However, interested readers can consult the seminal paper of Rubenstein and

Reiner [1991]. The family of exotic options that will be examined in this thesis

has a combination of non-standard characteristics which can be found in shout,

multi-callable, path-dependent and Bermudan options.

A shout option is an option where the policyholder has the right to lock
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in a minimum payoff at one point in time during its life [Zhang, 1998]. A

multi-callable option is an option where the holder has, as the name suggests,

multiple exercise rights. A path-dependent option is an option whose payoff at

an exercise or maturity date depends on both the price of the asset at that date

and the history of prices of the underlying asset [Goldman et al., 1979, Ritchken

et al., 1993]. A Bermudan option is an option which allows the policyholder

to exercise it before the maturity, but restricts the early exercise to predefined

discrete dates [Zhang, 1998].

The family of exotic options with the aforementioned characteristics are

the so-called reset options. A reset option is an option which allows the

policyholder to alter, one or more times, some terms of the contract based on

predetermined rules during the life of the option. Reset options can be traded

independently or, more commonly, are embedded in complicated financial

instruments [Hull, 2006]. For example the policyholder of some reset options

has the right to reset its strike on predetermined dates, or time periods, if the

underlying portfolio is lower (for reset calls) or higher (for reset puts) than the

originally agreed strike price.

2.2 Types of Reset Options

Independently traded reset options have been issued since the mid-1990’s [Liao

and Wang, 2003]. Pertinent literature on independently traded reset options

includes Cheuk and Vorst [1997], Gray and Whaley [1997], Gray and Whaley
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[1999], Cheng and Zang [2000], Liao and Wang [2002], Liao and Wang [2003],

Dai et al. [2004] Dai and Kwok [2005].

Apart from the independently traded reset options, five financial products

have been identified which have embedded reset option(s). These are

extendible, retractable and convertible bonds, geared equity investment,

executive stock options, energy commodity derivatives and segregated funds.

An extendible bond is as a short dated bond with an embedded call option

to buy a longer dated bond at the original value of the bond up to the extension

date. A retractable bond is as a long dated bond with an embedded put option

to sell the bond at the original value on the retraction date. Such types of bonds

were first issued in Canada in 1959. For both types of bonds the term that can

be reset is the maturity date and the reset can be triggered voluntarily by the

policyholder [Ananthanarayanan and Schwartz, 1980].

A convertible bond is a bond that can be converted into shares of a

company who issues them, commonly at some predetermined ratio. Convertible

bonds were used in Japan by banks during the 1990’s in their atttempt to

incentivise investors in a declining stock market. In particular, “the bond

issuers added an automatic reset option on the ratio at which the bond would

be converted should the underlying asset price fall below the preset threshold

on the prespecified date” [Lau and Kwok, 2003, Kimura and Shinahara, 2006].

Geared Equity Investments have been traded in Australia from Macquarie
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Bank with embedded reset put options. The issuer provides liquidity to an

investor to buy some Australian shares. In addition, the issuer guarantees the

final payoff to the investor should the underlying asset drop from its original

value. They achieve that by embedding a reset put option. The put option has

a further feature in that it automatically resets the strike to the current value

of the underlying asset on a predefined reset date should the underlying asset

exceed the original strike [Gray and Whaley, 1999].

Executive stock options, essentially, are call options to buy an underlying

asset whose strike is less than its market value and whose maturity is

predetermined. In an attempt to reincentivise the policyholders, the issuer

may elect to reset the strike price [Brenner et al., 2000]. Further studies on

executive stock options with embedded reset options include those of Acharaya

et al. [1998], Chance et al. [2000] and Corrado et al. [2001].

In the energy markets (electricity and gas) many contracts incorporate

flexible delivery arrangements, known as swing or take-or-pay options. Subject

to constraints, these contracts allow the policyholder to voluntarily reset the

level of energy that he will purchase. Studies on energy commodity derivatives

with embedded reset/swing options include those of Jaillet et al. [2004], Ibanez

[2004] and Keppo [2004].

Segregated funds allow the policyholder to periodically alter (reset) the

guaranteed amount and the maturity date. Indicatively, studies on segregated
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funds with embedded reset options include those of Armstrong [2001], Hardy

[2001] and Windcliff et al. [2001a,b,c]. In contrast to the other types of reset

options, the one embedded in segregated funds has an extra non-standard

(exotic) characteristic: when the policyholder exercises his reset option, the

maturity of the contract is extended to its original duration. This maturity

extension feature makes modeling very challenging. The following sections of

this chapter expand on and critically analyse the nature of the reset option

embedded in segregated funds and the reasons why it is worth modeling it.

2.3 Segregated Funds

Segregated funds are “variable annuity contracts distributed by Canadian

insurance companies which are primarily used for the investment of

contributions to group pension plans. The assets in each such fund, though

owned by the life insurer, are segregated from its other assets. As such, they

are defined very similarly to mutual funds — pools of investments in which

an investor can acquire an interest by purchasing units” [Brizeli, 1998]. The

difference with mutual funds is that segregated funds have additional features

that provide a guarantee on the initial investment after a predetermined time.

The rest of this chapter will focus on the main feature of segregated funds

namely the reset option of the maturity guarantee. The maturity guarantee is

a long term (usually 10 years) put option on the underlying asset with an strike

equal to the guaranteed amount. Segregated funds offer the policyholder the
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option to reset the maturity guarantee from the original level to the current

value of the underlying asset at predetermined times (e.g. at the anniversary

of the contract). Upon exercising the reset option the maturity of the fund is

extended to the original duration (e.g. 10 years).

Essentially, the policyholder is faced with the following trade-off: “at each

available reset point a decision has to be made whether to keep the existing

option or to substitute it with another one whose maturity is further in the

future and whose exercise price is higher than the previous one” [Armstrong,

2001]. Therefore, ”the reset option on the maturity guarantee embedded in

segregated funds offers the policyholder the upside potential of the equity

market while at the same time providing a protective floor should the market

fall” [Windcliff et al., 2001b].

2.3.1 Reasons for Increased Attention

With the popularity and marketability of segregated funds on the ascendancy

during the 1990’s, issuing companies and actuaries realised that these

guarantees are very complex and difficult to value. Further attention was drawn

from the financial authority regulators: at the June 1998 Annual meeting of

the Canadian Institute of Actuaries (CIA), the Superintendent of Financial

Institutions, John Palmer stated [Canadian Institute of Actuaries, 2002]:

“Another important issue is that of the segregated fund’s

guarantees. Some institutions now offer segregated funds that are
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not only 100% guaranteed, but they also allow the purchaser to

reset the base value upwards at certain intervals. ...By no means

do we think that these guarantees are risk-free. They must be

considered carefully, and actuaries pricing and reserving for them

must remember their unique nature.”

Despite the increased attention by end of the 1990’s there were still no

industry guidelines relative to the valuation of the segregated funds. Moreover,

there “were no prescribed minimum capital requirements for offering this

product. Overall, there was a wide variety of practices in the market ranging

from doing nothing to doing some modeling” [Hancock, 2001].

2.3.2 Responses of the Canadian Regulatory Authorities

The aforementioned developments drew the attention of the financial industry

in Canada. In 1998, the Office of the Superintendent of Financial Institutions

(OSFI) in cooperation with CIA provided for the first time a deterministic

valuation approach in order to tackle the valuation of segregated funds. The

outcome of their work was prescribed scenarios with the remit to set a minimum

liability (see section 2.3.3). At the same time stochastic techniques was

suggested to test the adequacy of these liabilities, as they were only meant

to be indicative minimums.

In June 1999 OSFI proposed a methodology with factors for the segregated

funds. In the end of 1999 CIA appointed the Segregated Fund’s Task Force with

the aim to develop techniques for assessing the valuation of segregated funds.
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Finally, the Segregated Fund’s Task Force produced a long term valuation

approach (see section 2.3.4 for more details) as well as an interim short term

valuation approach (see section 2.3.5 for more details).

Since the reviewed literature (sections 2.3.1, and 2.3.2) raised concerns on

the effect of the reset option on the cost of providing segregated fund contracts,

in sections 2.3.3, 2.3.4, and 2.3.5 particular attention is drawn on how each

valuation method deals with the reset option.

2.3.3 OSFI’s Deterministic Approach

“The deterministic valuation approach which was prescribed by OSFI in order

to set minimum liabilities, valued the guarantees by projecting net asset

and liability cash flows, first with investment guarantees and then without

investment guarantees. The liability for the guarantees was the additional

assets needed to fund the incremental cash flow stream associated with the

guarantees” [OSFI, 1999].

With respect to the reset option the deterministic scenario approach

adopted the following heuristic. “Where voluntary resets of the guaranteed

amount were available, not less than 75% (of those cases where such a reset

would have caused merely an increase of the guaranteed amount) were assumed

to reset at the valuation date immediately before the one time correction.

Resets after the one time correction were ignored” [OSFI, 1999].

It is worth noting that this first approach raised a lot of criticism, especially
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from Miles and Miles [2000]. One of the main comments against this approach

was that the assumed heuristic regarding the reset decision was considered to

be naive [of Actuaries, 2001]. Therefore, it is of great interest to examine in the

following section (2.3.4) the recommendations of CIA relative to the valuation

of the liabilities of segregated funds in light of the MCCSR requirement

developed by OSFI for segregated fund guarantees in 1999.

2.3.4 CIA’s Long Term Approach

CIA’s segregated fund’s task force highlighted the importance that “any

model used to value financial guarantees, which are often deeply out-of-

money, accurately captures the risk of the guarantee moving into the money”

[Canadian Institute of Actuaries, 2002]. For this purpose they set out “a

calibration method for the investment models that emphasizes the left tail of

the asset return distribution over three different time periods; 1 year, 5 years

and 10 years. An issuer of segregated funds can use any stochastic model that,

when fitted to the baseline data (Toronto Stock Exchange (TSE) 300 total

return index, 1956-1999) generates left tail probabilities at least as large as

those prescribed by CIA, as summarised in table” 1. CIA further underlined

the fact that the model must generate a mean 1-year accumulation factor close

to the true mean of the data (in the range of 1.10 to 1.12), and the standard

deviation of the 1-year accumulation factor must be at least 17.5% [Canadian
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Institute of Actuaries, 2002].

Accumulation Period 2.5th percentile 5th percentile 10th percentile

1 year 0.76 0.82 0.90
5 year 0.75 0.85 1.05
10 year 0.85 1.05 1.35

Table 1: CIA’s Calibration Table

Source: [Canadian Institute of Actuaries, 2002]

Moreover, CIA argued that some factors which may complicate this process

are the management expense ratio (MER) and the reset options. In particular,

they advised actuaries that “their liability models should not assume any

change in MERs unless there is clear evidence for doing so, as they expect

a considerable competitive pressure not to increase MERs”.

With respect to the reset option, CIA advised actuaries that “their liability

models should assume that some policyholders would exercise this option”.

However, they argued that actuaries should not necessarily assume that

policyholders behave with 100% efficiency, “even if we knew what 100% efficient

behaviour looked like”, as a member of the CIA task force group highlights

[Hardy, 2001].

Recognising their lack of knowledge on what would constitute optimal reset

behaviour, CIA then advised actuaries to use an ad hoc method for simulating

resets. In particular they recommended the use of the following heuristic:
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“where elective resets of the guaranteed amount are available, not less than

75% of the cohort of policyholders eligible to reset should be assumed to reset

each year where such a reset would cause a material increase in the guaranteed

amount. A material increase in the guaranteed amount would be 15% or

greater” [Canadian Institute of Actuaries, 2002].

Overall, CIA’s long term approach is significantly more advanced compared

to OSFI’s deterministic approach. As matter of fact when it was completed

CIA’s task force realised that it would take some time for companies to develop

models for full stochastic simulation. Therefore, an approach which was more

short-term in nature was then developed for immediate use. This is examined

in section (2.3.5). However, it should be noted that despite the fact that most

of the long term approach uses some advanced techniques, the issue of the reset

option was thoroughly neglected, as the Segregated Fund’s Task Force used a

heuristic similar in nature to the one used in the 1999 OSFI’s deterministic

approach.

2.3.5 CIA’s Short Term Approach

The interim solution of CIA was to provide a set of tables that were mandatory

for the issuers of segregated funds to use [Canadian Institute of Actuaries,

2002]. With respect to the reset option they explicitly mentioned in their

guidelines that “the with resets rows of the tables assumed a 100% rate of
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utilisation of the elective reset option (i.e. the proportion of policyholders

expected to exercise the reset option given favourable investment performance).

In developing the factor tables, favourable investment performance (i.e.

prompting option exercise) was deemed to have occurred whenever the market

value-to-guarantee value ratio equals or exceeds 115%. If the product offered

an elective reset feature and the company had reliable experience regarding

the rate of utilisation, the company should have interpolated between the

corresponding no resets and with resets rows according to the proportion of

business that exercised the reset option” [Canadian Institute of Actuaries,

2002].

Overall, they proposed that their approach should be used until the

regulator and the industry is confident that the insurers have stochastic models

and systems that are capable of adequately predicting the risk profile of the

business. This approach was prescribed in all Canadian financial institutions

who offer segregated funds. Therefore, given its high importance, it is

noteworthy that among other assumptions and heuristics used, CIA still made

no attempt to model optimal reset behaviour. Instead, they used a similar

heuristic as the one adopted in their long term approach.

Having identified this consistent use of naive heuristics relative to the reset

option on behalf of the regulating and advisory authorities of Canada, it is now

of interest to see how practitioners have handled this issue.
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2.3.6 Symposium on Stochastic Modeling on Segregated Funds

In 1999 CIA organised a symposium in order to address the shortage of research

in the area of stochastic modeling for segregated fund investment guarantees. It

is noteworthy that the vast majority of the authors, on the one hand, admitted

the high importance of the reset feature on the valuation of the segregated

funds, but on the other hand, chose to ignore it for the sake of simplicity.

In the following subsections, four presentations of financial companies and

practitioners which attempted to model the reset option are critically and

succinctly presented.

RGA Financial defined and modeled what they call a “rational policyholder

behaviour”. In particular, they defined rational reset as one that occurs the

moment the value of the guarantee to the policyholder after resetting is merely

greater than the value of the guarantee by continuing the existing policy.

Manulife suggested the use of a simple set of rules in order to decide when

to exercise a reset option: (i) resets only occur if the market value of the fund

is at least 110% of the guaranteed value, (ii) the maximum percentage of all

contracts at time t that resets is 30%.

Thompson Financial assumed that the reset option is utilised by 20% of

the population per annum whenever the account value exceeds 120% of the

guaranteed value. Interestingly, they noted that the assumption that a flat

percentage of the population utilises the reset option is unrealistic. They then
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argued that it is more likely that the utilisation will increase with the account

value.

Lastly, FSA Insurances assumed that: 100% of policyholders reset if the

fund is 10% above the guaranteed value. Overall, what becomes apparent

from the four presentations examined is that in line with the regulatory and

advisory authorities in Canada, practitioners use similarly naive heuristics in

their attempt to model the reset decision. Therefore it is now of interest to

review the academic literature on the reset option.

2.4 Research on the Reset Option Embedded in
Segregated Funds

Gerber and Shiu [1999] examined the valuation of reset guarantees in the

context of a mutual fund. In particular, they constructed a model “where

the mutual fund prices moved in discrete jumps, and the reset feature of the

guarantee considered of resetting the strike price back to its guaranteed amount

immediately after each loss”. However, the limitations of their model were that

this reset was automatic without any decision being made by the policyholder.

Bilodeau [1997] examined a potential decision problem of segregated funds

policyholders. In his paper he considers a case where a policyholder can choose

on the maturity to either exercise the maturity guarantee and withdraw his

investment or roll-over the guarantee for an extra time period. The author

argued that what the policyholder should do at maturity, is to compare the
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expected payoff by exercising the maturity guarantee with the expected value

of renewing the maturity guarantee. However, the limitations of his model

were that it does not take into account horizons lasting longer than two time

periods and that it does allow for the maturity guarantee to be reset prior to

the maturity date.

Armstrong [2001] attempted to address the trade-off faced by polyholders

in terms of either resetting the maturity guarantee or allowing it to reach its

maturity. What made his paper even more interesting was that he considered

the problem from the policyholder’s viewpoint. In particular, the author

proposed “the use of a return threshold decision rule, such that whenever the

return for a period exceeded the threshold, the policyholder would reset the

guarantee”. His results suggest that “while extreme strategies such as never

resetting can lead to quite poor performance, many reasonable choices of return

thresholds can lead to near-optimal performance even if the chosen threshold

is not particularly close to the optimal value”. However, the limitation of

his model is that it is restricted to just two-period guarantees with a single

intermediate decision point. As a matter of fact he highlights that “a more

realistic model of segregated fund products would feature guarantees covering

at least 10 periods and nine intermediate reset points, as well as more complex

reset strategies”.

Finally, Windcliff et al. [2001a,b,c] have done one of the most advanced
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models relative to the valuation of segregated funds and the reset feature in

particular. What makes their model of special importance to this thesis is that

they have attempted to model the optimal reset behaviour of policyholders

of segregated funds. In particular, they have computed an “optimal exercise

boundary” for a sample segregated fund contract that allowed the investor 1

reset per annum over an infinite planning horizon. It is worthwhile highlighting

an interesting finding of their model, namely that “the location of the exercise

boundary depends on the current maturity date of the contract. We can see

that there is a trade-off between getting a higher guarantee level by resetting

and deferring the maturity date of the contract by another 10 years”. It is

noteworthy that the optimal exercise boundary that they compute exhibits

some jumps at the beginning of each policy year. As the authors suggest “this

is attributed to the fact that the policyholder receives a new reset opportunity

each year. Therefore near the end of a policy year, the investor may choose

to exercise his reset option to lock-in even a relatively small gain, rather than

losing the opportunity to reset the maturity guarantee altogether”.

However, the limitation of this model is that, as Windcliff et al. [2001a,c]

note, the computed optimal exercise boundary applies only to the initial

contract sold to the policyholder. Once the policyholder resets the maturity

guarantee the exercise boundary changes. Therefore it becomes apparent

that in order to generate a comprehensive optimal reset strategy, the optimal
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exercise boundaries for all of the segregated funds should be examined.

2.5 Discussion: Need to Model the Reset Option

Throughout sections 2.3.3, to 2.3.5 a wide range of models relative to the

valuation of the segregated fund investment guarantees have been critically

reviewed. The methods examined vary from the deterministic approach to the

more elaborate and advanced CIAs long term approach. However, what all

of the models seem to have in common is a consistent use of naive heuristics

relative to the modeling of the reset decision. A side effect is that practitioners

who are advised by the regulatory authorities which approach to use, make

the exact same misleading and naive assumptions about the reset option (see

section 2.3.6). Therefore, it becomes apparent that all the benefits that could

accrue through the use of advanced stochastic modeling can be more than

negated by the inherent naive assumption about the reset option.

In section 2.4 the academic literature on the modeling of the reset decision

has been critically reviewed. The conclusion from this subsection is that there

does not appear to be any published work which is advanced enough to deal

with the complexities of the reset option faced by the policyholder of segregated

funds.

Hence, there appears to be a clear and urgent need to have more

sophisticated approaches which will model the reset option. In particular, it is
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worthwhile to examine a segregated fund which allows the policyholder to reset

the level of their maturity guarantee at least once every policy year. Also the

maturity of the fund and the planning horizon should be long enough to take

into account that segregated funds are primarily used as pension products. In

chapter 3 an attempt is made to develop a model for the reset option with the

aim to derive a comprehensive optimal reset strategy for the policyholder.
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3 Modeling the Reset Option

3.1 Introduction

Motivated by the importance of the reset option embedded in segregated funds,

the limitations of the relevant academic literature, as well as the inadequate

approaches used by practitioners (as illustrated in chapter 2) an attempt is

made to model the reset option of segregated funds.

The reset option on the maturity guarantee of segregated funds is

formulated as a non-stationary finite horizon Markov Decision Process. The

aim of this model is to depict the optimal exercise boundary (OEB) of the

reset option. In particular, given the model parameters, the aim is to depict a

threshold value such that if the value of the underlying asset exceeds it then it

is optimal for the policyholder to reset his maturity guarantee. Otherwise, it

is optimal for the policyholder to rollover his maturity guarantee.

The rest of the chapter is organised as follows: section 3.2 formulates

the reset option as a Markov Decision Process and state the assumptions

that underpin the formulation. Then, section 3.3 critically analyses ways in

which the state space of the formulation can be reduced, thus making it more

efficient. The revised formulation of the reset option is then provided in section

3.4. Section 3.5 succinctly analyses the structure of the model of segregated

funds and highlights the main options and the corresponding decisions that
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the policyholder faces at each stage and state of the model.

Further, in section 3.6 the formulation is converted into a flowchart

through pseudo-coding. The intuitive advantage of pseudo-coding is that its

architecture and rationale are not framed by the syntax of any particular

programming language, thus rendering the structure of the model generalisable.

Then, in sections 3.7 and 3.8 the pseudo-coding is “translated” into Fortran

Code, where the commercially available Salford software is used to compile and

run the code. The aim is to extract the values of the underlying asset for which

the policyholder will be optimally exercising his reset option.

Moreover, sections 3.9 and 3.10 highlight the main results of the model

as well as perform sensitivity analysis in order to examine the robustness of

the model, gain insights into the behaviour of the segregated fund contract

and make recommendations to both the policyholder and the issuer of the

segregated funds. Lastly, section 3.11 concludes.

3.2 Formulating the reset option as a Markov Decision
Process

In this section, the reset option on the maturity guarantee of segregated funds

is modeled as a non-stationary finite horizon Markov decision process which is

characterised by the following five elements:

Stage (denoted by t) which is the number of steps until the end of the planning
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horizon

State Space (denoted by St) which is the set of possible states at stage t

Decision Space (denoted by Dt
i) for each i ∈ St, which is the set of decisions

that can be taken in state i at stage t

Immediate Reward for each i ∈ St and d ∈ Dt
i , R

t
i,d = reward received when

process is in state i at stage t and action d is chosen

State Transitions for i ∈ St, d ∈ Dt
i and j ∈ St−1, pti,j,d = probability of

process making a transition to state j at stage t − 1 when process is in

state i at stage t and action d is chosen

Lastly, let the maximum expected reward over the final t steps starting

from state i at stage t, for each i ∈ St, be:

V t
i = max

d∈Dti
{Rt

i,d +
∑

j∈St−1

pti,j,dV
t−1
j } (1)

For further details on Markov decision processes see Puterman [1994]. The

returns from the investment in a segregated fund are modeled using a discrete-

time approximation of the Lognormal Model, namely the “Binomial Tree

Method”. For further details on the Binomial Tree Method see Hull [2006].

The Binomial Tree Method has been chosen as it models the underlying asset

over time, as opposed to at a particular point in time and thus is able to handle

a variety of conditions for which other models cannot easily be applied. For
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example the reset option can be exercised before the maturity of the segregated

fund. However, for such options under the Black-Scholes method there can be

no analytical solution [Cox and Ross, 1976].

The assumptions underlying the model are the following. Firstly, the aim of

the investor is to maximise the expected value of his initial investment (denoted

by X) after a fixed time period (the planning horizon). Secondly, the investor

can invest either in a bond with return equal to the risk-free rate of interest

(denoted by r) or in a segregated fund. Thirdly, segregated funds allow the

investor to reset the level of the maturity guarantee at pre-determined fixed

points in time which are regularly spaced out in the planning horizon (reset

decision points). Also, the maturity guarantee of the segregated fund states

that at maturity, the investor will receive the maximum of a predetermined

percentage (denoted by G) of the original investment and the prevailing value

of the fund. Moreover, the value of the underlying asset is a random variable

which is modeled by a discrete time approximation of the lognormal model,

namely the binomial distribution. It can either change by (1 + u)% or change

by (1 + d)% at each time period. The probability of changing by (1 + u)% is

p while the probability of changing by (1 + d)% is 1 − p. The probability p

is set in such a way that the expected return of the underlying asset is equal

to the risk-free rate of interest, denoted by r ([Hull, 2006]). In particular,

(1 + r) = (1 + u) ∗ p + (1 + d) ∗ (1 − p). Further, there are q time periods in

42



a policy year. In total there are Nq periods until the maturity of a segregated

fund while the policyholder’s planning horizon has Tq time periods, where

T ≥ N . Lastly, the underlying asset does not pay any dividends and therefore

there are no rewards during the planning horizon.

3.2.1 Formulation

Under the above assumptions the problem can be formulated as follows:

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.

State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the following.

The first state variable is the current value of the underlying asset

(denoted by a). For the purposes of this thesis the underlying asset

can be defined as whatever was bought by the initial investment (e.g.

100 ounces of gold, 500 shares of XYZ corporation etc.). This state

variable is of the form a = XGk(1 + u)w(1 + d)m, where 0 ≤ w ≤ Tq− t,

0 ≤ w + m ≤ Tq − t, and 0 ≤ k ≤ Tq−t
Nq

. The term Tq − t in the

boundaries of w and w +m represents the number of time periods since

the start of the planning horizon. Therefore, it is an upper bound on

the times that the underlying asset price may have changed by (1 +u)%.

The possible values of w+m are ≤ Tq− t despite the fact that the total
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number of times that the underlying asset price has changed in value

by either (1 + u)% or (1 + d)% during the planning horizon is equal to

Tq − t. The rationale behind this argument is that some of the times

that the asset has changed by (1+u)% or (1+d)% may have been wiped

out at the maturity of the segregated fund if the maturity guarantee has

been applied. Further, the term Tq−t
Nq

in the boundary of k represents the

maximum number of times that a segregated fund may have reached its

maturity within the planning horizon. Thus it represents the maximum

number of times that the maturity guarantee may have been applied.

The second state variable is the number of periods until the maturity

of the current segregated fund contract. This is denoted by n and must

satisfy the following conditions. Firstly, by the definition of n, 0 ≤ n ≤

Nq. Secondly, n ≤ t in order to provide enough time for the fund to

mature before the end of the planning horizon. Thirdly, n ≥ Nq−(Tq−t)

in order to allow the initial investment in the fund to fall within the limits

of the planning horizon. Lastly, n = t − kq for some integer k, because

opportunities to invest in a new segregated fund occur only once every q

time periods.

The third, and final, state variable is the current value of the maturity

guarantee, denoted by g, where g ≥ 0. This is determined by the value

of the initial investment in the segregated fund and is of the form g =
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XGk′(1+u)w
′
(1+d)m

′
, where 1 ≤ k′ ≤ Tq−t−(Nq−n)

Nq
+1, 0 ≤ w′ ≤ Tq−t−

(Nq−n), and 0 ≤ w′+m′ ≤ Tq−t−(Nq−n). The maturity guarantee of a

segregated fund protects G% of the investment in the fund, so the value of

the maturity guarantee is equal to G times the value invested in the fund.

The term Tq− t− (Nq−n) represents the stage when the investment in

the current fund was made. Finally, XGk′−1(1 + u)w
′
(1 + d)m

′
represents

the initial investment in the segregated fund and the boundaries of k′, w′

and w′ +m′ follow using a similar argument as above.

Decision Space (denoted by Dt
a,n,g) which is the set of possible decisions

that can be taken in state [a, n, g] at stage t. There are four possible

decisions that the policyholder can take. Firstly, initially or at the

maturity of the segregated fund, to invest in a bond yielding the risk-

free rate of interest abbreviated as risk free. Secondly, initially or at the

maturity of the segregated fund, to re-invest in a new segregated fund

contract abbreviated as reinvest. Thirdly, during the lifetime of the

fund, to rollover the maturity guarantee by not exercising the reset option

abbreviated as rollover. The last possible action, which is available only

at regularly spaced decision points during the lifetime of the segregated

fund, is to reset the maturity guarantee abbreviated as reset.

In particular, if the time until the end of the planning horizon is less

than the duration of a segregated fund, and the current segregated fund
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has reached its maturity (i.e. t < Nq and n = 0) then Dt
a,0,g = {risk

free}. Moreover, if the time until the end of the planning horizon is

greater than or equal to the duration of a segregated fund, and the current

segregated fund has reached its maturity (i.e. t ≥ Nq and n = 0) then

Dt
a,0,g = {reinvest, risk free}. Further, if the time until the end of the

planning horizon is more than the duration of the segregated fund, and

it is a reset decision point then Dt
a,n,g = {reset, rollover}. Formally, state

[a, n, g], at stage t can be defined as a decision point if (n, t) ∈ E where

E={(n, t) : 0 < n < Nq, t ≥ Nq and n = kq for some k ∈ Z}. Lastly, if

the current segregated fund has not reached its maturity (i.e. n > 0), and

it is not a reset decision point (i.e. (n, t) 6∈ E) then Dt
a,n,g = {rollover}.

State transitions define the probability of the process making a transition

from one state to another depending on the action which has been

taken. In particular, in state [a, 0, g] at stage t the action risk free

determines the final value of the investment by multiplying the current

value of the investment by (1 + r)t. Further, in state [a, 0, g] at

stage t the action reinvest causes an instantaneous transition to state

[max(a, g), Nq,Gmax(a, g)]. Also, in state [a, n, g] at stage t the action

rollover causes a transition to state [a(1 + u), n− 1, g] at stage t− 1 with

probability p or state [a(1+d), n−1, g] at stage t−1 with probability 1−p.

Lastly, in state [a, n, g] at stage t the action reset causes an instantaneous
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transition to state [a,Nq,Ga].

Overall, the aim of the policyholder is to maximise the expected return

from the investment at the end of the planning horizon, i.e. after Tq time

periods. Let V t
a,n,g be the maximum expected return from the investment when

there are t periods until the end of the planning horizon and the investment

is currently in a fund with n time periods to go to maturity, a current value

of a and maturity guarantee of g. Therefore, the aim is to find V Tq
X,0,0 where:

vta,n,g =





max(a, g)(1 + r)t if t < Nq and n = 0

max(max(a, g)(1 + r)t, V t
max(a,g),Nq,Gmax(a,g))

if t ≥ Nq and n = 0

pV t−1
a(1+u),n−1,g + (1− p)V t−1

a(1+d),n−1,g

if n > 0 and (n, t) 6∈ E

max(pV t−1
a(1+u),n−1,g + (1− p)V t−1

a(1+d),n−1,g, V
t
a,Nq,Ga)

if (n, t) ∈ E

(2)

Note that the initial state is defined to be the maturity of a fund with value

X and maturity guarantee 0 to allow for an initial choice between investment in

risk free and investment in a fund within the general framework of the model.

3.3 Model Refinement: Reducing the State Space

Of crucial importance has been the observation that in the calculation of the

value of the portfolio at any point in time it is not necessary to know the value
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of the underlying asset, only how this value has changed since the start of the

relevant segregated fund. This result is formally stated as Proposition 1 below.

A consequence of this is that state a can now be altered to represent the current

value of the portfolio relative to the value of the portfolio at the start of the

relevant segregated fund rather than the current value of the portfolio. Further,

state g can be eliminated altogether as the only information that needs to be

stored is the percentage of the original investment that is guaranteed upon

maturity (which is assumed to be constant throughout the planning horizon)

rather than the value of the maturity guarantee, which depends on the initial

investment in the relevant segregated fund, and thus could be different for each

fund.

The repercussions of this observation are significant as the number of states

within the planning horizon is reduced greatly. For indicative purposes, if

T = 29, N = 10, and q = 1000 then the number of states within the planning

horizon under the original formulation is in the magnitude of approximately

1750 trillions whereas with the aforementioned simplification it is in the

magnitude of approximately 1.5 billions. This amounts to a reduction of 99.99%

which enables models with a significantly increased frequency of changes to the

underlying asset price to be analysed. This not only offers more stable results

but also improves the convergence of the binomial model of the value of the

underlying asset to the lognormal distribution.
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3.3.1 Proposition 1

For x > 0, V t
ax,n,gx = xV t

a,n,g (3)

Proof

The proof is by induction on t. For t = 0 the only possible value of n is 0.

V 0
ax,0,gx = max{ax, gx}

= xmax{a, g}

= xV 0
a,0,g

Therefore, equation 3 has been proven to hold true for t = 0. Assume that

equation 3 holds true for t − 1, so the aim is to prove that equation 3 holds

true for t. There are 3 cases to consider:

Case 1 For 0 < t < Nq.

For this case, 0 ≤ n ≤ t and (n, t) 6∈ E. Due to differences in the decision

spaces there are two cases that need to be considered separately.

Firstly, if n = 0 then the only decision is risk free, so:

V t
ax,0,gx = max{ax, gx}(1 + r)t

= xmax{a, g}(1 + r)t

= xV t
a,0,g
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Secondly, if n > 0 then the only decision is rollover, so:

V t
ax,n,gx = pV t−1

a(1+u)x,n−1,gx + (1− p)V t−1
a(1+d)x,n−1,gx

= xpV t−1
a(1+u),n−1,g + x(1− p)V t−1

a(1+d),n−1,g

by the inductive hypothesis

= xV t
a,n,g

Therefore, equation 3 has been proven to hold true for 0 < t < Nq

provided equation 3 holds true for t− 1.

Case 2 For Nq ≤ t ≤ Tq and t is a multiple of q.

For this case, the fund can only have reached maturity (n = 0) if the

number of periods since the start of the planning horizon (Tq − t) is at

least Nq. Otherwise there must be at least Nq− (Tq− t) steps until the

maturity of the fund. Hence max(0, Nq − (Tq − t)) ≤ n ≤ Nq. Further,

since t is a multiple of q, it follows that n is also a multiple of q. Due

to differences in the decision spaces there are three cases that need to be

considered separately.

Firstly if n = Nq then the only decision is rollover, so:

V t
ax,Nq,gx = pV t−1

a(1+u)x,Nq−1,gx + (1− p)V t−1
a(1+d)x,Nq−1,gx

= xpV t−1
a(1+u),Nq−1,g + x(1− p)V t−1

a(1+d),Nq−1,g

by the inductive hypothesis
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= xV t
a,Nq,g (4)

Secondly if 0 < n < Nq then (n, t) ∈ E and the investor may choose

between rollover and reset, so:

V t
ax,n,gx = max{pV t−1

a(1+u)x,n−1,gx + (1− p)V t−1
a(1+d)x,n−1,gx, V

t
ax,Nq,Gax}

= max{xpV t−1
a(1+u),n−1,g + x(1− p)V t−1

a(1+d),n−1,g, V
t
ax,Nq,gx}

by the inductive hypothesis

= max{xpV t−1
a(1+u),n−1,g + x(1− p)V t−1

a(1+d),n−1,g, xV
t
a,Nq,g}

by equation 4

= xmax{pV t−1
a(1+u),n−1,g + (1− p)V t−1

a(1+d),n−1,g, V
t
a,Nq,g}

= xV t
a,n,g

Finally, if n = 0 then the investor may choose between risk free and

re-invest, so:

V t
ax,0,gx = max{max(ax, gx)(1 + r)t, V t

max(ax,gx),Nq,Gmax(ax,gx)}

= max{xmax(a, g)(1 + r)t, V t
xmax(a,g),Nq,xGmax(a,g)}

= max{xmax(a, g)(1 + r)t, xV t
max(a,g),Nq,Gmax(a,g)} by equation 4

= xmax{max(a, g)(1 + r)t, V t
max(a,g),Nq,Gmax(a,g)}

= xV t
a,0,g

Therefore, equation 3 has been proven to hold true for t a multiple of q

satisfying Nq ≤ t ≤ Tq provided equation 3 holds true for t− 1.
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Case 3 For Nq ≤ t ≤ Tq and t not a multiple of q.

For this case, max(0, Nq− (Tq− t)) ≤ n ≤ Nq and n is not a multiple of

q. Hence n 6= 0, n 6= Nq and (n, t) 6∈ E. It follows that the only decision

is rollover and:

V t
ax,n,gx = pV t−1

a(1+u)x,n−1,gx + (1− p)V t−1
a(1+d)x,n−1,gx

= xpV t−1
a(1+u),n−1,g + x(1− p)V t−1

a(1+d),n−1,g

by the inductive hypothesis

= xV t
a,n,g

Therefore, equation 3 has been proven to hold true for t not a multiple

of q satisfying Nq ≤ t ≤ Tq provided equation 3 holds true for t− 1.

Combining cases 1, 2 and 3, it has been proven that V t
n,ax,gx = xV t

n,a,g for

all values of t by induction.

3.4 Revised Formulation

Applying equation 3 in the optimality equation of the original formulation leads

to the following:

vta,n,g =





max(a, g)(1 + r)t if t < Nq and n = 0

max(a, g) max((1 + r)t, V t
1,Nq,G) if t ≥ Nq and n = 0

pV t−1
a(1+u),n−1,g + (1− p)V t−1

a(1+d),n−1,g if n > 0 and (n, t) 6∈ E

max(pV t−1
a(1+u),n−1,g + (1− p)V t−1

a(1+d),n−1,g, aV
t

1,Nq,G) if (n, t) ∈ E

(5)
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With this simplification, it is only necessary to consider a unit investment

in a new segregated fund in order to evaluate the reset and reinvest decisions.

Hence, it is only necessary to consider segregated fund contracts in which the

value of the maturity guarantee is G. These observations lead to the following

revised formulation of the problem.

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.

State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the following.

The first state variable is the current value of the underlying asset relative

to its value at the time of the investment in the current segregated fund

(denoted by a) which is of the form a = (1 + u)i(1 + d)Nq−n−i, where

0 ≤ i ≤ Nq − n. The term Nq − n in the boundary of i represents

the number of time periods since the start of the current segregated

fund. Therefore it represents the maximum number of times that the

underlying asset may have changed by (1 + u)%. If i represents the

number of periods since the start of the current segregated fund that the

underlying asset has changed by (1 + u)%, then Nq − n− i must be the

number of times since the start of the current fund that the underlying
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asset has changed by (1 + d)%.

The second state variable is the number of periods until the maturity of

the current segregated fund contract. This variable is denoted by n and

must satisfy the same conditions as set out in the original formulation.

Decision Space (denoted by Dt
a,n) which is the set of possible decisions that

can be taken in state [a, n] at stage t. The decision space in the original

formulation depends only on the time until the end of the planning

horizon and the time until the maturity of the fund, not the current

values of the underlying asset and the maturity guarantee. Hence, the

decision space remains essentially the same and is formally stated as:

Dt
a,n =





{risk free} if t < Nq and n = 0
{reinvest, risk free} if t ≥ Nq and n = 0
{rollover} if n > 0 and (n, t) 6∈ E
{rollover, reset} if (n, t) ∈ E

State transitions define the probability of the process making a transition

from one state to another depending on the action which has been taken.

In particular: in state [a, 0] at stage t the action risk free determines

the final value of the investment by multiplying the current value of the

investment by (1+r)t. Further, in state [a, 0] at stage t the action reinvest

causes an instantaneous transition to state [1, Nq]. Also, in state [a, n]

at stage t the action rollover causes a transition to state [a(1 + u), n− 1]

at stage t − 1 with probability p or state [a(1 + d), n − 1] at stage t − 1
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with probability 1 − p. Lastly, in state [a, n] at stage t the action reset

causes an instantaneous transition to state [1, Nq].

The aim of the policyholder is to maximise the expected return from the

investment at the end of the planning horizon, i.e. after Tq time periods. Let

V t
a,n be the maximum expected return from the investment at the end of the

planning horizon, after t time periods, when investment is currently in a fund

with n time periods to go to maturity, a current relative value of a and a

maturity guarantee of G. Therefore, the aim is to find X max{(1 + r)Tq, V Tq
1,Nq}

where:

V t
a,n =





max(a,G)(1 + r)t if t < Nq and n = 0

max(a,G) max{(1 + r)t, V t
1,Nq} if t ≥ Nq and n = 0

pV t−1
a(1+u),n−1 + (1− p)V t−1

a(1+d),n−1 if n > 0 and (n, t) 6∈ E

max(pV t−1
a(1+u),n−1 + (1− p)V t−1

a(1+d),n−1, aV
t

1,Nq) if (n, t) ∈ E

(6)

It seems intuitive that if it is optimal to reset the maturity guarantee when

the value of the underlying asset at a particular decision point is a, then it would

be optimal to reset the maturity guarantee when the value of the underlying

asset is greater than a. Proposition 2 proves that this property holds for the

formulation of the problem derived in this thesis.
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3.4.1 Proposition 2

If a′ > a > 0 and the optimal action in state [a, n] at stage t is to reset the level

of the maturity guarantee, then it is optimal to reset the maturity guarantee

in state [a′, n] at stage t.

Proof

Assume that it is optimal to reset the level of the maturity guarantee in state

[a, n] at stage t. It follows that aV t
1,Nq > pV t−1

a(1+u),n−1 + (1 − p)V t−1
a(1+d),n−1.

The aim is to prove that it is also optimal to reset the level of the maturity

guarantee in state [a′, n] at stage t. Hence it is required to prove that:

a′V t
1,Nq > pV t−1

a′(1+u),n−1 + (1− p)V t−1
a′(1+d),n−1

which is equivalent to:

aV t
1,Nq >

a
a′ (pV

t−1
a′(1+u),n + (1− p)V t−1

a′(1+d),n) since a
a′ > 0.

Hence it is sufficient to show that:

pV t
a(1+u),n + (1− p)V t

a(1+d),n ≥
a

a′
(pV t

a′(1+u),n + (1− p)V t
a′(1+d),n) (7)

The proof is by induction on t. For t = 0 the only possible value of n is 0.

a

a′
{pV 0

a′(1+u),0 + (1− p)V 0
a′(1+d),0}

=
a

a′
{pmax(G, a′(1 + u)) + (1− p) max(G, a′(1 + d))}

by the optimality equation

= pmax(
a

a′
G, a(1 + u)) + (1− p) max(

a

a′
G, a(1 + d)) since

a

a′
> 0
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≤ pmax(G, a(1 + u)) + (1− p) max(G, a(1 + d)) since
a

a′
< 1

= pV 0
a(1+u),0 + (1− p)V 0

a(1+d),0

Thus equation 7 has been proven to hold true for t = 0.

Assume that equation 7 holds true for t− 1. Thus, the aim is to prove that

equation 7 holds true for t. There are 3 cases to consider:

Case 1 For 0 < t < Nq then:

For this case, 0 ≤ n ≤ t and (n, t) 6∈ E. Due to differences in the decision

spaces there are two cases that need to be considered separately.

Firstly, if n = 0 then the only decision is risk free. Note that V t
a,0 =

max(a,G)C(t) where C(t) depends only on t and constant parameters.

a

a′
{pV t

a′(1+u),0 + (1− p)V t
a′(1+d),0}

=
a

a′
{pmax(G, a′(1 + u))C(t) + (1− p) max(G, a′(1 + d))C(t)}

by the optimality equation

The result follows as in the case of t = 0 and n = 0 above.

Secondly, if n > 0 then the only decision is rollover, so:

pV t
a(1+u),n + (1− p)V t

a(1+d),n

= p{pV t−1
a(1+u)2,n−1 + (1− p)V t−1

a(1+u)(1+d),n−1}

+(1− p){pV t−1
a(1+u)(1+d),n−1 + (1− p)V t−1

a(1+d)2,n−1}

by the optimality equation
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≥ p
a(1 + u)

a′(1 + u)
{pV t−1

a′(1+u)2,n−1 + (1− p)V t−1
a′(1+u)(1+d),n−1}

+(1− p) a(1 + d)

a′(1 + d)
{pV t−1

a′(1+u)(1+d),n−1 + (1− p)V t−1
a′(1+d)2,n−1}

by the inductive hypothesis

=
a

a′
{pV t

a′(1+u),n + (1− p)V t
a′(1+d),n} by the optimality equation

Therefore, equation 7 has been proven to hold true for 0 < t < Nq

provided equation 7 holds true for t− 1.

Case 2 For Nq ≤ t < Tq and t a multiple of q then:

For this case, max(0, Nq − (Tq − t)) ≤ n ≤ Nq and n is a multiple of q.

Due to differences in the decision spaces there are three cases that need

to be considered separately.

Firstly, if n = Nq then the only decision is rollover and the result follows

as in the case of 0 < t < Nq and n > 0.

Secondly, if n = 0 then the decision can either be reinvest or risk free.

Note that V t
a,0 = max(a,G)C(t) where C(t) depends only on t and

constant parameters.

a

a′
{pV t

a′(1+u),0 + (1− p)V t
a′(1+d),0}

=
a

a′
{pmax(G, a′(1 + u))C(t) + (1− p) max(G, a′(1 + d))C(t)}

by the optimality equation

The result follows as in the case of t = 0 and n = 0.
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Finally, if 0 < n < Nq then (n, t) ∈ E so the decision can either be reset

or rollover:

pV t
a(1+u),n + (1− p)V t

a(1+d),n

= pmax{pV t−1
a(1+u)2,n−1 + (1− p)V t−1

a(1+u)(1+d),n−1, a(1 + u)V t
1,Nq}

+(1− p) max{pV t−1
a(1+u)(1+d),n−1 + (1− p)V t−1

a(1+d)2,n−1, a(1 + d)V t
1,Nq}

by the optimality equation

≥ pmax{ a(1 + u)

a′(1 + u)
{pV t−1

a′(1+u)2,n−1 + (1− p)V t−1
a′(1+u)(1+d),n−1},

a(1 + u)V t
1,Nq}+ (1− p) max{ a(1 + d)

a′(1 + d)
{pV t−1

a′(1+u)(1+d),n−1

+(1− p)V t−1
a′(1+d)2,n−1}, a(1 + d)V t

1,Nq}

by the inductive hypothesis

≥ a

a′
{pmax{pV t−1

a′(1+u)2,n−1 + (1− p)V t−1
a′(1+u)(1+d),n−1,

a(1 + u)V t
1,Nq}+ (1− p) max{pV t−1

a′(1+u)(1+d),n−1

+(1− p)V t−1
a′(1+d)2,n−1, a(1 + d)V t

1,Nq}}

=
a

a′
{pV t

a′(1+u),n + (1− p)V t
a′(1+d),n} by the optimality equation

Therefore, equation 7 has been proven to hold true for t a multiple of q

satisfying Nq ≤ t ≤ Tq provided equation 7 holds true for t− 1.

Case 3 For Nq ≤ t ≤ Tq and t not a multiple of q then:

For this case, max(0, Nq − (Tq − t)) ≤ n ≤ Nq and n is not a multiple

of q. Hence, n 6= 0 n 6= Nq and (n, t) 6∈ E. It follows that the only
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decision is rollover. The proof is the same as 0 < t < Nq and n > 0.

Therefore, equation 7 has been proven to hold true for t not a multiple

of q satisfying Nq ≤ t ≤ Tq provided equation 7 holds true for t− 1.

Combining cases 1, 2 and 3, equation 7 has been proven to hold true for all

values of t by induction.

As a consequence of Proposition 2, it is possible to define an optimal reset

strategy by specifying a set of threshold values, one for each of the possible

segregated funds at each reset decision point in the planning horizon. The

decision to reset the maturity guarantee of a segregated fund at a decision

point is optimal if and only if the current value of the underlying asset (relative

to its value at the initial investment in the current fund) is greater than the

threshold for that fund at that decision point. So we can formally define an

optimal exercise boundary (OEB) for a segregated fund to be the sequence of

up to N −1 threshold values corresponding to the decision points for the fund.

Further, a transformation can be applied such that V t
a,n is defined as equal

to (1 + r)t ∗ V ′ta,n, and as with the earlier formulation, it is the maximum

expected return from the investment at the end of the planning horizon, after

t time periods, when investment is currently in a fund with n time periods

to go to maturity, a current relative value of a and a maturity guarantee of

G. Therefore, the aim is to find X max{(1 + r)Tq, (1 + r)Tq ∗ V ′Tq1,Nq} which is

equivalent to X ∗ (1 + r)Tq max{1, V ′Tq1,Nq}. With this transformation one can
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show that the decision to reinvest is better than risk free initially and at the

maturity of a fund, provided reinvest is feasible at that time. This is formally

proven in Proposition 3.

3.4.2 Proposition 3

If G ≥ 1 and r ≥ 0 then the decision to reinvest is better than risk free initially

and at the maturity of a fund, provided reinvest is feasible at that time.

Proof

If G ≥ 1, the value of the investment in a segregated fund is never less than the

amount invested. If r ≥ 0, then u > 0 and so it is possible for the value of the

investment in the fund to increase. Hence, the expected value of reinvestment

in the fund is greater than the amount invested (V ′t1,Nq > 1).

3.5 A sample model of segregated funds

Having examined the formulation of the mathematical model it is now of

interest to better understand the structure of the binomial model of segregated

funds (see figure 1) and to highlight the main options and the corresponding

decisions that the policyholder faces at each stage and state of the model. In

order to achieve this the following simple segregated fund is examined: the

time to maturity is N = 3 years, the planning horizon is T = 5 years, the price
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of the underlying asset fluctuates every six months and the policyholder has

the option to reset his maturity guarantee every year (i.e. q = 2).

In terms of notation there are 11 possible values for the stage ranging from

0 to 10 and 7 possible values for n ranging from 0 to 6 (i.e. in increments of

six months). Also, given the range of values of n, the possible values of the

underlying asset relative to its value at the time of investment are numbered in

order of increasing value from 0 to Nq− n where i at stage n corresponds to a

change in asset value of ai,n = (1+u)i(1+d)Nq−n−i since the initial investment

in the fund.

Given all possible combinations of t, n, and i, at stage 10, there is only

1 possible state, the state [0,6]. At stage 10 and state [0,6] the policyholder

will always decide to rollover, as there is no incentive to reset at this stage

since the maturity guarantee of his segregated fund will remain unchanged (in

other words as no year has elapsed, there is no possible gain in the fund value

that the policyholder could lock-in through resetting his maturity guarantee).

Therefore there are only two outcomes: the segregated fund will either move

to stage 9 and state [1,5] (in which case the value of the fund has changed by

u%) or move to stage 9 and state [0,5] (in which case the value of the fund has

changed by d%). The expected return to the policyholder at this state is equal

to the sum of: V 10
0,6 = pV 9

1,5 + (1− p)V 9
0,5. The same rational applies in stage 9

and states [5,0:1] as there is no reset option available the segregated fund can
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only rollover.

At stage 8 there are 4 possible states, the state [0:2,4] and [0,6]. At stage

8 and state [0,4] the policyholder may either decide to rollover or to reset the

maturity guarantee of his segregated fund to the current asset value (a0,4). If

the policyholder decides to rollover then his expected return will be equal to:

V 8
0,4 = pV 7

1,3 + (1 − p)V 7
0,3. If on the other hand the policyholder decides to

reset then his expected return will be equal to: V 8
0,4 = a0,4V

8
0,6, in essence the

policyholder will be investing, in a new segregated fund starting at stage 8, a

lump sum of money equal to the a0,4. Therefore the expected return to the

policyholder is equal to: V 8
0,4 = max(pV 7

1,3 + (1 − p)V 7
0,3, a0,4V

8
0,6). The same

rational applies at stage 8 and states [1:2,4].

At stage 8 and state [0,6] the policyholder will always decide to rollover,

as there is no incentive to reset at this stage since the maturity guarantee of

his segregated fund will remain unchanged (the same rationale as in stage 10

and state [0,6] applies). Therefore there are only two outcomes: the segregated

fund will either move to stage 7 and state [1,5] (in which case the value of the

fund has changed by u%) or move to stage 7 and state [0,5] (in which case the

value of the fund has changed by d%). The expected return to the policyholder

at this state is equal to: V 8
0,6 = pV 7

1,5 + (1− p)V 7
0,5.

The process continues to evolve in this way until in stage 4 the first

segregated fund examined (see first tree from the left in figure 1) reaches its
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maturity. Therefore, at stage 4 and state [0,0] the expected return to the

policyholder is the maximum of the current asset value a0,0 and the guarantee

value G. As there is no reset option available the policyholder has to invest

max(a0,0, G) in a bond yielding the risk-free interest rate for a number of

periods equal to the time remaining to reach the end of the planning horizon.

Therefore, his expected return will be equal to: V 4
0,0 = max(a0,0, G)(1 + r)4.

The same rational applies to the stage 4 and states [1:6,0].

The process continues to evolve in a similar way until stage 0 which is the

last stage of the model where the last segregated fund reaches its maturity.

The material difference in this stage is that the policyholder does not have to

make any decision as we have reached then end of the planning horizon. In

stage 0 and state [0,0] the expected return to the policyholder is equal to the

maximum of the current asset value a0,0 and the guarantee value G. The same

rational applies to stage 0 and states [1:6,0].
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Figure 1: Layout of Sample Segregated Fund Contract
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3.6 Flowchart Analysis

Having examined the formulation of the mathematical model as well as

a sample segregated fund contract, it is now of interest to examine the

way in which the mathematical model can be converted into a flowchart

through pseudo-coding. The intuitive advantage of pseudo-coding is that its

architecture and rationale are not framed by the syntax of any particular

programming language. The pseudo-coding used is illustrated in figure 2.

Relative to notation it should be highlighted that the terms appearing in

superscript format (referring to the stage) in the mathematical formulation

are absent in the notation used in the flowchart. The reason for that is that

while the code makes all the necessary computations for each and every period

in time, only a few are actually going to be needed at a later time period.

In particular, as the code progresses values which had been calculated in

previous steps and are no longer needed are overwritten by the values of new

computations. In essence, while all calculations are performed only a snapshot

in time is ever kept in memory. The purpose of that is to decrease the memory

requirements and, thus, increase the efficiency of the code. A further note on

notation relates to the terms appearing on the flowchart after the underscore

which are equivalent to the terms appearing on the formulation in subscript

format.

The model of a general segregated fund analysed in this section will
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be called the Single Regime Model, abbreviated as SRM. The first process

(Parameters) of the SRM sets the values of the model’s parameters. In

particular the values of a, U , D, Y , G, T , N , q are set and then the value

of p can be calculated. In the flowchart the Y is equivalent to the 1 + r in

the mathematical formulation. A similar convention applies for U and D. The

second process (Asset’s price distribution) calculates the possible values of

the underlying asset price from the start until the maturity of a fund.

The third process (Initialisation) sets t = 0 as the Markov Decision

Process which underpins the model uses a backward iteration algorithm.

Further, the process sets the initialising values for Vres, NL, and NU . Vres

is used to store the value of investing on a segregated fund at that point.

Further, NU and NL are pointers to the set of funds which store the possible

values that the portfolio can have during its lifetime. At any one time there

is a set of funds each with a different number of years to maturity. NL is the

pointer to the first fund while NU is the pointer to the last fund. At the end

of the planning horizon there can only be one fund the (N − 1)th fund.

The next step is the check of the first condition, whether it is possible

for a fund to mature at this step. If the first condition is true then the fourth

process (Fund Maturing) defines VNU ,i to represent a fund which has reached

its maturity. If there is no fund maturing at this point, the pointers NU and

NL are updated to reflect that there is one fewer fund. Subsequently, the fifth
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process (Go backward in time) moves the model backward in time. Then,

the sixth process (Rollover 1 period) calculates the value of the segregated

fund if it is rolled over for 1 time period. By checking the second condition

the fifth process is repeated for q time periods until the next decision point

is reached. Each time the rollover process is applied to a fund, the number

of values that need to be calculated falls by 1. This explains why t − t0 is

subtracted from the boundary of i each time. During the q repetitions of the

rollover process of fund n, the number of values falls from q(n+ 1) to qn.

Then, the model checks the third condition, whether it has reached the end

of the planning horizon. If the third condition is false then the model checks the

fourth condition, whether the policyholder has the option to reset his maturity

guarantee. If the fourth condition is false then the seventh process (Adjust

pointers) adjusts the pointers to allow for an extra fund which will be active.

However, if the fourth condition is true it is a reset decision point. The eighth

process (New reset point) notes the values of investing in a segregated fund

at that point (Vres). This value is then used in the ninth process (Reset vs.

rollover) which compares the value of resetting the maturity guarantee with

the value of rolling it over. Then the first condition is repeated along with the

subsequent steps until the end of the planning horizon is reached.
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Figure 2: Flowchart of SRM model
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3.7 Depicting an Optimal Exercise Boundary of the
Reset Option

The aim of the model described in the previous sections is to depict an optimal

reset strategy to the policyholder. In particular, given the model parameters

the aim is to depict the maximum value of the underlying asset for which the

policyholder would choose to rollover his maturity guarantee as well as the

minimum value for which the policyholder would choose to reset his maturity

guarantee. Taking these two boundaries into consideration the ultimate aim

is to create an optimal reset strategy for the policyholder i.e. to determine

the value of the underlying asset required to trigger the reset of the maturity

guarantee.

3.7.1 Characteristics of the standard segregated fund examined

There can be a plethora of segregated funds, with different numbers of reset

options, various levels of maturity guarantee and investors can have different

planning horizons. Therefore, it has been decided to use the characteristics

of a standard segregated fund as defined by the CIA Canadian Institute of

Actuaries [2002]. In particular, the segregated fund under examination offers

one reset option at the end of each policy year. A policy year can be defined

as the set of 365 days which start either when the segregated fund is issued or

when the previous policy year ended. Further, a standard segregated fund has

duration of 10 years and offers a maturity guarantee of 100% of the original sum
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invested. Regarding the planning horizon of the policyholder, a 29 year period

was chosen because CIA considers that the average policyholder purchases a

segregated fund contract at the age of 50 and the last time that an investor is

allowed to reset his maturity guarantee is before his 70th birthday [Miles and

Miles, 2000]. Therefore, taking into account that the standard time to maturity

of a segregated fund is 10 years, if the investor exercises his last available reset

option at the age of 69, the maximum total planning horizon that should be

examined is 29 years.

The next issue to consider is which values of u, d and r to use in the model.

It has been decided to use a set of values of u, d, and r that satisfy the criteria

for the return from the underlying asset recommended by the CIA based on the

stock market returns of the Toronto Stock Exchange total return index from

1956 to 1999 [of Actuaries, 2001]. Based on the conditions set by CIA it was

derived that these values are u = 19% per annum, d = −28% per annum, and

r = 11% per annum. The last issue to consider is the number of periods in a

year (i.e. q). This is issue is important as it inherently determines the number of

times that the value of the underlying asset is allowed to fluctuate, assuming

that at every time period the underlying asset changes by the equivalent of

either u or d. It has been decided to allow the value of the underlying asset to

fluctuate 1000 times within a year. This value of q has been chosen because

the maximum expected return from the original investment does not change
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significantly when q is increased from this level. Higher values of q increase the

computational complexity of the model, but have no significant impact on the

results. This is illustrated in figure 3.

Figure 3: Stabilisation of segregated fund’s value as q increases

3.7.2 Optimal Exercise Boundaries

Applying the formulation of section 3.4 and taking into consideration the

standard segregated fund of section 3.5, the Optimal Exercise Boundaries of the

reset option can be depicted. In particular, as illustrated on figure 4 there are

2 boundaries: the higher one represents the minimum value of the underlying

asset for which it is optimal for the policyholder to reset his maturity guarantee

whereas the lower one represents the maximum value for which it is optimal

for the policyholder to rollover his maturity guarantee. The following figure
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illustrates a possible example of Optimal Exercise Boundaries (OEB) given the

values of u, d, r, and q chosen in section 3.7.1.

Figure 4: Optimal Exercise Boundaries of segregated fund

It should be highlighted that figure 4 illustrates the OEB for the first

segregated fund issued in the planning horizon where the time to retirement is

t = 29 years and the time to maturity of the current fund is n = 10 years. As

section 3.10 will illustrate the OEBs for subsequent segregated funds are not

necessarily the same.

Examining figure 4, what becomes apparent is that there is a considerable

gap between the two boundaries, i.e. the minimum value of the underlying asset

for which it is optimal for the policyholder to reset his maturity guarantee and

the maximum value for which it is optimal for the policyholder to rollover his

maturity guarantee. This gap is equal to (1+u
1+d

% ).
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The existence of such a gap decreases the precision of a potential optimal

reset strategy. It is noteworthy that the gap between the two boundaries

depends on the coefficient of variation of the model (thus, on the selection of

u, d, and r) and most importantly on the frequency of the segregated fund’s

stock price fluctuation (i.e. q): the higher the frequency the smaller the gap.

However, it is reasonable to assume that regardless of q there will always be a

gap between the two boundaries.

Therefore, the aim from the model is now to depict a threshold value such

that if the asset value exceeds the threshold value then it will be optimal for

the policyholder to reset his maturity guarantee, otherwise, it will be optimal

for the policyholder to rollover his maturity guarantee. In order to achieve

that, the gap between the two boundaries has to be eliminated.

3.7.3 Eliminating the gap of the two boundaries

In an attempt to decrease this gap, a new model was used which created

a hypothetical case. For each pair of points of the OEBs it calculated the

midpoint and run the original model to determine whether the policyholder

would choose to reset or rollover his maturity guarantee. Then, if the decision

on the midpoint was to reset the maturity guarantee the minimum reset value

would be replaced with the midpoint value.

Likewise, if the decision was to rollover the maturity guarantee the

maximum rollover value would be replaced with the midpoint value. This
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Figure 5: Eliminating the gap between the OEBs

procedure would continue until the gap between the maximum rollover value

and the minimum reset value was negligible (set as < 0.00001). Again, this

procedure would be repeated for all the reset options (nine in the standard

segregated fund) until the gap between the two boundaries was effectively

eliminated.

In this way a unique OEB can be depicted. Figure 5 illustrates the unique

OEB in relation to the previously derived set of boundaries. The unique OEB

is lot more efficient in depicting the optimal reset strategy for the policyholder.

In particular, for each of the nine reset decision points a threshold value has

been computed such that if the value of the underlying asset exceeds the

threshold then it will be optimal for the investor to reset his maturity guarantee;

otherwise it will be optimal to rollover the investment.
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It should be highlighted that a wide range of different sets of values for u,

d, and r were tested, and it was observed that all the resulting OEBs (with

increased precision) followed the same pattern: for the first 8 decision points

the policyholder requires a progressively larger increase in the value of the

underlying asset in order to optimally reset the level of his maturity guarantee.

The rationale behind this argument is that if the policyholder resets at the first

decision point the maturity will be extended by 1 year. In contrast if he resets

in the eighth decision point the maturity will be extended by 8 years. Therefore

as the “time penalty” increases, the return that the policyholder requires in

order to choose to exercise his reset option increases. At the last decision point

the increase in the value of the underlying asset that the investor requires in

order to optimally reset is lower compared to the eighth decision point. The

rationale behind this argument is that if the investor does not exercise his reset

at that point it will expire worthless.

Overall, figure 5 illustrates that the OEB is a function of the time remaining

until the maturity of the fund, a feature which is altogether neglected in the

heuristic prescribed by the CIA. Thus, figure 5 can be thought of as a close

approximation of what the generic OEB should look like.
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3.8 Parameters of the model

3.8.1 Determining the Level of Asset Price Fluctuation

Chapter 2 highlighted that the binomial model provides a discrete

approximation to the continuous process underlying the Black-Scholes model.

In particular, the binomial model converges to the Black-Scholes formula as

the number of binomial calculation steps increases. Therefore, a critical issue

to be addressed is how fine the discretisation should be. In the context of the

current model the issue is how often should the segregated fund’s stock price

be allowed to fluctuate within a time period (e.g. a policy year). The trade-off

is that the finer the discretization the higher the amount of time required to

run the model on a desktop PC. Figure 6 illustrates this point.

Figure 6: Time required to run the model
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It should be noted that the non-linear relationship between the time

required and the value of q is probably due to the memory requirement. If

the computer used had more memory, then the flat portion of the graph would

be likely to extend further, but eventually one would expect to see the same

behaviour as q increases.

For the model under consideration the higher the value of q the more precise

the model becomes and, thus, the closer it gets to converging to the lognormal

distribution. Therefore, there is not an optimal value of q as such, as it appears

to be an unbounded problem and, thus, it tends to infinity.

Hence, the aim is to find a “technically optimal” q for which the trade-

off between extra computational effort and increased precision is taken into

account. In order to decide what the technically optimal q is, two criteria have

been set: (i) the stability of the total value of segregated fund contract (V Tq
1,Nq)

and (ii) the consistency of the pattern of the OEB, as q increases.

3.8.2 Comparability of Results

In order to decide what the technically optimal q is, the model should be run

for different values of q and the stability of V Tq
1,Nq as well as the consistency of

the pattern of the OEB should be monitored. Therefore, it becomes apparent

that there is a need to make sure that the results across different values of q are

comparable. In order to achieve that it has been decided that regardless of q

the mean and variance of the annual return from the underlying asset, as well
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as the probability p of the various models should be constant to five decimal

places. Thus, as the value of q is increased appropriate values of u, d and r

have to be chosen so as to keep the basic model’s characteristics constant.

A technical difficulty with this issue has been the calculation of the

binomial distribution for very large values of q. It should be noted that the

implementation of the model does not require the explicit calculation of the

binomial probabilities, it is only the calculation of the mean and variance that

requires these. Commercially available software such as Microsoft Excel when

calculating the binomial distribution require the calculation of some very large

numbers which as the value of q increases eventually exceed their limit thus

rendering the function “undefined”. In order to overcome this limitation a

customised code was written which enables the calculation of the binomial

distribution for practically any value of q. Overall, the comparability of the

model’s results has been ensured for different values of q.

3.8.3 Values of u, d, and r

The next issue to consider was for which values of u, d, and r to run the model.

This issue arises because these values ultimately set the coefficient of variation

of the model which affects both the consistency of the pattern of the OEB

as well as the stability of the V Tq
1,Nq. Relative to this issue CIA has set some

conditions that the model of the underlying asset must satisfy in order to fit

the stock market returns of the Toronto Stock Exchange (TSE) over a 30 year
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period [of Actuaries, 2001]. Based on these conditions values for u, d, and r

can be derived.

It has been decided to adopt these values as one possible scenario (scenario

1 in the following table) but to also create five further scenarios to cover a

reasonable range of values of coefficients of variation. For the determination

of these values, the risk-free rate of interest has been assumed to be constant

to the Bank of England’s interest rate (which at the time of the analysis was

4.5%). In terms of the u and d values, it has been assumed that a reasonable

range of the variance of the underlying asset price should be from 5% to 60%

as suggested in Hull [2006]. Overall, the six scenarios which were chosen to

be run are summarised in the following table. It should be noted that these

values apply to q = 1, in other words they are annual rates.

Scenario u d r p σ2 σ σ
µ

1 19.0% -28.0% 11.0% 0.82979 0.03120 0.17664 0.15914
2 7.0% -6.0% 4.5% 0.80769 0.00263 0.05123 0.04902
3 14.0% -19.5% 4.5% 0.71642 0.02280 0.15100 0.14450
4 20.0% -36.0% 4.5% 0.72321 0.06278 0.25055 0.23976
5 45.4% -45.0% 4.5% 0.54757 0.20250 0.45000 0.43062
6 65.0% -55.0% 4.5% 0.49583 0.36000 0.60000 0.57416

Table 2: Basic Characteristics of the 6 scenarios examined
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3.8.4 Criterion 1: Stability of the total value of segregated fund

The purpose of this section is to monitor the stability of V Tq
1,Nq as q increases

and to try to deduce what the technically optimal value of q is for the different

scenarios. The values of V Tq
1,Nq for the different scenarios across different values

of q are highlighted in figure 7.

Figure 7: Stabilisation of V Tq
1,Nq
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Overall what becomes apparent from the criterion on the stability of V Tq
1,Nq

is that it is not easy to decide what the value of the “technically” optimal q

should be as for different scenarios it is different (ranging from 200 to 1000).

Overall, the lower the coefficient of variation of the scenario the smaller the

level of q required to approach stabilisation of V Tq
1,Nq.

However, in order to ensure the comparability of the results of the model

across scenarios it has been decided to use the same value of a “technically”

optimal q for all scenarios, the value of which will be decided in conjunction

with the results from the examination of criterion 2.
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3.8.5 Criterion 2: Consistency of the pattern of the OEB

The purpose of this section is to fluctuate the level of q and monitor the value

for which the pattern of the OEB stabilises. This experiment is performed

in turn for all six scenarios. Figures 8 to 13 illustrate the results. Figure

8 illustrates that for scenario 1 the pattern of OEB appears to stabilise in

q = 600.

Figure 8: Scenario 1 Stabilisation of OEB
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Figure 9: Scenario 2 Stabilisation of OEB

Figure 9 illustrates that for scenario 2 the pattern of OEB appears to be

stable in q = 50.
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Figure 10: Scenario 3 Stabilisation of OEB

Figure 10 illustrates that for scenario 3 the pattern of OEB appears to

stabilise in q = 600.
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Figure 11: Scenario 4 Stabilisation of OEB

Figure 11 illustrates that for scenario 4 the pattern of OEB appears to

stabilise in q = 1000.
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Figure 12: Scenario 5 Stabilisation of OEB

Figure 12 illustrates that for scenario 5 the pattern of OEB appears to

stabilise in q = 1000.
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Figure 13: Scenario 6 Stabilisation of OEB

Figure 13 illustrates that for scenario 6 the pattern of OEB appears to

stabilise in q = 1000.
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In figures 8 to 13 it can be observed that for small values of q the pattern

of the OEB is distorted. The reason for the distortion is clearly the crudeness

of the model due to the large time interval between the fluctuations of the

value of the underlying asset. However, as q increases the pattern seems to be

remarkably consistent regardless of the market conditions assumed.

3.8.6 Choice of technically optimal q

As it was observed in both criteria 1 and 2, it is not easy to determine what

the value of the technically optimal q should be as for different scenarios it

appears to be different. However, in order to ensure the comparability of the

model’s results across scenarios it has been decided to use the smallest value

of q which stabilises all scenarios. Overall, q = 1000 has been selected.

This value ensures that the results from the model will not be distorted by

crudeness as well as that the binomial model converges to a great extent to

the lognormal distribution. At the same time with q = 1000 the model needs

approximately 30 seconds to run on a desktop PC and, therefore, it enables an

extensive sensitivity analysis to be undertaken. The results of the sensitivity

analysis are presented in the following sections.
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3.9 Single Regime Model’s Main Results

The main finding of the Single Regime Model (SRM), as illustrated in figure

14, is that as the segregated fund approaches its maturity, a proportionately

larger percentage increase in the value of the underlying asset will be necessary

to trigger an optimal reset of the segregated fund’s maturity guarantee. The

Figure 14: Single Regime Model Main Results
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rationale behind this argument is that if the policyholder resets at the first

decision point the maturity will be extended by 1 year. In contrast if he

resets in the eighth decision point the maturity will be extended by 8 years.

Therefore as the “time penalty” increases, the return that the policyholder

requires in order to choose to exercise his reset option increases. However, in

the last period before the maturity of the segregated fund, the return that the

policyholder requires in order to optimally exercise his reset option decreases.

The reason for this is that if the option is not exercised it will expire worthless.

This finding is in line with the findings of section 3.7.3.

Further, in figure 14, for each scenario two boundaries have been provided

(colour coded red) which represent an approximation of the 95% confidence

interval for the values of the underlying asset. The purpose of this illustration

is to highlight that the values of the underlying asset for which the policuholder

will optimally exercise his reset option are indeed obtainable (not extreme) for

each of the scenarios under examination.

In terms of the V Tq
1,Nq, scenario 1 has the largest value (20.90836) and this

is due to the fact that the annual mean of this scenario is 11% whereas for

the other scenarios it is 4.5%. Further, for the other scenarios it holds that

the higher the coefficient of variation, the higher the value of the V Tq
1,Nq. In

particular, the V Tq
1,Nq of scenarios 2 to 6 are 3.58652, 4.15905, 5.42369, 8.96388

and 12.22753, respectively.
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3.10 SRM Sensitivity Analysis

Sensitivity analysis has been undertaken in order to examine the robustness of

the model, to gain insights into the behaviour of the segregated fund contract

and to make recommendations to both the policyholder as well as the issuer of

the segregated funds.

The sensitivity analysis has been performed for all the six scenarios built

and can be categorised into three areas: (i) fluctuating the level of the

maturity guarantee (G), (ii) examining the value of offering the reset options

under different cases, and (iii) examining the pattern of the OEBs for all the

segregated funds generated within the original planning horizon of 29 years.

Relative to the last area of sensitivity analysis, in section 3.7.2 it was

highlighted that the OEB depicted related to the segregated fund with n = Nq

when t = Tq. However, this is just the first segregated fund generated during

the planning horizon of the policyholder. As observed in section 3.5 in the

sample of a segregated fund contract, every time the policyholder has the

opportunity to reset the level of his maturity guarantee, a new segregated fund

can be generated (marked as a new binomial tree in figure 1). As a matter of

fact given the characteristics of the standard segregated fund contract (T = 29

and N = 10, see section 3.7.1) a total of 19 segregated funds can be generated.

For the first 11 of them their OEB has 9 reset opportunities, one for each year

until the maturity of the fund. For the 12th onwards their corresponding OEB
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has one fewer reset opportunity than the preceding segregated fund due to the

end of the planning horizon. Finally the 19th segregated fund has no reset

opportunities, following the same rationale as above.

In order to clarify this issue, consider the T − (N − 2) = 12th segregated

fund which reaches maturity when there are (N −2)q periods remaining in the

planning horizon. This segregated fund allows the policyholder a reset option

when q periods before the fund reaches maturity. However, the policyholder is

unable to exercise this option because there is insufficient time for the resulting

segregated fund to reach maturity. Hence, the 8th available reset option, which

arises when there are Nq periods remaining in the planning horizon, will be

the last one in this contract that the policyholder can exercise.

Thus, the OEB of the 12th segregated fund includes the value of the

underlying asset which would optimally trigger a reset option for just 8 reset

decision points. Likewise the 13th segregated fund includes the value of the

underlying asset which would optimally trigger a reset option for just 7 reset

decision points, so on and so forth.

Overall, it has been decided to examine the OEB of the first 11 segregated

funds as they include all 9 reset options and, thus, are comparable.
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3.10.1 SRM Experiment 1: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%.

Figure 15 illustrates that across all scenarios as G increases, the OEB shifts

Figure 15: SRM Experiment 1 - Fluctuating the maturity guarantee
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upwards with a larger increase towards the maturity of the contract. Likewise,

figure 15 illustrates that across all scenarios as G decreases, the OEB shifts

downwards with a larger decrease towards the maturity of the contract.

For the purposes of stress testing extreme values of G were tested to observe

the behaviour of the model. The finding from this analysis is that as G tends

to infinity the OEB increases exponentially. In terms of the pattern of the

OEB the boundary becomes a straight line. On the other hand, as G tends

to nill the OEB shifts downwards while broadly maintaining its pattern. It

is of interest to note that decreasing G to values lower than 50% (although

the exact number varies with the scenario under examination) does not seem

to materially affect the OEB. A possible explanation for that is that given

the distribution of values of the underlying asset, it is not very likely that the

underlying will ever fall materially below 50%, hence rendering such a level of

maturity guarantee not valuable to the policuholder. Thus, further reducing

the value of a guarantee that the policyholder would already not make use of

does not affect the OEB.

Further, table 3 illustrates that decreasing the value of G causes the V Tq
1,Nq

to decrease across all scenarios. Similarly, increasing the value of G causes the

V Tq
1,Nq to increase across all scenarios.

The rationale of this observation is that by decreasing the value of G, the

protection offered by the maturity guarantee against adverse stock market
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G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -0.99% -0.07% -8.74% -15.11% -20.03% -21.67%
85% -0.82% -0.07% -7.05% -11.76% -15.37% -16.58%
90% -0.60% -0.06% -5.04% -8.12% -10.47% -11.27%
95% -0.33% -0.05% -2.69% -4.20% -5.35% -5.74%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 0.40% 0.11% 3.04% 4.49% 5.58% 5.96%
110% 0.88% 0.34% 6.45% 9.26% 11.40% 12.15%
115% 1.43% 0.76% 10.22% 14.32% 17.45% 18.55%
120% 2.08% 1.49% 14.36% 19.66% 23.72% 25.17%

Table 3: SRM Experiment 1 - Fluctuating the maturity guarantee

conditions is weakened thus ultimately decreasing the total value of the

segregated fund contract. On the other hand, by increasing the value of

G, the protection offered by the maturity guarantee against adverse stock

market conditions is increased thus ultimately increasing the total value of

the segregated fund contract.

The higher the increase in the value of G, the higher the percentage increase

of V Tq
1,Nq. Further, the V Tq

1,Nq of scenarios 1 and 2 is least affected by the increase

in the value of G. For the other scenarios, it holds that the V Tq
1,Nq of the scenarios

with higher coefficient of variation is more increased as G is increased.

Furthermore, the higher the decrease in the value of G, the higher the

percentage decrease of V Tq
1,Nq. Again, the V Tq

1,Nq of scenarios 1 and 2 is least

affected by the decrease in the value of G. For the other scenarios, it holds that

the V Tq
1,Nq of the scenarios with higher coefficient of variation is more decreased

as G is decreased.
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3.10.2 SRM Experiment 2: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original

set of values of the model parameters and then the parameter of interest (G)

is fluctuated, while keeping the rest of the parameters constant.

The value of the reset options is the percentage increase in the V Tq
1,Nq of the

segregated fund from embedding the reset options and is calculated as follows:

V Tq1,Nq−V
∗Tq
1,Nq

V ∗Tq1,Nq

, where V ∗Tq1,Nq stands for the value of the fund without reset options.

The results of this experiment are summarised in table 4.

G Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 0.97% 0.05% 8.98% 25.10% 62.60% 93.11%
90% 0.55% 0.01% 6.08% 20.36% 55.22% 83.77%
80% 0.28% 0.01% 3.73% 15.79% 47.61% 74.03%

Table 4: SRM Experiment 2 - Value of the reset option

The first row of table 4 shows the value of the reset options under the

original value for the parameter of interest. In particular for scenarios 1 and 2

the reset options add a small value to the segregated fund (0.97% and 0.05%

respectively). However, for the other scenarios, the higher the coefficient of

variation, the higher the value of the reset options (8.98%, 25.10%, 62.60%

and 93.11% for scenarios 3 to 6 respectively).
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Rows 2 and 3 summarise the sub-experiment where the G is fluctuated

from its original value of 100% to the range 80% to 100% at increments of 10%

while all other parameters of interest are kept constant. As the value of G is

decreased to 80%, the value of the reset options is decreased across all scenarios.

The rationale for this observation is that as G decreases the protection that

it offers against adverse market conditions worsens. Subsequently, a reduced

value of the maturity guarantee leads to a reduced value to an option to reset

it.

Overall, for scenarios 1 and 2 embedding the reset options adds only a small

value to the segregated fund (0.28% and 0.01% respectively). However, for the

other scenarios, the higher the coefficient of variation, the higher the value

of the reset options (3.73%, 15.79%, 47.61% and 74.03% for scenarios 3 to 6

respectively).

A further interesting finding, from the point of view of the issuer, is

that having an estimate of the value of a segregated fund contract without

reset options (denoted by V ∗Tq1,Nq above), one can estimate the cost of offering

segregated funds with reset options allowed under the assumption that only a

percentage of the policyholders would actually choose to reset their maturity

guarantee when it was indeed optimal to do so. The rest of the policyholders

would simply choose to rollover, hence behaving as if a reset option was not

allowed. If one assumes that 75% of the cohort of policyholders eligible to reset
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would actually choose to reset each year, as suggested by CIA, (see section

2.3.4) then the total cost of offering a segregated fund with reset options would

be equal to : 0.75 ∗ V Tq
1,Nq + 0.25 ∗ V ∗Tq1,Nq.

3.10.3 SRM Experiment 3: OEB of all segregated funds

The aim of this experiment is to depict the OEB of all the segregated funds

generated during the planning horizon of the policyholder, as explained in

section 3.10. Section 3.8 highlighted that the OEB is inherently dependent

on the prevailing market conditions (i.e. u, d and r). Indeed in the current

experiment it was observed that the OEB is strongly affected by the type of

investment that is preferred for the last Nq time periods. The relationship

of the risk-free rate of interest and the expected return on investment from

the rolling over of the segregated fund contract until the end of the planning

horizon largely determines this effect.

In particular, it has been observed that the OEB of all the segregated funds

can be categorised into three main types. In Type A the market conditions

are such that the policyholder has a strong preference in the last Nq time

periods to switch his portfolio to a bond yielding the risk-free rate of interest.

In Type B the market conditions are such that the policyholder has a strong

preference in the last Nq time periods to keep his segregated fund contract

and roll it over until the end of the planning horizon. Lastly, in Type C the
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market conditions are such that the policyholder is practically indifferent from

the two above options.

Before explaining in detail the defining characteristics of each type it is

of interest to depict the OEB of all the segregated funds generated during

the planning horizon of the policyholder and to classify them under the three

different types. Then, an in depth analysis of each type follows. As illustrated

in figure 16, scenarios 1, 2 and 3 are of type C, while scenarios 4, 5 and 6 are

of type B.

The preference of the policyholder for the last Nq time periods greatly

affects his behaviour (and thus the OEB) of the segregated funds 2 to 10. The

rationale of this argument is as follows. Under Type B the policyholder has

a strong preference to remain within his segregated fund contract for as long

as possible, ideally until the end of the planning horizon. In order to achieve

this he has to make sure that when t = 2Nq he has just re-invested (case

of segregated fund 1) or reset (case of segregated funds 2 to 10) to a new

segregated fund (which is segregated fund 11). Under segregated fund 11 the

policyholder can last exercise his reset option at t = Nq which is the last time

period in the entire planning horizon that the policyholder has a reset decision.

A segregated fund which starts at t = Nq will mature at t = 0, thus ensuring

that the policyholder has remained within a segregated fund contract until the

end of the planning horizon. The reverse behaviour applies for Type A.
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Figure 16: SRM Experiment 3 - Depicting the OEB of all segregated
funds

For segregated fund 1 the preference of the policyholder for the last Nq

time periods (as described by the aforementioned types) does not affect the

OEB as it matures at time t = 2Nq when the policyholder can freely make

the choice to re-invest in a segregated fund (segregated fund 11) and thus to

have the option to remain within segregated fund contracts until the end of the
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planning horizon or to invest in a bond yielding the risk-free rate of interest.

However, for segregated funds 2 to 10 the preference of the policyholder for

the last Nq time units (as described by the aforementioned types) affects their

OEB significantly. On the one hand, under type A, a jump down in the OEB

occurs after the last reset decision point which would allow the policyholder to

switch to risk free at the last Nq time units. On the other hand, under type B,

a jump up in the OEB occurs after the last reset decision point which would

allow the policyholder to be in a segregated fund for the last Nq time units.

In contrast for type C the OEB looks like the OEB of segregated fund 1 as the

policyholder is indifferent from the above two types.

3.11 Discussion

In this chapter an attempt has been made to formulate the reset option on

the maturity guarantee of segregated funds as a non-stationary finite horizon

Markov Decision Process. The efficient formulation allows the value of the

underlying asset to be fluctuated up to 7000 times in every policy year, thus

enabling the distribution of the underlying asset price to converge towards the

lognormal distribution.

An important feature of the Single Regime Model, developed in this chapter,

is the ability to derive the Optimal Exercise Boundary of the reset option, where

given the model parameters, a threshold value is depicted such that if the value
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of the underlying asset price exceeds it then it is optimal for the policyholder

to reset his maturity guarantee. Otherwise, it is optimal for the policyholder

to rollover his maturity guarantee.

It is noteworthy that the SRM model is able to depict the OEB of not

just the first but of all the segregated fund contracts which can be issued

throughout the planning horizon of the policyholder. The reason why this is

of great importance is that once the investor resets the maturity guarantee

the OEB changes. Therefore, it becomes apparent that in order to generate a

comprehensive optimal reset strategy, the optimal OEB for all of the segregated

funds has to be derived and examined. In this way the model has managed to

address one of the significant deficiencies in the existing literature as highlighted

in section 2.4.

The main finding of the SRM model has been that as the segregated fund

approaches its maturity, a proportionately larger percentage increase in the

value of the underlying asset will be necessary to trigger an optimal reset of

the segregated fund’s maturity guarantee. The rationale behind this argument

is that if the policyholder resets at the first decision point the maturity will

be extended by 1 year. In contrast if he resets in the eighth decision point the

maturity will be extended by 8 years. Therefore as the “time penalty” increases,

the return that the policyholder requires in order to choose to exercise his

reset option increases. However, in the last period before the maturity of the
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segregated fund, the return that the policyholder requires in order to optimally

exercise his reset option decreases. The reason for this is that if the option is

not exercised it will expire worthless.

It should be underlined that the aim of the model has not been to prescribe

any particular reset strategy as this is highly dependent on the parameters and

assumptions of the model, but rather to further our understanding on what

constitutes an optimal reset strategy and how it is affected by the fluctuation

of the main variables of the model. However, it should be highlighted that

the findings of the SRM model suggest that a single heuristic such as the one

prescribed by Canadian Institute of Actuaries (as analysed in sections 2.3.4 and

2.3.5), independent of the parameters and assumptions of the model and most

importantly of the years remaining to maturity can prove to be a misleading

approximation of the optimal reset strategy.

Overall, given the importance of the SRM findings it is interesting to

alter some of its assumptions in order to reflect on the characteristics of the

wide range of segregated fund contracts which are traded in the market. The

methodology and results of this analysis are included in chapter 4.
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4 Extending the Single Regime Model

4.1 Introduction

In this chapter an attempt has been made to enhance and extend the SRM

model in order to reflect on the characteristics of the wide range of segregated

fund contracts which are traded in the market. For this end, three different

extensions have been added to the model.

In the SRM model there is no provision for the issuer of the segregated

fund contract to charge a management expense fee. This issue is addressed in

section 4.2 where the issuer is allowed to charge the policyholder a fixed fee

per policy year. The model is analysed in section 4.2.1 and the main results as

well as the sensitivity analysis are provided in sections 4.2.2 to 4.2.6.

Further the SRM model assumes that the level of G is fixed throughout the

planning horizon regardless of the number of times that the policyholder has

exercised his reset option. However, section 4.3 extends the SRM in that G

becomes a function of the number of times that the reset has been exercised.

In particular, every time the policyholder exercises his reset option, G is

instantaneously reduced by a pre-determined amount. The model is analysed

in sections 4.3.1 and 4.3.2 and the main results as well as the sensitivity analysis

are provided in sections 4.3.3 to 4.3.7.

Lastly, the SRM model assumes that the policyholder can exercise his reset

option only at the end of each policy year. However, section 4.4 extends the
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SRM in that it lifts this restriction and allows the policyholder to reset the

maturity guarantee at any point in time within each policy year, but only

once. The model is analysed in sections 4.4.1 and 4.4.2 and the main results

as well as the sensitivity analysis are provided in sections 4.4.3 to 4.4.6.

For all three extensions to the SRM model a flowchart analysis has been

provided. As the logic and architecture of the various models share some

common ground with the SRM, rather than analysing the flowcharts in full,

only the differences with the flowchart of the SRM will be highlighted. All other

parts can be assumed to be the same. For this purpose the flowcharts have been

designed to facilitate comparisons: the structure is consistent and wherever

there is a difference it is colour-coded in red. If a process or a condition has a

significant difference then only the title of the process is colour-coded red.
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4.2 Management Expense Ratio

The Management Expense Ratio (MER) model extends the SRM in that it

allows the issuer of the segregated fund to charge a management fee to the

policyholder. In particular, it has been assumed that the issuer charges the

policyholder a fee equal to a fixed proportion of the value of the fund at the

end of each policy year. This assumption is in line with guidance provided by

CIA who suggests that this is a common approach used in practice [Canadian

Institute of Actuaries, 2002]. The fixed proportion is referred to as the

Management Expense Ratio and is denoted by L in the model.

This extension is not formally presented as a Markov Decision Process

because its formulation so closely resembles that of the original model. In

particular, the formulations of the two models only differ in that at each time

period the value of the underlying asset is discounted by the management

expense ratio. Section 4.2.1 provides a flowchart analysis of the model, while

section 4.2.2 highlights the main results of the MER model.

As with the SRM, it is of interest to experiment with the values of several

parameters and observe the effect of their fluctuation on both the OEB and

V Tq
1,Nq . The aim of these experiments is to check the robustness of the model as

well as to depict interesting trends and causalities. In particular, section 4.2.3

examines the effect of the fluctuation of the management expense ratio (L),

while section 4.2.4 examines the effect of the fluctuation of the level of G offered
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to the policyholder. Further, section 4.2.5 examines the value of offering the

reset option under different model parameters. In this section an analysis is

included which highlights the level of management expense ratio that the issuer

should charge in order to cancel out the cost / risk of embedding reset options

to the segregated fund contract. Lastly, section 4.2.6 depicts the OEB of all the

segregated funds generated during the planning horizon of the policyholder.

4.2.1 Flowchart Analysis

As illustrated in figure 17 the only differences between MER and SRM are in the

first two processes. The first process (Parameters) of the MER differs from

the SRM in that it has a new parameter: L, which denotes the management fee

that the issuer charges the policyholder for the provision of the segregated fund

contract. Then, the second process (Asset’s price distribution) differs in

that the value of the underlying asset is multiplied by (1−L) which essentially

discounts the asset’s value by the management expense ratio.
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Figure 17: Flowchart of MER model
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4.2.2 Main Results

The management expense ratio has been assumed to be 1% of the segregated

fund’s value for each policy year. The main findings from incorporating this

fee is that the policyholder requires a higher return before it is optimal to reset

his maturity guarantee while the segregated fund’s value is diminished due to

Figure 18: MER - Effect on OEB
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the negative effect of the fee.

In particular, as illustrated in figure 18, the introduction of the management

expense ratio causes the OEB to shift upwards with a greater increase towards

the maturity of the segregated fund. This finding is more acute on scenarios

1 to 3. A possible reason for this is that the relative gain for the policyholder

from switching to the risk free rate of interest is greater as the introduction of

the fee invariably reduces the potential return from staying in the segregated

fund. This observation can be confirmed by the comparison of the return to

the policyholder from investing in a segregated fund at the beginning of the

planning horizon with investing in risk free for the entire planning horizon.

The results of this comparison are presented in the following table.

Return Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

MER=0% 20.90836 3.58652 4.15905 5.42369 8.96388 12.22753
MER=1% 17.06998 2.94173 3.42705 4.57133 7.71522 10.58641
(1 + r)Tq 20.62369 3.58404 3.58404 3.58404 3.58404 3.58404

Table 5: Investing in a segregated fund vs. risk free

The first row of table 5 highlights the maximum expected return from the

original investment if the policyholder chooses to invest, at the beginning of

his planning horizon, in a segregated fund with MER=0%. The second row is

the equivalent return if the segregated fund charges an MER of 1%. The last

row is the equivalent return if the policyholder invests in risk free for the entire

planning horizon. The comparison of these values depicts that the policyholder
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would prefer to invest his original investment in risk free for the entire planning

horizon given the market conditions assumed in scenarios 1 to 3. This suggests

that, given the market conditions of scenarios 1 to 3, if the investor has started

in a segregated fund then the only way for him to want to continue in such

a fund (i.e. to reset and extend its maturity) is if he can lock in very high

returns, otherwise he has a strong preference for switching to risk free. This is

illustrated in the sharp increase in the OEB of scenarios 1 to 3.

Figure 19: MER - Effect on V Tq
1,Nq

In terms of the V Tq
1,Nq, as illustrated in figure 19, scenario 1 is most affected

by the introduction of L (decrease of 18.36%). For the other scenarios it holds

that the lower the coefficient of variation, the greater the percentage decrease

in the V Tq
1,Nq from the application of the management expense ratio (17.98%,

17.60%, 15.72%, 13.93% and 13.42% for scenarios 2 to 6 respectively)
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4.2.3 Experiment 1: Fluctuating the management expense ratio

In this experiment the aim is to examine the effect of fluctuating the

management expense ratio (L) on both the OEB and the V Tq
1,Nq . In particular,

L is fluctuated from its original value of 1% to the range 0% to 2% at increments

of 0.25%.

Figure 20: MER Experiment 1 - Fluctuating the Management
Expense Ratio

113



Figure 20 illustrates that across all scenarios as L increases, the OEB

shifts upwards with a larger increase towards the maturity of the contract.

Likewise, figure 20 illustrates that across all scenarios as L decreases the OEB

shifts downwards with a larger decrease towards the maturity of the contract.

Overall, as figure 20 illustrates, the fluctuation of L has a more acute effect on

scenarios 1 to 3.

The justification for this observation is that for scenarios 1 to 3 the

maximum expected return to the policyholder from investing in risk free

throughout the planning horizon is higher than from investing in a segregated

fund. Therefore, unless the policyholder sees exceptional growth in the fund,

he will look for the quickest way out of the fund, which is by essentially not

resetting (or more precisely requiring a very high return in order to optimally

reset).

A further observation, from figure 20, is that the maturity guarantee

repays not only the potential losses from the fund, but also the management

fees. Therefore, the maturity guarantee is essentially worth more from the

introduction of the management expense ratio. This observation may help

to understand why, while the OEB shifts up, it still falls towards the end.

In other words, due to the increased value of the maturity guarantee, the

fund may still be attractive to the investor, despite the introduction of the

management expense ratio. Therefore, the typical OEB shape is observed.
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However, the curve is shifted upwards due to the increase in the value of the

maturity guarantee that the management expense ratio causes. Essentially, as

L increases the value of the maturity guarantee increases. As already illustrated

and analysed in section 3.10.1, as the value of the maturity guarantee increases,

the OEB shifts upwards.

Further, table 6 illustrates that decreasing the value of L causes the V Tq
1,Nq

to increase across all scenarios. Similarly, increasing the value of L causes the

V Tq
1,Nq to decrease across all scenarios.

L Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

0.00% 22.32% 21.75% 21.21% 18.51% 16.18% 15.39%
0.25% 15.74% 15.85% 15.11% 13.38% 11.78% 11.23%
0.50% 10.20% 10.29% 9.56% 8.60% 7.63% 7.29%
0.75% 4.97% 5.01% 4.54% 4.15% 3.71% 3.55%
1.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
1.25% -4.72% -4.74% -4.13% -3.86% -3.51% -3.37%
1.50% -9.19% -9.23% -7.91% -7.47% -6.82% -6.58%
1.75% -13.44% -13.46% -11.38% -10.82% -9.96% -9.62%
2.00% -17.48% -17.44% -14.59% -13.96% -12.94% -12.52%

Table 6: MER Experiment 1 - Fluctuating the Management Expense
Ratio

The rationale of this observation is that by decreasing the value of L, the

value of the underlying asset increases, thus, ultimately increasing the value of

the segregated fund contract. On the other hand, by increasing the value of L,

the value of the underlying asset decreases, thus, ultimately reducing the value

of the segregated fund contract.
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The higher the increase in the value of L, the higher the percentage decrease

of V Tq
1,Nq. Further, scenario 1 is the most affected by the increase of L. For the

other scenarios it holds that the V Tq
1,Nq of the scenarios with lower coefficient of

variation is more decreased as L is increased.

On the other hand, the higher the decrease in the value of L, the higher

the percentage increase of V Tq
1,Nq. Again, scenario 1 is the most affected by the

decrease of L. For the other scenarios it holds that the V Tq
1,Nq of the scenarios

with lower coefficient of variation is more increased as L is decreased.

4.2.4 Experiment 2: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%.

Figure 21 illustrates that across all scenarios as G increases, the OEB

shifts upwards with a larger increase towards the maturity of the contract.

Likewise, figure 21 illustrates that across all scenarios as G decreases, the OEB

shifts downwards with a larger decrease towards the maturity of the contract.

Overall, as figure 21 illustrates, the fluctuation of G has a more acute effect

on scenarios 3 to 6. The reason why scenarios 1 and 2 are not affected by the

fluctuation of G could be because the return to the policyholder from investing

in risk free is higher compared to investing in a segregated fund. Therefore, the
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Figure 21: MER Experiment 2 - Fluctuating the maturity guarantee

policyholder may choose to switch to risk free at the first available opportunity,

hence, not really needing or making use of the maturity guarantee.

Further, table 7 illustrates that decreasing the value of G causes the V Tq
1,Nq

to decrease across all scenarios. Similarly, increasing the value of G causes

the V Tq
1,Nq to increase across all scenarios. The rationale of this observation is

equivalent to the one provided in section 3.10.1.
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G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -0.73% -0.15% -10.02% -17.36% -21.55% -22.91%
85% -0.61% -0.15% -8.32% -13.51% -16.54% -17.54%
90% -0.45% -0.13% -6.10% -9.33% -11.28% -11.93%
95% -0.25% -0.10% -3.32% -4.83% -5.77% -6.09%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 0.31% 0.21% 3.82% 5.15% 6.02% 6.32%
110% 0.69% 0.63% 8.12% 10.62% 12.30% 12.89%
115% 1.14% 1.36% 12.88% 16.41% 18.33% 19.70%
120% 1.66% 2.55% 18.09% 22.53% 25.61% 26.75%

Table 7: MER Experiment 2 - Fluctuating the maturity guarantee

4.2.5 Experiment 3: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original set

of values of the model parameters and then one of the parameters of interest (G,

E) is fluctuated at a time, while keeping the rest of the parameters constant.

The value of the reset options is calculated as in section 3.10.2 The results of

this experiment are summarised in table 8.

G L Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 1.00% 0.24% 0.02% 5.88% 21.97% 59.34% 89.71%
90% 1.00% 0.14% 0.01% 3.06% 16.98% 51.88% 80.41%
80% 1.00% 0.06% 0.01% 1.40% 12.11% 44.17% 70.62%
100% 0.75% 0.25% 0.03% 6.36% 22.63% 60.24% 90.50%
100% 0.50% 0.26% 0.04% 7.04% 23.37% 60.99% 91.33%
100% 0.25% 0.29% 0.05% 7.91% 24.19% 61.78% 92.19%

Table 8: MER Experiment 3 - Value of the reset option

The first row of table 8 shows the value of the reset options under the
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original values for the parameters of interest. In particular, for scenarios 1 and

2 the reset options add a small value to the segregated fund (0.24% and 0.02%

respectively). However, for the other scenarios, the higher their coefficient of

variation the higher the value of the reset options (5.88%, 21.97%, 59.34%

and 89.71% for scenarios 3 to 6 respectively). A possible reason for the small

value added by embedding reset options on segregated funds under the market

condition assumed in scenarios 1 and 2 is that the return to the policyholder

from investing in risk free throughout the planning horizon is higher compared

to investing in a segregated fund. Thus, the policyholder will switch to risk

free at the first available opportunity, thus not really needing or making use of

the reset options.

Rows 2 and 3 summarise the first sub-experiment where G is fluctuated

from its original value of 100% to the range 80% to 100% at increments of 10%

while all other parameters of interest are kept constant. As the value of G is

decreased to 80% the value of the reset options is decreased across all scenarios.

The rationale for this observation is the same as the provided in section 3.10.2.

Overall, for scenarios 1 to 3 embedding the reset options adds only a small

value to the segregated fund (0.06%, 0.01% and 1.40% respectively). However,

for the other scenarios, the higher their coefficient of variation the higher the

value of the reset options (12.11%, 44.17% and 70.62% for scenarios 4 to 6

respectively). The reason for this observation is equivalent to the one analysed
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above.

Rows 4 to 6 summarise the second sub-experiment where L, is fluctuated

from its original value of 1% to the range 0.25% to 1% at increments of 0.25%

while all other parameters of interest are kept constant. As L is decreased to

0.25% the value of the reset options increases (0.29%, 0.05%, 7.91%, 24.19%,

61.78% and 92.19% for scenarios 1 to 6 respectively). The rationale for this

observation is that a lower in magnitude level of L will lead to a higher value

of the underlying asset, therefore, increasing the probability of the asset value

being greater than the maturity guarantee, thus, increasing the likelihood of the

policyholder choosing to reset his maturity guarantee. In turn, this increases

the value of the reset option. The comparatively lower values of the reset

options for scenarios 1 to 3 can be explained by the rationale analysed above.

It is further interesting to depict the values of L which can negate the cost of

embedding reset options to a segregated fund contract. In order to achieve this

a sensitivity analysis can be performed which increases the level of L until the

return from investing in a segregated fund is reduced to the equivalent return

from investing in a fund governed by the same market conditions but where

the policyholder can not reset his maturity guarantee. These “break-even”

values of L are 0.01%, 0.01%, 0.42%, 1.34%, 3.61% and 5.40% for scenarios

1 to 6 respectively. This finding confirms the observation that for scenarios

1 to 3 the policyholder would rather invest in risk free and will eventually
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choose to switch to risk free at the first available opportunity. For the other

scenarios the finding is that the higher the coefficient of variation, the higher

the management expense ratio that the issuer should charge in order to break

even the cost of embedding reset options in segregated funds.

This result should be very interesting and useful for both the policyholders

and issuers. From the point of view of the issuer, it should help with risk

management policies as well as to convince the relevant regulatory authorities

that they indeed take appropriate cover for the risk that they face from issuing

segregated funds with embedded reset options. From the point of view of the

policyholder, it should signal that if the underlying asset is not very risky,

thus has a low coefficient of variation, they should not be willing to pay a

relatively high management expense ratio. The opposite should hold for a

risky underlying asset.
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4.2.6 Experiment 4: OEB of all segregated funds

The aim of this experiment is to depict and classify, in accordance to section

3.10.3, the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 22, scenarios 1 to 3 are of

type A while scenario 4 is of type C and scenarios 5 and 6 are of type B.

Figure 22: MER Experiment 4 - Depicting the OEB of all segregated
funds
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4.3 Variable Maturity Guarantee

In the symposium that CIA organised in order to address the shortage in

research in the area of modeling for segregated fund investment guarantees (see

section 2.3.6), the regulators suggested to practitioners that one way to reduce

the risk of offering reset options was to diminish the level of maturity guarantee

every time that the policyholder exercised his reset option. The idea is that if

the policyholder takes advantage of favourable market conditions and locks in

the relevant market gain, he should compensate the issuer by accepting a lower

maturity guarantee. If, on the other hand, a policyholder does not exercise

his reset option, thus, not causing any potential extra costs to the issuer, he

should have the benefit of the full level of the maturity guarantee, as it was set

at the beginning of the contract. Therefore, the level of the maturity guarantee

should be directly related to the extent that the reset option is exercised by

the policyholder, rather than a fixed percentage of the original investment, as

was originally used in the market.

In order to address this issue, the Variable Maturity Guarantee (VarG)

model extends the SRM in that G becomes a function of the number of times

that the reset option has been exercised since the maturity of the last segregated

fund or the start of the planning horizon (whichever is most recent), denoted

by R. In particular, every time the policyholder exercises his reset option the

maturity guarantee is reduced by a pre-determined discount factor, denoted by
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β.

Section 4.3.1 offers the formulation of the model while section 4.3.2 provides

a flowchart analysis of the model. Then section 4.3.3 highlights the main results

of the VarG model.

As with previous models in this thesis, it is of interest to experiment with

the values of several parameters and observe the effect of their fluctuation on

both the OEB and the maximum expected return from the investment. The

aim of these experiments is to check the robustness of the model as well as to

depict interesting trends and causalities.

In particular, section 4.3.4 examines the effect of the fluctuation of the

discount factor (β), while section 4.3.5 examines the effect of the fluctuation of

the level of G offered to the policyholder. Further, section 4.3.6 examines the

value of offering the reset option under different model parameters and lastly

section 4.3.7 depicts the OEB of all the segregated funds generated during the

planning horizon of the policyholder.

4.3.1 Formulation

The VarG model can be formulated to comprise the following four elements:

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.
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State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the following. The

first two are the same as with the SRM model whereas the third is new.

The first state variable is the current value of the underlying asset relative

to its value at the time of the investment in the current segregated fund

(denoted by a) which is of the form a = (1 + u)i(1 + d)Nq−n−i, where

0 ≤ i ≤ Nq − n.

The second state variable is the number of periods until the maturity of

the current segregated fund contract denoted by n. This variable must

satisfy the same conditions as set out in the formulation of SRM.

The third, and last, state variable is the number of times that the

policyholder has exercised his reset option since the maturity of the last

segregated fund or the start of the planning horizon (whichever is most

recent), denoted by R, where 0 ≤ R ≤ Tq−t−Nq+n
q

. The term Tq−t−Nq+n
q

in the boundary of R represents the number of the reset decision points

before the investment in the current fund. Therefore, it represents the

maximum number of times that the reset option may have been exercised.

Decision Space (denoted by Dt
a,n,R) - which is the set of possible decisions

that can be taken in state [a, n,R] at stage t. As the decisions only

depend on n and t the decision space of the VarG model is essentially

the same as in the SRM model and is formally stated as:
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Dt
a,n,R =





{risk free} if t < Nq and n = 0
{reinvest, risk free} if t ≥ Nq and n = 0
{rollover} if n > 0 and (n, t) 6∈ E
{rollover, reset} if (n, t) ∈ E

State transitions in state [a, 0, R] at stage t the action risk free determines

the final value of the investment by multiplying the current value of the

investment by (1 + r)t. Further, in state [a, 0, R] at stage t the action

reinvest causes an instantaneous transition to state [1, Nq, 0]. Also, in

state [a, n,R] at stage t the action rollover causes a transition to state

[a(1 + u), n − 1, R] at stage t − 1 with probability p and state [a(1 +

d), n− 1, R] at stage t− 1 with probability 1− p. Lastly, in state [a, n,R]

at stage t the action reset causes an instantaneous transition to state

[1, Nq,R + 1].

The aim of the policyholder is to maximise the expected payoff of

investment at the end of the planning horizon, after Tq time periods. Let

V t
a,n,R be the maximum expected payoff of the investment at the end of

the planning horizon, after t time periods, when investment is currently

in a fund with n time periods to go to maturity, a current relative value

of a and a maturity guarantee of GβR. Therefore, the aim is to find

X max{(1 + r)Tq, V Tq
1,Nq,0} where:
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V t
a,n,R =





max(a,GβR)(1 + r)t if t < Nq and n = 0

max(a,GβR) max{(1 + r)t, V t
1,Nq,0} if t ≥ Nq and n = 0

pV t−1
a(1+u),n−1,R + (1− p)V t−1

a(1+d),n−1,R if n > 0 and (n, t) 6∈ E

max(pV t−1
a(1+u),n−1,R + (1− p)V t−1

a(1+d),n−1,R, aV
t

1,Nq,R+1) if (n, t) ∈ E

4.3.2 Flowchart Analysis

As illustrated in figure 23, the main difference between VarG and SRM models

is that in VarG there is one extra state denoted by R, which is the number of

times that the policyholder has exercised his reset option since the maturity of

the last segregated fund or the start of the planning horizon (whichever is most

recent). This increases the dimensions of array V (i, n, R) and makes the value

of investing on a segregated fund at any given point in time an array indexed

by R, denoted as Vres(R). Also the level of the maturity guarantee becomes an

array indexed by R, denoted as GR. The value of GR is calculated in the first

process and is a factor of R and two new parameters: G0 (which is the original

level of the maturity guarantee) and β (which is the factor by which the level

of the maturity guarantee is reduced every time the policyholder exercises his

reset option).
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Figure 23: Flowchart of VarG model
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4.3.3 Main Results

The parameters of the model have been set so that every time the policyholder

exercises his reset option the level of his maturity guarantee is reduced by 5%.

The main findings from incorporating the discount factor (β) to the maturity

guarantee is that the policyholder requires a higher return before it is optimal

Figure 24: VarG - Effect on OEB
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to reset his maturity guarantee (i.e. OEB shifts upwards) while the total value

of the segregated fund is diminished due to the negative effect of the discount

factor on the segregated fund’s value. In particular, as illustrated in figure

24 the incorporation of the discount factor causes the OEB to shift upwards

with a larger increase towards the maturity of the fund. Further, as illustrated

in figure 24, this finding is more acute as the coefficient of variation of the

assumed market conditions increases.

Figure 25: VarG - Effect on V Tq
1,Nq

In terms of the V Tq
1,Nq, as illustrated in figure 25, scenarios 1 and 2 are least

affected by the incorporation of the discount factor (decrease of 0.06% and

0.05% respectively). A possible reason for this observation is that under the

assumed market conditions of scenarios 1 and 2 the policyholder would prefer

to invest in risk free throughout the planning horizon, compared to investing
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in a segregated fund. Therefore, the policyholder will choose to switch to risk

free at the first available opportunity. In order to do that, he will choose not

to reset, so as not to extend the maturity of the contract. If the policyholder

is unlikely to reset, the maximum expected return from his investment is not

expected to be highly affected by a discount factor applied to the maturity

guarantee if a reset is exercised.

For the other scenarios it holds that the higher the coefficient of variation,

the greater the percentage decrease in the V Tq
1,Nq from the application of

the discount factor (4.56%, 8.48%, 12.77% and 14.82% for scenarios 3 to 6

respectively). The reason for this is that given the assumed market conditions

the policyholder can find opportunities to lock in potential market gain by

resetting his maturity guarantee. This will in turn lead to the discount factor

being applied which will reduce the level of his maturity guarantee. A reduced

level of maturity guarantee offers a lower protection against potential adverse

market conditions. This lower protection propagates to a decrease in the value

of the segregated fund contract.

4.3.4 Experiment 1: Fluctuating the discount factor

In this experiment the aim is to examine the effect of fluctuating the discount

factor (β) applied to the maturity guarantee every time the policyholder

exercises his reset option on both the OEB and the V Tq
1,Nq. In particular, β is
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fluctuated from its original value of 5% to the range 0% to 10% at increments

of 2.5%.

Figure 26 illustrates that across all scenarios as β increases, the OEB shifts

upwards, while the opposite holds if β decreases. The rational behind this

finding is that a higher level of β will lead to a lower value of the maturity

guarantee. Clearly, this is unattractive to the policyholder who in turn requires

Figure 26: VarG Experiment 1 - Fluctuating the discount factor
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a higher return in order to exercise his reset option optimally. Therefore,

leading the OEB to shift upwards. The opposite holds for a lower values of β.

Further, table 9 illustrates that decreasing the value of β causes the V Tq
1,Nq

to increase across all scenarios. The opposite holds when the value of β is

increased.

β Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

0.0% 0.61% 0.05% 4.78% 9.27% 14.64% 17.40%
2.5% 0.12% 0.01% 1.36% 3.21% 5.96% 7.46%
5.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
7.5% -0.13% 0.00% -0.86% -2.12% -4.09% -5.25%
10.0% -0.14% 0.00% -1.48% -3.72% -7.25% -9.29%

Table 9: VarG Experiment 1 - Fluctuating the discount factor

The rationale of this observation is that a reduced value of β leads to an

increased value of G which in turn translates to a better protection against

adverse market conditions. Subsequently, the increased value of the maturity

guarantee leads to an overall increased value of the segregated fund contract.

The higher the decrease in the value of β the higher the increase of V Tq
1,Nq.

Further, the V Tq
1,Nq of scenarios 1 and 2 is least affected by the decrease

in the value of β. For the other scenarios, it holds that the V Tq
1,Nq of the

scenarios with higher coefficient of variation is more increased as β is decreased.

Possible reasons behind these observations are equivalent to ones analysed in

the previous section. The opposite holds when the value of β is increased.
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4.3.5 Experiment 2: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%.

Figure 27 illustrates that across all scenarios as G increases, the OEB shifts

Figure 27: VarG Experiment 2 - Fluctuating the maturity guarantee
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upwards with a larger increase towards the maturity of the contract. Likewise,

figure 27 illustrates that across all scenarios, as G decreases the OEB shifts

downwards with a larger decrease towards the maturity of the contract.

Further, table 10 illustrates that decreasing the value of G causes the V Tq
1,Nq

to decrease across all scenarios. Similarly, increasing the value of G causes

the V Tq
1,Nq to increase across all scenarios. The rationale of this observation is

equivalent to the one provided in section 3.10.1.

The higher the coefficient of variation of the assumed market conditions, the

higher the impact from the fluctuation of G. It is noteworthy that for scenarios

1 and 2, which are least affected by the fluctuation of G, the policyholder would

most probably prefer to switch to risk free at the first available opportunity.

Therefore, he will not be making much use of the maturity guarantee.

G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6
80% -0.90% -0.05% -8.46% -15.08% -20.22% -21.92%
85% -0.75% -0.05% -6.85% -11.75% -15.52% -16.77%
90% -0.56% -0.04% -4.91% -8.13% -10.58% -11.41%
95% -0.31% -0.03% -2.63% -4.21% -5.41% -5.82%

100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 0.38% 0.08% 2.99% 4.50% 5.64% 6.04%
110% 0.83% 0.26% 6.36% 9.29% 11.52% 12.31%
115% 1.36% 0.61% 10.10% 14.37% 17.62% 18.79%
120% 1.97% 1.22% 14.21% 19.75% 23.98% 25.50%

Table 10: VarG Experiment 2 - Fluctuating the maturity guarantee
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4.3.6 Experiment 3: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original set

of values of the model parameters and then one of the parameters of interest (G,

β) is fluctuated at a time, while keeping the rest of the parameters constant.

The value of the reset options is calculated as in section 3.10.2. The results of

this experiment are summarised in table 11.

G β Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 5.00% 0.38% 0.01% 4.05% 14.55% 44.77% 70.26%
80% 5.00% 0.22% 0.00% 3.08% 14.27% 41.87% 64.50%
100% 7.50% 0.25% 0.00% 3.15% 12.10% 36.07% 55.86%
100% 2.50% 0.49% 0.01% 5.47% 18.20% 50.33% 76.78%

Table 11: VarG Experiment 3 - Value of the reset option

The first row of table 11 shows the value of the reset options under the

original values for the parameters of interest. In particular, for scenarios 1 and

2 the reset options have a minimal effect on the value to the segregated fund

(0.38% and 0.01% respectively). The reason for this, as already analysed in

earlier sections, is that the policyholder has a preference to invest in risk free

throughout the planning horizon, rather than in a segregated fund. However,

for the other scenarios, the higher their coefficient of variation the higher the

value of the reset options (4.05%, 14.55%, 44.77% and 70.26% for scenarios 3

to 6 respectively).

136



Row 2 summarise the first sub-experiment where G is reduced from its

original value of 100% to 80%, while all other parameters of interest are kept

constant. The effect is that the value of the reset options is decreased across

all scenarios. The rationale for this observation is the same as in section 3.10.2.

Overall, for scenarios 1 and 2 embedding the reset options adds only a small

value to the segregated fund (0.22% and 0.00% respectively). However, for the

other scenarios, the higher their coefficient of variation the higher the value

of the reset options (3.08%, 14.27%, 41.87% and 64.50% for scenarios 3 to 6

respectively).

Rows 3 to 4 summarise the second sub-experiment where the discount factor

(β) applied to the maturity guarantee every time the policyholder exercises his

reset option is fluctuated from its original value of 5% to the range 2.5% to 7.5%

at increments of 2.5% while all other parameters of interest are kept constant.

As β is decreased to 2.5% the value of offering the reset options increases across

all scenarios. (0.49%, 0.01%, 5.47%, 18.20%, 50.33% and 76.78% for scenarios

1 to 6 respectively). The rationale for this observation is that a lower in

magnitude level of β will lead to an increased value of G which in turn translates

to a better protection against adverse market conditions. Subsequently, the

increased value of the maturity guarantee leads to a increased value of an option

to reset it. The opposite behaviour can be observed when β is increased.
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4.3.7 Experiment 4: OEB of all segregated funds

The aim of this experiment is to depict and classify, in accordance to section

3.10.3, the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 28, scenario 1 and 2 are of

type C while scenarios 3 to 6 of type B.

Figure 28: VarG Experiment 4 - Depicting the OEB of all segregated
funds
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4.4 Variable Timing of Exercising the Reset Option

Increased competition in the market place has led some of the issuers of

segregated fund contracts to offer to policyholders more reset decision dates,

while keeping the total number of reset options constant. In other words,

the policyholder still has the standard 1 reset per policy year, but can decide

whether to reset his maturity guarantee more often, than at the anniversary

of the contract. CIA recommends that one should examine cases where

the policyholder can decide whether to reset his maturity guarantee at least

every quarter of the policy year, assuming one reset option every policy year

[Canadian Institute of Actuaries, 2002].

In order to address this issue, the Variable Timing of Exercising the Reset

Option model (TimRO) has been built, which extends the SRM in that it lifts

the restriction that the policyholder can only exercise his reset option at the end

of each policy year. In particular, under the TimRO model the policyholder is

allowed to reset the maturity guarantee at any point in time within each policy

year from the start of the planning horizon, but only once.

To facilitate this extension, to the SRM model, a new parameter H is

introduced which represents the number of the reset decision points in a policy

year. These are regularly spaced with the last one falling at the end of the

policy year. Crucially, the total number of periods in a policy year (q) has

to be a multiple of H, so that it is possible to determine the value of the
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underlying asset at each reset decision point. If q was not a multiple of H the

model would generate possible values of the underlying asset for points in time

which do not cover all reset decision points. It follows that q/H represents

the number of periods between two consecutive reset decision points, and is

denoted by h.

A further issue to consider is the level of q and H. When H is large,

this would be very demanding computationally and arguably unnecessary as

the underlying asset values are only changing slightly from period to period.

It is also arguably impractical to consider the reset decision at every period

(e.g. the standard q = 1000 would mean 3 times a day). Therefore, the aim

is to choose H in such a way as to balance the computational complexity and

the extra flexibility offered to the investor.

Section 4.4.1 offers the formulation of the model while section 4.4.2 provides

a flowchart analysis of the model. Then section 4.4.3 highlights the main results

of the TimRO model. As with previous models in this thesis, it is of interest

to experiment with the values of several parameters and observe the effect of

their fluctuation on both the OEB and the maximum expected return from

the investment. The aim of these experiments is to check the robustness of

the model as well as to depict interesting trends and causalities. In particular,

section 4.4.4 examines the effect of the fluctuation of the level of G offered to

the policyholder. Section 4.4.5 examines the value of offering the reset option
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under different model parameters and lastly section 4.4.6 depicts the OEB of all

the segregated funds generated during the planning horizon of the policyholder.

4.4.1 Formulation

The TimRO can be formulated similarly to the SRM model. The main

difference lies in the definition of the reset decision point. In the SRM model at

the end of each of the first T −N years of the planning horizon a reset decision

point exists. Under the TimRO model a reset decision point exists at a number

discrete points within each of the first T − N years of the planning horizon

with the restriction that the policyholder cannot exercise the reset option on

the maturity guarantee more than once in any of the T −N years. Essentially,

under the SRM model the policyholder can exercise his reset option at the end

of each of the first T − N years of the planning horizon, whereas under the

TimRO model the policyholder can exercise his reset option several times in

each of the first T − N years but only once within each year. Hence, there

are significantly more reset decision points for examination which leads to a

considerable increase in the computational complexity of the model.

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.

State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the same as in the
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SRM model.

The first state variable is the current value of the underlying asset relative

to its value at the time of the investment in the current segregated fund

(denoted by a) which is of the form a = (1 + u)i(1 + d)Nq−n−i, where

0 ≤ i ≤ Nq − n.

The second state variable is the number of periods until the maturity of

the current segregated fund contract denoted by n. This variable must

satisfy the same conditions as set out in the formulation of the SRM

model.

The third state variable represents whether the policyholder is allowed to

reset his maturity guarantee at the first policy year or not. This variable

is denoted by b and can either be equal to 1, when a reset is allowed, or

0, when a reset is not allowed in the first policy year.

Decision Space (denoted by Dt
a,n,b) - which is the set of possible decisions

that can be taken in state [a, n, b] at stage t. The main difference between

the decision spaces of the SRM model and of the TimRO model is the

definition of the decision point. In the TimRO model there are more

decision points as a reset may be exercised at any time period within

the policy year rather than solely at the anniversary of the contract.

Formally, state [a, n, b], at stage t can be defined as a decision point if

(n, t) ∈ E ′ where E ′ = {(n, t) : 0 < n < Nq, t ≥ Nq, n = kh for
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some k ∈ Z and b t+Nq−n
q
c 6= b t

q
c. The first three conditions in the

definition of a decision point are the same as in the original model. The

fourth condition is the one which ensures that while the policyholder can

consider whether to reset his maturity guarantee at any point in time

within the policy year, he can only exercise it once.

The term t is the number of periods until the end of the planning

horizon, so the b t
q
c (which means the smallest integer smaller than or

equal to t
q
) represents the current year. The term t + Nq − n is the

number of periods until the end of the planning horizon at the time of

the initial investment in this fund. Assuming this is the time of the last

reset decision, the floor of this term divided by q represents the year in

which the fund was last reset. If b t+Nq−n
q
c = b t

q
c} then the policyholder

cannot exercise his reset option because of the restriction on one reset

per year. Hence, the decision space is formally stated as:

Dt
a,n,b =





{risk free} if t < Nq and n = 0
{reinvest, risk free} if t ≥ Nq and n = 0
{rollover} if n > 0 and (n, t) 6∈ E ′
{reset, rollover} if (n, t) ∈ E ′

State transitions in state [a, 0, b] at stage t the action risk free determines

the final value of the investment by multiplying the current value of the

investment by (1 + r)t. Further, in state [a, 0, b] at stage t the action

reinvest causes an instantaneous transition to state [1, Nq, 1]. Also, in
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state [a, n, b] at stage t the action rollover causes a transition to state

[a(1+u), n−1, b] at stage t−1 with probability p or state [a(1+d), n−1, b]

at stage t − 1 with probability 1 − p. Lastly, in state [a, n, b] at stage t

the action reset causes an instantaneous transition to state [1, Nq, 0].

The aim of the policyholder is to maximise the expected payoff of

investment at the end of the planning horizon, after Tq time periods. Let

V t
a,n,b be the maximum expected payoff of the investment at the end of the

planning horizon, after t time periods, when investment is currently in a fund

with n time periods to go to maturity, a current relative value of a and a

maturity guarantee of G. Therefore, the aim is to find X max{(1+r)Tq, V Tq
1,Nq,1}

where:

V t
a,n,b =





max(a,G)(1 + r)t if t < Nq and n = 0

max(a,G) max{(1 + r)t, V t
1,Nq,b} if t ≥ Nq and n = 0

pV t−1
a(1+u),n−1,b + (1− p)V t−1

a(1+d),n−1,b if (n, t) 6∈ E ′

max(pV t−1
a(1+u),n−1,b + (1− p)V t−1

a(1+d),n−1,b, aV
t

1,Nq,b) if (n, t) ∈ E ′

4.4.2 Flowchart Analysis

As illustrated in figure 29, the main difference of theTimRO and the SRM

models is the introduction of the new parameterH which represents the number

of the reset decision points in a year. This parameter has been introduced to
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facilitate the introduction of allowing the policyholder to have the option to

reset his maturity guarantee at any point in time within each year rather

than only at the end of the year as per the SRM model. However, there is a

restriction that the policyholder can, still, only exercise his reset option once

per year. This is achieved by the new condition: b t+Nq−n
q
c 6= b t

q
c}.

Figure 29: Flowchart of TimRO model
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4.4.3 Main Results

The parameters of the model have been set so that each policy year has been

split in 20 discrete time periods (i.e. H = 20). Therefore, the total number

of reset decision points (i.e. points in the OEB) is not 9 like the SRM, but

180. The main findings from allowing the policyholder to reset his maturity

Figure 30: TimRO - Effect on OEB

146



guarantee at any point within each policy year (but only once) are the following.

At the beginning of each policy year (i.e. every 20 reset decision points) the

OEB exhibits a jump. The reason for this is that the policyholder receives a

new reset option at that date. Also figure 30 illustrates that as the end of each

policy year is approached the OEB steadily drops. The reason for this is that

unless the policyholder exercises his reset option before the end of the policy

year, the option will expire worthless. The jumps and the drops are more acute

towards the maturity of the fund.

A further observation, from figure 30, is that the values in the OEB which

correspond to the twentieth reset decision point in any of the policy years is

very similar to the values in the OEB of the SRM model. This is indeed a

good verification of the model’s results as the twentieth reset decision date in

each policy year represents the reset decision date at the anniversary of the

contract, which is the time when the policyholder is allowed to reset under the

assumptions of SRM. This observation holds true regardless of the assumed

market conditions of the scenarios examined.

As illustrated in figure 31, allowing the reset to be exercised at any point

within the policy year does not affect much the V Tq
1,Nq of scenarios 1 and 2

(0.17% and 0.05% increase respectively). A possible reason for this finding is

that given the market conditions assumed in scenarios 1 and 2 the policyholder

would prefer to invest in risk free, compared to segregated funds, throughout
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Figure 31: TimRO - Effect on V Tq
1,Nq

the planning horizon. Therefore, the policyholder will choose to switch to risk

free at the first available opportunity. In order to do that he will choose not to

reset so as not to extend the maturity of the contract. Thus, if he is unlikely

to reset his maturity guarantee, having more reset decision dates should not

have a great effect in the total value of his contract. For the other scenarios

it holds that the greater the coefficient of variation the greater the increase in

the V Tq
1,Nq (1.02%, 2.32%, 4.71% and 6.29% for scenarios 3 to 6 respectively).
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4.4.4 Experiment 1: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 10%. The increments

of 10% were chosen, rather than the increments of 5% used in previous similar

Figure 32: TimRO Experiment 1 - Fluctuating the maturity
guarantee
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examples, in order to enhance the clarity of the figure.

Figure 32 illustrates that across all scenarios as G increases, the OEB shifts

upwards with a larger increase towards the maturity of the contract. Likewise,

figure 32 illustrates that across all scenarios as G decreases, the OEB shifts

downwards with a larger decrease towards the maturity of the contract.

Further, table 12 illustrates that decreasing the value of G causes the V Tq
1,Nq

to decrease across all scenarios. Similarly, increasing the value of G causes

the V Tq
1,Nq to increase across all scenarios. The rationale of this observation is

equivalent to the one provided in section 3.10.1.

G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -1.09% -0.08% -9.20% -15.62% -20.55% -22.18%
90% -0.67% -0.07% -5.28% -8.39% -10.75% -11.54%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
110% 0.96% 0.38% 6.72% 9.54% 11.69% 12.44%
120% 2.27% 1.63% 14.90% 20.23% 24.33% 25.79%

Table 12: TimRO Experiment 1 - Fluctuating the maturity guarantee
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4.4.5 Experiment 2: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original

set of values of the model parameters and then the parameter of interest (G) is

fluctuated, while keeping the rest of the parameters constant. The value of the

reset options is calculated as in section 3.10.2 The results of this experiment

are summarised in table 13.

G Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 1.13% 0.06% 10.04% 27.94% 70.22% 105.26%
90% 0.65% 0.02% 6.85% 22.73% 62.00% 94.73%
80% 0.34% 0.01% 4.23% 17.70% 53.53% 83.75%

Table 13: TimRO Experiment 2 - Value of the reset option

The first row of table 13 shows the value of the reset options under the

original values for the parameters of interest. In particular, for scenarios 1 and

2 the reset options adds a small value to the segregated fund (1.13% and 0.06%

respectively). However, for the other scenarios, the higher their coefficient of

variation the higher the value of the reset options (10.04%, 27.94%, 70.22%

and 105.26% for scenarios 3 to 6 respectively). A possible reason for the small

value added by embedding reset options on segregated funds under the market

condition assumed in scenarios 1 and 2 is that the return to the policyholder
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from investing in risk free throughout the planning horizon is higher compared

to investing in a segregated fund. Thus, the policyholder will switch to risk

free at the first available opportunity, thus not really needing or making use of

the reset options.

Rows 2 and 3 summarise the sub-experiment where G is fluctuated from its

original value of 100% to the range 80% to 100% at increments of 10% while all

other parameters of interest are kept constant. As the value of G is decreased

to 80% the value of the reset options is decreased across all scenarios. The

rationale for this observation is the same as the one provided in section 3.10.2.

Overall, for scenarios 1 and 2 embedding the reset options adds only a small

value to the segregated fund (0.34% and 0.01% respectively). However, for the

other scenarios, the higher their coefficient of variation the higher the value

of the reset options (4.23%, 17.70%, 53.53% and 83.75% for scenario 3 to 6

respectively).
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4.4.6 Experiment 3: OEB of all segregated funds

The aim of this experiment is to depict and classify, in accordance to section

3.10.3, the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 33, all scenarios are of type

C.

Figure 33: TimRO Experiment 3 - Depicting the OEB of all
segregated funds
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4.5 Discussion

In this chapter an attempt has been made to enhance and extend the SRM

model in order to reflect on the characteristics of the wide range of segregated

fund contracts which are traded in the market. To this end, three different

extensions have been added to the model.

The Management Expense Ratio (MER) model extends the SRM in that it

allows the issuer of the segregated fund contract to charge a management fee

to the policyholder. In particular, it has been assumed that the issuer charges

the policyholder a fee equal to a fixed proportion of the value of the fund at

the end of each policy year.

The main findings from incorporating this fee is that the policyholder

requires a higher return in order to optimally reset his maturity guarantee (i.e.

OEB shifts upwards) while the total value of the segregated fund contract is

diminished due to the negative effect of the fee. This finding is more acute when

the assumed market conditions are such that the maximum expected return

from investing in a segregated fund is less than the return from investing in

risk free throughout the planning horizon. Under such market conditions, the

policyholder will choose to switch to risk free at the first available opportunity.

A possible reason for this is that the relative gain for the policyholder from

switching to the risk free rate of interest is greater as the introduction of the

fee invariably reduces the potential return from staying in the segregated fund.
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Further, the level of management expense ratio which can negate the cost

of embedding reset options to a segregated fund contract was depicted. These

“break-even” values of the management expense ratio increase as the coefficient

of variation of the assumed market conditions increases. This finding is in line

with the observation made above. Depicting the “break-even” values can be

very interesting and useful for both the policyholders and issuers. From the

point of view of the issuer, it should help with risk management policies as

well as to convince the relevant regulatory authorities that they indeed take

appropriate cover for the risk that they face from issuing segregated funds with

embedded reset options. From the point of view of the policyholder, it should

signal that if the underlying asset is not very risky, thus has a low coefficient

of variation, they should not be willing to pay a relatively high management

expense ratio. The opposite should hold for a risky underlying asset.

The Variable Maturity Guarantee (VarG) model extends the SRM in that

the maturity guarantee becomes a function of the number of times that the

reset option has been exercised since the maturity of the last segregated fund

or the start of the planning horizon (whichever is most recent). In particular,

every time the policyholder exercises his reset option the maturity guarantee

is reduced by a pre-determined discount factor.

The main findings from incorporating the discount factor to the maturity

guarantee is that the policyholder requires a higher return in order to optimally
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reset his maturity guarantee (i.e. OEB shifts upwards) while the total value

of the segregated fund is diminished due to the negative effect of the discount

factor on the total value of the segregated fund contract. This observation

holds true, if under the assumed market conditions the policyholder prefers to

invest in a segregated fund compared to investing in risk free throughout the

planning horizon.

The Variable Timing of Exercising the Reset Option Model (TimRO)

extends the SRM in that it lifts the restriction that the policyholder can only

exercise his reset option at the end of each policy year. In particular, under

the TimRO model the policyholder is allowed to reset the maturity guarantee

at any point in time within each policy year from the start of the planning

horizon, but only once.

The main findings from the TimRO model are the following. Firstly, at the

beginning of each policy year the OEB exhibits a jump. The reason for this

is that the policyholder receives a new reset option at that date. Secondly, as

the end of each policy year is approached the OEB steadily drops. The reason

for this is that unless the policyholder exercises his reset option before the end

of the policy year, the option will expire worthless. The jumps and the drops

are more acute towards the maturity of the segregated fund contract.

Further, the total value of the fund is increased, compared to the SRM

model, since the policyholder may lock in higher market gains as he has more
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reset decision points (but the same number of total reset options). This finding,

however, does not hold true if the assumed market conditions are such that

the policyholder would prefer to invest in risk free throughout the planning

horizon, compared to investing in a segregated fund. The rationale is that

under such market conditions, the policyholder will choose to switch to risk

free at the first available opportunity. In order to do that he will choose not to

reset so as not to extend the maturity of the contract. Thus, if he is unlikely

to reset his maturity guarantee, having more reset decision dates should not

have a great effect in the total value of his contract.

Lastly, it was derived that the values in the OEB which correspond to

the last reset decision point in any of the policy years is very similar to the

values in the OEB of the SRM model. This is indeed a good verification of

the model’s results as the last reset decision date in each policy year represents

the reset decision date at the anniversary of the contract, which is the time

when the policyholder is allowed to reset under the assumptions of SRM.

This observation holds true regardless of the assumed market conditions of

the scenarios examined.
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5 Incorporating Stock Market Jumps

5.1 Introduction

As mentioned in section 3.2, so far in this thesis the returns from the investment

in a segregated fund have been modeled using a discrete-time approximation

of the lognormal model, namely the “Binomial Tree Method”. While the

lognormal model underpins the well known and widely used Black Scholes

model it has been criticised, among other reasons, because empirical data of

stock markets returns do not seem to follow the lognormal random walk [Bates,

1991, Heston, 1993, Wilmott, 1998].

As a matter of fact, several empirical studies have demonstrated the

existence of jumps (both negative and positive) in the stock markets, the

foreign exchange markets and the bond markets [Bates, 1996, Jorion, 1988,

Carr et al., 2002]. If a negative jump, of similar level to 1987, was to occur

simultaneously on the stock markets the result would be a loss of trillions of

British pounds.

It is beyond the scope of this thesis to comprehensively review and analyse

alternative models (to the lognormal model) that have been proposed in the

literature. However, the proposed models can be briefly split in three categories

[Hull, 2006]. Firstly, one can retain the property of the lognormal model that

the asset price changes continuously, but assume an alternative process to the

Geometric Brownian motion. These models are known as diffusion models
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[Heston, 1993, Hull and White, 1987]. Secondly, one can overlay continuous

asset price changes with jumps. These models are known as mixed jump-

diffusion models [Merton, 1976, Bjork et al., 1997, Duffie et al., 2000, Kou,

2002]. Thirdly, one can assume a process where all the asset prices changes

that take place are jumps. These models are known as pure jump models

[Madan et al., 1998].

In order to incorporate shocks in the model but to also preserve the

comparability of the model’s results with the results of previous chapters it

has been decided to keep the lognormal model but overlay it with stochastic

negative jumps (crash). Section 5.2 extends the SRM model in that it allows

for instantaneous stochastic crashes to occur within the single regime of the

SRM model, namely through the Stochastic Crash Model (SCM). In reality the

evolution of the possible values of the underlying asset price is the same as with

the SRM model. However, at every time period there is a small probability of

a crash occurring. When a crash occurs, the residual value of the fund after

the crash is equal to a fixed percentage of its original value. The aim of this

model is to update the OEB of the SRM model in order to advise both the

policyholders and the issuers when faced with the risk of stock market crashes.

Following that, in section 5.3, the Double Regime Model (DRM) is built

which provides alternative means to incorporate jumps into the SRM model.

In contrast to the SCM model, the DRM model is able to incorporate both
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negative (crash) and positive (surge) jumps as well as a combination of the two.

In particular, it allows the underlying asset to switch between two distinct

regimes. The market characteristics of the first regime are defined by the

relevant scenario under examination and are equivalent to the ones used under

the SRM in order to facilitate comparisons. The second regime is intended to

model periods of high volatility in the markets and can be used to incorporate

the jumps. Two distinct applications of the DRM are presented in sections 5.4

and 5.5 respectively.

In the first application the second regime, models the case where there

is a large probability that the value of the underlying asset will marginally

increase or a very small probability that it will drop by a substantial fixed

percentage, thus essentially allowing only crashes like the SCM. The parameters

and transitions probabilities have been set so that a crash is as likely to happen

and of the same magnitude as in the SCM, in order to facilitate comparisons.

In the second application the second regime models the case where the stock

market can exhibit variable jumps (i.e. both crashes and surges) with equal

probability of occurrence. In particular, there is an equal probability that the

value of the underlying asset will either increase by a large fixed percentage

or it will drop by an equal in magnitude fixed percentage. Essentially, it is

modeling a highly unstable market environment.
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5.2 Stochastic Crash Model (SCM)

The Stochastic Crash Model (SCM) extends the SRM model in that it allows

for random instantaneous crashes (negative jumps) to occur within the single

regime of the SRM model. The market characteristics of the scenarios

examined in the SCM model have been selected to be the same six scenarios

which were defined in section 3.8.3 in order to facilitate interesting comparisons

of results.

It is noteworthy that the evolution of the possible values of the underlying

asset is the same as with the SRM model. However, at every time period

there is a small probability (pc) that a crash may occur. In case of the crash

materialising, the residual value of the underlying asset is equal to a fixed

percentage of its original value (C).

The aim of this model is to update the optimal reset strategy derived under

the SRM model in order to advise both the policyholders and the issuers when

faced with the risk of a sudden large decrease in the value of their underlying

asset due to a stock market crash. The model is analysed in sections 5.2.1 and

5.2.2 and the main results as well as the sensitivity analysis are provided in

sections 5.2.3 to 5.2.7.
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5.2.1 Formulation

The Stochastic Crash Model (SCM) can be formulated to comprise the

following four elements:

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.

State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the following. The

first two are the same as with the SRM model whereas the third is new.

The first state variable is the current value of the underlying asset relative

to its value at the time of the investment in the current segregated fund,

ignoring any crashes, (denoted by a) which is of the form a = (1+u)i(1+

d)Nq−n−i, where 0 ≤ i ≤ Nq − n.

The second state variable is the number of periods until the maturity of

the current segregated fund contract denoted by n. This variable must

satisfy the same conditions as set out in the original formulation.

The third, and last, state variable is the number of times that the stock

market has experienced a crash during the lifetime of the segregated fund

contract, denoted by f where 0 ≤ f ≤ Nq − n.

Decision Space (denoted by Dt
a,n,f ) - which is the set of possible decisions

that can be taken in state [a, n, f ] at stage t. As the decisions only
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depend on n and t the decision space of the SCM model is essentially

the same as in the SRM model and is formally stated as:

Dt
a,n,f =





risk free if t < Nq and n = 0
reinvest, risk free if t ≥ Nq and n = 0
rollover if n > 0 and (n, t) 6∈ E
rollover, reset if (n, t) ∈ E

State transitions in state [a, 0, f ] at stage t the action risk free determines

the final value of the investment by multiplying the current value of the

investment by (1 + r)t. Further, in state [a, 0, f ] at stage t the action

reinvest causes an instantaneous transition to state [1, Nq, 0]. Also, in

state [a, n, f ] at stage t if f < Nq−n the action rollover causes a transition

to state [a(1 + u), n − 1, f ] at stage t − 1 with probability (1 − pc)p, or

state [a(1 + d), n− 1, f ] at stage t− 1 with probability (1− pc)(1− p), or

state [a(1 + u), n− 1, f + 1] at stage t− 1 with probability pcp, or state

[a(1 + d), n− 1, f + 1] at stage t− 1 with probability pc(1− p), where pc

denotes the probability of a stock market crash occurring. Lastly, in state

[a, n, f ] at stage t the action reset causes an instantaneous transition to

state [1, Nq, 0].

The aim of the policyholder is to maximise the expected payoff of

investment at the end of the planning horizon, after Tq time periods. Let

V t
a,n,f be the maximum expected payoff of the investment at the end of the
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planning horizon, after t time periods, when investment is currently in a fund

with n time periods to go to maturity, a current relative value of aCf and a

maturity guarantee of G. Therefore, the aim is to find X max{(1+r)Tq, V Tq
1,Nq,0}

where:

V t
a,n =





max(aCf , G)(1 + r)t if t < Nq and n = 0

max(aCf , G) max{(1 + r)t, V t
1,Nq,0} if t ≥ Nq and n = 0

(1− pc)(pV t−1
a(1+u),n−1,f + (1− p)V t−1

a(1+d),n−1,f )

+pc(pV
t−1
a(1+u),n−1,f+1 + (1− p)V t−1

a(1+d),n−1,f+1)

if n > 0 and (n, t) 6∈ E

max{(1− pc)(pV t−1
a(1+u),n−1,f + (1− p)V t−1

a(1+d),n−1,f )+

pc(pV
t−1
a(1+u),n−1,f+1 + (1− p)V t−1

a(1+d),n−1,f+1), V t
1,Nq,0}

if (n, t) ∈ E

5.2.2 Flowchart Analysis

As illustrated in figure 34 the main difference between SCM and SRM is that

SCM models overlays the continuous asset price changes with jumps. In order

to achieve that an extra state has been introduced, denoted by f , which is

the number of times that the stock market crashes during the lifetime of the

segregated fund contract. This increases the dimensions of array V (i, n, f) and

makes the value of investing on a segregated fund at any given point in time an

array indexed by f , denoted as Vres(f). Moreover, there is a new parameter,

denoted by C, which is the residual value of the underlying asset after the

crash occurs. This affects the value of array V (i, n, f), which is now a function
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of C.

A further new parameter denoted by pc, is the probability of a crash

occurring. This new parameter is used in the calculation of the value of the

segregated fund when the maturity guarantee is rolled over for one time period.

Figure 34: Flowchart of SCM model
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5.2.3 Main Results

In the formulation of the SCM model, up to Nq − n crashes are allowed to

take place during the lifetime of any one segregated fund contract. However,

for computational purposes, a tighter upper bound on f has to be introduced,

denoted by F . The intuitive explanation is that after F crashes during the life

of any one segregated fund, the effect of any further crashes can be ignored as

the value of the underlying asset relative to its original value at the time of

investment, is highly likely to be less than the maturity guarantee. Therefore,

under such conditions the policyholder will not reset the level of his maturity

guarantee and the fund will be worth G at maturity. Thus, even if a further

crash was to take place, during the lifetime of the same segregated fund, the

policyholder would still choose not to reset, hence the value of the fund would

be the same as before, i.e. it would be worth G at maturity.

This was tested empirically by considering increasing F from 0,1,2,... to as

high as the personal computer used allowed. The assumption was that the value

of the fund would converge to a limit very quickly as F increases. The finding

of this test was that the value of the fund converges with F = 1. Increasing

the value of F from 1, had negligible effects on both the value of the fund and

OEB. It should be highlighted that F is the limit of crashes which can occur

during the lifetime of one segregated fund. Thus, if the policyholder resets or

reinvests in a new segregated fund, a further crash is allowed to happen.
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A further issue to consider was the frequency of the crashes that should

be allowed. As Hull [2006] highlights, approximately every decade, there is

one major shock in the stock markets. Therefore, the probability of a crash

occurring (pc) was set so that a crash occurs every 10 policy years. Lastly, it

was assumed that the residual value of the fund after the crash is equal to 80%

of its original value.

Figure 35: SCM - Effect on OEB
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The main finding from incorporating such crashes is that, under certain

market conditions, the policyholder requires a higher return in order to

optimally reset his maturity guarantee (i.e. OEB shifts upwards) while the

total value of the segregated fund is diminished due to the negative effect of

the crashes on the underlying asset value. In particular, as illustrated in figure

35 the incorporation of crashes causes the OEB of scenarios 1 and 2 to shift

upwards with a larger increase towards the maturity of the contract, while the

OEB of scenarios 3 to 6 is practically unaffected.

The justification for this observation is that for scenarios 1 and 2 the

maximum expected return to the policyholder from investing in risk free

throughout the planning horizon is higher than from investing in a segregated

fund. Therefore, unless the policyholder sees exceptional growth in the fund,

he will look for the quickest way out of the fund, which is by essentially not

resetting or, more precisely, requiring a very high return in order to optimally

reset. For scenarios 3 to 6 it holds that the maturity guarantee acts as a safety

net which protects the maximum expected return to the policyholder. Despite

the crash, if the value of the underlying asset relative to its original value at

investment, is less than the maturity guarantee, the policyholder’s expected

return will be equal to at least the maturity guarantee.

In terms of the V Tq
1,Nq,0, as illustrated in figure 36, scenario 1 is most affected

by the incorporation of the crash (decrease of 10.98%). For the other scenarios
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it holds that the lower the coefficient of variation, the greater the percentage

decrease in the V Tq
1,Nq,0 from the incorporation of the shock (10.38%, 9.94%,

9.06%, 8.36% and 8.10% for scenarios 2 to 6 respectively).

Figure 36: SCM - Effect on V Tq
1,Nq,0

As with the previous models analysed in this thesis, it is of interest to

experiment with the values of several parameters and observe the effect of their

fluctuation on both the OEB and V Tq
1,Nq,0 . The aim of these experiments is to

check the robustness of the model as well as to depict interesting trends and

causalities. In particular, section 5.2.4 examines the effect of the fluctuation of

the residual value of the portfolio after a crash (C), section 5.2.5 examines the

effect of the fluctuation of the level of G offered to the policyholder, section

5.2.6 examines the value of offering the reset option under different model

parameters and lastly section 5.2.7 depicts the OEB of all the segregated funds
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generated during the planning horizon of the policyholder.

5.2.4 Experiment 1: Fluctuating the residual value of the portfolio
after the crash

In this experiment the aim is to examine the effect of fluctuating the level

of the portfolio’s residual value after the crash (C) on both the OEB and

Figure 37: SCM Experiment 1 - Fluctuating the residual value of the
portfolio after the crash
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the V Tq
1,Nq,0. In particular, C is fluctuated from its original value of 80% to

the range 65% to 95% at increments of 5%. Figure 37 illustrates that the

fluctuation of C practically does not affect the OEB of scenarios 3 to 6 while

it has a more significant effect on the OEB of scenarios 1 and 2. In particular,

in scenarios 1 and 2 as C increases, the OEB shifts downwards with a larger

decrease towards the maturity of the contract, whereas as C decreases the OEB

shifts upwards with a larger increase towards the maturity of the contract.

The rationale for the observation on scenarios 1 and 2 is the same as the

one provided in the previous section. For scenarios 3 to 6 it holds that the

maturity guarantee acts as a safety net which protects the maximum expected

return to the policyholder. Regardless of the level of the crash, if the value

of the underlying asset relative to its original value at investment, is less than

the maturity guarantee, the policyholder’s expected return will be equal to at

least the maturity guarantee.

Further, table 14 illustrates that increasing the value of C causes the V Tq
1,Nq,0

to increase across all scenarios whereas decreasing the value of C causes the

V Tq
1,Nq,0 to decrease across all scenarios.

The rationale of this observation is that by decreasing the value of C the

value of the underlying asset price decreases thus ultimately reducing the total

value of the segregated fund contract. On the other hand, by increasing the

value of C the value of the underlying asset price increases, thus, ultimately
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C Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

65% -7.92% -6.23% -5.71% -5.65% -5.62% -5.60%
70% -5.37% -4.59% -3.92% -3.86% -3.84% -3.83%
75% -2.73% -2.47% -2.02% -1.99% -1.97% -1.96%
80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
85% 2.80% 2.71% 2.28% 2.18% 2.09% 2.06%
90% 5.68% 5.57% 4.86% 4.56% 4.31% 4.21%
95% 8.67% 8.52% 7.77% 7.15% 6.65% 6.46%

Table 14: SCM Experiment 1 - Fluctuating the residual value of the
portfolio after the crash

increasing the total value of the segregated fund contract. The higher the

increase in the value of C the higher the percentage increase of V Tq
1,Nq,0. Further,

scenario 1 is the most affected by the increase of C. For the other scenarios it

holds that the V Tq
1,Nq,0 of the scenarios with lower coefficient of variation is more

increased as C is increased. On the other hand, the higher the decrease in the

value of C, the higher the percentage decrease of V Tq
1,Nq,0. Again, scenario 1 is

the most affected by the decrease of C. For the other scenarios it holds that

the V Tq
1,Nq,0 of the scenarios with lower coefficient of variation is more decreased

as C is decreased.

5.2.5 Experiment 2: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq,0. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%.

Figure 38 illustrates that across all scenarios as G increases, the OEB shifts
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upwards with a larger increase towards the maturity of the contract. Likewise,

figure 38 illustrates that across all scenarios as G decreases, the OEB shifts

downwards with a larger decrease towards the maturity of the contract.

Further, table 15 illustrates that decreasing the value of G causes the V Tq
1,Nq,0

to decrease across all scenarios. Similarly, increasing the value of G causes the

V Tq
1,Nq,0 to increase across all scenarios. The rationale of this observation is

Figure 38: SCM Experiment 2 - Fluctuating the maturity guarantee
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equivalent to the one provided in section 3.10.1.

G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -0.73% -0.37% -10.05% -16.50% -20.93% -22.41%
85% -0.61% -0.35% -8.18% -12.83% -16.06% -17.15%
90% -0.45% -0.30% -5.87% -8.86% -10.95% -11.66%
95% -0.25% -0.20% -3.15% -4.58% -5.60% -5.95%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 0.30% 0.35% 3.57% 4.88% 5.84% 6.18%
110% 0.67% 0.91% 7.55% 10.07% 11.93% 12.59%
115% 1.11% 1.76% 11.94% 15.56% 18.26% 19.23%
120% 1.66% 3.05% 16.74% 21.36% 24.84% 26.11%

Table 15: SCM Experiment 2 - Fluctuating the maturity guarantee

5.2.6 Experiment 3: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original set

of values of the model parameters and then one of the parameters of interest (G,

C) is fluctuated at a time, while keeping the rest of the parameters constant.

The value of the reset options is calculated as in section 3.10.2 The results of

this experiment are summarised in table 16.

The first row of table 16 shows the value of the reset options under the

original values for the parameters of interest. In particular, for scenarios 1 and

2 the reset options add a small value to the segregated fund (0.35% and 0.07%
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G C Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 80% 0.35% 0.07% 8.04% 24.19% 61.55% 91.97%
90% 80% 0.19% 0.02% 4.95% 19.33% 54.14% 82.62%
80% 80% 0.09% 0.01% 2.48% 14.61% 46.47% 72.85%
100% 85% 0.38% 0.08% 8.16% 24.34% 61.75% 92.20%
100% 75% 0.31% 0.05% 7.98% 24.09% 61.39% 91.78%

Table 16: SCM Experiment 3 - Value of the reset option

respectively). However, for the other scenarios, the higher their coefficient of

variation the higher the value of the reset options (8.04%, 24.19%, 61.55%

and 91.97% for scenarios 3 to 6 respectively). A possible reason for the small

value added by embedding reset options on segregated funds under the market

condition assumed in scenarios 1 and 2 is that the return to the policyholder

from investing in risk free throughout the planning horizon is higher compared

to investing in a segregated fund. Thus, the policyholder will switch to risk

free at the first available opportunity, thus not really needing or making use of

the reset options.

Rows 2 and 3 summarise the first sub-experiment where G is fluctuated

from its original value of 100% to the range 80% to 100% at increments of 10%

while all other parameters of interest are kept constant. As the value of G is

decreased to 80% the value of the reset options is decreased across all scenarios.

The rationale for this observation is the same as the one provided in section

3.10.2. Overall, for scenarios 1 and 2 embedding the reset options adds only a

small value to the segregated fund (0.09% and 0.01% respectively). However,
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for the other scenarios, the higher their coefficient of variation the higher the

value of the reset options (2.48%, 14.61%, 46.47% and 72.85% for scenarios 3

to 6 respectively).

Rows 4 and 5 summarise the second sub-experiment where the portfolio’s

residual value after a crash (C) is fluctuated from its original value of 80%

to the range 75% to 85% at increments of 5% while all other parameters of

interest are kept constant. As C is increased to 85% (i.e. lower in magnitude

crash occurring) the value of offering the reset options increases across all

scenarios. (0.38%, 0.08%, 8.16%, 24.34%, 61.75% and 92.20% for scenarios

1 to 6 respectively). The rationale for this observation is that a lower in

magnitude level of crash will lead to a higher value of the underlying asset

therefore increasing the probability of the value of the underlying asset relative

to its original value at investment being greater than the maturity guarantee,

thus increasing the likelihood of the policyholder choosing to reset his maturity

guarantee. In turn, this increases the value of the reset option. On the

other hand, as C is decreased to 75% (i.e. a higher in magnitude level of

crash occurring) the value of offering the reset options is decreased across all

scenarios (0.31%, 0.05%, 7.98%, 24.09%, 61.39% and 91.78% for scenarios 1

to 6 respectively). The rationale for this observation is equivalent to the one

offered above.
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5.2.7 Experiment 4: OEB of all segregated funds

The aim of this experiment is to depict and classify, in accordance to section

3.10.3, the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 39, scenario 1 and 2 are of

type A while scenario 3 is of type C and scenarios 4 to 6 are of type B.

Figure 39: SCM Experiment 4 - Depicting the OEB of all segregated
funds

177



5.3 Double Regime Model

The Double Regime Model (DRM) provides alternative means to incorporate

jumps into the SRM model. In contrast to the SCM model, the DRM model

is able to incorporate both negative (crash) and positive (surge) jumps as well

as a combination of the two. In order to achieve this it allows the underlying

asset to switch between two distinct regimes. The market characteristics of

the first regime (u1, d1 and r) are defined by the relevant scenario under

examination and are equivalent to the ones used under the SRM in order to

facilitate comparisons. Thus, u1 will equal the u and d1 will equal the d of the

respective scenario, while r remains the same. The second regime is intended to

model periods of high volatility in the markets, and can be used to incorporate

the jumps. The market characteristics of the second regime are denoted by u2

and d2, while r is considered to be the same as in the first regime.

Of crucial importance to the DRM model are the transition probabilities.

At any one point in time there is probability of switching from the current

regime to the other regime. In particular, the probability of switching from

the regime s to regime s′ is denoted by ps,s′ . Once the regime that the current

state is in is determined, then the next step is to determine the movement of

the underlying asset. In particular, p1 denotes the probability of the underlying

asset changing by u1, while 1 − p1 denotes the probability of the underlying

asset changing by d1. Further, p2 denotes the probability of the underlying
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asset changing by u2, while 1 − p2 denotes the probability of the underlying

asset changing by d2.

The formulation and flowchart analysis of the DRM model are provided

in sections 5.3.1 and 5.3.2 respectively. Results and sensitivity analysis are

provided for two distinct cases. In the first case the parameters of the second

regime are set to incorporate crashes, like the SCM model. In the second case

the parameters of the second regime are set to incorporate both crashes and

surges.

In particular, in section 5.4 the second regime, models the case where

there is a large probability (p2) that the underlying asset price will marginally

increase (u2) or a very small probability (1−p2) that it will drop by a substantial

fixed percentage (1− d2), thus essentially allowing only crashes like the SCM.

The parameters and transitions probabilities have been set so that a crash is

as likely to happen and of the same magnitude as in the SCM, in order to

facilitate comparisons. The main results and the sensitivity analysis of this

application of the DRM model (denoted by DRM-C) are provided in section

5.4.

In contrast to the previous application of the DRM model (DRM-C), the

second regime of this application of the DRM model, denoted by DRM-J, allows

the stock market to exhibit variable jumps (i.e. both crashes and surges) with

equal probability of occurrence. In particular, the second regime, models the
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case where there is an equal probability (p2 = 1−p2) that the underlying asset

price will either increase by a large fixed percentage (u2) or it will drop by an

equal in magnitude fixed percentage (1− d2). Essentially, DRM-J is modeling

a highly unstable market environment where both positive and negative jumps

are equally likely with the aim to update the OEB in order to advise both

the policyholders and the issuers when faced with such conditions. The main

results and the sensitivity analysis of this application of the DRM model are

provided in section 5.5.

5.3.1 Formulation

The Double Regime model can be formulated to comprise the following four

elements:

Stage (denoted by t) which is the number of periods until the end of the

planning horizon, where 0 ≤ t ≤ Tq.

State Space (denoted by St) which is the set of possible states at stage t.

The defining characteristics of the possible states are the following.

The first state variable is the current value of the underlying asset relative

to its value at the time of the investment in the current segregated fund

(denoted by a) which is of the form a = (1 + u1)i(1 + d1)j(1 + u2)k(1 +

d2)Nq−n−i−j−k, where 0 ≤ i ≤ Nq − n, 0 ≤ j ≤ Nq − n − i, 0 ≤ k ≤

Nq−n−i−j. The term Nq−n in the boundary of i represents the number
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of time periods since the start of the current segregated fund. Therefore it

represents the maximum number of times that the underlying asset price

may have changed by (1 + u1)%. Likewise, the term Nq − n − i in the

boundary of j represents the number of time periods since the start of the

current segregated fund minus the number of time periods during which

the value of the underlying asset has changed by (1 + u1)%. Therefore

it represents the maximum number of times that the underlying asset

price may have changed by (1 + d1)%. Lastly, the term Nq−n− i− j in

the boundary of k represents the number of time periods since the start

of the current segregated fund minus the number of time periods during

which the value of the underlying asset has changed by (1 +u1)% and by

(1 + d1)%. Therefore it represents the maximum number of times that

the underlying asset price may have changed by (1 + u2)%.

The second state variable is the number of periods until the maturity of

the current segregated fund contract denoted by n. This variable must

satisfy the same conditions as set out in the original formulation.

The third, and last, state variable is the regime that the asset is in,

denoted by s, which can either be equal to 1 or 2. Regime 1 represents the

original regime that the model commences, while regime 2 represents an

alternative regime that the model occasionally switches to. The market

conditions of regime 2 allow for the turbulence in the market environment
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through a significantly increased coefficient of variation.

Decision Space (denoted by Dt
a,n,s) - which is the set of possible decisions

that can be taken in state [a, n, s] at stage t. As the decisions only

depend on n and t the decision space of the DRM model is essentially

the same as in the SRM model and is formally stated as:

Dt
a,n,s =





{risk free} if t < Nq and n = 0
{reinvest, risk free} if t ≥ Nq and n = 0
{rollover} if n > 0 and (n, t) 6∈ E
{rollover, reset} if (n, t) ∈ E

State transitions in state [a, 0, s] at stage t the action risk free determines

the final value of the investment by multiplying the current value of the

investment by (1 + r)t. Further, in state [a, 0, s] at stage t the action

reinvest causes an instantaneous transition to state [a,Nq, s].

Also, in state [a, n, s] at stage t the action rollover causes a transition

to state [a(1 + u1), n − 1, 1] at stage t − 1 with probability ps,1 ∗ p1, or

a transition to state [a(1 + d1), n − 1, 1] at stage t − 1 with probability

ps,1 ∗ (1 − p1), or a transition to state [a(1 + u2), n − 1, 2] at stage t − 1

with probability ps,2 ∗ p2, or a transition to state [a(1 + d2), n − 1, 2] at

stage t− 1 with probability ps,2 ∗ (1− p2).

Lastly, in state [a, n, s] at stage t the action reset causes an instantaneous

transition to state [a,Nq, s].
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The aim of the policyholder is to maximise the expected payoff of

investment at the end of the planning horizon, after Tq time periods. Let

V t
a,n,s be the maximum expected payoff of the investment at the end of the

planning horizon, after t time periods, when investment is currently in a fund

with n time periods to go to maturity, a current relative value of a and a

maturity guarantee of G. Therefore, the aim is to find X max{(1+r)Tq, V Tq
1,Nq,1}

where:

V t
a,n,s =





max(a,G)(1 + r)t if t < Nq and n = 0

max(a,G) max{(1 + r)t, V t
0,Nq,m} if t ≥ Nq and n = 0

ps,1 ∗ p1 ∗ V t−1
a(1+u1),n−1,1 + ps,1 ∗ (1− p1) ∗ V t−1

a(1+d1),n−1,1

+ps,2 ∗ p2 ∗ V t−1
a(1+u2),n−1,2 + ps,2 ∗ (1− p2) ∗ V t−1

a(1+d2),n−1,2

if n > 0 and (n, t) 6∈ E

max(ps,1 ∗ p1 ∗ V t−1
a(1+u1),n−1,1 + ps,1 ∗ (1− p1) ∗ V t−1

a(1+d1),n−1,1

+ps,2 ∗ p2 ∗ V t−1
a(1+u2),n−1,2 + ps,2 ∗ (1− p2) ∗ V t−1

a(1+d2),n−1,2, V
t

0,Nq,1)

if (n, t) ∈ E

5.3.2 Flowchart Analysis

As it is illustrated in figure 40 the main difference between DRM and SRM

models is that DRM overlays the continuous asset price changes with jumps. In

order to achieve that an extra state has been introduced, denoted by s, which

is the regime that the underlying asset is in. This increases the dimensions

of array V (a, n, s) and makes the value of investing on a segregated fund at

any given point in time an array indexed by s, denoted as Vres(s). Moreover,
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there are several new parameters in the calculation of the underlying asset’s

price distribution. Namely, U1 is equivalent to 1 + u1 in the mathematical

formulation. Similar conventions apply for U2, D1 and D2. These new

parameters drastically increase the dimensions of array W (n, i, j, k) and make

the value of the underlying asset a function of U1, U2, D1 and D2. Further, the

state denoted by a in the formulation is replaced in the flowchart by i, j, k, as

it is a function of them. Further, the sixth process (Rollover 1 period) is

altered significantly due to the new set of transition probabilities used in the

calculation of the value of the segregated fund when the maturity guarantee is

rolled over for one time period.

Overall, due to the substantial increase in the computational complexity

the maximum Q that the model can run is 16. While this is much less than

the 1000 that was the case in the SRM it is more than adequate as it can

produce smooth and consistent OEB (see section 5.4). In reality the DRM

calculates many “parallel funds” and thus achieves a higher discretization.

The explanation behind this argument lies in the fact that as Q is doubled

in the SRM the number of possible values of the underlying asset doubles.

However, in the DRM as Q is doubled the number of values of the underlying

asset increases by an eight-fold. In reality the Q = 1000 of the SRM produces

1001 different values for the underlying asset while the Q = 16 of the DRM

produces 969 possible values. As a matter of fact the stabilisation in the value
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of the segregated fund that can be achieved with the DRM is possibly better

than the corresponding of the SRM since the range of 969 values (DRM) is

smaller compared to the range of the 1001 values (SRM). The cost of the

higher discretization is a significantly higher running time of the algorithm: 3

minutes and 30 seconds for the DRM compared to 30 seconds of the SRM.

Figure 40: Flowchart of DRM model
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5.4 Main Results of Double Regime Model (crash)

The parameters of this application of the DRM model (denoted by DRM-

C) have been set so that they are equivalent to the SCM model. Hence, on

average every 10 policy years a crash occurs which reduces the value of the

underlying asset by 20%. A good verification of the results of the SCM and

DRM-C models is that they very similar. In particular, in line with SCM,

Figure 41: DRM-C - Effect on OEB
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the main findings from incorporating such crashes in DRM-C, is that under

certain market conditions the policyholder requires a higher return in order

to optimally reset his maturity guarantee (i.e. OEB shifts upwards) while

the total value of the segregated fund is diminished due to the negative effect

of the crashes on the underlying asset value. As illustrated in figure 41, the

incorporation of crashes causes the OEB of scenarios 1 and 2 to shift upwards

with a larger increase towards the maturity of the contract, while the OEB of

scenarios 3 to 6 is practically unaffected.

The justification for this observation is that for scenarios 1 and 2 the

maximum expected return to the policyholder from investing in risk free

throughout the planning horizon is higher than from investing in a segregated

fund. Therefore, unless the policyholder sees exceptional growth in the fund,

he will look for the quickest way out of the fund, which is by essentially not

resetting or, more precisely, requiring a very high return in order to optimally

reset. For scenarios 3 to 6 it holds that the maturity guarantee acts as a safety

net which protects the maximum expected return to the policyholder. Despite

the crash, if the value of the underlying asset relative to its original value at

investment, is less than the maturity guarantee, the policyholder’s expected

return will be equal to at least the maturity guarantee.

In terms of the V Tq
1,Nq,1 scenarios 5 and 6 are more affected compared to

scenarios 1 to 4. As illustrated in figure 42 the incorporation of the crashes
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reduces the V Tq
1,Nq,1 of scenarios 1 to 6 by 6.2%, 5.31%, 5.78%, 6.16%, 8.38%

and 8.68% respectively.

Figure 42: DRM-C - Effect on V Tq
1,Nq,1

As with the previous models analysed in this thesis, it is of interest to

experiment with the values of several parameters and observe the effect of their

fluctuation on both the OEB and V Tq
1,Nq,1 . The aim of these experiments is to

check the robustness of the model as well as to depict interesting trends and

causalities. In particular, section 5.4.1 examines the effect of the fluctuation of

the residual value of the portfolio after a crash (d2), section 5.4.2 examines the

effect of the fluctuation of the level of G offered to the policyholder, section

5.4.3 examines the value of offering the reset option under different model

parameters and lastly section 5.4.4 depicts the OEB of all the segregated funds

generated during the planning horizon of the policyholder.
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5.4.1 Experiment 1: Fluctuating the residual value of the portfolio
after the crash

In this experiment the aim is to examine the effect of fluctuating the level of

the portfolio’s residual value after the crash (d2) on both the OEB and the

V Tq
1,Nq,1. In particular, d2 is fluctuated from its original value of 80% to the

Figure 43: DRM-C Experiment 1 - Fluctuating the residual value of
the portfolio after the crash
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range 65% to 95% at increments of 5%.

Figure 43 illustrates that the fluctuation of d2 practically does not affect

the OEB of scenarios 3 to 6 while it has a more significant effect on the OEB

of scenarios 1 and 2. In particular, in scenarios 1 and 2 when d2 increases,

the OEB shifts downwards with a larger decrease towards the maturity of

the contract, whereas when d2 decreases, the OEB shifts upwards with a

larger increase towards the maturity of the contract. The rationale for this

observation is the same as the one provided in section 5.2.4.

Further, table 17 illustrates that increasing the value of d2 causes the V Tq
1,Nq,1

to increase across all scenarios whereas decreasing the value of d2 causes the

V Tq
1,Nq,1 to decrease across all scenarios. The rationale for this observation is the

same as the one provided in section 5.2.4.

d2 Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

60% -9.90% -6.52% -6.50% -6.80% -6.99% -7.05%
65% -7.66% -5.53% -5.31% -5.40% -5.44% -5.45%
70% -5.26% -4.09% -3.85% -3.82% -3.76% -3.74%
75% -2.70% -2.24% -2.09% -2.02% -1.95% -1.93%
80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
85% 2.87% 2.59% 2.43% 2.24% 2.08% 2.03%
90% 6.38% 5.50% 5.22% 4.71% 4.30% 4.17%
95% 10.63% 9.89% 8.36% 7.40% 6.66% 6.42%

Table 17: DRM-C Experiment 1 - Fluctuating the residual value of
the portfolio after the crash
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5.4.2 Experiment 2: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq,1. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%.

Figure 44 illustrates that across all scenarios as G increases, the OEB shifts

Figure 44: DRM-C Experiment 2 - Fluctuating the maturity
guarantee
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upwards with a larger increase towards the maturity of the contract. Likewise,

figure 44 illustrates that across all scenarios as G decreases, the OEB shifts

downwards with a larger decrease towards the maturity of the contract. The

effect of the fluctuation of G is more acute on scenarios 3,4,5 and 6 compared

to scenarios 1 and 2.

A possible justification for this observation is that for scenarios 1 and 2

the maximum expected return to the policyholder from investing in risk free

throughout the planning horizon is higher than from investing in a segregated

fund. Therefore, unless the policyholder sees exceptional growth in the fund,

he will look for the quickest way out of the fund, which is by essentially

not resetting or, more precisely, requiring a very high return in order to

optimally reset. Hence, if the policyholder chooses to switch to risk free at

the first available opportunity, the maximum expected return from his original

investment is not going to be highly affected by the fluctuations of G.

Further, table 18 illustrates that decreasing the value of G causes the V Tq
1,Nq,1

to decrease across all scenarios. Similarly, increasing the value of G causes the

V Tq
1,Nq,1 to increase across all scenarios. The rationale of this observation is

equivalent to the one provided in section 3.10.1.
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G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -0.72% -0.51% -9.45% -15.48% -20.25% -21.82%
85% -0.60% -0.46% -7.62% -12.04% -15.55% -16.70%
90% -0.44% -0.38% -5.44% -8.32% -10.60% -11.36%
95% -0.24% -0.23% -2.90% -4.31% -5.43% -5.79%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 0.30% 0.36% 3.27% 4.60% 5.64% 6.03%
110% 0.68% 0.91% 6.90% 9.49% 11.55% 12.28%
115% 1.15% 1.74% 10.92% 14.69% 17.68% 18.75%
120% 1.76% 3.02% 15.31% 20.17% 24.06% 25.47%

Table 18: DRM-C Experiment 2 - Fluctuating the maturity
guarantee

5.4.3 Experiment 3: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original set

of values of the model parameters and then one of the parameters of interest (G,

d2) is fluctuated at a time, while keeping the rest of the parameters constant.

The value of the reset options is calculated as in section 3.10.2. The results of

this experiment are summarised in table 19.

G d2 Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 80% 0.38% 0.13% 7.81% 23.29% 58.12% 87.09%
90% 80% 0.21% 0.04% 4.81% 18.58% 50.93% 78.08%
80% 80% 0.10% 0.01% 2.39% 14.02% 43.51% 68.66%
100% 85% 0.42% 0.14% 8.08% 23.58% 58.45% 87.45%
100% 75% 0.36% 0.12% 7.69% 23.10% 57.86% 86.78%

Table 19: DRM-C Experiment 3 - Value of the reset option
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The first row of table 19 shows the value of the reset options under the

original values for the parameters of interest. In particular, for scenarios 1 and

2 embedding the reset options adds only a small value to the segregated fund

(0.38% and 0.13% respectively). However, for the other scenarios, the higher

their coefficient of variation the higher the value of the reset options (7.81%,

23.29%, 58.12% and 87.09% for scenarios 3 to 6 respectively). A possible reason

for the small value added by embedding reset options on segregated funds under

the market condition assumed in scenarios 1 and 2 is that the return to the

policyholder from investing in risk free throughout the planning horizon is

higher compared to investing in a segregated fund. Thus, the policyholder will

switch to risk free at the first available opportunity, thus not really needing or

making use of the reset options.

Rows 2 and 3 of table 19 summarise the first sub-experiment where G

is fluctuated from its original value of 100% to the range 80% to 100% at

increments of 10% while all other parameters of interest are kept constant. As

the value of G is decreased to 80% the value of the reset options is decreased

across all scenarios. The rationale for this observation is the same as the

one provided in section 3.10.2. Overall, for scenarios 1 and 2 embedding the

reset options adds only a small value to the segregated fund (0.10% and 0.01%

respectively). However, for the other scenarios, the higher their coefficient of

variation the higher the value of the reset options (2.39%, 14.02%, 43.51% and
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68.66% for scenarios 3 to 6 respectively).

Rows 4 and 5 of table 19 summarise the second sub-experiment where

the portfolio’s residual value after a crash (d2) is fluctuated from its original

value of 80% to the range 75% to 85% at increments of 5% while all other

parameters of interest are kept constant. As d2 is increased to 85% (i.e.

lower in magnitude crash occurring) the value of offering the reset options

increases across all scenarios (0.42%, 0.14%, 8.08%, 23.58%, 8.45% and 87.45%

for scenarios 1 to 6 respectively). The rationale for this observation is that a

lower in magnitude level of crash will lead to a higher value of the underlying

asset therefore increasing the probability of the value of the underlying asset

relative to its original value at investment being greater than the maturity

guarantee, thus increasing the likelihood of the policyholder choosing to reset

his maturity guarantee. In turn this increases the value of the reset option.

On the other hand, as d2 is decreased to 75% (i.e. a higher in magnitude level

of crash occurring) the value of offering the reset options is decreased across

all scenarios (0.36%, 0.12%, 7.69%, 23.10%, 57.86% and 86.78% for scenarios

1 to 6 respectively). The rationale for this observation is equivalent to the one

offered above.
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5.4.4 Experiment 4: OEB of all segregated funds

The aim of this experiment is to depict and classify in accordance to section

3.10.3 the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 45 scenario 1 and 2 are of

type C while scenarios 3 to 6 are of type B.

Figure 45: DRM-C Experiment 4 - Depicting the OEB of all
segregated funds
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5.5 Main Results of Double Regime Model (jumps)

The parameters of this application of the DRM model (denoted by DRM-J)

have been set so that on average every 10 policy years either a crash occurs

which reduces the value of the underlying asset by 20% or a surge occurs

which increases the value of the underlying asset by 20%. The main finding

from incorporating such instability in the market environment is that the

Figure 46: DRM-J: Effect on OEB
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policyholder requires a higher return in order to optimally reset his maturity

guarantee (i.e. OEB shifts upwards). In particular, as illustrated in figure 46,

the incorporation of the crashes and surges causes the OEB of scenarios 1 to

5 to shift upwards with a larger increase towards the maturity of the contract.

In contrast, the OEB of scenario 6 is practically unaffected.

The justification behind the observation for scenarios 1 to 5 is that the

policyholder requires some extra compensation (i.e. higher increase in the

value of the underlying asset) in order to reset, and thus prolong his investment

in segregated funds, due to the risks associated with switching to the second

regime. Relative to scenario 6, the coefficient of variation is already rather

high, so it is reasonable to assume that switching to the second regime will not

prove to be a drastic increase in the volatility of the market returns. Hence,

under the assumed market conditions of scenario 6, the policyholder does not

require higher returns to the underlying asset in order to choose to reset his

maturity guarantee.

Further, in contrast to both SCM and DRM-C the total value of the

segregated fund is increased due to the cumulative effects of the surges and

crashes on the underlying asset value, as modeled in DRM-J. The rationale

behind this argument is based on the ability of the policyholder to lock in

considerable market gains which accrue from stock market surges which more

than cancel out the corresponding decreases in the value of the underlying asset
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caused by the potential crashes. In other words, the policyholder can lock in the

maximum of the potential market gains through optimally resetting the level

of his maturity guarantee but does not have to suffer all losses due to stock

market crashes as the maturity guarantee sets a lower bound and ultimately

protects him from those.

Therefore, the model suggests that the cumulative effect of the potential

crashes and surges is an increase in the value of the fund. In particular,

the V Tq
1,Nq,1 scenarios 2 to 4 is more affected compared to scenarios 1, 5 and

6. As illustrated in figure 42 the incorporation of the jumps increase the

V Tq
1,Nq,1 of scenarios 1 to 6 by 1.04%, 50.02%, 43.12%, 29.55%, 7.39% and 7.16%

respectively.

Figure 47: DRM-J: Effect on V Tq
1,Nq,1
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As with the previous models analysed in this thesis, it is of interest to

experiment with the values of several parameters and observe the effect of their

fluctuation on both the OEB and V Tq
1,Nq,1 . The aim of these experiments is to

check the robustness of the model as well as to depict interesting trends and

causalities. In particular, section 5.5.1 examines the effect of the fluctuation

of the probability of switching from regime 1 to regime 2 (p12), section 5.5.2

examines the effect of the fluctuation of the probability of switching from regime

2 to regime 1 (p21). Section 5.5.3 examines the effect of the fluctuation of the

level of G offered to the policyholder. Section 5.5.4 examines the value of

offering the reset option under different model parameters and lastly section

5.5.5 depicts the OEB of all the segregated funds generated during the planning

horizon of the policyholder.
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5.5.1 Experiment 1: Fluctuating the probability of switching from
regime 1 to regime 2

In this experiment the aim is to examine the effect of fluctuating the probability

of switching from regime 1 to regime 2 (p12) on both the OEB and the V Tq
1,Nq,1.

In particular, p12 is fluctuated from its original value of 10% to the range 10%

to 90% at increments of 10%.

Figure 48: DRM-J Experiment 1 - Fluctuating the probability of
switching from regime 1 to regime 2
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Figure 48 illustrates that across all scenarios as p12 increases the OEB

shifts upwards with a larger increase towards the maturity of the contract.

The rationale for this observation is that as the probability of switching to

the second regime increases, the policyholder will require progressively higher

returns from the underlying asset in order to be compensated for the increased

volatility that he will have to face in the second regime.

p12 Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
20% 2.95% 26.66% 22.61% 17.16% 4.63% 4.5%
30% 5.38% 47.98% 40.94% 31.29% 8.31% 8.16%
40% 7.19% 65.63% 56.22% 43.15% 11.56% 10.95%
50% 8.53% 80.59% 69.20% 53.27% 14.37% 13.18%
60% 9.51% 93.42% 80.40% 62.02% 16.81% 15.01%
70% 10.24% 104.57% 90.16% 69.68% 18.97% 16.52%
80% 10.79% 114.46% 98.80% 76.42% 20.87% 17.83%
90% 11.20% 123.58% 106.54% 82.44% 22.58% 18.97%

Table 20: DRM-J Experiment 1 - Fluctuating the probability of
switching from regime 1 to regime 2

Further, table 20 illustrates that increasing the value of p12 causes the

V Tq
1,Nq,1 to increase across all scenarios. A reason for that, is that by increasing

the value of p12 the chance of the market conditions switching to the second

regime is increased proportionately. As already examined in section 5.5 the

cumulative effect of the potential surges and crashes of the second regime is

an increase in the value of the segregated fund. The higher the increase in the

value of p12, the higher the percentage increase of V Tq
1,Nq,1 . Lastly, the lower

the coefficient of variation, the larger the percentage increase to V Tq
1,Nq,1.
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5.5.2 Experiment 2: Fluctuating the probability of switching from
regime 2 to regime 1

In this experiment the aim is to examine the effect of fluctuating the probability

of switching from regime 2 to regime 1 (p21) on both the OEB and the V Tq
1,Nq,1 .

In particular, p21 is fluctuated from its original value of 100% to the range 10%

to 100% at increments of 10%. Figure 49 illustrates that across all scenarios

Figure 49: DRM-J Experiment 2 - Fluctuating the probability of
switching from regime 2 to regime 1
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as p21 decreases, the OEB shifts upwards with a larger increase towards the

maturity of the contract. The rationale for this observation is that as the

probability of switching to the first regime decreases, the policyholder will

require progressively higher returns from the underlying asset in order to be

compensated for the increased volatility that he will have to face in the second

regime.

p21 Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

10% 9.00% 120.67% 104.94% 82.01% 23.18% 18.24%
20% 6.56% 73.47% 63.80% 49.71% 13.93% 12.10%
30% 4.71% 49.29% 42.73% 33.18% 9.22% 8.48%
40% 3.36% 34.40% 29.77% 23.05% 6.36% 6.07%
50% 2.38% 24.25% 20.95% 16.17% 4.43% 4.34%
60% 1.63% 16.83% 14.52% 11.18% 3.05% 3.05%
70% 1.07% 11.16% 9.62% 7.39% 2.01% 2.04%
80% 0.63% 6.68% 5.75% 4.41% 1.19% 1.22%
90% 0.28% 3.03% 2.60% 1.99% 0.54% 0.56%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 21: DRM-J Experiment 2 - Fluctuating the probability of
switching from regime 2 to regime 1

Further, table 21 illustrates that decreasing the value of p21 causes the

V Tq
1,Nq,1 to increase across all scenarios. The rationale of this observation is

equivalent to the one offered in the previous section. Further, the higher the

decrease in the value of p21, the higher the percentage increase of V Tq
1,Nq,1. Lastly,

the lower the coefficient of variation of a scenario, the larger the percentage

increase to its V Tq
1,Nq,1 from the increase of p12.
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5.5.3 Experiment 3: Fluctuating the maturity guarantee

In this experiment the aim is to examine the effect of the fluctuation of G on

both the OEB and the V Tq
1,Nq,1. In particular, G is fluctuated from its original

value of 100% to the range 80% to 120% at increments of 5%. Figure 50

illustrates that across all scenarios as G increases, the OEB shifts upwards

Figure 50: DRM-J Experiment 3 - Fluctuating the maturity
guarantee
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with a larger increase towards the maturity of the contract. Likewise, figure 50

illustrates that across all scenarios as G decreases, the OEB shifts downwards

with a larger decrease towards the maturity of the contract.

Further, table 22 illustrates that decreasing the value of G causes the V Tq
1,Nq,1

to decrease across all scenarios. Similarly, increasing the value of G causes the

V Tq
1,Nq,1 to increase across all scenarios. The rationale of this observation is

equivalent to the one provided in section 3.10.1.

G Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6

80% -6.65% -14.82% -16.30% -18.06% -21.22% -21.96%
85% -5.23% -11.53% -12.62% -13.93% -16.26% -16.80%
90% -3.64% -7.97% -8.68% -9.51% -11.07% -11.42%
95% -1.89% -4.13% -4.47% -4.89% -5.65% -5.82%
100% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
105% 2.03% 4.40% 4.74% 5.14% 5.88% 6.03%
110% 4.20% 9.10% 9.74% 10.50% 12.00% 12.28%
115% 6.50% 14.07% 15.01% 16.13% 18.34% 18.75%
120% 8.94% 19.33% 20.55% 22.01% 24.93% 25.44%

Table 22: DRM-J Experiment 3 - Fluctuating the maturity
guarantee

5.5.4 Experiment 4: Value of the reset option

The aim of this experiment is to estimate the value of offering reset options on a

segregated fund contract under different sets of values of the model parameters.

In particular, the value of offering reset options is calculated for the original set

of values of the model parameters and then one of the parameters of interest

(G, p21, p12) is fluctuated at a time, while keeping the rest of the parameters
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constant. The value of the reset options is calculated as in section 3.10.2. The

results of this experiment are summarised in table 23.

G p12 p21 Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

100% 10% 100% 7.15% 24.42% 31.14% 42.91% 72.73% 101.15%
90% 10% 100% 4.94% 19.81% 25.95% 36.89% 64.61% 91.28%
80% 10% 100% 3.07% 15.37% 20.84% 30.79% 56.16% 80.96%
100% 10% 80% 8.67% 28.41% 34.82% 46.09% 74.70% 102.53%
100% 10% 60% 11.06% 34.28% 40.29% 50.87% 77.70% 104.67%
100% 20% 100% 13.52% 40.68% 45.79% 55.36% 80.33% 106.35%
100% 30% 100% 18.94% 52.69% 56.96% 65.16% 86.55% 110.74%

Table 23: DRM-J Experiment 4 - Value of the reset option

The first row of table 23 shows the value of the reset options under the

original values for the parameters of interest. In particular, for scenario

1 embedding the reset options adds a comparatively smaller value to the

segregated fund (7.15%). However, for the other scenarios it holds that

the higher their coefficient of variation, the higher the value of the reset

options (24.42%, 31.14%, 42.91%, 72.73% and 101.15% for scenarios 2 to 6

respectively).

Rows 2 and 3 summarise the first sub-experiment where as the value of

G is decreased to 80%, the value of the reset options is decreased across all

scenarios. The rationale for this observation is the same as the one provided

in section 3.10.2. Overall, for scenario 1 embedding the reset options adds a

comparatively smaller value to the segregated fund (3.07%). However, for the

other scenarios, the higher their coefficient of variation the higher the value of

the reset options (15.37%, 20.84%, 30.79%, 56.16% and 80.96% for scenarios 2
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to 6 respectively).

Rows 4 and 5 summarise the second sub-experiment where the probability

of switching from regime 2 to regime 1 (p21) is fluctuated from its original

value of 100% to the range 60% to 100% at increments of 20% while all other

parameters of interest are kept constant. As p21 is decreased to 60% the value

of offering the reset options is increased across all scenarios (11.06%, 34.28%,

40.29%, 50.87%, 77.70% and 104.67% for scenarios 1 to 6 respectively). A

possible reason for that is that by decreasing the value of p21 the likelihood

of remaining in the second regime is increased proportionately. As already

examined in section 5.5 the role of the reset option in the second regime is

highly crucial, as its optimal use has the potential to lock in market gains

during stock market surges which more than negate the losses incurred by the

stock market crashes. Therefore the relative value of the reset option is higher

when the probability of remaining on the second regime is higher.

Rows 6 and 7 summarise the third sub-experiment where the probability

of switching from regime 1 to regime 2 (p12) is fluctuated from its original

value of 10% to the range 10% to 30% at increments of 10% while all other

parameters of interest are kept constant. As p12 is increased to 30% the value

of offering the reset options is increased across all scenarios (18.94%, 52.69%,

56.96%, 65.16%, 86.55% and 110.74% for scenarios 1 to 6 respectively). The

rationale for this observation is equivalent to the one explained above.
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5.5.5 Experiment 5: OEB of all segregated funds

The aim of this experiment is to depict and classify in accordance to section

3.10.3 the OEB of all the segregated funds generated during the planning

horizon of the policyholder. As illustrated in figure 51 scenario 1 is of type

C while scenarios 2 to 6 are of type B.

Figure 51: DRM-J Experiment 5 - Depicting the OEB of all
segregated funds
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5.6 Discussion

In response to the well documented deficiencies of the lognormal model to

properly capture the negative and positive jumps experienced by stock markets

an attempt has been made to incorporate such jumps in the original model. In

order to preserve the comparability of the model’s results with the results of

previous chapters it was decided to sustain the lognormal model but overlay it

with stochastic negative and/or positive jumps.

Section 5.2 extended the SRM model in that it allows for instantaneous

stochastic crashes to occur within the single regime of the SRM model, namely

through the Stochastic Crash Model (SCM). In reality, the evolution of the

possible values of the underlying asset price is the same as with the SRM

model. However, at every time period there is a small probability of a crash

occurring. When the crash materialises, the residual value of the fund after

the crash is equal to a fixed percentage of its original value.

A finding from incorporating such crashes is that, if the assumed market

conditions are such that the maximum expected return to the policyholder

from investing in risk free throughout the planning horizon is higher than from

investing in a segregated fund, the policyholder requires a higher return in order

to optimally reset his maturity guarantee. Therefore, unless the policyholder

sees exceptional growth in the fund, he will look for the quickest way out of

the fund, which is by essentially not resetting or, more precisely, requiring a
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very high return in order to optimally reset.

If, on the other hand, the maximum expected return to the policyholder

from investing in a segregated fund is higher than from investing in risk free

it holds that the maturity guarantee acts as a safety net which protects the

maximum expected return to the policyholder. Despite the crash, if the value

of the underlying asset relative to its original value at investment, is less than

the maturity guarantee, the policyholder’s expected return will be equal to

at least the maturity guarantee. A further finding from incorporating such

crashes is that the total value of the segregated fund diminishes due to the

negative effect of the crashes on the underlying asset value.

Section 5.3 provided an alternative method to incorporate jumps into the

SRM model, namely the Double Regime Model (DRM). In contrast to the

SCM model, the DRM model is able to incorporate both negative (crash) and

positive (surge) jumps as well as a combination of the two. In particular,

it allows the underlying asset to switch between two distinct regimes. The

market characteristics of the first regime are defined by the relevant scenario

under examination and are equivalent to the ones used under the SRM in order

to facilitate comparisons. The second regime is intended to model periods of

high volatility in the markets and can be used to incorporate the jumps. Two

distinct applications of the DRM were presented.

In the first application of the DRM model, denoted by DRM-C, the second
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regime modeled the case where there is a large probability that the underlying

asset price will marginally increase or a very small probability that it will

drop by a substantial fixed percentage, thus essentially allowing only crashes

like the SCM. The parameters and transitions probabilities were set so that a

crash is as likely to happen and of the same magnitude as in the SCM, in order

to facilitate comparisons. A good verification of the results of the SCM and

DRM-C models is that they very similar.

In line with SCM, the main findings from incorporating such crashes in

DRM-C, is that if the assumed market conditions are such that the policyholder

would rather invest in risk free throughout the planning horizon compared to

investing in segregated funds, then he will require a higher return in order to

optimally reset his maturity guarantee while the total value of the segregated

fund is diminished due to the negative effect of the crashes on the underlying

asset value. The justification for this observation is equivalent to the one offered

above.

If, on the other hand, he prefers to invest in segregated funds (compared to

risk free), then it holds that the maturity guarantee acts as a safety net which

protects the maximum expected return to the policyholder. Despite the crash,

if the value of the underlying asset relative to its original value at investment,

is less than the maturity guarantee, the policyholder’s expected return will be

equal to at least the maturity guarantee.
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In the second application of the DRM model, denoted by DRM-J, the

second regime modeled the case where the stock market can exhibit variable

jumps (i.e. both crashes and surges) with equal probability of occurrence. The

transition probabilities and parameters of the DRM-J model were set so that

with the same frequency as in the previous models, either a crash occurs which

reduces the value of the underlying asset or a surge occurs which increases the

value of the underlying asset, by a fixed percentage equivalent in magnitude to

the previous models.

The main finding from incorporating such instability in the market

environment is that the policyholder requires a higher return in order to

optimally reset his maturity guarantee. In particular, the incorporation of

the crashes and surges causes the OEB to shift upwards with a larger increase

towards the maturity of the contract. The justification behind this observation

is that the policyholder requires some extra compensation (i.e. higher increase

in the value of the underlying asset) in order to reset, and thus prolong his

investment in segregated funds, due to the risks associated with switching to

the second regime. This observation does not hold true if the assumed market

conditions are such that in the first regime there is very high volatility. Then,

since the coefficient of variation is already rather high, it is reasonable to assume

that switching to the second regime will not prove to be a drastic increase in

the volatility of the market returns. Hence, the policyholder does not require
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higher returns to the underlying asset in order to choose to reset his maturity

guarantee.

Further, in contrast to both SCM and DRM-C the total value of the

segregated fund is increased due to the cumulative effects of the surges and

crashes on the underlying asset value, as modeled in DRM-J. The rationale

behind this argument is based on the ability of the policyholder to lock in

considerable market gains which accrue from stock market surges which more

than cancel out the corresponding decreases in the value of the underlying asset

caused by the potential crashes. In other words, the policyholder can lock in the

maximum of the potential market gains through optimally resetting the level of

his maturity guarantee but does not have to suffer all losses due to stock market

crashes as the maturity guarantee sets a lower bound and ultimately protects

him from those. Therefore the model suggests that the cumulative effect of the

potential crashes and surges is an increase in the maximum expected return

from the original investment.
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6 Conclusion and Future Research

Overall in this thesis, motivated by the importance of the reset option

embedded in segregated funds, an attempt has been made to tackle the

modeling challenges that arise from the non-standard (exotic) properties of the

reset option. The first step was to review the relevant literature. In particular,

in Chapter 2 a wide range of actuarial models relative to the valuation of

the reset option embedded in segregated funds were critically examined and

compared. The methods examined vary from the deterministic approach to the

much more elaborate and advanced CIA’s long term approach. However, what

all of the models seem to have in common is a consistent use of naive heuristics

relative to the modeling of the reset decision. A side effect is that practitioners

who are prescribed which approach to use, make the exact same misleading

and naive assumptions about the reset option. Therefore, it became apparent

that all the benefits that could accrue through the use of advanced stochastic

modeling can be more than negated by the inherent naive assumptions about

the reset option.

Further, the academic literature on the modeling of the reset decision was

critically reviewed. The conclusion from this subsection was that there does

not appear to be any published work which is advanced enough to deal with

the complexities of the reset option faced by the policyholder of segregated

funds. Hence, a clear and urgent need to have more sophisticated approaches
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which can model the reset option was identified.

In order to address this issue in Chapter 3 an attempt was made to develop a

mathematical model for the reset option with the aim to derive a comprehensive

optimal reset strategy for the policyholder. In particular, the reset option on

the maturity guarantee of segregated funds was formulated as a non-stationary

finite horizon Markov Decision Process. The efficient formulation allowed the

values of the underlying asset price to fluctuate up to 7000 times in every policy

year, thus enabling the distribution of the underlying asset price to converge

towards the lognormal distribution. An important feature of the Single Regime

Model, developed in this chapter, is the ability to derive the OEB of the reset

option, where given the model parameters, a threshold value is depicted such

that if the value of the underlying asset price exceeds it then it is optimal for

the policyholder to reset his maturity guarantee. Otherwise, it is optimal for

the policyholder to rollover his maturity guarantee.

It is noteworthy that the SRM model is able to depict the OEB of not

just the first but of all the segregated fund contracts which can be issued

throughout the planning horizon of the policyholder. The reason why this is

of great importance is that once the investor resets the maturity guarantee

the OEB changes. Therefore, it becomes apparent that in order to generate a

comprehensive optimal reset strategy, the optimal OEB for all of the segregated

funds has to be derived and examined. In this way the model has managed to
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address one of the significant deficiencies in the existing literature.

The main finding of the SRM model has been that as the segregated fund

approaches its maturity, a proportionately larger percentage increase in the

value of the underlying asset will be necessary to trigger an optimal reset of

the segregated fund’s maturity guarantee. The rationale behind this argument

is that if the policyholder resets at the first decision point the maturity will be

extended by 1 year. In contrast, if he resets in the eighth decision point the

maturity will be extended by 8 years. Therefore as the “time penalty” increases,

the return that the policyholder requires in order to choose to exercise his

reset option increases. However, in the last period before the maturity of the

segregated fund, the return that the policyholder requires in order to optimally

exercise his reset option decreases. The reason for this is that if the option is

not exercised it will expire worthless.

It should be underlined that the aim of the model was not to prescribe any

particular reset strategy as this is highly dependent on the parameters and

assumptions of the model, but rather to further our understanding on what

constitutes an optimal reset strategy and how it is affected by the fluctuation

of the main variables of the model. However, it should be highlighted that

the findings of the SRM model suggest that a single heuristic such as the

one prescribed by CIA, independent of the parameters and assumptions of the

model and most importantly of the time remaining to maturity, can prove to
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be a misleading approximation of the optimal reset strategy.

Overall, given the importance of the SRM findings it was felt that it was

interesting to alter some of its assumptions in order to reflect on the wide

range of features of the segregated funds which are traded in the market.

The methodology and results of this analysis were included in chapter 4. In

particular, three different extensions were added to the model.

Firstly, the Management Expense Ratio model extended the SRM in that

the issuer charges the policyholder a fee equal to a fixed proportion of the value

of the fund at the end of each policy year. The main findings from incorporating

this fee were that the policyholder requires a higher return in order to optimally

reset his maturity guarantee while the fund’s value is diminished due to the

negative effect of the fee. This finding is more acute when the assumed market

conditions are such that the maximum expected return from investing in a

segregated fund is less than the return from investing in risk free throughout

the planning horizon. Under such market conditions, the policyholder will

choose to switch to risk free at the first available opportunity.

Further, the level of management expense ratio which can negate the cost

of embedding reset options to a segregated fund contract was depicted. These

“break-even” values of the management expense ratio increase as the coefficient

of variation of the assumed market conditions increases. This finding is in line

with the observation made above. Depicting the “break-even” values can be
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very interesting and useful for both the policyholders and issuers. From the

point of view of the issuer, it should help with risk management policies as

well as to convince the relevant regulatory authorities that they indeed take

appropriate cover for the risk that they face from issuing segregated funds with

embedded reset options. From the point of view of the policyholder, it should

signal that if the underlying asset is not very risky, thus has a low coefficient

of variation, they should not be willing to pay a relatively high management

expense ratio. The opposite should hold for a risky underlying asset.

Secondly, the Variable Maturity Guarantee model extended the SRM

in that every time the policyholder exercises his reset option the maturity

guarantee is reduced by a pre-determined discount factor. The main findings

from incorporating the discount factor to the maturity guarantee were that the

policyholder requires a higher return in order to optimally reset his maturity

guarantee while the total value of the segregated fund is diminished due to

the negative effect of the discount factor on the fund’s value. This observation

holds true, if under the assumed market conditions the policyholder prefers to

invest in a segregated fund compared to investing in risk free throughout the

planning horizon.

Thirdly, the Variable Timing of Exercising the Reset Option Model

extended the SRM in that the policyholder is allowed to reset the maturity

guarantee at any point in time within each year from the start of the planning
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horizon, but only once. The main findings from the TimRO model were the

following. Firstly, at the beginning of each policy year the OEB exhibits a

jump. The reason for this is that the policyholder receives a new reset option

at that date. Secondly, as the end of each policy year is approached the OEB

steadily drops. The reason for this is that unless the policyholder exercises his

reset option before the end of the policy year, the option will expire worthless.

Further, the total value of the fund is increased, compared to the SRM model,

since the policyholder may lock in higher market gains as he has more reset

decision points (but the same number of total reset options). This finding,

however, does not hold true if the assumed market conditions are such that

the policyholder would prefer to invest in risk free throughout the planning

horizon, compared to investing in a segregated fund. The rationale is that

under such market conditions, the policyholder will choose to switch to risk

free at the first available opportunity. In order to do that he will choose not to

reset so as not to extend the maturity of the contract. Thus, if he is unlikely

to reset his maturity guarantee, having more reset decision dates should not

have a great effect in the total value of his contract.

In response to the well documented deficiencies of the lognormal model to

properly capture the negative and positive jumps experienced by stock markets

an attempt has been made to incorporate such jumps in the original model in

chapter 5. In order to preserve the comparability of the model’s results with
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the results of previous chapters it was decided to sustain the lognormal model

but overlay it with stochastic jumps.

Section 5.2 extended the SRM model in that while the evolution of the

possible values of the underlying asset price is the same as with the SRM

model, at every time period there is a small probability of a crash occurring.

When the crash materialises, the residual value of the fund after the crash is

equal to a fixed percentage of its original value. A finding from incorporating

such crashes was that, if the assumed market conditions are such that the

maximum expected return to the policyholder from investing in risk free

throughout the planning horizon is higher than from investing in a segregated

fund, the policyholder requires a higher return in order to optimally reset

his maturity guarantee. Therefore, unless the policyholder sees exceptional

growth in the fund, he will look for the quickest way out of the fund, which

is by essentially not resetting or, more precisely, requiring a very high return

in order to optimally reset. If, on the other hand, the maximum expected

return to the policyholder from investing in a segregated fund is higher than

from investing in risk free it holds that the maturity guarantee acts as a safety

net which protects the maximum expected return to the policyholder. Despite

the crash, if the value of the underlying asset relative to its original value at

investment, is less than the maturity guarantee, the policyholder’s expected

return will be equal to at least the maturity guarantee. A further finding
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from incorporating such crashes is that the total value of the segregated fund

diminishes due to the negative effect of the crashes on the underlying asset

value.

Section 5.3 provided an alternative method to incorporate jumps into the

SRM model, namely the Double Regime Model (DRM). In contrast to the

SCM model, the DRM model is able to incorporate both negative (crash) and

positive (surge) jumps as well as a combination of the two. In particular,

it allows the underlying asset to switch between two distinct regimes. The

market characteristics of the first regime are defined by the relevant scenario

under examination and are equivalent to the ones used under the SRM in order

to facilitate comparisons. The second regime is intended to model periods of

high volatility in the markets and can be used to incorporate the jumps. Two

distinct applications of the DRM were presented.

In the first application of the DRM model, denoted by DRM-C, the second

regime modeled the case where there is a large probability that the underlying

asset price will marginally increase or a very small probability that it will drop

by a substantial fixed percentage, thus essentially allowing only crashes like the

SCM. The parameters and transitions probabilities were set so that a crash is as

likely to happen and of the same magnitude as in the SCM, in order to facilitate

comparisons. In line with SCM, the main findings from incorporating such

crashes in DRM-C, is that if the assumed market conditions are such that the
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policyholder would rather invest in risk free throughout the planning horizon

compared to investing in segregated funds, then he will require a higher return

in order to optimally reset his maturity guarantee while the total value of the

segregated fund is diminished due to the negative effect of the crashes on the

underlying asset value. If on the other hand he prefers to invest in segregated

funds (compared to risk free), then it holds that the maturity guarantee acts as

a safety net which protects the maximum expected return to the policyholder.

Despite the crash, if the value of the underlying asset relative to its original

value at investment, is less than the maturity guarantee, the policyholder’s

expected return will be equal to at least the maturity guarantee.

In the second application of the DRM model, denoted by DRM-J, the

second regime modeled the case where the stock market can exhibit variable

jumps (i.e. both crashes and surges) with equal probability of occurrence.

The transition probabilities and parameters of the DRM-J model were set

so that with the same frequency as in the previous models, either a crash

occurs which reduces the value of the underlying asset or a surge occurs which

increases the value of the underlying asset, by a fixed percentage equivalent in

magnitude to the previous models. The main finding from incorporating such

instability in the market environment is that the policyholder requires a higher

return in order to optimally reset his maturity guarantee. In particular, the

incorporation of the crashes and surges causes the OEB to shift upwards with
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a larger increase towards the maturity of the contract. The justification behind

this observation is that the policyholder requires some extra compensation (i.e.

higher increase in the value of the underlying asset) in order to reset, and thus

prolong his investment in segregated funds, due to the risks associated with

switching to the second regime. This observation does not hold true if the

assumed market conditions are such that in the first regime there is very high

volatility. Then, since the coefficient of variation is already rather high, it is

reasonable to assume that switching to the second regime will not prove to be a

drastic increase in the volatility of the market returns. Hence, the policyholder

does not require higher returns to the underlying asset in order to choose to

reset his maturity guarantee.

Further, in contrast to both SCM and DRM-C the total value of the

segregated fund is increased due to the cumulative effects of the surges and

crashes on the underlying asset value, as modeled in DRM-J. The rationale

behind this argument is based on the ability of the policyholder to lock in

considerable market gains which accrue from stock market surges which more

than cancel out the corresponding decreases in the value of the underlying asset

caused by the potential crashes. In other words, the policyholder can lock in the

maximum of the potential market gains through optimally resetting the level of

his maturity guarantee but does not have to suffer all losses due to stock market

crashes as the maturity guarantee sets a lower bound and ultimately protects
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him from those. Therefore the model suggests that the cumulative effect of the

potential crashes and surges is an increase in the maximum expected return

from the original investment.

In future research it would be interesting to allow the investor more

options in terms of the available investments. In particular, in addition to

the segregated fund and the risk free rate it would be worth while to add other

investment vehicles such as shares or commodities. One may expect to see in

times of negative business climate an inclination from the investor to switch

to less risky solutions as well as the opposite when the business climate is

positive. Furthermore, it would be interesting to apply the knowledge gained

from modeling the reset option embedded in segregated funds, to model reset

options embedded in other financial products. One prominent candidate would

be the swing option embedded in energy derivatives. Taking into account the

high volatility of the energy markets, optimising its exercising could prove a

very useful tool in the hands of both policyholders and issuers.

225



References

V. V. Acharaya, K. J. Kose, and R. K. Sundaram. Altering the terms of

executive stock options. Working Paper: Department of Finance, Stern

Business School, 1998.

A. L. Ananthanarayanan and E. S. Schwartz. Retractable and extendible

bonds: the Canadian evidence. Journal of Finance, 35:31–47, 1980.

M. J. Armstrong. The reset decision for segregated fund maturity guarantees.

Insurance: Mathematics and Economics, 29:245–257, 2001.

D. Bates. The crash of ’87: was it epxected? evidence from options markets.

The Journal of Finance, XLVI:3, 1991.

D. Bates. Jumps and stochastic volatility: exchange rate processes implicit in

deutschemark options. Review of Financial Studies, 7(2):211–239, 1996.

C. Bilodeau. Better late than never: the case of the rollover option. Insurance:

Mathematics and Economics, 21:103–111, 1997.

T. Bjork, Y. Kabanov, and W. Runggaldier. Bond market structure in the

presence of marked point processes. Mathematical Finance, 7(2):211–239,

1997.

P. B. Boyle and M. R. Hardy. Reserving for maturity guarantees: two

approaches. Insurance: Mathematics and Economics, 21:113–127, 1997.

226



M. Brenner, R. K. Sundaram, and D. Yermack. Altering the terms of executive

stock options. Journal of financial economics, 57:103–128, 2000.

B. Brizeli. Canadian corner: Part I. Segregated funds — “no loss” proposition.

Product Development News, 46:11–14, 1998.

Canadian Institute of Actuaries. CIA task force on segregated fund

investment guarantees. Research Paper: Canadian Institute of Actuaries,

2002.

P. Carr, H. Geman, and D. B. Madan. The fine structure of asset returns: an

empirical investigation. Journal of Business, 2002.

D. M. Chance, R. Kumar, and R. B. Todd. The repricing of executive stock

options. Journal of financial economics, 57:129–154, 2000.

W. Cheng and S. Zang. The analytics of reset options. Journal of Derivatives,

8:59–71, 2000.

T. H. F. Cheuk and T. C. F. Vorst. Shout floors. Net exposure: the electronic

journal of financial risk, 2, 1997.

L. Clewlow and C. Strickland. Exotic options: the state of the art. Thompson

Business Press, 1997.

C. J. Corrado, B. D. Jordan, T. W. Miller, and J. J. Stansfield. Repricing

227



and emplyee stock option valuation. Journal of Banking and Finance, 25:

1059–1082, 2001.

J. C. Cox and S. A. Ross. The valuation of options for alternative stochastic

processes. Journal of Financial Economics, 3:145–166, 1976.

M. Dai and Y. K. Kwok. Options with combined reset rights on strike and

maturity. Journal of Economic Dynamics and Control, 29:1495–1515, 2005.

M. Dai, Y. K. Kwok, and L. Wu. Optimal shouting policies of options with

strike reset right. Mathematical Finance, 14:383–401, 2004.

D. Duffie, J. Pan, and K. Singleton. Transform analysis and option pricing for

affine jump diffusions. Econometrica, 68:1343–1376, 2000.

W. Fallon. Canada’s option nightmare. Risk Magazine, August, 1999.

H. U. Gerber and E. S. W. Shiu. From ruin theory to pricing reset guarantees

and perpetual put options. Insurance: Mathematics and Economics, 24:

3–14, 1999.

B. Goldman, H. Sosin, and M. Gatto. Path dependent options: buy at the low,

sell at the high. Journal of Finance, 34:1111–1127, 1979.

S. F. Gray and R. E. Whaley. Valuing S&P500 bear market warrants with a

periodic reset. Journal of Derivatives, 5:99–106, 1997.

228



S. F. Gray and R. E. Whaley. Reset put options: valuation, risk characteristics

and an application. Australian Journal of Management, 24:1–20, 1999.

G. H. Hancock. Valuing guaranteed minimum death and maturity benefits: US

and Canadian perspectives. Toronto Spring Meeting: Society of Actuaries,

2001.

M. R. Hardy. Bayesian risk management for equity linked insurance. Technical

report: IIPR University of Waterloo, 5:99–106, 2001.

S. L. Heston. A closed-form solution for options with stochastic volatility with

applications to bond and currence options. The Review of Financial Studies,

6(2):327–343, 1993.

J. Hull and A. White. The pricing of options with stochastic volatilities.

Journal of Finance, 42:281–300, 1987.

J. C. Hull. Options Futures and Other Derivatives. Pearson Prentice Hall,

2006.

A. Ibanez. Valuation by simulation of contingent claims with multiple ealry

exercise opportunities. Mathematical Finance, 14:223–248, 2004.

P. Jaillet, E. I. Ronn, and S. Tompaidis. Valuation of commodity based swing

options. Management Science, 50:909–921, 2004.

229



P. Jorion. On jump processes in tghe foreign exchange and stock markets.

Review of Financial Studies, 1(4):427–445, 1988.

J. Keppo. Pricing of electricity swing options. Journal of Derivatives, Spring:

26–43, 2004.

T. Kimura and T. Shinahara. Monte Carlo analysis of convertible bonds with

reset clauses. European Journal of Operational Research, 168:301–310, 2006.

S. G. Kou. A jump diffusion model for option pricing. Management Science,

48:1086–1101, 2002.

K. W. Lau and Y. K. Kwok. Optimal calling policies in convertible bonds.

Working Paper: Hong Kong University of Science and Technology, 2003.

S. Liao and C. Wang. Pricing arithmetic average reset options with control

variates. Journal of Derivatives, 10:59–74, 2002.

S. Liao and C. Wang. The valuation of reset options with multiple strike resets

and reset dates. The Journal of Future Markets, 23:87–107, 2003.

D. B. Madan, P. P. Carr, and E. C. Chang. The variance-gamma process and

option pricing. European Finance Review, 2:7–105, 1998.

R. Merton. Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, 3:125–144, 1976.

230



B. Miles and M. Miles. Segregated funds: How to guarantee your financial

future. Stoddart, 2000.

Canadian Institute of Actuaries. Use of stochastic techniques to value actuarial

liabilities under Canadian GAAP. Research paper: Working group on the

use of stochastic valuation techniques, 2001.

OSFI. Capital offset for segregated fund henge programs (mccsr). Office of the

Superintendent of Financial Institutions, 1999.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Chichester Willey, 1994.

P. Ritchken, L. Sankarasubramanian, , and A. Vijh. The valuation of path

dependent contracts on the average. Management Science, 39:1202–1213,

1993.

M. Rubenstein and E. Reiner. Breaking down the barriers. Risk, September:

28–35, 1991.

P. Wilmott. Derivatives. John Wiley and Sons, 1998.

H. A. Windcliff, M. Le Roux P. A., Forsyth, and K. R. Vetzal. Understanding

the behaviour and hedging of segregated funds offering the reset feature.

North American Actuarial Journal, 6:107–124, 2001a.

231



H. A. Windcliff, P. A., Forsyth, and K. R. Vetzal. Shout options: a framework

for pricing contracts which can be modified by the investor. Journal of

computational and applied mathematics, 134:213–241, 2001b.

H. A. Windcliff, P. A. Forsyth, and K. R. Vetzal. Valuation of segregated

funds: shout options with maturity extentions. Insurance: Mathematics and

Economics, 29:1–21, 2001c.

P. G. Zhang. Exotic options: a guide to second generation options. World

Scientific, 1998.

232


